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Message from the General Chair

Welcome to New Orleans and to NAACL HLT 2018 – the biggest NAACL to date. Natural Language
Processing and Computational Linguistics is constantly growing and changing with a constant flow of
new methods and topics. Every year also sees an even more exciting and diverse research community,
with a steadily increasing number researchers, companies both large and small, and a vibrant community
of practitioners and students who are excited at the prospect of taking on the newest challenges of the
discipline. This year’s NAACL HLT conference reflects what an exciting time this is for our field, and
highlights the vibrancy and vitality of our community.

I feel extremely lucky to be able to work with a fantastic program committee, especially the two
extremely dedicated, creative and resourceful program chairs: Amanda Stent and Heng Ji. Their
innovations include a new review form, intended to elicit higher quality reviews, the opportunity for
authors to review the reviewers, the Test-of-Time awards, and a program where poster and demo sessions
run consistently in parallel to the oral sessions, in order to allow the conference to reflect the ever
increasing diversity of research topics and the corresponding volume of accepted papers. I am especially
excited about the new Test-of-Time papers award session, and hope to see this new innovation become a
regular part of ACL conferences.

We have named the Test-of-Time award in memory of Aravind Joshi, who left us this year, after having
a huge lifetime impact on our community. We will always remember him for his gentle conversational
style, sharp focus, interest in linguistic, computational and mathematical properties of language, and his
lifetime commitment to mentoring women in NLP. I feel extremely lucky to have been one of his Ph.D.
students.

This year we also introduced an industrial track, with the aim of featuring papers that focus on scalable,
interpretable, reliable and customer facing methods for industrial applications of Natural Language
Processing. The idea of having such a track was proposed by Yunyao Li who strongly advocated for
it: this proposal was then discussed and approved by the NAACL board. After that, it was all go, with an
incredible amount of work to promote and organize it by the industrial track chairs: Jennifer Chu-Carroll,
Yunyao Li and Srinivas Bangalore.

The overall program looks amazing and reflects the cooperative way that everyone on the committee
worked together. What a team! I am so grateful for getting to be a part of this community of people,
and I really appreciate the enthusiasm and attention to detail reflected in their hard work: Amanda Stent
and Heng Ji (program chairs); Jennifer Chu-Carroll, Yunyao Li and Srinivas Bangalore (industrial track
chairs); Ying Lin (website chair); Marie Meteer and Jason Williams (workshop co-chairs); Mohit Bansal
and Rebecca Passonneau (tutorial co-chairs); Yang Liu, Tim Paek, and Manasi Patwardhan (demo co-
chairs); Chris Callison-Burch and Beth Hockey (Family-Friendly Program Co-Chairs) Stephanie Lukin
and Meg Mitchell (publication co-chairs); Jonathan May (handbook chair); Silvio Ricardo Cordeiro,
Shereen Oraby, Umashanthi Pavalanathan, and Kyeongmin Rim (student cochairs) along with Swapna
Somasundaran and Sam Bowman (Faculty Advisors) for the student research workshop; Lena Reed
(student volunteer coordinator); Kristy Hollingshead, Kristen Johnson, and Parisa Kordjamshidi (local
sponsorships and exhibits cochairs); Yonatan Bisk and Wei Xu (publicity and social media chairs);
David Yarowsky and Joel Tetreault (treasurers) and Alexis Palmer and Jason Baldridge (the NAACL
international Sponsorship Team). Also thanks to Rich at SoftConf for his speedy response to questions
and his willingness to help us innovate with our new review form. And thanks to Julia Hockenmaier and
the whole NAACL Executive Board for always being willing to consult on any issue.

The program highlights three keynote speakers in the main track: Dilek Hakkani-Tür, Kevin Knight,
and Charles Yang. We also have two keynote speakers in the industry track: Mari Ostendorf and Daniel
Marcu. These talks promising to be interesting across a range of issues from language acquisition iniv



children to the commercial possibilities of conversational agents. The industry track will also feature
two panels, one on careers in industry (as compared to academia) and the other on ethics in NLP. The
program also includes six tutorials featuring topics of current interest and sources of innovation in the
field. We have sixteen workshops plus the student research workshop: some of these workshops have
become events in themselves with many of them repeated each year. We will also have plenary sessions
for the outstanding paper awards and the new Test-Of-Time papers award session.

Any event of this scale can only happen with the the hard work of a wonderful group of people. I
especially want to thank the NAACL board for being willing to consult on a range of different issues
and Priscilla Rasmussen for taking care of all the millions of details that need to be looked after every
single day to make sure the logistical aspects of the conference come together. I want to especially thank
Priscilla for her hard work and creativity organizing our social event: we first will go to Mardi Gras
World to see the world of wonders created each year for the Mardi Gras. From there we go to the river,
to the dockside River City Plaza and River City Ballroom for New Orleans’ famous cuisine and libations
and dancing to live Zydeco, funk, soul and R&B.

ACL has been working for several years to increase diversity at our conferences and in our community.
So, taking inspiration from ACL 2017, we aimed to make NAACL family friendly, by providing childcare
at the conference, and encouraging people to bring their families to the social events and breakfasts.
Diversity can also be a consequence of the support for students to attend the conference that we receive
from the NSF, CRA-CCC and CRA-W: this subsidizes student travel to the student research workshop
as well as their registration and ACL memberships. When combined with the support we are able to give
to our student volunteers, we aim to make it possible for students from all over the world to come to
the conference and be part of our community. We also decided, in consultation with the NAACL board,
to provide subsidies to the Widening NLP workshop, which is only being held for the second time at
this year’s NAACL (last year called the Women in NLP workshop). These subsidies enable participation
from students and young researchers from developing countries to attend the conference.

I am grateful to our sponsors for their generous contributions, which add so much to what we can do at
the conference. Our Diamond sponsors are Bloomberg, Google, and Toutiao AI Lab (ByteDance). The
Platinum sponsor is Amazon. The Gold Sponsors are Ebay, Grammarly, IBM Research, KPMG, Oracle,
Poly AI, Tulane University, Capital One and Two Sigma. The Silver sponsors are Nuance and Facebook,
and the Bronze sponsors are iMerit and USC/ISI.

Finally, there are many more people who through their hard work and dedication have contributed
to make this conference a success: the area chairs, workshop organizers, tutorial presenters, student
mentors, and reviewers. And of course you all, the attendees without whom there would be no
conference: you are the life and spirit of the conference and the NAACL community. I hope you all
have a fun and exciting time at NAACL HLT 2018!

NAACL HLT 2018 General Chair
Marilyn Walker, University of California Santa Cruz
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Message from the Program Co-Chairs

We welcome you to New Orleans for the 16th Annual Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL HLT 2018)! We
had three primary goals for NAACL HLT 2018: construct a great program; manage the integrity and
quality of the publication process; and ensure broad participation.

Construct a great program: NAACL HLT 2018 does have a great program, thanks to all of you!
We will have three exciting keynotes, from Charles Yang, Kevin Knight and Dilek Hakkani-Tür. 331
research track papers (205 long, 125 short), accepted following peer review, will be presented1. Four of
these papers have been identified as outstanding papers, and one will be named best paper. We will also
feature a “Test of Time” session with retrospectives (from the authors) on three influential papers from
ACL venues. We thank the committees who nominated and voted on these paper awards.

The main program at NAACL HLT 2018 also includes 16 TACL paper presentations, 20 demos, a student
research workshop and an industry track. Keynotes from both the research and industry tracks are
plenary. In a change from previous years of NAACL HLT, and motivated by EMNLP 2017, poster and
oral presentation sessions will be held in parallel during the day. All posters are grouped thematically
(including posters from the industry track and student research workshop and demos) and assigned to
poster sessions so as to not be against oral presentation sessions with the same theme.

Manage the integrity and quality of the publication process: To manage load, we decided that
each area chair should be responsible for no more than 30 submissions and that reviewers should be
responsible for reviewing no more than 3 submissions. To help reviewers, we and the ACL program
co-chairs constructed a more structured review form, with questions related to the new ACL guidelines
on publication and reviewing, as well as to contribution types, experimental methods (thank you, Bonnie
Webber!), software and handling of data.

We recruited an excellent group of 72 area chairs; we thank them for their leadership, and for nominating
and voting on outstanding papers, outstanding reviewers and test of time papers. 1372 individuals
reviewed papers for the conference (as program committee members, ad hoc reviewers or secondary
reviewers); all but 49 reviewers had no more than 3 submissions to review overall, and the 49 reviewers
who took on a heavier load did so voluntarily. We thank all our reviewers, especially the ad-hoc reviewers
who provided last minute reviews and the outstanding reviewers identified by the area chairs.

Submissions were assigned to area chairs and reviewers using a combination of area chair expertise,
Toronto Paper Matching System (TPMS) scores and reviewer bids. Both long and short paper
submissions received 3 reviews each. Long paper authors had an opportunity to respond to reviews.
Accept/reject suggestions were made by area chairs working in small groups of 2-3 and discussing with
reviewers as necessary; final decisions were made by the program chairs. Where there was disagreement
or discussion, one area chair wrote a short meta review that was shared with the authors.

This year, if the authors of a NAACL HLT 2018 submission and the author of a review for that submission
both consented, then we will include the review in a review corpus to be released jointly with the program
chairs of ACL, Iryna Gureyvich and Yusuke Miyao. We also asked authors of accepted papers to upload
the source code for their papers. Both of these corpora will be released in the coming months.

The health of our field as a science is dependent on a scalable peer review process, which in turn depends
on (a) conscientious effort from a broad pool of expert reviewers, and (b) tools, processes and policies
that can structure and facilitate reviewing. As a field we are at a breaking point: we are growing rapidly,

1We received 1122 research track submissions (664 long, 458 short). 33 were rejected without review and 85 were
withdrawn by the authors either before, during or after review. vi



with corresponding heavy load on experienced reviewers; and we lack good tools to manage the process.
Peer review involves several tasks that we, as NLP researchers, ought to be uniquely qualified to address,
including expertise sourcing, network analysis and text mining. We have written a proposal with other
members of the ACL community about ways the ACL can improve our peer review infrastructure. We
have also written a collection of “how to” documents that we will pass on to future conference organizers.

Ensure broad participation: To ensure broad participation, we recruited program committee members
using a similar method to that used for NAACL HLT 2016: we invited anyone who had published
repeatedly in ACL sponsored venues, who had a PhD or significant experience in the field spanning
more than 5 years, and whose email address was up to date in START. We thank Dragomir Radev for
giving us a list of names from the ACL anthology.

We also kept a blog where we discussed and attempted to “demystify” each stage of the publication
process. This blog can be found at the conference website, http://naacl2018.org. We are very
grateful to the researchers who wrote guest blog posts, including Justine Cassell, Barbara Plank, Preslav
Nakov, Omer Levy, Gemma Boleda, Emily Bender, Nitin Madnani, David Chiang, Kevin Knight, Dan
Bikel and Joakim Nivre.

On our blog, we reported on the diversity of our area chair, reviewer and author pools in terms of years
of experience, affiliation type and geography, and gender. We will include these details in our report to
the NAACL Executive Committee. We hope that future years’ chairs will make similar reports.

The excellence of the overall NAACL HLT 2018 program is thanks to all the chairs and organizers. We
especially thank the following people: Margaret Mitchell and Stephanie Lukin, the publication chairs;
Jonathan May, the handbook chair; Yonatan Bisk and Wei Xu, the publicity and social media chairs;
Ying Lin, the tireless website chair; and Marilyn Walker, the NAACL HLT 2018 general chair. We thank
the chairs of NAACL HLT 2016 and ACL 2017 for their informative blogs, and the program chairs of
NAACL HLT 2016, Owen Rambow and Ani Nenkova, for their advice. We thank the program co-chairs
of ACL 2018, Iryna Gurevych and Yusuke Miyao, who have been very collaborative on matters related to
reviewing. We thank Shuly Winter, who helped fix a serious START bug. We thank Julia Hockenmaier
and the NAACL Executive Committee for their support. We are grateful for the professional work of
Rich Gerber and his colleagues at SoftConf (START), and of Priscilla Rasmussen from the ACL.

It has been an enormous privilege for us to see the scientific advances that will be presented at this
conference. We would like to close with some advice for you, the conference attendees.

• The presenters have made valuable contributions to our science; their oral, poster and demo
presentations are worth your time and attention.
• Talk to some people you haven’t previously met. They may be your future collaborators!
• You can follow the conference on social media; we have a conference app and website where we

will post any updates to the program, and our twitter handle is @naaclhlt.
• This event is run by a professional organization with a code of conduct2. If you observe or are the

recipient of unprofessional behavior, you may contact any current member of the ACL or NAACL
Executive Committees, the NAACL HLT general chair (Marilyn Walker), us (the program chairs),
or Priscilla Rasmussen (acl@aclweb.org). We will hold your communications in strict confidence
and consult you before taking any action.

We look forward to a wonderful conference!

NAACL HLT 2018 Program Co-Chairs
Heng Ji, RPI
Amanda Stent, Bloomberg

2https://www.aclweb.org/adminwiki/index.php?title=Anti-Harassment_Policyvii
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Ondřej Bojar
Danushka Bollegala
Marcel Bollmann
Kalina Bontcheva
Benjamin Börschinger
Florian Boudin
Fethi Bougares
Pierrette Bouillon
Gosse Bouma
Johan Boye
Kristy Boyer
David Bracewell
Ellen Breitholz
Chris Brew
Ted Briscoe
Chris Brockett
Julian Brooke
Pawel Budzianowski†

Paul Buitelaar
Harry Bunt
Wray Buntine
David Burkett
Jill Burstein
Miriam Butt
Donna Byron
José G. C. de Souza
Aoife Cahill
Deng Cai†

Ruket Cakici
Iacer Calixto*
Chris Callison-Burch
Nicoletta Calzolari
Jose Camacho-Collados
Leonardo Campillos Llanos*†

Marie Candito
Kai Cao*
Liangliang Cao
Yuan Cao
Ziqiang Cao
Cornelia Caragea

Giuseppe Carenini
Mark Carman
Xavier Carreras
Vitor Carvalho
Francisco Casacuberta
Taylor Cassidy
Vittorio Castelli
Damir Cavar
Asli Celikyilmaz
Daniel Cer
Özlem Çetinoğlu*
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Outstanding Papers
For NAACL HLT 2018 we recognize four outstanding research track papers (one of these will be named
best paper). These four papers were selected by a committee composed of Joyce Chai (Michigan State
University), Michael Collins (Columbia University), Jennifer Foster (Dublin City University), Smaranda
Muresan (Columbia University) and Joel Tetreault (Grammarly; chair), all NAACL HLT 2018 area chairs
with no conflicts with the candidate outstanding papers. The nine candidate papers were selected by the
program chairs from nineteen papers nominated by the area chairs. These papers will be presented in a
plenary session on the last day of the conference. Congratulations to the authors!

• Deep Contextualized Word Representations, by Matthew Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee and Luke Zettlemoyer

• Learning to Map Context-Dependent Sentences to Executable Formal Queries, by Alane Suhr,
Srinivasan Iyer and Yoav Artzi

• Neural Text Generation in Stories using Entity Representations as Context, by Elizabeth Clark,
Yangfeng Ji and Noah A. Smith

• Recurrent Neural Networks as Weighted Language Recognizers, by Yining Chen, Sorcha Gilroy,
Andreas Maletti, Jonathan May and Kevin Knight

Test of Time Papers
For NAACL HLT 2018 we recognize three influential and inspiring Computational Linguistics (CL) pa-
pers which were published between 2002-2012 at the Association for Computational Linguistics (ACL)
conferences (including ACL, NAACL, EACL, EMNLP and CONLL), workshops and journals (including
TACL and CL), to recognize research that has had long-lasting influence until today, including positive
impact on a subarea of CL, across subareas of CL, and outside of the CL research community. These pa-
pers may have proposed new research directions and new technologies, or released results and resources
that have greatly benefit the community. Nineteen candidate test of time papers were nominated by our
area chairs. Separate votes on these papers were held separately by two committees: an expert award
committee consisting of all ACL and NAACL general chairs and program chairs and NAACL board
members from 2013-2018 who did not have a conflict with the nominated papers, and a community
award committee consisting of the 1000 authors who have published the most papers at ACL venues and
who did not have a conflict with the nominated papers. These papers will be re-presented by the authors
in a plenary session on the second day of the conference. Congratulations to the authors!

• BLEU: a Method for Automatic Evaluation of Machine Translation, by Kishore Papineni, Salim
Roukos, Todd Ward and Wei-Jing Zhu

• Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Per-
ceptron Algorithms, by Michael Collins

• Thumbs up?: Sentiment Classification using Machine Learning Techniques, by Bo Pang, Lillian
Lee and Shivakumar Vaithyanathan

xxiii



Keynote Talk: Why 72?
Charles Yang

University of Pennsylvania

Biography
Charles is a Professor of Linguistics, Computer Science, and Psychology at the University of Pennsyl-
vania and directs the Program in Cognitive Science. He has spent a long time to work out the tricks
children use to learn languages and is now ready to try them out on machines. His most recent book, The
Price of Linguistic Productivity, is the winner of the 2017 LSA Leonard Bloomfield award.

Keynote Talk: The Moment When the Future Fell Asleep
Kevin Knight

University of Southern California / Information Sciences Institute

Biography
Kevin is a professor of computer science at the University of Southern California and fellow of the
Information Sciences Institute. He is a 2014 fellow of the ACL for foundational contributions to ma-
chine translation, to the application of automata for NLP, to decipherment of historical manuscripts, to
semantics and to generation.

Keynote Talk: Google Assistant or My Assistant? Towards Personalized
Situated Conversational Agents

Dilek Hakkani-Tür
Google Research

Abstract
Interacting with machines in natural language has been a holy grail since the beginning of computers.
Given the difficulty of understanding natural language, only in the past couple of decades, we started
seeing real user applications for targeted/limited domains. More recently, advances in deep learning
based approaches enabled exciting new research frontiers for end-to-end goal-oriented conversational
systems. However, personalization (i.e., learning to take actions from users and learning about users
beyond memorizing simple attributes) remains a research challenge. In this talk, I’ll review end-to-end
situated dialogue systems research, with components for situated language understanding, dialogue state
tracking, policy, and language generation. The talk will highlight novel approaches where dialogue
is viewed as a collaborative game between a user and an agent in the presence of visual information.
The situated conversational agent can be bootstrapped using user simulation (crawl), improved through
interactions with crowd-workers (walk), and iteratively refined with real user interactions (run).

Biography
Dilek is a research scientist at Google Research Dialogue Group and has previously held positions at
Microsoft Research, ICSI, and AT&T Labs – Research. She is a fellow of the IEEE and of ISCA. Her
research interests include conversational AI, natural language and speech processing, spoken dialogue
systems, and machine learning for language processing.
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Ivan Vulić and Nikola Mrkšić . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1134

Cross-Lingual Abstract Meaning Representation Parsing
Marco Damonte and Shay B. Cohen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146

Sentences with Gapping: Parsing and Reconstructing Elided Predicates
Sebastian Schuster, Joakim Nivre and Christopher D. Manning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1156

xxx



A Structured Syntax-Semantics Interface for English-AMR Alignment
Ida Szubert, Adam Lopez and Nathan Schneider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1169

End-to-End Graph-Based TAG Parsing with Neural Networks
Jungo Kasai, Robert Frank, Pauli Xu, William Merrill and Owen Rambow . . . . . . . . . . . . . . . . . 1181

Colorless Green Recurrent Networks Dream Hierarchically
Kristina Gulordava, Piotr Bojanowski, Edouard Grave, Tal Linzen and Marco Baroni . . . . . . . . 1195

Diverse Few-Shot Text Classification with Multiple Metrics
Mo Yu, Xiaoxiao Guo, Jinfeng Yi, Shiyu Chang, Saloni Potdar, Yu Cheng, Gerald Tesauro, Haoyu

Wang and Bowen Zhou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206

Early Text Classification Using Multi-Resolution Concept Representations
Adrian Pastor López Monroy, Fabio A. González, Manuel Montes, Hugo Jair Escalante and Thamar

Solorio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216

Multinomial Adversarial Networks for Multi-Domain Text Classification
Xilun Chen and Claire Cardie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1226

Pivot Based Language Modeling for Improved Neural Domain Adaptation
Yftah Ziser and Roi Reichart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1241

Reinforced Co-Training
Jiawei Wu, Lei Li and William Yang Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1252

Tensor Product Generation Networks for Deep NLP Modeling
Qiuyuan Huang, Paul Smolensky, Xiaodong He, Li Deng and Dapeng Wu . . . . . . . . . . . . . . . . . 1263

The Context-Dependent Additive Recurrent Neural Net
Quan Hung Tran, Tuan Lai, Gholamreza Haffari, Ingrid Zukerman, Trung Bui and Hung Bui 1274

Combining Character and Word Information in Neural Machine Translation Using a Multi-Level Atten-
tion

Huadong Chen, Shujian Huang, David Chiang, Xinyu Dai and Jiajun Chen . . . . . . . . . . . . . . . . . 1284

Dense Information Flow for Neural Machine Translation
Yanyao Shen, Xu Tan, Di He, Tao Qin and Tie-Yan Liu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1294

Evaluating Discourse Phenomena in Neural Machine Translation
Rachel Bawden, Rico Sennrich, Alexandra Birch and Barry Haddow . . . . . . . . . . . . . . . . . . . . . . 1304

Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural Machine Translation
Matt Post and David Vilar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1314

Guiding Neural Machine Translation with Retrieved Translation Pieces
Jingyi Zhang, Masao Utiyama, Eiichro Sumita, Graham Neubig and Satoshi Nakamura. . . . . .1325

Handling Homographs in Neural Machine Translation
Frederick Liu, Han Lu and Graham Neubig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1336

Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
Zhen Yang, Wei Chen, Feng Wang and Bo Xu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1346

Neural Machine Translation for Bilingually Scarce Scenarios: a Deep Multi-Task Learning Approach
Poorya Zaremoodi and Gholamreza Haffari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1356

xxxi



Self-Attentive Residual Decoder for Neural Machine Translation
Lesly Miculicich Werlen, Nikolaos Pappas, Dhananjay Ram and Andrei Popescu-Belis . . . . . . 1366

Target Foresight Based Attention for Neural Machine Translation
Xintong Li, Lemao Liu, Zhaopeng Tu, Shuming Shi and Max Meng . . . . . . . . . . . . . . . . . . . . . . . 1380

Context Sensitive Neural Lemmatization with Lematus
Toms Bergmanis and Sharon Goldwater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1391

Modeling Noisiness to Recognize Named Entities using Multitask Neural Networks on Social Media
Gustavo Aguilar, Adrian Pastor López Monroy, Fabio González and Thamar Solorio . . . . . . . . 1401

Reusing Weights in Subword-Aware Neural Language Models
Zhenisbek Assylbekov and Rustem Takhanov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1413

Simple Models for Word Formation in Slang
Vivek Kulkarni and William Yang Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1424

Using Morphological Knowledge in Open-Vocabulary Neural Language Models
Austin Matthews, Graham Neubig and Chris Dyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1435

A Neural Layered Model for Nested Named Entity Recognition
Meizhi Ju, Makoto Miwa and Sophia Ananiadou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1446

DR-BiLSTM: Dependent Reading Bidirectional LSTM for Natural Language Inference
Reza Ghaeini, Sadid A. Hasan, Vivek Datla, Joey Liu, Kathy Lee, Ashequl Qadir, Yuan Ling,

Aaditya Prakash, Xiaoli Fern and Oladimeji Farri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1460

KBGAN: Adversarial Learning for Knowledge Graph Embeddings
Liwei Cai and William Yang Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1470

Multimodal Frame Identification with Multilingual Evaluation
Teresa Botschen, Iryna Gurevych, Jan-Christoph Klie, Hatem Mousselly Sergieh and Stefan Roth

1481

Learning Joint Semantic Parsers from Disjoint Data
Hao Peng, Sam Thomson, Swabha Swayamdipta and Noah A. Smith . . . . . . . . . . . . . . . . . . . . . . 1492

Identifying Semantic Divergences in Parallel Text without Annotations
Yogarshi Vyas, Xing Niu and Marine Carpuat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1503

Bootstrapping Generators from Noisy Data
Laura Perez-Beltrachini and Mirella Lapata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1516

SHAPED: Shared-Private Encoder-Decoder for Text Style Adaptation
Ye Zhang, Nan Ding and Radu Soricut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1528

Generating Descriptions from Structured Data Using a Bifocal Attention Mechanism and Gated Orthog-
onalization

Preksha Nema, Shreyas Shetty, Parag Jain, Anirban Laha, Karthik Sankaranarayanan and Mitesh
M. Khapra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1539

CliCR: a Dataset of Clinical Case Reports for Machine Reading Comprehension
Simon Suster and Walter Daelemans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1551

xxxii



Learning to Collaborate for Question Answering and Asking
Duyu Tang, Nan Duan, Zhao Yan, Zhirui Zhang, Yibo Sun, Shujie Liu, Yuanhua Lv and Ming Zhou

1564

Learning to Rank Question-Answer Pairs Using Hierarchical Recurrent Encoder with Latent Topic Clus-
tering

Seunghyun Yoon, Joongbo Shin and Kyomin Jung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1575

Supervised and Unsupervised Transfer Learning for Question Answering
Yu-An Chung, Hung-yi Lee and James Glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1585

Tracking State Changes in Procedural Text: a Challenge Dataset and Models for Process Paragraph
Comprehension

Bhavana Dalvi, Lifu Huang, Niket Tandon, Wen-tau Yih and Peter Clark . . . . . . . . . . . . . . . . . . . 1595

Combining Deep Learning and Topic Modeling for Review Understanding in Context-Aware Recommen-
dation

Mingmin Jin, Xin Luo, Huiling Zhu and Hankz Hankui Zhuo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1605

Deconfounded Lexicon Induction for Interpretable Social Science
Reid Pryzant, Kelly Shen, Dan Jurafsky and Stefan Wagner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1615

Detecting Denial-of-Service Attacks from Social Media Text: Applying NLP to Computer Security
Nathanael Chambers, Ben Fry and James McMasters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1626

The Importance of Calibration for Estimating Proportions from Annotations
Dallas Card and Noah A. Smith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1636

A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications
Dongyeop Kang, Waleed Ammar, Bhavana Dalvi, Madeleine van Zuylen, Sebastian Kohlmeier,

Eduard Hovy and Roy Schwartz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1647

Deep Communicating Agents for Abstractive Summarization
Asli Celikyilmaz, Antoine Bosselut, Xiaodong He and Yejin Choi . . . . . . . . . . . . . . . . . . . . . . . . . 1662

Encoding Conversation Context for Neural Keyphrase Extraction from Microblog Posts
Yingyi Zhang, Jing Li, Yan Song and Chengzhi Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1676

Estimating Summary Quality with Pairwise Preferences
Markus Zopf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1687

Generating Topic-Oriented Summaries Using Neural Attention
Kundan Krishna and Balaji Vasan Srinivasan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1697

Generative Bridging Network for Neural Sequence Prediction
Wenhu Chen, Guanlin Li, Shuo Ren, Shujie Liu, Zhirui Zhang, Mu Li and Ming Zhou . . . . . . 1706

Higher-Order Syntactic Attention Network for Longer Sentence Compression
Hidetaka Kamigaito, Katsuhiko Hayashi, Tsutomu Hirao and Masaaki Nagata . . . . . . . . . . . . . . 1716

Neural Storyline Extraction Model for Storyline Generation from News Articles
Deyu Zhou, Linsen Guo and Yulan He . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1727

Provable Fast Greedy Compressive Summarization with Any Monotone Submodular Function
Shinsaku Sakaue, Tsutomu Hirao, Masaaki Nishino and Masaaki Nagata . . . . . . . . . . . . . . . . . . . 1737

xxxiii



Ranking Sentences for Extractive Summarization with Reinforcement Learning
Shashi Narayan, Shay B. Cohen and Mirella Lapata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1747

Relational Summarization for Corpus Analysis
Abram Handler and Brendan O’Connor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1760

What’s This Movie About? A Joint Neural Network Architecture for Movie Content Analysis
Philip John Gorinski and Mirella Lapata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1770

Which Scores to Predict in Sentence Regression for Text Summarization?
Markus Zopf, Eneldo Loza Mencía and Johannes Fürnkranz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1782

A Hierarchical Latent Structure for Variational Conversation Modeling
Yookoon Park, Jaemin Cho and Gunhee Kim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1792

Detecting Egregious Conversations between Customers and Virtual Agents
Tommy Sandbank, Michal Shmueli-Scheuer, Jonathan Herzig, David Konopnicki, John Richards

and David Piorkowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1802

Learning to Disentangle Interleaved Conversational Threads with a Siamese Hierarchical Network and
Similarity Ranking

Jyun-Yu Jiang, Francine Chen, Yan-Ying Chen and Wei Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1812

Variational Knowledge Graph Reasoning
Wenhu Chen, Wenhan Xiong, Xifeng Yan and William Yang Wang . . . . . . . . . . . . . . . . . . . . . . . . 1823

Inducing Temporal Relations from Time Anchor Annotation
Fei Cheng and Yusuke Miyao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1833

ELDEN: Improved Entity Linking Using Densified Knowledge Graphs
Priya Radhakrishnan, Partha Talukdar and Vasudeva Varma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1844

Interpretable Charge Predictions for Criminal Cases: Learning to Generate Court Views from Fact
Descriptions

Hai Ye, Xin Jiang, Zhunchen Luo and Wenhan Chao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1854

Delete, Retrieve, Generate: a Simple Approach to Sentiment and Style Transfer
Juncen Li, Robin Jia, He He and Percy Liang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1865

Adversarial Example Generation with Syntactically Controlled Paraphrase Networks
Mohit Iyyer, John Wieting, Kevin Gimpel and Luke Zettlemoyer . . . . . . . . . . . . . . . . . . . . . . . . . . 1875

Sentiment Analysis: It’s Complicated!
Kian Kenyon-Dean, Eisha Ahmed, Scott Fujimoto, Jeremy Georges-Filteau, Christopher Glasz,

Barleen Kaur, Auguste Lalande, Shruti Bhanderi, Robert Belfer, Nirmal Kanagasabai, Roman Sarrazin-
gendron, Rohit Verma and Derek Ruths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1886

Multi-Task Learning of Pairwise Sequence Classification Tasks over Disparate Label Spaces
Isabelle Augenstein, Sebastian Ruder and Anders Søgaard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1896

Word Emotion Induction for Multiple Languages as a Deep Multi-Task Learning Problem
Sven Buechel and Udo Hahn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1907

Human Needs Categorization of Affective Events Using Labeled and Unlabeled Data
Haibo Ding and Ellen Riloff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1919

xxxiv



The Argument Reasoning Comprehension Task: Identification and Reconstruction of Implicit Warrants
Ivan Habernal, Henning Wachsmuth, Iryna Gurevych and Benno Stein . . . . . . . . . . . . . . . . . . . . . 1930

Linguistic Cues to Deception and Perceived Deception in Interview Dialogues
Sarah Ita Levitan, Angel Maredia and Julia Hirschberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1941

Unified Pragmatic Models for Generating and Following Instructions
Daniel Fried, Jacob Andreas and Dan Klein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1951

Hierarchical Structured Model for Fine-to-Coarse Manifesto Text Analysis
Shivashankar Subramanian, Trevor Cohn and Timothy Baldwin . . . . . . . . . . . . . . . . . . . . . . . . . . . 1964

Behavior Analysis of NLI Models: Uncovering the Influence of Three Factors on Robustness
Ivan Sanchez, Jeff Mitchell and Sebastian Riedel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1975

Assessing Language Proficiency from Eye Movements in Reading
Yevgeni Berzak, Boris Katz and Roger Levy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1986

Comparing Theories of Speaker Choice Using a Model of Classifier Production in Mandarin Chinese
Meilin Zhan and Roger Levy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1997

Spotting Spurious Data with Neural Networks
Hadi Amiri, Timothy Miller and Guergana Savova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2006

The Timing of Lexical Memory Retrievals in Language Production
Jeremy Cole and David Reitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2017

Unsupervised Induction of Linguistic Categories with Records of Reading, Speaking, and Writing
Maria Barrett, Ana Valeria Gonzalez-Garduño, Lea Frermann and Anders Søgaard . . . . . . . . . . 2028

Challenging Reading Comprehension on Daily Conversation: Passage Completion on Multiparty Dialog
Kaixin Ma, Tomasz Jurczyk and Jinho D. Choi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2039

Dialog Generation Using Multi-Turn Reasoning Neural Networks
Xianchao Wu, Ander Martinez and Momo Klyen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2049

Dialogue Learning with Human Teaching and Feedback in End-to-End Trainable Task-Oriented Dia-
logue Systems

Bing Liu, Gokhan Tür, Dilek Hakkani-Tür, Pararth Shah and Larry Heck . . . . . . . . . . . . . . . . . . 2060

LSDSCC: a Large Scale Domain-Specific Conversational Corpus for Response Generation with Diver-
sity Oriented Evaluation Metrics

Zhen Xu, Nan Jiang, Bingquan Liu, Wenge Rong, Bowen Wu, Baoxun Wang, Zhuoran Wang and
Xiaolong Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2070

EMR Coding with Semi-Parametric Multi-Head Matching Networks
Anthony Rios and Ramakanth Kavuluru . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2081

Factors Influencing the Surprising Instability of Word Embeddings
Laura Wendlandt, Jonathan K. Kummerfeld and Rada Mihalcea . . . . . . . . . . . . . . . . . . . . . . . . . . . 2092

Mining Evidences for Concept Stock Recommendation
Qi Liu and Yue Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2103

Binarized LSTM Language Model
Xuan Liu, Di Cao and Kai Yu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2113

xxxv



Conversational Memory Network for Emotion Recognition in Dyadic Dialogue Videos
Devamanyu Hazarika, Soujanya Poria, Amir Zadeh, Erik Cambria, Louis-Philippe Morency and

Roger Zimmermann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2122

How Time Matters: Learning Time-Decay Attention for Contextual Spoken Language Understanding in
Dialogues

Shang-Yu Su, Pei-Chieh Yuan and Yun-Nung Chen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2133

Towards Understanding Text Factors in Oral Reading
Anastassia Loukina, Van Rynald T. Liceralde and Beata Beigman Klebanov . . . . . . . . . . . . . . . . 2143

Generating Bilingual Pragmatic Color References
Will Monroe, Jennifer Hu, Andrew Jong and Christopher Potts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2155

Learning with Latent Language
Jacob Andreas, Dan Klein and Sergey Levine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2166

Object Counts! Bringing Explicit Detections Back into Image Captioning
Josiah Wang, Pranava Swaroop Madhyastha and Lucia Specia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2180

Quantifying the Visual Concreteness of Words and Topics in Multimodal Datasets
Jack Hessel, David Mimno and Lillian Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2194

Speaker Naming in Movies
Mahmoud Azab, Mingzhe Wang, Max Smith, Noriyuki Kojima, Jia Deng and Rada Mihalcea 2206

Stacking with Auxiliary Features for Visual Question Answering
Nazneen Fatema Rajani and Raymond Mooney . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2217

Deep Contextualized Word Representations
Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee and

Luke Zettlemoyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2227

Learning to Map Context-Dependent Sentences to Executable Formal Queries
Alane Suhr, Srinivasan Iyer and Yoav Artzi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2238

Neural Text Generation in Stories Using Entity Representations as Context
Elizabeth Clark, Yangfeng Ji and Noah A. Smith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2250

Recurrent Neural Networks as Weighted Language Recognizers
Yining Chen, Sorcha Gilroy, Andreas Maletti, Jonathan May and Kevin Knight . . . . . . . . . . . . . 2261

xxxvi



Conference Program

June 2

07:30–08:45 Breakfast

08:45–09:00 Welcome from the Chairs

09:00–10:00 Keynote (sponsored by Toutiao AI Lab)

Why 72?
Charles Yang, University of Pennsylvania

10:00–10:30 Morning Coffee

10:30–11:30 Information Extraction 1

10:30–10:48 Label-Aware Double Transfer Learning for Cross-Specialty Medical Named Entity
Recognition
Zhenghui Wang, Yanru Qu, Liheng Chen, Jian Shen, Weinan Zhang, Shaodian
Zhang, Yimei Gao, Gen Gu, Ken Chen and Yong Yu

10:48–11:06 Neural Fine-Grained Entity Type Classification with Hierarchy-Aware Loss
Peng Xu and Denilson Barbosa

11:06–11:24 Joint Bootstrapping Machines for High Confidence Relation Extraction
Pankaj Gupta, Benjamin Roth and Hinrich Schütze

xxxvii



June 2 (continued)

10:30–11:30 Phonology, Morphology and Word Segmentation 1

10:30–10:48 A Deep Generative Model of Vowel Formant Typology
Ryan Cotterell and Jason Eisner

10:48–11:06 Fortification of Neural Morphological Segmentation Models for Polysynthetic
Minimal-Resource Languages
Katharina Kann, Jesus Manuel Mager Hois, Ivan Vladimir Meza Ruiz and Hinrich
Schütze

11:06–11:24 Improving Character-Based Decoding Using Target-Side Morphological Informa-
tion for Neural Machine Translation
Peyman Passban, Qun Liu and Andy Way

10:30–11:30 Speech 1

10:30–10:48 Parsing Speech: a Neural Approach to Integrating Lexical and Acoustic-Prosodic
Information
Trang Tran, Shubham Toshniwal, Mohit Bansal, Kevin Gimpel, Karen Livescu and
Mari Ostendorf

10:48–11:06 Tied Multitask Learning for Neural Speech Translation
Antonios Anastasopoulos and David Chiang

11:06–11:24 Please Clap: Modeling Applause in Campaign Speeches
Jon Gillick and David Bamman

xxxviii



June 2 (continued)

10:30–12:00 Discourse and Pragmatics 1

Attentive Interaction Model: Modeling Changes in View in Argumentation
Yohan Jo, Shivani Poddar, Byungsoo Jeon, Qinlan Shen, Carolyn Rose and Graham
Neubig

Automatic Focus Annotation: Bringing Formal Pragmatics Alive in Analyzing the
Information Structure of Authentic Data
Ramon Ziai and Detmar Meurers

Dear Sir or Madam, May I Introduce the GYAFC Dataset: Corpus, Benchmarks
and Metrics for Formality Style Transfer
Sudha Rao and Joel Tetreault

Improving Implicit Discourse Relation Classification by Modeling Inter-
dependencies of Discourse Units in a Paragraph
Zeyu Dai and Ruihong Huang

10:30–12:00 Generation 1

A Deep Ensemble Model with Slot Alignment for Sequence-to-Sequence Natural
Language Generation
Juraj Juraska, Panagiotis Karagiannis, Kevin Bowden and Marilyn Walker

A Melody-Conditioned Lyrics Language Model
Kento Watanabe, Yuichiroh Matsubayashi, Satoru Fukayama, Masataka Goto, Ken-
taro Inui and Tomoyasu Nakano

Discourse-Aware Neural Rewards for Coherent Text Generation
Antoine Bosselut, Asli Celikyilmaz, Xiaodong He, Jianfeng Gao, Po-Sen Huang
and Yejin Choi

Natural Answer Generation with Heterogeneous Memory
Yao Fu and Yansong Feng

Query and Output: Generating Words by Querying Distributed Word Representa-
tions for Paraphrase Generation
Shuming Ma, Xu Sun, Wei Li, Sujian Li, Wenjie Li and Xuancheng Ren

Simplification Using Paraphrases and Context-Based Lexical Substitution
Reno Kriz, Eleni Miltsakaki, Marianna Apidianaki and Chris Callison-Burch

xxxix



June 2 (continued)

Zero-Shot Question Generation from Knowledge Graphs for Unseen Predicates and
Entity Types
Hady Elsahar, Christophe Gravier and Frederique Laforest

10:30–12:00 NLP Applications 1

Automated Essay Scoring in the Presence of Biased Ratings
Evelin Amorim, Marcia Cançado and Adriano Veloso

Content-Based Citation Recommendation
Chandra Bhagavatula, Sergey Feldman, Russell Power and Waleed Ammar

Looking Beyond the Surface: A Challenge Set for Reading Comprehension over
Multiple Sentences
Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay and Dan
Roth

Neural Automated Essay Scoring and Coherence Modeling for Adversarially
Crafted Input
Youmna Farag, Helen Yannakoudakis and Ted Briscoe

QuickEdit: Editing Text & Translations by Crossing Words Out
David Grangier and Michael Auli

Tempo-Lexical Context Driven Word Embedding for Cross-Session Search Task Ex-
traction
Procheta Sen, Debasis Ganguly and Gareth Jones

xl



June 2 (continued)

11:30–12:30 Machine Learning 1

11:30–11:48 Zero-Shot Sequence Labeling: Transferring Knowledge from Sentences to Tokens
Marek Rei and Anders Søgaard

11:48–12:06 Variable Typing: Assigning Meaning to Variables in Mathematical Text
Yiannos Stathopoulos, Simon Baker, Marek Rei and Simone Teufel

11:30–12:30 Information Extraction 2

11:30–11:48 Learning beyond Datasets: Knowledge Graph Augmented Neural Networks for Nat-
ural Language Processing
Annervaz K M, Somnath Basu Roy Chowdhury and Ambedkar Dukkipati

11:48–12:06 Comparing Constraints for Taxonomic Organization
Anne Cocos, Marianna Apidianaki and Chris Callison-Burch

11:30–12:30 Machine Translation 1

11:30–11:48 Improving Lexical Choice in Neural Machine Translation
Toan Nguyen and David Chiang

11:48–12:06 Universal Neural Machine Translation for Extremely Low Resource Languages
Jiatao Gu, Hany Hassan, Jacob Devlin and Victor O.K. Li

12:06–12:24 Classical Structured Prediction Losses for Sequence to Sequence Learning
Sergey Edunov, Myle Ott, Michael Auli, David Grangier and Marc’Aurelio Ranzato

xli



June 2 (continued)

12:30–14:00 Lunch

14:00–15:00 Industry Track Keynote

15:00–15:30 Afternoon Coffee

15:30–17:00 Machine Learning 2

15:30–15:48 Deep Dirichlet Multinomial Regression
Adrian Benton and Mark Dredze

15:30–17:00 Social Media and Computational Social Science 1

15:30–15:48 Microblog Conversation Recommendation via Joint Modeling of Topics and Dis-
course
Xingshan Zeng, Jing Li, Lu Wang, Nicholas Beauchamp, Sarah Shugars and Kam-
Fai Wong

15:48–16:06 Before Name-Calling: Dynamics and Triggers of Ad Hominem Fallacies in Web
Argumentation
Ivan Habernal, Henning Wachsmuth, Iryna Gurevych and Benno Stein

15:30–17:00 Vision, Robotics and Other Grounding 1

15:30–15:48 Scene Graph Parsing as Dependency Parsing
Yu-Siang Wang, Chenxi Liu, Xiaohui Zeng and Alan Yuille

15:48–16:06 Learning Visually Grounded Sentence Representations
Douwe Kiela, Alexis Conneau, Allan Jabri and Maximilian Nickel

16:06–16:24 Comparatives, Quantifiers, Proportions: a Multi-Task Model for the Learning of
Quantities from Vision
Sandro Pezzelle, Ionut-Teodor Sorodoc and Raffaella Bernardi

16:24–16:42 Being Negative but Constructively: Lessons Learnt from Creating Better Visual
Question Answering Datasets
Wei-Lun Chao, Hexiang Hu and Fei Sha
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June 2 (continued)

15:30–17:00 Semantics 1

Abstract Meaning Representation for Paraphrase Detection
Fuad Issa, Marco Damonte, Shay B. Cohen, Xiaohui Yan and Yi Chang

attr2vec: Jointly Learning Word and Contextual Attribute Embeddings with Factor-
ization Machines
Fabio Petroni, Vassilis Plachouras, Timothy Nugent and Jochen L. Leidner

Can Network Embedding of Distributional Thesaurus Be Combined with Word Vec-
tors for Better Representation?
Abhik Jana and Pawan Goyal

Deep Neural Models of Semantic Shift
Alex Rosenfeld and Katrin Erk

Distributional Inclusion Vector Embedding for Unsupervised Hypernymy Detection
Haw-Shiuan Chang, Ziyun Wang, Luke Vilnis and Andrew McCallum

Mining Possessions: Existence, Type and Temporal Anchors
Dhivya Chinnappa and Eduardo Blanco

Neural Tensor Networks with Diagonal Slice Matrices
Takahiro Ishihara, Katsuhiko Hayashi, Hitoshi Manabe, Masashi Shimbo and
Masaaki Nagata

Post-Specialisation: Retrofitting Vectors of Words Unseen in Lexical Resources
Ivan Vulić, Goran Glavaš, Nikola Mrkšić and Anna Korhonen

Unsupervised Learning of Sentence Embeddings Using Compositional n-Gram Fea-
tures
Matteo Pagliardini, Prakhar Gupta and Martin Jaggi

xliii



June 2 (continued)

15:30–17:00 Sentiment Analysis 1

Learning Domain Representation for Multi-Domain Sentiment Classification
Qi Liu, Yue Zhang and Jiangming Liu

Learning Sentence Representations over Tree Structures for Target-Dependent Clas-
sification
Junwen Duan, Xiao Ding and Ting Liu

Relevant Emotion Ranking from Text Constrained with Emotion Relationships
Deyu Zhou, Yang Yang and Yulan He

Solving Data Sparsity for Aspect Based Sentiment Analysis Using Cross-Linguality
and Multi-Linguality
Md Shad Akhtar, Palaash Sawant, Sukanta Sen, Asif Ekbal and Pushpak Bhat-
tacharyya

SRL4ORL: Improving Opinion Role Labeling Using Multi-Task Learning with Se-
mantic Role Labeling
Ana Marasović and Anette Frank

17:00–18:30 NLP Applications 2

17:00–17:18 Approaching Neural Grammatical Error Correction as a Low-Resource Machine
Translation Task
Marcin Junczys-Dowmunt, Roman Grundkiewicz, Shubha Guha and Kenneth
Heafield

17:18–17:36 Robust Cross-Lingual Hypernymy Detection Using Dependency Context
Shyam Upadhyay, Yogarshi Vyas, Marine Carpuat and Dan Roth

17:36–17:54 Noising and Denoising Natural Language: Diverse Backtranslation for Grammar
Correction
Ziang Xie, Guillaume Genthial, Stanley Xie, Andrew Ng and Dan Jurafsky
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June 2 (continued)

17:00–18:30 Question Answering 1

17:00–17:18 Self-Training for Jointly Learning to Ask and Answer Questions
Mrinmaya Sachan and Eric Xing

17:18–17:36 The Web as a Knowledge-Base for Answering Complex Questions
Alon Talmor and Jonathan Berant

17:36–17:54 A Meaning-Based Statistical English Math Word Problem Solver
Chao-Chun Liang, Yu-Shiang Wong, Yi-Chung Lin and Keh-Yih Su

17:00–18:30 SRW Highlights

June 3

07:45–08:45 Breakfast

08:45–09:00 Announcements

09:00–10:00 Keynote 2 (sponsored by Google)

The Moment When the Future Fell Asleep
Kevin Knight, University of Southern California / Information Sciences Institute

xlv



June 3 (continued)

10:00–10:30 Morning Coffee

10:30–11:30 Cognitive Modeling and Psycholinguistics 1

10:30–10:48 Fine-Grained Temporal Orientation and its Relationship with Psycho-Demographic
Correlates
Sabyasachi Kamila, Mohammed Hasanuzzaman, Asif Ekbal, Pushpak Bhat-
tacharyya and Andy Way

10:48–11:06 Querying Word Embeddings for Similarity and Relatedness
Fatemeh Torabi Asr, Robert Zinkov and Michael Jones

10:30–11:30 Summarization 1

10:30–10:48 Semantic Structural Evaluation for Text Simplification
Elior Sulem, Omri Abend and Ari Rappoport

10:48–11:06 Entity Commonsense Representation for Neural Abstractive Summarization
Reinald Kim Amplayo, Seonjae Lim and Seung-won Hwang

11:06–11:24 Newsroom: A Dataset of 1.3 Million Summaries with Diverse Extractive Strategies
Max Grusky, Mor Naaman and Yoav Artzi

10:30–11:30 Semantics 2

10:30–10:48 Polyglot Semantic Parsing in APIs
Kyle Richardson, Jonathan Berant and Jonas Kuhn

11:06–11:24 Neural Models of Factuality
Rachel Rudinger, Aaron Steven White and Benjamin Van Durme

xlvi



June 3 (continued)

10:30–12:00 Information Extraction 3

Accurate Text-Enhanced Knowledge Graph Representation Learning
Bo An, Bo Chen, Xianpei Han and Le Sun

Acquisition of Phrase Correspondences Using Natural Deduction Proofs
Hitomi Yanaka, Koji Mineshima, Pascual Martínez-Gómez and Daisuke Bekki

Automatic Stance Detection Using End-to-End Memory Networks
Mitra Mohtarami, Ramy Baly, James Glass, Preslav Nakov, Lluís Màrquez and
Alessandro Moschitti

Collective Entity Disambiguation with Structured Gradient Tree Boosting
Yi Yang, Ozan Irsoy and Kazi Shefaet Rahman

DeepAlignment: Unsupervised Ontology Matching with Refined Word Vectors
Prodromos Kolyvakis, Alexandros Kalousis and Dimitris Kiritsis

Efficient Sequence Learning with Group Recurrent Networks
Fei Gao, Lijun Wu, Li Zhao, Tao Qin, Xueqi Cheng and Tie-Yan Liu

FEVER: a Large-scale Dataset for Fact Extraction and VERification
James Thorne, Andreas Vlachos, Christos Christodoulopoulos and Arpit Mittal

Global Relation Embedding for Relation Extraction
Yu Su, Honglei Liu, Semih Yavuz, Izzeddin Gur, Huan Sun and Xifeng Yan

Implicit Argument Prediction with Event Knowledge
Pengxiang Cheng and Katrin Erk

Improving Temporal Relation Extraction with a Globally Acquired Statistical Re-
source
Qiang Ning, Hao Wu, Haoruo Peng and Dan Roth

Multimodal Named Entity Recognition for Short Social Media Posts
Seungwhan Moon, Leonardo Neves and Vitor Carvalho

xlvii



June 3 (continued)

Nested Named Entity Recognition Revisited
Arzoo Katiyar and Claire Cardie

Simultaneously Self-Attending to All Mentions for Full-Abstract Biological Relation
Extraction
Patrick Verga, Emma Strubell and Andrew McCallum

Supervised Open Information Extraction
Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer and Ido Dagan

10:30–12:00 Tagging, Chunking, Syntax and Parsing 1

Embedding Syntax and Semantics of Prepositions via Tensor Decomposition
Hongyu Gong, Suma Bhat and Pramod Viswanath

From Phonology to Syntax: Unsupervised Linguistic Typology at Different Levels
with Language Embeddings
Johannes Bjerva and Isabelle Augenstein

Monte Carlo Syntax Marginals for Exploring and Using Dependency Parses
Katherine Keith, Su Lin Blodgett and Brendan O’Connor

Neural Particle Smoothing for Sampling from Conditional Sequence Models
Chu-Cheng Lin and Jason Eisner

Neural Syntactic Generative Models with Exact Marginalization
Jan Buys and Phil Blunsom

Noise-Robust Morphological Disambiguation for Dialectal Arabic
Nasser Zalmout, Alexander Erdmann and Nizar Habash

Parsing Tweets into Universal Dependencies
Yijia Liu, Yi Zhu, Wanxiang Che, Bing Qin, Nathan Schneider and Noah A. Smith

Robust Multilingual Part-of-Speech Tagging via Adversarial Training
Michihiro Yasunaga, Jungo Kasai and Dragomir Radev

xlviii



June 3 (continued)

Universal Dependency Parsing for Hindi-English Code-Switching
Irshad Bhat, Riyaz A. Bhat, Manish Shrivastava and Dipti Sharma

What’s Going On in Neural Constituency Parsers? An Analysis
David Gaddy, Mitchell Stern and Dan Klein

11:30–12:30 Machine Learning 3

11:30–11:48 Deep Generative Model for Joint Alignment and Word Representation
Miguel Rios, Wilker Aziz and Khalil Simaan

12:06–12:24 Learning Word Embeddings for Low-Resource Languages by PU Learning
Chao Jiang, Hsiang-Fu Yu, Cho-Jui Hsieh and Kai-Wei Chang

11:30–12:30 Social Media and Computational Social Science 2

11:30–11:48 Exploring the Role of Prior Beliefs for Argument Persuasion
Esin Durmus and Claire Cardie

11:48–12:06 Inducing a Lexicon of Abusive Words – a Feature-Based Approach
Michael Wiegand, Josef Ruppenhofer, Anna Schmidt and Clayton Greenberg

12:06–12:24 Author Commitment and Social Power: Automatic Belief Tagging to Infer the Social
Context of Interactions
Vinodkumar Prabhakaran, Premkumar Ganeshkumar and Owen Rambow

xlix



June 3 (continued)

11:30–12:30 Vision, Robotics and Other Grounding 2

12:30–14:00 Lunch

14:00–15:00 Industry Track Keynote

15:00–15:30 Afternoon Coffee

15:30–17:00 Text Mining 1

15:30–15:48 Comparing Automatic and Human Evaluation of Local Explanations for Text Clas-
sification
Dong Nguyen

15:48–16:06 Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
Pankaj Gupta, Subburam Rajaram, Hinrich Schütze and Bernt Andrassy

16:06–16:24 Lessons from the Bible on Modern Topics: Low-Resource Multilingual Topic Model
Evaluation
Shudong Hao, Jordan Boyd-Graber and Michael J. Paul

16:24–16:42 Explainable Prediction of Medical Codes from Clinical Text
James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng Sun and Jacob Eisenstein
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June 3 (continued)

15:30–17:00 Semantics 3

15:30–15:48 A Broad-Coverage Challenge Corpus for Sentence Understanding through Infer-
ence
Adina Williams, Nikita Nangia and Samuel Bowman

15:48–16:06 Filling Missing Paths: Modeling Co-occurrences of Word Pairs and Dependency
Paths for Recognizing Lexical Semantic Relations
Koki Washio and Tsuneaki Kato

16:06–16:24 Specialising Word Vectors for Lexical Entailment
Ivan Vulić and Nikola Mrkšić

16:24–16:42 Cross-Lingual Abstract Meaning Representation Parsing
Marco Damonte and Shay B. Cohen

15:30–17:00 Tagging, Chunking, Syntax and Parsing 2

15:30–15:48 Sentences with Gapping: Parsing and Reconstructing Elided Predicates
Sebastian Schuster, Joakim Nivre and Christopher D. Manning

15:48–16:06 A Structured Syntax-Semantics Interface for English-AMR Alignment
Ida Szubert, Adam Lopez and Nathan Schneider

16:06–16:24 End-to-End Graph-Based TAG Parsing with Neural Networks
Jungo Kasai, Robert Frank, Pauli Xu, William Merrill and Owen Rambow

16:24–16:42 Colorless Green Recurrent Networks Dream Hierarchically
Kristina Gulordava, Piotr Bojanowski, Edouard Grave, Tal Linzen and Marco Ba-
roni
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June 3 (continued)

15:30–17:00 Machine Learning 4

Diverse Few-Shot Text Classification with Multiple Metrics
Mo Yu, Xiaoxiao Guo, Jinfeng Yi, Shiyu Chang, Saloni Potdar, Yu Cheng, Gerald
Tesauro, Haoyu Wang and Bowen Zhou

Early Text Classification Using Multi-Resolution Concept Representations
Adrian Pastor López Monroy, Fabio A. González, Manuel Montes, Hugo Jair Es-
calante and Thamar Solorio

Multinomial Adversarial Networks for Multi-Domain Text Classification
Xilun Chen and Claire Cardie

Pivot Based Language Modeling for Improved Neural Domain Adaptation
Yftah Ziser and Roi Reichart

Reinforced Co-Training
Jiawei Wu, Lei Li and William Yang Wang

Tensor Product Generation Networks for Deep NLP Modeling
Qiuyuan Huang, Paul Smolensky, Xiaodong He, Li Deng and Dapeng Wu

The Context-Dependent Additive Recurrent Neural Net
Quan Hung Tran, Tuan Lai, Gholamreza Haffari, Ingrid Zukerman, Trung Bui and
Hung Bui

lii



June 3 (continued)

15:30–17:00 Machine Translation 2

Combining Character and Word Information in Neural Machine Translation Using
a Multi-Level Attention
Huadong Chen, Shujian Huang, David Chiang, Xinyu Dai and Jiajun Chen

Dense Information Flow for Neural Machine Translation
Yanyao Shen, Xu Tan, Di He, Tao Qin and Tie-Yan Liu

Evaluating Discourse Phenomena in Neural Machine Translation
Rachel Bawden, Rico Sennrich, Alexandra Birch and Barry Haddow

Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural
Machine Translation
Matt Post and David Vilar

Guiding Neural Machine Translation with Retrieved Translation Pieces
Jingyi Zhang, Masao Utiyama, Eiichro Sumita, Graham Neubig and Satoshi Naka-
mura

Handling Homographs in Neural Machine Translation
Frederick Liu, Han Lu and Graham Neubig

Improving Neural Machine Translation with Conditional Sequence Generative Ad-
versarial Nets
Zhen Yang, Wei Chen, Feng Wang and Bo Xu

Neural Machine Translation for Bilingually Scarce Scenarios: a Deep Multi-Task
Learning Approach
Poorya Zaremoodi and Gholamreza Haffari

Self-Attentive Residual Decoder for Neural Machine Translation
Lesly Miculicich Werlen, Nikolaos Pappas, Dhananjay Ram and Andrei Popescu-
Belis

Target Foresight Based Attention for Neural Machine Translation
Xintong Li, Lemao Liu, Zhaopeng Tu, Shuming Shi and Max Meng

liii



June 3 (continued)

15:30–17:00 Phonology, Morphology and Word Segmentation 2

Context Sensitive Neural Lemmatization with Lematus
Toms Bergmanis and Sharon Goldwater

Modeling Noisiness to Recognize Named Entities using Multitask Neural Networks
on Social Media
Gustavo Aguilar, Adrian Pastor López Monroy, Fabio González and Thamar Solorio

Reusing Weights in Subword-Aware Neural Language Models
Zhenisbek Assylbekov and Rustem Takhanov

Simple Models for Word Formation in Slang
Vivek Kulkarni and William Yang Wang

Using Morphological Knowledge in Open-Vocabulary Neural Language Models
Austin Matthews, Graham Neubig and Chris Dyer

17:00–18:30 Test of Time Session (in honor of Aravind Joshi)

17:00–17:15 Awards and Remembrances

17:15–17:40 BLEU: a Method for Automatic Evaluation of Machine Translation (Test of Time)
Kishore Papineni, Salim Roukos, Todd Ward and Wei-Jing Zhu, IBM Research

17:40–18:05 Discriminative Training Methods for Hidden Markov Models: Theory and Experi-
ments with Perceptron Algorithms (Test of Time)
Michael Collins, Columbia University

18:05–18:30 Thumbs up?: Sentiment Classification using Machine Learning Techniques (Test of
Time)
Bo Pang, Lillian Lee, Shivakumar Vaithyanathan, Cornell University, IBM Research

liv



June 4

07:45–08:45 Breakfast

08:45–09:00 Announcements

09:00–10:00 Keynote 3 (sponsored by Bloomberg)

Google Assistant or My Assistant? Towards Personalized Situated Conversational
Agents
Dilek Hakkani-Tür

10:00–10:30 Morning Coffee

10:30–11:30 Information Extraction 4

10:30–10:48 A Neural Layered Model for Nested Named Entity Recognition
Meizhi Ju, Makoto Miwa and Sophia Ananiadou

10:48–11:06 DR-BiLSTM: Dependent Reading Bidirectional LSTM for Natural Language Infer-
ence
Reza Ghaeini, Sadid A. Hasan, Vivek Datla, Joey Liu, Kathy Lee, Ashequl Qadir,
Yuan Ling, Aaditya Prakash, Xiaoli Fern and Oladimeji Farri

11:06–11:24 KBGAN: Adversarial Learning for Knowledge Graph Embeddings
Liwei Cai and William Yang Wang

lv



June 4 (continued)

10:30–11:30 Semantics 4

10:30–15:48 Multimodal Frame Identification with Multilingual Evaluation
Teresa Botschen, Iryna Gurevych, Jan-Christoph Klie, Hatem Mousselly Sergieh
and Stefan Roth

10:48–11:06 Learning Joint Semantic Parsers from Disjoint Data
Hao Peng, Sam Thomson, Swabha Swayamdipta and Noah A. Smith

11:06–11:24 Identifying Semantic Divergences in Parallel Text without Annotations
Yogarshi Vyas, Xing Niu and Marine Carpuat

10:30–11:30 Generation 2

10:30–10:48 Bootstrapping Generators from Noisy Data
Laura Perez-Beltrachini and Mirella Lapata

10:48–11:06 SHAPED: Shared-Private Encoder-Decoder for Text Style Adaptation
Ye Zhang, Nan Ding and Radu Soricut

11:06–11:24 Generating Descriptions from Structured Data Using a Bifocal Attention Mecha-
nism and Gated Orthogonalization
Preksha Nema, Shreyas Shetty, Parag Jain, Anirban Laha, Karthik Sankara-
narayanan and Mitesh M. Khapra

lvi



June 4 (continued)

10:30–12:00 Question Answering 2

CliCR: a Dataset of Clinical Case Reports for Machine Reading Comprehension
Simon Suster and Walter Daelemans

Learning to Collaborate for Question Answering and Asking
Duyu Tang, Nan Duan, Zhao Yan, Zhirui Zhang, Yibo Sun, Shujie Liu, Yuanhua Lv
and Ming Zhou

Learning to Rank Question-Answer Pairs Using Hierarchical Recurrent Encoder
with Latent Topic Clustering
Seunghyun Yoon, Joongbo Shin and Kyomin Jung

Supervised and Unsupervised Transfer Learning for Question Answering
Yu-An Chung, Hung-yi Lee and James Glass

Tracking State Changes in Procedural Text: a Challenge Dataset and Models for
Process Paragraph Comprehension
Bhavana Dalvi, Lifu Huang, Niket Tandon, Wen-tau Yih and Peter Clark

10:30–12:00 Social Media and Computational Social Science 3

Combining Deep Learning and Topic Modeling for Review Understanding in
Context-Aware Recommendation
Mingmin Jin, Xin Luo, Huiling Zhu and Hankz Hankui Zhuo

Deconfounded Lexicon Induction for Interpretable Social Science
Reid Pryzant, Kelly Shen, Dan Jurafsky and Stefan Wagner

Detecting Denial-of-Service Attacks from Social Media Text: Applying NLP to Com-
puter Security
Nathanael Chambers, Ben Fry and James McMasters

The Importance of Calibration for Estimating Proportions from Annotations
Dallas Card and Noah A. Smith

lvii



June 4 (continued)

10:30–12:00 Summarization 2

A Dataset of Peer Reviews (PeerRead): Collection, Insights and NLP Applications
Dongyeop Kang, Waleed Ammar, Bhavana Dalvi, Madeleine van Zuylen, Sebastian
Kohlmeier, Eduard Hovy and Roy Schwartz

Deep Communicating Agents for Abstractive Summarization
Asli Celikyilmaz, Antoine Bosselut, Xiaodong He and Yejin Choi

Encoding Conversation Context for Neural Keyphrase Extraction from Microblog
Posts
Yingyi Zhang, Jing Li, Yan Song and Chengzhi Zhang

Estimating Summary Quality with Pairwise Preferences
Markus Zopf

Generating Topic-Oriented Summaries Using Neural Attention
Kundan Krishna and Balaji Vasan Srinivasan

Generative Bridging Network for Neural Sequence Prediction
Wenhu Chen, Guanlin Li, Shuo Ren, Shujie Liu, Zhirui Zhang, Mu Li and Ming
Zhou

Higher-Order Syntactic Attention Network for Longer Sentence Compression
Hidetaka Kamigaito, Katsuhiko Hayashi, Tsutomu Hirao and Masaaki Nagata

Neural Storyline Extraction Model for Storyline Generation from News Articles
Deyu Zhou, Linsen Guo and Yulan He

Provable Fast Greedy Compressive Summarization with Any Monotone Submodular
Function
Shinsaku Sakaue, Tsutomu Hirao, Masaaki Nishino and Masaaki Nagata

Ranking Sentences for Extractive Summarization with Reinforcement Learning
Shashi Narayan, Shay B. Cohen and Mirella Lapata

Relational Summarization for Corpus Analysis
Abram Handler and Brendan O’Connor
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June 4 (continued)

What’s This Movie About? A Joint Neural Network Architecture for Movie Content
Analysis
Philip John Gorinski and Mirella Lapata

Which Scores to Predict in Sentence Regression for Text Summarization?
Markus Zopf, Eneldo Loza Mencía and Johannes Fürnkranz

11:30–12:30 Dialogue and Interactive Systems 1

11:30–11:48 A Hierarchical Latent Structure for Variational Conversation Modeling
Yookoon Park, Jaemin Cho and Gunhee Kim

11:48–12:06 Detecting Egregious Conversations between Customers and Virtual Agents
Tommy Sandbank, Michal Shmueli-Scheuer, Jonathan Herzig, David Konopnicki,
John Richards and David Piorkowski

12:06–12:24 Learning to Disentangle Interleaved Conversational Threads with a Siamese Hier-
archical Network and Similarity Ranking
Jyun-Yu Jiang, Francine Chen, Yan-Ying Chen and Wei Wang

11:30–12:30 Information Extraction 5

11:30–11:48 Variational Knowledge Graph Reasoning
Wenhu Chen, Wenhan Xiong, Xifeng Yan and William Yang Wang

11:48–12:06 Inducing Temporal Relations from Time Anchor Annotation
Fei Cheng and Yusuke Miyao

12:06–12:24 ELDEN: Improved Entity Linking Using Densified Knowledge Graphs
Priya Radhakrishnan, Partha Talukdar and Vasudeva Varma

lix



June 4 (continued)

11:30–12:30 Generation 3

11:30–11:48 Interpretable Charge Predictions for Criminal Cases: Learning to Generate Court
Views from Fact Descriptions
Hai Ye, Xin Jiang, Zhunchen Luo and Wenhan Chao

11:48–12:06 Delete, Retrieve, Generate: a Simple Approach to Sentiment and Style Transfer
Juncen Li, Robin Jia, He He and Percy Liang

12:06–12:24 Adversarial Example Generation with Syntactically Controlled Paraphrase Net-
works
Mohit Iyyer, John Wieting, Kevin Gimpel and Luke Zettlemoyer

12:30–14:00 Lunch

13:00–14:00 NAACL Business Meeting
Julia Hockenmaier, University of Illinois at Urbana-Champaign

14:00–15:30 Sentiment Analysis 2

14:00–14:18 Sentiment Analysis: It’s Complicated!
Kian Kenyon-Dean, Eisha Ahmed, Scott Fujimoto, Jeremy Georges-Filteau,
Christopher Glasz, Barleen Kaur, Auguste Lalande, Shruti Bhanderi, Robert Belfer,
Nirmal Kanagasabai, Roman Sarrazingendron, Rohit Verma and Derek Ruths

14:18–14:36 Multi-Task Learning of Pairwise Sequence Classification Tasks over Disparate La-
bel Spaces
Isabelle Augenstein, Sebastian Ruder and Anders Søgaard

14:36–14:54 Word Emotion Induction for Multiple Languages as a Deep Multi-Task Learning
Problem
Sven Buechel and Udo Hahn

14:54–15:12 Human Needs Categorization of Affective Events Using Labeled and Unlabeled
Data
Haibo Ding and Ellen Riloff

lx



June 4 (continued)

14:00–15:30 Discourse and Pragmatics 2

14:00–14:18 The Argument Reasoning Comprehension Task: Identification and Reconstruction
of Implicit Warrants
Ivan Habernal, Henning Wachsmuth, Iryna Gurevych and Benno Stein

14:18–14:36 Linguistic Cues to Deception and Perceived Deception in Interview Dialogues
Sarah Ita Levitan, Angel Maredia and Julia Hirschberg

14:36–14:54 Unified Pragmatic Models for Generating and Following Instructions
Daniel Fried, Jacob Andreas and Dan Klein

14:54–15:12 Hierarchical Structured Model for Fine-to-Coarse Manifesto Text Analysis
Shivashankar Subramanian, Trevor Cohn and Timothy Baldwin

14:00–15:30 Tagging, Chunking, Syntax and Parsing 3

15:12–15:30 Behavior Analysis of NLI Models: Uncovering the Influence of Three Factors on
Robustness
Ivan Sanchez, Jeff Mitchell and Sebastian Riedel

14:00–15:30 Cognitive Modeling and Psycholinguistics 2

Assessing Language Proficiency from Eye Movements in Reading
Yevgeni Berzak, Boris Katz and Roger Levy

Comparing Theories of Speaker Choice Using a Model of Classifier Production in
Mandarin Chinese
Meilin Zhan and Roger Levy

Spotting Spurious Data with Neural Networks
Hadi Amiri, Timothy Miller and Guergana Savova

The Timing of Lexical Memory Retrievals in Language Production
Jeremy Cole and David Reitter

lxi



June 4 (continued)
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Abstract

We study the problem of named entity recog-
nition (NER) from electronic medical records,
which is one of the most fundamental and
critical problems for medical text mining.
Medical records which are written by clini-
cians from different specialties usually con-
tain quite different terminologies and writ-
ing styles. The difference of specialties and
the cost of human annotation makes it par-
ticularly difficult to train a universal medical
NER system. In this paper, we propose a label-
aware double transfer learning framework (La-
DTL) for cross-specialty NER, so that a med-
ical NER system designed for one specialty
could be conveniently applied to another one
with minimal annotation efforts. The trans-
ferability is guaranteed by two components:
(i) we propose label-aware MMD for feature
representation transfer, and (ii) we perform
parameter transfer with a theoretical upper
bound which is also label aware. We conduct
extensive experiments on 12 cross-specialty
NER tasks. The experimental results demon-
strate that La-DTL provides consistent accu-
racy improvement over strong baselines. Be-
sides, the promising experimental results on
non-medical NER scenarios indicate that La-
DTL is potential to be seamlessly adapted to a
wide range of NER tasks.

1 Introduction

The development of hospital information system
and medical informatics drives the leverage of var-
ious medical data for a more efficient and intel-
ligent medical care service. Among many kinds
of medical data, electronic health records (EHRs)
are one of the most valuable and informative data
as they contain detailed information about the pa-
tients and the clinical practices. EHRs are essen-
tial to many intelligent clinical applications, such

∗Weinan Zhang is the corresponding author.

as hospital quality control and clinical decision
support systems (Wu et al., 2015). Most of EHRs
are recorded in an unstructured form, i.e., natural
language. Hence, extracting structured informa-
tion from EHRs using natural language processing
(NLP), e.g., named entity recognition (NER) and
entity linking, plays a fundamental role in medical
informatics (Zhang and Elhadad, 2013). In this pa-
per, we focus on medical NER from EHRs, which
is a fundamental task and is widely studied in the
research community (Nadeau and Sekine, 2007;
Uzuner et al., 2011).

In practice, the difficulty of building a univer-
sally robust and high-performance medical NER
system lies in the variety of medical terminologies
and expressions among different departments of
specialties and hospitals. However, building sepa-
rate NER systems for so many specialties comes
with a prohibitively high cost. The data privacy
issue further discourages the sharing of the data
across departments or hospitals, making it more
difficult to train a canonical NER system to be ap-
plied everywhere. This raises a natural question:
if we have sufficient annotated EHRs data in one
source specialty, can we distill the knowledge and
transfer it to help training models in a related tar-
get specialty with few annotations? By transfer-
ring the knowledge we can achieve higher perfor-
mance in target specialties with lower annotation
cost and bypass the data sharing concerns. This
is commonly referred to as transfer learning (Pan
and Yang, 2010).

Current state-of-the-art transfer learning meth-
ods for NER are mainly based on deep neural net-
works, which perform an end-to-end training to
distill sequential dependency patterns in the nat-
ural language (Ma and Hovy, 2016; Lample et al.,
2016). These transfer learning methods include (i)
feature representation transfer (Peng and Dredze,
2017; Kulkarni et al., 2016), which normally lever-
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ages deep neural networks to learn a close feature
mapping between the source and target domains,
and (ii) parameter transfer (Murthy et al., 2016;
Yang et al., 2017), which performs parameter shar-
ing or joint training to get the target-domain model
parameters close to those of the source-domain
model. To the best of our knowledge, there is no
previous literature working on transfer learning for
NER in the medical domain, or even in a larger
scope, i.e., medical natural language processing.

In this paper, we propose a novel NER trans-
fer learning framework, namely label-aware dou-
ble transfer learning (La-DTL): (i) We leverage
bidirectional long-short term memory (Bi-LSTM)
network (Graves and Schmidhuber, 2005) to au-
tomatically learn the text representations, based
on which we perform a label-aware feature rep-
resentation transfer. We propose a variant of max-
imum mean discrepancy (MMD) (Gretton et al.,
2012), namely label-aware MMD (La-MMD), to
explicitly reduce the domain discrepancy of fea-
ture representations of tokens with the same label
between two domains. (ii) Based on the learned
feature representations from Bi-LSTM, two con-
ditional random field (CRF) models are performed
for sequence labeling for source and target do-
main separately, where parameter transfer learning
is performed. Specifically, an upper bound of KL
divergence between the source and target domain’s
CRF label distributions is added over the emis-
sion and transition matrices across the source and
target CRF models to explore the shareable parts
of the parameters. Both (i) and (ii) have a label-
aware characteristic, which will be discussed later.
We further argue that label-aware characteristic is
crucial for transfer learning in sequence labeling
problems, e.g., NER, because only when the cor-
responding labels are matched, can the “similar”
contexts (i.e. feature representation) and model pa-
rameters be efficiently borrowed to improve the la-
bel prediction.

Extensive experiments are conducted on 12
cross-specialty medical NER tasks with real-world
EHRs. The experimental results demonstrate that
La-DTL provides consistent accuracy improve-
ment over strong baselines, with overall 2.62%
to 6.70% absolute F1-score improvement over the
state-of-the-art methods. Besides, the promising
experimental results on other two non-medical
NER scenarios indicate that La-DTL has the po-
tential to be seamlessly adapted to a wide range of

NER tasks.

2 Related Works

Named Entity Recognition (NER) is fundamen-
tal in information extraction area which aims at
automatic detection of named entities (e.g., per-
son, organization, location and geo-political) in
free text (Marrero et al., 2013). Many high-level
applications such as entity linking (Moro et al.,
2014) and knowledge graph construction (Hachey
et al., 2011) could be built on top of an NER sys-
tem. Traditional high-performance approaches in-
clude conditional random fields models (CRFs)
(Lafferty et al., 2001), maximum entropy Markov
models (MEMMs) (McCallum et al., 2000) and
hidden Markov models (HMMs). Recently, many
neural network-based models have been proposed
(Collobert et al., 2011; Chiu and Nichols, 2016;
Ma and Hovy, 2016; Lample et al., 2016), in
which few feature engineering works are needed
to train a high-performance NER system. The ar-
chitecture of those neural network-based mod-
els are similar, where different neural networks
(LSTMs, CNNs) at different levels (char- and
word-level) are applied to learn feature representa-
tions, and on top of neural networks, a CRF model
is employed to make label predictions.
Transfer Learning distills knowledge from a
source domain to help create a high-performance
learner for a target domain. Transfer learning al-
gorithms are mainly categorized into three types,
namely instance transfer, feature representation
transfer and parameter transfer (Pan and Yang,
2010). Instance transfer normally samples or re-
weights source-domain samples to match the dis-
tribution of the target domain (Chen et al., 2011;
Chu et al., 2013). Feature representation transfer
typically learns a feature mapping which projects
source and target domain data simultaneously onto
a common feature space following similar distri-
butions (Zhuang et al., 2015; Long et al., 2015;
Shen et al., 2017). Parameter transfer normally in-
volves a joint or constrained training for the mod-
els on source and target domains, usually intro-
duce connections between source target param-
eters via sharing (Srivastava and Salakhutdinov,
2013), initialization (Perlich et al., 2014), or inter-
model parameter penalty schemes (Zhang et al.,
2016).
Transfer Learning for NER Training a high-
performance NER system requires expensive and
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time-consuming manually annotated data. But suf-
ficient labeled data is critical for the generalization
of an NER system, especially for neural network-
based models. Thus, transfer learning for NER is
a practically important problem. The first group
of methods focuses on sharing model parameters
but they differ in the training schemes. He and
Sun (2017) proposed to train the parameter-shared
model with source and target data jointly, while
the learning rates for sentences from source do-
main are re-weighted by the similarity with target
domain corpus. Yang et al. (2017) proposed a fam-
ily of frameworks which share model parameters
in hierarchical recurrent networks to handle cross-
application, cross-lingual, and cross-domain trans-
fer in sequence labeling tasks. Differently, Lee
et al. (2017) first trained the model with source do-
main data and then fine-tuned the model with little
annotated target domain data.

Domain adaptation method has been well stud-
ied in NER scenarios such as using distributed
word representations (Kulkarni et al., 2016) and
leveraging rule-based annotators (Chiticariu et al.,
2010). Multi-task learning has also been stud-
ied to improve performance in multiple NER
tasks by transferring meaningful knowledge from
other tasks (Collobert et al., 2011; Peng and
Dredze, 2016). To take the advantages of both
domain adaptation and multi-task learning, Peng
and Dredze (2017) proposed a multi-task domain
adaptation model.

3 Preliminaries

This section briefly introduces bidirectional
LSTM, conditional random field and maximum
mean discrepancy, which are the building blocks
of our transfer learning framework.
Bidirectional LSTM Recurrent neural networks
(RNNs) are widely used in NLP tasks for their
great capability to capture contextual information
in sequence data. A widely used variant of RNNs
is long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997), which incorporates in-
put and forget gates to capture both long and short
term dependencies. Furthermore, it will be ben-
eficial if we process the sequence in not only a
forward but also a backward way. Thus, bidirec-
tional LSTM (Bi-LSTM) was employed in many
previous works (Chiu and Nichols, 2016; Ma and
Hovy, 2016; Lample et al., 2016) to capture bidi-
rectional information in a sequence. More specifi-

cally, for token xt (embedding vector) at timestep
t in sequence X = (x1,x2, ...,xn), the θb-
parameterized Bi-LSTM recurrently updates hid-
den vectors h→t = Gfθb(X,h

→
t−1) and h←t =

Gbθb(X,h
←
t+1) produced by a forward LSTM and a

backward one, respectively. Then we concatenate
h→t and h←t to ht as the final hidden vector pro-
duced by Bi-LSTM:

ht = h→t ⊕ h←t .

The representations learned from Bi-LSTM for se-
quence X is thus denoted as H = (h1,h2, ...,hn).
Conditional Random Field The goal of NER is
to detect named entities in a sequence X by pre-
dicting a sequence of labels y = (y1, y2, ..., yn).
Conditional random field (CRF) is widely used to
make joint labeling of the tokens in a sequence
(Lafferty et al., 2001).

Recently, Lample et al. (2016) proposed to build
a CRF layer on top of a Bi-LSTM so that the au-
tomatically learned feature representation H =
(h1,h2, ...,hn) of the sequence can be directly
fed into the CRF for sequence labeling. For a se-
quence of labels y, given the hidden vector se-
quence H, we define its θc-parametrized score
function sθc(H,y) as:

sθc(H,y) =

n∑

i=1

Ei,yi +

n−1∑

i=1

Ayi,yi+1 ,

where E is the emission score matrix of size n×m
(m is the number of unique labels), and is com-
puted by E = HW where W is the label emission
parameter matrix; A is the label transition parame-
ter matrix; thus θc = {W,A}. We then define the
conditional probability of label sequence y given
H by a softmax over all possible label sequences
in set Y(H) as:

pθc(y|H) = exp{sθc(H,y)}/Z(H) (1)

=exp{sθc(H,y)}
/ ∑

y′∈Y(H)

exp{sθc(H,y′)},

where θc is omitted for simplification in the
following part. The training objective in the
CRF layer is to maximize the log-likelihood
maxθc log p(y|H). In the label prediction
phase, we give the output label sequence
y∗ with the highest conditional probability
y∗ = argmaxy′∈Y(H) p(y

′|H) by dynamic
programming (Sutton et al., 2012).
Maximum Mean Discrepancy Maximum Mean
Discrepancy (Gretton et al., 2012) is a non-
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Figure 1: La-DTL framework overview: embedding
and Bi-LSTM layers are shared across domains, predic-
tors in red (upper) boxes are task-specific CRFs, with
label-aware MMD and L2 constraints to perform fea-
ture representation transfer and parameter transfer.

parametric test statistic to measure the distribu-
tion discrepancy in terms of the distance between
the kernel mean embeddings of two distributions p
and q. The MMD is defined in particular function
spaces that witness the difference in distributions

MMD(F , p, q) = sup
f∈F

(Ex∼p[f(x)]− Ey∼q[f(y)]).

By defining the function class F as the unit
ball in a universal Reproducing Kernel Hilbert
Space (RKHS), denoted by H, it holds that
MMD[F , p, q] = 0 if and only if p = q. And
then given two sets of samples X = {x1, ..., xm}
and Y = {y1, ..., yn} independently and identi-
cally distributed (i.i.d.) from p and q on the data
space X , the empirical estimate of MMD can be
written as the distance between the empirical mean
embeddings after mapping to RKHS

MMD(X,Y ) =
∥∥∥ 1

m

m∑

i=1

φ(xi)− 1

n

n∑

j=1

φ(yj)
∥∥∥
H
, (2)

where φ(·) : X → H is the nonlinear feature map-
ping that inducesH.

4 Methodology

In this section, we present a label-aware double
transfer learning (La-DTL) framework and discuss
its rationale.

4.1 Framework Overview
Figure 1 gives an overview of La-DTL for NER.
From bottom up, each input sentence is converted

into a sequence of embedding vectors, which are
then fed into a Bi-LSTM to sequentially encode
contextual information into fixed-length hidden
vectors. The embedding and Bi-LSTM layers are
shared among source/target domains. With label-
aware maximum mean discrepancy (La-MMD) to
reduce the feature representation discrepancy be-
tween two domains, the hidden vectors are directly
fed into source/target domain specific CRF layers
to predict the label sequence. We use domain con-
strained CRF layers to enhance the target domain
performance.

More formally, let Ds = {(Xs
i ,y

s
i )}N

s

i=1 be
the training set of N s samples from the source
domain and Dt = {(Xt

i,y
t
i)}

Nt

i=1 be the train-
ing set of N t samples from the target domain,
with N t � N s. Bi-LSTM encodes a sentence
X = (x1,x2, ...,xn) to hidden vectors H =
(h1,h2, ...,hn). We occasionally use H(X) to de-
note the corresponding hidden vectors when feed-
ing X into the Bi-LSTM. CRF decodes hidden
vectors H to a label sequence ŷ = (ŷ1, ŷ2, ..., ŷn).
Our goal is to improve label prediction accuracy
on the target domain Dt by utilizing the knowl-
edge from the source domain Ds:

p(y|X) =p(y|H(X)),

log p(y|H) =

n∑

i=1

Ei,yi +

n−1∑

i=1

Ayi,yi+1 − logZ(H). (3)

Thus training a transferable model p(y|X) re-
quires both H(X) and p(y|H) to be transferable.

We use share word embedding and Bi-LSTM
by approaching the feature representation distribu-
tions p(h|Ds) and p(h|Dt), i.e., the distributions
of Bi-LSTM hidden vectors at each timestep of
the sentences from the source and target domains
respectively. The rationale behind it lies on the
insufficiency of labeled target data. Even though
LSTM has high capacity, its generalization abil-
ity highly relies on viewing “sufficient” data. Oth-
erwise, LSTM is very likely to overfit the data.
Training on both source and target data, the Bi-
LSTM is expected to learn feature representations
with high quality. Yosinski et al. (2014) provided
a justification of this solution that sharing bottom
layers is promising for transfer learning in prac-
tice.

With the sentences projected onto the same hid-
den space, the conditional distribution p(hs|Ds)
and p(ht|Dt), however, may be distant because
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LSTM hidden vectors contain contextual informa-
tion which is different across domains. In order to
reduce source/target discrepancy, we refine MMD
(Gretton et al., 2012) with label constraints, i.e.,
label-aware MMD (La-MMD). Using La-MMD,
the source/target hidden states are pushed to simi-
lar distributions to make the feature representation
H(X) transfer feasible.

Based on the hidden vectors from Bi-LSTM,
we adopt independent CRF layers for each do-
main. The rationale lies in the hypotheses that (i)
the target domain predictor can better capture tar-
get data distribution which could be very unique;
(ii) a good predictor trained on the source do-
main directly could be leveraged to assist the tar-
get domain predictor without directly borrowing
the source domain training data to bypass the data
privacy issue. With respect to the emission and
transition score matrices

∑
Ei,yi and

∑
Ayi,yi+1 ,

we adopt an upper bound between source/target
domains, which helps the target domain predictor
to be guided by the source domain predictor. Thus
p(y|H) is also transferable.

There are also other transfer methods, including
fine-tuning, sharing parameter directly (without
constraints) (He and Sun, 2017; Lee et al., 2017;
Yang et al., 2017), etc. However, simply sharing
models may dismiss target specific instances.

4.2 Learning Objective

The learning objective is to minimize the fol-
lowing loss L with respect to parameters Θ =
{θb, θc}:

L = Lc + α LLa-MMD + β Lp + γ Lr,

where Lc is the CRF loss, LLa-MMD is the La-
MMD loss, Lp is the parameter similarity loss on
CRF layers, andLr is the regularization term, with
α, β, γ as hyperparameters to balance loss terms.

The CRF loss is our ultimate objective predict-
ing the label sequence given the input sentence,
i.e., we minimize the negative log-likelihood of
training samples from both source/target domains:

Lc = − ε

Ns

Ns∑

i=1

log p(ysi |Hs
i )−

1− ε
N t

Nt∑

i=1

log p(yti |Ht
i),

where H are hidden vectors obtained from Bi-
LSTM, ε is the balance coefficient. The La-MMD
loss LLa-MMD and parameter similarity loss Lp are
discussed in Section 4.3 and 4.4, respectively. The

Figure 2: Illustration for La-MMD. MMD-y is com-
puted between two domains’ hidden representations
with the same ground truth label y. A linear combi-
nation is then applied to each label-wise MMD to form
La-MMD and the coefficient is set as µy = 1.

regularization term is to generally control overfit-
ting:

Lr = ‖θb‖22 + ‖θc‖22.

We will provide the model convergence and hy-
perparameter study in Section 5.1.

4.3 Bi-LSTM Feature Representation
Transfer

To learn transferable feature representations, the
maximum mean discrepancy (MMD) which mea-
sures the distance between two distributions, has
been widely used in domain adaptation scenar-
ios (Long et al., 2015; Rozantsev et al., 2016).
Almost all these works focus on reducing the
marginal distribution distance between different
domain features in an unsupervised manner to
make them indistinguishable. However, consider-
ing a word is not evenly distributed conditioning
on different labels, it may result in that the dis-
criminative property of features from different do-
mains may not be similar, which means that close
source and target samples may not have the same
label. Different from previous works, we propose
label-aware MMD (La-MMD) in Eq. (5) to explic-
itly reduce the discrepancy between hidden repre-
sentations with the same label, i.e., the linear com-
bination of the MMD for each label. For each label
class y ∈ Yv, where Yv is the set of matched labels
in two domains, we compute the squared popula-
tion MMD between the hidden representations of
source/target samples with the same label y:
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MMD2(Rsy,Rty) =
1

(Ns
y )2

Ns
y∑

i,j=1

k(hsi ,h
s
j) +

1

(N t
y)2

Nt
y∑

i,j=1

k(hti,h
t
j)

− 2

Ns
yN t

y

Ns
y ,N

t
y∑

i,j=1

k(hsi ,h
t
j), (4)

where Rsy and Rty are sets of hidden represen-
tation hs and ht with corresponding number
N s
y and N t

y. Eq. (4) can be easily derived by
casting Eq. (2) into inner product form and
applying 〈φ(x), φ(y)〉H = k(x, y) where k is the
reproducing kernel function (Gretton et al., 2012).
For each label class, we compute the MMD loss
in a normal manner. After that, we define the
La-MMD loss as:

LLa-MMD =
∑

y∈Yv
µy ·MMD2(Rsy,Rty), (5)

where µy is the corresponding coefficient. The il-
lustration of La-MMD is shown in Figure 2.

Once we have applied this La-MMD to our rep-
resentations learned from Bi-LSTM, the represen-
tation distribution of instances with the same la-
bel from different domains should be close. Then
the standard CRF layer which has a simple linear
structure takes these similar representations as in-
put and is likely to give a more transferable label
decision for instances with the same label.

4.4 CRF Parameter Transfer

Simply sharing the CRF layer is non-promising
when source/target data are diversely distributed.
According to probability decomposition in Eq. (3),
in order to transfer on source/target CRF layers,
more specifically, p(y|H), we reduce the KL di-
vergence from pt(y|H) to ps(y|H). But directly
reducing DKL(p

s(y|H)||pt(y|H)) is intractable,
we tend to reduce its upper bound:

DKL(p
s(y|H)||pt(y|H))

=
∑

y∈Y(H)

ps(y|H) log(
ps(y|H)

pt(y|H)
)

=−H(ps(y|H))−
∑

y∈Y(H)

ps(y|H) log pt(y|H)

≤c(‖Ws −Wt‖22 + ‖As −At‖22)
1
2 , (6)

where H(·) is the entropy of distribution (·) and c
is a constant. The detailed proof is provided in Ap-
pendix A.1. Since c(‖Ws−Wt‖22+‖As−At‖22)
is the upper bound of DKL(p

s(y|H)‖pt(y|H)),

L2

L2

L2 L2 L2 L2

L2 L2

Figure 3: Illustration for CRF parameter transfer.

we conduct CRF parameter transfer by minimiz-
ing

Lp = ‖Ws −Wt‖22 + ‖A
s −At‖22.

It turns out that a similar regularization term is
applied in our CRF parameter transfer method
and the regularization framework (RF) for do-
main adaptation (Lu et al., 2016). However, RF
is proposed to generalize the feature augmenta-
tion method in (Daume III, 2007), and these two
methods are only discussed from a perspective
of the parameter. There is no guarantee that two
models having similar parameters yields similar
output distributions. In this work, we discuss the
model behavior in CRF conditions, and we suc-
cessfully prove that two CRF models having sim-
ilar parameters (in Euclidean space) yields similar
output distributions. In another word, our method
guarantees transferability in the model behavior
level, while previous works are limited in parame-
ter level.

The CRF parameter transfer is illustrated in Fig-
ure 3, which is also label-aware since the L2 con-
straint is added over parameters corresponding to
the same label in two domains, e.g., Ws

O and Wt
O.

4.5 Training

We train La-DTL in an end-to-end manner with
mini-batch AdaGrad (Duchi et al., 2011). One
mini-batch contains training samples from both
domains, otherwise the computation of LLa-MMD
can not be performed. During training, word (and
character) embeddings are fine-tuned to adjust real
data distribution. During both training and decod-
ing (testing) of CRF layers, we use dynamic pro-
gramming to compute the normalizer in Eq. (1)
and infer the label sequence.
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Department # Train # Dev # Test

Cardiology 3,004 601 601
Respiratory 3,025 605 606
Neurology 932 187 187
Gastroenterology 1,517 303 304

Sum 8,478 1,696 1,698

Table 1: Sentence numbers for CM-NER corpus.

5 Experiments

In this section, we evaluate La-DTL1 and other
baseline methods on 12 cross-specialty NER prob-
lems based on real-world datasets. The experimen-
tal results show that La-DTL steadily outperforms
other baseline models in all tasks significantly. We
also conduct further ablation study and robustness
study. We evaluate La-DTL on two more non-
medical NER transfer tasks to validate its general
efficacy over a wide range of applications.

5.1 Cross-Specialty NER

Datasets We collected a Chinese medical NER
(CM-NER) corpus for our experiments. This cor-
pus contains 1600 de-identified EHRs of our affili-
ated hospital from four different specialties in four
departments: Cardiology (500), Respiratory (500),
Neurology (300) and Gastroenterology (300), and
the research had been reviewed and approved by
the ethics committee. Named entities are anno-
tated in the BIOES format (Begin, Inside, Outside,
End and Single), with 30 types in total. The statis-
tics of CM-NER is shown in Table 1.
Baselines The following methods are compared.
For a fair comparison, we implement La-DTL and
baselines with the same base model introduced in
(Lample et al., 2016) but with different transfer
techniques.

• Non-transfer uses the target domain labeled
data only.

• Domain mask and Linear projection be-
long to the same framework proposed by
Peng and Dredze (2017) but have differ-
ent implementations at the projection layer,
which aims to produce shared feature repre-
sentations among different domains through
a linear transformation.

• Re-training is proposed by Lee et al. (2017),
where an artificial neural networks (ANNs)

1https://github.com/felixwzh/La-DTL

is first trained on the source domain and then
re-trained on the target domain.

• Joint-training is a transfer learning method
proposed by Yang et al. (2017) where differ-
ent tasks are trained jointly.

• CD-learning is a cross-domain learning
method proposed by He and Sun (2017),
where each source domain training example’s
learning rate is re-weighted.

Experimental Settings We use 23,217 unla-
beled clinical records to train the word embed-
dings (word2vec) at 128 dimensions using skip-
gram model (Mikolov et al., 2013). The hidden
state size is set to be 200 for word-level Bi-LSTM.
We evaluate La-DTL for cross-specialty NER with
CM-NER in 12 transfer tasks, results shown in Ta-
ble 2. For each task, we take the whole source
domain training set Ds and 10% sentences of the
target domain training set Dt as training data. We
use the development set in target domain to search
hyper-parameters including training epochs. We
then take the models to make the prediction in tar-
get domain test set and use F1-score as the evalua-
tion metric. Statistical significance has been deter-
mined using a randomization version of the paired
sample t-test (Cohen, 1995).
Results and Discussion From the results of
12 cross-specialty NER tasks shown in Table 2,
we find that La-DTL outperforms all the strong
baselines in all the 12 cross-specialty transfer
learning tasks, with 2.62% to 6.70% F1-score
lift over state-of-the-art baseline methods. Mean-
while, Linear projection and Domain mask (Peng
and Dredze, 2017) do not perform as good as
other three baselines, which may be because
such linear transformation methods are likely to
weaken the representations. While other three
baseline methods all share the whole model be-
tween source/target domains but differ in the train-
ing schemes and performance.

To better understand the transferability of La-
DTL, we also evaluate three variants of La-
DTL: La-MMD, CRF-L2, and MMD-CRF-L2.
La-MMD and CRF-L2 have the same networks
and loss function as La-DTL but with different
building blocks: La-MMD has β = 0, while CRF-
L2 has α = 0. In MMD-CRF-L2, we replace
La-MMD loss LLa-MMD in La-DTL with a vanilla
MMD loss:

LMMD = MMD2(Rs,Rt),
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Method C→R C→N C→G R→C R→N R→G N→C N→R N→G G→C G→R G→N AVG

Non-transfer 67.20 54.51 49.01 65.63 54.51 49.01 65.63 67.20 49.01 65.63 67.20 54.51 59.09
Linear projection (Peng and Dredze, 2017) 69.01 67.02 57.40 69.79 65.87 57.71 67.70 68.77 51.33 68.00 69.65 61.12 64.45
Domain mask (Peng and Dredze, 2017) 70.76 63.97 58.62 70.18 64.27 58.16 67.93 69.89 56.18 68.87 69.89 63.49 65.18
CD-learning (He and Sun, 2017) 71.38 64.01 56.72 72.17 64.91 58.14 68.99 71.13 56.27 70.17 71.76 62.06 65.64
Re-training (Lee et al., 2017) 72.45 70.55 59.58 72.56 68.59 60.94 69.60 70.08 56.58 70.14 71.90 66.01 67.42
Joint-training (Yang et al., 2017) 69.82 70.49 63.52 71.45 67.03 67.71 70.96 71.43 60.54 69.68 71.55 68.15 68.53

La-MMD 73.08 69.48 59.86 72.53 70.28 60.16 71.31 73.04 57.94 69.80 73.99 67.19 68.22
CRF-L2 73.34 71.52 60.17 72.43 69.72 67.61 69.76 71.54 59.96 69.75 71.82 67.30 68.74
MMD-CRF-L2 73.05 72.35 60.80 72.65 69.87 66.82 70.25 71.75 58.98 70.48 73.98 67.43 69.03
La-DTL 73.59† 72.91† 64.60† 73.88† 73.01† 70.17† 73.08† 73.11† 62.14† 71.61† 74.21† 71.49† 71.15

Table 2: Results (F1-score %) of 12 cross-specialty medical NER tasks. C, R, N, G are short for the department
of Cardiology, Respiratory, Neurology, and Gastroenterology, respectively. † indicates La-DTL outperforms the 6
baselines significantly (p < 0.05).
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Figure 4: (a) F1-score of La-DTL, Joint-training and
Non-transfer method in C→R task with different sam-
pling rate. (b) The learning curve of La-DTL and Joint-
training in C→R task.

where Rs and Rt are sets of hidden representa-
tion from source and target domain. Results in Ta-
ble 2 show that: (i) Using La-MMD alone does
achieve satisfactory performance since it outper-
forms the best baseline Joint-training (Yang et al.,
2017) in 7 of 12 tasks. And it has a significant
improvement over Domain mask and Linear pro-
jection methods (Peng and Dredze, 2017), which
indicates that using La-MMD to reduce the do-
main discrepancy of feature representations in se-
quence tagging tasks is promising. (ii) CRF-L2
is also a promising method when transferring be-
tween NER tasks, and it improves the La-MMD
method significantly when these two methods are
combined to form La-DTL. (iii) Label-aware char-
acteristic is important in sequence labeling prob-
lems because there is an obvious performance
drop when La-MMD is replaced with a vanilla
MMD in La-DTL. But MMD-CRF-L2 still has
very competitive performance compared to all the
baseline methods. This shows positive empirical
evidence that transferring knowledge at both Bi-
LSTM feature representation level and CRF pa-
rameter level for NER tasks is better than transfer-
ring knowledge at only one of these two levels, as
discussed in Section 4.1.
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Figure 5: Hyperparameter study for α, β, and ε.

Robustness to Target Domain Data Sparsity
We further study the sparsity problem (target do-
main) of La-DTL in C→R task comparing to
Joint-training (Yang et al., 2017) and Non-transfer
method. We evaluate La-DTL with different data
volume (sampling rate: 10%, 25%, 50%, 100%) on
the target domain training set. Results are shown
in Figure 4(a). We observe that La-DTL outper-
forms Joint-training and Non-transfer results un-
der all circumstances, and the improvement of La-
DTL is more significant when the sampling rate is
lower.

To show La-DTL’s convergence and significant
improvement over Joint-training, we repeat the
10% sampling rate experiment for 10 times with
10 random seeds. The F1-score on the target do-
main development set for two methods with a 95%
confidence interval is shown in Figure 4(b) where
La-DTL outperforms Joint-training method signif-
icantly.
Hyperparameter Study We study the influence
of three key hyperparameters in La-DTL: α, β,
and ε in C→R task with 10% target domain sam-
pling rate. We first apply a rough grid search for
the three hyperparameters, and the result is (α =
0.02, β = 0.03, ε = 0.3). We then fix two hyper-
parameters and test the third one in a finer gran-
ularity. The results in Figure 5 indicate that set-
ting α ∈ [0.01, 0.04] could better leverage La-
MMD and further setting β ∈ [0.03, 0.12] and
ε ∈ [0.3, 0.4] yields the best empirical perfor-
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Corpus # Train # Dev # Test

SighanNER 23,182 - 4,636
WeiboNER 1,350 270 270
CoNLL 2003 14,987 3,466 3,684
TwitterNER 1,900 240 254

Table 3: Sentence numbers for non-medical corpora.

Method F1-score

Non-transfer 54.78
Linear projection (Peng and Dredze, 2017)∗ 56.40
Linear projection (Peng and Dredze, 2017) 56.99
Domain mask (Peng and Dredze, 2017)∗ 56.80
Domain mask (Peng and Dredze, 2017) 56.32
CD-learning (He and Sun, 2017)∗ 52.05
CD-learning (He and Sun, 2017) 56.46
Re-training (Lee et al., 2017) 55.36
Joint-training (Yang et al., 2017) 56.80

La-DTL 57.74

Table 4: Results (F1-score %) of WeiboNER transfer.
∗ indicates the result reported in the corresponding ref-
erence.

mance. This shows that we need to balance the
learning objective of the source and target domains
for better transferability.

5.2 NER Transfer Experiment on
Non-medical Corpus

To show La-DTL could be applied in a wide range
of NER transfer learning scenarios, we make ex-
periments on two non-medical NER tasks. Cor-
pora’s details are shown in Table 3.
WeiboNER Transfer Following He and Sun
(2017); Peng and Dredze (2017), we transfer
knowledge from SighanNER (MSR corpus of the
sixth SIGHAN Workshop on Chinese language
processing) to WeiboNER (a social media NER
corpus) (Peng and Dredze, 2015). Results in Table
4 show that La-DTL outperforms all the baseline
methods in Chinese social media domain.
TwitterNER Transfer Following Yang et al.
(2017) we transfer knowledge from CoNLL 2003
English NER (Tjong Kim Sang and De Meulder,
2003) to TwitterNER (Ritter et al., 2011). Since the
entity types in these two corpora cannot be exactly
matched, La-DTL and Joint-training (Yang et al.,
2017) can be applied directly in this case while
other baselines can not. Because the CRF parame-
ter transfer of La-DTL is label-aware, and Joint-
training simply leverages two independent CRF
layers. The results are shown in Table 5, where La-
DTL again outperforms Joint-training, indicating
that La-DTL could be applied seamlessly to trans-

Method F1-score

Non-transfer 34.65
Joint-training (Yang et al., 2017)∗ 43.24

La-DTL 45.71

Table 5: Results (F1-score %) of TwitterNER transfer.
∗ indicates the result reported in the corresponding ref-
erence.

fer learning scenarios with mismatched label sets
and languages like English.

6 Conclusions

In this paper, we propose La-DTL, a label-aware
double transfer learning framework, to conduct
both Bi-LSTM feature representation transfer and
CRF parameter transfer with label-aware con-
straints for cross-specialty medical NER tasks. To
our best knowledge, this is the first work on trans-
fer learning for medical NER in cross-specialty
scenario. Experiments on 12 cross-specialty NER
tasks show that La-DTL provides consistent per-
formance improvement over strong baselines. We
further perform a set of experiments on differ-
ent target domain data size, hyperparameter study
and other non-medical NER tasks, where La-DTL
shows great robustness and wide efficacy. For fu-
ture work, we plan to jointly perform NER and en-
tity linking for better cross-specialty media struc-
tural information extraction.
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A Appendix

A.1 Detailed Proof
Recall the bound as in Eq. (6):

Lemma A.1. c1(‖Ws −Wt‖22 + ‖As −At‖22) is the upper bound of (ss(H,y)− st(H,y))2.

Proof of Lemma A.1. ⊗ refers to convolutional product, HW ,HA are mask matrices corresponding to
the given hidden vectors H, and c1 is a constant. We have:

(ss(H,y)− st(H,y))2

=(

n∑

i=1

Es
i,yi +

n−1∑

i=1

As
yi,yi+1

−
n∑

i=1

Et
i,yi −

n−1∑

i=1

At
yi,yi+1

)2

=(Ws ⊗HW + As ⊗HA −Wt ⊗HW −At ⊗HA)2

=((Ws −Wt)⊗HW + (As −At)⊗HA)2

≤2((Ws −Wt)⊗HW )2 + 2((As −At)⊗HA)2

=2(
∑

i,j

(Ws −Wt)i,j ·HW
i,j)

2 + 2(
∑

p,q

(As −At)p,q ·HA
p,q)

2

≤2(
∑

i,j

(Ws −Wt)2i,j ·
∑

i,j

(HW
i,j)

2) + 2(
∑

p,q

(As −At)2p,q ·
∑

p,q

(HA
p,q)

2)

=2(‖Ws −Wt‖22 · ‖HW ‖22) + 2(‖As −At‖22 · ‖HA‖22)
≤c1(‖Ws −Wt‖22 + ‖As −At‖22).

Lemma A.2. c(‖Ws −Wt‖22 + ‖As −At‖22)
1
2 is the upper bound of DKL(p

s(y|H)||pt(y|H)).

Proof of Lemma A.2. With Lemma. (A.1), we set ε = (c1(‖Ws −Wt‖22 + ‖As − At‖22))
1
2 ≥ 0 and

c = 2c
1
2
1 , and we have:

ss(H,y)− ε ≤ st(H,y) ≤ ss(H,y) + ε, (7)

log{
∑

y′∈Y(H)

exp[ss(H,y′)]} − ε ≤ log{
∑

y′∈Y(H)

exp[st(H,y′)]} ≤ log{
∑

y′∈Y(H)

exp[ss(H,y′)]}+ ε.

(8)
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With Eq. (7) and Eq. (8), we can derive

−
∑

y∈Y(H)

ps(y|H) log pt(y|H)

=−
∑

y∈Y(H)

ps(y|H) log
exp[st(H,y)]∑

y′∈Y(H) exp[s
t(H,y′)]

=−
∑

y∈Y(H)

ps(y|H)
{
st(H,y)− log{

∑

y′∈Y(H)

exp[st(H,y′)]}
}

≤−
∑

y∈Y(H)

ps(y|H)
{
ss(H,y)− ε− log{

∑

y′∈Y(H)

exp[ss(H,y′)]} − ε
}

=−
∑

y∈Y(H)

ps(y|H)
{
log

exp[ss(H,y)]∑
y′∈Y(H) exp[s

s(H,y′)]
−2ε

}

=−
∑

y∈Y(H)

ps(y|H)
{
log ps(y|H)−2ε

}

=H(ps(y|H)) + 2ε.

Finally, we have

DKL(p
s(y|H)||pt(y|H))

=
∑

y∈Y(H)

ps(y|H) log(
ps(y|H)

pt(y|H)
)

=−H(ps(y|H))−
∑

y∈Y(H)

ps(y|H) log pt(y|H)

≤−H(ps(y|H)) +H(ps(y|H)) + 2ε

=c(‖Ws −Wt‖22 + ‖As −At‖22)
1
2 .

A.2 Case Analysis

In clinical practice, patients with specific diseases
would be assigned to different departments, and
specialist doctors in their department may pay
more attention to the specific disease. When writ-
ing a medical chart, these specific diseases and
related clinical findings would have a more de-
tailed description. Therefore, some medical terms
would have enriched meanings in different de-
partments accordingly. For example, patients with
rheumatic heart disease are often treated in the de-
partment of Cardiology. The term, “rheumatic”, a
modifier, describes and limits the type of “heart
disease”. In English, “rheumatic” is an adjective
modifying “heart disease”. However, in Chinese,
“rheumatic heart disease” can be regarded as two
diseases, “rheumatism” and “heart disease”. In the
department of Cardiology, “rheumatic heart dis-

ease” is usually mentioned as a single term. While
in other departments, “rheumatism” and “heart
disease” are mostly two independent named enti-
ties in annotated datasets. As such, it is difficult to
train an NER model to capture the relationship be-
tween “rheumatism” and “heart disease”, and band
them as a whole. In the training set of our study,
the diagnostic term “rheumatic heart disease” (in-
cluding synonym) is mentioned for 17 times in
Dept. Cardiology, 16 times in Dept. Respiratory,
none in Dept. Neurology and 3 times in Dept.
Gastroenterology. We use the data from the first
3 departments as source domain training set re-
spectively, and the data from Dept. Gastroenterol-
ogy as the target domain training set. We test our
models on the test set from Dept. Gastroenterol-
ogy, where “rheumatic heart disease” is mentioned
3 times, and compare the results across models
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Disease Transfer
Task

# disease term in
source domain

training set

# disease term in
target domain

training set

# disease term in
target domain

test set

# accurate
labeling

without transfer

# accurate
labeling

with transfer

rheumatic
heart disease

C→G 17
0 3 0

3
N→G 0 0
R→G 16 3

pulmonary
heart disease

C→G 4
0 2 0

2
N→G 0 0
R→G 24 2

coronary
atherosclerotic
heart disease

G→N 5
0 15 10

3
C→N 136 15
R→N 23 11

Table 6: Case analysis for cross-specialty medical NER tasks. C, R, N, G are short for department of Cardiology,
Respiratory, Neurology, and Gastroenterology, respectively.

with/without transfer learning. As expected, mod-
els with source training data from Dept. Cardio-
vascular and Respiration correctly predict all these
entities, but the model using source data from
Dept. Neurology fails and so does a model with-
out transfer learning.

Patients with pulmonary heart disease were of-
ten referred to Dept. Respiratory and Dept. Car-
diology. In our training set, “pulmonary heart dis-
ease” (including synonym) is labeled for 24 times
in Dept. Respiratory and 4 times in Dept. Cardi-
ology. In English, “pulmonary” modified “heart
disease”. In Chinese, “pulmonary heart disease”
contains body structure “lung” and disease name
“heart disease”. The model trained with the source
set from both from department of respiratory and
cardiology could correctly recognize the relation
between lung and heart disease and predict the en-
tity in the test set from Dept. Gastroenterology.

Similarly, “coronary atherosclerotic heart dis-
ease” contains two disease names, “coronary
atherosclerosis” and “heart disease”. Training
model using source set from a department where
the terms are enriched could improve the perfor-
mance of recognizing the whole entity.

A.3 Medical Experiments Details

The 30 entity types for medical domain are:
Symptom, Disease, Examination, Treatment, Lab-
oratory index, Products, Body structure, Fre-
quency, Negative word, Value, Trend, Modifica-
tion, Temporal word, Noun of locality, Degree
modifier, Probability, Object, Organism, Location,
Person, Pronoun, Privacy information, Accident,
Action, Header, Instrument and material, Non-
physiological structure, Dosage, Scale, and Prepo-
sition.

La-MMD

Source domain Target domain

Shared

Word Bi-LSTM

Word embedding

CRF CRF

Hidden 
vector

Hidden 
vector

L2

Char  Bi-LSTM

Char  embedding

Input data 

Figure 6: La-DTL framework for language like En-
glish.

A.4 Non-medical Experiments Details

WeiboNER Transfer
Both SighanNER and WeiboNER are annotated in
the BIO format (Begin, Inside and Outside), but
there is one more entity type (geo-political) in Wei-
boNER. For a fair comparison, we follow Peng
and Dredze (2017); He and Sun (2017) to merge
geo-political entities and locations in WeiboNER,
to match different labeling schemes between Wei-
boNER and SighanNER. We use the inconsisten-
cies fixed second version of WeiboNER data and
word embeddings provided by WeiboNER’s devel-
opers (Peng and Dredze, 2015)2 in this experi-
ment.

TwitterNER Transfer
To show that La-DTL could be applied in trans-
fer learning for NER scenario with mismatched

2
https://github.com/hltcoe/golden-horse
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named entity types and languages like English,
we conduct this experiment transfer from CoNLL
2003 English NER to TwitterNER. The four en-
tity types in CoNLL 2003 English NER are LOC,
PER, ORG, and MISC. The ten entity types in
TwitterNER are company, facility, geo-loc, movie,
musicartist, other, person, product, sportsteam,
and tvshow.

The Joint-training method (Yang et al., 2017)
separates the CRF layers for each domain to
bypass the label mismatch problem. Since our
La-DTL is label-aware, we match four pairs of
named entities between two CoNLL 2003 English
NER and TwitterNER: LOC with geo-loc, PER
with person, ORG with company and MISC with
other to compute LLa-MMD and Lp, and leave six
named entities unmatched. Following Yang et al.
(2017), We leverage char-level Bi-LSTM to gener-
ate better word representations, concatenate it with
pre-trained word embeddings and feed concate-
nated embeddings to the word-level Bi-LSTM.
The framework used for language like English is
illustrated in Figure 6.

We also convert all characters to lowercase and
use the same word embeddings provided by Yang
et al. (2017)3. Also, we concatenate the training
set and the development set for both domains and
sample the same 10% from TwitterNER as (Yang
et al., 2017) to be target domain training data.
Since Yang et al. (2017) merge training and de-
velopment set into training data, both Yang et al.
(2017) and we report the best performance in the
target domain test set.

3
https://github.com/kimiyoung/transfer
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Abstract

The task of Fine-grained Entity Type Clas-
sification (FETC) consists of assigning types
from a hierarchy to entity mentions in text. Ex-
isting methods rely on distant supervision and
are thus susceptible to noisy labels that can be
out-of-context or overly-specific for the train-
ing sentence. Previous methods that attempt
to address these issues do so with heuristics or
with the help of hand-crafted features. Instead,
we propose an end-to-end solution with a neu-
ral network model that uses a variant of cross-
entropy loss function to handle out-of-context
labels, and hierarchical loss normalization to
cope with overly-specific ones. Also, previous
work solve FETC a multi-label classification
followed by ad-hoc post-processing. In con-
trast, our solution is more elegant: we use pub-
lic word embeddings to train a single-label that
jointly learns representations for entity men-
tions and their context. We show experimen-
tally that our approach is robust against noise
and consistently outperforms the state-of-the-
art on established benchmarks for the task.

1 Introduction

Fine-grained Entity Type Classification (FETC)
aims at labeling entity mentions in context with
one or more specific types organized in a hier-
archy (e.g., actor as a subtype of artist, which
in turn is a subtype of person). Fine-grained
types help in many applications, including rela-
tion extraction (Mintz et al., 2009), question an-
swering (Li and Roth, 2002), entity linking (Lin
et al., 2012), knowledge base completion (Dong
et al., 2014) and entity recommendation (Yu et al.,
2014). Because of the high cost in labeling large
training corpora with fine-grained types, current
FETC systems resort to distant supervision (Mintz
et al., 2009) and annotate mentions in the train-
ing corpus with all types associated with the en-
tity in a knowledge graph. This is illustrated in

Figure 1, with three training sentences about en-
tity Steve Kerr. Note that while the entity be-
longs to three fine-grained types (person, athlete,
and coach), some sentences provide evidence of
only some of the types: person and coach from
S1, person and athlete from S2, and just person
for S3. Clearly, direct distant supervision leads to
noisy training data which can hurt the accuracy of
the FETC model.

One kind of noise introduced by distant super-
vision is assigning labels that are out-of-context
(athlete in S1 and coach in S2) for the sentence.
Current FETC systems sidestep the issue by ei-
ther ignoring out-of-context labels or using simple
pruning heuristics like discarding training exam-
ples with entities assigned to multiple types in the
knowledge graph. However, both strategies are in-
elegant and hurt accuracy. Another source of noise
introduced by distant supervision is when the type
is overly-specific for the context. For instance, ex-
ample S3 does not support the inference that Mr.
Kerr is either an athlete or a coach. Since existing
knowledge graphs give more attention to notable
entities with more specific types, overly-specific
labels bias the model towards popular subtypes in-
stead of generic ones, i.e., preferring athlete over
person. Instead of correcting for this bias, most
existing FETC systems ignore the problem and
treat each type equally and independently, ignor-
ing that many types are semantically related.

Besides failing to handle noisy training data
there are two other limitations of previous FETC
approaches we seek to address. First, they rely on
hand-crafted features derived from various NLP
tools; therefore, the inevitable errors introduced
by these tools propagate to the FETC systems
via the training data. Second, previous systems
treat FETC as a multi-label classification problem:
during type inference they predict a plausibility
score for each type, and, then, either classify types
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Figure 1: With distant supervision, all the three mentions of Steve Kerr shown are labeled with the same types in
oval boxes in the target type hierarchy. While only part of the types are correct: person and coach for S1, person
and athlete for S2, and just person for S3.

with scores above a threshold (Mintz et al., 2009;
Gillick et al., 2014; Shimaoka et al., 2017) or per-
form a top-down search in the given type hierarchy
(Ren et al., 2016a; Abhishek et al., 2017).

Contributions: We propose a neural network
based model to overcome the drawbacks of exist-
ing FETC systems mentioned above. With pub-
licly available word embeddings as input, we learn
two different entity representations and use bidi-
rectional long-short term memory (LSTM) with
attention to learn the context representation. We
propose a variant of cross entropy loss function to
handle out-of-context labels automatically during
the training phase. Also, we introduce hierarchical
loss normalization to adjust the penalties for corre-
lated types, allowing our model to understand the
type hierarchy and alleviate the negative effect of
overly-specific labels.

Moreover, in order to simplify the problem and
take advantage of previous research on hierar-
chical classification, we transform the multi-label
classification problem to a single-label classifica-
tion problem. Based on the assumption that each
mention can only have one type-path depending
on the context, we leverage the fact that type hier-
archies are forests, and represent each type-path
uniquely by the terminal type (which might not
be a leaf node). For Example, type-path root-
person-coach can be represented as just coach,
while root-person can be unambiguously repre-
sented as the non-leaf person.

Finally, we report on an experimental validation
against the state-of-the-art on established bench-

marks that shows that our model can adapt to noise
in training data and consistently outperform previ-
ous methods. In summary, we describe a single,
much simpler and more elegant neural network
model that attempts FETC “end-to-end” without
post-processing or ad-hoc features and improves
on the state-of-the-art for the task.

2 Related Work

Fine-Grained Entity Type Classification: The
first work to use distant supervision (Mintz et al.,
2009) to induce a large - but noisy - training set
and manually label a significantly smaller dataset
to evaluate their FETC system, was Ling and Weld
(2012) who introduced both a training and evalu-
ation dataset FIGER (GOLD). They used a linear
classifier perceptron for multi-label classification.
While initial work largely assumed that mention
assignments could be done independently of the
mention context, Gillick et al. (2014) introduced
the concept of context-dependent FETC where
the types of a mention are constrained to what
can be deduced from its context and introduced a
new OntoNotes-derived (Weischedel et al., 2011)
manually annotated evaluation dataset. In addi-
tion, they addressed the problem of label noise in-
duced by distant supervision and proposed three
label cleaning heuristics. Yogatama et al. (2015)
proposed an embedding-based model where user-
defined features and labels were embedded into a
low dimensional feature space to facilitate infor-
mation sharing among labels. Ma et al. (2016)
presented a label embedding method that incor-
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Attentive AFET LNR AAA NFETC
no hand-crafted features — — —
uses attentive neural network — — —
adopts single label setting — — — —
handles out-of-context noise —
handles overly-specifc noise — —

Table 1: Summary comparison to related FETC work. FETC systems listed in the table: (1) Attentive (Shimaoka
et al., 2017); (2) AFET (Ren et al., 2016a); (3) LNR (Ren et al., 2016b); (4) AAA (Abhishek et al., 2017).

porates prototypical and hierarchical information
to learn pre-trained label embeddings and adpated
a zero-shot framework that can predict both seen
and previously unseen entity types.

Shimaoka et al. (2016) proposed an attentive
neural network model that used LSTMs to encode
the context of an entity mention and used an at-
tention mechanism to allow the model to focus on
relevant expressions in such context. Shimaoka
et al. (2017) summarizes many neural architec-
tures for FETC task. These models ignore the out-
of-context noise, that is, they assume that all labels
obtained via distant supervision are “correct” and
appropriate for every context in the training cor-
pus. In our paper, a simple yet effective variant of
cross entropy loss function is proposed to handle
the problem of out-of-context noise.

Ren et al. (2016a) have proposed AFET, an
FETC system, that separates the loss function for
clean and noisy entity mentions and uses label-
label correlation information obtained by given
data in its parametric loss function. Considering
the noise reduction aspects for FETC systems, Ren
et al. (2016b) introduced a method called LNR to
reduce label noise without data loss, leading to
significant performance gains on both the evalu-
ation dataset of FIGER(GOLD) and OntoNotes.
Although these works consider both out-of-context
noise and overly-specific noise, they rely on hand-
crafted features which become an impediment to
further improvement of the model performance.
For LNR, because the noise reduction step is sep-
arated from the FETC model, the inevitable errors
introduced by the noise reduction will be propa-
gated into the FETC model which is undesirable.
In our FETC system, we handle the problem in-
duced from irrelevant noise and overly-specific
noise seamlessly inside the model and avoid the
usage of hand-crafted features.

Most recently, following the idea from AFET,
Abhishek et al. (2017) proposed a simple neu-
ral network model which incorporates noisy la-
bel information using a variant of non-parametric

hinge loss function and gain great performance
improvement on FIGER(GOLD). However, their
work overlooks the effect of overly-specific noise,
treating each type label equally and independently
when learning the classifiers and ignores possible
correlations among types.

Hierarchical Loss Function: Due to the intrin-
sic type hierarchy existing in the task of FETC,
it is natural to adopt the idea of hierarchical loss
function to adjust the penalties for FETC mistakes
depending on how far they are in the hierarchy.
The penalty for predicting person instead of ath-
lete should less than the penalty for predicting or-
ganization. To the best of our knowledge, the first
use of a hierarchical loss function was originally
introduced in the context of document categoriza-
tion with support vector machines (Cai and Hof-
mann, 2004). However, that work assumed that
weights to control the hierarchical loss would be
solicited from domain experts, which is inappli-
cable for FETC. Instead, we propose a method
called hierarchical loss normalization which can
overcome the above limitations and be incorpo-
rated with cross entropy loss used in our neural
architecture.

Table 1 provides a summary comparison of our
work against the previous state-of-the-art in fine
grained entity typing.

3 Background and Problem

Our task is to automatically reveal the type infor-
mation for entity mentions in context. The input
is a knowledge graph Ψ with schema YΨ, whose
types are organized into a type hierarchy Y , and an
automatically labeled training corpus D obtained
by distant supervision with Y . The output is a
type-path in Y for each named entity mentioned
in a test sentence from a corpus Dt.

More precisely, a labeled corpus for entity type
classification consists of a set of extracted entity
mentions {mi}Ni=1 (i.e., token spans representing
entities in text), the context (e.g., sentence, para-
graph) of each mention {ci}Ni=1, and the candidate
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type sets {Yi}Ni=1 automatically generated for each
mention.

We represent the training corpus using a set of
mention-based triples D = {(mi, ci,Yi)}Ni=1.

If Yi is free of out-of-context noise, the type la-
bels for each mi should form a single type-path in
Yi. However, Yi may contain type-paths that are
irrelevant to mi in ci if there exists out-of-context
noise.

We denote the type set including all terminal
types for each type-path as the target type set Yti .
In the example type hierarchy shown in Figure 1,
if Yi contains types person, athlete, coach, Yti
should contain athlete, coach, but not person.
In order to understand the trade-off between the
effect of out-of-context noise and the size of the
training set, we report on experiments with two
different training sets: Dfiltered only with triples
whose Yi form a single type-path in D, and Draw
with all triples.

We formulate fine-grained entity classification
problem as follows:

Definition 1 Given an entity mention mi =
(wp, . . . , wt) (p, t ∈ [1, T ], p ≤ t) and its context
ci = (w1, . . . , wT ) where T is the context length,
our task is to predict its most specific type ŷi de-
pending on the context.

In practice, ci is generated by truncating the
original context with words beyond the context
window size C both to the left and to the right of
mi. Specifically, we compute a probability distri-
bution over all theK = |Y| types in the target type
hierarchy Y . The type with the highest probability
is classified as the predicted type ŷi which is the
terminal type of the predicted type-path.

4 Methodology

This section details our Neural Fine-Grained En-
tity Type Classification (NFETC) model.

4.1 Input Representation
As stated in Section 3, the input is an entity men-
tion mi with its context ci. First, we transform
each word in the context ci into a real-valued vec-
tor to provide lexical-semantic features. Given a
word embedding matrix Wwrd of size dw × |V |,
where V is the input vocabulary and dw is the size
of word embedding, we map every wi to a column
vector wd

i ∈ Rdw .
To additionally capture information about the

relationship to the target entities, we incorporate

word position embeddings (Zeng et al., 2014) to
reflect relative distances between the i-th word
to the entity mention. Every relative distance is
mapped to a randomly initialized position vector
in Rdp , where dp is the size of position embedding.
For a given word, we obtain the position vector
wp
i . The overall embedding for the i-th word is

wE
i = [(wd

i )
>, (wp

i )
>]>.

4.2 Context Representation

For the context ci, we want to apply a non-linear
transformation to the vector representation of ci to
derive a context feature vector hi = f(ci; θ) given
a set of parameters θ. In this paper, we adopt bidi-
rectional LSTM with ds hidden units as f(ci; θ).
The network contains two sub-networks for the
forward pass and the backward pass respectively.
Here, we use element-wise sum to combine the
forward and backward pass outputs. The output of
the i-th word in shown in the following equation:

hi = [
−→
hi ⊕

←−
hi ] (1)

Following Zhou et al. (2016), we employ
word-level attention mechanism, which makes our
model able to softly select the most informative
words during training. Let H be a matrix con-
sisting of output vectors [h1, h2, . . . , hT ] that the
LSTM produced. The context representation r is
formed by a weighted sum of these output vectors:

G = tanh(H) (2)

α = softmax(w>G) (3)

rc = Hα> (4)

where H ∈ Rds×T , w is a trained parameter vec-
tor. The dimension ofw,α, rc are ds, T, ds respec-
tively.

4.3 Mention Representation

Averaging encoder: Given the entity mention
mi = (wp, . . . , wt) and its length L = t − p + 1,
the averaging encoder computes the average word
embedding of the words in mi. Formally, the av-
eraging representation ra of the mention is com-
puted as follows:

ra =
1

L

t∑

i=p

wd
i (5)
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Figure 2: The architecture of the NFETC model.

This relatively simple method for composing
the mention representation is motivated by it being
less prone to overfitting (Shimaoka et al., 2017).

LSTM encoder: In order to capture more se-
mantic information from the mentions, we add
one token before and another after the target en-
tity to the mention. The extended mention can be
represented as m∗i = (wp−1, wp, . . . , wt, wt+1).
The standard LSTM is applied to the mention se-
quence from left to right and produces the outputs
hp−1, . . . , ht+1. The last output ht+1 then serves
as the LSTM representation rl of the mention.

4.4 Optimization

We concatenate context representation and two
mention representations together to form the over-
all feature representation of the input R =
[rc, ra, rl]. Then we use a softmax classifier to
predict ŷi from a discrete set of classes for a en-
tity mention m and its context c with R as input:

p̂(y|m, c) = softmax(WR+ b) (6)

ŷ = arg max
y
p̂(y|m, c) (7)

where W can be treated as the learned type em-
beddings and b is the bias.

The traditional cross-entropy loss function is
represented as follows:

J(θ) = − 1

N

N∑

i=1

log(p̂(yi|mi, ci)) + λ‖Θ‖2 (8)

where yi is the only element in Yti and
(mi, ci,Yi) ∈ Dfiltered. λ is an L2 regulariza-
tion hyperparameter and Θ denotes all parameters
of the considered model.

In order to handle data with out-of-context noise
(in other words, with multiple labeled types) and
take full advantage of them, we introduce a simple
yet effective variant of the cross-entropy loss:

J(θ) = − 1

N

N∑

i=1

log(p̂(y∗i |mi, ci)) + λ‖Θ‖2 (9)

where y∗i = arg maxy∈Yt
i
p̂(y|mi, ci) and

(mi, ci,Yi) ∈ Draw. With this loss function, we
assume that the type with the highest probability
among Yti during training as the correct type. If
there is only one element in Yti , this loss function
is equivalent to the cross-entropy loss function.
Wherever there are multiple elements, it can filter
the less probable types based on the local context
automatically.
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4.5 Hierarchical Loss Normalization
Since the fine-grained types tend to form a for-
est of type hierarchies, it is unreasonable to treat
every type equally. Intuitively, it is better to pre-
dict an ancestor type of the true type than some
other unrelated type. For instance, if one exam-
ple is labeled as athlete, it is reasonable to predict
its type as person. However, predicting other high
level types like location or organization would be
inappropriate. In other words, we want the loss
function to penalize less the cases where types are
related. Based on the above idea, we adjust the
estimated probability as follows:

p∗(ŷ|m, c) = p(ŷ|m, c) + β ∗
∑

t∈Γ

p(t|m, c) (10)

where Γ is the set of ancestor types along the
type-path of ŷ, β is a hyperparameter to tune the
penalty. Afterwards, we re-normalize it back to
a probability distribution, a process which we de-
note as hierarchical loss normalization.

As discussed in Section 1, there exists overly-
specific noise in the automatically labeled training
sets which hurt the model performance severely.
With hierarchical loss normalization, the model
will get less penalty when it predicts the ac-
tual type for one example with overly-specific
noise. Hence, it can alleviate the negative effect
of overly-specific noise effectively. Generally, hi-
erarchical loss normalization can make the model
somewhat understand the given type hierarchy and
learn to detect those overly-specific cases. Dur-
ing classification, it will make the models prefer
generic types unless there is a strong indicator for
a more specific type in the context.

4.6 Regularization
Dropout, proposed by Hinton et al. (2012), pre-
vents co-adaptation of hidden units by randomly
omitting feature detectors from the network dur-
ing forward propagation. We employ both input
and output dropout on LSTM layers. In addition,
we constrain L2-norms for the weight vectors as
shown in Equations 8, 9 and use early stopping to
decide when to stop training.

5 Experiments

This section reports an experimental evaluation of
our NFETC approach using the previous state-of-
the-art as baselines.

FIGER(GOLD) OntoNotes
# types 113 89
# raw training mentions 2009898 253241
# raw testing mentions 563 8963
% filtered training mentions 64.46 73.13
% filtered testing mentions 88.28 94.00
Max hierarchy depth 2 3

Table 2: Statistics of the datasets

5.1 Datasets
We evaluate the proposed model on two standard
and publicly available datasets, provided in a pre-
processed tokenized format by Shimaoka et al.
(2017). Table 2 shows statistics about the bench-
marks. The details are as follows:

• FIGER(GOLD): The training data consists
of Wikipedia sentences and was automati-
cally generated with distant supervision, by
mapping Wikipedia identifiers to Freebase
ones. The test data, mainly consisting of
sentences from news reports, was manually
annotated as described by Ling and Weld
(2012).

• OntoNotes: The OntoNotes dataset con-
sists of sentences from newswire docu-
ments present in the OntoNotes text cor-
pus (Weischedel et al., 2013). DBpedia spot-
light (Daiber et al., 2013) was used to auto-
matically link entity mention in sentences to
Freebase. Manually annotated test data was
shared by Gillick et al. (2014).

Because the type hierarchy can be somewhat
understood by our proposed model, the quality
of the type hierarchy can also be a key factor to
the performance of our model. We find that the
type hierarchy for FIGER(GOLD) dataset follow-
ing Freebase has some flaws. For example, soft-
ware is not a subtype of product and government
is not a subtype of organization. Following the
proposed type hierarchy of Ling and Weld (2012),
we refine the Freebase-based type hierarchy. The
process is a one-to-one mapping for types in the
original dataset and we didn’t add or drop any type
or sentence in the original dataset. As a result, we
can directly compare the results of our proposed
model with or without this refinement.

Aside from the advantages brought by adopt-
ing the single label classification setting, we can
see one disadvantage of this setting based on Ta-
ble 2. That is, the performance upper bounds of
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our proposed model are no longer 100%: for ex-
ample, the best strict accuracy we can get in this
setting is 88.28% for FIGER(GOLD). However,
as the strict accuracy of state-of-the-art methods
are still nowhere near 80% (Table 3), the evalua-
tion we perform is still informative.

5.2 Baselines

We compared the proposed model with state-of-
the-art FETC systems 1: (1) Attentive (Shimaoka
et al., 2017); (2) AFET (Ren et al., 2016a); (3)
LNR+FIGER (Ren et al., 2016b); (4) AAA (Ab-
hishek et al., 2017).

We compare these baselines with variants of
our proposed model: (1) NFETC(f): basic neu-
ral model trained on Dfiltered (recall Section 4.4);
(2) NFETC-hier(f): neural model with hierarich-
cal loss normalization trained on Dfiltered. (3)
NFETC(r): neural model with proposed vari-
ant of cross-entropy loss trained on Draw; (4)
NFETC-hier(r): neural model with proposed
variant of cross-entropy loss and hierarchical loss
normalization trained on Draw.

5.3 Experimental Setup

For evaluation metrics, we adopt the same crite-
ria as Ling and Weld (2012), that is, we evaluate
the model performance by strict accuracy, loose
macro, and loose micro F-scores. These measures
are widely used in existing FETC systems (Shi-
maoka et al., 2017; Ren et al., 2016b,a; Abhishek
et al., 2017).

We use pre-trained word embeddings that were
not updated during training to help the model gen-
eralize to words not appearing in the training set.
For this purpose, we used the freely available
300-dimensional cased word embedding trained
on 840 billion tokens from the Common Crawl
supplied by Pennington et al. (2014). For both
datasets, we randomly sampled 10% of the test set
as a development set, on which we do the hyper-
parameters tuning. The remaining 90% is used for
final evaluation. We run each model with the well-
tuned hyperparameter setting five times and report
their average strict accuracy, macro F1 and micro
F1 on the test set. The proposed model was imple-
mented using the TensorFlow framework. 2

1The results of the baselines are all as reported in their
corresponding papers.

2The code to replicate the work is available at: https:
//github.com/billy-inn/NFETC

Parameter FIGER(GOLD) OntoNotes
lr 0.0002 0.0002
dp 85 20
ds 180 440
pi 0.7 0.5
po 0.9 0.5
λ 0.0 0.0001
β 0.4 0.3

Table 4: Hyperparameter Settings

5.4 Hyperparameter Setting

In this paper, we search different hyperparameter
settings for FIGER(GOLD) and OntoNotes sepa-
rately, considering the differences between the two
datasets. The hyperparameters include the learn-
ing rate lr for Adam Optimizer, size of word po-
sition embeddings (WPE) dp, state size for LSTM
layers ds, input dropout keep probability pi and
output dropout keep probability po for LSTM lay-
ers 3, L2 regularization parameter λ and parame-
ter to tune hierarchical loss normalization β. The
values of these hyperparameters, obtained by eval-
uating the model performance on the development
set, for each dataset can be found in Table 4.

5.5 Performance comparison and analysis

Table 3 compares our models with other state-
of-the-art FETC systems on FIGER(GOLD) and
OntoNotes. The proposed model performs better
than the existing FETC systems, consistently on
both datasets. This indicates benefits of the pro-
posed representation scheme, loss function and hi-
erarchical loss normalization.

Discussion about Out-of-context Noise: For
dataset FIGER(GOLD), the performance of our
model with the proposed variant of cross-entropy
loss trained onDraw is significantly better than the
basic neural model trained on Dfiltered, suggest-
ing that the proposed variant of the cross-entropy
loss function can make use of the data with out-
of-context noise effectively. On the other hand,
the improvement introduced by our proposed vari-
ant of cross-entropy loss is not as significant for
the OntoNotes benchmark. This may be caused
by the fact that OntoNotes is much smaller than
FIGER(GOLD) and proportion of examples with-
out out-of-context noise are also higher, as shown
in Table 2.

3Following TensorFlow terminology.
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FIGER(GOLD) OntoNotes
Model Strict Acc. Macro F1 Micro F1 Strict Acc. Macro F1 Micro F1
Attentive 59.68 78.97 75.36 51.74 70.98 64.91

AFET 53.3 69.3 66.4 55.1 71.1 64.7

LNR+FIGER 59.9 76.3 74.9 57.2 71.5 66.1

AAA 65.8 81.2 77.4 52.2 68.5 63.3

NFETC(f) 57.9± 1.3 78.4± 0.8 75.0± 0.7 54.4± 0.3 71.5± 0.4 64.9± 0.3

NFETC-hier(f) 68.0± 0.8 81.4± 0.8 77.9± 0.7 59.6± 0.2 76.1± 0.2 69.7± 0.2

NFETC(r) 56.2± 1.0 77.2± 0.9 74.3± 1.1 54.8± 0.4 71.8± 0.4 65.0± 0.4

NFETC-hier(r) 68.9± 0.6 81.9± 0.7 79.0± 0.7 60.2± 0.2 76.4± 0.1 70.2± 0.2

Table 3: Strict Accuracy, Macro F1 and Micro F1 for the models tested on the FIGER(GOLD) and OntoNotes
datasets.

Test Sentence Ground Truth
S1: Hopkins said four fellow elections is curious , considering the . . . Person
S2: . . . for WiFi communications across all the SD cards. Product
S3: A handful of professors in the UW Department of Chemistry . . . Educational Institution
S4: Work needs to be done and, in Washington state, . . . Province
S5: ASC Director Melvin Taing said that because the commission is . . . Organization

Table 5: Examples of test sentences in FIGER(GOLD) where the entity mentions are marked as bold italics.

Investigations on Overly-Specific Noise: With
hierarchical loss normalization, the performance
of our models are consistently better no matter
whether trained on Draw or Dfiltered on both
datasets, demonstrating the effectiveness of this
hierarchical loss normalization and showing that
overly-specific noise has a potentially significant
influence on the performance of FETC systems.

5.6 T-SNE Visualization of Type Embeddings
By visualizing the learned type embeddings (Fig-
ure 3), we can observe that the parent types are
mixed with their subtypes and forms clear distinct
clusters without hierarchical loss normalization,
making it hard for the model to distinguish sub-
types like actor or athlete from their parent types
person. This also biases the model towards the
most popular subtype. While the parent types tend
to cluster together and the general pattern is more
complicated with hierarchical loss normalization.
Although it’s not as easy to interpret, it hints that
our model can learn rather subtle intricacies and
correlations among types latent in the data with the
help of hierarchical loss normalization, instead of
sticking to a pre-defined hierarchy.

5.7 Error Analysis on FIGER(GOLD)
Since there are only 563 sentences for testing in
FIGER(GOLD), we look into the predictions for

all the test examples of all variants of our model.
Table 5 shows 5 examples of test sentence. With-
out hierarchical loss normalization, our model will
make too aggressive predictions for S1 with Politi-
cian and for S2 with Software. This kind of mis-
takes are very common and can be effectively re-
duced by introducing hierarchical loss normaliza-
tion leading to significant improvements on the
model performance. Using the changed loss func-
tion to handle multi-label (noisy) training data can
help the model distinguish ambiguous cases. For
example, our model trained on Dfiltered will mis-
classify S5 as Title, while the model trained on
Draw can make the correct prediction.

However, there are still some errors that can’t
be fixed with our model. For example, our model
cannot make correct predictions for S3 and S4 due
to the fact that our model doesn’t know that UW is
an abbreviation of University of Washington and
Washington state is the name of a province. In
addition, the influence of overly-specific noise can
only be alleviated but not eliminated. Sometimes,
our model will still make too aggressive or conser-
vative predictions. Also, mixing up very ambigu-
ous entity names is inevitable in this task.
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Figure 3: T-SNE visualization of the type embeddings
learned from FIGER(GOLD) dataset where subtypes
share the same color as their parent type. The seven
parent types are shown in the black boxes. The be-
low sub-figure uses the hierarchical loss normalization,
while the above not.

6 Conclusion and Further Work

In this paper, we studied two kinds of noise,
namely out-of-context noise and overly-specific
noise, for noisy type labels and investigate their
effects on FETC systems. We proposed a neural
network based model which jointly learns repre-
sentations for entity mentions and their context. A
variant of cross-entropy loss function was used to
handle out-of-context noise. Hierarchical loss nor-
malization was introduced into our model to alle-
viate the effect of overly-specific noise. Experi-
mental results on two publicly available datasets
demonstrate that the proposed model is robust to
these two kind of noise and outperforms previous
state-of-the-art methods significantly.

More work can be done to further develop hi-
erarchical loss normalization since currently it’s
very simple. Considering type information is valu-
able in various NLP tasks, we can incorporate re-
sults produced by our FETC system to other tasks,
such as relation extraction, to check our model’s
effectiveness and help improve other tasks’ per-

formance. In addition, tasks like relation extrac-
tion are complementary to the task of FETC and
therefore may have potentials to be digged to help
improve the performance of our system in return.
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Abstract
Semi-supervised bootstrapping techniques for
relationship extraction from text iteratively ex-
pand a set of initial seed instances. Due to the
lack of labeled data, a key challenge in boot-
strapping is semantic drift: if a false positive
instance is added during an iteration, then all
following iterations are contaminated. We in-
troduce BREX, a new bootstrapping method
that protects against such contamination by
highly effective confidence assessment. This
is achieved by using entity and template seeds
jointly (as opposed to just one as in previous
work), by expanding entities and templates in
parallel and in a mutually constraining fash-
ion in each iteration and by introducing higher-
quality similarity measures for templates. Ex-
perimental results show that BREX achieves
an F1 that is 0.13 (0.87 vs. 0.74) better than
the state of the art for four relationships.

1 Introduction

Traditional semi-supervised bootstrapping rela-
tion extractors (REs) such as BREDS (Batista
et al., 2015), SnowBall (Agichtein and Gravano,
2000) and DIPRE (Brin, 1998) require an initial
set of seed entity pairs for the target binary rela-
tion. They find occurrences of positive seed en-
tity pairs in the corpus, which are converted into
extraction patterns, i.e., extractors, where we de-
fine an extractor as a cluster of instances generated
from the corpus. The initial seed entity pair set is
expanded with the relationship entity pairs newly
extracted by the extractors from the text iteratively.
The augmented set is then used to extract new re-
lationships until a stopping criterion is met.

Due to lack of sufficient labeled data, rule-
based systems dominate commercial use (Chiti-
cariu et al., 2013). Rules are typically defined
by creating patterns around the entities (entity ex-
traction) or entity pairs (relation extraction). Re-
cently, supervised machine learning, especially

deep learning techniques (Gupta et al., 2015;
Nguyen and Grishman, 2015; Vu et al., 2016a,b;
Gupta et al., 2016), have shown promising results
in entity and relation extraction; however, they
need sufficient hand-labeled data to train models,
which can be costly and time consuming for web-
scale extractions. Bootstrapping machine-learned
rules can make extractions easier on large corpora.
Thus, open information extraction systems (Carl-
son et al., 2010; Fader et al., 2011; Mausam et al.,
2012; Mesquita et al., 2013; Angeli et al., 2015)
have recently been popular for domain specific or
independent pattern learning.

Hearst (1992) used hand written rules to gen-
erate more rules to extract hypernym-hyponym
pairs, without distributional similarity. For en-
tity extraction, Riloff (1996) used seed entities to
generate extractors with heuristic rules and scored
them by counting positive extractions. Prior work
(Lin et al., 2003; Gupta et al., 2014) investigated
different extractor scoring measures. Gupta and
Manning (2014) improved scores by introducing
expected number of negative entities.

Brin (1998) developed the bootstrapping rela-
tion extraction system DIPRE that generates ex-
tractors by clustering contexts based on string
matching. SnowBall (Agichtein and Gravano,
2000) is inspired by DIPRE but computes a TF-
IDF representation of each context. BREDS
(Batista et al., 2015) uses word embeddings
(Mikolov et al., 2013) to bootstrap relationships.

Related work investigated adapting extractor
scoring measures in bootstrapping entity extrac-
tion with either entities or templates (Table 1) as
seeds (Table 2). The state-of-the-art relation ex-
tractors bootstrap with only seed entity pairs and
suffer due to a surplus of unknown extractions
and the lack of labeled data, leading to low con-
fidence extractors. This in turn leads to to low
confidence in the system output. Prior RE sys-
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BREE Bootstrapping Relation Extractor with Entity pair
BRET Bootstrapping Relation Extractor with Template
BREJ Bootstrapping Relation Extractor in Joint learning
type a named entity type, e.g., person
typed entity a typed entity, e.g.,  “Obama”,person¡
entity pair a pair of two typed entities
template a triple of vectors (~v�1, ~v0, ~v1) and an entity pair
instance entity pair and template (types must be the same)
γ instance set extracted from corpus
i a member of γ, i.e., an instance
xpiq the entity pair of instance i
xpiq the template of instance i
Gp a set of positive seed entity pairs
Gn a set of negative seed entity pairs
Gp a set of positive seed templates
Gn a set of negative seed templates
G   Gp, Gn,Gp,Gn ¡

kit number of iterations
λcat cluster of instances (extractor)
cat category of extractor λ
λNNHC Non-Noisy-High-Confidence extractor (True Positive)
λNNLC Non-Noisy-Low-Confidence extractor (True Negative)
λNHC Noisy-High-Confidence extractor (False Positive)
λNLC Noisy-Low-Confidence extractor (False Negative)

Table 1: Notation and definition of key terms

tems do not focus on improving the extractors’
scores. In addition, SnowBall and BREDS used
a weighting scheme to incorporate the importance
of contexts around entities and compute a similar-
ity score that introduces additional parameters and
does not generalize well.

Contributions. (1) We propose a Joint Boot-
strapping Machine1 (JBM), an alternative to the
entity-pair-centered bootstrapping for relation ex-
traction that can take advantage of both entity-pair
and template-centered methods to jointly learn
extractors consisting of instances due to the oc-
currences of both entity pair and template seeds.
It scales up the number of positive extractions
for non-noisy extractors and boosts their confi-
dence scores. We focus on improving the scores
for non-noisy-low-confidence extractors, resulting
in higher recall. The relation extractors boot-
strapped with entity pair, template and joint seeds
are named as BREE, BRET and BREJ (Table 1),
respectively.

(2) Prior work on embedding-based con-
text comparison has assumed that relations
have consistent syntactic expression and has
mainly addressed synonymy by using embeddings
(e.g.,“acquired” – “bought”). In reality, there is
large variation in the syntax of how relations are
expressed, e.g., “MSFT to acquire NOK for $8B”

1github.com/pgcool/Joint-Bootstrapping-Machines

vs. “MSFT earnings hurt by NOK acquisition”.
We introduce cross-context similarities that com-
pare all parts of the context (e.g., “to acquire” and
“acquisition”) and show that these perform better
(in terms of recall) than measures assuming con-
sistent syntactic expression of relations.

(3) Experimental results demonstrate a 13%
gain in F1 score on average for four relationships
and suggest eliminating four parameters, com-
pared to the state-of-the-art method.

The motivation and benefits of the proposed
JBM for relation extraction is discussed in depth
in section 2.3. The method is applicable for both
entity and relation extraction tasks. However, in
context of relation extraction, we call it BREJ.

2 Method

2.1 Notation and definitions

We first introduce the notation and terms (Table 1).
Given a relationship like “x acquires y”, the

task is to extract pairs of entities from a corpus for
which the relationship is true. We assume that the
arguments of the relationship are typed, e.g., x and
y are organizations. We run a named entity tagger
in preprocessing, so that the types of all candidate
entities are given. The objects the bootstrapping
algorithm generally handles are therefore typed
entities (an entity associated with a type).

For a particular sentence in a corpus that states
that the relationship (e.g., “acquires”) holds be-
tween x and y, a template consists of three vectors
that represent the context of x and y. ~v�1 repre-
sents the context before x, ~v0 the context between
x and y and ~v1 the context after y. These vectors
are simply sums of the embeddings of the corre-
sponding words. A template is “typed”, i.e., in
addition to the three vectors it specifies the types
of the two entities. An instance joins an entity pair
and a template. The types of entity pair and tem-
plate must be the same.

The first step of bootstrapping is to extract a set
of instances from the input corpus. We refer to this
set as γ. We will use i and j to refer to instances.
xpiq is the entity pair of instance i and xpiq is the
template of instance i.

A required input to our algorithm are sets of
positive and negative seeds for either entity pairs
(Gp and Gn) or templates (Gp and Gn) or both.
We define G to be a tuple of all four seed sets.

We run our bootstrapping algorithm for kit iter-
ations where kit is a parameter.
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A key notion is the similarity between two in-
stances. We will experiment with different sim-
ilarity measures. The baseline is (Batista et al.,
2015)’s measure given in Figure 4, first line: the
similarity of two instances is given as a weighted
sum of the dot products of their before contexts
(~v�1), their between contexts (~v0) and their after
contexts (~v1) where the weights wp are parame-
ters. We give this definition for instances, but it
also applies to templates since only the context
vectors of an instance are used, not the entities.

The similarity between an instance i and a clus-
ter λ of instances is defined as the maximum sim-
ilarity of i with any member of the cluster; see
Figure 2, right, Eq. 5. Again, there is a straight-
forward extension to a cluster of templates: see
Figure 2, right, Eq. 6.

The extractors Λ can be categorized as follows:

ΛNNHC � tλ P Λ| λ ÞÑ Rloomoon
non�noisy

^ cnfpλ,Gq ¥ τcnfu (1)

ΛNNLC � tλ P Λ|λ ÞÑ R^ cnfpλ,Gq   τcnfu (2)
ΛNHC � tλ P Λ|λ �ÞÑ Rloomoon

noisy

^ cnfpλ,Gq ¥ τcnfu (3)

ΛNLC � tλ P Λ|λ �ÞÑ R^ cnfpλ,Gq   τcnfu (4)

where R is the relation to be bootstrapped. The
λcat is a member of Λcat. For instance, a λNNLC
is called as a non-noisy-low-confidence extractor if
it represents the target relation (i.e., λ ÞÑ R), how-
ever with the confidence below a certain threshold
(τcnf ). Extractors of types ΛNNHC and ΛNLC are
desirable, those of types ΛNHC and ΛNNLC un-
desirable within bootstrapping.

2.2 The Bootstrapping Machines: BREX
To describe BREX (Figure 1) in its most general
form, we use the term item to refer to an entity
pair, a template or both.

The input to BREX (Figure 2, left, line 01) is
a set γ of instances extracted from a corpus and
Gseed, a structure consisting of one set of positive
and one set of negative seed items. Gyield (line 02)
collects the items that BREX extracts in several it-
erations. In each of kit iterations (line 03), BREX
first initializes the cache Gcache (line 04); this cache
collects the items that are extracted in this itera-
tion. The design of the algorithm balances ele-
ments that ensure high recall with elements that
ensure high precision.

High recall is achieved by starting with the
seeds and making three “hops” that consecutively
consider order-1, order-2 and order-3 neighbors

.
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Figure 1: Joint Bootstrapping Machine. The red and
blue filled circles/rings are the instances generated
due to seed entity pairs and templates, respectively.
Each dashed rectangular box represents a cluster of in-
stances. Numbers indicate the flow. Follow the nota-
tions from Table 1 and Figure 2.

of the seeds. On line 05, we make the first hop:
all instances that are similar to a seed are col-
lected where “similarity” is defined differently for
different BREX configurations (see below). The
collected instances are then clustered, similar to
work on bootstrapping by Agichtein and Gravano
(2000) and Batista et al. (2015). On line 06, we
make the second hop: all instances that are within
τ sim of a hop-1 instance are added; each such in-
stance is only added to one cluster, the closest one;
see definition of µ: Figure 2, Eq. 8. On line 07, we
make the third hop: we include all instances that
are within τ sim of a hop-2 instance; see definition
of ψ: Figure 2, Eq. 7. In summary, every instance
that can be reached by three hops from a seed is
being considered at this point. A cluster of hop-2
instances is named as extractor.

High precision is achieved by imposing, on line
08, a stringent check on each instance before its
information is added to the cache. The core func-
tion of this check is given in Figure 2, Eq. 9. This
definition is a soft version of the following hard
max, which is easier to explain:

cnfpi,Λ,Gq � maxtλPΛ|iPψpλqu cnfpi, λ,Gq
We are looking for a cluster λ in Λ that li-

censes the extraction of i with high confidence.
cnfpi, λ,Gq (Figure 2, Eq. 10), the confidence of
a single cluster (i.e., extractor) λ for an instance,
is defined as the product of the overall reliability of
λ (which is independent of i) and the similarity of
i to λ, the second factor in Eq. 10, i.e., simpi, λq.
This factor simpi, λq prevents an extraction by a
cluster whose members are all distant from the in-
stance – even if the cluster itself is highly reliable.
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Algorithm: BREX

01 INPUT: γ, Gseed

02 Gyield :� Gseed

03 for kit iterations:
04 Gcache :� H
05 Θ :�

�
pti P γ|matchpi,Gyieldqq

06 Λ :� tµpθ,Θq|θ P Θu
07 for each i P

�
λPΛ ψpλq:

08 if checkpi,Λ,Gyieldq :
09 addpi,Gcacheq
10 GyieldY� Gcache

11 OUTPUT: Gyield, Λ

simpi, λq � maxi1Pλsimpi, i1q (5)

simpi,Gq � maxtPGsimpi, tq (6)

ψpλq � ti P γ|simpi, λq ¥ τ simu (7)

µpθ,Θq � ti P γ|simpi, θq � d^

d � max
θPΘ

simpi, θq ¥ τ simu (8)

cnfpi,Λ,Gq � 1�
¹

tλPΛ|iPψpλqu

p1�cnfpi, λ,Gqq (9)

cnfpi, λ,Gq � cnfpλ,Gqsimpi, λq (10)

cnfpλ,Gq �
1

1� wn
N�pλ,Gnq
N�pλ,Gpq � wu

N0pλ,Gq
N�pλ,Gpq

(11)

N0pλ,Gq � |ti P λ|xpiq R pGp YGnqu| (12)

Figure 2: BREX algorithm (left) and definition of key concepts (right)

BREE BRET BREJ
Seed Type Entity pairs Templates Joint (Entity pairs + Templates)

(i) N�pλ,Glq |tiPλ|xpiqPGlu| |tiPλ|simpi,Glq¥τsimu| |tiPλ|xpiqPGlu|�|tiPλ|simpi,Glq¥τsimu|

(ii)pwn, wuq p1.0, 0.0q p1.0, 0.0q p1.0, 0.0q

05 matchpi,Gq xpiq P Gp simpi,Gpq¥τsim xpiq P Gp _ simpi,Gpq¥τsim

08 checkpi,Λ,Gq cnfpi,Λ,Gq¥τcnf cnfpi,Λ,Gq¥τcnf cnfpi,Λ,Gq¥τcnf ^ simpi,Gpq¥τsim

09 addpi,Gq GpY� txpiqu GpY� txpiqu GpY� txpiqu, GpY� txpiqu

Figure 3: BREX configurations

The first factor in Eq. 10, i.e., cnfpλ,Gq, as-
sesses the reliability of a cluster λ: we compute
the ratio N�pλ,Gnq

N�pλ,Gpq , i.e., the ratio between the num-
ber of instances in λ that match a negative and pos-
itive gold seed, respectively; see Figure 3, line (i).
If this ratio is close to zero, then likely false pos-
itive extractions are few compared to likely true
positive extractions. For the simple version of the
algorithm (for which we set wn � 1, wu � 0),
this results in cnfpλ,Gq being close to 1 and the
reliability measure it not discounted. On the other
hand, if N�pλ,Gnq

N�pλ,Gpq is larger, meaning that the rela-
tive number of likely false positive extractions is
high, then cnfpλ,Gq shrinks towards 0, resulting
in progressive discounting of cnfpλ,Gq and lead-
ing to non-noisy-low-confidence extractor, partic-
ularly for a reliable λ. Due to lack of labeled
data, the scoring mechanism cannot distinguish
between noisy and non-noisy extractors. There-
fore, an extractor is judged by its ability to extract
more positive and less negative extractions. Note
that we carefully designed this precision compo-
nent to give good assessments while at the same

time making maximum use of the available seeds.
The reliability statistics are computed on λ, i.e.,
on hop-2 instances (not on hop-3 instances). The
ratio N�pλ,Gnq

N�pλ,Gpq is computed on instances that di-
rectly match a gold seed – this is the most reliable
information we have available.

After all instances have been checked (line 08)
and (if they passed muster) added to the cache
(line 09), the inner loop ends and the cache is
merged into the yield (line 10). Then a new loop
(lines 03–10) of hop-1, hop-2 and hop-3 exten-
sions and cluster reliability tests starts.

Thus, the algorithm consists of kit iterations.
There is a tradeoff here between τ sim and kit. We
will give two extreme examples, assuming that
we want to extract a fixed number of m instances
where m is given. We can achieve this goal either
by setting kit=1 and choosing a small τ sim, which
will result in very large hops. Or we can achieve
this goal by setting τ sim to a large value and run-
ning the algorithm for a larger number of kit. The
flexibility that the two hyperparameters kit and τ sim

afford is important for good performance.

29



simmatchpi, jq �
°

pPt�1,0,1u wp~vppiq~vppjq ; simasym
cc pi, jq � maxpPt�1,0,1u ~vppiq~v0pjq (13)

simsym1
cc pi, jq � max

�
maxpPt�1,0,1u ~vppiq~v0pjq,maxpPt� 1,0,1u ~vppjq~v0piq

�
(14)

simsym2
cc pi, jq � max

��
~v�1piq � ~v1piq

�
~v0pjq,

�
~v�1pjq � ~v1pjq

�
~v0piq, ~v0piq~v0pjq

	
(15)

Figure 4: Similarity measures. These definitions for instances equally apply to templates since the definitions only
depend on the “template part” of an instance, i.e., its vectors. (value is 0 if types are different)
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Figure 5: Illustration of Scaling-up Positive Instances.
i: an instance in extractor, λ. Y: YES and N: NO

2.3 BREE, BRET and BREJ

The main contribution of this paper is that we
propose, as an alternative to entity-pair-centered
BREE (Batista et al., 2015), template-centered
BRET as well as BREJ (Figure 1), an instantiation
of BREX that can take advantage of both entity
pairs and templates. The differences and advan-
tages of BREJ over BREE and BRET are:

(1) Disjunctive Matching of Instances: The
first difference is realized in how the three algo-
rithms match instances with seeds (line 05 in Fig-
ure 3). BREE checks whether the entity pair of
an instance is one of the entity pair seeds, BRET
checks whether the template of an instance is one
of the template seeds and BREJ checks whether
the disjunction of the two is true. The disjunc-
tion facilitates a higher hit rate in matching in-
stances with seeds. The introduction of a few
handcrafted templates along with seed entity pairs
allows BREJ to leverage discriminative patterns
and learn similar ones via distributional semantics.
In Figure 1, the joint approach results in hybrid
extractors Λ that contain instances due to seed oc-
currences Θ of both entity pairs and templates.

(2) Hybrid Augmentation of Seeds: On line
09 in Figure 3, we see that the bootstrapping step is
defined in a straightforward fashion: the entity pair
of an instance is added for BREE, the template for
BRET and both for BREJ. Figure 1 demonstrates

I1: ’s purchase of

I2: ’s acquisition of

I1: ’s purchase of

             (BREE)

I1: ’s purchase of

I2: ’s acquisition of

(BRET)                      (BREJ)

Seed Entity Pair:          = {<Google, DoubleClick>}

Seed Templates:            = {[X] ’s acquisition of [Y]}

Matched Instances:
       I1: <Google> 's purchase of <DoubleClick> is intriguing. 
       I2: <Google> 's acquisition of <DoubleClick> is approved.
       I3: <Dynegy> 's purchase of <Enron> triggered a clause. 
       I4: <Google> 's acquisition of <YouTube> was in its final stages.

Generate Extractor

     Positive: {I1, I2}

    Negative: {I3, I4}

Positive: {I1, I2, I3, I4} Positive: {I1, I2, I1, I2, I3, I4}

Negative: {I3, I4}

I2: ’s acquisition of

I3: ’s purchase of

I4: ’s acquisition of

I1: ’s purchase of

I2: ’s acquisition of

I3: ’s purchase of

I4: ’s acquisition of

                      = {<Google, Microsoft>}

        = {[X] competitor of [Y]}

: { }  : {I1, I2, I3, I4} : {I1, I2, I3, I4}

Output Instances

Match Seeds in Instances

2
=

2
4

=
0

2+4
=

2+0

 = 0.5  = 1.0  = 0.75

Figure 6: An illustration of scaling positive extractions
and computing confidence for a non-noisy extractor
generated for acquired relation. The dashed rectangu-
lar box represents an extractor λ, where λ (BREJ) is
hybrid with 6 instances. Text segments matched with
seed template are shown in italics. Unknowns (bold in
black) are considered as negatives. Gcache is a set of
output instances where τcnf � 0.70.

the hybrid augmentation of seeds via red and blue
rings of output instances.

(3) Scaling Up Positives in Extractors: As dis-
cussed in section 2.2, a good measure of the qual-
ity of an extractor is crucial and N�, the number
of instances in an extractor λ that match a seed,
is an important component of that. For BREE and
BRET, the definition follows directly from the fact
that these are entity-pair and template-centered in-
stantiations of BREX, respectively. However, the
disjunctive matching of instances for an extrac-
tor with entity pair and template seeds in BREJ
(Figure 3 line “(i)” ) boosts the likelihood of find-
ing positive instances. In Figure 5, we demon-
strate computing the count of positive instances
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Relationship Seed Entity Pairs Seed Templates

acquired
{Adidas;Reebok},{Google;DoubleClick},

{Widnes;Warrington},{Hewlett-Packard;Compaq}
{[X] acquire [Y]},{[X] acquisition [Y]},{[X] buy [Y]},

{[X] takeover [Y]},{[X] merger with [Y]}

founder-of
{CNN;Ted Turner},{Facebook;Mark Zuckerberg},
{Microsoft;Paul Allen},{Amazon;Jeff Bezos},

{[X] founded by [Y]},{[X] co-founder [Y]},{[X] started by [Y]},
{[X] founder of [Y]},{[X] owner of [Y]}

headquartered
{Nokia;Espoo},{Pfizer;New York},

{United Nations;New York},{NATO;Brussels},
{[X] based in [Y]},{[X] headquarters in [Y]},{[X] head office in [Y]},
{[X] main office building in [Y]},{[X] campus branch in [Y]}

affiliation
{Google;Marissa Mayer},{Xerox;Ursula Burns},
{Microsoft;Steve Ballmer},{Microsoft;Bill Gates},

{[X] CEO [Y]},{[X] resign from [Y]},{[X] founded by [Y]},
{[X] worked for [Y]},{[X] chairman director [Y]}

Table 2: Seed Entity Pairs and Templates for each relation. [X] and [Y] are slots for entity type tags.

N�pλ,Gq for an extractor λ within the three sys-
tems. Observe that an instance i in λ can scale its
N�pλ,Gq by a factor of maximum 2 in BREJ if i
is matched in both entity pair and template seeds.
The reliability cnfpλ,Gq (Eq. 11) of an extractor λ
is based on the ratio N�pλ,Gnq

N�pλ,Gpq , therefore suggest-
ing that the scaling boosts its confidence.

In Figure 6, we demonstrate with an example
how the joint bootstrapping scales up the positive
instances for a non-noisy extractor λ, resulting in
λNNHC for BREJ compared to λNNLC in BREE.

Due to unlabeled data, the instances not match-
ing in seeds are considered either to be ig-
nored/unknown N0 or negatives in the confidence
measure (Eq. 11). The former leads to high con-
fidences for noisy extractors by assigning high
scores, the latter to low confidences for non-noisy
extractors by penalizing them. For a simple ver-
sion of the algorithm in the illustration, we con-
sider them as negatives and set wn � 1. Figure 6
shows the three extractors (λ) generated and their
confidence scores in BREE, BRET and BREJ. Ob-
serve that the scaling up of positives in BREJ
due to BRET extractions (without wn) discounts
cnfpλ,Gq relatively lower than BREE. The dis-
counting results in λNNHC in BREJ and λNNLC
in BREE. The discounting in BREJ is adapted for
non-noisy extractors facilitated by BRET in gener-
ating mostly non-noisy extractors due to stringent
checks (Figure 3, line “(i)” and 05). Intuitively,
the intermixing of non-noisy extractors (i.e., hy-
brid) promotes the scaling and boosts recall.

2.4 Similarity Measures

The before (~v�1) and after (~v1) contexts around
the entities are highly sparse due to large varia-
tion in the syntax of how relations are expressed.
SnowBall, DIPRE and BREE assumed that the
between (~v0) context mostly defines the syntac-
tic expression for a relation and used weighted
mechanism on the three contextual similarities in

ORG-ORG ORG-PER ORG-LOC
count 58,500 75,600 95,900

Table 3: Count of entity-type pairs in corpus

Parameter Description/ Search Optimal
|v�1| maximum number of tokens in before context 2
|v0| maximum number of tokens in between context 6
|v1| maximum number of tokens in after context 2
τsim similarity threshold [0.6, 0.7, 0.8] 0.7
τcnf instance confidence thresholds [0.6, 0.7, 0.8] 0.7
wn weights to negative extractions [0.0, 0.5, 1.0, 2.0] 0.5
wu weights to unknown extractions [0.0001, 0.00001] 0.0001
kit number of bootstrapping epochs 3

dimemb dimension of embedding vector, V 300
PMI PMI threshold in evaluation 0.5

Entity Pairs Ordered Pairs (OP ) or Bisets (BS) OP

Table 4: Hyperparameters in BREE, BRET and BREJ

pairs, simmatch (Figure 4). They assigned higher
weights to the similarity in between (p � 0) con-
texts, that resulted in lower recall. We introduce
attentive (max) similarity across all contexts (for
example, ~v�1piq~v0pjq) to automatically capture
the large variation in the syntax of how relations
are expressed, without using any weights. We in-
vestigate asymmetric (Eq 13) and symmetric (Eq
14 and 15) similarity measures, and name them as
cross-context attentive (simcc) similarity.

3 Evaluation

3.1 Dataset and Experimental Setup
We re-run BREE (Batista et al., 2015) for base-
line with a set of 5.5 million news articles from
AFP and APW (Parker et al., 2011). We use pro-
cessed dataset of 1.2 million sentences (released
by BREE) containing at least two entities linked to
FreebaseEasy (Bast et al., 2014). We extract four
relationships: acquired (ORG-ORG), founder-
of (ORG-PER), headquartered (ORG-LOC) and
affiliation (ORG-PER) for Organization (ORG),
Person (PER) and Location (LOC) entity types.
We bootstrap relations in BREE, BRET and BREJ,
each with 4 similarity measures using seed entity
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Relationships #out P R F1 #out P R F1 #out P R F1 #out P R F1

B
R

E
E

baseline: BREE+simmatch config2: BREE+simasym
cc config3: BREE+simsym1

cc config4: BREE+simsym2
cc

acquired 2687 0.88 0.48 0.62 5771 0.88 0.66 0.76 3471 0.88 0.55 0.68 3279 0.88 0.53 0.66

founder-of 628 0.98 0.70 0.82 9553 0.86 0.95 0.89 1532 0.94 0.84 0.89 1182 0.95 0.81 0.87

headquartered 16786 0.62 0.80 0.69 21299 0.66 0.85 0.74 17301 0.70 0.83 0.76 9842 0.72 0.74 0.73

affiliation 20948 0.99 0.73 0.84 27424 0.97 0.78 0.87 36797 0.95 0.82 0.88 28416 0.97 0.78 0.87

avg 10262 0.86 0.68 0.74 16011 0.84 0.81 0.82 14475 0.87 0.76 0.80 10680 0.88 0.72 0.78

B
R

E
T

config5: BRET+simmatch config6: BRET+simasym
cc config7: BRET+simsym1

cc config8: BRET+simsym2
cc

acquired 4206 0.99 0.62 0.76 15666 0.90 0.85 0.87 18273 0.87 0.86 0.87 14319 0.92 0.84 0.87

founder-of 920 0.97 0.77 0.86 43554 0.81 0.98 0.89 41978 0.81 0.99 0.89 46453 0.81 0.99 0.89

headquartered 3065 0.98 0.55 0.72 39267 0.68 0.92 0.78 36374 0.71 0.91 0.80 56815 0.69 0.94 0.80

affiliation 20726 0.99 0.73 0.85 28822 0.99 0.79 0.88 44946 0.96 0.85 0.90 33938 0.97 0.81 0.89

avg 7229 0.98 0.67 0.80 31827 0.85 0.89 0.86 35393 0.84 0.90 0.86 37881 0.85 0.90 0.86

B
R

E
J

config9: BREJ+simmatch config10: BREJ+simasym
cc config11: BREJ+simsym1

cc config12: BREJ+simsym2
cc

acquired 20186 0.82 0.87 0.84 35553 0.80 0.92 0.86 22975 0.86 0.89 0.87 22808 0.85 0.90 0.88
founder-of 45005 0.81 0.99 0.89 57710 0.81 1.00 0.90 50237 0.81 0.99 0.89 45374 0.82 0.99 0.90

headquartered 47010 0.64 0.93 0.76 66563 0.68 0.96 0.80 60495 0.68 0.94 0.79 57853 0.68 0.94 0.79

affiliation 40959 0.96 0.84 0.89 57301 0.94 0.88 0.91 55811 0.94 0.87 0.91 51638 0.94 0.87 0.90

avg 38290 0.81 0.91 0.85 54282 0.81 0.94 0.87 47380 0.82 0.92 0.87 44418 0.82 0.93 0.87

Table 5: Precision (P ), Recall (R) and F1 compared to the state-of-the-art (baseline). #out: count of output in-
stances with cnfpi,Λ,Gq ¥ 0.5. avg: average. Bold and underline: Maximum due to BREJ and simcc, respectively.

pairs and templates (Table 2). See Tables 3, 4 and
5 for the count of candidates, hyperparameters and
different configurations, respectively.

Our evaluation is based on Bronzi et al. (2012)’s
framework to estimate precision and recall of
large-scale RE systems using FreebaseEasy (Bast
et al., 2014). Also following Bronzi et al. (2012),
we use Pointwise Mutual Information (PMI) (Tur-
ney, 2001) to evaluate our system automatically,
in addition to relying on an external knowledge
base. We consider only extracted relationship in-
stances with confidence scores cnfpi,Λ,Gq equal
or above 0.5. We follow the same approach as
BREE (Batista et al., 2015) to detect the correct or-
der of entities in a relational triple, where we try to
identify the presence of passive voice using part-
of-speech (POS) tags and considering any form of
the verb to be, followed by a verb in the past tense
or past participle, and ending in the word ‘by’. We
use GloVe (Pennington et al., 2014) embeddings.

3.2 Results and Comparison with baseline

Table 5 shows the experimental results in the
three systems for the different relationships with
ordered entity pairs and similarity measures
(simmatch, simcc). Observe that BRET (config5)
is precision-oriented while BREJ (config9) recall-
oriented when compared to BREE (baseline). We
see the number of output instances #out are also
higher in BREJ, therefore the higher recall. The
BREJ system in the different similarity configura-

τ kit #out P R F1

0.6
1 691 0.99 0.21 0.35
2 11288 0.85 0.79 0.81

0.7
1 610 1.0 0.19 0.32
2 7948 0.93 0.75 0.83

0.8
1 522 1.0 0.17 0.29
2 2969 0.90 0.51 0.65

Table 6: Iterations (kit) Vs Scores with thresholds (τ )
for relation acquired in BREJ. τ refers to τsim and τcnf

τ #out P R F1 τ #out P R F1

B
R

E
E .60 1785 .91 .39 .55 .70 1222 .94 .31 .47

.80 868 .95 .25 .39 .90 626 .96 .19 .32

B
R

E
T .60 2995 .89 .51 .65 .70 1859 .90 .40 .55

.80 1312 .91 .32 .47 .90 752 .94 .22 .35

B
R

E
J .60 18271 .81 .85 .83 .70 14900 .84 .83 .83

.80 8896 .88 .75 .81 .90 5158 .93 .65 .77

Table 7: Comparative analysis using different thresh-
olds τ to evaluate the extracted instances for acquired

tions outperforms the baseline BREE and BRET in
terms of F1 score. On an average for the four rela-
tions, BREJ in configurations config9 and config10
results in F1 that is 0.11 (0.85 vs 0.74) and 0.13
(0.87 vs 0.74) better than the baseline BREE.

We discover that simcc improves #out and re-
call over simmatch correspondingly in all three sys-
tems. Observe that simcc performs better with
BRET than BREE due to non-noisy extractors in
BRET. The results suggest an alternative to the
weighting scheme in simmatch and therefore, the
state-of-the-art (simcc) performance with the 3 pa-
rameters (w�1, w0 and w1) ignored in bootstrap-
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acquired founder-of headquartered affiliation
BREX E T J E T J E T J E T J
#hit 71 682 743 135 956 1042 715 3447 4023 603 14888 15052

Table 8: Disjunctive matching of Instances. #hit: the
count of instances matched to positive seeds in kit � 1

Attributes |Λ| AIE AES ANE ANNE ANNLC AP AN ANP

ac
qu

ir
ed

BREE 167 12.7 0.51 0.84 0.16 0.14 37.7 93.1 2.46

BRET 17 305.2 1.00 0.11 0.89 0.00 671.8 0.12 0.00

BREJ 555 41.6 0.74 0.71 0.29 0.03 313.2 44.8 0.14

fo
un

de
r-

of BREE 8 13.3 0.46 0.75 0.25 0.12 44.9 600.5 13.37

BRET 5 179.0 1.00 0.00 1.00 0.00 372.2 0.0 0.00

BREJ 492 109.1 0.90 0.94 0.06 0.00 451.8 79.5 0.18

he
ad

qu
ar

te
re

d

BREE 655 18.4 0.60 0.97 0.03 0.02 46.3 82.7 1.78

BRET 7 365.7 1.00 0.00 1.00 0.00 848.6 0.0 0.00

BREJ 1311 45.5 0.80 0.98 0.02 0.00 324.1 77.5 0.24

af
fil

ia
tio

n BREE 198 99.7 0.55 0.25 0.75 0.34 240.5 152.2 0.63

BRET 19 846.9 1.00 0.00 1.00 0.00 2137.0 0.0 0.00

BREJ 470 130.2 0.72 0.21 0.79 0.06 567.6 122.7 0.22

Table 9: Analyzing the attributes of extractors Λ
learned for each relationship. Attributes are: number of
extractors (|Λ|), avg number of instances in Λ (AIE),
avg Λ score (AES), avg number of noisy Λ (ANE),
avg number of non-noisy Λ (ANNE), avg number of
ΛNNLC below confidence 0.5 (ANNLC), avg number
of positives (AP) and negatives (AN), ratio of AN to
AP (ANP). The bold indicates comparison of BREE
and BREJ with simmatch. avg: average

ping. Observe that simasym
cc gives higher recall

than the two symmetric similarity measures.
Table 6 shows the performance of BREJ in dif-

ferent iterations trained with different similarity
τsim and confidence τcnf thresholds. Table 7
shows a comparative analysis of the three systems,
where we consider and evaluate the extracted rela-
tionship instances at different confidence scores.

3.3 Disjunctive Seed Matching of Instances

As discussed in section 2.3, BREJ facilitates dis-
junctive matching of instances (line 05 Figure 3)
with seed entity pairs and templates. Table 8
shows #hit in the three systems, where the higher
values of #hit in BREJ conform to the desired
property. Observe that some instances in BREJ
are found to be matched in both the seed types.

3.4 Deep Dive into Attributes of Extractors

We analyze the extractors Λ generated in BREE,
BRET and BREJ for the 4 relations to demon-
strate the impact of joint bootstrapping. Table 9
shows the attributes of Λ. We manually annotate
the extractors as noisy and non-noisy. We compute
ANNLC and the lower values in BREJ compared
to BREE suggest fewer non-noisy extractors with
lower confidence in BREJ due to the scaled confi-

Relationships #out P R F1

B
R

E
E

acquired 387 0.99 0.13 0.23
founder-of 28 0.96 0.09 0.17

headquartered 672 0.95 0.21 0.34
affiliation 17516 0.99 0.68 0.80

avg 4651 0.97 0.28 0.39

B
R

E
T

acquired 4031 1.00 0.61 0.76
founder-of 920 0.97 0.77 0.86

headquartered 3522 0.98 0.59 0.73
affiliation 22062 0.99 0.74 0.85

avg 7634 0.99 0.68 0.80

B
R

E
J

acquired 12278 0.87 0.81 0.84
founder-of 23727 0.80 0.99 0.89

headquartered 38737 0.61 0.91 0.73
affiliation 33203 0.98 0.81 0.89

avg 26986 0.82 0.88 0.84

Table 10: BREX+simmatch:Scores when wn ignored

dence scores. ANNE (higher), ANNLC (lower), AP
(higher) and AN (lower) collectively indicate that
BRET mostly generates NNHC extractors. AP and
AN indicate an average of N�pλ,Glq (line “ (i)”
Figure 3) for positive and negative seeds, respec-
tively for λ P Λ in the three systems. Observe
the impact of scaling positive extractions (AP) in
BREJ that shrink N�pλ,Gnq

N�pλ,Gpq i.e., ANP. It facili-
tates λNNLC to boost its confidence, i.e., λNNHC
in BREJ suggested by AES that results in higher
#out and recall (Table 5, BREJ).

3.5 Weighting Negatives Vs Scaling Positives
As discussed, Table 5 shows the performance
of BREE, BRET and BREJ with the parameter
wn � 0.5 in computing extractors’ confidence
cnfpλ,Gq(Eq. 11). In other words, config9 (Ta-
ble 5) is combination of both weighted negative
and scaled positive extractions. However, we also
investigate ignoringwnp� 1.0q in order to demon-
strate the capability of BREJ with only scaling
positives and without weighting negatives. In
Table 10, observe that BREJ outperformed both
BREE and BRET for all the relationships due to
higher #out and recall. In addition, BREJ scores
are comparable to config9 (Table 5) suggesting
that the scaling in BREJ is capable enough to re-
move the parameter wn. However, the combina-
tion of both weighting negatives and scaling posi-
tives results in the state-of-the-art performance.

3.6 Qualitative Inspection of Extractors
Table 11 lists some of the non-noisy extrac-
tors (simplified) learned in different configura-
tions to illustrate boosting extractor confidence
cnfpλ,Gq. Since, an extractor λ is a cluster of
instances, therefore to simplify, we show one in-
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config1: BREE + simmatch cnfpλ,Gq config5: BRET + simmatch cnfpλ,Gq config9: BREJ + simmatch cnfpλ,Gq config10: BREJ + simasym
cc cnfpλ,Gq

acquired
[X] acquired [Y] 0.98 [X] acquired [Y] 1.00 [X] acquired [Y] 1.00 acquired by [X] , [Y] : 0.93

[X] takeover of [Y] 0.89 [X] takeover of [Y] 1.00 [X] takeover of [Y] 0.98 takeover of [X] would boost [Y] ’s earnings : 0.90
[X] ’s planned acquisition of [Y] 0.87 [X] ’s planned acquisition of[Y] 1.00 [X] ’s planned acquisition of [Y] 0.98 acquisition of [X] by [Y] : 0.95

[X] acquiring [Y] 0.75 [X] acquiring [Y] 1.00 [X] acquiring [Y] 0.95 [X] acquiring [Y] 0.95
[X] has owned part of [Y] 0.67 [X] has owned part of [Y] 1.00 [X] has owned part of [Y] 0.88 owned by [X] ’s parent [Y] 0.90

[X] took control of [Y] 0.49 [X] ’s ownership of [Y] 1.00 [X] took control of [Y] 0.91 [X] takes control of [Y] 1.00
[X] ’s acquisition of [Y] 0.35 [X] ’s acquisition of [Y] 1.00 [X] ’s acquisition of [Y] 0.95 acquisition of [X] would reduce [Y] ’s share : 0.90
[X] ’s merger with [Y] 0.35 [X] ’s merger with[Y] 1.00 [X] ’s merger with [Y] 0.94 [X] - [Y] merger between : 0.84

[X] ’s bid for [Y] 0.35 [X] ’s bid for [Y] 1.00 [X] ’s bid for [Y] 0.97 part of [X] which [Y] acquired : 0.83

founder-of
[X] founder [Y] 0.68 [X] founder [Y] 1.00 [X] founder [Y] 0.99 founder of [X] , [Y] : 0.97

[X] CEO and founder [Y] 0.15 [X] CEO and founder [Y] 1.00 [X] CEO and founder [Y] 0.99 co-founder of [X] ’s millennial center , [Y] : 0.94
[X] ’s co-founder [Y] 0.09 [X] owner [Y] 1.00 [X] owner [Y] 1.00 owned by [X] cofounder [Y] 0.95

[X] cofounder [Y] 1.00 [X] cofounder [Y] 1.00 Gates co-founded [X] with school friend [Y] : 0.99
[X] started by [Y] 1.00 [X] started by [Y] 1.00 who co-founded [X] with [Y] : 0.95

[X] was founded by [Y] 1.00 [X] was founded by [Y] 0.99 to co-found [X] with partner [Y] : 0.68
[X] begun by [Y] 1.00 [X] begun by [Y] 1.00 [X] was started by [Y] , cofounder 0.98

[X] has established [Y] 1.00 [X] has established [Y] 0.99 set up [X] with childhood friend [Y] : 0.96
[X] chief executive and founder [Y] 1.00 [X] co-founder and billionaire [Y] � 0.99 [X] co-founder and billionaire [Y] 0.97

headquartered
[X] headquarters in [Y] 0.95 [X] headquarters in [Y] 1.00 [X] headquarters in [Y] 0.98 [X] headquarters in [Y] 0.98

[X] relocated its headquarters from [Y] 0.94 [X] relocated its headquarters from [Y] 1.00 [X] relocated its headquarters from [Y] 0.98 based at [X] ’s suburban [Y] headquarters : 0.98
[X] head office in [Y] 0.84 [X] head office in [Y] 1.00 [X] head office in [Y] 0.87 head of [X] ’s operations in [Y] : 0.65

[X] based in [Y] 0.75 [X] based in [Y] 1.00 [X] based in [Y] 0.98 branch of [X] company based in [Y] 0.98
[X] headquarters building in [Y] 0.67 [X] headquarters building in [Y] 1.00 [X] headquarters building in [Y] 0.94 [X] main campus in [Y] 0.99

[X] headquarters in downtown [Y] 0.64 [X] headquarters in downtown [Y] 1.00 [X] headquarters in downtown [Y] 0.94 [X] headquarters in downtown [Y] 0.96
[X] branch offices in [Y] 0.54 [X] branch offices in [Y] 1.00 [X] branch offices in [Y] 0.98 [X] ’s [Y] headquarters represented : 0.98

[X] ’s corporate campus in [Y] 0.51 [X] ’s corporate campus in [Y] 1.00 [X] ’s corporate campus in [Y] 0.99 [X] main campus in [Y] 0.99
[X] ’s corporate office in [Y] 0.51 [X] ’s corporate office in [Y] 1.00 [X] ’s corporate office in [Y] 0.89 [X] , [Y] ’s corporate : 0.94

affiliation
[X] chief executive [Y] 0.92 [X] chief executive [Y] 1.00 [X] chief executive [Y] 0.97 [X] chief executive [Y] resigned monday 0.94

[X] secretary [Y] 0.88 [X] secretary [Y] 1.00 [X] secretary [Y] 0.94 worked with [X] manager [Y] 0.85
[X] president [Y] 0.87 [X] president [Y] 1.00 [X] president [Y] 0.96 [X] voted to retain [Y] as CEO : 0.98

[X] leader [Y] 0.72 [X] leader [Y] 1.00 [X] leader [Y] 0.85 head of [X] , [Y] : 0.99
[X] party leader [Y] 0.67 [X] party leader [Y] 1.00 [X] party leader [Y] 0.87 working with [X] , [Y] suggested : 1.00

[X] has appointed [Y] 0.63 [X] executive editor [Y] 1.00 [X] has appointed [Y] 0.81 [X] president [Y] was fired 0.90
[X] player [Y] 0.38 [X] player [Y] 1.00 [X] player [Y] 0.89 [X] ’s [Y] was fired : 0.43

[X] ’s secretary-general [Y] 0.36 [X] ’s secretary-general [Y] 1.00 [X] ’s secretary-general [Y] 0.93 Chairman of [X] , [Y] : 0.88
[X] hired [Y] 0.21 [X] director [Y] 1.00 [X] hired [Y] 0.56 [X] hired [Y] as manager : 0.85

Table 11: Subset of the non-noisy extractors (simplified) with their confidence scores cnfpλ,Gq learned in different
configurations for each relation. � denotes that the extractor was never learned in config1 and config5. : indicates
that the extractor was never learned in config1, config5 and config9. [X] and [Y] indicate placeholders for entities.

stance (mostly populated) from every λ. Each cell
in Table 11 represents either a simplified represen-
tation of λ or its confidence. We demonstrate how
the confidence score of a non-noisy extractor in
BREE (config1) is increased in BREJ (config9 and
config10). For instance, for the relation acquired,
an extractor {[X] acquiring [Y]} is generated by
BREE, BRET and BREJ; however, its confidence
is boosted from 0.75 in BREE (config1) to 0.95
in BREJ (config9). Observe that BRET generates
high confidence extractors. We also show extrac-
tors (marked by :) learned by BREJ with simcc

(config10) but not by config1, config5 and config9.

3.7 Entity Pairs: Ordered Vs Bi-Set

In Table 5, we use ordered pairs of typed entities.
Additionally, we also investigate using entity sets
and observe improved recall due to higher #out
in both BREE and BREJ, comparing correspond-
ingly Table 12 and 5 (baseline and config9).

4 Conclusion

We have proposed a Joint Bootstrapping Machine
for relation extraction (BREJ) that takes advantage

Relationships
BREE + simmatch BREJ + simmatch

#out P R F1 #out P R F1

acquired 2786 .90 .50 .64 21733 .80 .87 .83
founder-of 543 1.0 .67 .80 31890 .80 .99 .89

headquartered 16832 .62 .81 .70 52286 .64 .94 .76
affiliation 21812 .99 .74 .85 42601 .96 .85 .90

avg 10493 .88 .68 .75 37127 .80 .91 .85

Table 12: BREX+simmatch:Scores with entity bisets

of both entity-pair-centered and template-centered
approaches. We have demonstrated that the joint
approach scales up positive instances that boosts
the confidence of NNLC extractors and improves
recall. The experiments showed that the cross-
context similarity measures improved recall and
suggest removing in total four parameters.
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Abstract

What makes some types of languages more
probable than others? For instance, we know
that almost all spoken languages contain the
vowel phoneme /i/; why should that be? The
field of linguistic typology seeks to answer
these questions and, thereby, divine the mech-
anisms that underlie human language. In our
work, we tackle the problem of vowel system
typology, i.e., we propose a generative proba-
bility model of which vowels a language con-
tains. In contrast to previous work, we work di-
rectly with the acoustic information—the first
two formant values—rather than modeling dis-
crete sets of phonemic symbols (IPA). We de-
velop a novel generative probability model and
report results based on a corpus of 233 lan-
guages.

1 Introduction

Human languages are far from arbitrary; cross-
linguistically, they exhibit surprising similarity in
many respects and many properties appear to be
universally true. The field of linguistic typology
seeks to investigate, describe and quantify the axes
along which languages vary. One facet of language
that has been the subject of heavy investigation is
the nature of vowel inventories, i.e., which vowels
a language contains. It is a cross-linguistic univer-
sal that all spoken languages have vowels (Gordon,
2016), and the underlying principles guiding vowel
selection are understood: vowels must be both
easily recognizable and well-dispersed (Schwartz
et al., 2005). In this work, we offer a more formal
treatment of the subject, deriving a generative prob-
ability model of vowel inventory typology. Our
work builds on (Cotterell and Eisner, 2017) by in-
vestigating not just discrete IPA inventories but the
cross-linguistic variation in acoustic formants.

The philosophy behind our approach is that lin-
guistic typology should be treated probabilistically

and its goal should be the construction of a univer-
sal prior over potential languages. A probabilistic
approach does not rule out linguistic systems com-
pletely (as long as one’s theoretical formalism can
describe them at all), but it can position phenomena
on a scale from very common to very improbable.
Probabilistic modeling also provides a discipline
for drawing conclusions from sparse data. While
we know of over 7000 human languages, we have
some sort of linguistic analysis for only 2300 of
them (Comrie et al., 2013), and the dataset used in
this paper (Becker-Kristal, 2010) provides simple
vowel data for fewer than 250 languages.

Formants are the resonant frequencies of the hu-
man vocal tract during the production of speech
sounds. We propose a Bayesian generative model
of vowel inventories, where each language’s inven-
tory is a finite subset of acoustic vowels represented
as points (F1, F2) ∈ R2. We deploy tools from the
neural-network and point-process literatures and
experiment on a dataset with 233 distinct languages.
We show that our most complicated model outper-
forms simpler models.

2 Acoustic Phonetics and Formants

Much of human communication takes place
through speech: one conversant emits a sound wave
to be comprehended by a second. In this work, we
consider the nature of the portions of such sound
waves that correspond to vowels. We briefly review
the relevant bits of acoustic phonetics so as to give
an overview of the data we are actually modeling
and develop our notation.

The anatomy of a sound wave. The sound wave
that carries spoken language is a function from
time to amplitude, describing sound pressure vari-
ation in the air. To distinguish vowels, it is help-
ful to transform this function into a spectrogram
(Fig. 1) by using a short-time Fourier transform
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Figure 1: Example spectrogram of the three English vowels:
/i/, /u/ and /A/. The x-axis is time and y-axis is frequency. The
first two formants F1 and F2 are marked in with arrows for
each vowel. The figure was made with Praat (Boersma et al.,
2002).

(Deng and O’Shaughnessy, 2003, Chapter 1) to de-
compose each short interval of the wave function
into a weighted sum of sinusoidal waves of differ-
ent frequencies (measured in Hz). At each interval,
the variable darkness of the spectrogram indicates
the weights of the different frequencies. In pho-
netic analysis, a common quantity to consider is
a formant—a local maximum of the (smoothed)
frequency spectrum. The fundamental frequency
F0 determines the pitch of the sound. The formants
F1 and F2 determine the quality of the vowel.

Two is all you need (and what we left out). In
terms of vowel recognition, it is widely speculated
that humans rely almost exclusively on the first
two formants of the sound wave (Ladefoged, 2001,
Chapter 5). The two-formant assumption breaks
down in edge cases: e.g., the third formant F3

helps to distinguish the roundness of the vowel
(Ladefoged, 2001, Chapter 5). Other non-formant
features may also play a role. For example, in
tonal languages, the same vowel may be realized
with different tones (which are signaled using F0):
Mandarin Chinese makes a distinction between mǎ
(horse) and má (hemp) without modifying the qual-
ity of the vowel /a/. Other features, such as creaky
voice, can play a role in distinguishing phonemes.
We do not explicitly model any of these aspects of
vowel space, limiting ourselves to (F1, F2) as in
previous work (Liljencrants and Lindblom, 1972).
However, it would be easy to extend all the models
we will propose here to incorporate such informa-
tion, given appropriate datasets.

3 The Phonology of Vowel Systems

The vowel inventories of the world’s languages
display clear structure and appear to obey several
underlying principles. The most prevalent of these

principles are focalization and dispersion.

Focalization. The notion of focalization grew
out of quantal vowel theory (Stevens, 1989). Quan-
tal vowels are those that are phonetically “better”
than others. They tend to display certain proper-
ties, e.g., the formants tend to be closer together
(Stevens, 1987). Cross-linguistically, quantal vow-
els are the most frequently attested vowels, e.g., the
cross-linguistically common vowel /i/ is considered
quantal, but less common /y/ is not.

Dispersion. The second core principle of vowel
system organization is known as dispersion. As
the name would imply, the principle states that
the vowels in “good” vowel systems tend to be
spread out. The motivation for such a principle
is clear—a well-dispersed set of vowels reduces a
listener’s potential confusion over which vowel is
being pronounced. See Schwartz et al. (1997) for a
review of dispersion in vowel system typology and
its interaction with focalization, which has led to
the joint dispersion-focalization theory.

Notation. We will denote the universal set of
international phonetic alphabet (IPA) symbols
as V . The observed vowel inventory for lan-
guage ` has size n` and is denoted V ` =
{(v`1,v`1), . . . , (v`

n`
,v`

n`
)} ⊆ V × Rd, where for

each k ∈ [1, n`], v`k ∈ V is an IPA symbol assigned
by a linguist and v`k ∈ Rd is a vector of d measur-
able phonetic quantities. In short, the IPA symbol
v`k was assigned as a label for a phoneme with pro-
nunciation v`k. The ordering of the elements within
V ` is arbitrary.

Goals. This framework recognizes that the same
IPA symbol v (such as /u/) may represent a slightly
different sound v in one language than in another,
although they are transcribed identically. We are
specifically interested in how the vowels in a lan-
guage influence one another’s fine-grained pro-
nunciation in Rd. In general, there is no reason
to suspect that speakers of two languages, whose
phonological systems contain the same IPA symbol,
should produce that vowel with identical formants.

Data. For the remainder of the paper, we will
take d = 2 so that each v = (F1, F2) ∈ R2, the
vector consisting of the first two formant values,
as compiled from the field literature by Becker-
Kristal (2006). This dataset provides inventories
V ` in the form above. Thus, we do not consider
further variation of the vowel pronunciation that
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may occur within the language (between speakers,
between tokens of the vowel, or between earlier
and later intervals within a token).

4 Phonemes versus Phones

Previous work (Cotterell and Eisner, 2017) has
placed a distribution over discrete phonemes, ignor-
ing the variation across languages in the pronuncia-
tion of each phoneme. In this paper, we crack open
the phoneme abstraction, moving to a learned set
of finer-grained phones.

Cotterell and Eisner (2017) proposed (among
other options) using a determinantal point process
(DPP) over a universal inventory V of 53 sym-
bolic (IPA) vowels. A draw from such a DPP is
a language-specific inventory of vowel phonemes,
V ⊆ V . In this paper, we say that a language in-
stead draws its inventory from a larger set V̄ , again
using a DPP. In both cases, the reason to use a
DPP is that it prefers relatively diverse inventories
whose individual elements are relatively quantal.

While we could in principle identify V̄ with Rd,
for convenience we still take it to be a (large) dis-
crete finite set V̄ = {v̄1, . . . , v̄N}, whose elements
we call phones. V̄ is a learned cross-linguistic pa-
rameter of our model; thus, its elements—the “uni-
versal phones”—may or may not correspond to
phonetic categories traditionally used by linguists.

We presume that language ` draws from the DPP
a subset V̄ ` ⊆ V̄ , whose size we call n`. For each
universal phone v̄i that appears in this inventory V̄ `,
the language then draws an observable language-
specific pronunciation v`i ∼ N

(
µi, σ

2I
)

from a
distribution associated cross-linguistically with the
universal phone v̄i. We now have an inventory of
pronunciations.

As a final step in generating the vowel inventory,
we could model IPA labels. For each v̄i ∈ V̄ `, a
field linguist presumably draws the IPA label v`i
conditioned on all the pronunciations {v`i ∈ Rd :
v̄i ∈ V̄ `} in the inventory (and perhaps also on
their underlying phones v̄i ∈ V̄ `). This labeling
process may be complex. While each pronuncia-
tion in Rd (or each underlying phone in V̄) may
have a preference for certain IPA labels in V , the
n` labels must be drawn jointly because the lin-
guist will take care not to use the same label for
two phones, and also because the linguist may like
to describe the inventory using a small number of
distinct IPA features, which will tend to favor fac-
torial grids of symbols. The linguist’s use of IPA

features may also be informed by phonological and
phonetic processes in the language. We leave mod-
eling of this step to future work; so our current
likelihood term ignores the evidence contributed
by the IPA labels in the dataset, considering only
the pronunciations in Rd.

The overall idea is that human languages ` draw
their inventories from some universal prior, which
we are attempting to reconstruct. A caveat is that
we will train our method by maximum-likelihood,
which does not quantify our uncertainty about the
reconstructed parameters. An additional caveat is
that some languages in our dataset are related to
one another, which belies the idea that they were
drawn independently. Ideally, one ought to capture
these relationships using hierarchical or evolution-
ary modeling techniques.

5 Determinantal Point Processes

Before delving into our generative model, we
briefly review technical background used by Cot-
terell and Eisner (2017). A DPP is a probability
distribution over the subsets of a fixed ground set of
size N—in our case, the set of phones V̄ . The DPP
is usually given as an L-ensemble (Borodin and
Rains, 2005), meaning that it is parameterized by a
positive semi-definite matrix L ∈ RN×N . Given a
discrete base set V̄ of phones, the probability of a
subset V̄ ⊆ V̄ is given by

p(V̄ ) ∝ det (LV̄ ) , (1)

where LV̄ is the submatrix of L corresponding to
the rows and columns associated with the subset
V̄ ⊆ V̄ . The entry Lij , where i 6= j, has the effect
of describing the similarity between the elements
v̄i and v̄j (both in V̄)—an ingredient needed to
model dispersion. And, the entry Lii describes the
quality—focalization—of the vowel v̄i, i.e., how
much the model wants to have v̄i in a sampled set
independent of the other members.

5.1 Probability Kernel
In this work, each phone v̄i ∈ V̄ is associated with
a probability density over the space of possible pro-
nunciations R2. Our measure of phone similarity
will consider the “overlap” between the densities
associated with two phones. This works as follows:
Given two densities f(x, y) and f ′(x, y) over R2,
we define the kernel (Jebara et al., 2004) as

K(f, f ′; ρ) =

∫

x

∫

y
f(x, y)ρf ′(x, y)ρdx dy, (3)
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M∏

`=1

[
p(v`,1, . . . ,v`,n

` | µ1, . . . ,µN , N)
]
p(µ1, . . .µN | N) p(N) (2)

=
M∏

`=1

[ ∑

a`∈A(n`,N)

(
n`∏

k=1

p(v`,k | µa`k)
︸ ︷︷ ︸

4

)
p(V̄ (a`) | µ1, . . . ,µN , N)︸ ︷︷ ︸

3

]
p(µ1, . . .µN | N)︸ ︷︷ ︸

2

p(N)︸ ︷︷ ︸
1

Figure 2: Joint likelihood of M vowel systems under our deep generative probability model for continuous-space vowel
inventories. Here language ` has an observed inventory of pronunciations {v`,k : 1 ≤ k ≤ n`}, and a`k ∈ [1, N ] denotes a
phone that might be responsible for the pronunciation v`,k. Thus, a` denotes some way to jointly label all n` pronunciations
with distinct phones. We must sum over all

(
N
n`

)
such labelings a` ∈ A(n`, N) since the true labeling is not observed. In other

words, we sum over all ways a` of completing the data for language `. Within each summand, the product of factors 3 and 4 is
the probability of the completed data, i.e., the joint probability of generating the inventory V̄ (a`) of phones used in the labeling
and their associated pronunciations. Factor 3 considers the prior probability of V̄ (a`) under the DPP, and factor 4 is a likelihood
term that considers the probability of the associated pronunciations.

with inverse temperature parameter ρ.
In our setting, f, f ′ will both be Gaussian dis-

tributions with means µ and µ′ that share a fixed
spherical covariance matrix σ2I . Then eq. (3) and
indeed its generalization to any Rd has a closed-
form solution (Jebara et al., 2004, §3.1):

K(f,f ′; ρ) = (4)

(2ρ)
d
2
(
2πσ2

) (1−2ρ)d
2 exp

(
−ρ||µ− µ′||2

4σ2

)
.

Notice that making ρ small (i.e., high temperature)
has an effect on (4) similar to scaling the variance
σ2 by the temperature, but it also results in chang-
ing the scale of K, which affects the balance be-
tween dispersion and focalization in (6) below.

5.2 Focalization Score

The probability kernel given in eq. (3) naturally
handles the linguistic notion of dispersion. What
about focalization? We say that a phone is focal to
the extent that it has a high score

F (µ) = exp (U2 tanh(U1µ + b1) + b2) > 0
(5)

where µ is the mean of its density. To learn the
parameters of this neural network from data is to
learn which phones are focal. We use a neural net-
work since the focal regions of R2 are distributed
in a complex way.

5.3 The L Matrix

If fi = N (µi, σ
2I) is the density associated with

the phone v̄i, we may populate an N × N real

Algorithm 1 Generative Process
1: N ∼ Poisson (λ) (∈ N) 1

2: for i = 1 to N :
3: µi ∼ N (0, I) (∈ R2) 2

4: define L ∈ RN×N via (6)
5: for ` = 1 to M :
6: V̄ ` ∼ DPP (L) (⊆ [1, N ]); let n` = |V̄ `| 3

7: for i ∈ V̄ ` :
8: ṽ`i ∼ N

(
µi, σ

2I
)

4

9: v`i = νθ
(
ṽ`i
)

4

matrix L where

Lij =

{
K(fi, fj ; ρ) if i 6= j

K(fi, fj ; ρ) + F (µi) if i = j
(6)

Since L is the sum of two positive definite ma-
trices (the first specializes a known kernel and the
second is diagonal and positive), it is also positive
definite. As a result, it can be used to parameterize
a DPP over V̄ . Indeed, since L is positive definite
and not merely positive semidefinite, it will assign
positive probability to any subset of V̄ .

As previously noted, this DPP does not define
a distribution over an infinite set, e.g., the pow-
erset of R2, as does recent work on continuous
DPPs (Affandi et al., 2013). Rather, it defines a
distribution over the powerset of a set of densities
with finite cardinality. Once we have sampled a
subset of densities, a real-valued quantity may be
additionally sampled from each sampled density.

6 A Deep Generative Model

We are now in a position to expound our generative
model of continuous-space vowel typology. We
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generate a set of formant pairs for M languages
in a four step process. Note that throughout this
exposition, language-specific quantities with be
superscripted with an integral language marker
`, whereas universal quantities are left unsuper-
scripted. The generative process is written in al-
gorithmic form in Alg. 1. Note that each step is
numbered and color-coded for ease of comparison
with the full joint likelihood in Fig. 2.

Step 1 : p(N). We sample the size N of the uni-
versal phone inventory V̄ from a Poisson distribu-
tion with a rate parameter λ, i.e.,

N ∼ Poisson (λ) . (7)

That is, we do not presuppose a certain number of
phones in the model.

Step 2 : p(µ1, . . . ,µN ). Next, we sample the
means µi of the Gaussian phones. In the model
presented here, we assume that each phone is
generated independently, so p(µ1, . . . ,µN ) =∏N
i=1 p(µi). Also, we assume a standard Gaussian

prior over the means, µi ∼ N (0, I).

The sampled means define our N Gaussian
phones N

(
µi, σ

2I
)
: we are assuming for simplic-

ity that all phones share a single spherical covari-
ance matrix, defined by the hyperparameter σ2.
The dispersion and focalization of these phones
define the matrix L according to equations (4)–(6),
where ρ in (4) and the weights of the focalization
neural net (5) are also hyperparameters.

Step 3 : p(V̄ ` | µ1, . . . ,µN ). Next, for each lan-
guage ` ∈ [1, . . . ,M ], we sample a diverse subset
of the N phones, via a single draw from a DPP
parameterized by matrix L:

V̄ ` ∼ DPP(L), (8)

where V̄ ` ⊆ [1, N ]. Thus, i ∈ V̄ ` means that
language ` contains phone v̄i. Note that even the
size of the inventory, n` = |V̄ `|, was chosen by the
DPP. In general, we have n` � N .

Step 4 :
∏
i∈V̄ ` p(v

`
i | µi) The final step in our

generative process is that the phones v̄i in language
` must generate the pronunciations v`i ∈ R2 (for-
mant vectors) that are actually observed in lan-
guage `. Each vector takes two steps. For each
i ∈ V̄ `, we generate an underlying ṽi ∈ R2 from
the corresponding Gaussian phone. Then, we run

this vector through a feed-forward neural network
νθ with parameters θ. In short:

ṽ`i ∼ N (µi, σ
2I) (9)

v`i = νθ(ṽ`i), (10)

where the second step is deterministic. We can
fuse these two steps into a single step p(vi | µi),
whose closed-form density is given in eq. (12) be-
low. In effect, step 4 takes a Gaussian phone as
input and produces the observed formant vector
with an underlying formant vector in the middle.

This completes our generative process. We do
not observe all the steps, but only the final col-
lection of pronunciations v`i for each language,
where the subscripts i that indicate phone identity
have been lost. The probability of this incomplete
dataset involves summing over possible phones for
each pronunciation, and is presented in Fig. 2.

6.1 A Neural Transformation of a Gaussian

A crucial bit of our model is running a sample
from a Gaussian through a neural network. Under
certain restrictions, we can find a closed form for
the resulting density; we discuss these below. Let
νθ be a depth-2 multi-layer perceptron

νθ(ṽi) = W2 tanh (W1ṽi + b1) + b2. (11)

In order to find a closed-form solution, we require
that (5) be a diffeomorphism, i.e., an invertible
mapping from R2 → R2 where both νθ and its
inverse ν−1

θ are differentiable. This will be true as
long asW1,W2 ∈ R2×2 are square matrices of full-
rank and we choose a smooth, invertible activation
function, such as tanh. Under those conditions, we
may apply the standard theorem for transforming a
random variable (see Stark and Woods, 2011):

p(vi | µi) = p(ν−1
θ (vi) | µi) det Jν−1

θ (vi)

= p(ṽi | µi) det Jν−1
θ (vi)

(12)

where Jν−1
θ (x) is the Jacobian of the inverse of the

neural network at the point x. Recall that p(ṽi | µi)
is Gaussian-distributed.

7 Modeling Assumptions

Imbued in our generative story are a number of
assumptions about the linguistic processes behind
vowel inventories. We briefly draw connections
between our theory and the linguistics literature.
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Why underlying phones? A technical assump-
tion of our model is the existence of a universal
set of underlying phones. Each phone is equipped
with a probability distribution over reported acous-
tic measurements (pronunciations), to allow for a
single phone to account for multiple slightly differ-
ent pronunciations in different languages (though
never in the same language). This distribution can
capture both actual interlingual variation and also
random noise in the measurement process.

While our universal phones may seem to re-
semble the universal IPA symbols used in phono-
logical transcription, they lack the rich featural
specifications of such phonemes. A phone in our
model has no features other than its mean position,
which wholly determines its behavior. Our univer-
sal phones are not a substantive linguistic hypothe-
sis, but are essentially just a way of partitioning R2

into finitely many small regions whose similarity
and focalization can be precomputed. This techni-
cal trick allows us to use a discrete rather than a
continuous DPP over the R2 space.1

Why a neural network? Our phones are Gaus-
sians of spherical variance σ2, presumed to be scat-
tered with variance 1 about a two-dimensional la-
tent vowel space. Distances in this latent space
are used to compute the dissimilarity of phones
for modeling dispersion, and also to describe the
phone’s ability to vary across languages. That is,
two phones that are distant in the latent space can
appear in the same inventory—presumably they
are easy to discriminate in both perception and
articulation—and it is easy to choose which one
better explains an acoustic measurement, thereby
affecting the other measurements that may appear
in the inventory.

We relate this latent space to measurable acous-
tic space by a learned diffeomorphism νθ (Cotterell
and Eisner, 2017). ν−1

θ can be regarded as warping
the acoustic distances into perceptual/articulatory
distances. In some “high-resolution” regions of
acoustic space, phones with fairly similar (F1, F2)
values might yet be far apart in the latent space.
Conversely, in other regions, relatively large acous-

1Indeed, we could have simply taken our universal phone
set to be a huge set of tiny, regularly spaced overlapping Gaus-
sians that “covered” (say) the unit circle. As a computational
matter, we instead opted to use a smaller set of Gaussians,
giving the learner the freedom to infer their positions and tune
their variance σ2. Because of this freedom, this set should not
be too large, or a MAP learner may overfit the training data
with zero-variance Gaussians and be unable to explain the test
languages—similar to overfitting a Gaussian mixture model.

tic changes in some direction might not prevent
two phones from acting as similar or two pronunci-
ations from being attributed to the same phone. In
general, a unit circle of radius σ in latent space may
be mapped by νθ to an oddly shaped connected re-
gion in acoustic space, and a Gaussian in latent
space may be mapped to a multimodal distribution.

8 Inference and Learning

We fit our model via MAP-EM (Dempster et al.,
1977). The E-step involves deciding which phones
each language has. To achieve this, we fashion a
Gibbs sampler (Geman and Geman, 1984), yielding
a Markov-Chain Monte Carlo E-step (Levine and
Casella, 2001).

8.1 Inference: MCMC E-Step

Inference in our model is intractable even when the
phones µ1, . . . ,µN are fixed. Given a language
with n vowels, we have to determine which subset
of the N phones best explains those vowels. As
discussed above, the alignment a between the n
vowels and n of the N phones represents a latent
variable. Marginalizing it out is #P-hard, as we
can see that it is equivalent to summing over all
bipartite matchings in a weighted graph, which, in
turn, is as costly as computing the permanent of a
matrix (Valiant, 1979). Our sampler2 is an approxi-
mation algorithm for the task. We are interested in
sampling a, the labeling of observed vowels with
universal phones. Note that this implicitly sam-
ples the language’s phone inventory V̄ (a), which
is fully determined by a.

Specifically, we employ an MCMC method
closely related to Gibbs sampling. At each step
of the sampler, we update our vowel-phone align-
ment a` as follows. Choose a language ` and a
vowel index k ∈ [1, n`], and let i = a`k (that is,
pronunciation v`,k is currently labeled with univer-
sal phone v̄i). We will consider changing a`k to j,
where j is drawn from the (N − n`) phones that
do not appear in V̄ (a`), heuristically choosing j in
proportion to the likelihood p(v`,k | µj). We then
stochastically decide whether to keep a`k = i or set
a`k = j in proportion to the resulting values of the
product 4 · 3 in eq. (2).

For a single E-step, the Gibbs sampler “warm-
starts” with the labeling from the end of the pre-
vious iteration’s E-step. It sweeps S = 5 times

2Taken from Volkovs and Zemel (2012, 3.1).
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through all vowels for all languages, and returns S
sampled labelings, one from the end of each sweep.

We are also interested in automatically choosing
the number of phones N , for which we take the
Poisson’s rate parameter λ = 100. To this end,
we employ reversible-jump MCMC (Green, 1995),
resampling N at the start of every E-step.

8.2 Learning: M-Step
Given the set of sampled alignments provided by
the E-step, our M-step consists of optimizing the
log-likelihood of the now-complete training data
using the inferred latent variables. We achieved
this through SGD training of the diffeomorphism
parameters θ, the means µi of the Gaussian phones,
and the parameters of the focalization kernel F .

9 Experiments

9.1 Data
Our data is taken from the Becker-Kristal corpus
(Becker-Kristal, 2006), which is a compilation of
various phonetic studies and forms the largest multi-
lingual phonetic database. Each entry in the corpus
corresponds to a linguist’s phonetic description of
a language’s vowel system: an inventory consist-
ing of IPA symbols where each symbol is associ-
ated with two or more formant values. The corpus
contains data from 233 distinct languages. When
multiple inventories were available for the same
language (due to various studies in the literature),
we selected one at random and discarded the others.

9.2 Baselines
Baseline #1: Removing dispersion. The key
technical innovation in our work lies in the incor-
poration of a DPP into a generative model of vowel
formants—a continuous-valued quantity. The role
of the DPP was to model the linguistic principle
of dispersion—we may cripple this portion of our
model, e.g., by forcing K to be a diagonal kernel,
i.e., Kij = 0 for i 6= j. In this case the DPP
becomes a Bernoulli Point Process (BPP)—a spe-
cial case of the DPP. Since dispersion is widely
accepted to be an important principle governing
naturally occurring vowel systems, we expect a
system trained without such knowledge to perform
worse.

Baseline #2: Removing the neural network νθ.
Another question we may ask of our formulation is
whether we actually need a fancy neural mapping
νθ to model our typological data well. The human

perceptual system is known to perform a non-linear
transformation on acoustic signals, starting with
the non-linear cochlear transform that is physically
performed in the ear. While ν−1

θ is intended as
loosely analogous, we determine its benefit by re-
moving eq. (10) from our generative story, i.e., we
take the observed formants vk to arise directly from
the Gaussian phones.

Baseline #3: Supervised phones and alignments.
A final baseline we consider is supervised phones.
Linguists standardly employ a finite set of phones—
symbols from the international phonetic alphabet
(IPA). In phonetic annotation, it is common to map
each sound in a language back to this universal dis-
crete alphabet. Under such an annotation scheme, it
is easy to discern, cross-linguistically, which vow-
els originate from the same phoneme: an /I/ in
German may be roughly equated with an /I/ in En-
glish. However, it is not clear how consistent this
annotation truly is. There are several reasons to
expect high-variance in the cross-linguistic acous-
tic signal. First, IPA symbols are primarily useful
for interlinked phonological distinctions, i.e., one
applies the symbol /I/ to distinguish it from /i/ in
the given language, rather than to associate it with
the sound bearing the same symbol in a second
language. Second, field linguists often resort to the
closest common IPA symbol, rather than an exact
match: if a language makes no distinction between
/i/ and /I/, it is more common to denote the sound
with a /i/. Thus, IPA may not be as universal as
hoped. Our dataset contains 50 IPA symbols so this
baseline is only reported for N = 50.

9.3 Evaluation
Evaluation in our setting is tricky. The scientific
goal of our work is to place a bit of linguistic the-
ory on a firm probabilistic footing, rather than a
downstream engineering-task, whose performance
we could measure. We consider three metrics.

Cross-Entropy. Our first evaluation metric is
cross-entropy: the average negative log-probability
of the vowel systems in held-out test data, given
the universal inventory ofN phones that we trained
through EM. We find this to be the cleanest method
for scientific evaluation—it is the metric of opti-
mization and has a clear interpretation: how sur-
prised was the model to see the vowel systems of
held-out, but attested, languages?

The cross-entropy is the negative log of the∏[ · · ·
]

expression in eq. (2), with ` now rang-
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N metric DPP+νθ BPP+νθ DPP−νθ Sup.

x-ent 540.02 540.05 600.34 7

15 cloze1 5.76 5.76 6.53 7

cloze12 4.89 4.89 5.24 7

x-ent 280.47 275.36 335.36 7

25 cloze1 5.04 5.25 6.23 7

cloze12 4.76 4.97 5.43 7

x-ent 222.85 231.70 320.05 1610.37
50 cloze1 3.38 3.16 4.02 4.96

cloze12 2.73 2.93 3.04 6.95

x-ent 212.14 220.42 380.31 7

57 cloze1 2.21 3.08 3.25 7

cloze12 2.01 3.05 3.41 7

x-ent 271.95 301.45 380.02 7

100 cloze1 2.26 2.42 3.03 7

cloze12 1.96 2.01 2.51 7

Table 1: Cross-entropy in nats per language (lower is better)
and expected Euclidean-distance error of the cloze prediction
(lower is better). The overall best value for each task is bold-
faced. The case N = 50 is compared against our supervised
baseline. The N = 57 row is the case where we allowed N
to fluctuate during inference using reversible-jump MCMC;
this was the N value selected at the final EM iteration.

ing over held-out languages.3 Wallach et al. (2009)
give several methods for estimating the intractable
sum in language `. We use the simple harmonic
mean estimator, based on 50 samples of a` drawn
with our Gibbs sampler (warm-started from the
final E-step of training).

Cloze Evaluation. In addition, following Cot-
terell and Eisner (2017), we evaluate our trained
model’s ability to perform a cloze task (Taylor,
1953). Given n`−1 or n`−2 of the vowels in held-
out language `, can we predict the pronunciations
vk of the remaining 1 or 2? We predict vk to be
νθ(µi) where i = a`k is the phone inferred by the
sampler. Note that the sampler’s inference here is
based only on the observed vowels (the likelihood)
and the focalization-dispersion preferences of the
DPP (the prior). We report the expected error of
such a prediction—where error is quantified by Eu-
clidean distance in (F1, F2) formant space—over
the same 50 samples of a`.

For instance, consider a previously unseen
vowel system with formant values {(499, 2199),
(861, 1420), (571, 1079)}. A “cloze1” evaluation
would aim to predict {(499, 2199)} as the missing

3Since that expression is the product of both probability
distributions and probability densities, our “cross-entropy”
metric is actually the sum of both entropy terms and (poten-
tially negative) differential entropy terms. Thus, a value of 0
has no special significance.
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Figure 3: A graph of v = (F1, F2) in the union of all the
training languages’ inventories, color-coded by inferred phone
(N = 50).

vowel, given {(861, 1420), (571, 1079)}, and the
fact that n` = 3. A “cloze12” evaluation would
aim to predict two missing vowels.

9.4 Experimental Details

Here, we report experimental details and the hy-
perparameters that we use to achieve the results
reported. We consider a neural network νθ with
k ∈ [1, 4] layers and find k = 1 the best per-
former on development data. Recall that our dif-
feomorphism constraint requires that each layer
have exactly two hidden units, the same as the
number of observed formants. We consider N ∈
{15, 25, 50, 100} phones as well as letting N fluc-
tuate with reversible-jump MCMC (see footnote 1).
We train for 100 iterations of EM, taking S = 5
samples at each E-step. At each M-step, we run
50 iterations of SGD for the focalization NN and
also for the diffeomorphism NN. For each N ,
we selected (σ2, ρ) by minimizing cross-entropy
on a held-out development set. We considered
(σ2, ρ) ∈ {10k}5k=1 × {ρk}5k=1.

9.5 Results and Error Analysis

We report results in Tab. 1. We find that our DPP
model improves over the baselines. The results
support two claims: (i) dispersion plays an impor-
tant role in the structure of vowel systems and (ii)
learning a non-linear transformation of a Gaussian
improves our ability to model sets of formant-pairs.
Also, we observe that as we increase the number of
phones, the role of the DPP becomes more impor-
tant. We visualize a sample of the trained alignment
in Fig. 3.
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Frequency Encodes Dispersion. Why does dis-
persion not always help? The models with fewer
phones do not reap the benefits that the models
with more phones do. The reason lies in the fact
that the most common vowel formants are already
dispersed. This indicates that we still have not
quite modeled the mechanisms that select for good
vowel formants, despite our work at the phonetic
level; further research is needed. We would prefer
a model that explains the evolutionary motivation
of sound systems as communication systems.

Number of Induced Phones. What is most
salient in the number of induced phones is that
it is close to the number of IPA phonemes in the
data. However, the performance of the phoneme-
supervised system is much worse, indicating that,
perhaps, while the linguists have the right idea
about the number of universal symbols, they did
not specify the correct IPA symbol in all cases.
Our data analysis indicates that this is often due to
pragmatic concerns in linguistic field analysis. For
example, even if /I/ is the proper IPA symbol for
the sound, if there is no other sound in the vicinity
the annotator may prefer to use more common /i/.

10 Related Work

Most closely related to our work is the classic study
of Liljencrants and Lindblom (1972), who provide
a simulation-based account of vowel systems. They
argued that minima of a certain objective that en-
codes dispersion should correspond to canonical
vowel systems of a given size n. Our tack is dif-
ferent in that we construct a generative probability
model, whose parameters we learn from data. How-
ever, the essence of modeling is the same in that
we explain formant values, rather than discrete IPA
symbols. By extension, our work is also closely
related to extensions of this theory (Schwartz et al.,
1997; Roark, 2001) that focused on incorporating
the notion of focalization into the experiments.

Our present paper can also be regarded as a con-
tinuation of Cotterell and Eisner (2017), in which
we used DPPs to model vowel inventories as sets
of discrete IPA symbols. That paper pretended
that each IPA symbol had a single cross-linguistic
(F1, F2) pair, an idealization that we remove in this
paper by discarding the IPA symbols and modeling
formant values directly.

11 Conclusion

Our model combines existing techniques of proba-
bilistic modeling and inference to attempt to fit the
actual distribution of the world’s vowel systems.
We presented a generative probability model of
sets of measured (F1, F2) pairs. We view this as
a necessary step in the development of generative
probability models that can explain the distribu-
tion of the world’s languages. Previous work on
generating vowel inventories has focused on how
those inventories were transcribed into IPA by field
linguists, whereas we focus on the field linguists’
acoustic measurements of how the vowels are actu-
ally pronounced.
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Abstract

Morphological segmentation for polysynthetic
languages is challenging, because a word may
consist of many individual morphemes and
training data can be extremely scarce. Since
neural sequence-to-sequence (seq2seq) mod-
els define the state of the art for morpho-
logical segmentation in high-resource settings
and for (mostly) European languages, we first
show that they also obtain competitive perfor-
mance for Mexican polysynthetic languages in
minimal-resource settings. We then propose
two novel multi-task training approaches—
one with, one without need for external un-
labeled resources—, and two corresponding
data augmentation methods, improving over
the neural baseline for all languages. Finally,
we explore cross-lingual transfer as a third
way to fortify our neural model and show that
we can train one single multi-lingual model for
related languages while maintaining compara-
ble or even improved performance, thus reduc-
ing the amount of parameters by close to 75%.
We provide our morphological segmentation
datasets for Mexicanero, Nahuatl, Wixarika
and Yorem Nokki for future research.

1 Introduction

Due to the advent of computing technologies
to indigenous communities all over the world,
natural language processing (NLP) applications

∗*The first two authors contributed equally.

for languages with limited computer-readable
textual data are getting increasingly important.
This contrasts with current research, which fo-
cuses strongly on approaches which require large
amounts of training data, e.g., deep neural net-
works. Those are not trivially applicable to
minimal-resource settings with less than 1, 000
available training examples. We aim at closing this
gap for morphological surface segmentation, the
task of splitting a word into the surface forms of its
smallest meaning-bearing units, its morphemes.

Recovering morphemes provides information
about unknown words and is thus especially im-
portant for polysynthetic languages with a high
morpheme-to-word ratio and a consequently large
overall number of words. To illustrate how seg-
mentation helps understanding unknown multiple-
morpheme words, consider an example in this pa-
per’s language of writing: even if the word uncon-
ditionally did not appear in a given training corpus,
its meaning could still be derived from a combina-
tion of its morphs un, condition, al and ly.

Due to its importance for down-stream tasks
(Creutz et al., 2007; Dyer et al., 2008), segmenta-
tion has been tackled in many different ways, con-
sidering unsupervised (Creutz and Lagus, 2002),
supervised (Ruokolainen et al., 2013) and semi-
supervised settings (Ruokolainen et al., 2014).
Here, we add three new questions to this line of re-
search: (i) Are data-hungry neural network models
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applicable to segmentation of polysynthetic lan-
guages in minimal-resource settings? (ii) How can
the performance of neural networks for surface
segmentation be improved if we have only unla-
beled or no external data at hand? (iii) Is cross-
lingual transfer for this task possible between re-
lated languages? The last two questions are cru-
cial: While for many languages it is difficult to
obtain the number of annotated examples used in
earlier work on (semi-)supervised methods, a lim-
ited amount might still be obtainable.

We experiment on four polysynthetic Mexican
languages: Mexicanero, Nahuatl, Wixarika and
Yorem Nokki (details in §2). The datasets we use
are, as far as we know, the first computer-readable
datasets annotated for morphological segmenta-
tion in those languages.

Our experiments show that neural seq2seq mod-
els perform on par with or better than other strong
baselines for our polysynthetic languages in a
minimal-resource setting. However, we further
propose two novel multi-task approaches and two
new data augmentation methods. Combining them
with our neural model yields up to 5.05% abso-
lute accuracy or 3.40% F1 improvements over our
strongest baseline.

Finally, following earlier work on cross-lingual
knowledge transfer for seq2seq tasks (Johnson
et al., 2017; Kann et al., 2017), we investigate
training one single model for all languages, while
sharing parameters. The resulting model performs
comparably to or better than the individual mod-
els, but requires only roughly as many parameters
as one single model.

Contributions. To sum up, we make the follow-
ing contributions: (i) we confirm the applicability
of neural seq2seq models to morphological seg-
mentation of polysynthetic languages in minimal-
resource settings; (ii) we propose two novel
multi-task training approaches and two novel data
augmentation methods for neural segmentation
models; (iii) we investigate the effectiveness of
cross-lingual transfer between related languages;
and (iv) we provide morphological segmentation
datasets for Mexicanero, Nahuatl, Wixarika and
Yorem Nokki.

2 Polysynthetic Languages

Polysynthetic languages are morphologically rich
languages which are highly synthetic, i.e., sin-
gle words can be composed of many individual

Mexicanero Nahuatl Wixarika Yorem N.
frq. m. frq. m. frq. m. frq. m.
136 ni 155 o 327 p+ 102 k
128 ki 99 ni 230 ne 88 m
114 ti 84 ti 173 p 87 ne
105 u 81 k 169 ti 83 ka
70 s 61 tl 167 ka 79 ta
44 mo 59 mo 98 u 54 po
42 ka 55 s 97 ta 50 e’
39 a 52 ki 95 a 36 ye
31 nich 48 i 92 pe 36 su
31 $i 43 tla 91 e 36 ri
24 ta 39 ’ke 80 r 34 a
24 l 34 nech 74 wa 31 me
22 tahtanili 31 no 69 me 30 wa
21 no 27 ya 68 ni 30 re
17 ya 27 tli 68 ke 27 na
17 t 24 x 66 eu 24 wi
17 ke 23 tlanilia 58 ye 24 a
17 ita 23 e 57 ri 23 te
16 piya 21 tika 52 tsi 20 si
15 an 21 n 52 te 16 ’wi

Table 1: The most frequent morphs (m.) together with
their frequencies (frq.) in our datasets.

morphemes. In extreme cases, entire sentences
consist of only one single token, whereupon “ev-
ery argument of a predicate must be expressed
by morphology on the word that contains that as-
signer” (Baker, 2006). This property makes sur-
face segmentation of polysynthetic languages at
the same time complex and particularly relevant
for further linguistic analysis.

In this paper, we experiment on four polysyn-
thetic languages of the Yuto-Aztecan family
(Baker, 1997), with the goal of improving the
performance of neural seq2seq models. The lan-
guages will be described in the rest of this section.

Mexicanero is a Western Peripheral Nahuatl
variant, spoken in the Mexican state of Durango
by approximately one thousand people. This di-
alect is isolated from the rest of the other branches
and has a strong process of Spanish stem incorpo-
ration, while also having borrowed some suffixes
from that language (Vanhove et al., 2012). It is
common to see Spanish words mixed with Nahu-
atl agglutinations. In the following example we
can see an intrasentencial mixing of Spanish (in
uppercases) and Mexicanero:

u|ni|ye MALO – I was sick
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Nahuatl is a large subgroup of the Yuto-
Aztecan language family, and, including all of its
variants, the most spoken native language in Mex-
ico. Its almost two million native speakers live
mainly in Puebla, Guerrero, Hidalgo, Veracruz,
and San Luis Potosi, but also in Oaxaca, Durango,
Modelos, Mexico City, Tlaxcala, Michoacan, Na-
yarit and the State of Mexico. Three dialectical
groups are known: Central Nahuatl, Occidental
Nahuatl and Oriental Nahuatl. The data collected
for this work belongs to the Oriental branch spo-
ken by 70 thousand people in Northern Puebla.

Like all languages of the Yuto-Aztecan family,
Nahuatl is agglutinative and one word can consist
of a combination of many different morphemes.
Usually, the verb functions as the stem and gets
extended by morphemes specifying, e.g., subject,
patient, object or indirect object. The most com-
mon syntax sequence for Nahuatl is SOV. An ex-
ample word is:

o|ne|mo|kokowa|ya – I was sick

Wixarika is a language spoken in the states of
Jalisco, Nayarit, Durango and Zacatecas in Cen-
tral West Mexico by approximately fifty thousand
people. It belongs to the Coracholan group of lan-
guages within the Yuto-Aztecan family. Wixarika
has five vowels {a,e,i,+1,u} with long and short
variants. An example for a word in the language
is:

ne|p+|ti|kuye|kai – I was sick

Like Nahuatl, it has an SOV syntax, with heavy
agglutination on the verb. Wixarika is morpholog-
ically more complex than other languages from the
same family, because it incorporates more infor-
mation into the verb (Leza and López, 2006). This
leads to a higher number of morphemes per word
as can also be seen in Table 3.

Yorem Nokki is part of Taracachita subgroup of
the Yuto-Aztecan language family. Its Southern
dialect is spoken by close to forty thousand people
in the Mexican states of Sinaloa and Sonora, while
its Northern dialect has about twenty thousand
speakers. In this work, we consider the South-
ern dialect. The nominal morphology of Yorem

1While linguists often use a dashed i (i) to denote this
vowel, in practice almost all native speakers use a plus sym-
bol (+). In this work, we choose to use the latter.

Mexicanero Nahuatl Wixarika Yorem N.
train 427 540 665 511
dev 106 134 176 127
test 355 449 553 425
total 888 1123 1394 1063

Table 2: Number of examples in the final data splits for
all languages.

Nokki is rather simple, but, like in the other Yuto-
Aztecan languages, the verb is highly complex. Its
alphabet consists of 28 characters and contains 8
different vowels. An example verb is:

ko’kore|ye|ne – I was sick

3 Morphological Segmentation Datasets

To create our datasets, we make use of both seg-
mentable (i.e., consisting of multiple morphemes)
and non-segmentable (i.e., consisting of one single
morpheme) words described in books of the col-
lection Archive of Indigenous Languages in Mexi-
canero (Canger, 2001), Nahuatl (Lastra de Suárez,
1980), Wixarika (Gómez and López, 1999), and
Yorem Nokki (Freeze, 1989). Statistics about the
data in the four languages are displayed in Ta-
bles 1, 2 and 3. We include segmentable as well
as non-segmentable words into our datasets in or-
der to ensure that our methods can correctly de-
cide against splitting up single morphemes. The
phrases in all languages are mostly parallel, such
that the corpora are roughly equivalent. There-
fore, we can compare the morphology of trans-
lated words (cf. Table 3), noticing that the lan-
guage with most agglutination is Wixarika, with
an average rate of 3.25 morphemes per word; the
other languages have an average of close to 2.2
morphemes per word. This higher morphological
complexity naturally produces data sparsity at the
token level. Also, we can notice that Wixarika has
more unique words than the rest of our studied lan-
guages. However, Nahuatl has with 810 the high-
est number of unique morphemes.

Final splits. In order to make follow-up work
on minimal-resource settings for morphological
segmentation easily comparable, we provide pre-
defined splits of our datasets2. 40% of the data
constitute the test sets. Of the remaining data, we

2Our datasets can be found to-
gether with the code of our models at
http://turing.iimas.unam.mx/wix/MexSeg
.
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Mex. Nahuatl Wixarika Yorem N.
Words 888 1123 1385 1063
SegWords 539 746 1131 774
Morphs 1889 2467 4502 2266
UniMorphs 602 810 653 662
Seg/W 0.606 0.664 0.816 0.728
Morphs/W 2.127 2.196 3.250 2.131
MaxMorphs 7 6 10 10

Table 3: Number of words, segmentable words (Seg-
Words), total morphs (Morphs), and unique morphs
(UniMorphs) in our datasets. Seg/W: proportion
of words consisting or more than one morpheme;
Morphs/W: morphemes per word; MaxMorphs: maxi-
mum number of morphemes found in one word.

use 20% for development and the rest for training.
The final numbers of words per dataset and lan-
guage are shown in Table 2.

4 Neural Seq2seq Models for
Segmentation

In the beginning of this section, we will introduce
our neural architecture for segmentation. Subse-
quently, we will first describe our two proposed
multi-task training approaches and second our
data augmentation methods. Finally, we will elab-
orate on expected differences between the two.

4.1 Character-Based Encoder-Decoder RNN

Following work on segmentation by Kann et al.
(2016) for high-resource settings, our approach is
based on the neural seq2seq model introduced by
Bahdanau et al. (2015) for machine translation.

Encoder. The first part of our model is a bidi-
rectional recurrent neural network (RNN) which
encodes the input sequence, i.e., the sequence of
characters of a given word w = w1, w2, . . . , wTv ,
represented by the corresponding embedding vec-
tors vw1 , ..., vwTv

. In particular, our encoder con-
sists of one gated recurrent neural network (GRU)
which processes the input in forward direction and
a second GRU which processes the input from the
opposite side.

Encoding with this bidirectional GRU yields the
forward hidden state

−→
h i = f

(−→
h i−1, vi

)
and the

backward hidden state
←−
h i = f

(←−
h i+1, vi

)
, for a

non-linear activation function f . Their concatena-
tion hi =

[−→
hi ;
←−
hi

]
is passed on to the decoder.

Decoder. The second part of our network, the
decoder, is a single GRU, defining a probability
distribution over strings in (Σ ∪ S)∗, for an alpha-
bet Σ and a separation symbol S:

pED(c | w) =

Tc∏

t=1

p(ct | c1, . . . , ct−1, w). (1)

where p(ct | c1, . . . , ct−1, w) is computed us-
ing an attention mechanism and an output softmax
layer over Σ ∪ S.

A more detailed description of the general
attention-based encoder-decoder architecture can
be found in the original paper by Bahdanau et al.
(2015).

5 Improving Neural Models for
Segmentation

5.1 Multi-Task Training
In order to leverage unlabeled data or even random
strings during training, we define an autoencoding
auxiliary task, which consists of encoding the in-
put and decoding an output which is identical to
the original string.

Then, our multi-task training objective is to
maximize the joint log-likelihood of this auxiliary
task and our segmentation main task:

L(θ)=
∑

(w,c)∈T
log pθ (c | e(w)) (2)

+
∑

a∈A
log pθ(a | e(a))

T denotes the segmentation training data with
examples consisting of a word w and its segmen-
tation c. A denotes either a set of words in the lan-
guage of the system or a set of random strings. The
function e describes the encoder and depends on
the model parameters θ, which are shared across
the two tasks. For training, we use data from both
sets at the same time and mark each example with
an additional, task-specific input symbol.

We treat the size of A as a hyperparameter
which we optimize on the development set sepa-
rately for each language. Values we experiment
with are m times the amount of instances in the
original training set, with m ∈ {1, 2, 4, 8}.3

3An exception is Yorem Nokki, for which we do not have
enough unlabeled data available, such that we experiment
only with m ∈ {1, 2}.
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There are multiple reasons why we expect
multi-task training to improve the performance of
the final model. First, multi-task training should
act as a regularizer. Second, for our models, the
segmentation task consists in large parts of learn-
ing to copy the input character sequence to the
output. This, however, can be learned from any
string and does not require annotated segmenta-
tion boundaries. Third, in the case of unlabeled
data (i.e., not for random strings), we expect the
character language model in the decoder to im-
prove, since it is trained on additional data.

We denote models trained with multi-task train-
ing using unlabeled corpus data as MTT-U and
models trained with multi-task training using ran-
dom strings as MTT-R.

5.2 Data Augmentation

A second option to make use of unlabeled data or
random strings is to extend the available training
data with new examples made from those. The
main question to answer here is how to include the
new data into the existing datasets. We do this by
building new training examples in a fashion sim-
ilar to the multi-task setup. All newly created in-
stances are of the form

w 7→ w (3)

where either w ∈ V with V being the observed
vocabulary of the language, e.g., words in a given
unlabeled corpus, or w ∈ R with R being a set of
sequences of random characters from the alphabet
Σ of the language.

Again, we treat the amount of additional train-
ing examples as a hyperparameter which we opti-
mize on the development set separately for each
language. We explore m times the amount of
instances in the original training set, with m ∈
{1, 2, 4, 8}.

The reasons why we expect our data augmenta-
tion methods to lead to better segmentation models
are similar to those for multi-task training.

We call models trained on datasets augmented
with unlabeled corpus data or random strings DA-
U or DA-R, respectively.

5.3 Differences Between Multi-task Training
and Data Augmentation

The difference between MTT-U (resp. MTT-R)
and DA-U (resp. MTT-U) is a single element in
the input sequence (the one representing the task).

However, this information enables the model to
handle each given instance correctly at inference
time. As a result, it gets more robust against noisy
data, which seems crucial for our way of using un-
labeled corpora. Consider, for example, the Nahu-
atl word onemokokowaya. Training on

onemokokowaya 7→ onemokokowaya

will make the model learn not to seg-
ment words which consist of the morphemes
o, ne,mo, kokowa, ya, which should ultimately
hurt performance. The multi-task approach, in
contrast, mitigates this problem.

As a conclusion, we expect the data augmen-
tation approach with unlabeled data to not obtain
outstanding performance, but rather consider it an
important and informative baseline for the cor-
responding multi-task approach. Using random
strings, the difference between the multi-task and
the data augmentation approaches is less obvious:
Real morphemes should appear rarely enough in
the created random character sequences to avoid
the negative effect which we expect for corpus
words. We thus assume that the performances of
MTT-R and DA-R should be similar.

6 Experiments

6.1 Data

We apply our models to the datasets described
in §3. For the multi-task training and data aug-
mentation using unlabeled data, we use (unseg-
mented) words from a parallel corpus collected by
Gutierrez-Vasques et al. (2016) for Nahuatl and
the closely related Mexicanero. For Wixarika we
use data from Mager et al. (2018) and for Yorem
Nokki we use text from Maldonado Martı́nez et al.
(2010).

6.2 Baselines

Now, we will describe the baselines we use to eval-
uate the overall performance of our approaches.

Supervised seq2seq RNN (S2S). As a first
baseline, we employ a fully supervised neural
model without data augmentation or multi-task
training, i.e., an attention-based encoder-decoder
RNN (Bahdanau et al., 2015) which has been
trained only on the available annotated data.

Semi-supervised MORFESSOR (MORF). We
further compare to the semi-supervised version
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of MORFESSOR (Kohonen et al., 2010), a well-
known morphological segmentation system. Dur-
ing training, we tune the hyperparameters for each
language on the respective development set. The
best performing model is applied to the test set.

FlatCat (FC). Our next baseline is FlatCat
(Grönroos et al., 2014), a variant of MORFES-
SOR. It consists of a hidden Markov model for
segmentation. The states of the model correspond
either to a word boundary and one of the four
morph categories stem, prefix, suffix, and non-
morpheme. It can work in an unsupervised way,
but, similar to the previous baseline, can make ef-
fective use of small amounts of labeled data.

CRF. We further compare to a conditional ran-
dom fields (CRF) (Lafferty et al., 2001) model, in
particular a strong discriminative model for seg-
mentation by Ruokolainen et al. (2014). It re-
duces the task to a classification problem with
four classes: beginning of a morph, middle of
a morph, end of a morph and single character
morph. Training is again semi-supervised and the
model was previously reported to obtain good re-
sults for small amounts of unlabeled data (Ruoko-
lainen et al., 2014), which makes it very suitable
for our minimal-resource setting.

6.3 Hyperparameters

Neural network parameters. All GRUs in
both the encoder and the decoder have 100-
dimensional hidden states. All embeddings are
300-dimensional.

For training, we use ADADELTA (Zeiler, 2012)
with a minibatch size of 20. We initialize all
weights to the identity matrix and biases to zero
(Le et al., 2015). All models are trained for a max-
imum of 200 epochs, but we evaluate after every
5 epochs and apply the best performing model at
test time. Our final reported results are averaged
accuracies over 5 single training runs.

Optimizing the amount of auxiliary task data.
The performance of our neural segmentation
model in dependence of the amount of auxiliary
task training data can be seen in Figure 1. As
a general tendency across all languages, adding
more data seems better, particularly for the autoen-
coding task with random strings. The only excep-
tion is Wixarika.

The final configurations we choose for m (cf.
§5.1) in the case of multi-task training with the

auxiliary task of autoencoding corpus data are
m = 4 for Mexicanero, Nahuatl and Wixarika and
m = 1 for Yorem Nokki. For multi-task train-
ing with autoencoding of random strings we select
m = 8 for Mexicanero, Nahuatl and Yorem Nokki
and m = 4 for Wixarika.

Optimizing the amount of artificial training
data for data augmentation. Figure 2 shows
the performance of the encoder-decoder depend-
ing on the amount of added artificial training data.
In the case of random strings, again, adding more
training data seems to help more. However, us-
ing corpus data seems to hurt performance and the
more such examples we use, the worse accuracy
we obtain. Thus, we conclude that (as expected)
data augmentation with corpus data is not a good
way to improve the model’s performance. We will
discuss this in more detail in §6.5.

Even though the final conclusion should be to
not add much corpus data, we apply what gives
best results on the development set. The final con-
figurations we thus choose for DA-U are m = 1
for Mexicanero, Wixarika and Yorem Nokki and
m = 2 for Nahuatl. For DA-R, we select m = 4
for Mexicanero, Wixarika and Yorem Nokki and
m = 8 for Nahuatl.

6.4 Evaluation Metrics

Accuracy. First, we evaluate using accuracy on
the token level. Thus, an example counts as correct
if and only if the output of the system matches the
reference solution exactly, i.e., if all output sym-
bols are predicted correctly.

F1. Our second evaluation metric is border F1,
which measures how many segment boundaries
are predicted correctly by the model. While we
use this metric because it is common for segmenta-
tion tasks, it is not ideal for our models since those
are not guaranteed to preserve the input character
sequence. We handle this problem as follows: In
order to compare borders, we identify them by the
position of their preceding letter, i.e., if in both the
model’s guess and the gold solution a segment bor-
der appears after the second character, it counts as
correct. Wrong characters are ignored. Note that
this comes with the disadvantage of erroneously
inserted characters leading to all subsequent seg-
ment borders being counted as incorrect.
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Figure 1: Accuracy on the development set in dependence of the amount of auxiliary task training data for multi-
task learning.
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Figure 2: Accuracy on the development set in dependence of the amount of additional training data.

6.5 Test Results and Discussion

Table 4 shows that accuracy and F1 seem to be
highly correlated for our task. The test results also
give an answer to our first research question: The
neural model S2S performs on par with CRF, the
strongest baseline, for all languages but Nahuatl.
Further, S2S and CRF both outperform MORF and
FC by a wide margin. We may thus conclude that
neural models are indeed applicable to segmenta-
tion of polysynthetic languages in a low-resource
setting.

Second, we can see that all our proposed
methods except for DA-U improve over S2S,
the neural baseline: The accuracy of MTT-U is
between 0.0141 (Wixarika) and 0.0547 (Mexi-
canero) higher than S2S’s. MTT-R improves
between 0.0380 (Wixarika) and 0.0532 (Yorem

Nokki). Finally, DA-R outperforms S2S by
0.0367 to 0.0479 accuracy for Yorem Nokki and
Mexicanero, respectively. The overall picture
when considering F1 looks similar. Comparing
our approaches to each other, there is no clear win-
ner. This might be due to differences in the unla-
beled data we use: the corpus we use for Mexi-
canero and Nahuatl is from dialects different from
both respective test sets. Assuming that the effect
of training a language model using unlabeled data
and erroneously learning to not segment words are
working against each other for MTT-U, this might
explain why MTT-U is best for Mexicanero and
the gap between MTT-U and MTT-R is smaller for
Nahuatl than for Yorem Nokki and Wixarika.

As mentioned before (cf. §5.3), a simple data
augmentation method using unlabeled data should
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Accuracy F1
MTT-U MTT-R DA-U DA-R S2S MORF CRF FC MTT-U MTT-R DA-U DA-R S2S MORF CRF FC

Mex. .8051 .7955 .7611 .7983 .7504 .3364 .7837 .5420 .8786 .8694 .6715 .8683 .8618 .5121 .8639 .5621
Nahuatl .6004 .6027 .5541 .6018 .5585 .4044 .6444 .4888 .7388 .7367 .6865 .7328 .7266 .4154 .7487 .5185
Wixarika .5895 .6134 .5425 .6188 .5754 .3989 .5866 .4523 .7949 .8024 .7109 .8161 .7961 .4426 .7932 .5568
Yorem N. .6856 .7101 .6212 .6936 .6569 .4812 .6596 .5781 .7887 .8076 .7133 .7923 .7730 .3528 .7736 .6139

Table 4: Performances of our multi-task and data augmentation approaches compared to all baselines described in
the text. The reported results for neural models are averages over 5 training runs. Best results per language and
metric are in bold.

hurt performance. This is indeed the result of our
experiments: DA-U performs worse than S2S for
all languages except for Mexicanero, where the
unlabeled corpus is from another language: the
closely related Nahuatl. We thus conclude that
multi-task training (instead of simple data aug-
mentation) is crucial for the use of unlabeled data.

Finally, our methods compare favorably to all
baselines, with the exception of CRF for Nahu-
atl. While CRF is overall the strongest baseline
for our considered languages, our methods out-
perform it by up to 0.0214 accuracy or 0.0147 F1
for Mexicanero, 0.0322 accuracy or 0.0229 F1 for
Wixarika and 0.0505 accuracy or 0.0340 F1 for
Yorem Nokki. This shows the effectiveness of our
fortified neural models for minimal-resource mor-
phological segmentation.

7 Cross-Lingual Transfer Learning

We now want to investigate the performance of
one single model trained on all languages at once.
This is done in analogy to the multi-task training
described in §5.1. We treat segmentation in each
language as a separate task and train an attention-
based encoder-decoder model on maximizing the
joint log-likelihood:

L(θ)=
∑

Li∈L

∑

(w,c)∈TLi

log pθ (c | e(w))

(4)

TLi denotes the segmentation training data in lan-
guage Li and L is the set of our languages. As
before, each training example consists of a word
w and its segmentation c.

7.1 Experimental Setup
We keep all model parameters and the training
regime as described in §6.3. However, our training
data now consists of a combination of all available
training data for all 4 languages. In order to en-
able the model to differentiate between the tasks,

M-Lang S-Lang BestMTT BestDA
Mex. .6858 .7504 .8051 .7983
Nahuatl .5955 .5585 .6027 .6018
Wixarika .6021 .5754 .6134 .6188
Yorem N. .6223 .6569 .7101 .6936

Table 5: Accuracies of our model trained on all lan-
guages (M-Lang) and the models trained on single lan-
guages (S-Lang). The highest multi-task and data aug-
mentation accuracies are repeated for an easy compar-
ison.

we prepend one language-specific input symbol to
each instance. This corresponds to having one em-
bedding in the input which marks the task. An ex-
ample training instance for Yorem Nokki is

L=YN ko′koreyene 7→ ko′kore|ye|ne,

where L=YN indicates the language.
Due to the previous high correlation between

accuracy and F1 we only use accuracy on the word
level as the evaluation metric for this experiment.

7.2 Results and Discussion

In Table 5, we show the results of the multi-lingual
model, which was trained on all languages, com-
pared to all individual models, as well as each re-
spective best multi-task approach and data aug-
mentation method. The results differ among lan-
guages: Most remarkably, for both Wixarika and
Nahuatl, the accuracy of the multi-lingual model is
higher than the one of the single-language model.
This might be related to them being the languages
with most training data available (cf. Table 3).

Note, however, that even for the remaining
two languages—Mexicanero and Yorem Nokki—
we hardly lose accuracy when comparing the
multi-lingual to the individual models. Since we
only use one model (instead of four), without in-
creasing its size significantly, we thus reduce the
amount of parameters by nearly 75%.
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8 Related Work

Work on morphological segmentation was started
more than 6 decades ago (Harris, 1951). Since
then, many approaches have been developed: In
the realm of unsupervised methods, two important
systems are LINGUISTICS (Goldsmith, 2001)
and MORFESSOR (Creutz and Lagus, 2002). The
latter was later extended to a semi-supervised ver-
sion (Kohonen et al., 2010) in order to make use of
the abundance of unlabeled data which is available
for many languages.

Ruokolainen et al. (2013) focused explicitly
on low-resource scenarios and applied CRFs to
morphological segmentation in several languages.
They reported better results than earlier work, in-
cluding semi-supervised approaches. In the fol-
lowing year, they extended their approach to be
able to use unlabeled data as well, further improv-
ing performance (Ruokolainen et al., 2014).

Cotterell et al. (2015) trained a semi-Markov
CRF (semi-CRF) (Sarawagi and Cohen, 2005)
jointly on morphological segmentation, stemming
and tagging. For the similar problem of Chi-
nese word segmentation, Zhang and Clark (2008)
trained a model jointly on part-of-speech tagging.
However, we are not aware of any prior work on
multi-task training or data augmentation for neural
segmentation models.

In fact, the two only neural seq2seq approaches
for morphological segmentation we know of fo-
cused on canonical segmentation (Cotterell et al.,
2016) which differs from the surface segmentation
task considered here in that it restores changes to
the surface form of morphemes which occurred
during word formation. Kann et al. (2016) also
used an encoder-decoder RNN and combined it
with a neural reranker. While our model archi-
tecture was inspired by them, their model was
purely supervised. Additionally, they did not in-
vestigate the applicability of their neural seq2seq
model in low-resource settings or for polysyn-
thetic languages. Ruzsics and Samardzic (2017)
extended the standard encoder-decoder architec-
ture for canonical segmentation to contain a lan-
guage model over segments and improved results.
However, a big difference to our work is that they
still used more than ten times as much training
data as we have available for the indigenous Mex-
ican languages we are working on here.

Another neural approach—this time for sur-
face segmentation—was presented by Wang et al.

(2016). The authors, instead of using seq2seq
models, treat the task as a sequence labeling prob-
lem and use LSTMs to classify every character
either as the beginning, middle or end of a mor-
pheme, or as a single-character morpheme.

Cross-lingual knowledge transfer via language
tags was proposed for neural seq2seq models be-
fore, both for tasks that handle sequences of words
(Johnson et al., 2017) and tasks that work on se-
quences of characters (Kann et al., 2017). How-
ever, to the best of our knowledge, we are the
first to try such an approach for a morphological
segmentation task. In many other areas of NLP,
cross-lingual transfer has been applied success-
fully, e.g., in entity recognition (Wang and Man-
ning, 2014), language modeling (Tsvetkov et al.,
2016), or parsing (Cohen et al., 2011; Søgaard,
2011; Ammar et al., 2016).

9 Conclusion and Future Work

We first investigated the applicability of neural
seq2seq models to morphological surface segmen-
tation for polysynthetic languages in minimal-
resource settings, i.e., for considerably less than
1, 000 training instances. Although they are gen-
erally thought to require large amounts of training
data, neural networks obtained an accuracy com-
parable to or higher than several strong baselines.

Subsequently, we proposed two novel multi-
task training approaches and two novel data aug-
mentation methods to further increase the perfor-
mance of our neural models. Adding those, we im-
proved over the neural baseline for all languages,
and for Mexicanero, Wixarika and Yorem Nokki
our final models outperformed all baselines by up
to 5.05% absolute accuracy or 3.40% F1. Further-
more, we explored cross-lingual transfer between
our languages and reduced the amount of neces-
sary model parameters by about 75%, while im-
proving performance for some of the languages.

We publically release our datasets for morpho-
logical surface segmentation of the polysynthetic
minimal-resource languages Mexicanero, Nahu-
atl, Wixarika and Norem Yokki.
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chitlán (Hidalgo). Colegio de México.
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Abstract

Recently, neural machine translation
(NMT) has emerged as a powerful alterna-
tive to conventional statistical approaches.
However, its performance drops consider-
ably in the presence of morphologically
rich languages (MRLs). Neural engines
usually fail to tackle the large vocabulary
and high out-of-vocabulary (OOV) word
rate of MRLs. Therefore, it is not suitable
to exploit existing word-based models
to translate this set of languages. In this
paper, we propose an extension to the
state-of-the-art model of Chung et al.
(2016), which works at the character level
and boosts the decoder with target-side
morphological information. In our archi-
tecture, an additional morphology table
is plugged into the model. Each time the
decoder samples from a target vocabulary,
the table sends auxiliary signals from the
most relevant affixes in order to enrich the
decoder’s current state and constrain it to
provide better predictions. We evaluated
our model to translate English into Ger-
man, Russian, and Turkish as three MRLs
and observed significant improvements.

1 Introduction

Morphologically complex words (MCWs) are
multi-layer structures which consist of different
subunits, each of which carries semantic informa-
tion and has a specific syntactic role. Table 1 gives
a Turkish example to show this type of complexity.
This example is a clear indication that word-based
models are not suitable to process such complex
languages. Accordingly, when translating MRLs,
it might not be a good idea to treat words as atomic
units as it demands a large vocabulary that im-

poses extra overhead. Since MCWs can appear
in various forms we require a very large vocabu-
lary to i) cover as many morphological forms and
words as we can, and ii) reduce the number of
OOVs. Neural models by their nature are com-
plex, and we do not want to make them more com-
plicated by working with large vocabularies. Fur-
thermore, even if we have quite a large vocabulary
set, clearly some words would remain uncovered
by that. This means that a large vocabulary not
only complicates the entire process, but also does
not necessarily mitigate the OOV problem. For
these reasons we propose an NMT engine which
works at the character level.

Word Translation

terbiye good manners
terbiye.siz rude
terbiye.siz.lik rudeness
terbiye.siz.lik.leri their rudeness
terbiye.siz.lik.leri.nden from their rudeness

Table 1: Illustrating subword units in MCWs. The
boldfaced part indicates the stem.

In this paper, we focus on translating into MRLs
and issues associated with word formation on the
target side. To provide a better translation we
do not necessarily need a large target lexicon, as
an MCW can be gradually formed during decod-
ing by means of its subunits, similar to the solu-
tion proposed in character-based decoding models
(Chung et al., 2016). Generating a complex word
character-by-character is a better approach com-
pared to word-level sampling, but it has other dis-
advantages.

One character can co-occur with another with
almost no constraint, but a particular word or mor-
pheme can only collocate with a very limited num-
ber of other constituents. Unlike words, characters
are not meaning-bearing units and do not preserve
syntactic information, so (in the extreme case) the
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chance of sampling each character by the decoder
is almost equal to the others, but this situation is
less likely for words. The only constraint that pri-
oritize which character should be sampled is in-
formation stored in the decoder, which we believe
is insufficient to cope with all ambiguities. Fur-
thermore, when everything is segmented into char-
acters the target sentence with a limited number
of words is changed to a very long sequence of
characters, which clearly makes it harder for the
decoder to remember such a long history. Ac-
cordingly, character-based information flows in
the decoder may not be as informative as word-
or morpheme-based information.

In the character-based NMT model everything
is almost the same as its word-based counterpart
except the target vocabulary whose size is consid-
erably reduced from thousands of words to just
hundreds of characters. If we consider the de-
coder as a classifier, it should in principle be able
to perform much better over hundreds of classes
(characters) rather than thousands (words), but the
performance of character-based models is almost
the same as or slightly better than their word-
based versions. This underlines the fact that the
character-based decoder is perhaps not fed with
sufficient information to provide improved perfor-
mance compared to word-based models.

Character-level decoding limits the search space
by dramatically reducing the size of the target vo-
cabulary, but at the same time widens the search
space by working with characters whose sampling
seems to be harder than words. The freedom in
selection and sampling of characters can mislead
the decoder, which prevents us from taking the
maximum advantages of character-level decoding.
If we can control the selection process with other
constraints, we may obtain further benefit from re-
stricting the vocabulary set, which is the main goal
followed in this paper.

In order to address the aforementioned prob-
lems we redesign the neural decoder in three dif-
ferent scenarios. In the first scenario we equip the
decoder with an additional morphology table in-
cluding target-side affixes. We place an attention
module on top of the table which is controlled by
the decoder. At each step, as the decoder samples a
character, it searches the table to find the most rel-
evant information which can enrich its state. Sig-
nals sent from the table can be interpreted as addi-
tional constraints. In the second scenario we share

the decoder between two output channels. The
first one samples the target character and the other
one predicts the morphological annotation of the
character. This multi-tasking approach forces the
decoder to send morphology-aware information to
the final layer which results in better predictions.
In the third scenario we combine these two mod-
els. Section 3 provides more details on our mod-
els.

Together with different findings that will be dis-
cussed in the next sections, there are two main
contributions in this paper. We redesigned and
tuned the NMT framework for translating into
MRLs. It is quite challenging to show the impact
of external knowledge such as morphological in-
formation in neural models especially in the pres-
ence of large parallel corpora. However, our mod-
els are able to incorporate morphological informa-
tion into decoding and boost its quality. We inject
the decoder with morphological properties of the
target language. Furthermore, the novel architec-
ture proposed here is not limited to morphological
information alone and is flexible enough to pro-
vide other types of information for the decoder.

2 NMT for MRLs

There are several models for NMT of MRLs which
are designed to deal with morphological complex-
ities. García-Martínez et al. (2016) and Sennrich
and Haddow (2016) adapted the factored machine
translation approach to neural models. Morpho-
logical annotations can be treated as extra factors
in such models. Jean et al. (2015) proposed a
model to handle very large vocabularies. Luong
et al. (2015) addressed the problem of rare words
and OOVs with the help of a post-translation phase
to exchange unknown tokens with their poten-
tial translations. Sennrich et al. (2016) used sub-
word units for NMT. The model relies on frequent
subword units instead of words. Costa-jussà and
Fonollosa (2016) designed a model for translating
from MRLs. The model encodes source words
with a convolutional module proposed by Kim
et al. (2016). Each word is represented by a con-
volutional combination of its characters.

Luong and Manning (2016) used a hybrid
model for representing words. In their model,
unseen and complex words are encoded with a
character-based representation, with other words
encoded via the usual surface-form embed-
dings. Vylomova et al. (2016) compared differ-
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ent representation models (word-, morpheme, and
character-level models) which try to capture com-
plexities on the source side, for the task of trans-
lating from MRLs.

Chung et al. (2016) proposed an architec-
ture which benefits from different segmentation
schemes. On the encoder side, words are seg-
mented into subunits with the byte-pair segmen-
tation model (bpe) (Sennrich et al., 2016), and
on the decoder side, one target character is pro-
duced at each time step. Accordingly, the tar-
get sequence is treated as a long chain of charac-
ters without explicit segmentation. Grönroos et al.
(2017) focused on translating from English into
Finnish and implicitly incorporated morphological
information into NMT through multi-task learn-
ing. Passban (2018) comprehensively studied the
problem of translating MRLs and addressed po-
tential challenges in the field.

Among all the models reviewed in this section,
the network proposed by Chung et al. (2016) could
be seen as the best alternative for translating into
MRLs as it works at the character level on the de-
coder side and it was evaluated in different settings
on different languages. Consequently, we consider
it as a baseline model in our experiments.

3 Proposed Architecture

We propose a compatible neural architecture for
translating into MRLs. The model benefits from
subword- and character-level information and im-
proves upon the state-of-the-art model of Chung
et al. (2016). We manipulated the model to incor-
porate morphological information and developed
three new extensions, which are discussed in Sec-
tions 3.1, 3.2, and 3.3.

3.1 The Embedded Morphology Table

In the first extension an additional table containing
the morphological information of the target lan-
guage is plugged into the decoder to assist with
word formation. Each time the decoder samples
from the target vocabulary, it searches the mor-
phology table to find the most relevant affixes
given its current state. Items selected from the ta-
ble act as guiding signals to help the decoder sam-
ple a better character.

Our base model is an encoder-decoder model
with attention (Bahdanau et al., 2014), imple-
mented using gated recurrent units (GRUs) (Cho
et al., 2014). We use a four-layer model in our

experiments. Similar to Chung et al. (2016) and
Wu et al. (2016), we use bidirectional units to en-
code the source sequence. Bidirectional GRUs are
placed only at the input layer. The forward GRU
reads the input sequence in its original order and
the backward GRU reads the input in the reverse
order. Each hidden state of the encoder in one
time step is a concatenation of the forward and
backward states at the same time step. This type
of bidirectional processing provides a richer rep-
resentation of the input sequence.

On the decoder side, one target character is sam-
pled from a target vocabulary at each time step.
In the original encoder-decoder model, the proba-
bility of predicting the next token yi is estimated
based on i) the current hidden state of the de-
coder, ii) the last predicted token, and iii) the
context vector. This process can be formulated as
p(yi|y1, ..., yi−1,x) = g(hi, yi−1, ci), where g(.)
is a softmax function, yi is the target token (to
be predicted), x is the representation of the input
sequence, hi is the decoder’s hidden state at the
i-th time step, and ci indicates the context vec-
tor which is a weighted summary of the input se-
quence generated by the attention module. ci is
generated via the procedure shown in (1):

ci =
n∑

j=1

αijsj

αij =
exp (eij)∑
n
k=1 exp (eik)

; eij = a(sj , hi−1)

(1)

where αij denotes the weight of the j-th hidden
state of the encoder (sj) when the decoder predicts
the i-th target token, and a() shows a combinato-
rial function which can be modeled through a sim-
ple feed-forward connection. n is the length of the
input sequence.

In our first extension, the prediction prob-
ability is conditioned on one more constraint
in addition to those three existing ones, as in
p(yi|y1, ..., yi−1,x) = g(hi, yi−1, ci, cmi ), where
cmi is the morphological context vector and car-
ries information from those useful affixes which
can enrich the decoder’s information. cmi is gener-
ated via an attention module over the morphology
table which works in a similar manner to word-
based attention model. The attention procedure for
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Figure 1: The target label that each output channel is supposed to predict when generating the Turkish sequence
‘bu1 terbiyesizlik2 için3’ meaning ‘because3 of3 this1 rudeness2’.

generating cmi is formulated as in (2):

cmi =

|A|∑

u=1

βiufu

βiu =
exp (emiu)∑ |A|
v=1 exp (eiv)

; emiu = am(fu, hi−1)

(2)
where fu represents the embedding of the u-th af-
fix (u-th column) in the morphology/affix tableA,
βiu is the weight assigned to fu when predicting
the i-th target token, and am is a feed-forward con-
nection between the morphology table and the de-
coder.

The attention module in general can be consid-
ered as a search mechanism, e.g. in the origi-
nal encoder-decoder architecture the basic atten-
tion module finds the most relevant input words to
make the prediction. In multi-modal NMT (Huang
et al., 2016; Calixto et al., 2017) an extra attention
module is added to the basic one in order to search
the image input to find the most relevant image
segments. In our case we have a similar additional
attention module which searches the morphology
table.

In this scenario, the morphology table including
the target language’s affixes can be considered as
an external knowledge repository that sends auxil-
iary signals which accompany the main input se-
quence at all time steps. Such a table certainly
includes useful information for the decoder. As
we are not sure which affix preserves those pieces
of useful information, we use an attention module
to search for the best match. The attention mod-
ule over the table works as a filter which excludes
irrelevant affixes and amplifies the impact of rel-
evant ones by assigning different weights (β val-
ues).

3.2 The Auxiliary Output Channel
In the first scenario, we embedded a morphology
table into the decoder in the hope that it can enrich
sampling information. Mathematically speaking,
such an architecture establishes an extra constraint

for sampling and can control the decoder’s predic-
tions. However, this is not the only way of con-
straining the decoder. In the second scenario, we
define extra supervision to the network via another
predictor (output channel). The first channel is re-
sponsible for generating translations and predicts
one character at each time step, and the other one
tries to understand the morphological status of the
decoder by predicting the morphological annota-
tion (li) of the target character.

The approach in the second scenario proposes
a multi-task learning architecture, by which in one
task we learn translations and in the other one mor-
phological annotations. Therefore, all network
modules –especially the last hidden layer just be-
fore the predictors– should provide information
which is useful enough to make correct predictions
in both channels, i.e. the decoder should preserve
translation as well as morphological knowledge.
Since we are translating into MRLs this type of
mixed information (morphology+translation) can
be quite useful.

In our setting, the morphological annotation li
predicted via the second channel shows to which
part of the word or morpheme the target character
belongs, i.e. the label for the character is the mor-
pheme that includes it. We clarify the prediction
procedure via an example from our training set
(see Section 4). When the Turkish word ‘terbiye-
sizlik’ is generated, the first channel is supposed to
predict t, e, r, up to k, one after another. For the
same word, the second channel is supposed to pre-
dict stem-C for the fist 7 steps as the first 7 charac-
ters ‘terbiye’ belong to the stem of the word. The
C sign indicates that stem-C is a class label. The
second channel should also predict siz-C when the
first channel predicts s (eighth character), i (ninth
character), and z (tenth character), and lik-C when
the first channel samples the last three characters.
Clearly, the second channel is a classifier which
works over the {stem-C, siz-C, lik-C, ...} classes.
Figure 1 illustrates a segment of a sentence includ-
ing this Turkish word and explains which class
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tags should be predicted by each channel.
To implement the second scenario we re-

quire a single-source double-target training cor-
pus: [source sentence]→ [sequence of target char-
acters & sequence of morphological annotations]
(see Section 4). The objective function should also
be manipulated accordingly. Given a training set
{xt,yt,mt}Tt=1 the goal is to maximize the joint
loss function shown in (3):

λ
T∑

t=1

logP (yt|xt; θ)+(1−λ)
T∑

t=1

logP (mt|xt; θ)

(3)
where xt is the t-th input sentence whose transla-
tion is a sequence of target characters shown by
yt. mt is the sequence of morphological annota-
tions and T is the size of the training set. θ is the
set of network parameters and λ is a scalar to bal-
ance the contribution of each cost function. λ is
adjusted on the development set during training.

3.3 Combining the Extended Output Layer
and the Embedded Morphology Table

In the first scenario, we aim to provide the de-
coder with useful information about morphologi-
cal properties of the target language, but we are not
sure whether signals sent from the table are what
we really need. They might be helpful or even
harmful, so there should be a mechanism to con-
trol their quality. In the second scenario we also
have a similar problem as the last layer requires
some information to predict the correct morpho-
logical class through the second channel, but there
is no guarantee to ensure that information in the
decoder is sufficient for this sort of prediction. In
order to address these problems, in the third exten-
sion we combine both scenarios as they are com-
plementary and can potentially help each other.

The morphology table acts as an additional use-
ful source of knowledge as it already consists of
affixes, but its content should be adapted accord-
ing to the decoder and its actual needs. Accord-
ingly, we need a trainer to update the table prop-
erly. The extra prediction channel plays this role
for us as it forces the network to predict the tar-
get language’s affixes at the output layer. The
error computed in the second channel is back-
propagated to the network including the morphol-
ogy table and updates its affix information into
what the decoder actually needs for its predic-
tion. Therefore, the second output channel helps
us train better affix embeddings.

The morphology table also helps the second
predictor. Without considering the table, the last
layer only includes information about the input se-
quence and previously predicted outputs, which
is not directly related to morphological informa-
tion. The second attention module retrieves useful
affixes from the morphology table and concate-
nates to the last layer, which means the decoder
is explicitly fed with morphological information.
Therefore, these two modules mutually help each
other. The external channel helps update the mor-
phology table with high-quality affixes (backward
pass) and the table sends its high-quality signals to
the prediction layer (forward pass). The relation
between these modules and the NMT architecture
is illustrated in Figure 2.

hi 

li 

𝑠1           𝑠2           𝑠3                   𝑠𝑛 

hi-1 

yi-1 

𝑠1           𝑠2            𝑠3                  𝑠𝑛 

𝛼1,𝑖 𝛼2,𝑖  𝛼3,𝑖  𝛼𝑛,𝑖 

yi 

… 

𝛽1,𝑖 𝛽2,𝑖 𝛽3,𝑖 𝛽|𝒜|,𝑖 

𝒜 

f3 

x1 x2 x3 xn 

Figure 2: The architecture of the NMT model with an
auxiliary prediction channel and an extra morphology
table. This network includes only one decoder layer
and one encoder layer. ⊕ shows the attention modules.

4 Experimental Study

As previously reviewed, different models try to
capture complexities on the encoder side, but to
the best of our knowledge the only model which
proposes a technique to deal with complex con-
stituents on the decoder side is that of Chung et al.
(2016), which should be an appropriate baseline
for our comparisons. Moreover, it outperforms
other existing NMT models, so we prefer to com-
pare our network to the best existing model. This
model is referred to as CDNMT in our experi-
ments. In the next sections first we explain our
experimental setting, corpora, and how we build
the morphology table (Section 4.1), and then re-
port experimental results (Section 4.2).
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4.1 Experimental Setting
In order to make our work comparable we try
to follow the same experimental setting used in
CDNMT, where the GRU size is 1024, the affix
and word embedding size is 512, and the beam
width is 20. Our models are trained using stochas-
tic gradient descent with Adam (Kingma and Ba,
2015). Chung et al. (2016) and Sennrich et al.
(2016) demonstrated that bpe boosts NMT, so sim-
ilar to CDNMT we also preprocess the source
side of our corpora using bpe. We use WMT-15
corpora1 to train the models, newstest-2013
for tuning and newstest-2015 as the test
sets. For English–Turkish (En–Tr) we use
the OpenSubtitle2016 collection (Lison and
Tiedemann, 2016). The training side of the
English–German (En–De), English–Russian (En–
Ru), and En–Tr corpora include 4.5, 2.1, and 4
million parallel sentences, respectively. We ran-
domly select 3K sentences for each of the develop-
ment and test sets for En–Tr. For all language pairs
we keep the 400 most frequent characters as the
target-side character set and replace the remainder
(infrequent characters) with a specific character.

One of the key modules in our architecture is the
morphology table. In order to implement it we use
a look-up table whose columns include embed-
dings for the target language’s affixes (each col-
umn represents one affix) which are updated dur-
ing training. As previously mentioned, the table
is intended to provide useful, morphological in-
formation so it should be initialized properly, for
which we use a morphology-aware embedding-
learning model. To this end, we use the neural
language model of Botha and Blunsom (2014) in
which each word is represented via a linear com-
bination of the embeddings of its surface form and
subunits, e.g.

−−−−−−−−−→
terbiyesizlik =

−−−−−−−−−→
terbiyesizlik +−−−−→

terbiye +
−→
siz +

−→
lik. Given a sequence of words,

the neural language model tries to predict the next
word, so it learns sentence-level dependencies as
well as intra-word relations. The model trains sur-
face form and subword-level embeddings which
provides us with high-quality affix embeddings.

Our neural language model is a recurrent net-
work with a single 1000-dimensional GRU layer,
which is trained on the target sides of our paral-
lel corpora. The embedding size is 512 and we
use a batch size of 100 to train the model. Be-
fore training the neural language model, we need

1http://www.statmt.org/wmt15/

to manipulate the training corpus to decompose
words into morphemes for which we use Morfes-
sor (Smit et al., 2014), an unsupervised morpho-
logical analyzer. Using Morfessor each word is
segmented into different subunits where we con-
sider the longest part as the stem of each word;
what appears before the stem is taken as a member
of the set of prefixes (there might be one or more
prefixes) and what follows the stem is considered
as a member of the set of suffixes.

Since Morfessor is an unsupervised analyzer, in
order to minimize segmentation errors and avoid
noisy results we filter its output and exclude sub-
units which occur fewer than 500 times.2 Af-
ter decomposing, filtering, and separating stems
from affixes, we extracted several affixes which
are reported in Table 2. We emphasize that there
might be wrong segmentations in Morfessor’s out-
put, e.g. Turkish is a suffix-based language, so
there are no prefixes in this language, but based
on what Morfessor generated we extracted 11 dif-
ferent types of prefixes. We do not post-process
Morfessor’s outputs.

Language Prefix Suffix

German 75 160
Russian 110 260
Turkish 11 293

Table 2: The number of affixes extracted for each lan-
guage.

Using the neural language model we train word,
stem, and affix embeddings, and initialize the
look-up table (but not other parts) of the decoder
using those affixes. The look-up table includes
high-quality affixes trained on the target side of
the parallel corpus by which we train the transla-
tion model. Clearly, such an affix table is an ad-
ditional knowledge source for the decoder. It pre-
serves information which is very close to what the
decoder actually needs. However, there might be
some missing pieces of information or some in-
compatibility between the decoder and the table,
so we do not freeze the morphology table during
training, but let the decoder update it with respect
to its needs in the forward and backward passes.

2The number may seem a little high, but for a corpus with
more than 115M words this is not a strict threshold in prac-
tice.
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4.2 Experimental Results
Table 3 summarizes our experimental results. We
report results for the bpe→char setting, which
means the source token is a bpe unit and the de-
coder samples a character at each time step. CD-
NMT is the baseline model. Table 3 includes
scores reported from the original CDNMT model
(Chung et al., 2016) as well as the scores from our
reimplementation. To make our work comparable
and show the impact of the new architecture, we
tried to replicate CDNMT’s results in our exper-
imental setting, we kept everything (parameters,
iterations, epochs etc.) unchanged and evaluated
the extended model in the same setting. Table 3
reports BLEU scores (Papineni et al., 2002) of our
NMT models.

Model En→De En→Ru En→Tr

CDNMT 21.33 26.00 -
CDNMT∗ 21.01 26.23 18.01
CDNMT∗m 21.27 26.78 18.44
CDNMT∗o 21.39 26.39 18.59
CDNMT∗mo 21.48 26.84 18.70

Table 3: CDNMT∗ is our implementation of CDNMT.
m and o indicates that the base model is extended with
the morphology table and the additional output chan-
nel, respectively. mo is the combination of both the ex-
tensions. The improvement provided by the boldfaced
number compared to CDNMT∗ is statistically signifi-
cant according to paired bootstrap re-sampling (Koehn,
2004) with p = 0.05.

Table 3 can be interpreted from different per-
spectives but the main findings are summarized as
follows:

• The morphology table yields significant im-
provements for all languages and settings.

• The morphology table boosts the En–Tr en-
gine more than others and we think this is be-
cause of the nature of the language. Turkish
is an agglutinative language in which mor-
phemes are clearly separable from each other,
but in German and Russian morphological
transformations rely more on fusional oper-
ations rather than agglutination.

• It seems that there is a direct relation between
the size of the morphology table and the gain
provided for the decoder, because Russian
and Turkish have bigger tables and benefit
from the table more than German which has
fewer affixes.

• The auxiliary output channel is even more
useful than the morphology table for all set-
tings but En–Ru, and we think this is because
of the morpheme-per-word ratio in Russian.
The number of morphemes attached to a Rus-
sian word is usually more than those of Ger-
man and Turkish words in our corpora, and it
makes the prediction harder for the classifier
(the more the number of suffixes attached to
a word, the harder the classification task).

• The combination of the morphology table
and the extra output channel provides the best
result for all languages.

Figure 3 depicts the impact of the morphology ta-
ble and the extra output channel for each language.

En–De En–Ru En–Tr
0

0.2

0.4

0.6

0.8

0.26

0.55

0.44
0.38

0.16

0.59

0.47

0.61

0.7

Figure 3: The y axis shows the difference between
the BLEU score of CDNMT∗ and the extended model.
The first, second, and third bars show the m, o, and mo
extensions, respectively.

To further study our models’ behaviour and
ensure that our extensions do not generate ran-
dom improvements we visualized some attention
weights when generating ‘terbiyesizlik’. In Figure
4, the upper figure shows attention weights for all
Turkish affixes, where the y axis shows different
time steps and the x axis includes attention weights
of all affixes (304 columns) for those time steps,
e.g. the first row and the first column represents
the attention weight assigned to the first Turkish
affix when sampling t in ‘terbiyesizlik’. While at
the first glance the figure may appear to be some-
what confusing, but it provides some interesting
insights which we elaborate next.

In addition to the whole attention matrix we also
visualized a subset of weights to show how the
morphology table provides useful information. In
the second figure we study the behaviour of the
morphology table for the first (t1), fifth (i5), ninth
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Figure 4: Visualizing the attention weights between the morphology table and the decoder when generating ‘ter-
biyesizlik.

(i9), and twelfth (i12) time steps when generating
the same Turkish word ‘t1erbi5yesi9zli12k’. t1 is
the first character of the word. We also have three
i characters from different morphemes, where the
first one is part of the stem, the second one be-
longs to the suffix ‘siz’, and the third one to ‘lik’.
It is interesting to see how the table reacts to the
same character from different parts. For each time
step we selected the top-10 affixes which have the
highest attention weights. The set of top-10 affixes
can be different for each step, so we made a union
of those sets which gives us 22 affixes. The bot-
tom part of Figure 4 shows the attention weights
for those 22 affixes at each time step.

After analyzing the weights we observed inter-
esting properties about the morphology table and
the auxiliary attention module.3 The main findings
about the behaviour of the table are as follows:

• The model assigns high attention weights to
stem-C for almost all time steps. However,
the weights assigned to this class for t1 and i5
are much higher than those of affix characters
(as they are part of the stem). The vertical
lines in both figures approve this feature (bad
behaviour).

• For some unknown reasons there are some
affixes which have no direct relation to that
particulate time step but they receive a high
attention, such as maz in t12 (bad behaviour).

• For almost all time steps the highest attention
weight belongs to the class which is expected

3Our observations are not based on this example alone
as we studied other random examples, and the table shows
consistent behaviour for all examples.

to be selected, e.g. weights for (i5,stem-C) or
(i9,siz-C) (good behaviour).

• The morphology table may send bad or good
signals but it is consistent for similar or co-
occurring characters, e.g. for the last three
time steps l11, i12, and k13, almost the same
set of affixes receives the highest attention
weights. This consistency is exactly what
we are looking for, as it can define a reliable
external constraint for the decoder to guide
it. Vertical lines on the figure also confirm
this fact. They show that for a set of con-
secutive characters which belong to the same
morpheme the attention module sends a sig-
nal from a particular affix (good behaviour).

• There are some affixes which might not be
directly related to that time step but receive
high attention weights. This is because
those affixes either include the same charac-
ter which the decoder tries to predict (e.g. i-C
for i4 or t-C and tin-C for t1), or frequently
appear with that part of the word which in-
cludes the target character (e.g. mi-C has a
high weight when predicting t1 because t1 be-
longs to terbiye which frequently collocates
with mi-C: terbiye+mi) (good behaviour).

Finally, in order to complete our evaluation
study we feed the English-to-German NMT model
with the sentence ‘Terms and conditions for send-
ing contributions to the BBC’, to show how the
model behaves differently and generates a better
target sentence. Translations generated by our
models are illustrated in Table 4.
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Reference: Geschäftsbedingungen für das Senden von Beiträgen an die BBC
CDNMT∗ allgemeinen geschaftsbedingungen fur die versendung von Beiträgen an die BBC
CDNMT∗mo Geschäft s bedingungen für die versendung von Beiträgen zum BBC

Table 4: Comparing translation results for the CDNMT∗ (baseline) and CDNMT∗mo (improved) models when the
input sentence is ‘Terms and conditions for sending contributions to the BBC’.

The table demonstrates that our architecture is
able to control the decoder and limit its selections,
e.g. the word ‘allgemeinen’ generated by the base-
line model is redundant. There is no constraint to
inform the baseline model that this word should
not be generated, whereas our proposed architec-
ture controls the decoder in such situations. Af-
ter analyzing our model, we realized that there are
strong attention weights assigned to the w-space
(indicating white space characters) and BOS (be-
ginning of the sequence) columns of the affix ta-
ble while sampling the first character of the word
‘Geschäft’, which shows that the decoder is in-
formed about the start point of the sequence. Sim-
ilar to the baseline model’s decoder, our decoder
can sample any character including ‘a’ of ‘allge-
meinen’ or ‘G’ of ‘Geschäft’. Translation informa-
tion stored in the baseline decoder is not sufficient
for selecting the right character ‘G’, so the de-
coder wrongly starts with ‘i’ and continues along
a wrong path up to generating the whole word.
However, our decoder’s information is accompa-
nied with signals from the affix table which force
it to start with a better initial character, whose sam-
pling leads to generating the correct target word.

Another interesting feature about the table is the
new structure ‘Geschäft s bedingungen’ generated
by the improved model. As the reference transla-
tion shows, in the correct form these two structures
should be glued together via ‘s’, which can be con-
sidered as an infix. As our model is supposed to
detect this sort of intra-word relation, it treats the
whole structure as two compounds which are con-
nected to one another via an infix. Although this is
not a correct translation and it would be trivial to
post-edit into the correct output form, it is interest-
ing to see how our mechanism forces the decoder
to pay attention to intra-word relations.

Apart from these two interesting findings, the
number of wrong character selections in the base-
line model is considerably reduced in the im-
proved model because of our enhanced architec-
ture.

5 Conclusion and Future Work

In this paper we proposed a new architecture to
incorporate morphological information into the
NMT pipeline. We extended the state-of-the-art
NMT model (Chung et al., 2016) with a morphol-
ogy table. The table could be considered as an
external knowledge source which is helpful as it
increases the capacity of the model by increasing
the number of network parameters. We tried to
benefit from this advantage. Moreover, we man-
aged to fill the table with morphological informa-
tion to further boost the NMT model when trans-
lating into MRLs. Apart from the table we also de-
signed an additional output channel which forces
the decoder to predict morphological annotations.
The error signals coming from the second chan-
nel during training inform the decoder with mor-
phological properties of the target language. Ex-
perimental results show that our techniques were
useful for NMT of MRLs.

As our future work we follow three main ideas.
i) We try to find more efficient ways to supply
morphological information for both the encoder
and decoder. ii) We plan to benefit from other
types of information such as syntactic and seman-
tic annotations to boost the decoder, as the table
is not limited to morphological information alone
and can preserve other sorts of information. iii)
Finally, we target sequence generation for fusional
languages. Although our model showed signifi-
cant improvements for both German and Russian,
the proposed model is more suitable for generating
sequences in agglutinative languages.
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Abstract

In conversational speech, the acoustic signal
provides cues that help listeners disambiguate
difficult parses. For automatically parsing spo-
ken utterances, we introduce a model that in-
tegrates transcribed text and acoustic-prosodic
features using a convolutional neural network
over energy and pitch trajectories coupled with
an attention-based recurrent neural network
that accepts text and prosodic features. We
find that different types of acoustic-prosodic
features are individually helpful, and together
give statistically significant improvements in
parse and disfluency detection F1 scores over
a strong text-only baseline. For this study
with known sentence boundaries, error anal-
yses show that the main benefit of acoustic-
prosodic features is in sentences with disfluen-
cies, attachment decisions are most improved,
and transcription errors obscure gains from
prosody.

1 Introduction

While parsing has become a relatively mature tech-
nology for written text, parser performance on
conversational speech lags behind. Speech poses
challenges for parsing: transcripts may contain er-
rors and lack punctuation; even perfect transcripts
can be difficult to handle because of disfluencies
(restarts, repetitions, and self-corrections), filled
pauses (“um”, “uh”), interjections (“like”), paren-
theticals (“you know”, “I mean”), and sentence
fragments. Some of these phenomena can be han-
dled in standard grammars, but disfluencies typi-
cally require extensions of the model. Different ap-
proaches have been explored in both constituency
parsing (Charniak and Johnson, 2001; Johnson and
Charniak, 2004) and dependency parsing (Rasooli
and Tetreault, 2013; Honnibal and Johnson, 2014).

∗Equal Contribution.

Despite these challenges, speech carries helpful
extra information – beyond the words – associ-
ated with the prosodic structure of an utterance
and encoded via variation in timing and intonation.
Speakers pause in locations that are correlated with
syntactic structure (Grosjean et al., 1979), and lis-
teners use prosodic structure in resolving syntac-
tic ambiguities (Price et al., 1991). Prosodic cues
also signal disfluencies by marking the interruption
point (Shriberg, 1994). However, most speech pars-
ing systems in practice take little advantage of these
cues. Our study focuses on this last challenge, aim-
ing to incorporate prosodic cues in a neural parser,
handling disfluencies as constituents via a neural
attention mechanism.

A challenge of incorporating prosody in pars-
ing is that multiple acoustic cues interact to signal
prosodic structure, including pauses, lengthening,
fundamental frequency modulation, and spectral
shape. These cues also vary with the phonetic seg-
ment, emphasis, emotion and speaker, so feature ex-
traction typically involves multiple time windows
and normalization techniques. The most success-
ful constituent parsers have mapped these features
to prosodic boundary posteriors by using labeled
training data (Kahn et al., 2005; Hale et al., 2006;
Dreyer and Shafran, 2007). The approach proposed
here takes advantage of advances in neural net-
works to automatically learn a good feature repre-
sentation without the need to explicitly represent
prosodic constituents. To narrow the scope of this
work and facilitate error analysis, our experiments
use known transcripts and sentence segmentation.

Our work offers the following contributions.
We introduce a framework for directly integrat-
ing acoustic-prosodic features with text in a neural
encoder-decoder parser that does not require hand-
annotated prosodic structure. We demonstrate im-
provements in constituent parsing of conversational
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speech over a high-quality text-only parser and pro-
vide analyses showing where prosodic features help
and that assessment of their utility is affected by
human transcription errors.

2 Task and Model Description

Our model maps a sequence of word-level in-
put features to a linearized parse output sequence.
The word-level input feature vector consists of the
concatenation of (learnable) word embeddings ei
and several types of acoustic-prosodic features, de-
scribed in Section 2.3.

2.1 Task Setup

We assume the availability of a training treebank
of conversational speech (in our case, Switchboard-
NXT (Calhoun et al., 2010)) and corresponding
constituent parses. The transcriptions are prepro-
cessed by removing punctuation and lower-casing
all text to better mimic the speech recognition set-
ting. Following Vinyals et al. (2015), the parse
trees are linearized, and pre-terminals are normal-
ized as “XX” (see Appendix A.1).

2.2 Encoder-Decoder Parser

Our attention-based encoder-decoder model is sim-
ilar to the one used by Vinyals et al. (2015). The
encoder is a deep long short-term memory recur-
rent neural network (LSTM-RNN) (Hochreiter and
Schmidhuber, 1997) that reads in a word-level in-
puts,1 represented as a sequence of vectors x =
(x1, · · · ,xTs), and outputs high-level features h =
(h1, · · · ,hTs) where hi = LSTM(xi,hi−1).2

The parse decoder is also a deep LSTM-RNN
that predicts the linearized parse sequence y =
(y1, · · · , yTo) as follows:

P (y|x) =
To∏

t=1

P (yt|h,y<t)

In attention-based models, the posterior distribu-
tion of the output yt at time step t is given by:

P (yt|h,y<t) = softmax(W s[ct;dt] + bs),

where vector bs and matrix W s are learnable pa-
rameters; ct is referred to as a context vector that
summarizes the encoder’s output h; and dt is the

1As in Vinyals et al. (2015) the input sequence is processed
in reverse order, as shown in Figure 1.

2For brevity we omit the LSTM equations. The details can
be found, e.g., in Zaremba et al. (2014).

decoder hidden state at time step t, which captures
the previous output sequence context y<t.

uit = v
> tanh(W 1hi +W 2dt + ba)

αt = softmax(ut) ct =

Ts∑

i=1

αtihi

where vectors v, ba and matrices W 1, W 2 are
learnable parameters; ut and αt are the attention
score and attention weight vector, respectively, for
decoder time step t.

The above attention mechanism is only content-
based, i.e., it is only dependent on hi, dt. It is not
location-aware, i.e., it does not consider the “loca-
tion” of the previous attention vector. For parsing
conversational text, location awareness is benefi-
cial since disfluent structures can have duplicate
words/phrases that may “confuse” the attention
mechanism.

In order to make the model location-aware, the
attention mechanism takes into account the pre-
vious attention weight vector αt−1. In particu-
lar, we use the attention mechanism proposed by
Chorowski et al. (2015), in which αt−1 is repre-
sented via a feature vector f t = F ∗αt−1, where
F ∈ Rk×r represents k learnable convolution fil-
ters of width r. The filters are used for performing
1-D convolution over αt−1 to extract k features
f ti for each time step i of the input sequence. The
extracted features are then incorporated in the align-
ment score calculation as:

uit = v
> tanh(W 1hi +W 2dt +W ff ti + ba)

where W f is another learnable parameter ma-
trix. Finally, the decoder state dt is computed as
dt = LSTM([ỹt−1; ct−1],dt−1), where ỹt−1 is
the embedding vector corresponding to the previ-
ous output symbol yt−1. As we will see in Sec. 4.1,
the location-aware attention mechanism is espe-
cially useful for handling disfluencies.

2.3 Acoustic-Prosodic Features
In previous work using encoder-decoder models for
parsing (Vinyals et al., 2015; Luong et al., 2016),
vector xi is simply the word embedding ei of the
word at position i of the input sentence. For parsing
conversational speech, we can incorporate acoustic-
prosodic features. Here we explore four types of
features widely used in computational models of
prosody: pauses, duration lengthening, fundamen-
tal frequency, and energy. Since prosodic cues are
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Figure 1: Left – An attention-based encoder-decoder reading the input x1, · · · ,xTs , where xi = [ei φi si] is
composed of word embeddings ei, prosodic features φi, and learned (CNN-based) features si. The encoder reads
the input in reverse order and the decoder outputs the linearized parse y1, · · · , yt, · · · . Right – Detailed illustration
of acoustic-prosodic feature learning module. CNN features are computed from input energy and pitch features;
here the CNN filter parameters are m = 3 and w = [3, 4, 5].

at sub- and multi-word time scales, they are in-
tegrated with the encoder-decoder using different
mechanisms.

All features are extracted from transcriptions that
are time-aligned at the word level.3 We use time
alignments associated with the corpus to be consis-
tent with other studies. In a small number of cases,
the time alignment for a particular word boundary
is missing. Some cases are due to tokenization. For
example, contractions, such as don’t in the original
transcript, are treated as separated words for the
parser (do and n’t), and the internal word boundary
time is missing. In such cases, these internal times
are estimated. In other cases, there are transcription
mismatches that lead to missing time alignments,
where we cannot estimate times. For the roughly
1% of sentences where time alignments are missing,
we simply back off to the text-based parser.

Pause. The pause feature vector pi for word i is
the concatenation of pre-word pause feature ppre,i
and post-word pause feature ppost,i, where each
subvector is a learned embedding for 6 pause cat-
egories: no pause, missing, 0 < p ≤ 0.05 s,
0.05 s < p ≤ 0.2 s, 0.2 < p ≤ 1 s, and p > 1 s
(including turn boundaries). The bins are chosen
based on the observed distribution (see Appendix
A.1). We did not use (real-valued) pause duration
directly, for two main reasons: (1) to handle miss-
ing time alignments; and (2) duration of pause does

3The assumption of known word alignments is standard for
prosodic feature extraction in many spoken language process-
ing studies. Time alignments can be obtained as a by-product
of recognition or from forced alignment.

not matter beyond a threshold (e.g. p > 1 s).

Word duration. Both word duration and word-
final duration lengthening are strong cues to
prosodic phrase boundaries (Wightman et al., 1992;
Pate and Goldwater, 2013). The word duration fea-
ture δi is computed as the actual word duration
divided by the mean duration of the word, clipped
to a maximum value of 5. The sample mean is used
for frequent words (count ≥ 15). For infrequent
words we estimate the mean as the sum over the
sample means for the phonemes in the word’s dic-
tionary pronunciation. We refer to the manually
defined prosodic feature pair of pi and δi as φi.

Fundament frequency (f0) and Energy (E) con-
tours (f0/E). We use a CNN to automatically
learn the mapping from the time series of f0/E
features to a word-level vector. The contour fea-
tures are extracted from 25-ms frames with 10-ms
hops using Kaldi (Povey et al., 2011). Three f0
features are used: warped Normalized Cross Corre-
lation Function (NCCF), log-pitch with Probability
of Voicing (POV)-weighted mean subtraction over
a 1.5-second window, and the estimated derivative
(delta) of the raw log pitch. Three energy features
are extracted from the Kaldi 40-mel-frequency fil-
ter bank features: Etotal, the log of total energy
normalized by dividing by the speaker side’s max
total energy; Elow, the log of total energy in the
lower 20 mel-frequency bands, normalized by total
energy, and Ehigh, the log of total energy in the
higher 20 mel-frequency bands, normalized by to-
tal energy. Multi-band energy features are used as a
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simple mechanism to capture articulatory strength-
ening at prosodic constituent onsets (Fourgeron and
Keating, 1997).

Figure 1 summarizes the feature learning ap-
proach. The f0 and E features are processed at
the word level: each sequence of frames corre-
sponding to a time-aligned word (and potentially
its surrounding context) is convolved with N filters
of m sizes (a total of mN filters). The motiva-
tion for the multiple filter sizes is to enable the
computation of features that capture information
on different time scales. For each filter, we per-
form a 1-D convolution over the 6-dimensional
f0/E features with a stride of 1. Each filter out-
put is max-pooled, resulting in mN -dimensional
speech features si. Our overall acoustic-prosodic
feature vector is the concatenation of pi, δi, and si
in various combinations.

3 Experiments

3.1 Dataset

Our core corpus is Switchboard-NXT (Calhoun
et al., 2010), a subset of the Switchboard corpus
(Godfrey and Holliman, 1993): 2,400 telephone
conversations between strangers; 642 of these were
hand-annotated with syntactic parses and further
augmented with richer layers of annotation facil-
itated by the NITE XML toolkit (Calhoun et al.,
2010). Our sentence segmentations and syntactic
trees are based on the annotations from the Tree-
bank set, with a few manual corrections from the
NXT release. This core dataset consists of 100K
sentences, totaling 830K tokens forming a vocabu-
lary of 13.5K words. We use the time alignments
available from NXT, which is based on a corrected
word transcript that occasionally differs from the
Treebank, leading to some missing time alignments.
We follow the sentence boundaries defined by the
parsed data available,4 and the data split (90% train;
5% dev; 5% test) defined by related work done on
Switchboard (Charniak and Johnson, 2001; Kahn
et al., 2005; Honnibal and Johnson, 2014).

3.2 Evaluation Metrics and Baselines

The standard evaluation metric for constituent pars-
ing is the parseval metric which uses bracketing
precision, recall, and F1, as in the canonical im-
plementation of EVALB.5 For written text, punc-

4Note that these sentence units can be inconsistent with
other layers of Switchboard annotations, such as slash units.

5http://nlp.cs.nyu.edu/evalb/

tuation is sometimes represented as part of the se-
quence and impacts the final score, but for speech
the punctuation is not explicitly available so it does
not contribute to the score. Another challenge
of transcribed speech is the presence of disfluen-
cies. Speech repairs are indicated under “EDITED”
nodes in Switchboard parse trees, which include
structure under these nodes that is not of interest
for simple text clean-up. Therefore, some stud-
ies report flattened-edit parseval F1 scores (“flat-
F1”), which is parseval computed on trees where
the structure under edit nodes has been eliminated
so that all leaves are immediate children. We re-
port both scores for the baseline text-only model
showing that the differences are small, then use the
standard parseval F1 score for most results.6

Disfluencies are particularly problematic for sta-
tistical parsers, as explained by Charniak and John-
son (2001), and some systems incorporate a sep-
arate disfluency detection stage. For this reason,
and because it is useful for understanding system
performance, most studies also report disfluency
detection performance, which is measured in terms
of the F1 score for detecting whether a word is in
an edit region. Our approach does not involve a
separate disfluency detection stage, but identifies
disfluencies implicitly via the parse structure. Con-
sequently, the disfluency detection results are not
competitive with work that directly optimize for
disfluency detection. We report disfluency detec-
tion scores primarily as a diagnostic.

Most previous work on integrating prosody and
parsing has used the Switchboard corpus, but it
is still difficult to compare results because of dif-
ferences in constraints, objectives and the use of
constituent vs. dependency structure, as discussed
further in Section 6. The most relevant prior studies
(on constituent parsing) that we compare to are a
bit old. The text-only result from our neural parser
represents a stronger baseline and is important for
decoupling the impact of prosody vs. the parsing
framework.

3.3 Model Training and Inference
Both the encoder and decoder are 3-layer deep
LSTM-RNNs with 256 hidden units in each layer.
For the location-aware attention, the convolution
operation uses 5 filters of width 40 each. We
use 512-dimensional embedding vectors to repre-

6A variant of the “flat-F1” score is used in (Charniak and
Johnson, 2001; Kahn et al., 2005), which uses a relaxed edited
node precision and recall but also ignores filled pauses.
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sent words and linearized parsing symbols, such as
“(S”.7

A number of configurations are explored for the
acoustic-prosodic features, tuning based on dev
set parsing performance. Pause embeddings are
tuned over {4, 16, 32} dimensions. For the CNN,
we try different configurations of filter widths
w ∈ {[10, 25, 50], [5, 10, 25, 50]} and number of
filters N ∈ {16, 32, 64, 128} for each filter width.8

These filter size combinations are chosen to cap-
ture f0 and energy phenomena on various levels:
w = 5, 10 for sub-word, w = 25 for word, and
w = 50 for word and extended context. Our best
model uses 32-dimensional pause embeddings and
N = 32 filters of widthsw = [5, 10, 25, 50], which
corresponds to m = 4 and 128 filters.

For optimization we use Adam (Kingma and Ba,
2014) with a minibatch size of 64. The initial learn-
ing rate is 0.001 which is decayed by a factor of
0.9 whenever training loss, calculated after every
500 updates, degrades relative to the worst of its
previous 3 values. All models are trained for up
to 50 epochs with early stopping. For regulariza-
tion, dropout with 0.3 probability is applied on the
output of all LSTM layers (Pham et al., 2014).

For inference, we use a greedy decoder to gen-
erate the linearized parse. The output token with
maximum posterior probability is chosen at every
time step and fed as input in the next time step. The
decoder stops upon producing the end-of-sentence
symbol. We use TensorFlow (Abadi et al., 2015) to
implement all models.9

4 Results

4.1 Text-only Results

Model F1 flat-F1 fluent disf
Berkeley 85.41 85.91 90.52 83.08
C-attn 83.33 83.20 90.86 79.94
CL-attn 87.85 87.68 92.07 85.95

Table 1: Scores of text-only models on the dev set:
2044 fluent and 3725 disfluent sentences. C-attn
denotes content-only attention; CL-attn denotes con-
tent+location attention.

7The number of layers, dimension of hidden units, dimen-
sion of embedding, and convolutional attention filter param-
eters of the text-only parser were explored in earlier experi-
ments on the development set and then fixed as described.

8Note that a filter of width 10 has size 6 × 10, since the
features are of dimension 6.

9Our code resources can be found in Appendix A.1.

Model Parse Disf
Berkeley (text only) 85.41 62.45
CL-attn (text only) 87.85 79.50
CL-attn text and
+ p 88.37 80.24
+ δ 88.04 77.41
+ p + δ 88.21 80.84
+ f0/E-CNN 88.52 80.81
+ p + f0/E-CNN 88.45 81.19
+ δ + f0/E-CNN 88.44 80.09
+ p + δ + f0/E-CNN 88.59 80.84

Table 2: Parse and disfluency detection F1 scores on the
dev set. Flat-F1 scores were consistently 0.1%-0.3%
lower for our models, but 0.2% higher for the Berkeley
parser (85.64).

We first show our results on the model using
only text (i.e. xi = ei) to establish a strong
baseline, on top of which we can add acoustic-
prosodic features. We experiment with the content-
only attention model used by Vinyals et al. (2015)
and the content+location attention of Chorowski
et al. (2015). For comparison with previous non-
neural models, we use a high-quality latent-variable
parser, the Berkeley parser (Petrov et al., 2006), re-
trained on our Switchboard data. Table 1 compares
the three text-only models. In terms of F1, the con-
tent+location attention beats the Berkeley parser
by about 2.5% and content-only attention by about
4.5%. Flat-F1 scores for both encoder-decoder
models is lower than their corresponding F1 scores,
suggesting that the encoder-decoder models do
well on predicting the internal structure of EDIT
nodes while the reverse is true for the Berkeley
parser.

To explain the gains of content+location atten-
tion over content-only attention, we compare their
scores on fluent (without EDIT nodes) and disfluent
sentences, shown in Table 1. It is clear that most of
the gains for content+location attention are from
disfluent sentences. A possible explanation is the
presence of duplicate words or phrases in disfluent
sentences, which can be problematic for a content-
only attention model. Since our best model is the
content+location attention model, we will hence-
forth refer to it as the “CL-attn” text-only model.
All models using acoustic-prosodic features are ex-
tensions of this model, which provides a strong
text-only baseline.
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Model Parse Disf
CL-attn 87.79 (0.11) 78.65 (0.46)
best model 88.15 (0.41) 80.48 (0.70)

Table 3: Parse and disfluency detection F1 scores on
the dev set: mean (and standard deviation) over 10 runs
for the baseline text-only model (CL-attn) and the best
model with prosody.

Model Parse Disfl
Berkeley 85.87 63.44
CL-attn 87.99 76.69
best model 88.50 77.47

Table 4: Parse and disfluency detection F1 scores on
the test set. The best model has statistically significant
gains over the text-only baseline with p-value < 0.02.

4.2 Adding Acoustic-Prosodic Features

We extend our CL-attn model with the three kinds
of acoustic-prosodic features: pause (p), word du-
ration (δ), and CNN mappings of fundamental fre-
quency (f0) and energy (E) features (f0/E-CNN).

The results of several model configurations on
our dev set are presented in Table 2. First, we note
that adding any combination of acoustic-prosodic
features (individually or in sets) improves perfor-
mance over the text-only baseline. However, cer-
tain combinations of acoustic-prosodic features are
not always better than their subsets. The text + p +
δ + f0/E-CNN model that uses all three types of fea-
tures has the best performance with a gain of 0.7%
over the already-strong text-only baseline. We will
henceforth refer to the text + p + δ + f0/E-CNN
model as our “best model”.

As a robustness check, we report results of av-
eraging 10 runs on the CL-attn text-only and the
best model in Table 3. We performed a bootstrap
test (Efron and Tibshirani, 1993) that simulates 105

random test draws on the models giving median
performance on the dev set. These median models
gave a statistically significant difference between
the text-only and best model (p-value < 0.02). Ad-
ditionally, a simple t-test over the two sets of 10
results also shows statistical significance p-value
< 0.03.

Table 4 presents the results on the test set. Again,
adding the acoustic-prosodic features improves
over the text-only baseline. The gains are statis-
tically significant for the best model with p-value
< 0.02, again using a bootstrap test with simulated
105 random test draws on the two models.

Model Parse Disfl
Text Only

Kahn et al. (2005) 86.4 78.2
Hale et al. (2006) 71.16 41.7
CL-attn (text only) 87.99 76.7

Text + Prosody
Kahn et al. (2005) 86.6 78.2
Hale et al. (2006) 71.05 36.2
best model 88.50 77.5

Table 5: Parse and disfluency detection F1 scores on
the test set comparing to other reported results.
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Figure 2: F1 scores of the text-only model and our best
model as a function of sentence length.

Table 5 includes results from prior studies that
compare systems using text alone with ones that
incorporate prosody, given hand transcripts and
sentence segmentation. It is difficult to compare
systems directly, because of the many differences
in the experimental set-up. For example, the origi-
nal Charniak and Johnson (2001) result (reporting
F=85.9 for parsing and F=78.2 for disfluencies)
leverages punctuation in the text stream, which is
not realistic for speech transcripts and not used in
most other work. Our work benefits from more
text training material than others, but others benefit
from gold part-of-speech tags. Kahn et al. (2005)
use a modified sentence segmentation. There are
probably minor differences in handling of word
fragments and scoring edit regions. Thus, this table
primarily shows that our framework leads to more
benefits from sentence-internal prosodic cues than
others have obtained.

5 Analysis

Effect of sentence length. Figure 2 shows per-
formance differences between our best model and
the text-only model for varying sentence lengths.
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Figure 3: An example sentence from development data – the county i am i ’m in [pause] the minorities are mostly
hispanic. The text-only parser (on the left) makes a PP Attachment error. The prosody-enhanced parser (on the
right) uses the pause indicator to correctly predict a constituent change after the word in.

Model fluent disfluent
text-only 92.07 85.90
best model 92.03 87.02

Table 6: Dev set F1-score of text-only and best model
on fluent (2029) vs. disfluent (3689) sentences.10

Both models do worse on longer sentences, as ex-
pected since the corresponding parse trees tend
to be more complex. The performance difference
between our best model and the text-only model
increases with sentence length. This is likely be-
cause longer sentences more often have multiple
prosodic phrases and disfluencies.

Effect of disfluencies. Table 6 presents parse
scores on the subsets of fluent and disfluent sen-
tences, showing that the performance gain is in the
disfluent set (65% of the dev set sentences). Be-
cause sentence boundaries are given, and so many
fluent sentences in spontaneous speech are short,
there is less potential for benefit from prosody in
the fluent set.

Types of errors. We use the Berkeley Parser An-
alyzer (Kummerfeld et al., 2012) to compare the
types of errors made by the different parsers.10 Ta-
ble 7 presents the relative error reductions over the
text-only baseline achieved by the text + p model
and our best model for disfluent sentences. The two
models differ in the types of error reductions they
provide. Including pause information gives largest
improvements on PP attachment and Modifier at-

10This analysis omits the 1% of the sentences that did not
have timing information.

Error Type
Disfluent Sentences

text + p best model
Clause Att. 5.7% 1.3%
Diff. Label 7.6% 4.2%
Modifier Att. 9.7% 19.1%
NP Att. -2.7% 14.5%
NP Internal 7.8% 7.4%
PP Att. 10.1% 7.8%
1-Word Phrase 6.3% 6.8%
Unary -1.1% 8.9%
VP Att. 0.0% 12.0%

Table 7: Relative error reduction over the text-only
baseline in the disfluent subset (3689 sentences) of the
development set. Shown here are the most frequent er-
ror types (with count ≥ 100 for the text-only model).

tachment errors. Adding the remaining acoustic-
prosodic features helps to correct more types of
attachment errors, especially VP and NP attach-
ment. Figure 3 demonstrates one case where the
pause feature helps in correcting a PP attachment
error made by a text-only parser. Other interest-
ing examples (see Appendix A.2) suggest that the
learned f0/E features help reduce NP attachment
errors where the audio reveals a prominent word at
the constituent boundary, even though there is no
pause at that word.

Effect of transcription errors. The results and
analyses so far have assumed that we have reliable
transcripts. In fact, the original transcripts con-
tained errors, and the Treebank annotators used
these without reference to audio files. Mississippi
State University (MS-State) ran a clean-up project
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that produced more accurate word transcripts and
time alignments (Deshmukh et al., 1998). The NXT
corpus provides reconciliation between Treebank
and MS-State transcripts in terms of annotating
missed/extra/substituted words, but parses were not
re-annotated. The transcript errors mean that the
acoustic signal is inconsistent with the “gold” parse
tree. Below are some examples of “fluent” sen-
tences (according to the Treebank transcripts) with
transcription errors, for which prosodic features
“hurt” parsing. Words that transcribers missed are
in brackets and those inserted are underlined.
S1: and because <uh> like if your spouse died <all of
a sudden you be> all alone it ’d be nice to go some-
place with people similar to you to have friends

S2: uh uh <i have had> my wife ’s picked up a couple
of things saying uh boy if we could refinish that ’d be a
beautiful piece of furniture

Multi-syllable errors are especially problematic,
leading to serious inconsistencies between the text
and the acoustic signal. Further, the missed words
lead to an incorrect attachment in the “gold” parse
in S1 and a missing restart edit in S2. Indeed, for
sentences with consecutive transcript errors, which
we expect to impact the prosodic features, there is
a statistically significant (p-value < 0.05) negative
effect on parsing with prosody. Not included in
this analysis are sentence boundary errors, which
also change the “gold” parse. Thus, prosody may
be more useful than results here indicate.

6 Related Work

Related work on parsing conversational speech has
mainly addressed four problems: speech recogni-
tion errors, unknown sentence segmentation, dis-
fluencies, and integrating prosodic cues. Our work
addresses the last two problems, which involve
studies based on hand-transcribed text and known
sentence boundaries, as in much speech parsing
work. The related studies are thus the focus of this
discussion. We describe studies using the Switch-
board corpus, since it has dominated work in this
area, being the largest source of treebanked English
spontaneous speech.

One major challenge of parsing conversational
speech is the presence of disfluencies, which are
grammatical and prosodic interruptions. Disfluen-
cies include repetitions (‘I am + I am’), repairs
(‘I am + we are’), and restarts (‘What I + Today is
the...’), where the ‘+’ corresponds to an interruption
point. Repairs often involve parallel grammatical

constructions, but they can be more complex, in-
volving hedging, clarifications, etc. Charniak and
Johnson (Charniak and Johnson, 2001; Johnson and
Charniak, 2004) demonstrated that disfluencies are
different in character than other constituents and
that parsing performance improves from combining
a PCFG parser with a separate module for disflu-
ency detection via parse rescoring. Our approach
does not use a separate disfluency detection mod-
ule; we hypothesized that the location-sensitive at-
tention model helps handle these differences based
on analysis of the text-only results (Table 1). How-
ever, more explicit modeling of disfluency pattern
match characteristics in a dependency parser (Hon-
nibal and Johnson, 2014) leads to better disfluency
detection performance (F = 84.1 vs. 76.7 for our
text only model). Pattern match features also ben-
efit a neural model for disfluency detection alone
(F = 87.0) (Zayats et al., 2016), and similar gains
are observed by formulating disfluency detection
in a transition-based framework (F = 87.5) (Wang
et al., 2017). Experiments with oracle disfluencies
as features improve the CL-attn text-only parsing
performance from 87.85 to 89.38 on the test set,
showing that more accurate disfluency modeling is
a potential area of improvement.

It is well known that prosodic features play a role
in human resolution of syntactic ambiguities, with
more than two decades of studies seeking to incor-
porate prosodic features in parsing. A series of stud-
ies looked at constituent parsing informed by the
presence (or likelihood) of prosodic breaks at word
boundaries (Kahn et al., 2004, 2005; Hale et al.,
2006; Dreyer and Shafran, 2007). Our approach
improves over performance of these systems using
raw acoustic features, without the need for hand-
labeling prosodic breaks. The gain is in part due to
the improved text-based parser, but the incremental
benefit of prosody here is similar to that in these
prior studies. (In prior work using acoustic feature
directly (Gregory et al., 2004), prosody actually de-
graded performance.) Our analyses of the impact
of prosody also extends prior work.

Prosody is also known to provide useful cues
to sentence boundaries (Liu et al., 2006), and au-
tomatic sentence segmentation performance has
been shown to have a significant impact on pars-
ing performance (Kahn and Ostendorf, 2012). In
our study, sentence boundaries are given so as to
focus on the role of prosody in resolving sentence-
internal parse ambiguity, for which prior work had
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obtained smaller gains. Studies have also shown
that parsing lattices or confusion networks can
improve ASR performance (Kahn and Ostendorf,
2012; Yoshikawa et al., 2016). Our analysis of per-
formance degradation for the system with prosody
when the gold transcript and associated parse are in
error suggests that prosody may have benefits for
parsers operating on alternative ASR hypotheses.

The results we compare to in Section 4 are rel-
atively old. More recent parsing results on spon-
taneous speech involve dependency parsers using
only text (Rasooli and Tetreault, 2013; Honnibal
and Johnson, 2014; Yoshikawa et al., 2016), with
the exception of a study on unsupervised depen-
dency parsing (Pate and Goldwater, 2013). With
the recent success of transition-based neural ap-
proaches in dependency parsing, researchers have
adapted transition-based ideas to constituent pars-
ing (Zhu et al., 2013; Watanabe and Sumita, 2015;
Dyer et al., 2016). These approaches have not
yet been used with speech, to our knowledge, but
we expect it to be straightforward to extend our
prosody integration framework to these systems,
both for dependency and constituency parsing.

7 Conclusion

We have presented a framework for directly in-
tegrating acoustic-prosodic features with text in
a neural encoder-decoder parser that does not re-
quire hand-annotated prosodic structure. On con-
versational sentences, we obtained strong results
when including word-level acoustic-prosodic fea-
tures over using only transcriptions. The acoustic-
prosodic features provide the largest gains when
sentences are disfluent or long, and analysis of error
types shows that these features are especially help-
ful in repairing attachment errors. In cases where
prosodic features hurt performance, we observe a
statistically significant negative effect caused by im-
perfect human transcriptions that make the “ground
truth” parse tree and the acoustic signal inconsis-
tent, which suggests that there is more to be gained
from prosody than observed in prior studies. We
thus plan to investigate aligning the Treebank and
MS-State versions of Switchboard for future work.

Here, we assumed known sentence boundaries
and hand transcripts, leaving open the question of
whether increased benefits from prosody can be
gained by incorporating sentence segmentation in
parsing and/or in parsing ASR lattices. Most prior
work using prosody in parsing has been on con-

stituent parsing, since prosodic cues tend to align
with constituent boundaries. However, it remains
an open question as to whether dependency, con-
stituency or other parsing frameworks are better
suited to leveraging prosody. Our study builds on a
parser that uses reverse order text processing, since
it provides a stronger text-only baseline. However,
the prosody modeling component relies only on a
1 second lookahead of the current word (for pause
binning), so it could be easily incorporated in an
incremental parser.
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A Appendix

A.1 Miscellany

Our main model code is available at
https://github.com/shtoshni92/
speech_parsing. Most of the data prepro-
cessing code is available at https://github.
com/trangham283/seq2seq_parser/
tree/master/src/data_preps. Part of
our data preprocessing pipeline also uses https:
//github.com/syllog1sm/swbd_tools.

Table 8 shows statistics of our Switchboard
dataset. As defined, for example, in (Charniak
and Johnson, 2001; Honnibal and Johnson, 2014),
the splits are: conversations sw2000 to sw3000 for
training, sw4500 to sw4936 for validation (dev),
and sw4000 to sw4153 for evaluation (test). In
addition, previous work has reserved sw4154 to
sw4500 for “future use” (dev2), but we added this
set to our training set. That is, all of our models
are trained on Switchboard conversations sw2000
to sw3000 as well as sw4154 to sw4500.

Section # sentences # words
Train 97,113 729,252
Dev 5,769 50,445
Test 5,901 48,625

Table 8: Data statistics.

Figure 4 illustrates the data preprocessing step.
On the decoder end, we also use a post-processing
step that merges the original sentence with the de-
coder output to obtain the standard constituent tree
representation. During inference, in rare cases (and
virtually none as our models converge), the de-
coder does not generate a valid parse sequence, due
to the mismatch in brackets and/or the mismatch
in the number of pre-terminals and terminals, i.e.,
num(XX) 6= num(tokens). In such cases, we sim-
ply add/remove brackets from either end of the
parse, or add/remove pre-terminal symbols XX in
the middle of the parse to match the number of
input tokens.

Figure 5 shows the distribution of pause dura-
tions in our training data. Our pause buckets of

Original parse tree

S FRAG

PP

NP PRP yourself

IN about

INTJ UH uh

Linearized parse tree
(S (FRAG (INTJ (UH uh)) (PP (IN about)

(NP (PRP yourself) ))))

Final POS-normalized linearized parse tree
(S (FRAG (INTJ XX) (PP XX (NP XX))))

Figure 4: Data preprocessing. Trees are linearized;
POS tags (pre-terminals) are normalized as “XX”. Also
note the annotation standard used for Switchboard data:
The root node of the tree is an “S” node although it is
not a complete sentence.

0 < p ≤ 0.05 s, 0.05 s < p ≤ 0.2 s, 0.2 < p ≤ 1
s, and p > 1 s described in the main paper were
based on this distribution of pause lengths.

0 1 2 3 4 5
Pause Duration (in sec.)

0.0

0.1

0.2

0.3

P
ro

ba
bi

lit
y

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: Histogram of inter-word pause durations in
our training set. As expected, most of the pauses are
less than 1 second. Further binning of pause durations
≤ 1 second reveals that the plot peaks around 0.2 sec-
onds and continuously decays from there on. In some
very rare cases, pauses of 5+ seconds occur within a
sentence.

Table 9 shows the comprehensive error counts
in all error categories defined in the Berkeley Parse
Analyzer (Kummerfeld et al., 2012) in both the
fluent and disfluent subsets.

A.2 Tree Examples
In figures 6, 7, and 8, we follow node correction
notations as in (Kummerfeld et al., 2012). In partic-
ular, missing nodes are marked in blue on the gold
tree, extra nodes are marked red in the predicted
tree, and yellow nodes denote crossing.
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Fluent Subset Disfluent Subset
Error Type text-only text + p best model text-only text + p best model
Clause Attach. 126 132 123 631 595 600
Co-ordination 1 2 1 10 10 5
Different label 112 116 124 288 266 300
Modifier Attach. 119 127 112 320 289 325
NP Attach. 92 89 94 332 341 283
NP Internal 71 61 65 231 213 232
PP Attach. 171 152 149 524 471 470
1-Word Phrase 334 342 328 1054 988 1030
UNSET add 86 81 64 353 352 356
UNSET move 85 93 95 466 447 439
UNSET remove 73 70 56 334 324 318
Unary 246 239 236 1088 1100 1074
VP Attach. 36 41 25 167 167 172
XoverX Unary 36 35 34 54 57 54

Table 9: Parse error counts comparison on the fluent (2029 sentences) and disfluent (3689 sentences) subsets of
the development set across three parsers.
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Figure 6: An example sentence from development data – but i ’ve two kids and all. Even though there are no
pauses between all words, the word kids is lengthened in the audio sample, helping the prosody-enhanced parser
(right) to recognize a major syntactic boundary, avoiding the NP Attachment error made by the text-only parser
(left).
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Figure 7: An example sentence from development data – she had two kids of her own and everything. There were
no pauses between all words in this sentence, the audio sample showed that the word own was both lengthened and
raised in intonation, giving the prosody-enhanced parser (right) a signal that own is on a syntactic boundary. On
the other hand, the text-only parser (left) had no such information and made an NP-attachment error. This sentence
also illustrates an interesting case where, in isolation, the text-only parse makes sense (i.e. everything being an
object of had). However, in the context of this conversation (the speaker was talking about another person in an
informal manner), and everything acts more like filler - e.g. “i play the violin and stuff ”
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Figure 8: An example sentence from development data – television sure makes child rearing easy on you. This
is an example where our prosody-enhanced parser (left) did worse than the text-only parser (right), which made
no errors. The error type illustrated here is Different Label and Modifier Attachment. In the first iteration, the
analyzer identifies a Different Label error (ADVP node), and in the second pass identifies the Modifier Attachment
error.
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Abstract

We explore multitask models for neural trans-
lation of speech, augmenting them in order
to reflect two intuitive notions. First, we in-
troduce a model where the second task de-
coder receives information from the decoder
of the first task, since higher-level intermediate
representations should provide useful infor-
mation. Second, we apply regularization that
encourages transitivity and invertibility. We
show that the application of these notions on
jointly trained models improves performance
on the tasks of low-resource speech transcrip-
tion and translation. It also leads to better per-
formance when using attention information for
word discovery over unsegmented input.

1 Introduction

Recent efforts in endangered language documen-
tation focus on collecting spoken language re-
sources, accompanied by spoken translations in a
high resource language to make the resource in-
terpretable (Bird et al., 2014a). For example, the
BULB project (Adda et al., 2016) used the LIG-
Aikuma mobile app (Bird et al., 2014b; Blachon
et al., 2016) to collect parallel speech corpora be-
tween three Bantu languages and French. Since
it’s common for speakers of endangered languages
to speak one or more additional languages, collec-
tion of such a resource is a realistic goal.

Speech can be interpreted either by transcrip-
tion in the original language or translation to an-
other language. Since the size of the data is ex-
tremely small, multitask models that jointly train
a model for both tasks can take advantage of
both signals. Our contribution lies in improv-
ing the sequence-to-sequence multitask learning
paradigm, by drawing on two intuitive notions:
that higher-level representations are more useful
than lower-level representations, and that transla-
tion should be both transitive and invertible.

Higher-level intermediate representations, such
as transcriptions, should in principle carry infor-
mation useful for an end task like speech transla-
tion. A typical multitask setup (Weiss et al., 2017)
shares information at the level of encoded frames,
but intuitively, a human translating speech must
work from a higher level of representation, at least
at the level of phonemes if not syntax or semantics.
Thus, we present a novel architecture for tied mul-
titask learning with sequence-to-sequence models,
in which the decoder of the second task receives
information not only from the encoder, but also
from the decoder of the first task.

In addition, transitivity and invertibility are two
properties that should hold when mapping be-
tween levels of representation or across languages.
We demonstrate how these two notions can be im-
plemented through regularization of the attention
matrices, and how they lead to further improved
performance.

We evaluate our models in three experiment
settings: low-resource speech transcription and
translation, word discovery on unsegmented in-
put, and high-resource text translation. Our high-
resource experiments are performed on English,
French, and German. Our low-resource speech ex-
periments cover a wider range of linguistic diver-
sity: Spanish-English, Mboshi-French, and Ainu-
English.

In the speech transcription and translation tasks,
our proposed model leads to improved perfor-
mance against all baselines as well as previous
multitask architectures. We observe improvements
of up to 5% character error rate in the transcrip-
tion task, and up to 2.8% character-level BLEU in
the translation task. However, we didn’t observe
similar improvements in the text translation exper-
iments. Finally, on the word discovery task, we im-
prove upon previous work by about 3% F-score on
both tokens and types.
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2 Model

Our models are based on a sequence-to-sequence
model with attention (Bahdanau et al., 2015). In
general, this type of model is composed of three
parts: a recurrent encoder, the attention, and a re-
current decoder (see Figure 1a).1

The encoder transforms an input sequence of
words or feature frames x1, . . . , xN into a sequence
of input states h1, . . . ,hN :

hn = enc(hn−1, xn).

The attention transforms the input states into a se-
quence of context vectors via a matrix of attention
weights:

cm =
∑

n

αmnhn.

Finally, the decoder computes a sequence of out-
put states from which a probability distribution
over output words can be computed.

sm = dec(sm−1, cm, ym−1)

P(ym) = softmax(sm).

In a standard encoder-decoder multitask model
(Figure 1b) (Dong et al., 2015; Weiss et al., 2017),
we jointly model two output sequences using a
shared encoder, but separate attentions and de-
coders:

c1
m =

∑

n

α1
mnhn

s1
m = dec1(s1

m−1, c
1
m, y

1
m−1)

P(y1
m) = softmax(s1

m)

and

c2
m =

∑

n

α2
mnhn

s2
m = dec2(s2

m−1, c
2
m, y

2
m−1)

P(y2
m) = softmax(s2

m).

We can also arrange the decoders in a cascade
(Figure 1c), in which the second decoder attends
only to the output states of the first decoder:

c2
m =

∑

m′
α12

mm′s
1
m′

s2
m = dec2(s2

m−1, c
2
m, y

2
m−1)

P(y2
m) = softmax(s2

m).
1For simplicity, we have assumed only a single layer for

both the encoder and decoder. It is possible to use multiple
stacked RNNs; typically, the output of the encoder and de-
coder (cm and P(ym), respectively) would be computed from
the top layer only.

Tu et al. (2017) use exactly this architecture to
train on bitext by setting the second output se-
quence to be equal to the input sequence (y2

i = xi).
In our proposed triangle model (Figure 1d), the

first decoder is as above, but the second decoder
has two attentions, one for the input states of the
encoder and one for the output states of the first
decoder:

c2
m =

[∑
m′ α

12
mm′s

1
m′

∑
n α

2
mnhn

]

s2
m = dec2(s2

m−1, c
2
m, y

2
m−1)

P(y2
m) = softmax(s2

m).

Note that the context vectors resulting from the
two attentions are concatenated, not added.

3 Learning and Inference

For compactness, we will write X for the matrix
whose rows are the xn, and similarly H, C, and
so on. We also write A for the matrix of attention
weights: [A]i j = αi j.

Let θ be the parameters of our model, which we
train on sentence triples (X,Y1,Y2).

3.1 Maximum likelihood estimation
Define the score of a sentence triple to be a log-
linear interpolation of the two decoders’ probabil-
ities:

score(Y1,Y2 | X; θ) = λ log P(Y1 | X; θ) +

(1 − λ) log P(Y2 | X,S1; θ)

where λ is a parameter that controls the impor-
tance of each sub-task. In all our experiments, we
set λ to 0.5. We then train the model to maximize

L(θ) =
∑

score(Y1,Y2 | X; θ),

where the summation is over all sentence triples in
the training data.

3.2 Regularization
We can optionally add a regularization term to the
objective function, in order to encourage our atten-
tion mechanisms to conform to two intuitive prin-
ciples of machine translation: transitivity and in-
vertibility.

Transitivity attention regularizer To a first ap-
proximation, the translation relation should be
transitive (Wang et al., 2006; Levinboim and Chi-
ang, 2015): If source word xi aligns to target word
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Figure 1: Variations on the standard attentional model. In the standard single-task model, the decoder attends to the
encoder’s states. In a typical multitask setup, two decoders attend to the encoder’s states. In the cascade (Tu et al.,
2017), the second decoder attends to the first decoder’s states. In our proposed triangle model, the second decoder
attends to both the encoder’s states and the first decoder’s states. Note that for clarity’s sake there are dependencies
not shown.

y1
j and y1

j aligns to target word y2
k , then xi should

also probably align to y2
k . To encourage the model

to preserve this relationship, we add the following
transitivity regularizer to the loss function of the
triangle models with a small weight λtrans = 0.2:

Ltrans = score(Y1,Y2) − λtrans
∥∥∥A12A1 − A2

∥∥∥2
2.

Invertibility attention regularizer The transla-
tion relation also ought to be roughly invertible
(Levinboim et al., 2015): if, in the reconstruc-
tion version of the cascade model, source word
xi aligns to target word y1

j , then it stands to rea-
son that y j is likely to align to xi. So, whereas Tu
et al. (2017) let the attentions of the translator and
the reconstructor be unrelated, we try adding the
following invertibility regularizer to encourage the
attentions to each be the inverse of the other, again
with a weight λinv = 0.2:

Linv = score(Y1,Y2) − λinv
∥∥∥A1A12 − I

∥∥∥2
2.

3.3 Decoding
Since we have two decoders, we now need to em-
ploy a two-phase beam search, following Tu et al.
(2017):

1. The first decoder produces, through standard
beam search, a set of triples each consist-
ing of a candidate transcription Ŷ1, a score
P(Ŷ1), and a hidden state sequence Ŝ.

2. For each transcription candidate from the first
decoder, the second decoder now produces

Corpus Speakers Segments Hours

Ainu-English 1 2,668 2.5
Mboshi-French 3 5,131 4.4
Spanish-English 240 17,394 20

Table 1: Statistics on our speech datasets.

through beam search a set of candidate trans-
lations Ŷ2, each with a score P(Ŷ2).

3. We then output the combination that yields
the highest total score(Y1,Y2).

3.4 Implementation
All our models are implemented in DyNet (Neubig
et al., 2017).2 We use a dropout of 0.2, and train
using Adam with initial learning rate of 0.0002 for
a maximum of 500 epochs. For testing, we select
the model with the best performance on dev. At
inference time, we use a beam size of 4 for each
decoder (due to GPU memory constraints), and
the beam scores include length normalization (Wu
et al., 2016) with a weight of 0.8, which Nguyen
and Chiang (2017) found to work well for low-
resource NMT.

4 Speech Transcription and Translation

We focus on speech transcription and translation
of endangered languages, using three different cor-

2Our code is available at: https://bitbucket.org/
antonis/dynet-multitask-models.
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Model Search Mboshi French Ainu English Spanish English
ASR MT ASR MT CER BLEU CER BLEU CER BLEU

(1) auto text 1-best 1-best 42.3 21.4 44.0 16.4 63.2 24.2
(2) gold text — 1-best 0.0 31.2 0.0 19.3 0.0 51.3
(3) single-task 1-best — 20.8 — 12.0 — 21.6
(4) multitask 4-best 1-best 36.9 21.0 40.1 18.3 57.4 26.0

(5) cascade 4-best 1-best 39.7 24.3 42.1 19.8 58.1 26.8

(6) triangle 4-best 1-best 32.3 24.1 39.9 19.2 58.9 28.6
(7) triangle+Ltrans 4-best 1-best 33.0 24.7 43.3 20.2 59.3 28.6

(8) triangle 1-best 1-best 31.8 19.7 38.9 19.8 58.4 28.8
(9) triangle+Ltrans 1-best 1-best 32.1 20.9 43.0 20.3 59.1 28.5

Table 2: The multitask models outperform the baseline single-task model and the pivot approach (auto/text) on all
language pairs tested. The triangle model also outperforms the simple multitask models on both tasks in almost all
cases. The best results for each dataset and task are highlighted.

pora on three different language directions: Span-
ish (es) to English (en), Ainu (ai) to English, and
Mboshi (mb) to French (fr).

4.1 Data

Spanish is, of course, not an endangered language,
but the availability of the CALLHOME Spanish
Speech dataset (LDC2014T23) with English trans-
lations (Post et al., 2013) makes it a convenient
language to work with, as has been done in almost
all previous work in this area. It consists of tele-
phone conversations between relatives (about 20
total hours of audio) with more than 240 speak-
ers. We use the original train-dev-test split, with
the training set comprised of 80 conversations and
dev and test of 20 conversations each.

Hokkaido Ainu is the sole surviving member of
the Ainu language family and is generally consid-
ered a language isolate. As of 2007, only ten native
speakers were alive. The Glossed Audio Corpus
of Ainu Folklore provides 10 narratives with au-
dio (about 2.5 hours of audio) and translations in
Japanese and English.3 Since there does not exist
a standard train-dev-test split, we employ a cross
validation scheme for evaluation purposes. In each
fold, one of the 10 narratives becomes the test set,
with the previous one (mod 10) becoming the dev
set, and the remaining 8 narratives becoming the
training set. The models for each of the 10 folds
are trained and tested separately. On average, for
each fold, we train on about 2000 utterances; the
dev and test sets consist of about 270 utterances.

3http://ainucorpus.ninjal.ac.jp/corpus/en/

We report results on the concatenation of all folds.
The Ainu text is split into characters, except for the
equals (=) and underscore ( ) characters, which are
used as phonological or structural markers and are
thus merged with the following character.4

Mboshi (Bantu C25 in the Guthrie classifica-
tion) is a language spoken in Congo-Brazzaville,
without standard orthography. We use a corpus
(Godard et al., 2017) of 5517 parallel utterances
(about 4.4 hours of audio) collected from three na-
tive speakers. The corpus provides non-standard
grapheme transcriptions (close to the language
phonology) produced by linguists, as well as
French translations. We sampled 100 segments
from the training set to be our dev set, and used
the original dev set (514 sentences) as our test set.

4.2 Implementation

We employ a 3-layer speech encoding scheme
similar to that of Duong et al. (2016). The first
bidirectional layer receives the audio sequence in
the form of 39-dimensional Perceptual Linear Pre-
dictive (PLP) features (Hermansky, 1990) com-
puted over overlapping 25ms-wide windows ev-
ery 10ms. The second and third layers consist of
LSTMs with hidden state sizes of 128 and 512 re-
spectively. Each layer encodes every second out-
put of the previous layer. Thus, the sequence is
downsampled by a factor of 4, decreasing the com-
putation load for the attention mechanism and the
decoders. In the speech experiments, the decoders

4The data preprocessing scripts are released with the rest
of our code.
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output the sequences at the grapheme level, so the
output embedding size is set to 64.

We found that this simpler speech encoder
works well for our extremely small datasets. Ap-
plying our models to larger datasets with many
more speakers would most likely require a more
sophisticated speech encoder, such as the one used
by Weiss et al. (2017).

4.3 Results

In Table 2, we present results on three small
datasets that demonstrate the efficacy of our mod-
els. We compare our proposed models against
three baselines and one “skyline.” The first base-
line is a traditional pivot approach (line 1), where
the ASR output, a sequence of characters, is the
input to a character-based NMT system (trained
on gold transcriptions). The “skyline” model (line
2) is the same NMT system, but tested on gold
transcriptions instead of ASR output. The second
baseline is translation directly from source speech
to target text (line 3). The last baseline is the stan-
dard multitask model (line 4), which is similar to
the model of Weiss et al. (2017).

The cascade model (line 5) outperforms the
baselines on the translation task, while only falling
behind the multitask model in the transcription
task. On all three datasets, the triangle model
(lines 6, 7) outperforms all baselines, including
the standard multitask model. On Ainu-English,
we even obtain translations that are comparable to
the “skyline” model, which is tested on gold Ainu
transcriptions.

Comparing the performance of all models
across the three datasets, there are two notable
trends that verify common intuitions regarding the
speech transcription and translation tasks. First, an
increase in the number of speakers hurts the per-
formance of the speech transcription tasks. The
character error rates for Ainu are smaller than the
CER in Mboshi, which in turn are smaller than the
CER in CALLHOME. Second, the character-level
BLEU scores increase as the amount of training
data increases, with our smallest dataset (Ainu)
having the lowest BLEU scores, and the largest
dataset (CALLHOME) having the highest BLEU
scores. This is expected, as more training data
means that the translation decoder learns a more
informed character-level language model for the
target language.

Note that Weiss et al. (2017) report much higher

BLEU scores on CALLHOME: our model un-
derperforms theirs by almost 9 word-level BLEU
points. However, their model has significantly
more parameters and is trained on 10 times
more data than ours. Such an amount of data
would never be available in our endangered lan-
guages scenario. When calculated on the word-
level, all our models’ BLEU scores are between 3
and 7 points for the extremely low resource
datasets (Mboshi-French and Ainu-English), and
between 7 and 10 for CALLHOME. Clearly, the
size of the training data in our experiments is not
enough for producing high quality speech transla-
tions, but we plan to investigate the performance
of our proposed models on larger datasets as part
of our future work.

To evaluate the effect of using the combined
score from both decoders at decoding time, we
evaluated the triangle models using only the 1-best
output from the speech model (lines 8, 9). One
would expect that this would favor speech at
the expense of translation. In transcription accu-
racy, we indeed observed improvements across the
board. In translation accuracy, we observed a sur-
prisingly large drop on Mboshi-French, but sur-
prisingly little effect on the other language pairs
– in fact, BLEU scores tended to go up slightly,
but not significantly.

Finally, Figure 2 visualizes the attention ma-
trices for one utterance from the baseline multi-
task model and our proposed triangle model. It
is clear that our intuition was correct: the transla-
tion decoder receives most of its context from the
transcription decoder, as indicated by the higher
attention weights of A12. Ideally, the area under
the red squares (gold alignments) would account
for 100% of the attention mass of A12. In our tri-
angle model, the total mass under the red squares
is 34%, whereas the multitask model’s correct at-
tentions amount to only 21% of the attention mass.

5 Word Discovery

Although the above results show that our model
gives large performance improvements, in abso-
lute terms, its performance on such low-resource
tasks leaves a lot of room for future improvement.
A possible more realistic application of our meth-
ods is word discovery, that is, finding word bound-
aries in unsegmented phonetic transcriptions.

After training an attentional encoder-decoder
model between Mboshi unsegmented phonetic se-
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A1 A1

A2 A2 A12

(a) multitask (b) triangle + transitivity

Figure 2: Attentions in an Mboshi-French sentence, extracted from two of our models. The red squares denote gold
alignments. The second decoder of the triangle model receives most of its context from the first decoder through
A12 instead of the source. The A2 matrix of the triangle model is more informed (34% correct attention mass) than
the multitask one (21% correct), due to the transitivity regularizer.

quences and French word sequences, the atten-
tion weights can be thought of as soft alignments,
which allow us to project the French word bound-
aries onto Mboshi. Although we could in princi-
ple perform word discovery directly on speech, we
leave this for future work, and only explore single-
task and reconstruction models.

5.1 Data

We use the same Mboshi-French corpus as in Sec-
tion 4, but with the original training set of 4617
utterances and the dev set of 514 utterances. Our
parallel data consist of the unsegmented phonetic
Mboshi transcriptions, along with the word-level
French translations.

5.2 Implementation

We first replicate the model of Boito et al. (2017),
with a single-layer bidirectional encoder and sin-
gle layer decoder, using an embedding and hidden
size of 12 for the base model, and an embedding
and hidden state size of 64 for the reverse model.
In our own models, we set the embedding size to
32 for Mboshi characters, 64 for French words,
and the hidden state size to 64. We smooth the at-

tention weights A using the method of Duong et al.
(2016) with a temperature T = 10 for the softmax
computation of the attention mechanism.

Following Boito et al. (2017), we train mod-
els both on the base Mboshi-to-French direction,
as well as the reverse (French-to-Mboshi) direc-
tion, with and without this smoothing operation.
We further smooth the computed soft alignments
of all models so that amn = (amn−1 +amn +amn+1)/3
as a post-processing step. From the single-task
models we extract the A1 attention matrices. We
also train reconstruction models on both direc-
tions, with and without the invertibility regularizer,
extracting both A1 and A12 matrices. The two ma-
trices are then combined so that A = A1 + (A12)T .

5.3 Results

Evaluation is done both at the token and the
type level, by computing precision, recall, and F-
score over the discovered segmentation, with the
best results shown in Table 3. We reimplemented
the base (Mboshi-French) and reverse (French-
Mboshi) models from Boito et al. (2017), and the
performance of the base model was comparable
to the one reported. However, we were unable to
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Model (with smoothing)
Tokens Types

Precision Recall F-score Precision Recall F-score

Boito et al. 2017 base 5.85 6.82 6.30 6.76 15.00 9.32
(reported) reverse 21.44 16.49 18.64 27.23 15.02 19.36

Boito et al. 2017 base 6.87 6.33 6.59 6.17 13.02 8.37
(reimplementation) reverse 7.58 8.16 7.86 9.22 11.97 10.42

our single-task
base 7.99 7.57 7.78 7.59 16.41 10.38

reverse 11.31 11.82 11.56 9.29 14.75 11.40

reconstruction + 0.2Linv 8.93 9.78 9.33 8.66 15.48 11.02
reconstruction + 0.5Linv 7.42 10.00 8.52 10.46 16.36 12.76

Table 3: The reconstruction model with the invertibility regularizer produces more informed attentions that result
in better word discovery for Mboshi with an Mboshi-French model. Scores reported by previous work are in italics
and best scores from our experiments are in bold.

reproduce the significant gains that were reported
when using the reverse model (italicized in Ta-
ble 3). Also, our version of both the base and re-
verse singletask models performed better than our
reimplementation of the baseline.

Furthermore, we found that we were able to
obtain even better performance at the type level
by combining the attention matrices of a recon-
struction model trained with the invertibility reg-
ularizer. Boito et al. (2017) reported that combin-
ing the attention matrices of a base and a reverse
model significantly reduced performance, but they
trained the two models separately. In contrast, we
obtain the base (A1) and the reverse attention ma-
trices (A12) from a model that trains them jointly,
while also tying them together through the invert-
ibility regularizer. Using the regularizer is key to
the improvements; in fact, we did not observe any
improvements when we trained the reconstruction
models without the regularizer.

6 Negative Results: High-Resource Text
Translation

6.1 Data

For evaluating our models on text translation, we
use the Europarl corpus which provides parallel
sentences across several European languages. We
extracted 1,450,890 three-way parallel sentences
on English, French, and German. The concatena-
tion of the newstest 2011–2013 sets (8,017 sen-
tences) is our dev set, and our test set is the con-
catenation of the newstest 2014 and 2015 sets
(6,003 sentences). We test all architectures on the
six possible translation directions between English

(en), French (fr) and German (de). All the se-
quences are represented by subword units with
byte-pair encoding (BPE) (Sennrich et al., 2016)
trained on each language with 32000 operations.

6.2 Experimental Setup
On all experiments, the encoder and the decoder(s)
have 2 layers of LSTM units with hidden state size
and attention size of 1024, and embedding size
of 1024. For this high resource scenario, we only
train for a maximum of 40 epochs.

6.3 Results
The accuracy of all the models on all six lan-
guage pair directions is shown in Table 4. In all
cases, the best models are the baseline single-task
or simple multitask models. There are some in-
stances, such as English-German, where the re-
construction or the triangle models are not statis-
tically significantly different from the best model.
The reason for this, we believe, is that in the case
of text translation between so linguistically close
languages, the lower level representations (the out-
put of the encoder) provide as much information
as the higher level ones, without the search errors
that are introduced during inference.

A notable outcome of this experiment is that we
do not observe the significant improvements with
the reconstruction models that Tu et al. (2017) ob-
served. A few possible differences between our
experiment and theirs are: our models are BPE-
based, theirs are word-based; we use Adam for
optimization, they use Adadelta; our model has
slightly fewer parameters than theirs; we test on
less typologically different language pairs than
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Model
s→ t

en→fr en→de fr→en fr→de de→en de→fr

singletask 20.92 12.69 20.96 11.24 16.10 15.29
multitask s→ x, t 20.54 12.79 20.01 11.18 16.31 15.07
cascade s→ x→ t 15.93 11.31 16.58 7.60 13.46 13.24
cascade s→ t → x 20.34 12.27 19.17 11.09 15.24 14.78
reconstruction 20.19 12.44 20.63 10.88 15.66 13.44
reconstruction +Linv 20.72 12.64 20.11 10.46 15.43 12.64

triangle s →x→−−−−−−→ t 20.39 12.70 17.93 10.17 14.94 14.07

triangle s →x→−−−−−−→ t +Ltrans 20.52 12.64 18.34 10.42 15.22 14.37

triangle s →t→−−−−−−→ x 20.38 12.40 18.50 10.22 15.62 14.77

triangle s →t→−−−−−−→ x +Ltrans 20.64 12.42 19.20 10.21 15.87 14.89

Table 4: BLEU scores for each model and translation direction s → t. In the multitask, cascade, and triangle
models, x stands for the third language, other than s and t. In each column, the best results are highlighted. The
non-highlighted results are statistically significantly worse than the single-task baseline.

English-Chinese.
However, we also observe that in most cases

our proposed regularizers lead to increased perfor-
mance. The invertibility regularizer aids the recon-
struction models in achiev slightly higher BLEU
scores in 3 out of the 6 cases. The transitivity reg-
ularizer is even more effective: in 9 out the 12
source-target language combinations, the triangle
models achieve higher performance when trained
using the regularizer. Some of them are statistical
significant improvements, as in the case of French
to English where English is the intermediate target
language and German is the final target.

7 Related Work

The speech translation problem has been tradi-
tionally approached by using the output of an
ASR system as input to a MT system. For ex-
ample, Ney (1999) and Matusov et al. (2005)
use ASR output lattices as input to translation
models, integrating speech recognition uncertainty
into the translation model. Recent work has fo-
cused more on modelling speech translation with-
out explicit access to transcriptions. Duong et al.
(2016) introduced a sequence-to-sequence model
for speech translation without transcriptions but
only evaluated on alignment, while Anastasopou-
los et al. (2016) presented an unsupervised align-
ment method for speech-to-translation alignment.
Bansal et al. (2017) used an unsupervised term
discovery system (Jansen et al., 2010) to clus-
ter recurring audio segments into pseudowords

and translate speech using a bag-of-words model.
Bérard et al. (2016) translated synthesized speech
data using a model similar to the Listen Attend
and Spell model (Chan et al., 2016). A larger-scale
study (Bérard et al., 2018) used an end-to-end neu-
ral system system for translating audio books be-
tween French and English. On a different line of
work, Boito et al. (2017) used the attentions of a
sequence-to-sequence model for word discovery.

Multitask learning (Caruana, 1998) has found
extensive use across several machine learning and
NLP fields. For example, Luong et al. (2016) and
Eriguchi et al. (2017) jointly learn to parse and
translate; Kim et al. (2017) combine CTC- and
attention-based models using multitask models for
speech transcription; Dong et al. (2015) use mul-
titask learning for multiple language translation.
Toshniwal et al. (2017) apply multitask learning
to neural speech recognition in a less traditional
fashion: the lower-level outputs of the speech en-
coder are used for fine-grained auxiliary tasks such
as predicting HMM states or phonemes, while the
final output of the encoder is passed to a character-
level decoder.

Our work is most similar to the work of Weiss
et al. (2017). They used sequence-to-sequence
models to transcribe Spanish speech and trans-
late it in English, by jointly training the two tasks
in a multitask scenario where the decoders share
the encoder. In contrast to our work, they use a
large corpus for training the model on roughly 163
hours of data, using the Spanish Fisher and CALL-
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HOME conversational speech corpora. The pa-
rameter number of their model is significantly
larger than ours, as they use 8 encoder layers, and
4 layers for each decoder. This allows their model
to adequately learn from such a large amount of
data and deal well with speaker variation. How-
ever, training such a large model on endangered
language datasets would be infeasible.

Our model also bears similarities to the archi-
tecture of the model proposed by Tu et al. (2017).
They report significant gains in Chinese-English
translation by adding an additional reconstruction
decoder that attends on the last states of the trans-
lation decoder, mainly inspired by auto-encoders.

8 Conclusion

We presented a novel architecture for multitask
learning that provides the second task with higher-
level representations produced from the first task
decoder. Our model outperforms both the single-
task models as well as traditional multitask ar-
chitectures. Evaluating on extremely low-resource
settings, our model improves on both speech tran-
scription and translation. By augmenting our mod-
els with regularizers that implement transitivity
and invertibility, we obtain further improvements
on all low-resource tasks.

These results will hopefully lead to new tools
for endangered language documentation. Projects
like BULB aim to collect about 100 hours of audio
with translations, but it may be impractical to tran-
scribe this much audio for many languages. For
future work, we aim to extend these methods to
settings where we don’t necessarily have sentence
triples, but where some audio is only transcribed
and some audio is only translated.
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Abstract

This work examines the rhetorical techniques
that speakers employ during political cam-
paigns. We introduce a new corpus of
speeches from campaign events in the months
leading up to the 2016 U.S. presidential elec-
tion and develop new models for predicting
moments of audience applause. In contrast to
existing datasets, we tackle the challenge of
working with transcripts that derive from un-
corrected closed captioning, using associated
audio recordings to automatically extract and
align labels for instances of audience applause.
In prediction experiments, we find that lexical
features carry the most information, but that
a variety of features are predictive, including
prosody, long-term contextual dependencies,
and theoretically motivated features designed
to capture rhetorical techniques.

1 Introduction

Every public speech involving a large audience
can be seen as a game of coordination (Asch,
1951): at each moment, each individual mem-
ber of the audience must decide in a split second
whether to applaud at what has just been said. Ap-
plause is a potentially risky action: if an individual
spontaneously claps but no one joins in, they suf-
fer some negative social cost; the game is to judge
from their own private information and content of
the speech whether the rest of the audience will
applaud at the same time they do.

Because of this cost, audiences respond to sev-
eral interacting factors in a speaker’s behavior:
a.) the content of the message; b.) their deliv-
ery (so that changes in pitch, duration and gaze
signal salient moments for which applause may
be licensed); and c.) the verbal design of the
message—those rhetorical strategies that speakers
use to signal that applause is welcome (Atkinson,
1984; Heritage and Greatbatch, 1986).

In this work, we attempt to model all three of
these dimensions in developing a computational
model for applause. While past work has focused
on these elements in isolation (Guerini et al., 2015;
Liu et al., 2017) or for related problems such as
laughter detection (Purandare and Litman, 2006;
Chen and Lee, 2017; Bertero and Fung, 2016), we
find that developing a holistic model encompass-
ing all three aspects yields the most robust predic-
tor of applause.

We focus on political speeches, and in particular
those at campaign rallies, which lend themselves
well to analysis of rhetorical strategies for several
reasons. First, the speakers at these events prior-
itize maintaining the crowd’s attention (Strangert,
2005). Motivated to drum up excitement and fer-
vor among their supporters that they hope will
carry beyond the event and into the voting booth,
speakers pull out their strongest rhetorical tactics.
Second, campaign speeches usually consist of a
series of self-contained messages that can be fully
expressed within a few utterances (Heritage and
Greatbatch, 1986), yielding a well-defined obser-
vation of a complete rhetorical strategy. Lastly,
these speeches are delivered by a single speaker
to a partisan crowd, and clapping, cheering, and
other responses are invited and expected.

We focus in particular in this work on opera-
tionalizating the verbal design of the speech; in so
doing, one contribution we make is operationaliz-
ing the concepts of tension and release. Writers
and performers often communicate with their au-
dience on a fundamental level by building up ten-
sion, and then, at the proper time, delivering a sat-
isfying release. These simple but pervasive con-
cepts structure our experience of different modes
of communication used throughout everyday life,
including music (Madsen and Fredrickson, 1993),
literature (Rabkin, 1973) and film (Carroll, 1996).

Tension in music can be built up by harmonic
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movement away from a tonal center; release then
comes with a return to that established tonic (Hin-
demith, 1937). One form of tension in litera-
ture is realized as suspense (Barthes and Duisit,
1975; Vorderer et al., 1996; Algee-Hewitt, 2016),
in which a reader’s knowledge of events is uncer-
tain (either because those events take place in the
narrative future or are withheld from narration),
and released when that knowledge is revealed. In
film, sudden changes in camera perspective cre-
ate graphic tension, which is then released as the
shot returns to a stable position (Bordwell, 2013).
Often, it is the confluence of multiple sources of
tension that mark the climax of a narrative (Hume,
2017). We draw on each of these strands of work
in operationalizing tension and release as a rhetor-
ical strategy.

In this work, we make the following contribu-
tions:

• We collect a new dataset of text and au-
dio from 310 speeches from campaign events
leading up to the 2016 U.S presidential elec-
tion with associated tags for over 19,000 in-
stances of audience applause.

• We introduce new textual and acoustic
features inspired by tension and release,
combine and compare them with features
used in previous work, and deploy those
features in a logistic regression model
and in an LSTM to predict when ap-
plause is likely to occur. Code, data,
and trained models are openly available
to the public at https://github.com/
jrgillick/Applause/.

2 Background and Previous Work

2.1 Rhetoric and Response

Heritage and Greatbatch (1986) conduct an exten-
sive analysis of nearly 500 speeches from British
political party conferences, manually associating
each of over 2000 instances of applause with
coded message types (e.g. External Attacks or
Statements of Approval), rhetorical devices (e.g.
Contrast/Antithesis or Headline-Punchline), and
performance factors (e.g. speech stress or body
language). They find most of these factors to be
positively correlated with applause; one especially
striking result is over two thirds of observed in-
stances of applause can be explained through a
set of seven rhetorical devices (including contrast,

pursuit, position taking, and “the 3-part list”).
Though each device is different, a common fea-
ture of most of these techniques is that they are not
always carried out within a single sentence or ut-
terance; they often depend on the relationship be-
tween a series of utterances or phrases. We argue
in this work that some of these relationships can
be characterized and subsequently operationalized
within models as tension and release.

2.2 Predicting Applause

Recent work from Guerini et al. (2015) and Liu
et al. (2017) approaches the task of applause pre-
diction by looking at textual features of the indi-
vidual sentences that immediately precede audi-
ence applause. Both follow the methodology pro-
posed by Danescu-Niculescu-Mizil et al. (2012)
in constructing a data set for binary classification,
which is composed of sentences that generated ap-
plause, each paired with a single nearby sentence
from the same document that did not lead to ap-
plause.

Guerini et al. (2015) examine a set of fea-
tures designed to capture aspects of euphony,
or “the inherent pleasantness of the sounds of
words” that might make an utterance memorable
or persuasive—such as rhyme, alliteration, homo-
geneity, and plosives. On the CORPS dataset
(Guerini et al., 2013), which consists of the text
of several thousand political speeches dating from
1917 to 2011, they define persuasive sentences as
those that preceded annotations of either applause
or laughter.

Liu et al. (2017), working with a corpus of TED
talks, use logistic regression to predict applause
from sentences using a combination of features:
euphony (again from Guerini et al. (2015)), lin-
guistic style markers derived from membership
in LIWC categories, markers of emotional ex-
pression derived from membership in the NRC
Emotion Lexicon, mentions of names, rhetorical
questions (string matching for “?”), expressions
of gratitude (matching a handcrafted list of word
stems including “thank∗” and “grateful∗”), and
expressions seeking applause (matching the pat-
tern “applau∗”). Liu et al. (2017) also report that
adding the same features for earlier sentences be-
yond the final sentence that preceded the applause
caused the prediction accuracy to go down. Chen
and Lee (2017) and Bertero and Fung (2016) run
similar binary classification experiments but pre-
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dict laughter as opposed to applause. Bertero and
Fung (2016) analyze punchlines from the TV sit-
com “The Big Bang Theory” and report 70% ac-
curacy using an LSTM. They touch briefly on the
notion of tension and release in humor, as punch-
lines typically depend on a previous line as a setup
in order to be funny.

3 Data

3.1 Corpus Acquisition

In this work, we focus on a new data set of cam-
paign speeches from the 2016 U.S. presidential
race, which we obtain from the public domain
broadcasts of C-SPAN. We downloaded about 500
speeches from presidential candidates, vice pres-
idential candidates, or former presidents, collect-
ing audio files and transcripts that were tagged
in the categories “Campaign 2016” and “Speech”
and which took place between 12/01/2015 and
12/01/2016. We then excluded events that took
place outside of a traditional campaign speech set-
ting (e.g. town hall events) or events that con-
tained multiple speakers without a speaker iden-
tification tied to the transcript, which yielded a
final set of 310 speeches from 16 speakers. Be-
cause different types of events have different so-
cial norms around when and whether applause is
appropriate (Atkinson, 1984; Heritage and Great-
batch, 1986), we control for these factors to some
degree by restricting our dataset to events in sim-
ilar settings and within a single year. As a
point of comparison, the C-SPAN dataset contains
62 instances of applause per speech on average,
whereas the CORPS data (Guerini et al., 2013)
contains 13.

3.2 Applause Detection in Audio

Since our C-SPAN data originates in video, we
have access to the audio information of a speech
event, which we employ both for feature extrac-
tion and for automatically identifying when ap-
plause occurs. Following Clement and McLaugh-
lin (2016), we train an acoustic model using a set
of poetry readings from the PennSound archive to
distinguish applause from speech. We used logis-
tic regression on the standard set of MFCC fea-
tures and found similar results on the PennSound
data to the reported classification accuracy of
99.4%. In a manual inspection of 100 applause
segments from 5 different speeches in the C-SPAN
corpus, our applause detector achieved 92% preci-

sion, 90% recall, and 91% F1 score. Due to varia-
tion in the nature of applause in a crowd (some-
times we observe examples of isolated clapping
and cheering, mixed laughter and applause, or ap-
plause interrupting the speaker), some ambiguity
is inherent among the labels.

We also measure the applause by first running
the speeches through the audio source separation
algorithm from Chandna et al. (2017), which was
trained to separate voice from music, and then
measuring the RMSE loudness of the separated
non-vocal track. We found that the separation
worked well, qualitatively matching with the re-
sults from the applause detection classifier.

3.3 Forced Alignment

To match the identified segments of applause in
the audio files with the relevant text from the
transcriptions, we ran forced alignment using the
Kaldi Toolkit (Povey et al., 2011). Since the C-
SPAN transcripts are sourced from uncorrected
closed captioning, the text contains a number of
misspellings and paraphrases, which we handled
by discarding the 12% of words for which forced
alignment failed. Though these transcriptions are
not as accurate as what we would find in profes-
sionally transcribed datasets, previous work has
shown that it is possible to achieve good accuracy
in downstream tasks even with high error rates in
transcription (Peskin et al., 1993; Novotney and
Callison-Burch, 2010). Moreover, the caliber of
transcripts derived from closed captioning is rep-
resentative of the data that would be available in
real time for practical use at future speech events.

To estimate the accuracy of the closed cap-
tions, we manually transcribed selections from 5
speeches in the C-SPAN data totaling about 25
minutes and 2250 words, finding 30.9% WER rel-
ative to the reference transcriptions in our sample.
Many of the errors are due to omitted words and
phrases in the closed captions, which may occur
as a result of transcribers’ inability to keep up with
the pace of fast speeches; in this sample, the closed
caption texts contained 17% fewer words than our
gold standard transcriptions.

After finding the alignments, we segmented out
a list of utterances by defining a minimum period
of silence between words. Since many of the tran-
scripts do not have punctuation, we find that di-
viding the text into utterances yielded qualitatively
more coherent units than sentence boundary detec-
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Speaker Number of Speeches Number of Utterances Number Applauded Percentage
Donald Trump 86 27493 7357 0.27
Hilary Clinton 72 12825 3933 0.31
Bernie Sanders 40 10994 3529 0.32

Ted Cruz 23 5873 1041 0.18
Marco Rubio 20 4407 797 0.18
John Kasich 17 4023 319 0.08

Barack Obama 10 3888 920 0.24
Bill Clinton 8 2087 292 0.14
Joe Biden 7 1847 270 0.15

Mike Pence 6 1302 246 0.19
Carly Fiorina 5 1222 129 0.11

Jeb Bush 5 1482 191 0.13
Rand Paul 4 939 134 0.14

Gary Johnson 3 354 56 0.16
Chris Christie 3 1868 42 0.022
Rick Santorum 1 245 17 0.07

Total 310 80849 19273 0.24

Table 1: Speakers and applause in C-SPAN corpus

tion. Dividing into utterances is also conducive to
building a dataset for binary classification, since
every pause by the speaker yields an opportunity
for applause. We chose a pause length of 0.7
seconds, but in future work we might be able to
improve our models by adapting this threshold to
the rate of speech in order to maintain consistent
phrase sizes across different speakers. Given this
set of utterances, we paired each utterance with
a “positive” or “negative” label, determined by
whether applause occurred within 1.5 seconds of
the end of the utterance. All of these preprocessing
choices were made during the corpus preparation
phase, prior to any experimental evaluation.

Table 1 provides summary statistics for the
number of speakers, speeches, utterances, and acts
of applause in our data.

4 Models

In our models, we draw features from previous
work on applause or humor prediction and then
supplement them with a new set of features in-
spired by the ideas of tension and release and
by the rhetorical strategies of Heritage and Great-
batch (1986).

4.1 Features adapted from existing work

LIWC. Features for membership in 73 LIWC
categories proved to be the most effective for ap-
plause prediction in TED talks (Liu et al., 2017).

Euphony. We adopt the 4 features for “eu-
phony” defined by Guerini et al. (2015): Rhyme,
Alliteration, Homogeneity, and Plosives.

Lexical. Guerini et al. (2015) find n-grams to
be highly predictive of both applause and laugh-
ter. We operationalize these features with bigrams,
including in our model all bigrams that appear at
least 5 times in the corpus.

Embeddings. Bertero and Fung (2016) use sen-
tence embeddings learned from a CNN encoder as
input to an LSTM. We adopt this feature for use
in our neural models, encoding phrases using the
Skip-Thought model of Kiros et al. (2015).

Acoustic. Purandare and Litman (2006) use a
set of features intended to capture elements of
prosody in a model for humor prediction in tele-
vision dialogue. These features include the mean,
max, min, range, and standard deviation values
in an utterance’s pitch (F0) and energy (RMS),
along with features for internal silence and for
tempo. We compute the F0 statistics with Reaper
(Talkin, 2015) and the energy statistics with Li-
brosa (McFee et al., 2015).

4.2 New Features

4.2.1 Repetition
Repeated Words. Rhetorical strategies such as
“The 3-part List” and “Contrast” rely on repeti-
tion to drive home important points. We capture
this phenomenon by computing the proportion of
words in each utterance that also appear in the im-
mediately preceding phrase.

Longest Common Subsequence. Repeating an
entire phrase, especially one with a politically
charged topic, serves to build tension through the
notion of “theme and variation” as is often realized
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in music (Cope, 2005); an example of this phe-
nomenon in our data can be found in the following
passage:

We will not allow the party of Lincoln
and Reagan to fall into the hands of a
con artist. We will not allow the next
president of the United States to be a
socialist like Bernie Sanders. And we
will not allow the next president of the
United States to be someone under FBI
investigation like Hillary Clinton.

[Marco Rubio, Mar. 1, 2016]

We calculate this theme and variation by mea-
suring the longest common subsequence between
adjacent phrases.

4.2.2 Deltas

Delta features (local approximations to deriva-
tives) are commonly used in speech recognition
and audio classification systems (Povey et al.,
2011). In a discourse, either highly similar or dras-
tically different neighboring pairs of utterances
may indicate dramatic moments. We operational-
ize these features by explicitly adding a delta mea-
surement for every feature in our model, which
captures the difference between every feature at
time t and the same feature at time t − 1. For
K-dimensional vector embeddings, we calculate
deltas as their cosine distance.

4.2.3 RST

Rhetorical Structure Theory (RST) provides a
foundation for describing the ways in which func-
tional components of a text combine to form a co-
herent whole (Thompson and Mann, 1987). At the
core of RST is a categorization system consisting
of relations between elementary discourse units
(EDUs). Relations between units are typically hi-
erarchical (a nucleus and a satellite), but can also
be defined between equally significant units (two
nuclei).

A typical RST tree can be seen below, where the
sentence “He won’t win, but I’ll vote for him any-
way”, he said is decomposed into three elemen-
tary discourse units (EDUs); those discourse units
form the leaves of a tree with intermediate struc-
ture between subphrases and labeled edges along
each branch.

	

ATTRIBUTION

CONTRAST

“He won’t
win,

but I’ll vote
for him any-
way”

he said.

Some of the rhetorical strategies defined by
Heritage and Greatbatch (1986), such as “Con-
trast,” map directly to RST relations, while oth-
ers do not have a clear one-to-one mapping but are
qualitatively similar in their descriptions. While
RST has been used with success for classification
problems in the past (Ji and Smith, 2017; Bhatia
et al., 2015), it has not yet been employed in exist-
ing models for applause prediction. In our work,
we parse the rhetorical structure of the extracted
sequence of phrases using the RST parser of Ji and
Eisenstein (2014). From the structure of this RST
tree, we extract two classes of features.

RST label. First, we operationalize the rhetor-
ical category for an individual elementary dis-
course unit. While the span of text within a sin-
gle EDU is implicated in several rhetorical rela-
tions throughout the tree (as He won’t win bears a
CONTRAST relationship with but I’ll vote for him
anyway and is part of the ATTRIBUTION relation-
ship with he said), each EDU bears exactly one
leaf relationship with the rest of the tree—here,
He won’t win is a nucleus of a CONTRAST rela-
tionship, but I’ll vote for him anyway is also a nu-
cleus of a CONTRAST relationship, and he said is
the satellite of an ATTRIBUTION relationship.

We featurize a sentence as the set of all such
typed relationships that EDUs within it hold; each
typed relationship is the conjunction of the label
(e.g., CONTRAST, ATTRIBUTION) and direction-
ality (Nucleus, Satellite).

Rhetorical phrase closures. In order to fur-
ther operationalize the notion of predictability of
applause, we measure the number of rhetorical
phrases that a given discourse segment brings to
closure. We can illustrate this with figure 1,
which presents a sample RST tree with only the
spans annotated (i.e., without RST labels or nu-
cleus/satellite directed edges). This tree spans
10 elementary discourse units; each non-terminal
node is annotated with the span of the subtree

96



rooted at that node (so the root spans all ten EDUs,
while its left child spans only the first five). The
final discourse unit (EDU 10) is the final EDU
in three rhetorical phrases (those spanning EDUs
9-10, 6-10 and the entire discourse 1-10). We
might hypothesize that the greater number of dis-
course phrases that a given discourse unit closes,
the stronger the signal it provides that applause
is licensed (and hence the greater likelihood to
be followed by applause empirically). For a sen-
tence with multiple discourse units, we featurize
this value as the maximum number of rhetorical
phrases closed by any unit it contains.

[1-10]

[6-10]

[9-10]

109

[6-8]

8

[6-7]

76

[1-5]

5

[1-4]

[3-4]

43

[1-2]

21

Figure 1: Unlabeled RST phrase tree; non-terminal
nodes list the ranges of the elementary discourse units
they span.

5 Experiments

We present two experiments to uncover the de-
gree to which we are able to predict applause from
different operationalizations of a politician’s cam-
paign speech: one in which have access to a politi-
cian’s previous speeches, and can learn their spe-
cific nuances and stock phrases used to solicit ap-
plause; and another in which we seek to uncover
the broader rhetorical strategies common to multi-
ple speakers.

We refer to the following sets of features when
we summarize results:

• Guerini. Euphony features from Guerini
et al. (2015).

• Liu. LIWC features and additional matchers
for handcrafted regular expressions from Liu
et al. (2017)

• Audio. All acoustic features described in
§4.1 above.

• Combined. Combination of features from

Guerini, Liu, and Audio.

• Tension. Combination of RST (§4.2.3), rep-
etition (§4.2.1), and delta features (§4.2.2).

• N-gram. Bigram features.

• Skip-Thought. 4800 dimensional Skip-
Thought embeddings.

5.1 Intra-speaker validation

Access to a politician’s previous speeches pro-
vides a great deal of evidence for understanding
their rhetorical strategies for soliciting applause;
speakers often give variations of the same speech
at different campaign events, and rely on a fixed
set of stock phrases (e.g., “Yes, We Can,” “Make
America Great Again”) and general strategies to
solicit reactions (Lu, 1999; Miller, 1939; Petrow
and Sullivan, 2007). To model this, we attempt
to predict a speaker’s likelihood of applause using
only information from their own speeches.

We use logistic regression with `2 regularization
for this experiment, with hyperparameters chosen
through cross-validation on the training data. We
run 10-fold cross validation for each speaker, and
leave-one-out cross validation for those speakers
with fewer than 10 speeches (we exclude Rick
Santorum from this experiment because we have
only one speech from him), with whole speeches
divided across folds so that no utterances from the
same speech ever appear in both training and test
sets. Reported results aggregate the predictions
across all speakers to calculate the final accura-
cies. We choose utterances (or sequences of ut-
terances) that directly precede applause as positive
examples, pairing each one with a negative exam-
ple randomly chosen from the same speech. Since
we use different amounts of data for each speaker,
we are not able to compare accuracies across all
speakers, but we can see that some speakers are
significantly easier to model: for example, our best
model reaches 0.719 accuracy on Bernie Sanders
but only 0.660 on Donald Trump.

Table 2 summarizes the results, comparing
across different combinations of features as well
as across a scope of a single phrase or multiple
phrases. All feature combinations are scoped over
a single utterance unless otherwise noted.

5.2 Inter-speaker validation

At the same time, many of the strategies identi-
fied by Heritage and Greatbatch (1986) are gener-
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Model Mean Accuracy Mean F1 Max F1 Min F1
Guerini 0.566 0.533 0.659 (Bernie Sanders) 0.422 (Donald Trump)

Liu 0.601 0.594 0.649 (Bernie Sanders) 0.499 (Jeb Bush)
Audio 0.598 0.574 0.634 (Hilary Clinton) 0.516 (Donald Trump)

Combined 0.646 0.640 0.685 (Bernie Sanders) 0.598 (Marco Rubio)
N-gram 0.637 0.578 0.672 (Bernie Sanders) 0.478 (Barack Obama)

Combined+Tension 0.639 0.635 0.682 (Bernie Sanders) 0.585 (Jeb Bush)
Combined (3-Phrase) 0.645 0.640 0.671 (Bernie Sanders) 0.587 (Bill Clinton)

Combined+Tension (3-Phrase) 0.626 0.624 0.665 (Bernie Sanders) 0.602 (Marco Rubio)
Combined+N-gram 0.673 0.661 0.711 (Bernie Sanders) 0.600 (Marco Rubio)

Combined+Tension+N-gram 0.671 0.658 0.711 (Bernie Sanders) 0.599 (Marco Rubio)

Table 2: Intra-speaker predictive accuracy (logistic regression). The 95% confidence interval for Mean Accuracy
and Mean F1 is within ± 0.005, and the 95% confidence interval for Max F1 and Min F1 (1 speaker at a time) is
within ± 0.05.

alized rhetorical devices used to solicit applause;
we should expect then that a model trained on
a fixed set of speakers should be able to gen-
eralize to speakers not in the training data. To
test this more realistic scenario, we performed K-
fold cross-validation on all of the speakers in our
dataset, holding out one speaker in turn for each
fold (so that the same speaker did not appear in
the training and test partitions).

In this experiment, we use both logistic regres-
sion and neural models (sharing training data be-
tween speakers has the added benefit of allowing
us enough data to reasonably train a neural model).
All logistic regression models were trained in the
same way is in the intra-speaker case. Our feed-
forward and LSTM models use a hidden state size
of 100 for models including phrase embeddings
(4800 dimensions) and a hidden state of size 25
for models without phrase embeddings. All LSTM
models use a standard formulation of attention
(Bahdanau et al., 2014), and all neural models
are trained with dropout (Srivastava et al., 2014)
and the ADAM optimizer (Kingma and Ba, 2014).
We implemented the models using Keras (Chollet
et al., 2015) and Tensorflow (Abadi et al., 2016).

Table 3 summarizes these results, and table 4
shows the coefficients for the most significant fea-
tures.

6 Analysis

Each of the feature classes we operationalize of-
fers some ability to recognize what Heritage and
Greatbatch (1986) term the “projectability” of
applause—the ability of an audience to see an ap-
plaudable moment on the horizon.

Audio. Perhaps not surprising in retrospect is the
ability of acoustic features (only summary statis-
tics of the pitch and energy) to solicit applause:

Logistic Regression Models Acc. F1
Guerini 0.557 0.534
Liu 0.577 0.541
Audio 0.573 0.548
Combined 0.615 0.601
N-gram 0.594 0.578
Combined+Tension 0.617 0.605
Combined (3-Phrase) 0.614 0.601
Combined+Tension (3-Phrase) 0.615 0.600
Combined+N-gram 0.633 0.598
Combined+Tension+N-gram 0.630 0.594
Neural Models Acc. F1
Feed-Forward:Skip-Thought 0.577 0.562
Feed-Forward:Combined+Tension 0.620 0.620
LSTM:Skip-Thought(3-Phrase) 0.585 0.583
LSTM:Combined+Tension(3-Phrase) 0.626 0.616
LSTM:Combined+Tension(5-Phrase) 0.628 0.625
LSTM:Combined+Tension(8-Phrase) 0.629 0.621

Table 3: Inter-speaker predictive accuracy. The 95%
confidence interval for each measurement of accuracy
is within ± 0.005.

higher pitch and energy, and a broader pitch range
are all predictive of applause; while past work has
focused on textual indicators of applause, these re-
sults suggest that how a message is delivered is
equally important.

Lexical. The use of explicit n-grams improves
performance significantly in the intra-speaker set-
ting, where they are able to capture stock phrases
employed by the same speaker at different events.
N-grams are also predictive across different speak-
ers, though the performance gains are not as high
in the inter-speaker setting.

The strongest bigrams predictive of applause
include moral declaratives like should not (e.g.,
“and billionaires should not be able to buy elec-
tions” [Bernie Sanders]), right to (“you have a
right to be angry” [Marco Rubio]), and should be
(“They should be ashamed of that kind of behav-
ior” [Hillary Clinton]); call-outs to the audience
such as this room (“Love the people in this room”
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Significant Features Coefficient
Expression of Gratitude 0.472
LIWC FOCUSFUTURE 0.340
Homogeneity (Guerini) 0.301
Mean Energy (Audio) 0.293
LIWC BODY 0.203
Min Energy (Audio) 0.165
Max Pitch (Audio) 0.157
LIWC TENTATIVE -0.161
LIWC THEY -0.172
LIWC VERB -0.216
LIWC FUNCTION -0.228
Pitch Standard Deviation (Audio) -0.249
LIWC SHEHE -0.275
LIWC FOCUSPAST -0.342

Table 4: Most significant positive and negative fea-
tures for the Combined+Tension regression model in
the inter-speaker setting.

[Donald Trump]) and listening to (“our campaign
is listening to our Latino brothers and sisters”
[Bernie Sanders]); and politically charged topics
such as political revolution, equal pay, immigra-
tion reform, planned parenthood, campaign con-
tributors and police officers.

LIWC. Among broader lexical category fea-
tures, we see the LIWC FOCUSFUTURE category
strongly indicative of applause; this category in-
cludes auxilaries like will, going, gonna (including
conjunctions I’ll) and future-oriented verbs like
anticipate; also important are categories of BODY

(including heart, hands, brain) and REWARD (in-
cluding succeed, optimism, great).

Rhetorical. While RST features were not as pre-
dictive for applause as other (likely correlated)
features, we still see a strong alignment between
the RST features most associated with applause
and those rhetorical devices outlined by Heritage
and Greatbatch (1986): in particular, a clear rela-
tionship between applause and the RST category
of ANTITHESIS (a contrastive relation between
two discourse units with a clear nucleus and satel-
lite, rather than two equal nuclei) and PURPOSE

(a relation between a discourse unit that must take
place in order for another to be realized). As ex-
pected, phrases that close more discourse units
tend to be more predictive of applause.

Contextual. Though lexical features from the fi-
nal utterance significantly outweigh the effects of
previous context in the intra-speaker setting, in the
inter-speaker case we leveraged gains from long-
term context in the LSTM to reach a similar level
of performance attained from the lexical features,

but without access to lexical cues provided by the
n-grams at all. This result suggests that the im-
proved performance in the intra-speaker setting
may be largely due to the presence of specific
words and catch-phrases; the other stylistic fea-
tures are more easily generalized to new speakers.

7 “Please clap”

As a further measure of out-of-sample validity, we
can analyze the predictions we make for the single
example where a speaker wears his communica-
tive intent on his sleeve. On February 2, 2016,
presidential candidate Jeb Bush spoke to a crowd
in New Hampshire a week before their state pri-
mary. His speech ended with the following:

So here’s my pledge to you. [I] will
be a commander-in-chief who will have
the back of the military, I won’t trash
talk, I won’t be a divider-in-chief or an
agitator-in-chief, I won’t be out there
blowharding talking a big game without
backing it up; I think the next President
needs to be a lot quieter but send a signal
that we’re prepared to act in the national
security interests of this country to get
back in the business of creating a more
peaceful world . . . . . . . . . Please clap.

[Jeb Bush, Feb 2, 2016]1

Bush’s admonition to the audience (“please
clap”) earned criticism in news coverage at the
time (Benen, 2016), but also presents us with a
rare insight into a speaker’s true rhetorical inten-
tion; in this case, Bush was soliciting applause and
was vocal about not being able to do so.

Does our model recover this true intention? In-
deed it does; while the opening So here’s my
pledge to you is predicted to not solicit applause
(with applause probability of 24.8%), the segment
that ends with peaceful world is strongly predicted
to have been followed by applause (with an ap-
plause probability of 94.5%). The strongest fea-
tures are again lexical (this country, commander
in chief ), a LIWC focus on the future (elicited by
will), and an RST PURPOSE relation (evoked by to
get back in the business of creating a more peace-
ful world).

1Video of this speech can be found at: https://www.
youtube.com/watch?v=DdCYMvaUcrA
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8 Conclusion

We present in this work a new dataset for the anal-
ysis of political rhetoric derived from the public
campaign speeches of politicians during the 2016
United States presidential election, along with em-
pirical results assessing the performance of dif-
ferent operationalizations of rhetoric derived from
the theoretical work of Heritage and Greatbatch
(1986) and others in order to measure and predict
the occurrence of applause. We introduce several
new features designed to capture elements of ten-
sion and release in public performance, including
rhetorical contrast, closure, repetition and move-
ment across speech segments; while each of these
features in isolation is able to predict applause to
varying degree and comport with our prior under-
standing of their utility, we find that lexicalized
features are among the strongest source of infor-
mation in determining applause; while audiences
react to many dimensions of a speaker’s style, the
words they use—as slogan, stock phrases, and in-
dicators of more complex rhetorical functions like
moral valuations and imperatives—matter most.

As detailed in previous work (Liu et al., 2017;
Haider et al., 2017; Clement and McLaughlin,
2016), understanding and identifying climactic
moments in speeches can be useful for a vari-
ety of reasons, including learning to give bet-
ter talks, automatically summarizing videos and
transcripts, and analyzing social dynamics within
crowds. One additional interesting application of
this work is to bring to the surface occasions where
a speaker uses typical applause-seeking devices
but does not receive applause (the “Please Clap”
moments); we leave to future work identifying
the reverse, when speakers receive applause with-
out invoking common techniques (for example, to
identify instances of claques paid to clap).

9 Acknowledgments

Many thanks to the anonymous reviewers for their
helpful feedback. The research reported in this ar-
ticle was supported by a UC Berkeley Fellowship
for Graduate Study to J.G. and by resources pro-
vided by NVIDIA.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, et al.

2016. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467 .

Mark Algee-Hewitt. 2016. The machinery of
suspense. http://markalgeehewitt.
org/index.php/main-page/projects/
the-machinery-of-suspense/.

S. E. Asch. 1951. Effects of group pressure on
the modification and distortion of judgments. In
H. Guetzkow, editor, Groups, Leadership and Men.
Carnegie Press.

J. Maxwell Atkinson. 1984. Public speaking and au-
dience responses: some techniques for inviting ap-
plause. In Structures of Social Action.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Roland Barthes and Lionel Duisit. 1975. An intro-
duction to the structural analysis of narrative. New
Literary History 6(2):237–272. http://www.
jstor.org/stable/468419.

Steve Benen. 2016. Jeb Bush urges au-
dience, ‘Please clap’. http://www.
msnbc.com/rachel-maddow-show/
jeb-bush-urges-audience-please-clap.

Dario Bertero and Pascale Fung. 2016. A long short-
term memory framework for predicting humor in di-
alogues. In HLT-NAACL. pages 130–135.

Parminder Bhatia, Yangfeng Ji, and Jacob Eisen-
stein. 2015. Better document-level sentiment anal-
ysis from RST discourse parsing. arXiv preprint
arXiv:1509.01599 .

David Bordwell. 2013. Narration in the fiction film.
Routledge.

Noel Carroll. 1996. Toward a theory of film suspense.
In Theorizing the Moving Image. Cambridge Univer-
sity Press.

Pritish Chandna, Marius Miron, Jordi Janer, and Emilia
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Abstract

We present a neural architecture for mod-
eling argumentative dialogue that explic-
itly models the interplay between an
Opinion Holder’s (OH’s) reasoning and
a challenger’s argument, with the goal
of predicting if the argument successfully
changes the OH’s view. The model has
two components: (1) vulnerable region
detection, an attention model that identi-
fies parts of the OH’s reasoning that are
amenable to change, and (2) interaction
encoding, which identifies the relationship
between the content of the OH’s reason-
ing and that of the challenger’s argument.
Based on evaluation on discussions from
the Change My View forum on Reddit,
the two components work together to pre-
dict an OH’s change in view, outperform-
ing several baselines. A posthoc analysis
suggests that sentences picked out by the
attention model are addressed more fre-
quently by successful arguments than by
unsuccessful ones.1

1 Introduction

Through engagement in argumentative dialogue,
interlocutors present arguments with the goals of
winning the debate or contributing to the joint con-
struction of knowledge. Especially modeling the
knowledge co-construction process requires un-
derstanding of both the substance of viewpoints
and how the substance of an argument connects
with what it is arguing against. Prior work on
argumentation in the NLP community, however,
has focused mainly on the first goal and has often
reduced the concept of a viewpoint as a discrete

1Our code is available at https://github.com/
yohanjo/aim.

side (e.g., pro vs against, or liberal vs conserva-
tive), missing more nuanced and complex details
of viewpoints. In addition, while the strength of
the argument and the side it represents have been
addressed relatively often, the dialogical aspects
of argumentation have received less attention.

To bridge the gap, we present a model that
jointly considers an Opinion Holder’s (OH’s) ex-
pressed viewpoint with a challenger’s argument in
order to predict if the argument succeeded in alter-
ing the OH’s view. The first component of the ar-
chitecture, vulnerable region detection, aims to
identify important parts in the OH’s reasoning that
are key to impacting their viewpoint. The intu-
ition behind our model is that addressing certain
parts of the OH’s reasoning often has little impact
in changing the OH’s view, even if the OH realizes
the reasoning is flawed. On the other hand, some
parts of the OH’s reasoning are more open to de-
bate, and thus, it is reasonable for the model to
learn and attend to parts that have a better chance
to change an OH’s view when addressed.

The second component of the architecture,
interaction encoding, aims to identify the
connection between the OH’s sentences and
the challenger’s sentences. Meaningful in-
teraction in argumentation may include agree-
ment/disagreement, topic relevance, or logical im-
plication. Our model encodes the interaction be-
tween every pair of the OH’s and the challenger’s
sentences as interaction embeddings, which are
then aggregated and used for prediction. Intu-
itively, the interactions with the most vulnerable
regions of the OH’s reasoning are most critical.
Thus, in our complete model, the interaction em-
beddings are weighted by the vulnerability scores
computed in the first component.

We evaluate our model on discussions from the
Change My View forum on Reddit, where users
(OHs) post their views on various issues, partic-
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ipate in discussion with challengers who try to
change the OH’s view, and acknowledge when
their views have been impacted. Particularly, we
aim to answer the following questions:

• RQ1. Does the architecture of vulnerable re-
gion detection and interaction encoding help
to predict changes in view?

• RQ2. Can the model identify vulnerable sen-
tences, which are more likely to change the
OH’s view when addressed? If so, what prop-
erties constitute vulnerability?

• RQ3. What kinds of interactions between ar-
guments are captured by the model?

We use our model to predict whether a chal-
lenger’s argument has impacted the OH’s view and
compare the result with several baseline models.
We also present a posthoc analysis that illuminates
the model’s behavior in terms of vulnerable region
detection and meaningful interaction.

For the remainder of the paper, we position our
work in the literature (Section 2) and examine the
data (Section 3). Then we explain our model de-
sign (Section 4). Next, we describe the experiment
settings (Section 5), discuss the results (Section 6),
and conclude the paper (Section 7).

2 Background

Argumentation theories have identified important
dialogical aspects of (non-)persuasive argumenta-
tion, which motivate our attempt to model the in-
teraction of OH’s and challenger’s arguments. Per-
suasive arguments build on the hearer’s accepted
premises (Walton, 2008) and appeal to emotion
effectively (Aristotle and Kennedy, 2007). From
a challenger’s perspective, effective strategies for
these factors could be derived from the OH’s back-
ground and reasoning. On the other hand, non-
persuasive arguments may commit fallacies, such
as contradicting the OH’s accepted premises, di-
verting the discussion from the relevant and salient
points suggested by the OH, failing to address the
issues in question, misrepresenting the OH’s rea-
soning, and shifting the burden of proof to the OH
by asking a question (Walton, 2008). These falla-
cies can be identified only when we can effectively
model how the challenger argues in relation to the
OH’s reasoning.

While prior work in the NLP community has
studied argumentation, such as predicting debate

winners (Potash and Rumshisky, 2017; Zhang
et al., 2016; Wang et al., 2017; Prabhakaran et al.,
2013) and winning negotiation games (Keizer
et al., 2017), this paper addresses a different an-
gle: predicting whether an argument against an
OH’s reasoning will successfully impact the OH’s
view. Some prior work investigates factors that un-
derlie viewpoint changes (Tan et al., 2016; Lukin
et al., 2017; Hidey et al., 2017; Wei et al., 2016),
but none target our task of identifying the specific
arguments that impact an OH’s view.

Changing an OH’s view depends highly on ar-
gumentation quality, which has been the focus of
much prior work. Wachsmuth et al. (2017) re-
viewed theories of argumentation quality assess-
ment and suggested a unified framework. Prior
research has focused mainly on the presenta-
tion of an argument and some aspects in this
framework without considering the OH’s reason-
ing. Specific examples include politeness, senti-
ment (Tan et al., 2016; Wei et al., 2016), gram-
maticality, factuality, topic-relatedness (Habernal
and Gurevych, 2016b), argument structure (Nic-
ulae et al., 2017), topics (Wang et al., 2017),
and argumentative strategies (e.g., anecdote, tes-
timony, statistics) (Al Khatib et al., 2017). Some
of these aspects have been used as features to
predict debate winners (Wang et al., 2017) and
view changes (Tan et al., 2016). Habernal and
Gurevych (2016a) used crowdsourcing to develop
an ontology of reasons for strong/weak arguments.

The persuasiveness of an argument, however,
is highly related to the OH’s reasoning and how
the argument connects with it. Nonetheless, re-
search on this relationship is quite limited in the
NLP community. Existing work uses word over-
lap between the OH’s reasoning and an argument
as a feature in predicting the OH’s viewpoint (Tan
et al., 2016). Some studies examined the relation-
ship between the OH’s personality traits and re-
ceptivity to arguments with different topics (Ding
and Pan, 2016) or degrees of sentiment (Lukin
et al., 2017).

The most relevant to our work is the related task
by Tan et al. (2016). Their task used the same dis-
cussions from the Change My View forum as in
our work and examined various stylistic features
(sentiment, hedging, question marks, etc.) and
word overlap features to identify discussions that
impacted the OH’s view. However, our task is dif-
ferent from theirs in that they made predictions on
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(b) Delta ratios in discussions by topic. (e.g., a discus-
sion has a 10% ratio if 10% of the OH’s replies have a
∆.)

Figure 1: Discussion characteristics by topic.

initial comments only, while we did so for all com-
ments replied to by the OH in each discussion. Our
task is more challenging because comments that
come later in a discussion have a less direct con-
nection to the original post. Another challenge is
the extreme skew in class distribution in our data,
whereas Tan et al. (2016) ensured a balance be-
tween the positive and negative classes.

The Change My View forum has received
attention from recent studies. For example,
ad hominem (attacking an arguer) arguments
have been studied, along with their types and
causes (Habernal et al., 2018). Another study
annotated semantic types of arguments and ana-
lyzed the relationship between semantic types and
a change in view (Hidey et al., 2017). Although
this work did not look at the interaction between
OHs and specific challengers, it provides valu-
able insight into persuasive arguments. Addition-
ally, the semantic types may potentially allow our
model to better model complex interaction in ar-
gumentation.

3 Data

Our study is based on discussions from the Change
My View (CMV) forum2 on Reddit. In this forum,

2https://www.reddit.com/r/changemyview

Opinion Holder (OH)
CMV: DNA tests (especially for dogs) are
bullshit. For my line of work (which is not the
DNA testing), … I have NEVER seen a DNA test
return that a dog is purebred, or even anywhere
close to purebred. … these tests are consistently
way off on their results. … My mother recently
had a DNA test done showing she is 1/4 black. I
believe this is also incorrect since she knows who
her parents and grandparents are, and none of them
are black. …

Challenger 1
I'm not sure what exactly these particular DNA
tests are looking at, but they are probably analyzing
either SNPs or VNTRs. There's nothing stopping a
SNP from mutating at any given generation, or a
VNTR from shrinking or expanding due to errors
during DNA replication. … The take-home
message is that DNA testing isn't complete
bullshit, but it does have limitations.

Challenger 2
Knowing your grandparents "aren't black" doesn't
really rule out being 25% African American,
genetically, because genes combine during
fertilization almost completely randomly. …
Basically, the biggest conclusion from this
information is that race is only barely genetic. It's
mostly a social construct.

Figure 2: A discussion from Change My View.

users (opinion holders, OHs) post their views on a
wide range of issues and invite other users (chal-
lengers) to change their expressed viewpoint. If
an OH gains a new insight after reading a com-
ment, he/she replies to that comment with a ∆
symbol and specifies the reasons behind his/her
view change. DeltaBot monitors the forum and
marks comments that received a ∆, which we will
use as labels indicating whether the comment suc-
cessfully changed the OH’s view.

CMV discussions provide interesting insights
into how people accept new information through
argumentation, as OHs participate in the discus-
sions with the explicit goal of exposing themselves
to new perspectives. In addition, the rules and
moderators of this forum assure high quality dis-
cussions by requiring that OHs provide enough
reasoning in the initial post and replies.

We use the CMV dataset compiled by Tan et al.
(2016)3. The dataset is composed of 18,363 dis-
cussions from January 1, 2013–May 7, 2015 for
training data and 2,263 discussions from May 8–
September 1, 2015 for test data.

3https://chenhaot.com/pages/
changemyview.html
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Figure 3: Architecture of Attentive Interaction Model.

Qualitative analysis We conducted qualitative
analysis to better understand the data. First, to see
if there are topical effects on changes in view, we
examined the frequency of view changes across
different topics. We ran Latent Dirichlet Alloca-
tion (Blei et al., 2003) with 20 topics, taking each
discussion as one document. We assigned each
discussion the topic that has the highest standard-
ized probability. The most discussed topics are
government, gender, and everyday life (Figure 1a).
As expected, the frequency of changes in view dif-
fers across topics (Figure 1b). The most malleable
topics are food, computers & games, clothing, art,
education, and everyday life. But even in the food
domain, OHs give out a ∆ in less than 10% of their
replies in most discussions.

In order to inform the design of our model, we
sampled discussions not in the test set and com-
pared comments that did and did not receive a
∆. A common but often unsuccessful argumen-
tation strategy is to correct detailed reasons and
minor points of the OH’s reasoning—addressing
those points often has little effect, regardless of
the validity of the points. On the contrary, suc-
cessful arguments usually catch incomplete parts
in the OH’s reasoning and offer another way of
looking at an issue without threatening the OH.
For instance, in the discussion in Figure 2, the OH
presents a negative view on DNA tests, along with
his/her reasoning and experiences that justify the
view. Challenger 1 addresses the OH’s general
statement and provides a new fact, which received
a ∆. On the other hand, Challenger 2 addresses
the OH’s issue about race but failed to change the
OH’s view.

When a comment addresses the OH’s points,
its success relies on various interactions, includ-
ing the newness of information, topical related-
ness, and politeness. For example, Challenger 1
provides new information that is topically dissim-
ilar to the OH’s original reasoning. In contrast,
Challenger 2’s argument is relatively similar to the
OH’s reasoning, as it attempts to directly correct
the OH’s reasoning. These observations motivate
the design of our Attentive Interaction Model, de-
scribed in the next section.

4 Model Specification

Our Attentive Interaction Model predicts the
probability of a comment changing the OH’s orig-
inal view, P (∆ = 1), given the OH’s initial post
and the comment. The architecture of the model
(Figure 3) consists of detecting vulnerable regions
in the OH’s post (sentences important to address
to change the OH’s view), embedding the inter-
actions between every sentence in the OH’s post
and the comment, summarizing the interactions
weighted by the vulnerability of OH sentences,
and predicting P (∆ = 1).

The main idea of our model is the archi-
tecture for capturing interactions in vulnera-
ble regions, rather than methods for measur-
ing specific argumentation-related features (e.g.,
agreement/disagreement, contraction, vulnerabil-
ity, etc.). To better measure these features, we
need much richer information than the dataset pro-
vides (discussion text and ∆s). Therefore, our pro-
posed architecture is not to replace prior work on
argumentation features, but rather to complement
it at a higher, architectural level that can poten-
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tially integrate various features. Moreover, our ar-
chitecture serves as a lens for analyzing the vul-
nerability of OH posts and interactions with argu-
ments.

Formal definition of the model (Figure 3 (A)
and (B)) Denote the OH’s initial post by dO =
(xO1 , ..., x

O
MO), where xi is the ith sentence, and

MO is the number of sentences. The sentences
are encoded via an RNN, yielding a hidden state
for the ith sentence sOi ∈ RDS

, where DS is the
dimensionality of the hidden states. Similarly, for
a comment dC = (xC1 , ..., x

C
MC ), hidden states of

the sentences sCj , j = 1, · · · ,MC , are computed.

Vulnerable region detection (Figure 3 (A))
Given the OH’s sentences, the model computes the
vulnerability of the ith sentence g(sOi ) ∈ R1 (e.g.,
using a feedforward neural network). From this
vulnerability, the attention weight of the sentence
is calculated as

ai =
exp g(sOi )

∑MO

i′=1 exp g(sOi′ )
.

Interaction encoding (Figure 3 (C)) The model
computes the interaction embedding of every pair
of the OH’s ith sentence and the comment’s jth
sentence,

vi,j = h(sOi , s
C
j ) ∈ RD

I
,

where DI is the dimensionality of interaction em-
beddings, and h is an interaction function between
two sentence embeddings. h can be a simple inner
product (in which case DI = 1), a feedforward
neural network, or a more complex network. Ide-
ally, each dimension of vi,j indicates a particular
type of interaction between the pair of sentences.

Interaction summary (Figure 3 (D)) Next, for
each of the OH’s sentences, the model summa-
rizes what types of meaningful interaction occur
with the comment’s sentences. That is, given all
interaction embeddings for the OH’s ith sentence,
vi,1, · · · ,vi,MC , the model conducts max pooling
for each dimension,

umax
i =

(
max
j

(vi,j,1), · · · ,max
j

(vi,j,DI )

)
,

where vi,j,k is the kth dimension of vi,j and
umax
i ∈ RDI

. Intuitively, max pooling is to cap-
ture the existence of an interaction and its highest

intensity for each of the OH’s sentences—the in-
teraction does not have to occur in all sentences of
the comment. Since we have different degrees of
interest in the interactions in different parts of the
OH’s post, we take the attention-weighted sum of
umax
i to obtain the final summary vector

umax =
MO∑

i=1

aiu
max
i .

Prediction (Figure 3 (E)) The prediction com-
ponent consists of at least one feedforward neural
network, which takes as input the summary vec-
tor umax and optionally the hidden state of the
last sentence in the comment sMC . More net-
works may be used to integrate other features as
input, such as TFIDF-weighted n-grams of the
comment. The outputs of the networks are con-
catenated and fed to the final prediction layer to
compute P (∆ = 1). Using a single network that
takes different kinds of features as input does not
perform well, because the features are in differ-
ent spaces, and linear operations between them are
probably not meaningful.

Loss The loss function is composed of binary
cross-entropy loss and margin ranking loss. As-
sume there are total ND initial posts written by
OHs, and the lth post has Nl comments. The
binary cross-entropy of the lth post and its tth
comment measures the similarity between the pre-
dicted P (∆ = 1) and the true ∆ as:

BCE l ,t =−∆l,t logPΘ(∆l,t = 1)

− (1−∆l,t) log(1− PΘ(∆l,t = 1)),

where ∆l,t is the true ∆ ∈ {0, 1} of the comment
and PΘ is the probability predicted by our model
with parameters Θ. Since our data is skewed to
negatives, the model may overpredict ∆ = 0. To
adjust this bias, we use margin ranking loss to
drive the predicted probability of positives to be
greater than the predicted probability of negatives
to a certain margin. The margin ranking loss is
defined on a pair of comments C1 and C2 with
∆C1 > ∆C2 as:

MRLC1 ,C2 =

max{0, PΘ(∆C2 = 1)− PΘ(∆C1 = 1) + ε},
where ε is a margin. Combining the two losses,
our final loss is

1

ND

ND∑

l=1

1

Nl

Nl∑

t=1

BCE l ,t + EC1 ,C2 [MRLC1 ,C2 ] .
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Train Val Test CD

# discussions 4,357 474 638 1,548
# pairs 42,710 5,153 7,356 18,909

# positives 1,890 232 509 1,097

Table 1: Data statistics. (CD: cross-domain test)

For the expectation in the ranking loss, we con-
sider all pairs of comments in each minibatch and
take the mean of their ranking losses.

5 Experiment

Our task is to predict whether a comment would
receive a ∆, given the OH’s initial post and the
comment. We formulate this task as binary pre-
diction of ∆ ∈ {0, 1}. Since our data is highly
skewed, we use as our evaluation metric the AUC
score (Area Under the Receiver Operating Charac-
teristic Curve), which measures the probability of
a positive instance receiving a higher probability
of ∆ = 1 than a negative instance.

5.1 Data Preprocessing

We exclude (1) DeltaBot’s comments with no con-
tent, (2) comments replaced with [deleted], (3)
system messages that are included in OH posts
and DeltaBot’s comments, (4) OH posts that are
shorter than 100 characters, and (5) discussions
where the OH post is excluded. We treat the title
of an OH post as its first sentence. After this, ev-
ery comment to which the OH replies is paired up
with the OH’s initial post. A comment is labeled
as ∆ = 1 if it received a ∆ and ∆ = 0 otherwise.
Details are described in Appendix B.

The original dataset comes with training and
test splits (Figure 1a). After tokenization and POS
tagging with Stanford CoreNLP (Manning et al.,
2014), our vocabulary is restricted to the most fre-
quent 40,000 words from the training data. For a
validation split, we randomly choose 10% of train-
ing discussions for each topic.

We train our model on the seven topics that have
the highest ∆ ratios (Figure 1b). We test on the
same set of topics for in-domain evaluation and
on the other 13 topics for cross-domain evalua-
tion. The main reason for choosing the most mal-
leable topics is that these topics provide more in-
formation about people learning new perspectives,
which is the focus of our paper. Some statistics of
the resulting data are in Table 1.

5.2 Inputs

We use two basic types of inputs: sentence em-
beddings and TFIDF vectors. These basic inputs
are by no means enough for our complex task, and
most prior work utilizes higher-level features (po-
liteness, sentiment, etc.) and task-specific infor-
mation. Nevertheless, our experiment is limited to
the basic inputs to minimize feature engineering
and increase replicability, but our model is general
enough to incorporate other features as well.

Sentence embeddings Our input sentences x
are sentence embeddings obtained by a pretrained
sentence encoder (Conneau et al., 2017) (this is
different from the sentence encoder in our model).
The pretrained sentence encoder is a BiLSTM
with max pooling trained on the Stanford Natural
Language Inference corpus (Bowman et al., 2015)
for textual entailment. Sentence embeddings from
this encoder, combined with logistic regression on
top, showed good performance in various trans-
fer tasks, such as entailment and caption-image re-
trieval (Conneau et al., 2017).

TFIDF A whole post or comment is represented
as a TFIDF-weighted bag-of-words, where IDF is
based on the training data. We consider the top
40,000 n-grams (n = 1, 2, 3) by term frequency.

Word Overlap Although integration of hand-
crafted features is behind the scope of this paper,
we test the word overlap features between a com-
ment and the OH’s post, introduced by Tan et al.
(2016), as simple proxy for the interaction. For
each comment, given the set of its words C and
that of the OH’s post O, these features are defined
as
[
|C ∩O|, |C∩O||C| ,

|C∩O|
|O| ,

|C∩O|
|C∪O|

]
.

5.3 Model Setting

Network configurations For sentence encod-
ing, Gated Recurrent Units (Cho et al., 2014) with
hidden state sizes 128 or 192 are explored. For at-
tention, a single-layer feedforward neural network
(FF) with one output node is used. For interaction
encoding, we explore two interaction functions:
(1) the inner product of the sentence embeddings
and (2) a two-layer FF with 60 hidden nodes and
three output nodes with a concatenation of the sen-
tence embeddings as input. For prediction, we ex-
plore (1) a single-layer FF with either one output
node if the summary vector umax is the only in-
put or 32 or 64 output nodes with ReLU activation
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if the hidden state of the comment’s last sentence
is used as input, and optionally (2) a single-layer
FF with 1 or 3 output nodes with ReLU activa-
tion for the TFIDF-weighted n-grams of the com-
ment. The final prediction layer is a single-layer
FF with one output node with sigmoid activation
that takes the outputs of the two networks above
and optionally the word overlap vector. The mar-
gin ε for the ranking margin loss is 0.5. Optimiza-
tion is performed using AdaMax with the initial
learning rate 0.002, decayed by 5% every epoch.
Training stops after 10 epochs if the average vali-
dation AUC score of the last 5 epochs is lower than
that of the first 5 epochs; otherwise, training runs
5 more epochs. The minibatch size is 10.

Input configurations The prediction compo-
nent of the model takes combinations of the in-
puts: MAX (umax), HSENT (the last hidden state
of the sentence encoder sC

MC ), TFIDF (TFIDF-
weighted n-grams of the comment), and WDO
(word overlap).

5.4 Baseline
The most similar prior work to ours (Tan et al.,
2016) predicted whether an OH would ever give
a ∆ in a discussion. The work used logistic re-
gression with bag-of-words features. Hence, we
also use logistic regression as our baseline to pre-
dict P (∆ = 1). Simple logistic regression using
TFIDF is a relatively strong baseline, as it beat
more complex features in the aforementioned task.

Model configurations Different regulariza-
tion methods (L1, L2), regularization strengths
(2∧{−1, 0, 1, 2}), and class weights for positives
(1, 2, 5) are explored. Class weights penalize
false-negatives differently from false-positives,
which is appropriate for the skewed data.

Input configurations The model takes combi-
nations of the inputs: TFIDF (TFIDF-weighted
n-grams of the comment), TFIDF (+OH) (con-
catenation of the TFIDF-weighted n-grams of the
comment and the OH’s post), WDO (word over-
lap), and SENT (the sum of the input sentence em-
beddings of the comment).

6 Results

Table 2 shows the test AUC scores for the baseline
and our model in different input configurations.
For each configuration, we chose the optimal pa-
rameters based on validation AUC scores.

Model Inputs ID CD

LR SENT 62.8 62.5
LR TFIDF (+OH) 69.5 69.1
LR TFIDF 70.9 69.6
LR SENT+TFIDF 64.0 63.1
LR TFIDF+WDO 71.1 69.5

AIM MAX 70.5 67.5
AIM MAX+TFIDF 72.0* 69.4
AIM MAX+TFIDF+WDO 70.9 68.4

(A)IM HSENT 69.6 67.6
(A)IM HSENT+TFIDF 69.0 67.6
(A)IM MAX+TFIDF 69.5 68.1

Table 2: AUC scores. (ID: in-domain AUC (%), CD:
cross-domain AUC (%), LR: logistic regression, AIM:
Attention Interaction Model, (A)IM: AIM without at-
tention.) *: p < 0.05 using the DeLong test compared
to LR with TFIDF.

RQ1. Does the architecture of vulnerable re-
gion detection and interaction encoding help
to predict changes in view? Both interaction
information learned by our model and surface-
level n-grams in TFIDF have strong predic-
tive power, and attending to vulnerable regions
helps. The highest score is achieved by our
model (AIM) with both MAX and TFIDF as in-
put (72.0%). The performance drops if the model
does not use interaction information—(A)IM with
HSENT (69.6%)—or vulnerability information—
(A)IM with MAX+TFIDF (69.5%).

TFIDF by itself is also a strong predictor,
as logistic regression with TFIDF performs well
(70.9%). There is a performance drop if TFIDF is
not used in most settings. This is unsurprising be-
cause TFIDF captures some topical or stylistic in-
formation that was shown to play important roles
in argumentation in prior work (Tan et al., 2016;
Wei et al., 2016). Simply concatenating both com-
ment’s and OH’s TFIDF features does not help
(69.5%), most likely due to the fact that a sim-
ple logistic regression does not capture interac-
tions between features.

When the hand-crafted word overlap features
are integrated to LR, the accuracy is increased
slightly, but the difference is not statistically sig-
nificant compared to LR without these features nor
to the best AIM configuration. These features do
not help AIM (70.9%), possibly because the infor-
mation is redundant, or AIM requires a more de-
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the sat should not include trigonometry in their math section .
.
most colleges do not require trigonometry for admissions , and do not 
require students to take a trigonometry course .
it seems unfair that the sat would include this in the math section .
some will argue that it makes sure students are `` well rounded , '' but it 
's incredibly unfair to use this to test a student 's aptitude for college .
when i was in high school , i had an 89 % overall gpa .
i got mid-range scores on the reading and writing sections of the sat , 
but did very poorly on the math section .
because of this , i was denied admission to many colleges which i 
applied to .
i understand that my scores in reading and writing were average , but it 
was the low math score which really hurt my chances of admission .
this might seem like a personal argument , but the fact remains that i 'm 
sure many students would agree with me .
i understand including algebra and geometry , but i do n't see why they 
include trigonometry .
this is a person 's future which they are dealing with .
edit : of the five colleges i applied to , i was rejected by two of them , 
but was accepted by three of them .

!=1 / P(!=1)=0.073
i get and understand that math is not your strong point , that 's great and fine
, however it is mine . i got my undergrad in math and i am working on my
masters in stats , but just because i do n't see myself as needing reading or
writing that does not mean that others feel the same way . my personal
opinion of the sat and act is less that is it to make a `` well rounded ''
person and more to set a bar for entrance into selective schools . to your
opening point , the sat did not prevent you from going to college it just
prevented you for attending a more selective college , one that desires a
higher level of math knowledge than the ones that accepted you . it has
little to do with you and more to do with the statistics of placing people . if
someone has a better understanding of math they will be able to understand
more things in general -LRB- all else being held constant -RRB- .

!=0 / P(!=1)=0.039
> i understand including algebra and geometry , but i do n't see why
they include trigonometry .
if you know geometry but not trigonometry , you do n't know much
geometry . high school geometry classes are supposed to include
trigonometry . a lot of applications of geometry in higher-level math and in
subjects such as physics will require trigonometry . i do n't know how
authoritative -LSB- this source -RSB- -LRB- <UNK> -RRB- is , but it
seems to be a pretty good list of geometry topics you should master before
moving on to <UNK> .

OH’s initial post Two comments

Figure 4: Example discussion with the OH’s initial post (left), a successful comment (top right), and an unsuc-
cessful comment (bottom right). The OH’s post is colored based on attention weights (the higher attention the
brighter). Sentences with college and SAT sections (reading, writing, math) get more attention than sentences
with other subjects (algebra, geometry). The successful comment addresses parts with high attention, whereas the
unsuccessful comment addresses parts with low attention.

liberate way of integrating hand-crafted features.
For cross-domain performance, logistic regres-

sion with TFIDF performs best (69.6%). Our inter-
action information does not transfer to unseen top-
ics as well as TFIDF. This weakness is alleviated
when our model uses TFIDF in addition to MAX,
increasing the cross-domain score (from 67.5% to
69.4%). We expect that information about vul-
nerability would have more impact within domain
than across domains because it may learn domain-
specific information about which kinds of reason-
ing are vulnerable.

The rest of the section reports our qualitative
analysis based on the best model configuration.

RQ2. Can the model identify vulnerable sen-
tences, which are more likely to change the
OH’s view when addressed? If so, what proper-
ties constitute vulnerability? Our rationale be-
hind vulnerable region detection is that the model
is able to learn to pay more attention to sentences
that are more likely to change the OH’s view when
addressed. If the model successfully does this,
then we expect more alignment between the atten-
tion mechanism and sentences that are actually ad-
dressed by successful comments that changed the
OH’s view.

To verify if our model works as designed, we
randomly sampled 30 OH posts from the test set,

and for each post, the first successful and unsuc-
cessful comments. We asked a native English
speaker to annotate each comment with the two
most relevant sentences that it addresses in the OH
post, without knowledge of how the model com-
putes vulnerability and whether the comment is
successful or not.

After this annotation, we computed the average
attention weight of the two selected sentences for
each comment. We ran a paired sample t-test and
confirmed that the average attention weight of sen-
tences addressed by successful comments was sig-
nificantly greater than that of sentences addressed
by unsuccessful comments (p < 0.05). Thus, as
expected in the case where the attention works as
designed, the model more often picks out the sen-
tences that successful challengers address.

As to what the model learns as vulnerability, in
most cases, the model attends to sentences that are
not punctuation marks, bullet points, or irrelevant
to the topic (e.g., can you cmv?). A successful
example is illustrated in Figure 4. More success-
ful and unsuccessful examples are included in Ap-
pendix C.

RQ3. What kinds of interactions between ar-
guments are captured by the model? We first
use existing argumentation theories as a lens for
interpreting interaction embeddings (refer to Sec-
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tion 2). For this, we sampled 100 OH posts with
all their comments and examined the 150 sentence
pairs that have the highest value for each dimen-
sion of the interaction embedding (the dimension-
ality of interaction embeddings is 3 for the best
performing configuration). 22% of the pairs in
a dimension capture the comment asking the OH
a question, which could be related to shifting the
burden of proof. In addition, 23% of the top pairs
in one dimension capture the comment pointing
out that the OH may have missed something (e.g.,
you don’t know the struggles ...). This might repre-
sent the challengers’ attempt to provide premises
that are missing in the OH’s reasoning.

As providing missing information plays an im-
portant role in our data, we further examine if this
attempt by challengers is captured in interaction
embeddings even when it is not overtly signaled
(e.g., You don’t know ...). We first approximate
the novelty of a challenger’s information with the
topic similarity between the challenger’s sentence
and the OH’s sentence, and then see if there is a
correlation between topic similarity and each di-
mension of interaction embeddings (details are in
Appendix D). As a result, we found only a small
but significant correlation (Pearson’s r = −0.04)
between topic similarity with one of the three di-
mensions.

Admittedly, it is not trival to interpret interac-
tion embeddings and find alignment between em-
bedding dimensions and argumentation theories.
The neural network apparently learns complex in-
teractions that are difficult to interpret in a human
sense. It is also worth noting that the top pairs con-
tain many duplicate sentences, possibly because
the interaction embeddings may capture sentence-
specific information, or because some types of in-
teraction are determined mainly by one side of a
pair (e.g., disagreement is manifested mostly on
the challenger’s side).

TFIDF We examine successful and unsuccess-
ful styles reflected in TFIDF-weighted n-grams,
based on their weights learned by logistic regres-
sion (top n-grams with the highest and lowest
weights are in Appendix E). First, challengers are
more likely to change the OH’s view when talking
about themselves than mentioning the OH in their
arguments. For instance, first-person pronouns
(e.g., i and me) get high weights, whereas second-
person pronouns (e.g., you are and then you) get
low weights. Second, different kinds of polite-

ness seem to play roles. For example, markers of
negative politeness (can and can be, as opposed
to should and no) and negative face-threatening
markers (thanks), are associated with receiving a
∆. Third, asking a question to the OH (e.g., why,
do you, and are you) is negatively associated with
changing the OH’s view.

7 Conclusion

We presented the Attentive Interaction Model,
which predicts an opinion holder (OH)’s change
in view through argumentation by detecting vul-
nerable regions in the OH’s reasoning and mod-
eling the interaction between the reasoning and a
challenger’s argument. According to the evalua-
tion on discussions from the Change My View fo-
rum, sentences identified by our model to be vul-
nerable were addressed more by successful chal-
lengers than by unsuccessful ones. The model also
effectively captured interaction information so that
both vulnerability and interaction information in-
creased accuracy in predicting an OH’s change in
view.

One key limitation of our model is that making a
prediction based only on one comment is not ideal
because we miss context information that connects
successive comments. As a discussion between a
challenger and the OH proceeds, the topic may di-
gress from the initial post. In this case, detecting
vulnerable regions and encoding interactions for
the initial post may become irrelevant. We leave
the question of how to transfer contextual infor-
mation from the overall discussion as future work.

Our work is a step toward understanding how to
model argumentative interactions that are aimed to
enrich an interlocutor’s perspective. Understand-
ing the process of productive argumentation would
benefit both the field of computational argumenta-
tion and social applications, including cooperative
work and collaborative learning.
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A Implementation Details

A.1 Topics in the Data
Topics are extracted using LatentDirichletAlloca-
tion in scikit-learn v0.19.1, with the following
setting:

• n components: 20

• max iter: 200

• learning method: online

• learning offset: 50

A.2 AIM
We implemented our model in PyTorch 0.3.0.

A.3 Baseline
We use LogisticRegression in scikit-learn
v0.19.1, with the default settings.

A.4 TFIDF Features

TFIDF is extracted using TfidfVectorizer in
scikit-learn v0.19.1, with the default setting.

B Data Preprocessing

In the CMV forum, DeltaBot replies to an OH’s
comment with the confirmation of a ∆, along
with the user name to which the OH replied. For
most OH replies, the (non-)existence of a ∆ indi-
cates whether a comment to which the OH replied
changed the OH’s view. However, an OH’s view is
continually influenced as they participate in argu-
mentation, and thus a ∆ given to a comment may
not necessarily be attributed to the comment itself.
One example is when a comment does not receive
a ∆ when the OH reads it for the first time, but the
OH comes back and gives it a ∆ after they inter-
act with other comments. In such cases, we may
want to give a credit to the comment that actually
led the OH to reconsider a previous comment and
change the view.

Hence, we use the following labeling that con-
siders the order in which OHs read comments. We
treat the (non-)existence of a ∆ in an OH com-
ment as a label for the last comment that the OH
read. We reconstruct the order in which the OH
reads comments as follows. We assume that when
the OH writes a comment, he/she has read all prior
comments in the path to that comment.

Based on this assumption, we linearize (i.e.,
flatten) the original tree structure of the initial
post and all subsequent comments into a linear se-
quence S. Starting with empty S, for each of the
OH’s comments in chronological order, its ances-
tor comments that are yet to be in S and the com-
ment itself are appended to S. And for each of the
OH’s comments, its preceding comment in S is la-
beled with ∆ = 1 if the OH’s comment has a ∆
and 0 otherwise.

This ensures that the label of a comment to
which the OH replied is the (non-)existence of a
∆ in the OH’s first reply. If an OH reply is not
the first reply to a certain comment (as in the sce-
nario mentioned above), or a comment to which
the OH replied is missing, the (non-)existence of a
∆ in that reply is assigned to the comment that we
assume the OH read last, which is located right
before the OH’s comment in the restructured se-
quence.
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!=1 / P(!=1)=0.057
this slogan is for people who do not seem to have the iq or common sense
to take basic precautions for their own safety . there are two ways to
convince these prospective candidates of the darwin award - authority or
emotion . appeal to emotion requires some introspection and determining
your own worth to your family etc. this is intellectually more involved than
common sense and thus clearly beyond the capabilities of these individuals .
therefore , an appeal to authority , like law , is your only chance .

!=0 / P(!=1)=0.021
but everyone knows there a penalties and fines for breaking the law . its not
an appeal to authority , its pointing out the consequences -LRB- the fines -
RRB- . and appeal to authority would be closer to `` buckle up , the
government says you should '' .

OH’s initial post Two comments

`` buckle up , it 's the law '' is an appeal to authority , and therefore not 
a good slogan to get people to put on their seat belts .
.
i believe that `` buckle up , it 's the law '' is a very bad slogan , because 
it is an -LSB- appeal to authority -RSB- -LRB- <UNK> -RRB- which 
can be rejected easily in people 's minds if they are n't aware of the 
purpose of a law .
instead , an appeal to the motorist 's intelligence by pointing out the 
consequences of not buckling up , and thus making motorists aware of 
the possible consequences of not buckling up and making it obvious 
why it is rather sensible to wear one 's seat belt would be a lot more 
effective .
-LSB- this german ad posted along public roads throughout germany -
RSB- -LRB- <UNK> -RRB- is an excellent example of this .
the text translates to `` one is distracted , four die '' .
a brief but concise outline of cause and effect , enough to raise 
awareness .

Good example

!=1 / P(!=1)=0.277
it 's hard to say without seeing the skin first hand , but -LRB- if my
assumptions were right on everything else other than hair color -RRB-
hypothetically ... i suggest using a <UNK> <UNK> - something very gentle
on the skin . no more than once every five days . wash it at night , as your
skin type -LRB- if my guesses are right -RRB- produces more oil when you
sleep . also , do not wash your face in the shower , do it afterwards . your
<UNK> are open in the shower -LRB- due to the heat -RRB- , and
whatever you clean is going to fill up with soap residue after you washed it
. that residue can clog your <UNK> and lead to a break out . pro tip : rinse
your face after washing twice - first with hot water , then with cold water .
this closes your <UNK> and limits <UNK> . hair ? i 'd have to see it up
close , but some simple recommendations -LRB- if my assumptions about
slightly oily scalp and hair are right -RRB- would be <UNK> -LRB- brand
-RRB- <UNK> oil shampoo and conditioner . let your conditioner sit and
soak for at least 4 minutes before rinsing it out . you do n't need to use
much , just enough to cover it . if you want or need further help - feel free to
pm me . without sounding all pedo -LRB- do n't look at my username -
RRB- , take a few <UNK> pics of your face and hair -LRB- so i can see the
skin and your hair structure -RRB- and link me to the pics in the pm . i can
give you a much better breakdown of what to do when i can see what i am
working with . or if you have the balls , you can post those pics here too .
up to you , and yes - wash your sheets more often - chicks love a freshly
washed set of sheets .

!=0 / P(!=1)=0.028
if your hair is actually dirty , you must clean it . for someone with short hair
and soft water , soap will be fine . however , in hard water the polar end of
the soap binds to calcium and forms a sticky scum that does not easily wash
out of long hair . a detergent like shampoo does not have this problem .

OH’s initial post Two comments

shampoo and special body wash products are unnecessary .
.
bar soap is all you need .
and you dont wash your hair at all , you just rinse it .
sometimes i use shampoo , maybe once in a month or two , if i did 
something specially dirty or got chemicals in my hair etc. but your hair 
is healthier without it , and if i cared enough to find an alternative i 
would use something natural .
if you quit using shampoo , your hair might be greasy for the first 
couple days , but with nothing but proper rinsing your hair will be able 
to clean itself .
face wash is unnecessary as well .
bar soap is fine .
special body washes are unnecessary .
it is all a marketing ploy .
i am a clean and beautiful boy who has no problem attracting the 
opposite sex , and have never been led to suspect that my habits are 
somehow smelly or unclean .
what is the point of using these products ?
please , reddit , change my view : <UNK> products are a scam .

Good example

Figure 5: Successful examples of vulnerable region detection.
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!=1 / P(!=1)=0.018
> i see that as a sort of amateur performance art as someone who has
<UNK> , i do n't agree . a street magician , <UNK> , or someone giving a
public speech are all asking for your attention . they 're doing what they 're
doing for the sake of their audience . some cosplayers fit this category , but
for some they just wan na dress up in a cool costume for the day and a con
is the best place to do that .

!=0 / P(!=1)=0.004
would you walk up to someone on the street and take their picture without
asking ?

OH’s initial post Two comments

Bad example

i do n't feel obligated to ask permission to take cosplayer pictures at a 
convention .
.
i 've been to a prominent anime convention -LRB- ~ 8000 annual 
attendees -RRB- , 6 or 7 years now and have never felt the need to ask 
anyone 's permission before taking pictures .
i 'll ask permission to take a picture if : * the cosplayer is dressed up as 
something i really like and no one else is taking their picture - i want 
them to do their pose or whatever if they do n't mind because it 's from 
something i like * they 're dressed in something suggestive , showing a 
lot of skin , or look uncomfortable being dressed that way in a public 
setting - i do n't usually take these people 's pictures anyways because 9 
times out of 10 me feeling creepy is n't worth the value i 'd get having 
the picture * they might otherwise enjoy being asked to get their picture 
taken - little girl , something obscure , whatever i typically wo n't ask to 
take a picture if : * they 've already got a big crowd of people around 
them taking pictures * they 've got a cool costume i want to remember , 
but i do n't care enough to have them do their pose or whatever .
* i want to capture some aspect of the convention and anime culture 
itself - to me a convention is like going to a fair or a festival , it 's an 
event i want pictures of i think the main reason people are so strongly 
opposed to people taking unwarranted pictures is creepy people , and 
that 's a valid concern .
however i think with the general discretion that i follow , asking every 
single person for their picture is a bit unnecessary .
at the same time , i know a lot of people feel very strongly about 
photographic consent and i may very well be overlooking something 
important so change my view !
edit : wording

!=1 / P(!=1)=0.131
1 . -RRB- i will concede that on a biological level , squatting is the ``
default '' position so our biology and anatomy generally works better in that
position . 2 . -RRB- toilet paper is a shield that , hopefully , keeps your
hand and any small cuts , or splits cleaner and less prone to nasty infections
. it does , as other commentators have said , keep feces out from underneath
your fingernails . the associated costs of water usage , soap also affect the
environment . -LRB- though it must be noted that you still should wash
your hands after <UNK> it just takes less if your not scrubbing last nights
dinner off your hand . -RRB- 3 . -RRB- bulky , dirty , and in need of
maintenance i will give you . however , if we are talking about a toilet in a
home cleanliness should be part of the necessary routine that would be
needed if you had say , a bucket and a floor level toilet system . the
complexity in a toilet provides a way to shield sewer gasses from coming
back up into the restroom . it 's not a perfect system but it 's better than up
against a tree in the woods .

!=0 / P(!=1)=0.105
1 -RRB- this may be true , but there is no evidence that i am aware of that
supports any of your claims . also , cancer ? really ? that sounds almost like
a joke : `` i squat when i poop so i wo n't get cancer ! '' 2 -RRB- soap and
other cleaning materials also have costs associated with them . the
cleanliness bonus is marginal for people who shower daily . you 'll need to
use more water too to wash up . are you sure that this is really a plus ? 3 -
RRB- they are also a great way to dispose of waste : it has to go somewhere
, it can be toxic to plants , and toilets take up a negligibly larger amount of
space than a bucket , which then requires ` maintenance ' every time it
needs emptied . butts are also , with the exception of the asshole itself , -
LSB- probably the cleanest part of our bodies . -RSB- -LRB- <UNK> -
RRB- they 're always covered and we rarely directly touch anything with
them ; why would they be unclean ?

OH’s initial post Two comments

Bad example

european style pooping is the worst way to go to the bathroom .
1 .
squatting is more comfortable , easier and healthier than sitting .
it creates less stress on the the <UNK> muscle allowing for a smoother 
uninterrupted experience .
it plays well with gravity so less pressure is needed and lowers the risk 
of cancer and other ailments .
2 .
toilet paper is messy , expensive and damages the environment .
when washed properly the use of your hand is preferable to toilet paper 
, it might sound disgusting but when you think about it using a thin 
piece of frail paper to smear around fecal matter with no water or soap 
is even worse .
3 .
modern <UNK> toilets are large , bulky and complex .
they take more space , require more maintenance and are ultimately 
dirtier as butts keep touching them .

Figure 6: Unsuccessful examples of vulnerable region detection.
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n-grams for ∆ = 1 n-grams for ∆ = 0

and, in, for, use, it, on,
thanks, often, delta,
time, depression, -
RRB-, lot, -LRB-, or,
i, can, &, with, more,
as, band, *, #, me, -
LRB- -RRB-, can be,
has, deltas, when

?, >, sex, why,
do you, wear, re-
lationship, child,
are you, op, mother,
should, wearing,
teacher, then, it is,
same, no, circum-
cision, you are,
then you, baby, story

Table 3: Top n-grams with the most positive/negative
weights for logistic regression.

C Vulnerability Examples

Figure 5 and Figure 6 show successful and unsuc-
cessful examples of vulnerable region detection.
All examples are from the test set.

D Topic Similarity between Sentences

The topic similarity between a pair of sentences
is computed as the consine similarity between the
topic distributions of the sentences.

The first step is to extract topics. Using Latent-
DirichletAllocation in scikit-learn v0.19.1, we
ran LDA on the entire data with 100 topics, tak-
ing each post/comment as a document. We treat
the top 100 words for each topic as topic words.

The second step is to compute the topic distri-
bution of each sentence. We simply counted the
frequency of occurrences of topic words for each
topic, and normalized the frequencies across top-
ics.

Lastly, we computed the cosine similarity be-
tween the topic distributions of a pair of sentences.

E Top TFIDF n-grams

The n-grams that contribute most to ∆ prediction
for logistic regression are shown in table 3.
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Abstract

Analyzing language in context, both from a
theoretical and from a computational perspec-
tive, is receiving increased interest. Com-
plementing the research in linguistics on dis-
course and information structure, in compu-
tational linguistics identifying discourse con-
cepts was also shown to improve the perfor-
mance of certain applications, for example,
Short Answer Assessment systems (Ziai and
Meurers, 2014).

Building on the research that established de-
tailed annotation guidelines for manual anno-
tation of information structural concepts for
written (Dipper et al., 2007; Ziai and Meur-
ers, 2014) and spoken language data (Calhoun
et al., 2010), this paper presents the first ap-
proach automating the analysis of focus in au-
thentic written data. Our classification ap-
proach combines a range of lexical, syntactic,
and semantic features to achieve an accuracy
of 78.1% for identifying focus.

1 Introduction

The interpretation of language is well known to
depend on context. Both in theoretical and com-
putational linguistics, discourse and information
structure of sentences are thus receiving increased
interest: attention has shifted from the analysis of
isolated sentences to the question how sentences
are structured in discourse and how information is
packaged in sentences analyzed in context.

As a consequence, a rich landscape of ap-
proaches to discourse and information struc-
ture has been developed (Kruijff-Korbayová and
Steedman, 2003). Among these perspectives, the
Focus-Background dichotomy provides a particu-
larly valuable structuring of the information in a
sentence in relation to the discourse. (1) is an ex-
ample question-answer pair from Krifka and Mu-
san (2012, p. 4) where the focus in the answer is
marked by brackets.

(1) Q: What did John show Mary?

A: John showed Mary [[the PICtures]]F .

In the answer in (1), the NP the pictures is fo-
cussed and hence indicates that there are alterna-
tive things that John could show Mary. It is com-
monly assumed that focus here typically indicates
the presence of alternative denotations (denotation
focus, Krifka and Musan 2012, p.8), making it
a semantic notion. Depending on the language,
different devices are used to mark focus, such as
prosodic focus marking or different syntactic con-
structions (e.g. clefts). In this paper, we adopt a
notion of focus based on alternatives, as advanced
by Rooth (1992) and more recently, Krifka and
Musan (2012), who define focus as indicating “the
presence of alternatives that are relevant for the in-
terpretation of linguistic expressions” (Krifka and
Musan, 2012, p. 7). Formal semantics has tied the
notion of alternatives to an explicit relationship
between questions and answers called Question-
Answer Congruence (Stechow, 1991), where the
idea is that an answer is congruent to a question if
both evoke the same set of alternatives. Questions
can thus be seen as a way of making alternatives
explicit in the discourse, an idea also taken up by
the Question-Under-Discussion (QUD) approach
(Roberts, 2012) to discourse organization.

Complementing the theoretical linguistic ap-
proaches, in the last decade corpus-based ap-
proaches started exploring which information
structural notions can reliably be annotated in
what kind of language data. While the information
status (Given-New) dimension can be annotated
successfully (Riester et al., 2010; Nissim et al.,
2004) and even automated (Hempelmann et al.,
2005; Nissim, 2006; Cahill and Riester, 2012),
the inter-annotator agreement results for Focus-
Background (Ritz et al., 2008; Calhoun et al.,
2010) show that it is difficult to obtain high lev-
els of agreement, especially due to disagreement
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about the extent or size of the focused unit.
More recently, Ziai and Meurers (2014) showed

that for data collected in task contexts includ-
ing explicit questions, such as answers to read-
ing comprehension questions, reliable focus an-
notation is possible. In addition, an option for
externally validating focus annotation was estab-
lished by showing that such focus annotation im-
proves the performance of Short Answer Assess-
ment (SAA) systems. Focus enables the system
to zoom in on the part of the answer addressing
the question instead of considering all parts of the
answer as equal.

In this paper, we want to build on this strand
of research and develop an approach for automati-
cally identifying focus in authentic data including
explicit question contexts. In contrast to Calhoun
(2007) and Sridhar et al. (2008), who make use of
prosodic properties to tackle the identification of
focus for content words in spoken language data,
we target the analysis of written texts.

We start in section 2 by discussing relevant re-
lated work before introducing the gold standard
focus annotation we are using as foundation of
our work in section 3. Section 4 then presents
the different types of features used for predicting
which tokens form a part of the focus. In sec-
tion 5 we employ a supervised machine learning
setup to evaluate the perspective and specific fea-
tures in terms of the ability to predict the gold stan-
dard focus labeling. Building on these intermedi-
ate results and the analysis thereof in section 6,
in section 7 we then present two additional fea-
ture groups which lead to our final focus detection
model. Finally, section 8 explores options for ex-
trinsically showing the value of the automatic fo-
cus annotation for the automatic meaning assess-
ment of short answers. It confirms that focus anal-
ysis pays off when aiming to generalize assess-
ment to previously unseen data and contexts.

2 Previous Approaches

There is only a very small number of approaches
dealing with automatically labeling information
structural concepts.1 Most approaches related to
detecting focus automatically almost exclusively
center on detecting the ‘kontrast’ notion in the En-
glish Switchboard corpus (Calhoun et al., 2010).
We therefore focus on the Switchboard-based ap-

1For a broader perspective of computational approaches
in connection with information structure, see Stede (2012).

proaches here.

The availability of the annotated Switchboard
corpus (Calhoun et al., 2005, 2010) sparked in-
terest in information-structural categories and en-
abled several researchers to publish studies on
detecting focus. This is especially true for the
Speech Processing community, and indeed many
approaches described below are intended to im-
prove computational speech applications in some
way, by detecting prominence through a combina-
tion of various linguistic factors. Moreover, with
the exception of Badino and Clark (2008), all ap-
proaches use prosodic or acoustic features.

All approaches listed below tackle the task
of detecting ‘kontrast’ (as focus is called in the
Switchboard annotation) automatically on various
subsets of the corpus using different features and
classification approaches. For each approach, we
therefore report the features and classifier used,
the data set size as reported by the authors, the (of-
ten very high) majority baseline for a binary dis-
tinction between ‘kontrast’ and background, and
the best accuracy obtained. If available in the orig-
inal description of the approach, we also report the
accuracy obtained without acoustic and prosodic
features.

Calhoun (2007) investigated how focus can be
predicted through what she calls “prominence
structure”. The essential claim is that a “focus
is more likely if a word is more prominent than
expected given its syntactic, semantic and dis-
course properties”. The classification experiment
is based on 9,289 words with a 60% majority base-
line for the ‘background’ class. Calhoun (2007)
reports 77.7% for a combination of prosodic, syn-
tactic and semantic features in a logistic regres-
sion model. Without the prosodic and acoustic
features, the accuracy obtained is at 74.8%. There
is no information on a separation between training
and test set, likely due to the setup of the study
being geared towards determining relevant factors
in predicting focus, not building a focus predic-
tion model for a real application case. Relatedly,
the approach uses only gold-standard annotation
already available in the corpus as the basis for fea-
tures, not automatic annotation.

Sridhar et al. (2008) use lexical, acoustic and
part-of-speech features in trying to detect pitch ac-
cent, givenness and focus. Concerning focus, the
work attempts to extend Calhoun (2007)’s analy-
sis to “understand what prosodic and acoustic dif-
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ferences exist between the focus classes and back-
ground items in conversational speech”. 14,555
words of the Switchboard corpus are used in to-
tal, but filtered for evaluation later to balance the
skewed distribution between ‘kontrast’ and ‘back-
ground’. With the thus obtained random baseline
of 50%, Sridhar et al. (2008) obtain 73% accu-
racy when using all features, which again drops
only slightly to 72.95% when using only parts of
speech. They use a decision tree classifier to com-
bine the features in 10-fold cross-validation for
training and testing.

Badino and Clark (2008) aim to model contrast
both for its role in analyzing discourse and infor-
mation structure, and for its potential in speech
applications. They use a combination of lexical,
syntactic and semantic features in an SVM clas-
sifier. No acoustic or prosodic features are em-
ployed in the model. In selecting the training and
testing data, they filter out many ‘kontrast’ in-
stances, such as those triggered across sentence
boundaries, those above the word level, and those
not sharing the same broad part of speech with the
trigger word. The resulting data set has 8,602 in-
stances, of which 96.8% are ‘background’. Badino
and Clark (2008) experiment with different kernel
settings for the SVM and obtain the best result of
97.19% using a second-order polynomial kernel,
and leave-one-out testing.

In contrast to all approaches above, we target
the analysis of written texts, for which prosodic
and acoustic information is not available, so we
must rely on lexis, syntax and semantics exclu-
sively. Also, the vast majority of the approaches
discussed make direct use of the manually anno-
tated information in the corpus they use in order
to derive their features. While this is a viable ap-
proach when the aim is to determine the relevant
factors for focus detection, it does not represent a
real-life case where annotated data often unavail-
able. In our focus detection model, we only use
automatically determined annotation as the basis
for our features for predicting focus.

Since our approach also makes use of question
properties, it is also worth mentioning that there
are a number of approaches on Answer Typing as
a step in Question Answering (QA) approaches in
order to constrain the search space of possible can-
didate answers and improve accuracy. While ear-
lier approaches such as Li and Roth (2002) used
a fixed set of answer types for classifying factoid

questions, other approaches such as Pinchak and
Lin (2006) avoid assigning pre-determined classes
to questions and instead favor a more data-driven
label set. In more recent work, Lally et al. (2012)
use a sophisticated combination of deep parsing,
lexical clues and broader question labels to ana-
lyze questions.

3 Data

The present work is based on the German CREG
corpus (Ott et al., 2012). CREG contains re-
sponses by American learners of German to com-
prehension questions on reading texts. Each re-
sponse is rated by two teaching assistants with re-
gard to whether it answers the question or not.
While many responses contain ungrammatical lan-
guage, the explicit questions in CREG generally
make it possible to interpret responses. More im-
portantly for our work, they can be seen as Ques-
tions Under Discussion and thus form an ideal
foundation for focus annotation in authentic data.

As a reference point for the automatic detection
of focus, we used the CREG-ExpertFocus data set
(De Kuthy et al., 2016) containing 3,187 student
answers and 990 target answers (26,980 words in
total). It was created using the incremental annota-
tion scheme described in Ziai and Meurers (2014),
where annotators first look at the surface question
form, then determine the set of alternatives, and
finally mark instances of the alternative set in an-
swers. De Kuthy et al. (2016) report substantial
agreement in CREG-ExpertFocus (κ ≥ .7) and
provide an adjudicated gold standard, which thus
presents a high-quality basis for training our focus
detection classifier.

4 Focus Detection Model

As described in section 3 above, focus was marked
in a span-based way in the data set used: each in-
stance of focus starts at a specific word and ends at
another word. Since in principle any part of speech
can be focused, we cannot constrain ourselves to
a pre-defined set of markables for automatic clas-
sification. We therefore conceptualized the task
of automatic focus detection on a per-word level:
for each word in an answer, as identified by the
OpenNLP tokenizer and sentence segmenter2, the
classifier needs to decide whether it is an instance
of focus or background. Besides the choice of

2http://opennlp.apache.org
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classification algorithm, the crucial question nat-
urally is the choice of linguistic features, which
we turn to next.

4.1 Features

Various types of linguistic information on differ-
ent linguistic levels can in principle be relevant for
focus identification, from morphology to seman-
tics. We start by exploring five groups of features,
which are outlined below. In section 7, we dis-
cuss two more groups designed to address specific
problems observed with the initial model.

Syntactic answer properties (SynAns) A
word’s part-of-speech and syntactic function are
relevant general indicators with respect to focus:
since we are dealing with meaning alternatives,
the meaning of e.g. a noun is more likely to
denote an alternative than a grammatical function
word such as a complementizer or article.

Similarly, a word in an argument dependency
relation is potentially a stronger indicator for a fo-
cused alternative in a sentence than a word in an
adjunct relation. We therefore included two fea-
tures: the word’s part-of-speech tag in the STTS
tag set (Schiller et al., 1995) determined using
TreeTagger (Schmid, 1994), and the dependency
relation to the word’s head in the Hamburg de-
pendency scheme (Foth et al., 2014, p. 2327) de-
termined using MaltParser (Nivre et al., 2007) as
features in our model.

Question properties The question constitutes
the direct context for the answer and dictates its in-
formation structure and information requirements
to fulfill. In particular, the type of wh-phrase
(if present) of a question is a useful indicator of
the type of required information: a who-question,
such as ‘Who rang the doorbell?’, will typically be
answered with a noun phrase, such as ‘the milk-
man’. We identified surface question forms such
as who, what, how etc. using a regular expres-
sion approach developed by Rudzewitz (2015) and
included them as features. Related to question
forms, we also extracted the question word’s de-
pendency relation to its head, analogous to the
answer feature described above.

Surface givenness As a rough and robust ap-
proximation to information status, we add a
boolean feature indicating the presence of the
current word in the question. We use the lem-

matized form of the word as determined by Tree-
Tagger (Schmid, 1994).

Positional properties Where a word occurs in
the answer or the question can be relevant for its
information structural status. It has been observed
since Halliday (1967) that given material tends to
occur earlier in sentences (here: answers), while
new or focused content tends to occur later. We
encode this observation in three different features:
the position of the word in the answer (normal-
ized by sentence length), the distance from the fi-
nite verb (in words), and the position of the word
in the question (if it is given).

Conjunction features To explicitly tie answer
properties to question properties, we explored
different combinations of the features described
above. Specifically, we encoded the current
word’s POS depending on the question form,
and the current word’s POS depending on the
wh-word’s POS. To constrain the feature space
and get rid of unnecessary distinctions, we con-
verted the answer word’s POS to a coarse-grained
version before computing these features, which
collapses all variants of determiners, pronouns,
adjectives/adverbs, prepositions, nouns and verbs
into one label, respectively.3

5 Intrinsic Evaluation

5.1 Setup

To employ the features described above in an
actual classifier, we trained a logistic regression
model using the WEKA toolkit (Hall et al., 2009).
We also experimented with other classification al-
gorithms such as SVMs, but found that they did
not offer superior performance for this task. The
data set used consists of all expert focus annota-
tion available (3,187 student answers, see section
3), with the exception of the answers occurring in
the extrinsic evaluation test set we use in section
8, which leaves a total of 2,240 student answers
with corresponding target answers and questions.
We used 10-fold cross-validation on this data set to
experiment and select the optimal model for focus
detection.

3For a list (in German) of the full tag set,
see http://www.ims.uni-stuttgart.de/
forschung/ressourcen/lexika/TagSets/
stts-table.html
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5.2 Results
Table 1 lists the accuracies4 obtained for our dif-
ferent feature groups, as well as three baselines:
a POS baseline, following Sridhar et al. (2008), a
baseline that only includes the simple givenness
feature, and the majority baseline. The majority
class is focus, occurring in 58.1% of the 26,980
cases (individual words).

Accuracy for
Feature set focus backgr. both
Majority baseline 100% 0% 58.1%
Givenness baseline 81.5% 42.5% 65.1%
POS baseline 89.2% 39.6% 68.4%
SynAns 82.8% 50.3% 69.2%
+ Question 83.8% 53.1% 70.9%
+ Given 84.8% 62.0% 74.8%
+ Position 84.9% 66.5% 77.2%
+ Conjunction 85.2% 66.7% 77.4%

Table 1: Initial focus detection model

We can see that each feature group incremen-
tally adds to the final model’s performance, with
particularly noticeable boosts coming from the
givenness and positional features. Another clear
observation is that the classifier is much better at
detecting focus than background, possibly also due
to the skewedness of the data set. Note that perfor-
mance on background increases also with the ad-
dition of the ‘Question’ feature set, indicating the
close relation between the set of alternatives intro-
duced by the question and the focus selecting from
that set, even though our approximation to compu-
tationally determining alternatives in questions is
basic. It is also clear that the information intrin-
sic in the answers, as encoded in the ‘SynAns’ and
‘Position’ feature sets, already provides significant
performance benefits, suggesting that a classifier
trained only on these features could be trained and
applied to settings where no explicit questions are
available.

6 Qualitative Analysis

In order to help explain the gap between automatic
and manual focus annotation, let us take a step
back from quantitative evaluation and examine a
few characteristic examples in more detail.

Figure 1 shows a case where a why-question
is answered with an embedded ‘weil’ (because)

4We show per-class and overall accuracies, the former is
also known as recall or true positive rate.

clause. The classifier successfully marked ‘weil’
and the end of the clause as focus, but left out
the pronoun ‘es’ (it) in the middle, presumably be-
cause pronouns are given and often not focused in
other answers. We did experiment with using a
sequence classification approach in order to rem-
edy such problems, but it performed worse overall
than the logistic regression model we presented in
section 4. We therefore suggest that in such cases,
a global constraint stating that why-questions are
typically answered with a full clause would be a
more promising approach, combining knowledge
learned bottom-up from data with top-down lin-
guistic insight.

In Figure 2, we can see two different problems.
One is again a faulty gap, namely the omission of
the conjunction ‘und’ (and). The other is the focus
marking of the word ‘AG’ (corporation) in the be-
ginning of the sentence: since the question asks for
an enumeration of the institutions that form a cor-
poration, marking ‘AG’ as focused is erroneous.
This problem likely occurs often with nouns be-
cause the classifier has learned that content words
are often focused. Moreover, the surface given-
ness feature does not encode that ‘AG’ is in fact
an abbreviation of ‘Aktiengesellschaft’ and there-
fore given. It would thus be beneficial to extend
our analysis of givenness beyond surface identity,
a direction we explore in the next section.

Finally, Figure 3 presents a case where an enu-
meration is marked correctly, including the con-
junctive punctuation in between, showing that
cases of longer foci are indeed within reach for a
word-by-word focus classifier.

7 Extending the Model

Based on our analysis of problematic cases out-
lined in the previous section, we explored two dif-
ferent avenues for improving our focus detection
model, which we describe below.

7.1 Distributional Givenness

We have seen in section 5.2 that surface-based
givenness is helpful in predicting focus. How-
ever, it clearly has limitations, as for example syn-
onymy cannot be captured on the surface. We
also exemplified one such limitation in Figure 2.
In order to overcome these limitations, we im-
plemented an approach based on distributional se-
mantics. This avenue is motivated by the fact that
Ziai et al. (2016) have shown Givenness modeled
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Warum sollte man Dresden besuchen?
‘Why should one visit Dresden?’

‘One should visit Dresden because it has much to offer.’

Figure 1: Focus with a faulty gap in between

Aus welchen drei Organen besteht eine Aktiengesellschaft?
‘Which three institutions does a corporation consist of?’

‘A corporation consists of the general assembly, the supervisory board and the steering committee.’

Figure 2: Focus with a faulty outlier (and a faulty gap)

Welche Sehenswürdigkeiten gibt es in der Stadt?
‘Which places of interest are in the city?’

‘The city exists the Dresden Zwinger, the Frauenkirche, the Semperoper, the Royal Palace.’

Figure 3: Enumeration with correct focus

as distributional similarity to be helpful for SAA
at least in some cases. We used the word vec-
tor model they derived from the DeWAC corpus
(Baroni et al., 2009) using word2vec’s continuous
bag-of-words training algorithm with hierarchical
softmax (Mikolov et al., 2013). The model has a
vocabulary of 1,825,306 words and uses 400 di-
mensions for each.

Having equipped ourselves with a word vector
model, the question arises how to use it in fo-
cus detection in such a way that it complements
the positive impact that surface-based givenness
already demonstrates. Rather than using an em-
pirically determined (and hence data-dependent)
empirical threshold for determining givenness as
done by Ziai et al. (2016), we here use raw cosine
similarities5 as features and let the classifier assign
appropriate weights to them during training. Con-
cretely, we calculate maximum, minimum and
average cosine between the answer word and
the question words. As a fourth feature, we cal-
culate the cosine between the answer word and
the additive question word vector, which is the
sum of the individual question word vectors.

7.2 Constituency-based Features

Another source of evidence we wanted to exploit
is constituency-based syntactic annotation. So far,

5We normalize cosine similarity as cosine distance to ob-
tain positive values between 0 and 2: dist = 1− sim

we have worked with part-of-speech tags and de-
pendency relations as far as syntactic representa-
tion is concerned. However, while discontinuous
focus is possible, focus as operationalized in the
scheme by Ziai and Meurers (2014) most often
marks an adjacent group of words, a tendency that
our word-based classifier did not always follow, as
exemplified by the cases in Figures 1 and 2. Such
groups very often correspond to a syntactic phrase,
so constituent membership is likely indicative in
predicting the focus status of an individual word.
Similarly, the topological field (Höhle, 1986) iden-
tifying the major section of a sentence in relation
to the clausal main verb is potentially relevant for
a word’s focus status.

Cheung and Penn (2009) present a parsing
model that demonstrates good performance in
determining both topological fields and phrase
structure for German. The model is trained on
the TüBa-D/Z treebank (Telljohann et al., 2004),
whose rich syntactic model encodes topological
fields as nodes in the syntax tree itself. Following
Cheung and Penn (2009), we trained an updated
version of their model using the current version of
the Berkeley Parser (Petrov and Klein, 2007) and
release 10 of the TüBa-D/Z.6

Based on the new parsing model, we integrated
two new features into our focus detection model:

6http://www.sfs.uni-tuebingen.de/en/
ascl/resources/corpora/tueba-dz.html
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the direct parent constituent node of a word and
the nearest topological field node of a word.

7.3 Final Results

Table 2 shows the impact of the new feature
groups discussed above.

Accuracy for
Feature set focus backgr. both
Majority baseline 100% 0% 58.1%
Givenness baseline 81.5% 42.5% 65.1%
POS baseline 89.2% 39.6% 68.4%
Initial model (sec. 5.2) 85.2% 66.7% 77.4%
+ dist. Givenness 84.7% 68.0% 77.7%
+ constituency 84.8% 68.7% 78.1%

Table 2: Final focus detection performance

While the improvements may seem modest
quantitatively, they show that the added features
are well-motivated and do make an impact. Over-
all, it is especially apparent that the key to better
performance is reducing the number of false posi-
tives in this data set: while the accuracy for focus
stays roughly the same, the one for background
improves steadily with each feature set addition.

8 Extrinsic Evaluation

Complementing the intrinsic evaluation above, in
this section we demonstrate how focus can be suc-
cessfully used to improve performance in an au-
thentic CL task, namely Short Answer Assessment
(SAA).

8.1 Setup

It has been pointed out that evaluating the anno-
tation of a theoretical linguistic notion only in-
trinsically is problematic because there is no non-
theoretical grounding involved (Riezler, 2014).
Therefore, besides a comparison to the gold stan-
dard, we also evaluated the resulting annotation in
a larger computational task, the automatic mean-
ing assessment of short answers to reading com-
prehension questions. Here the goal is to decide,
given a question (Q) and a correct target answer
(TA), whether the student answer (SA) actually
answers the question or not. An example from
Meurers et al. (2011) is shown in Figure 4.

We used the freely available CoMiC system
(Comparing Meaning in Context, Meurers et al.
2011) as a testbed for our experiment. CoMiC
is an alignment-based system operating in three
stages:

Figure 4: Short Answer Assessment example

1. Annotating linguistic units (words, chunks
and dependencies) in student and target an-
swer on various levels of abstraction

2. Finding alignments of linguistic units be-
tween student and target answer based on an-
notation (see Figure 4)

3. Classifying the student answer based on
number and type of alignments (see Table 3),
using a supervised machine learning setup

Feature Description
1. Keyword Overlap Percent of dependency heads

aligned (relative to target)
2./3. Token Overlap Percent of aligned target/student

tokens
4./5. Chunk Overlap Percent of aligned target/student

chunks (as identified by
OpenNLP3)

6./7. Triple Overlap Percent of aligned target/student
dependency triples

8. Token Match Percent of token alignments that
were token-identical

9. Similarity Match Percent of token alignments
resolved using PMI-IR (Turney,
2001)

10. Type Match Percent of token alignments
resolved using GermaNet
hierarchy (Hamp and Feldweg,
1997)

11. Lemma Match Percent of token alignments that
were lemma-resolved

12. Synonym Match Percent of token alignments
sharing same GermaNet synset

13. Variety of Match Number of kinds of
(0-5) token-level alignments (features

8–12)

Table 3: Standard features in the CoMiC system

In stage 2, CoMiC integrates a simplistic ap-
proach to givenness, excluding all words from
alignment that are mentioned in the question. We
transferred the underlying method to the notion of
focus and implemented a component that excludes
all non-focused words from alignment, resulting

3http://opennlp.apache.org/
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in alignments between focused parts of answers
only. The hypothesis is that the alignment of fo-
cused elements in answers adds information about
the quality of the answer with respect to the ques-
tion, leading to a higher answer classification ac-
curacy.

We experimented with two different settings in-
volving the standard CoMiC system and a focus-
augmented variant: i) using standard CoMiC with
the givenness filter by itself as a baseline, and ii)
augmenting standard CoMiC by additionally pro-
ducing a focus version of each classification fea-
ture in Table 3. In each case, we used WEKA’s k-
nearest-neighbor implementation for CoMiC, fol-
lowing positive results by Rudzewitz (2016).

We use two test sets randomly selected from the
CREG-5K data set (Ziai et al., 2016), one based on
an ‘unseen answers‘ and one based on an ‘unseen
questions‘ test scenario, based on the methodol-
ogy of (Dzikovska et al., 2013): in ‘unseen an-
swers’, the test set can contain answers to the same
questions already part of the training set (but not
the answers themselves), whereas in ‘unseen ques-
tions’ both questions and answers are new in the
test set. In order to arrive at a fair and generaliz-
able testing setup, we removed all answers from
the CREG-5K training set that also occur in the
CREG-ExpertFocus set used to train our focus de-
tection classifier. This ensures that neither the fo-
cus classifier nor CoMiC have seen any of the test
set answers before.

The resulting smaller training set contains 1606
student answers, while the test sets contain 1002
(unseen answers) and 1121 (unseen questions), re-
spectively.

8.2 Results

Table 4 summarizes the results for the different
CoMiC variants and test sets in terms of accuracy
in classifying answers as correct vs. incorrect.
‘Standard CoMiC’ refers to the standard CoMiC
system and ‘+Focus’ refers to the augmented sys-
tem using both feature versions. For reference on
what is possible with Focus information, we pro-
vide the results of the oracle experiment by De
Kuthy et al. (2016), even though the test setup and
data setup are slightly different. In addition to our
two test sets introduced above, we tested the sys-
tems on the training set using 10-fold cross valida-
tion. We also provide the majority baseline of the
respective data set along with the majority class.

One can see that in general, the focus classifier
seems to introduce too much noise to positively
impact classification results. The standard CoMiC
system outperforms the focus-augmented version
for the cross validation case and the ‘unseen an-
swers’ set. This is in contrast to the experiments
reported by De Kuthy et al. (2016) using manual
focus information, where the augmented system
clearly outperforms all other variants. This shows
that while focus information is clearly useful in
Short Answer Assessment, it needs to be reliable
enough to be of actual benefit. Recall also that the
way we use focus information in CoMiC implies
a strong commitment: only focused words are
aligned and included in feature extraction, which
does not produce the desired result if the focus in-
formation is not accurate. A possible way of rem-
edying this situation would be to use focus as an
extra feature or less strict modifier of existing fea-
tures. There is thus room for improvement both
in the automatic detection of focus and its use in
extrinsic tasks.

However, one result stands out encourag-
ingly: in the ‘unseen questions’ case, the focus-
augmented version beats standard CoMiC, if only
by a relatively small margin. This shows that
even automatically determined information struc-
tural properties provide benefits when more con-
crete information, in the form of previously seen
answers to the same questions, is not available.
Our classifier thus successfully transfers general
knowledge about focus to new question material.

9 Conclusion

We presented the first automatic focus detection
approach for written data, and the first such ap-
proach for German. The approach uses a rich fea-
ture set including abstractions to grammatical no-
tions (parts of speech, dependencies), word order
aspects captured by a topological field model of
German, an approximation of Givenness and the
relation between material in the answer and that
of the question word.

Using a word-by-word classification approach
that takes into account both syntactic and seman-
tic properties of answer and question words, we
achieve an accuracy of 78.1% on a data set of
26,980 words in 10-fold cross validation. The fo-
cus detection pipeline developed for the experi-
ment is freely available to other researchers.

Complementing the intrinsic evaluation, we
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Test set Instances Majority baseline CoMiC +Focus
Oracle experiment reported by De Kuthy et al. (2016) on CREG-ExpertFocus

leave-one-out 3187 51.0% (correct) 83.2% 85.6%
10-fold CV 1606 54.4% (correct) 83.2% 82.3%
Unseen answers 1002 51.3% (correct) 80.6% 80.5%
Unseen questions 1121 51.1% (incorrect) 77.4% 78.4%

Table 4: CoMiC results on different test sets using standard and focus-augmented features

provide an extrinsic evaluation of the approach as
part of a larger CL task, the automatic content
assessment of answers to reading comprehension
questions. We show that while automatic focus
detection does not yet improve content assessment
for answers similar to the ones previously seen, it
does provide a benefit in test cases where the ques-
tions and answers are completely new, i.e., where
the system needs to generalize beyond the specific
cases and contexts previously seen.

Contextualizing our work, one can see two dif-
ferent strands of research in the automatic anal-
ysis of focus. In comparison to Calhoun (2007)
and follow-up approaches, who mainly concen-
trate on linking prosodic prominence to focus in
dialogues, we do not limit our analysis to con-
tent words, but analyze every word of an utter-
ance. This is made feasible due to the explicit task
context we have in the form of answers to reading
comprehension questions. We believe this nicely
illustrates two avenues for obtaining relevant evi-
dence on information structure: On the one hand,
there is evidence obtained bottom-up through the
data such as the rich information on prominence in
spoken language data such as the corpus used by
Calhoun (2007). On the other hand, there is top-
down evidence from the task context, which sets
up expectations about what is to be addressed for
the current question under discussion. Following
the QUD research strand, the approach presented
in this paper could be scaled up beyond explicit
question-answer pairs: De Kuthy et al. (2018)
spell out an explicit analysis of text in terms of
QUDs and show that it is possible to annotate ex-
plicit QUDs with high inter-annotator agreement.
Combined with an automated approach to ques-
tion generation, it could thus be possible to recover
implicit QUDs from text and subsequently apply
our current approach to any text, based on an in-
dependently established, general formal pragmatic
analysis.

Finally, the qualitative analysis we exemplified

is promising in terms of obtaining valuable in-
sights to be addressed in future work. For ex-
ample, the analysis identified faulty gaps in focus
marking. In future work, integrating insights from
theoretical linguistic approaches to focus and the
notion of focus projection established there (cf.,
e.g., De Kuthy and Meurers 2012) could provide
more guidance for ensuring contiguity of focus do-
mains.
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Abstract

Style transfer is the task of automatically trans-
forming a piece of text in one particular style
into another. A major barrier to progress in
this field has been a lack of training and eval-
uation datasets, as well as benchmarks and au-
tomatic metrics. In this work, we create the
largest corpus for a particular stylistic trans-
fer (formality) and show that techniques from
the machine translation community can serve
as strong baselines for future work. We also
discuss challenges of using automatic metrics.

1 Introduction

One key aspect of effective communication is the
accurate expression of the style or tone of some
content. For example, writing a more persuasive
email in a marketing position could lead to in-
creased sales; writing a more formal email when
applying for a job could lead to an offer; and writ-
ing a more polite note to your future spouse’s par-
ents, may put you in a good light. Hovy (1987)
argues that by varying the style of a text, people
convey more information than is present in the lit-
eral meaning of the words. One particularly im-
portant dimension of style is formality (Heylighen
and Dewaele, 1999). Automatically changing the
style of a given content to make it more formal can
be a useful addition to any writing assistance tool.

In the field of style transfer, to date, the only
available dataset has been for the transformation
of modern English to Shakespeare, and it led to
the application of phrase-based machine transla-
tion (PBMT) (Xu et al., 2012) and neural machine
translation (NMT) (Jhamtani et al., 2017) models
to the task. The lack of an equivalent or larger
dataset for any other form of style transfer has
blocked progress in this field. Moreover, prior

∗This research was performed when the first author was at
Grammarly.

work has mainly borrowed metrics from machine
translation (MT) and paraphrase communities for
evaluating style transfer. However, it is not clear if
those metrics are the best ones to use for this task.
In this work, we address these issues through the
following three contributions:
• Corpus: We present Grammarly’s Yahoo

Answers Formality Corpus (GYAFC), the
largest dataset for any style containing a to-
tal of 110K informal / formal sentence pairs.
Table 1 shows sample sentence pairs.
• Benchmarks: We introduce a set of learning

models for the task of formality style trans-
fer. Inspired by work in low resource MT, we
adapt existing PBMT and NMT approaches
for our task and show that they can serve as
strong benchmarks for future work.
• Metrics: In addition to MT and paraphrase

metrics, we evaluate our models along three
axes: formality, fluency and meaning preser-
vation using existing automatic metrics. We
compare these metrics with their human
judgments and show there is much room for
further improvement.

Informal: I’d say it is punk though.
Formal: However, I do believe it to be punk.
Informal: Gotta see both sides of the story.
Formal: You have to consider both sides of the story.

Table 1: Informal sentences with formal rewrites.

In this paper, we primarily focus on the informal
to formal direction since we collect our dataset for
this direction. However, we evaluate our models
on the formal to informal direction as well.1 All
data, model outputs, and evaluation results have
been made public2 in the hope that they will en-
courage more research into style transfer.

1Results are in the supplementary material.
2https://github.com/raosudha89/

GYAFC-corpus
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In the following two sections we discuss related
work and the GYAFC dataset. In §4, we detail our
rule-based and MT-based approaches. In §5, we
describe our human and automatic metric based
evaluation. In §6, we describe the results of our
models using both human and automatic evalua-
tion and discuss how well the automatic metrics
correlate with human judgments.

2 Related Work

Style Transfer with Parallel Data: Sheikha and
Inkpen (2011) collect pairs of formal and informal
words and phrases from different sources and use
a natural language generation system to generate
informal and formal texts by replacing lexical
items based on user preferences. Xu et al. (2012)
(henceforth XU12) was one of the first works
to treat style transfer as a sequence to sequence
task. They generate a parallel corpus of 30K
sentence pairs by scraping the modern translations
of Shakespeare plays and train a PBMT system to
translate from modern English to Shakespearean
English.3 More recently, Jhamtani et al. (2017)
show that a copy-mechanism enriched sequence-
to-sequence neural model outperforms XU12 on
the same set. In text simplification, the availability
of parallel data extracted from English Wikipedia
and Simple Wikipedia (Zhu et al., 2010) led to the
application of PBMT (Wubben et al., 2012a) and
more recently NMT (Wang et al., 2016) models.
We take inspiration from both the PBMT and
NMT models and apply several modifications to
these approaches for our task of transforming the
formality style of the text.

Style Transfer without Parallel Data: An-
other direction of research directly controls
certain attributes of the generated text without
using parallel data. Hu et al. (2017) control the
sentiment and the tense of the generated text by
learning a disentangled latent representation in
a neural generative model. Ficler and Goldberg
(2017) control several linguistic style aspects
simultaneously by conditioning a recurrent neural
network language model on specific style (pro-
fessional, personal, length) and content (theme,
sentiment) parameters. Under NMT models,
Sennrich et al. (2016a) control the politeness of
the translated text via side constraints, Niu et al.
(2017) control the level of formality of MT output

3https://github.com/cocoxu/Shakespeare

by selecting phrases of a requisite formality level
from the k-best list during decoding. In the field
of text simplification, more recently, Xu et al.
(2016) learn large-scale paraphrase rules using
bilingual texts whereas Kajiwara and Komachi
(2016) build a monolingual parallel corpus using
sentence similarity based on alignment between
word embeddings. Our work differs from these
methods in that we mainly address the question of
how much leverage we can derive by collecting
a large amount of informal-formal sentence pairs
and build models that learn to transfer style
directly using this parallel corpus.

Identifying Formality: There has been pre-
vious work on detecting formality of a given text
at the lexical level (Brooke et al., 2010; Lahiri
et al., 2011; Brooke and Hirst, 2014; Pavlick and
Nenkova, 2015), at the sentence level (Pavlick
and Tetreault, 2016) and at the document level
(Sheikha and Inkpen, 2010; Peterson et al., 2011;
Mosquera and Moreda, 2012). In our work, we
reproduce the sentence-level formality classifier
introduced in Pavlick and Tetreault (2016) (PT16)
to extract informal sentences for GYAFC creation
and to automatically evaluate system outputs.

Evaluating Style Transfer: The problem of
style transfer falls under the category of natu-
ral language generation tasks such as machine
translation, paraphrasing, etc. Previous work on
style transfer (Xu et al., 2012; Jhamtani et al.,
2017; Niu et al., 2017; Sennrich et al., 2016a) has
re-purposed the MT metric BLEU (Papineni et al.,
2002) and the paraphrase metric PINC (Chen
and Dolan, 2011) for evaluation. Additionally,
XU12 introduce three new automatic style metrics
based on cosine similarity, language model and
logistic regression that measure the degree to
which the output matches the target style. Under
human based evaluation, on the other hand, there
has been work on a more fine grained evaluation
where human judgments were separately collected
for adequacy, fluency and style (Xu et al., 2012;
Niu et al., 2017). In our work, we conduct a more
thorough evaluation where we evaluate model
outputs on the three criteria of formality, fluency
and meaning using both automatic metrics and
human judgments.
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Domain Total Informal Formal
All Yahoo Answers 40M 24M 16M
Entertainment & Music 3.8M 2.7M 700K
Family & Relationships 7.8M 5.6M 1.8M

Table 2: Yahoo Answers corpus statistics

3 GYAFC Dataset

3.1 Creation Process

Yahoo Answers,4 a question answering forum,
contains a large number of informal sentences and
allows redistribution of data. Hence, we use the
Yahoo Answers L6 corpus5 to create our GYAFC
dataset of informal and formal sentence pairs. In
order to ensure a uniform distribution of data,
we remove sentences that are questions, contain
URLs, and are shorter than 5 words or longer
than 25. After these preprocessing steps, 40 mil-
lion sentences remain. The Yahoo Answers corpus
consists of several different domains like Business,
Entertainment & Music, Travel, Food, etc. PT16
show that the formality level varies significantly
across different genres. In order to control for
this variation, we work with two specific domains
that contain the most informal sentences and show
results on training and testing within those cate-
gories. We use the formality classifier from PT16
to identify informal sentences. We train this clas-
sifier on the Answers genre of the PT16 corpus
which consists of nearly 5,000 randomly selected
sentences from Yahoo Answers manually anno-
tated on a scale of -3 (very informal) to 3 (very for-
mal).6 We find that the domains of Entertainment
& Music and Family & Relationships contain the
most informal sentences and create our GYAFC
dataset using these domains. Table 2 shows the
number of formal and informal sentences in all of
Yahoo Answers corpus and within the two selected
domains. Sentences with a score less than 0 are
considered as informal and sentences with a score
greater than 0 are considered as formal.

Next, we randomly sample a subset of 53,000
informal sentences each from the Entertainment &
Music (E&M) and Family & Relationships (F&R)
categories and collect one formal rewrite per sen-
tence using Amazon Mechanical Turk. The work-
ers are presented with detailed instructions, as well

4https://answers.yahoo.com/answer
5https://webscope.sandbox.yahoo.com/

catalog.php?datatype=l
6http://www.seas.upenn.edu/˜nlp/

resources/formality-corpus.tgz

Informal to Formal Formal to Informal
Train Tune Test Tune Test

E&M 52,595 2,877 1,416 2,356 1,082
F&R 51,967 2,788 1,332 2,247 1,019

Table 3: GYAFC dataset statistics

as examples. To ensure quality control, four ex-
perts, two of which are the authors of this paper,
reviewed the rewrites of the workers and rejected
those that they felt did not meet the required stan-
dards. They also provided the workers with rea-
sons for rejection so that they would not repeat the
same mistakes. Any worker who repeatedly per-
formed poorly was eventually blocked from doing
the task. We use this train set to train our models
for the style transfer tasks in both directions.

Since we want our tune and test sets to be of
higher quality compared to the train set, we re-
cruit a set of 85 expert workers for this anno-
tation who had a 100% acceptance rate for our
task and who had previously done more than 100
rewrites. Further, we collect multiple references
for the tune/test set to adapt PBMT tuning and
evaluation techniques to our task. We collect four
different rewrites per sentence using our expert
workers by randomly assigning sentences to the
experts until four rewrites for each sentence are
obtained.7 To create our tune and test sets for the
informal to formal direction, we sample an addi-
tional 3,000 informal sentences for our tune set
and 1,500 sentences for our test set from each of
the two domains.

To create our tune and test sets for the formal
to informal direction, we start with the same tune
and test split as the first direction. For each formal
rewrite8 from the first direction, we collect three
different informal rewrites using our expert work-
ers as before. These three informal rewrites along
with the original informal sentence become our set
of four references for this direction of the task. Ta-
ble 3 shows the exact number of sentences in our
train, tune and test sets.

3.2 Analysis

The following quantitative and qualitative analy-
ses are aimed at characterizing the changes be-
tween the original informal sentence and its formal

7Thus, note that the four rewrites are not from the same
four workers for each sentence

8Out of four, we pick the one with the most edit distance
with the original informal. Rationale explained in Section 3.2
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rewrite in the GYAFC train split.9 We present our
analysis here on only the E&M domain data since
we observe similar patterns in F&R.

Figure 1: Percentage of sentences binned according
to formality score in train set of E&M.

Figure 2: Percentage of sentences binned according
to formality score in train set of E&M

Quantitative Analysis: While rewriting sen-
tences more formally, humans tend to make a wide
range of lexical/character-level edits. In Figure 1,
we plot the distribution of the character-level Lev-
enshtein edit distance between the original infor-
mal and the formal rewrites in the train set and
observe a standard deviation of σ = 19.39 with a
mean µ = 28.85. Next, we look at the difference
in the formality level of the original informal and
the formal rewrites in GYAFC. We find that the
classifier trained on the Answers genre of PT16
dataset correlates poorly (Spearman ρ = 0.38) with
human judgments when tested on our domain spe-
cific datasets. Hence, we collect formality judg-
ments on a scale of -3 to +1, similar to PT16, for
an additional 5000 sentences each from both do-
mains and obtain a formality classifier with higher
correlation (Spearman ρ = 0.56). We use this re-
trained classifier for our evaluation in §5 as well.

In Figure 2, we plot the distribution of the
9We observe similar patterns on the tune and test set.

formality scores on the original informal sen-
tence and their formal rewrites in the train set
and observe an increase in the mean formality
score as we go from informal (−1.06) to formal
rewrites (0.12). As compared to edit distance and
formality, we observe a much lower variation in
sentence lengths with the mean slightly increasing
from informal (11.93) to their formal rewrites
(12.56) in the train set.

Qualitative Analysis: To understand what
stylistic choices differentiate formal from infor-
mal text, we perform an analysis similar to PT16
and look at 50 rewrites from both domains and
record the frequency of the types of edits that
workers made when creating a more formal sen-
tence.10 In contrast to PT16, we observe a higher
percentage of phrasal paraphrases (47%), edits to
punctuations (40%) and expansion of contractions
(12%). This is reflective of our sentences coming
from very informal domains of Yahoo Answers.
Similar to PT16, we also observe capitalization
(46%) and normalization (10%).

4 Models

We experiment with three main classes of ap-
proaches: a rule-based approach, PBMT and
NMT. Inspired by work in low resource machine
translation, we apply several modifications to the
standard PBMT and NMT models and create a set
of strong benchmarks for the style transfer com-
munity. We apply these models to both directions
of style transfer: informal to formal and formal
to informal. In our description, we refer to the
two styles as source and target. We summarize
the models below and direct the reader to supple-
mentary material for further detail.

4.1 Rule-based Approach

Corresponding to the category of edits described
in §3.2, we develop a set of rules to automatically
make an informal sentence more formal where we
capitalize first word and proper nouns, remove re-
peated punctuations, handcraft a list of expansion
for contractions etc. For the formal to informal
direction, we design a similar set of rules in the
opposite direction.

10Examples of edits in supplementary material.
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4.2 Phrase-based Machine Translation

Phrased-based machine translation models have
had success in the fields of machine transla-
tion, style transfer (XU12) and text simplification
(Wubben et al., 2012b; Xu et al., 2016). Inspired
by work in low resource machine translation, we
use a combination of training regimes to develop
our model. We train on the output of the rule-
based approach when applied to GYAFC. This is
meant to force the PBMT model to learn gener-
alizations outside the rules. To increase the data
size, we use self-training (Ueffing, 2006), where
we use the PBMT model to translate the large
number of in-domain sentences from GYAFC be-
longing to the the source style and use the resul-
tant output to retrain the PBMT model. Using sub-
selection, we only select rewrites that have an Lev-
enshtein edit distance of over 10 characters when
compared to the source to encourage the model
to be less conservative. Finally, we upweight the
rule-based GYAFC data via duplication (Sennrich
et al., 2016b). For our experiments, we use Moses
(Koehn et al., 2007). We train a 5-gram language
model using KenLM (Heafield et al., 2013), and
use target style sentences from GYAFC and the
sub-sampled target style sentences from out-of-
domain Yahoo Answers, as in Moore and Lewis
(2010), to create a large language model.

4.3 Neural Machine Translation

While encoder-decoder based neural network
models have become quite successful for
MT(Sutskever et al., 2014; Bahdanau et al., 2014;
Cho et al., 2014), the field of style transfer, has
not yet been able to fully take advantage of these
advances owing to the lack of availability of large
parallel data. With GYAFC we can now show
how well NMT techniques fare for style transfer.
We experiment with three NMT models:

NMT baseline: Our baseline model is a bi-
directional LSTM (Hochreiter and Schmidhuber,
1997) encoder-decoder model with attention
(Bahdanau et al., 2014).11 We pretrain the
input word embeddings on Yahoo Answers using
GloVE (Pennington et al., 2014). As in our PBMT
based approach, we train our NMT baseline model
on the output of the rule-based approach when
applied to GYAFC.

11Details are in the supplementary material.

NMT Copy: Jhamtani et al., (2017) intro-
duce a copy-enriched NMT model for style
transfer to better handle stretches of text which
should not be changed. We incorporate this
mechanism into our NMT Baseline.

NMT Combined: The size of our parallel
data is smaller than the size typically used to train
NMT models. Motivated by this fact, we propose
several variants to the baseline models that we
find helps minimize this issue. We augment the
data used to train NMT Copy via two techniques:
1) we run the PBMT model on additional source
data, and 2) we use back-translation (Sennrich
et al., 2016c) of the PBMT model to translate the
large number of in-domain target style sentences
from GYAFC. To balance the over one million
artificially generated pairs from the respective
techniques, we upweight the rule-based GYAFC
data via duplication.12

5 Evaluation

As discussed earlier, there has been very little re-
search into best practices for style transfer evalu-
ation. Only a few works have included a human
evaluation (Xu et al., 2012; Jhamtani et al., 2017),
and automatic evaluations have employed BLEU
or PINC (Xu et al., 2012; Chen and Dolan, 2011),
which have been borrowed from other fields and
not vetted for this task. In our work, we con-
duct a more thorough and detailed evaluation us-
ing both humans and automatic metrics to assess
transformations. Inspired by work in the para-
phrase community (Callison-Burch, 2008), we so-
licit ratings on how formal, how fluent and how
meaning-preserving a rewrite is. Additionally, we
look at the correlation between the human judg-
ments and the automatic metrics.

5.1 Human-based Evaluation

We perform human-based evaluation to assess
model outputs on the four criteria: formality,
fluency, meaning and overall. For a subset of 500
sentences from the test sets of both Entertainment
& Music and Family & Relationship domains,
we collect five human judgments per sentence
per criteria using Amazon Mechanical Turk as
follows:

12Training data sizes for different methods are summarized
in the supplementary material.
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Formality: Following PT16, workers rate
the formality of the source style sentence, the
target style reference rewrite and the target style
model outputs on a discrete scale of -3 to +3
described as: -3: Very Informal, -2: Informal, -1:
Somewhat Informal, 0: Neutral, 1: Somewhat
Formal, 2: Formal and 3: Very Formal.

Fluency: Following Heilman et al. (2014),
workers rate the fluency of the source style
sentence, the target style reference rewrite and the
target style model outputs on a discrete scale of 1
to 5 described as: 5: Perfect, 4: Comprehensible,
3: Somewhat Comprehensible, 2: Incomprehen-
sible. We additionally provide an option of 1:
Other for sentences that are incomplete or just a
fragment.

Meaning Preservation: Following the an-
notation scheme developed for the Semantic
Textual Similarity (STS) dataset (Agirre et al.,
2016), given two sentences i.e. the source style
sentence and the target style reference rewrite or
the target style model output, workers rate the
meaning similarity of the two sentences on a scale
of 1 to 6 described as: 6: Completely equivalent,
5: Mostly equivalent, 4: Roughly equivalent, 3:
Not equivalent but share some details, 2: Not
equivalent but on same topic, 1: Completely
dissimilar.

Overall Ranking: In addition to the fine-
grained human judgments, we collect judgments
to assess the overall ranking of the systems.
Given the original source style sentence, the target
style reference rewrite and the target style model
outputs, we ask workers to rank the rewrites in
the order of their overall formality, taking into
account both fluency and meaning preservation.
We then rank the model using the equation below:

rank(model) =
1

|S|
∑

s∈S

1

|J |
∑

j∈J
rank(smodel, j)

(1)
where, model is the one of our models, S is a sub-
set of 500 test set sentences, J is the set of five
judgments, smodel is the model rewrite for sen-
tence s, and rank(smodel, j) is the rank of smodel
in judgment j.

The two authors of the paper reviewed these hu-
man judgments and found that in majority of the

cases the annotations looked correct. But as is
common in any such crowdsourced data collection
process, there were some errors, especially in the
overall ranking of the systems.

5.2 Automatic Metrics

We cover each of the human evaluations with a
corresponding automatic metric:

Formality: We use the formality classifier
described in PT16. We find that the classifier
trained on the answers genre of PT16 dataset does
not perform well when tested on our datasets.
Hence, we collect formality judgments for an
additional 5000 sentences and use the formality
classifier re-trained on this in-domain data.

Fluency: We use the reimplementation13 of
Heilman et al. (2014) (H14 in Table 4) which is a
statistical model for predicting the grammaticality
of a sentence on a scale of 0 to 4 previously
shown to be effective for other generation tasks
like grammatical error correction (Napoles et al.,
2016).

Meaning Preservation: Modeling semantic
similarity at a sentence level is a fundamental
language processing task, and one that is a wide
open field of research. Recently, He et al., (2015)
(HE15 in Table 4) developed a convolutional
neural network based sentence similarity measure.
We use their off-the-shelf implementation14 to
train a model on the STS and use it to measure the
meaning similarity between the original source
style sentence and its target style rewrite (both
reference and model outputs).

Overall Ranking: We experiment with BLEU
(Papineni et al., 2002) and PINC (Chen and
Dolan, 2011) as both were used in prior style
evaluations, as well as TERp (Snover et al., 2009).

6 Results

In this section, we discuss how well the five mod-
els perform in the informal to formal style transfer
task using human judgments (§6.1) and automatic
metrics (§6.2), the correlation of the automatic
metrics and human judgments to determine the ef-

13https://github.com/cnap/grammaticality-
metrics/tree/master/heilman-et-al

14https://github.com/castorini/MP-CNN-Torch
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Formality Fluency Meaning Combined Overall
Model Human PT16 Human H14 Human HE15 Human Auto BLEU TERp PINC
Original Informal -1.23 -1.00 3.90 2.89 – – – – 50.69 0.35 0.00
Formal Reference 0.38 0.17 4.45 3.32 4.57 3.64 5.68 4.67 100.0 0.37 69.79
Rule-based -0.59 -0.34 4.00 3.09 4.85 4.41 5.24 4.69 61.38 0.27 26.05
PBMT -0.19* 0.00* 3.96 3.28* 4.64* 4.19* 5.27 4.82* 67.26* 0.26 44.94*
NMT Baseline 0.05* 0.07* 4.05 3.52* 3.55* 3.89* 4.96* 4.84* 56.61 0.38* 56.92*
NMT Copy 0.02* 0.10* 4.07 3.45* 3.48* 3.87* 4.93* 4.81* 58.01 0.38* 56.39*
NMT Combined -0.16* 0.00* 4.09* 3.27* 4.46* 4.20* 5.32* 4.82* 67.67* 0.26 43.54*

Table 4: Results of models on 500 test sentences from E&M for informal to formal task evaluated using human
judgments and automatic metrics for three criteria of evaluation: formality, fluency and meaning preservation.
Scores marked with * are significantly different from the rule-based scores with p < 0.001.

Figure 3: For varying sentence lengths of the original
informal sentence the formality and the meaning scores
from human judgments on different model outputs and
on the original informal and the formal reference sen-
tences.

ficacy of the metrics (§6.3) and present a manual
analysis (§6.4). We randomly select 500 sentences
from each test set and run all five models. We use
the entire train and tune split for training and tun-
ing. We discuss results only on the E&M domain
and list results on the F&R domain in the supple-
mentary material.

Table 4 shows the results for human §6.1 and
automatic §6.2 evaluation of model rewrites. For
all metrics except TERp, a higher score is better.
For each of the automatic metrics, we evaluate
against four human references. The row ‘Original
Informal’ contains the scores when the original in-

formal sentence is compared with the four formal
reference rewrites. Comparing the model scores
to this score helps us understand how closer are
the model outputs to the formal reference rewrites
compared to initial distance between the informal
and the formal reference rewrite.

6.1 Results using Human Judgments

The columns marked ‘Human’ in Table 4 show
the human judgments for the models on the three
separate criteria of formality, fluency and mean-
ing collected using the process described in Sec-
tion 5.1.15 The NMT Baseline and Copy models
beat others on the formality axis by a significant
margin. Only the NMT Combined model achieves
a statistically higher fluency score when compared
to the rule-based baseline model. As expected, the
rule-based model is the most meaning preserving
since it is the most conservative. Figure 3 shows
the trend in the four leading models along formal-
ity and meaning for varying lengths of the source
sentence. NMT Combined beats PBMT on for-
mality for shorter lengths whereas the trend re-
verses as the length increases. PBMT generally
preserves meaning more than the NMT Combined.
We find that the fluency scores for all models de-
creases as the sentence length increases which is
similar to the trend generally observed with ma-
chine translation based approaches.

Since a good style transfer model is the one that
attains a balanced score across all the three axes,
we evaluate the models on a combination of these
metrics16 shown under the column ‘Combined’ in
Table 4. NMT Combined is the only model having
a combined score statistically greater than the rule-
based approach.

15Out of the four reference rewrites, we pick one at random
to show to Turkers.

16We recalibrate the scores to normalize for different
ranges.
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Finally, Table 5 shows the overall rankings
of the models from best to worst in both do-
mains. PBMT and NMT Combined models beat
the rule-based model although not significantly in
the E&M domain but significantly in the F&R do-
main. Interestingly, the rule-based approach at-
tains third place with a score significantly higher
than NMT Copy and NMT Baseline models. It is
important to note here that while such a rule-based
approach is relatively easy to craft for the formal-
ity style transfer task, the same may not be true for
other styles like politeness or persuasiveness.

E&M F&R
(2.03*) Reference (2.13*) Reference
(2.47) PBMT (2.38*) PBMT
(2.48) NMT Combined (2.38*) NMT Combined
(2.54) Rule-based (2.56) Rule-based
(3.03*) NMT Copy (2.72*) NMT Copy
(3.03*) NMT Baseline (2.79*) NMT Baseline

Table 5: Ranking of different models on the informal
to formal style transfer task. Rankings marked with *
are significantly different from the rule-based ranking
with p < 0.001.

Automatic Human E&M F&R
Formality Formality 0.47 0.45
Fluency Fluency 0.48 0.46
Meaning Meaning 0.33 0.30
BLEU Overall -0.48 -0.43
TERp Overall 0.31 0.30
PINC Overall 0.11 0.08

Table 6: Spearman rank correlation between automatic
metrics and human judgments. The first three metrics
are correlated with their respective human judgments
and the last three metrics are correlated with the overall
ranking human judgments. All correlations are statisti-
cally significant with p < 0.001.

6.2 Results with Automatic Metrics
Under automatic metrics, the formality and mean-
ing scores align with the human judgments with
the NMT Baseline and NMT Copy winning on for-
mality and rule-based winning on meaning. The
fluency score of the NMT Baseline is the highest
in contrast to human judgments where the NMT
Combined wins. This discrepancy could be due to
H14 being trained on essays which contains sen-
tences of a more formal genre compared to Ya-
hoo Answers. In fact, the fluency classifier scores
the formal reference quite low as well. Under
overall metrics, PBMT and NMT Combined mod-
els beat other models as per BLEU (significantly)
and TERp (not significantly). NMT Baseline and
NMT copy win over other models as per PINC

which can be explained by the fact that PINC
measures lexical dissimilarity with the source and
NMT models tend towards making more changes.
Although such an analysis is useful, for a more
thorough understanding of these metrics, we next
look at their correlation with human judgments.

6.3 Metric Correlation
We report the spearman rank correlation co-
efficient between automatic metrics and human
judgments in Table 6. For formality, fluency and
meaning, the correlation is with their respective
human judgments whereas for BLEU, TERp and
PINC, the correlation is with the overall ranking.

We see that the formality and the fluency met-
rics correlate moderately well while the mean-
ing metric correlates comparatively poorly. To
be fair, the HE15 classifier was trained on the
STS dataset which contains more formal writ-
ing than informal. BLEU correlates moderately
well (better than what XU12 observed for the
Shakespeare task) whereas the correlation drops
for TERp. PINC, on the other hand, correlates
very poorly with a positive correlation with rank
when it should have a negative correlation with
rank, just like BLEU. This sheds light on the fact
that PINC, on its own, is not a good metric for
style transfer since it prefers lexical edits at the
cost of meaning changes. In the Shakespeare task,
XU12 did observe a higher correlation with PINC
(0.41) although the correlation was not with over-
all system ranking but rather only on the style met-
ric. Moreover, in the Shakespeare task, changing
the text is more favorable than in formality.

6.4 Manual Analysis
The prior evaluations reveal the relative perfor-
mance differences between approaches. Here, we
identify trends per and between approaches. We
sample 50 informal sentences total from both do-
mains and then analyze the outputs from each
model. We present sample sentences in Table 7.

The NMT Baseline and NMT Copy tend to
have the most variance in their performance. This
is likely due to the fact that they are trained on
only 50K sentence pairs, whereas the other mod-
els are trained on much more data. For shorter sen-
tences, these models make some nice formal trans-
formations like from ‘very dumb’ to ‘very fool-
ish’. However, for longer sentences, these models
make drastic meaning changes and drop some con-
tent altogether (see examples in Table 7). On the
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Entertainment & Music
Original Informal Wow , I am very dumb in my observation skills ......
Reference Formal I do not have good observation skills .
Rule-based Wow , I am very dumb in my observation skills .
PBMT Wow , I am very dumb in my observation skills .
NMT Baseline I am very foolish in my observation skills .
NMT Copy Wow , I am very foolish in my observation skills .
NMT Combined I am very unintelligent in my observation skills .
Family & Relationship
Original Informal i hardly everrr see him in school either usually i see hima t my brothers basketball games .
Reference Formal I hardly ever see him in school . I usually see him with my brothers playing basketball .
Rule-based I hardly everrr see him in school either usually I see hima t my brothers basketball games .
PBMT I hardly see him in school as well, but my brothers basketball games .
NMT I rarely see him in school , either I see him at my brother ’s basketball games .
NMT Copy I hardly see him in school either , usually I see him at my brother ’s basketball games .
NMT Combined I rarely see him in school either usually I see him at my brothers basketball games .

Table 7: Sample model outputs with references from both E&M and F&R domains on the informal to formal task

other hand, the PBMT and NMT Combined mod-
els have lower variance in their performance. They
make changes more conservatively but when they
do, they are usually correct. Thus, most of the out-
puts from these two models are usually meaning
preserving but at the expense of a lower formality
score improvement.

In most examples, all models are good at re-
moving very informal words like ‘stupid’, ‘idiot’
and ‘hell’, with PBMT and NMT Combined mod-
els doing slightly better. All models struggle when
the original sentence is very informal or disfluent.
They all also struggle with sentence completions
that humans seem to be very good at. This might
be because humans assume a context when absent,
whereas the models do not. Unknown tokens, ei-
ther real words or misspelled words, tend to wreak
havoc on all approaches. In most cases, the models
simply did not transform that section of the sen-
tence, or remove the unknown tokens. Most mod-
els are effective at low-level changes such as writ-
ing out numbers, inserting commas, and removing
common informal phrases.

7 Conclusions and Future Work

The goal of this paper was to move the field of
style transfer forward by creating a large training
and evaluation corpus to be made public, showing
that adapting MT techniques to this task can serve
as strong baselines for future work, and analyzing
the usefulness of existing metrics for overall style
transfer as well as three specific criteria of auto-
matic style transfer evaluation. We view this work
as rigorously expanding on the foundation set by
XU12 five years earlier. It is our hope that with a
common test set, the field can finally benchmark

approaches which do not require parallel data.
We found that while the NMT systems perform

well given automatic metrics, humans had a slight
preference for the PBMT approach. That being
said, two of the neural approaches (NMT Base-
line and Copy) often made successful changes
and larger rewrites that the other models could
not. However, this often came at the expense of
a meaning change.

We also introduced new metrics and vetted all
metrics using comparison with human judgments.
We found that previously-used metrics did not cor-
relate well with human judgments, and thus should
be avoided in system development or final eval-
uation. The formality and fluency metrics corre-
lated best and we believe that some combination
of these metrics with others would be the best next
step in the development of style transfer metrics.
Such a metric could then in turn be used to opti-
mize MT models. Finally, in this work we focused
on one particular style, formality. The long term
goal is to generalize the methods and metrics to
any style.
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Abstract

We argue that semantic meanings of a sentence
or clause can not be interpreted independently
from the rest of a paragraph, or independently
from all discourse relations and the overall
paragraph-level discourse structure. With the
goal of improving implicit discourse relation
classification, we introduce a paragraph-level
neural networks that model inter-dependencies
between discourse units as well as discourse
relation continuity and patterns, and predict a
sequence of discourse relations in a paragraph.
Experimental results show that our model out-
performs the previous state-of-the-art systems
on the benchmark corpus of PDTB.

1 Introduction

PDTB-style discourse relations, mostly defined
between two adjacent text spans (i.e., discourse
units, either clauses or sentences), specify how
two discourse units are logically connected (e.g.,
causal, contrast). Recognizing discourse relations
is one crucial step in discourse analysis and can be
beneficial for many downstream NLP applications
such as information extraction, machine transla-
tion and natural language generation.

Commonly, explicit discourse relations were
distinguished from implicit ones, depending on
whether a discourse connective (e.g., “because”
and “after”) appears between two discourse
units (Prasad et al., 2008a). While explicit dis-
course relation detection can be framed as a dis-
course connective disambiguation problem (Pitler
and Nenkova, 2009; Lin et al., 2014) and has
achieved reasonable performance (F1 score >
90%), implicit discourse relations have no dis-
course connective and are especially difficult to
identify (Lin et al., 2009, 2014; Xue et al., 2015).
To fill the gap, implicit discourse relation pre-
diction has drawn significant research interest re-
cently and progress has been made (Chen et al.,

2016; Liu and Li, 2016) by modeling composi-
tional meanings of two discourse units and ex-
ploiting word interactions between discourse units
using neural tensor networks or attention mecha-
nisms in neural nets. However, most of existing
approaches ignore wider paragraph-level contexts
beyond the two discourse units that are examined
for predicting a discourse relation in between.

To further improve implicit discourse relation
prediction, we aim to improve discourse unit rep-
resentations by positioning a discourse unit (DU)
in its wider context of a paragraph. The key obser-
vation is that semantic meaning of a DU can not
be interpreted independently from the rest of the
paragraph that contains it, or independently from
the overall paragraph-level discourse structure that
involve the DU. Considering the following para-
graph with four discourse relations, one relation
between each two adjacent DUs:
(1): [The Butler, Wis., manufacturer went pub-
lic at $15.75 a share in August 1987,]DU1

and (Explicit-Expansion) [Mr. Sim’s goal
then was a $29 per-share price by 1992.]DU2

(Implicit-Expansion) [Strong earnings growth
helped achieve that price far ahead of sched-
ule, in August 1988.]DU3 (Implicit-Comparison)
[The stock has since softened, trading around
$25 a share last week and closing yesterday at
$23 in national over-the-counter trading.]DU4 But
(Explicit-Comparison) [Mr. Sim has set a fresh
target of $50 a share by the end of reaching that
goal.]DU5

Clearly, each DU is an integral part of the para-
graph and not independent from other units. First,
predicting a discourse relation may require under-
standing wider paragraph-level contexts beyond
two relevant DUs and the overall discourse struc-
ture of a paragraph. For example, the implicit
“Comparison” discourse relation between DU3
and DU4 is difficult to identify without the back-
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ground information (the history of per-share price)
introduced in DU1 and DU2. Second, a DU may
be involved in multiple discourse relations (e.g.,
DU4 is connected with both DU3 and DU5 with
a “Comparison” relation), therefore the pragmatic
meaning representation of a DU should reflect
all the discourse relations the unit was involved
in. Third, implicit discourse relation prediction
should benefit from modeling discourse relation
continuity and patterns in a paragraph that in-
volve easy-to-identify explicit discourse relations
(e.g., “Implicit-Comparison” relation is followed
by “Explicit-Comparison” in the above example).

Following these observations, we construct a
neural net model to process a paragraph each time
and jointly build meaning representations for all
DUs in the paragraph. The learned DU represen-
tations are used to predict a sequence of discourse
relations in the paragraph, including both implicit
and explicit relations. Although explicit relations
are not our focus, predicting an explicit relation
will help to reveal the pragmatic roles of its two
DUs and reconstruct their representations, which
will facilitate predicting neighboring implicit dis-
course relations that involve one of the DUs.

In addition, we introduce two novel designs
to further improve discourse relation classifica-
tion performance of our paragraph-level neural net
model. First, previous work has indicated that
recognizing explicit and implicit discourse rela-
tions requires different strategies, we therefore un-
tie parameters in the discourse relation prediction
layer of the neural networks and train two separate
classifiers for predicting explicit and implicit dis-
course relations respectively. This unique design
has improved both implicit and explicit discourse
relation identification performance. Second, we
add a CRF layer on top of the discourse relation
prediction layer to fine-tune a sequence of pre-
dicted discourse relations by modeling discourse
relation continuity and patterns in a paragraph.

Experimental results show that the intu-
itive paragraph-level discourse relation prediction
model achieves improved performance on PDTB
for both implicit discourse relation classification
and explicit discourse relation classification.

2 Related Work

2.1 Implicit Discourse Relation Recognition

Since the PDTB (Prasad et al., 2008b) corpus was
created, a surge of studies (Pitler et al., 2009; Lin

et al., 2009; Liu et al., 2016; Rutherford and Xue,
2016) have been conducted for predicting dis-
course relations, primarily focusing on the chal-
lenging task of implicit discourse relation clas-
sification when no explicit discourse connective
phrase was presented. Early studies (Pitler et al.,
2008; Lin et al., 2009, 2014; Rutherford and Xue,
2015) focused on extracting linguistic and seman-
tic features from two discourse units. Recent re-
search (Zhang et al., 2015; Rutherford et al., 2016;
Ji and Eisenstein, 2015; Ji et al., 2016) tried to
model compositional meanings of two discourse
units by exploiting interactions between words in
two units with more and more complicated neu-
ral network models, including the ones using neu-
ral tensor (Chen et al., 2016; Qin et al., 2016; Lei
et al., 2017) and attention mechanisms (Liu and
Li, 2016; Lan et al., 2017; Zhou et al., 2016). An-
other trend is to alleviate the shortage of annotated
data by leveraging related external data, such as
explicit discourse relations in PDTB (Liu et al.,
2016; Lan et al., 2017; Qin et al., 2017) and un-
labeled data obtained elsewhere (Rutherford and
Xue, 2015; Lan et al., 2017), often in a multi-task
joint learning framework.

However, nearly all the previous works assume
that a pair of discourse units is independent from
its wider paragraph-level contexts and build their
discourse relation prediction models based on only
two relevant discourse units. In contrast, we model
inter-dependencies of discourse units in a para-
graph when building discourse unit representa-
tions; in addition, we model global continuity and
patterns in a sequence of discourse relations, in-
cluding both implicit and explicit relations.

Hierarchical neural network models (Liu and
Lapata, 2017; Li et al., 2016) have been applied to
RST-style discourse parsing (Carlson et al., 2003)
mainly for the purpose of generating text-level hi-
erarchical discourse structures. In contrast, we
use hierarchical neural network models to build
context-aware sentence representations in order to
improve implicit discourse relation prediction.

2.2 Paragraph Encoding

Abstracting latent representations from a long se-
quence of words, such as a paragraph, is a chal-
lenging task. While several novel neural net-
work models (Zhang et al., 2017b,a) have been
introduced in recent years for encoding a para-
graph, Recurrent Neural Network (RNN)-based
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methods remain the most effective approaches.
RNNs, especially the long-short term memory
(LSTM) (Hochreiter and Schmidhuber, 1997)
models, have been widely used to encode a para-
graph for machine translation (Sutskever et al.,
2014), dialogue systems (Serban et al., 2016) and
text summarization (Nallapati et al., 2016) be-
cause of its ability in modeling long-distance de-
pendencies between words. In addition, among
four typical pooling methods (sum, mean, last
and max) for calculating sentence representations
from RNN-encoded hidden states for individ-
ual words, max-pooling along with bidirectional
LSTM (Bi-LSTM) (Schuster and Paliwal, 1997)
yields the current best universal sentence repre-
sentation method (Conneau et al., 2017). We
adopted a similar neural network architecture for
paragraph encoding.

3 The Neural Network Model for
Paragraph-level Discourse Relation
Recognition

3.1 The Basic Model Architecture
Figure 1 illustrates the overall architecture of the
discourse-level neural network model that consists
of two Bi-LSTM layers, one max-pooling layer in
between and one softmax prediction layer. The
input of the neural network model is a paragraph
containing a sequence of discourse units, while the
output is a sequence of discourse relations with
one relation between each pair of adjacent dis-
course units1.

Given the words sequence of one paragraph
as input, the lower Bi-LSTM layer will read the
whole paragraph and calculate hidden states as
word representations, and a max-pooling layer
will be applied to abstract the representation of
each discourse unit based on individual word rep-
resentations. Then another Bi-LSTM layer will
run over the sequence of discourse unit repre-
sentations and compute new representations by
further modeling semantic dependencies between
discourse units within paragraph. The final soft-
max prediction layer will concatenate representa-
tions of two adjacent discourse units and predict
the discourse relation between them.

Word Vectors as Input: The input of the
paragraph-level discourse relation prediction

1In PDTB, most of discourse relations were annotated be-
tween two adjacent sentences or two adjacent clauses. For
exceptional cases, we applied heuristics to convert them.

model is a sequence of word vectors, one vector
per word in the paragraph. In this work, we used
the pre-trained 300-dimension Google English
word2vec embeddings2. For each word that
is not in the vocabulary of Google word2vec,
we will randomly initialize a vector with each
dimension sampled from the range [−0.25, 0.25].
In addition, recognizing key entities and discourse
connective phrases is important for discourse
relation recognition, therefore, we concatenate
the raw word embeddings with extra linguistic
features, specifically one-hot Part-Of-Speech
tag embeddings and one-hot named entity tag
embeddings3.

Building Discourse Unit Representations: We
aim to build discourse unit (DU) representations
that sufficiently leverage cues for discourse re-
lation prediction from paragraph-wide contexts,
including the preceding and following discourse
units in a paragraph. To process long paragraph-
wide contexts, we take a bottom-up two-level ab-
straction approach and progressively generate a
compositional representation of each word first
(low level) and then generate a compositional rep-
resentation of each discourse unit (high level),
with a max-pooling operation in between. At both
word-level and DU-level, we choose Bi-LSTM
as our basic component for generating composi-
tional representations, mainly considering its ca-
pability to capture long-distance dependencies be-
tween words (discourse units) and to incorporate
influences of context words (discourse units) in
each side.

Given a variable-length words sequence X =
(x1, x2, ..., xL) in a paragraph, the word-level Bi-
LSTM will process the input sequence by using
two separate LSTMs, one process the word se-
quence from the left to right while the other fol-
lows the reversed direction. Therefore, at each
word position t, we obtain two hidden states−→
ht ,
←−
ht . We concatenate them to get the word rep-

resentation ht = [
−→
ht ,
←−
ht ]. Then we apply max-

pooling over the sequence of word representations
for words in a discourse unit in order to get the
discourse unit embedding:

2Downloaded from https://docs.google.com/
uc?id=0B7XkCwpI5KDYNlNUTTlSS21pQmM

3Our feature-rich word embeddings are of dimension 343,
including 300 dimensions for word2vec embeddings + 36 di-
mensions for Part-Of-Speech (POS) tags + 7 dimensions for
named entity tags. We used the Stanford CoreNLP to gener-
ate POS tags and named entity tags.
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Figure 1: The Basic Model Architecture for Paragraph-level Discourse Relations Sequence Prediction.

MPDU [j] =
DU end
max

i=DU start
hi[j] (1)

where, 1 ≤ j ≤ hidden node size (2)

Next, the DU-level Bi-LSTM will process the
sequence of discourse unit embeddings in a para-
graph and generate two hidden states

−−−→
hDUt and←−−−

hDUt at each discourse unit position. We concate-
nate them to get the discourse unit representation
hDUt = [

−−−→
hDUt,

←−−−
hDUt].

The Softmax Prediction Layer: Finally, we con-
catenate two adjacent discourse unit representa-
tions hDUt−1 and hDUt and predict the discourse
relation between them using a softmax function:

yt−1 = softmax(Wy ∗ [hDUt−1, hDUt] + by)
(3)

3.2 Untie Parameters in the Softmax
Prediction Layer (Implicit vs. Explicit)

Previous work (Pitler and Nenkova, 2009; Lin
et al., 2014; Rutherford and Xue, 2016) has re-

Figure 2: Untie Parameters in the Prediction Layer

vealed that recognizing explicit vs. implicit dis-
course relations requires different strategies. Note
that in the PDTB dataset, explicit discourse rela-
tions were distinguished from implicit ones, de-
pending on whether a discourse connective exists
between two discourse units. Therefore, explicit
discourse relation detection can be simplified as a
discourse connective phrase disambiguation prob-
lem (Pitler and Nenkova, 2009; Lin et al., 2014).
On the contrary, predicting an implicit discourse
relation should rely on understanding the overall
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contents of its two discourse units (Lin et al., 2014;
Rutherford and Xue, 2016).

Considering the different natures of explicit vs.
implicit discourse relation prediction, we decide
to untie parameters at the final discourse relation
prediction layer and train two softmax classifiers,
as illustrated in Figure 2. The two classifiers have
different sets of parameters, with one classifier for
only implicit discourse relations and the other for
only explicit discourse relations.

yt−1 =

{
softmax(Wexp[hDUt−1, hDUt] + bexp), exp

softmax(Wimp[hDUt−1, hDUt] + bimp), imp

(4)

The loss function used for the neural network
training considers loss induced by both implicit re-
lation prediction and explicit relation prediction:

Loss = Lossimp + α ∗ Lossexp (5)

The α, in the full system, is set to be 1, which
means that minimizing the loss in predicting either
type of discourse relations is equally important.
In the evaluation, we will also evaluate a system
variant, where we will set α = 0, which means
that the neural network will not attempt to predict
explicit discourse relations and implicit discourse
relation prediction will not be influenced by pre-
dicting neighboring explicit discourse relations.

3.3 Fine-tune Discourse Relation Predictions
Using a CRF Layer

Data analysis and many linguistic studies (Pitler
et al., 2008; Asr and Demberg, 2012; Lascarides
and Asher, 1993; Hobbs, 1985) have repeatedly
shown that discourse relations feature continuity
and patterns (e.g., a temporal relation is likely to
be followed by another temporal relation). Es-
pecially, Pitler et al. (2008) firstly reported that
patterns exist between implicit discourse relations
and their neighboring explicit discourse relations.

Motivated by these observations, we aim to
improve implicit discourse relation detection by
making use of easily identifiable explicit discourse
relations and taking into account global patterns of
discourse relation distributions. Specifically, we
add an extra CRF layer at the top of the softmax
prediction layer (shown in figure 3) to fine-tune
predicted discourse relations by considering their
inter-dependencies.

The Conditional Random Fields (Lafferty et al.,
2001) (CRF) layer updates a state transition ma-
trix, which can effectively adjust the current la-

Figure 3: Fine-tune Discourse Relations with a CRF
layer.

bel depending on proceeding and following la-
bels. Both training and decoding of the CRF layer
can be solved efficiently by using the Viterbi al-
gorithm. With the CRF layer, the model jointly
assigns a sequence of discourse relations between
each two adjacent discourse units in a paragraph,
including both implicit and explicit relations, by
considering relevant discourse unit representations
as well as global discourse relation patterns.

4 Evaluation

4.1 Dataset and Preprocessing

The Penn Discourse Treebank (PDTB): We ex-
perimented with PDTB v2.0 (Prasad et al., 2008b)
which is the largest annotated corpus contain-
ing 36k discourse relations in 2,159 Wall Street
Journal (WSJ) articles. In this work, we fo-
cus on the top-level4 discourse relation senses
which are consist of four major semantic classes:
Comparison (Comp), Contingency (Cont), Expan-
sion (Exp) and Temporal (Temp). We followed
the same PDTB section partition (Rutherford and
Xue, 2015) as previous work and used sections 2-
20 as training set, sections 21-22 as test set, and
sections 0-1 as development set. Table 1 presents
the data distributions we collected from PDTB.

Preprocessing: The PDTB dataset documents
its annotations as a list of discourse relations, with
each relation associated with its two discourse
units. To recover the paragraph context for a dis-
course relation, we match contents of its two an-
notated discourse units with all paragraphs in cor-
responding raw WSJ article. When all the match-
ing was completed, each paragraph was split into
a sequence of discourse units, with one discourse
relation (implicit or explicit) between each two ad-

4In PDTB, the sense label of discourse relation was anno-
tated hierarchically with three levels.
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Type Class Train Dev Test Total

Implicit

Comp 1942 197 152 2291
Cont 3339 292 279 3910
Exp 7003 671 574 8248
Temp 760 64 85 909

Explicit

Comp 4184 422 364 4970
Cont 2837 286 213 3336
Exp 4612 481 424 5517
Temp 2742 254 297 3293

Table 1: Distributions of Four Top-level Discourse Re-
lations in PDTB.

# of DUs 2 3 4 5 >5
ratio 44% 25% 15% 7.3% 8.7%

Table 2: Distributions of Paragraphs.

jacent discourse units5. Following this method, we
obtained 14,309 paragraphs in total, each contains
3.2 discourse units on average. Table 2 shows the
distribution of paragraphs based on the number of
discourse units in a paragraph.

4.2 Parameter Settings and Model Training

We tuned the parameters based on the best per-
formance on the development set. We fixed the
weights of word embeddings during training. All
the LSTMs in our neural network use the hidden
state size of 300. To avoid overfitting, we applied
dropout (Hinton et al., 2012) with dropout ratio of
0.5 to both input and output of LSTM layers. To
prevent the exploding gradient problem in training
LSTMs, we adopt gradient clipping with gradient
L2-norm threshold of 5.0. These parameters re-
main the same for all our proposed models as well
as our own baseline models.

We chose the standard cross-entropy loss func-
tion for training our neural network model and
adopted Adam (Kingma and Ba, 2014) optimizer
with the initial learning rate of 5e-4 and a mini-
batch size of 1286. If one instance is annotated
with two labels (4% of all instances), we use both
of them in loss calculation and regard the predic-
tion as correct if model predicts one of the anno-
tated labels. All the proposed models were imple-

5In several hundred discourse relations, one discourse unit
is complex and can be further separated into two elementary
discourse units, which can be illustrated as [DU1-DU2]-DU3.
We simplify such cases to be a relation between DU2 and
DU3.

6Counted as the number of discourse relations rather than
paragraph instances.

mented with Pytorch7 and converged to the best
performance within 20-40 epochs.

To alleviate the influence of randomness in neu-
ral network model training and obtain stable ex-
perimental results, we ran each of the proposed
models and our own baseline models ten times and
report the average performance of each model in-
stead of the best performance as reported in many
previous works.

4.3 Baseline Models and Systems

We compare the performance of our neural net-
work model with several recent discourse relation
recognition systems that only consider two rele-
vant discourse units.

• (Rutherford and Xue, 2015): improves im-
plicit discourse relation prediction by creat-
ing more training instances from the Giga-
word corpus utilizing explicitly mentioned
discourse connective phrases.

• (Chen et al., 2016): a gated relevance net-
work (GRN) model with tensors to capture
semantic interactions between words from
two discourse units.

• (Liu et al., 2016): a convolutional neural net-
work model that leverages relations between
different styles of discourse relations annota-
tions (PDTB and RST (Carlson et al., 2003))
in a multi-task joint learning framework.

• (Liu and Li, 2016): a multi-level attention-
over-attention model to dynamically exploit
features from two discourse units for recog-
nizing an implicit discourse relation.

• (Qin et al., 2017): a novel pipelined adver-
sarial framework to enable an adaptive imi-
tation competition between the implicit net-
work and a rival feature discriminator with
access to connectives.

• (Lei et al., 2017): a Simple Word Interac-
tion Model (SWIM) with tensors that cap-
tures both linear and quadratic relations be-
tween words from two discourse units.

• (Lan et al., 2017): an attention-based LSTM
neural network that leverages explicit dis-
course relations in PDTB and unannotated
external data in a multi-task joint learning
framework.

7http://pytorch.org/
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Implicit Explicit
Model Macro Acc Comp Cont Exp Temp Macro Acc

(Rutherford and Xue, 2015) 40.50 57.10 - - - - - -
(Liu et al., 2016) 44.98 57.27 - - - - - -
(Liu and Li, 2016) 46.29 57.57 - - - - - -
(Lei et al., 2017) 46.46 - - - - - - -
(Lan et al., 2017) 47.80 57.39 - - - - - -

DU-pair level Discourse Relation Recognition (Our Own Baselines)
Bi-LSTM 40.01 53.50 30.52 42.06 65.52 21.96 - -
+ tensors 45.36 57.18 36.88 44.85 68.70 30.74 - -

Paragraph level Discourse Relation Recognition
Basic System Variant (α = 0) 47.56 56.88 37.12 46.47 67.72 38.92 - -
Basic System (α = 1) 48.10 57.52 37.33 47.89 68.39 38.80 91.93 92.89
+ Untie Parameters 48.69 58.20 37.68 49.19 68.86 39.04 93.70 94.46
+ the CRF Layer 48.82 57.44 37.72 49.39 67.45 40.70 93.21 93.98

Table 3: Multi-class Classification Results on PDTB. We report accuracy (Acc) and macro-average F1-scores for
both explicit and implicit discourse relation predictions. We also report class-wise F1 scores.

4.4 Evaluation Settings

On the PDTB corpus, both binary classification
and multi-way classification settings are com-
monly used to evaluate the implicit discourse rela-
tion recognition performance. We noticed that all
the recent works report class-wise implicit relation
prediction performance in the binary classification
setting, while none of them report detailed per-
formance in the multi-way classification setting.
In the binary classification setting, separate “one-
versus-all” binary classifiers were trained, and
each classifier is to identify one class of discourse
relations. Although separate classifiers are gener-
ally more flexible in combating with imbalanced
distributions of discourse relation classes and ob-
tain higher class-wise prediction performance, one
pair of discourse units may be tagged with all four
discourse relations without proper conflict resolu-
tion. Therefore, the multi-way classification set-
ting is more appropriate and natural in evaluat-
ing a practical end-to-end discourse parser, and
we mainly evaluate our proposed models using the
four-way multi-class classification setting.

Since none of the recent previous work reported
class-wise implicit relation classification perfor-
mance in the multi-way classification setting, for
better comparisons, we re-implemented the neu-
ral tensor network architecture (so-called SWIM
in (Lei et al., 2017)) which is essentially a Bi-
LSTM model with tensors and report its detailed
evaluation result in the multi-way classification
setting. As another baseline, we report the per-

formance of a Bi-LSTM model without tensors as
well. Both baseline models take two relevant dis-
course units as the only input.

For additional comparisons, We also report the
performance of our proposed models in the binary
classification setting.

4.5 Experimental Results

Multi-way Classification: The first section of ta-
ble 3 shows macro average F1-scores and accu-
racies of previous works. The second section of
table 3 shows the multi-class classification results
of our implemented baseline systems. Consis-
tent with results of previous works, neural tensors,
when applied to Bi-LSTMs, improved implicit
discourse relation prediction performance. How-
ever, the performance on the three small classes
(Comp, Cont and Temp) remains low.

The third section of table 3 shows the
multi-class classification results of our proposed
paragraph-level neural network models that cap-
ture inter-dependencies among discourse units.
The first row shows the performance of a variant of
our basic model, where we only identify implicit
relations and ignore identifying explicit relations
by setting the α in equation (5) to be 0. Compared
with the baseline Bi-LSTM model, the only differ-
ence is that this model considers paragraph-wide
contexts and model inter-dependencies among dis-
course units when building representation for indi-
vidual DU. We can see that this model has greatly
improved implicit relation classification perfor-
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Model Comp Cont Exp Temp
(Chen et al., 2016) 40.17 54.76 - 31.32
(Liu et al., 2016) 37.91 55.88 69.97 37.17

(Liu and Li, 2016) 36.70 54.48 70.43 38.84
(Qin et al., 2017) 40.87 54.56 72.38 36.20
(Lei et al., 2017) 40.47 55.36 69.50 35.34
(Lan et al., 2017) 40.73 58.96 72.47 38.50

Paragraph level Discourse Relation Recognition
Basic System (α = 1) 42.68 55.17 68.94 41.03
+ Untie Parameters 46.79 57.09 70.41 45.61

Table 4: Binary Classification Results on PDTB. We report F1-scores for implicit discourse relations.

Implicit Explicit
Model Macro Acc Macro Acc

Basic System (α = 1) 49.92 59.08 93.05 93.83
+ Untie Parameters 50.47 59.85 93.95 94.74
+ the CRF Layer 51.84 59.75 94.17 94.82

Table 5: Multi-class Classification Results of Ensemble Models on PDTB.

mance across all the four relations and improved
the macro-average F1-score by over 7 percents.
In addition, compared with the baseline Bi-LSTM
model with tensor, this model improved implicit
relation classification performance across the three
small classes, with clear performance gains of
around 2 and 8 percents on contingency and tem-
poral relations respectively, and overall improved
the macro-average F1-score by 2.2 percents.

The second row shows the performance of our
basic paragraph-level model which predicts both
implicit and explicit discourse relations in a para-
graph. Compared to the variant system (the first
row), the basic model further improved the classi-
fication performance on the first three implicit re-
lations. Especially on the contingency relation, the
classification performance was improved by an-
other 1.42 percents. Moreover, the basic model
yields good performance for recognizing explicit
discourse relations as well, which is comparable
with previous best result (92.05% macro F1-score
and 93.09% accuracy as reported in (Pitler et al.,
2008)).

After untying parameters in the softmax pre-
diction layer, implicit discourse relation classifi-
cation performance was improved across all four
relations, meanwhile, the explicit discourse re-
lation classification performance was also im-
proved. The CRF layer further improved im-
plicit discourse relation recognition performance
on the three small classes. In summary, our full

paragraph-level neural network model achieves
the best macro-average F1-score of 48.82% in pre-
dicting implicit discourse relations, which out-
performs previous neural tensor network models
(e.g., (Lei et al., 2017)) by more than 2 percents
and outperforms the best previous system (Lan
et al., 2017) by 1 percent.

Binary Classification: From table 4, we can see
that compared against the best previous systems,
our paragraph-level model with untied parameters
in the prediction layer achieves F1-score improve-
ments of 6 points on Comparison and 7 points
on Temporal, which demonstrates that paragraph-
wide contexts are important in detecting minority
discourse relations. Note that the CRF layer of the
model is not suitable for binary classification.

4.6 Ensemble Model

As we explained in section 4.2, we ran our mod-
els for 10 times to obtain stable average perfor-
mance. Then we also created ensemble models by
applying majority voting to combine results of ten
runs. From table 5, each ensemble model obtains
performance improvements compared with sin-
gle model. The full model achieves performance
boosting of (51.84 - 48.82 = 3.02) and (94.17 -
93.21 = 0.96) in macro F1-scores for predicting
implicit and explicit discourse relations respec-
tively. Furthermore, the ensemble model achieves
the best performance for predicting both implicit
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Figure 4: Impact of Paragraph Length. We plot the macro-average F1-score of implicit discourse relation classifi-
cation on instances with different paragraph length.

and explicit discourse relations simultaneously.

4.7 Impact of Paragraph Length

To understand the influence of paragraph lengths
to our paragraph-level models, we divide para-
graphs in the PDTB test set into several sub-
sets based on the number of DUs in a para-
graph, and then evaluate our proposed models
on each subset separately. From Figure 4, we
can see that our paragraph-level models (the lat-
ter three) overall outperform DU-pair baselines
across all the subsets. As expected, the paragraph-
level models achieve clear performance gains on
long paragraphs (with more than 5 DUs) by ex-
tensively modeling mutual influences of DUs in
a paragraph. But somewhat surprisingly, the
paragraph-level models achieve noticeable perfor-
mance gains on short paragraphs (with 2 or 3 DUs)
as well. We hypothesize that by learning more ap-
propriate discourse-aware DU representations in
long paragraphs, our paragraph-level models re-
duce bias of using DU representations in predict-
ing discourse relations, which benefits discourse
relation prediction in short paragraphs as well.

4.8 Example Analysis

For the example (1), the baseline neural tensor
model predicted both implicit relations wrongly
(“Implicit-Contingency” between DU2 and DU3;
“Implicit-Expansion” between DU3 and DU4),
while our paragraph-level model predicted all the
four discourse relations correctly, which indicates
that paragraph-wide contexts play a key role in im-
plicit discourse relation prediction.

For another example:
(2): [Marshall came clanking in like Marley’s
ghost dragging those chains of brigades and
air wings and links with Arab despots.]DU1

(Implicit-Temporal) [He wouldn’t leave]DU2 until
(Explicit-Temporal) [Mr. Cheney promised to
do whatever the Pentagon systems analysts told
him.]DU3

Our basic paragraph-level model wrongly pre-
dicted the implicit discourse relation between
DU1 and DU2 to be “Implicit-Comparison”, with-
out being able to effectively use the succeeding
“Explicit-Temporal” relation. On the contrary, the
full model corrected this mistake by modeling dis-
course relation patterns with the CRF layer.

5 Conclusion

We have presented a paragraph-level neural net-
work model that takes a sequence of discourse
units as input, models inter-dependencies between
discourse units as well as discourse relation con-
tinuity and patterns, and predicts a sequence of
discourse relations in a paragraph. By building
wider-context informed discourse unit representa-
tions and capturing the overall discourse structure,
the paragraph-level neural network model outper-
forms the best previous models for implicit dis-
course relation recognition on the PDTB dataset.
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Abstract

Natural language generation lies at the core
of generative dialogue systems and conversa-
tional agents. We describe an ensemble neural
language generator, and present several novel
methods for data representation and augmen-
tation that yield improved results in our model.
We test the model on three datasets in the
restaurant, TV and laptop domains, and re-
port both objective and subjective evaluations
of our best model. Using a range of automatic
metrics, as well as human evaluators, we show
that our approach achieves better results than
state-of-the-art models on the same datasets.

1 Introduction

There has recently been a substantial amount of
research in natural language processing (NLP) in
the context of personal assistants, such as Cortana
or Alexa. The capabilities of these conversational
agents are still fairly limited and lacking in vari-
ous aspects, one of the most challenging of which
is the ability to produce utterances with human-
like coherence and naturalness for many different
kinds of content. This is the responsibility of the
natural language generation (NLG) component.

Our work focuses on language generators
whose inputs are structured meaning representa-
tions (MRs). An MR describes a single dialogue
act with a list of key concepts which need to be
conveyed to the human user during the dialogue.
Each piece of information is represented by a slot-
value pair, where the slot identifies the type of in-
formation and the value is the corresponding con-
tent. Dialogue act (DA) types vary depending on
the dialogue manager, ranging from simple ones,
such as a goodbye DA with no slots at all, to com-
plex ones, such as an inform DA containing multi-
ple slots with various types of values (see example
in Table 1).

MR
inform (name [The Golden Curry], food
[Japanese], priceRange [moderate], fami-
lyFriendly [yes], near [The Bakers])

Utt.
Located near The Bakers, kid-friendly restau-
rant, The Golden Curry, offers Japanese cui-
sine with a moderate price range.

Table 1: An example of an MR and a corresponding
reference utterance.

A natural language generator must produce a
syntactically and semantically correct utterance
from a given MR. The utterance should express
all the information contained in the MR, in a natu-
ral and conversational way. In traditional language
generator architectures, the assembling of an utter-
ance from an MR is performed in two stages: sen-
tence planning, which enforces semantic correct-
ness and determines the structure of the utterance,
and surface realization, which enforces syntactic
correctness and produces the final utterance form.

Earlier work on statistical NLG approaches
were typically hybrids of a handcrafted compo-
nent and a statistical training method (Langkilde
and Knight, 1998; Stent et al., 2004; Rieser and
Lemon, 2010). The handcrafted aspects, how-
ever, lead to decreased portability and potentially
limit the variability of the outputs. New corpus-
based approaches emerged that used semantically
aligned data to train language models that out-
put utterances directly from their MRs (Mairesse
et al., 2010; Mairesse and Young, 2014). The
alignment provides valuable information during
training, but the semantic annotation is costly.

The most recent methods do not require aligned
data and use an end-to-end approach to training,
performing sentence planning and surface realiza-
tion simultaneously (Konstas and Lapata, 2013).
The most successful systems trained on unaligned
data use recurrent neural networks (RNNs) paired
with an encoder-decoder system design (Mei et al.,
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2016; Dušek and Jurčı́ček, 2016), but also other
concepts, such as imitation learning (Lampouras
and Vlachos, 2016). These NLG models, however,
typically require greater amount of data for train-
ing due to the lack of semantic alignment, and they
still have problems producing syntactically and se-
mantically correct output, as well as being limited
in naturalness (Nayak et al., 2017).

Here we present a neural ensemble natural lan-
guage generator, which we train and test on three
large unaligned datasets in the restaurant, televi-
sion, and laptop domains. We explore novel ways
to represent the MR inputs, including novel meth-
ods for delexicalizing slots and their values, auto-
matic slot alignment, as well as the use of a seman-
tic reranker. We use automatic evaluation metrics
to show that these methods appreciably improve
the performance of our model. On the largest
of the datasets, the E2E dataset (Novikova et al.,
2017b) with nearly 50K samples, we also demon-
strate that our model significantly outperforms the
baseline E2E NLG Challenge1 system in human
evaluation. Finally, after augmenting our model
with stylistic data selection, subjective evaluations
reveal that it can still produce overall better results
despite a significantly reduced training set.

2 Related Work

NLG is closely related to machine translation and
has similarly benefited from recent rapid develop-
ment of deep learning methods. State-of-the-art
NLG systems build thus on deep neural sequence-
to-sequence models (Sutskever et al., 2014) with
an encoder-decoder architecture (Cho et al., 2014)
equipped with an attention mechanism (Bahdanau
et al., 2015). They typically also rely on slot
delexicalization (Mairesse et al., 2010; Hender-
son et al., 2014), which allows the model to bet-
ter generalize to unseen inputs, as exemplified
by TGen (Dušek and Jurčı́ček, 2016). However,
Nayak et al. (2017) point out that there are fre-
quent scenarios where delexicalization behaves
inadequately (see Section 5.1 for more details),
and Agarwal and Dymetman (2017) show that a
character-level approach to NLG may avoid the
need for delexicalization, at the potential cost of
making more semantic omission errors.

The end-to-end approach to NLG typically re-
quires a mechanism for aligning slots on the out-
put utterances: this allows the model to generate

1http://www.macs.hw.ac.uk/InteractionLab/E2E/

E2E TV Laptop

|training set| 42061 4221 7944
|validation set| 4672 1407 2649
|test set| 630 1407 2649

total 47363 7035 13242

DA types 1 14 14
slot types 8 16 20

Table 2: Overview of the number of samples, as well
as different DA and slot types, in each dataset .

utterances with fewer missing or redundant slots.
Cuayáhuitl et al. (2014) perform automatic slot la-
beling using a Bayesian network trained on a la-
beled dataset, and show that a method using spec-
tral clustering can be extended to unlabeled data
with high accuracy. In one of the first success-
ful neural approaches to language generation, Wen
et al. (2015a) augment the generator’s inputs with
a control vector indicating which slots still need to
be realized at each step. Wen et al. (2015b) take
the idea further by embedding a new sigmoid gate
into their LSTM cells, which directly conditions
the generator on the DA. More recently, Dušek and
Jurčı́ček (2016) supplement their encoder-decoder
model with a trainable classifier which they use to
rerank the beam search candidates based on miss-
ing and redundant slot mentions.

Our work builds upon the successful atten-
tional encoder-decoder framework for sequence-
to-sequence learning and expands it through en-
sembling. We explore the feasibility of a domain-
independent slot aligner that could be applied to
any dataset, regardless of its size, and beyond the
reranking task. We also tackle some challenges
caused by delexicalization in order to improve the
quality of surface realizations, while retaining the
ability of the neural model to generalize.

3 Datasets

We evaluated the models on three datasets from
different domains. The primary one is the recently
released E2E restaurant dataset (Novikova et al.,
2017b) with 48K samples. For benchmarking we
use the TV dataset and the Laptop dataset (Wen
et al., 2016) with 7K and 13K samples, respec-
tively. Table 2 summarizes the proportions of the
training, validation, and test sets for each dataset.

3.1 E2E Dataset
The E2E dataset is by far the largest one avail-
able for task-oriented language generation in the
restaurant domain. The human references were
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Figure 1: Proportion of unique MRs in the datasets.
Note that the number of MRs in the E2E dataset was
cut off at 10K for the sake of visibility of the small
differences between other column pairs.

collected using pictures as the source of informa-
tion, which was shown to inspire more informa-
tive and natural utterances (Novikova et al., 2016).
With nearly 50K samples, it offers almost 10
times more data than the San Francisco restaurant
dataset introduced in Wen et al. (2015b), which
has frequently been used for benchmarks. The
reference utterances in the E2E dataset exhibit su-
perior lexical richness and syntactic variation, in-
cluding more complex discourse phenomena. It
aims to provide higher-quality training data for
end-to-end NLG systems to learn to produce more
naturally sounding utterances. The dataset was re-
leased as a part of the E2E NLG Challenge.

Although the E2E dataset contains a large num-
ber of samples, each MR is associated on aver-
age with 8.65 different reference utterances, ef-
fectively offering less than 5K unique MRs in
the training set (Fig. 1). Explicitly providing the
model with multiple ground truths, it offers multi-
ple alternative utterance structures the model can
learn to apply for the same type of MR. The delex-
icalization, as detailed later in Section 5.1, im-
proves the ability of the model to share the con-
cepts across different MRs.

The dataset contains only 8 different slot types,
which are fairly equally distributed. The number
of slots in each MR ranges between 3 and 8, but
the majority of MRs consist of 5 or 6 slots. Even
though most of the MRs contain many slots, the
majority of the corresponding human utterances,
however, consist of one or two sentences only (Ta-
ble 3), suggesting a reasonably high level of sen-
tence complexity in the references.

3.2 TV and Laptop Datasets

The reference utterances in the TV and the Laptop
datasets were collected using Amazon Mechani-

slots 3 4 5 6 7 8

sent. 1.09 1.23 1.41 1.65 1.84 1.92
prop. 5% 18% 32% 28% 14% 3%

Table 3: Average number of sentences in the reference
utterance for a given number of slots in the correspond-
ing MR, along with the proportion of MRs with specific
slot counts.

Figure 2: Proportion of DAs in the Laptop dataset.

cal Turk (AMT), one utterance per MR. These two
datasets are similar in structure, both using the
same 14 DA types.2 The Laptop dataset, however,
is almost twice as large and contains 25% more
slot types.

Although both of these datasets contain more
than a dozen different DA types, the vast majority
(68% and 80% respectively) of the MRs describe
a DA of either type inform or recommend
(Fig. 2), which in most cases have very simi-
larly structured realizations, comparable to those
in the E2E dataset. DAs such as suggest,
?request, or goodbye are represented by less
than a dozen samples, but are significantly easier
to learn to generate an utterance from because the
corresponding MRs contain three slots at the most.

4 Ensemble Neural Language Generator

4.1 Encoder-Decoder with Attention
Our model uses the standard encoder-decoder ar-
chitecture with attention, as defined in Bahdanau
et al. (2015). Encoding the input into a sequence
of context vectors instead of a single vector en-
ables the decoder to learn what specific parts of the

2We noticed the MRs with the ?request DA type in the
TV dataset have no slots provided, as opposed to the Laptop
dataset, so we imputed these in order to obtain valid MRs.
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Figure 3: Standard architecture of a single-layer
encoder-decoder LSTM model with attention. For each
time step t in the output sequence, the attention scores
αt,1, . . . , αt,L are calculated. This diagram shows the
attention scores only for t = 2.

input sequence to pay attention to, given the out-
put generated so far. In this attentional encoder-
decoder architecture, the probability of the output
at each time step t of the decoder depends on a
distinct context vector qt in the following way:

P (ut|u1, . . . , ut−1,w) = g(ut−1, st, qt) ,

where in the place of function g we use the soft-
max function over the size of the vocabulary, and
st is a hidden state of the decoder RNN at time
step t, calculated as:

st = f(st−1, ut−1, qt) .

The context vector qt is obtained as a weighted
sum of all the hidden states h1, . . . , hL of the en-
coder:

qt =
L∑

i=1

αt,ihi ,

where αt,i corresponds to the attention score the
t-th word in the target sentence assigns to the i-th
item in the input MR.

We compute the attention score αt,i using a
multi-layer perceptron (MLP) jointly trained with
the entire system (Bahdanau et al., 2015). The en-
coder’s and decoder’s hidden states at time i and t,
respectively, are concatenated and used as the in-
put to the MLP, namely:

αt,i = softmax
(
wT tanh (W [hi; st])

)
,

whereW and w are the weight matrix and the vec-
tor of the first and the second layer of the MLP, re-
spectively. The learned weights indicate the level

of influence of the individual words in the input se-
quence on the prediction of the word at time step t
of the decoder. The model thus learns a soft align-
ment between the source and the target sequence.

4.2 Ensembling

In order to enhance the quality of the predicted ut-
terances, we create three neural models with dif-
ferent encoders. Two of the models use a bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)
encoder, whereas the third model has a CNN (Le-
Cun et al., 1998) encoder. We train these models
individually for a different number of epochs and
then combine their predictions.

Initially, we attempted to combine the pre-
dictions of the models by averaging the log-
probability at each time step and then selecting the
word with the maximum log-probability. We no-
ticed that the quality, as well as the BLEU score
of our utterances, decreased significantly. We be-
lieve that this is due to the fact that different mod-
els learn different sentence structures and, hence,
combining predictions at the probability level re-
sults in incoherent utterances.

Therefore, instead of combining the models at
the log-probability level, we accumulate the top 10
predicted utterances from each model type us-
ing beam search and allow the reranker (see Sec-
tion 4.4) to rank all candidate utterances taking the
proportion of slots they successfully realized into
consideration. Finally, our system predicts the ut-
terance that received the highest score.

4.3 Slot Alignment

Our training data is inherently unaligned, meaning
our model is not certain which sentence in a multi-
sentence utterance contains a given slot, which
limits the model’s robustness. To accommodate
this, we create a heuristic-based slot aligner which
automatically preprocesses the data. Its primary
goal is to align chunks of text from the reference
utterances with an expected value from the MR.
Applications of our slot aligner are described in
subsequent sections and in Table 4.

In our task, we have a finite set of slot mentions
which must be detected in the corresponding utter-
ance. Moreover, from our training data we can see
that most slots are realized by inserting a specific
set of phrases into an utterance. Using this insight,
we construct a gazetteer, which primarily searches
for overlapping content between the MR and each
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sentence in an utterance, by associating all pos-
sible slot realizations with their appropriate slot
type. We additionally augment the gazetteer us-
ing a small set of handcrafted rules which capture
cases not easily encapsulated by the above pro-
cess, for example, associating the priceRange
slot with a chunk of text using currency symbols
or relevant lexemes, such as “cheap” or “high-
end”. While handcrafted, these rules are transfer-
able across domains, as they target the slots, not
the domains, and mostly serve to counteract the
noise in the E2E dataset. Finally, we use Word-
Net (Fellbaum, 1998) to further augment the size
of our gazetteer by accounting for synonyms and
other semantic relationships, such as associating
“pasta” with the food[Italian] slot.

4.4 Reranker
As discussed in Section 4.2, our model uses beam
search to produce a pool of the most likely utter-
ances for a given MR. While these results have a
probability score provided by the model, we found
that relying entirely on this score often results in
the system picking a candidate which is objec-
tively worse than a lower scoring utterance (i.e.
one missing more slots and/or realizing slots in-
correctly). We therefore augment that score by
multiplying it by the following score which takes
the slot alignment into consideration:

salign =
N

(Nu + 1) · (No + 1)
,

where N is the number of all slots in the given
MR, and Nu and No represent the number of
unaligned slots (those not observed by our slot
aligner) and over-generated slots (those which
have been realized but were not present in the orig-
inal MR), respectively.

5 Data Preprocessing

5.1 Delexicalization
We enhance the ability of our model to general-
ize the learned concepts to unseen MRs by delex-
icalizing the training data. Moreover, it reduces
the amount of data required to train the model.
We identify the categorical slots whose values al-
ways propagate verbatim to the utterance, and re-
place the corresponding values in the utterance
with placeholder tokens. The placeholders are
eventually replaced in the output utterance in post-
processing by copying the values from the input

MR. Examples of such slots would be name or
near in the E2E dataset, and screensize or
processor in the TV and the Laptop dataset.

Previous work identifies categorical slots as
good delexicalization candidates that improve the
performance of the model (Wen et al., 2015b;
Nayak et al., 2017). However, we chose not to
delexicalize those categorical slots whose values
can be expressed in alternative ways, such as “less
than $20” and “cheap”, or “on the riverside” and
“by the river”. Excluding these from delexical-
ization may lead to an increased number of incor-
rect realizations, but it encourages diversity of the
model’s outputs by giving it a freedom to choose
among alternative ways of expressing a slot-value
in different contexts. This, however, assumes that
the training set contains a sufficient number of
samples displaying this type of alternation so that
the model can learn that certain phrases are syn-
onymous. With its multiple human references for
each MR, the E2E dataset has this property.

As Nayak et al. (2017) point out, delex-
icalization affects the sentence planning and
the lexical choice around the delexicalized slot
value. For example, the realization of the
slot food[Italian] in the phrase “serves
Italian food” is valid, while the realization of
food[fast food] in “serves fast food food”
is clearly undesired. Similarly, a naive delexical-
ization can result in “a Italian restaurant”, whereas
the article should be “an”. Another problem with
articles is singular versus plural nouns in the slot
value. For example, the slot accessories in
the TV dataset, can take on values such as “remote
control”, as well as “3D glasses”, where only the
former requires an article before the value.

We tackle this issue by defining different
placeholder tokens for values requiring differ-
ent treatment in the realization. For instance,
the value “Italian” of the food slot is re-
placed by slot vow cuisine food, indicat-
ing that the value starts with a vowel and rep-
resents a cuisine, while “fast food” is replaced
by slot con food, indicating that the value
starts with a consonant and cannot be used as a
term for cuisine. The model thus learns to gen-
erate “a” before slot con food and “an” be-
fore slot vow cuisine foodwhen appropri-
ate, as well as to avoid generating the word “food”
after food-slot placeholders that do not contain
the word “cuisine”. All these rules are general and
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can automatically be applied across different slots
and domains.

5.2 Data Expansion
Slot Permutation
In our initial experiments, we tried expanding the
training set by permuting the slot ordering in the
MRs as suggested in Nayak et al. (2017). From
different slot orderings of every MR we sampled
five random permutations (in addition to the orig-
inal MR), and created new pseudo-samples with
the same reference utterance. The training set thus
increased six times in size.

Using such an augmented training set might add
to the model’s robustness, nevertheless it did not
prove to be helpful with the E2E dataset. In this
dataset, we observed the slot order to be fixed
across all the MRs, both in the training and the
test set. As a result, for the majority of the time,
the model was training on MRs with slot orders it
would never encounter in the test set, which ulti-
mately led to a decreased performance in predic-
tion on the test set.

Utterance/MR Splitting
Taking a more utterance-oriented approach, we
augment the training set with single-sentence ut-
terances paired with their corresponding MRs.
These new pseudo-samples are generated by split-
ting the existing reference utterances into single
sentences and using the slot aligner introduced in
Section 4.3 to identify the slots that correspond to
each sentence. The MRs of the new samples are
created as the corresponding subsets of slots and,
whenever the sentence contains the name (of the
restaurant/TV/etc.) or a pronoun referring to it
(such as “it” or “its”), the name slot is included
too. Finally, a new position slot is appended
to every new MR, indicating whether it represents
the first sentence or a subsequent sentence in the
original utterance. An example of this splitting
technique can be seen in Table 4. The training set
almost doubled in size through this process.

Since the slot aligner works heuristically, not
all utterances are successfully aligned with the
MR. The vast majority of such cases, however,
is caused by reference utterances in the datasets
having incorrect or entirely missing slot mentions.
There is a noticeable proportion of those, so we
leave them in the training set with the unaligned
slots removed from the MR so as to avoid confus-
ing the model when learning from such samples.

MR
name [The Waterman], food [English],
priceRange [cheap], customer rating [average],
area [city centre], familyFriendly [yes]

Utt.

There is a family-friendly, cheap restaurant in
the city centre, called The Waterman. It serves
English food and has an average rating by cus-
tomers.

New
MR #1

name [The Waterman], priceRange [cheap],
area [city centre], familyFriendly [yes], posi-
tion [outer]

New
MR #2

name [The Waterman], food [English], cus-
tomer rating [average], position [inner]

Table 4: An example of the utterance/MR splitting.

MR
name [Wildwood], eatType [coffee shop],
food [English], priceRange [moderate], cus-
tomer rating [1 out of 5], near [Ranch]

Simple
utt.

Wildwood provides English food for a mod-
erate price. It has a low customer rating and
is located near Ranch. It is a coffee shop.

Elegant
utt.

A low-rated English style coffee shop around
Ranch, called Wildwood, has moderately
priced food.

Table 5: Contrastive example of a simple and a more
elegant reference utterance style for the same MR in
the E2E dataset.

5.3 Sentence Planning via Data Selection

The quality of the training data inherently im-
poses an upper bound on the quality of the predic-
tions of our model. Therefore, in order to bring
our model to produce more sophisticated utter-
ances, we experimented with filtering the train-
ing data to contain only the most natural sounding
and structurally complex utterances for each MR.
For instance, we prefer having an elegant, single-
sentence utterance with an apposition as the refer-
ence for an MR, rather than an utterance composed
of three simple sentences, two of which begin with
“it” (see the examples in Table 5).

We assess the complexity and naturalness of
each utterance by the use of discourse phenomena,
such as contrastive cues, subordinate clauses, or
aggregation. We identify these in the utterance’s
parse-tree produced by the Stanford CoreNLP
toolkit (Manning et al., 2014) by defining a set
of rules for extracting the discourse phenomena.
Furthermore, we consider the number of sentences
used to convey all the information in the corre-
sponding MR, as longer sentences tend to exhibit
more advanced discourse phenomena. Penalizing
utterances for too many sentences contributes to
reducing the proportion of generic reference utter-
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ances, such as the “simple” example in the above
table, in the filtered training set.

6 Evaluation

Researchers in NLG have generally used both au-
tomatic and human evaluation. Our results report
the standard automatic evaluation metrics: BLEU
(Papineni et al., 2002), NIST (Przybocki et al.,
2009), METEOR (Lavie and Agarwal, 2007), and
ROUGE-L (Lin, 2004). For the E2E dataset ex-
periments, we additionally report the results of the
human evaluation carried out on the CrowdFlower
platform as a part of the E2E NLG Challenge.

6.1 Experimental Setup
We built our ensemble model using the seq2seq
framework (Britz et al., 2017) for TensorFlow.
Our individual LSTM models use a bidirectional
LSTM encoder with 512 cells per layer, and the
CNN models use a pooling encoder as in Gehring
et al. (2017). The decoder in all models was a
4-layer RNN decoder with 512 LSTM cells per
layer and with attention. The hyperparameters
were determined empirically. After experiment-
ing with different beam search parameters, we set-
tled on the beam width of 10. Moreover, we em-
ployed the length normalization of the beams as
defined in Wu et al. (2016), in order to encour-
age the decoder to favor longer sequences. The
length penalty providing the best results on the
E2E dataset was 0.6, whereas for the TV and Lap-
top datasets it was 0.9 and 1.0, respectively.

6.2 Experiments on the E2E Dataset
We start by evaluating our system on the E2E
dataset. Since the reference utterances in the test
set were kept secret for the E2E NLG Challenge,
we carried out the metric evaluation using the vali-
dation set. This was necessary to narrow down the
models that perform well compared to the base-
line. The final model selection was done based on
a human evaluation of the models’ outputs on the
test set.

6.2.1 Automatic Metric Evaluation
In the first experiment, we assess what effect the
augmenting of the training set via utterance split-
ting has on the performance of different models.
The results in Table 6 show that both the LSTM
and the CNN models clearly benefit from addi-
tional pseudo-samples in the training set. This can
likely be attributed to the model having access to

BLEU NIST METEOR ROUGE

LSTM s 0.6664 8.0150 0.4420 0.7062
s 0.6930‡ 8.4198 0.4379 0.7099

CNN s 0.6599 7.8520 0.4333 0.7018
s 0.6760† 8.0440 0.4448 0.7055

Table 6: Automatic metric scores of different mod-
els tested on the E2E dataset, both unmodified (s) and
augmented (s) through the utterance splitting. The
symbols † and ‡ indicate statistically significant im-
provement over the s counterpart with p < 0.05 and
p < 0.01, respectively, based on the paired t-test.

more granular information about which parts of
the utterance correspond to which slots in the MR.
This may assist the model in sentence planning
and building a stronger association between parts
of the utterance and certain slots, such as that “it”
is a substitute for the name.

Testing our ensembling approach reveals that
reranking predictions pooled from different mod-
els produces an ensemble model that is overall
more robust than the individual submodels. The
submodels fail to perform well in all four met-
rics at once, whereas the ensembling creates a new
model that is more consistent across the differ-
ent metric types (Table 7).3 While the ensemble
model decreases the proportion of incorrectly re-
alized slots compared to its individual submodels
on the validation set, on the test set it only out-
performs two of the submodels in this aspect (Ta-
ble 8). Analyzing the outputs, we also observed
that the CNN model surpassed the two LSTM
models in the ability to realize the “fast food” and
“pub” values reliably, both of which were hardly
present in the validation set but very frequent in
the test set. On the official E2E test set, our en-
semble model performs comparably to the base-
line model, TGen (Dušek and Jurčı́ček, 2016), in
terms of automatic metrics (Table 9).

6.2.2 Human Evaluation
It is known that automatic metrics function only as
a general and vague indication of the quality of an
utterance in a dialogue (Liu et al., 2016; Novikova
et al., 2017a). Systems which score similarly ac-
cording to these metrics could produce utterances
that are significantly different because automatic

3The scores here correspond to the model submitted to
the E2E NLG Challenge. Subsequently, we found better per-
forming models according to some metrics: see Table 6.
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BLEU NIST METEOR ROUGE

LSTM1 0.6661 8.1626 0.4644 0.7018
LSTM2 0.6493 7.9996 0.4649 0.6995
CNN 0.6636 7.9617 0.4700 0.7107

Ensem. 0.6576 8.0761 0.4675 0.7029

Table 7: Automatic metric scores of three different
models and their ensemble, tested on the validation set
of the E2E dataset. LSTM2 differs from LSTM1 in that
it was trained longer.

Validation set Test set

LSTM1 0.116% 0.988%
LSTM2 0.145% 1.241%
CNN 0.232% 0.253%

Ensem. 0.087% 0.965%

Table 8: Error rate of the ensemble model compared to
its individual submodels.

metrics fail to capture many of the characteris-
tics of natural sounding utterances. Therefore, to
better assess the structural complexity of the pre-
dictions of our model, we present the results of a
human evaluation of the models’ outputs in terms
of both naturalness and quality, carried out by the
E2E NLG Challenge organizers.

Quality examines the grammatical correctness
and adequacy of an utterance given an MR,
whereas naturalness assesses whether a predicted
utterance could have been produced by a native
speaker, irrespective of the MR. To obtain these
scores, crowd workers ranked the outputs of 5 ran-
domly selected systems from worst to best. The
final scores were produced using the TrueSkill
algorithm (Sakaguchi et al., 2014) through pair-
wise comparisons of the human evaluation scores
among the 20 competing systems.

Our system, trained on the E2E dataset without
stylistic selection (Section 5.3), achieved the high-
est quality score in the E2E NLG Challenge, and
was ranked second in naturalness.4 The system’s
performance in quality (the primary metric) was
significantly better than the competition according
to the TrueSkill evaluation, which used bootstrap
resampling with a p-level of p ≤ 0.05. Comparing
these results with the scores achieved by the base-
line model in quality and naturalness (5th and 6th

4The system that surpassed ours in naturalness was ranked
the last according to the quality metric.

BLEU NIST METEOR ROUGE

TGen 0.6593 8.6094 0.4483 0.6850

Ensem. 0.6619 8.6130 0.4454 0.6772

Table 9: Automatic metric scores of our ensemble
model compared against TGen (the baseline model),
tested on the test set of the E2E dataset.

Ex.
#1

The Cricketers is a cheap Chinese restaurant near
All Bar One in the riverside area, but it has an av-
erage customer rating and is not family friendly.

Ex.
#2

If you are looking for a coffee shop near The Rice
Boat, try Giraffe.

Table 10: Examples of generated utterances that con-
tain more advanced discourse phenomena.

place, respectively) reinforces our belief that mod-
els that perform similarly on the automatic metrics
(Table 9) can exhibit vast differences in the struc-
tural complexity of their generated utterances.

6.2.3 Experiments with Data Selection
After filtering the E2E training set as described in
Section 5.3, the new training set consisted of ap-
proximately 20K pairs of MRs and utterances. In-
terestingly, despite this drastic reduction in train-
ing samples, the model was able to learn more
complex utterances that contained the natural vari-
ations of the human language. The generated ut-
terances exhibited discourse phenomena such as
contrastive cues (see Example #1 in Table 10), as
well as a more conversational style (Example #2).
Nevertheless, the model also failed to realize slots
more frequently.

In order to observe the effect of stylistic data se-
lection, we conducted a human evaluation where
we assessed the utterances based on error rate and
naturalness. The error rate is calculated as the per-
centage of slots the model failed to realize divided
by the total number of slots present among all sam-
ples. The annotators ranked samples of utterance
triples – corresponding to three different ensemble
models – by naturalness from 1 to 3 (3 being the
most natural, with possible ties). The conservative
model combines three submodels all trained on the
full training set, the progressive one combines sub-
models solely trained on the filtered dataset, and
finally, the hybrid is an ensemble of three models
only one of which is trained on the full training
set, so as to serve as a fallback.

The impact of the reduction of the number of
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Ensemble model Error rate Naturalness

Conservative 0.40% 2.196
Progressive 1.60% 2.118

Hybrid 0.40% 2.435

Table 11: Average error rate and naturalness metrics
obtained from six annotators for different ensemble
models.

training samples becomes evident by looking at
the score of the progressive model (Table 11),
where this model trained solely on the reduced
dataset had the highest error rate. We observe,
however, that a hybrid ensemble model manages
to perform the best in terms of the error rate, as
well as the naturalness.

These results suggest that filtering the dataset
through careful data selection can help to achieve
better and more natural sounding utterances. It
significantly improves the model’s ability to pro-
duce more elegant utterances beyond the “[name]
is... It is/has...” format, which is only too common
in neural language generators in this domain.

6.3 Experiments on TV and Laptop Datasets

In order to provide a better frame of reference for
the performance of our proposed model, we uti-
lize the RNNLG benchmark toolkit5 to evaluate
our system on two additional, widely used datasets
in NLG, and compare our results with those of
a state-of-the-art model, SCLSTM (Wen et al.,
2015b). As Table 12 shows, our ensemble model
performs competitively with the baseline on the
TV dataset, and it outperforms it on the Laptop
dataset by a wide margin. We believe the higher
error rate of our model can be explained by the sig-
nificantly less aggressive slot delexicalization than
the one used in SCLSTM. That, however, gives
our model a greater lexical freedom and, with it,
the ability to produce more natural utterances.

The model trained on the Laptop dataset is also
a prime example of how an ensemble model is ca-
pable of extracting the best learned concepts from
each individual submodel. By combining their
knowledge and compensating thus for each other’s
weaknesses, the ensemble model can achieve a
lower error rate, as well as a better overall qual-
ity, than any of the submodels individually.

5https://github.com/shawnwun/RNNLG

TV Laptop
BLEU ERR BLEU ERR

SCLSTM 0.5265 2.31% 0.5116 0.79%

LSTM 0.5012 3.86% 0.5083 4.43%
CNN 0.5287 1.87% 0.5231 2.25%

Ensem. 0.5226 1.67% 0.5238 1.55%

Table 12: Automatic metric scores of our ensemble
model evaluated on the test sets of the TV and Lap-
top datasets, and compared against SCLSTM. The ERR
column indicates the slot error rate, as computed by
the RNNLG toolkit (for our models calculated in post-
processing).

7 Conclusion and Future Work

In this paper we presented our ensemble atten-
tional encoder-decoder model for generating natu-
ral utterances from MRs. Moreover, we presented
novel methods of representing the MRs to improve
performance. Our results indicate that the pro-
posed utterance splitting applied to the training
set greatly improves the neural model’s accuracy
and ability to generalize. The ensembling method
paired with the reranking based on slot alignment
also contributed to the increase in quality of the
generated utterances, while minimizing the num-
ber of slots that are not realized during the genera-
tion. This also enables the use of a less aggressive
delexicalization, which in turn stimulates diversity
in the produced utterances.

We showed that automatic slot alignment can be
utilized for expanding the training data, as well as
for utterance reranking. Our alignment currently
relies in part on empirically observed heuristics,
and a more robust aligner would allow for more
flexible expansion into new domains. Since the
stylistic data selection noticeably improved the di-
versity of our system’s outputs, we believe this is
a method with future potential, which we intend to
further explore. Finally, it is clear that current au-
tomatic evaluation metrics in NLG are only suffi-
cient for providing a vague idea as to the system’s
performance; we postulate that leveraging the ref-
erence data to train a classifier will result in a more
conclusive automatic evaluation metric.
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Abstract

This paper presents a novel, data-driven lan-
guage model that produces entire lyrics for a
given input melody. Previously proposed mod-
els for lyrics generation suffer from the in-
ability of capturing the relationship between
lyrics and melody partly due to the unavail-
ability of lyrics-melody aligned data. In
this study, we first propose a new practi-
cal method for creating a large collection of
lyrics-melody aligned data and then create a
collection of 1,000 lyrics-melody pairs aug-
mented with precise syllable-note alignments
and word/sentence/paragraph boundaries. We
then provide a quantitative analysis of the
correlation between word/sentence/paragraph
boundaries in lyrics and melodies. We then
propose an RNN-based lyrics language model
conditioned on a featurized melody. Experi-
mental results show that the proposed model
generates fluent lyrics while maintaining the
compatibility between boundaries of lyrics
and melody structures.

1 Introduction

Writing lyrics for a given melody is a challenging
task. Unlike prose text, writing lyrics requires both
knowledge and consideration of music-specific
properties such as the structure of melody, rhythms,
etc. (Austin et al., 2010; Ueda, 2010). A simple ex-
ample is the correlation between word boundaries
in lyrics and the rests in a melody. As shown in
Figure 1, a single word spanning beyond a long
melody rest can sound unnatural. When writing
lyrics, a lyricist must consider such constraints in
content and lexical selection, which can impose
extra cognitive loads.

This consideration when writing lyrics has mo-
tivated a wide-range of studies for the task of
computer-assisted lyrics writing (Barbieri et al.,
2012; Abe and Ito, 2012; Potash et al., 2015; Watan-
abe et al., 2017). Such studies aim to model the
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ma-da
まだ

Rest

Rest

Example of awkward lyrics.

Example of natural lyrics.
(Proceed to an unknown tomorrow)

(I walked alone... This road)

知ら ない 明日 へ 行く
(yet) (know) (not) (tomorrow) (to) (go)

shi- ra na- i a- shi- ・ ta e yu-ku

hi-to-ri
一人

(alone)

de
で

(FUNC)

a- ru- i- ta
歩いた

(walked)

ko-no
この
(this)

mi-chi
道

(road)

Figure 1: Examples of awkward and natural lyrics.
FUNC indicates a function word. The song is
from the RWC Music Database (RWC-MDB-P-2001
No.20) (Goto et al., 2002).

language in lyrics and to design a computer sys-
tem for assisting lyricists in writing. They propose
to constrain their models to generate only lyrics
that satisfy given conditions on syllable counts,
rhyme positions, etc. However, such constraints
are assumed to be manually provided by a human
user, which requires the user to interpret a source
melody and transform their interpretation to a set
of constraints. To assist users with transforming a
melody to constraints, a language model that auto-
matically captures the relationship between lyrics
and melody is required.

Some studies (Oliveira et al., 2007; Oliveira,
2015; Nichols et al., 2009) have quantitatively ana-
lyzed the correlations between melody and phono-
logical aspects of lyrics (e.g., the relationship be-
tween a beat and a syllable stress). However, these
studies do not address the relationship between
melody and the discourse structure of lyrics. Lyrics
are not just a sequence of syllables but a meaningful
sequence of words. Therefore, it is desirable that
the sentence/paragraph boundaries are determined
based on both melody rests and context words.

Considering such line/paragraph structure of
lyrics, we present a novel language model that gen-
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erates lyrics whose word, sentence, and paragraph
boundaries are appropriate for a given melody,
without manually transforming the melody to syl-
lable constraints. This direction of research has
received less attention because it requires a large
dataset consisting of aligned pairs of melody and
segment boundaries of lyrics which has yet to exist.

To address this issue, we leverage a publicly-
available collection of digital music scores and cre-
ate a dataset of digital music scores each of which
specifics a melody score augmented with syllable
information for each melody note. We collected
1,000 Japanese songs from an online forum where
many amateur music composers upload their music
scores. We then automatically aligned each music
score with the raw text data of the corresponding
lyrics in order to augment it with the word, sen-
tence, and paragraph boundaries.

The availability of such aligned, parallel data
opens a new area of research where one can con-
duct a broad range of data-oriented research for
investigating and modeling correlations between
melodies and discourse structure of lyrics. In this
paper, with our melody-lyrics aligned songs, we in-
vestigate the phenomena that (i) words, sentences,
and paragraphs rarely span beyond a long melody
rest and (ii) the boundaries of larger components
(i.e., paragraphs) tend to coincide more with longer
rests. To the best of our knowledge, there is no
previous work that provides any quantitative analy-
sis of this phenomenon with this size of data (see
Section 7).

Following this analysis, we build a novel, data-
driven language model that generates fluent lyrics
whose sentence and paragraph boundaries fit an
input melody. We extend a Recurrent Neural Net-
work Language Model (RNNLM) (Mikolov et al.,
2010) so that its output can be conditioned on a
featurized melody. Both our quantitative and qual-
itative evaluations show that our model captures
the consistency between melody and boundaries of
lyrics while maintaining word fluency.

2 Melody-lyric alignment data

Our goal is to create a melody-conditioned lan-
guage model that captures the correlations between
melody patterns and discourse segments of lyrics.
The data we need for this purpose is a collec-
tion of melody-lyrics pairs where the melody and
lyrics are aligned at the level of not only note-
syllable alignment but also discourse components

⁄@@1 , - 2) ) ) ) ) ) ) ) ) ) ) ! - ) ) # ) ) ( ! ,

⁄5, - 2) ) ) ) ) ) ) ) ) ) ) , ) ) ) ) ( ! ,

⁄9, - 2) ) ) ) ) ) ) ) ) ) ) ! - ) ) # ) ) ( ! ,

⁄13, - 2) ) ) ) ) ) ) ) ) ) ) , ) ) ) ) ( ! ,

⁄17, - 7) )
) ) ) 7) ! . ) # ) ) ) ) - 7) )

) ) ) (

⁄21, ) ) ) ) ) - 7)
) ! # ) ) ) ) - 7) )

! ) ) ) '

⁄25 ) ! ) ) ) ) # ) ) ) ! ) ) ) ) ! - ) ! ) ) ) 7) ! . )
)

⁄29) ! ) ) # ) ) ) ) ! ) ) ) ) # ) ) ) ! ) ) ) ) - 7) ) ! # ) ) ) ) - 7)

⁄33) ! ) ) ) ) ! - ) ! 7) ( ) , ) ! ) ) ) ) ! 7) ) ) )

⁄37( , ) ) ( ! - 7) ) ! # ) ) ) ) ) ) '

⁄41

⁄45

⁄49

⁄@@1 , - 2) ) ) ) ) ) ) ) ) ) ) ! - ) ) # ) ) ( ! ,

⁄5, - 2) ) ) ) ) ) ) ) ) ) ) , ) ) ) ) ( ! ,

⁄9, - 2) ) ) ) ) ) ) ) ) ) ) ! - ) ) # ) ) ( ! ,

⁄13, - 2) ) ) ) ) ) ) ) ) ) ) , ) ) ) ) ( ! ,

⁄17, - 7) )
) ) ) 7) ! . ) # ) ) ) ) - 7) )

) ) ) (

⁄21, ) ) ) ) ) - 7)
) ! # ) ) ) ) - 7) )

! ) ) ) '

⁄25 ) ! ) ) ) ) # ) ) ) ! ) ) ) ) ! - ) ! ) ) ) 7) ! . )
)

⁄29) ! ) ) # ) ) ) ) ! ) ) ) ) # ) ) ) ! ) ) ) ) - 7) ) ! # ) ) ) ) - 7)

⁄33) ! ) ) ) ) ! - ) ! 7) ( ) , ) ! ) ) ) ) ! 7) ) ) )

⁄37( , ) ) ( ! - 7) ) ! # ) ) ) ) ) ) '

⁄41

⁄45

⁄49

na ni ka ta           ri na i to                  o mo o  ta

何 か 足り ない と 思っ た

Melody
Syllable

Digital musical score data with syllables

[na-ni]   [ka]   [ta-ri]   [na-i]   [to]   [o-mo]   [ta]Syllable
Word 〈BOL〉

Lyric text data 
with syllable and 
boundary

Re
st

何 か 足り ない と 思っ た

Melody

Syllable

Melody-Lyric alignment data

Word R
es

t

Needleman-Wunschalignment algorithm

na-ni ka ta- ri na- i to             o-mo ta

R
es

t
Re

st

NULLNULL NULL

NULL

(some- (FUNC)(enough)      (not)     (FUNC)               (think)    (FUNC)   

(I thought that something was missing)
thing)〈

B
O

L〉

Figure 2: Melody-lyrics alignment using the Needle-
man Wunsch algorithm. BOL denotes a line boundary.

(i.e., word/sentence/paragraph boundaries) of a
lyric, as illustrated in the bottom of Figure 2. We
create such a dataset by automatically combining
two types of data available from online forum sites:
digital music score data (the top of Figure 2) and
raw lyrics data (the middle).

A digital music score specifies a melody score
augmented with syllable information for each
melody note (see the top of Figure 2). Score data
augmented in this way is sufficient for analyzing
the relationship between the phonological aspects
of lyrics and melody, but it is insufficient for our
goal since the structural information of the lyrics
is not included. We thus augment score data fur-
ther with boundaries of sentences, and paragraphs,
where we assume that sentences and paragraphs
of lyrics are approximately captured by lines and
blocks,1 respectively, of the lyrics in the raw text.

The integration of music scores and raw lyrics
is achieved by (1) applying a morphological an-
alyzer2 to raw lyrics for word segmentation and
Chinese character pronunciation prediction and (2)
aligning music score with raw lyrics at the sylla-
ble level as illustrated in Figure 2. For this align-
ment, we employ the Needleman-Wunsch algo-
rithm (Needleman and Wunsch, 1970). This align-
ment process is reasonably accurate because it fails
in principle only when the morphological analysis
fails in Chinese character pronunciation prediction,
which occurs for only less than 1% of the words in
the data set.

With this procedure, we obtained 54,181
Japanese raw lyrics and 1,000 digital musical

1Blocks are assumed to be segmented by empty lines.
2To extract word boundaries and syllable information for

Japanese lyrics, we apply MeCab parser (Kudo et al., 2004).
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Figure 3: Example boundaries appearing immediately
after a rest. BOB indicates a block boundary.

(MIDI Tick)

Figure 4: Distribution of the number of boundaries in
the melody-lyrics alignment data.

scores from online forum sites3; we thus created
1,000 melody-lyrics pairs. We refer to these 1,000
melody-lyrics pairs as a melody-lyrics alignment
data4 and refer to the remaining 53,181 lyrics with-
out melody as a raw lyrics data.

We randomly split the 1,000 melody-lyrics align-
ments into two sets: 90% for analyzing/training
and the remaining 10% for testing. From those,
we use 20,000 of the most frequent words whose
syllable counts are equal to or less than 10, and
converted others to a special symbol 〈unknown〉.
All of the digital music score data we collected
were distributed in the UST format, a common file
format designed specifically for recently emerging
computer vocal synthesizers. While we focus on
Japanese music in this study, our method for data
creation is general enough to be applied to other
language formats such as MusicXML and ABC,
because transferring such data formats to UST is
straightforward.

3For selecting the 1,000 songs, we chose only frequently
downloaded or highly popular songs to ensure the quality of
the resulting dataset.

4We publicly release all source URLs of the 1,000 songs
(https://github.com/KentoW/melody-lyrics).

3 Correlations between melody and lyric

In this section, we examine two phenomena re-
lated to boundaries of lyrics: (1) the positions of
lyrics segment boundaries are biased to melody
rest positions, and (2) the probability of boundary
occurrence depends on the duration of a rest, i.e.,
a shorter rest tends to be a word boundary and a
longer rest tends to be a block boundary, as shown
in Figure 3. All analyses were performed on the
training split of the melody-lyrics alignment data,
which is described in Section 2.

For the first phenomenon, we first calculated
the distribution of boundary appearances at the po-
sitions of melody notes and rests. Here, by the
boundary of a line (or block), we refer to the po-
sition of the beginning of the line (or block).5 In
Figure 3, we say, for example, that the boundary
of the first block beginning “te-ra-shi te” coincides
with Rest#1. The result, shown at the top of Fig-
ure 4, indicates that line and block boundaries are
strongly biased to rest positions and are far less
likely to appear at note positions. Words, lines, and
blocks rarely span beyond a long melody rest.

The bottom of Figure 4 shows the detailed dis-
tributions of boundary occurrences for different
durations of melody rests, where durations of 480
and 1920 correspond to a quarter rest and a whole
rest, respectively. The results exhibit a clear, strong
tendency that the boundaries of larger segments
tend to coincide more with longer rests. To the
best of our knowledge, this is the first study that
has ever provided such strong empirical evidence
for the phenomena related to the correlations be-
tween lyrics segments and melody rests. It is also
important to note that the choice of segment bound-
aries looks like a probabilistic process (i.e., there
is a long rest without a block boundary). This ob-
servation suggests the difficulty of describing the
correlations of lyrics and melody in a rule-based
fashion and motivates our probabilistic approach
as we present in the next section.

4 Melody-conditioned language model

Our goal is to build a language model that generates
fluent lyrics whose discourse segment fit a given
melody in the sense that generated segment bound-
aries follow the distribution observed in Section 3.
We propose to pursue this goal by conditioning a

5The beginning of a line/block and the end of a line/block
are equivalent since there is no melody between the end and
beginning of a line/block.
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Figure 5: Melody-conditioned RNNLM.

standard RNNLM with a featurized input melody.
We call this model a Melody-conditioned RNNLM.

The network structure of the model is illustrated
in Figure 5. Formally, we are given a melody
m = m1,...,mi,...,mI that is a sequence of notes
and rests, where m includes a pitch and a dura-
tion information. Our model generates lyrics w =
w1,...,wt,...,wT that is a sequence of words and
segment boundary symbols: 〈BOL〉 and 〈BOB〉,
special symbols denoting a line and a block bound-
ary, respectively. For each time step t, the model
outputs a single word or boundary symbol taking a
pair of the previously generated word wt−1 and the
musical feature vector nt for the current word posi-
tion which includes context window-based features
that we describe in the following section. In this
model, we assume that the syllables of the gener-
ated words and the notes in the input melody have
a one-to-one correspondence. Therefore, the posi-
tion of the incoming note/rest for a word position
t (referred to as a target note for t) is uniquely de-
termined by the syllable counts of the previously
generated words.6 The target note for t is denoted
as mi(t) by defining a function i(·) which maps
time step t to the index of the next note in t.

Here, the challenging issue with this model is
training. Generally, language models require a
large amount of text data to learn well. Moreover,
this is also the case for learning correlation between
rest positions and syllable counts. As shown in Fig-
ure 4, most words are supposed to not overlap a

6Note that our melody-lyrics alignment data used in train-
ing does not make this assumption, but we can still uniquely
identify the positions of target notes based on the obtained
melody-word alignment.

long rest. This means, for example, that when the
incoming melody sequence for a next word posi-
tion is note, note, (long) rest, note, note, as the
sequence following to mi(t−1) in Figure 5, it is de-
sirable to select a word whose syllable count is two
or less so that the generated word does not overlap
the long rest. If there is sufficient data available,
this tendency may be learned directly from the cor-
relation between rests and words without explicitly
considering the syllable count of a word. However,
our melody-lyrics alignments for 1,000 songs are
insufficient for this purpose.

We take two approaches to address this data spar-
sity problem. First, we propose two training strate-
gies that increase the number of training examples
using raw lyrics that can be obtained in greater
quantities. Second, we construct a model that pre-
dicts the number of syllables in each word, as well
as words themselves, to explicitly supervise the
correspondence between rest positions and syllable
counts.

In the following sections, we first describe the
details of the proposed model and then present the
training strategies used to obtain better models with
our melody-lyrics alignment data.

4.1 Model construction
The proposed model is based on a standard
RNNLM (Mikolov et al., 2010):

P (w) =
∏T
t=1P (wt|w0, ..., wt−1), (1)

where context words are encoded using
LSTM (Hochreiter and Schmidhuber, 1997)
and the probabilities over words are calculated
by a softmax function. w0 = 〈B〉 is a symbol
denoting the beginning of lyrics. We extend this
model such that each output is conditioned by
the context melody vectors n1, ...,nt, as well as
previous words:

P (w|m) =
∏T
t=1P (wt|w0, ..., wt−1,n1, ...,nt). (2)

The model simultaneously predicts the sylla-
ble counts of words by sharing the parameters
of LSTM with the above word prediction model
in order to learn the correspondence between the
melody segments and syllable counts:

P (s|m) =
∏T
t=1P (st|w0, ..., wt−1,n1, ...,nt), (3)

where s = s1, ..., sT is a sequence of syllable
counts, which corresponds to w.
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For each time step t, the model outputs a word
distribution ytw ∈ RV and a distribution of syllable
count yts ∈ RS using a softmax function:

ytw = softmax(BN(Wwzt)), (4)

yts = softmax(BN(Wszt)), (5)

where zt is the output of the LSTM for each time
step. V is the vocabulary size and S is the syllable
count threshold.7 Ww and Ws are weight matri-
ces. BN denotes batch normalization (Ioffe and
Szegedy, 2015).

The input to the LSTM in each time step t is a
concatenation of the embedding vector of the pre-
vious word v(wt−1) and the context melody repre-
sentation xtn, which is a nonlinear transformation
of the context melody vector nt:

xt = [v(wt−1), xtn], (6)

xtn = ReLU(Wnnt + bn), (7)

where Wn is a weight matrix and bn is a bias.
To generate lyrics, the model searches for the

word sequence with the greatest probability (Eq.
2) using beam search. The model stops generating
lyrics when the syllable count of the lyrics reaches
the number of notes in the input melody.

Note that our model is not specific to the lan-
guage of lyrics. The model only requires the se-
quences of melody, words, and syllable counts and
does not use any language-specific features.

4.2 Context melody vector
In Section 3, we indicated that the positions of
rests and their durations are important factors for
modeling boundaries of lyrics. Thus, we collect
a sequence of notes and rests around the current
word position (i.e., time step t) and encode their
information into context melody vector nt (see the
bottom of Figure 5).

The context melody vector nt is a binary fea-
ture vector that includes a musical notation type
(i.e., note or rest), a duration8, and a pitch for each
note/rest in the context window. We collect notes
and rests around the target note mi(t) for the cur-
rent word position t with a window size of 10 (i.e.,
mi(t)−10, ...,mi(t), ...,mi(t)+10).

For pitch information, we use a gap (pitch inter-
val) between a target note mi(t) and its previous

7The syllable counts of the 〈BOL〉 and 〈BOB〉 are zero.
8We rounded each duration to one of the values 60, 120,

240, 360, 480, 720, 960, 1200, 1440, 1680, 1920, and 3840
and use one-hot encoding for each rounded duration.

Algorithm 1 Pseudo melody generation
1: for each syllable in the input-lyrics do
2: b← get boundary type next to the syllable
3: sample note pitch p ∼ P (pi|pi−2, pi−1)
4: sample note duration dnote ∼ P (dnote|b)
5: assign note with (p, dnote) to the syllable
6: sample binary variable r ∼ P (r|b)
7: if r = 1 then
8: insert rest with duration drest ∼ P (drest|b)
9: end if

10: end for

(MIDI Tick)

Figure 6: Distribution of the number of boundaries in
pseudo-data.

note mi(t−1). Here, the pitch is represented by a
MIDI note number in the range 0 to 127. For ex-
ample, the target and its previous notes are 68 and
65, respectively, and the gap is +3.

4.3 Training strategies
Pretraining The size of our melody-lyrics align-
ment data is limited. However, we can obtain a
large amount of raw lyrics. We, therefore, pretrain
the model with 53,181 raw lyrics and then fine-
tune it with the melody-lyrics alignment data. In
pretraining, all context melody vectors nt are zero
vectors. We refer to these pretrained and fine-tuned
models as Lyrics-only and Fine-tuned models, re-
spectively.

Learning with pseudo-melody We propose a
method to increase the melody-lyrics alignment
data by attaching pseudo melodies to the obtained
53,181 raw lyrics. We refer to the model that uses
this data as the Pseudo-melody model.

Algorithm 1 shows the details of pseudo-melody
generation. For each syllable in the lyrics, we first
assign a note to the syllable by sampling the proba-
bility distributions. The pitch of each note is gener-
ated based on the trigram probability. Then, we de-
termine whether to generate a rest next to it. Since
we established the correlations between rests and
boundaries of lyrics in Section 3, the probability for
a rest and its duration is conditioned by a boundary
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type next to the target syllable. All probabilities are
calculated using the training split of the melody-
lyrics alignment data.

Figure 6 shows the distributions of the number
of boundaries in the pseudo data. The distributions
closely resemble those of gold data in Figure 4.

5 Quantitative evaluation

We evaluate the proposed Melody-conditioned
RNNLMs quantitatively based on two evaluation
metrics: (1) a test set perplexity for measuring the
fluency; (2) a line/block boundary replication task
for measuring the consistency between the melody
and boundaries in the generated lyrics.

5.1 Experimental setup
In our model, we chose the dimensions of the word
embedding vectors and context melody representa-
tion vectors to 512 and 256, respectively, and the
dimension of the LSTM hidden state was 768. We
used a categorical cross-entropy loss for outputs
ytw and yts, Adam (Kingma and Ba, 2014) with an
initial learning rate of 0.001 for parameter opti-
mization, and a mini-batch size of 32. We applied
an early-stopping strategy with a maximum epoch
number of 100, and training was terminated after
five epochs of unimproved loss on the validation
set. For lyrics generation, we used a beam search
with a width of 10. An example of the generated
lyrics is shown in the supplemental material.

5.2 Evaluation metrics
Perplexity Test-set perplexity (PPL) is a stan-
dard evaluation measure for language models. PPL
measures the predictability of wording in orig-
inal lyrics, where a lower PPL value indicates
that the model can generate fluent lyrics. We
used PPL and its variant PPL-W, which excludes
line/block boundaries, to investigate the predictabil-
ity of words.

Accuracy of boundary replication Under the
assumption that the line and block boundaries of
the original lyrics are placed at appropriate po-
sitions in the melody, we evaluated consistency
between the melody and boundaries in the gener-
ated lyrics by measuring the reproducibility of the
boundaries in the original lyrics. Here the metric
we used was F1-measure of the boundary positions.
We also asked a person to place line and block
boundaries at plausible positions for randomly se-
lected 10 input melodies that the evaluator has

Perplexity F1-measure
Model PPL PPL-W BOB BOL UB

Lyrics-only 138.0 225.0 0.121 0.061 0.106
Full-data 135.9 222.1 0.122 0.063 0.108
Alignment-only 173.3 314.8 0.298 0.287 0.477
Heuristic 175.8 284.7 0.373 0.239 0.402
Fine-tuned 152.2 275.5 0.260 0.302 0.479
Pseudo-melody 115.7 197.5 0.318 0.241 0.406

(w/o ys)
Fine-tuned 155.1 278.1 0.318 0.241 0.366
Pseudo-melody 118.0 201.5 0.312 0.250 0.406
Human - - 0.717 0.671 0.751

Table 1: Results of the quantitative evaluation. “UB”
denotes the score for unlabeled matching of line/block
boundaries. “w/o ys” denotes the exclusion of the
syllable-count output layer.

never heard. This person is not a professional mu-
sician but an experienced performer educated on
musicology. The bottom part of Table 1 represents
the human performance.

5.3 Effect of Melody-conditioned RNNLM
To investigate the effect of our language models,
we compared the following six models. The first
one is (1) a Lyrics-only model, a standard RNNLM
trained with 54,081 song lyrics without melody in-
formation. The second and third ones are baseline
Melody-conditioned RNNLMs where the proposed
training strategies are not applied: (2) a Full-data
model trained with mixed data (54,081 song lyrics
and 900 melody-lyrics alignments of those), and
(3) an Alignment-only model trained with only 900
melody-lyrics alignment data. The fourth one is a
strong baseline to evaluate the performance of the
proposed approaches: (4) a Heuristic model that
(i) assigns a line/block boundary to a rest based on
its duration with the same probability, as reported
in Figure 4, and (ii) fills the space between any
two boundaries with lyrics of the appropriate syl-
lable counts. This Heuristic model computes the
following word probability:

P (wt|w0, ..., wt−1,m) = (8)




Q(〈BOB〉|mi(t+1)) (if wt = 〈BOB〉)
Q(〈BOL〉|mi(t+1)) (if wt = 〈BOL〉)
(1−Q(〈BOB〉|mi(t+1))−Q(〈BOL〉|mi(t+1)))×

PLSTM(wt|w0,...,wt−1)
1−PLSTM(〈BOL〉|w0,...,wt−1)−PLSTM(〈BOB〉|w0,...,wt−1)

(otherwise)

where Q is the same probability as reported in Fig-
ure 4. PLSTM is the word probability calculated by
a standard LSTM language model. The remaining
two are Melody-conditioned RNNLMs with the
proposed learning strategies: (5) Fine-tuned and
(6) Pseudo-melody models.
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Lyrics in test set Lyrics generated by Pseudo-melody modelLyrics generated by Heuristic model

(MIDI Tick) (MIDI Tick)(MIDI Tick)

Figure 7: Distribution of the number of boundaries in the test set and lyrics generated by the Heuristic and Pseudo-
melody models.

The top part of Table 1 summarizes the perfor-
mance of these models. Regarding the boundary
replication, the Heuristic, Alignment-only, Fine-
tuned, and Pseudo-melody models achieved higher
performance than the Lyrics-only model for unla-
beled matching of line/block boundaries (i.e., UB).
This result indicates that our Melody-conditioned
RNNLMs successfully capture the consistency be-
tween melody and boundaries of lyrics. The re-
sults of the Full-data model is low (as expected)
because the size of the melody-lyrics alignment
data is far smaller than that of the raw lyrics data
and this harms the learning process of the depen-
dency between melody and lyrics. For the block
boundary, the Heuristic model achieved the best
performances. For the line boundary, the Fine-
tuned model achieved the best performances.

Regarding PPL and PPL-W, the Lyrics-only,
Full-data, and Pseudo-melody models show bet-
ter results than the other models. The Fine-tuned
model shows reduced performance compared with
the Lyrics-only model because fine-tuning with
a small amount of data causes overfitting in the
language model. Also, the training size of the
Alignment-only model is insufficient for learning a
language model of lyrics. Interestingly, the Pseudo-
melody model achieved better performance than the
Full-data model and overall achieved the best score.
This result indicates that the Pseudo-melody model
uses the information of a given melody to make a
better prediction of its lyrics word sequence. On
the other hand, the Heuristic model had the worst
performance, despite training with a large amount
of raw lyrics. We analyze the reason for such per-
formance and describe our results in Section 5.5.
It is not necessarily clear which to choose, either
the Fine-tuned or Pseudo-melody model, which
may depend also on the size and diversity of the
training and test data. However, one can conclude

at least that combining a limited-scale collection
of melody-lyrics alignment data with a far larger
collection of lyrics-alone data boosts the model’s
capability of generating a fluent lyrics which struc-
turally fits well the input melody.

5.4 Effect of predicting syllable-counts

To investigate the effect of predicting syllable-
counts, we compared the performance of the pro-
posed models to models that exclude the syllable-
count output layer ys. The middle part of Table 1
summarizes the results. For the pretraining strat-
egy, the use of ys successfully alleviates data spar-
sity when learning the correlation between syllable
counts and melodies from only words themselves.
As can be seen, the model without ys shows re-
duced performance relative to both PPLs and the
boundary replication. On the other hand, for the
pseudo-melody strategy, the two models are com-
petitive in both measures. This means that the
Pseudo-melody model obtained a sufficient amount
of word-melody input pairs to learn the correlation.

5.5 Analysis of melody and generated lyrics

To examine whether the models can capture corre-
lations between rests and boundaries of lyrics, we
calculate the proportion of the word, line, and block
boundaries in the original lyrics and in the lyrics
generated by the Heuristic and Pseudo-melody
model for the test set (Figure 7). The proportion
of 〈BOL〉 and 〈BOB〉 generated by the Heuristic
model are almost equivalent to those of the original
lyrics. On the other hand, for the Pseudo-melody
model, the proportion of line/block boundary types
for the longer rests are smaller than that of the
original lyrics.

Although the Heuristic model reproduces the
proportion of the original line/block boundaries,
the model had a low performance in terms of PPL,
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Figure 8: Distribution of the syllable count of the generated lines/blocks

Heuristic Lyrics-only Fine-tuned Pseudo-melody Human (Upper-bound)
Measure Means ± SD Median Means ± SD Median Means ± SD Median Means ± SD Median Means ± SD Median
L 2.06±1.08 2 2.33±1.23 2 2.85±1.20 3 2.93±1.14 3 3.56±1.33 4
G 2.28±1.07 2 2.81±1.16 3 2.79±1.06 3 2.97±1.08 3 3.50±1.25 4
LM 2.34±1.07 2 2.91±1.15 3 2.70±1.13 3 2.96±1.09 3 3.49±1.35 4
DM 2.33±1.10 2 2.80±1.06 3 2.59±1.11 3 2.89±1.07 3 3.49±1.30 4
OQ 2.01±1.01 2 2.59±1.15 3 2.42±1.08 2 2.65±1.01 3 3.32±1.19 4

Table 2: Results of the qualitative evaluation.

as shown in Section 5.3. By investigating the lyrics
generated by the Heuristic model, we found that the
model tends to generate line/block boundaries after
the melody rest, even if the two rests are quite close.
Figure 8 shows the distributions of the syllable
per line / block frequency and the distributions of
the Jensen-Shannon divergence. While the Heuris-
tic model tends to generate short lines/blocks, our
model generates the lyrics so that lines/blocks do
not become too short. This result supports that (i)
our model is trained using melody and lyric con-
texts and (ii) the heuristic approach, which simply
generates line/block boundaries based on the dis-
tribution in Figure 4, cannot generate fluent lyrics
with well-formed line/block lengths.

6 Qualitative evaluation

To asses the quality of the generated lyrics, inspired
by (Oliveira, 2015), we asked 50 Yahoo crowd-
sourcing workers to answer the following five ques-
tions using a five-point Likert scale:
Listenability (L) When listening to melody and
lyrics, are the positions of words, lines, and seg-
ments natural? (1=Poor to 5=Perfect)
Grammaticality (G) Are the lyrics grammatically
correct? (1=Poor to 5=Perfect)
Line-level meaning (LM) Is each line in the lyrics
meaningful? (1=Unclear to 5=Clear)
Document-level meaning (DM) Are the entire
lyrics meaningful? (1=Unclear to 5=Clear)
Overall quality (OQ) What is the overall quality
of the lyrics? (1=Terrible to 5=Great)

For the evaluation sets, we randomly se-
lected four melodies from the RWC Music
Database (Goto et al., 2002). For each melody,
we prepared four lyrics generated by the Heuristic,
Lyrics-only, Fine-tuned, and Pseudo-melody mod-
els. Moreover, to obtain an upper bound for this
evaluation, we used the lyrics created by amateur
writers: we asked four native Japanese speakers to
write lyrics on the evaluation melody. One writer
was a junior high school teacher of music who had
experience in music composition and writing lyrics.
Three writers were graduate students with different
levels of musical expertise. Two of the three writers
had experience with music composition, but none
of them had experience with writing lyrics.9 As a
result, we obtained 50 (workers) × 4 (melodies) ×
5 (lyrics) samples in total. We note that workers did
not know whether lyrics were created by a human
or generated by a computer.

Table 2 shows the average scores, standard devia-
tions, and medians for each measure. Regarding the
“Listenability” evaluation, workers gave high scores
to the Fine-tuned and Pseudo-melody models that
are trained using both the melody and lyrics. This
result is consistent with the perplexity evaluation
result. On the other hand, regarding the “Grammat-
icality” and “Meaning” evaluation, workers gave
high scores to the Lyrics-only and Pseudo-melody
models that are well-trained on a large amount of
text data. This result is consistent with the result of

9We release lyrics and audio files used in the quali-
tative evaluation on the Web (https://github.com/
KentoW/deep-lyrics-examples).
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the boundary replication task. Regarding the “Over-
all quality” evaluation, the Pseudo-melody model
outperformed all other models. These results indi-
cate our pseudo data learning strategy contributes
to generating high-quality lyrics. However, the
quality of lyrics automatically generated is still
worse than the quality of lyrics that humans pro-
duce, and it still remains an open challenge for
future research to develop computational models
that generate high-quality lyrics.

7 Related work

In the literature, a broad range of research efforts
has been reported for computationally modeling
lyrics-specific properties such as meter, rhythm,
rhyme, stress, and accent Greene et al. (2010);
Reddy and Knight (2011); Watanabe et al. (2014,
2016). While these studies provide insightful find-
ings on the properties of lyrics, none of those takes
the approach of using melody-lyrics parallel data
for modeling correlations of lyrics and melody
structures. One exception is the work of Nichols
et al. (2009), who used melody-lyrics parallel data
to investigate, for example, the correlation between
syllable stress and pitch; however, their exploration
covers only correlations at the prosody level but
not structural correlations.

The same trend can be seen also in the literature
of automatic lyrics generation, where most stud-
ies utilize only lyrics data. Barbieri et al. (2012)
and Abe and Ito (2012) propose a model for gen-
erating lyrics under a range of constraints pro-
vided in terms of rhyme, rhythm, part-of-speech,
etc. Potash et al. (2015) proposes an RNNLM
that generates rhymed lyrics under the assump-
tion that rhymes tend to coincide with the end of
lines. In those studies, the melody is considered
only indirectly; namely, input prosodic/linguistic
constraints/preferences on lyrics are assumed to
be manually provided by a human user because
the proposed models are not capable of inter-
preting and transforming a given melody to con-
straints/preferences.

For generating lyrics for a given melody, we
have so far found in the literature two studies
which propose a method. Oliveira et al. (2007)
and Oliveira (2015) manually analyze correlations
among melodies, beats, and syllables using 42 Por-
tuguese songs and propose a set of heuristic rules
for lyrics generation. Ramakrishnan A et al. (2009)
attempt to induce a statistical model for generating

melodic Tamil lyrics from melody-lyrics parallel
data using only ten songs. However, the former cap-
tures only phonological aspects of melody-lyrics
correlations and can generate a small fragment of
lyrics (not an entire lyrics) for a given piece of
melody. The latter suffers from the severe shortage
of data and fails to conduct empirical experiments.

8 Conclusion and future work

This paper has presented a novel data-driven ap-
proach for building a melody-conditioned lyrics
language model. We created a 1,000-song melody-
lyrics alignment dataset and conducted a quanti-
tative investigation into the correlations between
melodies and segment boundaries of lyrics. No
prior work has ever conducted such a quantitative
analysis of melody-lyrics correlations with this size
of data. We have also proposed a RNN-based,
melody-conditioned language model that gener-
ates fluent lyrics whose word/line/block boundaries
fit a given input melody. Our experimental re-
sults have shown that: (1) our Melody-conditioned
RNNLMs capture the consistency between melody
and boundaries of lyrics while maintaining word
fluency; (2) combining a limited-scale collection of
melody-lyrics alignment data with a far larger col-
lection of lyrics-alone data for training the model
boosts the model’s competence; (3) we have also
produced positive empirical evidence for the effect
of applying a multi-task learning schema where
the model is trained for syllable count prediction as
well as for word prediction; and (4) the human judg-
ments collected via crowdsourcing showed that our
model improves the quality of generated lyrics.

For future directions, we plan to further extend
the proposed model for capturing other aspects of
lyrics/melody discourse structure such as repeti-
tions, verse-bridge-chorus structure, and topical
coherence of discourse segment. The proposed
method for creating melody-lyrics alignment data
enables us to explore such a broad range of aspects
of melody-lyrics correlations.
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Abstract

In this paper, we investigate the use of
discourse-aware rewards with reinforce-
ment learning to guide a model to gen-
erate long, coherent text. In particular,
we propose to learn neural rewards to
model cross-sentence ordering as a means
to approximate desired discourse struc-
ture. Empirical results demonstrate that a
generator trained with the learned reward
produces more coherent and less repeti-
tive text than models trained with cross-
entropy or with reinforcement learning
with commonly used scores as rewards.

1 Introduction

Defining an ideal loss for training text genera-
tion models remains an open research question.
Many existing approaches based on variants of re-
current neural networks (Hochreiter and Schmid-
huber, 1997; Cho et al., 2014) are trained using
cross-entropy loss (Bahdanau et al., 2015; Vinyals
et al., 2015; Xu et al., 2015; Rush et al., 2015), of-
ten augmented with additional terms for topic cov-
erage or task-specific supervision (Kiddon et al.,
2016; Yang et al., 2017).

Training with cross-entropy, however, does not
always correlate well with achieving high scores
on commonly used evaluation measures such as
ROUGE (Lin, 2004), BLEU (Papineni et al.,
2002), or CIDEr (Vedantam et al., 2015). Another
current line of research therefore explores train-
ing generation models that directly optimize the
target evaluation measure (Wu et al., 2016; Ran-
zato et al., 2015; Paulus et al., 2018; Rennie et al.,
2017) using reinforcement learning methods such
as the REINFORCE algorithm (Williams, 1992).

∗Work done while author was at Microsoft Research

Model Teacher

Reward

Wash the tomatoes and 
cut them length-wise. 
Set on plate. Slice the 
mozzarella and put on 
tomatoes. Add dressing 
and serve cold. 

Generated Recipe: 

Gold Recipe 

Figure 1: The generator is rewarded for imitating the
discourse structure of the gold sequence.

Importantly, most automatic measures are based
on local n-gram patterns, providing only a lim-
ited and myopic perspective of overall text qual-
ity. As a result, while models trained to directly
optimize these measures can yield improvements
on the same measures, they may not lead to bet-
ter quality in terms of overall coherence or dis-
course structure. Indeed, recent studies have re-
ported cases where commonly used measures do
not align well with desired aspects of generation
quality (Rennie et al., 2017; Li et al., 2016).

The challenge, however, is to define a global
score that can measure the complex aspects of text
quality beyond local n-gram patterns. In this pa-
per, we investigate learning neural rewards and
their use in a reinforcement learning regime with
a specific focus on learning more discourse-aware
and coherent text generation. Our approach shares
the spirit of the work of Lowe et al. (2017), where
neural scores were learned to approximate human
judgments of dialogue quality. The key difference
is that our rewards can be fully automatically con-
structed without requiring human judgments and
can be trained in an unsupervised manner.

More specifically, we propose a neural reward
learning scheme that is trained to capture cross-
sentence ordering structure as a means to approxi-
mate the desired discourse structure in documents.
The learned teacher computes rewards for the
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underlying text generator (see Figure 1), which
is trained using self-critical reinforcement learn-
ing (Rennie et al., 2017). We also present a new
method for distributing sentence-level rewards for
more accurate credit assignment.

We test our approach on the task of generat-
ing cooking recipes, and evaluate using automatic
overlap metrics that measure discourse structure.
We also provide human judgments that yield com-
prehensive insights into the model behavior in-
duced by the learned neural rewards. Empirical
results demonstrate that a generator trained with
the discourse-aware rewards produces text that
is more coherent and less repetitive than models
trained with cross-entropy or reinforcement learn-
ing with other commonly used scores.

2 Neural Teachers

Recent work in image captioning (Rennie et al.,
2017), machine translation (Wu et al., 2016), and
summarization (Paulus et al., 2018) has investi-
gated using policy gradient methods to fine-tune
neural generation models using automatic mea-
sures such as CIDEr as the reward. However, be-
cause most existing automatic measures focus on
local n-gram patterns, fine-tuning on those mea-
sures may yield deteriorated text despite increased
automatic scores, especially for tasks that require
long coherent generation (§6.1).

Since writing out a scoring term that quantifies
the quality of discourse coherence is an open re-
search question, we take inspiration from previ-
ous research that learns the overall ordering struc-
ture of a document as an approximation of the dis-
course structure (Barzilay and Lapata, 2005, 2008;
Barzilay and Lee, 2004; Li and Hovy, 2014), and
propose two neural teachers that can learn to score
an ordered sequence of sentences. The scores from
these neural teachers are then used to formulate
rewards (§4.2) that guide coherent long text gen-
eration systems in a policy gradient reinforcement
learning setup. Notably, the neural teachers are
trained offline on gold sequences in an unsuper-
vised manner prior to training the generator. They
are not trained jointly with the generator and their
parameters are fixed during policy learning.

2.1 Notation

We define a document of n sentences as S =
{s0, ..., sn} where each sentence sj has Lj words.

sj : sj+1 : 

…+

+
+

…

Wash

lettuce

bowl

+

+
+

…

Dry

with

towel

sj+l     : max

+

+
+

…
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with

serving

…

…GRU GRU GRU

GRU GRUGRU

f(
�!
S )

<latexit sha1_base64="r0vP782qXsEVdRD7kWP/tlubZ0g=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBItQN2VGBF0W3bisaB/QDiWTZtrQTDIkd5QyFPwVNy4Ucet3uPNvTNtZaOuBwOGcc7k3J0wEN+B5387S8srq2npho7i5tb2z6+7tN4xKNWV1qoTSrZAYJrhkdeAgWCvRjMShYM1weD3xmw9MG67kPYwSFsSkL3nEKQErdd3DqNxRNqB5fwBEa/WI7/Bp1y15FW8KvEj8nJRQjlrX/er0FE1jJoEKYkzb9xIIMqKBU8HGxU5qWELokPRZ21JJYmaCbHr+GJ9YpYcjpe2TgKfq74mMxMaM4tAmYwIDM+9NxP+8dgrRZZBxmaTAJJ0tilKBQeFJF7jHNaMgRpYQqrm9FdMB0YSCbaxoS/Dnv7xIGmcV36v4t+el6lVeRwEdoWNURj66QFV0g2qojijK0DN6RW/Ok/PivDsfs+iSk88coD9wPn8AfbWVKA==</latexit><latexit sha1_base64="r0vP782qXsEVdRD7kWP/tlubZ0g=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBItQN2VGBF0W3bisaB/QDiWTZtrQTDIkd5QyFPwVNy4Ucet3uPNvTNtZaOuBwOGcc7k3J0wEN+B5387S8srq2npho7i5tb2z6+7tN4xKNWV1qoTSrZAYJrhkdeAgWCvRjMShYM1weD3xmw9MG67kPYwSFsSkL3nEKQErdd3DqNxRNqB5fwBEa/WI7/Bp1y15FW8KvEj8nJRQjlrX/er0FE1jJoEKYkzb9xIIMqKBU8HGxU5qWELokPRZ21JJYmaCbHr+GJ9YpYcjpe2TgKfq74mMxMaM4tAmYwIDM+9NxP+8dgrRZZBxmaTAJJ0tilKBQeFJF7jHNaMgRpYQqrm9FdMB0YSCbaxoS/Dnv7xIGmcV36v4t+el6lVeRwEdoWNURj66QFV0g2qojijK0DN6RW/Ok/PivDsfs+iSk88coD9wPn8AfbWVKA==</latexit><latexit sha1_base64="r0vP782qXsEVdRD7kWP/tlubZ0g=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBItQN2VGBF0W3bisaB/QDiWTZtrQTDIkd5QyFPwVNy4Ucet3uPNvTNtZaOuBwOGcc7k3J0wEN+B5387S8srq2npho7i5tb2z6+7tN4xKNWV1qoTSrZAYJrhkdeAgWCvRjMShYM1weD3xmw9MG67kPYwSFsSkL3nEKQErdd3DqNxRNqB5fwBEa/WI7/Bp1y15FW8KvEj8nJRQjlrX/er0FE1jJoEKYkzb9xIIMqKBU8HGxU5qWELokPRZ21JJYmaCbHr+GJ9YpYcjpe2TgKfq74mMxMaM4tAmYwIDM+9NxP+8dgrRZZBxmaTAJJ0tilKBQeFJF7jHNaMgRpYQqrm9FdMB0YSCbaxoS/Dnv7xIGmcV36v4t+el6lVeRwEdoWNURj66QFV0g2qojijK0DN6RW/Ok/PivDsfs+iSk88coD9wPn8AfbWVKA==</latexit><latexit sha1_base64="r0vP782qXsEVdRD7kWP/tlubZ0g=">AAAB/nicbVDLSgMxFM34rPU1Kq7cBItQN2VGBF0W3bisaB/QDiWTZtrQTDIkd5QyFPwVNy4Ucet3uPNvTNtZaOuBwOGcc7k3J0wEN+B5387S8srq2npho7i5tb2z6+7tN4xKNWV1qoTSrZAYJrhkdeAgWCvRjMShYM1weD3xmw9MG67kPYwSFsSkL3nEKQErdd3DqNxRNqB5fwBEa/WI7/Bp1y15FW8KvEj8nJRQjlrX/er0FE1jJoEKYkzb9xIIMqKBU8HGxU5qWELokPRZ21JJYmaCbHr+GJ9YpYcjpe2TgKfq74mMxMaM4tAmYwIDM+9NxP+8dgrRZZBxmaTAJJ0tilKBQeFJF7jHNaMgRpYQqrm9FdMB0YSCbaxoS/Dnv7xIGmcV36v4t+el6lVeRwEdoWNURj66QFV0g2qojijK0DN6RW/Ok/PivDsfs+iSk88coD9wPn8AfbWVKA==</latexit>

f(
 �
S )

<latexit sha1_base64="PP1NbbBHbZlc++PfhYN4+2nVRYU=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIdVNmRNBl0Y3LivYBbSmZNNOGZpIhySh1KP6KGxeKuPU/3Pk3pu0stPVA4HDOudybE8ScaeN5305uaXlldS2/XtjY3NrecXf36lomitAakVyqZoA15UzQmmGG02asKI4CThvB8GriN+6p0kyKOzOKaSfCfcFCRrCxUtc9CEttaQOchgYrJR/QLTrpukWv7E2BFomfkSJkqHbdr3ZPkiSiwhCOtW75Xmw6KVaGEU7HhXaiaYzJEPdpy1KBI6o76fT6MTq2Sg+FUtknDJqqvydSHGk9igKbjLAZ6HlvIv7ntRITXnRSJuLEUEFmi8KEIyPRpArUY4oSw0eWYKKYvRWRAVaYGFtYwZbgz395kdRPy75X9m/OipXLrI48HMIRlMCHc6jANVShBgQe4Rle4c15cl6cd+djFs052cw+/IHz+QOhu5Sr</latexit><latexit sha1_base64="PP1NbbBHbZlc++PfhYN4+2nVRYU=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIdVNmRNBl0Y3LivYBbSmZNNOGZpIhySh1KP6KGxeKuPU/3Pk3pu0stPVA4HDOudybE8ScaeN5305uaXlldS2/XtjY3NrecXf36lomitAakVyqZoA15UzQmmGG02asKI4CThvB8GriN+6p0kyKOzOKaSfCfcFCRrCxUtc9CEttaQOchgYrJR/QLTrpukWv7E2BFomfkSJkqHbdr3ZPkiSiwhCOtW75Xmw6KVaGEU7HhXaiaYzJEPdpy1KBI6o76fT6MTq2Sg+FUtknDJqqvydSHGk9igKbjLAZ6HlvIv7ntRITXnRSJuLEUEFmi8KEIyPRpArUY4oSw0eWYKKYvRWRAVaYGFtYwZbgz395kdRPy75X9m/OipXLrI48HMIRlMCHc6jANVShBgQe4Rle4c15cl6cd+djFs052cw+/IHz+QOhu5Sr</latexit><latexit sha1_base64="PP1NbbBHbZlc++PfhYN4+2nVRYU=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIdVNmRNBl0Y3LivYBbSmZNNOGZpIhySh1KP6KGxeKuPU/3Pk3pu0stPVA4HDOudybE8ScaeN5305uaXlldS2/XtjY3NrecXf36lomitAakVyqZoA15UzQmmGG02asKI4CThvB8GriN+6p0kyKOzOKaSfCfcFCRrCxUtc9CEttaQOchgYrJR/QLTrpukWv7E2BFomfkSJkqHbdr3ZPkiSiwhCOtW75Xmw6KVaGEU7HhXaiaYzJEPdpy1KBI6o76fT6MTq2Sg+FUtknDJqqvydSHGk9igKbjLAZ6HlvIv7ntRITXnRSJuLEUEFmi8KEIyPRpArUY4oSw0eWYKKYvRWRAVaYGFtYwZbgz395kdRPy75X9m/OipXLrI48HMIRlMCHc6jANVShBgQe4Rle4c15cl6cd+djFs052cw+/IHz+QOhu5Sr</latexit><latexit sha1_base64="PP1NbbBHbZlc++PfhYN4+2nVRYU=">AAAB/XicbVDLSgMxFL1TX7W+xsfOTbAIdVNmRNBl0Y3LivYBbSmZNNOGZpIhySh1KP6KGxeKuPU/3Pk3pu0stPVA4HDOudybE8ScaeN5305uaXlldS2/XtjY3NrecXf36lomitAakVyqZoA15UzQmmGG02asKI4CThvB8GriN+6p0kyKOzOKaSfCfcFCRrCxUtc9CEttaQOchgYrJR/QLTrpukWv7E2BFomfkSJkqHbdr3ZPkiSiwhCOtW75Xmw6KVaGEU7HhXaiaYzJEPdpy1KBI6o76fT6MTq2Sg+FUtknDJqqvydSHGk9igKbjLAZ6HlvIv7ntRITXnRSJuLEUEFmi8KEIyPRpArUY4oSw0eWYKKYvRWRAVaYGFtYwZbgz395kdRPy75X9m/OipXLrI48HMIRlMCHc6jANVShBgQe4Rle4c15cl6cd+djFs052cw+/IHz+QOhu5Sr</latexit>

Figure 2: The teacher encodes the sentences of the doc-
ument in the forward and reverse order.

2.2 Absolute Order Teacher

The first teacher explored is motivated by work
on deep semantic similarity models (Huang et al.,
2013), which approximated the similarity between
queries and documents in information retrieval
tasks. We extend this approach to modeling tem-
poral patterns by training a sentence encoder to
minimize the similarity between a sequence en-
coded in its forward order, and the same sequence
encoded in the reverse order (see Figure 2).

To focus the teacher on discourse structure, we
design the encoder to capture sentence order, in-
stead of word order. Words in each sentence sj
are encoded using a bag of words:

sj =

Lj∑

i=1

xij (1)

where xij is a word embedding and sj is a sen-
tence embedding. Each sj is passed to a gated re-
current unit (GRU) and the final output of the hid-
den unit is used as the representation for the full
document:

hj = GRU(sj , hj−1) (2)

f(S) = hn (3)

where f(S) is the representation of the sentences
of the document and hn is the final output vector
of the GRU. To capture properties of temporal co-
herence among document sentences, the teacher is
trained to minimize Labs, the cosine similarity be-
tween the sentence embedding from reading the
sentences in the forward order,

−→
S and from read-

ing the sentences in the reverse order,
←−
S :

Labs =
〈f(
−→
S ), f(

←−
S )〉

‖f(
−→
S )‖‖f(

←−
S )‖

(4)

174



Intuitively, by parametrizing only relations be-
tween sentences (with the GRU layer) and not
those between words, the teacher only captures
sentence ordering properties. When training the
neural generator (§4), we use this learned teacher
to generate a reward that judges the generated se-
quence’s ordering similarity to the gold sequence.

2.3 Relative Order Teacher
While the absolute ordering teacher evaluates the
temporal coherence of the entire generation, we
may want our teacher to be able to judge finer-
grained patterns between sentences. In recipes, for
example, where sentences correspond to process
steps, the teacher should capture implicit script
knowledge (Schank and Abelson, 1975) among
groups of sentences. Consequently, the teacher
should reward sentences individually for how they
fit with surrounding sentences.

In many current approaches for using policy
gradient methods to optimize a model with respect
to a global score, each sentence receives the same
reward. This framework assumes each sentence
is equally responsible for the reward gathered by
the full sequence, allowing potentially appropriate
subsequences to be incorrectly penalized. We de-
sign the relative order teacher to address this issue.

The relative order teacher is trained in the same
way as the absolute order model. A bag of words
embedding is computed for each sentence in the
gold sequence. Subsequences of the gold doc-
ument that have ` sentences are selected where
` ∈ (`min, `max). For a subsequence beginning
at sentence j, the model computes:

f(Sj:j+`) = GRU(sj+`, hj+`−1) (5)

where f(Sj:j+`) is the encoded representation of
sentences {sj , ...sj+`} and hj−1 would be initial-
ized as a vector of zeros. The relative ordering
teacher is trained to minimizeLrel, the cosine sim-
ilarity between gold orders of subsequences:

Lrel =
〈f(
−→
S j:j+`), f(

←−
S j:j+`)〉

‖f(
−→
S j:j+`)‖‖f(

←−
S j:j+`)‖

(6)

where the arrow above S signifies the order in
which the sentences are processed. The relative
ordering teacher learns to identify local sentence
patterns among ordered sentences, thereby learn-
ing how to reward sequences that are temporally
coherent.

3 Generator Architecture

In the task of recipe generation, the model is given
a title of a recipe such as “Cheese Sandwich” and
a list of ingredients (e.g., cheese, bread, etc.) and
must generate the full multi-sentence recipe text.
Similar to data to document generation tasks, the
model must generate a full long-form text from
sparse input signal, filling in missing information
on its own (Wiseman et al., 2017).

3.1 Notation
Using the same notation as Kiddon et al. (2016),
we are given a set of recipe title words {g1, ..., gn}
(e.g., { “cheese”, “sandwich” }) and a list of in-
gredients E = {i1, ..., i|E|} where each i can be
a single- or multi-word ingredient phrase (e.g.,
“onions” or “onions, chopped”). In the following
paragraphs, all W variables are projections matri-
ces and all b variables are bias vectors.

3.2 Encoder
We use a modification of the baseline encoder of
Kiddon et al. (2016). First, the title words are en-
coded as a bag of embeddings, g. Second, each
ingredient phrase i is encoded as a bag of em-
beddings vector, ei. The ingredient embeddings
are inputs to a bidirectional gated recurrent unit,
which yields an output vector e. The final encoder
output is the concatenation of these two represen-
tations, he = [g, e].

3.3 Decoder
The decoder is a separate gated recurrent unit that
receives he from the encoder to initialize its hid-
den state hd0 and must generate a full recipe word
by word. At each time step, the model receives an
input token embedding, xt, as well as the output
from the encoder he:

at = σ(W1h
d
t−1 +W2xt + b1) (7)

zt = ath
e (8)

x̃t = [xt, zt] (9)

where x̃t is the input to the recurrent unit at every
time step. The recipe generator is pretrained to
minimize the negative loglikelihood of predicting
the next token in the recipe:

Lmle = −
T∑

t=1

logP (xt|x0, ..., xt−1,he) (10)
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Fried Chicken 
• Chicken 
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• Spices
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2) Greedily decode a sequence y*

Teacher
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r(s1), r(s2), …, r(sn)^

r(s1), r(s2), …, r(sn)* * *

3) Compute rewards

^ ^

1) Sample a sequence y according to model’s distribution^

Figure 3: The model generates a recipe by sampling
from its output vocabulary distribution and greedily de-
codes a baseline recipe. The generated sentences are
passed to the teacher, which yields a reward for each
sentence in each recipe.

where he is the encoded representation of the ti-
tle and ingredients from Section 3.2 and T is the
number of words in the gold recipe.

4 Policy Learning

Training a recipe generation model using maxi-
mum likelihood estimation produces generations
that are locally coherent, but lack understanding
of domain knowledge. By using a teacher that re-
wards the model for capturing cooking recipe dis-
course semantics, the model learns a policy that
produces generations that better model the under-
lying recipe process. We learn a policy using the
self-critical approach of Rennie et al. (2017).

4.1 Self-critical sequence training

In self-critical sequence training, outlined in
Figure 3, the model learns by being rewarded
for sampling sequences that receive more re-
ward than a greedily decoded sequence. For
each training example, a sequence ŷ is gener-
ated by sampling from the model’s distribution
P (ŷt|ŷ0, ..., ŷt−1,he) at each time step t. Once
the sequence is generated, the teacher produces a
reward r(ŷt) for each token in the sequence. A
second sequence y∗ is generated by argmax decod-
ing from P (y∗t |y∗0, ..., y∗t−1,he) at each time step t.
The model is trained to minimize:

Lrl = −
T∑

t=1

(r(ŷt)−r(y∗t )) logP (ŷt|ŷ0, ..., ŷt−1,he)

(11)
where r(y∗t ) is the reward produced by the teacher
for tokens of the greedily decoded sequence. Be-

cause r(y∗) can be viewed as a baseline reward
that sampled sequences should receive more than,
the model learns to generate sequences that re-
ceive more reward from the teacher than the best
sequence that can be greedily decoded from the
current policy. This approach allows the model
to explore sequences that yield higher reward than
the current best policy.

4.2 Rewards
As we decode a sequence y = {y0..., yt}, we track
a sentence index that is the number of sentence de-
limiter tokens (e.g., “.”) generated by the model.
The model then implicitly decodes a set of gener-
ated sentences, S′ = {s0, ..., sn}. These sentences
are provided to the teachers defined in Section 2,
which compute a score for the generated sequence.
We explain the procedure for producing a token re-
ward r(yt) from these scores below.

Absolute Order Once a sequence has been gen-
erated, the absolute order teacher computes a re-
ward for y in the following way:

rabs(y) =
〈f(S′), f(

−→
S )〉

‖f(S′)‖‖f(
−→
S )‖

− 〈f(S′), f(
←−
S )〉

‖f(S′)‖‖f(
←−
S )‖

(12)
where

−→
S is the forward-ordered corresponding

gold sequence and
←−
S is the reverse-ordered gold

sequence. Both terms in the reward computation
are variations of the loss function on which the
absolute order teacher was trained (Equation (4)).
This reward compares the generated sequence to
both sentence orders of the gold sequence, and re-
wards generations that are more similar to the for-
ward order of the gold sequence. Because the co-
sine similarity terms in Equation (12) are bounded
in [−1, 1], the model receives additional reward
for generating sequences that are different from
the reverse-ordered gold sequence.

Relative Order Similarly, the relative order re-
ward is generated by the relative order teacher
(§2.3), which evaluates subsequences of sen-
tences, rather than the whole sequence. For a sen-
tence sj , the reward is computed as:

rrel(sj) =
1

L

`max∑

`=`min

(
〈f(S′j−`:j), f(

−→
S j−`:j)〉

‖f(S′j−`:j)‖‖f(
−→
S j−`:j)‖

−
〈f(S′j−`:j), f(

←−
S j−`:j)〉

‖f(S′j−`:j)‖‖f(
←−
S j−`:j)‖

)

(13)
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where `min and `max define the window of sen-
tences to include in the computation of the reward.
Similar to the absolute order teacher, the relative
order teacher produces scores bounded in [−1, 1],
giving the model additional reward for generat-
ing sequences that are different from the reverse-
ordered gold subsequences.

Credit Assignment When rewarding tokens
with the absolute ordering teacher, each gener-
ated token receives the same sequence-level re-
ward from the absolute order teacher:

r(yt) = rabs(y) (14)

The relative order teacher, meanwhile, computes
rewards for sentences based on their imitation of
nearby sentences in the gold recipe. Rather than
combining all rewards from the teacher to com-
pute a full sequence reward, sentences should only
be rewarded for their own quality. Each token in
a sentence corresponds to a position in the full
sequence. When relative order rewards are com-
puted by the teacher, the correct sentence reward
is indexed for each token. Consequently, when
training with a relative order teacher, words only
receive rewards for the sentences they belong to:

r(yt) =

|S|∑

j=1

1(yt ∈ ŝj)rrel(ŝj) (15)

where |S| is the number of sentences in the gener-
ated recipe, and 1 is an indicator variable identify-
ing word yt belonging to sentence sj .

4.3 Mixed Training

As the model learns parameters to optimize the
amount of reward it receives from the teacher, it is
not explicity encouraged to produce fluent gener-
ations. The model quickly learns to generate sim-
ple sequences that exploit the teacher for high re-
wards despite being incoherent recipes (e.g., Fig-
ure 4). Consequently, it is possible that generated
sequences are no longer readable (Pasunuru and
Bansal, 2017; Paulus et al., 2018).

Title: Chili Grits
Ingredients: boiling water, butter, shredded cheddar cheese,
jalapenos, eggs, chicken cream of soup, salt
Generated Recipe: Here .

Figure 4: Recipe generated from a self-critical model
with no mixed training

To remedy this effect, the model optimizes
a mixed objective that balances learning the
discourse-focused policy while maintaining the
generator’s language model:

Lmix = γLrl + (1− γ)Lmle (16)

where Lmle is the objective from Equation (10),
Lrl is the objective from either Equation (11), and
γ is a hyperparameter in [0, 1].

5 Experimental Setup

5.1 Datasets
We use the Now You’re Cooking dataset with the
same training/test/development splits from Kid-
don et al. (2016). For training, we use 109567
recipes with 1000 recipes set aside for both devel-
opment and test.

5.2 Training
Teacher Models The teachers are trained before
the recipe generator and their parameters are fixed
during generation. We tune hyperparameters on
the development set. To train the relative order
teacher, we sample 20 subsequences from each
recipe of `min = 3 to `max = 6 sentences. Ad-
ditional details are provided in Appendix A.2.

Recipe Generator We pretrain a recipe genera-
tor using a variant of the encoder-decoder baseline
from Kiddon et al. (2016). Comprehensive hyper-
parameter details can be found in Appendix A.3.

Policy Learning We train a different model for
three different teacher-provided rewards: abso-
lute ordering (AO), relative ordering (RO) and a
joint reward of relative ordering and BLEU-4 (RO
+ B4), where the full-sequence BLEU-4 reward
and the sentence-level relative ordering reward are
summed at each time step. The best model for
the absolute and relative ordering rewards are the
ones that receive the highest average reward on the
development set. The best model for the mixed
reward was chosen as the one that achieved the
highest average geometric mean of BLEU-4 re-
ward and average relative ordering reward for each
generated sequence y in the development set:

r̄ =
rb4(y)

T

T∑

t=1

rRO(yt) (17)

where rb4 is the BLEU-4 score of the whole gener-
ated sequence, and rRO is computed using Equa-
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Model BLEU-1 BLEU-4 R-L AB1 AB4 AR-L SCB1 SCB4 SCR-L
Cross-entropy (MLE) 26.86 4.74 28.86 31.23 4.83 28.51 51.92 26.35 50.21

BLEU-4 (Rennie et al., 2017) 7.75 1.38 13.93 5.69 0.84 10.37 10.76 5.05 20.87
CIDEr (Rennie et al., 2017) 12.67 1.90 21.20 14.61 1.79 21.70 26.07 12.30 41.65

ROUGE-L (Paulus et al., 2018) 29.00 4.86 29.10 33.49 4.73 28.11 56.86 27.83 51.26
BLEU-1 (γ = 0.97) 31.16 5.60 29.53 32.28 5.09 29.34 52.63 25.43 51.58
BLEU-4 (γ = 0.99) 30.56 5.42 29.16 32.53 4.99 28.99 53.48 26.35 51.02

CIDEr (γ = 0.97) 29.60 5.10 28.79 33.93 4.81 28.41 57.00 27.55 50.57
ROUGE-L (γ = 0.97) 26.88 4.66 29.49 31.85 5.01 29.25 53.84 26.77 51.88

Absolute Ordering (AO) 23.70 4.25 28.43 28.22 4.44 27.88 47.93 24.47 50.15
Relative Ordering (RO) 27.75 4.88 29.60 34.37 5.60 29.36 58.31 29.14 53.08

Relative Ordering + BLEU-4 29.58 5.26 29.78 35.13 5.55 29.33 59.13 29.19 52.46

Table 1: Evaluation results for generated sequences by models and baselines. We bold the top performing result.
The second to fourth columns list word-level scores. Columns AB1, AB4, and AR-L list action-level scores (§6.1).
Columns SCB1, SCB4, and SCR-L list state change level scores (§6.1).

tion (15). Our best models use γ = 0.97 when
training with the mixed objective from Equa-
tion (16).

5.3 Baselines

As baselines, we report results for a model trained
only with cross-entropy loss (MLE) and for re-
implemented versions of models from Rennie
et al. (2017) and Paulus et al. (2018). These base-
lines achieved state of the art results in image cap-
tioning and document summarization tasks. We
found, however, that their high γ (1 and 0.9984, re-
spectively) led to low fluency, resulting in reduced
performance on word-level scores. To control for
this effect, we trained additional versions of each
baseline with different values for γ and report the
best performing configurations (see Table 1).

6 Results

6.1 Overlap Metrics

Scores We compute the example-level BLEU-
1, BLEU-4, and ROUGE-L (R-L) scores for all
recipes in the test set. A generated recipe, how-
ever, must be coherent at both the word-level, link-
ing words and phrases sensibly, and the world-
level, describing events that are grounded in real-
world actions. Because n-gram scores do not eval-
uate if a generated recipe models this latent pro-
cess, we also report these scores on the action
and state change sequence described in the recipe.
These words depict a simulated world where ac-
tions are taken and state changes are induced. A
generated recipe should follow the sequence of ac-
tions taken in the gold recipe, and induce the same
state changes as those in the gold recipe.

We use the state change lexicon from Bosselut
et al. (2018) to map recipe words to ordered se-
quences of actions and state changes. Each entry
in the lexicon contains an action in the cooking do-
main as well as the state changes that result from
that action in the set of {LOCATION, COMPO-
SITION, COOKEDNESS, TEMPERATURE, SHAPE,
CLEANLINESS}.

Action sequences are formed by mapping lem-
mas of words in generated sequences to entries in
the lexicon. We compare these event sequences
to the gold event sequences using the same scores
as for words – BLEU-1, BLEU-4, and ROUGE-
L. Intuitively, these scores can be seen as evalu-
ating the following: whether the generated recipe
depicts the same actions (AB1), subsequences of
consecutive actions (AB4), and full action se-
quence (AR-L) as the gold recipe.

State change sequences are more coarse-grained
than action sequences, and are formed by map-
ping actions to their state changes in the lexicon
from Bosselut et al. (2018). These scores evalu-
ate whether the generated recipe implies the same
induced state changes (SCB1), subsequences of
consecutive state changes (SCB4), and global state
change order (SCR-L) as the gold recipe.

Results Our results in Table 1 show that mod-
els optimized on word overlap metrics achieve the
greatest improvements for those scores. Optimiz-
ing scores such as BLEU-1 encourages the model
to output words and phrases that overlap often
with reference sequences, but that may not de-
scribe main events in the recipe process.

When examining models trained using a neu-
ral teacher, we see that the model optimized with
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MLE RO + B4 Tie
Fluency 0.330 0.447 0.223

Ingredient Use 0.350 0.440 0.210
Title Completion 0.347 0.430 0.223

Action Order 0.377 0.453 0.170
BLEU-1 RO + B4 Tie

Fluency 0.387 0.373 0.240
Ingredient Use 0.327 0.363 0.310

Title Completion 0.353 0.377 0.270
Action Order 0.410 0.403 0.187

Table 2: Human evaluation measuring proportion of
winners. Upper table compares MLE baseline with RO
+ B4 model. Lower table compares BLEU-1 baseline
with RO + B4 model.

the absolute ordering reward performs worse than
most baselines for every word-level score. The rel-
ative ordering model, however, raises every word-
level score above the cross-entropy baseline, in-
dicating the importance of fine-grained credit as-
signment at the sentence-level. The model trained
with mixed rewards from the teacher and BLEU-4
achieves even higher scores, showing the benefits
of training with diverse rewards.

When evaluating these metrics for the action
and state change sequence, the models trained
with feedback from the relative ordering teacher
show large improvement over the baselines, indi-
cating that the models exhibit more understanding
of the latent process underlying the task. While
optimizing word-level scores teaches the generator
to output common sequences of words, the rela-
tive ordering reward teaches the model to focus on
learning co-occurrences between recipe events.

6.2 Human Evaluation

We perform a human evaluation on 100 recipes
sampled from the test set to evaluate our model
on four aspects of recipe quality: fluency, ingre-
dient use, title completion, and action ordering.
For each example, three judges from Amazon Me-
chanical Turk are shown a pair of recipes, each
generated by a different model and asked to select
the recipe that is better according to the criteria
above. For ingredient use, judges select the recipe
that uses more of the ingredients correctly. For ti-
tle completion, we ask judges to select the recipe
that best completes the dish described in the recipe
title. Finally, for action ordering, judges choose
the recipe that better links subtasks in the recipes.

MLE RO + B4 Tie
Fluency 0.317 0.425 0.258

Ingredient Use 0.342 0.458 0.200
Title Completion 0.358 0.450 0.192

Action Order 0.367 0.483 0.150
BLEU-1 RO + B4 Tie

Fluency 0.391 0.383 0.225
Ingredient Use 0.267 0.392 0.342

Title Completion 0.325 0.418 0.258
Action Order 0.433 0.442 0.125

Table 3: Proportion of winners for long generated
recipes. Upper table compares MLE baseline with RO
+ B4 model. Lower table compares BLEU-1 baseline
with mixed RO + B4 model.

Models We use the Relative Ordering + BLEU-
4 model (RO + B4) and compared to two base-
lines, the cross-entropy model (MLE), and the
BLEU-1 model, which achieved the best scores on
several word-level metrics (§6.1).

Results We report results in Table 2. Our model
outperforms the cross-entropy baseline, consis-
tently being preferred on aggregate for every ques-
tion. Workers preferred the BLEU-1 baseline for
the fluency and action order questions, while pre-
ferring recipes generated by the teacher-trained
model for the ingredient use and title ordering
questions. Upon further analysis, we see that
the strength of the BLEU-1 model depends on
the length of the original reference sequence. In
Table 3, we show evaluation scores for recipes
where the gold recipe was longer than 100 words.
Our model’s performance rises compared to the
BLEU-1 model for every question, showing that
modeling discourse structure as learned reward
improves global coherence in long text.

6.3 Insights

Qualitative Analysis In Table 4, we see the ef-
fect that the neural teacher has on the recipe gen-
erator. The teacher rewards behavior that more
closely imitates the actions in the gold recipe. In
the first example, the generator learns to com-
plete the actions of placing the mixture into the
a greased casserole and then baking it, which the
MLE model misses. The teacher also discour-
ages repetitive phrases, as they provide no increase
in reward during training. One weakness of our
teacher models, however, is that they encourage
common temporal patterns, such as in the third

179



Title Royale Casserole
Ings Broccoli, chopped; butter; flour; salt; black pepper; nutmeg; milk; cheese shredded swiss; lemon juice;

cooked cubed turkey; mushrooms; grated parmesan cheese; biscuits, refrigerated
MLE Cook broccoli according to package directions. Drain. Melt butter in skillet. Add flour, stirring constantly.

Cook, stirring constantly, until thickened. Add milk, salt, pepper, and nutmeg. Cook over low heat, stirring
constantly, until thickened. Add cheese, salt, pepper and pimento. Cook and stir till thickened. Add cheese,
stirring until melted. Add broccoli and mushrooms . Cook over low heat for 5 minutes. Add cheese. Cook
and stir until cheese melts. Add cheese. Cook and stir until cheese melts. Add cheese. Cook and stir until
cheese melts. Add cheese and stir until melted. Serve over hot noodles.

RO Melt butter in saucepan. Add flour and cook, stirring constantly, until thickened. Add milk, salt, pepper,
and nutmeg. Cook, stirring constantly, until thickened. Add cheese, salt and pepper. Cook over low heat,
stirring constantly, until mixture is thickened and smooth. Remove from heat. Stir in cheese. Spoon into
greased casserole . Top with cheese. Bake in 350 f oven for 30 minutes. Serves 6.

Gold Preheat oven to 375. Melt butter in saucepan. Blend in flour, salt, pepper, and nutmeg; cook 1-2 minutes.
Gradually add milk; cook, stirring, until slightly thickened. Stir in frozen vegetables. Remove from heat; stir
in cheese until melted. Add lemon juice, turkey, mushrooms and broccoli. Pour mixture into a lightly greased
baking dish; sprinkle with parmesan and top with biscuits. Bake 20 minutes, or until biscuits are golden brown.

Title Wine Sauerkraut
Ings butter; dry white wine; 16 oz drained sauerkraut

MLE In a saucepan, combine soup , wine, and butter. Heat, uncovered, in microwave oven 2 minutes or until
mixture is heated through.

RO Melt butter in skillet. Add sauerkraut and wine; heat to boiling. Reduce heat; cover and simmer 15 minutes.
Add wine and heat to boiling; reduce heat. Cover and cook 10 minutes or until mixture is tender. Serve on rice.

Gold Melt butter in 10-inch skillet over low heat; add sauerkraut. Cover and cook, stirring occasionally, 30
minutes; add wine. Heat to boiling; reduce heat. Cover and simmer until liquid is absorbed, about 45
minutes. Follow directions except simmer until liquid is absorbed, about 1 hour.

Title Strawberry Glazed Pie
Ings fresh strawberries; granulated sugar; salt; cornstarch; lemon juice; baked, cooled pie shell

MLE Combine sugar, cornstarch and salt in top of a double boiler. Cook and stir over medium heat until mixture
thickens and boils. Boil and stir 1 minute. Remove from heat and stir in lemon juice. Cool. Add strawberries
and lemon juice . Pour into baked pie shell. Top with whipped cream. Serve immediately.

RO Combine sugar, cornstarch, and salt in a saucepan; cook over medium heat, stirring constantly, until
mixture boils and thickens. Remove from heat; stir in lemon juice. Cool. Add strawberries; mix well. Pour
into baked pie shell. Bake in preheated 325-degree oven for 10 minutes . Cool. Garnish with whipped cream.

Gold Wash, drain thoroughly, and hull strawberries. Arrange about 3 cups of whole berries over bottom of baked
pastry shell. Crush remaining berries in a saucepan. In a bowl, mix sugar, salt and cornstarch; stir into crushed
berries. Heat slowly, stirring constantly, until mixture comes to a boil and thickens. Remove from heat and stir
in lemon juice. Cool, then spoon over berries in pie shell chill until glaze is set. Garnish with whipped cream.

Table 4: Example recipe generations from our model and comparative baselines. Boxed spans indicate recipe
events missed by another model’s generation. Red spans indicate superfluous events. The Ings row lists the
ingredients (separated by semicolons) provided to make the dish in the title.

example in Table 4, where the generator mentions
baking the pie. The model recognizes pies are gen-
erally supposed to be baked, even if it is not appro-
priate for that particular recipe.

Teacher Feedback Frequency We design the
reward functions in Eq. 12 and Eq. 13 to require
two passes through the teacher, one comparing
the generated sequence to the forward gold se-
quence, and one comparing it to the reverse gold
sequence. With no teacher comparison to the
reverse-ordered sequence, the generator learns to
exploit the teacher for reward with very simple se-
quences such as “Serve.” and “Here’s direction.”
When comparing with both orders, however, this
effect is dampened, hinting at the importance of

ensembling feedback from multiple sources for ro-
bust reward production. Another solution to this
effect was mixing policy learning and maximum
likelihood learning (Eq. 16) as the underlying lan-
guage model of the generator did not deteriorate.

Impact of `max and γ Two hyperparameters to
tune when training with teacher models are the
mixed loss coefficient γ, which balances MLE
learning with policy learning, and [`min, `max],
the number of sentences to consider when com-
puting the relative order reward. We fix `min = 3,
and vary `max ∈ [3, 6] and γ ∈ {0.95, 0.97, 0.98}.
Figure 5 shows the importance of tuning γ. A
low γ will not allow the teacher to guide the
model’s learning, while a high γ causes the lan-
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Figure 5: Action and State Change BLEU Metrics for
different initializations of `max and γ

guage model to deteriorate. Interestingly, a higher
`max leads to better performance on global coher-
ence scores, implying that relative order rewards
conditioned on more sentences allow the model to
learn longer-range context co-occurrences.

7 Related Work

The field of neural text generation has received
considerable attention in tasks such as image cap-
tioning (Vinyals et al., 2015; Xu et al., 2015), sum-
marization (Rush et al., 2015; See et al., 2017),
machine translation (Bahdanau et al., 2015), and
recipe generation (Kiddon et al., 2016). While
these works have focused on developing new neu-
ral architectures that introduce structural biases for
easier learning, our work uses a simple architec-
ture and focuses on improving the optimization of
the learner (i.e., better teaching).

The importance of better teaching for RNN gen-
erators was outlined in Bengio et al. (2015), which
showed that exposure bias from a misaligned train
and test setup limited the capabilities of sequence-
to-sequence models. This limitation had been ad-
dressed in previous work by augmenting train-
ing data with examples generated by pretrained
models to make models robust to their own errors
(Daumé III et al., 2009; Ross et al., 2011).

More recent work on training RNNs for gener-
ation has used sequence scores such as ROUGE
(Paulus et al., 2018), CIDEr (Rennie et al., 2017;
Pasunuru and Bansal, 2017), BLEU (Ranzato
et al., 2015) and mixtures of them (Liu et al., 2017)
as a global reward to train a policy with the REIN-
FORCE algorithm (Williams, 1992). In contrast,
our work uses a neural teacher to reward a model
for capturing discourse semantics.

Most similar to our work is work on using neu-
ral and embedding rewards to improve dialogue
(Li et al., 2016), image captioning (Ren et al.,
2017), simplification (Zhang and Lapata, 2017),
and paraphrase generation (Li et al., 2017). While
these works use single-sentence similarity rewards
for short generation tasks, our work designs teach-
ers to reward long-range ordering patterns.

Finally, our teachers can be seen as reward-
ing generators that approximate script patterns in
recipes. Previous work in learning script knowl-
edge (Schank and Abelson, 1975) has focused on
extracting scripts from long texts (Chambers and
Jurafsky, 2009; Pichotta and Mooney, 2016), with
some of that work focusing on recipes (Kiddon
et al., 2015; Mori et al., 2014, 2012). Our teachers
implicitly learn this script knowledge and reward
recipe generators for exhibiting it.

8 Conclusion

We introduce the absolute ordering and relative
ordering teachers, two neural networks that score
a sequence’s adherence to discourse structure in
long text. The teachers are used to compute re-
wards for a self-critical reinforcement learning
framework, allowing a recipe generator to be re-
warded for capturing temporal semantics of the
cooking domain. Empirical results demonstrate
that our teacher-trained generator better models
the latent event sequences of cooking recipes, and
a human evaluation shows that this improvement
is mainly due to maintaining semantic coherence
in longer recipes.
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A Hyperparameters

A.1 Data
Each recipe is batched based on the number of to-
kens and number of ingredients it has. We use a
minibatch size of 32.

A.2 Teachers
The hidden size of the reward generator is 100, the
word embeddings have dimensionality 100. We
use dropout with a rate of 0.3 between the bag of
words layers and the recurrent layers.

A.3 Pretrained Recipe Generator
We use a hidden size of 256 for the encoder and
256 for the decoder. We initialize three different
sets of embeddings for the recipe titles, ingredient
lists, and text, each of size 256. All models are
trained with a dropout rate of 0.3 and are single-
layer. We use a temperature coefficient of β = 2
to make the output word distribution more peaky
(Kiddon et al., 2016), allowing for more controlled
exploration during self-critical learning. We use
scheduled sampling with a linear decay schedule
of 5% every 5 epochs up to a max of 50%. We use
a learning rate of η = 0.0003 and train with the
Adam optimizer.

A.4 Policy Learning
We use the same model hyperparameters as during
pretraining, but re-initialize the Adam optimizer,
use η = 3 × 10−5 as the learning rate, and do not
train with scheduled sampling.

B Baseline Selection

For each baseline we trained, we report the score
of the γ setting that achieved the highest score for
the metric on which it was trained. For exam-
ple, for baselines trained with ROUGE-L reward,
we report the results for the model trained with
the value of γ that scored the highest ROUGE-
L score on the development set. For the mod-
els trained with the CIDEr reward, we select the
model with value of γ that achieved the highest
CIDEr score on the development set. We do the
same for models trained with BLEU-1 and BLEU-
4 rewards. The values of γ yielding the best per-
formance on the development set were 0.97 for
the BLEU-1, ROUGE-L, and CIDEr-trained mod-
els, and 0.99 for the BLEU-4 trained baseline. For
each baseline, the best model is chosen by select-
ing the checkpoint that achieves the highest reward

(or lowest loss for the MLE model) for the metric
it was trained on.
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Abstract

Memory augmented encoder-decoder frame-
work has achieved promising progress for nat-
ural language generation tasks. Such frame-
works enable a decoder to retrieve from a
memory during generation. However, less re-
search has been done to take care of the mem-
ory contents from different sources, which are
often of heterogeneous formats. In this work,
we propose a novel attention mechanism to en-
courage the decoder to actively interact with
the memory by taking its heterogeneity into
account. Our solution attends across the gen-
erated history and memory to explicitly avoid
repetition, and introduce related knowledge to
enrich our generated sentences. Experiments
on the answer sentence generation task show
that our method can effectively explore het-
erogeneous memory to produce readable and
meaningful answer sentences while maintain-
ing high coverage for given answer informa-
tion.

1 Introduction

Most previous question answering systems fo-
cus on finding candidate words, phrases or sen-
tence snippets from many resources, and ranking
them for their users (Chu-Carroll et al., 2004; Xu
et al., 2016). Typically, candidate answers are col-
lected from different resources, such as knowledge
base (KB) or textual documents, which are often
with heterogeneous formats, e.g., KB triples or
semi-structured results from Information Extrac-
tion (IE). For factoid questions, a single answer
word or phrase is chosen as the response for users,
as shown in Table 1 (A1).

However, in many real-world scenarios, users
may prefer more natural responses rather than a
single word. For example, as A2 in Table 1, James
Cameron directed the Titanic. is more favorable
than the single name James Cameron. A straight-
forward solution to compose an answer sentence is
to build a template based model, where the answer

Q Who is the director of the Titanic?
A1 James Cameron
A2 James Cameron directed the Titanic.
A3 James Cameron directed it.
A4 James Cameron directed it in 1999.

Table 1: Answer sentences generated by different QA
systems

word James Cameron and topic word in the ques-
tion the Titanic are filled into a pre-defined tem-
plate (Chu-Carroll et al., 2004). But such systems
intrinsically lack variety, hence hard to generalize
to new domains.

To produce more natural answer sentences,
Yin et al. (2015) proposed GenQA, an encoder-
decoder based model to select candidate answers
from a KB styled memory during decoding to gen-
erate an answer sentence. CoreQA (He et al.,
2017b) further extended GenQA with a copy
mechanism to learn to copy words from the ques-
tion. The application of attention mechanism en-
ables those attempts to successfully learn sentence
varieties from the memory and training data, such
as usage of pronouns (A3 in Table 1). However,
since they are within the encoder-decoder frame-
work, they also encounter the well noticed rep-
etition issue: due to loss of temporary decoder
state, an RNN based decoder may repeat what
has already been said during generation (Tu et al.,
2016a,b).

Both GenQA and CoreQA are designed to work
with a structured KB as the memory, while in
most real-world scenarios, we require knowledge
from different resources, hence of different for-
mats. This knowledge may come from structured
KBs, documents, or even tables. It is admittedly
challenging to leverage a heterogeneous memory
in a neural generation framework, and it is not well
studied in previous works (Miller et al., 2016).
Here in our case, the memory should contain two
main formats: KB triples and semi-structured en-
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tities from IE, forming a heterogeneous memory
(HM). The former is usually organized in is a
subject-predicate-object form, while, the latter is
usually extracted from textual documents, in the
form of keywords, sometimes associated with cer-
tain categories or tags oriented to specific tasks
(Bordes and Weston, 2016).

Miller et al. (2016) discuss different knowledge
representations for a simple factoid QA task and
show that classic structured KBs organized in a
Key-Value Memory style work the best. However,
dealing with heterogeneous memory is not trivial.
Figure 1 shows an example of generating answer
sentences from HM in a Key-Value style, which is
indeed more challenging than only using a classic
KB memory. Keys and values play different roles
during decoding. A director key indicates this slot
contains the answer. Same James Cameron val-
ues with different keys indicate duplication. The
decoder needs this information to proactively per-
form memory addressing. Because keys from doc-
uments are not canonicalized, e.g., doc directed
and doc director, they may lead to redundancy
with the structured KB, e.g., kb directed_by and
doc director. A decoder could repetitively output
a director twice simply because there are two dif-
ferent memory slots hit by the query, both indi-
cating the same director. This will make the the
repetition issue even worse.

Although many neural generation systems can
produce coherent answer sentences, they often fo-
cus on how to guarantee the chosen answer words
to appear in the output, while ignoring many re-
lated or meaningful background information in the
memory that can further improve user experiences.
In real-world applications like chatbots or personal
assistants, users may want to know not only the
exact answer word, but also information related
to the answers or the questions. This informa-
tion is potentially helpful to attract users’ atten-
tion, and make the output sentences more natural.
For example in Table 1 (A4), the extra 1999 not
only enriches the answer with the movie’s release
year, but also can act as a clue to help distinguish
ambiguous candidate answers, e.g., Titanic (1999)
and Titanic (HD, 2016).

In this paper, we propose a sequence to se-
quence model tailing for heterogeneous memory.
In order to bridge the gap between decoder states
and memory heterogeneity, we split decoder states
into separate vectors, which can be used to address

Figure 1: An example qa-pair with heterogeneous
memory

different memory components explicitly. To avoid
redundancy, we propose the Cumulative Atten-
tion mechanism, which uses the context of the de-
coder history to address the memory, thus reduces
repetition at memory addressing time. We conduct
experiments on two WikiMovies datasets, and
experimental results show that our model is able
to generate natural answer sentences composed of
extra related facts about the question.

2 Related Work

Natural Answer Generation with Sequence to
Sequence Learning: Sequence to sequence mod-
els (with attention) have achieved successful re-
sults in many NLP tasks (Cho et al., 2014; Bah-
danau et al., 2014; Vinyals et al., 2015; See et al.,
2017). Memory is an effective way to equip
seq2seq systems with external information (We-
ston et al., 2014; Sukhbaatar et al., 2015; Miller
et al., 2016; Kumar et al., 2015). GenQA (Yin
et al., 2015) applies a seq2seq model to gener-
ate natural answer sentences from a knowledge
base, and CoreQA (He et al., 2017b) extends it
with copying mechanism (Gu et al., 2016). But
they do not consider the heterogeneity of the mem-
ory, only tackle questions with one single answer
word, and do not study information enrichment.
Memory and Attention: There are also increas-
ing works focusing on different memory repre-
sentations and the interaction between the de-
coder and memory, i.e., attention. Miller et al.
(2016) propose the Key-Value style memory to ex-
plore textual knowledge (both structured and un-
structured) from different sources, but they still
utilize them separately, without a uniform ad-
dressing and attention mechanism. Daniluk et al.
(2017) split the decoder states into key and value
representation, and increase language modeling
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performance. Multiple variants of attention mech-
anism have also been studied. Sukhbaatar et al.
(2015) introduce multi-hop attention, and extend
it to convolutional sequence to sequence learn-
ing (Gehring et al., 2017). Kumar et al. (2015)
further extend it by using a Gated Recurrent Unit
(Chung et al., 2014) between hops. These models
show that multiple hops may increase the model’s
ability to reason. These multi-hop attention is
performed within a single homogeneous memory.
Our Cumulative Attention is inspired by them, but
we utilize it cross different memory, hence can ex-
plicitly reason over different memory components.

Conditional Sentence Generation: Controllable
sentence generation with external information is
wildly studied from different views. From the task
perspective, Fan et al. (2017) utilize label informa-
tion for generation, and tackle information cover-
age in a summarization task. He et al. (2017a) use
recursive Network to represent knowledge base,
and Bordes and Weston (2016) track generation
states and provide information enrichment, both
are in a dialog setting. In terms of network ar-
chitecture, Wen et al. (2015) equip LSTM with a
semantic control cell to improve informativeness
of generated sentence. Kiddon et al. (2016) pro-
pose the neural checklist model to explicitly track
what has been mentioned and what left to say by
splitting these two into different lists. Our model is
related to these models with respect to information
representation and challenges from coverage and
redundancy. The most closely related one is the
checklist model. But it does not explicitly study
information redundancy. Also, the information we
track is heterogeneous, and we track it in a differ-
ent way, i.e. using Cumulative attention.

Due to loss of states across time steps, the de-
coder may generate duplicate outputs. Attempts
have been made to address this problem. Some ar-
chitectures try to utilize History attention records.
See et al. (2017) introduce a coverage mecha-
nism, and Paulus et al. (2017) use history atten-
tion weights to normalize new attention. Others
are featured in network modules. Suzuki and Na-
gata (2017) estimate the frequency of target words
and record the occurrence. Our model shows that
simply attending to history decoder states can re-
duce redundancy. Then we use the context vector
of attention to history decoder states to perform
attention to the memory. Doing this enables the
decoder to correctly decide what to say at mem-

ory addressing time, rather than decoding time,
thus increasing answer coverage and information
enrichment.

3 Task Definition

Given a question q and a memory M storing re-
lated information, our task is to retrieve all the an-
swer words from the memory, generate an answer
sentence x, and use the rest information as enrich-
ment.

Answer Coverage is the primary objective of
our task. Since many answers contain multiple
words, the system needs to cover all the target
words.

Information Redundancy is one challenge for
this task. It is well noticed that the decoder lan-
guage model may lose track of its state, thus re-
peating itself. Also, the decoder needs to rea-
son over the semantic gap between heterogeneous
memory slots, figuring out different keys may re-
fer to the same value. These two kinds of redun-
dancy should both be addressed.

Information Enrichment is another challenge.
It requires the decoder to interact with the mem-
ory effectively and use the right word to enrich the
answer.

The tradeoff between redundancy and cov-
erage/enrichment is one of our main considera-
tions. This is because when the decoder generates
a word, it either generates a new word or a men-
tioned word. The more answer words and infor-
mation enrichment are considered, the more likely
the model repeats what it has already generated.

4 Our Model

Our model consists of the question encoder, the
heterogeneous memory, and the decoder. The en-
coder embeds the question into a vector represen-
tation. The decoder reads questions, retrieves the
memory, and generates answer sentences.

We use a Long Short Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) for question
encoding and encode the question into an embed-
ding. It takes every word embedding (q1, q2...qn)
of question words as inputs, and generates hidden
states st = LSTMenc(qt, st−1). These s are later
used for decoder’s attention. The last hidden state
sn is used as the vector representation of the ques-
tion, and is later put into the initial hidden state of
the decoder.
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Figure 2: The Decoder with Heterogeneous States

We use a key-value memory M to represent
the information heterogeneity. In our experiments,
we study information from KB, topic words, and
words extracted from documents. The memory
is formatted as ((m⟨K⟩

0 ,m
⟨V ⟩
0 ), (m

⟨K⟩
1 ,m

⟨V ⟩
1 ) ...

(m
⟨K⟩
n ,m

⟨V ⟩
n )), where m

⟨K⟩
i and m

⟨V ⟩
i are respec-

tively the key embedding and word embedding for
the i-th memory slot. The vocabulary for keys
V key consists of all predicates in the KB, and all
tags we use to classify the value words (e.g: di-
rector, actor, or release_year). The vocabulary for
values V val consists all related words from web
documents, subjects and objects from the KB. This
memory is later used in two ways: 1. the decoder
uses its previous hidden state to perform atten-
tion and generate context vectors. 2. the decoder
uses the updated hidden states as pointers (Vinyals
et al., 2015) to retrieve the memory and copy the
memory contents into the decoder’s output.

4.1 Decoder with Heterogeneous States

As in the standard encoder-decoder architecture
with attention, the word embedding of the de-
coder’s previous time step xt and context vector
ct is fed as the input of the next time step, and the
hidden state ht is updated then. The initial hidden
state is the question embedding concatenated with
average memory key and value:

ht = LSTMdec(xt, ct, ht−1)

h0 = [sn, avg(m⟨K⟩), avg(m⟨V ⟩)]

where [·, ·] denotes concatenation.
As shown in figure 2, to match the key-value

memory representation, we use three linear trans-
formations to convert the decoder’s current ht into

h
⟨N⟩
t , h

⟨K⟩
t , and h

⟨V ⟩
t :

h
⟨N⟩
t = Wnht

h
⟨K⟩
t = Wkht

h
⟨V ⟩
t = Wvht

where the W s are initialized as identity matrix
I = diag(1, 1...1). h

⟨N⟩
t will be projected to nor-

mal word vocabulary V norm to form a distribu-
tion p

⟨N⟩
t . h

⟨K⟩
t and h

⟨V ⟩
t will be used as point-

ers to perform attention to memory keys m⟨K⟩ and
values m⟨V ⟩, respectively, and forms two distribu-
tions: p

⟨MK⟩
t and p

⟨MV ⟩
t . We use the average of

the two as distribution over the memory: p
⟨M⟩
t =

(p
⟨MK⟩
t + p

⟨MV ⟩
t )/2. By doing this, we bridge the

decoder’s semantic space with the memory’s se-
mantic space, and explicitly maintains heterogene-
ity.

The decoder then uses a gating mechanism g =
sigmoid(Wght +bg) to decide whether the output
xt comes from the normal vocabulary or the mem-
ory. By mixing p

⟨N⟩
t and p

⟨M⟩
t with g, we get the

distribution for the next decoder output:

P (xt|q, M, x0, x1, ...xt−1) = (1)

g × P (Xt = wk|q, M, x0, x1...xt−1) +

(1 − g) × P (Xt = mk|q, M, x0, x1...xt−1)

where

P (Xt = wk|q, M, x0, x1...xt−1) = p
⟨N⟩
t

P (Xt = mk|q, M, x0, x1...xt−1) = p
⟨M⟩
t

The three hs are then recorded as history states
for later decoding time steps to perform the self-
attention. We will explain this in the next section.

4.2 Cumulative Attention
As shown in Figure 3, our Cumulative Attention
mechanism is exploited similarly to a multi-hop
attention (Sukhbaatar et al., 2015). The difference
is that the multi-hop attention uses context vector
over one single memory at different hops, while
our Cumulative Attention utilizes the context vec-
tor to query different memories. As shown in the
left part of Figure 3, the decoder first performs
self-attention to its history h

⟨N⟩
t , h

⟨K⟩
t , and h

⟨V ⟩
t ,

and generates corresponding context vectors c as:

c
⟨HN⟩
t = attn(ht−1, hist(h

⟨N⟩
t ))

c
⟨HK⟩
t = attn(ht−1, hist(h

⟨K⟩
t )

c
⟨HV ⟩
t = attn(ht−1, hist(h

⟨V ⟩
t ))
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Figure 3: The Cumulative Attention Mechanism

where c = attn(query, memory) denotes the at-
tention function (Bahdanau et al., 2014), and the
decoder’s history states are defined as:

hist(h
⟨N⟩
t ) = (h

⟨N⟩
0 , h

⟨N⟩
1 , ...h

⟨N⟩
t−1)

hist(h
⟨K⟩
t ) = (h

⟨K⟩
0 , h

⟨K⟩
1 , ...h

⟨K⟩
t−1)

hist(h
⟨V ⟩
t ) = (h

⟨V ⟩
0 , h

⟨V ⟩
1 , ...h

⟨V ⟩
t−1)

The overall context vector is obtained through
concatenation : c

⟨H⟩
t = [c

⟨HN⟩
t , c

⟨HK⟩
t , c

⟨HV ⟩
t ],

which is then used together with h⟨K⟩ and h⟨V ⟩ to
perform attention to m⟨K⟩ and m⟨V ⟩, respectively:

c
⟨MK⟩
t = attn([h

⟨K⟩
t−1 , c

⟨H⟩
t ],m⟨K⟩)

c
⟨MV ⟩
t = attn([h

⟨V ⟩
t−1, c

⟨H⟩
t ],m⟨V ⟩)

where m⟨K⟩ = (m
⟨K⟩
0 ,m

⟨K⟩
1 ...m

⟨K⟩
n ) and m⟨V ⟩ =

(m
⟨V ⟩
0 ,m

⟨V ⟩
1 ...m

⟨V ⟩
n ), as shown in the right part of

Figure 3.
The decoder also performs attention to the ques-

tion to get context vector c
⟨Q⟩
t , as in the standard

seq2seq attention model.
At time step t, all context vectors are concate-

nated: ct = [c
⟨Q⟩
t , c

⟨H⟩
t , c

⟨MK⟩
t , c

⟨MV ⟩
t ] to form the

current input to the decoder. The decoder takes the
context vector, the previous output, and the previ-
ous state to update its state, then generates a distri-
bution for the next token, as shown in Section 4.1.
We use the greedy decoding approach and choose
the word with the highest probability as the current
output.

For optimization, we jointly optimize the nega-
tive log-probability of the output sentence and the
cross entropy H for gate g. Since g is the proba-
bility about whether the current output comes from
the memory or the vocabulary, we can extract the
label for g by matching sentence words with the

memory. The overall loss function L can be writ-
ten as:

L = −
N∑

t=1

log(P (xt|q, M, x0...xt−1)) + H(g, ĝ)

We optimize L with gradient descent based opti-
mizers.

5 Experiments

Our experiments are designed to answer the fol-
lowing questions: (1) whether our model can prop-
erly utilize heterogeneous memories to generate
readable answer sentences, (2) whether our model
can cover all target answers during generation, (3)
whether our model can introduce related knowl-
edge in the output while avoiding repetition.

5.1 Datasets
Our task requires a question, and a memory stor-
ing all the answer words and related knowledge as
input, and produces a natural, readable sentence
as the output. Unfortunately, there is no existing
dataset that naturally fits to our task. We thus tailor
the WikiMovies1 dataset according to our re-
quirements. This WikiMovies dataset was orig-
inally constructed for answering simple factoid
questions, using memory networks with differ-
ent knowledge representations, i.e., structured KB
(KB entries in Table 2), raw textual documents
(Doc), or processed documents obtained through
information extraction (IE), respectively. The first
is in the classic subject-predicate-object format.
The second contains sentences from Wikipedia
and also sentences automatically generated from
predefined templates. The third is in the subject-
verb-object format, collected by applying off-the-
shell information extractor to all sentences.

1http://fb.ai/babi
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The original data format
Question Who directed the film Blade Runner?
KB
entries

Blade Runner directed_by Ridley Scott

Blade Runner release_year 1982
Blade Runner written_by Philip K. Dick

IE year 1982
starred Harrison Ford

Doc Blade Runner is a 1982 American film di-
rected by Ridley Scott and starring Harri-
son Ford.
It is directed by Ridley Scott and written by
Philip K. Dick.
It comes out in 1982.

Answer Ridley Scott
Our modified data format

Question Who directed the film Blade Runner?
Memory Key Value

directed_by Ridley Scott
release_year 1982
written_by Philip K. Dick
movie Blade Runner
year 1982
starred Harrison Ford

Answer Blade Runner is a 1982 American film di-
rected by Ridley Scott and starring Har-
rison Ford.

Table 2: The data format of WikiMovies used in our
experiment.

As shown in Table 2, we treat each ques-
tion in WikiMovies with its original answer
(usually one or more words) as a QA pair, and
one of the question’s supportive sentences (ei-
ther from Wikipedia or templates) as its gold-
standard answer sentence. For each question, the
memory will contain all knowledge triples about
the question’s topic movie from the KB entries,
and also include entities and keywords extracted
from its IE portion. For each entry in KB en-
tries, we use the predicate as the key and the
object as value to construct a new entry in our
memory. For those from IE, we keep the ex-
tracted tags as the key and entities or other ex-
pressions as the value. Given a question, if an en-
tity/expression in the memory is not the answer,
it will be treated as information enrichment. Ac-
cording to whether the supportive sentences are
generated by predefined templates or not, we split
the dataset into WikiMovies-Synthetic and
WikiMovies-Wikipedia.

The resulting WikiMovies-Synthetic in-
cludes 115 question patterns and 194 answer pat-
terns, covering 10 topics, e.g., director, genre, ac-
tor, release year, etc. We follow its original data
split, i.e., 47,226 QA-pairs for training, 8,895 for
validation and 8,910 for testing.

In WikiMovies-Wikipedia, answer sen-
tences are extracted from Wikipedia, admittedly
noisy in nature. Note that there are more than
10K Wikipedia sentences that cannot be paired
with any questions. We thus left their questions
as blank and treat it as a pure generation task from
a given memory, which can be viewed as a form
of data augmentation to improve sentence variety.
We split WikiMovies-Wikipedia the dataset
randomly into 47,309 cases for training, 4,093 for
testing and 3,954 for validation. We treat normal
words occurring less than 10 times as UNK, and,
eventually, have 24,850 normal words and 37,898
entity words. We cut the maximum length of an-
swer sentences to 20, and the maximum memory
size to 10, which covers most cases in both syn-
thetic and Wikipedia datasets.

5.2 Metrics
We evaluate our answer sentences in terms of an-
swer coverage, information enrichment, and re-
dundancy. For cases with only one answer word,
we design Csingle to indicate the percentage of
cases being correctly answered. Cases with more
than one answer word are evaluated by Cpart, i.e.,
the percentage of answer words covered correctly,
and Cperfect is the percentage of cases whose an-
swers are perfectly covered. Here, the definition of
coverage is similar in spirit with the conventional
recall as both measure how many gold words are
included in the output. Specifically, Cpart is es-
sentially the same as recall with respect to its own
cases. Note that perfect coverage is the most diffi-
cult, while single coverage is the easiest one. For
Enrich, we measure the number of none-answer
memory items included in the output. Regarding
Redundancy, we calculate the times of repetition
for memory values in the answer sentence. We
also compute BLEU scores (Papineni et al., 2002)
on the WikiMovies-Wikipedia, as an indi-
cator of naturalness, to some extent.

5.3 Comparison Models
We compare our full model (HS-CumuAttn) with
state-of-the-art answer generation models and
constrained sentence generation models. Our first
baseline is GenQA (Yin et al., 2015), a standard
encoder-decoder model with attention mechanism.
We equip it with our Key-Value style heteroge-
neous memory. We also compare with its two
variants. HS-GenQA: we split its decoder state
into heterogeneous representations. The other one,
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Model Redundancy Csingle Cpart Cperfect Enrich
GenQA 0.1109 91.25% 69.19% 38.92% 0.1535
HS-GenQA 0.1218 94.10% 76.47% 50.10% 0.1951
GenQA-AttnHist 0.1280 95.99% 73.44% 44.94% 0.1903
CheckList 0.1176 93.80% 76.32% 50.04% 0.1963
HS-AttnHist 0.1295 97.17% 77.90% 51.55% 0.1996
HS-CumuAttn 0.0983 98.15% 77.28% 50.79% 0.1665

Table 3: Results on the WikiMovies-Synthetic dataset

Model BLEU Redundancy Cpart Cperfect Enrich
GenQA 42.50 0.2603 62.80% 18.24% 0.5903
CheckList 43.69 0.2744 63.42% 18.23% 0.6094
HS-CumuAttn 44.97 0.2385 64.06% 19.09% 0.6218

Table 4: Results on the WikiMovies-Wikipedia dataset

GenQA-AttnHist, is enhanced with a history at-
tention during decoding.

CheckList (Kiddon et al., 2016) is the state-of-
the-art model for generating long sentences with
large agenda to mention. It keeps words that have
been mentioned and words to mention using two
separate records, and updates the records dynam-
ically during decoding. To adapt to our task, we
modify CheckList with a question encoder and a
KV memory.

We also compare with one variant of our own
model, HS-AttnHist, which does not benefit from
the Cumulative Attention.

5.4 Implementation
Our model is implemented with the Tensorflow
framework2, version 1.2. We use the Adam opti-
mizer (Kingma and Ba, 2014) with its default set-
ting. The embedding dimension is set to be 256,
as is the LSTM state size. We set the batch size to
128 and train the model up to 80 epochs.

As mentioned, there is a tradeoff between Cov-
erage/Enrichment and Redundancy. To set up a
more fair comparison for different models, we
ask the control group to reach a comparable level
of Redundancy, i.e., approximately 0.11-0.12 on
WikiMovies-Synthetic and 0.26-0.27 on
WikiMovies-Wikipedia. Keeping the Re-
dundancy in around the same bucket, we compare
their Coverage and Enrichment.

5.5 Results and Discussion
Let us first look at the performance on the
Synthetic set in Table 3. GenQA is origi-
nally proposed to read only one single fact dur-
ing decoding, so it is not surprising that it has
the lowest answer coverage (38.92% Cperfect)

2www.tensorflow.org

Question the movie Torn Curtain starred who?
Memory 0 actor Julie Andrews

1 starred_actors Julie Andrews
2 starred_actors Paul Newman
3 movie Torn Curtain
4 year 1966
5 director Alfred Hitchcock
6 actor Paul Newman

GenQA It stared Julie Andrews0 and
Julie Andrews0 and and.

CheckList Torn Curtain3 is a 19664 Ameri-
can film starring Paul Newman2 and
Julie Andrews0 and Julie Andrews1.

HS-
CumuAttn

Torn Curtain3 is a 19664 Amer-
ican political thriller film directed
by Alfred Hitchcock5, starring
Paul Newman2 and Julie Andrews0.

Table 5: Example sentences generated by different
models, where an underlined bold phrase is the value
of a memory slot selected from the memory by its cor-
responding generation model, and its subscript number
is the index of this slot in the memory.

and information enrichment (0.1535). After split-
ting the decoder state, HS-GenQA obtains sig-
nificant improvement in both coverage (50.10%
Cperfect) and enrichment (0.1952). When con-
sidering history for attention, GenQA-AttnHist
achieves even better coverage ( +3.% in Cpart and
+5% in Cperfect). By combining these two mecha-
nisms, HS-AttnHist achieves the best perfect cov-
erage, 51.55%. Although CheckList is not origi-
nally designed for our task, it still gives a strong
performance (50.04% Cperfect and 0.1963 enrich-
ment), at a slightly lower redundancy (0.1176). Fi-
nally, our full model, HS-CumuAttn, achieves the
best single coverage 98.15%, and comparable par-
tial/perfect coverage, with the lowest redundancy
(0.0983). Due to the lower level of redundancy,
HS-CumuAttn does not include as much enrich-
ment as other strong models, but still outperforms
GenQA.
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Question 1 who starred in Cemetery Man ?
Memory 0 ans_actor Rupert Everett 1 ans_actor Anna Falchi

2 starred_actors Rupert Everett 3 starred_actors Anna Falchi
4 movie Cemetery Man

Answer The film stars Rupert Everett0 , _UNK , and Anna Falchi1 .
Question 2 who was Dying Breed written by ?
Memory 0 ans_release_year 2008 1 ans_writer Jody Dwyer

2 ans_actor Nathan Phillips 3 ans_writer Leigh Whannell
4 written_by Jody Dwyer 5 movie Dying Breed

Answer Dying Breed5 is a 20080 Australian horror film that was directed by Jody Dwyer1 and stars
Leigh Whannell3 and Nathan Phillips2.

Question 3 who is the director that directed Livid ?
Memory 0 ans_director Julien Maury 1 directed_by Alexandre Bustillo

2 ans_release_year 2011 3 ans_director Alexandre Bustillo
4 movie Livid 5 directed_by Julien Maury
6 ans_language French

Answer Livid4 ( ) is a 20112 French6 supernatural horror film directed and written by Julien Maury0 and
Alexandre Bustillo3.

Question 4 Drag Me to Hell , when was it released?
Memory 0 ans_director Sam Raimi 1 ans_wiki Scream

2 release_year 2009 3 ans_genre Horror
4 ans_release_year 2009 5 movie Drag Me to Hell

Answer Scream1 is a 20094 film
Question 5 the movie Lights in the Dusk starred who ?
Memory 0 starred_actors Janne Hyytiäinen 1 ans_language Finnish

2 starred_actors Maria Järvenhelmi 3 ans_actor Janne Hyytiäinen
4 starred_actors Ilkka Koivula 5 movie Lights in the Dusk
6 ans_actor Ilkka Koivula 7 ans_release_year 2006
8 ans_actor Maria Järvenhelmi

Answer Lights in the Dusk5 ( , ) is a 20067 Finnish1 drama film starring Janne Hyytiäinen3 , Ilkka Koivula6 and
Maria Järvenhelmi8 .

Table 6: Example answers generated by our model. In an answer sentence, an underlined phrase is the value of
a memory slot selected from the memory by our model, and the subscript number is the index of this slot in the
memory.

Figure 4: Two methods of using context of history to
address the memory

We further break down the contributions from
different mechanisms. Compared to vanilla
GenQA, HS-GenQA splits the decoder states, thus
improves the decoder’s memory addressing pro-
cess by performing attention separately, leading to
improvements in both coverage and enrichment.
Improvements of GenQA-AttnHist are of a differ-
ent rationale. Looking at the history enables the
decoder to avoid what are already said. Compared
with HS-GenQA, GenQA-AttnHist improves En-
richment by avoiding repetition when introducing
related information, while, HS-GenQA improves
Enrichment by better memory addressing to select
proper slots. Combining the two mechanisms to-

gether gives HS-AttnHist the best performance in
Enrichment. However, HS-AttnHist still suffers
from the repetition issue, to certain extent. Be-
cause when choosing memory content, there is no
explicit mechanism to help the decoder to avoid
repetitions according to the history (left of Figure
4). Therefore, a generated word may still be cho-
sen again at the memory addressing step, leaving
all the burden of avoiding repetition to the genera-
tion step. Our Cumulative Attention mechanism is
designed to utilize the context vector of the history
to address the memory, thus helps avoid choosing
those already mentioned slots at memory address-
ing time (right of Figure 4), leading to almost the
best coverage with the lowest redundancy.

Now we compare the three main models,
GenQA, CheckList and our HS-CumuAttn
on WikiMovies-Wikipedia (Table 4),
which is admittedly more challenging than
WikiMovies-Synthetic. We skip the
Csingle metrics here since most questions in
WikiMovies-Wikipedia contain more
than one answer word. It is not surprising that
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CheckList, with a lower redundancy, still out-
performs GenQA in almost all metrics, except
Cperfect, since CheckList is originally designed
to perform well with larger agenda/memory and
longer sentences. On the other hand, our model,
HS-CumuAttn, achieves the best performance
in all metrics. Although the BLEU score is not
designed to fully reflect the naturalness, it still
indicates that our model can output sentences
that share more n-gram snippets with reference
sentences and are more similar to those composed
by humans.

Case Study and Error Analysis Table 5 pro-
vides the system outputs from different models for
an example question. We can see that GenQA may
lose track of the decoder history, and repeat itself
(and and), because there is no explicit mechanism
to help avoid repetition. Also, it lacks informative-
ness and may not utilize other information stored
in the memory. CheckList keeps records of what
have been said and what are left to mention, thus
reaches a good answer coverage. But its decoder is
unable to explicitly address separate components
within one memory slot, so it may not realize that
the two Julie Andrewss are essentially the same
person. HS-CumuAttn is able to find all the an-
swer words correctly and also include the director
into the sentence. After generating Paul Newman,
the Cumulative Attention mechanism enables the
model to realize that Paul Newman in slot 2 has
been said, and Paul Newman in slot 6 is the same
as slot 2, so it should not choose the 6th slot again.
Rather it should move to Julie Andrews. Although
the decoder may figure out the two Paul Newman
are the same during decoding, the Cumulative At-
tention can explicitly help make the clarification
during memory addressing. Intuitively, the atten-
tion across memory and history induces a stronger
signal for the decoder to gather the right informa-
tion.

Table 6 lists more typical imperfect output from
our model. In question 1, there is considerable re-
dundancy in the memory, but our decoder is still
able to avoid repeatedly choosing the same enti-
ties from difference sources, though it produces a
"_UNK" showing a slight incoherence. We think it
comes from the gate g as it fails to decide that the
current word should come from the memory. In
question 2, the model correctly chooses the mem-
ory slot, but outputs the word "directed" while
the correct word should be "written". This also

shows an word choice inconsistency between the
language model and the memory retrieval. Ques-
tion 3 makes the same mistake, where it indeed
chooses the right answer, but adds an incorrect
word "written". We also observe a pair of addi-
tional parentheses, which are often used to acco-
modate movie tags, but we do not see any tags in
this memory, so it has to be left blank. Question
4 shows an incorrect memory retrieval, where the
decoder should have chosen slot 5 as the movie
name. Question 5 is generally good enough, ex-
cept the same parenthesis error as in question 4.

It is also interesting to see additional de-
scriptions like "Australian", "supernatural" and
"drama" in question 2, 3, and 5, introduced by
the language model, rather than the memory. Al-
though our model prevents repetition and obtains
general naturalness, it cannot guarantee that the
decoder can precisely use the right language to de-
scribe the memory information. We see the gen-
eral readability of these sentences, yet they are
still not as good as human composed ones. It is
fairly subtle for the decoder to collaborate with the
memory in different levels of semantics. The se-
mantic coherency and word choice consistency is
still a challenge in natural language generation.

6 Conclusion and Future Work

In this paper, we propose a novel mechanism
within an encoder-decoder framework to enable
the decoder to actively interact with a memory by
taking its heterogeneity into account. Our solu-
tion can read multiple memory slots from different
sources, attend across the generated history and
the memory to explicitly avoid repetition, and en-
rich the answer sentences with related information
from the memory. In the future, we plan to extend
our work through 1) investigating more sophisti-
cated structures in the memory such as knowledge
graph, 2) solving more complex questions, such
as those involving deep reasoning over multiple
facts.
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Abstract

Most recent approaches use the sequence-
to-sequence model for paraphrase genera-
tion. The existing sequence-to-sequence
model tends to memorize the words and the
patterns in the training dataset instead of learn-
ing the meaning of the words. Therefore,
the generated sentences are often grammati-
cally correct but semantically improper. In this
work, we introduce a novel model based on
the encoder-decoder framework, called Word
Embedding Attention Network (WEAN). Our
proposed model generates the words by query-
ing distributed word representations (i.e. neu-
ral word embeddings), hoping to capturing the
meaning of the according words. Following
previous work, we evaluate our model on two
paraphrase-oriented tasks, namely text sim-
plification and short text abstractive summa-
rization. Experimental results show that our
model outperforms the sequence-to-sequence
baseline by the BLEU score of 6.3 and 5.5
on two English text simplification datasets,
and the ROUGE-2 F1 score of 5.7 on a Chi-
nese summarization dataset. Moreover, our
model achieves state-of-the-art performances
on these three benchmark datasets.1

1 Introduction

Paraphrase is a restatement of the meaning of a
text using other words. Many natural language
generation tasks are paraphrase-orientated, such
as text simplification and short text summariza-
tion. Text simplification is to make the text easier
to read and understand, especially for poor read-
ers, while short text summarization is to generate a
brief sentence to describe the short texts (e.g. posts
on the social media). Most recent approaches use
sequence-to-sequence model for paraphrase gen-
eration (Prakash et al., 2016; Cao et al., 2017). It

1The code is available at https://github.com/
lancopku/WEAN

compresses the source text information into dense
vectors with the neural encoder, and the neural
decoder generates the target text using the com-
pressed vectors.

Although neural network models achieve suc-
cess in paraphrase generation, there are still two
major problems. One of the problem is that the ex-
isting sequence-to-sequence model tends to mem-
orize the words and the patterns in the training
dataset instead of the meaning of the words. The
main reason is that the word generator (i.e. the
output layer of the decoder) does not model the
semantic information. The word generator, which
consists of a linear transformation and a softmax
operation, converts the Recurrent Neural Network
(RNN) output from a small dimension (e.g. 500)
to a much larger dimension (e.g. 50,000 words
in the vocabulary), where each dimension repre-
sents the score of each word. The latent assump-
tion of the word generator is that each word is in-
dependent and the score is irrelevant to each other.
Therefore, the scores of a word and its synonyms
may be of great difference, which means the word
generator learns the word itself rather than the re-
lationship between words.

The other problem is that the word generator
has a huge number of parameters. Suppose we
have a sequence-to-sequence model with a hid-
den size of 500 and a vocabulary size of 50,000.
The word generator has up to 25 million parame-
ters, which is even larger than other parts of the
encoder-decoder model in total. The huge size
of parameters will result in slow convergence, be-
cause there are a lot of parameters to be learned.
Moreover, under the distributed framework, the
more parameters a model has, the more bandwidth
and memory it consumes.

To tackle both of the problems, we propose a
novel model called Word Embedding Attention
Network (WEAN). The word generator of WEAN
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is attention based, instead of the simple linear soft-
max operation. In our attention based word gen-
erator, the RNN output is a query, the candidate
words are the values, and the corresponding word
representations are the keys. In order to predict
the word, the attention mechanism is used to se-
lect the value matching the query most, by means
of querying the keys. In this way, our model gen-
erates the words according to the distributed word
representations (i.e. neural word embeddings) in
a retrieval style rather than the traditional gener-
ative style. Our model is able to capture the se-
mantic meaning of a word by referring to its em-
bedding. Besides, the attention mechanism has
a much smaller number of parameters compared
with the linear transformation directly from the
RNN output space to the vocabulary space. The
reduction of the parameters can increase the con-
vergence rate and speed up the training process.
Moreover, the word embedding is updated from
three sources: the input of the encoder, the input
of the decoder, and the query of the output layer.

Following previous work (Cao et al., 2017), we
evaluate our model on two paraphrase-oriented
tasks, namely text simplification and short text
abstractive summarization. Experimental results
show that our model outperforms the sequence-to-
sequence baseline by the BLEU score of 6.3 and
5.5 on two English text simplification datasets, and
the ROUGE-2 F1 score of 5.7 on a Chinese sum-
marization dataset. Moreover, our model achieves
state-of-the-art performances on all of the bench-
mark datasets.

2 Proposed Model

We propose a novel model based on the encoder-
decoder framework, which generates the words
by querying distributed word representations with
the attention mechanism. In this section, we first
present the overview of the model architecture.
Then, we explain the details of the word gener-
ation, especially the way to query word embed-
dings.

2.1 Overview

Word Embedding Attention Network is based on
the encoder-decoder framework, which consists of
two components: a source text encoder, and a tar-
get text decoder. Figure 1 is an illustration of our
model. Given the source texts, the encoder com-
presses the source texts into dense representation

vectors, and the decoder generates the paraphrased
texts. To predict a word, the decoder uses the hid-
den output to query the word embeddings. The
word embeddings assess all the candidate words,
and return the word whose embedding matches the
query most. The selected word is emitted as the
predicted token, and its embedding is then used as
the input of the LSTM at the next time step. After
the back propagation, the word embedding is up-
dated from three sources: the input of the encoder,
the input of the decoder, and the query of the out-
put layer. We show the details of our WEAN in
the following subsection.

2.2 Encoder and Decoder
The goal of the source text encoder is to pro-
vide a series of dense representation of complex
source texts for the decoder. In our model, the
source text encoder is a Long Short-term Memory
Network (LSTM), which produces the dense rep-
resentation {h1, h2, ..., hN} from the source text
{x1, x2, ..., xN}:

The goal of the target text decoder is to generate
a series of paraphrased words from the dense rep-
resentation of source texts. Fisrt, the LSTM of the
decoder compute the dense representation of gen-
erated words st. Then, the dense representations
are fed into an attention layer (Bahdanau et al.,
2014) to generate the context vector ct, which cap-
tures context information of source texts. Atten-
tion vector ct is calculated by the weighted sum of
encoder hidden states:

ct =

N∑

i=1

αtihi (1)

αti =
eg(st,hi)

∑N
j=1 e

g(st,hj)
(2)

where g(st, hi) is an attentive score between the
decoder hidden state st and the encoder hidden
state hi.

In this way, ct and st respectively represent the
context information of source texts and the target
texts at the tth time step.

2.3 Word Generation by Querying Word
Embedding

For the current sequence-to-sequence model, the
word generator computes the distribution of output
words yt in a generative style:

p(yt) = softmax(Wst) (3)
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Figure 1: An overview of Word Embedding Attention Network.

whereW ∈ Rk×V is a trainable parameter matrix,
k is hidden size, and V is the number of words in
the vocabulary. When the vocabulary is large, the
number of parameters will be huge.

Our model generates the words in a retrieval
style rather than the traditional generative style,
by querying the word embeddings. We denote the
combination of the source context vector ct and
the target context vector st as the query qt:

qt = tanh(Wc[st; ct]) (4)

The candidate words wi and their corresponding
embeddings ei are paired as the key-value pairs
{wi, ei}(i = 1, 2, ..., n), where n is the number of
candidate words. We give the details of how to de-
termine the set of candidate words in Section 2.4.
Our model uses qt to query the key-value pairs
{wi, ei}(i = 1, 2, ..., n) by evaluating the rele-
vance between the query qt and each word vec-
tor ei with a score function f(qt, ei). The query
process can be regarded as the attentive selection
of the word embeddings. We borrow the attention
energy functions (Luong et al., 2015) as the rele-
vance score function f(qt, ei):

f(qt, ei) =





qTt ei dot
qTt Waei general
vT tanh(Wqqt +Weei) concat

(5)

where Wq and We are two trainable parameter
matrices, and vT is a trainable parameter vector.

In implementation, we select the general attention
function as the relevance score function, based on
the performance on the validation sets. The key-
value pair with the highest score {wt, et} is se-
lected. At the test stage, the decoder generates the
key wt as the tth predicted word, and inputs the
value et to the LSTM unit at the t+ 1th time step.
At the training stage, the scores are normalized as
the word probability distribution:

p(yt) = softmax(f(qt, ei)) (6)

2.4 Selection of Candidate Key-value Pairs
As described in Section 2.3, the model generates
the words in a retrieval style, which selects a word
according to its embedding from a set of candidate
key-value pairs. We now give the details of how to
obtain the set of candidate key-value pairs. We
extract the vocabulary from the source text in the
training set, and select the n most frequent words
as the candidate words. We reuse the embeddings
of the decoder inputs as the values of the candi-
date words, which means that the decoder input
and the predicted output share the same vocabu-
lary and word embeddings. Besides, we do not use
any pretrained word embeddings in our model, so
that all of the parameters are learned from scratch.

2.5 Training
Although our generator is a retrieval style, WEAN
is as differentiable as the sequence-to-sequence
model. The objective of training is to minimize the
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cross entropy between the predicted word proba-
bility distribution and the golden one-hot distribu-
tion:

L = −
∑

i

ŷi log p(yi) (7)

We use Adam optimization method to train the
model, with the default hyper-parameters: the
learning rate α = 0.001, and β1 = 0.9, β2 =
0.999, ε = 1e− 8.

3 Experiments

Following the previous work (Cao et al., 2017),
we test our model on the following two paraphrase
orientated tasks: text simplification and short text
abstractive summarization.

3.1 Text Simplification
3.1.1 Datasets
The datasets are both from the alignments be-
tween English Wikipedia website2 and Simple En-
glish Wikipedia website.3 The Simple English
Wikipedia is built for “the children and adults who
are learning the English language”, and the arti-
cles are composed with “easy words and short sen-
tences”. Therefore, Simple English Wikipedia is a
natural public simplified text corpus.

• Parallel Wikipedia Simplification Corpus
(PWKP). PWKP (Zhu et al., 2010) is a
widely used benchmark for evaluating text
simplification systems. It consists of aligned
complex text from English WikiPedia (as of
Aug. 22nd, 2009) and simple text from Sim-
ple Wikipedia (as of Aug. 17th, 2009). The
dataset contains 108,016 sentence pairs, with
25.01 words on average per complex sen-
tence and 20.87 words per simple sentence.
Following the previous work (Zhang and La-
pata, 2017), we remove the duplicate sen-
tence pairs, and split the corpus with 89,042
pairs for training, 205 pairs for validation and
100 pairs for test.

• English Wikipedia and Simple English
Wikipedia (EW-SEW). EW-SEW is a pub-
licly available dataset provided by Hwang et
al. (2015). To build the corpus, they first align
the complex-simple sentence pairs, score the
semantic similarity between the complex sen-
tence and the simple sentence, and classify

2http://en.wikipedia.org
3http://simple.wikipedia.org

each sentence pair as a good, good partial,
partial, or bad match. Following the previous
work (Nisioi et al., 2017), we discard the un-
classified matches, and use the good matches
and partial matches with a scaled threshold
greater than 0.45. The corpus contains about
150K good matches and 130K good partial
matches. We use this corpus as the train-
ing set, and the dataset provided by Xu et
al. (Xu et al., 2016) as the validation set and
the test set. The validation set consists of
2,000 sentence pairs, and the test set contains
359 sentence pairs. Besides, each complex
sentence is paired with 8 reference simplified
sentences provided by Amazon Mechanical
Turk workers.

3.1.2 Evaluation Metrics
Following the previous work (Nisioi et al., 2017;
Hu et al., 2015), we evaluate our model with dif-
ferent metrics on two tasks.

• Automatic evaluation. We use the BLEU
score (Papineni et al., 2002) as the automatic
evaluation metric. BLEU is a widely used
metric for machine translation and text sim-
plification, which measures the agreement
between the model outputs and the gold ref-
erences. The references can be either single
or multiple. In our experiments, the refer-
ences are single on PWKP, and multiple on
EW-SEW.

• Human evaluation. Human evaluation is es-
sential to evaluate the quality of the model
outputs. Following Nisioi et al. (2017) and
Zhang et al. (2017), we ask the human raters
to rate the simplified text in three dimensions:
Fluency, Adequacy and Simplicity. Fluency
assesses whether the outputs are grammati-
cally right and well formed. Adequacy rep-
resents the meaning preservation of the sim-
plified text. Both the scores of fluency and
adequacy range from 1 to 5 (1 is very bad
and 5 is very good). Simplicity shows how
simpler the model outputs are than the source
text, which ranges from 1 to 5.

3.1.3 Settings
Our proposed model is based on the encoder-
decoder framework. The encoder is implemented
on LSTM, and the decoder is based on LSTM with
Luong style attention (Luong et al., 2015). We
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PWKP BLEU
PBMT (Wubben et al., 2012) 46.31
Hybrid (Narayan and Gardent, 2014) 53.94
EncDecA (Zhang and Lapata, 2017) 47.93
DRESS (Zhang and Lapata, 2017) 34.53
DRESS-LS (Zhang and Lapata, 2017) 36.32
Seq2seq (our implementation) 48.26
WEAN (our proposal) 54.54

Table 1: Automatic evaluation of our model and other
related systems on PWKP datasets. The results are re-
ported on the test sets.

EW-SEW BLEU
PBMT-R (Wubben et al., 2012) 67.79
Hybrid (Narayan and Gardent, 2014) 48.97
SBMT-SARI (Xu et al., 2016) 73.62
NTS (Nisioi et al., 2017) 84.70
NTS-w2v (Nisioi et al., 2017) 87.50
EncDecA (Zhang and Lapata, 2017) 88.85
DRESS (Zhang and Lapata, 2017) 77.18
DRESS-LS (Zhang and Lapata, 2017) 80.12
Seq2seq (our implementation) 88.97
WEAN (our proposal) 94.45

Table 2: Automatic evaluation of our model and other
related systems on EW-SEW datasets. The results are
reported on the test sets.

tune our hyper-parameter on the development set.
The model has two LSTM layers. The hidden size
of LSTM is 256, and the embedding size is 256.
We use Adam optimizer (Kingma and Ba, 2014)
to learn the parameters, and the batch size is set to
be 64. We set the dropout rate (Srivastava et al.,
2014) to be 0.4. All of the gradients are clipped
when the norm exceeds 5.

3.1.4 Baselines
We compare our model with several neural text
simplification systems.

• Seq2seq is our implementation of the
sequence-to-sequence model with attention
mechanism, which is the most popular neu-
ral model for text generation.

• NTS and NTS-w2v (Nisioi et al., 2017) are
two sequence-to-sequence model with ex-
tra mechanism like prediction ranking, and
NTS-w2v uses a pretrain word2vec.

• DRESS and DRESS-LS (Zhang and Lapata,
2017) are two deep reinforcement learning

PWKP Fluency Adequacy Simplicity All
NTS-w2v 3.54 3.47 3.38 3.46
DRESS-LS 3.68 3.55 3.50 3.58
WEAN 3.77 3.66 3.58 3.67
Reference 3.76 3.60 3.44 3.60

EW-SEW Fluency Adequacy Simplicity All
PBMT-R 3.36 2.92 3.37 3.22
SBMT-SARI 3.41 3.63 3.25 3.43
NTS-w2v 3.56 3.52 3.42 3.50
DRESS-LS 3.59 3.43 3.65 3.56
WEAN 3.61 3.56 3.65 3.61
Reference 3.71 3.64 3.45 3.60

Table 3: Human evaluation of our model and other re-
lated systems on PWKP and EW-SEW datasets. The
results are reported on the test sets.

sentence simplification models.

• EncDecA is a model based on the encoder-
decoder with attention, implemented by
Zhang and Lapata (2017).

• PBMT-R (Wubben et al., 2012) is a phrase
based machine translation model which
reranks the outputs.

• Hybrid (Narayan and Gardent, 2014) is a hy-
brid approach which combines deep seman-
tics and mono-lingual machine translation.

• SBMT-SARI (Xu et al., 2016) is a syntax-
based machine translation model which is
trained on PPDB dataset (Ganitkevitch et al.,
2013) and tuned with SARI.

3.1.5 Results
We compare WEAN with state-of-the-art mod-
els for text simplification. Table 1 and Table 2
summarize the results of the automatic evalua-
tion. On PWKP dataset, we compare WEAN with
PBMT, Hybrid, EncDecA, DRESS and DRESS-
LS. WEAN achieves a BLEU score of 54.54, out-
performing all of the previous systems. On EW-
SEW dataset, we compare WEAN with PBMT-R,
Hybrid, SBMT-SARI, and the neural models de-
scribed above. We do not find any public release
code of PBMT-R and SBMT-SARI. Fortunately,
Xu et al. (2016) provides the predictions of PBMT-
R and SBMT-SARI on EW-SEW test set, so that
we can compare our model with these systems.
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LCSTS R-1 R-2 R-L
RNN-W(Hu et al., 2015) 17.7 8.5 15.8
RNN(Hu et al., 2015) 21.5 8.9 18.6
RNN-cont-W(Hu et al., 2015) 26.8 16.1 24.1
RNN-cont(Hu et al., 2015) 29.9 17.4 27.2
SRB(Ma et al., 2017) 33.3 20.0 30.1
CopyNet-W(Gu et al., 2016) 35.0 22.3 32.0
CopyNet(Gu et al., 2016) 34.4 21.6 31.3
RNN-dist(Chen et al., 2016) 35.2 22.6 32.5
DRGD(Li et al., 2017) 37.0 24.2 34.2
Seq2seq 32.1 19.9 29.2
WEAN 37.8 25.6 35.2

Table 4: ROUGE F1 score on the LCSTS test set. R-
1, R-2, and R-L denote ROUGE-1, ROUGE-2, and
ROUGE-L, respectively. The models with a suffix of
‘W’ in the table are word-based, while the rest of mod-
els are character-based.

It shows that the neural models have better per-
formance in BLEU, and WEAN achieves the best
BLEU score with 94.45.

We perform the human evaluation of WEAN
and other related systems, and the results are
shown in Table 3. DRESS-LS is based on the rein-
forcement learning, and it encourages the fluency,
simplicity and relevance of the outputs. There-
fore, it achieves a high score in our human eval-
uation. WEAN gains a even better score than
DRESS-LS. Besides, WEAN generates more ad-
equate and simpler outputs than the reference on
PWKP. The predictions of SBMT-SARI are the
most adequate among the compared systems on
EW-SEW. In general, WEAN outperforms all of
the other systems, considering the balance of flu-
ency, adequate and simplicity. We conduct sig-
nificance tests based on t-test. The significance
tests suggest that WEAN has a very significant
improvement over baseline, with p ≤ 0.001 over
DRESS-LS in all of the dimension on PWKP,
p ≤ 0.05 over DRESS-LS in the dimension of flu-
ency, p ≤ 0.005 over NTS-w2v in the dimension
of simplicity and p ≤ 0.005 over DRESS-LS in
the dimension of all.

3.2 Large Scale Text Summarization

3.2.1 Dataset
Large Scale Chinese Social Media Short Text
Summarization Dataset (LCSTS): LCSTS is
constructed by Hu et al. (2015). The dataset con-
sists of more than 2,400,000 text-summary pairs,
constructed from a famous Chinese social media

website called Sina Weibo.4 It is split into three
parts, with 2,400,591 pairs in PART I, 10,666 pairs
in PART II and 1,106 pairs in PART III. All the
text-summary pairs in PART II and PART III are
manually annotated with relevant scores ranged
from 1 to 5. We only reserve pairs with scores
no less than 3, leaving 8,685 pairs in PART II
and 725 pairs in PART III. Following the previous
work (Hu et al., 2015), we use PART I as training
set, PART II as validation set, and PART III as test
set.

3.2.2 Evaluation Metrics
Our evaluation metric is ROUGE score (Lin and
Hovy, 2003), which is popular for summariza-
tion evaluation. The metrics compare an auto-
matically produced summary against the refer-
ence summaries, by computing overlapping lex-
ical units, including unigram, bigram, trigram,
and longest common subsequence (LCS). Follow-
ing previous work (Rush et al., 2015; Hu et al.,
2015), we use ROUGE-1 (unigram), ROUGE-2
(bi-gram) and ROUGE-L (LCS) as the evaluation
metrics in the reported experimental results.

3.2.3 Settings
The vocabularies are extracted from the training
sets, and the source contents and the summaries
share the same vocabularies. We tune the hyper-
parameters based on the ROUGE scores on the
validation sets. In order to alleviate the risk of
word segmentation mistakes, we split the Chi-
nese sentences into characters. We prune the vo-
cabulary size to 4,000, which covers most of the
common characters. We set the word embedding
size and the hidden size to 512, the number of
LSTM layers of the encoder is 2, and the num-
ber of LSTM layers of the decoder is 1. The batch
size is 64, and we do not use dropout (Srivastava
et al., 2014) on this dataset. Following the previ-
ous work (Li et al., 2017), we implement a beam
search optimization, and set the beam size to 5.

3.2.4 Baselines
We compare our model with the state-of-the-art
baselines.

• RNN and RNN-cont are two sequence-to-
sequence baseline with GRU encoder and de-
coder, provided by Hu et al. (2015).

4http://weibo.com
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#Param PWKP EWSEW LCSTS
Seq2seq 12.80M 12.80M 2.05M
WEAN 0.13M 0.13M 0.52M

Table 5: The number of the parameters in the out-
put layer. The numbers of rest parameters between
Seq2seq and WEAN are the same.

• RNN-dist (Chen et al., 2016) is a distraction-
based neural model, which the attention
mechanism focuses on the different parts of
the source content.

• CopyNet (Gu et al., 2016) incorporates a
copy mechanism to allow part of the gener-
ated summary is copied from the source con-
tent.

• SRB (Ma et al., 2017) is a sequence-to-
sequence based neural model with improving
the semantic relevance between the input text
and the output summary.

• DRGD (Li et al., 2017) is a deep recurrent
generative decoder model, combining the de-
coder with a variational autoencoder.

• Seq2seq is our implementation of the
sequence-to-sequence model with the atten-
tion mechanism.

3.2.5 Results

We report the ROUGE F1 score of our model
and the baseline models on the test sets. Ta-
ble 4 summarizes the comparison between our
model and the baselines. Our model achieves
the score of 37.8 ROUGE-1, 25.6 ROUGE-2, and
35.2 ROUGE-L, outperforming all of the previ-
ous models. First, we compare our model with
the sequence-to-sequence model. It shows that
our model significant outperforms the sequence-
to-sequence baseline with a large margin of 5.7
ROUGE-1, 5.7 ROUGE-2, and 6.0 ROUGE-L.
Then, we compare our model with other related
models. The state-of-the-art model is DRGD (Li
et al., 2017), which obtains the score of 37.0
ROUGE-1, 24.2 ROUGE-2, and 34.2 ROUGE-L.
Our model has a relative gain of 0.8 ROUGE-1,
1.4 ROUGE-2 and 1.0 ROUGE-L over the state-
of-the-art models.
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Figure 2: The training curve of WEAN and Seq2seq on
the PWKP validation set.

4 Analysis and Discussion

4.1 Reducing Parameters

Our WEAN reduces a large number of the param-
eters in the output layer. To analyze the parame-
ter reduction, we compare our WEAN model with
the sequence-to-sequence model. Table 5 lists the
number of the parameters in the output layers of
two models. Both PWKP and EWSEWhave the
vocabulary size of 50000 words and the hidden
size of 256, resulting 50000× 256 = 12, 800, 000
parameters. LCSTS has a vocabulary size of 4000
and the hidden size of 512, so the seq2seq has
4000 × 512 = 2, 048, 000 parameters in the out-
put layers. WEAN only has two parameter ma-
trices and one parameter vector at most in Equa-
tion 5, without regard to the vocabulary size. It
has 256 × 256 × 2 + 256 = 131, 328 parameters
on PWKP and EWSEW, and 512×512×2+512 =
524, 800 parameters on LCSTS. Besides, WEAN
does not have any extra parameters in the other
part of the model.

4.2 Speeding up Convergence

Figure 2 shows the training curve of WEAN and
Seq2seq on the PWKP validation set. WEAN
achieve near the optimal score in only 2-3 epochs,
while Seq2seq takes more than 15 epochs to
achieve the optimal score. Therefore, WEAN
has much faster convergence rate, compared with
Seq2seq. With the much faster training speed,
WEAN does not suffer loss in BLEU, and even
improve the BLEU score.
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Source Yoghurt or yogurt is a dairy product produced by bacterial fermentation of milk .
Reference Yoghurt or yogurt is a dairy product made by bacterial fermentation of milk .
NTS . or yoghurt is a dairy product produced by bacterial fermentation of milk .
NTS-w2v It is made by bacterial fermentation of milk .
PBMT-R Yoghurt or yogurt is a dairy product produced by bacterial fermentation of .
SBMT-SARI Yogurt or yogurt is a dairy product drawn up by bacterial fermentation of milk .
WEAN Yoghurt or yogurt is a dairy product made by bacterial fermentation of milk .
Source Depending on the context, another closely-related meaning of constituent is that of a

citizen residing in the area governed, represented, or otherwise served by a politician;
sometimes this is restricted to citizens who elected the politician.

Reference The word constituent can also be used to refer to a citizen who lives in the area that
is governed, represented, or otherwise served by a politician; sometimes the word is
restricted to citizens who elected the politician.

NTS Depending on the context, another closely-related meaning of constituent is that of a
citizen living in the area governed, represented, or otherwise served by a politician;
sometimes this is restricted to citizens who elected the politician.

NTS-w2v This is restricted to citizens who elected the politician.
PBMT-R Depending on the context and meaning of closely-related siemens-martin -rrb- is a

citizen living in the area, or otherwise, was governed by a 1924-1930 shurba; this is
restricted to people who elected it.

SBMT-SARI In terms of the context, another closely-related sense of the component is that of a
citizen living in the area covered, make up, or if not, served by a policy; sometimes
this is limited to the people who elected the policy.

WEAN Depending on the context, another closely-related meaning of constituent is that of a
citizen who lives in the area governed, represented, or otherwise served by a politician;
sometimes the word is restricted to citizens who elected the politician.

Table 6: Two examples of different text simplification system outputs in EW-SEW dataset. Differences from the
source texts are shown in bold.

4.3 Case Study

Table 6 shows two examples of different text sim-
plification system outputs on EW-SEW. For the
first example, NTS, NTS-w2v and PBMT-R miss
some essential constituents, so that the sentences
are incomplete and not fluent. SBMT-SARI gen-
erates a fluent sentence, but the output does not
preserve the original meaning. The predicted sen-
tence of WEAN is fluent, simple, and the same
as the reference. For the second example, NTS-
w2v omits so many words that it lacks a lot
of information. PBMT-R generates some irrele-
vant words, like ’siemens-martin’, ’-rrb-’, and ’-
shurba’, which hurts the fluency and adequacy of
the generated sentence. SBMT-SARI is able to
generate a fluent sentence, but the meaning is dif-
ferent from the source text, and even more diffi-
cult to understand. Compared with the statistic
model, WEAN generates a more fluent sentence.
Besides, WEAN can capture the semantic mean-
ing of the word by querying the word embeddings,
so the generated sentence is semantically correct,

and very close to the original meaning.

5 Related Work

Our work is related to the encoder-decoder
framework (Cho et al., 2014) and the attention
mechanism (Bahdanau et al., 2014). Encoder-
decoder framework, like sequence-to-sequence
model, has achieved success in machine transla-
tion (Sutskever et al., 2014; Jean et al., 2015; Lu-
ong et al., 2015; Lin et al., 2018), text summa-
rization (Rush et al., 2015; Chopra et al., 2016;
Nallapati et al., 2016; Wang et al., 2017; Ma and
Sun, 2017), and other natural language process-
ing tasks (Liu et al., 2017). There are many other
methods to improve neural attention model (Jean
et al., 2015; Luong et al., 2015).

Zhu et al. (2010) constructs a wikipedia dataset,
and proposes a tree-based simplification model.
Woodsend and Lapata (2011) introduces a data-
driven model based on quasi-synchronous gram-
mar, which captures structural mismatches and
complex rewrite operations. Wubben et al. (2012)
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presents a method for text simplification using
phrase based machine translation with re-ranking
the outputs. Kauchak (2013) proposes a text sim-
plification corpus, and evaluates language model-
ing for text simplification on the proposed corpus.
Narayan and Gardent (2014) propose a hybrid ap-
proach to sentence simplification which combines
deep semantics and monolingual machine trans-
lation. Hwang et al. (2015) introduces a paral-
lel simplification corpus by evaluating the simi-
larity between the source text and the simplified
text based on WordNet. Glavaš and Štajner (2015)
propose an unsupervised approach to lexical sim-
plification that makes use of word vectors and re-
quire only regular corpora. Xu et al. (2016) de-
sign automatic metrics for text simplification. Re-
cently, most works focus on the neural sequence-
to-sequence model. Nisioi et al. (2017) present
a sequence-to-sequence model, and re-ranks the
predictions with BLEU and SARI. Zhang and La-
pata (2017) propose a deep reinforcement learning
model to improve the simplicity, fluency and ade-
quacy of the simplified texts. Cao et al. (2017)
introduce a novel sequence-to-sequence model to
join copying and restricted generation for text sim-
plification.

Rush et al. (2015) first used an attention-based
encoder to compress texts and a neural network
language decoder to generate summaries. Follow-
ing this work, recurrent encoder was introduced
to text summarization, and gained better perfor-
mance (Lopyrev, 2015; Chopra et al., 2016). To-
wards Chinese texts, Hu et al. (2015) built a large
corpus of Chinese short text summarization. To
deal with unknown word problem, Nallapati et al.
(2016) proposed a generator-pointer model so that
the decoder is able to generate words in source
texts. Gu et al. (2016) also solved this issue by
incorporating copying mechanism.

6 Conclusion

We propose a novel model based on the encoder-
decoder framework, which generates the words by
querying distributed word representations. Exper-
imental results show that our model outperforms
the sequence-to-sequence baseline by the BLEU
score of 6.3 and 5.5 on two English text simplifi-
cation datasets, and the ROUGE-2 F1 score of 5.7
on a Chinese summarization dataset. Moreover,
our model achieves state-of-the-art performances
on these three benchmark datasets.
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Abstract

Lexical simplification involves identifying
complex words or phrases that need to be sim-
plified, and recommending simpler meaning-
preserving substitutes that can be more eas-
ily understood. We propose a complex word
identification (CWI) model that exploits both
lexical and contextual features, and a simpli-
fication mechanism which relies on a word-
embedding lexical substitution model to re-
place the detected complex words with sim-
pler paraphrases. We compare our CWI and
lexical simplification models to several base-
lines, and evaluate the performance of our sim-
plification system against human judgments.
The results show that our models are able to
detect complex words with higher accuracy
than other commonly used methods, and pro-
pose good simplification substitutes in context.
They also highlight the limited contribution of
context features for CWI, which nonetheless
improve simplification compared to context-
unaware models.

1 Introduction

Automated text simplification is the process that
involves transforming a complex text into one with
the same meaning, but can be more easily read
and understood by a broader audience (Saggion,
2017). This process includes several subtasks such
as complex word and sentence identification, lex-
ical simplification, syntactic simplification, and
sentence splitting. In this paper, we focus on lex-
ical simplification, the task of replacing difficult
words in a text with words that are easier to under-
stand.

Lexical simplification involves two main pro-
cesses: identifying complex words within a text,
and suggesting simpler paraphrases for these
words that preserve their meaning in this context.
To identify complex words, we train a model on
data manually annotated for complexity. Unlike

Figure 1: An example sentence with complex words
identified by our classifier, and their substitutes pro-
posed by the embedding-based substitution model.

previous work, our classifier takes into account
both lexical and context features. We extract can-
didate substitutes for the identified complex words
from SimplePPDB (Pavlick and Callison-Burch,
2016), a database of 4.5 million English simpli-
fication rules linking English complex words to
simpler paraphrases. We select the substitutes that
best fit each context using a word embedding-
based lexical substitution model (Melamud et al.,
2015). An example sentence, along with the com-
plex words identified by our model and the pro-
posed replacements, is shown in Figure 1. We
show that our complex word identification classi-
fier and substitution model improve over several
baselines which exploit other types of information
and do not account for context. Our approach pro-
poses highly accurate substitutes that are simpler
than the target words and preserve the meaning of
the corresponding sentences.

2 Related Work

Prior approaches to text simplification have ad-
dressed the task as a monolingual translation prob-
lem (Zhu et al., 2010; Coster and Kauchak, 2011;
Wubben et al., 2012). The proposed models
are trained on aligned sentences extracted from
Wikipedia and Simple Wikipedia, a corpus that
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contains instances of transformation operations
needed for simplification such as rewording, re-
ordering, insertion and deletion. Zhu et al. (2010)
propose to use a tree-based translation model
which covers splitting, dropping, reordering and
substitution. Coster and Kauchak (2011) employ
a phrase-based Machine Translation system ex-
tended to support phrase deletion, and Wubben
et al. (2012) augment a phrase-based system with
a re-ranking heuristic.

Woodsend and Lapata (2011) view simplifica-
tion as a monolingual text generation task. They
propose a model based on a quasi-synchronous
grammar, a formalism able to capture structural
mismatches and complex rewrite operations. The
grammar is also induced from a parallel Wikipedia
corpus, and an integer linear programming model
selects the most appropriate simplification from
the space of possible rewrites generated by the
grammar. The hybrid model of Angrosh et al.
(2014) combines a synchronous grammar ex-
tracted from the same parallel corpus with a set
of hand crafted syntactic simplification rules. In
recent work, Zhang and Lapata (2017) propose
a reinforcement learning-based text simplification
model which jointly models simplicity, grammat-
icality, and semantic fidelity to the input. In
contrast to these methods, Narayan and Gardent
(2016)’s sentence simplification approach does not
need a parallel corpus for training, but rather uses
a deep semantic representation as input for simpli-
fication.

The above-mentioned systems support the full
range of transformations involved in text simpli-
fication. Other works address specific subtasks,
such as syntactic or lexical simplification, which
involve identifying grammatical or lexical com-
plexities in a text and rewriting these using sim-
pler words and structures. Syntactic simplifica-
tion might involve operations such as sentence
splitting, rewriting of sentences including passive
voice and anaphora resolution (Chandrasekar and
Srinivas, 1997; Klerke and Søgaard, 2013).1 Lex-
ical simplification involves complex word identi-
fication, substitute generation, context-based sub-
stitute selection and simplicity ranking. To iden-
tify the words to be simplified, Shardlow (2013a)
proposes to use a Support Vector Machine (SVM)
that exploits several lexical features, such as fre-

1For a detailed overview of syntactic simplification
works, see (Shardlow, 2014).

quency, character and syllable length. Our ap-
proach also uses a SVM classifier for identifying
complex words, but complements this set of fea-
tures with context-related features that have not
been exploited in previous work.2

In the lexical simplification subtask, existing
methods differ in their decision to include a word
sense disambiguation (WSD) step for substitute
selection and in the ranking method used. Rank-
ing is often addressed in terms of word frequency
in a large corpus since it has been shown that fre-
quent words increase a text’s readability (Devlin
and Tait, 1998; Kauchak, 2013). Models that in-
clude a semantic processing step for substitute se-
lection aim to ensure that the selected substitutes
express the correct meaning of words in specific
contexts. WSD is often carried out by selecting the
correct synset (i.e. set of synonyms describing a
sense) for a target word in WordNet (Miller, 1995)
and retrieving the synonyms describing that sense.
Thomas and Anderson (2012) use WordNet’s tree
structure (hypernymy relations) to reduce the size
of the vocabulary in a document. Biran et al.
(2011) perform disambiguation in an unsupervised
manner. They learn simplification rules from com-
parable corpora and apply them to new sentences
using vector-based context similarity measures to
select words that are the most likely candidates for
substitution in a given context. This process does
not involve an explicit WSD step, and simplifica-
tion is addressed as a context-aware lexical sub-
stitution task. The SemEval 2012 English Lexical
Simplification task (Specia et al., 2012) also ad-
dresses simplification as lexical substitution (Mc-
Carthy and Navigli, 2007), allowing systems to
use external sense inventories or to directly per-
form in-context substitution.

In our work, we opt for an approach which
addresses lexical substitution in a direct way
and does not include an explicit disambiguation
step. Lexical substitution systems perform substi-
tute ranking in context using vector-space models
(Thater et al., 2011; Kremer et al., 2014; Mela-
mud et al., 2015). Recently, Apidianaki (2016)
showed that a syntax-based substitution model can
successfully filter the paraphrases available in the

2Datasets for system training and evaluation have been
made available in the SemEval 2016 Complex Word Identi-
fication task (Paetzold and Specia, 2016) but present several
issues that make system comparison problematic. We explain
the drawbacks of the proposed datasets that led to their exclu-
sion from this work in Section 5.
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Paraphrase Database (PPDB) (Ganitkevitch et al.,
2013) to select the ones that are adequate in spe-
cific contexts. In the same line, Cocos et al. (2017)
used a word embedding-based substitution model
(Melamud et al., 2015) for ranking PPDB para-
phrases in context. We extend this work and adapt
the Melamud et al. (2015) model to the simplifi-
cation setting by using candidate paraphrases ex-
tracted from the Simple PPDB resource (Pavlick
and Callison-Burch, 2016), a subset of the PPDB
that contains complex words and phrases, and
their simpler counterparts that can be used for in-
context simplification.

3 Identifying Complex Words

3.1 Data

The first step for lexical simplification is to iden-
tify the complex words that should be simplified.
The bulk of prior work on text simplification has
addressed the complex word identification prob-
lem by training machine learning algorithms on
the parallel Wikipedia Simplification (PWKP) cor-
pus (Zhu et al., 2010). The PWKP corpus, how-
ever, has several shortcomings, as described in
Xu et al. (2015). Namely, it was determined that
50% of the parallel sentences in PWKP were ei-
ther not aligned correctly, or the simple sentence
was not in fact simpler than the complex sentence.
Xu et al. (2015) created a more reliably anno-
tated dataset, which uses a corpus consisting of
1,130 articles, manually rewritten by experts at
Newsela3 at four different reading levels. Xu et al.
(2015) also aligned sentences from these texts, ex-
tracting 141,582 complex/simple sentence pairs.

We use the Newsela corpus to create a gold-
standard dataset of complex and simple words
for training and testing our models. We do this
by hiring crowdsourced annotators through Ama-
zon Mechanical Turk, and asking them to iden-
tify complex words in the context of given texts.
We randomly select 200 texts from the Newsela
corpus, and take the first 200 tokens from each
to be labeled by nine annotators. We preprocess
the texts using the Stanford CoreNLP suite (Man-
ning et al., 2014) for tokenization, lemmatization,
part-of-speech (POS) tagging, and named entity
recognition. The annotators are instructed to label
at least 10 complex words they deem worth sim-

3Newsela is a company that provides reading materials
for students in elementary through high school. The Newsela
corpus can be requested at https://newsela.com/data/

Annotators Prevalence Example Words
0 0.617 heard, sat, feet, shops, town
1 0.118 protests, pump, trial
2 0.062 sentenced, fraction, primary
3 0.047 measures, involved, elite
4 0.035 fore, pact, collapsed
5 0.031 slew, enrolled, widespread
6 0.029 edible, seize, dwindled
7 0.023 perilous, activist, remorse
8 0.023 vintners, adherents, amassed
9 0.015 abdicate, detained, liaison

Table 1: Examples of words identified as difficult to
understand within a text by n annotators, where 0 ≤
n ≤ 9. Column 2 (Prevalence) shows the proportion of
the total number of words identified as complex by n
annotators.

plifying for young children, people with disabil-
ities, and second language learners. After filter-
ing out stop words (articles, conjunctions, prepo-
sitions, pronouns) and named entities, we are left
with 17,318 labeled tokens. Tokens identified by
at least three annotators are considered as com-
plex, and tokens labeled by less than three or no
annotators as simple. This increases the likelihood
of complex segments being actually complex; as
we can see from Table 1, words identified by only
one or two annotators tend to be somewhat noisy.

3.2 Methods
Following Shardlow (2013a), we use a Support
Vector Machine classifier. We also conduct exper-
iments with a Random Forest Classifier. Shard-
low (2013a) identified several features that help to
determine whether or not a word is complex, in-
cluding word length, number of syllables, word
frequency, number of unique WordNet synsets,
and number of WordNet synonyms. Shardlow
used word frequencies extracted from SUBTLEX,
a corpus of 51 million words extracted from En-
glish subtitles.4 We instead use n-gram frequen-
cies from the Google Web1T corpus Brants and
Franz (2006) (henceforth Google n-gram).

Our motivation for using Google n-gram fre-
quencies is based on the hypothesis that word fre-
quency is a strong indicator of word difficulty.
More frequent words are more likely to be easy,
and less frequent words are more likely to be un-
known and therefore hard to understand. The size
of the Google n-gram corpus, consisting of a vari-
ety of texts across many genres and years, makes

4SUBTLEX can be found at:
https://www.ugent.be/pp/experimentele-
psychologie/en/research/documents/subtlexus
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it a good candidate for computing more accurate
word frequencies.

In addition to word frequencies and word spe-
cific features, we include several context-specific
features: average length of words in the sentence,
average number of syllables, average word fre-
quency, average number of WordNet synsets, aver-
age number of WordNet synonyms, and sentence
length. The intuition for including context-specific
features is that if a target word is surrounded by
simple words, a reader is likely better able to un-
derstand the meaning of the target word, which
would thus not need it simplified.

4 Lexical Simplification

4.1 Data

For our model and baselines, we consider candi-
date substitutions from three datasets. The first
is WordNet (Miller, 1995), a lexical network en-
coding manually identified semantic relationships
between words, such as synonymy, hypernymy
and hyponymy. This resource has been widely
used in substitution tasks (McCarthy and Navigli,
2007). We also use paraphrases extracted from the
Paraphrase Database (PPDB) and the Simple Para-
phrase Database (SimplePPDB). PPDB is a collec-
tion of more than 100 million English paraphrase
pairs (Ganitkevitch et al., 2013). These pairs
were extracted using a bilingual pivoting tech-
nique (Bannard and Callison-Burch, 2005), which
assumes that two English phrases that translate
to the same foreign phrase have the same mean-
ing. PPDB was updated by Pavlick et al. (2015)
to assign labels stating the precise entailment re-
lationship between paraphrase pairs (e.g. for-
ward/backward entailment), and new confidence
scores (PPDB 2.0 scores) reflecting the strength
of paraphrase relations.

SimplePPDB is a subset of PPDB which con-
tains 4.5 million simplification rules, linking a
complex word or phrase with a simpler para-
phrase with the same meaning. Simplification
rules come with both a PPDB 2.0 score and a sim-
plification confidence score (Pavlick and Callison-
Burch, 2016), which represent both the strength of
the paraphrase relation and how well the replace-
ment word simplifies the target word. These rules
were created by sampling 1,000 PPDB phrases,
using crowdsourcing to find correct simplifica-
tions for each phrase, and building a model to
identify rules that simplify the input phrase.

To evaluate the performance of our lexical sim-
plification model, we create a test set from the
Newsela corpus. We extract lexical simplifica-
tion rules from these parallel sentences using two
methods. First, we find sentence pairs with only
one lexical replacement and use these word pairs
as simplification instances. Next, we use a mono-
lingual word alignment software (Sultan et al.,
2014) to extract all non-identical aligned word
pairs. We only consider word pairs correspond-
ing to different lemmas (i.e. words with different
base forms). From this process, we collect a test
set of 14,436 word pairs.

4.2 In-context Ranking and Substitution

To accurately replace words in texts with simpler
paraphrases and ensure the generated sentences
preserve the meaning of the original, we need to
take into account the surrounding context. To do
this, we adapt the word embedding-based lexical
substitution model of Melamud et al. (2015) to
the simplification task. Vector-space models have
been shown to effectively filter PPDB paraphrases
in context while preserving the meaning of the
original sentences (Apidianaki, 2016; Cocos et al.,
2017).

The Melamud et al. (2015) model (hereafter
AddCos) quantifies the fit of substitute word s for
target word t in context C by measuring the se-
mantic similarity of the substitute to the target, and
the similarity of the substitute to the context:

AddCos(s, t, C) =
cos(s,t)+

∑
w∈C cos(s,w)

|C|+1 (1)

The vectors s and t are word embeddings of the
substitute and target generated by the skip-gram
with negative sampling model (Mikolov et al.,
2013b,a). The context C is the set of context em-
beddings generated by skip-gram for words ap-
pearing within a fixed-width window of the tar-
get t in a sentence. We use a context window of
1; while this seems counter-intuitive, this is the
best-performing window found by (Cocos et al.,
2017), and we also confirm this result remains true
in Section 5.2. We use the AddCos implementa-
tion of Cocos et al. (2017)5, and 300-dimensional
word and context embeddings trained over the
4 billion words in the AGiga corpus (Napoles

5Available at https://github.com/acocos/
lexsub_addcos
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et al., 2012) using the gensim word2vec pack-
age (Mikolov et al., 2013b,a; Řehůřek and Sojka,
2010). 6

In our experiments, candidate substitutes for a
target word are its paraphrases in the PPDB and
SimplePPDB resources. The model needs to select
among these candidates the ones that best carry the
meaning of target words in specific contexts. We
only consider content words (nouns, verbs, adjec-
tives and adverbs) as simplification targets.

For a “target word-substitute” pair, we include
in the model the following features which encode
the strength of the semantic relationship between
them:

• PPDB 1.0 and 2.0 scores, which represent the
overall quality of paraphrases.

• Distributional similarity scores calculated by
Ganitkevitch et al. (2013) on the Google n-
grams and the AGiga corpus.

• Independence probability, that is the prob-
ability that there is no semantic entailment
relationship between the paraphrase pair, as
calculated by Pavlick et al. (2015).

• SimplePPDB score (Pavlick and Callison-
Burch, 2016) – when considering SimpleP-
PDB paraphrases – which reflects the confi-
dence in the simplification rule.

5 Evaluation

5.1 Complex Word Identification
Datasets for training and evaluating Complex
Word Identification (CWI) systems were created
and released in the SemEval 2016 competition
(Paetzold and Specia, 2016) but we decided not
to use them for several reasons. Although this was
a CWI task, surprisingly only 4.7% of the words
in the test data were identified as complex, and
all the other words were viewed as simple. As
a consequence, none of the systems that partici-
pated in the SemEval task managed to beat the ac-
curacy of the “All Simple” baseline which labeled
all words in the test set as simple (0.953). As noted
by Paetzold and Specia (2016), the inverse prob-
lem is present in the corpus developed by Shard-
low (2013b), where the “All Complex” baseline

6The word2vec training parameters we use are a context
window of size 3, learning rate alpha from 0.025 to 0.0001,
minimum word count 100, sampling parameter 1e−4, 10 neg-
ative samples per target word, and 5 training epochs.

Model Precision Recall F-Score
All-Complex 0.500 1.000 0.667
Token Length 0.757 0.900 0.822

n-gram Frequency 0.632 0.862 0.729
SVM-word 0.880 0.834 0.857

SVM-Context 0.871 0.831 0.850
RF-word 0.805 0.840 0.822

RF-Context 0.824 0.851 0.837

Table 2: Cross-validation performance for four differ-
ent complex words identification classifiers. Compar-
ison to three baselines. Scores are calculated using
unique words in our training data.

achieved higher accuracy, recall and F-scores than
all other tested systems, suggesting that marking
all words in a sentence as complex is the most ef-
fective approach for CWI.

Another problem in the SemEval-2016 dataset
is that although the number of complex words is
much higher in the training data (32%), 18% of
all words were annotated as complex by only one
out of 20 annotators and considered as complex.
In addition to the highly different number of com-
plex words in the training and test data, the two
datasets are also imbalanced in terms of size, with
only 2,237 training instances and 88,211 testing
instances. These factors make this dataset a du-
bious choice for system evaluation. Comparison
to the participating systems is also extremely dif-
ficult, since the best systems are ones that label
most of the data as simple. For these reasons, we
decided to create and use our crowdsourced data
for training and evaluation.7

We compare the performance of an SVM clas-
sifier with only word features (SVM-word) to
one that exploits both word and context features
(SVM-context). We use 5-fold cross validation
on unique words from the training data collected
through Mechanical Turk (see Section 4.1). We
also compare a Random Forest classifier with only
word features (RF-word) to one with word and
context features (RF-context). We consider three
baselines:

• labeling all words as complex (All-
Complex).

• thresholding for word length (Token Length),
considering longer words as complex; the
length threshold with the best performance
was 7.

7We have released the new datasets at
https://rekriz11.github.io
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Words with ≥1 paraphrase All words
Model Coverage Top 1 Top 5 Oracle Top 1 Top 5 Oracle
WordNet frequency 0.911 0.141 0.267 0.291 0.129 0.244 0.265
SimplePPDB Score 0.935 0.180 0.403 0.669 0.168 0.377 0.626
AddCos-PPDB 0.975 0.196 0.444 0.962 0.191 0.433 0.938
AddCos-SimplePPDB 0.819 0.353 0.601 0.643 0.289 0.492 0.527

Table 3: Performance of the lexical simplification models on the Newsela aligned test set. Columns 3-5 show
the performance of each model on only words with at least one paraphrase in the dataset. Columns 6-8 show the
performance of each model on all words; this penalizes for the coverage of the databases.

• thresholding for word frequency using
Google n-gram counts (n-gram Frequency),
considering more frequent words as sim-
ple; the frequency threshold with the best
performance was 19,950,000.

The results of this experiment are shown in Ta-
ble 2. While the Token Length and n-gram Fre-
quency baselines have higher recall, both of our
models show substantial improvements in terms
of precision and increases overall accuracy and
F-score, with SVM outperforming Random For-
est. The context-based features seem to have an
ambiguous impact, in that they do not improve
the performance of the SVM classifier, but they
do improve that of the Random Forest classifier.
While there are indeed some cases where a rela-
tively simple word is more difficult to understand,
due to the size of our corpus, these cases are not
found that often in our dataset.

5.2 Lexical Simplification Evaluation

We evaluate the performance of the lexical substi-
tution model using Simple PPDB paraphrases on
a test set created from the Newsela corpus, de-
scribed in Section 4.1. Using the complex word
and the corresponding sentence, we find the top
suggestions made by our word-embedding based
substitution model using SimplePPDB. We com-
pare to three baselines:

• WordNet Frequency: We extract all Word-
Net synonyms for a complex word, and col-
lect the Google n-gram frequencies for each
synonym. We then rank the synonyms in de-
creasing order of frequency (i.e. the most fre-
quent synonym will be ranked first, and the
least frequent one will be ranked last.

• SimplePPDB Score: We extract all SimpleP-
PDB synonyms for a complex word. We
then rank the synonyms in decreasing order
of their SimplePPDB score.

Context Window Top 1 Top 5
0 0.180 0.403
1 0.353 0.601
2 0.352 0.596
3 0.334 0.590
4 0.312 0.585
5 0.291 0.581
6 0.269 0.578
7 0.264 0.577
8 0.252 0.576
9 0.247 0.574

10 0.242 0.572

Table 4: Quality of substitutions proposed by AddCos-
SimplePPDB with different context window size as
measured by Top 1 and Top 5 accuracy on the Newsela
aligned test set.

• AddCos-PPDB: We extract all PPDB syn-
onyms for a complex word and rank them us-
ing the AddCos model described above.

The performance of AddCos with SimplePPDB
paraphrases (AddCos-SimplePPDB) in the lexical
simplification task is compared to performance of
the baselines in Table 3. For each model, we calcu-
late Top 1 and Top 5 accuracy scores, which show
how often the gold-standard simple word was pro-
posed as the best fitting or among the 5 highest-
ranked paraphrases. In addition, we calculate the
upper bound performance for each dataset (PPDB,
SimplePPDB and WordNet), i.e. how often the
gold-standard simple word was found as a para-
phrase of the target word in the dataset. This is
useful in telling us how well we could potentially
do, if we could perfectly rank the paraphrases.

When performing this experiment, we also eval-
uated the impact of the context window size on
the quality of the proposed substitutions. We
varied the context window used by the AddCos-
SimplePPDB model from 0 to 10. The results of
this comparison are found in Table 4. As we can
see, the largest effect, as expected, is when the
model changes from using no context to choosing
a window size of 1 word on either side of the word
that is being replaced. As the context window in-
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Synonym
Rank

Substitution Simplification Both

1 0.396 0.280 0.227
2 0.311 0.214 0.153
3 0.278 0.184 0.127
4 0.228 0.142 0.093
5 0.193 0.123 0.075

All 0.622 0.553 0.435

Table 5: Performance of our overall lexical simplifica-
tion system. We give the proportion of substitutes the
system ranked at positions 1 to 5 (i.e. from the top
ranked to the fifth-ranked paraphrase in context) which
was identified by a majority of workers as (a) a good
substitute in context (Substitution); (b) simpler than the
target word (Simplification); (c) both a good and sim-
pler substitute (Both). We also show the proportion of
complex words where at least one of the top 5 para-
phrases satisfies these criteria in the last row.

creases above 2, however, we see a significant de-
crease in Top 1 accuracy, and a slower decrease in
Top 5 accuracy. Thus, in our model, we chose to
use a context window of 1.

We experimented with filtering the substitution
candidates using SimplePPDB confidence scores,
PPDB paraphrase quality scores, and AddCos
context similarity scores, but these all resulted
in a slight, non-significant increase in perfor-
mance, and a significant decrease in coverage. We
will also explore other ways for promoting high-
quality substitutions without hurting the overall
coverage of the system in the future.

One thing to note is that just because a model
does not find the gold-standard simple word, does
not necessarily mean that it does not find any good
substitutes in context. Concrete examples of this
are shown in Section 6.

5.3 Overall Simplification System

We integrate the best complex word identifica-
tion classifier (SVM-context) and the substitu-
tion model that provided the best ranking in con-
text (AddCos-SimplePPDB), into a simplification
pipeline. The input text is a complex text that
needs to be simplified and the output consists of
simplification suggestions for experts to choose
from in order to create simpler versions of texts.
The input text is pre-processed using the Stanford
CoreNLP suite (Manning et al., 2014) which per-
forms tokenization, sentence splitting, lemmati-
zation, part-of-speech and named entity tagging.
The SVM-Context classifier is used to classify
each content word that is not part of a named entity

Baseline Simple Complex
n-gram
Frequency

dug, sled, chart,
lakes, push, tight,
harm

estimates, frequent,
attributed, isolated,
preferred, liability

Token
Length

nursing, unknown,
squares, feeling,
teaching, strength

adorns, asylum,
myriad, rigors,
nutria, edible

RF-
Context

malls, hungry,
therefore, hears,
heavily, rainy

engaging, secular,
gridlock, torrent,
sanctions, lobbying

SVM-
Context

peacefully, favorite,
amazing, websites,
harmful, somewhat

swelled, entice,
tether, chaotic,
vessel, midst

Table 6: Examples of words that were incorrectly clas-
sified by the two best performing baselines and the
RF-Context model, but were correctly classified by the
SVM-Context model. The last row shows examples
of words that were incorrectly classified by the SVM-
Context model.

as either simple or complex.
The lexical substitution model then gathers the

SimplePPDB substitutes available for the complex
target word and ranks them according to how well
they fit the corresponding context. We only keep
the top five suggestions made by the model as final
output.

To evaluate the performance of the overall sim-
plification system, we used the 930 texts from the
Newsela corpus that were not used in the training
of the CWI classifier. Our model identified over
170,000 complex words that also had paraphrases
in SimplePPDB. We again asked crowdsourced
annotators to evaluate the suggestions made for a
random sample of 2,500 complex words on Ama-
zon Mechanical Turk, in order to determine the
number of good substitutions in context, the num-
ber of suggested paraphrases that are simpler than
the target words, and the suggestions that are both
simpler paraphrases and good in-context substi-
tutes.

Table 5 shows the quality of the paraphrases
ranked by our system in positions from one to five.
We can see that the paraphrases our system selects
as the best have a higher likelihood of being both
good substitutes in context and simpler than the
target word. We also show the proportion of tar-
get words that had at least one good substitute in
context, one simple substitute, and one good and
simple substitute.

6 Error Analysis

In this section, we give examples of words for
which our models give the correct output and the
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Sentence Gold-
Standard

WordNet
Frequency

SimplePPDB
Score

AddCos-PPDB AddCos-
SimplePPDB

(7.1) Advocates argue that
including women will help end
harassment of female troops.

say reason, fence,
debate, contend,
indicate

say, think,
tell, talk,
mean

contend, assert,
acknowledge,
insist, complain

say, claim,
believe,
suggest, debate

(7.2) But in April , detainees
covered cameras used to
monitor them.

watch supervise,
proctor,
admonisher

find, meet,
give, try,
allow

track, manipulate,
control, analyze,
supervise

track, control,
check, watch,
follow

(7.3) Similarly , police can
investigate cases and have the
authority to seize animals.

power agency, potency,
bureau,
assurance

force, control,
permission,
office, limit

jurisdiction,
discretion, right,
prerogative, ability

power,
responsibility,
body, agency

Table 7: Examples of the top-5 substitutes for our three baselines and our best model (AddCos-SimplePPDB). We
also provide the gold-standard simplification (Gold-Standard).

Sentence Bad Substitutions
(8.1)b basic
(8.2) Russian poultry is more
expensive, and U.S. producers
enjoy numerous cost advantages.

prospect, benefits,
revenue, merit,
feature

(8.3) Although the calculus may be
different with Syrian refugees, the
parallel for me is politics.

life, right, return,
shelter, million

(8.4) He saw them bring in animals
to a university, where they’ll be
cared for and put up for adoption.

acceptance,
passage, approval,
endorsement

Table 8: Examples of words and their context where
our model fails to provide any good replacements.

baselines fail to do so. In addition, we give ex-
amples of words on which our models perform
poorly.

First, we consider examples of words that were
incorrectly classified by each of the four best per-
forming CWI models: the RF-Context and SVM-
Context models, and the n-gram Frequency and
Token Length baselines. (Table 6). In the first
three rows, we give words that were correctly
identified by SVM-Context, but incorrectly cate-
gorized by the two baselines and RF-Context; in
the last row, we give examples of words incor-
rectly classified by SVM-Context. We observe
that the n-gram Frequency model tends to incor-
rectly classify relatively short words that are rare
in the Google n-gram corpus as complex. On the
other end, the Token Length model shows that us-
ing this feature alone leads to incorrectly identify-
ing shorter words such as “adorn” and “myriad” as
simple, when these words are relatively complex.

Table 7 presents examples of substitution where
the baseline systems did not find the correct para-
phrase, but AddCos-SimplePPDB did. As we have
mentioned, even when a model did not find the
gold-standard paraphrase, they sometimes did find
a different paraphrase that works well in the con-

text. In Example 7.2, the top paraphrase identi-
fied by both AddCos-PPDB and AddCos-Simple
PPDB for the word “monitor” is “track”, which is
a reasonable substitute. On the other hand, in Ex-
ample 7.3, AddCos-Simple PPDB model was able
to identify a good simple substitute, when none of
the other models were able to identify a suitable
word with comparable complexity.

Finally, Table 8 shows examples of output of the
overall simplification system. Here, the blue word
is a word that our CWI classifier identified as com-
plex (for simplicity, we only look at one complex
word per sentence). From there, we consider the
five top-ranked substitutes proposed by AddCos-
Simple PPDB, and show which were identified by
the majority of annotators as good substitutes for
the target word, simpler than the target, good sim-
pler substitutes, and bad substitutes. In row 5 of
Table 8, we can see that for the word “adop-
tion”, all five words identified by our model are
considered to be bad substitutes, since they are
all synonyms describing a different sense of adop-
tion. Even though SimplePPDB is quite large, it
does not cover all senses of the words represented.
Another issue is that SimplePPDB contains some
noisy paraphrases, as is the case with all auto-
matically collected synonym banks. We see this
with “recognize” being a synonym of “recogni-
tion”, even though we specified that “recognition”
is a noun. Our model does filter out the worst para-
phrases (with PPDB2.0 score < 2), but there are
still some words that are simply poor substitutes.

We reviewed the examples where our system
failed to generate acceptable substitutions for the
identified complex words. Below we present the
major categories of errors.

• The identified complex term is part of a
phrase and no substitution is acceptable. For
example, in Example 8.1, Elementary, Mid-
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dle or High School is a description of the type
of school. Elementary School has an alter-
native name in some cases but High School
should never become Tall School.

• The complex word has no simpler synonym
that would be a good substitute. The diffi-
culty of the word might reside in its meaning
which can be unknown to the reader. In Ex-
ample 8.3, it would be more useful to point to
the definition of refugees.

• The complex word is part of a predicate
with arguments that are not accessible to our
model. In Example 8.4, the intended mean-
ing of adoption, human adoption, is hard to
capture in the vicinity of the complex word.

• Finally, in some cases, our annotators were
quite strict in admitting a substitute. In Ex-
ample 8.2, for example, cost merit would not
be syntactically correct but cost merits would
be acceptable.

7 Conclusions and Future Work

We present a novel model for simplification that
first identifies complex words in text, and then
ranks lexical simplification candidates accord-
ing to their adequacy in these specific contexts.
We perform experiments showing that our model
makes correct simplification suggestions 35% of
the time as measured by top-1 accuracy (versus
20% of the time for the best baseline), and pro-
duces a good substitution in its top-5 predictions
60% of the time (versus 44% for the best base-
line). We perform a detailed error analysis that
suggests future improvements, e.g. not replacing
words within collocations like elementary school,
and extending the context model to include the ar-
guments of words that are going to be simplified.

Achieving high performance on single words is
crucial for any system that hopes to adequately
holistically simplify a text. Our methods can also
be extended to the phrase level. SimplePPDB con-
tains phrasal simplification rules, as well as lexical
simplification rules. We can assign a vector rep-
resentation to phrases to be used by the AddCos
model, by applying a vector composition method
to the vectors of individual words in the phrase.
We plan to extend our method in this direction in
future work.

Although our system outperforms simpler base-
lines on both tasks, the performance of the overall

system is relatively low. The filtering mechanisms
we have experimented with up to now in order to
make high-confidence predictions, increased the
quality of the proposed substitutions but signifi-
cantly decreased the coverage. We will explore
other ways for promoting high-quality substitu-
tions without hurting the overall coverage of the
system in the future.

The AddCos implementation we used in this
work does not rely on syntactic annotations and
can be easily applied to new languages. In future
work, we plan to experiment with syntactic sub-
stitution models and with syntax-based word em-
beddings like the ones used in the initial AddCos
implementation (Melamud et al., 2015). We ex-
pect syntactic information to further enhance the
quality of the proposed substitutions, ensuring the
functional similarity of the lexical substitutions to
the target word. Furthermore, we intend to inte-
grate lexical and syntactic simplification, both cru-
cial steps towards text simplification.

8 Data and Software

We release the data that we collected, which is
of higher quality than the data used in previous
shared tasks on Complex Word Identification. We
also release our software for performing context-
aware paraphrase substitutions. The dataset and
the code can be found at https://rekriz11.github.io
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Abstract

We present a neural model for question gener-
ation from knowledge base triples in a “Zero-
Shot” setup, that is generating questions for
triples containing predicates, subject types or
object types that were not seen at training
time. Our model leverages triples occurrences
in the natural language corpus in an encoder-
decoder architecture, paired with an original
part-of-speech copy action mechanism to gen-
erate questions. Benchmark and human evalu-
ation show that our model sets a new state-of-
the-art for zero-shot QG.

1 Introduction

Questions Generation (QG) from Knowledge
Graphs is the task consisting in generating natural
language questions given an input knowledge
base (KB) triple (Serban et al., 2016). QG from
knowledge graphs has shown to improve the
performance of existing factoid question answer-
ing (QA) systems either by dual training or by
augmenting existing training datasets (Dong et al.,
2017; Khapra et al., 2017). Those methods rely
on large-scale annotated datasets such as Simple-
Questions (Bordes et al., 2015). Building such
datasets is a tedious task in practice, especially
to obtain an unbiased dataset – i.e. a dataset that
covers equally a large amount of triples in the KB.
In practice many of the predicates and entity types
in KB are not covered by those annotated datasets.
For example 75.6% of Freebase predicates are
not covered by the SimpleQuestions dataset 1.
Among those we can find important missing
predicates such as: fb:food/beer/country,
fb:location/country/national anthem,
fb:astronomy/star system/stars.

One challenge for QG from knowledge graphs
is to adapt to predicates and entity types that

1replicate the observation http://bit.ly/2GvVHae

were not seen at training time (Zero-Shot Ques-
tion Generation). Since state-of-the-art systems in
factoid QA rely on the tremendous efforts made
to create SimpleQuestions, these systems can only
process questions on the subset of 24.4% of free-
base predicates defined in SimpleQuestions. Pre-
vious works for factoid QG (Serban et al., 2016)
claims to solve the issue of small size QA datasets.
However encountering an unseen predicate / entity
type will generate questions made out of random
text generation for those out-of-vocabulary predi-
cates a QG system had never seen. We go beyond
this state-of-the-art by providing an original and
non-trivial solution for creating a much broader
set of questions for unseen predicates and entity
types. Ultimately, generating questions to predi-
cates and entity types unseen at training time will
allow QA systems to cover predicates and entity
types that would not have been used for QA other-
wise.

Intuitively, a human who is given the task to
write a question on a fact offered by a KB, would
read natural language sentences where the entity
or the predicate of the fact occur, and build up
questions that are aligned with what he reads from
both a lexical and grammatical standpoint. In this
paper, we propose a model for Zero-Shot Question
Generation that follows this intuitive process. In
addition to the input KB triple, we feed our model
with a set of textual contexts paired with the input
KB triple through distant supervision. Our model
derives an encoder-decoder architecture, in which
the encoder encodes the input KB triple, along
with a set of textual contexts into hidden represen-
tations. Those hidden representations are fed to a
decoder equipped with an attention mechanism to
generate an output question.
In the Zero-Shot setup, the emergence of new
predicates and new class types during test time re-
quires new lexicalizations to express these pred-
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icates and classes in the output question. These
lexicalizations might not be encountered by the
model during training time and hence do not ex-
ist in the model vocabulary, or have been seen
only few times not enough to learn a good rep-
resentation for them by the model. Recent works
on Text Generation tackle the rare words/unknown
words problem using copy actions (Luong et al.,
2015; Gülçehre et al., 2016): words with a spe-
cific position are copied from the source text to
the output text – although this process is blind to
the role and nature of the word in the source text.
Inspired by research in open information extrac-
tion (Fader et al., 2011) and structure-content neu-
ral language models (Kiros et al., 2014), in which
part-of-speech tags represent a distinctive feature
when representing relations in text, we extend
these positional copy actions. Instead of copying
a word in a specific position in the source text, our
model copies a word with a specific part-of-speech
tag from the input text – we refer to those as part-
of-speech copy actions. Experiments show that
our model using contexts through distant supervi-
sion significantly outperforms the strongest base-
line among six (+2.04 BLEU-4 score). Adding
our copy action mechanism further increases this
improvement (+2.39). Additionally, a human
evaluation complements the comprehension of our
model for edge cases; it supports the claim that the
improvement brought by our copy action mecha-
nism is even more significant than what the BLEU
score suggests.

2 Related Work

QG became an essential component in many ap-
plications such as education (Heilman and Smith,
2010), tutoring (Graesser et al., 2004; Evens
and Michael, 2006) and dialogue systems (Shang
et al., 2015). In our paper we focus on the prob-
lem of QG from structured KB and how we can
generalize it to unseen predicates and entity types.
(Seyler et al., 2015) generate quiz questions from
KB triples. Verbalization of entities and predi-
cates relies on their existing labels in the KB and a
dictionary. (Serban et al., 2016) use an encoder-
decoder architecture with attention mechanism
trained on the SimpleQuestions dataset (Bordes
et al., 2015). (Dong et al., 2017) generate para-
phrases of given questions to increases the per-
formance of QA systems; paraphrases are gener-
ated relying on paraphrase datasets, neural ma-

chine translation and rule mining. (Khapra et al.,
2017) generate a set of QA pairs given a KB en-
tity. They model the problem of QG as a sequence
to sequence problem by converting all the KB en-
tities to a set of keywords. None of the previous
work in QG from KB address the question of gen-
eralizing to unseen predicates and entity types.
Textual information has been used before in the
Zero-Shot learning. (Socher et al., 2013) use infor-
mation in pretrained word vectors for Zero-Shot
visual object recognition. (Levy et al., 2017) in-
corporates a natural language question to the rela-
tion query to tackle Zero-Shot relation extraction
problem.

Previous work in machine translation dealt with
rare or unseen word problem problem for trans-
lating names and numbers in text. (Luong et al.,
2015) propose a model that generates positional
placeholders pointing to some words in source
sentence and copy it to target sentence (copy ac-
tions). (Gülçehre et al., 2016; Gu et al., 2016)
introduce separate trainable modules for copy ac-
tions to adapt to highly variable input sequences,
for text summarization. For text generation from
tables, (Lebret et al., 2016) extend positional copy
actions to copy values from fields in the given ta-
ble. For QG, (Serban et al., 2016) use a place-
holder for the subject entity in the question to gen-
eralize to unseen entities. Their work is limited to
unseen entities and does not study how they can
generalize to unseen predicates and entity types.

3 Model

Let F = {s, p, o} be the input fact provided to
our model consisting of a subject s, a predicate
p and an object o, and C be the set of textual
contexts associated to this fact. Our goal is to
learn a model that generates a sequence of T to-
kens Y = y1, y2, . . . , yT representing a question
about the subject s, where the object o is the cor-
rect answer. Our model approximates the condi-
tional probability of the output question given an
input fact p(Y |F ), to be the probability of the out-
put question, given an input fact and the additional
textual context C, modelled as follows:

p(Y |F ) =
T∏

t=1

p(yt|y<t, F, C) (1)

where y<t represents all previously generated to-
kens until time step t. Additional textual contexts
are natural language representation of the triples
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Figure 1: The proposed model for Question Generation. The model consists of a single fact encoder and n textual
context encoders, each consists of a separate GRU. At each time step t, two attention vectors generated from the
two attention modules are fed to the decoder to generate the next word in the output question.

that can be drawn from a corpus – our model is
generic to any textual contexts that can be ad-
ditionally provided, though we describe in Sec-
tion 4.1 how to create such texts from Wikipedia.

Our model derives the encoder-decoder archi-
tecture of (Sutskever et al., 2014; Bahdanau et al.,
2014) with two encoding modules: a feed forward
architecture encodes the input triple (sec. 3.1) and
a set of recurrent neural network (RNN) to en-
code each textual context (sec. 3.2). Our model
has two attention modules (Bahdanau et al., 2014):
one acts over the input triple and another acts over
the input textual contexts (sec. 3.4). The decoder
(sec. 3.3) is another RNN that generates the output
question. At each time step, the decoder chooses
to output either a word from the vocabulary or a
special token indicating a copy action (sec. 3.5)
from any of the textual contexts.

3.1 Fact Encoder

Given an input fact F = {s, p, o}, let each of es,
ep and eo be a 1-hot vectors of size K. The fact
encoder encodes each 1-hot vector into a fixed size
vector hs = Ef es, hp = Ef ep and ho = Ef eo,
where Ef ∈ RHk×K is the KB embedding matrix,
Hk is the size of the KB embedding and K is the
size of the KB vocabulary. The encoded fact hf ∈
R3Hk represents the concatenation of those three
vectors and we use it to initialize the decoder.

hf = [hs; hp; ho] (2)

Following (Serban et al., 2016), we learn Ef using
TransE (Bordes et al., 2015). We fix its weights
and do not allow their update during training time.

3.2 Textual Context Encoder
Given a set of n textual contexts C =
{c1, c2, . . . , cn : cj = (xj1, x

j
2, . . . , x

j
|cj |)}, where

xji represents the 1-hot vector of the ith token in
the jth textual context cj , and |cj | is the length of
the jth context. We use a set of n Gated Recur-
rent Neural Networks (GRU) (Cho et al., 2014) to
encode each of the textual concepts separately:

h
cj
i = GRUj

(
Ec x

j
i , h

cj
i−1
)

(3)

where hcji ∈ RHc is the hidden state of the GRU
that is equivalent to xji and of size Hc . Ec is the
input word embedding matrix. The encoded con-
text represents the encoding of all the textual con-
texts; it is calculated as the concatenation of all the
final states of all the encoded contexts:

hc = [hc1|c1|;h
c2
|c2|; . . . ;h

cn
|cn|]. (4)

3.3 Decoder
For the decoder we use another GRU with an
attention mechanism (Bahdanau et al., 2014), in
which the decoder hidden state st ∈ RHd at each
time step t is calculated as:

st = zt ◦ st−1 + (1− zt) ◦ s̃t , (5)

Where:

s̃t = tanh
(
WEwyt−1 + U [rt ◦ st−1] +A [aft ; a

c
t ]
)

(6)

zt = σ
(
Wz Ew yt−1 + Uz st−1 +Az [a

f
t ; a

c
t ]
)

(7)

rt = σ
(
Wr Ew yt−1 + Ur st−1 +Ar [a

f
t ; a

c
t ]
)

(8)

W,Wz,Wr ∈ Rm×Hd , U,Uz, Ur, A,Az, Ar ∈
RHd×Hd are learnable parameters of the GRU.
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Ew ∈ Rm×V is the word embedding matrix, m is
the word embedding size and Hd is the size of the
decoder hidden state. aft , act are the outputs of the
fact attention and the context attention modules
respectively, detailed in the following subsection.
In order to enforce the model to pair output words
with words from the textual inputs, we couple the
word embedding matrices of both the decoder Ew
and the textual context encoder Ec (eq.(3)). We
initialize them with GloVe embeddings (Penning-
ton et al., 2014) and allow the network to tune
them.
The first hidden state of the decoder s0 = [hf ; hc]
is initialized using a concatenation of the encoded
fact (eq.(2)) and the encoded context (eq.(4)) .
At each time step t, after calculating the hidden
state of the decoder, the conditional probability
distribution over each token yt of the generated
question is computed as the softmax(Wo st)
over all the entries in the output vocabulary,
Wo ∈ RHd×V is the weight matrix of the output
layer of the decoder.

3.4 Attention

Our model has two attention modules:
Triple attention over the input triple to determine
at each time step t an attention-based encoding of
the input fact aft ∈ RHk :

aft = αs,t hs + αp,t hp + αs,t ho , (9)

αs,t, αp,t, αo,t are scalar values calculated by the
attention mechanism to determine at each time
step which of the encoded subject, predicate, or
object the decoder should attend to.
Textual contexts attention over all the hidden
states of all the textual contexts act ∈ RHc :

act =

|C|∑

i=1

|ci|∑

j=1

αcit,j h
ci
j , (10)

αcit,j is a scalar value determining the weight of the
jth word in the ith context ci at time step t.

Given a set of encoded input vectors I =
{h1, h2, ...hk} and the decoder previous hidden
state st−1, the attention mechanism calculates
αt = αi,t, . . . , αk,t as a vector of scalar weights,
each αi,t determines the weight of its correspond-

What caused the [C1 NOUN] of the [C3 NOUN] [S] ?

C1 [S] death by [O]

[S] [C1 NOUN] [C1 ADP] [O]

C2 Disease

[C2 NOUN]

C3 Musical artist

[C3 ADJ] [C3 NOUN]

Table 1: An annotated example of part-of-speech copy
actions from several input textual contexts (C1, C2,
C3), the words or placeholders in bold are copied in
the generated question

ing encoded input vector hi.

ei,t = va
> tanh(Wa st−1 +Ua hi) (11)

αi,t =
exp (ei,t)∑k
j=1 exp (ej,t)

, (12)

where va,Wa,Ua are trainable weight matrices
of the attention modules. It is important to no-
tice here that we encode each textual context sep-
arately using a different GRU, but we calculate an
overall attention over all tokens in all textual con-
texts: at each time step the decoder should ideally
attend to only one word from all the input contexts.

3.5 Part-Of-Speech Copy Actions
We use the method of (Luong et al., 2015) by
modeling all the copy actions on the data level
through an annotation scheme. This method treats
the model as a black box, which makes it adapt-
able to any text generation model. Instead of using
positional copy actions, we use the part-of-speech
information to decide the alignment process be-
tween the input and output texts to the model.
Each word in every input textual context is re-
placed by a special token containing a combina-
tion of its context id (e.g. C1) and its POS tag
(e.g. NOUN). Then, if a word in the output question
matches a word in a textual context, it is replaced
with its corresponding tag as shown in Table 1.
Unlike (Serban et al., 2016; Lebret et al., 2016)
we model the copy actions in the input and the
output levels. Our model does not have the draw-
back of losing the semantic information when re-
placing words with generic placeholders, since we
provide the model with the input triple through the
fact encoder. During inference the model chooses
to either output words from the vocabulary or spe-
cial tokens to copy from the textual contexts. In
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a post-processing step those special tokens are re-
placed with their original words from the textual
contexts.

4 Textual contexts dataset

As a source of question paired with KB triples
we use the SimpleQuestions dataset (Bordes et al.,
2015). It consists of 100K questions with their
corresponding triples from Freebase, and was cre-
ated manually through crowdsourcing. When
asked to form a question from an input triple,
human annotators usually tend to mainly fo-
cus on expressing the predicate of the input
triple. For example, given a triple with the pred-
icate fb:spacecraft/manufacturer the
user may ask ”What is the manufacturer of [S]
?”. Annotators may specify the entity type of the
subject or the object of the triple: ”What is the
manufacturer of the spacecraft [S]?” or ”Which
company manufactures [S]?”. Motivated by this
example we chose to associate each input triple
with three textual contexts of three different types.
The first is a phrase containing lexicalization of the
predicate of the triple. The second and the third are
two phrases containing the entity type of the sub-
ject and the object of the triple. In what follows we
show the process of collection and preprocessing
of those textual contexts.

4.1 Collection of Textual Contexts

We extend the set of triples given in the Sim-
pleQuestions dataset by using the FB5M (Bordes
et al., 2015) subset of Freebase. As a source of
text documents, we rely on Wikipedia articles.

Predicate textual contexts: In order to collect
textual contexts associated with the SimpleQues-
tions triples, we follow the distant supervision
setup for relation extraction (Mintz et al., 2009).
The distant supervision assumption has been ef-
fective in creating training data for relation extrac-
tion and shown to be 87% correct (Riedel et al.,
2010) on Wikipedia text.
First, we align each triple in the FB5M KB to sen-
tences in Wikipedia if the subject and the object
of this triple co-occur in the same sentence. We
use a simple string matching heuristic to find en-
tity mentions in text2. Afterwards we reduce the

2 We map Freebase entities to Wikidata through the Wiki-
data property P646, then we extract their labels and aliases.
We use the Wikidata truthy dump: https://dumps.
wikimedia.org/wikidatawiki/entities/

Freebase Relation Predicate Textual Context

person/place of birth [O] is birthplace of [S]
currency/former countries [S] was currency of [O]
dish/cuisine [O] dish [S]
airliner accident/flight origin[S] was flight from [O]
film featured song/performer[S] is release by [O]
airline accident/operator [S] was accident for [O]
genre/artists [S] became a genre of [O]
risk factor/diseases [S] increases likelihood of [O]
book/illustrations by [S] illustrated by [O]
religious text/religion [S] contains principles of [O]
spacecraft/manufacturer [S] spacecraft developed by [O]

Table 2: Table showing an example of textual contexts
extracted for freebase predicates

sentence to the set of words that appear on the de-
pendency path between the subject and the object
mentions in the sentence. We replace the posi-
tions of the subject and the object mentions with
[S] and [O] to the keep track of the information
about the direction of the relation. The top occur-
ring pattern for each predicate is associated to this
predicate as its textual context. Table 2 shows ex-
amples of predicates and their corresponding tex-
tual context.

Sub-Type and Obj-Type textual contexts: We
use the labels of the entity types as the sub-type
and obj-type textual contexts. We collect the list of
entity types of each entity in the FB5M through the
predicate fb:type/instance. If an entity has
multiple entity types we pick the entity type that
is mentioned the most in the first sentence of each
Wikipedia article. Thus the textual contexts will
opt for entity types that is more natural to appear
in free text and therefore questions.

4.2 Generation of Special tokens

To generate the special tokens for copy ac-
tions (sec. 3.5) we run POS tagging on each of the
input textual contexts3. We replace every word in
each textual context with a combination of its con-
text id (e.g. C1) and its POS tag (e.g. NOUN). If
the same POS tag appears multiple times in the
textual context, it is given an additional id (e.g.
C1 NOUN 2). If a word in the output question
overlaps with a word in the input textual context,
this word is replaced by its corresponding tag.
For sentence and word tokenization we use the
Regex tokenizer from the NLTK toolkit (Bird,
2006), and for POS tagging and dependency pars-

3For the predicate textual contexts we run pos tagging on
the original text not the lexicalized dependency path
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Train Valid Test
pr

ed

# pred 169.4 24.2 48.4
# samples 55566.7 7938.1 15876.2
% samples 70.0 ± 2.77 10.0 ± 1.236 20.0 ± 2.12

su
b-

ty
pe

s

# types 112.7 16.1 32.2
# samples 60002.6 8571.8 17143.6
% samples 70.0 ± 7.9 10.0 ± 3.6 20.0 ± 6.2

ob
j-

ty
pe

s

# types 521.6 189.9 282.2
# samples 57878.1 8268.3 16536.6
% samples 70.0 ± 4.7 10.0 ± 2.5 20.0 ± 3.8

Table 3: Dataset statistics across 10 folds for each ex-
periment

ing we use the Spacy4 implementation.

5 Experiments

5.1 Zero-Shot Setups

We develop three setups that follow the same pro-
cedure as (Levy et al., 2017) for Zero-Shot relation
extraction to evaluate how our model generalizes
to: 1) unseen predicates, 2) unseen sub-types and
3) unseen obj-types.
For the unseen predicates setup we group all
the samples in SimpleQuestions by the predicate
of the input triple, and keep groups that con-
tain at least 50 samples. Afterwards we ran-
domly split those groups to 70% train, 10%
valid and 20% test mutual exclusive sets re-
spectively. This guarantees that if the predi-
cate fb:person/place of birth for exam-
ple shows during test time, the training and vali-
dation set will not contain any input triples hav-
ing this predicate. We repeat this process to create
10 cross validation folds, in our evaluation we re-
port the mean and standard deviation results across
those 10 folds. While doing this we make sure
that the number of samples in each fold – not only
unique predicates – follow the same 70%, 30%,
10% distribution. We repeat the same process for
the subject entity types and object entity types (an-
swer types) individually. Similarly, for example in
the unseen object-type setup, the question ”Which
artist was born in Berlin?” appearing in the test
set means that, there is no question in the train-
ing set having an entity of type artist. Table 3
shows the mean number of samples, predicates,
sub-types and obj-types across the 10 folds for
each experiment setup.

4https://spacy.io/

5.2 Baselines

SELECT is a baseline built from (Serban et al.,
2016) and adapted for the zero shot setup. During
test time given a fact F , this baseline picks a fact
Fc from the training set and outputs the question
that corresponds to it. For evaluating unseen pred-
icates, Fc has the same answer type (obj-type) as
F . And while evaluating unseen sub-types or obj-
types, Fc and F have the same predicate.

R-TRANSE is an extension that we propose
for SELECT. The input triple is encoded us-
ing the concatenation of the TransE embeddings
of the subject, predicate and object. At test
time, R-TRANSE picks a fact from the train-
ing set that is the closest to the input fact us-
ing cosine similarity and outputs the question that
corresponds to it. We provide two versions of
this baseline: R-TRANSE which indexes and re-
trieves raw questions with only a single place-
holder for the subject label, such as in (Serban
et al., 2016). And R-TRANSEcopy which in-
dexes and retrieves questions using our copy ac-
tions mechanism (sec. 3.5).

IR is an information retrieval baseline. Infor-
mation retrieval has been used before as base-
line for QG from text input (Rush et al., 2015;
Du et al., 2017). We rely on the textual con-
text of each input triple as the search keyword
for retrieval. First, the IR baseline encodes each
question in the training set as a vector of TF-
IDF weights (Joachims, 1997) and then does di-
mensionality reduction through LSA (Halko et al.,
2011). At test time the textual context of the input
triple is converted into a dense vector using the
same process and then the question with the clos-
est cosine distance to the input is retrieved. We
provide two versions of this baseline: IR on raw
text and IRcopy on text with our placeholders for
copy actions.

Encoder-Decoder. Finally, we compare
our model to the Encoder-Decoder model with
a single placeholder, the best performing model
from (Serban et al., 2016). We initialize the en-
coder with TransE embeddings and the decoder
with GloVe word embeddings. Although this
model was not originally built to generalize to un-
seen predicates and entity types, it has some gener-
alization abilities represented in the encoded infor-
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mation in the pre-trained embeddings. Pretrained
KB terms and word embeddings encode relations
between entities or between words as translations
in the vector space. Thus the model might be able
to map new classes or predicates in the input fact
to new words in the output question.

5.3 Training & Implementation Details
To train the neural network models we optimize
the negative log-likelihood of the training data
with respect to all the model parameters. For that
we use the RMSProp optimization algorithm with
a decreasing learning rate of 0.001, mini-batch
size = 200, and clipping gradients with norms
larger than 0.1. We use the same vocabulary for
both the textual context encoders and the decoder
outputs. We limit our vocabulary to the top 30, 000
words including the special tokens. For the word
embeddings we chose GloVe (Pennington et al.,
2014) pretrained embeddings of size 100. We
train TransE embeddings of size Hk = 200, on
the FB5M dataset (Bordes et al., 2015) using the
TransE model implementation from (Lin et al.,
2015). We set GRU hidden size of the decoder
to Hd = 500, and textual encoder to Hc = 200.
The networks hyperparameters are set with respect
to the final BLEU-4 score over the validation set.
All neural networks are implemented using Ten-
sorflow (Abadi et al., 2015). All experiments and
models source code are publicly available5 for the
sake of reproducibility.

5.4 Automatic Evaluation Metrics
To evaluate the quality of the generated question,
we compare the original labeled questions by
human annotators to the ones generated by
each variation of our model and the baselines.
We rely on a set of well established evaluation
metrics for text generation: BLEU-1, BLEU-
2, BLEU-3, BLEU-4 (Papineni et al., 2002),
METEOR (Denkowski and Lavie, 2014) and
ROUGEL (Lin, 2004).

5.5 Human Evaluation
Automatic Metrics for evaluating text generation
such as BLEU and METEOR give an measure
of how close the generated questions are to the
target correct labels. However, they still suffer
from many limitations (Novikova et al., 2017).

5https://github.com/hadyelsahar/
Zeroshot-QuestionGeneration

Automatic metrics might not be able to evaluate
directly whether a specific predicate was explicitly
mentioned in the generated text or not.
As an example, taking a target question and two
corresponding generated questions A and B:

What kind of film is kill bill vol. 2? BLEU

A) What is the name of the film kill bill vol. 2? 71

B) Which genre is kill bill vol. 2 in? 55

We can find that the sentence A having a
better BLEU score than B although it is not
able to express the correct target predicate (film
genre). For that reason we decide to run two
further human evaluations to directly measure the
following:
Predicate identification: annotators were asked to
indicate whether the generated question contains
the given predicate in the fact or not, either
directly or implicitly.
Naturalness: following (Ngomo et al., 2013), we
measure the comprehensibility and readability
of the generated questions. Each annotator was
asked to rate each generated question using a
scale from 1 to 5, where: (5) perfectly clear and
natural, (3) artificial but understandable, and
(1) completely not understandable. We run our
studies on 100 randomly sampled input facts
alongside with their corresponding generated
questions by each of the systems using the help of
4 annotators.

6 Results & Discussion

Automatic Evaluation Table 4 shows results of
our model compared to all other baselines across
all evaluation metrics. Our that encodes the KB
fact and textual contexts achieves a significant en-
hancement over all the baselines in all evalua-
tion metrics, with +2.04 BLEU-4 score than the
Encoder-Decoder baseline. Incorporating the part-
of-speech copy actions further improves this en-
hancement to reach +2.39 BLEU-4 points.
Among all baselines, the Encoder-Decoder base-
line and the R-TRANSE baseline performed the
best. This shows that TransE embeddings encode
intra-predicates information and intra-class-types
information to a great extent, and can generalize to
some extent to unseen predicates and class types.

Similar patterns can be seen in the evaluation
on unseen sub-types and obj-types (Table 5). Our
model with copy actions was able to outperform
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGEL METEOR
U

ns
ee

n
Pr

ed
ic

at
es

SELECT 46.81 ± 2.12 38.62 ± 1.78 31.26 ± 1.9 23.66 ± 2.22 52.04 ± 1.43 27.11 ± 0.74
IR 48.43 ± 1.64 39.13 ± 1.34 31.4 ± 1.66 23.59 ± 2.36 52.88 ± 1.24 27.34 ± 0.55
IRCOPY 48.22 ± 1.84 38.82 ± 1.5 31.01 ± 1.72 23.12 ± 2.24 52.72 ± 1.26 27.24 ± 0.57
R-TRANSE 49.09 ± 1.69 40.75 ± 1.42 33.4 ± 1.7 25.97 ± 2.22 54.07 ± 1.31 28.13 ± 0.54
R-TRANSECOPY 49.0 ± 1.76 40.63 ± 1.48 33.28 ± 1.74 25.87 ± 2.23 54.09 ± 1.35 28.12 ± 0.57
Encoder-Decoder 58.92 ± 2.05 47.7 ± 1.62 38.18 ± 1.86 28.71 ± 2.35 59.12 ± 1.16 34.28 ± 0.54

Our-Model 60.8 ± 1.52 49.8 ± 1.37 40.32 ± 1.92 30.76 ± 2.7 60.07 ± 0.9 35.34 ± 0.43
Our-Modelcopy 62.44 ± 1.85 50.62 ± 1.46 40.82 ± 1.77 31.1 ± 2.46 61.23 ± 1.2 36.24 ± 0.65

Table 4: Evaluation results of our model and all other baselines for the unseen predicate evaluation setup

Model BLEU-4 ROUGEL

Su
b-

Ty
pe

s R-TRANSE 32.41 ± 1.74 59.27 ± 0.92
Encoder-Decoder 42.14 ± 2.05 68.95 ± 0.86

Our-Model 42.13 ± 1.88 69.35 ± 0.9
Our-Modelcopy 42.2 ± 2.0 69.37 ± 1.0

O
bj

-T
yp

es

R-TRANSE 30.59 ± 1.3 57.37 ± 1.17
Encoder-Decoder 37.79 ± 2.65 65.69 ± 2.25

Our-Model 37.78 ± 2.02 65.51 ± 1.56
Our-Modelcopy 38.02 ± 1.9 66.24 ± 1.38

Table 5: Automatic evaluation of our model against se-
lected baselines for unseen sub-types and obj-types

Model % Pred. Identified Natural.

Encoder-Decoder 6 3.14

Our-Model (No Copy) 6 2.72

Our-Modelcopy (Types context) 37 3.21

Our-Modelcopy (All contexts) 46 2.61

Table 6: results of Human evaluation on % of predi-
cates identified and naturalness 0-5

all the other systems. Majority of systems have
reported a significantly higher BLEU-4 scores in
these two tasks than when generalizing to unseen
predicates (+12 and +8 BLEU-4 points respec-
tively). This indicates that these tasks are rela-
tively easier and hence our models achieve rela-
tively smaller enhancements over the baselines.

Human Evaluation Table 6 shows how dif-
ferent variations of our system can express the
unseen predicate in the target question with
comparison to the Encoder-Decoder baseline.
Our proposed copy actions have scored a sig-
nificant enhancement in the identification of
unseen predicates with up to +40% more than
best performing baseline and our model version
without the copy actions.

By examining some of the generated ques-
tions (Table 7) we see that models without
copy actions can generalize to unseen pred-
icates that only have a very similar free-
base predicate in the training set. For ex-
ample fb:tv program/language and
fb:film/language, if one of those predi-
cates exists in the training set the model can use
the same questions for the other during test time.
Copy actions from the sub-type and the obj-type
textual contexts can generalize to a great extent
to unseen predicates because of the overlap
between the predicate and the object type in many
questions (Example 2 Table 7). Adding the pred-
icate context to our model has enhanced model
performance for expressing unseen predicates by
+9% (Table 6). However we can see that it has
affected the naturalness of the question. The post
processing step does not take into consideration
that some verbs and prepositions do not fit in
the sentence structure, or that some words are
already existing in the question words (Example
4 Table 7). This does not happen as much when
having copy actions from the sub-type and the
obj-type contexts because they are mainly formed
of nouns which are more interchangeable than
verbs or prepositions. A post-processing step to
reform the question instead of direct copying from
the input source is considered in our future work.

7 Conclusion

In this paper we presented a new neural model
for question generation from knowledge bases,
with a main focus on predicates, subject types
or object types that were not seen at the train-
ing phase (Zero-Shot Question Generation). Our
model is based on an encoder-decoder architecture
that leverages textual contexts of triples, two at-
tention layers for triples and textual contexts and
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1 Reference what language is spoken in the
tv show three sheets?

Enc-Dec. in what language is three sheets
in?

Our-Model what the the player is the three
sheets?

Our-ModelCopy what is the language of three
sheets?

2 Reference how is roosevelt in Africa clas-
sified?

Enc-Dec. what is the name of a roosevelt in
Africa?

Our-Model what is the name of the movie
roosevelt in Africa?

Our-ModelCopy what is a genre of roosevelt in
Africa?

3 Reference where can 5260 philvron be
found?

Enc-Dec. what is a release some that 5260
philvron wrote?

Our-Model what is the name of an artist 5260
philvron?

Our-ModelCopy which star system contains the
star system body 5260 philvron?

4 Reference which university did ezra cor-
nell create?

Enc-Dec. which films are part of ezra cor-
nell?

Our-Model what is a position of ezra cornell?
Our-ModelCopy what founded the name of a uni-

versity that ezra cornell founded?

5 Reference who founded snocap , inc .?
Enc-Dec. which asian snocap is most as?
Our model what is the name of a person of

snocap?
Our-ModelCopy who is the person behind sno-

cap?

Table 7: Examples of generated questions from differ-
ent systems in comparison

finally a part-of-speech copy action mechanism.
Our method exhibits significantly better results
for Zero-Shot QG than a set of strong baselines
including the state-of-the-art question generation
from KB. Additionally, a complimentary human
evaluation, helps in showing that the improvement
brought by our part-of-speech copy action mech-
anism is even more significant than what the au-
tomatic evaluation suggests. The source code and
the collected textual contexts are provided for the
community 6

6https://github.com/hadyelsahar/
Zeroshot-QuestionGeneration
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Çaglar Gülçehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Point-
ing the unknown words. In Proceedings of the
54th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Pa-
pers. http://aclweb.org/anthology/P/
P16/P16-1014.pdf.

Nathan Halko, Per-Gunnar Martinsson, and Joel A.
Tropp. 2011. Finding structure with random-
ness: Probabilistic algorithms for constructing ap-
proximate matrix decompositions. SIAM Re-
view 53(2):217–288. https://doi.org/10.
1137/090771806.

Michael Heilman and Noah A. Smith. 2010. Good
question! statistical ranking for question genera-

tion. In Human Language Technologies: Confer-
ence of the North American Chapter of the As-
sociation of Computational Linguistics, Proceed-
ings, June 2-4, 2010, Los Angeles, California, USA.
pages 609–617. http://www.aclweb.org/
anthology/N10-1086.

Thorsten Joachims. 1997. A probabilistic analysis of
the rocchio algorithm with TFIDF for text catego-
rization. In Proceedings of the Fourteenth Inter-
national Conference on Machine Learning (ICML
1997), Nashville, Tennessee, USA, July 8-12, 1997.
pages 143–151.

Mitesh M. Khapra, Dinesh Raghu, Sachindra Joshi,
and Sathish Reddy. 2017. Generating natural lan-
guage question-answer pairs from a knowledge
graph using a RNN based question generation
model. In Proceedings of the 15th Conference of
the European Chapter of the Association for Com-
putational Linguistics, EACL 2017, Valencia, Spain,
April 3-7, 2017, Volume 1: Long Papers. pages 376–
385. https://aclanthology.info/pdf/
E/E17/E17-1036.pdf.

Ryan Kiros, Ruslan Salakhutdinov, and Richard S.
Zemel. 2014. Unifying visual-semantic embed-
dings with multimodal neural language models.
CoRR abs/1411.2539. http://arxiv.org/
abs/1411.2539.
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Abstract

Studies in Social Sciences have revealed that
when people evaluate someone else, their eval-
uations often reflect their biases. As a re-
sult, rater bias may introduce highly subjec-
tive factors that make their evaluations inaccu-
rate. This may affect automated essay scoring
models in many ways, as these models are typ-
ically designed to model (potentially biased)
essay raters. While there is sizeable literature
on rater effects in general settings, it remains
unknown how rater bias affects automated es-
say scoring. To this end, we present a new
annotated corpus containing essays and their
respective scores. Different from existing cor-
pora, our corpus also contains comments pro-
vided by the raters in order to ground their
scores. We present features to quantify rater
bias based on their comments, and we found
that rater bias plays an important role in auto-
mated essay scoring. We investigated the ex-
tent to which rater bias affects models based
on hand-crafted features. Finally, we propose
to rectify the training set by removing essays
associated with potentially biased scores while
learning the scoring model.

1 Introduction

Automated Essay Scoring (AES) aims at develop-
ing models that can grade essays automatically or
with reduced involvement of human raters (Page,
1967). AES systems may rely not only on gram-
mars, but also on more complex features such as
semantics, discourse and pragmatics (Davis and
Veloso, 2016; Song et al., 2014; Farra et al., 2015;
Somasundaran et al., 2014). Thus, a prominent
approach to AES is to learn scoring models from
previously graded samples, by modeling the scor-
ing process of human raters. When given the same
set of essays to evaluate and enough graded sam-
ples, AES systems tend to achieve high agreement
levels with trained human raters (Taghipour and

Ng, 2016).
While research in AES has focused on design-

ing scoring models that maximize the agreement
with human raters(Chen and He, 2013; Alikan-
iotis et al., 2016), there is a lack of discussion
on how biased are human ratings. Despite mak-
ing judgments on a common dimension, raters
may be influenced by their attitudes, their cul-
tural background, and their political and economic
views (Guerra et al., 2011). Since AES models
are designed to learn by analyzing human-graded
essays, AES models could inherit rating biases
present in the scores from human raters, and this
may result in systematic errors. Thus, our ob-
jective in this paper is to examine the extent to
which rater bias affects the effectiveness of state-
of-the-art AES models. A deeper understanding
of such factors may help mitigating the effects of
rater bias, enabling AES models to achieve greater
objectivity.

In order to study the effects of rater bias in essay
scoring, we created an annotated corpus contain-
ing essays written by high school students as part
of a standardized Brazilian national exam. Our
corpus contains a number of essays, written in Por-
tuguese, along with their respective scores. Fur-
ther, raters must also provide a comment for each
essay in order to ground their scores. As in (Re-
casens et al., 2013) we built subjectivity and sen-
timent lexicons that serve as features to represent
the comments, that is, rater comments are repre-
sented according to the subjectivity distribution as
given by specific subjectivity cues in our lexicons.
We present empirical evidence suggesting that the
subjectivity distribution within rater comment is
a proxy for the score that is given to the essay.
More specifically, very low (or very high) scores
are associated with essays for which rater com-
ments showed a very particular subjectivity distri-
bution. We also investigated the relationship be-
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tween subjectivity distribution and the misalign-
ment between human raters and AES models. In-
terestingly, the subjectivity distribution becomes
very characteristic as the misalignment increases.

Our main contributions are three-fold:

• We built subjectivity lexicons for the Por-
tuguese language. These lexicons include
words and phrases associated with different
subjectivity dimensions− sentiments, factive
verbs, entailments, intensifiers and hedges.
We identify biased language within rater
comments by calculating the word mover’s
distance (Kusner et al., 2015) between com-
ments and the lexicons. This approach ben-
efits from large unsupervised corpora, that
can be used to learn effective word embed-
dings (Mikolov et al., 2013). By identify-
ing biased language, we observed that biases
can work to inflate essay scores or to deflate
them.

• We employ a set of linguistic features in or-
der to learn different AES models, and we
evaluate the effects of biased ratings in the
efficacy of these models. In summary, biased
ratings affect AES models in different ways,
but in general the misalignment between hu-
man rater and the AES model is more acute
when the rater shows biased language in their
comments.

• We propose simple ways of preventing and
reducing the negative effects of biased ratings
while learning AES models. Results in a con-
trolled experimental setting revealed that de-
tecting and removing biased ratings from the
training set lead to significant improvements
in automated essay scoring.

In the remainder of this paper, Section 2 dis-
cusses related work on automated essay scoring.
Section 3 describes the features used for learning
AES models, as well as the features used for iden-
tifying biased language in rater comments. Fur-
ther, our debiasing approach is also discussed in
Section 3. Section 4 describes the data, the setup
and the results of our empirical evaluation. Fi-
nally, Section 5 provides our conclusions.

2 Related Work

Research in cognitive science, psychology and
other social studies offer a great amount of work

on (conscious and unconscious) biases and their
effects on a variety of human activities (Kaheman
and Tversky, 1972; Tversky and Kaheman, 1974).
Biases can create situations that lead us to make
decisions that project our experiences and values
onto others (Baron, 2007; Ariely, 2008). While
there is sizeable literature on rater effects in gen-
eral settings (Myford and Wolfe, 2003), it remains
unknown how biased ratings affect automated es-
say scoring models. Rather, works on automated
essay scoring are mainly focused on designing
AES models by maximizing the agreement with
human raters, despite the assertiveness of the rat-
ings.

Typically, AES systems are built on the basis of
predefined linguistic features that are then given
to a machine learning algorithm (Amorim and
Veloso, 2017). Works that fall into this approach
include (Srihari et al., 2008, 2007; Cummins et al.,
2016; McNamaraa et al., 2015). Further, authors
in (Dong and Zhang, 2016) presented an empiri-
cal analysis of features typically used for learning
AES models. Authors in (Crossley et al., 2015)
studied a broader category of features that can also
be used to build AES models. There are also more
recent approaches for learning AES models that do
not assume a set of predefined features. These ap-
proaches are based on deep architectures, and in-
clude (Alikaniotis et al., 2016; Taghipour and Ng,
2016; Riordan et al., 2017; Dong et al., 2017). Fi-
nally, there also models based on domain adapta-
tion (Phandi et al., 2015) and unsupervised learn-
ing (Chen et al., 2010).

Few works have investigated the subjective na-
ture of essay scoring. An interesting excep-
tion is (Allen et al., 2015), in which the au-
thors investigated the misalignment between stu-
dents’ and teachers’ ratings of essay. Results re-
vealed that students who were less accurate in their
self-assessments produced essays that were more
causal, contained less meaningful words, and had
less argument overlap between sentences.

The work in this paper builds upon prior work
on building subjectivity lexicons (Klebanov et al.,
2012) and subjectivity detection (Recasens et al.,
2013), but in our case applied to score agree-
ment. In this respect, our work is more comparable
to (Klebanov and Beigman, 2009; Beigman and
Klebanov, 2009), where authors discussed and in-
vestigated the problem of learning in the presence
of biased annotators. Other works that are also
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close to ours include (Farra et al., 2015; Somasun-
daran et al., 2016; Song et al., 2014), in which the
authors studied the problem of scoring persuasive
and argumentative essays.

3 Method

Our aim in this work is to learn AES models that
are less prone to the effects of biased ratings, that
is, models that are able to perform highly objec-
tive and impartial judgements. Thus, we start this
section by proposing features that are useful for
building AES models. Then, we propose another
set of features that are useful for identifying bi-
ased ratings based on subjectivity cues. Finally,
we propose an approach to remove biased ratings
from the training set, thus learning more objective
AES models.

3.1 Features for Essay Scoring

As most existing AES systems, our models are
built on the basis of predefined features (e.g. num-
ber of words, average word length, and number of
spelling errors) that are given to a machine learn-
ing algorithm. The features used to build our AES
models are discussed and evaluated in (Amorim
and Veloso, 2017). They may fall into two broad
categories:

Domain features: These are simple linguistic
features, including the number of first-person
pronouns, demonstrative pronouns and verbs.
Features also include the number of pronouns
and verbs normalized by the number of to-
kens in the corresponding sentence.

General features: Most of the general features
are based on (Attali and Burstein, 2006).
However, due to lack of tools for processing
the Portuguese language, we implemented
the following features, which are sub-divided
as follows:

Grammar and style: Features include the
number of grammar errors and mis-
spellings. These numbers are also nor-
malized by the number of tokens in
the corresponding sentence. In or-
der to evaluate style, we designed fea-
tures based on the style rules suggested
in (Martins, 2000). Features include the
number of style errors and the number
of style of errors per sentence.

Organization and development: Features
include the number of discourse mark-
ers from the Portuguese grammar, and
the number of discourse markers per
sentence. Discourse markers are lin-
guistic units that establish connections
between sentences to build coherent and
knit discourse.

Lexical complexity: Features include
the Portuguese version for the Flesh
score (Martins et al., 1996), the average
word length (i.e., the number of sylla-
bles), the number of tokens in an essay,
and the number of different words in an
essay.

Prompt-specific vocabulary usage:
Features include different distances
between prompt and essay (i.e., cosine
distance). In this case, both the prompt
and the essay are treated as frequency
vectors of words.

3.2 Features for Identifying Biased Ratings
We assume a scenario in which essay raters must
ground the provided scores with specific com-
ments. We also assume that we can identify bi-
ased ratings by detecting comments with biased
language. In order to detect biased language, we
developed subjectivity lexicons for the Portuguese
language. Specifically, a linguist built a list of
Portuguese lexicons based on the analysis of ex-
pressions that seem to express some subjectivity
of the human evaluator. Our subjectivity lexicons
are categorized into the following groups:

Argumentation: This lexicon includes markers
of argumentative discourse. Argumentative
markers include lexical expressions and con-
nectives, such as: “even” (até), “by the
way” (aliás), “as a consequence” (como con-
sequência), “or else” (ou então), “as if”
(como se), “rather than” (em vez de), “some-
how” (de certa forma), “despite” (apesar de),
among others.

Presupposition: This lexicon includes markers
that suggest the rater assumes something is
true. Some examples of such markers in-
clude: “nowadays” (hoje em dia), “to keep
on doing” (continuar a), and factive verbs.

Modalization: This lexicon indicates that the
writer exhibits a stance towards its own state-
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ment. Some examples of such markers are
adverbs, auxiliary verbs, modality clauses,
and some type of verbs.

Sentiment: This lexicon also includes markers
that indicate a state of mind or a sentiment
of the rater while evaluating the essay. Some
examples of such markers include: “with re-
gret” (infelizmente), “with pleasure” (feliz-
mente), and “it is preferable” (preferencial-
mente).

Valuation: This lexicon assigns a value to facts.
Usually, adjectives are employed as valua-
tion, but as adjectives are context dependent
we use only in this class the markers related
to intensification, such as: “absolutely” (ab-
solutamente), “highly” (altamente), and “ap-
proximately” (aproximadamente).

3.3 Debiasing the Training Set
Bias is generally defined as a deviation from a
norm. If the norm is unknown to us, then bias is
hard to identify. Thus, our approach for debias-
ing the training set starts by finding the norm (in
terms of the subjectivity within rater comments)
for each score value. Intuitively, the amount of
subjectivity within a comment should be similar
to the amount of subjectivity within another com-
ment, given that the scores associated with the cor-
responding essays are close to each other. So, we
should not expect to find essays having discrepant
scores, but for which the corresponding comments
show a similar amount of subjectivity. Our debi-
asing approach is divided into three steps:

1. Rater comments are represented according to
the amount of subjectivity cues. In order to
represent a comment, we calculate the dis-
tance between it and each of the five subjec-
tivity lexicons. More specifically, we learn
word embeddings (Mikolov et al., 2013) for
the Portuguese language, and then we em-
ployed the Word Mover’s Distance func-
tion (Kusner et al., 2015) between a comment
and the five subjectivity lexicons. As a re-
sult, each comment is finally represented by
a five-dimensional subjectivity vector, where
each dimension corresponds to the amount of
a specific type of subjectivity. This results
in a subjectivity space, where comments are
placed according to their amount of subjec-
tivity.

2. We group subjectivity vectors according to
the score misalignment associated with the
corresponding essay. Then, we calculate cen-
troids for each group in order to find the pro-
totypical subjectivity vector for each group
(or misalignment level).

3. The distance to the prototypical subjectivity
vector is used as a measure of deviation from
the norm. Specifically, we sort essays accord-
ing to the distance between the subjectivity
vector and the corresponding centroid. Then,
we define a number of essays to be removed
from the training set. The relative number of
essays to be removed from the training set is
controlled by hyper-parameter α.

4 Experiments

In this section, we present the data we used to
learn and evaluate different AES models. Then,
we discuss our evaluation procedure and report the
results obtained with our debiasing approach. In
particular, our experiments aim to answer the fol-
lowing research questions:

RQ1: How scores are distributed across the es-
says? How aligned with human raters are dif-
ferent AES models?

RQ2: Does subjectivity in rater comments vary
depending on the given score?

RQ3: Does subjectivity in rater comments vary
depending on the misalignment between the
AES model and the human rater?

RQ4: Can we mitigate the effects of biased rat-
ings?

4.1 Corpus
Our corpus is composed of essays (n = 1, 840)
that were written by high-school students as part
of a standardized Brazilian national exam. Each
essay is evaluated according to the following five
objective aspects:

Formal language: Mastering of the formal Por-
tuguese language.

Relevance to the prompt: Understanding of es-
say prompt and application of concepts from
different knowledge fields, to develop the
theme in an argumentative dissertation for-
mat.
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Figure 1: Distribution of the scores given by human
raters. Also, distribution of the scores given by differ-
ent AES models.

Organization of information: Selecting, con-
necting, organizing, and interpreting
information.

Argumentation: Demonstration of knowledge of
linguistic mechanisms required to construct
arguments.

Solution proposal: Formulation of a proposal to
the problem presented.

The final score is given as the sum of the scores
associated with each aspect. Raters are supposed
to perform impartial and objective evaluations,
and they must enter specific comments in order to
ground their scores. Also, each essay was assessed
by one rater.

Bias-free ratings: We also separate a number of
essays (n = 50) which received similar scores by
three expert raters who were directly instructed to
perform impartial, objective, and unbiased evalu-
ations. These raters are PhD-level in Linguistics
with unlimited time to provide their ratings, and
they do not participate on the creation of the train-
ing set. We assume the ratings given to these es-
says were not contaminated by biased judgements,
and we will use these essays for evaluating the ef-
ficacy of AES models learned after the training set
is debiased.

4.2 Setup

We implemented the different AES models us-
ing scikit-learn (Pedregosa et al., 2011). Specif-
ically, we learn AES models using Support Vec-
tor Regression (SVR), Random Forests (RF), Lo-
gistic Regression (LR), Gradient Boosting (GB),
and Multi-Layer Perceptron (MLP). All models
are based on the same set of features, previously
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Figure 2: Distribution of misalignment for the different
AES models.

described in Section 3.1, and all models are trained
in regression mode. The measure used to evalu-
ate the effectiveness of the different models is the
quadratic weighted kappa (κ) which measures the
inter-agreement between human raters and AES
models (Cohen, 1960). We conducted five-fold
cross validation, where the dataset is arranged into
five folds with approximately the same number of
examples. At each run, four folds are used as train-
ing set, and the remaining fold is used as test set.
We also kept a separate validation set. The train-
ing set is used to learn the models, the validation
set is used to tune hyper-parameters and the test
set is used to estimate κ numbers for the different
the models. Unless otherwise stated, the results re-
ported are the average of the five runs, and are used
to assess the overall effectiveness of each model.
To ensure the relevance of the results, we assess
the statistical significance of our measurements by
comparing each pair of models using a Welch’s t-
test with p−value ≤ 0.01.

4.3 Results and Discussion

Next we report results obtained from the execution
of the experiments, and discuss these results in the
light of our research questions.

Score distribution: The first experiment is con-
cerned with RQ1. Figure 1 shows how scores
are distributed over the essays in our corpus.
Although the distribution differs for each AES
model, scores are centered around 4, and few
essays received extreme scores. The LR model
seems to have a preference for lower scores. The
scores provided by the GB and MLP models are
better distributed.

Figure 2 shows how aligned with human raters
are the different AES models. For most of the es-
says, AES models are well aligned with human
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Figure 3: Subjectivity distribution for human raters.

raters, showing misalignments that vary from −2
to +2. For some essays, the LR model tends to
give scores that are much smaller than the score
given by the human rater. The GB and MLP mod-
els perform very similary, but the MLP model
shows a slightly better alignment.

Subjectivity vectors and biased ratings: The
second experiment is concerned with RQ2. Fig-
ure 3 shows the average subjectivity vector
grouped according to the score given to the cor-
responding essay (i.e., the centroid or prototypi-
cal vector of a score). More specifically, we first
grouped subjectivity vectors according to the score
associated with the corresponding essay, and then
we calculated the average subjectivity vector for
each group. As shown in Figure 3, the argumen-
tation dimension increases with the score, while
modalization tends to decrease. Presupposition,
valuation and sentiment dimensions show a very
similar trend with varying score values.

Figure 4 shows t-SNE representations (van ter
Maaten and Hinton, 2008) for the average subjec-
tivity vectors (centroids for each group of score).
Three larger clusters emerged: subjectivity vectors
associated with score 0, subjectivity vectors asso-
ciated with scores between 1 and 6, and subjectiv-
ity vectors associated with scores between 6 and
10.

Subjectivity vectors and misalignment: The
third experiment is concerned with RQ3. Fig-
ure 5 shows the average subjectivity vector con-
sidering different levels of misalignment. More
specifically, we grouped essays according to the
misalignment between the score provided by the
AES model and the human rater. Then, we cal-
culated the average subjectivity vector for each
group. As we can see, subjectivity affects AES
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Figure 4: t-SNE representation for subjectivity vectors.
Numbers correspond to the scores assigned to corre-
sponding essays.

models in different ways. In general, however,
subjectivity vectors within groups of essays asso-
ciated with extreme misalignments are very differ-
ent from subjectivity vectors associated with mild
misalignments.

Figure 6 shows t-SNE representations for sub-
jectivity vectors grouped by misalignment levels.
Each cluster contains≈ 80% of the vectors associ-
ated with one of the misalignment levels inside the
cluster. That is, 20% of the essays will be removed
from the training set (i.e., α = 0.2).

Debiasing the training set: The last experiment
is concerned with RQ4. As described in Section
3.3, our debiasing approach works by removing
from the training set a number of essays (con-
trolled by α) that are more likely to be associated
with biased ratings. Table 1 shows κ numbers for
different α values. Clearly, the inter-agreement
decreases as we remove essays with potentially bi-
ased ratings from the training set. This happens
because the test set remains with essays that are
potentially associated with biased ratings. In this
case, removing biased ratings from the training set
is always detrimental to the efficacy of AES mod-
els.

In order to properly evaluate our debiasing ap-
proach, we employ the 50 separate essays with
bias-free ratings as our test set. In this case, biased
ratings are removed from the training set, and the
test set is composed by unbiased ratings. Table 2
shows κ numbers for different α values. As ex-
pected, the inter-agreement increases significantly
with α, until a point in which keeping removing
essays from the training set becomes detrimental.
This happens either because we start to remove
unbiased ratings, or the training set becomes too
small. In all cases, the MLP model showed to be
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Figure 5: Subjectivity distribution. (Top to bottom)
SVR, RF, LR, GB, and MLP.

-9

-8

-7
-6

-5

-4

-3

-2 -1
0

1

2

3

4

5

6

-10

-9-8
-7

-6

-5

-4-3 -2

-1

0

1
2

3

4

5

6
7

Figure 6: t-SNE representation for subjectivity vectors
grouped by misalignment levels. The corresponding
regions comprise essays associated with specific mis-
alignment levels. (Top) GB model. (Bottom) MLP
model.

κ
α SVR RF LR GB MLP
− .404 .410 .408 .432 .446
0.1 .390 .339 .364 .378 .393
0.2 .365 .331 .344 .370 .393
0.3 .345 .326 .338 .365 .386
0.4 .340 .324 .333 .361 .384
0.5 .307 .317 .328 .358 .382

Table 1: κ numbers for different models with varying α
values. There are potentially biased ratings in the test
set.

κ
α SVR RF LR GB MLP
− .451 .472 .466 .491 .521
0.1 .467 .491 .481 .505 .544
0.2 .481 .511 .490 .521 .562
0.3 .488 .526 .497 .542 .571
0.4 .491 .523 .499 .547 .569
0.5 .481 .518 .494 .545 .560

Table 2: κ numbers for different models with varying
α values. Ratings in the the test set are likely to be
unbiased.

statistically superior than the other models.
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5 Conclusions

In this paper, we investigated the problem of au-
tomated essay scoring in the presence of biased
ratings. Most of the existing work on automated
essay scoring is devoted to maximize the agree-
ment with the human rater. This is fairly danger-
ous, since human ratings may be biased. Overall,
discussion about the quality of the ratings in au-
tomated essay scoring is lacking, and this was a
central interest in this paper. Specifically, we cre-
ate a subjectivity space from which potentially bi-
ased scores/ratings can be identified. We showed
that removing biased scores from the training set
results in improved AES models. Finally, the es-
say data as well as the subjectivity lexicons that
we will release as part of this research could prove
useful in other bias related tasks.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake VanderPlas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. 2011.
Scikit-learn: Machine learning in python. Journal
of Machine Learning Research 12:2825–2830.

Peter Phandi, Kian Ming Adam Chai, and Hwee Tou
Ng. 2015. Flexible domain adaptation for auto-
mated essay scoring using correlated linear regres-
sion. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing. pages 431–439.

Marta Recasens, Cristian Danescu-Niculescu-Mizil,
and Dan Jurafsky. 2013. Linguistic models for an-
alyzing and detecting biased language. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics. pages 1650–1659.

Brian Riordan, Andrea Horbach, Aoife Cahill, Torsten
Zesch, and Chong Min Lee. 2017. Investigating
neural architectures for short answer scoring. In
Proceedings of the 12th Workshop on Innovative
Use of NLP for Building Educational Applications.
pages 159–168.

Swapna Somasundaran, Jill Burstein, and Martin
Chodorow. 2014. Lexical chaining for measuring
discourse coherence quality in test-taker essays. In
Proceedings of the 25th International Conference on
Computational Linguistics. pages 950–961.

Swapna Somasundaran, Brian Riordan, Binod
Gyawali, and Su-Youn Yoon. 2016. Evaluating
argumentative and narrative essays using graphs. In
Proceedings of the 26th International Conference
on Computational Linguistics. pages 1568–1578.

Yi Song, Michael Heilman, Beata Klebanov, and Paul
Deane. 2014. Applying argumentation schemes for
essay scoring. In Proceedings of the 1st Workshop
on Argument Mining. pages 69–78.

Sargur Srihari, Jim Collins, Rohini Srihari, Har-
ish Srinivasan, Shravya Shetty, and Janina Brutt-
Griffler. 2008. Automatic scoring of short handwrit-
ten essays in reading comprehension tests. Artif. In-
tell. 172(2-3):300–324.

Sargur Srihari, Rohini Srihari, Pavithra Babu, and Har-
ish Srinivasan. 2007. On the automatic scoring
of handwritten essays. In Proceedings of the 20th
International Joint Conference on Artificial Intelli-
gence. pages 2880–2884.

Kaveh Taghipour and Hwee Tou Ng. 2016. A neural
approach to automated essay scoring. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing. pages 1882–1891.

Amos Tversky and Daniel Kaheman. 1974. Judgement
under uncertainty: Heuristics and biases. Science
185:1124–1131.

Laurens van ter Maaten and Geoffrey Hinton. 2008.
Visualizing high-dimensional data using t-sne.
Journal of Machine Learning Research 9:2579–
2605.

237



Proceedings of NAACL-HLT 2018, pages 238–251
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Content-Based Citation Recommendation

Chandra Bhagavatula
Allen Institute for AI

chandrab@allenai.org

Sergey Feldman
Data Cowboys ∗

sergey@data-cowboys.com

Russell Power
Independent Researcher †

russell.power@gmail.com

Waleed Ammar
Allen Institute for AI

waleeda@allenai.org

Abstract

We present a content-based method for rec-
ommending citations in an academic paper
draft. We embed a given query document into
a vector space, then use its nearest neighbors
as candidates, and rerank the candidates us-
ing a discriminative model trained to distin-
guish between observed and unobserved cita-
tions. Unlike previous work, our method does
not require metadata such as author names
which can be missing, e.g., during the peer
review process. Without using metadata, our
method outperforms the best reported results
on PubMed and DBLP datasets with relative
improvements of over 18% in F1@20 and
over 22% in MRR. We show empirically that,
although adding metadata improves the per-
formance on standard metrics, it favors self-
citations which are less useful in a citation rec-
ommendation setup. We release an online por-
tal for citation recommendation based on our
method,1 and a new dataset OpenCorpus of
7 million research articles to facilitate future
research on this task.

1 Introduction

Due to the rapid growth of the scientific litera-
ture, conducting a comprehensive literature review
has become challenging, despite major advances
in digital libraries and information retrieval sys-
tems. Citation recommendation can help improve
the quality and efficiency of this process by sug-
gesting published scientific documents as likely
citations for a query document, e.g., a paper draft
to be submitted for ACL 2018. Existing citation
recommendation systems rely on various informa-
tion of the query documents such as author names
and publication venue (Ren et al., 2014; Yu et al.,
∗Work done while on contract with AI2
†Work done while at AI2
1 http://labs.semanticscholar.org/
citeomatic/

2012), or a partial list of citations provided by the
author (McNee et al., 2002; Liu et al., 2015; Jia
and Saule, 2017) which may not be available, e.g.,
during the peer review process or in the early stage
of a research project.

Our method uses a neural model to embed all
available documents into a vector space by encod-
ing the textual content of each document. We then
select the nearest neighbors of a query document
as candidates and rerank the candidates using a
second model trained to discriminate between ob-
served and unobserved citations. Unlike previous
work, we can embed new documents in the same
vector space used to identify candidate citations
based on their text content, obviating the need to
re-train the models to include new published pa-
pers. Further, unlike prior work (Yang et al., 2015;
Ren et al., 2014), our model is computationally ef-
ficient and scalable during both training and test
time.

We assess the feasibility of recommending cita-
tions when some metadata for the query document
is missing, and find that we are able to outperform
the best reported results on two datasets while only
using papers’ textual content (i.e. its title and ab-
stract). While adding metadata helps further im-
prove the performance of our method on standard
metrics, we found that it introduces a bias for self-
citation which might not be desirable in a citation
recommendation system. See §5 for details of our
experimental results.

Our main contributions are:
• a content-based method for citation recom-

mendation which remains robust when meta-
data are missing for query documents,
• large improvements over state of the art

results on two citation recommendation
datasets despite omitting the metadata,
• a new dataset of seven million research pa-

pers, addressing some of the limitations in
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Figure 1: An overview of our Citation Recommendation system. In Phase 1 (NNSelect), we project all docu-
ments in the corpus (7 in this toy example) in addition to the query document dq into a vector space, and use its
(K=4) nearest neighbors: d2, d6, d3, and d4 as candidates. We also add d7 as a candidate because it was cited in
d3. In Phase 2 (NNRank), we score each pair (dq, d2), (dq, d6), (dq, d3), (dq, d4), and (dq, d7) separately to rerank
the candidates and return the top 3 candidates: d7, d6 and d2.

previous datasets used for citation recom-
mendation, and
• a scalable web-based literature review tool

based on this work.2

2 Overview

We formulate citation recommendation as a rank-
ing problem. Given a query document dq and a
large corpus of published documents, the task is
to rank documents which should be referenced in
dq higher than other documents. Following pre-
vious work on citation recommendation, we use
standard metrics (precision, recall, F-measure and
mean reciprocal rank) to evaluate our predictions
against gold references provided by the authors of
query documents.

Since the number of published documents in the
corpus can be large, it is computationally expen-
sive to score each document as a candidate refer-
ence with respect to dq. Instead, we recommend
citations in two phases: (i) a fast, recall-oriented
candidate selection phase, and (ii) a feature rich,
2 https://github.com/allenai/citeomatic

precision-oriented reranking phase. Figure 1 pro-
vides an overview of the two phases using a toy
example.

Phase 1 - Candidate Selection: In this phase,
our goal is to identify a set of candidate references
for dq for further analysis without explicitly iterat-
ing over all documents in the corpus.3 Using a
trained neural network, we first project all pub-
lished documents into a vector space such that a
document tends to be close to its references. Since
the projection of a document is independent of the
query document, the entire corpus needs to be em-
bedded only once and can be reused for subse-
quent queries. Then, we project each query doc-
ument dq to the same vector space and identify its
nearest neighbors as candidate references. See §3
for more details about candidate selection.

3 In order to increase the chances that all references are
present in the list of candidates, the number of candidates
must be significantly larger than the total number of cita-
tions of a document, but also significantly smaller than the
number of documents in the corpus.
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Phase 2 - Reranking: Phase 1 yields a manage-
able number of candidates making it feasible to
score each candidate di by feeding the pair (dq, di)
into another neural network trained to discriminate
between observed and unobserved citation pairs.
The candidate documents are sorted by their es-
timated probability of being cited in dq, and top
candidates are returned as recommended citations.
See §4 for more details about the reranking model
and inference in the candidate selection phase.

3 Phase 1: Candidate Selection
(NNSelect)

In this phase, we select a pool of candidate cita-
tions for a given query document to be reranked in
the next phase. First, we compute a dense embed-
ding of the query document dq using the document
embedding model (described next), and select K
nearest neighbor documents in the vector space as
candidates.4 Following Strohman et al. (2007), we
also include the outgoing citations of the K near-
est neighbors as candidates.

The output of this phase is a list of candi-
date documents di and their corresponding scores
NNSelect(dq, di), defined as the cosine similar-
ity between dq and di in the document embedding
space.

Document embedding model. We use a
supervised neural model to project any doc-
ument d to a dense embedding based on its
textual content. We use a bag-of-word repre-
sentation of each textual field, e.g., d[title] =
{‘content-based’, ‘citation’, ‘recommendation’},
and compute the feature vector:

fd[title] =
∑

t∈d[title]
w

mag
t

wdir
t

‖wdir
t ‖2

, (1)

where wdir
t is a dense direction embedding and

w
mag
t is a scalar magnitude for word type t.5 We

then normalize the representation of each field and
compute a weighted average of fields to get the
document embedding, ed. In our experiments, we
use the title and abstract fields of a document d:

ed = λtitle fd[title]

‖fd[title]‖2
+ λabstract fd[abstract]

‖fd[abstract]‖2
,

4 We tune K as a hyperparameter of our method.
5 The magnitude-direction representation is based on Sali-

mans and Kingma (2016) and was found to improve re-
sults in preliminary experiments, compared to the standard
“direction-only” word representation.

where λtitle and λabstract are scalar model parame-
ters.

Training. We learn the parameters of the doc-
ument embedding model (i.e., λ∗, wmag

∗ ,wdir
∗ ) us-

ing a training set T of triplets 〈dq, d+, d−〉 where
dq is a query document, d+ is a document cited
in dq, and d− is a document not cited in dq. The
model is trained to predict a high cosine similarity
for the pair (dq, d

+) and a low cosine similarity for
the pair (dq, d

−) using the per-instance triplet loss
(Wang et al., 2014):

loss = max
(
α+ s(dq, d

−)− s(dq, d+), 0
)
, (2)

where s(di, dj) is defined as the cosine similarity
between document embeddings cos-sim(edi , edj ).
We tune the margin α as a hyperparameter of the
model (see Appendix B for more details). Next,
we describe how negative examples are selected.

Selecting negative examples. Defining positive
examples is straight-forward; we use any (dq, d

+)
pair where a document dq in the training set cites
d+. However, a careful choice of negative training
examples is critical for model performance. We
use three types of negative examples:

1. Random: any document not cited by dq.
2. Negative nearest neighbors: documents

that are close to dq in the embedding space,
but are not cited in it.6

3. Citation-of-citation: documents referenced
in positive citations of dq, but are not cited
directly in dq.

Negative examples belong to at least one of
these types that serve different, and complemen-
tary purposes. Selecting a paper from the cor-
pus at random as a negative example typically re-
sults in easy negative examples. Selecting near-
est neighbor documents in the embedding space
used for candidate selection enables the re-ranking
phase (described in §4) to fix some of the mistakes
made in the candidate selection step. Finally, us-
ing citations-of-citations as negative examples is
based on the assumption that the authors would
have included them as positive examples if they
were relevant for the query paper. In Appendix
§A, we describe the number of negative examples
of each type used for training. Next, we describe
how to rerank the candidate documents.
6 Since the set of approximate neighbors depend on model pa-

rameters, we recompute a map from each query document
to its K nearest neighbors before each epoch while training
the document embedding model.
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Figure 2: NNRank architecture. For each of the textual and categorical fields, we compute the cosine similarity
between the embedding for dq and the corresponding embedding for di. Then, we concatenate the cosine similarity
scores, the numeric features and the summed weights of the intersection words, followed by two dense layers with
ELU non-linearities The output layer is a dense layer with sigmoid non-linearity, which estimates the probability
that dq cites di.

4 Phase 2: Reranking Candidates
(NNRank)

In this phase, we train another model which takes
as input a pair of documents (dq, di) and estimates
the probability that di should be cited in dq.

Input features. A key point of this work is to
assess the feasibility of recommending citations
without using metadata, but we describe all fea-
tures here for completeness and defer this discus-
sion to §5. For each document, we compute dense
feature vectors fd[field] as defined in Eq. 1 for the
following fields: title, abstract, authors, venue and
keyphrases (if available). For the title and abstract,
we identify the subset of word types which appear
in both documents (intersection), and compute the
sum of their scalar weights as an additional fea-
ture, e.g.,

∑
t∈∩title w

∩
t . We also use log number

of times the candidate document di has been cited
in the corpus, i.e., log(di[in-citations]). Finally, we
use the cosine similarity between dq and di in the
embedding space, i.e., cos-sim(edq , edi).

Model architecture. We illustrate the
NNRank model architecture in Figure 2.

The output layer is defined as:

s(di, dj) = FeedForward(h), (3)

h =
[
gtitle;gabstract;gauthors;gvenue;

gkeyphrases; cos-sim(edq , edi);
∑

t∈∩title
w∩t ;

∑
t∈∩abstract

w∩t ;

di[in-citations]
]
,

gfield = cos-sim(fdq [field], fdi[field]),

where ‘FeedForward’ is a three layer feed-forward
neural network with two exponential linear unit
layers (Clevert et al., 2015) and one sigmoid layer.
’;’ indicates concatenation.

Training. The parameters of the NNRankmodel
are w

mag
∗ ,wdir

∗ , w
∩
∗ and parameters of the three

dense layers in ‘FeedForward’. We reuse the
triplet loss in Eq. 2 to learn these parameters, but
redefine the similarity function s(di, dj) as the sig-
moid output described in Eq. 3.

At test time, we use this model to recommend
candidates di with the highest s(dq, di) scores.

5 Experiments

In this section, we describe experimental results of
our citation recommendation method and compare
it to previous work.

Datasets. We use the DBLP and PubMed
datasets (Ren et al., 2014) to compare with previ-
ous work on citation recommendation. The DBLP
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dataset contains over 50K scientific articles in the
computer science domain, with an average of 5
citations per article. The PubMed dataset con-
tains over 45K scientific articles in the medical do-
mains, with an average of 17 citations per article.
In both datasets, a document is accompanied by
its title, abstract, venue (i.e. journal or conference
where the document was published), authors, cita-
tions (i.e. other documents in the corpus that are
referenced in the given document) and keyphrases
(i.e. phrases considered important by automated
extraction methods). We replicate the experimen-
tal setup of Ren et al. (2014) by excluding papers
with fewer than 10 citations and using the standard
train, dev and test splits.7

We also introduce OpenCorpus,8 a new
dataset of 7 million scientific articles primar-
ily drawn from the computer science and neuro-
science domain. Due to licensing constraints, doc-
uments in the corpus do not include the full text
of the scientific articles, but include the title, ab-
stract, year, author, venue, keyphrases and citation
information. The mutually exclusive training, de-
velopment, and test splits were selected such that
no document in the development or test set has a
publication year less than that of any document in
the training set. Papers with zero citations were
removed from the development and test sets. We
describe the key characteristics of OpenCorpus
in Table 1.

Statistic Value
# of documents in corpus 6.9 million
# of unique authors 8.3 million
# of unique keyphrases 823,677
# of unique venues 23,672
avg. # of incoming citations 7.4 (± 38.1)
avg. # of outgoing citations 8.4 (± 14.4)
size of training set [years 1991 to 2014] 5.5 million
size of dev set [years 2014 to 2015] 689,000
size of test set [years 2015 to 2016] 20,000

Table 1: Characteristics of the OpenCorpus.

Baselines. We compare our method to two base-
line methods for recommending citations: Clus-
Cite and BM25. ClusCite (Ren et al., 2014) clus-
ters nodes in a heterogeneous graph of terms, au-
thors and venues in order to find related documents
which should be cited. We use the ClusCite results

7 The dataset characteristics reported here are different from
those in Table 3 in (Ren et al., 2014) because we report the
size of the filtered datasets while they report the size of the
datasets before filtering.

8 http://labs.semanticscholar.org/corpus/

as reported in Ren et al. (2014), which compared it
to several other citation recommendation methods
and found that it obtains state of the art results on
the PubMed and DBLP datasets. The BM25 re-
sults are based on our implementation of the pop-
ular ranking function Okapi BM25 used in many
information retrieval systems. See Appendix §D
for details of our BM25 implementation.

Evaluation. We use Mean Reciprocal Rank
(MRR) and F1@20 to report the main results in
this section. In Appendix §F, we also report ad-
ditional metrics (e.g., precision and recall at 20)
which have been used in previous work. We com-
pute F1@20 as the harmonic mean of the corpus-
level precision and recall at 20 (P@20 and R@20).
Following (Ren et al., 2014), precision and recall
at 20 are first computed for each query document
then averaged over query documents in the test set
to compute the corpus-level P@20 and R@20.

Configurations. To find candidates in
NNSelect, we use the approximate nearest
neighbor search algorithm Annoy9, which builds
a binary-tree structure that enables searching for
nearest neighbors in O(log n) time. To build this
tree, points in a high-dimensional space are split
by choosing random hyperplanes. We use 100
trees in our approximate nearest neighbors index,
and retrieve documents using the cosine distance
metric.

We use the hyperopt library10 to optimize
various hyperparameters of our method such as
size of hidden layers, regularization strength and
learning rate. To ensure reproducibility, we pro-
vide a detailed description of the parameters used
in both NNSelect and NNRank models, our hy-
perparameter optimization method and parameter
values chosen in Appendix §A.

Main results. Table 2 reports the F1@20 and
MRR results for the two baselines and three vari-
ants of our method. Since the OpenCorpus
dataset is much bigger, we were not able to train
the ClusCite baseline for it. Totti et al. (2016) have
also found it difficult to scale up ClusCite to larger
datasets. Where available, we report the mean ±
standard deviation based on five trials.

The first variant, labeled “NNSelect,” only
uses the candidate selection part of our method
(i.e., phase 1) to rank candidates by their cosine
9 https://github.com/spotify/annoy
10https://github.com/hyperopt/hyperopt
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Method DBLP PubMed OpenCorpus
F1@20 MRR F1@20 MRR F1@20 MRR

BM25 0.119 0.425 0.209 0.574 0.058 0.218
ClusCite 0.237 0.548 0.274 0.578 – –
NNSelect 0.282±0.002 0.579±0.007 0.309±0.001 0.699±0.001 0.109 0.221

+ NNRank 0.302±0.001 0.672±0.015 0.325±0.001 0.754±0.003 0.126 0.330
+ metadata 0.303±0.001 0.689±0.011 0.329±0.001 0.771±0.003 0.125 0.330

Table 2: F1@20 and MRR results for two baselines and three variants of our method. BM25 results are based
on our implementation of this baseline, while ClusCite results are based on the results reported in Ren et al.
(2014). “NNSelect” ranks candidates using cosine similarity between the query and candidate documents in
the embedding space (phase 1). “NNSelect + NNRank” uses the discriminative reranking model to rerank
candidates (phase 2), without encoding any of the metadata features. “+ metadata” encodes the metadata features
(i.e., keyphrases, venues and authors), achieving the best results on all datasets. Mean and standard deviations are
reported based on five trials.

similarity to the query document in the embedding
space as illustrated in Fig. 1. Although the docu-
ment embedding space was designed to efficiently
select candidates for further processing in phase 2,
recommending citations directly based on the co-
sine distance in this space outperforms both base-
lines.

The second variant, labeled “NNSelect +
NNRank,” uses the discriminative model (i.e.,
phase 2) to rerank candidates selected by
NNSelect, without encoding metadata (venues,
authors, keyphrases). Both the first and second
variants show that improved modeling of paper
text can significantly outperform previous meth-
ods for citation recommendation, without using
metadata.

The third variant, labeled “NNSelect +
NNRank + metadata,” further encodes the meta-
data features in the reranking model, and gives
the best overall results. On both the DBLP and
PubMed datasets, we obtain relative improve-
ments over 20% (for F1@20) and 25% (for MRR)
compared to the best reported results of ClusCite.

In the rest of this section, we describe controlled
experiments aimed at analyzing different aspects
of our proposed method.

Choice of negative samples. As discussed in §3,
we use different types of negative samples to train
our models. We experimented with using only a
subset of the types, while controlling for the total
number of negative samples used, and found that
using negative nearest neighbors while training the
models is particularly important for the method to
work. As illustrated in Table 3, on the PubMed
dataset, adding negative nearest neighbors while
training the models improves the F1@20 score

from 0.306 to 0.329, and improves the MRR score
from 0.705 to 0.771. Intuitively, using nearest
neighbor negative examples focuses training on
the harder cases on which the model is more likely
to make mistakes.

F1@20 ∆ MRR ∆

Full model 0.329 0.771
without intersection 0.296 0.033 0.653 0.118
without -ve NNs 0.306 0.016 0.705 0.066
without numerical 0.314 0.008 0.735 0.036

Table 3: Comparison of PubMed results of the full
model with model without (i) intersection features, (ii)
negative nearest neighbors in training samples, and (iii)
numerical features.

Valuable features. We experimented with dif-
ferent subsets of the optional features used in
NNRank in order to evaluate the contribution
of various features. We found intersection fea-
tures, NNSelect scores, and the number of
incoming citations to be the most valuable fea-
ture. As illustrated in Table 3, the intersection
features improves the F1@20 score from 0.296 to
0.329, and the MRR score from 0.653 to 0.771,
on the PubMed dataset. The numerical features
(NNSelect score and incoming citations) im-
prove the F1@20 score from 0.314 to 0.329, and
improves the MRR score from 0.735 to 0.771.
This shows that, in some applications, feeding en-
gineered features to neural networks can be an ef-
fective strategy to improve their performance.

Performance across venues We studied the
variability of performance of our model for papers
from different venues. Figure 3 shows the F1@20
score of NNRank for papers belonging to the top
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Figure 3: F1@20 of NNRank on the Pubmed dataset
across top ten venues

ten venues (by their paper count) in the Pubmed
corpus. NNRank’s performance is robust across
venues.

Encoding textual features. We also experi-
mented with using recurrent and convolutional
neural network to encode the textual fields of
query and candidate documents, instead of us-
ing a weighted sum as described in Eq. 1. We
found that recurrent and convolutional encoders
are much slower, and did not observe a significant
improvement in the overall performance as mea-
sured by the F1@20 and MRR metrics. This result
is consistent with previous studies on other tasks,
e.g., Iyyer et al. (2015).

Number of nearest neighbors. As discussed
in §3, the candidate selection step is crucial for
the scalability of our method because it reduces
the number of computationally expensive pair-
wise comparisons with the query document at run-
time. We did a controlled experiment on the
OpenCorpus dataset (largest among the three
datasets) to measure the effect of using different
numbers of nearest neighbors, and found that both
P@20 and R@20 metrics are maximized when
NNSelect fetches five nearest neighbors using
the approximate nearest neighbors index (and their
out-going citations), as illustrated in Table 4.

Self-citation bias. We hypothesized that a
model trained with the metadata (e.g., authors)
could be biased towards self-citations and other
well-cited authors. To verify this hypothesis, we
compared two NNRank models – one with meta-

# of neighbors R@20 P@20 Time(ms)
1 0.123 0.079 131
5 0.142 0.080 144

10 0.138 0.069 200
50 0.081 0.040 362

Table 4: OpenCorpus results for NNSelect step
with varying number of nearest neighbors on 1,000 val-
idation documents.

data, and one without. We measured the mean and
max rank of predictions that had at least one author
in common with the query document. This ex-
periment was performed with the OpenCorpus
dataset.

A lower mean rank for NNRank + Metadata in-
dicates that the model trained with metadata tends
to favor documents authored by one of the query
document’s authors. We verified the prevalence of
this bias by varying the number of predictions for
each model from 1 to 100. Figure 4 shows that
the mean and max rank of the model trained with
metadata is always lower than those for the model
that does not use metadata.

Figure 4: Mean and Max Rank of predictions with
varying number of candidates.

6 Related Work

Citation recommendation systems can be divided
into two categories – local and global. A local
citation recommendation system takes a few sen-
tences (and an optional placeholder for the can-
didate citation) as input and recommends cita-
tions based on the local context of the input sen-
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tences (Huang et al., 2015; He et al., 2010; Tang
and Zhang, 2009; Huang et al., 2012; He et al.,
2011). A global citation recommendation system
takes the entire scholarly article as input and rec-
ommends citations for the paper (McNee et al.,
2002; Strohman et al., 2007; Nallapati et al., 2008;
Kataria et al., 2010; Ren et al., 2014). We ad-
dress the global citation recommendation problem
in this paper.

A key difference of our proposed method com-
pared to previous work is that our method is
content-based and works well even in the absence
of metadata (e.g. authors, venues, key phrases,
seed list of citations). Many citation recommenda-
tion systems crucially rely on a query document’s
metadata. For example, the collaborative filtering
based algorithms of McNee et al. (2002); Jia and
Saule (2017); Liu et al. (2015) require seed cita-
tions for a query document. (Ren et al., 2014; Yu
et al., 2012) require authors, venues and key terms
of the query documents to infer interest groups and
to extract features based on paths in a heteroge-
neous graph. In contrast, our model performs well
solely based on the textual content of the query
document.

Some previous work (e.g. (Ren et al., 2014; Yu
et al., 2012)) have addressed the citation recom-
mendation problem using graph-based methods.
But, training graph-based citation recommenda-
tion models has been found to be expensive. For
example, the training complexity of the ClusCite
algorithm (Ren et al., 2014) is cubic in the number
of edges in the graph of authors, venues and terms.
This can be prohibitively expensive for datasets
as large as OpenCorpus. On the other hand
our model is a neural network trained via batched
stochastic gradient descent that scales very well to
large datasets (Bottou, 2010).

Another crucial difference between our ap-
proach and some prior work in citation predic-
tion is that we build up a document representa-
tion using its constituent words only. Prior algo-
rithms (Huang et al., 2015, 2012; Nallapati et al.,
2008; Tanner and Charniak, 2015) learn an explicit
representation for each training document sepa-
rately that isn’t a deterministic function of the doc-
ument’s words. This makes the model effectively
transductive since a never-before-seen document
does not have a ready-made representation. Simi-
larly, Huang et al. (2012)’s method needs a candi-
date document to have at least one in-coming cita-

tion to be eligible for citation – this disadvantages
newly published documents. Liu et al. (2015)
form document representations using citation re-
lations, which are not available for unfinished or
new documents. In contrast, our method does not
need to be re-trained as the corpus of potential can-
didates grows. As long as the new documents are
in the same domain as that of the model’s training
documents, they can simply be added to the cor-
pus and are immediately available as candidates
for future queries.

While the citation recommendation task has at-
tracted a lot of research interest, a recent survey
paper (Beel et al., 2016) has found three main con-
cerns with existing work: (i) limitations in evalu-
ation due to strongly pruned datasets, (ii) lack of
details for re-implementation, and (iii) variations
in performance across datasets. For example, the
average number of citations per document in the
DBLP dataset is 5, but Ren et al. (2014) filtered
out documents with fewer than 10 citations from
the test set. This drastically reduced the size of the
test set. We address these concerns by releasing
a new large scale dataset for future citation rec-
ommendation systems. In our experiments on the
OpenCorpus dataset, we only prune documents
with zero outgoing citations. We provide extensive
details of our system (see Appendix §A) to facil-
itate reproducibility and release our code11. We
also show in experiments that our method consis-
tently outperforms previous systems on multiple
datasets.

Finally, recent work has combined graph node
representations and text-based document repre-
sentations using CCA (Gupta and Varma, 2017).
This sort of approach can enhance our text-based
document representations if a technique to create
graph node representations at test-time is avail-
able.

7 Conclusion

In this paper, we present a content-based cita-
tion recommendation method which remains ro-
bust when metadata is missing for query docu-
ments, enabling researchers to do an effective liter-
ature search early in their research cycle or during
the peer review process, among other scenarios.
We show that our method obtains state of the art
results on two citation recommendation datasets,
even without the use of metadata available to the

11https://github.com/allenai/citeomatic
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baseline method. We make our system publicly
accessible online. We also introduce a new dataset
of seven million scientific articles to facilitate fu-
ture research on this problem.
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A Hyperparameter Settings

Neural networks are complex and have a large
number of hyperparameters to tune. This makes
it challenging to reproduce experimental results.
Here, we provide details of how the hyperparame-
ters of the NNSelect and NNRank models were
chosen or otherwise set. We chose a subset of hy-
perparameters for tuning, and left the rest at man-
ually set default values. Due to limited computa-
tional resources, we were only able to perform hy-
perparameter tuning on the development split of
the smaller DBLP and Pubmed datasets.

For DBLP and PubMed, we first ran Hyperopt12

with 75 trials. Each trial was run for five epochs
of 500,000 triplets each. The ten top performing
of these models were trained for a full 50 epochs,
and the best performing model’s hyperparameters
are selected. Hyperparameters for NNSelect
were optimized for Recall@20 and those for the
NNRank model were optimized for F1@20 on the
development set. The selected values for DBLP
are reported in Table 6 and for PubMed are re-
ported in Table 7.
OpenCorpus hyperparameters were set via in-

formal hand-tuning, and the results are in Table 9.
A few miscellaneous parameters (not tuned) that
are necessary for reproducibility are in Table 8.

We briefly clarify the meaning of some param-
eters below:

• Margin Multiplier - The triplet loss has vari-
able margins for the three types of negatives:
0.1γ, 0.2γ, and 0.3γ. We treat γ as a hyper-
parameter and refer to it as the margin multi-
plier.

• Use Siamese Embeddings - For the majority
of our experiments, we use a Siamese model
(Bromley et al., 1993). That is, the textual
embeddings for the query text and abstract
share the same weights. However, we had
a significantly larger amount of data to train
NNRank on OpenCorpus, and found that
non-Siamese embeddings are beneficial.

• Use Pretrained - We estimate word em-
beddings on the titles and abstracts of
OpenCorpus using Word2Vec imple-
mented by the gensim Python package13.

12https://github.com/hyperopt/hyperopt
13https://radimrehurek.com/gensim/

B Margin Loss Details

When computing the margins for the triplet loss,
we use a boosting function for highly cited docu-
ments. The full triplet loss function is as follows:

max
(
γα(d−)

+ s(dq, d
−) +B(d−)

− s(dq, d+)−B(d+)

, 0
)

where γ is the margin multiplier, and α(d−) varies
based on the type of negative document:

• α(d−) = 0.3 for random negatives

• α(d−) = 0.2 for nearest neighbor negatives

• α(d−) = 0.1 for citation-of-citation negatives.

The boosting function is defined as follows:

B(d) =
σ
(
d[in-citations]

100

)

50

where σ is the sigmoid function and d[in-citations]
is the number of times document dwas cited in the
corpus. The boosting function allows the model to
slightly prefer candidates that are cited more fre-
quently, and the constants were set without opti-
mization.

C Nearest Neighbors for Training Details

When obtaining nearest neighbors for negative ex-
amples during training, we use a heuristic to find
a subset of the fetched nearest neighbors that are
sufficiently wrong. That is, these are non-citation
samples that look dissimilar in the original text but
similar in the embedding space. This procedure is
as follows for each training query:

1. Compute the Jaccard similarities between a
training query and all of its true citations
using the concatenation of title and abstract
texts.

2. Compute the bottom fifth percentile Jaccard
similarity value. I.e. the value below which
only the bottom 5% most least textually sim-
ilar true citations fall. For example, if the
Jaccard similarities range from 0.2 to 0.9, the
fifth percentile might plausibly be 0.3.

3. Use the Annoy index computed at the end of
the previous epoch to fetch nearest neighbors
for the query document.
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4. Compute the textual Jaccard similarity be-
tween all of the nearest neighbors and the
query document.

5. Retain nearest neighbors that have a smaller
Jaccard similarity than the fifth percentile.
Using the previous example, retain the near-
est neighbors that have a lower Jaccard simi-
larity than 0.3.

D BM25 Details

BM25 Implemen-
tation

DBLP PubMed

F@20 MRR F@20 MRR
Ren et al. (2014) 0.111 0.411 0.153 0.497
Our approximation 0.119 0.425 0.209 0.574

Table 5: Results of our BM25 implementation on
DBLP and Pubmed datasets.

Okapi-BM25 is a popular ranking function.
We use BM25 as an IR-based baseline for the
task of citation recommendation. For the DBLP
and Pubmed datasets, BM25 performance is pro-
vided in Ren et al. (2014). To create a com-
petitive BM25 baseline for OpenCorpus, we
first created indexes for the DBLP and Pubmed
datasets and tuned the query to approximate the
performance reported in previous work. We used
Whoosh14 to create an index. We extract the key
terms (using Whoosh’s key terms from text
method) from the title and abstract of each query
document. The key terms from the document are
concatenated to form the query string. Table 5
shows that our BM25 is a close approximation to
the BM25 implementation of previous work and
can be reliably used as a strong IR baseline for
OpenCorpus. In Table 2, we report results on all
three datasets using our BM25 implementation.

E Key Phrases for OpenCorpus

In the OpenCorpus dataset, some documents
are accompanied by automatically extracted key
phrases. Our implementation of automatic key
phrase extraction is based on standard key phrase
extraction systems – e.g. (Caragea et al., 2014a,b;
Lopez and Romary, 2010). We first extract noun
phrases using the Stanford CoreNLP package
(Manning et al., 2014) as candidate key phrases.
Next, we extract corpus level and document level

14https://pypi.python.org/pypi/Whoosh/

features (e.g. term frequency, document fre-
quency, n-gram probability etc.) for each candi-
date key phrase. Finally, we rank the candidate
key phrases using a ranking model that is trained
on author-provided key phrases as gold labels.

F Detailed Experimental Results

Table 10 compares NNRank with previous work
in detail on DBLP and Pubmed datasets. Clus-
Cite (Ren et al., 2014) clusters nodes in a het-
erogeneous graph of terms, authors and venues in
order to find related documents which should be
cited. ClusCite obtains the previous best results on
these two datasets. L2-LR (Yu et al., 2012) uses a
linear combination of meta-path based linear fea-
tures to classify candidate citations. We show that
NNRank (with and without metadata) consistently
outperforms ClusCite and other baselines on all
metrics on both datasets.
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NNSelect NNRank
Hyperparameter Range Chosen Value Range Chosen Value
learning rate [1e-5, 1e-4, . . . , 1e-1] 0.01 [1e-5, 1e-4, . . . , 1e-1] 0.01
l2 regularization [0, 1e-7, 1e-6, . . . , 1e-2] 0 [0, 1e-7, 1e-6, . . . , 1e-2] 1e-3
l1 regularization [0, 1e-7, 1e-6, . . . , 1e-2] 1e-7 [0, 1e-7, 1e-6, . . . , 1e-2] 1e-4
word dropout [0, 0.05, 0.1, . . . , 0.75] 0.60 [0, 0.05, 0.1, . . . , 0.75] 0.35
margin multiplier [0.5, 0.75, 1.0, 1.25, 1.5] 1.0 [0.5, 0.75, 1.0, 1.25, 1.5] 0.5
dense dimension [25, 50, . . . , 325] 300 [25, 50, . . . , 325] 175
metadata dimension - - [5, 10, . . . , 55] 45
use pretrained [true, false] true [true, false] false
finetune pretrained [true, false] true [true, false] -
number ANN neighbors - 10 - -
triplets per batch size - 256 - 256
triplets per epoch - 500000 - 500000
triplets per training - 2500000 - 2500000
use Siamese embeddings - true - true

Table 6: DBLP hyperparameter tuning results. Note that the dense dimension when using pretrained vectors is
fixed to be 300. A ’-’ indicates that the variable was not tuned.

NNSelect NNRank
Hyperparameter Range Chosen Value Range Chosen Value
learning rate [1e-5, 1e-4, . . . , 1e-1] 0.001 [1e-5, 1e-4, . . . , 1e-1] 0.001
l2 regularization [0, 1e-7, 1e-6, . . . , 1e-2] 0 [0, 1e-7, 1e-6, . . . , 1e-2] 0
l1 regularization [0, 1e-7, 1e-6, . . . , 1e-2] 1e-6 [0, 1e-7, 1e-6, . . . , 1e-2] 1e-6
word dropout [0, 0.05, 0.1, . . . , 0.75] 0.55 [0, 0.05, 0.1, . . . , 0.75] 0.1
margin multiplier [0.5, 0.75, 1.0, 1.25, 1.5] 0.5 [0.5, 0.75, 1.0, 1.25, 1.5] 1.5
dense dimension [25, 50, . . . , 325] 325 [25, 50, . . . , 325] 150
metadata dimension - - [5, 10, . . . , 55] 40
use pretrained [true, false] false [true, false] false
finetune pretrained [true, false] - [true, false] -
number ANN neighbors - 10 - -
triplets per batch size - 256 - 256
triplets per epoch - 500000 - 500000
triplets per training - 2500000 - 2500000
use Siamese embeddings - true - true

Table 7: PubMed hyperparameter tuning results. Note that the dense dimension when using pretrained GloVe
vectors is fixed to be 300. A ’-’ indicates that the variable was not tuned.
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Hyperparameter PubMed/DBLP Value OpenCorpus Value
title/abstract vocabulary size 200000 200000
maximum title length 50 50
maximum abstract length 500 500
training triplets per query 6 6
min # of papers per author included 1 10
min # of papers per venue included 1 10
min # of papers per keyphrases included 5 10
max authors per document 8 8
max keyphrases per document 20 20
minimum true citations per document 2/1 2
maximum true citations per document 100 100
optimizer LazyAdamOptimizer* Nadam**
use magnitude-direction embeddings true true
reduce learning rate upon plateau false true

Table 8: Per-dataset parameters. These were hand-specified. *LazyAdamOptimizer is part of TensorFlow.
**Nadam is part of Keras.

Hyperparameter NNSelect Value NNRank Value
learning rate 0.001 0.001
l2 regularization 1e-5 1e-5
l1 regularization 1e-7 1e-7
word dropout 0.1 0.1
margin multiplier 1.0 1.0
dense dimension 75 75
metadata dimension - 25
use pretrained false false
number ANN neighbors 5 -
triplets per batch size 256 32
triplets per epoch 2500000 2500000
triplets per training 25000000 100000000
use Siamese embeddings true false

Table 9: Hyperparameters used for OpenCorpus

DBLP PubMed
Method P@10 P@20 R@20 F1@20 MRR P@10 P@20 R@20 F1@20 MRR
BM25 0.126 0.0902 0.1431 0.11 0.4107 0.1847 0.1349 0.1754 0.15 0.4971
L2-LR 0.2274 0.1677 0.2471 0.200 0.4866 0.2527 0.1959 0.2504 0.2200 0.5308
ClusCite 0.2429 0.1958 0.2993 0.237 0.5481 0.3019 0.2434 0.3129 0.274 0.5787
NNSelect 0.287 0.230 0.363 0.282 0.579 0.388 0.316 0.302 0.309 0.699

+ NNRank 0.339 0.247 0.390 0.302 0.672 0.421 0.332 0.318 0.325 0.754
+ metadata 0.345 0.247 0.390 0.303 0.689 0.429 0.337 0.322 0.329 0.771

Table 10: Comparing NNRank with ClusCite. (Ren et al., 2014) have presented results on several other topic-
based, link-based and network-based citation recommendation methods as baselines. For succinctness, we show
results for the best system, Cluscite, and two baselines BM25 and L2-LR.
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Abstract
We present a reading comprehension chal-
lenge in which questions can only be answered
by taking into account information from mul-
tiple sentences. We solicit and verify ques-
tions and answers for this challenge through
a 4-step crowdsourcing experiment. Our chal-
lenge dataset contains∼6k questions for +800
paragraphs across 7 different domains (ele-
mentary school science, news, travel guides,
fiction stories, etc) bringing in linguistic diver-
sity to the texts and to the questions wordings.
On a subset of our dataset, we found human
solvers to achieve an F1-score of 86.4%. We
analyze a range of baselines, including a re-
cent state-of-art reading comprehension sys-
tem, and demonstrate the difficulty of this
challenge, despite a high human performance.
The dataset is the first to study multi-sentence
inference at scale, with an open-ended set of
question types that requires reasoning skills.

1 Introduction

Machine Comprehension of natural language text
is a fundamental challenge in AI and it has re-
ceived significant attention throughout the his-
tory of AI (Greene, 1959; McCarthy, 1976; Re-
iter, 1976; Winograd, 1980). In particular, in
natural language processing (NLP) it has been
studied under various settings, such as multiple-
choice Question-Answering (QA) (Green Jr. et al.,
1961), Reading Comprehension (RC) (Hirschman
et al., 1999), Recognizing Textual Entailment
(RTE) (Dagan et al., 2013) etc. The area
has seen rapidly increasing interest, thanks to
the existence of sizable datasets and standard
benchmarks. CNN/Daily Mail (Hermann et al.,
2015), SQuAD (Rajpurkar et al., 2016) and
NewsQA (Trischler et al., 2016) to name a few,
are some of the datasets that were released re-
cently with the goal of facilitating research in ma-
chine comprehension. Despite all the excitement

fueled by that large data sets and the ability to
directly train statistical learning models, current
QA systems do not have capabilities comparable
to elementary school or younger children (Clark
and Etzioni, 2016). For many of these datasets,
researchers point out that models neither need
to ‘comprehend’ in order to correctly predict an
answer, nor do they learn to ‘reason’ in a way
that generalizes across datasets. For example,
Khashabi et al. (2016) showed that adversarial per-
turbation in candidate answers results in a signifi-
cant drop in performance of a few state-of-art sci-
ence QA systems. Similarly, Jia and Liang (2017)
show that adding an adversarially selected sen-
tence to the instances in the SQuAD datasets dras-
tically reduces the performance of many of the ex-
isting baselines. Chen et al. (2016) show that in the
CNN/Daily Mail datasets, “the required reasoning
and inference level . . . is quite simple” and that a
relatively simple algorithm can get almost close to
the upper-bound. We believe that one key reason
that simple algorithms can deal with the existing
large datasets but, nevertheless, fail at generaliza-
tion, is that the datasets do not actually require a
deep understanding.

We propose to address this shortcoming by de-
veloping a reading comprehension challenge in
which answering each of the questions requires
reasoning over multiple sentences.

There is evidence that answering ‘single-
sentence questions’, i.e. questions that can be an-
swered from a single sentence of the given para-
graph, is easier than answering multi-sentence
questions’, which require multiple sentences to
answer a given question. For example, Richard-
son et al. (2013) released a reading comprehension
dataset that contained both single-sentence and
multi-sentence questions; models proposed for
this task yielded considerably better performance
on the single-sentence questions than on the multi-
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sentence questions (according to Narasimhan and
Barzilay (2015) accuracy of about 83% and 60%
on these two types of questions, respectively).

There could be multiple reasons for this. First,
multi-sentence reasoning seems to be inherently
a difficult task. Research has shown that while
complete-sentence construction emerges as early
as first grade for many children, their ability
to integrate sentences emerges only in fourth
grade (Berninger et al., 2011). Answering multi-
sentence questions might be more challenging
for an automated system because it involves
more than just processing individual sentences but
rather combining linguistic, semantic and back-
ground knowledge across sentences—a computa-
tional challenges in itself. Despite these chal-
lenges, multi-sentence questions can be answered
by humans and hence present an interesting yet
reasonable goal for AI systems (Davis, 2014).

In this work, we propose a multi-sentence QA
challenge in which questions can be answered
only using information from multiple sentences.
Specifically, we present MultiRC (Multi-Sentence
Reading Comprehension)1—a dataset of short
paragraphs and multi-sentence questions that can
be answered from the content of the paragraph.
Each question is associated with several choices
for answer-options, out of which one or more cor-
rectly answer the question. Figure 1 shows two
examples from our dataset. Each instance consists
of a multi-sentence paragraph, a question, and
answer-options. All instances were constructed
such that it is not possible to answer a question
correctly without gathering information from mul-
tiple sentences. Due to space constraints, the fig-
ure shows only the relevant sentences from the
original paragraph. The entire corpus consists of
871 paragraphs and about ∼ 6k multi-sentence
questions.

The goal of this dataset is to encourage the re-
search community to explore approaches that can
do more than sophisticated lexical-level matching.
To accomplish this, we designed the dataset with
three key challenges in mind. (i) The number of
correct answer-options for each question is not
pre-specified. This removes the over-reliance of
current approaches on answer-options and forces
them to decide on the correctness of each can-
didate answer independently of others. In other
words, unlike previous work, the task here is not

1http://cogcomp.org/multirc/

S3: Hearing noises in the garage, Mary Murdock finds a
bleeding man, mangled and impaled on her jeep’s bumper.
S5: Panicked, she hits him with a golf club.
S10: Later the news reveals the missing man is kindergarten
teacher, Timothy Emser.
S12: It transpires that Rick, her boyfriend, gets involved in
the cover up and goes to retrieve incriminatory evidence off
the corpse, but is killed, replaced in Emser’s grave.
S13: It becomes clear Emser survived.
S15: He stalks Mary many ways.
Who is stalking Mary?
A)* Timothy D) Rick
B) Timothy’s girlfriend E) Murdock
C)* The man she hit F) Her Boyfriend
S1: Most young mammals, including humans, play.
S2: Play is how they learn the skills that they will need as
adults.
S6: Big cats also play.
S8: At the same time, they also practice their hunting skills.
S11: Human children learn by playing as well.
S12: For example, playing games and sports can help them
learn to follow rules.
S13: They also learn to work together.
What do human children learn by playing games and sports?
A)* They learn to follow rules and work together
B) hunting skills
C)* skills that they will need as adult

Figure 1: Examples from our MultiRCcorpus. Each ex-
ample shows relevant excerpts from a paragraph; multi-
sentence question that can be answered by combin-
ing information from multiple sentences of the para-
graph; and corresponding answer-options. The correct
answer(s) is indicated by a *. Note that there can be
multiple correct answers per question.

to simply identify the best answer-option, but to
evaluate the correctness of each answer-option in-
dividually. For example, the first question in Fig-
ure 1 can be answered by combining information
from sentences 3, 5, 10, 13 and 15. It requires
not only understanding that the stalker’s name is
Timothy but also that he is the man who Mary had
hit. (ii) The correct answer(s) is not required to
be a span in the text. For example, the correct an-
swer, A, of the second question in Figure 1 is not
present in the paragraph verbatim. It is instead a
combination of two spans from 2 sentences: 12
and 13. Such answer-options force models to pro-
cess and understand not only the paragraph and
the question but also the answer-options. (iii) The
paragraphs in our dataset have diverse provenance
by being extracted from 7 different domains such
as news, fiction, historical text etc., and hence are
expected to be more diverse in their contents as
compared to single-domain datasets. We also ex-
pect this to lead to diversity in the types of ques-
tions that can be constructed from the passage.

Overall, we introduce a reading comprehension
dataset that significantly differs from most other
datasets available today in the following ways:
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• ∼6k high-quality multiple-choice RC ques-
tions that are generated (and manually
verified via crowdsourcing) to require inte-
grating information from multiple sentences.
• The questions are not constrained to have a

single correct answer, generalizing existing
paradigms for representing answer-options.
• Our dataset is constructed using 7 different

sources, allowing more diversity in content,
style, and possible question types.
• We show a significant performance gap be-

tween current solvers and human perfor-
mance, indicating an opportunity for devel-
oping sophistical reasoning systems.

2 Relevant Work

Automated reasoning is arguably one of the ma-
jor problems in contemporary AI research. Brach-
man et al. (2005) suggest challenges for devel-
oping AI program that can pass the SAT ex-
ams. In similar spirit Clark and Etzioni (2016)
advocate elementary-school tests as a new test
for AI. Davis (2014) proposes hand-construction
of multiple-choice challenge sets that are easy
for children but difficult for computers. Despite
Davis’ claim on simplicity of his target questions,
it is not clear how easy it is to generate such
questions, as he doesn’t provide any reasonably-
sized dataset matching his proposal. Weston
et al. (2015) present a relatively small dataset of
10 reasoning categories, and propose to build a
system that uses a world model and a linguistic
model. The fundamental limitation of the dataset
is that it is generated according to a restricted set
of reasoning categories, which possibly limits the
complexity and diversity of questions.

Some other recent datasets proposed for ma-
chine comprehension also pay attention to type
of questions and reasoning required. For exam-
ple, RACE (Lai et al., 2017) attempts to incor-
porate different types of reasoning phenomena,
and MCTest (Richardson et al., 2013) attempted
to contain at least 50% multi-sentence reason-
ing questions. However, since the crowdsourced
workers who created the dataset were only encour-
aged, and not required, to write such questions, it
is not clear how many of these questions actually
require multi-sentence reasoning (see Sec. 3.5).
Similarly, only about 25% of question in the
RACE dataset require multi-sentence reasoning
as reported in their paper. Remedia (Hirschman

et al., 1999) also contains 5 different types of ques-
tions (based on question words) but is a much
smaller dataset. Other datasets which do not delib-
erately attempt to include multi-sentence reason-
ing, like SQuAD (Rajpurkar et al., 2016) and the
CNN/Daily Mail dataset (Hermann et al., 2015),
suffer from even lower percentage of such ques-
tions (12% and 2% respectively (Lai et al., 2017)).
There are several other corpora which do not
guarantee specific reasoning types, including MS
MARCO (Nguyen et al., 2016), WikiQA (Yang
et al., 2015), and TriviaQA (Joshi et al., 2017).

The complexity of reasoning required for a
reading comprehension dataset would depend on
several factors such as the source of questions or
paragraphs; the way they are generated; and the
order in which they are generated (i.e. questions
from paragraphs, or the reverse). Specifically,
paragraphs’ source could influence the complex-
ity and diversity of the language of the paragraphs
and questions, and hence the required level of rea-
soning capabilities. Unlike most current datasets
which rely on only one or two sources for their
paragraphs (e.g. CNN/Daily Mail and SQuAD
rely only on news and Wikipedia articles respec-
tively) our dataset uses 7 different domains.

Another factor that distinguishes our dataset
from previously proposed corpora is the way an-
swers are represented. Several datasets represent
answers as multiple-choices with a single correct
answer. While multiple-choice questions are easy
to grade, coming up with non-trivial correct and
incorrect answers can be challenging. Also, as-
suming exactly one correct answer (e.g., as in
MCTest and RACE) inadvertently changes the
task from choosing the correct answer to choos-
ing the most likely answer. Other datasets (e.g
MS-MARCO and SQuAD) represent answers as
a contiguous substring within the passage. This
assumption of the answer being a span of the para-
graph, limits the questions to those whose answer
is contained verbatim in the paragraph. Unfor-
tunately, it rules out more complicated questions
whose answers are only implied by the text and
hence require a deeper understanding. Because
of these limitations, we designed our dataset to
use multiple-choice representations, but without
specifying the number of correct answers for each
question.
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3 Construction of MultiRC

In this section we describe our principles and
methodology of dataset collection. This includes
automatically collecting paragraphs, composing
questions and answer-options through crowd-
sourcing platform, and manually curating the col-
lected data. We also summarize a pilot study that
helped us design this process, and end with a sum-
mary of statistics of the collected corpus.

3.1 Principles of design

Questions and answers in our dataset are designed
based on the following key principles:

Multi-sentenceness. Questions in our challenge
require models to use information from multiple
sentences of a paragraph. This is ensured through
explicit validation. We exclude any question that
can be answered based on a single sentence from
a paragraph.

Open-endedness. Our dataset is not restricted to
questions whose answer can be found verbatim in
a paragraph. Instead, we provide a set of hand-
crafted answer-options for each question. Notably,
they can represent information that is not explic-
itly stated in the text but is only inferable from
it (e.g. implied counts, sentiments, and relation-
ships).

Answers to be judged independently. The
total number of answer options per question
is variable in our data and we explicitly allow
multiple correct and incorrect answer options
(e.g. 2 correct and 1 incorrect options). As a
consequence, correct answers cannot be guessed
solely by a process of elimination or by simply
choosing the best candidates out of the given
options.

Through these principles, we encourage users to
explicitly model the semantics of text beyond indi-
vidual words and sentences, to incorporate extra-
linguistic reasoning mechanisms, and to handle
answer options independently of one another.

Variability. We encourage variability on differ-
ent levels. Our dataset is based on paragraphs from
multiple domains, leading to linguistically diverse
questions and answers. Also, we do not impose
any restrictions on the questions, to encourage dif-
ferent forms of reasoning.

3.2 Sources of documents

The paragraphs used in our dataset are extracted
from various sources. Here is the complete list of
the text types and sources used in our dataset, and
the number of paragraphs extracted from each cat-
egory (indicated in square brackets on the right):

1. News: [121]
• CNN (Hermann et al., 2015)
• WSJ (Ide et al., 2008)
• NYT (Ide et al., 2008)

2. Wikipedia articles [92]
3. Articles on society, law and justice (Ide and

Suderman, 2006) [91]
4. Articles on history and anthropology (Ide

et al., 2008) [65]
5. Elementary school science textbooks 2 [153]
6. 9/11 reports (Ide and Suderman, 2006) [72]
7. Fiction: [277]

• Stories from the Gutenberg project
• Children stories from MCTest (Richard-

son et al., 2013)
• Movie plots from CMU Movie Sum-

mary corpus (Bamman et al., 2013)

From each of the above-mentioned sources we
extracted paragraphs that had enough content. To
ensure this we followed a 3-step process. In the
first step we selected top few sentences from para-
graphs such that they contained 1k-1.5k charac-
ters. To ensure coherence, all sentences were con-
tiguous and extracted from the same paragraph.
In this process we also discarded paragraphs that
seemed to deviate too much from third person nar-
rative style. For example, while processing Guten-
berg corpus we considered files that had at least
5k lines because we found that most of them were
short poetic texts. In the second step, we an-
notated (Khashabi et al., 2018b) the paragraphs
and automatically filtered texts using conditions
such as the average number of words per sen-
tence; number of named entities; number of dis-
course connectives in the paragraph. These were
designed by the authors of this paper after review-
ing a small sample of paragraphs. A complete set
of conditions is listed in Table 1. Finally in the
last step, we manually verified each paragraph and
filtered out the ones that had formatting issues or
other concerns that seemed to compromise their
usability.

2https://www.ck12.org
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Condition bound

Number of sentences ≥ 6 & ≤ 18
Number of NER(CoNLL) mentions ≥ 2
Avg. number of NER(CoNLL) mentions ≥ 0.2
Number of NER(Ontonotes) mentions ≥ 4
Avg. number of NER(Ontonotes) mentions ≥ 0.25
Avg. number of words per sentence ≥ 5
Number of coreference mentions ≥ 3
Avg. number of coreference mentions ≥ 0.1
Number of coreference relations ≥ 3
Avg. number of coreference relations ≥ 0.08
Number of coreference chains ≥ 2
Avg. number of coreference chains ≥ 0.1
Number of discourse markers ≥ 2

Table 1: Bounds used to select paragraphs for
dataset creation.

3.3 Pipeline of question extraction

In this section, we delineate details of the process
for collecting questions and answers. Figure 2
gives a high-level idea of the process. The first two
steps deal with creating multi-sentence questions,
followed by two steps for construction of candi-
date answers. Interested readers can find more de-
tails on set-ups of each step in Appendix I.

Step 1: Generating questions. The goal of
the first step of our pipeline is to collect multi-
sentence questions. We show each paragraph to
5 turkers and ask them to write 3-5 questions such
that: (1) the question is answerable from the pas-
sage, and (2) only those questions are allowed
whose answer cannot be determined from a sin-
gle sentence. We clarify this point by providing
example paragraphs and questions. In order to en-
courage turkers to write meaningful questions that
fit our criteria, we additionally ask them for a cor-
rect answer and for the sentence indices required
to answer the question. To ensure the grammati-
cal quality of the questions collected in this step,
we limit the turkers to the countries with English
as their major language. After the acquisition of
questions in this step, we filter out questions which
required less than 2 or more than 4 sentences to be
answered; we also run them through an automatic
spell-checker3 and manually correct questions re-
garding typos and unusual wordings.

Step 2: Verifying multi-sentenceness of ques-
tions. In a second step, we verify that each ques-
tion can only be answered using more than one
sentence. For each question collected in the pre-
vious step, we create question-sentence pairs by
pairing it with each of the sentences necessary for

3Grammarly: www.grammarly.com

answering it as indicated in the previous step. For
a given question-sentence pair, we then ask turk-
ers to annotate if they could answer the question
from the sentence it is paired with (binary anno-
tation). The underlying idea of this step is that
a multi-sentence question would not be answer-
able from a single sentence, hence turkers should
not be able to give a correct answer for any of
the question-sentence pair. Accordingly, we de-
termine a question as requiring multiple sentences
only if the correct answer cannot be guessed from
any single question-sentence pair. We collected at
least 3 annotations per pair, and to avoid sharing of
information across sentences, no two pairs shown
to a turker came from the same paragraph. We ag-
gregate the above annotations for each question-
answer pair and retain only those questions for
which no pair was judged as answerable by a ma-
jority of turkers.

Step 3: Generating answer-options. In this
step, we collect answer-options that will be shown
with each question. Specifically, for each verified
question from the previous steps, we ask 3 turkers
to write as many correct and incorrect answer op-
tions as they can think of. In order to not curb cre-
ativity, we do not place a restriction on the number
of options they have to write. We explicitly ask
turkers to design difficult and non-trivial incorrect
answer-options (e.g. if the question is about a per-
son, a non-trivial incorrect answer-option would
be other people mentioned in the paragraph).

After this step, we perform a light clean up
of the candidate answers by manually correct-
ing minor errors (such as typos), completing in-
complete sentences and rephrasing any ambiguous
sentences. We further make sure there is not much
repetition in the answer-options, to prevent poten-
tial exploitation of correlation between some can-
didate answers in order to find the correct answer.
For example, we drop obviously duplicate answer-
options (i.e. identical options after lower-casing,
lemmatization, and removing stop-words).

Step 4: Verifying quality of the dataset. This
step serves as the final quality check for both ques-
tions and the answer-options generated in the pre-
vious steps. We show each paragraph, its ques-
tions, and the corresponding answer-options to 3
turkers, and ask them to indicate if they find any
errors (grammatical or otherwise), in the questions
and/or answer-options. We then manually review,
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Step 1: 
generating 
multi-sentence questions 
given paragraphs 

Step 2: 
Verifying 
multi-sentenceness 

Step 3: 
Generating 
candidate answers 

Step 4: 
Judging quality of 
questions & candidates 

Figure 2: Pipeline of our dataset construction.

and correct if needed, all erroneous questions and
answer-options. This ensures that we have mean-
ingful questions and answer-options. In this step,
we also want to verify that the correct (or incor-
rect) options obtained from Step 3 were indeed
correct (or incorrect). For this, we additionally ask
the annotators to select all correct answer-options
for the question. If their annotations did not agree
with the ones we had after Step 3 (e.g. if they
unanimously selected an ‘incorrect’ option as the
answer), we manually reviewed and corrected (if
needed) the annotation.

3.4 Pilot experiments

The 4-step process described above was a result of
detailed analysis and substantial refinement after
two small pilot studies.

In the first pilot study, we ran a set of 10 para-
graphs extracted from the CMU Movie Summary
Corpus through our pipeline. Our then pipeline
looked considerably different from the one de-
scribed above. We found the steps that required
turkers to write questions and answer-options to
often have grammatical errors, possibly because a
large majority of turkers were non-native speakers
of English. This probslem was more prominent in
questions than in answer-options. Because of this,
we decided to limit the task to native speakers.
Also, based on the results of this pilot, we over-
hauled the instructions of these steps by including
examples of grammatically correct—but undesir-
able (not multi-sentence)—questions and answer-
options, in addition to several minor changes.

Thereafter, we decided to perform a manual val-
idation of the verification steps (current Steps 2
and 4). For this, we (the authors of this paper)
performed additional annotations ourselves on the
data shown to turkers, and compared our results
with those provided by the turkers. We found that
in the verification of answer-options, our annota-
tions were in high agreement (98%) with those ob-
tained from mechanical turk. However, that was
not the case for the verification of multi-sentence
questions. We made several further changes to the
first two steps. Among other things, we clarified
in the instructions that turkers should not use their

background knowledge when writing and verify-
ing questions, and also included negative exam-
ples of such questions. Additionally, when turkers
judged a question to be answerable using a sin-
gle sentence, we decided to encourage (but not re-
quire) them to guess the answer to the question.
This improved our results considerably, possibly
because it forced annotators to think more care-
fully about what the answer might be, and whether
they actually knew the answer or they just thought
that they knew it (possibly because of background
knowledge or because the sentence contained a lot
of information relevant to the question). Guessed
answers in this step were only used to verify the
validity of multi-sentence questions. They were
not used in the dataset or subsequent steps.

After revision, we ran a second pilot study in
which we processed a set of 50 paragraphs through
our updated pipeline. This second pilot confirmed
that our revisions were helpful, but thanks to its
larger size, also allowed us to identify a couple of
borderline cases for which additional clarifications
were required. Based on the results of the second
pilot, we made some additional minor changes and
then decided to apply the pipeline for creating the
final dataset.

3.5 Verifying multi-sentenceness

While collecting our dataset, we found that, even
though Step 1 instructed turkers to write multi-
sentence questions, not all generated questions in-
deed required multi-sentence reasoning. This hap-
pened even after clarifications and revisions to the
corresponding instructions, and we attribute it to
honest mistakes. Therefore, we designed the sub-
sequent verification step (Step 2).

There are other datasets which aim to in-
clude multi-sentence reasoning questions, espe-
cially MCTest. Using our verification step,
we systematically verify their multi-sentenceness.
For this, we conducted a small pilot study on about
60 multi-sentence questions from MCTest. As for
our own verification, we created question-sentence
pairs for each question and asked annotators to
judge whether they can answer a question from the
single sentence shown. Because we did not know
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which sentences contain information relevant to a
question, we created question-sentence pairs us-
ing all sentences from a paragraph. After aggre-
gation of turker annotations, we found that about
half of the questions annotated as multi-sentence
could be answered from a single sentence of the
paragraph. This study, though performed on a sub-
set of the data, underscores the necessity of rigor-
ous verification step for multi-sentence reasoning
when studying this phenomenon.

3.6 Statistics on the dataset

We now provide a brief summary of MultiRC.
Overall, it contains roughly ∼ 6k multi-sentence
questions collected for about +800 paragraphs.4

The median number of correct and total answer
options for each question is 2 and 5, respectively.
Additional statistics are given in Table 2.

In Step 1, we also asked annotators to identify
sentences required to answer a given question. We
found that answering each question required 2.4
sentences on average. Also, required sentences are
often not contiguous, and the average distance be-
tween sentences is 2.4. Next, we analyze the types
of questions in our dataset. Figure 4 shows the
count of first word(s) for our questions. We can
see that while the popular question words (What,
Who, etc.) are very common, there is a wide va-
riety in the first word(s) indicating a diversity in
question types. About 28% of our questions re-
quire binary decisions (true/false or yes/no).

We randomly selected 60 multi-sentence ques-
tions from our corpus and asked two indepen-
dent annotators to label them with the type of
reasoning phenomenon required to answer them.5

During this process, the annotators were shown
a list of common reasoning phenomena (shown
below), and they had to identify one or more
of the phenomena relevant to a given question.
The list of phenomena shown to the annotators
included the following categories: mathematical
and logical reasoning, spatio-temporal reasoning,
list/enumeration, coreference resolution (includ-
ing implicit references, abstract pronouns, event
coreference, etc.), causal relations, paraphrases
and contrasts (including lexical relations such as
synonyms, antonyms), commonsense knowledge,

4We will also release the 3.7k questions that did not pass
Step 2. Though not multi-sentence questions, they could be a
valuable resource on their own.

5The annotations were adjudicated by two authors of this
paper.

and ‘other’. The categories were selected after a
manual inspection of a subset of questions by two
of the authors. The annotation process revealed
that answering questions in our corpus requires a
broad variety of reasoning phenomena. The left
plot in Figure 3 provides detailed results.

The figure shows that a large fraction of ques-
tions require coreference resolution, and a more
careful inspection revealed that there were dif-
ferent types of coreference phenomena at play
here. To investigate these further, we conducted
a follow-up experiment in which manually anno-
tated all questions that required coreference res-
olution into finer categories. Specifically, each
question was shown to two annotators who were
asked to select one or more of the following cate-
gories: entity coreference (between two entities),
event coreference (between two events), set inclu-
sion coreference (one item is part of or included
in the other) and ‘other’. Figure 3 (right) shows
the results of this experiment. We can see that,
as expected, entity coreference is the most com-
mon type of coreference resolution needed in our
corpus. However, a significant number of ques-
tions also require other types of coreference res-
olution. We provide some examples of questions
along with the required reasoning phenomena in
Appendix II.

Parameter Value
# of paragraphs 871
# of questions 9,872
# of multi-sentence questions 5,825
avg # of candidates (per question) 5.44
avg # of correct answers (per question) 2.58
avg paragraph length (in sentences) 14.3 (4.1)
avg paragraph length (in tokens) 263.1 (92.4)
avg question length (in tokens) 10.9 (4.8)
avg answer length (in tokens) 4.7 (5.5)
% of yes/no/true/false questions 27.57%
avg # of sent. used for questions 2.37 (0.63)
avg distance between the sent.’s used 2.4 (2.58)
% of correct answers verbatim in paragraph 34.96%
% of incorrect answers verbatim in paragraph 25.84%

Table 2: Various statistics of our dataset. Figures
in parentheses represent standard deviation.

4 Analysis

In this section, we provide a quantitative analysis
of several baselines for our challenge.

Evaluation Metrics. We define precision and
recall for a question q as: Pre(q) = |A(q)∩Â(q)|

|Â(q)|

and Rec(q) = |A(q)∩Â(q)|
|A(q)| , where A(q) and Â(q)

are the sets of correct and selected answer-options.
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Figure 3: Distribution of (left) general phenomena; (right) variations of the “coreference” phenomena.

Figure 4: Most frequent first chunks of the questions
(counts in log scale).

We define (macro-average) F1m as the harmonic
mean of average-precision avgq∈Q(Pre(q)) and
average-recall avgq∈Q(Rec(q)) with Q as the set
of all questions.

Since by design, each answer-option can be
judged independently, we consider another met-
ric, F1a, evaluating binary decisions on all the
answer-options in the dataset. We define F1a to be
the harmonic mean of Pre(Q) and Rec(Q), with

Pre(Q) = |A(Q)∩Â(Q)|
|Â(Q)| ; A(Q) =

⋃
q∈QA(q); and

similar definitions for Â(Q) and Rec(Q).

4.1 Baselines

Human. Human performance provides us with
an estimate of the best achievable results on
datasets. Using mechanical turk, we ask 4 peo-
ple (limited to native speakers) to solve our data.
We evaluate score of each label by averaging the
decision of the individuals.

Random. To get an estimate on the lower-bound
we consider a random baseline, where each an-
swer option is selected as correct with a probabil-
ity of 50% (an unbiased coin toss). The numbers

reported for this baseline represent the expected
outcome (statistical expectation).

IR (information retrieval baseline). This base-
line selects answer-options that best match sen-
tences in a text corpus (Clark et al., 2016). Specifi-
cally, for each question q and answer option ai, the
IR solver sends q + ai as a query to a search en-
gine (we use Lucene) on a corpus, and returns the
search engine’s score for the top retrieved sentence
s, where s must have at least one non-stopword
overlap with q, and at least one with ai.

We create two versions of this system. In the
first variation IR(paragraphs) we create a corpus
of sentences extracted from all the paragraphs in
the dataset. In the second variation, IR(web) in
addition to the knowledge of the paragraphs, we
use extensive external knowledge extracted from
the web (Wikipedia, science textbooks and study
guidelines, and other webpages), with 5 × 1010

tokens (280GB of plain text).

SurfaceLR (logistic regression baseline). As
a simple baseline that makes use of our small
training set, we reimplemented and trained a lo-
gistic regression model using word-based over-
lap features. As described in (Merkhofer et al.,
2018), this baseline takes into account the lengths
of a text, question and each answer candidate,
as well as indicator features regarding the (co-
)occurrences of any words in them.

SemanticILP (semi-structured baseline). This
state-of-the-art solver, originally proposed for sci-
ence questions and biology tests, uses a semi-
structured representation to formalize the scor-
ing problem as a subgraph optimization prob-
lem over multiple layers of semantic abstrac-
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Dev Test

F1m F1a F1m F1a

Random 44.3 43.8 47.1 47.6
IR(paragraphs) 64.3 60.0 54.8 53.9
SurfaceLR 66.1 63.7 66.7 63.5
Human 86.4 83.8 84.3 81.8

Table 3: Performance comparison for different
baselines tested on a subset of our dataset (in per-
centage). There is a significant gap between the
human performance and current statistical meth-
ods.

tions (Khashabi et al., 2018a). Since the solver
is designed for multiple-choice with single-correct
answer, we adapt it to our setting by running it for
each answer-option. Specifically for each answer-
option, we create a single-candidate question, and
retrieve a real-valued score from the solver.

BiDAF (neural network baseline). As a neural
baseline, we apply this solver by Seo et al. (2017),
which was originally proposed for SQuAD but
has been shown to generalize well to another do-
main (Min et al., 2017). Since BiDAF was de-
signed for cloze style questions, we apply it to
our multiple-choice setting following the proce-
dure by Kembhavi et al. (2017): Specifically, we
score each answer-option by computing the sim-
ilarity value of it’s output span with each of the
candidate answers, computed by phrasal similar-
ity tool of Wieting et al. (2015).

4.2 Results

To get a sense of our dataset’s hardness, we eval-
uate both human performance and multiple com-
putational baselines. Each baseline scores an
answer-option with a real-valued score, which
we threshold to decide whether an answer option
is selected or not, where the threshold is tuned
on the development set. Table 3 shows perfor-
mance results for different baselines. The signif-
icantly high human performance shows that hu-
mans do not have much difficulties in answering
the questions. Similar observations can be made
in Figure 5 where we plot avgq∈Q(Pre(q)) vs.
avgq∈Q(Rec(q)), for different threshold values.

5 Conclusion

In this paper we have presented MultiRC, a read-
ing comprehension dataset in which questions re-
quire reasoning over multiple sentences to be an-

Figure 5: PR curve for each of the baselines. There is
a considerable gap with the baselines and human.

swered. Our dataset contains ∼ 6k questions ex-
tracted from about +800 paragraphs. For each
question, it contains multiple answer-options out
of which one or more can be correct. The para-
graphs (and questions) originate from different do-
mains and hence are amenable to a wide variety
and complexity of required reasoning phenomena.
We found human performance on this corpus to be
about 88% while state-of-the-art machine compre-
hension models do not exceed a F1-score of 60%.
We hope that this significant difference in perfor-
mance will encourage the community to work to-
wards more sophisticated reasoning systems.
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Abstract

We demonstrate that current state-of-the-
art approaches to Automated Essay Scoring
(AES) are not well-suited to capturing adver-
sarially crafted input of grammatical but inco-
herent sequences of sentences. We develop a
neural model of local coherence that can ef-
fectively learn connectedness features between
sentences, and propose a framework for in-
tegrating and jointly training the local coher-
ence model with a state-of-the-art AES model.
We evaluate our approach against a number of
baselines and experimentally demonstrate its
effectiveness on both the AES task and the task
of flagging adversarial input, further contribut-
ing to the development of an approach that
strengthens the validity of neural essay scor-
ing models.

1 Introduction

Automated Essay Scoring (AES) focuses on auto-
matically analyzing the quality of writing and as-
signing a score to the text. Typically, AES models
exploit a wide range of manually-tuned shallow
and deep linguistic features (Shermis and Ham-
mer, 2012; Burstein et al., 2003; Rudner et al.,
2006; Williamson et al., 2012; Andersen et al.,
2013). Recent advances in deep learning have
shown that neural approaches to AES achieve
state-of-the-art results (Alikaniotis et al., 2016;
Taghipour and Ng, 2016) with the additional ad-
vantage of utilizing features that are automatically
learned from the data. In order to facilitate in-
terpretability of neural models, a number of visu-
alization techniques have been proposed to iden-
tify textual (superficial) features that contribute to
model performance (Alikaniotis et al., 2016).

To the best of our knowledge, however, no prior
work has investigated the robustness of neural
AES systems to adversarially crafted input that is
designed to trick the model into assigning desired

missclassifications; for instance, a high score to a
low quality text. Examining and addressing such
validity issues is critical and imperative for AES
deployment. Previous work has primarily focused
on assessing the robustness of “standard” machine
learning approaches that rely on manual feature
engineering; for example, Powers et al. (2002);
Yannakoudakis et al. (2011) have shown that such
AES systems, unless explicitly designed to handle
adversarial input, can be susceptible to subversion
by writers who understand something of the sys-
tems’ workings and can exploit this to maximize
their score.

In this paper, we make the following contribu-
tions:

i. We examine the robustness of state-of-the-art
neural AES models to adversarially crafted
input,1 and specifically focus on input related
to local coherence; that is, grammatical but
incoherent sequences of sentences.2 In addi-
tion to the superiority in performance of neu-
ral approaches against “standard” machine
learning models (Alikaniotis et al., 2016;
Taghipour and Ng, 2016), such a setup allows
us to investigate their potential superiority /
capacity in handling adversarial input with-
out being explicitly designed to do so.

ii. We demonstrate that state-of-the-art neural
AES is not well-suited to capturing adver-
sarial input of grammatical but incoherent
sequences of sentences, and develop a neu-
ral model of local coherence that can effec-
tively learn connectedness features between
sentences.

1We use the terms ‘adversarially crafted input’ and ‘ad-
versarial input’ to refer to text that is designed with the inten-
tion to trick the system.

2Coherence can be assessed locally in terms of transitions
between adjacent sentences.
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iii. A local coherence model is typically eval-
uated based on its ability to rank coher-
ently ordered sequences of sentences higher
than their incoherent / permuted counterparts
(e.g., Barzilay and Lapata (2008)). We focus
on a stricter evaluation setting in which the
model is tested on its ability to rank coher-
ent sequences of sentences higher than any
incoherent / permuted set of sentences, and
not just its own permuted counterparts. This
supports a more rigorous evaluation that fa-
cilitates development of more robust models.

iv. We propose a framework for integrating and
jointly training the local coherence model
with a state-of-the-art AES model. We eval-
uate our approach against a number of base-
lines and experimentally demonstrate its ef-
fectiveness on both the AES task and the task
of flagging adversarial input, further con-
tributing to the development of an approach
that strengthens AES validity.

At the outset, our goal is to develop a framework
that strengthens the validity of state-of-the-art neu-
ral AES approaches with respect to adversarial in-
put related to local aspects of coherence. For our
experiments, we use the Automated Student As-
sessment Prize (ASAP) dataset,3 which contains
essays written by students ranging from Grade 7
to Grade 10 in response to a number of different
prompts (see Section 4).

2 Related Work

AES Evaluation against Adversarial Input One
of the earliest attempts at evaluating AES mod-
els against adversarial input was by Powers et al.
(2002) who asked writing experts – that had been
briefed on how the e-Rater scoring system works
– to write essays to trick e-Rater (Burstein et al.,
1998). The participants managed to fool the sys-
tem into assigning higher-than-deserved grades,
most notably by simply repeating a few well-
written paragraphs several times. Yannakoudakis
et al. (2011) and Yannakoudakis and Briscoe
(2012) created and used an adversarial dataset of
well-written texts and their random sentence per-
mutations, which they released in the public do-
main, together with the grades assigned by a hu-
man expert to each piece of text. Unfortunately,
however, the dataset is quite small, consisting of

3https://www.kaggle.com/c/asap-aes/

12 texts in total. Higgins and Heilman (2014) pro-
posed a framework for evaluating the susceptibil-
ity of AES systems to gaming behavior.

Neural AES Models Alikaniotis et al. (2016)
developed a deep bidirectional Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber,
1997) network, augmented with score-specific
word embeddings that capture both contextual and
usage information for words. Their approach
outperformed traditional feature-engineered AES
models on the ASAP dataset. Taghipour and
Ng (2016) investigated various recurrent and con-
volutional architectures on the same dataset and
found that an LSTM layer followed by a Mean
over Time operation achieves state-of-the-art re-
sults. Dong and Zhang (2016) showed that a two-
layer Convolutional Neural Network (CNN) out-
performed other baselines (e.g., Bayesian Linear
Ridge Regression) on both in-domain and domain-
adaptation experiments on the ASAP dataset.

Neural Coherence Models A number of ap-
proaches have investigated neural models of co-
herence on news data. Li and Hovy (2014) used
a window approach where a sliding kernel of
weights was applied over neighboring sentence
representations to extract local coherence fea-
tures. The sentence representations were con-
structed with recursive and recurrent neural meth-
ods. Their approach outperformed previous meth-
ods on the task of selecting maximally coherent
sentence orderings from sets of candidate permu-
tations (Barzilay and Lapata, 2008). Lin et al.
(2015) developed a hierarchical Recurrent Neural
Network (RNN) for document modeling. Among
others, they looked at capturing coherence be-
tween sentences using a sentence-level language
model, and evaluated their approach on the sen-
tence ordering task. Tien Nguyen and Joty (2017)
built a CNN over entity grid representations, and
trained the network in a pairwise ranking fashion.
Their model outperformed other graph-based and
distributed sentence models.

We note that our goal is not to identify the
“best” model of local coherence on randomly
permuted grammatical sentences in the domain
of AES, but rather to propose a framework that
strengthens the validity of AES approaches with
respect to adversarial input related to local aspects
of coherence.

264



Figure 1: Local Coherence (LC) model architecture using a window of size 3. All hsnt representations are com-
puted the same way as hsnt1 . The figure depicts the process of predicting the first clique score, which is applied to
all the cliques in the text. The output coherence score is the average of all the clique scores. T is the number of
cliques.

3 Models

3.1 Local Coherence (LC) Model

Our local coherence model is inspired by the
model of Li and Hovy (2014) which uses a win-
dow approach to evaluate coherence.4 Figure 1
presents a visual representation of the network ar-
chitecture, which is described below in detail.

Sentence Representation This part of the model
composes the sentence representations that can be
utilized to learn connectedness features between
sentences. Each word in the text is initialized with
a k-dimensional vector w from a pre-trained word
embedding space. Unlike Li and Hovy (2014), we
use an LSTM layer5 to capture sentence compo-
sitionality by mapping words in a sentence s =
{w1, w2, ..., wn} at each time step t (wt, where
t ≤ n) onto a fixed-size vector hwrdt ∈ Rdlstm
(where dlstm is a hyperparameter). The sentence
representation hsnt is then the representation of
the last word in the sentence:

hsnt = hwrdn (1)

Clique Representation Each window of sen-
tences in a text represents a clique q =

4We note that Li and Jurafsky (2017) also present an ex-
tended version of the work by Li and Hovy (2014), evaluated
on different domains.

5LSTMs have been shown to produce state-of-the-art re-
sults in AES (Alikaniotis et al., 2016; Taghipour and Ng,
2016).

{s1, ..., sm}, where m is a hyperparameter indi-
cating the window size. A clique is assigned a
score of 1 if it is coherent (i.e., the sentences are
not shuffled) and 0 if it is incoherent (i.e., the sen-
tences are shuffled). The clique embedding is cre-
ated by concatenating the representations of the
sentences it contains according to Equation 1. A
convolutional operation – using a filter W clq ∈
Rm×dlstm×dcnn , where dcnn denotes the convolu-
tional output size – is then applied to the clique
embedding, followed by a non-linearity in order
to extract the clique representation hclq ∈ Rdcnn :

hclqj = tanh([hsntj ; ..;hsntj+m−1] ∗W clq) (2)

Here, j ∈ {1, ..., N −m+1}, N is the number of
sentences in the text, and ∗ is the linear convolu-
tional operation.

Scoring The cliques’ predicted scores are calcu-
lated via a linear operation followed by a sigmoid
function to project the predictions to a [0, 1] prob-
ability space:

ŷclqj = sigmoid(hclqj . V ) (3)

where V ∈ Rdcnn is a learned weight. The net-
work optimizes its parameters to minimize the
negative log-likelihood of the cliques’ gold scores
yclq, given the network’s predicted scores:

Llocal =
1

T

T∑

j=1

[−yclqj log(ŷclqj )

−(1− yclqj )log(1− ŷclqj )]

(4)

265



Figure 2: AES LSTMT&N model of Taghipour and Ng
(2016). The ŷesy is the final predicted essay score.

where T = N−m+1 (number of cliques in text).
The final prediction of the text’s coherence score is
calculated as the average of all of its clique scores:

ŷcoh =
1

T

T∑

j=1

ŷclqj (5)

This is in contrast to Li and Hovy (2014), who
multiply all the estimated clique scores to gener-
ate the overall document score. This means that if
only one clique is misclassified as incoherent and
assigned a score of 0, the whole document is re-
garded as incoherent. We aim to soften this as-
sumption and use the average instead to allow for
a more fine-grained modeling of degrees of coher-
ence.6

We train the LC model on synthetic data auto-
matically generated by creating random permuta-
tions of highly-scored ASAP essays (Section 4).

3.2 LSTM AES Model

We utilize the LSTM AES model of Taghipour and
Ng (2016) shown in Figure 2 (LSTMT&N), which
is trained, and yields state-of-the-art results on the
ASAP dataset. The model is a one-layer LSTM
that encodes the sequence of words in an essay,
followed by a Mean over Time operation that aver-
ages the word representations generated from the
LSTM layer.7

6Our experiments showed that using the multiplicative ap-
proach gives poor results, as presented in Section 6.

7We note that the authors achieve slightly higher results
when averaging ensemble results of their LSTM model to-
gether with CNN models. We use their main LSTM model

3.3 Combined Models

We propose a framework for integrating the
LSTMT&N model with the Local Coherence (LC)
one. Our goal is to have a robust AES system
that is able to correctly flag adversarial input while
maintaining a high performance on essay scoring.

3.3.1 Baseline: Vector Concatenation
(VecConcat)

The baseline model simply concatenates the out-
put representations of the pre-prediction layers of
the trained LSTMT&N and LC networks, and feeds
the resulting vector to a machine learning algo-
rithm (e.g., Support Vector Machines, SVMs) to
predict the final overall score. In the LSTMT&N
model, the output representation (hereafter re-
ferred to as the essay representation) is the vector
produced from the Mean Over Time operation; in
the LC model, we use the generated clique repre-
sentations (Figure 1) aggregated with a max op-
eration;8 (hereafter referred to as the clique rep-
resentation). Although the LC model is trained
on permuted ASAP essays (Section 4) and the
LSTMT&N model on the original ASAP data, es-
say and clique representations are generated for
both the ASAP and the synthetic essays contain-
ing reordered sentences.

3.3.2 Joint Learning
Instead of training the LSTMT&N and LC models
separately and then concatenating their output rep-
resentations, we propose a framework where both
models are trained jointly, and where the final net-
work has then the capacity to predict AES scores
and flag adversarial input (Figure 3).

Specifically, the LSTMT&N and LC networks
predict an essay and coherence score respectively
(as described earlier), but now they both share the
word embedding layer. The training set is the ag-
gregate of both the ASAP and permuted data to al-
low the final network to learn from both simultane-
ously. Concretely, during training, for the ASAP
essays, we assume that both the gold essay and
coherence scores are the same and equal to the
gold ASAP scores. This is not too strict an as-
sumption, as overall scores of writing competence
tend to correlate highly with overall coherence.
For the synthetic essays, we set the “gold” coher-

which, for the purposes of our experiments, does not affect
our conclusions.

8We note that max aggregation outperformed other aggre-
gation functions.
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Figure 3: A joint network for scoring essays as well
as detecting adversarial input. The LSTMT&N model is
the one depicted in Figure 2, and the LC in Figure 1.

ence scores to zero, and the “gold” essay scores
to those of their original non-permuted counter-
parts in the ASAP dataset. The intuition is as
follows: firstly, setting the “gold” essay scores of
synthetic essays to zero would bias the model into
over-predicting zeros; secondly, our approach re-
inforces the LSTMT&N’s inability to detect adver-
sarial input, and forces the overall network to rely
on the LC branch to identify such input.9

The two sub-networks are trained together and
the error gradients are back-propagated to the
word embeddings. To detect whether an essay is
adversarial, we further augment the system with
an adversarial text detection component that sim-
ply captures adversarial input based on the differ-
ence between the predicted essay and coherence
scores. Specifically, we use our development set
to learn a threshold for this difference, and flag
an essay as adversarial if the difference is larger
than the threshold. We experimentally demon-
strate that this approach enables the model to per-
form well on both original ASAP and synthetic es-
says. During model evaluation, the texts flagged
as adversarial by the model are assigned a score
of zero, while the rest are assigned the predicted
essay score (ŷesy in Figure 3).

4 Data and Evaluation

We use the ASAP dataset, which contains 12, 976
essays written by students ranging from Grade 7 to

9We note that, during training, the scores are mapped to
a range between 0 and 1 (similarly to Taghipour and Ng
(2016)), and then scaled back to their original range during
evaluation.

Grade 10 in response to 8 different prompts. We
follow the ASAP data split by Taghipour and Ng
(2016), and apply 5-fold cross validation in all ex-
periments using the same train/dev/test splits. For
each prompt, the fold predictions are aggregated
and evaluated together. In order to calculate the
overall system performance, the results are aver-
aged across the 8 prompts.

To create adversarial input, we select high scor-
ing essays per prompt (given a pre-defined score
threshold, Table 1)10 that are assumed coherent,
and create 10 permutations per essay by randomly
shuffling its sentences. In the joint learning setup,
we augment the original ASAP dataset with a sub-
set of the synthetic essays. Specifically, we ran-
domly select 4 permutations per essay to include
in the training set,11 but include all 10 permuta-
tions in the test set. Table 1 presents the details of
the datasets.

We test performance on the ASAP dataset using
Quadratic Weighted Kappa (QWK), which was
the official evaluation metric in the ASAP compe-
tition, while we test performance on the synthetic
dataset using pairwise ranking accuracy (PRA) be-
tween an original non-permuted essay and its per-
muted counterparts. PRA is typically used as an
evaluation metric on coherence assessment tasks
on other domains (Barzilay and Lapata, 2008),
and is based on the fraction of correct pairwise
rankings in the test data (i.e., a coherent essay
should be ranked higher than its permuted coun-
terpart). Herein, we extend this metric and further-
more evaluate the models by comparing each orig-
inal essay to all adversarial / permuted essays in
the test data, and not just its own permuted coun-
terparts – we refer to this metric as total pairwise
ranking accuracy (TPRA).

5 Model Parameters and Baselines

Coherence models We train and test the LC
model described in Section 3.1 on the synthetic
dataset and evaluate it using PRA and TPRA. Dur-
ing pre-processing, words are lowercased and ini-
tialized with pre-trained word embeddings (Zou
et al., 2013). Words that occur only once in the
training set are mapped to a special UNK embed-

10We note that this threshold is different than the one men-
tioned in Section 3.3.2.

11This is primarily done to keep the data balanced: initial
experiments showed that training with all 10 permutations per
essay harms AES performance, but has negligible effect on
adversarial input detection.
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Prompt #ASAP essays Score Range Synthetic Dataset
threshold #ASAP essays total size

1 1,783 2–12 10 472 5,192
2 1,800 1–6 5 82 902
3 1,726 0–3 3 407 4,477
4 1,772 0–3 3 244 2,684
5 1,805 0–4 4 258 2,838
6 1,800 0–4 4 367 4,037
7 1,569 0–30 23 179 1,969
8 723 0–60 45 72 792

Table 1: Statistics for each dataset per prompt. For the synthetic dataset, the high scoring ASAP essays are selected
based on the indicated score threshold (inclusive). “total size” refers to the number of the ASAP essays selected +
their 10 different permutations.

ding. All network weights are initialized to values
drawn randomly from a uniform distribution with
scale = 0.05, and biases are initialized to zeros.
We apply a learning rate of 0.001 and RMSProp
(Tieleman and Hinton, 2012) for optimization. A
size of 100 is chosen for the hidden layers (dlstm
and dcnn), and the convolutional window size (m)
is set to 3. Dropout (Srivastava et al., 2014) is ap-
plied for regularization to the output of the convo-
lutional operation with probability 0.3. The net-
work is trained for 60 epochs and performance is
monitored on the development sets – we select the
model that yields the highest PRA value.12

We use as a baseline the LC model that is based
on the multiplication of the clique scores (simi-
larly to Li and Hovy (2014)), and compare the
results (LCmul) to our averaged approach. As
another baseline, we use the entity grid (EGrid)
(Barzilay and Lapata, 2008) that models transi-
tions between sentences based on sequences of en-
tity mentions labeled with their grammatical role.
EGrid has been shown to give competitive re-
sults on similar coherence tasks in other domains.
Using the Brown Coherence Toolkit (Eisner and
Charniak, 2011),13 we construct the entity transi-
tion probabilities with length = 3 and salience = 2.
The transition probabilities are then used as fea-
tures that are fed as input to an SVM classifier with
an RBF kernel and penalty parameter C = 1.5 to
predict a coherence score.

LSTMT&N model We replicate and evaluate the
LSTM model of Taghipour and Ng (2016)14 on
ASAP and our synthetic data.

Combined models After training the LC and
LSTMT&N models, we concatenate their output

12Our implementation is available at https:
//github.com/Youmna-H/Coherence_AES

13https://bitbucket.org/melsner/browncoherence
14https://github.com/nusnlp/nea

vectors to build the Baseline: Vector Concate-
nation (VecConcat) model as described in Sec-
tion 3.3.1, and train a Kernel Ridge Regression
model.15

The Joint Learning network is trained on both
the ASAP and synthetic dataset as described in
Section 3.3.2. Adversarial input is detected based
on an estimated threshold on the difference be-
tween the predicted essay and coherence scores
(Figure 3). The threshold value is empirically cal-
culated on the development sets, and set to be
the average difference between the predicted es-
say and coherence scores in the synthetic data:

threshold =

∑M
i=1 ŷ

esy
i − ŷcohi
M

where M is the number of synthetic essays in the
development set.

We furthermore evaluate a baseline where
the joint model is trained without sharing the
word embedding layer between the two sub-
models, and report the effect on performance
(Joint Learningno layer sharing). Finally, we evalu-
ate a baseline where for the joint model we set the
“gold” essay scores of synthetic data to zero (Joint
Learningzero score), as opposed to our proposed ap-
proach of setting them to be the same as the score
of their original non-permuted counterpart in the
ASAP dataset.

6 Results

The state-of-the-art LSTMT&N model, as shown
in Table 2, gives the highest performance on the
ASAP data, but is not robust to adversarial in-
put and therefore unable to capture aspects of lo-
cal coherence, with performance on synthetic data
that is less than 0.5. On the other hand, both

15We use scikit-learn with the following parameters:
alpha=0.1, coef0=1, degree=3, gamma=0.1, kernel=‘rbf’.
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Model
ASAP Synthetic
QWK PRA TPRA

EGrid − 0.718* 0.706*

LC − 0.946* 0.689*

LCmul − 0.948* 0.620*

LSTMT&N 0.739 0.430 0.473
VecConcat 0.719 0.614* 0.567*

Joint Learning 0.724 0.770* 0.777*

Table 2: Model performance on ASAP and synthetic
test data. Evaluation is based on the average QWK,
PRA and TRPA across the 8 prompts. * indicates
significantly different results compared to LSTMT&N
(two-tailed test with p < 0.01).

our LC model and the EGrid significantly outper-
form LSTMT&N on synthetic data. While EGrid is
slightly better in terms of TPRA compared to LC
(0.706 vs. 0.689), LC is substantially better on
PRA (0.946 vs. 0.718). This could be attributed
to the fact that LC is optimised using PRA on the
development set. The LCmul variation has a per-
formance similar to LC in terms of PRA, but is
significantly worse in terms of TPRA, which fur-
ther supports the use of our proposed LC model.

Our Joint Learning model manages to exploit
the best of both the LSTMT&N and LC approaches:
performance on synthetic data is significantly bet-
ter compared to LSTMT&N (and in particular gives
the highest TPRA value on synthetic data com-
pared to all models), while manages to maintain
the high performance of LSTMT&N on ASAP data
(performance slighly drops from 0.739 to 0.724
though not significantly). When the Joint Learning
model is compared against the VecConcat base-
line, we can again confirm its superiority on both
datasets, giving significant differences on syn-
thetic data.

7 Further Analysis

We furthermore evaluate the performance of the
the Joint Learning model when trained using dif-
ferent parameters (Table 3). When assigning
“gold” essay scores of zero to adversarial essays
(Joint Learningzero score), AES performance on the
ASAP data drops to 0.449 QWK, and the results
are statistically significant.16 This is partly ex-

16Note that we do not report performance of this model
on synthetic data. In this case, the thresholding technique
cannot be applied as both sub-models are trained with the
same “gold” scores and thus have very similar predictions on
synthetic data.

Model
ASAP Synthetic
QWK PRA TPRA

Joint Learning 0.724 0.770 0.777
Joint Learningno layer sharing 0.720 0.741 0.753*

Joint Learningzero score 0.449* − −

Table 3: Evaluation of different Joint Learning model
parameters. * indicates significantly different results
compared to our Joint Learning approach.

plained by the fact that the model, given the train-
ing data gold scores, is biased towards predicting
zeros. The result, however, further supports our
hypothesis that forcing the Joint Learning model
to rely on the coherence branch for adversarial in-
put detection further improves performance. Im-
portantly, we need something more than just train-
ing a state-of-the-art AES model (in our case,
LSTMT&N) on both original and synthetic data.

We also compare Joint Learning to Joint
Learningno layer sharing in which the the two sub-
models are trained separately without sharing the
first layer of word representations. While the dif-
ference in performance on the ASAP test data is
small, the differences are much larger on synthetic
data, and are significant in terms of TPRA. By ex-
amining the false positives of both systems (i.e.,
the coherent essays that are misclassified as adver-
sarial), we find that when the embeddings are not
shared, the system is biased towards flagging long
essays as adversarial, while interestingly, this bias
is not present when the embeddings are shared.
For instance, the average number of words in the
false positive cases of Joint Learningno layer sharing
on the ASAP data is 426, and the average num-
ber of sentences is 26; on the other hand, with the
Joint Learning model, these numbers are 340 and
19 respectively.17 A possible explanation for this
is that training the words with more contextual in-
formation (in our case, via embeddings sharing),
is advantageous for longer documents with a large
number of sentences.

Ideally, no essays in the ASAP data should be
flagged as adversarial as they were not designed
to trick the system. We calculate the number
of ASAP texts incorrectly detected as adversar-
ial, and find that the average error in the Joint
Learning model is quite small (0.382%). This in-
creases with Joint Learningno layer sharing (1%), al-
though still remains relatively small.

17Adversarial texts in the synthetic dataset have an average
number of 306 words and an average number of 18 sentences.
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Figure 4: Joint Learning model predictions on the synthetic test set for 3 randomly selected prompts. The upper
graphs ((a), (b) and (c)) show the predicted essay and coherence scores on adversarial text, while the bottom ones
((d), (e) and (f)) show the predicted scores for highly scored / coherent ASAP essays. The blue circles represent
the essay scores, and the red pluses the coherence scores. All predicted scores are mapped to their original scoring
scale.

We further investigate the essay and coherence
scores predicted by our best model, Joint Learn-
ing, for the permuted and original ASAP essays
in the synthetic dataset (for which we assume that
the selected, highly scored ASAP essays are co-
herent, Section 4), and present results for 3 ran-
domly selected prompts in Figure 4. The graphs
show a large difference between predicted essay
and coherence scores on permuted / adversarial
data ((a), (b) and (c)), where the system predicts
high essay scores for permuted texts (as a result
of our training strategy), but low coherence scores
(as predicted by the LC model). For highly scored
ASAP essays ((d), (e) and (f)), the system predic-
tions are less varied and positively contributes to
the performance of our proposed approach.

8 Conclusion

We evaluated the robustness of state-of-the-art
neural AES approaches on adversarial input of
grammatical but incoherent sequences of sen-
tences, and demonstrated that they are not well-
suited to capturing such cases. We created a syn-
thetic dataset of such adversarial examples and
trained a neural local coherence model that is able
to discriminate between such cases and their co-
herent counterparts. We furthermore proposed
a framework for jointly training the coherence
model with a state-of-the-art neural AES model,
and introduced an effective strategy for assigning

“gold” scores to adversarial input during training.
When compared against a number of baselines,
our joint model achieves better performance on
randomly permuted sentences, while maintains a
high performance on the AES task. Among oth-
ers, our results demonstrate that it is not enough to
simply (re-)train neural AES models with adver-
sarially crafted input, nor is it sufficient to rely on
“simple” approaches that concatenate output rep-
resentations from different neural models. Finally,
our framework strengthens the validity of neural
AES approaches with respect to adversarial input
designed to trick the system.
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Abstract

We propose a framework for computer-
assisted text editing. It applies to translation
post-editing and to paraphrasing. Our proposal
relies on very simple interactions: a human
editor modifies a sentence by marking tokens
they would like the system to change. Our
model then generates a new sentence which
reformulates the initial sentence by avoiding
marked words. The approach builds upon neu-
ral sequence-to-sequence modeling and intro-
duces a neural network which takes as input
a sentence along with change markers. Our
model is trained on translation bitext by sim-
ulating post-edits. We demonstrate the ad-
vantage of our approach for translation post-
editing through simulated post-edits. We also
evaluate our model for paraphrasing through a
user study.

1 Introduction

Computers can help humans edit text more effi-
ciently. In particular, statistical models are used
for that purpose, for instance to help correct
spelling mistakes (Brill and Moore, 2000) or sug-
gest likely completions of a sentence (Bickel et al.,
2005). In this work, we rely on statistical learn-
ing to enable a computer to rephrase a sentence
by only pointing at words that should be avoided.
Specifically, we consider the task of reformulat-
ing either a sentence, i.e. paraphrasing (Quirk
et al., 2004), or a translation, i.e. translation post-
editing (Koehn, 2009b). Paraphrasing reformu-
lates a sentence with different words preserving
its meaning, while translation post-editing takes a
candidate translation along with the corresponding
source sentence and improves it.

Our proposal relies on very simple interactions:
a human editor modifies a sentence by selecting
tokens they would like the system to replace and
no other feedback. Our system then generates a
new sentence which reformulates the initial sen-

tence by avoiding the word types from the se-
lected tokens. Our approach builds upon neural
sequence-to-sequence and introduces a neural net-
work which takes as input a sentence along with
token markers. We introduce a novel attention-
based architecture suited to this goal and propose
a training procedure based on simulated post-edits
on translation bitext (§3). This approach allows to
get substantial modifications of the initial sentence
– including deletion, reordering and insertion of
multiple words – with limited user effort.

Our experiments (§4) relies on large scale simu-
lated post-edits. They show that our model outper-
forms our post-editing baseline by up to 5 BLEU
points on WMT’14 English-German and WMT’14
German-English translation. The advantage of our
method is also highlighted in monolingual set-
tings, where we analyze the quality of the para-
phrases generated by our model in a user study.

Before introducing our method (§3) and its em-
pirical evaluation (§4), we describe related work
in the next section.

2 Related Work

Our work builds upon previous research on neu-
ral machine translation, machine translation post-
editing, and computer-assisted editing.

2.1 Neural Machine Translation

Statistical machine translation systems models au-
tomatically translate text relying on large corpora
of bitext, i.e. corresponding pairs of sentences in
the source and target language (Koehn, 2009a).
Recently, machine translation systems based on
neural networks have emerged as an effective ap-
proach to this problem (Sutskever et al., 2014).
Neural networks are a departure from count-based
translation systems, e.g. phrase-based systems,
which used to dominate the field (Koehn, 2009a).

Research in Neural Machine Translation
(NMT) focuses notably on identifying appropri-
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ate neural architecture. Cho et al. (2014) and
Suskever et al. (2014) proposed encoder/decoder
models. These models consist of a Recurrent
Neural Network (RNN) mapping the source
sentence sentence into a latent vector (en-
coder). This vector conditions an RNN language
model (decoder) which generates the target
sentence (Mikolov et al., 2010; Graves, 2013).
Bahdanau et al. (2014) adds attention to these
models, which leverages that the explanation
for a given target word in generally localized
around a few source words. Recently, new
architectures have proposed to replace recurrent
modules with convolutions (Gehring et al., 2017)
or self-attention (Vaswani et al., 2017) to further
increase accuracy. These architecture also per-
form attention at more than one decoder layer,
allowing for more complex attention patterns.
In this work, we build upon the architecture of
Gehring et al. (2017) since this model offers a
good trade-off between high accuracy and fast
decoding.

2.2 Translation Post-Editing

Post-editing leverages a machine translation sys-
tem and enable human translators to edit its out-
put with different levels of computer assistance.
This enables improving machine translation out-
puts with lesser effort than purely manual transla-
tion.

Green et al. (2014) implement such a system
relying on a phrase-based translation system. The
system presents an initial translation to the user
who can accept a prefix and select among the most
likely postfix iteratively. Similar ideas relying
on decoding with prefix constrains are common
in post-translation (Langlais et al., 2000; Koehn,
2009b; Barrachina et al., 2009). Recently, these
approaches based on left-to-right decoding have
been extended to neural machine translation (Peris
et al., 2017).

Closer to our work, Marie and Max (2015) pro-
pose light-weight interactions based on accept-
ing/rejecting spans from the output of a statisti-
cal machine translation system. The user labels
each span that should appear in the final transla-
tion. Unmarked spans are assumed to be undesir-
able and the system removes any entries that could
generate those spans from the phrase table. The
phrase table is modified such that only positively
marked target spans are allowed to explain the cor-

responding source phrases.
Compared to their work, we rely on similar in-

teractions but we do not require the user to label
every token as either accepted or rejected. The
user only needs to mark a few rejections. Also,
we build on a more accurate neural translation
model which is not amenable to phrase table edit-
ing. Finally, our method is equally applicable to
the monolingual editing of regular text.

Automatic post-editing (APE) (Lagarda et al.,
2009), i.e. a process which automatically modifies
an MT output without human guidance (Lagarda
et al., 2009), is also an active area of research. Al-
though APE shares similarities to classical post-
editing, it is beyond the scope of this paper.

2.3 Computer-Assisted Text Editing

Computer assisted text editing has been intro-
duced with interactive computer terminals (Irons
and Djorup, 1972). Its first achievement was to
simplify the insertion, deletion, and copy of text
compared to typewriters. Computers then enabled
the emergence of computerized language assis-
tance tools such as spelling correctors (Brill and
Moore, 2000) or next word suggestions (Bickel
et al., 2005).

More recently, research has focused on gener-
ating paraphrases (Bannard and Callison-Burch,
2005; Mallinson et al., 2017), compressing sen-
tences (Rush et al., 2015) or simplifying sen-
tences (Nisioi et al., 2017). This type of work
expands the possibilities for interactive text gen-
eration tools, like our work.

Related to our work, Filippova et al. (2015)
considers the task of predicting which tokens can
be removed from a sentence without modifying
its meaning relying on a recurrent neural network.
Our work pursues a different goal since our model
does not predict which token to remove, as the
user provides this information. Our generation
is more involved as our model rephrases the sen-
tences, which includes introducing new words, re-
ordering text, inflecting nouns and verbs, etc. Guu
et al. (2017) considers generating text with latent
edits. Their goal is not to enable users to con-
trol which words need to be changed in an initial
sentence but to enable sampling valid English sen-
tences with high lexical overlap around a starting
sentence. Contrary to paraphrasing, such samples
might introduce negations and other changes im-
pacting meaning.
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Figure 1: QuickEdit architecture for translation post-editing. The decoder attends to both encodings, one for the
source and one for the initial translation (guess) with deletion markers (X on the diagram). Our simplified schema
shows one convolutional block and single-hop attention for readability.

3 QuickEdit

QuickEdit is our sequence-to-sequence model for
post-editing via delete actions. This model takes
as input a source sentence and an initial guess tar-
get sentence annotated with change markers. It
then aims to improve upon the guess by generating
a better target sentence which avoids the marked
tokens.

3.1 Model Architecture
Our model builds upon the architecture of Gehring
et al. (2017). This model is a sequence to sequence
neural model with attention. Both the encoder
and decoder are deep convolutional networks with
residual connections. The model performs multi-
hop attention, i.e. each layer of the decoder attends
to the encoder outputs. Our architecture choice is
motivated by the accuracy of this model along with
its computational efficiency.

QuickEdit adds a second encoder to represent
the annotated guess sentence. It also duplicates
every attention layer to allow the decoder to attend
both to the source and the guess sentences. Dual
attention has been introduced recently in the con-
text of automatic post-editing (Novak et al., 2016;
Libovickỳ and Helcl, 2017). Our work is however
the first work to introduce dual attention in a multi-
hop architecture. Figure 1 illustrates our architec-
ture.

The encoder of the initial guess takes as input
a target sentence t annotated with binary change
labels c, i.e.

g = {gi}lgi=1 where ∀i, gi = (ti, ci)

in which lg denotes the length of the guess, ti is
an index in the target vocabulary and ci is a binary

variable with 1 indicating a request to change the
token by the user and 0 indicating no user pref-
erence. The first layer of the encoder maps this
sequence to two embedding sequences, i.e. a se-
quence of target word embeddings and a sequence
of positional embeddings. Compared to (Gehring
et al., 2017), we extend the positional embedding
to contain two types of vectors, positional vectors
associated with positions i where ci = 0 and po-
sitional vectors associated with positions i where
ci = 1. Like all parameters in the system, both
sets of embeddings are learned to maximize the
log-likelihood of the training reference sentences
conditioned on the source, annotated guess pairs.

The attention over two sentences is simple.
Both source and guess encoders produce a se-
quence of key and value pairs. We denote the out-
put of the source encoder as {(ksi , vsi )}lsi=1 and the
output of the guess encoder as {(kgi , vgi )}

lg
i=1. At

each decoder layer k and time step j, the decoder
produces a latent state vector hkj , this vector at-
tends to the output of the source encoder,

asi = exp
(
hkj · ksi

)
/
∑

l

exp
(
hkj · ksl

)

and the guess encoder,

agi = exp
(
hkj · kgi

)
/
∑

l

exp
(
hkj · kgl

)
.

This attention weights are used to summarize
the values of the source

∑
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s
iv
s
i and the guess∑
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s
iv
g
i respectively. The attention module then

averages these two vectors 1
2

∑
i a
s
iv
s
i +

1
2

∑
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g
i v
g
i

and uses this average instead of the source atten-
tion output in the next layer (Gehring et al., 2017).
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3.2 Training & Inference
Our model is trained on translation bitext by sim-
ulating post-edits. Given a bitext corpus, we first
train an initial translation system and we then rely
on this system to translate the training corpus.
This strategy results in three sentences for each
example: the source, the guess (i.e. the sentence
decoded from the initial system) and the refer-
ence sentence. Post-edits are simulated by mark-
ing guess tokens which do not appear in the corre-
sponding reference sentence.

The dual attention model presented in the above
section is then trained. We maximize the log-
likelihood of the training reference sentences y
given each corresponding source sentence x and
the annotated guess g, i.e. we maximize

LTrain : θ →
∑

(x,y,g)∈Train
logP (y|x, g, θ)

where y refers to the reference sentence, x refers
to the source sentence and g is the annotated
guess sentence as defined above. Training relies
on stochastic gradient descent (Bottou, 1991), us-
ing Nesterov’s accelerated gradient with momen-
tum (Nesterov, 1983; Sutskever et al., 2013). At
inference time, we decode through standard left-
to-right beam search (Sutskever et al., 2014). Our
decoding strategy for QuickEdit also incorporates
hard constraints that prevent the decoder from out-
putting tokens which are marked in the guess.

3.3 Extension to Monolingual Editing
The extension of QuickEdit to a monolingual set-
ting is straightforward: we remove the source en-
coder and the corresponding attention path. This
results in a single encoder model which takes only
an annotated guess as input. This model can be
trained from pairs of sentences consisting of a
machine translation output along with the corre-
sponding reference sentence. Although machine
translation bitext are used to create this model
training data, it operates solely on target language
sentences without requiring a source sentence at
test time. In our experiments, we train distinct
models for the monolingual setting. We do not
consider sharing parameters with the translation
models at this point.

4 Experiments & Results

We evaluate on three translation datasets of
increasing size and we report results in both

language directions: IWSLT’14 German-
English (Cettolo et al., 2014), WMT’14 German-
English (Luong et al., 2015), and WMT’14
English-French (Bojar et al., 2014). Our post-
editing baseline is our initial neural translation
system, complemented with decoding constraints
to disallow marked guess words to be considered
in the beam. For paraphrasing, we compare
our model trained on WMT’14 fr-en to the
model of (Mallinson et al., 2017) on the MTC
dataset (Huang et al., 2002) following their
setup. We relied on WMT’14 fr-en training data
motivated by its size1.

For IWSLT’14 we train on 160K sentence pairs
and we validate on a random subset of 7,250
sentence-pairs held-out from the original training
corpus. We test on the concatenation of tst2010,
tst2011, tst2012, tst2013, dev2010 and dev2012
comprising 6,750 sentence pairs. The vocabulary
for this dataset is 24k for English and 36k for Ger-
man. For WMT’14 English to German and Ger-
man to English, we use the same setup as Lu-
ong et al. (2015) which comprises 4.5M sentence
pairs for training and we test on newstest2014.2

We took 45k sentences out of the training set for
validation purpose. As vocabulary, we learn a
joint source and target byte-pair encoding (BPE)
with 44k types from the training set (Sennrich
et al., 2016b,a). Note that even when using BPE,
we solely rely on full word markers, i.e. all the
BPE tokens of a given word carry the same bi-
nary indication (to be changed/no preference). For
WMT’14 English to French and French to En-
glish (Bojar et al., 2014), we also rely on BPE with
44k types. This dataset is larger with 35.4M sen-
tences for training and 26k sentences for valida-
tion. We rely on newstest2014 for testing3.

The model architecture settings are borrowed
from (Gehring et al., 2017). For IWSLT’14 de-
en and IWSLT’14 en-de, we rely on 4-layer en-
coders and 3-layer decoders, both with 256 hid-
den units and kernel width 3. The word embed-
ding for source and target as well as the output
matrix have 256 dimensions. For WMT’14 en-de
and WMT’14 de-en, both encoders and decoders
have 15 layers (9 layers with 512 hidden units, 4

1Posterior to our experiments, (Wieting and Gimpel,
2017) released an even large dataset that might be used in
our setting.

2http://nlp.stanford.edu/projects/nmt
3http://www.statmt.org/wmt14/

translation-task.html
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layers with 1,024 units followed by 2 layers with
2,048 units). Input embeddings have 768 dimen-
sions, output embedding have 512. For WMT’14
en-fr and WMT’14 fr-en, both encoders and de-
coders have 15 layers (6 layers with 512 hidden
units, 4 layers with 768 units, 3 layers with 1024
units, followed by two larger layers with 2048 and
4096 units). Similar to the German model, input
embeddings have 768 dimensions, output embed-
ding have 512 dimensions. For all datasets, we
decode using beam search with a beam of size 5.

4.1 Post-editing

Our study is based on simulated post-edits, i.e.
simulated token deletion actions. We start from
machine translation outputs from an initial system
in which we label tokens to change automatically.
For initial translation, we rely on the convolutional
translation system from (Gehring et al., 2017)4

learned from the training portion of the dataset.
For each system output, any word which does not
belong to the reference translation is marked to
be changed. We perform this operation for the
train, validation and test portion of each dataset.
The training and validation portion can be used for
learning and developing our post-editing system.
The test portion is used for evaluation.

Table 1 reports our result on this task. Our
QuickEdit method strongly outperforms the base-
line post-editing system. Both systems access the
same information, i.e. a list of deleted word types,
which constrains the decoding. QuickEdit adds
attention over the initial sentence with rejection
marks. This has a big impact on BLEU. On the
larger WMT’14 en-de benchmark, the advantage
is over 5 BLEU point for both directions. We
conjecture that the improvement is lower on the
smaller IWSLT data due to over-fitting, i.e. the
base system is excellent on the training set which
reduces the post-editing opportunities on the train-
ing data, therefore limiting the amount of super-
vised data for training our post-editing system. We
show examples of post-editing from the test set
of WMT-14 de-en in Table 2. These examples
show the ability of the model to rephrase sentences
avoiding the marked tokens while preserving the
source meaning. Similar to our experiments on
WMT’14 en-de, QuickEdit also reports large im-
provement with respect to the baseline model on

4https://github.com/facebookresearch/
fairseq-py.

WMT’14 en-fr, with +5.6 points (53.4 vs 47.8).
One should note that the simulated edits rely on

gold information, i.e. crossed-out words are al-
ways absent from the reference. Our aim is to sim-
ulate a post-editor which might have a sentence
close to the reference in mind. This evaluation
method allows to conduct large scale experiments
without labeling burden. Conducting an interac-
tive post-editing study requires trained editors and
interface consideration beyond the scope of this
initial work.

4.2 Partial Feedback
So far, our post-editing setting marked all incor-
rect words in the guess. We now consider a set-
ting where the simulated post-editor performs less
work by marking only a subset of these tokens.
This is analogous to a hypothetical online trans-
lation service which offers a feature enabling the
user to mark parts of a translation to be improved.
In addition to marking only a subset of the incor-
rect tokens at inference time, we also train new
models for which the training data also only had
a subset of incorrect tokens marked. Specifically,
we train three models QE25, QE50, QE100 for
which either 25%, 50% or 100% of incorrect guess
tokens were marked.

In this setting, we also compare with the base-
line model, i.e. the initial translation system aug-
mented with decoding constraints to avoid marked
words. Figure 2 plots BLEU as a function of the
number of marked words on the validation set of
WMT’14 German to English. This curve is ob-
tained by marking at most 1, 2, . . . , 8 words to be
changed per sentence, taking into account that the
actual number of marked word in a sentence can-
not be higher than the number of guess words not
present in the reference sentence.

Compared to the baseline, there is a small
advantage for QuickEdit for 1-2 marked words
and a larger improvement when more words are
marked. Unsurprisingly, the model trained with
fewer marked words (QE25, QE50) performs bet-
ter when tested with fewer marked words, while
QE100 gives the largest improvement with 4 or
more marked words.

4.3 Monolingual Editing
Table 1 also reports monolingual results. In that
case, the system is not given the source sentence,
only a sentence in the target language along with
change markers. Even if the model is not given the
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IWSLT’14 WMT’14 (de) WMT’14 (fr)
de→en en→de de→en en→de fr→en en→fr

initial translation 27.4 24.2 29.7 25.2 37.0 40.2
post-edit baseline 33.0 30.2 34.6 30.7 45.4 47.8
post-edit QuickEdit 34.6 30.8 41.3 36.6 49.7 53.4
monolingual QuickEdit 29.3 26.7 39.5 34.2 47.7 51.3

Table 1: Editing results (BLEU4) when all incorrect tokens are requested to be changed.

source Schauspieler Orlando Bloom hat sich zur Trennung von seiner Frau, Topmodel Mi-
randa Kerr, geäußert.

guess Actor Orlando Bloom has spoken of the separation of his wife, Topmodel Miranda
Kerr.

output Actor Orlando Bloom spoke about separation from his wife, Top Model Miranda
Kerr.

source Die heutigen elektronischen Geräte geben im Allgemeinen wesentlich weniger
Funkstrahlung ab als frühere Generationen.

guess Today’s electronic devices generally give far less radio radiation than previous gen-
erations.

output Today’s electronic devices generally emit significantly fewer radio frequencies
than previous generations.

source Statt sich von der Zahlungsunfähigkeit der US-Regierung verunsichern zu lassen,
konzentrierten sich Investoren auf das, was vermutlich mehr zählt: die Federal Re-
serve.

guess Instead of being obscured by the US government’s inability to pay, investors focused
on what is probably more important: the Federal Reserve.

output Rather than being insane by the United States government’s insolvency, investors
concentrated on what probably counts more: the Federal Reserve.

source Boeing bestreitet die Zahlen von Airbus zu den Sitzmaßen und sagt, es stehe nicht
im Ermessen der Hersteller zu entscheiden, wie Fluggesellschaften die Balance
zwischen Flugtarifen und Einrichtung gestalten.

guess Boeing is denying the figures from Airbus to the seats and says that it is not left to
the discretion of the manufacturers to decide how airlines are to balance air fares
and set up.

output Boeing is contesting Airbus’s seating figures and says it is not up to manufacturers
to determine how airlines balance fares and equipment.

Table 2: Post-editing examples from WMT’14 en-de. Examples originate from news sentences of the newstest2014
dataset. Strike-through text indicates the tokens marked to be changed. Bold text indicates tokens introduced by
the model, i.e. tokens not present in the original guess.

source, it manages to generate sentences which are
closer to the reference than the initial sentences, as
shown by the BLEU improvement. This shows the
ability of the model to paraphrase from deletion
constraints. Table 3 shows examples of the sys-
tem in action from the English test set of WMT-14
fr-en. This examples show that the model can pro-
vide synonyms, e.g. essential→ vital, or came af-
ter→ followed. The model can also replace tenses
when appropriate, e.g. have not waited→ did not

wait, or wrote→ had written.

4.4 Paraphrasing
Although it is not our primary goal, monolingual
QuickEdit can also be used for paraphrasing by
pairing it with another model to automatically gen-
erate change markers. In that case, the generative
model of edit markers replaces the human instruc-
tions. Basically, given an input sentence x, the edit
model generate a sequence c of binary variables,
which indicates whether each word xi of x should
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input And while the members of Congress cannot agree on whether to continue, several
States have not waited.

output And while there is no way for Congress to agree on whether to go ahead, several
states did not wait.

input This is truly essential for our nation.
output This is really vital for our nation.

input His case came after that of Corporal Glen Kirkland, who told a parliamentary
committee last month that he had been pushed out before being ready because he
did not meet the universality of service rule.

output His case followed that of Corporal Glen Kirkland, who said to a parliamentary
panel last month that he had been forced to go before he was ready because he did
not meet the rule of universality of service.

input Since the beginning of major fighting in Afghanistan, the army has been struggling
to determine what latitude it can grant to injured soldiers who want to remain in the
ranks, but who are not fit for battle.

output Since the start of major battles in Afghanistan, the army has had a hard time to
determine what latitude it can give to injured soldiers who want to stay in the army,
but who are not capable of battling.

input Mr. Snowden wrote in his letter that he had been subjected to a serious and sustained
campaign of persecution , which forced him to leave his country.

output Mr Snowden had written in his letter that he had suffered a severe and sustained
campaign of persecution that forced him out of his homeland.

input Spirit Airlines Inc. applied the first hand baggage charges three years ago, and
low-cost Allegiant followed a little later.

output Spirit Airlines Inc. introduced the first hand-luggage charge three years ago, and
the inexpensive Allegiant followed somewhat later.

input “I’ve never seen such a fluid boarding procedure in my entire career”; he says.
output “I have not seen this kind of seamless boarding in my career”; he said.

input As a result , there will be no more employees in the plant.
output This means that there won’t be any employees in the factory.

input Pierre Beaudoin , President and CEO , is confident that Bombardier will meet its
target of 300 firm orders before the first aircraft enters commercial service.

output Chief Executive Officer Pierre Beaudoin is confident Bombardier can meet its 300
firm order target prior to the first airplane entering commercial services.

input Another 35 persons involved in trafficking were sentenced to a total of 153 years’
imprisonment for drug trafficking.

output Thirty-five other people involved in the traffic were punished with a total of 153
years in prison for drug-related offenses.

Table 3: Monolingual editing examples from the WMT’14 fr-en test set. Examples originate from news sentences
of the newstest2014 dataset. Strike-through text indicates the tokens marked to be changed. Bold text indicates
tokens introduced by the model, i.e. tokens not present in the original guess.

Accuracy Fluency Boldness
Source 100% 100% 0%
ParaNet 56% 37% 16%
QuickEdit 72% 53% 21%

Table 4: Paraphrasing experiments on the MTC dataset.

be edited out (ci = 1) or not (ci = 0). QuickEdit
then takes (x, c) and generate a sentence y that
paraphrases x following the change markers c.

We use the monolingual QuickEdit model for
English trained on WMT-14 fr-en for our para-
phrase experiments. We rely on the simplest pos-
sible model to generate change markers: for each
word type w, we estimate its probability to be
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reference He said that Sino-Kenyan news agencies had long-term cooperative ties and hoped
that the ties could further develop in the new century.

human He said the two News Agencies of China and Kenya have friendly relationship over
a long period of time. He hoped that this relation could further develop in the new
century.

paranet He said the two news outlets in China and Kenya have amicably similar relation-
ships to a long period of time.

QuickEdit He said that the two news agencies of China and Kenya were friends for a long
period of time and hoped that the relationship would continue in the new century.

reference Annan urged sharon to ensure israeli forces will “adopt military tactic and weapons
that cause a minimum possible threat to safety of palestinian people and personal
properties. ”

human Annan called on Sharon to ensure that Israeli security forces “ use weapons and
fighting methods that will cause minimum threat to the safety and property of the
Palestinian civilians. ”

paranet Annan called for Sharon to “ ensure that Israeli security forces deploy weapons and
combat methods that endanger security and the property of Palestinian civilians. ”

QuickEdit Annan calls on Sharon to “ use weapons and combat practices that will pose a
minimum threat to the safety and property of Palestinian civilians. ”

reference [Shuttleworth’]s space travel has drawn great publicity in South Africa and won the
honor of being the most important news event since Mandela’s release from prison.

human Shuttleworth’s space journey has received enormous attention in South Africa and
is praised as the most important news since the release of Nelson Mandela from
prison.

paranet Shuttleworth’s journey has received enormous attention in South Africa and is con-
sidered the most important news since the release of Nelson Mandela.

QuickEdit The Shuttleworth space trip attracted considerable attention in South Africa and
is lauded as the most important news since Nelson Mandela was released from jail.

Table 5: Paraphrasing experiments on news data from the MTC dataset. Bold indicates tokens introduced by the
the models, i.e. tokens which are not in the human source given as input.

edited out P (ci = 1|xi = w) on the QuickEdit
training data based on relative frequency counts.
For inference, we simply threshold this probabil-
ity P (ci = 1|xi = w) > τ to assign change mark-
ers. τ is selected to control how bold paraphrasing
should be, i.e. large τ would yield minor changes,
while small τ would edit the input sentence sub-
stantially.

We compare our paraphrasing approach with
ParaNet (Mallinson et al., 2017), a paraphras-
ing neural model based on translation pivot-
ing5. We conduct our evaluation on the MTC
dataset (Huang et al., 2002) following the setup
introduced in the ParaNet paper. This setup con-
sists of 75 human paraphrase pairs (excluding du-
plicate MTC sentences as well as erroneous para-
phrases). The evaluation considers each pair of

5We are thankful to the authors of ParaNet for sharing
their generations for our evaluation.

human paraphrases (x, y). Each paraphrasing
model (QuickEdit and ParaNet) generates a para-
phrase given x. Then human judgments are col-
lected by showing y and three versions of x, i.e.
the original version x, its paraphrase from ParaNet
x(p) and its paraphrase from QuickEdit x(q). For
each example, the three sentences x, x(p), x(q) are
shuffled and do not carry any information about
their origin. The assessor should label whether
each version of x is a valid paraphrase of y and
should rank them by fluency from 1 most fluent to
3 least fluent.

We can evaluate paraphrasing performance at
various levels of boldness which we control with
the parameter τ . Bold paraphrasing means that
the model needs to generate sentences which dif-
fer more from the input x than conservative para-
phrasing. In this work, our evaluation relies
on a level of boldness comparable to ParaNet
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Figure 2: Post-editing results as a function of the aver-
age number of marked tokens per sentence on WMT’14
de-en validation set (45k sentences). QE25, QE50,
QE100 refer to QuickEdit models trained with data
where respectively 25, 50 or 100% of the guess tokens
not present in the reference were marked to be changed.

from (Mallinson et al., 2017). Table 4 reports
the results of this experiment. Accuracy measures
the fraction of sentences considered valid para-
phrases. Fluency measures the number of cases
the paraphrase was considered more fluent or as
fluent as the source sentence. Boldness measure
the fraction of paraphrase tokens that were not in
the source.

The results highlight the advantages of
QuickEdit. The paraphrases from QuickEdit are
accurate for 72% of the sentences versus 56%
for ParaNet. The fluency of the generation from
QuickEdit ranks equally or higher than the human
source sentence for 53% of the examples, which
compares to 37% for ParaNet. Table 5 shows
a few paraphrases from both models. These
examples highlight that the boldness operating
point chosen by the authors of ParaNet is rather
conservative, with few edits per sentence. Nev-
ertheless, QuickEdit advantage is clear, showing
that ParaNet often forgets part of the source sen-
tence while QuickEdit does not, e.g. could futher
develop in the first example is not expressed by
ParaNet but QuickEdit proposes would continue.
This tendency to shorten the input can yield an
opposite meaning, e.g. in the second example,
ParaNet rephrases cause minimum threat as en-
danger while QuickEdit proposes correctly pose a
minimum threat. Examples with less conservative
paraphrasing are shown in Table 3.

5 Conclusions

This work proposes QuickEdit, a neural sequence
to sequence model that allows one to edit text by
simply requesting few initial tokens to be changed.
From a marked sentence, the model can gener-
ate an edited sentence both in the context of ma-
chine translation post-editing (a source sentence
is also provided), or in a monolingual setting. In
both cases, we assess the impact of the change re-
quests. We show that marking words not present
in a hidden reference sentence allow the model to
generate text closer to this reference. In the con-
text of post-editing, we conduct simulated post-
edits, i.e. we mark words absent from the ref-
erence as rejected. We show that crossing out a
few words per sentence can drastically improve
BLEU, even on top of a strong MT system, e.g.
BLEU on WMT’14-en-fr moves from 40.2 to 53.4
with QuickEdit post-editing as opposed to 47.8 for
the post-editing baseline. In the context of mono-
lingual editing, we show that our system both al-
low text editing and paraphrasing. For paraphras-
ing, we outperform a strong model (Mallinson
et al., 2017) in a human evaluation on the MTC
dataset, both in terms of accuracy (72% vs 53%)
and fluency of the generation (53% vs 37%).

Our work opens several future directions of re-
search. First, we want to extend our evaluation
from simulated post-edits to a genuine interactive
editing scenario. QuickEdit currently allows only
to reject word forms for a whole sentence, not re-
ject them in a specific context. We plan to explore
this possibility. Also, QuickEdit could be a good
basis for an automatic post-editing system (Chat-
terjee et al., 2015). QuickEdit can be applied for
multi-step editing, letting the user refine their sen-
tence multiple time. In that case, attending to all
previous versions of the sentence would be rele-
vant. Finally, we could also consider offering a
richer set of simple edit actions. For instance, we
could propose span substitutions to the user, which
requires a decoding stage proposing a short list of
promising spans and candidate replacements.
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Abstract

Search task extraction in information retrieval
is the process of identifying search intents over
a set of queries relating to the same topical in-
formation need. Search tasks may potentially
span across multiple search sessions. Most ex-
isting research on search task extraction has
focused on identifying tasks within a single
session, where the notion of a session is de-
fined by a fixed length time window. By con-
trast, in this work we seek to identify tasks
that span across multiple sessions. To iden-
tify tasks, we conduct a global analysis of
a query log in its entirety without restricting
analysis to individual temporal windows. To
capture inherent task semantics, we represent
queries as vectors in an abstract space. We
learn the embedding of query words in this
space by leveraging the temporal and lexical
contexts of queries. To evaluate the effec-
tiveness of the proposed query embedding, we
conduct experiments of clustering queries into
tasks with a particular interest of measuring
the cross-session search task recall. Results of
our experiments demonstrate that task extrac-
tion effectiveness, including cross-session re-
call, is improved significantly with the help of
our proposed method of embedding the query
terms by leveraging the temporal and temp-
lexical contexts of queries.

1 Introduction

A complex search task is defined as a “a multi-
aspect or a multi-step information need consisting
of a set of related subtasks, each of which might
recursively be complex” (Hassan Awadallah et al.,
2014). For example, a task of making arrange-
ments for travel to a conference qualifies as a com-
plex search task because there are several choices
that a user needs to make in order to plan his entire
trip, e.g. selecting flight, hotel, making arrange-
ments for local transport, finding the conference

venue, finding good places to eat around, finding
local sight-seeing options after the conference etc.
All these sub-tasks are likely to take place within
their own search sessions, where a session is de-
fined as a set comprised of queries executed dur-
ing a time period of a specific length, usually about
half-an-hour (Lucchese et al., 2013).

In this paper, we address the problem of au-
tomatically predicting whether search sessions,
focused on specific activities, are a part of a
broader complex search task, which we refer to
as the cross-session search task extraction prob-
lem. Cross-session search task extraction can po-
tentially find applications in designing more pro-
active search engines, which may suggest rele-
vant information about specific subsequent sub-
tasks along a timeline, e.g. suggesting places to eat
around a conference venue without the user need-
ing to execute these queries.

To see why cross-session search task extrac-
tion is a challenging problem, firstly, note that it
is likely that a query session for flight booking
and one for local sightseeing around a conference
venue may be far apart in time, as a result of which
simple approaches of grouping queries by their
timestamps, e.g. (Lucchese et al., 2013), are not
likely to yield satisfactory outcomes. Secondly,
the term overlap between the queries of these two
sessions is also likely to be low, indicating that us-
ing lexical similarity for clustering cross-session
queries into a single group, e.g. (Lucchese et al.,
2013; Wang et al., 2013), is unlikely to be effec-
tive.

As an illustrative example of term mismatch,
consider the two queries ‘Eric Harris’, ‘Reb
Vodka’ from the AOL query log1. Although these
two queries do not share any common terms be-
tween them, they refer to the task of finding infor-

1https://archive.org/download/AOL_
search_data_leak_2006
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mation on the Columbine high school massacre,
the first query referring to the name of the first
murderer while the second one refers to their nick-
name.

Our Contributions. To alleviate the identified
problems with attempting to group queries by their
timestamps or lexical similarities, we propose to
embed queries in a task-based semantic space in
a manner that will give two similar queries in this
space a high likelihood of pertaining to the same
underlying task. Word embedding algorithms,
such as ‘word2vec’ (Mikolov et al., 2013), make
use of the lexical context in learning vector rep-
resentations of words. We propose to transform
these word vectors into a task-oriented semantic
space with the objective of making two words that
are likely to be a part of the same search task closer
to each other.

To learn the transformation function, we make
use of average session duration and lexical similar-
ities between within-session queries. Our method
thus provides a unifying framework for address-
ing tempo-lexical similarity, in contrast to pre-
vious approaches that treat these two separately.
Another important contribution of our proposed
method is that we are able to empirically demon-
strate that our proposed method is more effective
than existing algorithms (Lucchese et al., 2013;
Mehrotra and Yilmaz, 2017) in extracting cross-
session search tasks without the application of
any external information for estimating task re-
latedness. For instance, the work in (Lucchese
et al., 2013) relies on Wikipedia to contextual-
ize queries, while the one in (Verma and Yilmaz,
2014) uses Wikipedia-based entity recognition to
estimate task relatedness.

The rest of the paper is organized as fol-
lows. In Section 2 we overview previous work
in task extraction and query embedding. In Sec-
tion 3, we introduce our semantic context driven
transformation-based word vector embedding al-
gorithm to enhance cross-session query similarity
matching. Section 4 then describes how the trans-
formed query vectors are clustered into search
tasks. Section 5 describes our experimental setup.
Section 6 presents the results of our experiments.
Section 7 concludes the paper with suggestions for
future work.

2 Related Work

In this section we review existing work in search
task extraction and query embedding and contrast
this with the method introduced in this paper. We
look first at work on unsupervised task extraction
and then consider work on supervised methods,
and final briefly consider a study introducing a
query embedding method.

2.1 Unsupervised Task Extraction

A method for extracting tasks within each search
session is proposed in (Lucchese et al., 2013).
A session is defined with fixed length time win-
dows. After investigating a wide range of time
length values, the optimum is reported to be 26
minutes, which is what we also use in our work.
The study reported in (Lucchese et al., 2013) also
investigated a number of clustering techniques to
group together related queries from each session
into tasks. A wide range of features were inves-
tigated to define the similarity between a pair of
queries, e.g. edit distance, cosine-similarity and
Jaccard coefficient of character level trigrams. In
contrast to (Lucchese et al., 2013; Wang et al.,
2013), we investigate the use of embedded query
vectors to compute similarity, rather than depend-
ing on character and word level lexical similarity
features, e.g. edit distance, term overlap, trigram
character overlap etc. Another difference of our
method from (Lucchese et al., 2013) is that instead
of restricting clustering to each session, we cluster
the entire dataset globally, which implies that our
method is not limited by variations in session du-
ration. We also evaluate the effectiveness of clus-
tering the entire dataset rather than on aggregating
clustering effectiveness separately for each session
as in (Lucchese et al., 2013).

Extraction of task hierarchies was investigated
in (Mehrotra et al., 2016). Given a set of task
related queries, they composed query vectors as
weighted combinations of the constituent query
term vectors, the weights being the maximum like-
lihood estimates from query-task relationships. A
Chinese Restaurant Process (CRP) based poste-
rior inference process was then used to extract
the tasks from individual queries. In an exten-
sion of this work (Mehrotra and Yilmaz, 2017), the
authors proposed a Bayesian non-parametric ap-
proach for extracting task hierarchies. The main
difference between our approach and (Mehrotra
et al., 2016; Mehrotra and Yilmaz, 2017) is that

284



our focus is on finding cross-session tasks from a
query log, rather than finding hierarchies of tasks.
Further, instead of using similarities between em-
bedded query vectors as one of the features to esti-
mate the relatedness between two queries, we pro-
pose a task semantics driven embedding technique
to transform a query in close proximity to its task-
related counterpart.

An entity extraction method was applied in
(Verma and Yilmaz, 2014) to estimate similarities
between queries for the purpose of task extraction.
In contrast to this, our method does not rely on an
entity extractor to extract cross-session tasks.

2.2 Supervised Task Extraction
A supervised approach for automatically segment-
ing queries into task hierarchies was proposed in
(Jones and Klinkner, 2008). They trained logis-
tic regression models to determine whether two
queries belong to same task or not. According
to (Wang et al., 2013), the disadvantage of using
a classifier based approach for extracting tasks is
that with the binary predictions of the classifier
it is difficult to model the transitive task depen-
dence between the queries, e.g. if query pairs (q1,
q2) and (q2, q3) are predicted to be part of the
same task, the classifier may not predict that q1

and q3 are also a part of the same task. Graph-
based clustering on the binary adjacency matrix
between query pairs (obtained from logistic re-
gression output) is also likely to introduce noise
during clustering (Wang et al., 2013). The limi-
tations of (Jones and Klinkner, 2008) were allevi-
ated in the work reported in (Wang et al., 2013),
which employs a structural SVM framework for
estimating the weights of different lexical features
to measure the similarity between two queries.

The difference between the studies reported in
(Jones and Klinkner, 2008; Wang et al., 2013) and
our work is that we propose a completely unsuper-
vised approach for clustering queries. This implies
that our method does not rely on the availability of
training data, the construction of which requires
considerable manual effort.

2.3 Query Embedding
A relevance-based word embedding technique was
developed in (Zamani and Croft, 2017). This
method uses the top documents retrieved for each
query to learn the association between the query
terms and those occurring in the retrieved docu-
ments. In contrast to retrieving ranked lists for

every query as in (Zamani and Croft, 2017), we
capture the semantic context of query words with
the help of other useful cues for task-relatedness,
e.g. the time-gap between queries.

3 Embedding Query Words

‘Word2vec’ is a standard approach to obtain em-
bedded words vectors (Mikolov et al., 2013). The
word2vec approach aims to create similar vector
representations of words that have similar context,
and are thus assumed to be significantly seman-
tically related. In this section, we explain why
the standard word2vec method may not be suit-
able for embedding queries in an abstract space of
task-semantics for the purpose of using these vec-
tors to extract cross-session search tasks. To ad-
dress this problem, we propose a method of word
embedding that is able to capture larger semantic
contexts for better estimation of the word vectors.

3.1 Problems with Short Documents

Let w ∈ Rd denote the vector representation of a
word w ∈ V , V and d being the vocabulary and
the dimension of the embedded vectors, respec-
tively. Let W be a d × V matrix, where each d
dimensional column vector represents a word vec-
tor. Let D be an indicator random variable denot-
ing semantic relatedness of a word with its con-
text. Given a pair of words, (w, c), the probability
that the word c is observed in the context of word
w is given by σ(exp(−(w ·c))). Word embedding
for a given corpus is obtained by sliding a window
along with its context through each word position
in the corpus maximizing the objective function
shown in Equation 1.

J(θ) =
∑

wt,ct∈D+

∑

c∈ct
log(P (D = 1|wt, ct)) −

∑

wt,c′t∈D−

∑

c∈c′t

log(P (D = 1|wt, c
′
t))

(1)

In Equation 1, wt is the word in the tth posi-
tion in a training document corpus, ct is the set
of observed context words of word wt within a
word window, c′t is the set of randomly sampled
words from outside the context of wt. D+ denotes
the set of all observed word-context pairs (wt, ct),
whereas D− consists of pairs (wt, c

′
t).

The word2vec algorithm respects document
boundaries by not extending the context vector
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across them. In the context of our empirical study,
we aim to learn word vector embedding from a
query log, where each document in the ‘word2vec’
terminology refers to a single query. In the case of
keyword-based search queries, often comprising
2-3 words, the average number of context vectors
is much lower than the number of contexts avail-
able for the standard word embedding scenario of
full length documents, e.g. news articles and web
pages. Consequently, this may result in ineffective
estimation of the word-context semantic relations
for the queries.

3.2 Word Vector Transformation with
Semantic Contexts

To alleviate the problems of short contexts when
embedding queries, we propose to learn a trans-
formation matrix to transform a set of word vec-
tors to, generally speaking, another abstract space.
The aim is to transform a word vector w so that
it is close to a set of other words that respects
the characteristics of this abstract space. In the
context of our problem, the abstract space refers
to the embedding space of task-relatedness with
the characteristics that queries that are a part of
the same search task should be embedded close to
each other.

We adopt a general terminology of referring
to the desired similarity in the abstract space as
semantic similarity, which in the context of our
problem refers to task-relatedness and is not to be
confused with linguistic semantics. Formally, the
set of words similar to the word w is represented
by the set Φ(w) shown in Equation 2,

Φ(w) = {v : (w, v) ∈ S}, (2)

where S denotes the semantic relation between a
pair of words. In particular, the set Φ(w) depends
on the definition of the semantic relation S be-
tween two words, which we will describe in Sec-
tion 3.3.

Assuming the existence of a pre-defined seman-
tic relation S between word pairs, we define the
loss function for a word vector w as shown in
Equation 3.

l(w; θ) =
∑

v:v∈Φ(w)

∑

u:u6∈Φ(w)

max
(
0,

m−((θw)Tv − (θw)Tu)
) (3)

Equation 3 defines a hinge loss function with mar-
gin m (set to 1 in our experiments). The loss func-
tion is parameterized by the transformation matrix

θ ∈ Rd×d, and is learned by iterating with stochas-
tic gradient descent. The word vectors used in
learning the parameter matrix θ are obtained by
the word2vec skip-gram algorithm. After training,
each word vector w is transformed to w′ in Equa-
tion 4.

w′ = θ ·w (4)

Informally speaking, the objective function
aims to maximize the similarity between two word
vectors w and v that are members of the same
semantic context. On the other hand, it mini-
mizes the similarity between the word vector w
and a word vector u randomly sampled from out-
side its context, as defined by the semantic relation
S of Equation 2. In principle, the objective func-
tion of Equation 3 is similar to the word2vec ob-
jective function of Equation 1, the difference be-
ing in the definition of the context vector. While
the word2vec algorithm relies on an adjacent se-
quence of words to define a context, in our pro-
posed approach, we rely on a pre-defined set of
binary relations between words.

Another analogy of Equation 3 can be drawn
with the multi-modal embedding loss function
proposed in (Frome et al., 2013), where the words
from the caption of an image constitute the notion
of the ‘semantic context’ of the image vector used
to transform it. For our problem, we make use of
this context to associate the task-specific relation-
ship between query words.

3.3 Temporal Semantic Context

In the particular context of query logs, temporal
similarity is likely to play an important role in top-
ically grouping queries. This is because queries
in the same search session are usually related to
the same topic, as observed in previous studies
(Lucchese et al., 2013; Wang et al., 2013). For
example, it can be observed from the AOL query
log that the words ‘reb’ and ‘vodka’ belong to the
same search session as the words ‘eric’ and ‘har-
ris’ (see example in Section 1). In this case, the
semantic relationship S, as described in Section
3.2, considers terms u (e.g. ‘vodka’) and v (e.g.
‘harris’) from the same query session to be se-
mantically related. To define the semantic rela-
tion S, we take into account a temporal context
specified by a time window of 26 minutes as re-
ported in (Lucchese et al., 2013). Specifically, if
two queries belong to the same search session, as
defined by a fixed length time window, then each
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constituent word pair within them is considered to
be members of the set S.

3.4 Tempo-Lexical Semantic Context

In real-life settings, even within a session of a
specified time length, users often multi-task their
activities (possibly by using multiple browser tabs
or windows) (Lucchese et al., 2013; Wang et al.,
2013; Mehrotra and Yilmaz, 2017). To address
this issue, we further cluster the queries of each
search session into mutually disjoint groups. Our
hypothesis is that this grouping of the queries
of a single search session into multiple clusters
may improve word embedding of the query terms
further by restricting the semantic relationship
S (Equation 2) to consider terms from related
queries within each cluster separately.

Our clustering approach is based on a weighted
graph of query similarities computed by a linear
combination of content-based similarity (Simr)
and retrieved document list based similarity
(Simr) as described in Section 4 and Section 5.3.
The clusters then provide the tempo-lexical con-
texts which are subsequently used to improve the
quality of embedding of the query words.

4 Clustering of Embedded Queries

In this section, we describe our unsupervised ap-
proach to identifying cross-session tasks by clus-
tering the query vectors, where the constituent
query word vectors are obtained using the word
embedding approaches described in Section 3.

4.1 Query Vector Embedding

We hypothesize that the modified word vector em-
bedding approach of Section 3.2 will be more ef-
fective in capturing the session specific semantics
of query terms since it takes into account the tem-
poral context of query session information from
query logs. We adopt a standard word vector com-
bination method to form embedded query vectors.
Because of the compositionality property of word
vectors (Mikolov et al., 2013), the simple method
of averaging over the constituent word vectors
has been reported to work well for various tasks
such as term re-weighting and query reformulation
(Zheng and Callan, 2015; Grbovic et al., 2015).

4.2 Clustering of Query Vectors

Unlike previous approaches of grouping together
queries according to fixed time windows, and then

clustering the queries within each time window
separately (Lucchese et al., 2013; Wang et al.,
2013), we take a more general approach of clus-
tering the overall set of query vectors.

Since the number of query clusters cannot be
known a priori, the number of clusters is estimated
by adopting a clustering approach that does not re-
quire the number of clusters to be specified. We
adopt the best performing clustering method iden-
tified in (Lucchese et al., 2013) referred to as QC-
WCC . This is a graph based clustering algorithm
that extracts the weighted connected components
of a graph after constructing a complete graph and
then pruning off the edges that are below a prede-
fined threshold, η.

In QC-WCC , the weights between the graph
edges are defined by a linear combination of two
types of similarities: i) content-based (Simc), and
ii) retrieval based (Simr), as shown in Equation 5,
in which the overall similarity is controlled by the
linear combination parameter α.

Sim(qi, qj) = αSimc(qi, qj) + (1− α)Simr(qi, qj)

(5)
• Content-based similarity: Measured with the

help of character trigrams and normalized
Levenshtein similarity between query pairs.
• Retrieval-based similarity: Each query is

contextualized with a Wikipedia collection.
More specifically, two queries are considered
similar if the top 1000 documents retrieved
by them are also similar.

In contrast to the experimental setup of (Lucchese
et al., 2013), a) we conduct clustering globally in-
stead of clustering each individual query session
separately; and b) the edge weights of the graph-
based clustering in our case refers to the cosine-
similarity values computed between the embedded
query vectors and cosine similarity values between
the vectors obtained from top 1000 documents
retrieved from Clueweb12B, a publicly available
web collection2.

5 Experimental Setup

In this section we describe the setup for our exper-
imental study. We begin with an overview of our
datasets, then introduce the experimental baselines
used and the objectives of our experiments, finally

2http://boston.lti.cs.cmu.edu/
clueweb12/
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we set out the parameter settings used in our ex-
periments.

5.1 Dataset

Similar to previous reported studies (Lucchese
et al., 2013; Mehrotra and Yilmaz, 2017; Mehro-
tra et al., 2016; Verma and Yilmaz, 2014), we use
the AOL query log for our experiments. In or-
der to compare our results with these studies, we
use the same subset of 1424 queries from the AOL
query log for the evaluation of task extraction ef-
fectiveness as used in these earlier studies. How-
ever, since the purpose of these studies was only
to extract tasks from a single session, in its anno-
tation scheme two queries only qualified as part
of the same task if they appeared within the same
session.

In contrast, since we investigate cross-session
task extraction, the time length threshold is not ap-
plicable to our annotation scheme, as a result of
which, we re-annotated the task labelled dataset
of (Lucchese et al., 2013). In particular, our anno-
tation scheme was solely based on the underlying
search intent of the query.

While re-annotating the dataset of (Lucchese
et al., 2013), the annotators were instructed not
to change the task labels within each session. In-
stead, the annotators were asked to re-label task
identifiers spanning across different query ses-
sions. For example, the annotation of (Lucchese
et al., 2013) considered ‘robert f kennedy jr’ and
‘robert francis kennedy’ to belong to two different
tasks since these queries were executed during dif-
ferent sessions. However, our annotation scheme
considers them to be a part of the same task.

Two persons were employed to carry out our an-
notation step of the set of 1424 queries in two dif-
ferent batches. They were asked to come to a con-
sensus when trying to merge the task labels across
their individual batches. The annotators were in-
structed to use a commercial search engine (e.g.
Google), if required, to determine if two queries
from different search sessions could potentially re-
late to the same underlying task. Table 1 pro-
vides an overview of our annotated task labels; this
shows that there are a considerable number of ses-
sions that contain queries spanning across session
boundaries. It can be seen from Table 1 that af-
ter post-processing the single session task labels,
the total number of distinct tasks is reduced. This
is indicative of the fact that the modified dataset

Task label granularity

Item Within-session Cross-session

#Queries 1424 1424
#Tasks annotated 554 224
#Sessions 307 307
#Sessions with
cross-session tasks 0 239
#Query pairs across sessions
judged in the same task 0 36768

Table 1: Dataset statistics of task annotated queries
from the AOL query log. Cross-session task labels are
post-processed annotations of the dataset prepared by
(Lucchese et al., 2013).

is able to consider queries from different search
sessions as a part of the same search task (there
are 36, 768 of them as shown in Table 1). The
post-processed dataset with cross-session task la-
bels that we use for our experiments is publicly
available3.

5.2 Baselines and Experiment Objectives

Since our proposed task extraction method is un-
supervised, for a fair comparison we only em-
ploy unsupervised approaches as baselines. More
specifically, we did not consider the supervised ap-
proaches reported in (Jones and Klinkner, 2008;
Wang et al., 2013) as our baselines.

As our first baseline, we re-implemented QC-
WCC , the best performing approach (Lucchese
et al., 2013) (briefly described in Section 4.2).
This study investigated a wide range of features,
clustering methods and parameter settings. We
adopt the same linear combination of similarities
in our study as shown in Equation 5.

Our re-implementation of this work involves a
slight change to the original one. Instead of us-
ing a Wikipedia document collection, we employ
a much larger collection of crawled web docu-
ments, namely the ClueWeb12B collection, com-
prising of nearly 52M documents4. Our reasons
for using the ClueWeb collection are as follows.
Firstly, our study is carried out using queries from
a Web search log and hence it is reasonable to ex-
pect that a web collection will provide better esti-
mates of semantic similarities between the queries.
Secondly, a number of our queries in our dataset
are not of expository type, and hence the num-

3https://github.com/procheta/
AOLTaskExtraction/blob/master/Task.csv

4http://boston.lti.cs.cmu.edu/
clueweb12/
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ber of matching Wikipedia articles is expected to
be low for them due to vocabulary mismatch. On
the other hand, the web collection, being diverse,
is expected to retrieve more matching articles for
these types of queries. To compare the perfor-
mance of our implementation of QC-WCC with
ClueWeb12B with the original one, we adopted an
experimental and evaluation setup identical to that
of (Lucchese et al., 2013), the only difference be-
ing in the collection used for deriving the semantic
similarities. For the retrieval model we used the
LM-JM (Language Model with Jelineck-Mercer
smoothing) with the smoothing parameter set to
0.6 as suggested in (Lavrenko and Croft, 2001).

To demonstrate the potential benefits of our
proposed tempo and tempo-lexical context-driven
word embedding based approaches for the query
terms, we employed the following three baselines.

1. Qry vec skip-gram: In this approach, query
vectors were obtained by summing over the
constituent word vectors obtained using the
standard skip-gram (Mikolov et al., 2013).

2. Qry vec (All-in-one Session Context): We
hypothesized that additional context is likely
to capture task-specific semantics of the
query terms. A boundary condition arises
when the entire query log is assumed to be-
long to one session. To show that the tempo-
ral context needs to be focused, in this ap-
proach, we investigate the effect of setting
the context set S to the entire vocabulary of
query terms.

3. Qry vec (Pre-trained Google news vectors)
We hypothesized that additional context is
likely to be useful to learn the vector repre-
sentations of constituent words of short doc-
uments (in this case, queries). To see if pre-
trained word vectors from an external generic
corpus can be useful to alleviate the prob-
lem of short documents, we employ pre-
trained word vectors from the Google news
corpus to obtain the vector representation of
the queries.

The objective of the experiments is to show that
our proposed query term embedding method can
outperform the above mentioned baselines, thus
indicating that within-session adjacency informa-
tion can be useful to learn task specific semantics.

5.3 Parameters and Evaluation Metrics

Parameters. In our method, we use the cosine
similarity between the embedded query vectors in-
stead of using character 3-grams and Levenshtein
similarity, as used in (Lucchese et al., 2013)),
to compute Simc(qi, qj) between any two query
pairs qi and qj . We employ three different em-
bedding strategies for our experiments: i) standard
word2vec, ii) transformed vectors with temporal
context, and iii) transformed vectors with tempo-
lexical contexts. In all our experiments, we tune α
from 0 to 1 in steps of 0.1. The second parameter
common to all the methods, the threshold η, which
is used in QC-WCC clustering to prune off edges
from the weighted similarity graph between query
pairs. We tuned η in the range 0.1 to 1 in steps of
0.1 for each method separately.

For our word vector based experiments, we used
the skip-gram model to train the word vectors us-
ing the entire AOL query log comprising over 6M
queries. The dimensionality of the word vectors
was set to 200. The initially obtained word vectors
were used as starting inputs to learn the temporal
and tempo-lexical transformations. For the tempo-
lexical based transformation method, we used the
optimal value of η as obtained from the QC-WCC

baseline, to cluster the queries in each temporal
window of 26 minutes.

Evaluation Metrics. Since we use weighted
clustering to extract cross-session search tasks,
we used standard clustering evaluation metrics to
evaluate the effectiveness of the task extraction.
Clustering is typically evaluated with the effec-
tiveness of the pair-wise decisions of assigning
data points to the same or different clusters. In
our case, the number of true positives was given
by the number of query pairs in the ground-truth
that were judged to belong to the same task and
were also predicted by the system to be a part of
the same task. Similarly, we computed the false
positives and the true negatives. Based on these
counts, we computed the standard metrics of pre-
cision, recall, and F-score (similar to (Lucchese
et al., 2013)).

Additionally, to measure how many of the to-
tal number of cross-session queries that were part
of the same search tasks were discovered by these
approaches, we computed the cross-session recall
(denoted as ‘CS-Recall’). This metric was com-
puted as the ratio of the number of correctly identi-
fied cross-session similar-task query pairs against
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Query Similarity Parameters Metrics

α η F-score Prec Recall CS-Recall

QC-WCC (3gram+ Levenestine) (Lucchese et al., 2013)0.8 0.4 0.471 0.387 0.603 0.1930
Qry vec skip-gram 0.7 0.8 0.524∗ 0.465∗ 0.602 0.7161∗

Qry vec (All-in-one Session Context) 0.7 0.5 0.499 0.430 0.595 0.6400
Qry vec (Pre-trained Google news vectors) 0.6 0.5 0.473 0.410 0.558 0.6400
Qry vec with temporal context 1.0 0.7 0.536∗† 0.461∗ 0.643∗† 0.7393∗†

Qry vec with tempo-lexical context 0.6 0.7 0.538∗† 0.441∗ 0.691∗†‡ 0.7395∗†‡

Table 2: Comparison between the best results obtained after parameter tuning on different unsupervised approaches
of task extraction. For all methods, 1− α represents the weight of the semantic similarity estimated from ClueWeb12B. ∗†‡

indicates statistical significance (paired t-test with 95% confidence) with respect to (Lucchese et al., 2013),
‘Qry vec skip-gram’ and ‘Qry vec with temporal context’ respectively.

Task extraction method Session-F-socre

QC-WCC on trigram+Levenshtein with Wikipedia (Lucchese et al., 2013) 0.812∗

QC-WCC on trigram+Levenshtein with ClueWeb12B 0.834
Non-parametric clustering on average query term vectors (Mehrotra et al., 2016) 0.845†

QC-WCC on average of baseline skip-gram query word vectors 0.837
QC-WCC on transformed word vectors with temporal context 0.847
QC-WCC on transformed word vectors with tempo-lexical context 0.840

Table 3: Within-session Task Extraction effectiveness.

the total number of them (36, 768 as reported in
Table 1).

In order to extend evaluation of our proposed
approach to within-session task extraction, for
comparison with existing studies, we computed
the clustering metrics for each individual session
and then computed the weighted average of these
values over each session as reported in (Lucch-
ese et al., 2013; Mehrotra and Yilmaz, 2017). Al-
though these earlier studies refer to this weighted
measure as F-score, we refer to this version of F-
score as ‘Session-F-score’.

6 Results

In this section, we report the results of our investi-
gations of our proposed query vector based cross-
session search task extraction. We first investigate
the effectiveness of our proposed approach on the
cross-session search task extraction and then re-
port and compare results with existing approaches
for within-session task extraction.

6.1 Cross-Session Task Extraction

Table 2 shows the results of weighted clustering
QC-WCC with optimal α and η settings for each
individual method. It can be seen that the first
baseline approach QC-WCC performs poorly be-
cause trigram and Levenshtein similarities lack the
semantic information required to effectively clus-
ter task-related queries into the same cluster. Clus-
tering effectiveness improves considerably when

weighted clustering is conducted using the cosine
similarities between the query vectors, i.e. the
‘Qry vec skip-gram’ approach. This suggests that
the word vectors are better able to capture the se-
mantic relatedness between the task-related query
terms.

It can be seen that using the entire query log
as one context, i.e. the approach ‘Qry vec (All-
in-one Sesion Context)’ yields worse results than
the baseline skip-gram approach, which shows
that a focused context is required for effectively
embedding the query terms. Results with pre-
trained word vectors on a large news corpora, i.e.
the approach ‘Qry vec (Pre-trained Google news
vectors)’, show that additional out-of-domain and
generic context is not helpful for improving the
quality of the embedded query term vectors.

Transformation of the word vectors leveraging
the semantic contexts (i.e. our proposed method
in Section 3) outperforms the clustering effective-
ness obtained with the baseline approaches. The
most important observation is that the use of tem-
poral context in learning word vectors results in
best performance forα = 1, i.e. when no retrieval-
based similarity is used (see Equation 5). This
suggests that optimally trained word vectors can
produce effective task clusters without the use of
external collections in contextualizing the queries.
The use of tempo-lexical contexts, i.e. when the
semantic context used to learn the transformation
matrix for the word vectors is restricted to sim-
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Figure 1: Sensitivity of task clustering with variations in α (left) and η (right).

ilar queries within search sessions, the effective-
ness improves further. In particular, Table 2 shows
that both tempo and tempo-lexical transformations
are able to improve recall significantly suggesting
that the transformation helps to group more truly
task-related queries into the same cluster.

Next, we show the effect of varying the parame-
ters α and η separately in Figure 1. The values of η
for each corresponding method in the left graph of
Figure 1 are those reported in Table 2. Similarly,
for the plot on the right of Figure 1, the α values
correspond to those reported in Table 2. A value of
α = 1 considers only the content based similarity
(see Equation 5). It can be observed from Figure
1 (left) that at α = 1, the F-score values for all
the query embedding based approaches are higher
than the baseline method of QC-WCC . This indi-
cates that the query embedding based approaches
perform well without relying on similarity-based
retrieval using an external collection. In general, it
can be observed that over a wide range of α and
η settings, the F-score values of the embedding
based methods outperform the QC-WCC method.

6.2 Within-session task extraction
In this experimental setup, we make use of the
session duration span of 26 minutes, similar to
(Lucchese et al., 2013), to restrict query cluster-
ing to each individual session. Similar to (Luc-
chese et al., 2013; Mehrotra and Yilmaz, 2017),
we employ the session averaged clustering met-
rics for measuring the effectiveness of the different
approaches (see Section 5.3). We use the within-
session ground-truth of (Lucchese et al., 2013) to
evaluate the task extraction effectiveness.

Table 3 reports the results for various within-
session task clustering approaches. The results
with ∗ and † are taken from the results reported in
(Lucchese et al., 2013) and (Mehrotra et al., 2016).

The following observations can be made with re-
gard to Table 3. Firstly, the use of ClueWeb12B
contributed to an improvement in task extrac-
tion effectiveness, thus demonstrating that our re-
implementation of (Lucchese et al., 2013) is com-
parable with that of the original. Secondly, an
important observation is that the use of average
query term vectors along with contextual informa-
tion from ClueWeb12B outperforms the approach
of trigram and Levenshtein based similarity com-
putation of (Lucchese et al., 2013). Thirdly, it can
be observed that results improve with the appli-
cation of transformation based word vector em-
bedding of the query terms. The temporal context
proves more effective than the tempo-lexical one.

7 Conclusions and Future Work

In this paper, we studied the problem of cross-
session task extraction. We proposed a trans-
formation based word embedding approach that
takes into account the temporal and tempo-lexical
contexts of queries to learn task-specific seman-
tics. Our experiments on the AOL query log
indicate that the proposed temporal and tempo-
lexical query embedding method significantly out-
perform the baseline word2vec embedding. As fu-
ture work, we would like to investigate supervised
methods for cross-session task extraction.
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Abstract

Can attention- or gradient-based visualization
techniques be used to infer token-level labels
for binary sequence tagging problems, using
networks trained only on sentence-level la-
bels? We construct a neural network architec-
ture based on soft attention, train it as a binary
sentence classifier and evaluate against token-
level annotation on four different datasets. In-
ferring token labels from a network provides a
method for quantitatively evaluating what the
model is learning, along with generating use-
ful feedback in assistance systems. Our results
indicate that attention-based methods are able
to predict token-level labels more accurately,
compared to gradient-based methods, some-
times even rivaling the supervised oracle net-
work.

1 Introduction

Sequence labeling is a structured prediction task
where systems need to assign the correct label to
every token in the input sequence. Many NLP
tasks, including part-of-speech tagging, named
entity recognition, chunking, and error detec-
tion, are often formulated as variations of se-
quence labeling. Recent state-of-the-art models
make use of bidirectional LSTM architectures (Ir-
soy and Cardie, 2014), character-based represen-
tations (Lample et al., 2016), and additional ex-
ternal features (Peters et al., 2017). Optimiza-
tion of these models requires appropriate training
data where individual tokens are manually labeled,
which can be time-consuming and expensive to
obtain for each different task, domain and target
language.

In this paper, we investigate the task of per-
forming sequence labeling without having access
to any training data with token-level annotation.
Instead of training the model directly to predict the
label for each token, the model is optimized using

a sentence-level objective and a modified version
of the attention mechanism is then used to infer
labels for individual words.

While this approach is not expected to outper-
form a fully supervised sequence labeling method,
it opens possibilities for making use of text classi-
fication datasets where collecting token-level an-
notation is not possible or cost-effective.

Inferring token-level labels from a text classi-
fication network also provides a method for ana-
lyzing and interpreting the model. Previous work
has used attention weights to visualize the focus
of neural models in the input data. However, these
analyses have largely been qualitative examina-
tions, looking at only a few examples from the
datasets. By formulating the task as a zero-shot la-
beling problem, we can provide quantitative eval-
uations of what the model is learning and where it
is focusing. This will allow us to measure whether
the features that the model is learning actually
match our intuition, provide informative feedback
to end-users, and guide our development of future
model architectures.

2 Network Architecture

The main system takes as input a sentence, sep-
arated into tokens, and outputs a binary predic-
tion as the label of the sentence. We use a
bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) architecture for sentence classification,
with dynamic attention over words for construct-
ing the sentence representations. Related archi-
tectures have been successful for machine trans-
lation (Bahdanau et al., 2015), sentence summa-
rization (Rush and Weston, 2015), entailment de-
tection (Rocktäschel et al., 2016), and error cor-
rection (Ji et al., 2017). In this work, we modify
the attention mechanism and training objective in
order to make the resulting network suitable for
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also inferring binary token labels, while still per-
forming well as a sentence classifier.

Figure 1 contains a diagram of the net-
work architecture. The tokens are first
mapped to a sequence of word representa-
tions [w1, w2, w3, ..., wN ], which are constructed
as a combination of regular word embeddings
and character-based representations, following
Lample et al. (2016). These word representations
are given as input to a bidirectional LSTM which
iteratively passes through the sentence in both
directions. Hidden representations from each
direction are concatenated at every token position,
resulting in vectors hi that are focused on a
specific word but take into account the context
on both sides of that word. We also include a
transformation with tanh activation, which helps
map the information from both directions into a
joint feature-space:

−→
hi = LSTM(wi,

−−→
hi−1) (1)

←−
hi = LSTM(wi,

←−−
hi+1) (2)

h̃i = [
−→
hi ;
←−
hi ] hi = tanh(Whh̃i + bh) (3)

whereWh is a parameter matrix and bh is a param-
eter vector, optimized during training.

Next, we include an attention mechanism that
allows the network to dynamically control how
much each word position contributes to the com-
bined representation. In most attention-based sys-
tems, the attention amount is calculated in ref-
erence to some external information. For exam-
ple, in machine translation the attention values
are found based on a representation of the out-
put that has already been generated (Bahdanau
et al., 2015); in question answering, the attention
weights are calculated in reference to the input
question (Hermann et al., 2015). In our task there
is no external information to be used, therefore we
predict the attention values directly based on hi,
by passing it through a separate feedforward layer:

ei = tanh(Wehi + be) (4)

ẽi =Wẽei + bẽ (5)

where Wẽ, bẽ, We and be are trainable parameters
and ẽi results in a single scalar value. This method
is equivalent to calculating the attention weights

in reference to a fixed weight vector, which is
optimized during training. Shen and Lee (2016)
proposed an architecture for dialogue act detec-
tion where the attention values are found based
on a separate set of word embeddings. We found
that the method described above was consistently
equivalent or better in development experiments,
while requiring a smaller number of parameters.

The values of ẽi are unrestricted and should
be normalized before using them for attention, to
avoid sentences of different length having repre-
sentations of different magnitude. The common
approach is to use an exponential function to trans-
form the value, and then normalize by the sum of
all values in the sentence:

ai =
exp(ẽi)∑N
k=1 exp(ẽk)

(6)

The value ai is now in a range 0 ≤ ai ≤ 1 and
higher values indicate that the word at position i is
more important for predicting the sentence class.
The network learns to predict informative values
for ai based only on the sentence objective, with-
out receiving token-level supervision. Therefore,
we can use these attention values at each token in
order to infer an unsupervised sequence labeling
output.

The method in Equation 6 is well-suited for ap-
plications such as machine translation – the expo-
nential function encourages the attention to prior-
itize only one word in the sentence, resulting in a
word-word alignment. However, the same func-
tion is less suitable for our task of unsupervised
sequence labeling, as there is no reason to assume
that exactly one word has a positive label. An in-
put sentence can contain more than one tagged to-
ken, or it can contain no tokens of interest, and this
should be reflected in the predictions.

Instead of the exponential function, we make
use of the logistic function σ for calculating soft
attention weights:

ãi = σ(ẽi) ai =
ãi∑N
k=1 ãk

(7)

where each ãi has an individual value in the range
0 ≤ ãi ≤ 1 and ai is normalized to sum up to 1
over all values in the sentence. The normalized
weights ai are used for combining the context-
conditioned hidden representations from Equation

294



wi

hi

ai

ei

hi

hi

wi-1

hi-1

ai-1

ei-1

hi-1

hi-1

wi+1

hi+1

ai+1

ei+1

hi+1

hi+1

d y

Figure 1: The neural network architecture for zero-shot sequence labeling. The soft attention values ai are used
for weighting hidden representations hi as well as providing a binary label for each token. The network is only
optimized through the sentence classification objective, predicting the sentence-level label y.

3 into a single sentence representation:

c =

N∑

i=1

aihi (8)

In addition, we can use the pre-normalization
value ãi as a score for sequence labeling, with a
natural decision boundary of 0.5 – higher values
indicate that the token at position i is important
and should be labeled positive, whereas lower val-
ues suggest the token is largely ignored for sen-
tence classification and can receive a negative la-
bel. Attention weights with sigmoid activation
have been shown to also improve performance on
classification tasks (Shen and Lee, 2016), which
indicates that this architecture has the benefit of
being both accurate and interpretable on the token
level.

Finally, we pass the sentence representation c
through a feedforward layer and predict a binary
label for the overall sentence:

d = tanh(Wdc+ bd) (9)

y = σ(Wyd+ by) (10)

where d is a sentence vector and y is a single value
between 0 ≤ y ≤ 1, with values higher than 0.5
indicating a positive class and lower values indi-
cating a negative prediction.

In order to optimize the model, we use several
different loss functions. The first is the squared
loss which optimizes the sentence-level score pre-
diction to match the gold label in the annotation:

L1 =
∑

j

(y(j) − ỹ(j))2 (11)

where y(j) is the predicted score for the j-th sen-
tence, and ỹ(j) is the true binary label (0, 1) for the
j-th sentence.

In addition, we want to encourage the model to
learn high-quality token-level labels as part of the
attention weights. While the model does not have
access to token-level annotation during training,
there are two constraints that we can take advan-
tage of:

1. Only some, but not all, tokens in the sentence
can have a positive label.

2. There are positive tokens in a sentence only
if the overall sentence is positive.

We can then construct loss functions that en-
courage the model to optimize for these con-
straints:

L2 =
∑

j

(mini(ãi)− 0)2 (12)

L3 =
∑

j

(maxi(ãi)− ỹ(j))2 (13)

where mini(ãi) is the minimum value of all the
attention weights in the sentence and maxi(ãi)
is the corresponding maximum value. Equation
12 optimizes the minimum unnormalized attention
weight in a sentence to be 0, satisfying the con-
straint that all tokens in a sentence should not have
a positive token-level label. Equation 13 then op-
timizes for the maximum unnormalized attention
weight in a sentence to be equal to the gold la-
bel for that sentence, which is either 0 or 1, incen-
tivizing the network to only assign large attention
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weights to tokens in positive sentences. These ob-
jectives do not provide the model with additional
information, but serve to push the attention scores
to a range that is suitable for binary classification.

We combine all of these loss objectives together
for the main optimization function:

L = L1 + γ(L2 + L3) (14)

where γ is used to control the importance of the
auxiliary objectives.

3 Alternative Methods

We compare the attention-based system for infer-
ring sequence labeling with 3 alternative methods.

3.1 Labeling Through Backpropagation

We experiment with an alternative method for
inducing token-level labels, based on visualiza-
tion methods using gradient analysis. Research
in computer vision has shown that interpretable
visualizations of convolutional networks can be
obtained by analyzing the gradient after a single
backpropagation pass through the network (Zeiler
and Fergus, 2014). Denil et al. (2014) extended
this approach to natural language processing, in
order to find and visualize the most important sen-
tences in a text. Recent work has also used the
gradient-based approach for visualizing the deci-
sions of text classification models on the token
level (Li et al., 2016; Alikaniotis et al., 2016). In
this section we propose an adaptation that can be
used for sequence labeling tasks.

We first perform a forward pass through the
network and calculate the predicted sentence-level
score y. Next, we define a pseudo-label y∗ = 0,
regardless of the true label of the sentence. We
then calculate the gradient of the word representa-
tion wi with respect to the loss function using this
pseudo-label:

gi =
∂L1

∂wi

∣∣∣
(y∗,y)

(15)

where L1 is the squared loss function from Equa-
tion 11. The magnitude of gi, |gi| can now be used
as an indicator of how important that word is for
the positive class. The intuition behind this ap-
proach is that the magnitude of the gradient indi-
cates which individual words need to be changed
the most in order to make the overall label of the
sentence negative. These are the words that are

contributing most towards the positive class and
should be labeled as such individually.

An obstacle in using this score for sequence la-
beling comes from the fact that there is no natural
decision boundary between the two classes. The
magnitude of the gradient is not constrained to a
specific range and can vary quite a bit depending
on the sentence length and the predicted sentence-
level score. In order to map this magnitude to a de-
cision, we analyze the distribution of magnitudes
in a sentence. Intuitively, we want to detect out-
liers – scores that are larger than expected. There-
fore, we map all the magnitudes in a sentence to a
Gaussian distribution and set the decision bound-
ary at 1.5 standard deviations. Any word that has a
gradient magnitude higher than that will be tagged
with a positive class for sequence labeling. If all
the magnitudes in a sentence are very similar, none
of them will cross this threshold and therefore all
words will be labeled as negative.

We calculate the gradient magnitude using
the same network architecture as described in
Section 2, at word representation wi after the
character-based features have been included. The
attention-based architecture is not necessary for
this method, therefore we also report results using
a more traditional bidirectional LSTM, concate-
nating the last hidden states from both directions
and using the result as a sentence representation
for the main objective.

3.2 Relative Frequency Baseline

The system for producing token-level predictions
based on sentence-level training data does not nec-
essarily need to be a neural network. As the initial
experiment, we trained a Naive Bayes classifier
with n-gram features on the annotated sentences
and then used it to predict a label only based on
a window around the target word. However, this
did not produce reliable results – since the classi-
fier is trained on full sentences, the distribution of
features is very different and does not apply to a
window of only a few words.

Instead, we calculate the relative frequency of
a feature occurring in a positive sentence, normal-
ized by the overall frequency of the feature, and
calculate the geometric average over all features
that contain a specific word:

rk =
c(Xk = 1, Y = 1)∑

z∈(0,1) c(Xk = 1, Y = z)
(16)
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scorei = |Fi|

√∏

k∈Fi

rk (17)

where c(Xk = 1, Y = 1) is the number of times
feature k is present in a sentence with a positive la-
bel, Fi is the set of n-gram features present in the
sentence that involve the i-th word in the sentence,
and scorei is the token-level score for the i-th to-
ken in the sentence. We used unigram, bigram and
trigram features, with extra special tokens to mark
the beginning and end of a sentence.

This method will assign a high score to tokens
or token sequences that appear more often in sen-
tences which receive a positive label. While it is
not able to capture long-distance context, it can
memorize important keywords from the training
data, such as modal verbs for uncertainty detection
or common spelling errors for grammatical error
detection.

3.3 Supervised Sequence Labeling
Finally, we also report the performance of a super-
vised sequence labeling model on the same tasks.
This serves as an indicator of an upper bound for
a given dataset – how well the system is able to
detect relevant tokens when directly optimized for
sequence labeling and provided with token-level
annotation.

We construct a bidirectional LSTM tagger, fol-
lowing the architectures from Irsoy and Cardie
(2014), Lample et al. (2016) and Rei (2017).
Character-based representations are concatenated
with word embeddings, passed through a bidirec-
tional LSTM, and the hidden states from both di-
rection are concatenated. Based on this, a proba-
bility distribution over the possible labels is pre-
dicted and the most probable label is chosen for
each word. While Lample et al. (2016) used a
CRF on top of the network, we exclude it here
as the token-level scores coming from that net-
work do not necessarily reflect the individual la-
bels, since the best label sequence is chosen glob-
ally based on the combined sentence-level score.
The supervised model is optimized by minimizing
cross-entropy, training directly on the token-level
annotation.

4 Datasets

We evaluate the performance of zero-shot se-
quence labeling on 3 different datasets. In
each experiment, the models are trained using

only sentence-level annotation and then evaluated
based on token-level annotation.

4.1 CoNLL 2010 Uncertainty Detection
The CoNLL 2010 shared task (Farkas et al., 2010)
investigated the detection of uncertainty in nat-
ural language texts. The use of uncertain lan-
guage (also known as hedging) is a common tool
in scientific writing, allowing scientists to guide
research beyond the evidence without overstating
what follows from their work. Vincze et al. (2008)
showed that 19.44% of sentences in the biomedi-
cal papers of the BioScope corpus contain hedge
cues. Automatic detection of these cues is impor-
tant for downstream tasks such as information ex-
traction and literature curation, as typically only
definite information should be extracted and cu-
rated.

The dataset is annotated for both hedge cues
(keywords indicating uncertainty) and scopes (the
area of the sentence where the uncertainty ap-
plies). The cues are not limited to single tokens,
and can also consist of several disjoint tokens (for
example, ”either ... or ...”). An example sentence
from the dataset, with bold font indicating the
hedge cue and curly brackets marking the scope
of uncertainty:

Although IL-1 has been reported to con-
tribute to Th17 differentiation in mouse
and man, it remains to be determined
{whether therapeutic targeting of IL-1
will substantially affect IL-17 in RA}.

The first subtask in CoNLL 2010 was to detect
any uncertainty in a sentence by predicting a bi-
nary label. The second subtask required the detec-
tion of all the individual cue tokens and the reso-
lution of their scope. In our experiments, we train
the system to detect sentence-level uncertainty,
use the architecture to infer the token-level label-
ing and evaluate the latter on the task of detect-
ing uncertainty cues. Since the cues are defined as
keywords that indicate uncertainty, we would ex-
pect the network to detect and prioritize attention
on these tokens. We use the train/test data from the
second task, which contains the token-level anno-
tation needed for evaluation, and randomly sepa-
rate 10% of the training data for development.

4.2 FCE Error Detection
Error detection is the task of identifying tokens
which need to be edited in order to produce a
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CoNLL 2010 FCE
Sent F1 MAP P R F1 Sent F1 MAP P R F1

Supervised - 96.54 78.92 79.41 79.08 - 59.13 49.15 26.96 34.76

Relative freq - 81.78 15.94 79.98 26.59 - 37.75 14.37 86.36 24.63
LSTM-LAST-BP 84.42 77.90 7.16 66.64 12.92 85.10 46.12 29.49 16.07 20.80
LSTM-ATTN-BP 84.94 80.38 9.13 71.42 16.18 85.14 44.52 27.62 17.81 21.65

LSTM-ATTN-SW 84.94 87.86 77.48 69.54 73.26 85.14 47.79 28.04 29.91 28.27

Table 1: Results for different system configurations on the CoNLL 2010 and FCE datasets. Reporting sentence-
level F1, token-level Mean Average Precision (MAP), and token-level precision/recall/F1.

grammatically correct sentence. The task has nu-
merous applications for writing improvement and
assessment, and recent work has focused on er-
ror detection as a supervised sequence labeling
task (Rei and Yannakoudakis, 2016; Kaneko et al.,
2017; Rei, 2017).

Error detection can also be performed on the
sentence level – detecting whether the sentence
needs to be edited or not. Andersen et al. (2013)
described a practical tutoring system that provides
sentence-level feedback to language learners. The
2016 shared task on Automated Evaluation of Sci-
entific Writing (Daudaravicius et al., 2016) also
required participants to return binary predictions
on whether the input sentence needs to be cor-
rected.

We evaluate our system on the First Certifi-
cate in English (FCE, Yannakoudakis et al. (2011))
dataset, containing error-annotated short essays
written by language learners. While the original
corpus is focused on aligned corrections, Rei and
Yannakoudakis (2016) converted the dataset to a
sequence labeling format, which we make use of
here. An example from the dataset, with bold font
indicating tokens that have been annotated as in-
correct given the context:

When the show started the person who
was acting it was not Danny Brook and
he seemed not to be an actor.

We train the network as a sentence-level error
detection system, returning a binary label and a
confidence score, and also evaluate how accurately
it is able to recover the locations of individual er-
rors on the token level.

4.3 SemEval Sentiment Detection in Twitter
SemEval has been running a series of popular
shared tasks on sentiment analysis in text from so-
cial media (Nakov et al., 2013; Rosenthal et al.,

2014, 2015). The competitions have included var-
ious subtasks, of which we are interested in two:
Task A required the polarity detection of individ-
ual phrases in a tweet, and Task B required sen-
timent detection of the tweet as a whole. A sin-
gle tweet could contain both positive and negative
phrases, regardless of its overall polarity, and was
therefore separately annotated on the tweet level.

In the following example from the dataset, neg-
ative phrases are indicated with a bold font and
positive phrases are marked with italics, whereas
the overall sentiment of the tweet is annotated as
negative:

They may have a SuperBowl in Dallas,
but Dallas ain’t winning a SuperBowl.
Not with that quarterback and owner.
@S4NYC @RasmussenPoll

Sentiment analysis is a three-way task, as the
system needs to differentiate between positive,
negative and neutral sentences. Our system re-
lies on a binary signal, therefore we convert this
dataset into two binary tasks – one aims to de-
tect positive sentiment, the other focuses on neg-
ative sentiment. We train the system as a senti-
ment classifier, using the tweet-level annotation,
and then evaluate the system on recovering the in-
dividual positive or negative tokens. We use the
train/dev/test splits of the original SemEval 2013
Twitter dataset, which contains phrase-level senti-
ment annotation.

5 Implementation Details

During pre-processing, tokens are lowercased
while the character-level component still retains
access to the capitalization information. Word em-
beddings were set to size 300, pre-loaded from
publicly available Glove (Pennington et al., 2014)
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SemEval Negative SemEval Positive
Sent F1 MAP P R F1 Sent F1 MAP P R F1

Supervised - 67.70 31.79 44.66 37.02 - 67.41 36.27 50.71 42.24

Relative freq - 44.15 17.39 15.67 16.48 - 47.64 13.39 54.69 21.51
LSTM-LAST-BP 53.65 43.02 8.33 28.41 12.88 70.83 49.06 17.66 35.06 23.48
LSTM-ATTN-BP 55.83 50.96 11.55 31.54 16.90 71.26 53.89 23.45 34.53 27.92

LSTM-ATTN-SW 55.83 54.37 29.41 14.40 19.23 71.26 56.45 37.19 25.96 30.45

Table 2: Results for different system configurations on the SemEval Twitter sentiment dataset, separated into pos-
itive and negative sentiment detection. Reporting sentence-level F1, token-level Mean Average Precision (MAP),
and token-level precision/recall/F1.

embeddings and fine-tuned during training. Char-
acter embeddings were set to size 100. The recur-
rent layers in the character-level component have
hidden layers of size 100; the hidden layers

−→
hi and←−

hi are size 300. The hidden combined representa-
tion hi was set to size 200, and the attention weight
layer ei was set to size 100. Parameter γ was set
to 0.01 based on development experiments.

The model was implemented using Tensorflow
(Abadi et al., 2016). The network weights were
randomly initialized using the uniform Glorot
initialization method (Glorot and Bengio, 2010)
and optimization was performed using AdaDelta
(Zeiler, 2012) with learning rate 1.0. Dropout
(Srivastava et al., 2014) with probability 0.5 was
applied to word representations wi and the com-
posed representations hi after the LSTMs. The
training was performed in batches of 32 sentences.
Sentence-level performance was observed on the
development data and the training was stopped if
performance did not improve for 7 epochs. The
best overall model on the development set was
then used to report performance on the test data,
both for sentence classification and sequence la-
beling. In order to avoid random outliers, we per-
formed each experiment with 5 random seeds and
report here the averaged results.

The code used for performing these experi-
ments is made available online.1

6 Evaluation

Results for the experiments are presented in Ta-
bles 1 and 2. We first report the sentence-level
F-measure in order to evaluate the performance on
the general text classification objective. Next, we
report the Mean Average Precision (MAP) at re-
turning the active/positive tokens. This measure

1http://www.marekrei.com/projects/mltagger

rewards systems that assign higher scores to posi-
tive tokens as opposed to negative ones, evaluating
this as a ranking problem. It disregards a specific
classification threshold and therefore provides a
more fair evaluation towards systems that could
be improved simply by choosing a different deci-
sion boundary. Finally, we also report token-level
precision, recall and F-measure for evaluating the
accuracy of this model as a sequence labeler.2

We report five different system configurations:
Relative freq is the n-gram based approach de-
scribed in Section 3.2. Supervised is the fully
supervised sequence labeling system described
in Section 3.3. LSTM-LAST-BP is using the last
hidden states from the word-level LSTMs for
constructing a sentence representation, and the
backpropagation-based method from Section 3.1
for inducing token labels. LSTM-ATTN-BP is using
the attention-based network architecture together
with the backpropagation-based labeling method.
LSTM-ATTN-SW is the method described in Sec-
tion 2, using soft attention weights for sequence
labeling and additional objectives for optimizing
the network.

The method using attention weights achieves
the best performance on all datasets, compared to
other methods not using token-level supervision.
On the CoNLL 2010 uncertainty detection dataset
the system reaches 73.26% F-score, which is 93%
of the supervised upper bound. The alternative
methods using backpropagation and relative fre-

2The CoNLL 2010 shared task on uncertainty detection
comes with an official scorer which requires additional steps
and the detection of both cues and scopes, whereas the binary
labels from the zero-shot systems are not directly applicable
to this format. Similarly, error detection is commonly evalu-
ated using F0.5, which is motivated by end-user experience,
but in this case we wish to specifically measure the tagging
accuracy. Therefore we use the regular F1 score as the main
evaluation metric for both of these tasks.
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Figure 2: Example output from each of the zero-shot sequence labeling models, trained on 4 different tasks. U:
uncertainty detection, E: error detection, N: negative sentiment detection, P: positive sentiment detection. Darker
blue indicates higher predicted values.

quency achieve high recall values, but compara-
tively lower precision. On the FCE dataset, the
F-score is considerably lower at 28.27% – this is
due to the difficulty of the task and the supervised
system also achieves only 34.76%. The attention-
based system outperforms the alternatives on both
of the SemEval evaluations. The task of detecting
sentiment on the token level is quite difficult over-
all as many annotations are context-specific and
require prior knowledge. For example, in order
to correctly label the phrase ”have Superbowl” as
positive, the system will need to understand that
organizing the Superbowl is a positive event for
the city.

Performance on the sentence-level classification
task is similar for the different architectures on the
CoNLL 2010 and FCE datasets, whereas the com-
position method based on attention obtains an ad-
vantage on the SemEval datasets. Since the lat-
ter architecture achieves competitive performance
and also allows for attention-based token label-
ing, it appears to be the better choice. Analy-
sis of the token-level MAP scores shows that the
attention-based sequence labeling model achieves
the best performance even when ignoring classifi-
cation thresholds and evaluating the task through

ranking.
Figure 2 contains example outputs from the

attention-based models, trained on each of the four
datasets. In the first example, the uncertainty de-
tector correctly picks up ”would appreciate if”
and ”possible”, and the error detection model fo-
cuses most on the misspelling ”Definetely”. Both
the positive and negative sentiment models have
assigned a high weight to the word ”disappoint-
ing”, which is something we observed in other ex-
amples as well. The system will learn to focus on
phrases that help it detect positive sentiment, but
the presence of negative sentiment provides im-
plicit evidence that the overall label is likely not
positive. This is a by-product of the 3-way clas-
sification task and future work could investigate
methods for extending zero-shot classification to
better match this requirement.

In the second example, the system correctly la-
bels the phrase ”what would be suitable?” as un-
certain, and part of the phrase ”I’m not really
sure” as negative. It also labels ”specifying” as
an error, possibly expecting a comma before it.
In the third example, the error detection model
labels ”Internet” for the missing determiner, but
also captures a more difficult error in ”depended”,
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which is an incorrect form of the word given the
context.

7 Conclusion

We investigated the task of performing sequence
labeling without having access to any training data
with token-level annotation. The proposed model
is optimized as a sentence classifier and an at-
tention mechanism is used for both composing
the sentence representations and inferring individ-
ual token labels. Several alternative models were
compared on three tasks – uncertainty detection,
error detection and sentiment detection.

Experiments showed that the zero-shot labeling
system based on attention weights achieved the
best performance on all tasks. The model is able
to automatically focus on the most salient areas
of the sentence, and additional objective functions
along with the soft attention mechanism encour-
age it to also perform well as a sequence labeler.
The zero-shot labeling task can provide a quan-
titative evaluation of what the model is learning,
along with offering a low-cost method for creat-
ing sequence labelers for new tasks, domains and
languages.
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Abstract

Information about the meaning of mathemati-
cal variables in text is useful in NLP/IR tasks
such as symbol disambiguation, topic mod-
eling and mathematical information retrieval
(MIR). We introduce variable typing, the task
of assigning one mathematical type (multi-
word technical terms referring to mathemati-
cal concepts) to each variable in a sentence of
mathematical text. As part of this work, we
also introduce a new annotated data set com-
posed of 33,524 data points extracted from sci-
entific documents published on arXiv. Our in-
trinsic evaluation demonstrates that our data
set is sufficient to successfully train and eval-
uate current classifiers from three different
model architectures. The best performing
model is evaluated on an extrinsic task: MIR,
by producing a typed formula index. Our re-
sults show that the best performing MIR mod-
els make use of our typed index, compared to
a formula index only containing raw symbols,
thereby demonstrating the usefulness of vari-
able typing.

1 Introduction

Scientific documents, such as those from Physics
and Computer Science, rely on mathematics to
communicate ideas and results. Written mathe-
matics, unlike general text, follows strong domain-
specific conventions governing how content is pre-
sented. According to Ganesalingam (2008), the
sense of mathematical text is conveyed through
the interaction of two contexts: the textual context
(flowing text) and the mathematical (or symbolic)
context (mathematical formulae).

In this work, we introduce a new task that fo-
cuses on one particular interaction: the assignment
of meaning to variables by surrounding text in the
same sentence1. For example, in the sentence

1Data for the task is available at https://www.cst.
cam.ac.uk/˜yas23/

Let P be a parabolic subgroup of GL(n) with
Levi decomposition P = MN , where N is the
unipotent radical.

the variables P and N in the symbolic context
are assigned the meaning “parabolic subgroup”
and “unipotent radical” by the textual context sur-
rounding them respectively.

We will refer to the task of assigning one
mathematical type to each variable in a sentence
as variable typing. We use mathematical types
(Stathopoulos and Teufel, 2016) as variable de-
notation labels. Types are multi-word phrases
drawn from the technical terminology of the math-
ematical discourse that label mathematical objects
(e.g., “set”), algebraic structures (e.g., “monoid”)
and instantiable notions (e.g., “cardinality of a
set”). In the sentence presented earlier, the phrases
“parabolic subgroup”, “Levi decomposition” and
“unipotent radical” are examples of types.

Typing variables may be beneficial to other nat-
ural language processing (NLP) tasks, such as
topic modeling, to group documents that assign
meaning to variables consistently (e.g., “E” is “en-
ergy” consistently in some branches of Physics).
In mathematical information retrieval (MIR), for
instance, enriching formulae with types may im-
prove precision. For example, the formulae x+ y
and a+b can be considered α-equivalent matches.
However, if a and b are matrices while x and y
are vectors, the match is likely to be a false posi-
tive. Typing information may be helpful in reduc-
ing such instances and improving retrieval preci-
sion.

Variable typing differs from similar tasks in
three fundamental ways. First, meaning – in the
form of mathematical types – is explicitly assigned
to variables, rather than arbitrary mathematical ex-
pressions. Second, variable typing is carried out
at the sentential level, with valid type assignments
for variables drawn from the sentences in which
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they occur, rather than from larger contexts, such
as documents. Third, denotations are drawn from
a pre-determined list of types, rather than from
free-form text in the surrounding context of each
variable.

As part of our work, we have constructed a new
data set for variable typing that is suitable for ma-
chine learning (Section 4) and is distributed un-
der the Open Data Commons license. We pro-
pose and evaluate three models for typing vari-
ables in mathematical documents based on current
machine learning architectures (Section 5). Our
intrinsic evaluation (Section 6) suggests that our
models significantly outperform the state-of-the-
art SVM model by Kristianto et al. (2012, 2014)
(originally developed for description extraction)
on our data set. More importantly, our intrinsic
evaluation demonstrates that our data set is suf-
ficient to successfully train and evaluate classi-
fiers from three different architectures. We also
demonstrate that our variable typing task and data
are useful in MIR in our extrinsic evaluation (Sec-
tion 7).

2 Related Work

The task of extracting semantics for variables from
the linguistic context was first proposed by Grig-
ore et al. (2009) with the intention of disambiguat-
ing symbols in mathematical expressions. Grigore
et al. took operators listed in OpenMath content
dictionaries (CDs) as concepts and used term clus-
ters to model their semantics. A bag of nouns is
extracted from the operator description in the dic-
tionary and enriched manually using terms taken
from online lexical resources. The cluster that
maximises the similarity (based on Pointwise Mu-
tual Information (PMI) and DICE) between nouns
in the cluster and the local context of a target for-
mula is taken to represent its meaning.

Wolska et al. (2011) used the Cambridge dic-
tionary of mathematics and the mathematics sub-
ject classification hierarchy to manually construct
taxonomies used to assign meaning to simple ex-
pressions. Simple expressions are defined by the
authors to be mathematical formulae taking the
form of an identifier, which may have super/sub-
scripted expressions of arbitrary complexity. Lex-
ical features surrounding simple expressions are
used to match the context of candidate expres-
sions to suitable taxonomies using a combination
of PMI and DICE (Wolska et al., 2011). Wolska et

al. report a precision of 66%.
Quoc et al. (2010) used a rule-based approach

to extract descriptions for formulae (phrases or
sentences) from surrounding context. In a simi-
lar approach, Kristianto et al. (2012) applied pat-
tern matching on sentence parse trees and a “near-
est noun” approach to extract descriptions. These
rule-based methods have been shown to perform
well for recall but poorly for precision (Kris-
tianto et al., 2012). However, Kristianto et al.
(2012) note that domain-agnostic parsers are con-
fused by mathematical expressions making rule-
based methods sensitive to parse tree errors. Both
rule-based extraction methods were outperformed
by Support Vector Machines (SVMs) (Kristianto
et al., 2012, 2014).

Schubotz et al. (2016) use hierarchical named
topic clusters, referred to as namespaces, to
model the semantics of mathematical identifiers.
Namespaces are derived from a document col-
lection of 22,515 Wikipedia articles. A vector-
space approach is used to cluster documents into
namespaces using mini-batch K-means clustering.
Clusters beyond a certain purity threshold are se-
lected and converted into namespaces by extract-
ing phrases that assign meaning to identifiers in
the selected clusters. Schubotz et al. (2016) take
a ranked approach at determining the phrase that
best assigns meaning to a particular identifier. The
authors report F1 scores of 23.9% and 56.6% for
their definition extraction methods.

In contrast, we assign meaning exclusively to
variables, using denotations from a pre-computed
dictionary of mathematical types, rather than free-
form text. Types as pre-identified, composition-
ally constructed denotational labels enable effi-
cient determination of relatedness between math-
ematical concepts. In our extrinsic MIR experi-
ment (Section 7), the mathematical concept that
two or more types are derived from is identified
by locating their common parent type – the super-
type – on a suffix trie. Topically related types that
do not share a common supertype can be identi-
fied using an automatically constructed type em-
bedding space (Stathopoulos and Teufel (2016),
Section 5.1), rather than manually curated names-
paces or fuzzy term clusters.

3 The Variable Typing Task

We define the task of variable typing as follows.
Given a sentence containing a pre-identified set of
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variables V and types T , variable typing is the task
of classifying all edges V × T as either existent
(positive) or non-existent (negative).

However, not all elements of V × T are valid
edges. Invalid edges are usually instances of type
parameterisation, where some type is parame-
terised by what appears to be a variable. For ex-
ample, the set of candidate edges for the sentence

We now consider the q-exterior algebras of V
and V ∗, cf. [21].

would include (V , exterior algebra)
and (V ∗, exterior algebra) but not
(q, exterior algebra). Such edges are identified
using pattern matching (Java regular expressions)
and are not presented to annotators or recorded in
the data set.

Our definition of “variable” mirrors that of
“simple expression” proposed by Grigore et al.
(2009): instances of formulae in the discourse are
considered to be “typeable variables” if they are
only composed of a single, potentially scripted
base identifier.

Variable typing, as defined in this work, is based
on four assumptions: (1) typings occur at the sen-
tential level and variables in a sentence can only be
assigned a type phrase occurring in that sentence,
(2) variables and types in the sentence are known a
priori, (3) edges in each sentence are independent
of one another, and (4) edges in one sentence are
independent of those in other sentences – given a
variable v in sentence s, type assignment for v is
agnostic of other typings involving v from other
sentences.

The decision to constrain variable typing at the
sentential level is motivated by empirical studies
(Grigore et al., 2009; Gödert, 2012). Grigore et al.
(2009) have shown that the majority of variables
are introduced and declared in the same sentence.
In addition, mathematical text tends to be com-
posed of local contexts, such as theorems, lemmas
and proofs (Ganesalingam, 2008).

The assumptions introduced above simplify the
task of variable typing without sacrificing the gen-
eralisability of the task. For example, cases where
the same variable is assigned multiple conflicting
types from different sentences within a document
can be collected and resolved using a type disam-
biguation algorithm.

4 Variable Typing Data Set

We have constructed an annotated data set of
sentences for building variable typing classifiers.
The sentences in our corpus are sourced from the
Mathematical REtrieval Corpus (MREC) (Lı́ška
et al., 2011), a subset of arXiv (over 439,000
papers) with all LATEX formulae converted to
MathML.

Train Dev Test Total

Sentences 5,273 841 1,689 7,803
Positive edges 1,995 457 1,049 3,501
Negative edges 15,164 4,386 10,473 30,023
Total edges 17,159 4,843 11,522 33,524

Table 1: Data set statistics.

The data set is split into a standard train-
ing/development/test machine learning partition-
ing scheme as outlined in Table 1. The idea behind
this scheme is to train and evaluate new models on
standardised data partitions so that results can be
directly comparable.

4.1 Sentence Sampling

The structure and role of sentences in mathemat-
ical papers may vary according to their location
in the discourse. For example, sentences in the
“Introduction” – intended to introduce the sub-
ject matter – can be expected to differ in structure
from those in a proof, which tend to be short, for-
mal statements. Our sampling strategy is designed
to control for this diversity in sentence structure.
First, we sentence-tokenised and transformed each
document in the MREC into a graph that encodes
its section structure. Document graphs also take
into account blocks of text unique to the math-
ematical discourse such as theorems, proofs and
definitions. Then, we sampled sentences for our
data set by distribution according to their location
in the source arXiv document.

Variables in each MREC document are identi-
fied via a parser that recognises the variable de-
scription given in Section 3. Our variable parser is
designed to operate on symbol layout trees (SLTs)
(Schellenberg et al., 2012) – trees representing the
2-dimensional presentation layout of mathemati-
cal formulae. We identified 28.6 million sentences
that contain variables.

The distribution of sentences according to (a)
the type of discourse/math block of origin and (b)
the number of unique types in the sentence is re-
constructed by putting sentences into bins based
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on the value of these features. Sentences are se-
lected from the bins at random in proportion to
their size. The training, development and test sam-
ples have been produced via repeated application
of this sample-by-distribution strategy over the set
of all sentences that contain variables.

4.2 Extended Type Dictionary

The type dictionary distributed by Stathopou-
los and Teufel (2016) contains 10,601 automat-
ically detected types from the MREC. However,
the MREC contains 2.9 million distinct technical
terms, many of which might also be types. There-
fore, the seed dictionary is too small to be used
with variable typing at scale since types from the
seed dictionary will be sparsely present in sampled
sentences. To overcome this problem, we used the
double suffix trie algorithm (DSTA) to automati-
cally expand the type dictionary. The algorithm
makes use of the fact that most types are compo-
sitional (Stathopoulos and Teufel, 2016): longer
subtypes can be constructed out of shorter super-
types by attaching pre-modifiers (e.g., a “Rieman-
nian manifold” can be considered a subtype of
“manifold”).

The DSTA takes two lists of technical terms as
input – the seed dictionary of types and the MREC
master list (2.9 million technical terms). First,
technical terms on both lists are word-tokenised.
Then, all technical terms in the seed dictionary
(the known types) are placed onto the known types
suffix trie (KTST). Additional types are generated
from single word types on the KTST by expanding
them with one of 40 prefixes observed in the cor-
pus. For example, the type “algebra” might gen-
erate the supertype “coalgebra”. These are also
added on the KTST as known types.

Technical terms in the KTST are copied onto
the candidate type suffix trie (CTST) and are la-
beled as types. Next, the technical terms on the
master list are inserted into the CTST. Technical
terms in the master list that have known types from
the seed dictionary as their suffix on the CTST are
also marked as types. A new dictionary of types
(in the form of a list of technical terms) is pro-
duced by traversing the CTST and recording all
phrases that have a known type as their suffix. This
way, we have expanded the type dictionary from
10,601 types to approximately 1.23 million tech-
nical terms, from which an updated KTST can be
produced.

4.3 Human Annotation and Agreement

Two of the authors jointly developed the annota-
tion scheme and guidelines using sentences sam-
pled by distribution as discussed in Section 4.1.
Sentences sampled for this purpose are excluded
from subsequent sampling. The labeling scheme,
presented in Table 2, implements the assumptions
of the variable typing task – each variable in a sen-
tence is assigned exactly one label: either one type
from the sentence or one of six fixed labels for spe-
cial situations.

An annotation experiment was carried out us-
ing two authors as annotators to investigate (a)
how intuitive the task of typing is to humans and
(b) the reliability of the annotation scheme. For
this purpose, a further 1,000 sentences were sam-
pled (and removed) from the pool and organised
into two subsamples each with 554 sentences. The
subsamples have an overlap of 108 sentences with
a total of 182 edges, which are used to measure
inter-annotator agreement.

We report annotator agreement for three sepa-
rate cases. The first case reflects whether annota-
tors agree that a variable can be typed or not by
its context. A variable falls into the first category
if it is assigned a type from the sentential context
and in the latter category if it is assigned one of the
six fixed labels from Table 2. In this case, agree-
ment is substantial (Cohen’s K = 0.80, N = 182,
k = 2, n = 2). The second case is for instances
where both annotators believe a variable can be
typed by its sentential context – the variable is as-
signed a type by both annotators. In this case, Co-
hen’s Kappa is not applicable because the number
of labels varies: there are as many labels as there
are types in the sentence. Instead, we report ac-
curacy as the proportion of decisions where anno-
tators agree over all decisions: 90.9%. In the last
case where both annotators agree that a variable
is not a type (i.e., is assigned one of the six fixed
labels), agreement has been found to be moderate
(Fleiss’ K = 0.61, N = 123, k = 2, n = 6).

The bulk of the annotation was carried out by
one of the author-annotators and was produced by
repeated sampling by distribution (as described in
Section 4.1). Sentences in the bulk sample are
combined with the 554 sentences annotated by the
author during the annotation experiment to pro-
duce a final data set composed of 7,803 sentences.
The training, test and development sets have been
produced using the established 70% for training,
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Label Description

One label per type instance One label per instance of any type in the sentence.
Type Unknown The type of the variable is not in the scope of the sentence.
Type Present but Undetected The type of the variable is in the scope of the sentence but is not in the dictionary.
Parameterisation Variable is part of an instance of parameterisation.
Index Variable is an instance of indexing (numeric or non-numeric).
Number Variable is implied to be a number by the textual context (e.g., “the n-th element...”).
Formula is not a variable Label used to mark data errors. For example, in some instances end-of-proof symbols

are encoded as identifiers in the corpus and are mistaken for variables.

Table 2: Labels for special typing situations.

20% for test and 10% for development data set
partitioning strategy. Each partition is sampled by
distribution in order to model training and predict-
ing typings over complete discourse units, such as
documents.

5 Experiments

We compare three models for variable typing to
two baselines: the “nearest type” baseline and the
SVM proposed by Kristianto et al. (2014). One
of our models is an extension of the latter base-
line with both type and variable-centric features.
The other two models are based on deep neural
networks: a convolutional neural network and a
bidirectional LSTM.

We treat the task of typing as binary classifica-
tion: every possible typing in a sentence is pre-
sented to a classifier which, in turn, is expected
to make a “type” or “not-type” decision. We say
that an edge is positive if it connects a variable to
a type in the sentence and negative otherwise.

5.1 Computing a Type Embedding Space
We use the extended dictionary of types (Section
4.2) to pre-train a type embedding space. Com-
puted over the MREC, a type embedding space in-
cludes embeddings for both words and types (as
atomic lexical tokens). These vectors are used by
our deep neural networks to model the distribu-
tional meaning of words and types. The type em-
bedding space is constructed using the process de-
scribed by Stathopoulos and Teufel (2016): occur-
rences of extended dictionary type phases in the
MREC are substituted with unique atomic lexical
units before the text is passed on to word2vec.

5.2 Models for Variable Typing
Nearest Type baseline (NT) Given a variable v,
the nearest type baseline takes the edge that min-
imises the word distance between v and some type
in the sentence to be the positive edge. This base-
line is intended to approximate the “nearest noun”

baseline (Kristianto et al., 2012, 2014) which we
cannot directly compute due to the fact that noun
phrases in the text become parts of types.

Support Vector Machine (Kristianto et al.)
(SVM) This is an implementation of the fea-
tures and linear SVM described by Kristianto et al.
(2012). Furthermore, we use the same value for
hyperparameter C (the soft margin cost param-
eter) used by Kristianto et al. (2012). Due to
the class imbalance in our data set we have used
inversely proportional class weighting (as imple-
mented in scikit-learn). L2-normalisation is also
applied.

Extended Support Vector Machine (SVM+)
We have extended the SVM proposed by Kris-
tianto et al. (2012) with the features that are type
and variable-centric, such as the ‘base symbol of
a candidate variable’ and ‘first letter in the candi-
date type’. A description of these extended fea-
tures are listed in Table 4. We applied automatic
class weighting and L2-normalisation. We have
found that C = 2 is optimal for this model by
fine-tuning over the development set.

Convolutional Neural Network (Convnet) We
use a Convnet to classify each of the V ×T assign-
ment edges as either positive or negative, where V
are the variables in the input text and T are the
types. Unlike the SVM models, we do not use any
hand-crafted features, but only the inputs (Table
3), and the pre-trained embeddings (Section 5.1).

The input is a tensor that encodes the input de-
scribed in Table 3. We use the embeddings to rep-
resent the input tokens. In addition, we concate-
nate two dimensions to the input for each token
: one dimension to denote (using 1 or 0) whether
a given token is a type and another dimension to
denote if a token is a variable.

The model has a set of different sized filters,
and each filter size has an associated number of
filters to be applied (all are hyperparameters to
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Name Description

Token A word in the sentence. If the token is a formula (including a variable), the token is ‘@@@’.
Types are represented by the key of their embedding vector.

Token class An integer – 0 for normal word, 1 for type, 2 for variable and 3 to indicate that a variable
token is part of the edge being considered.

Type of Interest If the token is a type and it is part of the edge being considered, this field takes the value
‘TYPE’ or ‘-’ otherwise.

Table 3: Input and features to neural network typing models.

Orientation Description

Type Number of words in the candidate type.
Type The base type of each candidate type.
Type and Variable The first letter in the type and base symbol of the candidate variable.
Type The grammatical number of the type as it appears in the sentence.
Variable The variables and symbols in the candidate variable layout graph (one string per symbol).
Variable The number of distinct symbols in the candidate variable layout graph.
Variable The base symbol of the candidate variable layout graph.
Variable The directions (Above, Below,Up-left, Up-right, Down-left, Down-right, Next)

in which a candidate symbol has neigbouring symbols.
Variable Operators in the mathematical context of the candidate variable layout graph.
Sentence Prefix sequence: tokens from start of sentence to a (exclusive)
Sentence Middle sequence: tokens between a and b (exclusive)
Sentence Suffix sequence: tokens between b (exclusive) and end of sentence.

Table 4: SVM+ features. For each edge e, let a be the position of its left-most component (variable or type) and b
the position of its rightmost component (variable or symbol).

the model). The filters are applied to the input
text (i.e. convolutions), and then max-pooled, flat-
tened, concatenated, and a dropout layer (p = 0.5)
is then applied before being fed into a multilayer
perceptron (MLP), with the number of hidden lay-
ers and their hidden units as hyperparameters. Fi-
nally, a softmax layer is used to output a binary
decision.

The model is implemented using the Keras li-
brary using binary cross-entropy as loss function,
and the ADAM optimizer (Kingma and Ba, 2014).
We tune the aforementioned hyperparameters on
the development data and we use balanced over-
sampling with replacement in order to adjust for
the class imbalance in the data.

Our tuned hyperparameters are as follows: filter
window sizes (2 to 12, then 14,16,18,20) with an
associated number of filters (300 for the first five,
200 for the next four, 100 for the next three, then
75,70,50). One hidden layer of the MLP with 512
units is used with batch size 50.

Bidirectional LSTM (BiLSTM) The architec-
ture takes as input a sequence of words, which are
then mapped to word embeddings. For each token
in the input sentence, we also include the inputs
described in Table 3. In addition, the model uses
one string feature we refer to as “supertype”. If the
token is a type, then this feature is the string key of

the embedding vector of its supertype or “NONE”
otherwise.
These features are mapped to a separate embed-
ding space and then concatenated with the word
embedding to form a single task-specific word rep-
resentation. This allows us to capture useful infor-
mation about each word, and also designate which
words to focus on when processing the sentence.

We use a neural sequence labeling architecture,
based on the work of Lample et al. (2016) and Rei
and Yannakoudakis (2016). The constructed word
representations are given as input to a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997), and
a context-specific representation of each word is
created by concatenating the hidden representa-
tions from both directions.

A hidden layer is added on top to combine the
features from both directions. Finally, we use a
softmax output layer that predicts a probability
distribution over positive or negative assignment
for a given edge.

We also make use of an extension of neural
sequence labeling that combines character-based
word representations with word embeddings us-
ing a predictive gating operation (Rei et al., 2016).
This allows our model to capture character-level
patterns and estimate representations for previ-
ously unseen words.

In this framework, an alternative word repre-
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sentation is constructed from individual charac-
ters, by mapping characters to an embedding space
and processing them with a bidirectional LSTM.
This representation is then combined with a reg-
ular word embedding by dynamically predicting
element-wise weights for a weighted sum, allow-
ing the model to choose for each feature whether
to take the value from the word-level or character-
level representation.

The LSTM layer size was set to 200 in each di-
rection for both word- and character-level compo-
nents; the hidden layer d was set to size 50. Dur-
ing training, sentences were grouped into batches
of size 64. Performance on the development set
was measured at every epoch and training was
stopped when performance had not improved for
10 epochs; the best-performing model on the de-
velopment set was then used for evaluation on the
test set.

6 Intrinsic Evaluation

Evaluation is performed over edges, rather than
sentences, in the test set. We measure performance
using precision, recall and F1-score. We use the
non-parametric paired randomisation test to de-
tect significant differences in performance across
classifiers.

The convnet and BiLSTM models are trained
and evaluated with as many sentences as there are
edges: the source sentence is copied for each input
edge, with inputs modified to reflect the relation of
interest. We employed early stopping and dropout
to avoid overfitting with these models.

Table 5 shows the performance results of all
classifiers considered. All three proposed mod-
els have significantly outperformed the NT base-
line and Kristianto et al.’s (Kristianto et al., 2014)
state-of-the-art SVM. The best performing model
is the bidirectional LSTM (F1 = 78.98%) which
has significantly outperformed all other models
(α = 0.01).

According to the results in Table 5, both deep
neural network models have significantly outper-
formed classifiers based on other paradigms. This
is consistent with the intuition that the language
of mathematics is formulaic: we expect deep neu-
ral networks to effectively recognise patterns and
identify correlations between tokens.

The neural models outperform SVM+ despite
the fact that the latter is a product of laborious
manual feature engineering. In contrast, no man-

Precision (%) Recall (%) F1-score (%)

NT 30.30 82.94 44.39
SVM 55.39 76.36 64.21
SVM+ 71.11 72.74 71.91
Convnet 80.11 70.26 74.86
BiLSTM 83.11 74.77 78.98

Table 5: Model performance summary. All figures are
statistically significant (p < 0.01) according to the ran-
domisation test.

ual feature engineering has been performed on the
Convnet model (or indeed on any of the deep neu-
ral network models).

The nearest type (NT) baseline demonstrates
high recall but low precision. This is not surpris-
ing since the NT baseline is not capable of making
a negative decision: it always assigns some type to
all variables in a given sentence.

7 Extrinsic Evaluation

We demonstrate that our data set and variable
typing task are useful using a mathematical infor-
mation retrieval (MIR) experiment. The hypothe-
sis for our MIR experiment is two-fold: (a) types
identified in the textual context for the variable
typing task are also useful for text-based mathe-
matical retrieval and (b) substituting raw symbols
with types in mathematical expressions will have
an observable effect to MIR.

In order to motivate the second hypothesis, con-
sider the following natural language query:

Let x be a vector. Is there another vector y such
that x+ y will produce the zero element?

In the context of MIR, mathematical expres-
sions are represented using SLTs (Pattaniyil and
Zanibbi, 2014) that are constructed by parsing pre-
sentation MathML. The expression “x+ y” is rep-
resented by the SLT in figure 1(a). The variable
typing classifier and the type disambiguation al-
gorithm determine the types of the variables x and
y as “vector”. Thus, the variable nodes in figure
1(a) will be substituted with their type, producing
the SLT in figure 1(b).

The example query can be satisfied by identify-
ing a vector y such that when added to x will pro-
duce the zero vector. This operation is abstract in
mathematics and extends to objects beyond vec-
tors, including integers. In an untyped formula
index, there is no distinction between instances
of x + y where the variables are integers or vec-
tors. As a result, documents where both variables
are integers might also be returned. In contrast,
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(a) Symbol Layout Tree (b) Symbol Layout Tree with type substitution

Figure 1: (a) SLT representation of the expression x+ y, (b) typed SLT for the expression x+ y.

a typed formula index will return instances of the
typed SLT in figure 1(b) where the variables are
vectors, as opposed to integers. Therefore, a typed
index can reduce the number of false positives and
increase precision.

Four MIR retrieval models are introduced in
Section 7.3 designed to control for text index-
ing/retrieval so that the effects of type-aware vs
type-agnostic formula indexing and scoring can be
isolated. These models make use of the Tangent
formula indexing and scoring functions (Pattaniyil
and Zanibbi, 2014), which we have implemented.

We use the Cambridge University Math IR Test
Collection (CUMTC) (Stathopoulos and Teufel,
2015) which is composed of 120 research-level
mathematical information needs and 160 queries.
The CUMTC is ideal for our evaluation for two
reasons. First, topics in the CUMTC are expressed
in natural language and are rich in mathematical
types. This allows us to directly apply our best
performing variable typing model (BiLSTM) in
our retrieval experiment in order to extract vari-
able typings for documents and queries. Second,
the CUMTC uses the MREC as its underlying doc-
ument collection, which enables downstream eval-
uation in an optimal setting for variable typing.

7.1 Tangent Formula Indexing and Scoring

Given a mathematical formula, the Tangent index-
ing algorithm starts from the root node of an SLT
and generates symbol pair tuples in a depth-first
manner. Symbol pair tuples record parent/child
relationships between SLT nodes, the distance
(number of edges) and vertical offset between
them. At each step in the traversal, the index is
updated to record one tuple representing the rela-
tionship between the current node and every node
in the path to the SLT root. We have also im-
plemented Tangent’s method of indexing matrices,
but we refer the reader to Pattaniyil and Zanibbi

(2014) for further details.
Tangent scoring proceeds as follows. For each

query formula, the symbol pair tuples are gener-
ated and matched exactly to those in the document
index. Let C denote the set of matched index for-
mulae and |s| the number of symbol pairs in any
given expression s inC. For each s inC, recall (R)
is said to be |C||Q| , where |C| and |Q| are the num-
bers of tuples in C and the query formula Q re-
spectively, and precision (P) is |C||s| . Candidate s is
assigned the F score of these precision and recall
values. The mathematical context score for a given
document d and query with formulae e1, . . . , en is

m(d, e1, . . . , en) =

n∑

j=1

|ej | · t1(d, ej)∑n
i=1 |ei|

where |ej | represents the number of tuples in ex-
pression ej and t1(d, ej) represents the top F-score
for expression ei in document d. The final score
for document d is a linear combination of the
math context score above and its Lucene text score
(L(d)):

λ× L(d) + (1− λ)×m(d, e1, . . . , en)

7.2 Typed Tangent Indexing and Scoring
We have applied the BiLSTM variable typing
model to obtain variable typings for all symbols in
the documents in the MREC. For each document
in the collection our adapted Tangent formula in-
dexer first groups the variable typing edges for that
document according to the variable identifier in-
volved. Subsequently, our typed indexing process
applies a type disambiguation algorithm to deter-
mine which of the candidate types associated with
the variable will be designated as its type.

For a variable v in document d, our type dis-
ambiguation algorithm first looks at the known
types suffix trie (KTST) containing all 1.23 mil-
lion types in order to find a common parent be-
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tween the candidate types. If a common super-
type T is discovered, then v is said to be of type
T . Otherwise, the type disambiguation algorithm
uses simple majority vote amongst the candidates
to determine the final type for variable v.

The type disambiguation algorithm is applied to
every typing group until all variable typings have
been processed. Variable groups with no type can-
didates (e.g., no variable typings have been ex-
tracted for a variable) are assigned a missing type
symbol (“*”). Subsequently, variables in the SLT
of each formula in d are replaced with their type
or the missing type symbol. An index, referred to
as the typed index, is generated by applying the
tangent indexing process on the modified SLTs.

The same process is applied to query formu-
lae during query time in order to facilitate typed
matching and scoring.

7.3 Results

We have replicated runs of the Lucene vector-
space model (VSM) and BM25 models pre-
sented by Stathopoulos and Teufel (2016) on the
CUMTC. Furthermore, we introduce four models
based on Tangent indexing and scoring that rep-
resent different strategies in handling types in text
and formulae. We refer to a model as typed if it
uses the type-substituted version of the Tangent in-
dex and untyped otherwise.

Text with types removed (RT): The Lucene
score L(d) is computed over a text index with type
phrases completely removed. This model is in-
tended to isolate the performance of retrieval on
the formula index alone. We consider both typed
and untyped instances of this model.

Text with types(TY): The Lucene score is com-
puted over a text index that treats type phrases as
atomic lexical tokens. This model is intended to
simulate type-aware text that enables the applica-
tion of variable typing. Both typed and untyped
instances of this model are considered.

Optimal values for the linear combination pa-
rameter λ are obtained using 13 queries in the “de-
velopment set” of the CUMTC. We report mean
average precision (MAP) for our models com-
puted over all 160 queries in the main CUMTC.
MAPs obtained over the CUMTC are low due to
the difficulty of the queries rather than an unstable
evaluation (Stathopoulos and Teufel, 2016). The
paired randomisation test is used to test for signif-

icance in retrieval performance gains between the
models.

VSM BM25
MAP .076 .079

RT RT TY TY
typed untyped typed untyped

MAP .046 .052 .139 .083
λopt .9 .9 .9 .4

Table 6: MIR model performance summary.

The results of our MIR experiments are pre-
sented in Table 6. The best performing model
is TY/typed which significantly outperforms all
other baselines (p − value < 0.05 for compari-
son with BM25 and p − value < 0.01 with all
other models). The TY/typed model yields al-
most double the MAP performance of its untyped
counterpart (TY/untyped, .083 MAP). In con-
trast, the RT/typed and RT/untyped models per-
form comparably (no significant difference) but
poorly. This drop in MAP performance suggests
that type phrases are beneficial for text-based re-
trieval of mathematics. Retrieval models employ-
ing formula indexing seem to be affected by both
the presence of types in the text as well as in the
formula index. The TY/typed model outperforms
the TY/untyped model, which in turn outperforms
RT/untyped. This suggests that gains in retrieval
performance are strongest when types are used in
both text and formula retrieval – models using ei-
ther approach alone do not perform as well. These
results demonstrate that variable typing is a valu-
able task in MIR.

8 Conclusions

This work introduces the new task of variable typ-
ing and an associated data set containing 33,524
labeled edges in 7,803 sentences. We have con-
structed three variable typing models and have
shown that they outperform the current state-
of-the-art methods developed for similar tasks.
The BiLSTM model is the top performing model
achieving 79% F1-score. This model is then
evaluated in an extrinsic downstream task–MIR,
where we augmented Tangent formula indexing
with variable typing. A retrieval model employing
the typed Tangent index outperforms all consid-
ered retrieval models demonstrating that our vari-
able typing task, data and trained model are useful
in downstream applications. We make our variable
typing data set available through the Open Data
Commons license.
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Abstract

Machine Learning has been the quintessen-
tial solution for many AI problems, but learn-
ing models are heavily dependent on spe-
cific training data. Some learning models can
be incorporated with prior knowledge using
a Bayesian setup, but these learning models
do not have the ability to access any orga-
nized world knowledge on demand. In this
work, we propose to enhance learning models
with world knowledge in the form of Knowl-
edge Graph (KG) fact triples for Natural Lan-
guage Processing (NLP) tasks. Our aim is to
develop a deep learning model that can ex-
tract relevant prior support facts from knowl-
edge graphs depending on the task using atten-
tion mechanism. We introduce a convolution-
based model for learning representations of
knowledge graph entity and relation clusters in
order to reduce the attention space. We show
that the proposed method is highly scalable to
the amount of prior information that has to be
processed and can be applied to any generic
NLP task. Using this method we show sig-
nificant improvement in performance for text
classification with 20Newsgroups (News20) &
DBPedia datasets, and natural language infer-
ence with Stanford Natural Language Infer-
ence (SNLI) dataset. We also demonstrate that
a deep learning model can be trained with sub-
stantially less amount of labeled training data,
when it has access to organized world knowl-
edge in the form of a knowledge base.

1 Introduction

Today, machine learning is centered around al-
gorithms that can be trained on available task-
specific labeled and unlabeled training samples.
Although learning paradigms like Transfer Learn-
ing (Pan and Yang, 2010) attempt to incorporate

∗equal contribution
†Main work done during internship at Accenture Technol-

ogy Labs

knowledge from one task into another, these tech-
niques are limited in scalability and are specific to
the task at hand. On the other hand, humans have
the intrinsic ability to elicit required past knowl-
edge from the world on demand and infuse it with
newly learned concepts to solve problems.

The question that we address in this paper is the
following: Is it possible to develop learning mod-
els that can be trained in a way that it is able to
infuse a general body of world knowledge for pre-
diction apart from learning based on training data?

World-
Knowledge

Base
X

+

Xw

X ′ Y
f

Figure 1: The Basic Idea: X is the feature input and Y
is the prediction. The relevant world knowledge for the
task Xw, is retrieved and augmented with the feature
input before making the final prediction

By world knowledge, we mean structured gen-
eral purpose knowledge that need not be domain
specific. Knowledge Graphs (Nickel et al., 2016a)
are a popular source of such structured world
knowledge. Knowledge Graphs represent infor-
mation in the form of fact triplets, consisting of
a subject entity, relation and object entity (exam-
ple: <Italy, capital, Rome>). The entities rep-
resent the nodes of the graph and their relations
act as edges. A fact triple (subject entity, re-
lation, object relation) is represented as (h, r, t).
Practical knowledge bases congregate information
from secondary databases or extract facts from
unstructured text using various statistical learn-
ing mechanisms, examples of such systems are
NELL (Mitchell et al., 2015) and DeepDive (Niu
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et al., 2012). There are human created knowledge
bases as well, like Freebase (FB15k) (Bollacker
et al., 2008) and WordNet (Miller et al., 1990).
The knowledge present in these knowledge bases
includes common knowledge and partially cov-
ers common-sense knowledge and domain knowl-
edge (Song and Roth, 2017). Knowledge Graphs
and Knowledge Bases are conceptually equivalent
for our purpose and we will use the name inter-
changeably in this paper.

We illustrate the significance of world knowl-
edge using a few examples. For the example
of a Natural Language Inference (NLI) prob-
lem (MacCartney, 2009), consider the two follow-
ing statements, A: The couple is walking
on the sea shore and B: The man and
woman are wide awake. Here, for a learn-
ing model to infer B from A, it should have ac-
cess to the common knowledge that “The man and
woman and The couple means the same” since this
information may not be specific for a particular
inference. Further, it is not possible for a model
to learn all such correlations from just the labeled
training data available for the task.

Consider another example of classifying the
news snippet, Donald Trump offered his
condolences towards the hurricane
victims and their families in
Texas. We cannot classify it as a political
news unless we know the facts <Donald Trump,
president, United States> and <Texas, state,
United States>. We posit that machine learning
models, apart from training them on data with the
ground-truth can also be trained to fetch relevant
information from structured knowledge bases in
order to enhance their performance.

In this work, we propose a deep learning model
that can extract relevant support facts on demand
from a knowledge base (Mitchell et al., 2015) and
incorporate it in the feature space along with the
features learned from the training data (shown in
Figure 1). This is a challenging task, as knowledge
bases typically have millions of fact triples. Our
proposed model involves a deep learning mecha-
nism to jointly model this look-up scheme along
with the task specific training of the model. The
look-up mechanism and model is generic enough
so that it can be augmented to any task specific
learning model to boost the learning performance.
In this paper, we have established superior per-
formance of the proposed KG-augmented models

over vanilla model on text classification and natu-
ral language inference.

Although there is a plethora of work on
knowledge graph representation (Nickel et al.,
2016a) (Mitchell et al., 2015) (Niu et al., 2012)
from natural language text, no attempt to augment
learning models with knowledge graph informa-
tion have been done. To the best of our knowledge
this is the first attempt to incorporate world knowl-
edge from a knowledge base for learning models.

2 Knowledge Graph Representations

Knowledge Graph entities/relations need to be en-
coded into a numerical representation for process-
ing. Before describing the model, we provide a
brief overview of graph encoding techniques. Var-
ious KG embedding techniques can be classified
at a high level into: Structure-based embeddings
and Semantically-enriched embeddings.

Structure-based embeddings: TransE (Bordes
et al., 2013) is the introductory work on knowl-
edge graph representation, which translated sub-
ject entity to object entity using one-dimensional
relation vector (h + r = t). Variants of the
TransE (Bordes et al., 2013) model uses transla-
tion of the entity vectors over relation specific sub-
spaces. TransH (Wang et al., 2014b) introduced
the relation-specific hyperplane to translate the en-
tities. Similar work utilizing only the structure of
the graph include ManifoldE (Xiao et al., 2015b),
TransG (Xiao et al., 2015a), TransD (Ji et al.,
2015), TransM (Fan et al., 2014), HolE (Nickel
et al., 2016b) and ProjE (Shi and Weninger, 2017).

Semantically-enriched embeddings: These
embedding techniques learn to represent enti-
ties/relations of the KG along with its semantic in-
formation. Neural Tensor Network(NTN) (Socher
et al., 2013) was the pioneering work in this field
which initialized entity vectors with the average
word embeddings followed by tensor-based op-
erations. Recent works involving this idea are
“Joint Alignment” (Zhong et al., 2015) and SSP
(Xiao et al., 2017). DKRL (Xie et al., 2016) is
a KG representation technique which also takes
into account the descriptive nature of text keep-
ing the simple structure of TransE model. Pre-
trained word2vec (Mikolov et al., 2013) is used to
form the entity representation by passing through
a Convolutional Neural Network (CNN) (Kim,
2014) architecture constraining the relationships
to hold.

314



In our experiments we have used the DKRL
(Xie et al., 2016) encoding scheme as it em-
phasizes on the semantic description of the text.
Moreover, DKRL fundamentally uses TransE
(Bordes et al., 2013) method for encoding struc-
tural information. Therefore, we can retrieve rele-
vant entities & relation and obtain the complete the
fact using t = h+ r. This reduces the complexity
of fact retrieval as the number of entities/relations
is much less compared to the number of facts, thus
making the retrieval process faster.

3 The Proposed Model

Conventional supervised learning models with pa-
rameters Θ, given training data x and label y, tries
to maximize the following function

max
Θ

P (y|x,Θ)

The optimized parameters Θ are given as,

Θ = argmax
Θ

logP (y|x,Θ)

In this work, we propose to augment the super-
vised learning process by incorporation of world
knowledge features xw. The world knowledge fea-
tures are retrieved using the data x, using a sepa-
rate model where, xw = F (x,Θ(2)). Thus, our
modified objective function can be expressed as

max
Θ

P (y|x, xw,Θ(1))

where, Θ = {Θ(1),Θ(2)}. The optimized pa-
rameters can be obtained using the equation

Θ = argmax
Θ

logP (y|x, F (x,Θ(2)),Θ(1))

The subsequent sections focus on the formula-
tion of the function F which is responsible for fact
triple retrieval using the data sample x. Here it is
important to note that, we are not assuming any
structural form for P based on F . So the method
is generic and applicable to augment any super-
vised learning setting with any form for P , only
constraint being P should be such that the error
gradient can be computed with respect to F . In
the experiments we have used softmax using the
LSTM (Greff et al., 2015) encodings of the input
as the form for P . As for F , we use soft atten-
tion (Luong et al., 2015; Bahdanau et al., 2014)
using the LSTM encodings of the input and appro-
priate representations of the fact(s). Based on the

representation used for the facts, we propose two
models (a) Vanilla Model (b) Convolution-based
entity/relation cluster representation, for fact re-
trieval in the subsequent sections.

3.1 Vanilla Model
The entities and relationships of KG are encoded
using DKRL, explained earlier. Let ei ∈ Rm stand
for the encoding of the entity i and rj ∈ Rm
stands for jth relationship in the KG. The input
text in the form of concatenated word vectors,
x = (x1, x2, . . . , xT ) is first encoded using an
LSTM (Greff et al., 2015) module as follows,

ht = f(xt, ht−1)

and

o =
1

T

T∑

t=1

ht,

ht ∈ Rn is the hidden state of the LSTM at time
t, f is a non-linear function and T is the sequence
length. Then a context vector is formed from o as
follows,

C = ReLU(oTW ),

where, W ∈ Rn×m represent the weight parame-
ters. The same procedure is duplicated with sepa-
rate LSTMs to form two seperate context vectors,
one for entity retrieval (CE) and one for relation-
ship retrieval (CR).

As the number of fact triples in a KG is in the
order of millions in the vanilla model, we resort
to generating attention over the entity and relation
space separately. The fact is then formed using the
retrieved entity and relation. The attention for the
entity, ei using entity context vector is given by

αei =
exp(CTEei)
|E|∑
j=0

exp(CTEej)

where |E| is the number of entities in the KG.
Similarly the attention for a relation vector ri is

computed as

αri =
exp(CTRri)
|R|∑
j=0

exp(CTRrj)

where |R| is the number of relations in the KG.
The final entity and relation vector retrieval is
computed by the weighted sum with the attention
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Figure 2: Vanilla Entity/Relationship Retrieval Block Diagram

values of individual retrieved entity/relation vec-
tors.

e =

|E|∑

i=0

αeiei r =

|R|∑

i=0

αriri

Figure 2 shows the schematic diagram for en-
tity/relation retrieval. After the final entity and
relation vectors are computed, we look forward
to completion of the fact triple. The KG embed-
ding technique used for the experiment is DKRL
which inherently uses the TransE model assump-
tion (h+r ≈ t). Therefore, using the subject entity
and relation we form the object entity as t = e+r.
Thus the fact triplet retrieved is F = [e, r, e + r],
where F ∈ R3m. This retrieved fact information
is concatenated along with the context vector (C)
of input x obtained using LSTM module. The final
classification label y is computed as follows,

F ′ = ReLU(FTV )

y = softmax([F ′ : C]TU)

where, V ∈ R3m×u and U ∈ R2u×u are model
parameters to be learned. y is used to compute
the cross entropy loss. We minimize this loss av-
eraged across the training samples, to learn the
various model parameters using stochastic gradi-
ent descent (Bottou, 2012). The final prediction y,
now includes information from both dataset spe-
cific samples and world knowledge to aid in en-

hanced performance. While jointly training the at-
tention mechanism tunes itself to retrieve relevant
facts that are required to do the final classification.

3.2 Pre-training KG Retrieval

The vanilla model attends over the entire en-
tity/relation space which is not a good approach
as we observe that the gradient for each attention
value gets saturated easily. While training the clas-
sification and retrieval module together, the model
tends to ignore the KG part and gradient propa-
gates only through the classification module. This
is expected to an extent as the most pertinent infor-
mation for the task at hand comes from the train-
ing samples, only background aiding information
comes from KG. After few epochs of training, the
KG retrieved fact always converged to a fixed vec-
tor. To overcome this problem, we attempted pre-
training KG retrieval part separately. A pre-trained
KG model is used to retrieve the facts and then
concatenate with the classification module, while
we allow error to be propagate through the pre-
trained model, at the time of joint training. We
infer that KG doesn’t return noise and has essen-
tial information for the task as the separate KG
part alone shows significant performance (59% for
News20 & 66% for SNLI). Figure 3 depicts the
entire training scheme. This procedure solved the
issue of gradient saturation in the KG retrieval part
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Figure 3: Separately Training Knowledge Graph Retrieval and Jointly Training the Full Model

at the time of joint training. However, the key
problem of attention mechanism having to cover
a large span of entities/relation, remained.

3.3 Convolution-based Entity and Relation
Cluster Representation

In this section, we propose a mechanism to re-
duce the large number of entities/relationships
over which attention has to be generated in the
knowledge graph. We propose to reduce the atten-
tion space by learning the representation of similar
entity/relation vectors and attending over them.

Figure 4: Convolution model cluster representation

In order to cluster similar entity/relation vec-
tors, we used k-means clustering (Bishop, 2006)
and formed l clusters with equal number of en-
tity/relation vectors in each cluster. Each of
the clusters were then encoded using convolu-
tional filters. The output of the k-means clus-
tering is a sequence of entity/relation vectors
{eT1 , eT2 , · · · , eTq }, where ei ∈ Rm. For each clus-
ter these vectors were stacked to form E as the 2-
D input to the CNN encoder, where E ∈ Rm×q.
During experimentation for finding a suitable fil-

ter shape, it was observed that using 2-D filters
the model failed to converge at all. Therefore, we
inferred that the latent representation of two dif-
ferent indices in the vector ei, should not be tam-
pered using convolution. We then resorted to use
1-D convolution filters which slide along only the
columns of E , as shown Figure 4. The stride length
along y-axis is the window length k. The output of
the convolution layer is expressed as,

E ′(i, j) = W T [ei,j , ei+1,j , . . . , ei+k−1,j ]
T

where, E ′(i, j) is the (i, j)th element of the output
matrix E ′ and W ∈ Rk is the convolution weight
filter. A pooling layer followed the convolution
layer in order to reduce the parameter space, we
used 1-D window only along the y-axis similar
to the convolutional kernel mentioned above. We
used a two layered convolution network with the
stride length k & max-pool windows n is adjusted
to obtain output Ei ∈ Rm, where i is the cluster
index. Similar procedure of clustering followed
by the encoding of the cluster entities is done for
relations as well. Thus both the entity and rela-
tion space were reduced to contain fewer elements,
one each for each cluster. After the compact entity
space E and relation space R is formed, we fol-
lowed the same steps as earlier for forming the at-
tention, but now the training was more effective as
the gradient was propagating effectively and was
not choked by the large space. As the convolu-
tion architecture is also simultaneously trained, at-
tention mechanism was not burdened as before, to
learn over the large space of entities and relations.

Another point that needs to be mentioned here
is regarding ranking/ordering items in the clus-
ters, we have done experiments to verify the
ordering does not affect the final result. We
have verified this by randomly shuffling the en-
tities/relationships in every clusters and the ac-
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curacy output remained within an error bound of
±0.5%. In various permutations, the representa-
tions learned by the convolution operator for clus-
ters varies, but it does not affect the overall re-
sults. Regarding the interpretation of what con-
volution operator learns, the operator is applied
along each dimension of the entity/relationship
vector, to learn a representation of the clusters.
This representation includes information from rel-
evant entities in the cluster, as the relevant entities
varies across tasks, the representation learned us-
ing convolution also adapts accordingly. It is anal-
ogous to learning relevant features from an im-
age, in our case the convolution layer learns the
features focusing on relevant entities/relations in a
cluster pertaining to the task.

4 Experiments and Evaluations

Our experiments were designed to analyze
whether a deep learning model is being improved
when it has access to KG facts from a relevant
source. The selection of knowledge graph has to
be pertinent to the task at hand, as currently there
is no single knowledge base that contains multi-
ple kinds of information and can cater to all tasks.
We illustrate with results that the performance of
a deep learning model improves when it has ac-
cess to relevant facts. We also illustrate that as
the model learns faster with access to knowledge
bases, we can train deep learning models with
substantially less training data, without compro-
mising on the accuracy. In the subsequent sec-
tion we briefly describe the datasets and associated
Knowledge Bases used.

Datasets and Relevant Knowledge Graphs

In our experiments, we have mainly used the
popular text classification dataset 20Newsgroups
(Lichman, 2013) and the Natural Language In-
ference dataset, Stanford Natural Language Infer-
ence (SNLI) corpus (Bowman et al., 2015). We
have also done experiments on DBPedia ontology
classification dataset1, with a very strong base-
line. These datasets are chosen as they share do-
main knowledge with two most popular knowl-
edge bases, Freebase (FB15k) (Bollacker et al.,
2008) and WordNet (WN18) (Bordes et al., 2013).
The training and test size of the datasets are men-
tioned in Table 1.

1http://wiki.dbpedia.org/
services-resources/dbpedia-data-set-2014

Dataset Train Size Test Size # Classes
News20 16000 2000 20

SNLI 549367 9824 3
DBPedia 553,000 70,000 14

Table 1: Dataset Specifications

Freebase (FB15k) (Bollacker et al., 2008) con-
tains facts about people, places and things (con-
tains 14904 entities, 1345 relations & 4.9M fact
triples), which is useful for text classification in
20Newsgroups (Lichman, 2013) dataset. On the
other hand, WordNet (WN18) (Bordes et al., 2013)
(has 40943 entities, 18 relations & 1.5M fact
triples) contains facts about common day-to-day
things (example: furniture includes bed), which
can help in inference tasks like SNLI. Both the
knowledge bases are directed graphs, due to fewer
number of relations WN18 the entities are more
likely to be connected using the same type of
relations. For experiments relating to both the
datasets 20Newsgroups & SNLI we used the stan-
dard LSTM as the classification module. As iter-
ated earlier, our KG based fact retrieval is indepen-
dent of the base model used. We show improve-
ment in performance using the proposed models
by KG fact retrieval. We use classification accu-
racy of the test set as our evaluation metric.

4.1 Experimental Setup

All experiments were carried on a Dell Precision
Tower 7910 server with Quadro M5000 GPU with
8 GB of memory. The models were trained using
the Adam’s Optimizer (Kingma and Ba, 2014) in
a stochastic gradient descent (Bottou, 2012) fash-
ion. The models were implemented using Ten-
sorFlow (Abadi et al., 2015). The relevant hyper-
parameters are listed in Table 2. The word embed-
dings for the experiments were obtained using the
pre-trained GloVe (Pennington et al., 2014)2 vec-
tors. For words missing in the pre-trained vectors,
the local GloVe vectors which was trained on the
corresponding dataset was used.

4.2 Results & Discussion

Table 3 shows the results of test accuracy of the
various methods proposed on the datasets News20
& SNLI. We observe that incorporation of KG
facts using the basic vanilla model improves the
performance slightly, as the retrieval model was

2http://nlp.stanford.edu/data/glove.840B.300d.zip
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Hyper-parameter News20 SNLI

Batch size 256 1024
Learning rate 0.05 0.05

Word Vector Dimension 300 300
Sequence Length 300 85

LSTM hidden-state Dimension 200 200
KG Embedding Dimension 50 50

# Clusters 20 20
# Epochs 20 20

Table 2: Hyper-parameters which were used in experi-
ments for News20 & SNLI datasets

not getting trained effectively. The convolution-
based model shows significant improvement over
the normal LSTM classification. While tuning the
parameters of the convolution for clustered enti-
ties/relations it was observed that smaller stride
length and longer max-pool window improved
performance. For News20 dataset we show an
improvement of almost 3% and for SNLI an im-
provement of almost 5%.

The work is motivated more from the perspec-
tive of whether incorporation of world knowl-
edge will improve any deep learning model rather
than beating the state-of-the-art performance. Al-
though LSTM is used to encode the input for the
model as well as the retrieval vector, as mentioned
earlier, these two modules need not be same. For
encoding the input any complex state-of-the-art
model can be used. LSTM has also been used to
generate the retrieval vector. For DBPedia ontol-
ogy classification dataset, we have used a strong
baseline of 98.6%, and after augmenting it with
KG (Freebase) using convolution based model we
saw an improvement of ∼0.2%. As the baseline is
stronger, the improvement quantum has decreased.
This is quite intuitive as complex models are self-
sufficient in learning from the data by itself and
therefore the room available for further improve-
ment is relatively less. The improvement as ob-
served in the experiments is significant in weaker
learning models, however it is also capable of im-
proving stronger baselines as is evident from the
results of DBPedia dataset.

4.3 Reducing Dataset Size Requirements for
Training Deep Learning Models

We hypothesized that as Knowledge Graph is
feeding more information to the model, we can
achieve better performance with less training data.

Model Accuracy
News20 SNLI

Plain LSTM 66.75% 68.73%
Vanilla KG Retrieval 67.30% 69.20%
Convolution-based KG 69.34% 73.10%

Table 3: Test accuracy of approaches in News20 using
FB15K & SNLI datasets using WN18

To verify this we have performed experiments
on varying dataset fractions for 20Newsgroups
dataset as shown in Figure 5. From the plot, we
observe that KG augmented LSTM with 70% data
outperforms the baseline model with full dataset
support, thereby reducing the dependency on la-
beled data by 30%.
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Figure 5: Accuracy Plot over dataset fractions for base-
line and KG augmented model for News20

We also designed an experiment to compare
the accuracy of the baseline model trained on full
training data and compared it with the accuracy of
the KG augmented model trained with just 70%
of the training data for 20Newsgroups and SNLI
datasets. The accuracy and training loss plots
across training epochs is given in Figure 6. Even
with just 70% of the data, KG augmented model
is able to achieve better accuracy compared to the
vanilla LSTM model trained on the full data. This
clearly indicates that relevant information pertain-
ing to the task is retrieved from the knowledge
graph and the training loss reduction is not due to
lesser data only. Also note that training loss is sub-
stantially less for KG LSTM compared to normal
LSTM when the dataset size is reduced. This re-
sult is very promising, to reduce the large labeled
training data requirement of large deep learning
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Figure 6: (a) Accuracy Plot over training epochs for LSTM (using full & 70% dataset) and KG augmented LSTM
(using 70% dataset ) for News20 task (b) Corresponding Training Loss plots for the aforementioned methods using
News20 dataset (c) Accuracy Plot over training epochs for LSTM (using full & 70% dataset) and KG augmented
LSTM (using 70% dataset ) for SNLI task (d) Corresponding Training Loss plots for the aforementioned methods
using SNLI dataset

models, which is hard to come by.

5 Relevant Previous Work

The basic idea of infusing general world knowl-
edge for learning tasks, especially for natural lan-
guage processing, has not been attempted before.
For multi-label image classification, the use of
KGs has been pursued recently by (Marino et al.,
2016). In this work, they first obtain labels of the
input data (using a different model), use these la-
bels to populate features from the KG and in turn
use these features back for the final classification.
For NLP tasks the information needed may not
necessarily depend on the final class, and we are
directly using all the information available in the
input for populating the relevant information from
the knowledge graphs. Our attempt is very differ-
ent from Transfer Learning (Pan and Yang, 2010).

In Transfer Learning the focus is on training the
model for one task and tuning the trained model
to use it for another task. This is heavily depen-
dent on the alignment between source task and
destination task and transferred information is in
the model. In our case, general world knowledge
is being infused into the learning model for any
given task. By the same logic, our work is differ-
ent from domain adaptation (Glorot et al., 2011) as
well. There has been attempts to use world knowl-
edge (Song and Roth, 2017) for creating more la-
beled training data and providing distant supervi-
sion etc. Incorporating Inductive Biases (Ridge-
way, 2016) based on the known information about
a domain onto the structure of the learned models,
is an active area of research. However our motiva-
tion and approach is fundamentally different from
these works.
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6 Conclusion & Future Work

In this work we have illustrated the need for in-
corporating world knowledge in training task spe-
cific models. We presented a novel convolution-
based architecture to reduce the attention space
over entities and relations that outperformed other
models. With significant improvements over the
vanilla baselines for two well known datasets, we
have illustrated the efficacy of our proposed meth-
ods in enhancing the performance of deep learning
models. We showcased that the proposed method
can be used to reduce labeled training data re-
quirements of deep learning models. Although
in this work we focused only on NLP tasks and
using LSTM as the baseline model, the proposed
approach is applicable for other domain tasks as
well, with more complicated deep learning mod-
els as baseline. To the best of our knowledge
this is the first attempt at infusing general world
knowledge for task specific training of deep learn-
ing models.
Being the first work of its kind, there is a lot
of scope for improvement. A more sophisticated
model which is able to retrieve facts more ef-
ficiently from millions of entries can be formu-
lated. Currently we have focused only on a flat
attention structure, a hierarchical attention mech-
anism would be more suitable. The model uses
soft attention to enable training by simple stochas-
tic gradient descent. Hard attention over facts
using reinforcement learning can be pursued fur-
ther. This will further help in selection of multi-
facts, that are not of similar type but relevant to
the task. The convolution based model, helped
to reduce the space over entities and relationships
over which attention had to be generated. How-
ever more sophisticated techniques using similar-
ity based search (Wang et al., 2014a; Mu and Liu,
2017) can be pursued towards this purpose. The
results from the initial experiments illustrates the
effectiveness of our proposed approach, advocat-
ing further investigations in these directions.
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Abstract

Building a taxonomy from the ground up in-
volves several sub-tasks: selecting terms to in-
clude, predicting semantic relations between
terms, and selecting a subset of relational in-
stances to keep, given constraints on the tax-
onomy graph. Methods for this final step –
taxonomic organization – vary both in terms of
the constraints they impose, and whether they
enable discovery of synonymous terms. It is
hard to isolate the impact of these factors on
the quality of the resulting taxonomy because
organization methods are rarely compared di-
rectly. In this paper, we present a head-to-head
comparison of six taxonomic organization al-
gorithms that vary with respect to their struc-
tural and transitivity constraints, and treatment
of synonymy. We find that while transitive
algorithms out-perform their non-transitive
counterparts, the top-performing transitive al-
gorithm is prohibitively slow for taxonomies
with as few as 50 entities. We propose a
simple modification to a non-transitive opti-
mum branching algorithm to explicitly incor-
porate synonymy, resulting in a method that is
substantially faster than the best transitive al-
gorithm while giving complementary perfor-
mance.

1 Introduction

Many words and phrases fit within a natural se-
mantic hierarchy: a mobile is a type of telephone,
which in turn is a communications device and an
object. Taxonomies, which encode this knowl-
edge, are important resources for natural language
understanding systems.

There is ongoing interest in developing methods
to build taxonomic resources automatically (Bor-
dea et al., 2015, 2016). Although several widely-
used general ontologies (e.g. WordNet (Miller,
1995)) and domain-specific ontologies (e.g. Uni-
fied Medical Language System (UMLS) (Boden-
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Figure 1: In this study we compare algorithms for tax-
onomic organization. We first (a) run entity extraction
and pairwise relation prediction as a common initial-
ization; we then (b) feed the resulting graphs as identi-
cal input to six taxonomic organization algorithms. We
evaluate the impact of varied structural constraints be-
tween algorithms.

reider, 2004)) exist, these resources are hand-
crafted and therefore expensive to update or ex-
pand. Automatic taxonomy induction enables the
construction of taxonomic resources at scale in
new languages and domains. Further, there is evi-
dence that it is useful to build dynamic or context-
specific taxonomies extemporaneously for some
applications (Do and Roth, 2010).
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Taxonomy induction involves three sub-tasks:
entity extraction, relation prediction, and taxo-
nomic organization. In many cases these subtasks
are undertaken sequentially to build a taxonomy
from the ground up. While many works directly
compare methods for relation prediction (e.g. Tur-
ney and Mohammad (2015), Shwartz et al. (2017)
and others), none directly compare methods for
the final taxonomic organization step with varying
constraints. Each paper that proposes a taxonomic
organization method starts with its own set of pre-
dicted relations, making it impossible to determine
– even with benchmark datasets – the extent to
which improvements in identifying ground-truth
relations are due to (a) better relation prediction,
or (b) better taxonomic organization.

In this work, we present an empirical apples-
to-apples comparison of six algorithms for unsu-
pervised taxonomic organization. The algorithms
vary along three axes: whether they impose transi-
tivity constraints on the taxonomic graph, whether
they specify that the final graph structure be a
directed acyclic graph (DAG) or tree/forest, and
whether they identify ‘clusters’ of synonymous
terms. In each case we begin with the same sets of
terms and predicted relations (see Figure 1). This
makes it possible to address several research ques-
tions. First, which combination of these factors
produces a taxonomy that most closely mirrors a
set of ground-truth taxonomic relations? Second,
which algorithms are efficient enough in practice
to run on large term sets? And third, how robust is
each algorithm to noise in the predicted relations
used as input?

We find that while transitive algorithms per-
form better than non-transitive algorithms given
the same constraints on graph structure, the best-
performing transitive algorithm is prohibitively
slow to use on input with as few as 50 nodes. By
modifying a commonly-used optimum branching
algorithm to consolidate clusters of predicted syn-
onyms into a single graph node, we show that it
is possible to achieve complementary performance
levels with an average runtime that is faster by or-
ders of magnitude.

2 General Framework for Taxonomy
Induction

The problem of taxonomy induction can be sum-
marized via three core sub-tasks. While all sys-
tems that build taxonomies automatically must ad-

dress each of these tasks, the sequence and man-
ner in which they are addressed varies. In the most
straightforward case, the core tasks are viewed as
orthogonal and carried out sequentially. They are:

1. Entity Extraction: Identify a set of entities
E (i.e. word types, synsets, etc) that will be-
come nodes in the eventual taxonomy graph.

2. Relation Prediction: Predict the presence or
absence of a directed semantic relation (hy-
pernymy or entailment) between each pair of
nodes, (ei, ej) ∈ E × E. The outputs are (a)
a set of potential edges R ⊆ E × E, where
we use the notation rij ∈ R to signify the
relational instance, or edge, (ei, ej), and (b)
relation scores s(rij) for each edge derived
from the classifier’s predicted likelihood that
the relational instance exists.

3. Taxonomic Organization: Select a subset of
the predicted edges, R̂ ⊆ R, that produces a
high sum of scores,

∑
r∈R̂ s(rij), subject to

structural constraints. The final output is the
graph Ĝ(E, R̂).

Structural constraints dictate what can be con-
sidered a valid or invalid combination of edges in a
taxonomic graph (Do and Roth, 2010). Two struc-
tural constraints frequently imposed are that the fi-
nal graph be a DAG, or that the final graph be a
tree/forest.1 Examples of algorithms that produce
DAG structures are the longest-path algorithm of
Kozareva and Hovy (2010), the ContrastMedium
approach of Faralli et al. (2017), and the random
cycle-breaking method used in (Panchenko et al.,
2016) and Faralli et al. (2015). We experiment
with a variation of the last one here, which we call
NOCYC. To produce tree-structured taxonomies,
most researchers (including us) use algorithms for
finding the maximally-weighted rooted tree span-
ning a directed graph (DMST). Examples of prior
work following this approach are Navigli et al.
(2011) and Bansal et al. (2014).

Another dimension along which taxonomy or-
ganization approaches differ is whether they ex-
plicitly require the set of chosen relational in-
stances R̂ to be fully transitive. The transitivity
constraint dictates that if (beetle IS-A insect) is se-
lected as part of R̂, and (insect IS-A organism) is

1WLOG, the tree and forest constraints are identical, as a
dummy root node can be attached to the root of each compo-
nent in a forest to produce a tree.
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selected as part of R̂, then (beetle IS-A organism)
must also be selected. Two methods that impose
such transitivity constraints are the MAXTRANS-
GRAPH and MAXTRANSFOREST methods of Be-
rant et al. (2015), both of which we experiment
with here.

A final consideration when choosing a taxon-
omy organization algorithm is whether the method
should enable the consolidation of synonyms into
a single taxonomic entity. Synonym sets, or
synsets, are present as nodes in the WordNet
graph (Miller, 1995). Potential advantages to us-
ing synonym sets, rather than individual terms,
as nodes include the ability to model polysemy
(horse means one thing when grouped with its syn-
onym cavalry and another entirely when grouped
with sawhorse), and the ability to be more pre-
cise in defining relations. A few early taxonomy
induction approaches incorporated synonym clus-
tering (e.g. Lin and Pantel (2002) and Pantel and
Ravichandran (2004)). The two transitive algo-
rithms that we analyze here, MAXTRANSGRAPH

and MAXTRANSFOREST, also consolidate equiv-
alent terms into a single node.

3 Taxonomic Organization Algorithms

The six algorithms that we compare differ along
the three dimensions just described, namely, the
structural constraints imposed (DAG or tree),
whether transitivity is required, and whether syn-
onyms are combined into a single taxonomy node
(Figure 2). Here we provide a short description of
each.

NOCYC

NOCYC+CLUS

DMST*

DMST+CLUS
MAXTRANSFOREST

MAXTRANSGRAPH

No 
Transitivity Transitivity

DAG

Tree /
Forest

Figure 2: Classification of the algorithms compared in
our study. The starred DMST algorithm is the only
one that does not support consolidation of synonyms
into clusters.

3.1 NOCYC: Organizing a DAG

The no-cycles method, which we abbreviate as
NOCYC, is a simple method for constructing a
DAG with high score from a set of predicted re-
lational edges. It is not transitive.

The algorithm works as follows. From the set
R of all predicted hypernym relations, we first fil-
ter out of the graph G(E,R) any edges with score
s(rij) less than a tunable threshold τ . Next, we
break any cycles by finding strongly connected
components (SCC) in the graph (i.e. a subset of
nodes such that each node in the subset has a path
to every other node in the subset), and iteratively
removing the lowest-scoring edge from each SCC
until all cycles are broken. This implementation is
slightly different from that of Faralli et al. (2015)
and Panchenko et al. (2016), where cycles were
broken by removing cycle edges randomly. The
search for SCCs in each iteration is linear using
Tarjan’s algorithm (Tarjan, 1972).

The NOCYC algorithm does not explicitly clus-
ter synonyms, but we can find synonyms in the re-
sulting graph implicitly as follows. If we assume
all synonymous terms share the same direct hyper-
nyms and direct hyponyms, we can find such pairs
by taking the transitive reduction2 of the resulting
graph Ĝ = (E, R̂), and grouping all pairs of terms
that have identical sets of direct hypernyms and
hyponyms in the transitive reduction.

While NOCYC itself does support finding syn-
onyms within the graph implicitly, we also experi-
ment with an explicit synonym-clustering version,
NOCYC+CLUS. We modify NOCYC by collaps-
ing into a single node all subsets of nodes pre-
dicted to be synonym clusters, using a method de-
scribed in Section 4.2.2, prior to executing the cy-
cle breaking algorithm.

3.2 DMST: Organizing a Tree

Our second method selects hypernym edges for
the taxonomy by using the Chu-Liu-Edmonds op-
timum branching algorithm (Chu and Liu, 1965;
Edmonds, 1967) to solve the directed analog of
the maximum spanning tree problem (DMST). It
constrains the final graph to be a tree and is not
transitive.

2In the transitive closure of a graph, each node ei is di-
rectly connected by a single edge to every node ej to which
it has a path. The transitive reduction can be obtained for a
graph G by removing all edges from G that do not change
its transitive closure. The transitive reduction of a DAG is
unique (Aho et al., 1972).
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(a) Selected edges in R̂.
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(c) Transitive reduction of 3b

Figure 3: An example transitive taxonomy graph as output by MAXTRANSGRAPH or MAXTRANSFOREST is
given in 3a. Its strongly-connected component (SCC) is collapsed into a single node of synonyms to create the
DAG in 3b. Finally, its transitive reduction is in 3c. Because flipping edges in the result produces a tree rooted at
organism, the graph in 3a is called forest-reducible.

The algorithm works by adding a dummy root
node eROOT to E, and an edge from eROOT to
every other node ei in the graph. We then use
Chu-Liu-Edmonds to find the directed tree rooted
at eROOT that spans all nodes in E and has the
maximal sum of scores. Note that until now
we have considered edges in taxonomy graphs to
point from hyponyms to hypernyms; in this case
we must switch the order, so that the spanning
tree starts at the most general level of the hier-
archy and reaches down to the leaves. Chu-Liu-
Edmonds finds the DMST efficiently in polyno-
mial time (Tarjan, 1977).

Because DMST requires the final graph to
be a tree, there is no implicit way to find syn-
onyms within the taxonomy graphs it generates.
As with NOCYC, we test a modification called
DMST+CLUS that collapses predicted synonym
clusters into a single graph node prior to running
the DMST algorithm (see Section 4.2.2).

3.3 MAXTRANSGRAPH: Organizing a
Transitive DAG

The first transitive algorithm we evaluate is
MAXTRANSGRAPH (Berant et al., 2012, 2015),
which constrains the graph structure to be a
DAG. MAXTRANSGRAPH was originally de-
signed for building taxonomies of entailment re-
lations (which can be subclassified as either syn-
onyms or hypernyms) and is solved using inte-
ger linear programming (ILP). Rather than using
classifier scores directly as input, MAXTRANS-
GRAPH first computes a weight between each term
pair (ei, ej) that is equal to the classifier score
minus a tunable parameter: wij = s(rij) − λ.

The purpose of modifying scores this way is ef-
ficiency; MAXTRANSGRAPH solves its optimiza-
tion on each connected component of the graph
independently, where components are constructed
by considering only positively-weighted edges in
the graph. Increasing λ increases sparsity and de-
creases runtime.

The objective of the ILP is to maximize the
weights of selected relations, while requiring that
the graph respects transitivity. Berant et al. (2012)
proved this problem is NP-hard and provided an
ILP formulation for it as follows. Let xij be a bi-
nary variable that indicates whether edge (ei, ej)
is in the subset of selected edges, R̂.

max
x

∑

i 6=j
wijxij

s.t. ∀ei, ej , ek ∈ E, xij + xjk − xik ≤ 1

∀ei, ej ∈ E, xij ∈ {0, 1}
(1)

The objective maximizes the sum of edge weights
where the edge is ‘turned on’ (i.e. xij = 1). The
first constraint enforces transitivity, i.e. for every
triple of nodes (ei, ej , ek), if edge (ei, ej) ∈ R̂ and
edge (ej , ek) ∈ R̂, then edge (ei, ek) ∈ R̂. The
second constraint specifies that all xij are binary.
The number of variables is O(|E|2) and number
of constraints is O(|E|3).

MAXTRANSGRAPH assumes that cycles of en-
tailment relations in the resulting graph G(E, R̂)
comprise cycles of synonyms, and that the remain-
ing edges which are not part of a cycle are hy-
pernym edges. Because the resulting graph must
be transitive, all cycles of three or more nodes are
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cliques, in which each node is directly connected
to every other. Once every SCC is collapsed into a
single synonym cluster node, the transitive reduc-
tion of the resulting graph is a DAG (Figure 3b).

3.4 MAXTRANSFOREST: Organizing a
Transitive Forest

The final algorithm we evaluate is MAXTRANS-
FOREST (Berant et al., 2012, 2015), which like
MAXTRANSGRAPH is transitive, but produces a
forest/tree structure.

MAXTRANSFOREST is nearly identical to
MAXTRANSGRAPH, with the addition of one
constraint that imposes its forest structure. More
specifically, the graphs produced by MAXTRANS-
FOREST are forest reducible. A forest reducible
graph is one where, after collapsing every SCC
into a single node, the transitive reduction of the
result is a forest (see Figure 3).

In practice, the forest reducibility constraint is
enforced by applying one additional constraint to
the ILP in Equation 1:

∀ei, ej , ek ∈ E xij + xik − xjk − xkj ≤ 1 (2)

This constraint says that each node ei can have
only a single parent. If relations rij and rik
are in R̂, then either ej is the parent of ek or
vice versa; ei may not have two parents that are
not related via a hypernym relationship. Like
MAXTRANSGRAPH, the number of variables is
O(|E|2) and number of constraints is O(|E|3).
Also like MAXTRANSGRAPH, cycles in the re-
sulting graph are assumed to constitute clusters of
synonymous terms.

4 Experimental Setup

In order to directly compare the organization al-
gorithms described, we organize our experiments
as follows. We first run entity extraction (Sec-
tion 4.1) and relation prediction (Section 4.2) as
a common initialization for all algorithms. Then,
we take the edge scores output by the relation pre-
diction step and feed them to each taxonomic orga-
nization algorithm (Section 4.3). Finally, we com-
pare the output from each algorithm. Here we de-
scribe the initialization steps in more detail.

4.1 Entity Extraction
We extract sets of entities from the Paraphrase
Database (PPDB) (Ganitkevitch et al., 2013;

Pavlick et al., 2015). Our goal is to construct lo-
cal taxonomies, where each entity set E consists
of terms sharing a common target paraphrase. For
example, a local taxonomy centered around the
target coach might contain entities bus, vehicle,
trainer, person, car, and railcar. The local taxon-
omy for a target word does not contain the target
word itself.

We build a dataset for constructing local tax-
onomies centered around 50 target nouns drawn
from the 2010 SemEval word sense induction
dataset (Manandhar et al., 2010). For each tar-
get noun, we extract as taxonomy terms the set
of PPDB paraphrases having a PPDB2.0SCORE

of at least 2.0 with the target.3 The number of
entities in each local taxonomy ranges from 13
to 126, with a median of 40 entities per set. We
hold out 5 local taxonomies to tune parameters for
NOCYC, MAXTRANSGRAPH, and MAXTRANS-
FOREST, and use the remaining 45 as our test set.

Because they consist of related terms centered
around a common paraphrase, there are several se-
mantic relations present among these entity sets in
addition to hypernymy and synonymy. We ana-
lyze the overlap between all pairs of terms appear-
ing in our local taxonomies and in WordNet, and
find that the distribution of relation types among
the overlapping pairs is 6.0% hypernym/hyponym,
1.3% synonym, 0.1% meronym/holonym, 3.1%
coordinate terms (sharing a common direct hyper-
nym), and 89.5% none of these.

4.2 Relation Prediction

Having extracted a set of entities, the next step in
our initialization process is to make pairwise rela-
tion predictions for each pair of terms (ei, ej) that
exist within an entity set E. The different organi-
zation algorithms we compare take predicted syn-
onym and/or hypernym edge scores as input. Here
we describe the methods we use to generate these
scores.

4.2.1 Hypernym Prediction
For hypernym prediction, we adopt the state-of-
the-art HypeNET method of Shwartz et al. (2016).
HypeNET integrates distributional (Lin and Pan-
tel, 2002; Roller et al., 2014; Levy et al., 2015;
Benotto, 2015) and path-based (Hearst, 1992;
Snow et al., 2004; Nakashole et al., 2012) ap-

3The PPDB2.0SCORE is a supervised metric designed
to correlate with human judgements of paraphrase quality
(Pavlick et al., 2015).
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proaches to hypernym prediction. It uses a re-
current neural network to represent the set of
observed dependency paths connecting an input
word pair, and concatenates this representation
with distributional word embeddings to produce a
set of features for predicting hypernymy.

We create a dataset of noun pairs for train-
ing and evaluating the HypeNET model. It com-
bines noun pairs from four benchmark relation
prediction datasets (BLESS (Baroni and Lenci,
2011), ROOT09 (Santus et al., 2016), EVALution
(Santus et al., 2015), and K&H+N (Necsulescu
et al., 2015)) with a set of related and unrelated
noun pairs extracted from PPDB. Since each of
these is a multi-class dataset, we binarize the data
by labeling noun pairs with a hypernym relation
as positive instances, and all others as negative.
The combined benchmark+PPDB training set con-
tains 76,152 noun pairs with a 1:4 hypernym:non-
hypernym ratio, and the evaluation set contains
29,051 pairs. We ensure lexical separation from
our taxonomy induction dataset; no terms in the
classifier training set appear in any of the local tax-
onomies. We train HypeNET using our 76K-pair
test set, and provide the results of evaluation on
the 29K-pair test set in Table 1. The trained model
achieves an overall average F1-score of 0.93 on
the entire benchmark+PPDB test set. The full de-
tails of our dataset creation and classifier training
are provided in the supplementary material.

Finally, we use the trained model to predict hy-
pernym likelihoods for each potential edge rij in
one of our local taxonomies, corresponding to an
ordered pair of terms (ei, ej) that appear together
in one of the 50 entity sets. We assign a hypernym
score sh(rij) to each potential directed edge that
equals the HypeNET predicted likelihood for that
pair of terms.

4.2.2 Synonym Prediction and Cluster
Formation

We predict synonymy between noun pairs using
distributional similarity, operationalized as the co-
sine similarity of PARAGRAM (Wieting et al.,
2015) word embeddings.4 We use PARAGRAM
vectors because they perform well in semantic
similarity tasks, and because they were originally
extracted from PPDB and thus have 100% cover-
age of our entity sets. The synonym score ss(rij)
for a potential edge rij between entities (ei, ej)

4We also tried using HypeNET to predict synonym rela-
tions, but results were significantly worse.

Dataset # Test
Inst.

% Hyp. Avg
F1
(hyp.)

% Syn. Avg
F1
(syn.)

PPDB 3,000 20.1 .777 24.7 .707
BLESS 6,637 5.3 .978 0 –
EVALution 1,846 24.5 .763 15.1 .797
K&H+N 14,377 7.3 .988 0 –
ROOT09 3,191 26.3 .808 0 –

Table 1: Evaluation of the HypeNET hypernym clas-
sifier and the PARAGRAM synonym classifier on the
PPDB test set and four benchmark test sets. We report
micro-averaged F1-scores for positive and negative in-
stances in the test sets.

is simply the cosine similarity of their PARA-
GRAM embeddings.

We also tune a synonymy threshold for the
purpose of consolidating clusters of synonymous
terms into a single node for DMST+CLUS and
NOCYC+CLUS (see Section 4.3). We tune thresh-
old τ = 0.76 over the benchmark+PPDB train-
ing set (binarized for synonymy) such that we
predict a term pair (ei, ej) to be synonymous if
ss(rij) ≥ τ . When evaluated over the test sets,
this method achieves weighted average F1-scores
of 0.707 and 0.797 for predicting synonyms in the
PPDB and EVALution test sets respectively (Table
1).

Target word Clustered Entities

field [(topic, issue, subject matter), (respect, re-
gard), (battlefield, battleground), (outside,
exterior), (territory, land), (domain, purview,
sphere, ambit, realm, area, fields)]

address [(directorate, direction), (administration,
management), (answer, response), (dis-
course, speech), (treat, handling), (domicile,
residence)]

innovation [(novelty, imagination, creativity, newness),
(modernization, modernisation), (regenera-
tion, renewal, renovation, rejuvenation)]

Table 2: Examples of clustered entities produced using
the PARAGRAM vector cosine similarity threshold of
0.76.

4.3 Input to organization algorithms
Finally, we use the calculated hypernym and syn-
onym scores sh(rij) and ss(rij) to initialize each
organization algorithm as follows.

NOCYC and DMST: We use the hypernym
scores as input, setting s(rij) = sh(rij) for all
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Algorithm Constraint
Hypernyms Synonyms Combined

P R F P R F P R F

Baseline Methods

RANDOM (none) .036 .235 .061 .013 .034 .018 .033 .173 .054
MAXTRANSFOREST** Tree/Forest .214 .758 .325 .707 .585 .586 .255 .708 .366
DMST** Tree/Forest .411 .661 .470 0. 0. 0. .411 .469 .418

Basic Methods

Transitive
MAXTRANSGRAPH DAG .123 .529 .193 .727 .028 .040 .126 .375 .182
MAXTRANSFOREST Tree/Forest .147 .473 .217 .353 .091 .121 .155 .365 .210

Non-Transitive
NOCYC DAG .104 .596 .172 .119 .013 .014 .101 .415 .158
DMST Tree/Forest .192 .195 .178 0.0 0.0 0.0 .192 .131 .147

Clustering Variations

Non-Transitive
NOCYC+CLUS DAG .081 .562 .138 .232 .368 .234 .091 .520 .149
DMST+CLUS Tree/Forest .165 .204 .168 .304 .364 .266 .199 .265 .201

Table 3: Precision, recall, and F1 of hypernym, synonym, and all (relation-specific) edges for each method. Metrics
are weighted averages over the 45 local taxonomies in the test set, where each taxonomy’s result is weighted by its
number of nodes. Starred methods indicate an oracle, where the weight of edges appearing in WordNet is set to 1
at input.

potential edges.

NOCYC+CLUS and DMST+CLUS: Initializa-
tion for these algorithms requires two steps. First,
we collapse clusters of likely synonyms into a sin-
gle entity as follows. For each local taxonomy, we
create a graph with the extracted terms as nodes,
and add an edge between every pair of terms hav-
ing ss(rij) ≥ τ (the threshold tuned on our train-
ing set). We take the resulting connected compo-
nents as the final entity set E. See examples of
synonyms clustered by this method in Table 2.

Next, we calculate scores s(rij) for each pair
of entities. When ei and ej are single-term entities
(i.e. not synonym clusters), we simply set s(rij) =
sh(rij). To obtain an edge score when one or both
nodes is a cluster, we simply calculate the average
hypernym score over every pair of terms (tm, tn)
such that tm ∈ ei and tn ∈ ej :

s(rij) =

∑
tm∈ei;tn∈ej

sh(rmn)

|ei|+ |ej |

MAXTRANSGRAPH and MAXTRANSFOREST:
Since these algorithms are designed to use en-
tailment relation predictions as input, we set
the score of each edge to be the maximum of
the synonym and hypernym scores: s(rij) =
max(sh(rij), ss(rij)). Intuitively, this reflects the

idea that entailment can be sub-classified as syn-
onymy or hypernymy.

5 Experiments

We conduct experiments aimed at addressing three
primary research questions: (1) How does each
taxonomic organization algorithm perform? In
particular, how do DAG algorithms compare to
tree-constrained ones, and how do transitive al-
gorithms compare to their non-transitive counter-
parts? (2) Are any algorithms, particularly the ILP
methods, too slow to use on large sets of terms?
(3) Given that hypernym relation prediction is far
from perfect, how robust is each algorithm to noise
in the predicted relations?

5.1 Head-to-head Algorithm Comparison

In our first experiment, we predict PPDB local
taxonomies for the 45 target nouns in our test
set using each of the six algorithms after the ini-
tialization described in Section 4. In keeping
with current work on this topic (Bordea et al.,
2015, 2016), we evaluate the taxonomy organiza-
tion algorithms’ performance by calculating preci-
sion, recall, and F1-score of WordNet 3.0 hyper-
nym and synonym edges for the 93% of PPDB
taxonomy terms that are in WordNet. When
evaluating hypernym edges we consider both di-
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rect and transitive hypernym edges. We re-
port hypernym-specific scores – where the set of
ground-truth edges considers just WordNet hyper-
nyms – synonym-specific scores, and combined
scores – where all WordNet hypernym and syn-
onym edges are taken as ground truth, and a pre-
dicted edge must have the correct start node, end
node, and relation type to be correct. Results are
reported in Table 3. We compare the results of
the six algorithms to two types of baselines. As
a lower bound, we implement a random baseline
where edges are selected randomly with likeli-
hood tuned on the benchmark+PPDB training set.
As an upper bound, we run ‘oracle’ versions of
MAXTRANSFOREST and DMST where we set
the score of any edge appearing in WordNet to 1.

The transitive, tree-constrained MAXTRANS-
FOREST algorithm achieves the best average
combined F-score (0.21) over all the local tax-
onomies, followed closely by the non-transitive,
tree-constrained clustering method DMST+CLUS

(0.20). These two methods, which are the only two
tree-constrained methods that incorporate syn-
onymy, outperform all DAG-constrained methods
on this dataset. While they perform similarly in
terms of combined F-score, their results are com-
plementary; MAXTRANSFOREST obtains a rela-
tively high score on hypernym edges and lower
score for synonym edges, while for DMST+CLUS

the results are reversed.

In general, these results suggest that con-
solidating synonyms into a single node helps
tree-constrained methods by improving recall of
both hypernym and synonym edges (DMST vs
DMST+CLUS), but the same is not true for DAG-
constrained methods. To understand why, we ex-
amine the output taxonomies. The average depth
of the DAG taxonomies is greater than that of the
tree taxonomies. When incorrect hyponym attach-
ments are made in a deep taxonomy, the errors in
transitive hypernym links can be magnified, which
is evident in the low hypernym precision of NO-
CYC and NOCYC+CLUS. Synonym clustering
prior to NOCYC+CLUS can magnify errors fur-
ther, as synonyms are dragged into the incorrect
hypernym relationships (see the NOCYC+CLUS

example in Figure 4, where telephone is dragged
along with phone into incorrect hypernym rela-
tions with battery and pile). For the shallower tree-
constrained graph outputs, finding correct syn-
onym relations helps the overall accuracy without

inducing as many incorrect hypernym relations.

WORDNET

DMST DMST+CLUS

NOCYC+CLUSNOCYC

unit

battery phone | telephone

pile cellphone

unit

battery phone

pile

cellphone telephone

unit

battery | pile phone | telephonecellphone

unit

battery | pile

phone | telephonecellphone

unit

battery phone

pile cellphone telephone

Figure 4: Examples from a portion of the local tax-
onomy for cell, with the WordNet gold standard com-
pared to four of the algorithms’ output. The bar nota-
tion denotes synonym clusters.

Finally, we note that transitive algorithms con-
sistently out-perform their non-transitive counter-
parts. For the DAG-constrained algorithms, the
transitive version, MAXTRANSGRAPH, improves
precision of hypernym and synonym edges over
its non-transitive counterparts NOCYC and NO-
CYC+CLUS. For the tree-constrained algorithms,
the transitive MAXTRANSFOREST substantially
improves recall of hypernym edges over its non-
transitive counterparts DMST and DMST+CLUS.

5.2 Assessing Runtime
Next, we address the question of whether all al-
gorithms are fast enough to be useful in practice.
We record the runtime for each algorithm on each
local taxonomy, and note the number of runs that
timed out at 5 minutes. Results are in Table 4.

Method Avg Runtime % Timeout

MAXTRANSGRAPH 0.31 0.0
MAXTRANSFOREST 136.83 24.4
NOCYC 2.04 0.0
DMST 0.04 0.0
NOCYC+CLUS 6.41 0.0
DMST+CLUS 0.02 0.0

Table 4: Average runtime (seconds) over all 45 targets,
and percent of targets for which runtime exceeded 5
minutes, by algorithm.

MAXTRANSFOREST, while most accurate on
hypernyms and overall, is too slow to be use-
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ful on large inputs. The average runtime over
all local taxonomies was over two minutes, and
the runtime on local taxonomies with as few as
50 nodes reached the five minute limit. Mean-
while, DMST+CLUS, which performed best for
synonyms and competitively for hypernyms, has a
runtime that is over 6,000 times faster. In practice,
this simpler algorithm may be preferable to use.

One surprising result is the speed of MAX-
TRANSGRAPH, which theoretically has a num-
ber of variables and constraints on the same or-
der as that of MAXTRANSFOREST. In practice,
we found that the average number of active con-
straints for MAXTRANSGRAPH – those violated
at any point in the course of solving the ILP – was
less than one percent of the average number of ac-
tive constraints in MAXTRANSFOREST.
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Figure 5: Weighted average combined F1-scores over
the test set, where each algorithm is run in an oracle
setting with noise percentage (p) settings in the range
from 0% to 90%.

5.3 Assessing robustness to noise

Finally, given that hypernym prediction is still an
open problem, we are interested in finding out how
robust each algorithm is to noise in the input hy-
pernym predictions. To test this, we re-run each
taxonomy organization algorithm on the local tax-
onomies in an oracle setting, where the score of
all potential edges that are present as direct or
transitive edges in WordNet is set to 1. In each
iteration, we set a noise probability p, and ran-
domly perturb edge scores (according to a Gaus-
sian distribution with 0 mean and 0.15 standard
deviation) with probability p. We run this ex-
periment with p ∈ [0, 90]. The combined F1-

score is plotted against the noise level in Figure
5. We find that the performance of transitive al-
gorithms MAXTRANSGRAPH and MAXTRANS-
FOREST degrades more quickly than the perfor-
mance of other algorithms at higher noise levels.
DMST performs best in the oracle setting at all
levels of noise. The results are shown in Figure 5.

The performance of the top two perform-
ing algorithms, MAXTRANSFOREST and
DMST+CLUS, in terms of combined F1-score
degrades most with the introduction of noise. But
even with up to 40% noise, these algorithms still
out-perform all others.

6 Conclusion

In this paper we have conducted a direct compar-
ison of six taxonomy organization algorithms that
vary in terms of their transitivity and graph struc-
ture constraints, and their treatment of synonyms.
Evaluating their performance over a dataset of
local taxonomies drawn from PPDB, we find
that transitive algorithms generally out-perform
their non-transitive counterparts. While the best-
performing algorithm – an ILP approach that con-
strains graphs to be transitive and tree-structured –
is too slow to use on large inputs, a much simpler
maximum spanning tree algorithm that consoli-
dates synonyms into a single taxonomic node has
complementary performance, with a small fraction
of the runtime. Our results suggest that incorporat-
ing synonym detection into tree-constrained tax-
onomy organization algorithms is a promising area
for future research.
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Abstract

We explore two solutions to the problem of
mistranslating rare words in neural machine
translation. First, we argue that the standard
output layer, which computes the inner prod-
uct of a vector representing the context with all
possible output word embeddings, rewards fre-
quent words disproportionately, and we pro-
pose to fix the norms of both vectors to a con-
stant value. Second, we integrate a simple lex-
ical module which is jointly trained with the
rest of the model. We evaluate our approaches
on eight language pairs with data sizes ranging
from 100k to 8M words, and achieve improve-
ments of up to +4.3 BLEU, surpassing phrase-
based translation in nearly all settings.1

1 Introduction

Neural network approaches to machine translation
(Sutskever et al., 2014; Bahdanau et al., 2015; Lu-
ong et al., 2015a; Gehring et al., 2017) are appeal-
ing for their single-model, end-to-end training pro-
cess, and have demonstrated competitive perfor-
mance compared to earlier statistical approaches
(Koehn et al., 2007; Junczys-Dowmunt et al.,
2016). However, there are still many open prob-
lems in NMT (Koehn and Knowles, 2017). One
particular issue is mistranslation of rare words. For
example, consider the Uzbek sentence:

Source: Ammo muammolar hali ko’p, deydi
amerikalik olim Entoni Fauchi.
Reference: But still there are many problems, says
American scientist Anthony Fauci.
Baseline NMT: But there is still a lot of problems,
says James Chan.

At the position where the output should be Fauci,
the NMT model’s top three candidates are Chan,

1The code for this work can be found at
https://github.com/tnq177/improving_lexical_
choice_in_nmt

Fauci, and Jenner. All three surnames occur in
the training data with reference to immunologists:
Fauci is the director of the National Institute of
Allergy and Infectious Diseases, Margaret (not
James) Chan is the former director of the World
Health Organization, and Edward Jenner invented
smallpox vaccine. But Chan is more frequent in
the training data than Fauci, and James is more
frequent than either Anthony or Margaret.

Because NMT learns word representations in
continuous space, it tends to translate words that
“seem natural in the context, but do not reflect
the content of the source sentence” (Arthur et al.,
2016). This coincides with other observations that
NMT’s translations are often fluent but lack accu-
racy (Wang et al., 2017b; Wu et al., 2016).

Why does this happen? At each time step, the
model’s distribution over output words e is

p(e) ∝ exp
(
We · h̃ + be

)

where We and be are a vector and a scalar depend-
ing only on e, and h̃ is a vector depending only
on the source sentence and previous output words.
We propose two modifications to this layer. First,
we argue that the term We · h̃, which measures how
well e fits into the context h̃, favors common words
disproportionately, and show that it helps to fix the
norm of both vectors to a constant. Second, we add
a new term representing a more direct connection
from the source sentence, which allows the model
to better memorize translations of rare words.

Below, we describe our models in more de-
tail. Then we evaluate our approaches on eight
language pairs, with training data sizes ranging
from 100k words to 8M words, and show improve-
ments of up to +4.3 BLEU, surpassing phrase-
based translation in nearly all settings. Finally, we
provide some analysis to better understand why
our modifications work well.
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ha-en tu-en hu-en

untied embeddings 17.2 11.5 26.5
tied embeddings 17.4 13.8 26.5

don’t normalize h̃t 18.6 14.2 27.1
normalize h̃t 20.5 16.1 28.8

Table 1: Preliminary experiments show that tying target
embeddings with output layer weights performs as well
as or better than the baseline, and that normalizing h̃ is
better than not normalizing h̃. All numbers are BLEU
scores on development sets, scored against tokenized
references.

2 Neural Machine Translation

Given a source sequence f = f1 f2 · · · fm, the
goal of NMT is to find the target sequence e =

e1e2 · · · en that maximizes the objective function:

log p(e | f ) =

n∑

t=1

log p(et | e<t, f ).

We use the global attentional model with gen-
eral scoring function and input feeding by Lu-
ong et al. (2015a). We provide only a very brief
overview of this model here. It has an encoder,
an attention, and a decoder. The encoder converts
the words of the source sentence into word em-
beddings, then into a sequence of hidden states.
The decoder generates the target sentence word by
word with the help of the attention. At each time
step t, the attention calculates a set of attention
weights at(s). These attention weights are used to
form a weighted average of the encoder hidden
states to form a context vector ct. From ct and
the hidden state of the decoder are computed the
attentional hidden state h̃t. Finally, the predicted
probability distribution of the t’th target word is:

p(et | e<t, f ) = softmax(Woh̃t + bo). (1)

The rows of the output layer’s weight matrix Wo

can be thought of as embeddings of the output vo-
cabulary, and sometimes are in fact tied to the em-
beddings in the input layer, reducing model size
while often achieving similar performance (Inan
et al., 2017; Press and Wolf, 2017). We verified
this claim on some language pairs and found out
that this approach usually performs better than
without tying, as seen in Table 1. For this reason,
we always tie the target embeddings and Wo in all
of our models.

3 Normalization

The output word distribution (1) can be written as:

p(e) ∝ exp
(
‖We‖ ‖h̃‖ cos θWe,h̃ + be

)
,

where We is the embedding of e, be is the e’th
component of the bias bo, and θWe,h̃ is the angle
between We and h̃. We can intuitively interpret the
terms as follows. The term ‖h̃‖ has the effect of
sharpening or flattening the distribution, reflect-
ing whether the model is more or less certain in a
particular context. The cosine similarity cos θWe,h̃
measures how well e fits into the context. The bias
be controls how much the word e is generated; it
is analogous to the language model in a log-linear
translation model (Och and Ney, 2002).

Finally, ‖We‖ also controls how much e is gen-
erated. Figure 1 shows that it generally correlates
with frequency. But because it is multiplied by
cos θWe,h̃, it has a stronger effect on words whose
embeddings have direction similar to h̃, and less
effect or even a negative effect on words in other
directions. We hypothesize that the result is that
the model learns ‖We‖ that are disproportionately
large.

For example, returning to the example from
Section 1, these terms are:

e ‖We‖ ‖h̃‖ cos θWe,h̃ be logit

Chan 5.25 19.5 0.144 −1.53 13.2
Fauci 4.69 19.5 0.154 −1.35 12.8
Jenner 5.23 19.5 0.120 −1.59 10.7

Observe that cos θWe,h̃ and even be both favor the
correct output word Fauci, whereas ‖We‖ favors
the more frequent, but incorrect, word Chan. The
most frequently-mentioned immunologist trumps
other immunologists.

To solve this issue, we propose to fix the norm
of all target word embeddings to some value r.
Followingthe weight normalization approach of
Salimans and Kingma (2016), we reparameterize
We as r ve

‖ve‖ , but keep r fixed.

A similar argument could be made for ‖h̃t‖: be-
cause a large ‖h̃t‖ sharpens the distribution, caus-
ing frequent words to more strongly dominate rare
words, we might want to limit it as well. We com-
pared both approaches on a development set and
found that replacing h̃t in equation (1) with r h̃t

‖h̃t‖
indeed performs better, as shown in Table 1.
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Figure 1: The word embedding norm ‖We‖ generally
correlates with the frequency of e, except for the most
frequent words. The bias be has the opposite behavior.
The plots show the median and range of bins of size
256.

4 Lexical Translation

The attentional hidden state h̃ contains informa-
tion not only about the source word(s) correspond-
ing to the current target word, but also the con-
texts of those source words and the preceding con-
text of the target word. This could make the model
prone to generate a target word that fits the context
but doesn’t necessarily correspond to the source
word(s). Count-based statistical models, by con-
trast, don’t have this problem, because they sim-
ply don’t model any of this context. Arthur et al.
(2016) try to alleviate this issue by integrating a
count-based lexicon into an NMT system. How-
ever, this lexicon must be trained separately using
GIZA++ (Och and Ney, 2003), and its parameters
form a large, sparse array, which can be difficult to
store in GPU memory.

We propose instead to use a simple feedforward
neural network (FFNN) that is trained jointly with
the rest of the NMT model to generate a target
word based directly on the source word(s). Let fs

(s = 1, . . . ,m) be the embeddings of the source
words. We use the attention weights to form a

tokens vocab layers
×106 ×103 num/size

ta-en 0.2/0.1 4.0/3.4 1/512
ur-en 0.2/0.2 4.2/4.2 1/512
ha-en 0.8/0.8 10.6/10.4 2/512
tu-en 0.8/1.1 21.1/13.3 2/512
uz-en 1.5/1.9 29.8/17.4 2/512
hu-en 2.0/2.3 27.3/15.7 2/512
en-vi 2.1/2.6 17.0/7.7 2/512
en-ja (BTEC) 3.6/5.0 17.8/21.8 4/768
en-ja (KFTT) 7.8/8.0 48.2/49.1 4/768

Table 2: Statistics of data and models: effective number
of training source/target tokens, source/target vocabu-
lary sizes, number of hidden layers and number of units
per layer.

weighted average of the embeddings (not the hid-
den states, as in the main model) to give an aver-
age source-word embedding at each decoding time
step t:

f `t = tanh
∑

s

at(s) fs.

Then we use a one-hidden-layer FFNN with skip
connections (He et al., 2016):

h`t = tanh(W f `t ) + f `t

and combine its output with the decoder output to
get the predictive distribution over output words at
time step t:

p(yt | y<t, x) = softmax(Woh̃t + bo + W`h`t + b`).

For the same reasons that were given in Sec-
tion 3 for normalizing h̃t and the rows of Wo

t , we
normalize h`t and the rows of W` as well. Note,
however, that we do not tie the rows of W` with
the word embeddings; in preliminary experiments,
we found this to yield worse results.

5 Experiments

We conducted experiments testing our normaliza-
tion approach and our lexical model on eight lan-
guage pairs using training data sets of various
sizes. This section describes the systems tested
and our results.

5.1 Data

We evaluated our approaches on various language
pairs and datasets:
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• Tamil (ta), Urdu (ur), Hausa (ha), Turkish
(tu), and Hungarian (hu) to English (en), us-
ing data from the LORELEI program.

• English to Vietnamese (vi), using data from
the IWSLT 2015 shared task.2

• To compare our approach with that of Arthur
et al. (2016), we also ran on their English to
Japanese (ja) KFTT and BTEC datasets.3

We tokenized the LORELEI datasets using the
default Moses tokenizer, except for Urdu-English,
where the Urdu side happened to be tokenized us-
ing Morfessor FlatCat (w = 0.5). We used the
preprocessed English-Vietnamese and English-
Japanese datasets as distributed by Luong et al.,
and Arthur et al., respectively. Statistics about our
data sets are shown in Table 2.

5.2 Systems

We compared our approaches against two baseline
NMT systems:

untied, which does not tie the rows of Wo to the
target word embeddings, and
tied, which does.

In addition, we compared against two other base-
line systems:

Moses: The Moses phrase-based translation sys-
tem (Koehn et al., 2007), trained on the same data
as the NMT systems, with the same maximum sen-
tence length of 50. No additional data was used
for training the language model. Unlike the NMT
systems, Moses used the full vocabulary from the
training data; unknown words were copied to the
target sentence.
Arthur: Our reimplementation of the discrete lex-
icon approach of Arthur et al. (2016). We only
tried their auto lexicon, using GIZA++ (Och and
Ney, 2003), integrated using their bias approach.
Note that we also tied embedding as we found it
also helped in this case.

Against these baselines, we compared our new
systems:

fixnorm: The normalization approach described in
Section 3.
fixnorm+lex: The same, with the addition of the
lexical translation module from Section 4.

2https://nlp.stanford.edu/projects/nmt/
3http://isw3.naist.jp/~philip-a/emnlp2016/

5.3 Details
Model For all NMT systems, we fed the source
sentences to the encoder in reverse order during
both training and testing, following Luong et al.
(2015a). Information about the number and size
of hidden layers is shown in Table 2. The word
embedding size is always equal to the hidden layer
size.

Following common practice, we only trained on
sentences of 50 tokens or less. We limited the vo-
cabulary to word types that appear no less than 5
times in the training data and map the rest to UNK.
For the English-Japanese and English-Vietnamese
datasets, we used the vocabulary sizes reported in
their respective papers (Arthur et al., 2016; Luong
and Manning, 2015).

For fixnorm, we tried r ∈ {3, 5, 7} and selected
the best value based on the development set per-
formance, which was r = 5 except for English-
Japanese (BTEC), where r = 7. For fixnorm+lex,
because Wsh̃t+W`h`t takes on values in [−2r2, 2r2],
we reduced our candidate r values by roughly a
factor of

√
2, to r ∈ {2, 3.5, 5}. A radius r = 3.5

seemed to work the best for all language pairs.

Training We trained all NMT systems with
Adadelta (Zeiler, 2012). All parameters were ini-
tialized uniformly from [−0.01, 0.01]. When a gra-
dient’s norm exceeded 5, we normalized it to 5. We
also used dropout on non-recurrent connections
only (Zaremba et al., 2014), with probability 0.2.
We used minibatches of size 32. We trained for 50
epochs, validating on the development set after ev-
ery epoch, except on English-Japanese, where we
validated twice per epoch. We kept the best check-
point according to its BLEU on the development
set.

Inference We used beam search with a beam
size of 12 for translating both the development
and test sets. Since NMT often favors short trans-
lations (Cho et al., 2014), we followed Wu et al.
(2016) in using a modified score s(e | f ) in place
of log-probability:

s(e | f ) =
log p(e | f )

lp(e)

lp(e) =
(5 + |e|)α
(5 + 1)α

We set α = 0.8 for all of our experiments.
Finally, we applied a postprocessing step to re-

place each UNK in the target translation with the
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source word with the highest attention score (Lu-
ong et al., 2015b).

Evaluation For translation into English, we re-
port case-sensitive NIST BLEU against deto-
kenized references. For English-Japanese and
English-Vietnamese, we report tokenized, case-
sensitive BLEU following Arthur et al. (2016)
and Luong and Manning (2015). We measure
statistical significance using bootstrap resampling
(Koehn, 2004).

6 Results and Analysis

6.1 Overall
Our results are shown in Table 3. First, we ob-
serve, as has often been noted in the literature, that
NMT tends to perform poorer than PBMT on low
resource settings (note that the rows of this table
are sorted by training data size).

Our fixnorm system alone shows large
improvements (shown in parentheses) rela-
tive to tied. Integrating the lexical module
(fixnorm+lex) adds in further gains. Our
fixnorm+lex models surpass Moses on all tasks
except Urdu- and Hausa-English, where it is 1.6
and 0.7 BLEU short respectively.

The method of Arthur et al. (2016) does im-
prove over the baseline NMT on most language
pairs, but not by as much and as consistently as
our models, and often not as well as Moses. Un-
fortunately, we could not replicate their approach
for English-Japanese (KFTT) because the lexical
table was too large to fit into the computational
graph.

For English-Japanese (BTEC), we note that,
due to the small size of the test set, all systems
except for Moses are in fact not significantly dif-
ferent from tied (p > 0.01). On all other tasks,
however, our systems significantly improve over
tied (p < 0.01).

6.2 Impact on translation
In Table 4, we show examples of typical trans-
lation mistakes made by the baseline NMT sys-
tems. In the Uzbek example (top), untied and
tied have confused 34 with UNK and 700, while
in the Turkish one (middle), they incorrectly out-
put other proper names, Afghan and Myanmar, for
the proper name Kenya. Our systems, on the other
hand, translate these words correctly.

The bottom example is the one introduced in
Section 1. We can see that our fixnorm approach

does not completely solve the mistranslation is-
sue, since it translates Entoni Fauchi to UNK UNK
(which is arguably better than James Chan). On
the other hand, fixnorm+lex gets this right. To
better understand how the lexical module helps in
this case, we look at the top five translations for
the word Fauci in fixnorm+lex:

e cos θWe,h̃ cos θW l
e,hl

be + bl
e logit

Fauci 0.522 0.762 −8.71 7.0
UNK 0.566 −0.009 −1.25 5.6
Anthony 0.263 0.644 −8.70 2.4
Ahmedova 0.555 0.173 −8.66 0.3
Chan 0.546 0.150 −8.73 −0.2

As we can see, while cos θWe,h̃ might still be con-
fused between similar words, cos θW l

e,hl
signifi-

cantly favors Fauci.

6.3 Alignment and unknown words

Both our baseline NMT and fixnorm models suf-
fer from the problem of shifted alignments noted
by Koehn and Knowles (2017). As seen in Figure
2a and 2b, the alignments for those two systems
seem to shift by one word to the left (on the source
side). For example, nói should be aligned to said
instead of Telekom, and so on. Although this is not
a problem per se, since the decoder can decide
to attend to any position in the encoder states as
long as the state at that position holds the informa-
tion the decoder needs, this becomes a real issue
when we need to make use of the alignment infor-
mation, as in unknown word replacement (Luong
et al., 2015b). As we can see in Figure 2, because
of the alignment shift, both tied and fixnorm in-
correctly replace the two unknown words (in bold)
with But Deutsche instead of Deutsche Telekom.
In contrast, under fixnorm+lex and the model of
Arthur et al. (2016), the alignment is corrected,
causing the UNKs to be replaced with the correct
source words.

6.4 Impact of r

The single most important hyper-parameter in our
models is r. Informally speaking, r controls how
much surface area we have on the hypersphere
to allocate to word embeddings. To better under-
stand its impact, we look at the training perplex-
ity and dev BLEUs during training with differ-
ent values of r. Table 6 shows the train perplexity
and best tokenized dev BLEU on Turkish-English
for fixnorm and fixnorm+lex with different val-
ues of r. As we can see, a smaller r results in
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untied tied fixnorm fixnorm+lex Moses Arthur

ta-en 10.3 11.1 14 (+2.9) 15.3 (+4.2) 10.5 (−0.6) 14.1 (+3.0)
ur-en 7.9 10.7 12 (+1.3) 13 (+2.3) 14.6 (+3.9) 12.5 (+1.8)
ha-en 16.0 16.6 20 (+3.4) 21.5 (+4.9) 22.2 (+5.6) 18.7 (+2.1)
tu-en 12.2 12.6 16.4 (+3.8) 19.1 (+6.5) 18.1 (+5.5) 16.3 (+3.7)
uz-en 14.9 15.7 18.2 (+2.5) 19.3 (+3.6) 17.2 (+1.5) 17.1 (+1.4)
hu-en 21.6 23.0 24.0 (+1.0) 25.3 (+2.3) 21.3 (−1.7) 22.7 (-0.3)†

en-vi 25.1 25.3 26.8 (+1.5) 27 (+1.7) 26.7 (+1.4) 26.2 (+0.9)
en-ja (BTEC) 51.2 53.7 52.9 (-0.8)† 51.3 (−2.6)† 46.8 (−6.9) 52.4 (−1.3)†

en-ja (KFTT) 24.1 24.5 26.1 (+1.6) 26.2 (+1.7) 21.7 (−2.8) —

Table 3: Test BLEU of all models. Differences shown in parentheses are relative to tied, with a dagger (†) indicating
an insignificant difference in BLEU (p > 0.01). While the method of Arthur et al. (2016) does not always help,
fixnorm and fixnorm+lex consistently achieve significant improvements over tied (p < 0.01) except for English-
Japanese (BTEC). Our models also outperform the method of Arthur et al. on all tasks and outperform Moses on
all tasks but Urdu-English and Hausa-English.

input Dushanba kuni Hindistonda kamida 34 kishi halok bo’lgani xabar qilindi .
reference At least 34 more deaths were reported Monday in India .
untied At least UNK people have died in India on Monday .
tied It was reported that at least 700 people died in Monday .
fixnorm At least 34 people died in India on Monday .
fixnorm+lex At least 34 people have died in India on Monday .

input Yarın Kenya’da bir yardım konferansı düzenlenecek .
reference Tomorrow a conference for aid will be conducted in Kenya .
untied Tomorrow there will be an Afghan relief conference .
tied Tomorrow there will be a relief conference in Myanmar .
fixnorm Tomorrow it will be a aid conference in Kenya .
fixnorm+lex Tomorrow there will be a relief conference in Kenya .

input Ammo muammolar hali ko’p , deydi amerikalik olim Entoni Fauchi .
reference But still there are many problems , says American scientist Anthony Fauci .
untied But there is still a lot of problems , says James Chan .
tied However , there is still a lot of problems , says American scientists .
fixnorm But there is still a lot of problems , says American scientist UNK UNK .
fixnorm+lex But there are still problems , says American scientist Anthony Fauci .

Table 4: Example translations, in which untied and tied generate incorrect, but often semantically related, words,
but fixnorm and/or fixnorm+lex generate the correct ones.

hu-en
244 244 (0.599) document (0.005) By (0.003) by (0.002) offices (0.001)
befektetéseinek investments (0.151) investment (0.017) Investments (0.015) all (0.012) investing (0.003)
kutatás-fejlesztésre research (0.227) Research (0.040) Development (0.014) researchers (0.008) development (0.007)

tu-en
ifade expression (0.109) expressed (0.061) express (0.056) speech (0.024) expresses (0.020)
cumhurbaşkanı President (0.573) president (0.030) Republic (0.027) Vice (0.010) Abdullah (0.008)
Göstericiler protesters (0.115) demonstrators (0.050) Protesters (0.033) UNK (0.004) police (0.003)

ha-en
(0.469) cholera (0.003) EOS (0.001) UNK (0.001) It (0.001)

Wayoyin phones (0.414) wires (0.097) mobile (0.088) cellular (0.064) cell (0.061)
manzonsa Prophet (0.080) His (0.041) Messenger (0.015) prophet (0.010) his (0.009)

Table 5: Top five translations for some entries of the lexical tables extracted from fixnorm+lex. Probabilities are
shown in parentheses.
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(a) tied (b) fixnorm

(c) fixnorm+lex (d) Arthur et al. (2016)

Figure 2: While the tied and fixnorm systems shift attention to the left one word (on the source side), our
fixnorm+lex model and that of Arthur et al. (2016) put it back to the correct position, improving unknown-word re-
placement for the words Deutsche Telekom. Columns are source (English) words and rows are target (Vietnamese)
words. Bolded words are unknown.
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system r train ppl dev BLEU

fixnorm
3 3.9 13.6
5 2.5 16.1
7 2.3 14.4

fixnorm+lex
2 4.2 12.3
3.5 2.0 17.5
5 1.4 16.0

Table 6: When r is too small, high train perplexity
and low dev BLEU indicate underfitting; when r is too
large, low train perplexity and low dev BLEU indicate
overfitting.

worse training perplexity, indicating underfitting,
whereas if r is too large, the model achieves better
training perplexity but decrased dev BLEU, indi-
cating overfitting.

6.5 Lexicon

One byproduct of lex is the lexicon, which we
can extract and examine simply by feeding each
source word embedding to the FFNN module and
calculating p`(y) = softmax(W`h`+b`). In Table 5,
we show the top translations for some entries in
the lexicons extracted from fixnorm+lex for Hun-
garian, Turkish, and Hausa-English. As expected,
the lexical distribution is sparse, with a few top
translations accounting for the most probability
mass.

6.6 Byte Pair Encoding

Byte-Pair-Encoding (BPE) (Sennrich et al., 2016)
is commonly used in NMT to break words into
word-pieces, improving the translation of rare
words. For this reason, we reran our experi-
ments using BPE on the LORELEI and English-
Vietnamese datasets. Additionally, to see if our
proposed methods work in high-resource scenar-
ios, we run on the WMT 2014 English-German
(en-de) dataset,4 using newstest2013 as the devel-
opment set and reporting tokenized, case-sensitive
BLEU on newstest2014 and newstest2015.

We validate across different numbers of BPE
operations; specifically, we try {1k, 2k, 3k} merge
operations for ta-en and ur-en due to their small
sizes, {10k, 12k, 15k} for the other LORELEI
datasets and en-vi, and 32k for en-de. Using BPE
results in much smaller vocabulary sizes, so we do
not apply a vocabulary cut-off. Instead, we train on

4https://nlp.stanford.edu/projects/nmt/

an additional copy of the training data in which all
types that appear once are replaced with UNK, and
halve the number of epochs accordingly. Our mod-
els, training, and evaluation processes are largely
the same, except that for en-de, we use a 4-layer
decoder and 4-layer bidirectional encoder (2 lay-
ers for each direction).

Table 7 shows that our proposed methods also
significantly improve the translation when used
with BPE, for both high and low resource lan-
guage pairs. With BPE, we are only behind Moses
on Urdu-English.

7 Related Work

The closest work to our lex model is that of
Arthur et al. (2016), which we have discussed al-
ready in Section 4. Recent work by Liu et al.
(2016) has very similar motivation to that of our
fixnorm model. They reformulate the output layer
in terms of directions and magnitudes, as we do
here. Whereas we have focused on the magni-
tudes, they focus on the directions, modifying the
loss function to try to learn a classifier that sepa-
rates the classes’ directions with something like a
margin. Wang et al. (2017a) also make the same
observation that we do for the fixnorm model, but
for the task of face verification.

Handling rare words is an important problem
for NMT that has been approached in various
ways. Some have focused on reducing the num-
ber of UNKs by enabling NMT to learn from a
larger vocabulary (Jean et al., 2015; Mi et al.,
2016); others have focused on replacing UNKs by
copying source words (Gulcehre et al., 2016; Gu
et al., 2016; Luong et al., 2015b). However, these
methods only help with unknown words, not rare
words. An approach that addresses both unknown
and rare words is to use subword-level informa-
tion (Sennrich et al., 2016; Chung et al., 2016;
Luong and Manning, 2016). Our approach is dif-
ferent in that we try to identify and address the
root of the rare word problem. We expect that our
models would benefit from more advanced UNK-
replacement or subword-level techniques as well.

Recently, Liu and Kirchhoff (2018) have shown
that their baseline NMT system with BPE already
outperforms Moses for low-resource translation.
However, in their work, they use the Transformer
network (Vaswani et al., 2017), which is quite dif-
ferent from our baseline model. It would be in-
teresting to see if our methods benefit the Trans-
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tied fixnorm fixnorm+lex

ta-en 13 15 (+2.0) 15.9 (+2.9)
ur-en 10.5 12.3 (+1.8) 13.7 (+3.2)
ha-en 18 21.7 (+3.7) 22.3 (+4.3)
tu-en 19.3 21 (+1.7) 22.2 (+2.9)
uz-en 18.9 19.8 (+0.9) 21 (+2.1)
hu-en 25.8 27.2 (+1.4) 27.9 (+2.1)
en-vi 26.3 27.3 (+1.0) 27.5 (+1.2)
en-de (newstest2014) 19.7 22.2 (+2.5) 20.4 (+0.7)
en-de (newstest2015) 22.5 25 (+2.5) 23.2 (+0.7)

Table 7: Test BLEU for all BPE-based systems. Our models significantly improve over the baseline (p < 0.01) for
both high and low resource when using BPE.

former network and other models as well.

8 Conclusion

In this paper, we have presented two simple yet
effective changes to the output layer of a NMT
model. Both of these changes improve transla-
tion quality substantially on low-resource lan-
guage pairs. In many of the language pairs we
tested, the baseline NMT system performs poorly
relative to phrase-based translation, but our sys-
tem surpasses it (when both are trained on the
same data). We conclude that NMT, equipped with
the methods demonstrated here, is a more viable
choice for low-resource translation than before,
and are optimistic that NMT’s repertoire will con-
tinue to grow.
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Abstract

In this paper, we propose a new univer-
sal machine translation approach focusing on
languages with a limited amount of paral-
lel data. Our proposed approach utilizes a
transfer-learning approach to share lexical and
sentence level representations across multi-
ple source languages into one target language.
The lexical part is shared through a Univer-
sal Lexical Representation to support multi-
lingual word-level sharing. The sentence-
level sharing is represented by a model of
experts from all source languages that share
the source encoders with all other languages.
This enables the low-resource language to uti-
lize the lexical and sentence representations of
the higher resource languages. Our approach
is able to achieve 23 BLEU on Romanian-
English WMT2016 using a tiny parallel cor-
pus of 6k sentences, compared to the 18 BLEU
of strong baseline system which uses multi-
lingual training and back-translation. Further-
more, we show that the proposed approach can
achieve almost 20 BLEU on the same dataset
through fine-tuning a pre-trained multi-lingual
system in a zero-shot setting.

1 Introduction

Neural Machine Translation (NMT) (Bahdanau
et al., 2015) has achieved remarkable translation
quality in various on-line large-scale systems (Wu
et al., 2016; Devlin, 2017) as well as achieving
state-of-the-art results on Chinese-English transla-
tion (Hassan et al., 2018). With such large sys-
tems, NMT showed that it can scale up to immense
amounts of parallel data in the order of tens of
millions of sentences. However, such data is not
widely available for all language pairs and domains.

∗This work was done while the authors at Microsoft.

In this paper, we propose a novel universal multi-
lingual NMT approach focusing mainly on low
resource languages to overcome the limitations of
NMT and leverage the capabilities of multi-lingual
NMT in such scenarios.

Our approach utilizes multi-lingual neural trans-
lation system to share lexical and sentence level
representations across multiple source languages
into one target language. In this setup, some of the
source languages may be of extremely limited or
even zero data. The lexical sharing is represented
by a universal word-level representation where var-
ious words from all source languages share the
same underlaying representation. The sharing mod-
ule utilizes monolingual embeddings along with
seed parallel data from all languages to build the
universal representation. The sentence-level shar-
ing is represented by a model of language experts
which enables low-resource languages to utilize
the sentence representation of the higher resource
languages. This allows the system to translate from
any language even with tiny amount of parallel
resources.

We evaluate the proposed approach on 3 differ-
ent languages with tiny or even zero parallel data.
We show that for the simulated “zero-resource"
settings, our model can consistently outperform
a strong multi-lingual NMT baseline with a tiny
amount of parallel sentence pairs.

2 Motivation

Neural Machine Translation (NMT) (Bahdanau
et al., 2015; Sutskever et al., 2014) is based
on Sequence-to-Sequence encoder-decoder model
along with an attention mechanism to enable bet-
ter handling of longer sentences (Bahdanau et al.,
2015). Attentional sequence-to-sequence models
are modeling the log conditional probability of the
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Figure 1: BLEU scores reported on the test set for Ro-
En. The amount of training data effects the translation
performance dramatically using a single NMT model.

translation Y given an input sequence X . In gen-
eral, the NMT system θ consists of two compo-
nents: an encoder θe which transforms the input
sequence into an array of continuous representa-
tions, and a decoder θd that dynamically reads the
encoder’s output with an attention mechanism and
predicts the distribution of each target word. Gen-
erally, θ is trained to maximize the likelihood on a
training set consisting of N parallel sentences:

L (θ) = 1

N

N∑

n=1

log p
(
Y (n)|X(n); θ

)

=
1

N

N∑

n=1

T∑

t=1

log p
(
y
(n)
t |y

(n)
1:t−1, f

att
t (h

(n)
1:Ts

)
)

(1)

where at each step, f att
t builds the attention mech-

anism over the encoder’s output h1:Ts . More pre-
cisely, let the vocabulary size of source words as V

h1:Ts = f ext [ex1 , ..., exTs
]
, ex = EI(x) (2)

where EI ∈ RV×d is a look-up table of source
embeddings, assigning each individual word a
unique embedding vector; f ext is a sentence-
level feature extractor and is usually implemented
by a multi-layer bidirectional RNN (Bahdanau
et al., 2015; Wu et al., 2016), recent efforts also
achieved the state-of-the-art using non-recurrence
f ext, e.g. ConvS2S (Gehring et al., 2017) and Trans-
former (Vaswani et al., 2017).

Extremely Low-Resource NMT Both θe and θd
should be trained to converge using parallel training
examples. However, the performance is highly
correlated to the amount of training data. As shown
in Figure. 1, the system cannot achieve reasonable
translation quality when the number of the parallel

examples is extremely small (N ≈ 13k sentences,
or not available at all N = 0).

Multi-lingual NMT Lee et al. (2017) and John-
son et al. (2017) have shown that NMT is quite
efficient for multilingual machine translation. As-
suming the translation from K source languages
into one target language, a system is trained with
maximum likelihood on the mixed parallel pairs
{X(n,k), Y (n,k)}n=1...Nk

k=1...K , that is

L (θ) = 1

N

K∑

k=1

Nk∑

n=1

log p
(
Y (n,k)|X(n,k); θ

)
(3)

where N =
∑K

k=1Nk. As the input layer, the sys-
tem assumes a multilingual vocabulary which is
usually the union of all source language vocabular-
ies with a total size as V =

∑K
k=1 Vk. In practice,

it is essential to shuffle the multilingual sentence
pairs into mini-batches so that different languages
can be trained equally. Multi-lingual NMT is quite
appealing for low-resource languages; several pa-
pers highlighted the characteristic that make it a
good fit for that such as Lee et al. (2017), John-
son et al. (2017), Zoph et al. (2016) and Firat et al.
(2016). Multi-lingual NMT utilizes the training
examples of multiple languages to regularize the
models avoiding over-fitting to the limited data of
the smaller languages. Moreover, the model trans-
fers the translation knowledge from high-resource
languages to low-resource ones. Finlay, the de-
coder part of the model is sufficiently trained since
it shares multilingual examples from all languages.

2.1 Challenges
Despite the success of training multi-lingual NMT
systems; there are a couple of challenges to lever-
age them for zero-resource languages:

Lexical-level Sharing Conventionally, a multi-
lingual NMT model has a vocabulary that repre-
sents the union of the vocabularies of all source
languages. Therefore, the multi-lingual words do
not practically share the same embedding space
since each word has its own representation. This
does not pose a problem for languages with suf-
ficiently large amount of data, yet it is a major
limitation for extremely low resource languages
since most of the vocabulary items will not have
enough, if any, training examples to get a reliably
trained models.

A possible solution is to share the surface form
of all source languages through sharing sub-units
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such as subwords (Sennrich et al., 2016b) or char-
acters (Kim et al., 2016; Luong and Manning, 2016;
Lee et al., 2017). However, for an arbitrary low-
resource language we cannot assume significant
overlap in the lexical surface forms compared to
the high-resource languages. The low-resource lan-
guage may not even share the same character set as
any high-resource language. It is crucial to create a
shared semantic representation across all languages
that does not rely on surface form overlap.

Sentence-level Sharing It is also crucial for low-
resource languages to share source sentence rep-
resentation with other similar languages. For ex-
ample, if a language shares syntactic order with
another language it should be feasible for the low-
resource language to share such representation with
another high recourse language. It is also important
to utilize monolingual data to learn such represen-
tation since the low or zero resource language may
have monolingual resources only.

3 Universal Neural Machine Translation

We propose a Universal NMT system that is fo-
cused on the scenario where minimal parallel sen-
tences are available. As shown in Fig. 2, we intro-
duce two components to extend the conventional
multi-lingual NMT system (Johnson et al., 2017):
Universal Lexical Representation (ULR) and Mix-
ture of Language Experts (MoLE) to enable both
word-level and sentence-level sharing, respectively.

3.1 Universal Lexical Representation (ULR)

As we highlighted above, it is not straightforward
to have a universal representation for all languages.
One potential approach is to use a shared source
vocabulary, but this is not adequate since it as-
sumes significant surface-form overlap in order
being able to generalize between high-resource and
low-resource languages. Alternatively, we could
train monolingual embeddings in a shared space
and use these as the input to our MT system. How-
ever, since these embeddings are trained on a mono-
lingual objective, they will not be optimal for an
NMT objective. If we simply allow them to change
during NMT training, then this will not generalize
to the low-resource language where many of the
words are unseen in the parallel data. Therefore,
our goal is to create a shared embedding space
which (a) is trained towards NMT rather than a
monolingual objective, (b) is not based on lexical

surface forms, and (c) will generalize from the high-
resource languages to the low-resource language.

We propose a novel representation for multi-
lingual embedding where each word from any lan-
guage is represented as a probabilistic mixture of
universal-space word embeddings. In this way, se-
mantically similar words from different languages
will naturally have similar representations. Our
method achieves this utilizing a discrete (but proba-
bilistic) “universal token space”, and then learning
the embedding matrix for these universal tokens
directly in our NMT training.

Lexicon Mapping to the Universal Token Space
We first define a discrete universal token set of size
M into which all source languages will be pro-
jected. In principle, this could correspond to any
human or symbolic language, but all experiments
here use English as the basis for the universal token
space. As shown in Figure 2, we have multiple em-
bedding representations. EQ is language-specific
embedding trained on monolingual data and EK is
universal tokens embedding. The matrices EK and
EQ are created beforehand and are not trainable
during NMT training. EU is the embedding matrix
for these universal tokens which is learned during
our NMT training. It is worth noting that shaded
parts in Figure2 are trainable during NMT training
process.

Therefore, each source word ex is represented
as a mixture of universal tokens M of EU .

ex =

M∑

i=1

EU (ui) · q(ui|x) (4)

where EU is an NMT embedding matrix, which is
learned during NMT training.

The mapping q projects the multilingual words
into the universal space based on their semantic
similarity. That is, q(u|x) is a distribution based
on the distance Ds(u, x) between u and x as:

q(ui|x) =
eD(ui,x)/τ

∑
uj
eD(uj ,x)/τ

(5)

where τ is a temperature and D(ui, x) is a scalar
score which represents the similarity between
source word x and universal token ui:

D(u, x) = EK(u) ·A · EQ(x)T (6)

where EK(u) is the “key” embedding of word u,
EQ(x) is the “query” embedding of source word x.
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Figure 2: An illustration of the proposed architecture of the ULR and MoLE. Shaded parts are trained within
NMT model while unshaded parts are not changed during training.

The transformation matrixA, which is initialized to
the identity matrix, is learned during NMT training
and shared across all languages.

This is a key-value representation, where the
queries are the monolingual language-specific em-
bedding, the keys are the universal tokens embed-
dings and the values are a probabilistic distribution
over the universal NMT embeddings. This can rep-
resent unlimited multi-lingual vocabulary that has
never been observed in the parallel training data. It
is worth noting that the trainable transformation ma-
trix A is added to the query matching mechanism
with the main purpose to tune the similarity scores
towards the translation task. A is shared across all
languages and optimized discriminatively during
NMT training such that the system can fine-tune
the similarity score q() to be optimal for NMT.

Shared Monolingual Embeddings In general,
we create one EQ matrix per source language, as
well as a single EK matrix in our universal token
language. For Equation 6 to make sense and gener-
alize across language pairs, all of these embedding
matrices must live in a similar semantic space. To
do this, we first train off-the-shelf monolingual
word embeddings in each language, and then learn
one projection matrix per source language which
maps the original monolingual embeddings into
EK space. Typically, we need a list of source
word - universal token pairs (seeds Sk) to train the
projection matrix for language k. Since vectors
are normalized, learning the optimal projection is
equivalent to finding an orthogonal transformation
Ok that makes the projected word vectors as close

as to its corresponded universal tokens:

max
Ok

∑

(x̃,ỹ)∈Sk

(
EQk(x̃) ·Ok

)
· EK(ỹ)T

s.t. OTk Ok = I, k = 1, ...,K

(7)

which can be solved by SVD decomposition based
on the seeds (Smith et al., 2017). In this paper, we
chose to use a short list of seeds from automatic
word-alignment of parallel sentences to learn the
projection. However, recent efforts (Artetxe et al.,
2017; Conneau et al., 2018) also showed that it is
possible to learn the transformation without any
seeds, which makes it feasible for our proposed
method to be utilized in purely zero parallel re-
source cases.

It is worth noting that Ok is a language-specific
matrix which maps the monolingual embeddings of
each source language into a similar semantic space
as the universal token language.

Interpolated Embeddings Certain lexical cate-
gories (e.g. function words) are poorly captured
by Equation 4. Luckily, function words often have
very high frequency, and can be estimated robustly
from even a tiny amount of data. This motivates
an interpolated ex where embeddings for very fre-
quent words are optimized directly and not through
the universal tokens:

α(x)EI(x) + β(x)
M∑

i=1

EU (ui) · q(ui|x) (8)

Where EI(x) is a language-specific embedding of
word x which is optimized during NMT training.
In general, we set α(x) to 1.0 for the top k most
frequent words in each language, and 0.0 otherwise,

347



where k is set to 500 in this work. It is worth noting
that we do not use an absolute frequency cutoff
because this would cause a mismatch between high-
resource and low-resource languages, which we
want to avoid. We keep β(x) fixed to 1.0.

An Example To give a concrete example, imag-
ine that our target language is English (En), our
high-resource auxiliary source languages are Span-
ish (Es) and French (Fr), and our low-resource
source language is Romanian (Ro). En is also
used for the universal token set. We assume to
have 10M+ parallel Es-En and Fr-En, and a few
thousand in Ro-En. We also have millions of mono-
lingual sentences in each language.

We first train word2vec embeddings on mono-
lingual corpora from each of the four languages.
We next align the Es-En, Fr-En, and Ro-En paral-
lel corpora and extract a seed dictionary of a few
hundred words per language, e.g., gato → cat,
chien → dog. We then learn three matrices
O1, O2, O3 to project the Es, Fr and Ro embed-
dings (EQ1 , EQ2 , EQ3), into En (EK) based on
these seed dictionaries. At this point, Equation 5
should produce reasonable alignments between the
source languages and En, e.g., q(horse|magar) =
0.5, q(donkey|magar) = 0.3, q(cow|magar) =
0.2, where magar is the Ro word for donkey.

3.2 Mixture of Language Experts (MoLE)

As we paved the road for having a universal embed-
ding representation; it is crucial to have a language-
sensitive module for the encoder that would help in
modeling various language structures which may
vary between different languages. We propose a
Mixture of Language Experts (MoLE) to model
the sentence-level universal encoder. As shown in
Fig. 2, an additional module of mixture of experts
is used after the last layer of the encoder. Similar to
(Shazeer et al., 2017), we have a set of expert net-
works and a gating network to control the weight
of each expert. More precisely, we have a set of ex-
pert networks as f1(h), ..., fK(h) where for each
expert, a two-layer feed-forward network which
reads the output hidden states h of the encoder is
utilized. The output of the MoLE module h′ will
be a weighted sum of these experts to replace the
encoder’s representation:

h′ =
K∑

k=1

fk(h) · softmax(g(h))k, (9)

where an one-layer feed-forward network g(h) is
used as a gate to compute scores for all the experts.

In our case, we create one expert per auxiliary
language. In other words, we train to only use
expert fi when training on a parallel sentence from
auxiliary language i. Assume the language 1...K−
1 are the auxiliary languages. That is, we have a
multi-task objective as:

Lgate =
K−1∑

k=1

Nk∑

n=1

log [softmax (g(h))k] (10)

We do not update the MoLE module for training
on a sentence from the low-resource language. In-
tuitively, this allows us to represent each token in
the low-resource language as a context-dependent
mixture of the auxiliary language experts.

4 Experiments

We extensively study the effectiveness of the pro-
posed methods by evaluating on three “almost-zero-
resource” language pairs with variant auxiliary lan-
guages. The vanilla single-source NMT and the
multi-lingual NMT models are used as baselines.

4.1 Settings

Dataset We empirically evaluate the proposed
Universal NMT system on 3 languages – Roma-
nian (Ro) / Latvian (Lv) / Korean (Ko) – translating
to English (En) in near zero-resource settings. To
achieve this, single or multiple auxiliary languages
from Czech (Cs), German (De), Greek (El), Span-
ish (Es), Finnish (Fi), French (Fr), Italian (It), Por-
tuguese (Pt) and Russian (Ru) are jointly trained.
The detailed statistics and sources of the available
parallel resource can be found in Table 1, where we
further down-sample the corpora for the targeted
languages to simulate zero-resource.

It also requires additional large amount of mono-
lingual data to obtain the word embeddings for
each language, where we use the latest Wikipedia
dumps 5 for all the languages. Typically, the mono-
lingual corpora are much larger than the parallel
corpora. For validation and testing, the standard
validation and testing sets are utilized for each tar-
geted language.

1http://www.statmt.org/wmt16/translation-task.html
2https://sites.google.com/site/koreanparalleldata/
3http://www.statmt.org/europarl/
4http://opus.lingfil.uu.se/MultiUN.php (subset)
5https://dumps.wikimedia.org/
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Zero-Resource Translation Auxiliary High-Resource Translation
source Ro Ko Lv Cs De El Es Fi Fr It Pt Ru
corpora WMT161 KPD2 Europarl v83 UN 4

size 612k 97k 638k 645k 1.91m 1.23m 1.96m 1.92m 2.00m 1.90m 1.96m 11.7m
subset 0/6k/60k 10k 6k / 2.00m

Table 1: Statistics of the available parallel resource in our experiments. All the languages are translated to English.

Preprocessing All the data (parallel and mono-
lingual) have been tokenized and segmented
into subword symbols using byte-pair encoding
(BPE) (Sennrich et al., 2016b). We use sentences
of length up to 50 subword symbols for all lan-
guages. For each language, a maximum number
of 40, 000 BPE operations are learned and applied
to restrict the size of the vocabulary. We concate-
nate the vocabularies of all source languages in
the multilingual setting where special a “language
marker " have been appended to each word so that
there will be no embedding sharing on the surface
form. Thus, we avoid sharing the representation of
words that have similar surface forms though with
different meaning in various languages.

Architecture We implement an attention-based
neural machine translation model which consists
of a one-layer bidirectional RNN encoder and a
two-layer attention-based RNN decoder. All RNNs
have 512 LSTM units (Hochreiter and Schmidhu-
ber, 1997). Both the dimensions of the source and
target embedding vectors are set to 512. The di-
mensionality of universal embeddings is also the
same. For a fair comparison, the same architec-
ture is also utilized for training both the vanilla and
multilingual NMT systems. For multilingual exper-
iments, 1 ∼ 5 auxiliary languages are used. When
training with the universal tokens, the temperature
τ (in Eq. 6) is fixed to 0.05 for all the experiments.

Learning All the models are trained to maximize
the log-likelihood using Adam (Kingma and Ba,
2014) optimizer for 1 million steps on the mixed
dataset with a batch size of 128. The dropout rates
for both the encoder and the decoder is set to 0.4.
We have open-sourced an implementation of the
proposed model. 6

4.2 Back-Translation
We utilize back-translation (BT) (Sennrich et al.,
2016a) to encourage the model to use more in-
formation of the zero-resource languages. More
concretely, we build the synthetic parallel corpus

6https://github.com/MultiPath/NA-
NMT/tree/universal_translation

by translating on monolingual data7 with a trained
translation system and use it to train a backward
direction translation model. Once trained, the same
operation can be used on the forward direction.
Generally, BT is difficult to apply for zero resource
setting since it requires a reasonably good trans-
lation system to generate good quality synthetic
parallel data. Such a system may not be feasible
with tiny or zero parallel data. However, it is possi-
ble to start with a trained multi-NMT model.

4.3 Preliminary Experiments

Training Monolingual Embeddings We
train the monolingual embeddings using
fastText8 (Bojanowski et al., 2017) over the
Wikipedia corpora of all the languages. The
vectors are set to 300 dimensions, trained using the
default setting of skip-gram . All the vectors are
normalized to norm 1.

Pre-projection In this paper, the pre-projection
requires initial word alignments (seeds) between
words of each source language and the universal
tokens. More precisely, for the experiments of
Ro/Ko/Lv-En, we use the target language (En) as
the universal tokens; fast_align9 is used to
automatically collect the aligned words between
the source languages and English.

5 Results

We show our main results of multiple source lan-
guages to English with different auxiliary lan-
guages in Table 2. To have a fair comparison, we
use only 6k sentences corpus for both Ro and Lv
with all the settings and 10k for Ko. It is obvious
that applying both the universal tokens and mixture
of experts modules improve the overall translation
quality for all the language pairs and the improve-
ments are additive.

To examine the influence of auxiliary languages,
we tested four sets of different combinations of aux-
iliary languages for Ro-En and two sets for Lv-En.

7We used News Crawl provided by WMT16 for Ro-En.
8https://github.com/facebookresearch/fastText
9https://github.com/clab/fast_align
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Figure 3: BLEU score vs corpus size
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Figure 4: BLEU score vs unknown tokens

Src Aux Multi +ULR + MoLE

Ro

Cs De El Fi 18.02 18.37
Cs De El Fr 19.48 19.52
De El Fi It 19.11 19.33
Es Fr It Pt 14.83 20.01 20.51

Lv
Es Fr It Pt 7.68 10.86 11.02

Es Fr It Pt Ru 7.88 12.40 13.16
Ko Es Fr It Pt 2.45 5.49 6.14

Table 2: Scores over variant source languages (6k sen-
tences for Ro & Lv, and 10k for Ko). “Multi" means
the Multi-lingual NMT baseline.

It shows that Ro performs best when the auxiliary
languages are all selected in the same family (Ro,
Es, Fr, It and Pt are all from the Romance family of
European languages) which makes sense as more
knowledge can be shared across the same family.
Similarly, for the experiment of Lv-En, improve-
ments are also observed when adding Ru as addi-
tional auxiliary language as Lv and Ru share many
similarities because of the geo-graphical influence
even though they don’t share the same alphabet.

We also tested a set of Ko-En experiments to ex-
amine the generalization capability of our approach
on non-European languages while using languages
of Romance family as auxiliary languages. Al-
though the BLEU score is relatively low, the pro-
posed methods can consistently help translating
less-related low-resource languages. It is more
reasonable to have similar languages as auxiliary
languages.

5.1 Ablation Study

We perform thorough experiments to examine ef-
fectiveness of the proposed method; we do ablation
study on Ro-En where all the models are trained

Models BLEU
Vanilla 1.21
Multi-NMT 14.94
Closest Uni-Token Only 5.83
Multi-NMT + ULR + (A=I) 18.61
Multi-NMT + ULR 20.01
Multi-NMT + BT 17.91
Multi-NMT + ULR + BT 22.35
Multi-NMT + ULR + MoLE 20.51
Multi-NMT + ULR + MoLE + BT 22.92
Full data (612k) NMT 28.34

Table 3: BLEU scores evaluated on test set (6k), com-
pared with ULR and MoLE. “vanilla" is the standard
NMT system trained only on Ro-En training set

based on the same Ro-En corpus with 6k sentences.
As shown in Table 3, it is obvious that 6k sen-

tences of parallel corpora completely fails to train a
vanilla NMT model. Using Multi-NMT with the as-
sistance of 7.8M auxiliary language sentence pairs,
Ro-En translation performance gets a substantial
improvement which, however, is still limited to be
usable. By contrast, the proposed ULR boosts the
Multi-NMT significantly with +5.07 BLEU, which
is further boosted to +7.98 BLEU when incorporat-
ing sentence-level information using both MoLE
and BT. Furthermore, it is also shown that ULR
works better when a trainable transformation ma-
trix A is used (4th vs 5th row in the table). Note
that, although still 5 ∼ 6 BLEU scores lower than
the full data (×100 large) model.

We also measure the translation quality of sim-
ply training the vanilla system while replacing each
token of the Ro sentence with its closet universal
token in the projected embedding space, consid-
ering we are using the target languages (En) as
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the universal tokens. Although the performance is
much worse than the baseline Multi-NMT, it still
outperforms the vanilla model which implies the
effectiveness of the embedding alignments.

Monolingual Data In Table. 3, we also showed
the performance when incorporating the mono-
lingual Ro corpora to help the UniNMT training
in both cases with and without ULR. The back-
translation improves in both cases, while the ULR
still obtains the best score which indicates that the
gains achieved are additive.

Corpus Size As shown in Fig. 3, we also evalu-
ated our methods with varied sizes – 0k10, 6k, 60k
and 600k – of the Ro-En corpus. The vanilla NMT
and the multi-lingual NMT are used as baselines. It
is clear in all cases that the performance gets better
when the training corpus is larger. However, the
multilingual with ULR works much better with a
small amount of training examples. Note that, the
usage of ULR universal tokens also enables us to
directly work on a “pure zero" resource translation
with a shared multilingual NMT model.

Unknown Tokens One explanation on how ULR
help the translation for almost zero resource lan-
guages is it greatly cancel out the effects of missing
tokens that would cause out-of-vocabularies during
testing. As in Fig. 4, the translation performance
heavily drops when it has more “unknown" which
cannot be found in the given 6k training set, espe-
cially for the typical multilingual NMT. Instead,
these “unknown" tokens will naturally have their
embeddings based on ULR projected universal to-
kens even if we never saw them in the training set.
When we apply back-translation over the monolin-
gual data, the performance further improves which
can almost catch up with the model trained with
60k data.

5.2 Qualitative Analysis

Examples Figure 5 shows some cherry-picked
examples for Ro-En. Example (a) shows how the
lexical selection get enriched when introducing
ULR (Lex-6K) as well as when adding Back Trans-
lation (Lex-6K-BT). Example (b) shows the effect
of using romance vs non-romance languages as the
supporting languages for Ro. Example (c) shows
the importance of having a trainable A as have

10For 0k experiments, we used the pre-projection learned
from 6k data. It is also possible to use unsupervised learned
dictionary.

been discussed; without trainable A the model con-
fuses "india" and "china" as they may have close
representation in the mono-lingual embeddings.

Visualization of MoLE Figure 6 shows the ac-
tivations along with the same source sentence
with various auxiliary languages. It is clear that
MoLE is effectively switching between the ex-
perts when dealing with zero-resource language
words. For this particular example of Ro, we can
see that the system is utilizing various auxiliary
languages based on their relatedness to the source
language. We can approximately rank the related-
ness based of the influence of each language. For
instance, the influence can be approximately ranked
as Es ≈ Pt > Fr ≈ It > Cs ≈ El > De > Fi,
which is interestingly close to the grammatical re-
latedness of Ro to these languages. On the other
hand, Cs has a strong influence although it does not
fall in the same language family with Ro, we think
this is due to the geo-graphical influence between
the two languages since Cs and Ro share similar
phrases and expressions. This shows that MoLE
learns to utilize resources from similar languages.

5.3 Fine-tuning a Pre-trained Model

All the described experiments above had the low
resource languages jointly trained with all the auxil-
iary high-resource languages, where the training of
the large amount of high-resource languages can be
seen as a sort of regularization. It is also common to
train a model on high-resource languages first, and
then fine-tune the model on a small resource lan-
guage similar to transfer learning approaches (Zoph
et al., 2016). However, it is not trivial to effectively
fine-tune NMT models on extremely low resource
data since the models easily over-fit due to over-
parameterization of the neural networks.

In this experiment, we have explored the fine-
tuning tasks using our approach. First, we train
a Multi-NMT model (with ULR) on {Es, Fr, It,
Pt}-En languages only to create a zero-shot setting
for Ro-En translation. Then, we start fine-tuning
the model with 6k parallel corpora of Ro-En, with
and without ULR. As shown in Fig. 7, both models
improve a lot over the baseline. With the help of
ULR, we can achieve a BLEU score of around 10.7
(also shown in Fig. 3) for Ro-En translation with
“zero-resource" translation. The BLEU score can
further improve to almost 20 BLEU after 3 epochs
of training on 6k sentences using ULR. This is
almost 6 BLEU higher than the best score of the
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(a)	 Source	 situatia	este	putin	diferita	atunci	cand	sunt	analizate	separat	raspunsurile	barbatilor	si	ale	femeilor	.	 	
	 Reference	 the	situation	is	slightly	different	when	responses	are	analysed	separately	for	men	and	women	.	 	
	 Mul-6k	 the	situation	is	less	different	when	it	comes	to	issues	of	men	and	women	.	 	
	 Mul-60k	 the	situation	is	at	least	different	when	it	is	weighed	up	separately	by	men	and	women	.	 	
	 Lex-6k	 the	situation	is	somewhat	different	when	we	have	a	separate	analysis	of	women	‘s	and	women	‘s	responses	.	 	
	 Lex-6k	+BT	 the	situation	is	slightly	different	when	it	is	analysed	separately	from	the	responses	of	men	and	women	.	 	

(b)	 Source	 ce	nu	stim	este	in	cat	timp	se	va	intampla	si	cat	va	dura	.	 	
	 Reference	 what	we	don	'	t	know	is	how	long	all	of	that	will	take	and	how	long	it	will	last	.	 	
	 Lex	(Romance)	 what	we	do	not	know	is	how	long	it	will	be	and	how	long	it	will	take	.	 	
	 Lex	(Non-Rom)	 what	we	know	is	as	long	as	it	will	happen	and	how	it	will	go	 	

(c)	 Source	 limita	de	greutate	pentru	acestea	dateaza	din	anii	'	80	,	cand	air	india	a	inceput	sa	foloseasca	grafice	cu	greutatea	si	inaltimea	ideale	.	 	
	 Reference	 he	weight	limit	for	them	dates	from	the	'	80s	,	when	air	india	began	using	ideal	weight	and	height	graphics	.	 	
	 Lex	(A	=	I)	 the	weight	limit	for	these	dates	back	from	the	1960s	,	when	the	chinese	air	began	to	use	physiars	with	weight	and	the	right	height	.	 	
	 Lex	 the	weight	limit	for	these	dates	dates	from	the	1980s	,	when	air	india	began	to	use	the	standard	of	its	standard	and	height	.	 	

Figure 5: Three sets of examples on Ro-En translation with variant settings.

Figure 6: The activation visualization of mixture of language experts module on one randomly selected Ro source
sentences trained together with different auxiliary languages. Darker color means higher activation score.

Figure 7: Performance comparison of Fine-tuning on
6K RO sentences.

baseline. It is worth noting that this fine-tuning is a
very efficient process since it only takes less than 2
minutes to train for 3 epochs over such tiny amount
of data. This is very appealing for practical applica-
tions where adapting a per-trained system on-line
is a big advantage. As a future work, we will fur-
ther investigate a better fine-tuning strategy such as
meta-learning (Finn et al., 2017) using ULR.

6 Related Work

Multi-lingual NMT has been extensively studied in
a number of papers such as Lee et al. (2017), John-
son et al. (2017), Zoph et al. (2016) and Firat et al.

(2016). As we discussed, these approaches have
significant limitations with zero-resource cases.
Johnson et al. (2017) is more closely related to
our current approach, our work is extending it to
overcome the limitations with very low-resource
languages and enable sharing of lexical and sen-
tence representation across multiple languages.

Two recent related works are targeting the same
problem of minimally supervised or totally un-
supervised NMT. Artetxe et al. (2018) proposed
a totally unsupervised approach depending on
multi-lingual embedding similar to ours and dual-
learning and reconstruction techniques to train the
model from mono-lingual data only. Lample et al.
(2018) also proposed a quite similar approach while
utilizing adversarial learning.

7 Conclusion

In this paper, we propose a new universal ma-
chine translation approach that enables sharing re-
sources between high resource languages and ex-
tremely low resource languages. Our approach is
able to achieve 23 BLEU on Romanian-English
WMT2016 using a tiny parallel corpus of 6k sen-
tences, compared to the 18 BLEU of strong multi-
lingual baseline system.
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Abstract

There has been much recent work on train-
ing neural attention models at the sequence-
level using either reinforcement learning-style
methods or by optimizing the beam. In this
paper, we survey a range of classical objec-
tive functions that have been widely used to
train linear models for structured prediction
and apply them to neural sequence to se-
quence models. Our experiments show that
these losses can perform surprisingly well by
slightly outperforming beam search optimiza-
tion in a like for like setup. We also report
new state of the art results on both IWSLT’14
German-English translation as well as Giga-
word abstractive summarization. On the large
WMT’14 English-French task, sequence-level
training achieves 41.5 BLEU which is on par
with the state of the art.1

1 Introduction

Sequence to sequence models are usually
trained with a simple token-level likelihood loss
(Sutskever et al., 2014; Bahdanau et al., 2014).
However, at test time, these models do not pro-
duce a single token but a whole sequence. In order
to resolve this inconsistency and to potentially
improve generation, recent work has focused
on training these models at the sequence-level,
for instance using REINFORCE (Ranzato et al.,
2015), actor-critic (Bahdanau et al., 2016), or with
beam search optimization (Wiseman and Rush,
2016).

Before the recent work on sequence level train-
ing for neural networks, there has been a large
body of research on training linear models at the

∗Equal contribution.
1An implementation of the losses is available

as part of fairseq at https://github.com/
facebookresearch/fairseq-py/tree/
classic_seqlevel

sequence level. For example, direct loss opti-
mization has been popularized in machine transla-
tion with the Minimum Error Rate Training algo-
rithm (MERT; Och 2003) and expected risk min-
imization has an extensive history in NLP (Smith
and Eisner, 2006; Rosti et al., 2010; Green et al.,
2014). This paper revisits several objective func-
tions that have been commonly used for structured
prediction tasks in NLP (Gimpel and Smith, 2010)
and apply them to a neural sequence to sequence
model (Gehring et al., 2017b) (§2). Specifically,
we consider likelihood training at the sequence-
level, a margin loss as well as expected risk train-
ing. We also investigate several combinations of
global losses with token-level likelihood. This is,
to our knowledge, the most comprehensive com-
parison of structured losses in the context of neural
sequence to sequence models (§3).

We experiment on the IWSLT’14 German-
English translation task (Cettolo et al., 2014) as
well as the Gigaword abstractive summarization
task (Rush et al., 2015). We achieve the best re-
ported accuracy to date on both tasks. We find
that the sequence level losses we survey perform
similarly to one another and outperform beam
search optimization (Wiseman and Rush, 2016) on
a comparable setup. On WMT’14 English-French,
we also illustrate the effectiveness of risk mini-
mization on a larger translation task. Classical
losses for structured prediction are still very com-
petitive and effective for neural models (§5, §6).

2 Sequence to Sequence Learning

The general architecture of our sequence to se-
quence models follows the encoder-decoder ap-
proach with soft attention first introduced in (Bah-
danau et al., 2014). As a main difference, in
most of our experiments we parameterize the en-
coder and the decoder as convolutional neural
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networks instead of recurrent networks (Gehring
et al., 2017a,b). Our use of convolution is mo-
tivated by computational and accuracy considera-
tions. However, the objective functions we present
are model agnostic and equally applicable to re-
current and convolutional models. We demon-
strate the applicability of our objective functions
to recurrent models (LSTM) in our comparison to
Wiseman and Rush (2016) in §6.6.

Notation. We denote the source sentence as x, an
output sentence of our model as u, and the refer-
ence or target sentence as t. For some objectives,
we choose a pseudo reference u∗ instead, such as
a model output with the highest BLEU or ROUGE
score among a set of candidate outputs, U , gener-
ated by our model.

Concretely, the encoder processes a source sen-
tence x = (x1, . . . , xm) containing m words and
outputs a sequence of states z = (z1. . . . , zm).
The decoder takes z and generates the output se-
quence u = (u1, . . . , un) left to right, one element
at a time. For each output ui, the decoder com-
putes hidden state hi based on the previous state
hi−1, an embedding gi−1 of the previous target
language word ui−1, as well as a conditional in-
put ci derived from the encoder output z. The at-
tention context ci is computed as a weighted sum
of (z1, . . . , zm) at each time step. The weights
of this sum are referred to as attention scores and
allow the network to focus on the most relevant
parts of the input at each generation step. Atten-
tion scores are computed by comparing each en-
coder state zj to a combination of the previous de-
coder state hi and the last prediction ui; the result
is normalized to be a distribution over input ele-
ments. At each generation step, the model scores
for the V possible next target words ui by trans-
forming the decoder output hi via a linear layer
with weights Wo and bias bo: si = Wohi + bo.
This is turned into a distribution via a softmax:
p(ui|u1, . . . , ui−1,x) = softmax(si).

Our encoder and decoder use gated convolu-
tional neural networks which enable fast and accu-
rate generation (Gehring et al., 2017b). Fast gener-
ation is essential to efficiently train on the model
output as is done in this work as sequence-level
losses require generating at training time. Both en-
coder and decoder networks share a simple block
structure that computes intermediate states based
on a fixed number of input tokens and we stack
several blocks on top of each other. Each block

contains a 1-D convolution that takes as input k
feature vectors and outputs another vector; sub-
sequent layers operate over the k output elements
of the previous layer. The output of the convolu-
tion is then fed into a gated linear unit (Dauphin
et al., 2017). In the decoder network, we rely
on causal convolution which rely only on states
from the previous time steps. The parameters θ of
our model are all the weight matrices in the en-
coder and decoder networks. Further details can
be found in Gehring et al. (2017b).

3 Objective Functions

We compare several objective functions for train-
ing the model architecture described in §2. The
corresponding loss functions are either computed
over individual tokens (§3.1), over entire se-
quences (§3.2) or over a combination of tokens
and sequences (§3.3). An overview of these loss
functions is given in Figure 1.

3.1 Token-Level Objectives
Most prior work on sequence to sequence learning
has focused on optimizing token-level loss func-
tions, i.e., functions for which the loss is computed
additively over individual tokens.

Token Negative Log Likelihood (TokNLL)
Token-level likelihood (TokNLL, Equation 1)
minimizes the negative log likelihood of individ-
ual reference tokens t = (t1, . . . , tn). It is the
most common loss function optimized in related
work and serves as a baseline for our comparison.

Token NLL with Label Smoothing (TokLS)
Likelihood training forces the model to make ex-
treme zero or one predictions to distinguish be-
tween the ground truth and alternatives. This may
result in a model that is too confident in its training
predictions, which may hurt its generalization per-
formance. Label smoothing addresses this by act-
ing as a regularizer that makes the model less con-
fident in its predictions. Specifically, we smooth
the target distribution with a prior distribution f
that is independent of the current input x (Szegedy
et al., 2015; Pereyra et al., 2017; Vaswani et al.,
2017). We use a uniform prior distribution over
all words in the vocabulary, f = 1

V . One may also
use a unigram distribution which has been shown
to work better on some tasks (Pereyra et al., 2017).
Label smoothing is equivalent to adding the KL
divergence between f and the model prediction
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LTokNLL =−
n∑

i=1

log p(ti|t1, . . . , ti−1,x) (1)

LTokLS =−
n∑

i=1

log p(ti|t1, . . . , ti−1,x)−DKL(f‖p(ti|t1, . . . , ti−1,x)) (2)

LSeqNLL =− log p(u∗|x) + log
∑

u∈U(x)
p(u|x) (3)

LRisk =
∑

u∈U(x)
cost(t,u)

p(u|x)∑
u′∈U(x) p(u

′|x)
(4)

LMaxMargin = max [0, cost(t, û)− cost(t,u∗)− s(u∗|x) + s(û|x)] (5)

LMultiMargin =
∑

u∈U(x)
max [0, cost(t,u)− cost(t,u∗)− s(u∗|x) + s(u|x)] (6)

LSoftmaxMargin =− log p(u∗|x) + log
∑

u∈U(x)
exp [s(u|x) + cost(t,u)] (7)

Figure 1: Token and sequence negative log-likelihood (Equations 1 and 3), token-level label smoothing (Equa-
tion 2), expected risk (Equation 4), max-margin (Equation 5), multi-margin (Equation 6), softmax-margin (Equa-
tion 7). We denote the source as x, the reference target as t, the set of candidate outputs as U and the best candidate
(pseudo reference) as u∗. For max-margin we denote the candidate with the highest model score as û.

p(u|x) to the negative log likelihood (TokLS,
Equation 2). In practice, we implement label
smoothing by modifying the ground truth distribu-
tion for word u to be q(u) = 1− ε and q(u′) = ε

V
for u′ 6= u instead of q(u) = 1 and q(u′) = 0
where ε is a smoothing parameter.

3.2 Sequence-Level Objectives

We also consider a class of objective functions
that are computed over entire sequences, i.e.,
sequence-level objectives. Training with these
objectives requires generating and scoring multi-
ple candidate output sequences for each input se-
quence during training, which is computationally
expensive but allows us to directly optimize task-
specific metrics such as BLEU or ROUGE.

Unfortunately, these objectives are also typi-
cally defined over the entire space of possible out-
put sequences, which is intractable to enumerate
or score with our models. Instead, we compute
our sequence losses over a subset of the output
space, U(x), generated by the model. We discuss
approaches for generating this subset in §4.

Sequence Negative Log Likelihood (SeqNLL)
Similar to TokNLL, we can minimize the negative
log likelihood of an entire sequence rather than in-
dividual tokens (SeqNLL, Equation 3). The log-

likelihood of sequence u is the sum of individual
token log probabilities, normalized by the number
of tokens to avoid bias towards shorter sequences:

p(u|x) = exp
1

n

n∑

i=1

log p(ui|u1, . . . , ui−1,x)

As target we choose a pseudo reference2 amongst
the candidates which maximizes either BLEU or
ROUGE with respect to t, the gold reference:

u∗(x) = arg max
u∈U(x)

BLEU(t,u)

As is common practice when computing BLEU at
the sentence-level, we smooth all initial counts to
one (except for unigram counts) so that the geo-
metric mean is not dominated by zero-valued n-
gram match counts (Lin and Och, 2004).

Expected Risk Minimization (Risk)
This objective minimizes the expected value of a
given cost function over the space of candidate se-
quences (Risk, Equation 4). In this work we use
task-specific cost functions designed to maximize
BLEU or ROUGE (Lin, 2004), e.g., cost(t,u) =

2Another option is to use the gold reference target, t, but
in practice this can lead to degenerate solutions in which the
model assigns low probabilities to nearly all outputs. This is
discussed further in §4.
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1−BLEU(t,u), for a given a candidate sequence
u and target t. Different to SeqNLL (§3.2), this
loss may increase the score of several candidates
that have low cost, instead of focusing on a sin-
gle sequence which may only be marginally bet-
ter than any alternatives. Optimizing this loss is
a particularly good strategy if the reference is not
always reachable, although compared to classical
phrase-based models, this is less of an issue with
neural sequence to sequence models that predict
individual words or even sub-word units.

The Risk objective is similar to the REIN-
FORCE objective used in Ranzato et al. (2015),
since both objectives optimize an expected cost or
reward (Williams, 1992). However, there are a few
important differences: (1) whereas REINFORCE
typically approximates the expectation with a sin-
gle sampled sequence, the Risk objective consid-
ers multiple sequences; (2) whereas REINFORCE
relies on a baseline reward3 to determine the sign
of the gradients for the current sequence, for the
Risk objective we instead estimate the expected
cost over a set of candidate output sequences (see
§4); and (3) while the baseline reward is different
for every word in REINFORCE, the expected cost
is the same for every word in risk minimization
since it is computed on the sequence level based
on the actual cost.

Max-Margin
MaxMargin (Equation 5) is a classical margin
loss for structured prediction (Taskar et al., 2003;
Tsochantaridis et al., 2005) which enforces a mar-
gin between the model scores of the highest scor-
ing candidate sequence û and a reference se-
quence. We replace the human reference t with a
pseudo-reference u∗ since this setting performed
slightly better in early experiments; u∗ is the can-
didate sequence with the highest BLEU score. The
size of the margin varies between samples and is
given by the difference between the cost of u∗ and
the cost of û. In practice, we scale the margin
by a hyper-parameter β determined on the valida-
tion set: β(cost(t, û)− cost(t,u∗)). For this loss
we use the unnormalized scores computed by the
model before the final softmax:

s(u|x) =
1

n

n∑

i=1

s(ui|u1, . . . , ui−1,x)

3Ranzato et al. (2015) estimate the baseline reward
for REINFORCE with a separate linear regressor over the
model’s current hidden state.

Multi-Margin
MaxMargin only updates two elements in
the candidate set. We therefore consider
MultiMargin (Equation 6) which enforces a
margin between every candidate sequence u and a
reference sequence (Herbrich et al., 1999), hence
the name Multi-Margin. Similar to MaxMargin,
we replace the reference t with the pseudo-
reference u∗.

Softmax-Margin
Finally, SoftmaxMargin (Equation 7) is an-
other classic loss that has been proposed by Gim-
pel and Smith (2010) as another way to optimize
task-specific costs. The loss augments the scores
inside the exp of SeqNLL (Equation 3) by a cost.
The intuition is that we want to penalize high cost
outputs proportional to their cost.

3.3 Combined Objectives
We also experiment with two variants of combin-
ing sequence-level objectives (§3.2) with token-
level objectives (§3.1). First, we consider a
weighted combination (Weighted) of both a
sequence-level and token-level objective (Wu
et al., 2016), e.g., for TokLS and Risk we have:

LWeighted = αLTokLS + (1− α)LRisk (8)

where α is a scaling constant that is tuned on a
held-out validation set.

Second, we consider a constrained combina-
tion (Constrained), where for any given in-
put we use either the token-level or sequence-level
loss, but not both. The motivation is to main-
tain good token-level accuracy while optimizing
on the sequence-level. In particular, a sample is
processed with the sequence loss if the token loss
under the current model is at least as good as the
token loss of a baseline model LbTokLS. Otherwise,
we update according to the token loss:

LConstrained =

{
LRisk LTokLS ≤ LbTokLS
LTokLS otherwise

(9)
In this work we use a fixed baseline model that was
trained with a token-level loss to convergence.

4 Candidate Generation Strategies

The sequence-level objectives we consider (§3.2)
are defined over the entire space of possible output
sequences, which is intractable to enumerate or
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score with our models. We therefore use a subset
of K candidate sequences U(x) = {u1, . . . , uK},
which we generate with our models.

We consider two search strategies for generat-
ing the set of candidate sequences. The first is
beam search, a greedy breadth-first search that
maintains a “beam” of the top-K scoring candi-
dates at each generation step. Beam search is the
de facto decoding strategy for achieving state-of-
the-art results in machine translation. The second
strategy is sampling (Chatterjee and Cancedda,
2010), which produces K independent output se-
quences by sampling from the model’s conditional
distribution. Whereas beam search focuses on
high probability candidates, sampling introduces
more diverse candidates (see comparison in §6.5).

We also consider both online and offline candi-
date generation settings in §6.4. In the online set-
ting, we regenerate the candidate set every time we
encounter an input sentence x during training. In
the offline setting, candidates are generated before
training and are never regenerated. Offline gen-
eration is also embarrassingly parallel because all
samples use the same model. The disadvantage is
that the candidates become stale. Our model may
perfectly be able to discriminate between them af-
ter only a single update, hindering the ability of
the loss to correct eventual search errors.4

Finally, while some past work has added the ref-
erence target to the candidate set, i.e., U ′(x) =
U(x) ∪ {t}, we find this can destabilize train-
ing since the model learns to assign low proba-
bilities nearly everywhere, ruining the candidates
generated by the model, while still assigning a
slightly higher score to the reference (cf. Shen
et al. (2016)). Accordingly we do not add the ref-
erence translation to our candidate sets.

5 Experimental Setup

5.1 Translation

We experiment on the IWSLT’14 German to En-
glish (Cettolo et al., 2014) task using a similar
setup as Ranzato et al. (2015), which allows us to
compare to other recent studies that also adopted
this setup, e.g., Wiseman and Rush (2016).5 The
training data consists of 160K sentence pairs and
the validation set comprises 7K sentences ran-

4We can mitigate this issue by regenerating infrequently,
i.e., once every b batches but we leave this to future work.

5Different to Ranzato et al. (2015) we train on sentences
of up to 175 rather than 50 tokens.

domly sampled and held-out from the train data.
We test on the concatenation of tst2010, tst2011,
tst2012, tst2013 and dev2010 which is of similar
size to the validation set. All data is lowercased
and tokenized with a byte-pair encoding (BPE) of
14,000 types (Sennrich et al., 2016) and we evalu-
ate with case-insensitive BLEU.

We also experiment on the much larger
WMT’14 English-French task. We remove sen-
tences longer than 175 words as well as pairs with
a source/target length ratio exceeding 1.5 resulting
in 35.5M sentence-pairs for training. The source
and target vocabulary is based on 40K BPE types.
Results are reported on both newstest2014 and a
validation set held-out from the training data com-
prising 26,658 sentence pairs.

We modify the fairseq-py toolkit to implement
the objectives described in §3.6 Our translation
models have four convolutional encoder layers and
three convolutional decoder layers with a kernel
width of 3 and 256 dimensional hidden states
and word embeddings. We optimize these mod-
els using Nesterov’s accelerated gradient method
(Sutskever et al., 2013) with a learning rate of
0.25 and momentum of 0.99. Gradient vectors are
renormalized to norm 0.1 (Pascanu et al., 2013).

We train our baseline token-level models for
200 epochs and then anneal the learning by shrink-
ing it by a factor of 10 after each subsequent
epoch until the learning rate falls below 10−4.
All sequence-level models are initialized with pa-
rameters of a token-level model before anneal-
ing. We then train sequence-level models for an-
other 10 to 20 epochs depending on the objective.
Our batches contain 8K tokens and we normal-
ize gradients by the number of non-padding to-
kens per mini-batch. We use weight normalization
for all layers except for lookup tables (Salimans
and Kingma, 2016). Besides dropout on the em-
beddings and the decoder output, we also apply
dropout to the input of the convolutional blocks at
a rate of 0.3 (Srivastava et al., 2014). We tuned
the various parameters above and report accuracy
on the test set by choosing the best configuration
based on the validation set.

We length normalize all scores and probabili-
ties in the sequence-level losses by dividing by the
number of tokens in the sequence so that scores
are comparable between different lengths. Ad-

6https://github.com/facebookresearch/
fairseq-py.
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ditionally, when generating candidate output se-
quences during training we limit the output se-
quence length to be less than 200 tokens for ef-
ficiency. We generally use 16 candidate sequences
per training example, except for the ablations
where we use 5 for faster experimental turnaround.

5.2 Abstractive Summarization

For summarization we use the Gigaword corpus as
training data (Graff et al., 2003) and pre-process it
identically to Rush et al. (2015) resulting in 3.8M
training and 190K validation examples. We evalu-
ate on a Gigaword test set of 2,000 pairs identical
to the one used by Rush et al. (2015) and report
F1 ROUGE similar to prior work. Our results are
in terms of three variants of ROUGE (Lin, 2004),
namely, ROUGE-1 (RG-1, unigrams), ROUGE-2
(RG-2, bigrams), and ROUGE-L (RG-L, longest-
common substring). Similar to Ayana et al. (2016)
we use a source and target vocabulary of 30k
words. Our models for this task have 12 layers
in the encoder and decoder each with 256 hidden
units and kernel width 3. We train on batches of
8,000 tokens with a learning rate of 0.25 for 20
epochs and then anneal as in §5.1.

6 Results

6.1 Comparison of Sequence Level Losses

First, we compare all objectives based on a
weighted combination with token-level label
smoothing (Equation 8). We also show the like-
lihood baseline (MLE) of Wiseman and Rush
(2016), their beam search optimization method
(BSO), the actor critic result of Bahdanau et al.
(2016) as well as the best reported result on this
dataset to date by Huang et al. (2017). We show
a like-for-like comparison to Wiseman and Rush
(2016) with a similar baseline model below (§6.6).

Table 1 shows that all sequence-level losses out-
perform token-level losses. Our baseline token-
level results are several points above other figures
in the literature and we further improve these re-
sults by up to 0.61 BLEU with Risk training.

6.2 Combination with Token-Level Loss

Next, we compare various strategies to com-
bine sequence-level and token-level objectives (cf.
§3.3). For these experiments we use 5 candi-
date sequences per training example for faster ex-
perimental turnaround. We consider Risk as

test std

MLE (W & R, 2016) [T] 24.03
BSO (W & R, 2016) [S] 26.36
Actor-critic (B, 2016) [S] 28.53
Huang et al. (2017) [T] 28.96
Huang et al. (2017) (+LM) [T] 29.16

TokNLL [T] 31.78 0.07
TokLS [T] 32.23 0.10

SeqNLL [S] 32.68 0.09
Risk [S] 32.84 0.08
MaxMargin [S] 32.55 0.09
MultiMargin [S] 32.59 0.07
SoftmaxMargin [S] 32.71 0.07

Table 1: Test accuracy in terms of BLEU on IWSLT’14
German-English translation with various loss functions
cf. Figure 1. W & R (2016) refers to Wiseman and
Rush (2016), B (2016) to Bahdanau et al. (2016), [S]
indicates sequence level-training and [T] token-level
training. We report averages and standard deviations
over five runs with different random initialization.

valid test

TokLS 33.11 32.21
Risk only 33.55 32.45

Weighted 33.91 32.85
Constrained 33.77 32.79
Random 33.70 32.61

Table 2: Validation and test BLEU for loss combina-
tion strategies. We either use token-level TokLS and
sequence-level Riskindividually or combine them as
a weighted combination, a constrained combination, a
random choice for each sample, cf. §3.3.

sequence-level loss and label smoothing as token-
level loss. Table 2 shows that combined objectives
perform better than pure Risk. The weighted
combination (Equation 8) with α = 0.3 per-
forms best, outperforming constrained combina-
tion (Equation 9). We also compare to randomly
choosing between token-level and sequence-level
updates and find it underperforms the more princi-
pled constrained strategy. In the remaining exper-
iments we use the weighted strategy.

6.3 Effect of initialization
So far we initialized sequence-level models with
parameters from a token-level model trained with
label smoothing. Table 3 shows that initializing
weighted Risk with token-level label smoothing
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valid test

TokNLL 32.96 31.74
Risk init with TokNLL 33.27 32.07
∆ +0.31 +0.33

TokLS 33.11 32.21
Risk init with TokLS 33.91 32.85
∆ +0.8 +0.64

Table 3: Effect of initializing sequence-level training
(Risk) with parameters from token-level likelihood
(TokNLL) or label smoothing (TokLS).

valid test

Online generation 33.91 32.85
Offline generation 33.52 32.44

Table 4: Generating candidates online or offline.

achieves 0.7-0.8 better BLEU compared to initial-
izing with parameters from token-level likelihood.
The improvement of initializing with TokNLL is
only 0.3 BLEU with respect to the TokNLL base-
line, whereas, the improvement from initializing
with TokLS is 0.6-0.8 BLEU. We believe that the
regularization provided by label smoothing leads
to models with less sharp distributions that are a
better starting point for sequence-level training.

6.4 Online vs. Offline Candidate Generation

Next, we consider the question if refreshing the
candidate subset at every training step (online)
results in better accuracy compared to generat-
ing candidates before training and keeping the set
static throughout training (offline). Table 4 shows
that offline generation gives lower accuracy. How-
ever the online setting is much slower, since re-
generating the candidate set requires incremental
(left to right) inference with our model which is
very slow compared to efficient forward/backward
over large batches of pre-generated hypothesis. In
our setting, offline generation has 26 times higher
throughput than the online generation setting, de-
spite the high inference speed of fairseq (Gehring
et al., 2017b).

6.5 Beam Search vs. Sampling and
Candidate Set Size

So far we generated candidates with beam search,
however, we may also sample to obtain a more di-
verse set of candidates (Shen et al., 2016). Fig-

 33.1
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Figure 2: Candidate set generation with beam search
and sampling for various candidate set sizes during
sequence-level training in terms of validation accuracy.
Token-level label smoothing (TokLS) is the baseline.

BLEU ∆

MLE 24.03
+ BSO 26.36 +2.33

MLE Reimplementation 23.93
+ Risk 26.68 +2.75

Table 5: Comparison to Beam Search Optimization.
We report the best likelihood (MLE) and BSO results
from Wiseman and Rush (2016), as well as results from
our MLE reimplementation and training with Risk.
Results based on unnormalized beam search (k = 5).

ure 2 compares beam search and sampling for vari-
ous candidate set sizes on the validation set. Beam
search performs better for all candidate set sizes
considered. In other experiments, we rely on a
candidate set size of 16 which strikes a good bal-
ance between efficiency and accuracy.

6.6 Comparison to Beam-Search
Optimization

Next, we compare classical sequence-level train-
ing to the recently proposed Beam Search Opti-
mization (Wiseman and Rush, 2016). To enable a
fair comparison, we re-implement their baseline,
a single layer LSTM encoder/decoder model with
256-dimensional hidden layers and word embed-
dings as well as attention and input feeding (Lu-
ong et al., 2015). This baseline is trained with
Adagrad (Duchi et al., 2011) using a learning rate
of 0.05 for five epochs, with batches of 64 se-
quences. For sequence-level training we initial-
ize weights with the baseline parameters and train
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RG-1 RG-2 RG-L

ABS+ [T] 29.78 11.89 26.97
RNN MLE [T] 32.67 15.23 30.56
RNN MRT [S] 36.54 16.59 33.44
WFE [T] 36.30 17.31 33.88
SEASS [T] 36.15 17.54 33.63
DRGD [T] 36.27 17.57 33.62

TokLS 36.53 18.10 33.93
+ Risk RG-1 36.96 17.61 34.18
+ Risk RG-2 36.65 18.32 34.07
+ Risk RG-L 36.70 17.88 34.29

Table 6: Accuracy on Gigaword abstractive sum-
marization in terms of F-measure Rouge-1 (RG-1),
Rouge-2 (RG-2), and Rouge-L (RG-L) for token-level
label smoothing, and Risk optimization of all three
ROUGE F1 metrics. [T] indicates a token-level ob-
jective and [S] indicates a sequence level objectives.
ABS+ refers to Rush et al. (2015), RNN MLE/MRT
(Ayana et al., 2016), WFE (Suzuki and Nagata, 2017),
SEASS (Zhou et al., 2017), DRGD (Li et al., 2017).

with Adam (Kingma and Ba, 2014) for another 10
epochs with learning rate 0.00003 and 16 candi-
date sequences per training example. We conduct
experiments with Risk since it performed best in
trial experiments.

Different from other sequence-level experi-
ments (§5), we rescale the BLEU scores in each
candidate set by the difference between the maxi-
mum and minimum scores of each sentence. This
avoids short sentences dominating the sequence
updates, since candidate sets for short sentences
have a wider range of BLEU scores compared to
longer sentences; a similar rescaling was used by
Bahdanau et al. (2016).

Table 5 shows the results from Wiseman and
Rush (2016) for their token-level likelihood base-
line (MLE), best beam search optimization results
(BSO), as well as our reimplemented baseline.
Risk significantly improves BLEU compared to
our baseline at +2.75 BLEU, which is slightly bet-
ter than the +2.33 BLEU improvement reported
for Beam Search Optimization (cf. Wiseman and
Rush (2016)). This shows that classical objectives
for structured prediction are still very competitive.

6.7 WMT’14 English-French results

Next, we experiment on the much larger WMT’14
English-French task using the same model setup as
Gehring et al. (2017b). We TokLSfor 15 epochs

valid test

TokLS 34.06 40.58
+ Risk 34.20 40.95

TokLS + selfatt 34.24 41.02
+ in domain 34.51 41.26
+ Risk 34.30 41.22
+ Risk in domain 34.50 41.47

Table 7: Test and valid BLEU on WMT’14 English-
French with and without decoder self-attention.

and then switch to sequence-level training for an-
other epoch. Table 7 shows that sequence-level
training can improve an already very strong model
by another +0.37 BLEU. Next, we improve the
baseline by adding self-attention (Paulus et al.,
2017; Vaswani et al., 2017) to the decoder network
(TokLS + selfatt) which results in a smaller gain
of +0.2 BLEU by Risk. If we train Risk only on
the news-commentary portion of the training data,
then we achieve state of the art accuracy on this
dataset of 41.5 BLEU (Xia et al., 2017).

6.8 Abstractive Summarization
Our final experiment evaluates sequence-level
training on Gigaword headline summarization.
There has been much prior art on this dataset orig-
inally introduced by Rush et al. (2015) who ex-
periment with a feed-forward network (ABS+).
Ayana et al. (2016) report a likelihood baseline
(RNN MLE) and also experiment with risk train-
ing (RNN MRT). Different to their setup we did
not find a softmax temperature to be beneficial,
and we use beam search instead of sampling to
obtain the candidate set (cf. §6.5). Suzuki and Na-
gata (2017) improve over an MLE RNN baseline
by limiting generation of repeated phrases. Zhou
et al. (2017) also consider an MLE RNN baseline
and add an additional gating mechanism for the
encoder. Li et al. (2017) equip the decoder of a
similar network with additional latent variables to
accommodate the uncertainty of this task.

Table 6 shows that our baseline (TokLS) out-
performs all prior approaches in terms of ROUGE-
2 and ROUGE-L and it is on par to the best
previous result for ROUGE-1. We optimize
all three ROUGE metrics separately and find
that Risk can further improve our strong base-
line. We also compared Risk only training to
Weighted on this dataset (cf. §6.2) but accuracy
was generally lower on the validation set: RG-1
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(36.59 Risk only vs. 36.67 Weighted), RG-2
(17.34 vs. 18.05), and RG-L (33.66 vs. 33.98).

7 Conclusion

We present a comprehensive comparison of classi-
cal losses for structured prediction and apply them
to a strong neural sequence to sequence model. We
found that combining sequence-level and token-
level losses is necessary to perform best, and so
is training on candidates decoded with the current
model.

We show that sequence-level training improves
state-of-the-art baselines both for IWSLT’14
German-English translation and Gigaword ab-
stractive sentence summarization. Structured pre-
diction losses are very competitive to recent work
on reinforcement or beam optimization. Classical
expected risk can slightly outperform beam search
optimization (Wiseman and Rush, 2016) in a like-
for-like setup. Future work may investigate better
use of already generated candidates since invok-
ing generation for each batch slows down training
by a large factor, e.g., mixing with fresh and older
candidates inspired by MERT (Och, 2003).
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Abstract

Dirichlet Multinomial Regression (DMR)
and other supervised topic models can in-
corporate arbitrary document-level features
to inform topic priors. However, their abil-
ity to model corpora are limited by the rep-
resentation and selection of these features –
a choice the topic modeler must make. In-
stead, we seek models that can learn the
feature representations upon which to con-
dition topic selection. We present deep
Dirichlet Multinomial Regression (dDMR),
a generative topic model that simultane-
ously learns document feature representa-
tions and topics. We evaluate dDMR on
three datasets: New York Times articles
with fine-grained tags, Amazon product
reviews with product images, and Reddit
posts with subreddit identity. dDMR learns
representations that outperform DMR and
LDA according to heldout perplexity and
are more effective at downstream predic-
tive tasks as the number of topics grows.
Additionally, human subjects judge dDMR
topics as being more representative of as-
sociated document features. Finally, we
find that supervision leads to faster conver-
gence as compared to an LDA baseline and
that dDMR’s model fit is less sensitive to
training parameters than DMR.

1 Introduction

Fifteen years of research on topic models, starting
from Latent Dirichlet Allocation (LDA) (Blei et al.,
2003), have led to a variety of models for numerous
data settings. These models identify sets (distribu-
tions) of related words that reflect semantic topics
in a large corpus of text data. Topic models are now
routinely used in the social sciences and humanities
to analyze text collections (Schmidt, 2012).
Document collections are often accompanied by

metadata and annotations, such as a book’s author,
an article’s topic descriptor tags, images associated
with a product review, or structured patient in-

formation associated with clinical records. These
document-level annotations can provide additional
supervision for guiding topic model learning. Ad-
ditional information can be integrated into topic
models using either downstream or upstream mod-
els. Downstream models, such as supervised LDA
(Mcauliffe and Blei, 2008), assume that these addi-
tional document features are generated from each
document’s topic distribution. These models are
most helpful when you desire topics that are pre-
dictive of the output, such as models for predict-
ing the sentiment of product reviews. Upstream
models, such as Dirichlet Multinomial Regression
(DMR), condition each document’s topic distribu-
tion on document features, such as author (Rosen-
Zvi et al., 2004), social network (McCallum et al.,
2007), or document labels (Ramage et al., 2009).
Previous work has demonstrated that upstream
models tend to outperform downstream models in
terms of model fit, as well as extracting topics that
are useful in prediction of related tasks (Benton
et al., 2016).
DMR is an upstream topic model with a particu-

larly attractive method for incorporating arbitrary
document features. Rather than defining specific
random variables in the graphical model for each
new document feature, DMR treats the document
annotations as features in a log-linear model. The
log-linear model parameterizes the Dirichlet prior
for the document’s topic distribution, making the
Dirichlet’s hyperparameter (typically α) document-
specific. By making no assumptions on model struc-
ture of new random variables, DMR is flexible to
incorporating different types of features.

Despite this flexibility, DMR models are typically
restricted to a small number of document features.
Several reasons account for this restriction: 1) Many
text corpora only have a small number of document-
level features; 2) Model hyperparameters become
less interpretable as the dimensionality grows; and
3) DMR is liable to overfit the hyperparameters
when the dimensionality of document features is
high. In practice, applications of DMR are limited
to settings with a small number of features, or
where the analyst selects a few meaningful features
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by hand.
A solution to this restriction is to learn low-

dimensional representations of document features.
Neural networks have shown wide-spread success at
learning generalizable representations, often obviat-
ing the need for hand designed features (Collobert
and Weston, 2008). A prime example is word em-
bedding features in natural language processing,
which supplant traditional lexical features (Brown
et al., 1992; Mikolov et al., 2013; Pennington et al.,
2014). Jointly learning networks that construct fea-
ture representations along with the parameters of
a standard NLP model has become a common ap-
proach. For example, (Yu et al., 2015) used a tensor
decomposition to jointly learn features from both
word embeddings and traditional NLP features,
along with the parameters of a relation extraction
model. Additionally, neural networks can handle
a variety of data types, including text, images and
general metadata features. This makes them ap-
propriate for addressing dimensionality reduction
in DMR.

We propose deep Dirichlet Multinomial Regres-
sion (dDMR), a model that extends DMR by intro-
ducing a deep neural network that learns a trans-
formation of the input metadata into features used
to form the Dirichlet hyperparameter. Whereas
DMR parameterizes the document-topic priors as
a log-linear function of document features, dDMR
jointly learns a feature representation for each doc-
ument along with a log-linear function that best
captures the distribution over topics. Since the
function mapping document features to topic prior
is a neural network, we can jointly optimize the
topic model and the neural network parameters by
gradient ascent and back-propagation. We show
that dDMR can use network architectures to better
fit text corpora with high-dimensional document
features as compared to other supervised topic mod-
els. The topics learned by dDMR are judged as
being more representative of document features by
human subjects. We also find that dDMR tends to
converge in many fewer iterations than LDA, and
also does not suffer from tuning difficulties that
DMR encounters when applied to high-dimensional
document features.

2 Model

Our model builds on the generative model of DMR:
an LDA-style topic model that replaces the hyperpa-
rameter (vector) of the topic distribution Dirichlet
prior with a hyperparameter that is output from a
log-linear model given the document features. Our
model deep DMR (dDMR) replaces this log-linear
model with an arbitrary function f that maps a
real-valued vector of dimension F to a representa-
tion of dimension K. For simplicity we make no
assumptions on the choice of this function, only

wm,nzm,nθm

φk

ωbias

αm

D N
~

f

θm

K

Figure 1: The graphical model for dDMR. f is
shown as a feedforward fully-connected network,
and the document features are given by the image
(a cat carrier).

that it can be optimized to minimize a cost on its
output by gradient ascent. In practice, we define
this function as a neural network, where the ar-
chitecture of this network is informed by the type
of document features, e.g. a convolutional neural
network for images. We use neural networks since
they are expressive, generalize well to unseen data,
and can be jointly trained using straightforward
gradient ascent with back-propagation.

The generative story for dDMR is as follows:

1. Representation function f ∈ RF → RK

2. Topic-word prior parameters: ωbias ∈ RV

3. For each document m with features αm ∈ RF ,
generate document prior:

(a) θ̃m = exp(f(αm))

(b) θm ∼ Dirichlet(θ̃m)

4. For each topic k, generate word distribution:

(a) φ̃k = exp(ωbias)
(b) φk ∼ Dirichlet(φ̃k)

5. For each token (m,n), generate data:

(a) Topic (unobserved): zm,n ∼ θm
(b) Word (observed): wm,n ∼ φzm,n

where V is the vocabulary size and K are the
number of topics. In practice, the document fea-
tures need not be restricted to fixed-length feature
vectors, e.g. f may be an RNN that maps from
a sequence of characters to a fixed length vector
in Rk. DMR is a special case of dDMR with the
choice of a linear function for f . Figure 1 displays
the graphical model diagram for dDMR.

2.1 Inference and Parameter Estimation
We infer the random variables of the topic model
using collapsed Gibbs sampling, and estimate the
model parameters using gradient ascent with back-
propagation. We use alternating optimization: one
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iteration of collapsed Gibbs sampling (sample top-
ics for each word) and then an update of the pa-
rameters of f by gradient ascent to maximize the
log-likelihood of the tokens and topic assignments.
Given the parameters, the sampling step remains
unchanged from LDA (Griffiths and Steyvers, 2004).
The network parameters are estimated via back-
propagation through the network for a fixed sample.
Eq. 1 shows the gradient of the data log-likelihood,
L , with respect to θ̃m,k = exp(f(αm)k), the prior
weight of topic k for documentm. ψ is the digamma
function (derivative of the log-gamma function), nm
is the number of tokens in document m, and nm,k is
the count of how many tokens topic k was assigned
to in document m.

δL

δθ̃m,k

= ψ(

K∑

k=1

θ̃m,k)− ψ(
K∑

k=1

θ̃m,k + nm)

+ψ(θ̃m,k + nm,k)− ψ(θ̃m,k)

(1)

3 Data
We explore the flexibility of our model by consid-
ering three different datasets that include different
types of metadata associated with each document.
For each dataset, we describe the documents and
metadata.

New York Times The New York Times Anno-
tated Corpus (Sandhaus, 2008) contains articles
with extensive metadata used for indexing by the
newspaper. For supervision, we used the “descrip-
tor” tags associated with each article assigned by
archivists. These tags reflect the topic of an article,
as well as organizations or people mentioned in the
article. We selected all articles published in 1998,
and kept those tags that were associated with at
least 3 articles in that year – 2424 unique tags. 20
of the 200 most frequent tags were held out from
training for validation purposes: { “education and
schools”, “law and legislation”, “advertising”, “bud-
gets and budgeting”, “freedom and human rights”,
“telephones and telecommunications”, “bombs and
explosives”, “sexual harassment”, “reform and reor-
ganization”, “teachers and school employees”, “tests
and testing”, “futures and options trading”, “boxing”,
“firearms”, “company reports”, “embargoes and eco-
nomic sanctions”, “hospitals”, “states (us)”, “bridge
(card game)”, and “auctions”}. Articles contained a
mean of 2.1 tags, with 738 articles not containing
any of these tags. Tags were represented using a
one-hot encoding.
Articles were tokenized by non-alphanumeric

characters and numerals were replaced by a special
token. Words occurring in more than 40% of doc-
uments were removed, and only the 15,000 most
frequent types were retained. There were a total of
89,397 articles with an average length of 158 tokens
per article.

Amazon Reviews The Amazon product reviews
corpus(McAuley and Yang, 2016) contains reviews
of products as well as images of the product. We
sampled 100,000 Amazon product reviews: 20,000
reviews sampled uniformly from the Musical Instru-
ments, Patio, Lawn, & Garden, Grocery & Gourmet
Food, Automotive, and Pet Supplies product cate-
gories. We hypothesize that knowing information
about the product’s appearance will indicate which
words appear in the review, especially for product
images occurring in these categories. 66 of the re-
views we sampled contained only highly infrequent
tokens, and were therefore removed from our data,
leaving 99,934 product reviews. Articles were pre-
processed identically to the New York Times data.
We include images as supervision by using the

4096-dimensional second fully-connected layer of
the Caffe convolutional neural network reference
model, trained to predict ImageNet object cate-
gories1. Using these features as supervision to
dDMR is similar to fine-tuning a pre-trained CNN
to predict a new set of labels. Since the Caffe refer-
ence model is already trained on a large corpus of
images, we chose to fine-tune only the final layers so
as to learn a transformation of the already learned
representation.

Reddit We selected a sample of Reddit posts
made in January 2016. A standard stop list was
used to remove frequent function words and we re-
stricted the vocabulary to the 30,000 most frequent
types. We restricted posts made to subreddits, col-
lections of topically-related threads, with at least
ten comments in this month (26,830 subreddits),
and made by users with at least five comments
across these subreddits (total of 1,351,283 million
users). We then sampled 10,000 users uniformly at
random and used all their comments as a corpus, for
a total of 389,234 comments over 7,866 subreddits
(token length mean: 16.3, median: 9)2.

This corpus differs from the others in two ways.
First, Reddit documents are very short, which is
problematic for topic models that rely on detect-
ing correlations in token use. Second, the Reddit
metadata that may be useful for topic modeling is
necessarily high-dimensional (e.g. subreddit iden-
tity, a proxy for topical content). DMR may have
trouble exploiting high-dimensional supervision.

4 Experiments

Model Estimation We used the same procedure
for training topic models on each dataset. Hyper-
parameter gradient updates were performed after

1Features used directly from http://jmcauley.
ucsd.edu/data/amazon/

2The sampled comment IDs can be found
here: https://github.com/abenton/deep-dmr/blob/
master/resources/reddit_comment_ids.txt
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a burnin period of 100 Gibbs sampling iterations.
Hyperparameters were updated with the adaptive
learning rate algorithm Adadelta (Zeiler, 2012),
with a tuned base learning rate and fixed ρ = 0.953.
All models were trained for a maximum of 15,000
epochs, with early stopping if heldout perplexity
showed no improvements after 200 epochs (evalu-
ated once every 20 epochs). Hyperparameters were
fit on every other token in the corpus, and (held-
out) log-likelihood/perplexity was calculated on the
remaining tokens.

For the architecture of the dDMR model we used
single-hidden-layer multi-layer perceptrons (MLPs),
with rectified linear unit (ReLU) activations on the
hidden layer, and linear activation on the output
layer. We sampled three architectures for each
dataset, by drawing layer widths independently
at random from [10, 500], and also included two
architectures with (50, 10) and (100, 50), (hidden,
output) layers 4 . We compare the performance of
dDMR to DMR trained on the same feature set as
well as LDA.

For the New York Times dataset, we also com-
pare dDMR to DMR trained on features after ap-
plying principal components analysis (PCA) to re-
duce the dimensionality of descriptor feature su-
pervision, sweeping over PCA projection width
in {10, 50, 100, 250, 500, 1000}. Comparing perfor-
mance of dDMR to PCA-reduced DMR tests two
modeling choices. First, it tests the hypothesis that
explicitly learning a representation for document
annotations to maximize data likelihood produces
a “better-fit” topic model than learning this anno-
tation representation in unsupervised fashion – a
two-step process. It also lets us determine if a lin-
ear dimensionality reduction technique is sufficient
to learning a good feature representation for topic
modeling, as opposed to learning a non-linear trans-
formation of the document supervision. Note that
we cannot apply PCA to reduce the dimensional-
ity for subreddit id in Reddit since it is a one-hot
feature.

Documents in each dataset were partitioned into
ten equally-sized folds. Model training parameters
of L1 and L2 regularization penalties on feature
weights for DMR and dDMR and the base learning
rate for each model class were tuned to minimize
heldout perplexity on the first fold. These were

3We found this adaptive learning rate algorithm im-
proved model fit in many fewer iterations than gradient
descent with tuned step size and decay rate for all
models.

4We included these two very narrow architectures
to ensure that some architecture learned a small fea-
ture representation, generalizing better when features
are very noisy or only provide a weak signal for topic
modeling. We restricted ourselves to only train dDMR
models with single-hidden-layer MLPs in the priors for
simplicity and to avoid model fishing.

tuned independently for each model, with number
of topics fixed to 10, and dDMR architecture fixed
to narrow layer widths (50, 10). Model selection
was based on the macro-averaged performance on
the next eight folds, and we report performance on
the remaining fold. We selected models separately
for each evaluation metric. For dDMR, model se-
lection amounts to selecting the document prior
architecture, and for DMR with PCA-reduced fea-
ture supervision, model selection involved selecting
the PCA projection width.

Evaluation Each model was evaluated according
to heldout perplexity, topic coherence by normal-
ized pointwise mutual information (NPMI) (Lau
et al., 2014), and a dataset-specific predictive task.

Heldout perplexity was computed by only aggre-
gating document-topic and topic-word counts from
every other token in the corpus, and evaluating
perplexity on the remaining heldout tokens. This
corresponds to the “document completion” evalua-
tion method as described in (Wallach et al., 2009),
where instead of holding out the words in the sec-
ond half of a document, every other word is held
out.

NPMI (Lau et al., 2014) computes a an automatic
measure of topic quality, the sum of pointwise mu-
tual information between pairs of m most likely
words normalized by the negative log of each pair
jointly occurring within a document (Eq. 2). We
calculated this topic quality metric on the top 20
most probable words in each topic, and averaged
over the most coherent 1, 5, 10, and over all learned
topics. However, models were selected to only max-
imize average NPMI over all topics.

NPMI =

m∑

i=1

m∑

j=i+1

log
P (wi,wj))

P (wi)P (wj)

− logP (wi, wj)
(2)

For prediction tasks, we used the sampled topic
distribution associated with a document, averaged
over the last 100 iterations, as features to predict a
document-level label. For New York Times articles
we predicted 10 of the 200 most frequent descriptor
tags restricting to articles with exactly one of these
descriptors. For Amazon, we predicted the product
category a document belonged to (one of five), and
for Reddit we predicted a heldout set of document
subreddit IDs. In the case of Reddit, these heldout
subreddits were 10 out of the 100 most prevalent
in our data, and were held out similar to the New
York Times evaluation. SVM models were fit on
inferred topic distribution features and were then
evaluated according to accuracy, F1-score, and area
under the ROC curve. The SVM slack parameter
was tuned by 4-fold cross-validation on 60% of the
documents, and evaluated on the remaining 40%.
We also collected human topic judgments us-

ing Amazon Mechanical Turk (Callison-Burch and
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Z Model NYT Amazon Reddit

10

LDA 3429 (5) 2300 (7) 3811 (15)
DMR 3385 (6) 2475 (9) 3753 (10)
DMR-PCA 3417 (8)
dDMR 3395 (7) 2272 (68) 3624 (13)

20

LDA 3081 (6) 2275 (7) 3695 (19)
DMR 3018 (4) 2556 (48) 3650 (8)
DMR-PCA 3082 (8)
dDMR 3023 (7) 2222 (7) 3581 (16)

50

LDA 2766 (8) 2269 (9) 3695 (17)
DMR 2797 (34) 2407 (20) 3640 (40)
DMR-PCA 2773 (9)
dDMR 2657 (8) 2197 (13) 3597 (17)

100

LDA 2618 (8) 2246 (10) 3676 (19)
DMR 2491 (27) 2410 (75) 3832 (30)
DMR-PCA 2644 (52)
dDMR 2433 (10) 2215 (6) 3642 (18)

200

LDA 2513 (8) 2217 (7) 3653 (19)
DMR 2630 (13) 2480 (65) 3909 (15)
DMR-PCA 2525 (14)
dDMR 2394 (9) 2214 (12) 3587 (11)

Table 1: Test fold heldout perplexity for each
dataset and model for number of topics Z. Stan-
dard error of mean heldout perplexity over all cross-
validation folds in parentheses.

Dredze, 2010). Each subject was presented with a
human-readable version of the features used for su-
pervision. For New York Times articles we showed
the descriptor tags, for Amazon the product im-
age, and for Reddit the name, title, and public
description of the subreddit. We showed the top
twenty words for the most probable topic sampled
for the document with those features, as learned
by two different models. One topic was learned by
dDMR and the other was either learned by LDA
or DMR. The topics presented were from the 200-
topic model architecture that maximized NPMI
on development folds. Annotators were asked “to
choose which word list best describes a document
. . . ” with the displayed features. The topic learned
by dDMR was shuffled to lie on either the right or
left for each Human Intelligence Task (HIT). We
obtained judgments on 1,000 documents for each
dataset and each model evaluation pair – 6,000 doc-
uments in all. This task can be difficult for many
of the features, which may be unclear (e.g. descrip-
tor tags without context) or difficult to interpret
(e.g. images of automotive parts). We excluded the
document text since we did not want subjects to
evaluate topic quality based on token overlap with
the actual document.

5 Results
Model Fitting dDMR achieves lower perplexity
than LDA or DMR for most combinations of num-
ber of topics and dataset (Table 1). It is striking
that DMR achieves higher perplexity than LDA in
many of these conditions. This is particularly true
for the Amazon dataset, where DMR consistently
lags behind LDA. Supervision alone does not im-
prove topic model fit if it is too high-dimensional
for learning. Perplexity is higher on the Reddit
data for all models due to both a larger vocabulary
size and shorter documents.

It is also worth noting that finding a low-
dimensional linear projection of the supervision
features with PCA does not improve model fit as
well as dDMR. dDMR benefits both from joint learn-
ing to maximize corpus log-likelihood and possibly
by the flexibility of learning non-linear projection
(through the hidden layer ReLU activations).

Another striking result is the difference in speed
of convergence between the supervised models and
LDA (Figure 2). Even supervision that provides
a weak signal for topic modeling, such as Ama-
zon product image features, can speed convergence
over LDA. In certain cases (Figure 2 left), train-
ing dDMR for 1,000 iterations results in a lower
perplexity model than LDA trained for over 10,000
iterations.
In terms of actual run time, parallelization of

model training differs between the supervised model
and LDA. Gradient updates necessary for learn-
ing the representation can be trivially distributed
across multiple cores using optimized linear algebra
libraries (e.g. BLAS), mitigating the additional cost
incurred by hyperparameter updates in supervised
models. In contrast, the Gibbs sampling iterations
can also be parallelized, but not as easily, ultimately
making resampling topics the most expensive step
in model training. Because of this, the potential
difference in runtime for a single iteration between
dDMR and LDA is small, with the former converg-
ing in far fewer iterations. In our experiments, per
iteration time taken by DMR or dDMR was at most
twice as long as LDA across all experiments.
dDMR performance is also insensitive to training

parameters relative to DMR. While DMR requires
heavy L1 and L2 regularization and a very small
step size to achieve low heldout perplexity, dDMR
is relatively insensitive to the penalty on regular-
ization and benefits from a higher base learning
rate (Figure 3). We found that dDMR is easier
to tune than DMR, requiring less exploration of
the training parameters. This is also corroborated
by higher variance in perplexity achieved by DMR
across different cross-validation folds (Table 1).

Topic Quality Results for the automatic topic
quality evaluation, NPMI, are mixed across
datasets. In many cases, LDA and DMR score
highly according to NPMI, despite achieving higher
heldout perplexity than dDMR (Table 2). This
may not be surprising as previous work has found
that perplexity does not correlate well with human
judgments of topic coherence (Lau et al., 2014).

However, in the human evaluation, subjects find
that dDMR-learned topics are more representa-
tive of document annotations than DMR (Table
3). While subjects only statistically significantly
favored dDMR models over LDA on the Reddit
data, they favored dDMR topics over LDA across
all datasets, and significantly preferred dDMR top-
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Figure 2: Heldout perplexity as a function of iteration for lowest-perplexity models with Z = 100. The
vertical dashed line indicates when models are burned in and hyperparameter optimization begins.
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Figure 3: Heldout perplexity on the Amazon data tuning fold for DMR (orange) and dDMR (purple) with
a (50, 10) layer architecture as a function of training parameters: L1, L2 feature weight regularization,
and base learning rate. All models were trained for a fixed 5,000 iterations, with horizontal jitter added
to each point.

New York Times Amazon Reddit
Z Model 1 5 10 Overall . . . . . .

10

LDA 52 49 43 43 25 23 20 20 125 82 56 56
DMR 53 50 42 42 58 43 31 31 43 35 30 30
DMR-PCA 63 53 45 45
dDMR 57 51 44 44 24 21 19 19 109 62 46 46

20

LDA 62 59 54 45 27 25 23 20 121 87 59 42
DMR 63 60 56 45 66 56 53 43 81 49 41 34
DMR-PCA 76 61 57 47
dDMR 69 60 55 45 97 61 53 40 109 66 49 38

50

LDA 80 66 62 44 30 27 25 20 135 96 64 34
DMR 80 67 63 46 136 81 73 58 51 46 41 33
DMR-PCA 82 67 63 45
dDMR 76 65 61 45 71 65 62 44 121 74 54 36

100

LDA 77 71 66 40 58 34 30 20 135 74 54 31
DMR 80 74 70 45 147 83 75 59 111 67 50 34
DMR-PCA 79 69 75 45
dDMR 77 73 68 44 68 67 66 55 135 78 55 31

200

LDA 78 74 70 36 60 39 34 18 135 100 67 29
DMR 91 76 80 42 69 67 67 61 132 84 59 32
DMR-PCA 94 76 81 42
dDMR 78 70 66 45 85 73 69 39 135 87 61 30

Table 2: Top-1, 5, 10, and overall topic NPMI across all datasets. Models that maximized overall NPMI
across dev folds were chosen and the best-performing model is in bold.
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LDA DMR
New York Times 51.1% 51.9%
Amazon 51.9% 61.4%∗
Reddit 55.5%∗ 57.6%∗

Table 3: % HITs where humans preferred dDMR
topics as more representative of document supervi-
sion than the competing model. ∗ denotes statisti-
cal significance according to a one-tailed binomial
test at the p = 0.05 level.

ics over DMR on two of the three datasets. This is
contrary to themodel rankings according to NPMI,
which suggest that DMR topics are often higher
quality when it comes to human interpretability.

We also qualitatively explored the product image
representations DMR and dDMR learned on the
Amazon data. To do so, we computed and nor-
malized the prior document distribution for a sam-
ple of documents for lowest perplexity DMR and
dDMR Z = 200 topic models: p(k|m) = θ̃m∑Z

k=1 θ̃m,k
,

the prior probability of sampling topic k, con-
ditioned on the features for document m. We
then marginalize over topics to yield the condi-
tional probability of a word w given document m:
p(w|m) =

∑Z
k=1 p(w|k)p(k|m). Table 4 contains

a sample of these probable words given document
supervision. We find that dDMR identifies words
likely to appear in a review of the product pictured.
However, some images lead dDMR down a garden
path. For example, a bottle of “Turtle Food” should
not be associated with words for human consum-
ables like “coffee” and “chocolate”, despite the con-
tainer resembling some of these products. However,
the image-specific document priors DMR learned
are not as sensitive to the actual product image as
those learned by dDMR. The prior conditional prob-
abilities p(w|m) for “Turtle Food”, “Slushy Magic
Cup”, and “Rawhide Dog Bones” product images
are all ranked identically by DMR.

Predictive Performance Finally, we consider
the utility of the learned topic distributions for
downstream prediction tasks, a common use of topic
models. Although token perplexity is a standard
measure of topic model fit, it has no direct rela-
tionship with how topic models are typically used:
to identify consistent themes or reduce the dimen-
sionality of a document corpus. We found that
features based on topic distributions from dDMR
outperform LDA and DMR on the Amazon and
Reddit data when the number of topics fit is large,
although they fail to outperform DMR on New York
Times (Table 5). Heldout perplexity is strongly cor-
related with predictive performance, with a Pearson
correlation coefficient, ρ = 0.898 between F1-score
and heldout perplexity on the Amazon data. This
strong correlation is likely due to the tight rela-

tionship between words used in product reviews
and product category: a model that assigns high
likelihood to a words in a product review corpus
should also be informative of the product categories.
Prior work showed that upstream supervised topic
models, such as DMR, learn topic distributions that
are effective at downstream prediction tasks (Ben-
ton et al., 2016). We find that topic distributions
learned by dDMR improve over DMR in certain
cases, particularly as the number of topics increases.

6 Related Work

With the widespread adoption of neural networks,
others have sought to combine topic and neural
models. One line of work replaces generative, LDA-
based, topic models with discriminatively-trained
models based on neural networks. (Cao et al., 2015)
model θ and φ using neural networks with softmax
output layers and learn network parameters that
maximize data likelihood. They also learn n-gram
embeddings to identify topics whose elements are
not restricted to unigrams. (Chen et al., 2015) sim-
ilarly expresses the (smoothed) supervised LDA
(Mcauliffe and Blei, 2008) generative model as a
neural network, and give an algorithm to discrimi-
natively train it. (Wan et al., 2012) take a similar
approach to dDMR where they use a neural network
to extract image representations that maximize
the probability of SIFT descriptors extracted from
the image. However, this model is used for image
classification, not for exploring a corpus of docu-
ments as is typical of topic models. These models
are computationally attractive in that they avoid
approximating the posterior distribution of topic
assignments given tokens by dropping the assump-
tion that θ and φ are drawn from Dirichlet priors.
Model fitting is performed by back-propagation
of a max-margin cost. In contrast, we use neural
networks to learn feature representations for docu-
ments, not as a replacement for the LDA generative
story. This is similar to variants of SPRITE (Paul
and Dredze, 2015), where many document-level fac-
tors are combined to generate a document-topic
prior. In contrast to several of these models, the
core of our topic model remains unchanged, mean-
ing that dDMR is agnostic to many other extensions
of LDA.

There has been extensive work in modeling both
textual and visual topics. Models such as Corr-LDA
(Blei and Jordan, 2003) suppose that a text docu-
ment and associated image features are generated
by a shared latent topic. This property is shared
by other topic models over images, such as STM-
TwitterLDA (Cai et al., 2015) and (Zhang et al.,
2015). While these models try to model images, we
instead use images in the Amazon data to better
estimate topic distributions.

Our experiment on using images to model Ama-
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Image Item dDMR Probable Words DMR Probable Words

Guitar Foot
Rest

grill easy cover well fit mower
fits job gas hose light heavy
easily stand back nice works

use enough pressure

fit easy well works car light
sound quality work guitar
would 0000 cover nice looks
bought install battery 00 fits

Bark Collar

fit battery 0000 light install car
sound easy work unit amp 00
lights mic power works 000

took replace installed

fit easy well works car light work
quality sound would guitar

0000 cover nice bought looks
install battery 00 fits

Turtle Food

taste coffee flavor food like love cat
tea product tried dog eat

chocolate litter cats good best
bag sugar loves

taste coffee dog like love flavor
food cat product tea cats tried
water dogs loves eat chocolate

toy mix sugar

Slushy Magic
Cup

food taste cat coffee flavor love
like dog tea litter cats eat tried
product chocolate loves bag good

best smell

taste coffee dog like love flavor
food cat product tea cats tried
water dogs loves eat chocolate

toy mix good

Rawhide Dog
Bones

food cat dog cats litter dogs loves
love product smell eat box tried
pet bag hair taste vet like seeds

taste coffee dog like love flavor
food cat product tea cats tried
water dogs loves eat chocolate

toy mix good

Instrument
Cable

sound amp guitar mic pedal
sounds price volume quality
cable great bass microphone
strings music play recording

000 tone unit

sound guitar fit easy well 0000
works car quality light music
cover work one set nice looks

00 install unit

Table 4: Top twenty words associated with each of the product images – learned by dDMR vs. DMR
(Z = 200). These images were drawn at random from the Amazon corpus (no cherry-picking involved).
Word lists were generated by marginalizing over the prior topic distribution associated with that image,
and then normalizing each word’s probability by subtracting off its mean marginal probability across all
images in the corpus. This is done to avoid displaying highly frequent words. Words that differ between
each model’s ranked list are in bold.

zon product reviews resembles work on image cap-
tion generation, yet the similarity is superficial.
The relationship between an image and its caption
is relatively tight (Fang et al., 2015) – objects in
the image will likely be referenced in the caption.
For Amazon product reviews, visual features of the
product, like color, may be explicitly mentioned in
the review, but then again, they may not. Also, the
aim of topic models is to extract common themes
of co-occurring words, and how those themes are
distributed across each document. The similarity
between our work and captioning lies only in the
fact that we extract image features from a CNN
trained as an object recognizer to inform document-
topic distributions.

7 Conclusion

We present deep Dirichlet Multinomial Regression,
a supervised topic model which both learns a rep-
resentation of document-level features and how to
use that representation for informing a topic dis-
tribution. We demonstrate the flexibility of our
model on three corpora with different types of
metadata: topic descriptor tags, images, and sub-
reddit IDs. dDMR is better able to fit text cor-
pora with high-dimensional supervision compared
to LDA or DMR. Furthermore, we find that docu-
ment supervision greatly reduces the number of
Gibbs sampling iterations for a topic model to
converge, and that the dDMR prior architecture
makes it more robust to training parameters than
DMR. We also find that the topic distributions
learned by dDMR are more predictive of external
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New York Times Amazon Reddit
Z Model F1 Accuracy AUC . . . . . .

10

LDA 0.208 0.380 0.767 0.662 0.667 0.891 0.130 0.276 0.565
DMR 0.236 0.367 0.781 0.311 0.407 0.619 0.092 0.229 0.597
DMR-PCA 0.280 0.347 0.758
dDMR 0.154 0.347 0.790 0.608 0.656 0.864 0.170 0.300 0.596

20

LDA 0.315 0.463 0.784 0.657 0.659 0.887 0.121 0.258 0.579
DMR 0.319 0.477 0.805 0.294 0.405 0.647 0.057 0.245 0.520
DMR-PCA 0.343 0.540 0.831
dDMR 0.424 0.523 0.797 0.706 0.711 0.911 0.071 0.274 0.566

50

LDA 0.455 0.613 0.849 0.630 0.634 0.870 0.131 0.199 0.542
DMR 0.478 0.650 0.877 0.396 0.499 0.619 0.145 0.261 0.580
DMR-PCA 0.505 0.667 0.887
dDMR 0.507 0.657 0.856 0.716 0.726 0.916 0.118 0.272 0.551

100
LDA 0.531 0.657 0.874 0.646 0.649 0.874 0.148 0.201 0.538
DMR 0.552 0.683 0.898 0.392 0.463 0.688 0.107 0.233 0.512
DMR-PCA 0.602 0.687 0.917
dDMR 0.514 0.653 0.893 0.650 0.660 0.893 0.172 0.316 0.614

200
LDA 0.566 0.683 0.903 0.646 0.651 0.882 0.111 0.227 0.517
DMR 0.576 0.670 0.917 0.288 0.401 0.697 0.089 0.229 0.499
DMR-PCA 0.648 0.762 0.915
dDMR 0.605 0.730 0.903 0.716 0.721 0.909 0.198 0.323 0.580

Table 5: Top F-score, accuracy, and AUC on prediction tasks for all datasets.

document labels such as known topic tags or prod-
uct category as the number of topics grows and
that dDMR topics are judged as more representa-
tive of the document metadata by human subjects.
Source code for training dDMR can be found at
http://www.github.com/abenton/deep-dmr.
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Abstract
Millions of conversations are generated ev-
ery day on social media platforms. With lim-
ited attention, it is challenging for users to se-
lect which discussions they would like to par-
ticipate in. Here we propose a new method
for microblog conversation recommendation.
While much prior work has focused on post-
level recommendation, we exploit both the
conversational context, and user content and
behavior preferences. We propose a statistical
model that jointly captures: (1) topics for rep-
resenting user interests and conversation con-
tent, and (2) discourse modes for describing
user replying behavior and conversation dy-
namics. Experimental results on two Twitter
datasets demonstrate that our system outper-
forms methods that only model content with-
out considering discourse.

1 Introduction

Online platforms have revolutionized the way in-
dividuals collect and share information (O’Connor
et al., 2010; Lee and Ma, 2012; Bakshy et al.,
2015), but the vast bulk of online content is ir-
relevant or unpalatable to any given individual.
A user interested in political discussion, for in-
stance, might prefer content concerning a specific
candidate or issue, and only then if discussed in
a positive light without controversy (Adamic and
Glance, 2005; Bakshy et al., 2015).

How do individuals facing such large quanti-
ties of superfluous material select which conver-
sations to engage in, and how might we better al-
gorithmically recommend conversations suited to
individual users? We approach this problem from
a microblog conversation recommendation frame-
work. Where prior work has focused on the con-
tent of individual posts for recommendation (Chen

Conversation 1
...
[U1]: The sheer cognitive dissonance required for a “lib-
eral” to say Clinton is as bad as Trump is just staggering.
[U2]: Hillarists, Troll; they insult Liberals trying to dis-
tract from Hillary’s Conseratism.
[U3]: I still prefer Hillarist b/c it describes their Cultish
and ideological aspects.
——————————
...
Conversation 2
...
[U4]: I do not like trump at all, but Comey left her in
place knowing Bernie is much stronger.
[U1]: If you’re going to actively start rooting against the
Democrats, get off my mentions. I have enough GOP
doing that.
[U5]: Your tweets are an example of why open primaries
are stupid. You’re not a Dem, you’re just for one guy.
——————————
[U1]: No offense, but you’ve been wrong about pretty
much everything so far. Why would I trust your prognos-
tication now?
...

Figure 1: Two snippets of conversations on Twitter.
[Ui]: The message is posted by user Ui. “—” is the
dividing line between training history and test part. U1

did not reengage in Conversation 1 but reengaged in
Conversation 2.

et al., 2012; Yan et al., 2012; Vosecky et al., 2014;
He and Tan, 2015), we examine the entire history
and context of a conversation, including both top-
ical content and discourse modes such as agree-
ment, question-asking, argument and other dia-
logue acts (Ritter et al., 2010).1 And where Back-
strom et al. (2013) leveraged conversation reply
structure (such as previous user engagement), their
model is unable to predict first entry into new con-
versations, while ours is able to predict both new

1In this paper, discourse mode refers to a certain type of
dialogue act, e.g., agreement or argument. The discourse
structure of a conversation means some combination (or a
probability distribution) of discourse modes.
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and repeated entry into conversations based on a
combination of topical and discourse features.

To illustrate the interplay between topics and
discourse, Figure 1 displays two snippets of con-
versations on Twitter collected during the 2016
United States presidential election. User U1 par-
ticipates in both conversations. The first conver-
sation is centered around Clinton, and U1, who is
more typically involved with conversations about
candidate Sanders, does not return. In the second
conversation, however, U1 is involved in a heated
back-and-forth debate, and thus is drawn back to
a conversation that they may otherwise have aban-
doned but for their enjoyment of adversarial dis-
course.

Effective conversation prediction and recom-
mendation requires an understanding of both user
interests and discourse behaviors, such as agree-
ment, disagreement, inquiry, backchanneling, and
emotional reactions. However, acquiring manual
labels for both is a time-consuming process and
hard to scale for new datasets. We instead propose
a unified statistical learning framework for conver-
sation recommendation, which jointly learns (1)
hidden factors that reflect user interests based on
conversation history, and (2) topics and discourse
modes in ongoing conversations, as discovered by
a novel probabilistic latent variable model. Our
model is built on the success of collaborative fil-
tering (CF) in recommendation systems, where la-
tent dimensions of product ratings or movie re-
views are extracted to better capture user pref-
erences (Linden et al., 2003; Salakhutdinov and
Mnih, 2008; Wang and Blei, 2011; McAuley and
Leskovec, 2013). To the best of our knowledge,
we are the first to model both topics and discourse
modes as part of a CF framework and apply it to
microblog conversation recommendation.2

Experimental results on two Twitter conversa-
tion datasets show that our proposed model yields
significantly better performance than state-of-the-
art post-level recommendation systems. For ex-
ample, by leveraging both topical content and
discourse structure, our model achieves a mean
average precision (MAP) of 0.76 on conversa-
tions about the U.S. presidential election, com-
pared with 0.70 by McAuley and Leskovec (2013),
which only considers topics. We further con-

2To ensure the general applicability of our approach to
domains lacking such information, we do not utilize external
features such as network structure, but it may certainly be
added in future, more narrowly targeted applications.

ducted detailed analysis on the latent topics and
discourse modes and find that our model can dis-
cover reasonable topic and discourse representa-
tions, which play an important role in characteriz-
ing reply behaviors. Finally, we also provide a pi-
lot study on recommendation for first time replies,
which shows that our model outperforms compa-
rable recommendation systems.

The rest of this paper is structured as follows.
The related work is discussed in Section 2. We
then present our microblog conversation recom-
mendation model in Section 3. The experimental
setup and results are described in Sections 4 and 5.
Finally, we conclude in Section 6.

2 Related Work

Social media has attracted increasing attention in
digital communication research (Agichtein et al.,
2008; Kwak et al., 2010; Wu et al., 2011). The
problem studied here is closely related to work on
recommendation and response prediction in mi-
croblogs (Artzi et al., 2012; Hong et al., 2013),
where the goal is to predict whether a user will
share or reply to a given post. Existing methods
focus on measuring features that reflect personal-
ized user interests, including topics (Hong et al.,
2013) and network structures (Pan et al., 2013; He
and Tan, 2015). These features have been investi-
gated under a learning to rank framework (Duan
et al., 2010; Artzi et al., 2012), graph ranking
models (Yan et al., 2012; Feng and Wang, 2013;
Alawad et al., 2016), and neural network-based
representation learning methods (Yu et al., 2016).

Distinguishing from prior work that focuses on
post-level recommendation, we tackle the chal-
lenges of predicting user reply behaviors at the
conversation-level. In addition, our model not
only captures latent factors such as the topical in-
terests of users, but also leverages the automat-
ically learned discourse structure. Much of the
previous work on discourse structure and dialogue
acts has relied on labeled data (Jurafsky et al.,
1997; Stolcke et al., 2000), while unsupervised
approaches have not been applied to the problem
of conversation recommendation (Woszczyna and
Waibel, 1994; Crook et al., 2009; Ritter et al.,
2010; Joty et al., 2011).

Our work is also in line with conversation mod-
eling for social media discussions (Ritter et al.,
2010; Budak and Agrawal, 2013; Louis and Co-
hen, 2015; Cheng et al., 2017). Topic modeling
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has been employed to identify conversation con-
tent on Twitter (Ritter et al., 2010). In this work,
we propose a probabilistic model to capture both
topics and discourse modes as latent variables. A
further line of work studies the reposting and reply
structure of conversations (Gómez et al., 2011; La-
niado et al., 2011; Backstrom et al., 2013; Budak
and Agrawal, 2013). But none of this work dis-
tinguishes the rich discourse functions of replies,
which is modeled and exploited in our work.

3 The Joint Model of Topic and
Discourse for Recommendation

Our proposed microblog conversation recommen-
dation framework is based on collaborative fil-
tering and a novel probabilistic graphical model.
Concretely, our objective function takes the form:

minL+ µ ·NLL(C |Θ) (1)

This function encodes two types of information.
First, L models user reply preference in a similar
fashion to collaborative filtering (CF) (Hu et al.,
2008; Pan et al., 2008). It captures topics of inter-
ests and discourse structures users are commonly
involved (e.g., argumentation), and takes the form
of mean square error (MSE) based on user reply
history. This part is detailed in Section 3.1.

The second term, NLL(C |Θ), denotes the
negative log-likelihood of a set of conversations C,
with Θ containing all parameters. A probabilistic
model is described in Section 3.2 that shows how
the topical content and discourse structures of con-
versations are captured by these latent variables.

The hyperparameter µ controls the trade-off be-
tween the two effects. `2 regularization is also
added for parameters to avoid model overfitting.

For the rest of this section, we first present the
construction of L andNLL(C |Θ) in Sections 3.1
and 3.2. We then discuss how these two compo-
nents can be mutually informed by each other in
Section 3.3. Finally, the generative process and
parameter learning are described in Section 3.4.

3.1 Reply Preference (L)
Our user reply preference modeling is built on
the success of collaborative filtering (CF) for
product ratings. However, classic CF problems,
such as product recommendation, generally rely
on explicit user feedback. Unlike user ratings
on products, our input lacks explicit feedback
from users about negative preferences and non-
response. Therefore, we follow one-class Collab-
orative Filtering (Hu et al., 2008; Pan et al., 2008),

which weights positive instances higher during
training and is thus suited to our data. Formally,
for user u and conversation c, we measure reply
preference based on the MSE between predicted
preference score pu,c and reply history ru,c. ru,c
equals 1 if u is in the conversation history; other-
wise, it is 0. The first term of objective (Eq. 1)
takes the following form:

L =

|U|∑

u=1

|C|∑

c=1

fu,c · (pu,c − ru,c)2 (2)

where U consists of users {u} and C is a set of
conversations {c} in a dataset. fu,c is the corre-
sponding weight for a conversation c and a target
user u. Intuitively, it has a large value if positive
feedback (user replied) is observed. Therefore, we
adapt the formulation from Pan et al. (2008):

fu,c =

{
s if ru,c = 1 (i.e., user replied)
1 if ru,c = 0

(3)

where s > 1, an integer hyperparameter to be
tuned.

Inspired by prior models (Koren et al., 2009;
McAuley and Leskovec, 2013), we propose the
following latent factor model to describe pu,c:

pu,c = λ · γU
u · γC

c + (1− λ) · δUu · δCc + bu + bc + a (4)

γUu and γCc are K-dimensional latent vectors that
encode topic-specific information (where K is the
number of latent topics) for users and conversa-
tions. Specifically, γUu reflects the topical interests
of u, with higher value γUu,k indicating greater in-
terest by u in topic k. γCc captures the extents that
topics are discussed in conversation c.

Similarly, D-dimensional vectors δUu and δCc
capture discourse structures in shaping reply be-
haviors (where D is the number of discourse clus-
ters). δUu reflects the discourse behaviors u prefers,
such as u1 often enjoys arguments as in the sec-
ond conversation of Figure 1, while δCc captures
the discourse modes used throughout conversation
c. By multiplying user and conversation factors,
we can measure the corresponding similarity. The
predicted score pu,c thereby reflects the tendency
for a user u to be involved in conversation c.

As pointed out by McAuley and Leskovec
(2013), these latent vectors often encode hidden
factors that are hard to interpret under a CF frame-
work. Therefore, in Section 3.2, we present a
novel probabilistic model which can extract in-
terpretable topics and discourse modes as word
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distributions. We then describe how they can be
aligned with the latent vectors of γC and δU .

Parameter a is an offset parameter, bu and bc
are user and conversation biases, and λ ∈ [0, 1]
serves as the weight for trading offs of topic and
discourse factors in reply preference modeling.

3.2 Corpus Likelihood NLL(C |Θ)

Here we present a novel probabilistic model that
learns coherent word distributions for latent top-
ics and discourse modes of conversations. For-
mally, we assume that each conversation c ∈ C
contains Mc messages, and each message m has
Nc,m words. We distinguish three latent compo-
nents – discourse, topic, and background – un-
derlying conversations, each with their own type
of word distribution. At the corpus level, there
are K topics represented by word distribution φTk
(k = 1, 2, ...,K), while φDd (d = 1, 2, ..., D) rep-
resents the D discourse modes embedded in cor-
pus. In addition, we add a background word dis-
tribution φB to capture general information (e.g.,
common words), which do not indicate either dis-
course or topic information. φDd , φTk , and φB are
all multinomial word distributions over vocabu-
lary size V . Below describes more details.

Message-level Modeling. Our model assigns
two types of message-level multinomial variables
to each message: zc,m reflects its latent topic and
dc,m represents its discourse mode.

Topic assignments. Due to the short nature of
microblog posts, we assume each message m in
conversation c contains only one topic, indexed as
zc,m. This strategy has been proven useful to alle-
viate data sparsity for topic inference (Quan et al.,
2015). We further assume messages in the same
conversation would focus on similar topics. We
thus draw topic zc,m ∼ θc, where θc denotes the
fractions of topics discussed in conversation c.

Discourse assignments. To capture discourse
behaviors of u, distribution πu is used to repre-
sent the discourse modes in messages posted by u.
The discourse mode dc,m for message m is then
generated from πuc,m , where uc,m is the author of
m in c.

Word-level Modeling. We aim to separate dis-
course, topic, and background information for
conversations. Therefore, for each word wc,m,n
of message m, a ternary switcher xc,m,n ∈
{DISC, TOPIC,BACK} controls word wc,m,n to

fall into one of the three types: discourse, topic,
and background.

Discourse words (DISC) are indicative of the
discourse modes of messages. When xc,m,n =
DISC (i.e., wc,m,n is assigned as a discourse
word), word wc,m,n is generated from the dis-
course word distribution φDdc,m where dc,m is dis-
course assignment to message m.

Topic words (TOPIC) describe the topical fo-
cus of a conversation. When xc,m,n = TOPIC,
wc,m,n is assigned as a topic word and generated
from φTzc,m – word distribution given topic of m.

Background words (BACK) capture the gen-
eral information that is not related to discourse or
topic. When word wc,m,n is assigned as a back-
ground word (xc,m,n = BACK), it is drawn from
background distribution φB .

Switching among Topic, Discourse, and Back-
ground. We further assume the word type switcher
xc,m,n is sampled from a multinomial distribu-
tion which depends on the current discourse mode
dc,m. The intuition is that messages of different
discourse modes may show different distributions
of the three word types. For instance, a state-
ment message may contain more content words
than a rhetorical question. Specifically, xc,m,n ∼
Multi(τdc,m), where τd is a 3-dimension stochas-
tic vector that expresses the appearing probabil-
ities of three kinds of words (DISC, TOPIC,
BACK), when the discourse assignment is d. Stop
words and punctuations are forced to be labeled
as discourse or background. By explicitly distin-
guishing different types of words with switcher
xc,m,n, we can thus separate word distributions
that reflect discourse, topic, and background infor-
mation.

Likelihood. Based on the message-level and the
word-level generation process, the probability of
observing words in the given corpus is:

Pr(C |θ,π,φ, τ , z,d,x)

=

C∏

c=1

Mc∏

m=1

θc,zc,mπuc,m,dc,m

×
∏

xc,m,n=BACK

τdc,m,BACKφ
B
wc,m,n

×
∏

xc,m,n=DISC

τdc,m,DISCφ
D
dc,m,wc,m,n

×
∏

xc,m,n=TOPIC

τdc,m,TOPICφ
T
zc,m,wc,m,n

(5)

And we use negative log likelihood to model cor-
pus likelihood effect in Eq. 1, i.e., NLL(C |Θ) =
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− log(Pr(C |Θ), where parameters set Θ =
{θ,π,φ, τ , z,d,x}.

3.3 Mutually Informed User Preference and
Latent Variables

As mentioned above, the hidden factors discov-
ered in Section 3.1 lack interpretability, which can
be boosted by the learned latent topics and dis-
course modes in Section 3.2. However, it is non-
trivial to link the topic-related parameters of γCc to
the conversation topic distributions of θc, since the
former takes real values from −∞ to +∞ while
the latter is a stochastic vector. Therefore, we
follow the strategy from McAuley and Leskovec
(2013) to apply a softmax function over γCc :

θc,k =
exp(κT γCc,k)∑K

k′=1 exp(κ
T γCc,k′)

(6)

We further assume that the discourse mode pref-
erence by users, δUu , can also be informed by the
discourse mode distribution captured by πu, i.e., a
user who enjoys arguments may be willing to par-
ticipate another. So similarly, we define:

πu,d =
exp(κDδUu,d)∑D

d′=1 exp(κ
DδUu,d′)

(7)

where κT and κD are learnable parameters that
control the “peakiness” of the transformation. For
example, a larger κT indicates a more focused
conversation, while a smaller κT means users dis-
cuss diverse topics.

Finally, softmax transformation is also applied
to φTk , φDd , φB , and τd, as done in McAuley and
Leskovec (2013), with additional parameters ψTk ,
ψDd , ψB , and χd (as shown in Figure 2). This is to
ensure that the distributions φ∗∗ and τd are stochas-
tic vectors. In doing so, these distributions can be
learned via optimizing ψ∗∗ and χd, which take any
value and thus ensure that the cost function in Eq.
1 is optimized without considering any parameter
constraints.

3.4 Generative Process and Model Learning
Our word generation process is displayed in Fig-
ure 2 and described as follows:

• Compute topic distribution θc by Eq. 6

• For message m = 1 to Mc:

– Compute discourse distribution πuc,m by Eq. 7
– Draw topic assignment zc,m ∼Multi(θc)

– Draw discourse mode dc,m ∼Multi(πuc,m)

– For word index n = 1 to Nc,m:
∗ Draw word type xc,m,n ∼Multi(τd)
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Figure 2: Generative process of our joint model of topic
and discourse. u represents users. c represents conver-
sations. Dotted arrows represent the softmax linkings,
while solid arrows mean conditional priors.

∗ if xc,m,n == BACK:
Draw word wc,m,n ∼Multi(φB)

∗ if xc,m,n == DISC:
Draw word wc,m,n ∼Multi(φD

dc,m)
∗ if xc,m,n == TOPIC:

Draw word wc,m,n ∼Multi(φT
zc,m)

Parameter Learning. For learning, we ran-
domly initialize all learnable parameters and then
alternate between the following two steps:
Step 1. Fix topic and discourse assignments z and
d, and word type switcher x, then optimize the
remaining parameters in Eq. 1 by L-BFGS (No-
cedal, 1980):

Update a, b, γ∗, δ∗, κ∗, ψ∗, χ =

argminL+ µ ·NLL(C |Θ)
(8)

Step 2. Sample topic and discourse assignments z
and d at the message level and word type switcher
x at the word level, using the distributions, com-
puted according to parameters optimized in step 1:

Sample zc,m, dc,m, xc,m,n with probabilities
p(zc,m = k) = θc,k

p(dc,m = d) = πuc,m,d

p(xc,m,n = BACK) = φBwc,m,n
τdc,m,BACK

p(xc,m,n = DISC) = φDdc,m,wc,m,n
τdc,m,DISC

p(xc,m,n = TOPIC) = φTzc,m,wc,m,n
τdc,m,TOPIC

(9)

Step 2 is analogous to Gibbs Sampling (Grif-
fiths, 2002) in probabilistic graphical models, such
as LDA (Blei et al., 2003). However, distinguish-
ing from previous models, the multinomial distri-
butions in our models are not drawn from a Dirich-
let prior. Instead, they are computed based on the
parameters learned in Step 1.

Our learning process stops when the change of
parameters is small (i.e., below a pre-specified
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Dataset # of # of # of Avg msg Avg conv
user conv msg per user per user

US Election 4,300 2,013 22,092 5.14 1.23
TREC 10,122 7,500 38,999 3.85 1.71

Table 1: Statistics of two datasets.
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Figure 3: Horizontal axis: number of conversations that
a user is involved. Vertical axis: number of users fall
in the category (unit: 1,000). Notice that most of users
(about 98%) participate in less than 10 conversations.

threshold). Multiple restarts are tried, and similar
results are achieved.

4 Experimental Setup

Datasets. We collected two microblog conversa-
tion datasets from Twitter for experiments3: one
contains discussions about the U.S. presidential
election (henceforth US Election), the other gath-
ers conversations of diverse topics based on the
tweets released by TREC 2011 microblog track
(henceforth TREC)4. US Election was collected
from January to June of 2016 using Twitter’s
Streaming API5 with a small set of political key-
words.6 To recover conversations, Tweet Search
API7 was used to retrieve messages with the “in-
reply-to” relations to collect tweets in a recursive
way until full conversations were recovered.

Statistics of the datasets are shown in Table 1.
Figure 3 displays the number of conversations in-
dividual users participated in. As can be seen,
most users are involved in only a few conversa-
tions. Simply leveraging personal chat history will
not produce good performance for conversation

3The datasets are available at http://www.ccs.
neu.edu/home/luwang/

4 http://trec.nist.gov/data/tweets/
5https://developer.twitter.com/

en/docs/tweets/filter-realtime/
api-reference/post-statuses-filter.html

6Keyword list: “trump”, “hillary”, “clinton”, “president”,
“politics”, and “election.”

7https://developer.twitter.com/en/
docs/tweets/search/api-reference/
get-saved_searches-show-id

recommendation.
In our experiments, we predict whether a user

will engage in a conversation given the previous
messages in that conversation and past conversa-
tions the user is involved. For model training and
testing, we divide conversations into three ordered
segments, corresponding to training, development,
and test sets at 75%, 12.5%, and 12.5%.8

Preprocessing and Hyperparameter Tuning.
For preprocessing, links, mentions (i.e., @user-
name), and hashtags in tweets were replaced
with generic tags of “URL”, “MENTION”, and
“HASHTAG”. We then utilized the Twitter NLP
tool9 (Gimpel et al., 2011; Owoputi et al., 2013)
for tokenization and non-alphabetic token re-
moval. We removed stop words and punctuations
for all comparisons to ensure comparable perfor-
mance. We maintain a vocabulary with the 5,000
most frequent words.

Our model parameters are tuned on the devel-
opment set based on grid search, i.e. the param-
eters that give the lowest value for our objective
are selected. Specifically, the number of discourse
modes (D) and topics (K) are tuned to be 10. The
trade-off parameter µ between user preference and
corpus negative log-likelihood takes value of 0.1,
and λ, the parameter for balancing topic and dis-
course, is set to 0.5. Finally, the confidence param-
eter s takes a value of 200 to give higher weight for
positive instances, i.e., a user replied to a conver-
sation.

Evaluation Metrics. Following prior work on
social media post recommendation (Chen et al.,
2012; Yan et al., 2012), we treat our task on con-
versation recommendation as a ranking problem.
Therefore, popular information retrieval evalua-
tion metrics, including precision at K (P@K),
mean average precision (MAP) (Manning et al.,
2008), and normalized Discounted Cumulative
Gain at K (nDCG@K) (Järvelin and Kekäläinen,
2002) are reported. The metrics are computed per
user in the dataset and then averaged over all users.
The values range from 0.0 to 1.0, with higher val-
ues indicating better performance.

Baselines and Comparisons. For comparison,
we first consider three baselines: 1) ranking

8At least one turn per conversation is retained for training.
It is possible that one user only replies in either development
set or test set, but it is rather infrequent.

9http://www.cs.cmu.edu/˜ark/TweetNLP/
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Models US Election TREC
MAP P@1 nDCG@5 MAP P@1 nDCG@5

Baselines
RANDOM 0.018 0.004 0.009 0.006 0.001 0.002
LENGTH 0.025 0.002 0.003 0.013 0.002 0.004
POPULARITY 0.050 0.010 0.025 0.023 0.005 0.010
Comparisons
OCCF 0.637 0.589 0.649 0.410 0.385 0.425
RSVM 0.687 0.680 0.690 0.554 0.575 0.559
CTR 0.673 0.649 0.678 0.475 0.431 0.495
ADAPTED HFT 0.698 0.652 0.706 0.487 0.447 0.504
Our model 0.762 0.750 0.757 0.591 0.591 0.600

Table 2: Conversation recommendation results on US
Election and TREC. The best result for each column is
highlighted in bold. Our model performs significantly
better than all the comparisons (p < 0.01, paired t-
test).

conversations randomly (RANDOM); 2) longer
conversations (i.e., more words) ranked higher
(LENGTH); 3) conversations with more distinct
users ranked higher (POPULARITY).

We further compare results with three estab-
lished recommendation models:
• OCCF: one-class Collaborative Filtering (Pan
et al., 2008), which only considers users’ reply his-
tory without modeling content in conversations.
• RSVM: ranking SVM (Joachims, 2002), which
ranks conversations for each user with the content
and Twitter features as in Duan et al. (2010).
• CTR: messages in one conversation are aggre-
gated into one post and a state-of-the art Collabo-
rative Filtering-based post recommendation model
is applied (Chen et al., 2012).

Finally, we also adapt the “hidden factors as
topics” (HFT) model proposed in McAuley and
Leskovec (2013) (henceforth ADAPTED HFT).
Because the original model leverages the ratings
for all product reviews and does not handle im-
plicit user feedback well, we replace their user
preference objective function with ours (Eq. 2).

5 Experimental Results

In this section, we first discuss our main evaluation
in Section 5.1. A case study and corresponding
discussion are provided in Section 5.2 to provide
further insights, which is followed by an analysis
of the topics and discourse modes discovered by
our model (Section 5.3). We also examine our per-
formance on first time replies (Section 5.4).

5.1 Conversation Recommendation Results

Experimental results are displayed in Table 2,
where our model yields statistically significantly
better results than baselines and comparisons

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

25% 50% 75%

M
A

P

OCCF RSVM CTR adapted HFT Our Model

(a) US Election dataset
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(b) TREC dataset

Figure 4: MAP scores for models trained on 25%,
50%, and 75% of conversation history. For each quan-
tile, from left to right shows the result of OCCF,
RSVM, CTR, ADAPTED HFT, and our model. In gen-
eral, longer conversation history leads to better perfor-
mance, and our model outperforms compared systems
in all settings.

(paired t-tests, p < 0.01). For P@K, we only re-
port P@1, because a significant amount of users
participate only in 1 or 2 conversations. For
nDCG@K, different K values are experimented,
which results in similar trend, so only nDCG@5
is reported.

We find that the baselines that rank conversa-
tions with simple features (e.g., length or popu-
larity) perform poorly. This implies that generic
algorithms that do not consider conversation con-
tent or user preference cannot produce reasonable
recommendations.

Although some non-baseline systems capture
content in one way or another, only ADAPTED

HFT and our model exploit latent topic models to
better represent content in tweets, and outperform
other methods.

Compared to ADAPTED HFT, which only con-
siders latent topics under a collaborative filtering
framework, our model extracts both topics and dis-
course modes as latent variables, and shows supe-
rior performance on both datasets. Our discourse
variables go beyond topical content to capture so-
cial behaviors that affect user engagement, such as
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Figure 5: MAP scores of models for users involved
in varying number of conversations on TREC dataset.
Horizontal axis: degree of data sparsity indicated by
the number of conversations a user involved in training
data. Vertical axis: MAP scores. For each degree level,
from left to right shows the results of OCCF, RSVM,
CTR, ADPATED HFT, and our model.

arguments, question-asking, agreement, and other
discourse modes.

Training with Varying Conversation History.
To test the model performance based different lev-
els of user engagement history, we further experi-
ment with varying the length of conversations for
training. Specifically, in addition to using 75% of
conversation history, we also extract the first 25%
and 50% of history as training. The rest of a con-
versation is separated equally for development and
test. Figure 4 shows the MAP scores for US Elec-
tion and TREC datasets. The increasing MAP for
all methods as the training history increases in-
dicates that generally, conversation history is es-
sential for recommendation. Our model performs
consistently better over different lengths of con-
versation histories.

Results for Varying Degree of Data Sparsity.
From Table 1 and Figure 3, we observe that most
users in our datasets are involved in only a few
conversations. In order to study the effects of data
sparsity on recommendation models, we examine
in Figure 5 the MAP scores for users engaged in a
varying number of conversations, as measured on
the TREC dataset. The results on the US Election
dataset have similar distributions. As we see, the
prediction results become worse for users involved
in fewer conversations. This indicates that data
sparsity serves as a challenge for all recommenda-
tion models. We also observe that our model per-
forms consistently better than other models over
different degrees of sparsity. This implies that ef-
fectively capturing discourse structure in conver-
sation context is useful to mitigating the effects of

Models Conv 1 (c1) Conv 2 (c2)
OCCF 0.941 0.922
ADAPTED HFT 0.923 0.954
Our model 0.924 0.961

Table 3: Predicted recommendation scores by different
models of U1 for conversations c1 and c2 in Figure 1.
U1 later replies to c2 but not c1, where our model pre-
dicts scores of 0.961 for c2 (higher than 0.924 for c1).

Latent Dim. User U1 Conv 1 (c1) Conv 2 (c2)

Topic 1 (Sanders) 0.92 (γU
u1,1) 0.10 (γC

c1,1) 0.63 (γC
c2,1)

Topic 2 (Clinton) 0.14 (γU
u1,2) 0.84 (γC

c1,2) 0.12 (γC
c2,2)

Disc 1 (argument) 0.46 (δUu1,1) 0.28 (δCc1,1) 0.38 (δCc2,1)
Disc 2 (statement) -0.24 (δUu1,2) 0.98 (δCc1,2) -0.09 (δCc2,2)

Table 4: Sample latent dimensions of topics (γUu1
for

user, and γCc∗ for conversations) and discourse modes
(δUu1

for user, and δCc∗ for conversations). User U1

shows interest in topic 1 (about Sanders), which is also
a dominating topic in conversation c2, but is not inter-
ested in topic 2 (about Clinton). U1 shows a preference
for discourse mode 1 (argument) over mode 2 (state-
ment).

data sparsity on conversation recommendation.

5.2 Case Study and Discussion
Here we present a case study based on the sample
conversations in Figure 1. Recall that user U1 is
interested in conversations about Sanders, and also
prefers more argumentative discourse, and thus re-
turns in conversation c2 but not c1.

Table 3 shows the predicted scores for the two
conversations from OCCF, ADAPTED HFT, and
our model (as in Eq. 2). Both ADAPTED HFT and
our model more accurately recommend c2 over c1,
with our model producing a slightly higher recom-
mendation score for c2.

Table 4 shows the latent dimension values for
the learned topics and discourse modes for this
user and these two conversations. Based on human
inspection, topic 1 appears to contain words about
Sanders, which is the main topic in conversation
c2. Topic 2 is about Clinton, which is a dominat-
ing topic in conversation c1. Our model also picks
up user interest in topic 1 (Sanders), and thus as-
signs γUu1,1 a high value. For discourse modes, our
model also generates a high score for “argument”
discourse (labeled via human inspection) for both
the user and c2.

5.3 Further Analysis of Topic and Discourse
Ablation Study. We have shown that joint mod-
eling of topical content and discourse modes pro-
duces the superior performance for our model.
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Here we provide an ablation study to examine the
relative contributions of those two aspects by set-
ting the trade-off parameter λ to 1.0 (topic only) or
0.0 (discourse only). Table 5 shows that topics or
discourse individually improve slightly upon the
comparison ADAPTED HFT, but only jointly do
they improve significantly upon it.

Models US Election TREC
ADAPTED HFT 0.698 0.487
Our model (topic only) 0.711 0.491
Our model (discourse only) 0.705 0.483
Our model (full) 0.762 0.591

Table 5: MAP of different variants of our model. Best
results in each column is in bold.

Topic Coherence. To examine the quality of
topics found by our model, we use the CV topic
coherence score measured via the open-source
toolkit Palmetto10, which has been shown to pro-
duce evaluation performance comparable to hu-
man judgment (Röder et al., 2015). Our model
achieves topic coherence scores of 0.343 and
0.376 on TREC and US Election datasets, com-
pared to 0.338 and 0.371 for the topics from
ADAPTED HFT.

Discourse Top 10 Terms
US Election TREC

Question ? it if ... so all how
because when any

? : HASHTAG or
too with MENTION
and ... what

Reaction you like any good !
please no ˜ lol what

all EMOTICON &
!!! right ok u ;)
thank haha

Statement
’s do think the .
should they from
and have

i , a what all you be
how then ...

Argument
but that all fuck
without against out
though ! anything

do would up that too
even always never
anything much

Reference
be i about that
MENTION it “ you
-lrb- ?

MENTION ... ! :
what rt it you URL :)

Table 6: Top 10 representative terms for sample dis-
course modes discovered by our model in two datasets.
Names of discourse modes are our interpretations ac-
cording to the word distributions generated by our
model.

Sample Discourse Modes. While our topic
word distributions are relatively unsurprising, of
greater interest are the discourse mode word dis-
tributions. Table 6 shows a sample of discourse
modes as labeled by human. Although this is
merely a qualitative human judgment at this point,
there does appear to be a notable overlap in
discourse modes between the two datasets even
though they were learned separately.

10https://github.com/AKSW/Palmetto/

5.4 First Time Reply Results
From a recommendation perspective, users may
be interested in joining new conversations. We
thus compare each recommendation system for
first time replies. For each user, we only evaluate
for conversations where they are newcomers. Ta-
ble 7 shows that, unsurprisingly, all systems per-
form poorly on this task, though our model per-
forms slightly better. This suggests that other fea-
tures, e.g., network structures or other discussion
thread features, could usefully be included in fu-
ture studies that target new conversations.

Models US Election TREC
OCCF 0.035 0.033
RSVM 0.023 0.002
CTR 0.029 0.016
ADAPTED HFT 0.054 0.058
Our model 0.083 0.090

Table 7: MAP of models considering only first time
replies. Best results in each column is in bold.

6 Conclusion

This paper has presented a framework for mi-
croblog conversation recommendation via jointly
modeling topics and discourse modes. Experi-
mental results show that our method can outper-
form competitive approaches that omit user dis-
course behaviors. Qualitative analysis shows that
our joint model yields meaningful topics and dis-
course representations.
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Abstract

Arguing without committing a fallacy is one of
the main requirements of an ideal debate. But
even when debating rules are strictly enforced
and fallacious arguments punished, arguers of-
ten lapse into attacking the opponent by an
ad hominem argument. As existing research
lacks solid empirical investigation of the ty-
pology of ad hominem arguments as well as
their potential causes, this paper fills this gap
by (1) performing several large-scale annota-
tion studies, (2) experimenting with various
neural architectures and validating our work-
ing hypotheses, such as controversy or reason-
ableness, and (3) providing linguistic insights
into triggers of ad hominem using explainable
neural network architectures.

1 Introduction

Human reasoning is lazy and biased but it per-
fectly serves its purpose in the argumentative con-
text (Mercier and Sperber, 2017). When chal-
lenged by genuine back-and-forth argumentation,
humans do better in both generating and evaluat-
ing arguments (Mercier and Sperber, 2011). The
dialogical perspective on argumentation has been
reflected in argumentation theory prominently by
the pragma-dialectic model of argumentation (van
Eemeren and Grootendorst, 1992). Not only
sketches this theory an ideal normative model of
argumentation but also distinguishes the wrong ar-
gumentative moves, fallacies (van Eemeren and
Grootendorst, 1987). Among the plethora of
prototypical fallacies, notwithstanding the contro-
versy of most taxonomies (Boudry et al., 2015),
ad hominem argument is perhaps the most famous
one. Arguing against the person is considered
faulty, yet is prevalent in online and offline dis-
course.1

1According to ‘Godwin’s law’ known from the in-
ternet pop-culture (https://en.wikipedia.org/wiki/

Although the ad hominem fallacy has been
known since Aristotle, surprisingly there are very
few empirical works investigating its properties.
While Sahlane (2012) analyzed ad hominem and
other fallacies in several hundred newspaper edi-
torials, others usually only rely on few examples,
as observed by de Wijze (2002). As Macagno
(2013) concludes, ad hominem arguments should
be considered as multifaceted and complex strate-
gies, involving not a simple argument, but sev-
eral combined tactics. However, such research, to
the best of our knowledge, does not exist. Very
little is known not only about the feasibility of
ad hominem theories in practical applications (the
NLP perspective) but also about the dynamics and
triggers of ad hominem (the theoretical counter-
part).

This paper investigates the research gap at three
levels of increasing discourse complexity: ad
hominem in isolation, direct ad hominem with-
out dialogical exchange, and ad hominem in large
inter-personal discourse context. We asked the
following research questions. First, what qualita-
tive and quantative properties do ad hominem ar-
guments have in Web debates and how does that
reflect the common theoretical view (RQ1)? Sec-
ond, how much of the debate context do we need
for recognizing ad hominem by humans and ma-
chine learning systems (RQ2)? And finally, what
are the actual triggers of ad hominem arguments
and can we predict whether the discussion is go-
ing to end up with one (RQ3)?

We tackle these questions by leveraging Web-
based argumentation data (Change my View on
Reddit), performing several large-scale annotation
studies, and creating a new dataset. We exper-
iment with various neural architectures and ex-

Godwin’s_law), if a discussion goes on long enough, sooner
or later someone will compare someone or something to
Adolf Hitler.
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trapolate the trained models to validate our work-
ing hypotheses. Furthermore, we propose a list
of potential linguistic and rhetorical triggers of
ad hominem based on interpreting parameters of
trained neural models.2 This article thus presents
the first NLP work on multi-faceted ad hominem
fallacies in genuine dialogical argumentation. We
also release the data and the source code to the re-
search community.3

2 Theoretical background and related
work

The prevalent view on argumentation emphasizes
its pragmatic goals, such as persuasion and group-
based deliberation (van Eemeren et al., 2014), al-
though numerous works have dealt with argument
as product, that is, treating a single argument and
its properties in isolation (Toulmin, 1958; Haber-
nal and Gurevych, 2017). Yet the social role of
argumentation and its alleged responsibility for
the very skill of human reasoning explained from
the evolutionary perspective (Mercier and Sperber,
2017) provide convincing reasons to treat argu-
mentation as an inherently dialogical tool.

The observation that some arguments are in
fact ‘deceptions in disguise’ was made already
by Aristotle (Aristotle and Kennedy (transla-
tor), 1991), for which the term fallacy has been
adopted. Leaving the controversial typology of
fallacies aside (Hamblin, 1970; van Eemeren and
Grootendorst, 1987; Boudry et al., 2015), the ad
hominem argument is addressed in most theories.
Ad hominem argumentation relies on the strat-
egy of attacking the opponent and some feature
of the opponent’s character instead of the counter-
arguments (Tindale, 2007). With few exceptions,
the following five sub-types of ad hominem are
prevalent in the literature: abusive ad hominem
(a pure attack on the character of the opponent),
tu quoque ad hominem (essentially analogous to
the “He did it first” defense of a three-year-old
in a sandbox), circumstantial ad hominem (the
“practice what you preach” attack and accusation
of hypocrisy), bias ad hominem (the attacked op-
ponent has a hidden agenda), and guilt by as-
sociation (associating the opponent with some-
body with a low credibility) (Schiappa and Nordin,

2An attempt to address the plea for thinking about prob-
lems, cognitive science, and the details of human language
(Manning, 2015).

3https://github.com/UKPLab/
naacl2018-before-name-calling-habernal-et-al

2013; Macagno, 2013; Walton, 2007; Hansen,
2017; Woods, 2008). We omit examples here
as these provided in theoretical works or text-
books are usually artificial, as already criticized
by (de Wijze, 2002) or (Boudry et al., 2015).

The topic of fallacies, which might be consid-
ered as sub-topic of argumentation quality, has re-
cently been investigated also in the NLP field. Ex-
isting works are, however, limited to the mono-
logical view (Wachsmuth et al., 2017; Habernal
and Gurevych, 2016b,a; Stab and Gurevych, 2017)
or they focus primarily on learning fallacy recog-
nition by humans (Habernal et al., 2017, 2018a).
Another related NLP sub-field includes abusive
language and personal attacks in general. Wulczyn
et al. (2017) investigated whether or not Wikipedia
talk page comments are personal attacks and an-
notated 38k instances resulting in a highly skewed
distribution (only 0.9% were actual attacks). Re-
garding the participants’ perspective, Jain et al.
(2014) examined principal roles in 80 discussions
from the Wikipedia: Article for Deletion pages
(focusing on stubbornness or ignoredness, among
others) and found several typical roles, including
‘rebels’, ‘voices’, or ‘idiots’. In contrast to our
data under investigation (Change My View de-
bates), Wikipedia talk pages do not adhere to strict
argumentation rules with manual moderation and
have a different pragmatic purpose.

Reddit as a source platform has also been used
in other relevant works. Saleem et al. (2016) de-
tected hateful speech on Reddit by exploiting par-
ticular sub-communities to automatically obtain
training data. Wang et al. (2016) experimented
with an unsupervised neural model to cluster so-
cial roles on sub-reddits dedicated to computer
games. Zhang et al. (2017) proposed a set of nine
comment-level dialogue act categories and anno-
tated 9k threads with 100k comments and built a
CRF classifier for dialogue act labeling. Unlike
these works which were not related to argumenta-
tion, Tan et al. (2016) examined persuasion strate-
gies on Change My View using word overlap fea-
tures. In contrast to our work, they focused solely
on the successful strategies with delta-awarded
posts. Using the same dataset, Musi (2017) re-
cently studied concession in argumentation.

3 Data

Change My View (CMV) is an online ‘place to
post an opinion you accept [...] in an effort to un-

387



derstand other perspectives on the issue’, in other
words an online platform for ‘good-faith’ argu-
mentation hosted on Reddit.4 A user posts a sub-
mission (also called original post(er); OP) and
other participants provide arguments to change the
OP’s view, forming a typical tree-form Web dis-
cussion. A special feature of CMV is that the OP
acknowledges convincing arguments by giving a
delta point (∆). Unlike the vast majority of in-
ternet discussion forums, CMV enforces obeying
strict rules (such as no ‘low effort’ posts, or accus-
ing of being unwilling to change view) whose vi-
olation results into deleting the comment by mod-
erators. These formal requirements of an ideal de-
bate with the notion of violating rules correspond
to incorrect moves in critical discussion in the nor-
mative pragma-dialectic theory (van Eemeren and
Grootendorst, 1987). Thus, violating the rule of
‘not being rude or hostile’ is equivalent to com-
mitting ad hominem fallacy. For our experiments,
we scraped, in cooperation with Reddit, the com-
plete CMV including the content of the deleted
comments so we could fully reconstruct the fal-
lacious discussions, relying on the rule violation
labels provided by the moderators. The dataset
contains ≈ 2M posts in 32k submissions, forming
780k unique threads.

We will set up the stage for further experiments
by providing several quantitative statistics we per-
formed on the dataset. Only 0.2% posts in CMV
are ad hominem arguments. This contrasts with a
typical online discussion: Coe et al. (2014) found
19.5% of comments under online news articles to
be incivil. Most threads contain only a single ad
hominem argument (3,396 threads; there are 3,866
ad hominem arguments in total in CMV); only 35
threads contain more than three ad hominem argu-
ments. In 48.6% of threads containing a single ad
hominem, the ad hominem argument is the very
last comment. This corresponds to the popular be-
lief that if one is out of arguments, they start at-
tacking and the discussion is over. This trend is
also shown in Figure 1 which displays the rela-
tive position of the first ad hominem argument in
a thread. Replying to ad hominem with another
ad hominem happens only in 15% of the cases;
this speaks for the attempts of CMV participants
to keep up with the standards of a rather rational
discussion.

Regarding ad hominem authors, about 66% of

4https://www.reddit.com/r/changemyview/

Figure 1: ‘No discussion after ad hominem.’ Dis-
tribution of the number of comments before the first
ad hominem is committed proportional to the thread
length.

them start attacking ‘out of blue’, without any pre-
vious interaction in the thread. On the other hand,
11% ad hominem authors write at least one ‘nor-
mal’ argument in the thread (we found one outlier
who committed ad hominem after writing 57 nor-
mal arguments in the thread). Only in 20% cases,
the ad hominem thread is an interplay between the
original poster and another participant. It means
that there are usually more people involved in an
ad hominem thread. Unfortunately, sometimes the
OP herself also commits ad hominem (12%).

We also investigated the relation between the
presence of ad hominem arguments and the sub-
mission topic. While most submissions are ac-
companied by only one or two ad hominem ar-
guments (75% of submissions), there are also ex-
tremes with over 50 ad hominem arguments. Man-
ual analysis revealed that these extremes deal with
religion, sexuality/gender, U.S. politics (mostly
Trump), racism in the U.S., and veganism. We will
elaborate on that later in Section 4.2.

4 Experiments

The experimental part is divided into three parts
according to the increasing level of discourse com-
plexity. We first experiment with ad hominem
in isolation in section 4.1, then with direct ad
hominem replies to original posts without dialog-
ical exchange in section 4.2, and finally with ad
hominem in a larger inter-personal discourse con-
text in section 4.3.

4.1 Ad hominem without context in CMV

The first experimental set-up examines ad
hominem arguments in Change my view regard-
less of its dialogical context.
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4.1.1 Data verification
Ad hominem arguments labeled by the CMV mod-
erators come with no warranty. To verify their re-
liability, we conducted the following annotation
studies. First, we needed to estimate parame-
ters of crowdsourcing and its reliability. We sam-
pled 100 random arguments from CMV without
context: positive candidates were the reported ad
hominem arguments, whereas negative candidates
were sampled from comments that either violate
other argumentation rules or have a delta label. To
ensure the maximal content similarity of these two
groups, for each positive instance the semantically
closest negative instance was selected.5 We then
experimented with different numbers of Amazon
Mechanical Turk workers and various thresholds
of the MACE gold label estimator (Hovy et al.,
2013); comparing two groups of six workers each
and 0.9 threshold yielded almost perfect inter-
annotator agreement (0.79 Cohen’s κ). We then
used this setting (six workers, 0.9 MACE thresh-
old) to annotate another 452 random arguments
sampled in the same way as above.

Crowdsourced ‘gold’ labels were then com-
pared to the original CMV labels (balanced bi-
nary task: positive instances (ad hominem) and
negative instances) reaching accuracy of 0.878.
This means that the ad hominem labels from
CMV moderators are quite reliable. Manual er-
ror analysis of disagreements revealed 11 missing
ad hominem labels. These were not spotted by the
moderators but were annotated as such by crowd
workers.

4.1.2 Recognizing ad hominem arguments
We sampled a larger balanced set of positive in-
stances (ad hominem) and negative instances us-
ing the same methodology as in section 4.1.1, re-
sulting in 7,242 instances, and casted the task of
recognition of ad hominem arguments as a binary
supervised task. We trained two neural classifiers,
namely a 2-stacked bi-directional LSTM network
(Graves and Schmidhuber, 2005), and a convolu-
tional network (Kim, 2014), and evaluated them
using 10-fold cross validation. Throughout the
paper we use pre-trained word2vec word embed-
dings (Mikolov et al., 2013). Detailed hyperpa-

5Similarity was computed using a cosine similarity of av-
erage embedding vectors multiplied by the argument length
difference to minimize length-related artifacts. The sample
was balanced with roughly 50% positive and 50% negative
instances.

Model Accuracy
Human upper bound estimate 0.878
2 Stacked Bi-LSTM 0.782
CNN 0.810

Table 1: Prediction of ad hominem arguments

rameters are described in the source codes (link
provided in section 1). As results in Table 1 show,
the task of recognizing ad hominem arguments
is feasible and almost achieves the human upper
bound performance.

4.1.3 Typology of ad hominem
While binary classification of ad hominem as pre-
sented above might be sufficient for the purpose of
red-flagging arguments, theories provide us with a
much finer granularity (recall the typology in sec-
tion 2). To validate whether this typology is em-
pirically relevant, we executed an annotation ex-
periment to classify ad hominem arguments into
the provided five types (plus ‘other’ if none ap-
plies). We sampled 200 ad hominem arguments
from threads in which interlocution happens only
between two persons and which end up with ad
hominem. The Mechanical Turk workers were
shown this last ad hominem argument as well
as the preceding one. Each instance was anno-
tated by 16 workers to achieve a stable distribu-
tion of labels as suggested by Aroyo and Welty
(2015). While 41% arguments were categorized
as abusive, other categories (tu quoque, circum-
stantial, and guilt by association) were found to
be rather ambiguous with very subtle differences.
In particular, we observed a very low percentage
agreement on these categories and a label distri-
bution spiked around two or more categories. Af-
ter a manual inspection we concluded that (1) the
theoretical typology does not account for longer
ad hominem arguments that mix up different at-
tacks and that (2) there are actual phenomena in
ad hominem arguments not covered by theoreti-
cal categories. These observations reflect those of
Macagno (2013, p. 399) about ad hominem moves
as multifaceted strategies.

We thus propose a list of phenomena typical to
ad hominem arguments in CMV based on our em-
pirical study. For this purpose, we follow up with
another annotation experiment on 400 arguments,
with seven workers per instance.6 The goal was

6Here we decided on seven workers per item by relying
on other span annotation experiments done in a similar setup
(Habernal et al., 2018b).
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to annotate a text span which made the argument
an ad hominem; a single argument could contain
several spans. We estimated the gold spans us-
ing MACE and performed a manual post-analysis
by designing a typology of causes of ad hominem
together with their frequency of occurrence. The
results and examples are summarized in Table 2.

4.1.4 Results and interpretation
The data verification annotation study (section
4.1.1) has two direct consequences. First, the high
κ score (0.79) answers RQ2: for recognizing ad
hominem argument, no previous context is neces-
sary. Second, we still found 5% overlooked ad
hominem arguments in CMV thus a moderation-
facilitating tool might come handy; this can be
served by the well-performing CNN model (0.810
accuracy; section 4.1.2).

The existing theoretical typology of ad
hominem arguments, as presented for example in
most textbooks, provides only a very simplified
view. On the one hand, some of the categories
which we found in the empirical labeling study
(section 4.1.3) do map to their corresponding
counterparts (such as the vulgar insults). On
the other hand, some ad hominem insults typ-
ical to online argumentation (illiteracy insults,
condescension) are not present in studies on ad
hominem. Hence, we claim that any potential
typology of ad hominem arguments should be
multinomial rather than categorical, as we found
multiple different spans in a single argument.

4.2 Triggers of first level ad hominem

In the following section, we increase the complex-
ity of the studied discourse by taking the original
post into account.

4.2.1 Annotation study
We already showed that ad hominem arguments
are usually preceded by a discussion between the
interlocutors. However, 897 submissions (origi-
nal posts; OPs) have at least one intermediate ad
hominem (in other words, the original post is di-
rectly attacked). We were thus interested in what
triggers these first-level ad hominem arguments.
We hypothesize two causes: (1) the controversy of
the OP, similarly to some related works on news
comments (Coe et al., 2014) and (2) the reason-
ableness of the OP (whether the topic is reason-
able to argue about). We model both features on a
three-point scale, namely controversy: 1 = ‘not re-

ally controversial’, 2 = ‘somehow controversial’,
3 = ‘very controversial’ and reasonableness: 1 =
‘quite stupid’, 2 = ‘neutral’, 3 = ‘quite reason-
able’.7

We sampled two groups of OPs: those which
had some ad hominem arguments in any of its
threads but no delta (ad hominem group) and
those without ad hominem but some deltas (Delta
group). In total, 1,800 balanced instances were an-
notated by five workers and the resulting value was
averaged for each item.8

Statistical analysis of the annotated 1,800 OPs
revealed that ad hominem arguments are associ-
ated with more controversial OPs (mean contro-
versy 1.23) while delta-awarded arguments with
less controversial OPs (mean controversy 1.06;
K-S test;9 statistics 0.13, P-value: 7.97× 10−7).
On the other hand, reasonableness does not seem
to play such a role. The difference between ad
hominem in reasonable OPs (mean 1.20) and delta
in reasonable OPs (mean 1.11) is not that statis-
tically strong; (K-S test statistics: 0.07, P-value:
0.02).

4.2.2 Regression model for predicting
controversy and reasonableness

We further built a regression model for predict-
ing controversy and reasonableness of the OPs.
Along with Bi-LSTM and CNN networks (same
models as in 4.1.2) we also developed a neu-
ral model that integrates CNN with topic distri-
bution (CNN+LDA). The motivation for a topic-
incorporating model was based on our earlier ob-
servations presented in section 3. In particular,
we trained an LDA topic model (k = 50) (Blei
et al., 2003) on the heldout OPs and during train-
ing/testing, we merged the estimated topic distri-
bution vector with the output layer after convolu-
tion and pooling. We performed 10-fold cross val-
idation on the 1,800 annotated OPs and got rea-
sonable performance for controversy prediction (ρ

7Examples of not really controversial: ”I Don’t Think
Monty Python is Funny”, very controversial: ”Blacks are
generally intellectual inferior to the other major races”, quite
stupid: ”Burritos are better than sandwiches”, and quite rea-
sonable: ”Nations whose leadership is based upon religion
are fundamentally backwards”.

8A pilot crowd sourcing annotation with 5 + 5 workers
showed a fair reliability for controversy (Spearman’s ρ 0.804)
and medium reliability for reasonableness (Spearman’s ρ
0.646).

9Kolmogorov-Smirnov (K-S) test is a non-parametric test
without any assumptions about the underlying probability
distribution.
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Type (%) Example spans
Vulgar insult 31.3 ”Your just an asshole”, ”you dumb fuck”, etc.
Illiteracy insult 13.0 ”Reading comprehension is your friend”, ”If you can’t grasp the concept, I can’t

help you”
Condescension 6.5 ”little buddy”, ”sir”, ”boy”, ”Again, how old are you?”
Ridiculing and sarcasm 6.5 ”Thank you so much for all your pretentious explanations”, ”Can you also use

Google?”
‘Idiot’-insults 6.5 ”Ever have discussions with narcissistic idiots on the internet? They are so tir-

ing”
Accusation of stupidity 4.3 ”You have no capability to understand why”, ”You’re obviously just Nobody

with enough brains to operate a computer could possibly believe something this
stupid”

Lack of argumentation skills 4.3 ”You’re making the claims, it’s your job to prove it. Don’t you know how debat-
ing works?”, ”You’re trash at debating.”

Accusation of trolling 3.9 ”You’re just a dishonest troll”, ”You’re using troll tactics”
Accusation of ignorance 3.5 ”Please dont waste peoples time pretending to know what you’re talking about”,

”Do you even know what you’re saying?”
”You didn’t read what I wrote” 3.0 ”Read what I posted before acting like a pompous ass”, ”Did you even read this?”
”What you say is idiotic” 2.6 ”To say that people intrinsically understand portion size is idiotic.”, ”Your second

paragraph is fairly idiotic”
Accusation of lying 2.6 ”Possible lie any harder?”, ”You are just a liar.”
”You don’t face the facts and ig-
nore the obvious”

1.7 ”Willful ignorance is not something I can combat”, ”How can you explain that?
You can’t because it will hurt your feelings to face reality”

Accusation of ad hominem or
other fallacies

1.7 ”You started with a fallacy and then deflected.”, ”You still refuse to acknowledge
that you used a strawman argument against me”

Other 8.3 ”Wow. Someone sounds like a bit of an anti-semite”, ”You’re too dishonest to
actually quote the verse because you know it’s bullshit”

Table 2: What makes an argument ad hominem: results of the empirical study of labeling spans in 400 ad hominem
arguments.

Controversy (Spearman’s ρ)
Human upper bounds 0.804
Bi-LSTM 0.539
CNN 0.559
CNN-LDA 0.569
Reasonableness (Spearman’s ρ)
Human upper bounds 0.646
Bi-LSTM 0.332
CNN 0.320
CNN-LDA 0.385

Table 3: Results of predicting controversy and reason-
ableness of the original post.

0.569) and medium performance for reasonable-
ness prediction (ρ 0.385), respectively; both using
the CNN+LDA model (see Table 3).

We then used the trained model and extrap-
olated on all held-out OPs (1,267 ad hominem
and 10,861 delta OPs, respectively). The analy-
sis again showed that ad hominem arguments tend
to be found under more controversial OPs whereas
delta arguments in the less controversial ones (K-
S test statistics: 0.14, P-value: 1× 10−18). For
reasonableness, the rather low performance of the
predictor does not allow us draw any conclusions
on the extrapolated data.

4.2.3 Results and interpretation
Controversy of the original post is immediately
heating up the debate participants and correlates
with a higher number of direct ad hominem re-
sponses. This corresponds to observations made
in comments in newswire where ‘weightier’ top-
ics tended to stir incivility (Coe et al., 2014). On
the other hand, ‘stupidity’ (or ‘reasonableness’)
does not seem to play any significant role. The
CNN+LDA model for predicting controversy (ρ
0.569) might come handy for signaling potentially
‘heated’ discussions.

4.3 Before calling names

In this section, we focus on the dialogical aspect
of CMV debates and dynamics of ad hominem
fallacies. Although ad hominem arguments ap-
pear in many forms (Section 4.1.3), we treat all
ad hominem arguments equal in the following ex-
periments.

4.3.1 Data sampling
So far we explored what makes an ad hominem ar-
gument and whether debated topic influences the
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Figure 2: Sampling instances for learning triggers of
ad hominem.

number of intermediate attacks. However, pos-
sible causes of the argumentative dynamics that
ends up with an ad hominem argument remain an
open question, which has been addressed in nei-
ther argumentation theory nor in cognitive psy-
chology, to the best of our knowledge. We thus
cast an explanation of triggers and dynamics of
ad hominem discussions as a supervised machine
learning problem and draw theoretical insights by
a retrospective interpretation of the learned mod-
els.

We sample positive instances by taking three
contextual arguments preceding the ad hominem
argument from threads which are an interplay be-
tween two persons. Negative samples are drawn
similarly from threads in which the argument is
awarded with ∆ as shown in Figure 2.10 Each
instance consists of the three concatenated argu-
ments delimited by a special OOV token. This re-
sulted in 2,582 balanced training instances.

4.3.2 Neural models
The alleged lack of interpretability of neural net-
works has motivated several lines of approaches,
such as layer-wise relevance propagation (Arras
et al., 2017) or representation erasure (Li et al.,
2016), both on sentiment analysis. As our task at
hand deals with multi-party discourse that presum-
ably involves temporal relations important for the
learned representation, we opted for a state-of-the-
art self-attentive LSTM model. In particular, we
re-implemented the Structured Self-Attentive Em-
bedding Neural Network (SSAE-NN) (Lin et al.,
2017) which learns an embedding matrix repre-
sentation of the input using attention weights. To
make the attention even more interpretable, we re-
placed the final non-linear MLP layers with a sin-
gle linear classifier (softmax). By summing over
one dimension of the attention embedding matrix,
each word from the input sequence gets associated

10To ensure as much content similarity as possible, we
used the same similarity sampling as in section 4.1.1.

with a single attention weight that gives us insights
into the classifier’s ‘features’ (still indirectly, as
the true representation is a matrix; see the origi-
nal paper).11 The learning objective is to recog-
nize whether the thread ends up in an ad hominem
argument or a delta point. We trained the model
in 10-fold cross-validation and although our goal
is not to achieve the best performance but rather to
gain insight, we also tested a CNN model (accu-
racy 0.7095) which performed slightly worse than
the SSAE-NN model (accuracy 0.7208).

4.3.3 Results and interpretation
During testing the model, we projected atten-
tion weights to the original texts as heat maps
and manually analyzed 191 true positives (ad
hominem threads recognized correctly), as well as
77 false positives (ad hominem threads misclassi-
fied as delta) and 84 false negatives (delta as ad
hominem), in total about 120k tokens. The full
output is available in the supplementary materials,
we use IDs as a reference in the following text.

In the following analysis, we solely relied on the
weights of words or phrases learned by the atten-
tion model, see an example in Figure 3. Based on
our observations, we summarize several linguis-
tic and argumentative phenomena with examples
most likely responsible for ad hominem threads in
Table 4.

The identified phenomena have few interest-
ing properties in common. First, they all are
topic-independent rhetorical devices (except for
the loaded keywords at the bottom). Second, many
of them deal with meta-level argumentation, i.e.,
arguing about argumentation (such as missing sup-
port or fallacy accusations). Third, most of them
do not contain profanity (in contrast to the actual
ad hominem arguments of which a third are vul-
gar insults; cf. Table 2). And finally, all of them
should be easy to avoid.

Misleading ‘features’ False positives revealed
properties that misled the network to classify delta
threads as ad hominem threads.

• These include topic words (such as racism,
blacks, slave, abortion) which reflects the im-
plicit bias in the data.

• Actual interest mixed with indifference in
11We also experimented with regularizing the attention

matrix as the authors proposed, but it resulted in worse per-
formance.
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587 ah t1 cm7djx3
(OOV comment begin) If only you would n’t rely on [ fallacious ] ( http : OOV ) [ arguments ] ( http : OOV ) to make

your point. So no , I do n’t realize how stupid and naive I am. All I ’ve realized is that you

are n’t actually prepared to have an actual discussion .

(OOV comment begin) What god do you believe in ? And it ’s not a fallacy when it ’s very

comparable to the most popular gods .

(OOV comment begin) You ’re making an assumption on what I believe , then attacking your assumption

of what my belief is without me even telling you anything. OOV It is a OOV It ’s the

comparison itself that is OOV If they were n’t comparable at all , then it ’d be impossible to commit the OOV

You can compare apples to oranges , but the moment you use your fingernails to peel an apple you look like an idiot

.

Figure 3: An example of reconstructed word weight heat map extracted from the attention matrix for a thread
which ends up in ad hominem; three previous arguments are shown (see Figure 2 for sampling details).

Phenomena Examples
Introducing vulgar inten-
sifiers or interrogatives

388(-1) “Where the fuck is your idea to ...”, 712(-2) “no shortage of fucking gun”, 1277(-1)
“This is fucking CMV”, 428(-2) “I’m fucking trans!”, 2018(-2) “an arrogant fuck”, 1277(-2)
“What the fuck are you smoking?”

Direct imperatives 1003(-3) “You should get more mad about it”, 857(-2) “You need to do a lot better than that.”,
233(-2) “So now delete your post”, 749(-1) “google this fact as well”, 1276(-1) “Just look back
at the reasons why ...”

Accusing of believing in
or using propaganda

522(-1) “It’s right wing propaganda?”, 1003(-1) “If you’re not outraged, you’re not paying
attention to our propaganda that says the opposite of literally thousands of published research
articles”

Accusation of fallacies or
bad argumentation prac-
tice

238(-3) “your snide remarks and poor argumentation skills”, 1117(-2) “you’re circle jerking
A vs. B”, 263(-3) “You’re grasping at straws”, 78(-3) “You sure like changing words and
statements to make your argument appear more cogent, don’t you?”, 210(-1) “Your arguments
range from ... to ...”, 1085(-3) “It’s only a fallacy”, 144(-1) “You haven’t presented any evidence
or argument that disagrees with anything I’ve said.”, 587(-3) “If only you wouldn’t rely on
fallacious arguments”

Reinterpreting oppo-
nent’s positions

982(-1) “The fact that you obviously think ... reveals ...”, 982(-2) “What makes you think I see
myself ... ?”, 1060(-3) “That kind of thinking is ...”, 760(-1) “If I’m understanding you cor-
rectly”, 405(-1) “... deluded yourself into believing factually incorrect things” 587(-1) “You’re
making an assumption on what I believe, then attacking your assumption of what my belief is
without me even telling you anything.”

Accusation of not read-
ing the other party’s ar-
guments

586(-1) “... me without even reading my ...”, 240(-1) “You are just reading it wrong.”, 310(-1)
“Oh, you’re not actually reading my ...”

Pointing at missing or
unsupported evidence
and facts

1238(-2) “unsupported bullshit as before”, 1121(-3) “you can’t chose your facts”, 931(-1)
“If that’s your only argument ...”, 486(-2) “unsubstantiated statement”, 486(-1) “unsupported
claims”, 71(-2) “factually correct”, 915(-1) “But for the sake of argument, your points are
pitifully ..”, 388(-3) “Please provide statistics ... It’s silly to debate statistics without actual
numbers.”

UPPERCASE 1238(-3) “NO ONE CLAIMED THAT ... ARE NOT ... AGAINST ...”
Sarcasm 78(-2) “But I’m sure you know best”, 310(-1) “Have a nice day.”, 1276(-1) “Good luck with

that”
Mentions of trolling 701(-2) “Then you are giving trolls the victory then?”
Loaded keywords Nazi, rape, racist

Table 4: Phenomena resulting into ad hominem learned by the SSAE-NN model. The first number is the instance
ID (available in the supplementary material), the minus number in parentheses is the position of the argument
before the ad hominem.
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sarcasm is also problematic (185(-2) “That’s
a very interesting ...”).

• Another problematic phenomena is also ex-
pressed disagreement (678(-2) “overheated
rhetoric”, 203(-2) “But I suppose this ar-
gument is ...”, 230(-2) “But I don’t think
it’s quite ...”, 938(-1) “I disagree too, how-
ever ...”).

False negatives were caused basically by pres-
ence of many ‘informative’ content words (980
unemployment, quarterly publication, inflation
data, 474 actual publications, this experiment, bi-
ological ailments, medical doctorate, 1214 gradu-
ate degree, education, health insurance) and mis-
interpreted sarcasm (285(-1) “Also this is a cute
analogy”).

5 Conclusion

In this article, we investigated ad hominem argu-
mentation on three levels of discourse complexity.
We looked into qualitative and quantative proper-
ties of ad hominem arguments, crowdsourced la-
beled data, experimented with models for predic-
tion (0.810 accuracy; 4.1.2), and proposed an up-
dated typology of ad hominem properties (4.1.3).
We then looked into the dynamics of argumenta-
tion to examine the relation between the quality of
the original post and immediate ad hominem ar-
guments (4.2). Finally, we exploited the learned
representation of Self-Attentive Embedding Neu-
ral Network to search for features triggering ad
hominem in one-to-one discussions. We found
several categories of rhetorical devices as well as
misleading features (4.3.3).

There are several points that deserve further
investigation. First, we have ignored meta-
information of the debate participants, such as
their overall activity (i.e., whether they are spam-
mers or trolls). Second, the proposed typology of
ad hominem causes has not yet been post-verified
empirically. Third, we expect that personality
traits of the participants (BIG5) may also play a
significant role in the argumentative exchange. We
leave these points for future work.

We believe that our findings will help gain better
understanding of, and hopefully keep restraining
from, ad hominem fallacies in good-faith discus-
sions.
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Abstract

In this paper, we study the problem of parsing
structured knowledge graphs from textual de-
scriptions. In particular, we consider the scene
graph representation (Johnson et al., 2015)
that considers objects together with their at-
tributes and relations: this representation has
been proved useful across a variety of vision
and language applications. We begin by in-
troducing an alternative but equivalent edge-
centric view of scene graphs that connect to
dependency parses. Together with a careful
redesign of label and action space, we com-
bine the two-stage pipeline used in prior work
(generic dependency parsing followed by sim-
ple post-processing) into one, enabling end-to-
end training. The scene graphs generated by
our learned neural dependency parser achieve
an F-score similarity of 49.67% to ground
truth graphs on our evaluation set, surpassing
best previous approaches by 5%. We further
demonstrate the effectiveness of our learned
parser on image retrieval applications.1

1 Introduction

Recent years have witnessed the rise of interest in
many tasks at the intersection of computer vision
and natural language processing, including seman-
tic image retrieval (Johnson et al., 2015; Vendrov
et al., 2015), image captioning (Mao et al., 2014;
Karpathy and Li, 2015; Donahue et al., 2015; Liu
et al., 2017b), visual question answering (Antol
et al., 2015; Zhu et al., 2016; Andreas et al., 2016),
and referring expressions (Hu et al., 2016; Mao
et al., 2016; Liu et al., 2017a). The pursuit for
these tasks is in line with people’s desire for high
level understanding of visual content, in particu-
lar, using textual descriptions or questions to help
understand or express images and scenes.

1Code is available at https://github.com/
Yusics/bist-parser/tree/sgparser

What is shared among all these tasks is the need
for a common representation to establish connec-
tion between the two different modalities. The ma-
jority of recent works handle the vision side with
convolutional neural networks, and the language
side with recurrent neural networks (Hochreiter
and Schmidhuber, 1997; Cho et al., 2014) or word
embeddings (Mikolov et al., 2013; Pennington
et al., 2014). In either case, neural networks map
original sources into a semantically meaningful
(Donahue et al., 2014; Mikolov et al., 2013) vector
representation that can be aligned through end-to-
end training (Frome et al., 2013). This suggests
that the vector embedding space is an appropriate
choice as the common representation connecting
different modalities (see e.g. Kaiser et al. (2017)).

While the dense vector representation yields
impressive performance, it has an unfortunate lim-
itation of being less intuitive and hard to interpret.
Scene graphs (Johnson et al., 2015), on the other
hand, proposed a type of directed graph to encode
information in terms of objects, attributes of ob-
jects, and relationships between objects (see Fig-
ure 1 for visualization). This is a more structured
and explainable way of expressing the knowledge
from either modality, and is able to serve as an al-
ternative form of common representation. In fact,
the value of scene graph representation has already
been proven in a wide range of visual tasks, in-
cluding semantic image retrieval (Johnson et al.,
2015), caption quality evaluation (Anderson et al.,
2016), etc. In this paper, we focus on scene graph
generation from textual descriptions.

Previous attempts at this problem (Schuster
et al., 2015; Anderson et al., 2016) follow the same
spirit. They first use a dependency parser to obtain
the dependency relationship for all words in a sen-
tence, and then use either a rule-based or a learned
classifier as post-processing to generate the scene
graph. However, the rule-based classifier cannot
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a young boy in front of a soccer goal
a soccer ball in the air
a man standing with hands behind back
a woman wearing a purple shirt
a young boy wearing a black uniform
the roof is brown
the ball is white
a soccer ball on the ground
a man wearing a red and white shirt
people behind the net
goal keeper watching the ball
a white ball on the ground
goal keeper is wearing gloves
a kid is sitting on the ground
the man is standing
the uniform is black
a red and black backpack sitting on the ground
trees outside the fence
blue and white soccer ball

young boy

wear

uniformblack

backpack

sit on

ground

black

red

Figure 1: Each image in the Visual Genome (Krishna
et al., 2017) dataset contains tens of region descriptions
and the region scene graphs associated with them. In
this paper, we study how to generate high quality scene
graphs (two such examples are shown in the figure)
from textual descriptions, without using image infor-
mation.

learn from data, and the learned classifier is rather
simple with hand-engineered features. In addition,
the dependency parser was trained on linguistics
data to produce complete dependency trees, some
parts of which may be redundant and hence con-
fuse the scene graph generation process.

Therefore, our model abandons the two-stage
pipeline, and uses a single, customized depen-
dency parser instead. The customization is neces-
sary for two reasons. First is the difference in la-
bel space. Standard dependency parsing has tens
of edge labels to represent rich relationships be-
tween words in a sentence, but in scene graphs we
are only interested in three types, namely objects,
attributes, and relations. Second is whether every
word needs a head. In some sense, the scene graph
represents the “skeleton” of the sentence, which
suggests that empty words are unlikely to be in-
cluded in the scene graph. We argue that in scene
graph generation, it is unnecessary to require a
parent word for every single word.

We build our model on top of a neural depen-

dency parser implementation (Kiperwasser and
Goldberg, 2016) that is among the state-of-the-
art. We show that our carefully customized de-
pendency parser is able to generate high quality
scene graphs by learning from data. Specifically,
we use the Visual Genome dataset (Krishna et al.,
2017), which provides rich amounts of region de-
scription - region graph pairs. We first align nodes
in region graphs with words in the region descrip-
tions using simple rules, and then use this align-
ment to train our customized dependency parser.
We evaluate our parser by computing the F-score
between the parsed scene graphs and ground truth
scene graphs. We also apply our approach to im-
age retrieval to show its effectiveness.

2 Related Works

2.1 Scene Graphs

The scene graph representation was proposed in
Johnson et al. (2015) as a way to represent the rich,
structured knowledge within an image. The nodes
in a scene graph represent either an object, an at-
tribute for an object, or a relationship between two
objects. The edges depict the connection and as-
sociation between two nodes. This representation
is later adopted in the Visual Genome dataset (Kr-
ishna et al., 2017), where a large number of scene
graphs are annotated through crowd-sourcing.

The scene graph representation has been proved
useful in various problems including semantic im-
age retrieval (Johnson et al., 2015), visual question
answering (Teney et al., 2016), 3D scene synthe-
sis (Chang et al., 2014), and visual relationship de-
tection (Lu et al., 2016). Excluding Johnson et al.
(2015) which used ground truth, scene graphs are
obtained either from images (Dai et al., 2017; Xu
et al., 2017; Li et al., 2017) or from textual de-
scriptions (Schuster et al., 2015; Anderson et al.,
2016). In this paper we focus on the latter.

In particular, parsed scene graphs are used in
Schuster et al. (2015) for image retrieval. We show
that with our more accurate scene graph parser,
performance on this task can be further improved.

2.2 Parsing to Graph Representations

The goal of dependency parsing (Kübler et al.,
2009) is to assign a parent word to every word in a
sentence, and every such connection is associated
with a label. Dependency parsing is particularly
suitable for scene graph generation because it di-
rectly models the relationship between individual
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words without introducing extra nonterminals. In
fact, all previous work (Schuster et al., 2015; An-
derson et al., 2016) on scene graph generation run
dependency parsing on the textual description as
a first step, followed by either heuristic rules or
simple classifiers. Instead of running two separate
stages, our work proposed to use a single depen-
dency parser that is end-to-end. In other words,
our customized dependency parser generates the
scene graph in an online fashion as it reads the tex-
tual description once from left to right.

In recent years, dependency parsing with neu-
ral network features (Chen and Manning, 2014;
Dyer et al., 2015; Cross and Huang, 2016; Kiper-
wasser and Goldberg, 2016; Dozat and Manning,
2016; Shi et al., 2017) has shown impressive per-
formance. In particular, Kiperwasser and Gold-
berg (2016) used bidirectional LSTMs to generate
features for individual words, which are then used
to predict parsing actions. We base our model on
Kiperwasser and Goldberg (2016) for both its sim-
plicity and good performance.

Apart from dependency parsing, Abstract
Meaning Representation (AMR) parsing (Flani-
gan et al., 2014; Werling et al., 2015; Wang et al.,
2015; Konstas et al., 2017) may also benefit scene
graph generation. However, as first pointed out
in Anderson et al. (2016), the use of dependency
trees still appears to be a common theme in the
literature, and we leave the exploration of AMR
parsing for scene graph generation as future work.

More broadly, our task also relates to entity
and relation extraction, e.g. Katiyar and Cardie
(2017), but there object attributes are not han-
dled. Neural module networks (Andreas et al.,
2016) also use dependency parses, but they trans-
late questions into a series of actions, whereas
we parse descriptions into their graph form. Fi-
nally, Krishnamurthy and Kollar (2013) connected
parsing and grounding by training the parser in a
weakly supervised fashion.

3 Task Description

In this section, we begin by reviewing the scene
graph representation, and show how its nodes and
edges relate to the words and arcs in dependency
parsing. We then describe simple yet reliable
rules to align nodes in scene graphs with words in
textual descriptions, such that customized depen-
dency parsing, described in the next section, may
be trained and applied.

3.1 Scene Graph Definition
There are three types of nodes in a scene graph:
object, attribute, and relation. Let O be the set of
object classes, A be the set of attribute types, and
R be the set of relation types. Given a sentence
s, our goal in this paper is to parse s into a scene
graph:

G(s) = 〈O(s), A(s), R(s)〉 (1)

where O(s) = {o1(s), . . . , om(s)}, oi(s) ∈ O is
the set of object instances mentioned in s, A(s) ⊆
O(s) × A is the set of attributes associated with
object instances, and R(s) ⊆ O(s)×R×O(s) is
the set of relations between object instances.
G(s) is a graph because we can first create an

object node for every element inO(s); then for ev-
ery (o, a) pair in A(s), we create an attribute node
and add an unlabeled edge o→ a; finally for every
(o1, r, o2) triplet inR(s), we create a relation node
and add two unlabeled edges o1 → r and r → o2.
The resulting directed graph exactly encodes in-
formation in G(s). We call this the node-centric
graph representation of a scene graph.

We realize that a scene graph can be equiva-
lently represented by no longer distinguishing be-
tween the three types of nodes, yet assigning la-
bels to the edges instead. Concretely, this means
there is now only one type of node, but we assign
a ATTR label for every o→ a edge, a SUBJ label
for every o1 → r edge, and a OBJT label for every
r → o2 edge. We call this the edge-centric graph
representation of a scene graph.

We can now establish a connection between
scene graphs and dependency trees. Here we only
consider scene graphs that are acyclic2. The edge-
centric view of a scene graph is very similar to
a dependency tree: they are both directed acyclic
graphs where the edges/arcs have labels. The dif-
ference is that in a scene graph, the nodes are the
objects/attributes/relations and the edges have la-
bel space {ATTR, SUBJ, OBJT}, whereas in a de-
pendency tree, the nodes are individual words in
a sentence and the edges have a much larger label
space.

3.2 Sentence-Graph Alignment
We have shown the connection between nodes
in scene graphs and words in dependency pars-
ing. With alignment between nodes in scene

2In Visual Genome, only 4.8% region graphs have cyclic
structures.
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graphs and words in the textual description, scene
graph generation and dependency parsing be-
comes equivalent: we can construct the gener-
ated scene graph from the set of labeled edges re-
turned by the dependency parser. Unfortunately,
such alignment is not provided between the re-
gion graphs and region descriptions in the Visual
Genome (Krishna et al., 2017) dataset. Here we
describe how we use simple yet reliable rules to
do sentence-graph (word-node) alignment.

There are two strategies that we could use in
deciding whether to align a scene graph node
d (whose label space is O ∪ A ∪ R) with a
word/phrase w in the sentence:

• Word-by-word match (WBW): d ↔ w only
when d’s label and w match word-for-word.

• Synonym match (SYN)3: d ↔ w when the
wordnet synonyms of d’s label contain w.

Obviously WBW is a more conservative strategy
than SYN.

We propose to use two cycles and each cy-
cle further consists of three steps, where we try
to align objects, attributes, relations in that or-
der. The pseudocode for the first cycle is in Al-
gorithm 1. The second cycle repeats line 4-15
immediately afterwards, except that in line 6 we
also allow SYN. Intuitively, in the first cycle we
use a conservative strategy to find “safe” objects,
and then scan for their attributes and relations. In
the second cycle we relax and allow synonyms in
aligning object nodes, also followed by the align-
ment of attribute and relation nodes.

The ablation study of the alignment procedure
is reported in the experimental section.

4 Customized Dependency Parsing

In the previous section, we have established the
connection between scene graph generation and
dependency parsing, which assigns a parent word
for every word in a sentence, as well as a label for
this directed arc. We start by describing our base
dependency parsing model, which is neural net-
work based and performs among the state-of-the-
art. We then show why and how we do customiza-
tion, such that scene graph generation is achieved
with a single, end-to-end model.

3This strategy is also used in (Denkowski and Lavie,
2014) and (Anderson et al., 2016).

Algorithm 1: First cycle of the alignment pro-
cedure.

1 Input: Sentence s; Scene graph G(s)
2 Initialize aligned nodes N as empty set
3 Initialize aligned words W as empty set
4 for o in object nodes of G(s) \N do
5 for w in s \W do
6 if o↔ w according to WBW then
7 Add (o, w); N = N ∪ {o};

W =W ∪ {w}

8 for a in attribute nodes of G(s) \N do
9 for w in s \W do

10 if a↔ w according to WBW or SYN
and a’s object node is in N then

11 Add (a,w); N = N ∪ {a};
W =W ∪ {w}

12 for r in relation nodes of G(s) \N do
13 for w in s \W do
14 if r ↔ w according to WBW or SYN

and r’s subject and object nodes are
both in N then

15 Add (r, w); N = N ∪ {r};
W =W ∪ {w}

4.1 Neural Dependency Parsing Base Model

We base our model on the transition-based parser
of Kiperwasser and Goldberg (2016). Here we de-
scribe its key components: the arc-hybrid system
that defines the transition actions, the neural archi-
tecture for feature extractor and scoring function,
and the loss function.

The Arc-Hybrid System In the arc-hybrid sys-
tem, a configuration consists of a stack σ, a buffer
β, and a set T of dependency arcs. Given a sen-
tence s = w1, . . . , wn, the system is initialized
with an empty stack σ, an empty arc set T , and
β = 1, . . . , n,ROOT, where ROOT is a special in-
dex. The system terminates when σ is empty and β
contains only ROOT. The dependency tree is given
by the arc set T upon termination.

The arc-hybrid system allows three transition
actions, SHIFT, LEFTl, RIGHTl, described in Ta-
ble 1. The SHIFT transition moves the first el-
ement of the buffer to the stack. The LEFT(l)
transition yields an arc from the first element of
the buffer to the top element of the stack, and
then removes the top element from the stack. The
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Stack σt Buffer βt Arc set Tt Action Stack σt+1 Buffer βt+1 Arc set Tt+1

σ b0|β T SHIFT σ|b0 β T
σ|s1|s0 b0|β T LEFT(l) σ|s1 b0|β T ∪ {(b0, s0, l)}
σ|s1|s0 β T RIGHT(l) σ|s1 β T ∪ {(s1, s0, l)}
σ|s0 β T REDUCE σ β T

Table 1: Transition actions under the arc-hybrid system. The first three actions are from dependency parsing; the
last one is introduced for scene graph parsing.

RIGHT(l) transition yields an arc from the second
top element of the stack to the top element of the
stack, and then also removes the top element from
the stack.

The following paragraphs describe how to se-
lect the correct transition action (and label l) in
each step in order to generate a correct dependency
tree.

BiLSTM Feature Extractor Let the word em-
beddings of a sentence s be w1, . . . ,wn. An
LSTM cell is a parameterized function that takes
as input wt, and updates its hidden states:

LSTM cell : (wt,ht−1)→ ht (2)

As a result, an LSTM network, which simply ap-
plies the LSTM cell t times, is a parameterized
function mapping a sequence of input vectors w1:t

to a sequence of output vectors h1:t. In our nota-
tion, we drop the intermediate vectors h1:t−1 and
let LSTM(w1:t) represent ht.

A bidirectional LSTM, or BiLSTM for short,
consists of two LSTMs: LSTMF which reads the
input sequence in the original order, and LSTMB

which reads it in reverse. Then

BILSTM(w1:n, i) =

LSTMF (w1:i) ◦ LSTMB(wn:i) (3)

where ◦ denotes concatenation. Intuitively, the
forward LSTM encodes information from the left
side of the i-th word and the backward LSTM en-
codes information to its right, such that the vector
vi = BILSTM(w1:n, i) has the full sentence as
context.

When predicting the transition action, the fea-
ture function φ(c) that summarizes the current
configuration c = (σ, β, T ) is simply the concate-
nated BiLSTM vectors of the top three elements in
the stack and the first element in the buffer:

φ(c) = vs2 ◦ vs1 ◦ vs0 ◦ vb0 (4)

MLP Scoring Function The score of transition
action y under the current configuration c is deter-
mined by a multi-layer perceptron with one hidden
layer:

f(c, y) =MLP (φ(c))[y] (5)

where

MLP (x) =W2 · tanh(W1 · x+ b1) + b2 (6)

Hinge Loss Function The training objective is
to raise the scores of correct transitions above
scores of incorrect ones. Therefore, at each step,
we use a hinge loss defined as:

L = max(0, 1− max
y+∈Y +

f(c, y+)

+ max
y−∈Y \Y +

f(c, y−)) (7)

where Y is the set of possible transitions and Y +

is the set of correct transitions at the current step.
In each training step, the parser scores all possible
transitions using Eqn. 5, incurs a loss using Eqn. 7,
selects a following transition, and updates the con-
figuration. Losses at individual steps are summed
throughout the parsing of a sentence, and then pa-
rameters are updated using backpropagation.

In test time, we simply choose the transition ac-
tion that yields the highest score at each step.

4.2 Customization
In order to generate scene graphs with dependency
parsing, modification is necessary for at least two
reasons. First, we need to redefine the label space
of arcs so as to reflect the edge-centric representa-
tion of a scene graph. Second, not every word in
the sentence will be (part of) a node in the scene
graph (see Figure 2 for an example). In other
words, some words in the sentence may not have a
parent word, which violates the dependency pars-
ing setting. We tackle these two challenges by re-
designing the edge labels and expanding the set of
transition actions.
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Redesigning Edge Labels We define a total of
five edge labels, so as to faithfully bridge the edge-
centric view of scene graphs with dependency
parsing models:

• CONT: This label is created for nodes whose
label is a phrase. For example, the phrase “in
front of” is a single relation node in the scene
graph. By introducing the CONT label, we
expect the parsing result to be either

in CONT−−−→ front CONT−−−→ of (8)

or
in CONT←−−− front CONT←−−− of (9)

where the direction of the arcs (left or right)
is predefined by hand.

The leftmost word under the right arc rule or
the rightmost word under the left arc rule is
called the head of the phrase. A single-word
node does not need this CONT label, and the
head is itself.

• ATTR: The arc label from the head of an ob-
ject node to the head of an attribute node.

• SUBJ: The arc label from the head of an ob-
ject node (subject) to the head of a relation
node.

• OBJT: The arc label from the head of a rela-
tion node to the head of an object node (ob-
ject).

• BEGN: The arc label from the ROOT index to
all heads of object nodes without a parent.

Expanding Transition Actions With the three
transition actions SHIFT, LEFT(l), RIGHT(l), we
only drop an element (from the top of the stack) af-
ter it has already been associated with an arc. This
design ensures that an arc is associated with ev-
ery word. However, in our setting for scene graph
generation, there may be no arc for some of the
words, especially empty words.

Our solution is to augment the action set with
a REDUCE action, that pops the stack without
adding to the arc set (see Table 1). This ac-
tion is often used in other transition-based de-
pendency parsing systems (e.g. arc-eager (Nivre,
2004)). More recently, Hershcovich et al. (2017)
and Buys and Blunsom (2017) also included this
action when parsing sentences to graph structures.

Parser F-score

Stanford (Schuster et al., 2015) 0.3549
SPICE (Anderson et al., 2016) 0.4469

Ours (left arc rule) 0.4967
Ours (right arc rule) 0.4952
Ours (all SYN) 0.4877
Ours (no SYN) 0.4538

Oracle 0.6985

Table 2: The F-scores (i.e. SPICE metric) between
scene graphs parsed from region descriptions and
ground truth region graphs on the intersection of Vi-
sual Genome (Krishna et al., 2017) and MS COCO (Lin
et al., 2014) validation set.

We still minimize the loss function defined in
Eqn. 7, except that now |Y | increases from 3 to
4. During training, we impose the oracle to select
the REDUCE action when it is in Y +. In terms of
loss function, we increment by 1 the loss incurred
by the other 3 transition actions if REDUCE incurs
zero loss.

5 Experiments

5.1 Implementation Details

We train and evaluate our scene graph parsing
model on (a subset of) the Visual Genome (Kr-
ishna et al., 2017) dataset. Each image in Vi-
sual Genome contains a number of regions, and
each region is annotated with both a region de-
scription and a region scene graph. Our training
set is the intersection of Visual Genome and MS
COCO (Lin et al., 2014) train2014 set, which con-
tains a total of 34027 images/ 1070145 regions.
We evaluate on the intersection of Visual Genome
and MS COCO val2014 set, which contains a total
of 17471 images/ 547795 regions.

In our experiments, the number of hidden units
in BiLSTM is 256; the number of layers in BiL-
STM is 2; the word embedding dimension is 200;
the number of hidden units in MLP is 100. We
use fixed learning rate 0.001 and Adam optimizer
(Kingma and Ba, 2014) with epsilon 0.01. Train-
ing usually converges within 4 epochs.

We will release our code and trained model
upon acceptance.

5.2 Quality of Parsed Scene Graphs

We use a slightly modified version of SPICE score
(Anderson et al., 2016) to evaluate the quality of
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black         barrier         in   front   of         person

Ground truth (node-centric)

black         barrier         in         front

SPICE (node-centric): F-score 0.6

of         person

node-centric

Ours: F-score 1.0

edge-centric

black barrier in front of the person ROOT

BEGN

OBJTSUBJ

ATTR CONT CONT
black         barrier         in   front   of         person

Figure 2: Scene graph parsing result of the sentence “black barrier in front of the person”. In the node-centric
graphs, orange represents object node, green represents attribute node, blue represents relation node.

Stack Buffer Action

0 black barrier in front of the person ROOT SHIFT

1 black barrier in front of the person ROOT LEFT(ATTR)
2 barrier in front of the person ROOT SHIFT

3 barrier in front of the person ROOT SHIFT

4 barrier in front of the person ROOT LEFT(CONT)
5 barrier front of the person ROOT SHIFT

6 barrier front of the person ROOT LEFT(CONT)
7 barrier of the person ROOT SHIFT

8 barrier of the person ROOT SHIFT

9 barrier of the person ROOT REDUCE

10 barrier of person ROOT SHIFT

11 barrier of person ROOT RIGHT(OBJT)
12 barrier of ROOT RIGHT(SUBJ)
13 barrier ROOT LEFT(BEGN)
14 ROOT

Figure 3: Intermediate actions taken by the trained dependency parser when parsing the sentence “black barrier in
front of the person”.

scene graph parsing. Specifically, for every region,
we parse its description using a parser (e.g. the
one used in SPICE or our customized dependency
parser), and then calculate the F-score between the
parsed graph and the ground truth region graph
(see Section 3.2 of Anderson et al. (2016) for more
details). Note that when SPICE calculates the F-
score, a node in one graph could be matched to
several nodes in the other, which is problematic.
We fix this and enforce one-to-one matching when
calculating the F-score. Finally, we report the av-
erage F-score across all regions.

Table 2 summarizes our results. We see that our
customized dependency parsing model achieves

an average F-score of 49.67%, which significantly
outperforms the parser used in SPICE by 5 per-
cent. This result shows that our customized de-
pendency parser is very effective at learning from
data, and generates more accurate scene graphs
than the best previous approach.

Ablation Studies First, we study how the
sentence-graph alignment procedure affects the fi-
nal performance. Recall that our procedure in-
volves two cycles, each with three steps. Of the
six steps, synonym match (SYN) is only not used
in the first step. We tried two more settings, where
SYN is either used in all six steps or none of the
six steps. We can see from Table 2 that the final

403



Development set Test set

R@5 R@10 Med. rank R@5 R@10 Med. rank

(Schuster et al., 2015) 33.82% 45.58% 6 34.96% 45.68% 5
Ours 36.69% 49.41% 4 36.70% 49.37% 5

Table 3: Image retrieval results. We follow the same experiment setup as Schuster et al. (2015), except using a
different scoring function when ranking images. Our parser consistently outperforms the Stanford Scene Graph
Parser across evaluation metrics.

F-score drops in both cases, hence supporting the
procedure that we chose.

Second, we study whether changing the direc-
tion of CONT arcs from pointing left to point-
ing right will make much difference. Table 2
shows that the two choices give very similar per-
formance, suggesting that our dependency parser
is robust to this design choice.

Finally, we report the oracle score, which is
the similarity between the aligned graphs that we
use during training and the ground truth graphs.
The F-score is relatively high at 69.85%. This
shows that improving the parser (about 20% mar-
gin) and improving the sentence-graph alignment
(about 30% margin) are both promising directions
for future research.

Qualitative Examples We provide one parsing
example in Figure 2 and Figure 3. This is a sen-
tence that is relatively simple, and the underly-
ing scene graph includes two object nodes, one
attribute node, and one compound word relation
node. In parsing this sentence, all four actions
listed in Table 1 are used (see Figure 3) to pro-
duce the edge-centric scene graph (bottom left
of Figure 2), which is then trivially converted to
the node-centric scene graph (bottom right of Fig-
ure 2).

5.3 Application in Image Retrieval

We test if the advantage of our parser can be
propagated to computer vision tasks, such as im-
age retrieval. We directly compare our parser
with the Stanford Scene Graph Parser (Schuster
et al., 2015) on the development set and test set of
the image retrieval dataset used in Schuster et al.
(2015) (not Visual Genome).

For every region in an image, there is a human-
annotated region description and region scene
graph. The queries are the region descriptions. If
the region graph corresponding to the query is a
subgraph of the complete graph of another image,

then that image is added to the ground truth set for
this query. All these are strictly following Schus-
ter et al. (2015). However, since we did not ob-
tain nor reproduce the CRF model used in John-
son et al. (2015) and Schuster et al. (2015), we
used F-score similarity instead of the likelihood
of the maximum a posteriori CRF solution when
ranking the images based on the region descrip-
tions. Therefore the numbers we report in Table 3
are not directly comparable with those reported in
Schuster et al. (2015).

Our parser delivers better retrieval performance
across all three evaluation metrics: recall@5, re-
call@10, and median rank. We also notice that
the numbers in our retrieval setting are higher
than those (even with oracle) in Schuster et al.
(2015)’s retrieval setting. This strongly suggests
that generating accurate scene graphs from im-
ages is a very promising research direction in im-
age retrieval, and grounding parsed scene graphs
to bounding box proposals without considering vi-
sual attributes/relationships (Johnson et al., 2015)
is suboptimal.

6 Conclusion

In this paper, we offer a new perspective and so-
lution to the task of parsing scene graphs from
textual descriptions. We begin by moving the la-
bels/types from the nodes to the edges and intro-
ducing the edge-centric view of scene graphs. We
further show that the gap between edge-centric
scene graphs and dependency parses can be filled
with a careful redesign of label and action space.
This motivates us to train a single, customized,
end-to-end neural dependency parser for this task,
as opposed to prior approaches that used generic
dependency parsing followed by heuristics or sim-
ple classifier. We directly train our parser on a sub-
set of Visual Genome (Krishna et al., 2017), with-
out transferring any knowledge from Penn Tree-
bank (Marcus et al., 1993) as previous works did.
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The quality of our trained parser is validated in
terms of both SPICE similarity to the ground truth
graphs and recall rate/median rank when perform-
ing image retrieval.

We hope our paper can lead to more thoughts on
the creative uses and extensions of existing NLP
tools to tasks and datasets in other domains. In
the future, we plan to tackle more computer vision
tasks with this improved scene graph parsing tech-
nique in hand, such as image region grounding.
We also plan to investigate parsing scene graph
with cyclic structures, as well as whether/how the
image information can help boost parsing quality.
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Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In EMNLP. ACL,
pages 1724–1734.

James Cross and Liang Huang. 2016. Incremental
parsing with minimal features using bi-directional
LSTM. In ACL (2). The Association for Computer
Linguistics.

Bo Dai, Yuqi Zhang, and Dahua Lin. 2017. Detecting
visual relationships with deep relational networks.
In CVPR. IEEE Computer Society, pages 3298–
3308.

Michael J. Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In WMT@ACL. The Asso-
ciation for Computer Linguistics, pages 376–380.

Jeff Donahue, Lisa Anne Hendricks, Sergio Guadar-
rama, Marcus Rohrbach, Subhashini Venugopalan,
Trevor Darrell, and Kate Saenko. 2015. Long-term
recurrent convolutional networks for visual recog-
nition and description. In CVPR. IEEE Computer
Society, pages 2625–2634.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoff-
man, Ning Zhang, Eric Tzeng, and Trevor Dar-
rell. 2014. Decaf: A deep convolutional activation
feature for generic visual recognition. In ICML.
JMLR.org, volume 32 of JMLR Workshop and Con-
ference Proceedings, pages 647–655.

Timothy Dozat and Christopher D. Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing. CoRR abs/1611.01734.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In ACL (1). The Association for
Computer Linguistics, pages 334–343.

Jeffrey Flanigan, Sam Thomson, Jaime G. Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrimi-
native graph-based parser for the abstract meaning
representation. In ACL (1). The Association for
Computer Linguistics, pages 1426–1436.

Andrea Frome, Gregory S. Corrado, Jonathon Shlens,
Samy Bengio, Jeffrey Dean, Marc’Aurelio Ranzato,
and Tomas Mikolov. 2013. Devise: A deep visual-
semantic embedding model. In NIPS. pages 2121–
2129.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for UCCA. In ACL. Association for Com-
putational Linguistics, pages 1127–1138.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

405



Ronghang Hu, Huazhe Xu, Marcus Rohrbach, Jiashi
Feng, Kate Saenko, and Trevor Darrell. 2016. Natu-
ral language object retrieval. In CVPR. IEEE Com-
puter Society, pages 4555–4564.

Justin Johnson, Ranjay Krishna, Michael Stark, Li-
Jia Li, David A. Shamma, Michael S. Bernstein,
and Fei-Fei Li. 2015. Image retrieval using scene
graphs. In CVPR. IEEE Computer Society, pages
3668–3678.

Lukasz Kaiser, Aidan N. Gomez, Noam Shazeer,
Ashish Vaswani, Niki Parmar, Llion Jones, and
Jakob Uszkoreit. 2017. One model to learn them
all. CoRR abs/1706.05137.

Andrej Karpathy and Fei-Fei Li. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In CVPR. IEEE Computer Society, pages
3128–3137.

Arzoo Katiyar and Claire Cardie. 2017. Going out on
a limb: Joint extraction of entity mentions and re-
lations without dependency trees. In ACL. Associa-
tion for Computational Linguistics, pages 917–928.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. TACL 4:313–
327.

Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin
Choi, and Luke Zettlemoyer. 2017. Neural AMR:
sequence-to-sequence models for parsing and gen-
eration. In ACL (1). Association for Computational
Linguistics, pages 146–157.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A. Shamma,
Michael S. Bernstein, and Li Fei-Fei. 2017. Vi-
sual genome: Connecting language and vision us-
ing crowdsourced dense image annotations. Inter-
national Journal of Computer Vision 123(1):32–73.

Jayant Krishnamurthy and Thomas Kollar. 2013.
Jointly learning to parse and perceive: Connect-
ing natural language to the physical world. TACL
1:193–206.
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Abstract

We investigate grounded sentence representa-
tions, where we train a sentence encoder to
predict the image features of a given caption—
i.e., we try to “imagine” how a sentence would
be depicted visually—and use the resultant fea-
tures as sentence representations. We examine
the quality of the learned representations on
a variety of standard sentence representation
quality benchmarks, showing improved perfor-
mance for groundedmodels over non-grounded
ones. In addition, we thoroughly analyze the
extent to which grounding contributes to im-
proved performance, and show that the system
also learns improved word embeddings.

1 Introduction
Following the word embedding upheaval of the
past few years, one of NLP’s next big challenges
has become the hunt for universal sentence rep-
resentations: generic representations of sentence
meaning that can be “plugged into” any kind of sys-
tem or pipeline. Examples include Paragraph2Vec
(Le and Mikolov, 2014), C-Phrase (Pham et al.,
2015), SkipThought (Kiros et al., 2015) and Fast-
Sent (Hill et al., 2016a). These representations
tend to be learned from large corpora in an unsu-
pervised setting, much like word embeddings, and
effectively “transferred” to the task at hand.
Purely text-based semantic models, which rep-

resent word meaning as a distribution over other
words (Harris, 1954; Turney and Pantel, 2010;
Clark, 2015), suffer from the grounding problem
(Harnad, 1990). It has been shown that ground-
ing leads to improved performance on a variety
of word-level tasks (Baroni, 2016; Kiela, 2017).
Unsupervised sentence representation models are
often doubly exposed to the grounding prob-
lem, especially if they represent sentence mean-

1Work done while at Facebook AI Research.

ings as a distribution over other sentences, as in
SkipThought (Kiros et al., 2015).
Here, we examine whether grounding also leads

to improved sentence representations. In short, the
grounding problem is characterized by the lack of
an association between symbols and external infor-
mation. We address this problem by aligning text
with paired visual data and hypothesize that sen-
tence representations can be enriched with external
information—i.e., grounded—by forcing them to
capture visual semantics. We investigate the per-
formance of these representations and the effect of
grounding on a variety of semantic benchmarks.
There has been much recent interest in gener-

ating actual images from text (Goodfellow et al.,
2014; van den Oord et al., 2016; Mansimov et al.,
2016). Our method takes a slightly different ap-
proach: instead of predicting actual images, we
train a deep recurrent neural network to predict
the latent feature representation of images. That
is, we are specifically interested in the semantic
content of visual representations and how useful
that information is for learning sentence represen-
tations. One can think of this as trying to imag-
ine, or form a “mental picture”, of a sentence’s
meaning (Chrupała et al., 2015). Much like a sen-
tence’s meaning in classical semantics is given by
itsmodel-theoretic ground truth (Tarski, 1944), our
ground truth is provided by images.
Grounding is likely to be more useful for con-

crete words and sentences: a sentence such as
“democracy is a political system” does not yield
any coherent mental picture. In order to accommo-
date the fact that much of language is abstract, we
take sentence representations obtained using text-
only data (which are better for representing abstract
meaning) and combine them with the grounded
representations that our system learns (which are
good for representing concrete meaning), leading
to multi-modal sentence representations.
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In what follows, we introduce a system for
grounding sentence representations by learning to
predict visual content. Although it is not the pri-
mary aim of this work, it is important to first exam-
ine how well this system achieves what it is trained
to do, by evaluating on the COCO5K image and
caption retrieval task. We then analyze the per-
formance of grounded representations on a variety
of sentence-level semantic transfer tasks, showing
that grounding increases performance over text-
only representations. We then investigate an im-
portant open question in multi-modal semantics:
to what extent are improvements in semantic per-
formance due to grounding, rather than to having
more data or data from a different distribution? In
the remainder, we analyze the role that concrete-
ness plays in representation quality and show that
our system learns grounded word embedding pro-
jections that outperform non-grounded ones. To
the best of our knowledge, this is the first work to
comprehensively study grounding for distributed
sentence representations on such a wide set of se-
mantic benchmark tasks.

2 Related work

Sentence representations Although there ap-
pears to be a consensus with regard to the method-
ology for learning word representations, this is
much more of an open problem for sentence rep-
resentations. Recent work has ranged from try-
ing to learn to compose word embeddings (Le and
Mikolov, 2014; Pham et al., 2015; Wieting et al.,
2016; Arora et al., 2017), to neural architectures for
predicting the previous and next sentences (Kiros
et al., 2015) or learning representations via large-
scale supervised tasks (Conneau et al., 2017). In
particular, SkipThought (Kiros et al., 2015) led to
an increased interest in learning sentence repre-
sentations. Hill et al. (2016a) compare a wide se-
lection of unsupervised and supervised methods,
including a basic caption prediction system that
is similar to ours. That study finds that “differ-
ent learning methods are preferable for different
intended applications”, i.e., that the matter of opti-
mal universal sentence representations is as of yet
far from decided.
InferSent (Conneau et al., 2017) recently showed

that supervised sentence representations can be of
very high quality. Here, we learn grounded sen-
tence representations in a supervised setting, com-
bine them with standard unsupervised sentence

representations, and show how grounding can help
for a variety of sentence-level tasks.

Multi-modal semantics Language grounding in
semantics has been motivated by evidence that
human meaning representations are grounded in
perceptual experience (Jones et al., 1991; Perfetti,
1998; Andrews et al., 2009; Riordan and Jones,
2011). That is, despite ample evidence of hu-
mans representing meaning with respect to an ex-
ternal environment and sensorimotor experience
(Barsalou, 2008; Louwerse, 2008), standard se-
mantic models rely solely on textual data. This
gives rise to an infinite regress in text-only seman-
tic representations, i.e., words are defined in terms
of other words, ad infinitum.
The field of multi-modal semantics, which aims

to address this issue by enriching textual repre-
sentations with information from other modalities,
has mostly been concerned with word representa-
tions (Bruni et al., 2014; Baroni, 2016;Kiela, 2017,
and references therein). Learningmulti-modal rep-
resentations that ground text-only representations
has been shown to improve performance on a va-
riety of core NLP tasks. This work is most closely
related to that of Chrupała et al. (2015), who also
aim to ground language by relating images to cap-
tions: here, we additionally address abstract sen-
tence meaning; have a different architecture, loss
function and fusion strategy; and explicitly focus
on grounded universal sentence representations.

Bridging vision and language There is a large
body of work that involves jointly embedding im-
ages and text, at the word level (Frome et al., 2013;
Joulin et al., 2016), the phrase level (Karpathy
et al., 2014; Li et al., 2016), and the sentence level
(Karpathy and Fei-Fei, 2015; Klein et al., 2015;
Kiros et al., 2015; Chen and Zitnick, 2015; Reed
et al., 2016). Our model similarly learns to map
sentence representations to be consistent with a
visual semantic space, and we focus on studying
how these grounded text representations transfer to
NLP tasks.
Moreover, there has been a lot of work in re-

cent years on the task of image caption generation
(Bernardi et al., 2016; Vinyals et al., 2015; Mao
et al., 2015; Fang et al., 2015). Here, we do the op-
posite: we predict the correct image (features) from
the caption, rather than the caption from the image
(features). Similar ideas were recently success-
fully applied to multi-modal machine translation
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(Elliott and Kádár, 2017; Gella et al., 2017; Lee
et al., 2017). Recently, Das et al. (2017) trained
dialogue agents to communicate about images, try-
ing to predict image features as well.

3 Approach

In the following, letD = {(Ik, Ck)}Nk=1 be a dataset
where each image Ik is associated with one or more
captions Ck = {C1, . . . ,C |C |k }. A prominent ex-
ample of such a dataset is COCO (Lin et al., 2014),
which consists of images with up to 5 correspond-
ing captions for each image. The objective of our
approach is to encode a given sentence, i.e., a cap-
tion C, and learn to ground it in the corresponding
image I. To encode the sentence, we train a bidirec-
tional LSTM (BiLSTM) on the caption, where the
input is a sequence of projected word embeddings.
We combine the final left-to-right and right-to-left
hidden states of the LSTM and take the element-
wise maximum to obtain a sentence encoding. We
then examine three distinct methods for grounding
the sentence encoding.
In the first method, we try to predict the image

features (Cap2Img). That is, we learn to map the
caption to the same space as the image features that
represent the correct image. We call this strong
perceptual grounding, where we take the visual
input directly into account.
An alternative method is to exploit the fact

that one image in COCO has multiple captions
(Cap2Cap), and to learn to predict which other
captions are valid descriptions of the same image.
This approach is strictly speaking not perceptu-
ally grounded, but exploits the fact that there is an
implicit association between the captions and the
shared underlying image, and so could be consid-
ered a weaker version of grounding.
Finally, we experiment with a model that opti-

mizes both these objectives jointly: that is, we pre-
dict both images and alternative captions for the
same image (Cap2Both). Thus, Cap2Both incor-
porates both strong perceptual and weak implicit
grounding. Please see Figure 1 for an illustration
of the various models. In what follows, we discuss
them in more technical detail.

3.1 Bidirectional LSTM
To learn sentence representations, we employ a
bidirectional LSTM architecture. In particular, let
x = (x1, . . . , xT ) be an input sequence where each
word is represented via an embedding xt ∈ Rn.

Using a standard LSTM (Hochreiter and Schmid-
huber, 1997), the hidden state at time t, denoted
ht ∈ Rm, is computed via

ht+1, ct+1 = LSTM(xt, ht, ct | Θ)
where ct denotes the cell state of the LSTM and

where Θ denotes its parameters.
To exploit contextual information in both input

directions, we process input sentences using a bidi-
rectional LSTM, that reads an input sequence in
both normal and reverse order. In particular, for
an input sequence x of length T , we compute the
hidden state at time t, ht ∈ R2m via

h f
t+1 = LSTM(xt, h f

t , c
f
t | Θ f )

hb
t+1 = LSTM(xT−t, hb

t , cbt | Θb)
Here, the two LSTMs process x in a forward and a
backward order, respectively. We subsequently use
max : Rd × Rd → Rd to combine them into their
element-wise maximum, yielding the representa-
tion of a caption after it has been processed with
the BiLSTM:

hT = max(h f
t , hb

t )
We use GloVe vectors (Pennington et al., 2014)

for our word embeddings. The embeddings are
kept fixed during training, which allows a trained
sentence encoder to transfer to tasks (and a vo-
cabulary) that it has not yet seen, provided GloVe
embeddings are available. Since GloVe represen-
tations are not tuned to represent grounded infor-
mation, we learn a global transformation of GloVe
space to grounded word space. Specifically, let
x ∈ Rn be the original GloVe embeddings. We
then learn a linear mapU ∈ Rn×n such that x = Ux
and use x as input to the BiLSTM. The linear map
U and the BiLSTM are trained jointly.

3.2 Cap2Img
Let v ∈ RI be the latent representation of an image
(e.g.the final layer of a ResNet). To ground cap-
tions in the images that they describe, we map hT

into the latent space of image representations such
that their similarity is maximized. In other words,
we aim to predict the latent features of an image
from its caption. The mapping of caption to image
space is performed via a series of projections

p0 = hT

p`+1 = ψ(P`p`)
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Figure 1: Model architecture: predicting either an image (Cap2Img), an alternative caption (Cap2Cap), or both at
the same time (Cap2Both).

where ψ denotes a non-linearity such as ReLUs or
tanh.
By jointly training the BiLSTM with these la-

tent projections, we can then ground the language
model in its visual counterpart. In particular, let
Θ = ΘBiLSTM ∪ {P`}L`=1 be the parameters of the
BiLSTM as well as the projection layers. We then
minimize the following ranking loss:

LC2I(Θ) =
∑

(I,C)∈D
frank(I,C) + frank(C, I) (1)

where

frank(a, b) =
∑

b′∈Na

[γ − sim(a, b) + sim(a, b′)]+

where [x]+ = max(0, x) denotes the threshold
function at zero and γ defines the margin. Further-
more, Na denotes the set of negative samples for
an image or caption and sim(·, ·) denotes a similar-
ity measure between vectors. In the following, we
employ the cosine similarity, i.e.,

sim(a, b) = 〈a, b〉‖a‖‖b‖ .

Although this loss is not smooth at zero, it can
be trained end-to-end using subgradient methods.
Compared to e.g. an l2 regression loss, Equa-
tion (1) is less susceptible to error incurred by
subspaces of the visual representation that are ir-
relevant to the high level visual semantics. Empir-
ically, we found it to be more robust to overfitting.

3.3 Cap2Cap
Let x = (x1, . . . , xT ), y = (y1, . . . , yS) be a cap-
tion pair that describes the same image. To learn

weakly grounded representations, we employ a
standard sequence-to-sequence model (Sutskever
et al., 2014), whose task is to predict y from x.
As in the Cap2Cap model, let hT be the represen-
tation of the input sentence after it has been pro-
cessed with a BiLSTM. We then model the joint
probability of y given x as

p (y | x) =
S∏
s=1

p (ys | hT , y1, . . . , ys−1,Θ) .

To model the conditional probability of ys we use
the usual multiclass classification approach over
the vocabulary of the corpusV such that

p(ys = k | hT , y1, . . . , ys−1,Θ) = e 〈vk,ys 〉∑ |V |
j=1 e 〈v j,ys 〉

.

Here, ys = ψ(WVgs + b) and gs is hidden state of
the decoder LSTM at time s.
To learn the model parameters, we minimize the
negative log-likelihood over all caption pairs, i.e.,

LC2C(θ) = −
∑

x,y∈D

|y |∑
s=1

log p(ys | hT , y1, . . . , ys−1,Θ).

3.4 Cap2Both

Finally, we also integrate both concepts of ground-
ing into a joint model, where we optimize the fol-
lowing loss function:

LC2B(Θ) = LC2I (Θ) + LC2C(Θ).
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3.5 Grounded universal representations
On their own, features from this system are likely
to suffer from the fact that training on COCO intro-
duces biases: aside from the inherent dataset bias
in COCO itself, the system will only have cover-
age for concrete concepts. COCO is also a much
smaller dataset than e.g. the Toronto Books Cor-
pus often used in purely text-based methods (Kiros
et al., 2015). As such, grounded representations
are potentially less “universal” than text-based al-
ternatives, which also cover abstract concepts.
There is evidence that meaning is dually coded

in the human brain: while abstract concepts are
processed in linguistic areas, concrete concepts
are processed in both linguistic and visual areas
(Paivio, 1990). Anderson et al. (2017) recently
corroborated this hypothesis using semantic rep-
resentations and fMRI studies. In our case, we
want to be able to accommodate concrete sentence
meanings, for which our vision-centric system is
likely to help; as well as abstract sentence mean-
ings, where trying to “imagine” what “democracy
is a political system” might look like will probably
only introduce noise.
Hence, we optionally complement our systems’

representations with more abstract universal sen-
tence representations trained on language-only
data (specifically, the Toronto Books Corpus). Al-
though it would be interesting to examinemultitask
scenarios where these representations are jointly
learned, we leave this for future work. Here, in-
stead, we combine grounded and language-only
representations using simple concatenation, i.e.,
rgs = rgrounded | | rling−only . Concatenation has
been proven to be a strong and straightforward
mid-level multi-modal fusion method, previously
explored in multi-modal semantics for word rep-
resentations (Bruni et al., 2014; Kiela and Bot-
tou, 2014). We call the combined system Ground-
Sent (GS), and distinguish between sentences per-
ceptually grounded in images (GroundSent-Img),
weakly grounded in captions (GroundSent-Cap) or
grounded in both (GroundSent-Both).

3.6 Implementation details
We use 300-dimensional GloVe (Pennington et al.,
2014) embeddings, trained on WebCrawl, for the
initial word representations and optimize using
Adam (Kingma and Ba, 2015). We use ELU (Clev-
ert et al., 2016) for the non-linearity in projection
layers, set dropout to 0.5 and use a dimensionality

of 1024 for the LSTM. The network was initialized
with orthogonal matrices for the recurrent layers
(Saxe et al., 2014) and He initialization (He et al.,
2015) for all other layers. The learning rate and
margin were tuned on the validation set using grid
search.

4 Data, evaluation and comparison

We use the same COCO splits as Karpathy and
Fei-Fei (2015) for training (113,287 images), val-
idation (5000 images) and testing (5000 images).
Image features for COCO were obtained by trans-
ferring the final layer from a ResNet-101 (He et al.,
2016) trained on ImageNet (ILSVRC 2015).

4.1 Transfer tasks
We are specifically interested in how well
(grounded) universal sentence representations
transfer to different tasks. To evaluate this, we
perform experiments for a variety of tasks. In all
cases, we compare against layer-normalized Skip-
Thought vectors, a well-known high-performing
sentence encoding method (Ba et al., 2016). To
ensure that we use the exact same evaluations, with
identical hyperparameters and settings, we evalu-
ate all systems with the same evaluation pipeline,
namely SentEval (Conneau andKiela, 2018)2. Fol-
lowing previous work in the field, the idea is to take
universal sentence representations and to learn a
simple classifier on top for each of the transfer
tasks—the higher the quality of the sentence rep-
resentation, the better the performance on these
transfer tasks should be.

4.1.1 Semantic classification
We evaluate on the following well-known and
widely used evaluations: movie review sentiment
(MR) (Pang and Lee, 2005), product reviews (CR)
(Hu and Liu, 2004), subjectivity classification
(SUBJ) (Pang and Lee, 2004), opinion polarity
(MPQA) (Wiebe et al., 2005), paraphrase identifi-
cation (MSRP) (Dolan et al., 2004) and sentiment
classification (SST, binary version) (Socher et al.,
2013). Accuracy is measured in all cases, except
for MRPC, which measures accuracy and the F1-
score.

2See https://github.com/facebookresearch/SentEval. The
aim of SentEval is to encompass a comprehensive set of
benchmarks that has been loosely established in the research
community as the standard for evaluating sentence represen-
tations.
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COCO5K
Caption Retrieval Image Retrieval

Model R@1 R@5 R@10 MEDR MR R@1 R@5 R@10 MEDR MR
DVSA 11.8 32.5 45.4 12.2 NA 8.9 24.9 36.3 19.5 NA
FV 17.3 39.0 50.2 10.0 46.4 10.8 28.3 40.1 17.0 49.3
OE 23.3 NA 65.0 5.0 24.4 18.0 NA 57.6 7.0 35.9

Cap2Both 19.4 45.0 59.4 7.0 26.5 11.7 32.6 46.4 12.0 41.7
Cap2Img 27.1 55.6 70.0 4.0 19.2 17.1 43.0 57.3 8.0 36.6

Table 1: Retrieval (higher is better) results on COCO, plus median rank (MEDR) and mean rank (MR) (lower is
better). Note that while this work underwent review, better methods have been published, most notably VSE++
(Faghri et al., 2017).

Model MR CR SUBJ MPQA MRPC SST SNLI SICK
ST-LN 78.1 80.1 92.7 88.0 69.6/81.2 82.9 73.8 78.5

GroundSent-Cap 79.9 81.4 93.1 88.9 72.9/82.2 85.0 75.5 79.7
GroundSent-Img 79.1 80.8 93.1 89.0 71.9/81.4 86.1 76.1 82.2
GroundSent-Both 79.6 81.7 93.4 89.4 72.7/82.5 84.8 76.1 81.6

Table 2: Accuracy results on sentence classification and entailment tasks.

4.1.2 Entailment
Recent years have seen an increased interest in
entailment classification as an appropriate evalu-
ation of sentence representation quality. We evalu-
ate representations on two well-known entailment,
or natural language inference, datasets: the large-
scale SNLI dataset (Bowman et al., 2015) and the
SICK dataset (Marelli et al., 2014).

4.2 Implementational details
We implement a simple logistic regression on
top of the sentence representation. In the cases
of SNLI and SICK, as is the standard for these
datasets, the representations for the individual sen-
tences u and v are combined by using 〈u, v, u ∗
v, |u − v|〉 as the input features. We tune the seed
and an l2 penalty on the validation sets for each,
and train usingAdam (Kingma and Ba, 2015), with
a learning rate of 0.001 and a batch size of 32.

5 Results

Although it is not the primary aim of this work
to learn a state-of-the-art image and caption re-
trieval system, it is important to first establish
the capability of our system to do what it is
trained to do. Table 1 shows the results on
the COCO5K caption and image retrieval tasks
for the two models that predict image features.

We compare our system against several well-
known approaches, namely Deep Visual-Semantic
Alignments (DVSA) (Karpathy and Fei-Fei, 2015),
Fisher Vectors (FV) (Klein et al., 2015) and Or-
der Embeddings (OE) (Vendrov et al., 2015). As
the results show, Cap2Img performs very well on
this task, outperforming the compared models on
caption retrieval and being very close to order em-
beddings on image retrieval3. The fact that the
system outperforms Order Embeddings on caption
retrieval suggests that it has a better sentence en-
coder. Cap2Both does not work as well on this task
as the image-only case, probably because interfer-
ence from the language signal makes the problem
harder to optimize. The results indicate that the
system has learned to predict image features from
captions, and captions from images, at a level ex-
ceeding or close to the state-of-the-art on this task.

5.1 Transfer task performance
Having established that we can learn high-quality
grounded sentence encodings, the core question
we now wish to examine is how well grounded
sentence representations transfer. In this sec-
tion, we combine our grounded features with the

3In fact, we found that we can achieve better performance
on this task by reducing the dimensionality of the encoder. A
lower dimensionality in the encoder also reduces the trans-
ferability of the features, unfortunately, so we leave a more
thorough investigation of this phenomenon for future work.

413



Model MR CR SUBJ MPQA MRPC SST SNLI SICK
STb-1024 70.3 68.0 87.5 85.5 69.7/80.6 78.3 67.3 76.6

STb-2048 73.1 75.7 88.3 86.5 71.6/81.7 79.0 71.0 78.8
2×STb-1024 71.4 74.7 88.2 86.6 71.3/80.7 75.8 69.4 78.3

Cap2Cap 71.4 74.7 86.7 86.7 70.3/79.8 76.1 68.5 78.2
Cap2Img 72.1 75.5 86.9 86.0 72.3/81.1 77.7 71.4 81.2
Cap2Both 71.6 74.4 86.5 85.5 71.4/79.5 78.5 71.3 81.7
GroundSent-Cap 73.1 73.0 88.6 86.6 70.8/81.2 79.4 70.7 79.1
GroundSent-Img 72.5 74.9 88.4 85.7 71.3/81.2 79.4 70.5 79.7
GroundSent-Both 73.3 75.2 87.5 86.6 69.9/79.9 80.3 72.0 78.1

Table 3: Thorough investigation of the contribution of grounding, ensuring equal number of components and
identical architectures, on the variety of sentence-level semantic benchmark tasks. STb=SkipThought-like model
with bidirectional LSTM+max. 2×STb-1024=ensemble of 2 different STb models with different initializations.
GroundSent is STb-1024+Cap2Cap/Img/Both. We find that performance improvements are sometimes due to
having more parameters, but in most cases due to grounding.

high-quality layer-normalized SkipThought repre-
sentations of Ba et al. (2016), leading to multi-
modal sentence representations as described in
Section 3.5. That is, we concatenate Cap2Cap,
Cap2Img or Cap2Both and Skip-Thought with
Layer Normalization (ST-LN) representations,
yielding GroundSent-Cap, GroundSent-Img and
GroundSent-Both representations, respectively.
We report performance of ST-LN using SentEval,
which led to slightly different numbers than what
is reported in their paper4.
Table 2 shows the results for the semantic clas-

sification and entailment tasks. Note that all sys-
tems use the exact same evaluation pipeline, which
makes them directly comparable. We can see that
in all cases, grounding increases the performance.
The question of which type of grounding works
best is more difficult: generally, grounding with
Cap2Cap and Cap2Both appears to do slightly bet-
ter on most tasks, but on e.g. SST, Cap2Img works
better. The entailment task results (SNLI andSICK
in Table 2) show a similar picture: in all cases
grounding improves performance.
It is important to note that, in this work, we

are not necessarily concerned with replacing the
state-of-the-art on these tasks: there are systems
that perform better. We are primarily interested
in whether grounding helps relative to text-only
baselines. We find that it does.

4This is probably due to different seeds, optimization
methods and other minor implementational details that dif-
fer between the original work and SentEval.

5.2 The contribution of grounding
An important open question is whether the increase
in performance in multi-modal semantic models
is due to qualitatively different information from
grounding, or simply due to the fact that we have
more parameters or data from a different distri-
bution. In order to examine this, we implement
a SkipThought-like model that also uses a bidi-
rectional LSTM with element-wise max on the fi-
nal hidden layer (henceforth referred to as STb).
This model is architecturally identical to the sen-
tence encoder used before: it can be thought of as
Cap2Cap, but where the objective is not to predict
an alternative caption, but to predict the previous
and next sentence in the Toronto Books Corpus,
just like SkipThought (Kiros et al., 2015).
We train a 1024-dimensional and 2048-

dimensional STbmodel (for one full iteration, with
all other hyperparameters identical to Cap2Cap) to
compare against: if grounding improves results
because it introduces qualitatively different infor-
mation, rather than just from having more parame-
ters (i.e., a higher embedding dimensionality), we
should expect the multi-modal GroundSent mod-
els to perform better not only than STb-1024, but
also than STb-2048, which has the same num-
ber of parameters (recall that GroundSent models
are combinations of grounded and linguistic-only
representations). In addition, we compare against
an “ensemble” of two different STb-1024 models
(i.e., a concatenation of two separately trained STb-
1024), to check that we are not (just) observing an
ensemble effect.
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Dataset Concreteness
MR 2.3737 ± 0.965
CR 2.4714 ± 1.025
SUBJ 2.4510 ± 1.007
MPQA 2.3158 ± 0.834
MRPC 2.5086 ± 0.987
SST 2.7471 ± 1.142

SNLI 3.1867 ± 1.309
SICK 3.1282 ± 1.372

Table 4: Mean and variance of dataset concreteness,
over all words in the datasets.

As Table 3 shows, a more nuanced picture
emerges in this comparison: grounding helps more
for some datasets than for others. Grounded mod-
els outperform the STb-1024 model (which uses
much more data—the Toronto Books Corpus is
much larger than COCO) in all cases, often al-
ready without concatenating the textual modality.
The ensemble of two STb-1024 models performs
better than the individual one, and so does the
higher-dimensional one. In the cases of CR and
MRPC (F1), it appears that improved performance
is due to having more data or ensemble effects. For
the other datasets, grounding clearly yields better
results. These results indicate that grounding does
indeed capture qualitatively different information,
yielding better universal sentence representations.

6 Discussion

There are a few other important questions to in-
vestigate. The average abstractness or concrete-
ness of the evaluation datasets may have a large
impact on performance. In addition, word embed-
dings from the learned projection fromGloVe input
embeddings, which now provides a generic word-
embedding grounding method even for words that
are not present in the image-caption training data,
can be examined.

6.1 Concreteness
As we have seen, performance across datasets and
models can vary substantially. A dataset’s con-
creteness plays an important role in the relative
merit of applying grounding: a dataset consisting
mostly of abstract words is less likely to benefit
from grounding than one that uses mostly con-
crete words. In order to examine this effect, we
calculate the average concreteness of the evalua-

Model MEN SimLex RW W353
GloVe 0.805 0.408 0.451 0.738

Cap2Both 0.819 0.467 0.487 0.712
Cap2Img 0.845 0.515 0.523 0.753

Table 5: Spearman ρs correlation on four standard se-
mantic similarity evaluation benchmarks.

tion datasets used in this study. Table 4 shows the
average human-annotated concreteness ratings for
all words (where available) in each dataset. The
ratings were obtained by Brysbaert et al. (2014)
in a large-scale study, yielding scores for 40,000
English words.
We observe that the two entailment datasets

are more concrete, which is due to the fact that
the premises are derived from caption datasets
(Flickr30K in the case of SNLI; Flickr8K and video
captions in the case of SICK). This explains why
grounding can clearly be seen to help in these cases.
For the semantic classification tasks, the more con-
crete datasets are MRPC and SST. The picture is
less clear for the first, but in SST we see that the
grounded representations definitely do work bet-
ter. Concreteness values make it easier to analyze
performance, but are apparently not always direct
indicators of improvements with grounding.

6.2 Grounded word embeddings
Our models contain a projection layer that maps
the GloVe word embeddings that they receive as
inputs to a different embedding space. There has
been a lot of interest in grounded word represen-
tations in recent years, so it is interesting to exam-
ine what kind of word representations our models
learn. We omit Cap2Cap for reasons of space (it
performs similarly to Cap2Both). As shown in
Table 5, the grounded word projections that our
network learns yield higher-quality word embed-
dings on four standard lexical semantic similarity
benchmarks: MEN (Bruni et al., 2014), SimLex-
999 (Hill et al., 2016b), Rare Words (Luong et al.,
2013) and WordSim-353 (Finkelstein et al., 2001).

7 Conclusion

We have investigated grounding for universal sen-
tence representations. We achieved good perfor-
mance on caption and image retrieval tasks on
the large-scale COCO dataset. We subsequently
showed how the sentence encodings that the sys-

415



tem learns can be transferred to various NLP tasks,
and that grounded universal sentence representa-
tions lead to improved performance. We analyzed
the source of improvements from grounding, and
showed that the increased performance appears to
be due to the introduction of qualitatively differ-
ent information (i.e., grounding), rather than sim-
ply having more parameters or applying ensem-
ble methods. Lastly, we showed that our systems
learned high-quality grounded word embeddings
that outperform non-grounded ones on standard
semantic similarity benchmarks. It could well be
that our methods are even more suited for more
concrete tasks, such as visual question answering,
visual storytelling, or image-grounded dialogue—
an avenue worth exploring in future work. In addi-
tion, it would be interesting to explore multi-task
learning for sentence representations where one of
the tasks involves grounding.
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Abstract

The present work investigates whether differ-
ent quantification mechanisms (set compari-
son, vague quantification, and proportional es-
timation) can be jointly learned from visual
scenes by a multi-task computational model.
The motivation is that, in humans, these
processes underlie the same cognitive, non-
symbolic ability, which allows an automatic
estimation and comparison of set magnitudes.
We show that when information about lower-
complexity tasks is available, the higher-level
proportional task becomes more accurate than
when performed in isolation. Moreover, the
multi-task model is able to generalize to un-
seen combinations of target/non-target objects.
Consistently with behavioral evidence show-
ing the interference of absolute number in
the proportional task, the multi-task model no
longer works when asked to provide the num-
ber of target objects in the scene.

1 Introduction

Understanding and producing sentences like
‘There are more cars than parking lots’, ‘Most of
the supporters wear blue t-shirts’, ‘Twenty percent
of the trees have been planted last year’, or ‘Seven
students passed the exam’, is a fundamental com-
petence which allows speakers to communicate
information about quantities. Crucially, the type
of information conveyed by these expressions, as
well as their underlying cognitive mechanisms, are
not equivalent, as suggested by evidence from lin-
guistics, language acquisition, and cognition.

First, comparatives (‘more’, ‘less’), quantifiers
(‘some’, ‘most’, ‘all’), and proportions (‘20%’,
‘two thirds’) express a comparison or relation be-
tween sets (e.g., between the set of cars and the
set of parking lots). Such relational information
is rather coarse when expressed by comparatives
and vague quantifiers, more precise when denoted
by proportions. In contrast, numbers (‘one’, ‘six’,

‘twenty-two’) denote the exact, absolute cardinal-
ity of the items belonging to one set (e.g., the set
of students who passed the exam).

Second, during language acquisition, these ex-
pressions are neither learned at the same time nor
governed by the same rules. Recent evidence
showed that children can understand comparatives
at around 3.3 years (Odic et al., 2013; Bryant,
2017), with quantifiers being learned a few months
later, at around 3.4-3.6 years (Hurewitz et al.,
2006; Minai, 2006; Halberda et al., 2008). Cru-
cially, knowing the meaning of numbers, an ability
that starts not before the age of 3.5 years (Le Corre
and Carey, 2007), is not required to understand
and use these expressions. As for proportions,
they are acquired significantly later, being fully
mastered only at the age of 9 or 10 (Hartnett and
Gelman, 1998; Moss and Case, 1999; Sophian,
2000).

Third, converging evidence from cognition
and neuroscience supports the hypothesis that
some important components of these expressions
of quantity are grounded on a preverbal, non-
symbolic system representing magnitudes (Piazza,
2010). This system, often referred to as Approx-
imate Number System (ANS), is invariant to the
sensory modality and almost universal in the an-
imal domain, and consists in the ability of holis-
tically extracting and comparing approximate nu-
merosities (Piazza and Eger, 2016). In humans, it
is present since the youngest age, with 6-month-
old infants being able to automatically com-
pare sets and combine them by means of proto-
arithmetical operations (Xu and Spelke, 2000; Mc-
Crink and Wynn, 2004). Since it obeys Weber’s
law, according to which highly differing sets (e.g.
2:8) are easier to discriminate than highly similar
sets (e.g. 7:8), ANS has been recently claimed to
be a ratio-based mechanism (Sidney et al., 2017;
Matthews et al., 2016). In support of this, be-
havioral findings indicate that, in non-symbolic
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Figure 1: Toy representation of the quantification tasks
and corresponding outputs explored in the paper. Note
that quantification always refers to animals (target set).

contexts (e.g. visual scenes), proportional values
are extracted holistically, i.e. without relying on
the pre-computed cardinalities of the sets (Fab-
bri et al., 2012; Yang et al., 2015). Indeed, peo-
ple are fairly accurate in providing the propor-
tion of targets in a scene, even in high-speed set-
tings (Healey et al., 1996; Treisman, 2006). Sim-
ilarly, in briefly-presented scenes, the interpreta-
tion of quantifiers is shown to be best described
by proportional information (Pezzelle et al., under
review).

Altogether, this suggests that performing (1)
set comparison, (2) vague quantification, and (3)
proportional estimation, which all rely on infor-
mation regarding relations among sets, underlies
increasingly-complex steps of the same mecha-
nism. Notably, such complexity would range
from ‘more/less’ judgements to proportional es-
timation, as suggested by the increasing preci-
sion of ANS through years (Halberda and Feigen-
son, 2008), the reported boundary role of ‘half’ in
early proportional reasoning (Spinillo and Bryant,
1991), and the different age of acquisition of the
corresponding linguistic expressions. Finally, the
ratio-based operation underlying these task would
be different from (and possibly conflicting with)
that of estimating the absolute numerosity of one
set. Indeed, absolute numbers are found to inter-
fere with the access to proportions (Fabbri et al.,
2012).

Inspired by this converging evidence, the
present work proposes a computational framework
to explore various quantification tasks in the vi-
sual domain (see Figure 1). In particular, we in-
vestigate whether ratio-based quantification tasks
can be modeled by a single, multi-task learning
neural network. Given a synthetic scene depicting
animals (in our setting, the ‘target’ objects) and
artifacts (‘non-target’), our model is designed to
jointly perform all the tasks by means of an ar-
chitecture that reflects their increasing complex-

ity.1 To perform proportional estimation (the most
complex), the model builds on the representations
learned to perform vague quantification and, in
turn, set comparison (the least complex). We show
that the multi-task model achieves both higher ac-
curacy and higher generalization power compared
to the one-task models. In contrast, we prove that
introducing the absolute number task in the loop is
not beneficial and indeed hurts the performance.

Our main contribution lies in the novel applica-
tion and evaluation of a multi-task learning archi-
tecture on the task of jointly modeling 3 different
quantification operations. On the one hand, our
results confirm the interdependency of the mech-
anisms underlying the tasks of set comparison,
vague quantification, and proportional estimation.
On the other, we provide further evidence on the
effectiveness of these computational architectures.

2 Related Work

2.1 Quantities in Language & Vision
In recent years, the task of extracting quantity in-
formation from visual scenes has been tackled via
Visual Question Answering (VQA). Given a real
image and a natural language question, a VQA
computational model is asked to understand the
image, the linguistic query, and their interaction
to provide the correct answer. So-called count
questions, i.e. ‘How many Xs have the property
Y?’, are very frequent and have been shown to
be particularly challenging for any model (Antol
et al., 2015; Malinowski et al., 2015; Ren et al.,
2015; Fukui et al., 2016). The difficulty of the
task has been further confirmed by the similarly
poor performance achieved even on the ‘diagnos-
tic’ datasets, which include synthetic visual scenes
depicting geometric shapes (Johnson et al., 2017;
Suhr et al., 2017).

Using Convolutional Neural Networks (CNN),
a number of works in Computer Vision (CV) have
proposed specific architectures for counting dig-
its (Seguı́ et al., 2015), people in the crowd (Zhang
et al., 2015a), and penguins (Arteta et al., 2016).
With a more cognitive flavor, Chattopadhyay et al.
(2017) employed a ‘divide-and-conquer’ strategy
to split the image into subparts and count the ob-
jects in each subpart by mimicking the ‘subitizing’
mechanism (i.e. numerosities up to 3-4 can be
rapidly and accurately appreciated). Inspired by

1The dataset and the code can be downloaded from
github.com/sandropezzelle/multitask-quant
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the same cognitive ability is Zhang et al. (2015b),
who trained a CNN to detect and count the salient
objects in the image. Except Suhr et al. (2017),
who evaluated models against various types of
quantity expressions (including existential quanti-
fiers), these works were just focused on the abso-
lute number.

More akin to our work is Stoianov and Zorzi
(2012), who showed that hierarchical generative
models learn ANS as a statistical property of (syn-
thetic) images. Their networks were tested on
the task of set comparison (‘more/less’) and ob-
tained 93% accuracy. A few studies specifically
focused on the learning of quantifiers. Sorodoc
et al. (2016) proposed a model to assign the cor-
rect quantifier to synthetic scenes of colored dots,
whereas Sorodoc et al. (2018) operationalized the
same task in a VQA fashion, using real images
and object-property queries (e.g. ‘How many dogs
are black?’). Overall, the results of these studies
showed that vague quantification can be learned
by neural networks, though the performance is
much lower when using real images and complex
queries. Finally, Pezzelle et al. (2017) investi-
gated the difference between the learning of car-
dinals and quantifiers from visual scenes, showing
that they require two distinct computational oper-
ations. To our knowledge, this is the first attempt
to jointly investigate the whole range of quantifi-
cation mechanisms. Moreover, we are the first
to exploit a multi-task learning paradigm for ex-
ploring the interactions between set comparison,
vague quantification, and proportions.

2.2 Multi-Task Learning

Multi-Task Learning (MTL) has been shown to
be very effective for a wide range of applications
in machine learning (for an overview, see Ruder
(2017)). The core idea is that different and yet
related tasks can be jointly learned by a multi-
purpose model rather than by separate and highly
fine-tuned models. Since they share representa-
tions between related (or ‘auxiliary’) tasks, multi-
task models are more robust and generalize better
than single-task models. Successful applications
of MTL have been proposed in CV to improve ob-
ject classification (Girshick, 2015), face detection
and rotation (Zhang et al., 2014; Yim et al., 2015),
and to jointly perform a number of tasks as ob-
ject detection, semantic segmentation, etc. (Misra
et al., 2016; Li and Hoiem, 2016). Though, re-

cently, a few studies applied MTL techniques to
either count or estimate the number of objects in a
scene (Sun et al., 2017; Sindagi and Patel, 2017),
to our knowledge none of them were devoted to
the learning of various quantification mechanisms.

In the field of natural language processing
(NLP), MTL turned out to be beneficial for ma-
chine translation (Luong et al., 2016) and for a
range of tasks such as chunking, tagging, se-
mantic role labelling, etc. (Collobert et al., 2011;
Søgaard and Goldberg, 2016; Bingel and Søgaard,
2017). In particular, Søgaard and Goldberg (2016)
showed the benefits of keeping low-level tasks at
the lower layers of the network, a setting which en-
ables higher-level tasks to make a better use of the
shared representations. Since this finding was also
in line with previous evidence suggesting a natu-
ral order among different tasks (Shen and Sarkar,
2005), further work proposed MTL models in
which several increasingly-complex tasks are hi-
erarchically ordered (Hashimoto et al., 2017).
The intuition behind this architecture, referred
to as ‘joint many-task model’ in the source pa-
per (Hashimoto et al., 2017), as well as its techni-
cal implementation, constitute the building blocks
of the model proposed in the present study.

3 Tasks and Dataset

3.1 Tasks
Given a visual scene depicting a number of ani-
mals (targets) and artifacts (non-targets), we ex-
plore the following tasks, represented in Figure 1:

(a) set comparison (hence, setComp), i.e. judg-
ing whether the targets are ‘more’, ‘same’,
‘less’ than non-targets;

(b) vague quantification (hence, vagueQ), i.e.
predicting the probability to use each of the 9
quantifiers (‘none’, ‘almost none’, ‘few’, ‘the
smaller part’, ‘some’, ‘many’, ‘most’, ‘almost
all’, ‘all’) to refer to the target set;

(c) proportional estimation (hence, propTarg),
i.e. predicting the proportion of targets choos-
ing among 17 ratios, ranging from 0 to 100%.

Tasks (a) and (c) are operationalized as classi-
fication problems and evaluated through accuracy.
That is, only one answer out of 3 and 17, respec-
tively, is considered as correct. Given the vague
status of quantifiers, whose meanings are ‘fuzzy’
and overlapping, task (b) is evaluated by means
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Figure 2: Two scenes included in our dataset. The letf-
most one depicts a ratio 1:4 (3 animals, 12 artifacts, 15
total items), the rightmost one a ratio 2:3 (6, 9, 15).

of Pearson’s correlation (r) between the predicted
and the ground-truth probability vector (cf. § 3.2),
for each datapoint.2 The overall r is obtained by
averaging these scores. It is worth mentioning that
we could either evaluate (b) in terms of a classi-
fication task or operationalize (a) and (c) in terms
of a correlation with human responses. The for-
mer evaluation is straightforward and can be eas-
ily carried out by picking the quantifier with the
highest probability. The latter, in contrast, implies
relying on behavioral data assessing the degree of
overlap between ground-truth classes and speak-
ers’ choice. Though interesting, such evaluation
is less crucial given the discrete, non-overlapping
nature of the classes in tasks (a) and (c).

The tasks are explored by means of a MTL net-
work that jointly performs the three quantification
operations (see § 4.2). The intuition is that solving
the lower-level tasks would be beneficial for tack-
ling the higher-level ones. In particular, providing
a proportional estimation (‘80%’) after perform-
ing vagueQ (‘most’) and setComp (‘more’) should
lead to a higher accuracy in the highest-level task,
which represents a further step in complexity com-
pared to the previous ones. Moreover, lower-level
tasks might be boosted in accuracy by the higher-
level ones, since the latter include all the opera-
tions that are needed to carry out the former. In
addition to the MTL model, we test a number of
‘one-task’ networks specifically designed to solve
one task at a time (see § 4.1).

3.2 Dataset

We built a large dataset of synthetic visual scenes
depicting a variable number of animals and ar-
tifacts on the top of a neutral, grey background

2We also experimented with Mean Average Error and dot
product and found the same patterns of results (not reported).

train val test total
no. datapoints 11.9K 1.7K 3.4K 17K
% datapoints 70% 10% 20% 100%

Table 1: Number and partitioning of the datapoints.

(see Figure 2). In doing so, we employed the
same methodology and materials used in Pezzelle
et al. (under review), where the use of quantifiers
in grounded contexts was explored by asking par-
ticipants to select the most suitable quantifier for
a given scene. Since the category of animals was
always treated as the ‘target’, and that of artifacts
as the ‘non-target’, we will henceforth use this ter-
minology throughout the paper. The scenes were
automatically generated by an in-house script us-
ing the following pipeline: (a) Two natural im-
ages, one depicting a target object (e.g. a butter-
fly) and one depicting a non-target (e.g. a mug)
were randomly picked up from a sample of the
dataset by Kiani et al. (2007). The sample was
obtained by Pezzelle et al. (under review), who
manually selected pictures depicting whole items
(not just parts) and whose color, orientation and
shape were not deceptive. In total, 100 unique in-
stances of animals and 145 unique instances of ar-
tifacts were included; (b) The proportion of tar-
gets in the scene (e.g. 20%) was chosen by se-
lecting one among 17 pre-defined ratios between
targets:non-targets (e.g. 1:4, ‘four non-targets to
one target’). Out of 17 ratios, 8 were positive (tar-
gets > 50%), 8 negative (targets < 50%), and 1
equal (targets = 50%); (c) The absolute number
of targets/non-targets was chosen to equally repre-
sent the various combinations available for a given
ratio (e.g., for ratio 1:4: 1-4, 2-8, 3-12, 4-16), with
the constraint of having a number of total objects
in the scene (targets+non-targets) ranging from 3
to 20. In total, 97 combinations were represented
in the dataset, with an average of 5.7 combina-
tions/ratio (min 2, max 18); (d) To inject some
variability, the instances of target/non-target ob-
jects were randomly resized according to one of
three possible sizes (i.e. medium, big, and small)
and flipped on the vertical axis before being ran-
domly inserted onto a 5*5-cell virtual grid. As re-
ported in Table 1, 17K scenes balanced per ratio
(1K scenes/ratio) were generated and further split
into train (70%), validation (10%), and test (20%).

Ground-truth classes for the tasks of setComp
and propTarg were automatically assigned to each
scene while generating the data. For vagueQ,
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we took the probability distributions obtained on
a dataset of 340 scenes by Pezzelle et al. (un-
der review) and we applied them to our data-
points, which were built in the exact same way.
These probability distributions had been collected
by asking participants to select, from a list of
9 quantifiers (reported in § 3.1), the most suit-
able one to describe the target objects in a visual
scene presented for 1 second. In particular, they
were computed against the proportion of targets in
the scene, which in that study was shown to be
the overall best predictor for quantifiers. To il-
lustrate, given a scene containing 20% of targets
(cf. leftmost panel in Figure 2), the probability
of choosing ‘few’ (ranging from 0 to 1) is 0.38,
‘almost none’ 0.27, ‘the smaller part’ 0.25, etc.
It is worth mentioning that, for scenes contain-
ing either 100% or 0% targets the probability of
choosing ‘all’ and ‘none’, respectively, is around
1. In all other cases, the distribution of probabili-
ties is fuzzier and reflects the largely overlapping
use of quantifiers, as in the example above. On
average, the probability of the most-chosen quan-
tifier across ratios is 0.53. Though this number
cannot be seen as a genuine inter-annotator agree-
ment score, it suggests that, on average, there is
one quantifier which is preferred over the others.

4 Models

In this section, we describe the various models im-
plemented to perform the tasks. For each model,
several settings and parameters were evaluated by
means of a thorough ablation analysis. Based on
a number of factors like performance, speed, and
stability of the networks, we opted for using ReLU
nonlinear activation at all hidden layers and the
simple and effective Stochastic Gradient Descent
(SGD) as optimizer (lr = 0.01). We run each model
for 100 epochs and saved weights and parameters
of the epoch with the lowest validation loss. The
best model was then used to obtain the predictions
in the test set. All models were implemented using
Keras.3

4.1 One-Task Models

We implemented separate models to tackle one
task at a time. For each task, in particular, both
a network using ‘frozen’ (i.e. pretrained) visual
features and one computing the visual features in
an ‘end-to-end’ fashion were tested.

3https://keras.io/

One-Task-Frozen These models are simple, 2-
layer (ReLU) Multi-Layer Perceptron (MLP) net-
works that take as input a 2048-d frozen represen-
tation of the scene and output a vector containing
softmax probability values. The frozen represen-
tation of the scene had been previously extracted
using the state-of-art Inception v3 CNN (Szegedy
et al., 2016) pretrained on ImageNet (Deng et al.,
2009). In particular, the network is fed with the
average of the features computed by the last Con-
volutional layer, which has size 25*2048.

One-Task-End2end These models are MLP
networks that take as input the 203*203-pixel im-
age and compute the visual features by means of
the embedded Inception v3 module, which outputs
25*2048-d vectors (the grey and colored box in
Figure 1). Subsequently, the 25 feature vectors are
reduced twice via ReLU hidden layers, then con-
catenated, reduced (ReLU), and fed into a softmax
layer to obtain the probability values.

4.2 Multi-Task Model
The multi-task-prop model performs 3
tasks at the same time with an architecture that re-
produces in its order the conjectured complexity
(see Figure 3 and its caption for technical details).
The model has a core structure, represented by lay-
ers 1-5 in the figure, which is shared across tasks
and trained with multiple outputs. In particular,
(a) layers 1, 2, and 3 are trained using information
regarding the output of all 3 tasks. That is, these
layers are updated three times by as many back-
propagation passes: One on the top of setComp
output, the second on the top of vagueQ output,
the third on the top of propTarg output; (b) lay-
ers 4 and 5 are affected by information regarding
the output of vagueQ and propTarg, and thus up-
dated twice; (c) layers 6 and 7 are updated once,
on the top of the output of propTarg. Importantly,
the three lower layers in Figure 3 (concatenation,
ReLU, softmax) are not shared between the tasks,
but specialized to output each a specific prediction.
As can be noted, the order of the tasks reflects their
complexity, since the last task in the pipeline has
2 more layers than the preceding one and 4 more
than the first one.

5 Results

Table 2 reports the performance of each model
in the various tasks (note that the lowest row
and the rightmost column report results described
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Figure 3: Architecture of the multi-task-prop model jointly performing (a) set comparison, (b) vague quan-
tification, and (c) proportional estimation. Given a 203*203-pixel image as input, the model extracts a 25*2048
representation from the last Convolutional layer of the Inception v3. Subsequently, the vectors are reduced twice
via ReLU hidden layers to 1024 and 512 dimensions. The 512-d vectors are concatenated and reduced, then a
softmax layer is applied to output a 3-d vector with probability distributions for task (a). The same structure (i.e.,
2 hidden layers, concatenation, reduction, and softmax) is repeated for tasks (b) and (c). All the tasks are trained
with cross-entropy. To evaluate tasks (a) and (c), in testing, we extract the highest-probability class and compute
accuracy, whereas task (b) is evaluated via Pearson’s correlation against the 9-d ground-truth probability vector.

in § 6.1). In setComp, all the models are neatly
above chance/majority level (0.47). In particular,
the one-task-end2end model achieves a re-
markable 0.90 acc., which is more than 10% bet-
ter compared to the simple one-task-frozen
model (0.78). The same pattern of results can be
observed for vagueQ, where the Pearson’s correla-
tion (r) between the ground-truth and the predicted
probability vector is around 0.96, that is more than
30% over the simpler model (0.62). This gap in-
creases even more in propTarg, where the accuracy
of the frozen model is more than 40 points below
the one achieved by the one-task-end2end
model (0.21 against 0.66). These results firmly in-
dicate that, on the one hand, the frozen representa-
tion of the visual scene encodes little information
about the proportion of targets (likely due to the
the different task for which they were pretrained,

i.e. object classification). On the other hand, com-
puting the visual features in an end-to-end fashion
leads to a significant improvement, suggesting that
the network learns to pay attention to features that
are helpful for specific tasks.

The most interesting results, however, are those
achieved by the multi-task model, which turns out
to be the best in all the tasks. As reported in
Table 2, sharing the weights between the various
tasks is especially beneficial for propTarg, where
the accuracy reaches 0.92, that is, more than 25
points over the end-to-end, one-task model. An
almost perfect performance of the model in this
task can be observed in Figure 4, which reports
the confusion matrix with the errors made by the
model. As can be seen, the few errors are between
‘touching’ classes, e.g. between ratio 3:4 (43% of
targets) and ratio 2:3 (40%). Since these classes
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model setComp vagueQ propTarg nTarg
accuracy Pearson r accuracy accuracy

chance/majority 0.470 0.320 0.058 0.132
one-task-frozen 0.783 0.622 0.210 0.312

one-task-end2end 0.902 0.964 0.659 0.966
multi-task-prop 0.995 0.982 0.918 –

multi-task-number 0.854 0.807 – 0.478

Table 2: Performance of the models in the tasks of set comparison (setComp), vague quantification (vagueQ),
proportional estimation (propTarg), and absolute number of targets (nTarg). Values in bold are the highest.

differ by a very small percentage, we gain indirect
evidence that the model is learning some kind of
proportional information rather than trivial associ-
ations between scenes and orthogonal classes.

To further explore this point, one way is to in-
spect the last layer of the proportional task (i.e.
the 32-d turquoise vector in Figure 3). If the
vectors contain information regarding the propor-
tion of targets, we should expect scenes depicting
the same proportion to have a similar representa-
tion. Also, scenes with similar proportions (e.g.
40% and 43%) would be closer to each other than
are scenes with different proportions (e.g. 25%
and 75%). Figure 5 depicts the results of a two-
dimensional PCA analysis performed on the vec-
tors of the last layer of the proportional task (the
32-d vectors).4 As can be noted, scenes depict-
ing the same proportion clearly cluster together,
thus indicating that using these representations in
a retrieval task would lead to a very high preci-
sion. Crucially, the clusters are perfectly ordered
with respect to proportion. Starting from the pur-
ple cluster on the left side (90%) and proceeding
clockwise, we find 83% (green), 80% (turquoise),

4We used https://projector.tensorflow.org/

Figure 4: PropTarg. Heatmap reporting the errors made
by the multi-task-prop model. Note that labels
refer to ratios, i.e. 14 stands for ratio 1:4 (20% targets).

75% (brown), and so on, until reaching 10% (light
blue). Proportions 0% (blue) and 100% (yellow)
are neatly separated from the other clusters, being
at the extremes of the ‘clock’.

An improvement in the results can be also ob-
served for setComp and vaqueQ, where the model
achieves 0.99 acc. and 0.98 r, respectively. Fig-
ure 6 reports, for each quantifier, the probabil-
ity values predicted by the model against the
ground-truth ones. As can be seen, the red lines
(model) approximate very closely the green ones
(humans). In the following section, we perform
further experiments to provide a deeper evaluation
of the results.

6 In-Depth Evaluation

6.1 Absolute Numbers in the Loop
As discussed in § 1, the cognitive operation under-
lying setComp, vagueQ, and propTarg is different
compared to that of estimating the absolute num-
ber of objects included in one set. To investigate
whether such dissociation emerges at the compu-
tational level, we tested a modified version of our
proposed multi-task model where propTarg task

Figure 5: PCA visualization of the last layer (before
softmax) of the proportional task in the MTL model.
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Figure 6: VagueQ. Probability values predicted by
the multi-task-prop model against ground-truth
probability distributions for each quantifier.

has been replaced with nTarg, namely the task of
predicting the absolute number of targets. One-
task models were also tested to evaluate the dif-
ficulty of the task when performed in isolation.
Since the number of targets in the scenes ranges
from 0 to 20, nTarg is evaluated as a 21-class clas-
sification task (majority class 0.13).

As reported in Table 2, the accuracy achieved
by the one-task-end2endmodel is extremely
high, i.e. around 0.97. This suggests that, when
learned in isolation, the task is fairly easy, but only
if the features are computed within the model. In
fact, using frozen features results in a quite low ac-
curacy, namely 0.31. This pattern of results is even
more interesting if compared against the results
of the multi-task-number model. When in-
cluded in the multi-task pipeline, in fact, nTarg has
a huge, 50-point accuracy drop (0.48). Moreover,
both setComp and vagueQ turn out to be signif-
icantly hurt by the highest-level task, and expe-
rience a drop of around 14 and 17 points com-
pared to the one-task-end2end model, re-
spectively. These findings seem to corroborate the
incompatibility of the operations needed for solv-
ing the tasks.

6.2 Reversing the Architecture

Previous work exploring MTL suggested that
defining a hierarchy of increasingly-complex tasks
is beneficial for jointly learning related tasks
(see § 2.2). In the present work, the order of
the tasks was inspired by cognitive and linguis-
tic abilities (see § 1). Though cognitively implau-

model setComp vagueQ propTarg
accuracy Pearson r accuracy

chance/majority 0.470 0.320 0.058
one-task-frozen 0.763 0.548 0.068

one-task-end2end 0.793 0.922 0.059
multi-task-prop 0.943 0.960 0.539

Table 3: Unseen dataset. Performance of the models in
each task. Values in bold are the highest.

sible, it might still be the case that the model is
able to learn even when reversing the order of the
tasks, i.e. from the conjectured highest-level to
the lowest-level one. To shed light on this issue,
we tested the multi-task-prop model after
reversing its architecture. That is, propTarg is now
the first task, followed by vagueQ, and setComp.

In contrast with the pattern of results obtained
by the original pipeline, no benefits are observed
for this version of MTL model compared to
one-task networks. In particular, both vagueQ
(0.32 r) and propTarg (0.08 acc.) performance
are around chance level, with setComp reach-
ing just 0.65 acc., i.e. 25 point lower than the
one-task-end2end model. The pipeline of
increasing complexity motivated theoretically is
thus confirmed at the computational level.

6.3 Does MTL Generalize?

As discussed in § 2.2, MTL is usually claimed to
allow a higher generalization power. To investi-
gate whether our proposed multi-task-prop
model genuinely learns to quantify from visual
scenes, and not just associations between patterns
and classes, we tested it with unseen combinations
of targets/non-targets. The motivation is that, even
in the most challenging propTarg task, the model
might learn to match a given combination, e.g.
3:12, to a given proportion, i.e. 20%. If this is the
case, the model would solve the task by learning
“just” to assign a class to each of the 97 possible
combinations included in the dataset. If it learns
a more abstract representation of the proportion of
targets depicted in the scene, in contrast, it should
be able to generalize to unseen combinations.

We built an additional dataset using the exact
same pipeline described in § 3.2. This time, how-
ever, we randomly selected one combination per
ratio (17 combinations in total) to be used only for
validation and testing. The remaining 80 combina-
tions were used for training. A balanced number
of datapoints for each combination were gener-
ated in val/test, whereas datapoints in training set
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were balanced with respect to ratios, by randomly
selecting scenes among the remaining combina-
tions. The unseen dataset included around 14K
datapoints (80% train, 10% val, 10% test). Table
3 reports the results of the models on the unseen
dataset. Starting from setComp, we note a simi-
lar and fairly high accuracy achieved by the two
one-task models (0.76 and 0.79, respectively). In
vagueQ, in contrast, the one-task-end2end
model neatly outperforms the simpler model (0.92
vs. 0.55 r). Finally, in propTarg both models are
at chance level, with an accuracy that is lower than
0.07. Overall, this pattern of results suggests that
propTarg is an extremely hard task for the sepa-
rate models, which are not able to generalize to
unseen combinations. The multi-task-prop
model, in contrast, shows a fairly high generaliza-
tion power. In particular, it achieves 0.54 acc. in
propTarg, that is, almost 10 times chance level.
The overall good performance in predicting the
correct proportion can be appreciated in Figure 7,
where the errors are represented by means of a
heatmap. The error analysis reveals that end-of-
the-scale proportions (0% and 100%) are the easi-
est, followed by proportions 75% (3:1), 67% (2:1),
50% (1:1), and 60% (3:2). More in general, neg-
ative ratios (targets < 50%) are mispredicted to a
much greater extent than are positive ones. More-
over, the model shows a bias toward some propor-
tions, that the model seems ‘to see everywhere’.
However, the fact that the errors are found among
the adjacent ratios (similar proportions) seems to
be a convincing evidence that the model learns
representations encoding genuine proportional in-
formation. Finally, it is worth mentioning that
in setComp and vagueQ the model achieves very
high results, 0.94 acc. and 0.96 r, respectively.

7 Discussion

In the present study, we investigated whether
ratio-based quantification mechanisms, expressed
in language by comparatives, quantifiers, and pro-
portions, can be computationally modeled in vi-
sion exploiting MTL. We proved that sharing a
common core turned out to boost the performance
in all the tasks, supporting evidence from linguis-
tics, language acquisition, and cognition. More-
over, we showed (a) the increasing complexity of
the tasks, (b) the interference of absolute number,
and (c) the high generalization power of MTL.
These results lead to many additional questions.

Figure 7: PropTarg. Heatmap with the errors made by
the multi-task-prop model in the unseen dataset.

For instance, can these methods be successfully
applied to datasets of real scenes? We firmly be-
lieve this to be the case, though the results might
be affected by the natural biases contained in those
images. Also, is this pipeline of increasing com-
plexity specific to vision (non-symbolic level),
or is it shared across modalities, in primis lan-
guage? Since linguistic expressions of quantity are
grounded on a non-symbolic system, we might ex-
pect that a model trained on one modality can be
applied to another, at least to some extent. Even
further, jointly learning representations from both
modalities might represent an even more natural,
human-like way to learn and refer to quantities.
Further work is needed to explore all these issues.
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Abstract

Visual question answering (Visual QA) has at-
tracted a lot of attention lately, seen essentially
as a form of (visual) Turing test that artificial
intelligence should strive to achieve. In this
paper, we study a crucial component of this
task: how can we design good datasets for
the task? We focus on the design of multiple-
choice based datasets where the learner has to
select the right answer from a set of candi-
date ones including the target (i.e. the correct
one) and the decoys (i.e. the incorrect ones).
Through careful analysis of the results attained
by state-of-the-art learning models and human
annotators on existing datasets, we show that
the design of the decoy answers has a sig-
nificant impact on how and what the learn-
ing models learn from the datasets. In par-
ticular, the resulting learner can ignore the vi-
sual information, the question, or both while
still doing well on the task. Inspired by this,
we propose automatic procedures to remedy
such design deficiencies. We apply the pro-
cedures to re-construct decoy answers for two
popular Visual QA datasets as well as to cre-
ate a new Visual QA dataset from the Vi-
sual Genome project, resulting in the largest
dataset for this task. Extensive empirical stud-
ies show that the design deficiencies have been
alleviated in the remedied datasets and the
performance on them is likely a more faith-
ful indicator of the difference among learn-
ing models. The datasets are released and
publicly available via http://www.teds.
usc.edu/website_vqa/.

1 Introduction

Multimodal information processing tasks such as
image captioning (Farhadi et al., 2010; Ordonez
et al., 2011; Xu et al., 2015) and visual question
answering (Visual QA) (Antol et al., 2015) have

∗Equal contributions

Question:
What vehicle is pictured?

Image only Unresolvable (IoU)
a.	Overcast. (0.5455)

b.	Daytime.	 (0.4941)
c.	A	building. (0.4829)

d.	A	train. (0.5363)

Question only Unresolvable (QoU)
a.	A	bicycle. (0.2813)

b.	A	truck. (0.5364)	
c.	A	boat. (0.4631)

d.	A	train. (0.5079)

Original
a.	A	car.	 (0.2083)

b.	A	bus.	 (0.6151)

c.	A	cab.	 (0.5000)

d.	A	train.	 (0.7328)

Candidate Answers:

Figure 1: An illustration of how the shortcuts in the Vi-
sual7W dataset (Zhu et al., 2016) should be remedied.
In the original dataset, the correct answer “A train” is
easily selected by a machine as it is far often used as
the correct answer than the other decoy (negative) an-
swers. (The numbers in the brackets are probability
scores computed using eq. (2)). Our two procedures —
QoU and IoU (cf. Sect. 4) — create alternative decoys
such that both the correct answer and the decoys are
highly likely by examining either the image or the ques-
tion alone. In these cases, machines make mistakes un-
less they consider all information together. Thus, the
alternative decoys suggested our procedures are better
designed to gauge how well a learning algorithm can
understand all information equally well.

gained a lot of attention recently. A number of sig-
nificant advances in learning algorithms have been
made, along with the development of nearly two
dozens of datasets in this very active research do-
main. Among those datasets, popular ones include
MSCOCO (Lin et al., 2014; Chen et al., 2015), Vi-
sual Genome (Krishna et al., 2017), VQA (Antol
et al., 2015), and several others. The overarch-
ing objective is that a learning machine needs to
go beyond understanding different modalities of
information separately (such as image recognition
alone) and to learn how to correlate them in order
to perform well on those tasks.
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To evaluate the progress on those complex and
more AI-like tasks is however a challenging topic.
For tasks involving language generation, develop-
ing an automatic evaluation metric is itself an open
problem (Anderson et al., 2016; Kilickaya et al.,
2017; Liu et al., 2016; Kafle and Kanan, 2017b).
Thus, many efforts have concentrated on tasks
such as multiple-choice Visual QA (Antol et al.,
2015; Zhu et al., 2016; Jabri et al., 2016) or select-
ing the best caption (Hodosh et al., 2013; Hodosh
and Hockenmaier, 2016; Ding et al., 2016; Lin and
Parikh, 2016), where the selection accuracy is a
natural evaluation metric.

In this paper, we study how to design high-
quality multiple choices for the Visual QA task.
In this task, the machine (or the human annotator)
is presented with an image, a question and a list of
candidate answers. The goal is to select the correct
answer through a consistent understanding of the
image, the question and each of the candidate an-
swers. As in any multiple-choice based tests (such
as GRE), designing what should be presented as
negative answers — we refer them as decoys — is
as important as deciding the questions to ask. We
all have had the experience of exploiting the elim-
ination strategy: This question is easy — none of
the three answers could be right so the remaining
one must be correct!

While a clever strategy for taking exams, such
“shortcuts” prevent us from studying faithfully
how different learning algorithms comprehend the
meanings in images and languages (e.g., the qual-
ity of the embeddings of both images and lan-
guages in a semantic space). It has been noted
that machines can achieve very high accuracies of
selecting the correct answer without the visual in-
put (i.e., the image), the question, or both (Jabri
et al., 2016; Antol et al., 2015). Clearly, the learn-
ing algorithms have overfit on incidental statistics
in the datasets. For instance, if the decoy answers
have rarely been used as the correct answers (to
any questions), then the machine can rule out a de-
coy answer with a binary classifier that determines
whether the answers are in the set of the correct
answers — note that this classifier does not need
to examine the image and it just needs to memo-
rize the list of the correct answers in the training
dataset. See Fig. 1 for an example, and Sect. 3 for
more and detailed analysis.

We focus on minimizing the impacts of exploit-
ing such shortcuts. We suggest a set of principles

for creating decoy answers. In light of the amount
of human efforts in curating existing datasets for
the Visual QA task, we propose two procedures
that revise those datasets such that the decoy an-
swers are better designed. In contrast to some
earlier works, the procedures are fully automatic
and do not incur additional human annotator ef-
forts. We apply the procedures to revise both Vi-
sual7W (Zhu et al., 2016) and VQA (Antol et al.,
2015). Additionally, we create new multiple-
choice based datasets from COCOQA (Ren et al.,
2015) and the recently released VQA2 (Goyal
et al., 2017) and Visual Genome datasets (Krishna
et al., 2017). The one based on Visual Genome
becomes the largest multiple-choice dataset for
the Visual QA task, with more than one million
image-question-candidate answers triplets.

We conduct extensive empirical and human
studies to demonstrate the effectiveness of our pro-
cedures in creating high-quality datasets for the
Visual QA task. In particular, we show that ma-
chines need to use all three information (image,
questions and answers) to perform well — any
missing information induces a large drop in per-
formance. Furthermore, we show that humans
dominate machines in the task. However, given
the revised datasets are likely reflecting the true
gap between the human and the machine under-
standing of multimodal information, we expect
that advances in learning algorithms likely focus
more on the task itself instead of overfitting to the
idiosyncrasies in the datasets.

The rest of the paper is organized as follows.
In Sect. 2, we describe related work. In Sect. 3,
we analyze and discuss the design deficiencies in
existing datasets. In Sect. 4, we describe our au-
tomatic procedures for remedying those deficien-
cies. In Sect. 5 we conduct experiments and anal-
ysis. We conclude the paper in Sect. 6.

2 Related Work

Wu et al. (2017) and Kafle and Kanan (2017b)
provide recent overviews of the status quo of the
Visual QA task. There are about two dozens of
datasets for the task. Most of them use real-world
images, while some are based on synthetic ones.
Usually, for each image, multiple questions and
their corresponding answers are generated. This
can be achieved either by human annotators, or
with an automatic procedure that uses captions
or question templates and detailed image annota-
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tions. We concentrate on 3 datasets: VQA (Antol
et al., 2015), Visual7W (Zhu et al., 2016), and Vi-
sual Genome (Krishna et al., 2017). All of them
use images from MSCOCO (Lin et al., 2014).

Besides the pairs of questions and correct an-
swers, VQA, Visual7W, and visual Madlibs (Yu
et al., 2015) provide decoy answers for each pair
so that the task can be evaluated in multiple-choice
selection accuracy. What decoy answers to use is
the focus of our work.

In VQA, the decoys consist of human-generated
plausible answers as well as high-frequency and
random answers from the datasets. In Visual7W,
the decoys are all human-generated plausible ones.
Note that, humans generate those decoys by only
looking at the questions and the correct answers
but not the images. Thus, the decoys might be un-
related to the corresponding images. A learning
algorithm can potentially examine the image alone
and be able to identify the correct answer.

In visual Madlibs, the questions are generated
with a limited set of question templates and the
detailed annotations (e.g., objects) of the images.
Thus, similarly, a learning model can examine the
image alone and deduce the correct answer.

We propose automatic procedures to re-
vise VQA and Visual7W (and to create new
datasets based on COCOQA (Ren et al., 2015),
VQA2 (Goyal et al., 2017), and Visual Genome)
such that the decoy generation is carefully orches-
trated to prevent learning algorithms from exploit-
ing the shortcuts in the datasets by overfitting on
incidental statistics. In particular, our design goal
is that a learning machine needs to understand all
the 3 components of an image-question-candidate
answers triplet in order to make the right choice —
ignoring either one or two components will result
in drastic degradation in performance.

Our work is inspired by the experiments
in (Jabri et al., 2016) where they observe that ma-
chines without looking at images or questions can
still perform well on the Visual QA task. Oth-
ers have also reported similar issues (Goyal et al.,
2017; Zhang et al., 2016; Johnson et al., 2017;
Agrawal et al., 2016; Kafle and Kanan, 2017a;
Agrawal et al., 2018), though not in the multiple-
choice setting. Our work extends theirs by pro-
viding more detailed analysis as well as automatic
procedures to remedy those design deficiencies.

Besides Visual QA, VisDial (Das et al., 2017)
and Ding et al. (2016) also propose automatic

ways to generate decoys for the tasks of multiple-
choice visual captioning and dialog, respectively.

Recently, Lin and Parikh (2017) study active
learning for Visual QA: i.e., how to select infor-
mative image-question pairs (for acquiring anno-
tations) or image-question-answer triplets for ma-
chines to “learn” from. On the other hand, our
work further focuses on designing better datasets
for “evaluating” a machine.

3 Analysis of Decoy Answers’ Effects

In this section, we examine in detail the dataset
Visual7W (Zhu et al., 2016), a popular choice for
the Visual QA task. We demonstrate how the de-
ficiencies in designing decoy questions impact the
performance of learning algorithms.

In multiple-choice Visual QA datasets, a train-
ing or test example is a triplet that consists of
an image I, a question Q, and a candidate an-
swer set A. The set A contains a target T (the
correct answer) and K decoys (incorrect answers)
denoted by D. An IQA triplet is thus {I,Q,A =
{T,D1, · · · ,DK}}. We use C to denote either the
target or a decoy.

3.1 Visual QA models
We investigate how well a learning algorithm can
perform when supplied with different modalities
of information. We concentrate on the one hidden-
layer MLP model proposed in (Jabri et al., 2016),
which has achieved state-of-the-art results on the
dataset Visual7W. The model computes a scoring
function f(c, i)

f(c, i) = σ(U max(0,W g(c, i)) + b) (1)

over a candidate answer c and the multimodal in-
formation i, where g is the joint feature of (c, i)
and σ(x) = 1/(1 + exp(−x)). The information i
can be null, the image (I) alone, the question (Q)
alone, or the combination of both (I+Q).

Given an IQA triplet, we use the penultimate
layer of ResNet-200 (He et al., 2016) as visual fea-
tures to represent I and the average WORD2VEC

embeddings (Mikolov et al., 2013) as text features
to represent Q and C. To form the joint feature
g(c, i), we just concatenate the features together.
The candidate c ∈ A that has the highest f(c, i)
score in prediction is selected as the model output.

We use the standard training, validation, and
test splits of Visual7W, where each contains
69,817, 28,020, and 42,031 examples respectively.
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Information used Machine Human
random 25.0 25.0
A 52.9 -
I + A 62.4 75.3
Q + A 58.2 36.4
I + Q + A 65.7 88.4

Table 1: Accuracy of selecting the right answers out of
4 choices (%) on the Visual QA task on Visual7W.

Each question has 4 candidate answers. The pa-
rameters of f(c, i) are learned by minimizing the
binary logistic loss of predicting whether or not a
candidate c is the target of an IQA triplet. Details
are in Sect. 5 and the Supplementary Material.

3.2 Analysis results
Machines find shortcuts Table 1 summarizes
the performance of the learning models, together
with the human studies we performed on a subset
of 1,000 triplets (c.f. Sect. 5 for details). There are
a few interesting observations.

First, in the row of “A” where only the candidate
answers (and whether they are right or wrong) are
used to train a learning model, the model performs
significantly better than random guessing and hu-
mans (52.9% vs. 25%) — humans will deem each
of the answers equally likely without looking at
both the image and the question! Note that in this
case, the information i in eq. (1) contains nothing.
The model learns the specific statistics of the can-
didate answers in the dataset and exploits those.
Adding the information about the image (i.e., the
row of “I+A”), the machine improves significantly
and gets close to the performance when all infor-
mation is used (62.4% vs. 65.7%). There is a
weaker correlation between the question and the
answers as “Q+A” improves over “A” only mod-
estly. This is expected. In the Visual7W dataset,
the decoys are generated by human annotators as
plausible answers to the questions without being
shown the images — thus, many decoy answers do
not have visual groundings. For instance, a ques-
tion of “what animal is running?” elicits equally
likely answers such as “dog”, “tiger”, “lion”, or
“cat”, while an image of a dog running in the park
will immediately rule out all 3 but the “dog”, see
Fig. 1 for a similar example. Thus, the perfor-
mance of “I+A” implies that many IQA triplets
can be solved by object, attribute or concept detec-
tion on the image, without understanding the ques-
tions. This is indeed the case also for humans —
humans can achieve 75.3% by considering “I+A”
and not “Q”. Note that the difference between ma-

chine and human on “I+A” are likely due to their
difference in understanding visual information.

Note that human improves significantly from
“I+A” to “I+Q+A” with “Q” added, while the ma-
chine does so only marginally. The difference can
be attributed to the difference in understanding the
question and correlating with the answers between
the two. Since each image corresponds to multiple
questions or have multiple objects, solely relying
on the image itself will not work well in principle.
Such difference clearly indicates that in the Visual
QA model, the language component is weak as
the model cannot fully exploit the information in
“Q”, making a smaller relative improvement 5.3%
(from 62.4% to 65.7%) where humans improved
relatively 17.4%.

Shortcuts are due to design deficiencies We
probe deeper on how the decoy answers have im-
pacted the performance of learning models.

As explained above, the decoys are drawn from
all plausible answers to a question, irrespective of
whether they are visually grounded or not. We
have also discovered that the targets (i.e., correct
answers) are infrequently used as decoys.

Specifically, among the 69,817 training sam-
ples, there are 19,503 unique correct answers and
each one of them is used about 3.6 times as cor-
rect answers to a question. However, among all the
69, 817× 3 ≈ 210K decoys, each correct answer
appears 7.2 times on average, far below a chance
level of 10.7 times (210K÷19, 503 ≈ 10.7). This
disparity exists in the test samples too. Conse-
quently, the following rule, computing each an-
swer’s likelihood of being correct,

P (correct|C) =
{
0.5, if C is never seen in training,

# times C as target
# times C as target+(# times C as decoys)/K , otherwise,

(2)

should perform well. Essentially, it measures how
unbiased C is used as the target and the decoys. In-
deed, it attains an accuracy of 48.73% on the test
data, far better than the random guess and is close
to the learning model using the answers’ informa-
tion only (the “A” row in Table 1).

Good rules for designing decoys Based on our
analysis, we summarize the following guidance
rules to design decoys: (1) Question only Unre-
solvable (QoU). The decoys need to be equally
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plausible to the question. Otherwise, machines
can rely on the correlation between the question
and candidate answers to tell the target from de-
coys, even without the images. Note that this is a
principle that is being followed by most datasets.
(2) Neutrality. The decoys answers should be
equally likely used as the correct answers. (3) Im-
age only Unresolvable (IoU). The decoys need to
be plausible to the image. That is, they should ap-
pear in the image, or there exist questions so that
the decoys can be treated as targets to the image.
Otherwise, Visual QA can be resolved by objects,
attributes, or concepts detection in images, even
without the questions.

Ideally, each decoy in an IQA triplet should
meet the three principles. Neutrality is compara-
bly easier to achieve by reusing terms in the whole
set of targets as decoys. On the contrary, a decoy
may hardly meet QoU and IoU simultaneously1.
However, as long as all decoys of an IQA triplet
meet Neutrality and some meet QoU and others
meet IoU, the triplet as a whole still achieves the
three principles — a machine ignoring either im-
ages or questions will likely perform poorly.

4 Creating Better Visual QA Datasets

In this section, we describe our approaches of rem-
edying design deficiencies in the existing datasets
for the Visual QA task. We introduce two auto-
matic and widely-applicable procedures to create
new decoys that can prevent learning models from
exploiting incident statistics in the datasets.

4.1 Methods
Main ideas Our procedures operate on a dataset
that already contains image-question-target (IQT)
triplets, i.e., we do not assume it has decoys al-
ready. For instance, we have used our procedures
to create a multiple-choice dataset from the Vi-
sual Genome dataset which has no decoy. We as-
sume that each image in the dataset is coupled with
“multiple” QT pairs, which is the case in nearly all
the existing datasets. Given an IQT triplet (I, Q,
T), we create two sets of decoy answers.

• QoU-decoys. We search among all other triplets
that have similar questions to Q. The targets of
those triplets are then collected as the decoys for
T. As the targets to similar questions are likely
1E.g., in Fig 1, for the question “What vehicle is pic-

tured?”, the only answer that meets both principles is “train”,
which is the correct answer instead of being a decoy.

plausible for the question Q, QoU-decoys likely
follow the rules of Neutrality and Question
only Unresolvable (QoU). We compute the av-
erage WORD2VEC (Mikolov et al., 2013) to rep-
resent a question, and use the cosine similarity
to measure the similarity between questions.

• IoU-decoys. We collect the targets from other
triplets of the same image to be the decoys for T.
The resulting decoys thus definitely follow the
rules of Neutrality and Image only Unresolv-
able (IoU).

We then combine the triplet (I, Q, T) with QoU-
decoys and IoU-decoys to form an IQA triplet as a
training or test sample.

Resolving ambiguous decoys One potential
drawback of automatically selected decoys is that
they may be semantically similar, ambiguous, or
rephrased terms to the target (Zhu et al., 2016).
We utilize two filtering steps to alleviate it. First,
we perform string matching between a decoy and
the target, deleting those decoys that contain or are
covered by the target (e.g., “daytime” vs. “during
the daytime” and “ponytail” vs. “pony tail”).

Secondly, we utilize the WordNet hierarchy and
the Wu-Palmer (WUP) score (Wu and Palmer,
1994) to eliminate semantically similar decoys.
The WUP score measures how similar two word
senses are (in the range of [0, 1]), based on the
depth of them in the taxonomy and that of their
least common subsumer. We compute the similar-
ity of two strings according to the WUP scores in
a similar manner to (Malinowski and Fritz, 2014),
in which the WUP score is used to evaluate Visual
QA performance. We eliminate decoys that have
higher WUP-based similarity to the target. We use
the NLTK toolkit (Bird et al., 2009) to compute
the similarity. See the Supplementary Material for
more details.

Other details For QoU-decoys, we sort and
keep for each triplet the top N (e.g., 10,000) sim-
ilar triplets from the entire dataset according to
the question similarity. Then for each triplet, we
compute the WUP-based similarity of each poten-
tial decoy to the target successively, and accept
those with similarity below 0.9 until we have K
decoys. We choose 0.9 according to (Malinowski
and Fritz, 2014). We also perform such a check
among selected decoys to ensure they are not very
similar to each other. For IoU-decoys, the poten-
tial decoys are sorted randomly. The WUP-based
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similarity with a threshold of 0.9 is then applied to
remove ambiguous decoys.

4.2 Comparison to other datasets

Several authors have noticed the design deficien-
cies in the existing databases and have proposed
“fixes” (Antol et al., 2015; Yu et al., 2015; Zhu
et al., 2016; Das et al., 2017). No dataset has used
a procedure to generate IoU-decoys. We empiri-
cally show that how the IoU-decoys significantly
remedy the design deficiencies in the datasets.

Several previous efforts have generated decoys
that are similar in spirit to our QoU-decoys. Yu et
al. (2015), Das et al. (2017), and Ding et al. (2016)
automatically find decoys from similar questions
or captions based on question templates and an-
notated objects, tri-grams and GLOVE embed-
dings (Pennington et al., 2014), and paragraph
vectors (Le and Mikolov, 2014) and linguistic sur-
face similarity, respectively. The later two are for
different tasks from Visual QA, and only Ding
et al. (2016) consider removing semantically am-
biguous decoys like ours. Antol et al. (2015) and
Zhu et al. (2016) ask humans to create decoys,
given the questions and targets. As shown earlier,
such decoys may disobey the rule of Neutrality.

Goyal et al. (2017) augment the VQA dataset
(Antol et al., 2015) (by human efforts) with addi-
tional IQT triplets to eliminate the shortcuts (lan-
guage prior) in the open-ended setting. Their ef-
fort is complementary to ours on the multiple-
choice setting. Note that an extended task of Vi-
sual QA, visual dialog (Das et al., 2017), also
adopts the latter setting.

5 Empirical Studies

5.1 Dataset

We examine our automatic procedures for creating
decoys on five datasets. Table 2 summarizes the
characteristics of the three datasets we focus on.

VQA Real (Antol et al., 2015) The dataset uses
images from MSCOCO (Lin et al., 2014) under
the same training/validation/testing splits to con-
struct IQA triplets. Totally 614,163 IQA triplets
are generated for 204,721 images. Each question
has 18 candidate answers: in general 3 decoys are
human-generated, 4 are randomly sampled, and 10
are randomly sampled frequent-occurring targets.
As the test set does not indicate the targets, our
studies focus on the training and validation sets.

Dataset # of Images # of triplets # of decoys
Name train val test train val test per triplet
VQA 83k 41k 81k 248k 121k 244k 17

Visual7W 14k 5k 8k 69k 28k 42k 3
VG 49k 19k 29k 727k 283k 433k -

Table 2: Summary of Visual QA datasets.

Visual7W Telling (Visual7W) (Zhu et al., 2016)
The dataset uses 47,300 images from MSCOCO
(Lin et al., 2014) and contains 139,868 IQA
triplets. Each has 3 decoys generated by humans.

Visual Genome (VG) (Krishna et al., 2017)
The dataset uses 101,174 images from MSCOCO
(Lin et al., 2014) and contains 1,445,322 IQT
triplets. No decoys are provided. Human anno-
tators are asked to write diverse pairs of questions
and answers freely about an image or with respect
to some regions of it. On average an image is cou-
pled with 14 question-answer pairs. We divide the
dataset into non-overlapping 50%/20%/30% for
training/validation/testing. Additionally, we par-
tition such that each portion is a “superset” of the
corresponding one in Visual7W, respectively.

VQA2 (Goyal et al., 2017) and COCOQA (Ren
et al., 2015) We describe the datasets and exper-
imental results in the Supplementary Material.

Creating decoys We create 3 QoU-decoys and
3 IoU-decoys for every IQT triplet in each dataset,
following the steps in Sect. 4.1. In the cases that
we cannot find 3 decoys, we include random ones
from the original set of decoys for VQA and Vi-
sual7W; for other datasets, we randomly include
those from the top 10 frequently-occurring targets.

5.2 Setup
Visual QA models We utilize the MLP mod-
els mentioned in Sect. 3 for all the experiments.
We denote MLP-A, MLP-QA, MLP-IA, MLP-
IQA as the models using A (Answers only), Q+A
(Question plus Answers), I+A (Image plus An-
swers), and I+Q+A (Image, Question and An-
swers) for multimodal information, respectively.
The hidden-layer has 8,192 neurons. We use a
200-layer ResNet (He et al., 2016) to compute vi-
sual features which are 2,048-dimensional. The
ResNet is pre-trained on ImageNet (Russakovsky
et al., 2015). The WORD2VEC feature (Mikolov
et al., 2013) for questions and answers are 300-
dimensional, pre-trained on Google News2. The

2We experiment on using different features in the Supple-
mentary Material.
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parameters of the MLP models are learned by
minimizing the binary logistic loss of predicting
whether or not a candidate answer is the target of
the corresponding IQA triplet. Please see the Sup-
plementary Material for details on optimization.

We further experiment with a variant of the spa-
tial memory network (denoted as Attention) (Xu
and Saenko, 2016) and the HieCoAtt model (Lu
et al., 2016) adjusted for the multiple-choice set-
ting. Both models utilize the attention mechanism.
Details are listed in the Supplementary Material.

Evaluation metric For VQA and VQA2, we
follow their protocols by comparing the picked an-
swer to 10 human-generated targets. The accu-
racy is computed based on the number of exactly
matched targets (divided by 3 and clipped at 1).
For others, we compute the accuracy of picking
the target from multiple choices.

Decoy sets to compare For each dataset, we de-
rive several variants: (1) Orig: the original decoys
from the datasets, (2) QoU: Orig replaced with
ones selected by our QoU-decoys generating pro-
cedure, (3) IoU: Orig replaced with ones selected
by our IoU-decoys generating procedure, (4) QoU
+IoU: Orig replaced with ones combining QoU
and IoU, (5) All: combining Orig, QoU, and IoU.

User studies Automatic decoy generation may
lead to ambiguous decoys as mentioned in Sect. 4
and (Zhu et al., 2016). We conduct a user study via
Amazon Mechanic Turk (AMT) to test humans’
performance on the datasets after they are reme-
died by our automatic procedures. We select 1,000
IQA triplets from each dataset. Each triplet is an-
swered by three workers and in total 169 workers
get involved. The total cost is $215 — the rate for
every 20 triplets is $0.25. We report the average
human performance and compare it to the learn-
ing models’. See the Supplementary Material for
more details.

5.3 Results

The performances of learning models and humans
on the 3 datasets are reported in Table 3, 4, and 53.

3We note that in Table 3, the 4.3% drop of the human per-
formance on IoU +QoU, compared to Orig, is likely due to
that IoU +QoU has more candidates (7 per question). Be-
sides, the human performance on qaVG cannot be directly
compared to that on the other datasets, since the questions on
qaVG tend to focus on local image regions and are considered
harder.

Method Orig IoU QoU IoU +QoU All
MLP-A 52.9 27.0 34.1 17.7 15.6
MLP-IA 62.4 27.3 55.0 23.6 22.2
MLP-QA 58.2 84.1 40.7 37.8 31.9
MLP-IQA 65.7 84.1 57.6 52.0 45.1
HieCoAtt∗ 63.9 - - 51.5 -
Attntion∗ 65.9 - - 52.8 -
Human 88.4 - - 84.1 -
Random 25.0 25.0 25.0 14.3 10.0
∗: based on our implementation or modification

Table 3: Test accuracy (%) on Visual7W.

Effectiveness of new decoys A better set of de-
coys will force learning models to integrate all 3
pieces of information — images, questions and
answers — to make the correct selection from
multiple-choices. In particular, they should pre-
vent learning algorithms from exploiting shortcuts
such that partial information is sufficient for per-
forming well on the Visual QA task.

Table 3 clearly indicates that those goals have
been achieved. With the Orig decoys, the rela-
tively small gain from MLP-IA to MLP-IQA sug-
gests that the question information can be ignored
to attain good performance. However, with the
IoU-decoys which require questions to help to re-
solve (as image itself is inadequate to resolve),
the gain is substantial (from 27.3% to 84.1%).
Likewise, with the QoU-decoys (question itself
is not adequate to resolve), including images in-
formation improves from 40.7% (MLP-QA) sub-
stantially to 57.6% (MLP-IQA). Note that with
the Orig decoys, this gain is smaller (58.2% vs.
65.7%).

It is expected that MLP-IA matches better QoU-
decoys but not IoU-decoys, and MLP-QA is the
other way around. Thus it is natural to combine
these two decoys. What is particularly appealing
is that MLP-IQA improves noticeably over models
learned with partial information on the combined
IoU +QoU-decoys (and “All” decoys4). Further-
more, using answer information only (MLP-A) at-
tains about the chance-level accuracy.

On the VQA dataset (Table 4), the same obser-
vations hold, though to a lesser degree. On any
of the IoU or QoU columns, we observe substan-

4We note that the decoys in Orig are not trivial, which can
be seen from the gap between All and IoU +QoU. Our main
concern on Orig is that for those questions that machines can
accurately answer, they mostly rely on only partial informa-
tion. This will thus hinder designing machines to fully com-
prehend and reason from multimodal information. We further
experiment on random decoys, which can achieve Neutrality
but not the other two principles, to demonstrate the effective-
ness of our methods in the Supplementary Material.
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Method Orig IoU QoU IoU +QoU All
MLP-A 31.2 39.9 45.7 31.2 27.4
MLP-IA 42.0 39.8 55.1 34.1 28.7
MLP-QA 58.0 84.7 55.1 54.4 50.0
MLP-IQA 64.6 85.2 65.4 63.7 58.9
HieCoAtt∗ 63.0 - - 63.7 -
Attntion∗ 66.0 - - 66.7 -
Human 88.5† - - 89.0 -
Random 5.6 25.0 25.0 14.3 4.2
∗: based on our implementation or modification

†: taken from (Antol et al., 2015)

Table 4: Accuracy (%) on the validation set in VQA.

Method IoU QoU IoU +QoU
MLP-A 29.1 36.2 19.5
MLP-IA 29.5 60.2 25.2
MLP-QA 89.3 45.6 43.9
MLP-IQA 89.2 64.3 58.5
HieCoAtt∗ - - 57.5
Attntion∗ - - 60.1
Human - - 82.5
Random 25.0 25.0 14.3

∗: based on our implementation or modification

Table 5: Test accuracy (%) on qaVG.

tial gains when the complementary information is
added to the model (such as MLP-IA to MLP-
IQA). All these improvements are much more vis-
ible than those observed on the original decoy sets.

Combining both Table 3 and 4, we notice that
the improvements from MLP-QA to MLP-IQA
tend to be lower when facing IoU-decoys. This is
also expected as it is difficult to have decoys that
are simultaneously both IoU and QoU — such an-
swers tend to be the target answers. Nonetheless,
we deem this as a future direction to explore.

Differences across datasets Contrasting Vi-
sual7W to VQA (on the column IoU +QoU), we
notice that Visual7W tends to have bigger im-
provements in general. This is due to the fact that
VQA has many questions with “Yes” or “No” as
the targets — the only valid decoy to the target
“Yes” is “No”, and vice versa. As such decoys are
already captured by Orig of VQA (‘Yes” and “No”
are both top frequently-occurring targets), adding
other decoy answers will not make any noticeable
improvement. In Supplementary Material, how-
ever, we show that once we remove such ques-
tions/answers pairs, the degree of improvements
increases substantially.

Comparison on Visual QA models As pre-
sented in Table 3 and 4, MLP-IQA is on par with
or even outperforms Attention and HieCoAtt on
the Orig decoys, showing how the shortcuts make

Datasets Decoys Best w/o qaVG model
using qaVG initial fine-tuned

Visual7W
Orig 65.7 60.5 69.1

IoU +QoU 52.0 58.1 58.7
All 45.1 48.9 51.0

VQA
Orig 64.6 42.2 65.6

IoU +QoU 63.7 47.9 64.1
All 58.9 37.5 59.4

Table 6: Using models trained on qaVG to improve Vi-
sual7W and VQA (Accuracy in %).

it difficult to compare different models. By elim-
inating the shortcuts (i.e., on the combined IoU
+QoU-decoys), the advantage of using sophisti-
cated models becomes obvious (Attention outper-
forms MLP-IQA by 3% in Table 4), indicating the
importance to design advanced models for achiev-
ing human-level performance on Visual QA.

For completeness, we include the results on the
Visual Genome dataset in Table 5. This dataset has
no “Orig” decoys, and we have created a multiple-
choice based dataset qaVG from it for the task —
it has over 1 million triplets, the largest dataset on
this task to our knowledge. On the combined IoU
+QoU-decoys, we again clearly see that machines
need to use all the information to succeed.

With qaVG, we also investigate whether it can
help improve the multiple-choice performances on
the other two datasets. We use the MLP-IQA
trained on qaVG with both IoU and QoU decoys
to initialize the models for the Visual7W and VQA
datasets. We report the accuracies before and after
fine-tuning, together with the best results learned
solely on those two datasets. As shown in Table 6,
fine-tuning largely improves the performance, jus-
tifying the finding by Fukui et al. (2016).

5.4 Qualitative Results
In Fig. 2, we present examples of image-question-
target triplets from V7W, VQA, and VG, together
with our IoU-decoys (A, B, C) and QoU-decoys
(D, E, F). G is the target. The predictions by the
corresponding MLP-IQA are also included. Ignor-
ing information from images or questions makes
it extremely challenging to answer the triplet cor-
rectly, even for humans.

Our automatic procedures do fail at some
triplets, resulting in ambiguous decoys to the tar-
gets. See Fig. 3 for examples. We categorized
those failure cases into two situations.

• Our filtering steps in Sect. 4 fail, as observed in
the top example. The WUP-based similarity re-
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What is the train traveling 
over? 
A. Yes.

B. Blue.
C. Tracks.

D. Train.
E. South.

F. Forward.
G. Bridge.

What is the color of his 
wetsuit?
A. When	waves	are	bigger.

B. It	is	not	soft	and	fine.
C. It	is	a	picture	of	nature.

D. Green.
E. Blue.

F. Red.
G. It	is	black.

Where do the stairs lead? 
A. A	parking	lot.

B. The	building.

C. The	windows.
D. From	the	canal	to	the	

bridge.
E. Up.

F. To	the	building.
G. To	the	plane.

What is the right man on 
the right holding? 
A. Brown.

B. The	man	on	the	right.
C. Four.

D. A	bottle.
E. A	surfboard.

F. Cellphone.
G. A	bat.

What is the man wearing? 
A. Black.

B. Mountains.

C. The	beach.
D. Board	shorts.

E. He	wears	white	shoes.
F. A	white	button	down	

shirt	and	a	black	tie.
G. Wetsuit.

What are these people 
about to do? 
A. Yellow.

B. Yes.
C. Four.

D. Surf.
E. Fly	kite.

F. Play	frisbee.
G. Ski.

Figure 2: Example image-question-target triplets from Visual7W, VQA, and VG, together with our IoU-decoys
(A, B, C.) and QoU-decoys (D, E, F). G is the target. Machine’s selections are denoted by green ticks (correct) or
red crosses (wrong).

A. Trees.
B. Clear	and	sunny.

C. Basement	windows.

D. On	both	sides	of	road.
E. To	left	of	truck.

F. On	edge	of	the	sidewalk.
G. In	front	of	the	building.

A. Certificate.
B. Garland.

C. Three.

D. The	man.
E. Person	in	chair.

F. The	lady.
G. The	woman.

Who is wearing glasses? 

Where are several trees?

Figure 3: Ambiguous examples by our IoU-decoys (A,
B, C) and QoU-decoys (D, E, F). G is the target. Am-
biguous decoys F are marked.

lies on the WordNet hierarchy. For some seman-
tically similar words like “lady” and “woman”,
the similarity is only 0.632, much lower than
that of 0.857 between “cat” and “dog”. This is-
sue can be alleviated by considering alternative
semantic measures by WORD2VEC or by those
used in (Das et al., 2017; Ding et al., 2016) for
searching similar questions.

• The question is ambiguous to answer. In the bot-
tom example in Fig. 3, both candidates D and F
seem valid as a target. Another representative
case is when asked about the background of a
image. In images that contain sky and moun-
tains in the distance, both terms can be valid.

6 Conclusion

We perform detailed analysis on existing datasets
for multiple-choice Visual QA. We found that the
design of decoys can inadvertently provide “short-
cuts” for machines to exploit to perform well on
the task. We describe several principles of con-
structing good decoys and propose automatic pro-

cedures to remedy existing datasets and create
new ones. We conduct extensive empirical stud-
ies to demonstrate the effectiveness of our meth-
ods in creating better Visual QA datasets. The
remedied datasets and the newly created ones are
released and available at http://www.teds.
usc.edu/website_vqa/.
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Abstract

Abstract Meaning Representation (AMR)
parsing aims at abstracting away from the syn-
tactic realization of a sentence, and denoting
only its meaning in a canonical form. As such,
it is ideal for paraphrase detection, a problem
in which one is required to specify whether
two sentences have the same meaning. We
show that naı̈ve use of AMR in paraphrase de-
tection is not necessarily useful, and turn to
describe a technique based on latent seman-
tic analysis in combination with AMR parsing
that significantly advances state-of-the-art re-
sults in paraphrase detection for the Microsoft
Research Paraphrase Corpus. Our best results
in the transductive setting are 86.6% for accu-
racy and 90.0% for F1 measure.

1 Introduction

Abstract Meaning Representation (AMR) parsing
focuses on the conversion of natural language sen-
tences into AMR graphs, aimed at abstracting
away from the surface realizations of the sentences
while preserving their meaning.

We make a first step towards showing that AMR
can be used in practice for a task that requires
identifying the canonicalization of language: para-
phrase detection. In a “perfect world” using AMR
to test for paraphrasing relation of two sentences
should be simple. It would require finding the two
AMR parses for each of the sentences, and then
checking whether they are identical. Since AMR
is aimed at abstracting away from the surface form
which is used to express meaning, two sentences
should be paraphrases only if they have identical
AMRs. For instance, the three sentences:

1. He described her as a curmudgeon,

2. His description of her: curmudgeon,

3. She was a curmudgeon, according to his de-
scription.

describe-01

he curmudgeon she

ARG0 ARG2 ARG1

Figure 1: AMR graph for “He described her as a cur-
mudgeon”, “His description of her: curmudgeon” and
“She was a curmudgeon, according to his description”

should result in the same AMR graph as shown
in Figure 1.

However, in practice, things are different. First,
there are no known AMR parsers that really distil
only the meaning in text. For example, predicates
which have interchangeable meaning use differ-
ent AMR concepts, and there are errors that exist
because of the machine learning techniques that
are used for learning the parsers from data. Fi-
nally, even human annotations do not yield per-
fect AMRs, as the interannotator agreement re-
ported in the literature for AMR is around 80%
(Banarescu et al., 2013).

Second, meaning is often contextual, and it is
not fully possible to determine the corresponding
AMR parse just by looking at a given sentence.
Entity mentions denote different entities in differ-
ent contexts, and similarly predicates and nouns
are ambiguous and depend on context. As such,
one cannot expect to use AMR in the transparent
way mentioned above to identify paraphrase rela-
tions. However, we demonstrate in this paper that
AMR can be used in a “softer” way to detect such
relations.

Evaluation of AMR parsers is traditionally per-
formed using the Smatch score (Cai and Knight,
2013). However, Damonte et al. (2017) argue that
more ad-hoc metrics can be useful for advancing
AMR research. Paraphrase detection can be seen
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as a further benchmark for AMR parsers, high-
lighting their ability of abstracting away from syn-
tax and representing the core concepts expressed
in the sentence. In order to advance research in
AMR and its applications, it is important to have
metrics that reflect on the ability of AMR graphs
to have impact on subsequent tasks. In this work
we therefore use two different AMR parsers, com-
paring them throughout all experiments.

2 Background

AMRs are rooted, edge labeled, node labeled, di-
rected graphs. They are biased towards the En-
glish language and rely on PropBank (Kingsbury
and Palmer, 2002) for the definition of the main
events in the sentence. Nodes in an AMR graph
represent events and concepts, while edges repre-
sent the relationships between them. Banarescu
et al. (2013) state that AMR are aimed at canon-
icalizing multiple ways of expressing the same
idea, which could be of great assistance to solve
the problem of paraphrase detection. However,
this goal is not entirely achieved in practice, and
it will take long for AMR parsers to mature and
achieve such canonicalization. At the moment, for
example, even a simple pair of sentences such as
“the boy desires the cake” and the “the boy wants
the cake” would not have the same canonical form
by state-of-the-art AMR parsers.

While some researchers (Fodor, 1975) have
doubted the practical possibility of canonicalizing
language or finding identical paraphrases in En-
glish or otherwise, much work in NLP has been
devoted to the problem of paraphrase identifica-
tion (Mitchell and Lapata, 2010; Baroni and Lenci,
2010; Socher et al., 2011; Guo and Diab, 2012;
Ji and Eisenstein, 2013) and more weakly, finding
entailment between sentences and phrases (Dagan
et al., 2006; Bos and Markert, 2005; Harabagiu
and Hickl, 2006; Lewis and Steedman, 2013). In
this work, we use the AMRs parsed for given
sentences as a mean to extract useful information
and train paraphrase detection classifiers on top of
them.

2.1 Latent Semantic Analysis

Our work falls under the category of distribu-
tional methods for paraphrase detection (Turney
and Pantel, 2010; Mihalcea et al., 2006; Mitchell
and Lapata, 2010; Guo and Diab, 2012; Ji and
Eisenstein, 2013) such as with latent semantic

analysis (LSA, Landauer et al., 1998). The main
principle behind this approach is to detect se-
mantic similarity through distributional represen-
tations for a given sentence and its potential para-
phrase, where these representations are compared
against each other according to some similarity
metric or used as features with a discriminative
classification method (Mihalcea et al., 2006; Guo
and Diab, 2012; Ji and Eisenstein, 2013).

LSA is indeed one of the main tools in ob-
taining such distributional representations for the
problem of paraphrase detection. Most often, TF-
IDF weighting has been used for building the
sentence-term matrix, but Ji and Eisenstein (2013)
have shown that a significant improvement can be
achieved in detecting similarity if one re-weights
the sentence-term matrix differently. Indeed, this
is one of our main contributions: we build on
previous work on LSA for paraphrase detection
and propose a technique to re-weight a sentence-
concept matrix based on the AMR graphs for the
given sentences. More details on the use of LSA
for paraphrase detection appear in Section 4.

2.2 AMR Parsing

AMR parsing is the task of converting natural lan-
guage sentences into AMR graphs, which are Di-
rected Acyclic Graphs (DAGs) in all cases except
a few rare controversial cases. This task embeds
several common NLP problems together, such as
named entity recognition, sentential-level corefer-
ence resolution, semantic role labeling and word-
sense disambiguation. Several parsers for AMR
have been recently developed (Flanigan et al.,
2014; Wang et al., 2015; Peng et al., 2015; Pust
et al., 2015; Goodman et al., 2016; Rao et al.,
2015; Vanderwende et al., 2015; Artzi et al., 2015;
Barzdins and Gosko, 2016a; Zhou et al., 2016; Da-
monte et al., 2017; Barzdins and Gosko, 2016b;
Konstas et al., 2017). Shared tasks were also orga-
nized in order to push forward the state-of-the-art
(May, 2016; May and Priyadarshi, 2017).

Meaning representations are usually evaluated
based on their compositionality (construction of a
representation based on parts of the text in a con-
sistent way), verifiability (ability to check whether
a meaning representation is true in a given model
of the world), unambiguity (ability to full disam-
biguate text into the representation in a way that
does not leave any ambiguity lingering), inference
(the existence of a calculus that can be used to
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infer whether one meaning representation is log-
ically implied by others) and canonicalization (the
ability to map several surface forms, such as para-
phrases, into a single unique meaning representa-
tion). In this paper, we evaluate AMR on its ability
to canonicalize language through its assistance in
deciding whether two sentences are paraphrases.

We note that this test is masked by the accuracy
of the AMR parsers we use, which indeed do not
give always fully correct predictions. These errors
in our paraphrase detection due to the accuracy
of the AMR parser are different than those which
originate in an inherent difficulty of representing
paraphrases using AMR because of the limitations
of the formalism and the annotation guidelines that
AMR follows.

We experiment with two AMR parsers for
which a public version is available. The first is
JAMR (Flanigan et al., 2014), which is a graph-
based approach to AMR parsing. It works by per-
forming two steps on the input sentence: concept
identification and relation identification. The for-
mer discovers the concept fragments correspond-
ing to span of words in the sentence, while the
latter finds the optimal spanning connected sub-
graph from the concepts identified in the first
step. The concept identification step has quadratic
complexity and the relation identification step is
O(|V |2 log |V |), with |V | being the set of nodes in
the AMR graph.

The second is AMREager (Damonte et al.,
2017), which is a transition-based parser that
works by scanning the string left-to-right and
building the graph as the scan proceeds. This
transition-based system is akin to the depen-
dency parsing transition-system ArcEager of
Nivre (2004), only without constraints that ensure
that the resulting structure is a tree. In addition,
there are operations that make the system create
additional non-projective structures by checking
after transition step whether siblings should be
connected together with an edge. The complex-
ity of AMREager is linear in the length of the
sentence. AMREager was extended to other lan-
guages (Damonte and Cohen, 2018), and we leave
it for future work to test the utility of AMR for
paraphrase detection in these languages.

3 Problem Formulation

Let S be a set of sentences. We are given input
data in the form of (x

(i)
1 , x

(i)
2 , b(i)) for i ∈ [n]

where n is the number of training examples, x(i)j ∈
S, j ∈ {1, 2} and b(i) ∈ {0, 1} is a binary indica-
tor that tells whether x(i)1 is a paraphrase of x(i)2 .

The goal is to learn a classifier

c : S × S → {0, 1}

that tells for unseen instances whether the pair
of sentences given as input are paraphrases of each
other. We denote by [n] the set {1, . . . , n}.

4 Latent Semantic Analysis for
Paraphrase Detection

The first step in our approach is the construction
of lower-dimensional representations for the sen-
tences in the training data. We use latent semantic
analysis to get the sentence representations, which
are then used to detect paraphrases using a classi-
fier. More specifically, given a set of sentences
S = {x(i)j | j ∈ {1, 2}, i ∈ [n]}, we build a
sentence-term matrix T such that Tk` indicates the
use of the `th word in the kth sentence in S. The
number of rows is the number of sentences in the
dataset and the number of columns is the vocabu-
lary size. This follows previous work with the use
of LSA for paraphrasing (Guo and Diab, 2012; Ji
and Eisenstein, 2013).

As a baseline, we experiment with two ways of
assigning the values to the matrix:

• Tk` is the count of the `th word in the kth
sentence:

Tk` = count(`, k)

• Tk` is the term frequency-inverse document
frequency (TF-IDF) for the kth sentence with
respect to the `th word. TF-IDF is commonly
used in Information Retrieval to score words
in a document and combines the frequency
of the words in a document with the rarity of
the term across documents. With TF-IDF, in
order to have a high score, concepts must ap-
pear in this sentence and not in many others.
In that case, we define:

Tk` = count(`, k)× n

csent(`, k)

where count(`, k) gives the count of the `th
word in the kth sentence and csent is the
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number of sentences which contain the `th
word:

csent(`, k) = |{k ∈ [|S|] : count(k, `) > 0}|.

The AMR-based systems of Section 5 build
upon this by re-weighting Tk` with terms depend-
ing on the AMRs of the sentences.

For paraphrasing, previous work (Ji and Eisen-
stein, 2013) has also considered the transductive
setting (Gammerman et al., 1998), which we also
use in our experiments. In the transductive setting,
S also includes the sentences on which we expect
to perform the final evaluation for the purpose of
learning the latent representations. Note that, in
this case, the labels b(i) are not used in the pro-
cess of constructing word representations. In the
inductive setting, on the other hand, the sentences
in the testing set are not included in training and
we project them instead using the LSA projection
matrices onto the latent space learned to find their
representations.

Once we constructed the matrix T , we perform
truncated singular value decomposition (SVD) on
it, such that:

T ≈ UΣV >

where U ∈ Rk×m, V ∈ R`×m and Σ ∈ Rm×m
is a diagonal matrix of singular values. The final
sentence representations are the rows of the U ma-
trix which range over the sentences and have m
dimensions.

The output of this process is a function f : S →
Rm which attaches to each sentence a representa-
tion. The idea behind LSA is that this matrix de-
composition will make semantically similar sen-
tences to appear close in the latent space, hence
alleviating the problem of data sparsity and mak-
ing it easier to detect when two sentences are para-
phrases of each other.

Once we construct the sentence representations
from the training data (either in the inductive or
the transductive setting) we use the function f to
map each pair of sentences from the training data
(x

(i)
1 , x

(i)
2 ) to two vectors f(x

(i)
1 ) + f(x

(i)
2 ) and

|f(x
(i)
1 ) − f(x

(i)
2 )| (where the absolute value is

taken coordinate-wise) and then concatenate them
into a feature vector φ(x

(i)
1 , x

(i)
2 ), which is then

used as input to a support vector machine (SVM)
classifier (Ji and Eisenstein, 2013).1

5 Abstract Meaning Representation
Features

The main hypothesis tested in this work is that
AMR can be useful in deciding whether two sen-
tences are paraphrases of each other. We investi-
gate two ways to use AMR information to better
inform the classifier: similarity-based and LSA-
based.

5.1 Graph Similarity and Bag of AMR
Concepts

An obvious way to use AMR information is to
just compute the similarity between the two graphs
and use the score as an additional feature. As a
score we use Smatch, which computes the overlap
in terms of recall, precision and F-score between
two unaligned graphs by finding the alignments
between the graphs that maximizes the overlap.
The alignment step is necessary because in AMR
multiple nodes can have the same labels and ar-
bitrary variable names are used to distinguish be-
tween them. Smatch is the standard metric to eval-
uate the overlap between AMR graphs. The score
returned by Smatch is used as a single additional
feature for the SVM.

The amount of overlap in the AMR nodes of
the two graphs can be a good indicator of whether
the sentences are paraphrases of each other. To
test this hypothesis, we extract the unordered sets
of AMR nodes and use the Jaccard similarity co-
efficient as a feature. This is directly related to
the concept identification step of the AMR parsing
process, which is concerned with generating and
labeling the nodes of the AMR graph. Concept
identification is arguably one of the most challeng-
ing part of AMR parsing as the mapping between
word spans and AMR nodes is not trivial (Wer-
ling et al., 2015). It is often considered as the first
stage in the AMR parsing pipeline and it is there-
fore reasonable to attempt using its intermediate
results. We choose Jaccard as a metric for bag of
concepts overlap following previous work in para-
phrase detection (Achananuparp et al., 2008; Be-

1We note that while the NLP community has largely
switched to the use of neural networks for classification prob-
lems, in our case support vector machines prove to be a sim-
pler and more efficient solution. They also tend to generalize
better than neural networks, as the number of features we use
is not large.
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rant and Liang, 2014).
We note that while this approach of using AMR

to detect paraphrase may sound plausible, it does
not perform very well. As such, we compare and
contrast this as an AMR baseline with the ap-
proach that makes use of PageRank with TF-IDF
reweighting for LSA, as described next.

5.2 PageRank and TF-IDF Reweighting for
LSA

The main idea is to re-weight the LSA sentence-
term matrix T (Section 4) according to a proba-
bility distribution over the AMR nodes, which we
accomplish by means of PageRank (Page et al.,
1999). The utility of re-weighting terms in the
sentence-term matrix has been previously proved
(Turney and Pantel, 2010). PageRank is a method,
originally developed for web pages, for ranking
nodes in a graph according to their impact on other
nodes. The algorithm works iteratively by adjust-
ing at each iteration the score of each node based
on the number and scores of nearby nodes that is
connected to it, until convergence. Prior to apply-
ing PageRank, we merge the two graphs by col-
lapsing the concepts in the two graphs that have
the same labels, similarly to Liu et al. (2015),
as shown in Figure 2. We then compute the
PageRank score for each node in the merged graph
and multiply them by the corresponding frequency
count of that concept in the sentence-term matrix.
The graph merging step is necessary in order to en-
sure that overlapping concepts obtain high PageR-
ank scores. The PageRank step applied to the
merged graph ensures that this importance prop-
agates to nearby nodes.

For a given graph G = (V,E), PageRank takes
as input a list of edges between nodes:

E = {(ni,mi)}, ∀i = 0, . . . , n

n = |E|
and outputs a PageRank score for each node by
solving the following equations with respect to
PG(·):

PG(n) =
∑

m∈I(n)

PG(m)

l(m)

where I(n) are the input edges to node n and
l(m) is the number of edges coming out of m.

For each concept of the merged AMR graph, we
compute Tk`, the weight for the LSA matrix intro-
duced in Section 4, as follows:

Tk` = PG(l, k)× count(l, k)

where PG(l, k) is the PageRank of `th concept for
the kth sentence.

As a baseline for the PageRank system, the TF-
IDF re-weighting scheme, as described in Sec-
tion 4, is also used to re-weight the AMR concepts.

6 Experiments

We now describe the experiments that we devised
to discover whether AMR is useful for paraphrase
detection. For AMR parsing, we used the JAMR2

version published for SemEval 2016 (Flanigan
et al., 2016), reporting 0.67 Smatch score on
LDC2015E86 and the first and only version avail-
able for AMREager,3 obtaining 0.64 Smatch score
on the same dataset. First, we discuss experi-
ments where the AMRs are used as a mean to ex-
tract additional sparse features for a SVM classi-
fier. Then we turn to LSA to construct a represen-
tation of the sentence based on the reweighting on
the AMR nodes achieved through either PageR-
ank or TF-IDF. Results show how the latter, which
builds on state-of-the-art systems for this task, is
a much more promising approach. Finally, we an-
alyze how performance changes as a function of
the number of dimensions used in the truncated
matrix.

For evaluation, we use the Microsoft Research
Paraphrase Corpus (Dolan et al., 2004). We use
70% of the dataset as training data and 30% as a
test set. The total number of sentence pairs in the
corpus is 5,801.

6.1 Graph Similarity and Bag of AMR
Concepts

The Bag of words (BOW) baseline consists of a
SVM that takes into account one single feature:
the Jaccard score between the BOW representa-
tions for the two sentences, i.e., one-hot vectors
indicating whether each word in the vocabulary is
used or not. The use of the single Jaccard fea-
ture means that for the linear kernel we just learn
a threshold on the score.

We note that the addition of the similarity-based
features does not suffice to outperform the BOW
baseline, as described in Table 1. Unlike Smatch,
the bag of concepts feature does not need to find a,
possibly wrong, alignment between the two graphs

2JAMR is available from https://github.com/
jflanigan/jamr.

3AMREager is available from http://cohort.inf.
ed.ac.uk/amreager.html.
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Figure 2: Visualization of the graph merging procedure for the sentence Yucaipa owned Dominick’s before selling
the chain to Safeway in 1998 for $2.5 billion. (above) and Yucaipa bought Dominick’s in 1995 for $693 million
and sold it to Safeway for $1.8 billion in 1998. (below). The “date-entity”, “sell-01” and “1998” nodes in the two
AMR graphs on the left are merged in the resulting graph on the right.

because it considers the node labels only. Inter-
estingly, the addition of the bag of concepts fea-
ture is beneficial only for AMREager. It is indeed
worth noting the different behaviors of the two
parsers: when using the Smatch score only, JAMR
reports slightly higher numbers than AMREager.
However, when using the bag of concepts features
too, AMREager is considerably better than JAMR,
which is unexpected as the concept identification
performance of the two parsers is reported to be
identical (Damonte et al., 2017).

There is also some variability with the kernel
used for the SVM classifier. The polynomial ker-
nel does consistently better than the RBF and lin-
ear kernel. This means that a low-level interaction
between the sentence representations does exist
(when trying to determine whether they are para-
phrases), but a higher order interaction, such as
implied with RBF, is not necessary to be modeled.

6.2 PageRank and TF-IDF Reweighting for
LSA

We now turn to experiments involving LSA as a
mean to represent the candidate paraphrases. In

this set of experiments, the baseline consists of
using TF-IDF to weight the bag of words in the
sentence-term matrix.

We first try to replace the bag of words with
the bag of concepts from the AMR graphs, also
re-weighted by TF-IDF. Then, we also replace the
TF-IDF with PageRank as it is more appropriate to
re-weight graph structures than TF-IDF. We report
experiments for both inductive setting and trans-
ductive setting (Table 3). Our first finding is that,
regardless of the parser, AMR is very helpful in
the tranductive setting while it is harmful in the
inductive setting. When using bag of words, it is
easy to project sentences of the test set into the
latent space learned on the training set only. How-
ever, our experiments indicate that this is not as
easy with the AMR concepts produced by the two
parsers. On the other hand, when the latent space
is learned using also the sentences in the test set,
the abstractive power of AMRs is helpful for this
task. In the inductive setting, PageRank fails to
improve over the TF-IDF scheme and neither of
them outperform the BOW baseline. AMREager
outperforms JAMR in this case. In the transduc-
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kernel acc. P R F1

Sm
at

ch
+

B
O

C

A
M

R
E

ag
er linear 65.8 81.8 62.9 71.1

poly 68.5 75.4 78.3 76.8
rbf 65.0 84.0 58.8 69.2

JA
M

R linear 63.4 79.4 61.0 69.0
poly 64.9 76.0 69.3 72.5
rbf 61.8 82.0 55.3 65.9

Sm
at

ch

A
M

R
E

ag
er linear 63.8 79.4 61.7 69.5

poly 67.8 72.0 84.7 77.8
rbf 61.6 81.2 55.3 65.8

JA
M

R linear 63.5 77.8 63.5 69.9
poly 68.1 71.6 86.5 78.3
rbf 62.0 0.80 57.4 66.9

B
O

W

linear 68.1 84.1 64.3 72.9
poly 72.7 77.8 82.7 80.2
rbf 68.1 84.1 64.3 72.9

Table 1: Baseline results for paraphrase detection with
AMR and with bag-of-words (BOW). “linear,” “poly”
and “rbf” denote the kernel which is used with a
support vector machine classifier. “Smatch” denotes
the use of the additional graph similarity feature and
“BOC” the use of the additional Jaccard score on the
bag of concept. Best result in each column is in bold.

tive case, the AMRs provided by JAMR are help-
ful with both TF-IDF and PageRank, while the
graphs provided by AMREager give good results
only for the PageRank scheme. The best result is
achieved with JAMR, PageRank and a linear ker-
nel for the SVM classifier.

We wanted to test in our experiments whether
the same gains that are achieved with AMR pars-
ing can also be achieved with just a syntactic
parser. To test that, we parsed the paraphrase
dataset with a dependency parser and reduced the
syntactic parse trees to AMR graphs (meaning, we
represented the dependency trees as graphs by rep-
resenting each word as a node and labeled depen-
dency relations as edges). Figure 3 gives an exam-
ple of such conversion. As can be see, the AMR-
like representation for the dependency trees retains
words such as determiners (“the”). It also uses a
different set of relations, as reflected by the edge
labels that the dependency parser returns.

We chose to do this reduction instead of directly
building a classifier that makes use of the depen-
dency trees to ensure we are conducting a con-
trolled experiment in which we precisely compare
the use of syntax for paraphrase against the use of
semantics. Once the syntactic trees are converted

(a)

The mouse chased the cat

root

nsubj
dobj

det det

(b)

( c / chased
nsubj ( m / mouse

det ( t1 / The ) )
dobj ( c / cat

det ( t2 / the ) )
)

Figure 3: An example of a dependency tree (a) con-
verted to an AMR graph (b).

to AMR graphs, the same code is used to run the
experiments as in the case of AMR parsing, with
both the PageRank and TF-IDF reweighting set-
tings. We used the dependency parser from the
Stanford CoreNLP (Manning et al., 2014). The
results are given in Table 3, under “dep.” As can
be seen, these results lag behind the bag-of-words
model in the inductive case and the AMR models
in the transductive case. This could be attributed
to AMR parsers better abstracting away from the
surface form than dependency parsers.

System acc. F1

Most common class 66.5 79.9
Mitchell and Lapata (2010) 73.0 82.3
Baroni and Lenci (2010) 73.5 82.2
Socher et al. (2011) 76.8 83.6
Guo and Diab (2012) 71.5 NR
Ji and Eisenstein (2013) (ind.) 80.0 85.4
Ji and Eisenstein (2013) (trans.) 80.4 86.0
Our paper (inductive) 68.7 80.9
Our paper (transductive) 86.6 90.0

Table 2: Comparison of our results with previous work
(“NR” stands for “not reported”). All work mentioned
above was done in the inductive setting, except for Ji
and Eisenstein (2013), which, like us, was done in both
settings.

6.3 Dimensionality of the Truncated Matrix
Figure 4 shows how performance changes as a
function of the number of dimensions used in the
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inductive transductive
kernel acc. P R F1 acc. P R F1

Pa
ge

R
an

k
AM

REag
er linear 68.7 73.1 84.0 78.2 79.4 79.9 92.6 85.7

poly 67.6 67.9 97.6 80.1 67.0 67.3 98.6 80.0
rbf 68.0 75.0 78.1 76.5 79.6 84.8 84.5 84.7

JA
M

R
linear 59.3 70.4 67.4 68.9 86.6 88.3 92.0 90.0
poly 66.9 67.6 96.7 79.6 80.0 69.6 98.1 81.5
rbf 67.4 73.5 79.9 76.6 86.6 90.4 89.5 89.9

de
p.

linear 62.4 71.6 72.5 72.1 79.0 83.2 85.0 84.1
poly 68.3 69.0 95.3 80.1 74.0 77.6 85.1 81.2
rbf 68.8 71.0 90.0 79.4 77.0 89.4 73.9 80.9

T
FI

D
F

AM
REag

er linear 68.9 73.4 83.7 78.2 73.0 75.8 87.1 81.1
poly 68.7 68.7 98.2 80.9 68.0 68.2 98.5 80.6
rbf 68.3 77.9 73.4 75.6 72.0 81.2 75.6 78.3

JA
M

R
linear 57.6 68.8 66.8 67.8 82.0 84.7 88.5 86.5
poly 67.4 67.8 97.4 79.9 82.0 84.7 88.5 86.5
rbf 69.1 76.7 77.2 76.8 85.0 88.0 88.9 88.4

de
p.

linear 70.3 74.2 85.1 79.3 69.0 73.8 82.8 78.1
poly 68.8 68.7 97.8 80.7 68.0 68.2 98.2 80.5
rbf 70.6 79.1 76.0 77.5 70.0 79.3 75.5 77.4

BOW
linear 71.9 75.4 86.0 80.4 73.0 75.8 87.7 81.3
poly 70.5 69.8 98.3 81.6 71.0 69.9 98.1 81.7
rbf 70.5 81.3 72.5 76.6 73.0 82.5 75.7 79.0

Table 3: LSA experiments in the inductive and transductive settings, with two different reweighting schema:
“PageRank” and “TF-IDF”. “linear,” “poly” and “rbf” denote the kernel for the SVM. “dep.” denotes the use of
syntactic parsing instead of semantic parsing.

truncated matrix U (Section 4). More specifically,
on the x axis of the plots we have m/l, where m
is the number of columns in the truncated matrix
and l the number of words in the vocabulary. The
plot shows that the performance stays stable for
inductive inference. With transductive inference,
however, performance peaks whenm is very close
to the vocabulary size. This shows that, in order
to achieve good results, it is not necessary to re-
move a large number of columns from the origi-
nal sentence-term matrix. The plot gives us more
evidence on how the inductive setting is not ideal
for the AMR-based approach. For the TF-IDF re-
weighting, the systems that show a considerably
different behavior are JAMR with linear and RBF
kernels, where we show clear peaks for the trans-
ductive case. For PageRank also the AMREager
systems with linear and RBF kernel follow this
trend. In general the polynomial kernel is the one
less affected by this variable.

Table 2 shows that our best result for the trans-
ductive case, which we obtain with JAMR and
PageRank, outperforms the current state of the art

for paraphrase detection in the transductive set-
ting. This is not true for the inductive case, prov-
ing the preference of the AMR-based LSA ap-
proach for the former setting.

7 Conclusion

We described an approach to incorporate an AMR
parser output into the detection of paraphrases.
Our method works by merging two graphs that
need to be tested for a paraphrase relation, and
then re-weighting a sentence-term matrix by the
PageRank values of the nodes in the merged graph.
We find that our method gives significant improve-
ments over state of the art in paraphrase detection
in the transductive setting, showing that AMR is
indeed helpful for this task. We further show that
the inductive settings is instead not ideal for this
type of approach.

We are encouraged by the results, and believe
that paraphrase detection can also be used as a
proxy test for the performance of an AMR parser:
if an AMR parser is close to canonicalizing lan-
guage, it should be of significant help in detecting
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Figure 4: Plots of F1 measure as a function of m/l, where m is the number of columns in the truncated matrix and
l the number of words in the vocabulary. The top plots are in the transductive setting (with the left using PageRank
and the right using TF-IDF weighting) while the bottom plots are in the inductive setting.

paraphrase relations. In our experiments, the over-
all best result was achieved by JAMR. More gen-
erally, our results show that JAMR has been more
helpful in the transductive setting and in the first
set of experiment when using the Smatch score
only, while AMREager wins the comparison in the
inductive case as well as in the first set of experi-
ments when using both the Smatch score and the
bag of concepts score as additional features.
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Abstract
The widespread use of word embeddings is
associated with the recent successes of many
natural language processing (NLP) systems.
The key approach of popular models such as
word2vec and GloVe is to learn dense vec-
tor representations from the context of words.
More recently, other approaches have been
proposed that incorporate different types of
contextual information, including topics, de-
pendency relations, n-grams, and sentiment.
However, these models typically integrate only
limited additional contextual information, and
often in ad hoc ways.

In this work, we introduce attr2vec, a novel
framework for jointly learning embeddings for
words and contextual attributes based on fac-
torization machines. We perform experiments
with different types of contextual information.
Our experimental results on a text classifica-
tion task demonstrate that using attr2vec to
jointly learn embeddings for words and Part-
of-Speech (POS) tags improves results com-
pared to learning the embeddings indepen-
dently. Moreover, we use attr2vec to train
dependency-based embeddings and we show
that they exhibit higher similarity between
functionally related words compared to tradi-
tional approaches.

1 Introduction

Neural network-based methods have been suc-
cessful in advancing the state-of-the-art in a
wide range of NLP tasks, such as depen-
dency parsing (Chen and Manning, 2014), sen-
tence classification (Kim, 2014), machine trans-
lation (Sutskever et al., 2014; Luong and Man-
ning, 2016), and information retrieval (Zhang

∗work conducted whilst the author was at Thomson
Reuters.

et al., 2017). In all these approaches, vecto-
rial distributed word representations, known as
word embeddings, have become a fundamental
building block. The use of word embeddings is
considered a “secret sauce” for contributing to
the success of many of these algorithms in re-
cent years (Luong et al., 2013). Popular mod-
els for learning such word embeddings include
word2vec (Mikolov et al., 2013a,b,c), GloVe (Pen-
nington et al., 2014) and fastText (Bojanowski
et al., 2017; Joulin et al., 2017).

The main idea behind these techniques is to rep-
resent a word by means of its context. The most
popular forms of context are neighboring words in
a window of text (Mikolov et al., 2013b; Penning-
ton et al., 2014), though examples of additional
contextual information might also include docu-
ment topics (Li et al., 2016), dependency rela-
tions (Levy and Goldberg, 2014), morphemes (Lu-
ong et al., 2013), n-grams (Bojanowski et al.,
2017), and sentiment (Tang et al., 2014). The em-
bedding idea was originally devised to help over-
come problems associated with the high dimen-
sionality of sparse vector representations of words,
particularly in the case of neural network model-
ing, though embeddings have since been used in a
variety of machine learning approaches.

However, existing models generally exploit just
a small portion of the available contextual infor-
mation, and they tend to do so in ad hoc ways.
The main purpose of context in these models is
to shape the word vector space (that is, to asso-
ciate a representation to the word), but contex-
tual information is not usually represented in this
space. For instance, Li and Jurafsky (2015) used
document topics to derive multiple vectors for the
same word, each capturing a different sense, but
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their method does not represent topics in the vec-
tor space, that is, it does not generate topic vectors.
Such contextual representations, jointly learned
with the word representations, could potentially be
useful for multiple tasks. For instance, pre-trained
contextual vectors could be used as additional fea-
tures, together with pre-trained word vectors, to
improve the performance of existing models.

In this paper, we propose attr2vec, a novel
framework for learning word embedding models
that jointly associate distributed representations
with words and with generic contextual attributes.
attr2vec is inspired by the GloVe approach of Pen-
nington et al. (2014) and can mimic it when no ad-
ditional contextual attribute is considered. In con-
trast with GloVe, attr2vec uses Factorization Ma-
chines (FMs) (Rendle et al., 2011; Rendle, 2012).
FMs are a generalization of matrix factorization
approaches, such as GloVe, and can combine dif-
ferent generic feature types, even when the input
data is sparse. Moreover, FMs do not consider in-
put features as independent but model their inter-
action by factorizing their latent representation in
pairwise fashion.

Here, we conduct an experimental study to
assess whether the proposed embedding model
can lead to better performance for a text clas-
sification task on the Reuters-21578 dataset, us-
ing trained vectors as input to a convolutional
neural network. The results show that jointly
learned word and Part-of-Speech (POS) embed-
dings with attr2vec can achieve higher F1 and pre-
cision scores compared to embeddings learned in-
dependently. Moreover, we use attr2vec to train
dependency-based word embeddings and show,
using the publicly available WordSim353 dataset,
that such embeddings yield more functional sim-
ilarities than embeddings trained using a linear
bag-of-word approach (such as GloVe). We also
performed a qualitative analysis that provides in-
sights on how contextual attributes affects the dis-
tribution of words in the vector space.

Summing up, the main contributions of our
work are the following:

• we extend the GloVe model to consider ad-
ditional contextual information. To the best
of our knowledge, this is the first work to
present a general model able to jointly train
dense vector representations for word and
multiple arbitrary contextual attributes;

• we define a novel loss function based on fac-

torization machines to jointly learn word and
contextual attribute embeddings;

• we show how to model the input data and
compute co-occurrence statistics using either
a linear bag-of-word approach or syntactic
dependency relations.

We provide the source code for the
attr2vec model at https://github.com/
thomsonreuters/attr2vec.

The remainder of this paper is organized as fol-
lows. Section 2 provides an overview of related
work and Section 3 introduces the attr2vec model.
In Section 4, we present the experimental results,
and close this paper with some concluding re-
marks in Section 5.

2 Related Work

We have already introduced some of the main re-
lated approaches including word2vec and GloVe.
Essentially, the GloVe model (Pennington et al.,
2014) derives word representations by factorizing
the word co-occurrence count matrix. The skip-
gram and continuous bag-of-words (CBOW) mod-
els of Mikolov et al. (2013a), instead, build the
vector space by trying to predict a word given
its neighbouring words. Mnih and Kavukcuoglu
(2013) proposed a closely related model that
works in the opposite way, trying to predict neigh-
bouring words given a word. Facebook’s fast-
Text model (Bojanowski et al., 2017; Joulin et al.,
2017) augments word embeddings with subword-
level information using character n-grams. Other
examples of word embedding models include the
work of Levy et al. (2014), where an explicit
word vector space representation is derived using
a PPMI metric, and WordRank of Ji et al. (2016),
which learns word representations by adopting a
ranking-based loss function. However, none of
these models includes any contextual information
beyond the neighbouring words.

Several forms of contextual information have
been successfully integrated into word embedding
models. For instance, Luong et al. (2013); Cot-
terell and Schütze (2015); Bhatia et al. (2016) cap-
ture morphological information into word repre-
sentations; Bojanowski et al. (2017); Wieting et al.
(2016) include character n-grams in their embed-
ding model; Tang et al. (2014) learn sentiment-
specific word embeddings by integrating senti-
ment information in the loss function; Li et al.
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(2016) combine word embedding and topic mod-
eling to jointly learn a representation for topics
and words. In addition, several works in recent
years focused on learning separate embeddings
for multiple senses of a word (Neelakantan et al.,
2015; Iacobacci et al., 2015; Pilehvar and Collier,
2016). However, all these techniques target a par-
ticular type of context. Our attr2vec model dif-
fers in that it can jointly represent generic con-
textual attributes and words in the embedding
model. To do so, it makes use of factorization
machines (Rendle, 2012), which have been suc-
cessfully used to exploit contextual information in
relation extraction tasks (Petroni et al., 2015) and
recommender systems (Rendle et al., 2011)

It is well known that contextual information
can improve performance of a wide range of
NLP tasks, such as machine translation (Koehn
and Hoang, 2007; Garcı́a-Martı́nez et al., 2017),
named entity typing (Corro et al., 2015) or senti-
ment analysis (Weichselbraun et al., 2013). In ad-
dition, (Melamud et al., 2016) observed that dif-
ferent contextual attributes work well for differ-
ent tasks and that simple concatenation of embed-
dings, learned independently with different mod-
els, can yield further performance gains. Our
attr2vec model can jointly learn embeddings for
words and contextual attributes, and we show (see
Section 4) that using such jointly learned embed-
dings yields to better performance on a text classi-
fication task compared to embeddings learned in-
dependently.

3 The attr2vec model

This section presents the attr2vec model. We first
describe how we model the input data in terms of
a feature matrix and a target vector (Section 3.1)
and then how to factorize those using a factoriza-
tion machines-based formulation (Section 3.3) to
obtain word and contextual attribute embeddings.

3.1 Modeling input data

We consider as input a large corpus of text. Let
the vocabulary of considered words be denoted by
W = {w1, ..., w|W |} and the set of all contextual
variables denoted by C = {c1, ..., c|C|}. We de-
note V = W ∪ C the set of all considered words
and contextual variables. In the rest of the paper
we will refer to the elements of V as variables.
We model the input data in terms of a target vector
Y ∈ Rm and feature matrix X ∈ Rm×n, in which

each row xi ∈ Rn corresponds to a feature vector
and there are as many columns as the number of
variables (i.e., |V | = n). We group columns ac-
cording to the type of the variables; e.g., there are
word columns and a group of columns for each
type of contextual information considered. Each
target value yi ∈ Y represents the number of times
the feature vector xi has been observed in the in-
put (i.e., the co-occurrence count). We consider a
two-fold way to compute the co-occurrence count
of a feature vector xi: (1) linear bag-of-words and
(2) dependency-based.

Linear Bag-of-Words The approach used in
Pennington et al. (2014) is to compute the co-
occurrence count using a linear bag-of-words as-
sumption. The idea is to use a window of size
k around the target word w, and considering the
k words before and the k words after w to com-
pute co-occurrence statistics1. Note that a small
window size may miss some information, while
a large window size might result in the algorithm
capturing accidental pairs. A decay factor is com-
monly used to weight the contribution of an obser-
vation to the total co-occurrence count according
to the distance to the target word. Here we con-
sider a fractional decay, where the importance of a
word is assumed to be inversely proportional to its
distance from the target word.

To build the feature matrix X we set the val-
ues of the variables associated with the words pair
and with each contextual variable observed in cor-
respondence with that pair to 1. Note that there
could be multiple rows in X referring to the same
pair of words but associated with different contex-
tual variables. When contextual variables can as-
sume multiple values for a single observation (e.g.,
a document with multiple topics) we evenly dis-
tribute the unitary weight across all variables (e.g.,
across all document topics). The target values rep-
resent the number of times the corresponding com-
bination of features (i.e., the pair of word and the
contextual variables) has been observed in the in-
put corpus, weighting each contribution with the
fractional decay factor described above.

An example is shown in Figure 1. The first
row in the figure corresponds to the observation
of the pair of words brothers and lehman in a
text window, with POS tags nnp and nnps, re-
spectively, referring to the named entity Lehman

1In this paper we focus on symmetric windows, however
the same model can be extended to asymmetric windows.

455



0 1 0 1 1 1 0 0 1 0 1 0 0 1 0 

0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 

1 1 0 0 0 2 0 0 0 1 0 1 1 0 0 

0 1 0 1 1 1 0 0 1 0 0 1 0 0.5 0.5 
blues brothers her lehman nnp nnps nns prp Lehman 

Brothers 
 

The Blues 
Brothers 

2008 2017 music economy story 

word POS tag named entity year topic 

x1 

x2 

x3 

x4 

… 

105 

103 

102 

10 

y1 

y2 

y3 

y4 

contextual variables pair of words 

Figure 1: Example for representing input data with attr2vec using a linear window of text approach to compute
co-occurrence count. Rows in X and Y are aligned: the row yi ∈ Y (a scalar) correspond to the row xi ∈ X (a
feature vector); yi represents the frequency of the particular combination of variables described by xi in the corpus.

Brothers, from documents published in 2008
with topic economy. Such a combination of
features (i.e., brothers-lehman-nnp-nnps-Lehman
Brothers-2008-economy has been observed in the
input 105 times (i.e., y = 105). The fourth row
of Figure 1 conveys the information that the same
pair of words (i.e., brothers-lehman) has been also
observed 10 times in the input associated with dif-
ferent contextual information, in particular in doc-
uments published in 2017 with multi-topic econ-
omy and story. When contextual information is
not considered (i.e., c = ∅) y is equal to the co-
occurrence count of the pair of words, as in Pen-
nington et al. (2014).

Dependency-Based Our attr2vec model can
learn dependency-based embedding as well. In or-
der to do so we adopted a similar strategy of Levy
and Goldberg (2014). The main idea is to parse
each sentence in the input corpus and to use the de-
pendency tree to derive the co-occurrence count.
In particular, for a target word w with modifiers
m1, ...,mo and a head h, we considered the depen-
dency labels (m1, lbl1), ..., (mo, lblo), (h, lbl

−1
h ),

where lbl is the type of the dependency relation
between the head and the modifier and lbl−1 is
used to mark the inverse relation. Moreover, edges
that include a preposition are “collapsed” by con-
necting the head and the object of the proposition,
and subsuming the preposition itself into the de-
pendency label (see the example in the top part of
Figure 2).

The feature matrix X in this case consists of
two group of columns, one for the words and one
for dependency labels, plus one group of columns
for each additional contextual information con-
sidered. The co-occurrence count is driven by
the dependency tree: each target value represents

the number of times the corresponding word and
dependency label (and all considered additional
contextual information) appear in the dependency
trees representing the sentences in the input cor-
pus.

An example is shown in Figure 2. The first
row in the matrix corresponds to the observation
of the word ganymede connected to the word dis-
covered through the inverse relation dobj in the
dependency tree (i.e., discovered/dobj−1). No-
tice that using this approach it is possible to cap-
ture relevant relations between words “far apart”
in the text including long-distance dependencies
(e.g., telescope is not in the window of text around
discovered for k = 3), and also filter out acciden-
tal neighbouring words (e.g., his is in the window
of text of discovered for k = 3). An additional
advantage of this approach with respect to a linear
bag-of-words solution is that each observation is
typed, indicating, for instance, that Ganymede is
the object of discovered and Galileo is the subject.

3.2 GloVe factorization model

Before introducing the attr2vec model we briefly
describe the GloVe factorization approach (Pen-
nington et al., 2014). In particular, GloVe em-
ploys a matrix factorization model using as input
the word-word co-occurrence count. In our exam-
ple of Figure 1 this corresponds to considering in
input just the first group of columns (i.e., the pair
of words).

Starting from the observation that the ratio of
co-occurrence probabilities is more appropriate
for learning word representations as opposed to
the probabilities of the words themselves, Pen-
nington et al. propose the following weighted least
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Figure 2: Example for representing input data with
attr2vec using a dependency-based approach to com-
pute co-occurrence count. Top: preposition relations
are collapsed into single arcs, making telescope a di-
rect modifier of discovered. Bottom: the attr2vec data
matrix. Note that the Y vector contains all 1’s since
it refer to the modeling of a single sentence; in a real
scenario, each row yi of vector Y will contain a higher
value (the frequency count of xi in the corpus)

squares objective function:

J =
N∑

k=1

f(yk)
(
s(xk)− log(yk)

)2
(1)

where xk = (wi, wj) refers to the k-th pair of
words in input with co-occurrence count yk, and
s(x) is the score associated with the pair, com-
puted as follows:

s(x) = bwi + bwj + fTwi
fwj

(2)

where bwi and bwj are the biases, and fwi
and fwj

are the latent factor vectors associated with wi and
wj , respectively.

The function f(y) is used to reduce the impor-
tance of pairs of words that co-occur rarely, and is
defined as follows:

f(y) =

{
(y/ymax)α if y < ymax

1 otherwise
(3)

where ymax and α are hyperparameters of the
model.

3.3 attr2vec factorization model

The model we propose, attr2vec, employs a ma-
trix factorization model based on factorization ma-
chines. In particular, we associate with each vari-
able v ∈ V a bias term bv ∈ R and a latent factor
vector fv ∈ Rd, where the dimensionality d of
the latent factor space is a hyperparameter of the
model. For each input feature vector x ∈ X , we
denote by xv the value of variable v ∈ V in the
corresponding row of the features data matrix.

We employ a weighted least squares model that
is based of the formulation of Pennington et al.
(2014) (Equation 1). In contrast to GloVe, we de-
fine a novel score s(x) that takes into account both
words and contextual attributes, computed as fol-
lows:

s(x) =
∑

v∈V
xvbv +

∑

v1∈V

∑

v2∈V \{v1}
xv1xv2f

T
v1
fv2

(4)

Here, the bias terms bv model the contribu-
tion of each individual variable to the final score,
whereas the latent factor vectors fv model the
contribution of all pairwise interactions between
variables. Rendle (2012) has shown that score
computation is fast, since s(x) can be computed in
time linear to both the number of nonzero entries
in x and the dimensionality d. Each latent fac-
tor vector can be interpreted as a low-dimensional
representation of the corresponding variable, both
for variables that refer to words and for variables
that refer to contextual information. Note that,
when contextual information is not considered the
formulation of our factorization model is equiva-
lent to the formulation of Pennington et al. (2014).

The model parameters Θ = {bv,fv|v ∈ V } are
estimated by minimizing J , for instance, through
stochastic gradient descent. Each fv can be in-
terpret as a dense vector representation of variable
v ∈ V .

4 Experiments

We conducted an experimental study on real-
world data to compare our attr2vec model with
other state-of-the-art approaches.

4.1 Dataset and Baseline

For a training corpus to learn embeddings, we
used the Reuters News Archive, in particular, the
collection of all news stories published by the
Reuters News Agency from 2003 to 2017. We
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embedding input logistic regression
convolutional neural network
static non-static

random ~wr 70.5 (69.3) 75.7 (77.5) 74.4 (76.2)

random ~wr
_ ~pr 74.0 (73.9) 77.9 (79.7) 77.8 (79.8)

GloVe ~wi 77.5 (77.5) 79.7 (81.5) 82.7 (84.3)

GloVe ~wi
_ ~pr 80.2 (85.4) 82.5 (84.1) 84.5 (86.1)

GloVe ~wi
_~pi 79.3 (83.3) 84.3 (85.8) 84.9 (86.4)

attr2vec ~wj 77.5 (77.3) 80.6 (82.3) 82.8 (84.5)

attr2vec ~wj
_ ~pj 80.1 (83.1) 84.9 (86.1) 85.5 (86.8)

Table 1: Average F1 score (and precision in parentheses) for topic prediction on the Reuters-21578 dataset. ~w_~p
indicates the concatenation of word and POS tag vectors. ~wr refer to randomly initialized word vectors and ~pr to
randomly initialized POS tag vector. ~wi and ~pi respectively refer to vectors independently trained with the GloVe
model for words and POS tags; ~wj and ~pj respectively refer to vectors jointly trained with attr2vec for words and
POS tags.

first applied a heuristic filtering approach to ex-
clude non-textual documents, resulting in a col-
lection of ∼8M news articles (∼3B tokens). We
then performed tokenization, part-of-speech tag-
ging, and syntactic dependency parsing on the
corpus using NLP4J2 (Choi et al., 2015; Choi,
2016). The POS tagger achieves an accuracy score
of 97.64% (Choi, 2016), the dependency parser
achieve a label accuracy score of 94.94% (Choi
et al., 2015). As a baseline we considered 200-
dimensional GloVe vectors trained on the corpus
using the code and hyperparameters of Pennington
et al. (2014). In particular, we used ymax = 100
and α = 3/4 for all our experiments.

4.2 Topic Classification Experiment

Experimental Setup For this experiment we
trained 200-dimensional attr2vec vectors using
part-of-speech tags as additional contextual infor-
mation and a linear bag-of-words approach - i.e.,
each row in the feature matrix consists of a pair
of words and the corresponding pair of POS tags
(see the first two groups of columns for the exam-
ple in Figure 1). We used the same hyperparam-
eters as in GloVe. To make a fair comparison we
trained two independent GloVe models, one to ob-
tain word vectors ( ~wi) and one to obtain POS tag
vectors (~pi). The latter model is trained by sub-
stituting each word in the corpus with the corre-
sponding POS tag. Note that our attr2vec model
can jointly learn a representation for both words
( ~wj) and POS tags (~pj). As a baseline we also
considered randomly initialized vectors for words
( ~wr) and POS tags (~pr). To train attr2vec we

2https://emorynlp.github.io/nlp4j

used a modified version3 of tffm (Trofimov and
Novikov, 2016), an open-source TensorFlow im-
plementation of Factorization Machines.

To evaluate the performance of the attr2vec
model, we used the trained vectors as input for
a convolutional neural network (CNN). We used
the CNN architecture described by Kim (2014),
in particular a modified version of the Tensor-
Flow implementation in Britz (2015), where we
add support for pre-trained embeddings. As hy-
perparameters, we used a batch size of 128 train-
ing samples, no dropout, one layer, filter windows
of 3, 4, 5 with 100 feature maps each. We trained
using the Adam optimizer and a learning rate of
0.001 and let the models train for 100 epochs (an
epoch is an iteration over all the training points).
We executed three independent runs for each ex-
periment and we report averaged results.

As a benchmark we used the following text clas-
sification task: predict all the topic codes asso-
ciated with an article using the first τ tokens in
the article. We used the Reuters-215784 dataset.
This corpus contains 10788 news documents clas-
sified into 90 topics. We used the provided train-
ing/test split. For each document, we considered
the first τ = 250 tokens as input text for the CNN.
Note that, in contrast to other previous work (Li
et al., 2016), we consider all topics and formu-
late a multi-label classification problem. For each
test article we computed precision, recall and F1
score comparing the actual topic codes and those
predicted by the CNN. As evaluation metrics we
used the average F1 score and the average preci-

3Source code available at https://github.com/
thomsonreuters/attr2vec

4http://www.nltk.org/book/ch02.html
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sion across all test articles.
We trained multiple CNN models, using either

word vectors (~w) or the concatenation of word
and POS tag vectors (~w_~p) as inputs, and keep-
ing these vectors static throughout training or al-
lowing the CNN to update them via backpropaga-
tion (non-static). We also considered logistic re-
gression as baseline method, using averaged vec-
tors calculated over the input text as features, as in
Zhang and Wallace (2015). As this is a multilabel
task, we used the one-vs-all formulation of logis-
tic regression, which attempts to fit one classifier
per class with each class being fitted against all
other classes. L1 regularization was applied with
a weight of 0.005.

Results Table 1 reports the result of our experi-
ments. Each entry shows the average F1 score and
the average precision in parentheses.

First note that the CNN model consistently out-
performs logistic regression for all considered set-
tings. The CNN performance improves if it re-
ceives as input pre-trained vectors as opposed to
random ones, consistently with other works (Kim,
2014). The performance is comparable when
GloVe or attr2vec word vectors are used as input.

The key advantage of our attr2vec model over
GloVe is demonstrated when additional contex-
tual information is considered in the CNN model.
The performance of the CNN model improves if
POS vectors are considered together with GloVe
word vectors in input, both when such POS vec-
tors are randomly initialized ( ~wi_ ~pr) and inde-
pendently trained with the GloVe model ( ~wi_~pi).
However, the best performance is achieved when
word and POS tags vectors are jointly trained with
our attr2vec model ( ~wj_ ~pj).

Note that the aim of the paper was not to show
that POS tags help for text classification tasks (to
that end, an exhaustive exploration of the parame-
ter space would have been needed); instead, the
goal of this work is to introduce a new embed-
ding model that jointly learns a representation for
words and POS tags, capturing the interaction be-
tween them, and to show that such representation
is beneficial for a CNN with respect to embed-
dings learned in an independent fashion, given the
same network settings. Standard embedding mod-
els (like GloVe), in fact, can capture either the
interactions between words or between POS tags
in an independent fashion. Our attr2vec model,
in addition, captures the cross-interaction between

Figure 3: Recall-precision curve when attempting to
rank the similar words above the related ones on the
WordSim353 dataset.

words and contextual attributes, jointly learning
their representation, and our results suggest that
this additional information is beneficial for the
performance of the CNN model. Moreover, note
that our attr2vec algorithm, unlike GloVe, can han-
dle generic contextual information.

4.3 Word Similarity Experiment
In our second experiment we wanted to ad-
dress if our attr2vec model was able to produce
dependency-based embeddings that exhibit more
functional similarity than GloVe embeddings (that
usually yield broad topical similarities). To this
end, we trained 200-dimensional attr2vec vectors
using a dependency-based approach - i.e, each row
in the feature matrix consist of a word and a de-
pendency label (see the example in Figure 2).

Our evaluation closely follows the one in Levy
and Goldberg (2014). In particular, we used
the WordSim353 dataset (Finkelstein et al., 2001;
Agirre et al., 2009) containing pairs of similar
words that reflect either relatedness (topical sim-
ilarity) or similarity (functional similarity) rela-
tions. The pairs are ranked according to the co-
sine similarity between the corresponding word
vectors. The idea is that a model that focuses on
functional similarity should rank similar pairs in
the dataset above the related ones. For instance,
such a model should rank the pair money-currency
(i.e., functionally similar words) above the pair
money-laundering (i.e., topically similar words).
We drew a recall-precision curve by considering
related pair as a miss and similar pair as a hit.
In this way we aimed to capture the embeddings
affinity towards the similarity subset over the re-
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latedness one.
Figure 3 reports the result of the experiment.

The attr2vec curve (orange solid line) is higher
than the GloVe one (blue dashed line) and the
area under the cuve is larger (0.74 with respect to
0.57), suggesting that attr2vec yields more func-
tional similarities with respect to GloVe. Note that
a similar behaviour has been observed in Levy
and Goldberg (2014) for context-predictive mod-
els (i.e., the skip-gram model with negative sam-
pling). To the best of our knowledge, attr2vec is
the first model that incorporates syntactic depen-
dency relations in a co-occurrence counts based
model (such as GloVe). Moreover, attr2vec is a
general model that can handle additional arbitrary
contextual information.

4.4 Qualitative Evaluation

Our final evaluation is qualitative. We trained
200-dimensional attr2vec embeddings using news
topics as additional contextual information and a
linear bag-of-words approach - i.e., each row in
the feature matrix consists of a pair of words and
the topic of the news article where such pair has
been observed (see the first and the last group of
columns for the example in Figure 1). In particu-
lar, we used the same collection of ∼8M news ar-
ticles presented in Section 4.1 and we considered
the following two article topics: general news sto-
ries (G) and sport news (SPO).

Figure 4 shows a two-dimensional projection
of the 200-dimensional vector space where words
and topics representations lie, obtained using the
t-SNE5 visualisation technique (Maaten and Hin-
ton, 2008). Here the two topic points (G on the
left and SPO on the right of the figure) seem to
metaphorically act as “magnets”, modifying the
space and forming two clusters of words. The left
cluster around the representation of topic G in-
cludes general words not related to sports such as
“mars”, “sound”, “warranty”, “finance”, “train”,
while the right cluster around the representation
of topic SPO contains words related to sports
such as “football”, “coach”, “game”, “stadium”,
“cricket”. Words that are related with both gen-
eral news stories and sport news lie somewhere
in the middle between these two clusters. Exam-
ples of such words include “penalties”, “transfer”,
“medical”, “goal”, “supporters”. Note that there
are other attractive and repulsive forces in the vec-

5We used the TensorBoard implementation of t-SNE.

Figure 4: Two-dimensional projection of the 200-
dimensional vector space, that contains representations
of both words and topics, using t-SNE. In particular,
we considered two topics: general news stories (G) and
sport news (SPO).

tor space driven by word similarity, and that a two-
dimensional representation is only able to capture
a small portion of all relations that take place in
the higher dimensional space.

5 Conclusions

In this paper, we proposed attr2vec, a novel em-
bedding model that can jointly learn a distributed
representation for words and contextual attributes.
Our model is general and can handle multiple ar-
bitrary contextual information simultaneously. To
do so, we defined a novel loss function based on
factorization machines. Moreover, attr2vec can
mimic existing word embedding algorithms when
no additional contextual information is consid-
ered. In particular, GloVe is a special case of our
model.

We have presented an experimental study where
we considered POS tags as additional contextual
information, and fed a convolutional neural net-
work (CNN) with both word and POS tag vectors.
The results suggest that the CNN prediction per-
formance improves when word and context vec-
tors are jointly learned by our attr2vec model. In
addition, we described how to train dependency-
based attr2vec embeddings and showed that they
produce different kinds of similarities. We also
provided some insights into how the vector space
is affected by contextual attributes, which seem to
act like “magnets” that attract or repulse words,
that are themselves subject to attractive or repul-
sive forces driven by similarity.

While attr2vec benefits from structural informa-
tion, it has a price: the number of features is in-
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creased, and the computational cost is increased
compared to a model that does not use contex-
tual information. Each additional attribute may
furthermore introduce its own noise (component-
specific errors) into the process. Nevertheless, the
overall improvement can help in tasks where qual-
ity is of the utmost importance and high-quality
annotation components are available.

In future work, we aim to investigate the effect
of adding different contextual information, and we
plan to test the resulting models in various appli-
cations.
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Abstract

Distributed representations of words learned
from text have proved to be successful in var-
ious natural language processing tasks in re-
cent times. While some methods represent
words as vectors computed from text using
predictive model (Word2vec) or dense count
based model (GloVe), others attempt to rep-
resent these in a distributional thesaurus net-
work structure where the neighborhood of a
word is a set of words having adequate con-
text overlap. Being motivated by recent surge
of research in network embedding techniques
(DeepWalk, LINE, node2vec etc.), we turn
a distributional thesaurus network into dense
word vectors and investigate the usefulness
of distributional thesaurus embedding in im-
proving overall word representation. This is
the first attempt where we show that combin-
ing the proposed word representation obtained
by distributional thesaurus embedding with the
state-of-the-art word representations helps in
improving the performance by a significant
margin when evaluated against NLP tasks like
word similarity and relatedness, synonym de-
tection, analogy detection. Additionally, we
show that even without using any handcrafted
lexical resources we can come up with repre-
sentations having comparable performance in
the word similarity and relatedness tasks com-
pared to the representations where a lexical re-
source has been used.

1 Introduction

Natural language understanding has always been
a primary challenge in natural language process-
ing (NLP) domain. Learning word representa-
tions is one of the basic and primary steps in un-
derstanding text and nowadays there are predomi-
nantly two views of learning word representations.
In one realm of representation, words are vectors
of distributions obtained from analyzing their con-
texts in the text and two words are considered

meaningfully similar if the vectors of those words
are close in the euclidean space. In recent times,
attempts have been made for dense representa-
tion of words, be it using predictive model like
Word2vec (Mikolov et al., 2013) or count-based
model like GloVe (Pennington et al., 2014) which
are computationally efficient as well. Another
stream of representation talks about network like
structure where two words are considered neigh-
bors if they both occur in the same context above
a certain number of times. The words are finally
represented using these neighbors. Distributional
Thesaurus is one such instance of this type, which
gets automatically produced from a text corpus
and identifies words that occur in similar contexts;
the notion of which was used in early work about
distributional semantics (Grefenstette, 2012; Lin,
1998; Curran and Moens, 2002). One such repre-
sentation is JoBimText proposed by Biemann and
Riedl (2013) that contains, for each word, a list
of words that are similar with respect to their bi-
gram distribution, thus producing a network rep-
resentation. Later, Riedl and Biemann (2013) in-
troduced a highly scalable approach for comput-
ing this network. We mention this representation
as a DT network throughout this article. With the
emergence of recent trend of embedding large net-
works into dense low-dimensional vector space ef-
ficiently (Perozzi et al., 2014; Tang et al., 2015;
Grover and Leskovec, 2016) which are focused
on capturing different properties of the network
like neighborhood structure, community structure,
etc., we explore representing DT network in a
dense vector space and evaluate its useful appli-
cation in various NLP tasks.

There has been attempt (Ferret, 2017) to turn
distributional thesauri into word vectors for syn-
onym extraction and expansion but the full uti-
lization of DT embedding has not yet been ex-
plored. In this paper, as a main contribution, we
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investigate the best way of turning a Distributional
Thesaurus (DT) network into word embeddings
by applying efficient network embedding meth-
ods and analyze how these embeddings gener-
ated from DT network can improve the representa-
tions generated from prediction-based model like
Word2vec or dense count based semantic model
like GloVe. We experiment with several combina-
tion techniques and find that DT network embed-
ding can be combined with Word2vec and GloVe
to outperform the performances when used inde-
pendently. Further, we show that we can use DT
network embedding as a proxy of WordNet em-
bedding in order to improve the already exist-
ing state-of-the-art word representations as both
of them achieve comparable performance as far
as word similarity and word relatedness tasks are
concerned. Considering the fact that the vocabu-
lary size of WordNet is small and preparing Word-
Net like lexical resources needs huge human en-
gagement, it would be useful to have a represen-
tation which can be generated automatically from
corpus. We also attempt to combine both Word-
Net and DT embeddings to improve the existing
word representations and find that DT embedding
still has some extra information to bring in leading
to better performance when compared to combina-
tion of only WordNet embedding and state-of-the-
art word embeddings. While most of our exper-
iments are focused on word similarity and relat-
edness tasks, we show the usefulness of DT em-
beddings on synonym detection and analogy de-
tection as well. In both the tasks, combined rep-
resentation of GloVe and DT embeddings shows
promising performance gain over state-of-the-art
embeddings.

2 Related Work

The core idea behind the construction of dis-
tributional thesauri is the distributional hypothe-
sis (Firth, 1957): “You should know a word by
the company it keeps”. The semantic neighbors
of a target word are words whose contexts over-
lap with the context of a target word above a cer-
tain threshold. Some of the initial attempts for
preparing distributional thesaurus are made by Lin
(1998), Curran and Moens (2002), Grefenstette
(2012). The semantic relation between a target
word and its neighbors can be of different types,
e.g., synonymy, hypernymy, hyponymy or other
relations (Adam et al., 2013; Budanitsky and Hirst,

2006) which prove to be very useful in differ-
ent natural language tasks. Even though compu-
tation of sparse count based models used to be
inefficient, in this era of high speed processors
and storage, attempts are being made to stream-
line the computation with ease. One such effort is
made by Kilgarriff et al. (2004) where they pro-
pose Sketch Engine, a corpus tool which takes as
input a corpus of any language and corresponding
grammar patterns, and generates word sketches for
the words of that language and a thesaurus. Re-
cently, Riedl and Biemann (2013) introduce a
new highly scalable approach for computing qual-
ity distributional thesauri by incorporating prun-
ing techniques and using a distributed computation
framework. They prepare distributional thesaurus
from Google book corpus in a network structure
and make it publicly available.

In another stream of literature, word embed-
dings represent words as dense unit vectors of real
numbers, where vectors that are close together in
euclidean space are considered to be semantically
related. In this genre of representation, one of
the captivating attempt is made by Mikolov et al.
(2013), where they propose Word2vec, basically a
set of two predictive models for neural embedding
whereas Pennington et al. (2014) propose GloVe,
which utilizes a dense count based model to
come up with word embeddings that approximate
this. Comparisons have also been made between
count-based and prediction-based distributional
models (Baroni et al., 2014) upon various tasks
like relatedness, analogy, concept categorization
etc., where researchers show that prediction-based
word embeddings outperform sparse count-based
methods used for computing distributional seman-
tic models. In other study, Levy and Goldberg
(2014) show that dense count-based methods, us-
ing PPMI weighted co-occurrences and SVD, ap-
proximates neural word embeddings. Later, Levy
et al. (2015) show the impact of various parame-
ters and the best performing parameters for these
methods. All these approaches are completely
text based; no external knowledge source has been
used.

More recently, a new direction of investigation
has been opened up where researchers are try-
ing to combine knowledge extracted from knowl-
edge bases, images with distributed word repre-
sentations prepared from text with the expecta-
tion of getting better representation. Some use
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Knowledge bases like WordNet (Miller, 1995),
FreeBase (Bollacker et al., 2008), PPDB (Gan-
itkevitch et al., 2013), ConceptNet (Speer et al.,
2017), whereas others use ImageNet (Frome et al.,
2013; Kiela and Bottou, 2014; Both et al., 2017;
Thoma et al., 2017) for capturing visual represen-
tation of lexical items. There are various ways
of combining multiple representations. Some of
the works extract lists of relations from knowledge
bases and use those to either modify the learning
algorithms (Halawi et al., 2012; Wang et al., 2014;
Tian et al., 2016; Rastogi et al., 2015) or post-
process pre-trained word representations (Faruqui
et al., 2015). Another line of literature pre-
pares dense vector representation from each of the
modes (text, knowledge bases, visual etc.) and
tries to combine the vectors using various methods
like concatenation, centroid computation, princi-
pal component analysis (Jolliffe, 1986), canonical
correlation analysis (Faruqui and Dyer, 2014) etc.
One such recent attempt is made by Goikoetxea
et al. (2016) where they prepare vector represen-
tation from WordNet following the method pro-
posed by Goikoetxea et al. (2015), which com-
bines random walks over knowledge bases and
neural network language model, and tries to im-
prove the vector representation constructed from
text using this. As in lexical knowledge bases,
the number of lexical items involved is much less
than the raw text and preparing such resources is
a cumbersome task, our goal is to see whether we
can use DT network instead of some knowledge
bases like WordNet and achieve comparable per-
formance on NLP tasks like word similarity and
word relatedness. In order to prepare vector rep-
resentation from DT network, we attempt to use
various network embeddings like DeepWalk (Per-
ozzi et al., 2014), LINE (Tang et al., 2015),
struc2vec (Ribeiro et al., 2017), node2vec (Grover
and Leskovec, 2016) etc. Some of those try to cap-
ture the neighbourhood or community structure in
the network while others attempt to capture struc-
tural similarity between nodes, second order prox-
imity, etc.

3 Proposed Methodology

Our aim is to analyze the effect of integrating the
knowledge of Distributional Thesaurus network
with the state-of-the-art word representation mod-
els to prepare a better word representation. We
first prepare vector representations from Distribu-

tional Thesaurus (DT) network applying network
representation learning model. Next we com-
bine this thesaurus embedding with state-of-the-
art vector representations prepared using GloVe
and Word2vec model for analysis.

3.1 Distributional Thesaurus (DT) Network

Riedl and Biemann (2013) use the Google books
corpus, consisting of texts from over 3.4 mil-
lion digitized English books published between
1520 and 2008 and construct a distributional the-
sauri (DT) network using the syntactic n-gram
data (Goldberg and Orwant, 2013). The authors
first compute the lexicographer’s mutual informa-
tion (LMI) (Kilgarriff et al., 2004) for each bi-
gram, which gives a measure of the collocational
strength of a bigram. Each bigram is broken into
a word and a feature, where the feature consists
of the bigram relation and the related word. Then
the top 1000 ranked features for each word are
taken and for each word pair, intersection of their
corresponding feature set is obtained. The word
pairs having number of overlapping features above
a threshold are retained in the network. In a nut-
shell, the DT network contains, for each word, a
list of words that are similar with respect to their
bigram distribution (Riedl and Biemann, 2013). In
the network, each word is a node and there is a
weighted edge between a pair of words where the
weight corresponds to the number of overlapping
features. A sample snapshot of the DT is shown in
Figure 1.

Figure 1: A sample snapshot of Distributional The-
saurus network where each node represents a word and
the weight of an edge between two words is defined
as the number of context features that these two words
share in common.
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3.2 Embedding Distributional Thesaurus

Now, from the DT network, we prepare the vector
representation for each node using network rep-
resentation learning models which produce vector
representation for each of the node in a network.
For this purpose, we use three state-of-the-art net-
work representation learning models as discussed
below.
DeepWalk: DeepWalk (Perozzi et al., 2014)
learns social representations of a graph’s vertices
by modeling a stream of short random walks. So-
cial representations signify latent features of the
vertices that capture neighborhood similarity and
community membership.
LINE: LINE (Tang et al., 2015) is a network
embedding model suitable for arbitrary types of
networks: undirected, directed and/or weighted.
The model optimizes an objective which preserves
both the local and global network structures by
capturing both first-order and second-order prox-
imity between vertices.
node2vec: node2vec (Grover and Leskovec,
2016) is a semi-supervised algorithm for scalable
feature learning in networks which maximizes the
likelihood of preserving network neighborhoods
of nodes in a d-dimensional feature space. This
algorithm can learn representations that organize
nodes based on their network roles and/or com-
munities they belong to by developing a family of
biased random walks, which efficiently explore di-
verse neighborhoods of a given node.
Note that, by applying network embedding mod-
els on DT network we obtain 128 dimensional
vectors for each word in the network. We only
consider edges of the DT network having edge
weight greater or equal to 50 for network embed-
ding. Henceforth, we will use D2V-D, D2V-L and
D2V-N to indicate vector representations obtained
from DT network produced by DeepWalk, LINE
and node2vec, respectively.

After obtaining vector representations, we also
explore whether these can be combined with the
pre-trained vector representation of Word2vec and
GloVe to come up with a joint vector representa-
tion. For that purpose, we directly use very well-
known GloVe 1.2 embeddings (Pennington et al.,
2014) trained on 840 billion words of the common
crawl dataset having vector dimension of 300. As
an instance of pre-trained vector of Word2vec, we
use prominent pre-trained vector representations
prepared by Mikolov et al. (2013) trained on 100

billion words of Google News using skip-grams
with negative sampling, having dimension of 300.

3.3 Vector Combination Methods

In order to integrate the word vectors, we ap-
ply two strategies inspired by Goikoetxea et al.
(2016): concatenation (CC) and principal compo-
nent analysis (PCA).
Concatenation (CC): This corresponds to the
simple vector concatenation operation. Vector rep-
resentations of both GloVe and Word2vec are of
300 dimensions and word embeddings learnt form
DT are of 128 dimensions. The concatenated rep-
resentation we use are of 428 dimensions.
Principal Component Analysis (PCA): Princi-
pal component analysis (Jolliffe, 1986) is a dimen-
sionality reduction statistical procedure that uses
an orthogonal transformation to convert a set of
observations of possibly correlated variables into
a set of values of linearly uncorrelated variables
called principal components (linear combinations
of the original variables). We apply PCA to the
concatenated representations (dimension of 428)
reducing these to 300 dimensions. In addition to
PCA, we try with truncated singular value decom-
position procedure (Hansen, 1987) as well, but
as per the experiment set up, it shows negligible
improvement in performance compared to simple
concatenation; hence we do not continue with the
truncated singular value decomposition for dimen-
sionality reduction. After obtaining the combined
representations of words, we head towards evalu-
ating the quality of the representation.

4 Experiments and Analysis

In order to evaluate the quality of the word rep-
resentations, we first conduct qualitative analysis
of the joint representation. Next, we follow the
most acceptable way of applying on different NLP
tasks like word similarity and word relatedness,
synonym detection and word analogy as described
next.

4.1 Qualitative Analysis:

On qualitative analysis of some of the word pairs
from the evaluation dataset, we observe that the
joint representation (PCA (GloVe,D2V-N)) cap-
tures the notion of similarity much better than
GloVe. For example, it gives a higher cosine sim-
ilarity scores to the pairs (car, cab), (sea, ocean),
(cottage,cabin), (vision, perception) etc. in com-
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Dataset GloVe W2V D2V-D D2V-L D2V-N
WSSim 0.799 0.779 0.737 0.073 0.764
SimL-N 0.427 0.454 0.418 0.015 0.421
RG-65 0.791 0.777 0.804 -0.121 0.813
MC-30 0.799 0.819 0.859 -0.067 0.869
WSR 0.637 0.631 0.287 0.077 0.333
M771 0.707 0.655 0.636 0.027 0.63
M287 0.8 0.755 0.558 -0.027 0.591

MEN-N 0.819 0.764 0.619 0.004 0.612
WS-353 0.706 0.697 0.51 0.088 0.547

Table 1: Comparison of individual performances of different vector representation models w.r.t. word similarity
and relatedness tasks. The performance metric is Spearman’s rank correlation coefficient (ρ). Best result of each
row in bold showing the best vector representation for each dataset.

parison to GloVe. However, in some cases, where
words are not similar but are related, e.g., (air-
port, flight), (food, meat), (peeper, soup), (har-
bour, shore), the joint representation gives a lower
cosine similarity score than GloVe comparatively.
In the next set of evaluation experiments, we ob-
serve this utility of joint representation towards
word similarity task and word relatedness task to
some extent.

4.2 Word Similarity and Relatedness

In this genre of tasks, the human judgment score
for each word pair is given; we report the Spear-
man’s rank correlation coefficient (ρ) between hu-
man judgment score and the predicted score by
distributional model. Note that, we take cosine
similarity between vector representations of words
in a word pair as the predicted score.
Datasets: We use the benchmark datasets for eval-
uation of word representations. Four word simi-
larity datasets and four word relatedness datasets
are used for that purpose. The descriptions of the
word similarity datasets are given below.
WordSim353 Similarity (WSSim) : 203 word
pairs extracted from WordSim353 dataset (Finkel-
stein et al., 2001) by manual classification, pre-
pared by Agirre et al. (2009), which deals with
only similarity.
SimLex999 (SimL) : 999 word pairs rated by 500
paid native English speakers, recruited via Ama-
zon Mechanical Turk,1 who were asked to rate the
similarity. This dataset is introduced by Hill et al.
(2016).
RG-65 : It consists of 65 word pairs collected
by Rubenstein and Goodenough (1965). These
word pairs are judged by 51 humans in a scale
from 0 to 4 according to their similarity, but ig-

1www.mturk.com

noring any other possible semantic relationships.
MC-30 : 30 words judged by 38 subjects in a scale
of 0 and 4 collected by Miller and Charles (1991).

Similarly, a brief overview of word relatedness
datasets is given below:
WordSim353 Relatedness (WSR) : 252 word
pairs extracted from WordSim353 (Finkelstein
et al., 2001) dataset by manual classification, pre-
pared by Agirre et al. (2009) which deals with only
relatedness.
MTURK771 (M771) : 771 word pairs evaluated
by Amazon Mechanical Turk workers, with an av-
erage of 20 ratings for each word pair, where each
judgment task consists of a batch of 50 word pairs.
Ratings are collected on a 15 scale. This dataset is
introduced by Halawi et al. (2012).
MTURK287 (M287) : 287 word pairs evaluated
by Amazon Mechanical Turk workers, with an av-
erage of 23 ratings for each word pair. This dataset
is introduced by Radinsky et al. (2011).
MEN : MEN consists of 3,000 word pairs with [0,
1]-normalized semantic relatedness ratings pro-
vided by Amazon Mechanical Turk workers. This
dataset was introduced by Bruni et al. (2014).

Along with these datasets we use the full Word-
Sim353 (WS-353) dataset (includes both similar-
ity and relatedness pairs) (Finkelstein et al., 2001)
which contains 353 word pairs, each associated
with an average of 13 to 16 human judgments
in a scale of 0 to 10. Being inspired by Baroni
et al. (2014), we consider only noun pairs from
SimL and MEN datasets, which will be denoted as
SimL-N and MEN-N whereas other datasets only
contain the noun pairs.

We start with experiments to inspect individual
performance of each of the vector representations
for each of the datasets. Table 1 represents indi-
vidual performances of GloVe, Word2vec, D2V-
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Dataset GloVe CC
(GloVe,D2V-D)

PCA
(GloVe,D2V-D)

CC
(GloVe,D2V-N)

PCA
(GloVe,D2V-N)

WSSim 0.799 0.838 0.839 0.84 0.832
SimL-N 0.427 0.443 0.468 0.446 0.483
RG-65 0.791 0.816 0.879 0.809 0.857
MC-30 0.799 0.86 0.89 0.866 0.874
WSR 0.637 0.676 0.645 0.67 0.657
M771 0.707 0.708 0.707 0.711 0.719
M287 0.8 0.781 0.807 0.795 0.82

MEN-N 0.819 0.792 0.799 0.806 0.817
WS-353 0.706 0.751 0.74 0.75 0.75

Table 2: Comparison of performances (Spearman’s ρ) of GloVe against the combined representation of word rep-
resentations obtained from DT network using network embeddings (DeepWalk, node2vec) with GloVe. Two com-
bination methods – concatenation (CC) and PCA – are used among which PCA performs better than concatenation
(CC) in most of the cases. Also the results show that the combined representation leads to better performance in
almost all the cases.

Dataset W2V CC (W2V,D2V-D) PCA
(W2V,D2V-D)

CC (W2V,D2V-N) PCA
(W2V,D2V-N)

WSSim 0.779 0.774 0.786 0.806 0.805
SimL-N 0.454 0.438 0.456 0.448 0.493
RG-65 0.777 0.855 0.864 0.867 0.875
MC-30 0.819 0.866 0.891 0.903 0.909
WSR 0.631 0.441 0.443 0.459 0.497
M771 0.655 0.633 0.637 0.656 0.676
M287 0.755 0.714 0.701 0.722 0.755

MEN-N 0.764 0.703 0.717 0.714 0.747
WS-353 0.697 0.602 0.61 0.623 0.641

Table 3: A similar experiment as Table 2 with Word2vec (W2V) instead of GloVe.

Dataset PCA
(GloVe,W2V)

PCA
(GloVe,D2V-N)

WSSim 0.8 0.832
SimL-N 0.476 0.483
RG-65 0.794 0.857
MC-30 0.832 0.874
WSR 0.68 0.657
M771 0.717 0.719
M287 0.82 0.82

MEN-N 0.829 0.817
WS-353 0.746 0.75

Table 4: Comparison of performances (Spearman’s
ρ) between GloVe combined with Word2vec (W2V)
against GloVe combined with DT embedding obtained
using node2vec (D2V-N). PCA has been taken as com-
bination method. Clearly, DT embedding outperforms
Word2vec in terms of enhancing the performance of
GloVe.

D, D2V-L and D2V-N for different datasets. In
most of the cases, GloVe produces the best re-
sults although no model is a clear winner for all
the datasets. Interestingly, D2V-D and D2V-N
give results comparable to GloVe and Word2vec
for the word similarity datasets, even surpassing
GloVe and Word2vec for few of these. D2V-L
gives very poor performance, indicating that con-

Dataset PCA
(GloVe,
D2V-N)

PCA (GloVe,
WN2V)

PCA (GloVe,
WN2V, D2V-N)

WSSim 0.832 0.828 0.853
SimL-N 0.483 0.525 0.531
RG-65 0.857 0.858 0.91
MC-30 0.874 0.882 0.92
WSR 0.657 0.699 0.682
M771 0.719 0.762 0.764
M287 0.82 0.816 0.81

MEN-N 0.817 0.848 0.7993
WS-353 0.75 0.7801 0.7693

Table 5: Performance (ρ) reported for three com-
bined representations: GloVe and DT embedding using
node2vec (D2V-N), GloVe and WordNet embedding
(WN2V), GloVe, WN2V and D2V-N. Results show
that, DT embedding produces comparable performance
in comparison to the WordNet embedding. Combining
DT embedding along with WordNet embedding helps
to boost performance further in many of the cases.

sidering second order proximity in the DT net-
work while embedding has an adverse effect on
performance in word similarity and word related-
ness tasks, whereas random walk based D2V-D
and D2V-N which take care of neighborhood and
community, produce decent performance. Hence-
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Dataset GloVe GloVe with
retrofitting

PCA
(GloVe,D2V-N)

WSSim 0.799 0.799 0.832
SimL-N 0.427 0.423 0.483
RG-65 0.791 0.791 0.857
MC-30 0.799 0.799 0.874
WSR 0.637 0.69 0.657
M771 0.707 0.708 0.719
M287 0.8 0.795 0.82

MEN-N 0.819 0.819 0.817
WS-353 0.706 0.703 0.75

Table 6: Comparison of performances (Spearman’s ρ)
between GloVe representation and retrofitted (by DT
network) GloVe representation. Clearly, DT retrofitting
is not helping much to improve the performance of
GloVe.

forth, we ignore the D2V-L model for the rest of
our experiments.

Next, we investigate whether network embed-
dings applied on Distributional Thesaurus network
can be combined with GloVe and Word2vec to im-
prove the performance on the pre-specified tasks.
In order to do that, we combine the vector rep-
resentations using two operations: concatenation
(CC), and principal component analysis (PCA).
Table 2 represents the performance of combining
GloVe with D2V-D and D2V-N for all the datasets
using these combination strategies. In general,
PCA turns out to be better technique for vector
combination than CC. Clearly, combining DT em-
beddings and GloVe boosts the performance for all
the datasets except for the MEN-N dataset, where
the combined representation produces comparable
performance.

In order to ensure that this observation is con-
sistent, we try combining DT embeddings with
Word2vec. The results are presented in Table 3
and we see very similar improvements in the per-
formance except for a few cases, indicating the
fact that combining word embeddings prepared
form DT network is helpful in enhancing perfor-
mances. From Tables 1, 2 and 3, we see that GloVe
proves to be better than word2Vec for most of the
cases, D2V-N is the best performing network em-
bedding, and PCA turns out to be the best com-
bination technique. Henceforth, we consider PCA
(GloVe, D2V-N) as our model for comparison with
the baselines for the rest of the experiments.

Further, to scrutinize that the achieved result
is not just the effect of combining two different
word vectors, we compare PCA (GloVe, D2V-
N) against combination of GloVe and Word2vec

(W2V). Table 4 shows the performance compari-
son on different datasets and it is evident that PCA
(GloVe, D2V-N) gives better results compared to
PCA (GloVe, W2V) in most of the cases.

Now, as we observe that the network embed-
ding from DT network helps to boost the per-
formance of Word2vec and GloVe when com-
bined with them, we further compare the perfor-
mance against the case when text based embed-
dings are combined with embeddings from lexical
resources. For that purpose, we take one base-
line (Goikoetxea et al., 2016), where authors com-
bined the text based representation with WordNet
based representation. Here we use GloVe as the
text based representation and PCA as the combi-
nation method as prescribed by the author. Note
that, WordNet based representation is made pub-
licly available by Goikoetxea et al. (2016). From
the second and third columns of Table 5, we ob-
serve that even though we do not use any man-
ually created lexical resources like WordNet our
approach achieves comparable performance. Ad-
ditionally we check whether we gain in terms of
performance if we integrate the three embeddings
together. Fourth column of Table 5 shows that we
gain for some of the datasets and for other cases, it
has a negative effect. Looking at the performance,
we can conclude that automatically generated DT
network from corpus brings in useful additional
information as far as word similarity and related-
ness tasks are concerned.

So far, we use concatenation and PCA as meth-
ods for combining two different representations.
However, as per the literature, there are different
ways of infusing knowledge from different lexical
sources to improve the quality of pre-trained vec-
tor embeddings. So we compare our proposed way
of combination with a completely different way
of integrating information from both dimensions,
known as retrofitting. Retrofitting is a novel way
proposed by Faruqui et al. (2015) for refining vec-
tor space representations using relational informa-
tion from semantic lexicons by encouraging linked
words to have similar vector representations. Here
instead of using semantic lexicons, we use the DT
network to produce the linked words to have sim-
ilar vector representation. Note that, for a tar-
get word, we consider only those words as linked
words which are having edge weight greater than a
certain threshold. While experimenting with vari-
ous thresholds, the best results were obtained for a
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threshold value of 500. Table 6 shows the perfor-
mance of GloVe representations when retrofitted
with information from DT network. Even though
in very few cases it gives little improved perfor-
mance, compared to other combinations presented
in Table2, the correlation is not very good, indi-
cating the fact that retrofitting is probably not the
best way of fusing knowledge from a DT network.

Further, we extend our study to investigate the
usefulness of DT embedding on other NLP tasks
like synonym detection, SAT analogy task as will
be discussed next.

4.3 Synonym Detection
We consider two gold standard datasets for the ex-
periment of synonym detection. The descriptions
of the used datasets are given below.
TOEFL: It contains 80 multiple-choice synonym
questions (4 choices per question) introduced
by Landauer and Dumais (1997), as a way of eval-
uating algorithms for measuring degree of similar-
ity between words. Being consistent with the pre-
vious experiments, we consider only nouns for our
experiment and prepare TOEFL-N which con-
tains 23 synonym questions.
ESL: It contains 50 multiple-choice synonym
questions (4 choices per question), along with a
sentence for providing context for each of the
question, introduced by Turney (2001). Here also
we consider only nouns for our experiment and
prepare ESL-N which contains 22 synonym ques-
tions. Note that, in our experimental setup we do
not use the context per question provided in the
dataset for evaluation.
While preparing both the datasets, we also keep
in mind the availability of word vectors in both
downloaded GloVe representation and prepared
DT embedding. For evaluation of the word em-
beddings using TOEFL-N and ESL-N, we con-
sider the option as the correct answer which is hav-
ing highest cosine similarity with the question and
report accuracy. From the results presented in Ta-
ble 7, we see that DT embedding leads to boost the
performance of GloVe representation.

4.4 Analogy Detection
For analogy detection we experiment with SAT
analogy dataset. This dataset contains 374
multiple-choice analogy questions (5 choices per
question) introduced by Turney and Bigham
(2003) as a way of evaluating algorithms for
measuring relational similarity. Considering only

Dataset GloVe D2V-N PCA (GloVe,
D2V-N)

TOEFL-N 0.826 0.739 0.869
ESL-N 0.636 0.591 0.682
SAT-N 0.465 0.509 0.515

Table 7: Comparison of accuracies between GloVe rep-
resentation, DT embedding using node2vec and com-
bination of both where PCA is the combination tech-
nique. Clearly DT embedding is helping to improve the
performance of GloVe for synonym detection as well as
analogy detection.

noun questions, we prepare SAT-N, which con-
tains 159 questions.
In order to find out the correct answer from the 5
options given for each question, we take up a score
(s) metric proposed by Speer et al. (2017), where
for a question ‘a1 is to b1’, we will consider ‘a2
is to b2’ as the correct answer among the options,
whose score (s) is the highest. Score (s) is defined
by the author as follows:
s = a1.a2 + b1.b2 + w1(b2 − a2).(b1 − a1) +

w2(b2 − b1).(a2 − a1)
As mentioned by the authors, the appropriate val-
ues ofw1 andw2 are optimized separately for each
system using grid search, to achieve the best per-
formance. We use accuracy as the evaluation met-
ric. The last row of Table 7 presents the compari-
son of accuracies (best for each model) obtained
using different embeddings portraying the same
observation that combination of GloVe and DT
embeddings leads to better performance compared
to GloVe and DT embeddings when used sepa-
rately. Note that, the optimized values of (w1, w2)
are (0.2,0.2), (0.8,0.6), (6,0.6) for GloVe, DT em-
bedding, combined representation of GloVe and
DT embeddings, respectively, for the analogy task.

5 Conclusion

In this paper we showed that both dense count
based model (GloVe) and predictive model
(Word2vec) lead to improved word representa-
tion when they are combined with word repre-
sentation learned using network embedding meth-
ods on Distributional Thesaurus (DT) network.
We tried with various network embedding mod-
els among which node2vec proved to be the best
in our experimental setup. We also tried with
different methodologies to combine vector rep-
resentations and PCA turned out to be the best
among them. The combined vector representation
of words yielded the better performance for most
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of the similarity and relatedness datasets as com-
pared to the performance of GloVe and Word2vec
representation individually. Further we observed
that we could use the information from DT as a
proxy of WordNet in order to improve the state-
of-the-art vector representation as we were getting
comparable performances for most of the datasets.
Similarly, for synonym detection task and analogy
detection task, the same trend of combined vector
representation continued, showing the superiority
of the combined representation over state-of-the-
art embeddings. All the datasets used in our ex-
periments which are not under any copyright pro-
tection, along with the DT embeddings are made
publicly available2.

In future we plan to investigate the effectiveness
of the joint representation on other NLP tasks like
text classification, sentence completion challenge,
evaluation of common sense stories etc. The over-
all aim is to prepare a better generalized repre-
sentation of words which can be used across lan-
guages in different NLP tasks.
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Abstract

Diachronic distributional models track
changes in word use over time. In this pa-
per, we propose a deep neural network di-
achronic distributional model. Instead of
modeling lexical change via a time series
as is done in previous work, we represent
time as a continuous variable and model a
word’s usage as a function of time. Ad-
ditionally, we have created a novel syn-
thetic task, which quantitatively measures
how well a model captures the semantic
trajectory of a word over time. Finally,
we explore how well the derivatives of our
model can be used to measure the speed of
lexical change.

1 Introduction

Diachronic distributional models have provided
interesting insights into how words change mean-
ing. Generally, they are used to explore how
specific words have changed meaning over time
(Sagi et al., 2011; Gulordava and Baroni, 2011;
Jatowt and Duh, 2014; Kim et al., 2014; Kulka-
rni et al., 2015; Bamler and Mandt, 2017; Hell-
rich and Hahn, 2017), but they have also been
used to explore historical linguistic theories (Xu
and Kemp, 2015; Hamilton et al., 2016a,b), to pre-
dict the emergence of novel senses (Bamman and
Crane, 2011; Rohrdantz et al., 2011; Cook et al.,
2013, 2014), and to predict world events (Kutuzov
et al., 2017a,b).

Diachronic distributional models are distribu-
tional models where the vector for a word changes
over time. Thus, we can calculate the cosine sim-
ilarity between the vectors for a word at two dif-
ferent time points to measure how much that word
has changed over time and we can perform a near-
est neighbor analysis to understand in what direc-

tion a word is changing. For example, diachronic
distributional models can detect that the word gay
has greatly changed by comparing the word vector
for gay across different time points. They can also
be used to discover that gay has shifted its mean-
ing from happy to homosexual by analyzing when
those words show up as nearest neighbors to gay.

Previous research in diachronic distributional
semantics has used models where data is par-
titioned into time bins and a synchronic model
is trained on each bin. A synchronic model is
a vanilla, time-independent distributional model,
such as skip-gram. However, there are several
technical issues associated with data binning. For
example, if the bins are too large, you can only
achieve extremely coarse grained representations
of lexical change over time. However, if the bins
are too small, the synchronic models get trained
on insufficient data.

In this paper, we have built the first diachronic
distributional model that represents time as a con-
tinuous variable instead of employing data bin-
ning. There are several advantages to treating time
as continuous. The first advantage is that it is more
realistic. Large scale change in the meaning of a
word is the result of change happening one per-
son at a time. Thus, semantic change must be a
gradual process. By treating time as a continuous
variable, we can capture this gradual shift. The
second advantage is that it allows a greater repre-
sentation of the underlying causes behind lexical
change. Words change usage in reaction to real
world events and multiple words can be affected
by the same event. For example, the usage of gay
and lesbian have changed in similar ways due to
changing perceptions of homosexuality in society.
By associating time with a vector and having word
representations be a function of that vector, we can
model a single underlying cause affecting multiple
words similarly.
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It is difficult to evaluate diachronic distribu-
tional models in their ability to capture semantic
shift as it is extremely difficult to acquire gold
data. Distributional models are traditionally eval-
uated with word similarity judgments, which we
cannot obtain for word usage in the past. Thus,
evaluation of diachronic distributional models is a
focus of research, such as work done by Hellrich
and Hahn (2016) and Dubossarsky et al. (2017).
Our approach is to create a synthetic task to mea-
sure how well a model captures gradual semantic
shifts.

We will also explore how we can use our model
to predict the speed at which a word changes. Our
model is differentiable with respect to time, which
gives us a natural way to measure the velocity, and
thus speed, of a word at a given time. We explore
the capabilities and limitations of this approach.

In short, our paper provides the following con-
tributions:

• We have developed the first continuous di-
achronic distributional model. This is also
the first diachronic distributional model using
a deep neural network.

• We have designed an evaluation of a model’s
ability to capture semantic shift that tracks
gradual change.

• We have used the derivatives of our model as
a natural way to measure the speed of word
use change.

2 Related work

Previous research in diachronic distributional
models has applied a binning approach. In this
approach, researchers partition the data into bins
based on time and train a synchronic distributional
model on that bin’s data (See Figure 1). Several
authors have used large bin models in their re-
search, such as using five year sized bins (Kulkarni
et al., 2015), decade sized bins (Gulordava and Ba-
roni, 2011; Xu and Kemp, 2015; Jatowt and Duh,
2014; Hamilton et al., 2016a,b; Hellrich and Hahn,
2016, 2017), and era sized bins (Sagi et al., 2009,
2011). The synchronic model for each time bin
was trained independently of the others. In order
to get a fine grained representation of semantic
shift, several authors have used small bins. Kim
et al. (2014) trained a synchronic model for each
time bin. To mitigate data issues, Kim et al. preini-
tialized a time bin’s synchronic model with the

Word Vectors
on 1960s data

gay

homosexual

lively
gay

homosexual

lively

gay
homosexual

lively

. . . . . .

Word Vectors
on 1980s data

Word Vectors
on 1970s data

(a) Previous work

(b) Our approach

(c) Difference in
trajectories

Figure 1: Difference between our approach and previ-
ous work. Previous work in diachronic distributional
models (a) has trained synchronic distributional mod-
els on consecutive time bins. In our work (b), a neural
network takes word and time as input and produces a
time specific word vector. In (c), we sketch that previ-
ous work produces a jagged semantic trajectory (blue,
solid curve) whereas our model produces a smooth se-
mantic trajectory (pink, dotted curve).

model from the previous time bin. Bamler and
Mandt (2017) developed a small bin probabilis-
tic approach that used transition probabilities to
lessen data issues. They have two versions of their
method. The first version trains the distribution in
each bin iteratively and the second version trains
a joint distribution over all bins. In this paper, we
only explore the first version as the second ver-
sion does not scale well to large vocabulary sizes.
Following Bamler and Mandt (2017), we compare
to models used by Hamilton et al. (2016b), Kim
et al. (2014), and the first version of Bamler and
Mandt’s’s model.

There have been other models of lexical change
beside distributional ones. Topic modeling has
been used to see how topics associated to a word
have changed over time (Wijaya and Yeniterzi,
2011; Frermann and Lapata, 2016). Sentiment
analysis has been applied to determine how sen-
timents associated to a word have changed over
time (Jatowt and Duh, 2014).

As mentioned in the introduction, it is difficult
to quantitatively evaluate diachronic distributional
models due to the lack of gold data. Thus, pre-
vious research has attempted alternative routes to
quantitatively evaluate their models. One route
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is to use intrinsic evaluations, such as measur-
ing a trajectory’s smoothness (Bamler and Mandt,
2017). However, intrinsic measures do not directly
measure semantic shift, which is the main use of
diachronic distributional models. Hamilton et al.
(2016b) use attested shifts generated by historical
linguists. However, outside of first attestations,
it is a difficult task for historical linguists them-
selves to accurately detail semantic shifts (Deo,
2015). Additionally, the task used by Hamilton
et al. is unusable for model comparison as all
but one model had a 100% accuracy in this task.
Kulkarni et al. (2015) used a synthetic task to
evaluate how well diachronic distributional mod-
els can detect semantic shift. They took 20 copies
of wikipedia where each is a synthetic version of a
time bin and changed several words in the last 10
copies. Models were then evaluated on their abil-
ity to detect when those words changed. Our eval-
uation improves upon this one by having the test
data be from a diachronic corpus and we model
lexical change as a gradual process rather than
searching for a single change point.

3 Models

In this section, we describe the four diachronic dis-
tributional models that we analyze in our current
work. Three will be from previous research to be
used as benchmarks. Each of the four models we
analyze are based on skip-gram with negative sam-
pling (SGNS). The difference between the four di-
achronic distributional models we analyze is how
they apply SGNS to changes over time.

Skip-gram with negative sampling (SGNS) is a
word embedding model that learns a latent rep-
resentation of word usage (Mikolov et al., 2013).
For target words w and context words c, vector
representations ~w and ~c are learned to best predict
if c will be in context of w in a corpus. k negative
contexts are randomly sampled for each positive
context. Vector representations are computed by
optimizing the following loss function:

∑

(w,c)∈D
[log(σ(~w·~c))+

∑

c1,...ck∼PD

log(1−σ(~w·~ci))]

(1)
where D is a list of target-context pairs extracted
from the corpus, PD is the unigram distribution on
the corpus, σ is the sigmoid function, and k is the
number of negative samples.

3.1 Binning by Decade
The first diachronic distributional model we will
consider is a large time bin model proposed by
Hamilton et al. (2016b). Here, time is partitioned
into decades and an SGNS model is trained on
each decade’s worth of data. We label this model
LargeBin.

3.2 Preinitialization
The second diachronic distributional model we
will consider is a small time bin model proposed
by Kim et al. (2014). Here, time is partitioned
into years and an SGNS model is trained on each
year’s worth of data. Data issues are mitigated by
preinitializing the model1 for a given time bin with
the vectors of the preceding time bin (Kim et al.,
2014). We label this model SmallBinPreInit.

3.3 Prior and Transition Probabilities
The third diachronic distributional model we will
consider comes from Bamler and Mandt (2017).
Bamler and Mandt take a probabilistic approach
to modeling semantic change over time. The idea
is to transform the SGNS loss function into a prob-
ability distribution over the target and context vec-
tors. Then, to create a better diachronic distribu-
tional model, they apply priors to this distribution.

The first two priors are Gaussian distributions
with mean zero on the vector variables to discour-
age the vectors from growing too large (Barkan,
2017). More formally:

P1(~w) = N (0, α1I)

P2(~c) = N (0, α1I)
(2)

where α1 is a hyperparameter.
The last two priors are also Gaussian distribu-

tions on the vector variables. The means are the
vector representation from the previous bin. The
goal of this prior is to discourage a vector variable
from deviating from the previous bin’s vectors.

P3(~w) = N (−−−→wprev, α2I)

P4(~c) = N (−−→cprev, α2I)
(3)

where α2 is a hyperparameter and −−−→wprev and −−→cprev
are the vectors from the previous time bin.

We are only exploring point models, thus we
take the maximum a posteriori estimate of the

1We do not perform preinitialization in LargeBin as large
bin models are less susceptible to data issues.
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Figure 2: Diagram of DiffTime. timevec(t) encodes
temporal information as a vector. MW encodes lexical
information as a matrix. The target vector for w at time
t, useW (w, t), is found by combining Transw and
timevec(t). Context version useC(c, t) is the same ex-
cept that it has its own embedding layer.

joint distribution to recover the vectors for each
time bin. We apply a logarithm in constructing
the estimate, which transforms the joint probabil-
ity into the SGNS loss function with four regu-
larizers (each one corresponding to a prior dis-
tribution). The prior distribution P1 becomes∑

w∈W
α1
2 ||w||. The prior distribution P2 be-

comes
∑

c∈C
α1
2 ||c||. The prior distribution P3 be-

comes
∑

w∈W
α2
2 ||~w−

−−−→wprev||. The prior distribu-
tion P4 becomes

∑
c∈C

α2
2 ||~c −

−−→cprev||. W and C
are the sets of target and context words. We label
this model SmallBinReg.

3.4 DiffTime Model

Our model is a modification of the SGNS algo-
rithm to accommodate a continuous time variable.
The original SGNS algorithm produces a target
embedding ~w for target word w and a context em-
bedding ~c for context word c. Instead, we produce
a differentiable function useW (w, t) that returns a
target embedding for target word w at time t and a
differentiable function useC(c, t) that produces a
context embedding for context word c at time t.

Our model consists of three components. One
component takes time as its input and produces
an embedding that characterizes that point in time
(lower right). The second component (lower left)
takes a word as its input and produces a time-

independent word embedding, which is then re-
shaped into a set of parameters that can modify
the time embedding. The third component (top)
combines the time embedding and the word em-
bedding.

The first component of our model is a two-layer
feed-forward neural network with tanh activation
functions. These layers take a time t as input and
produces a time embedding timevec(t) as output
of those layers:

h1 = tanh(M1t+ b1)

timevec(t) = tanh(M2h1 + b2)
(4)

where M1 and M2 are the weights of the first two
layers and b1 and b2 are the biases. To produce
the input value t, a timepoint is scaled to a value
between 0 and 1, where 0 corresponds to the year
1900, and 1 corresponds to 2009, the last year for
which our corpus has data.

The second component incorporates word-
specific information into our model. For
useW (w, t), each target word w has a target
vector representation ~w. The vector ~w is then
transformed into a linear transformation Transw,
which in the third component is applied to the time
embedding timevec(t). We do this via a modified
linear layer where the weights are a three dimen-
sional tensor, the biases are a matrix and the output
is a matrix:

Transw = T~w +B (5)

where T is the tensor acting as the weights and B
is the matrix acting as the biases.

The third component combines the word-
independent time embedding timevec(t) and the
time-independent linear transformation Transw
together to produce the final result. First, Transw
is applied to timevec(t):

h3 = Transw(timevec(t)) (6)

Then, an additional linear layer is used as the
output layer, taking h3 as input:

useW (w, t) =M4h3 + b4 (7)

where M4 and b4 are the weights and biases of the
output layer.
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The above details the architecture of
useW (w, t). The corresponding function
useC(c, t) for context words has the same archi-
tecture as useW (w, t) and shares weights with
useW (w, t). The only exception is that useC(c, t)
uses a separate set of vectors ~c in the second
component instead of sharing the target vectors ~w
with useW (w, t).

We train our model using a modified version of
the SGNS loss function. In particular, our posi-
tive samples are now triples (w, c, t) where w is a
target word, c is a context word, and t is a time,
instead of pairs (w, c) which are typically used in
SGNS. For each positive sample (w, c, t), we sam-
ple k negative contexts from the unigram distribu-
tion, PD. PD is trained from all contexts in the
entire corpus and is time-independent. Explicitly,
the loss function is:

∑

(w,c,t)∈D
log(σ(useW (w, t) · useC(c, t)))+

kEcN∼PD
[log(σ(−useW (w, t) · useC(cN , t)))]

(8)

3.5 Training

All models are trained on the same training data.
We used the English Fiction section of the Google
Books ngram corpus (Lin et al., 2012). We use
the English fiction specifically, because it is less
unbalanced than the full English section and less
influenced by technical texts (Pechenick et al.,
2015). We only use the years 1900 to 2009 as there
is limited data before 1900.

We converted the ngram data for this corpus
into a set of (target word, context word, year, fre-
quency) tuples. The frequency is the expected
number of times the target word-context word pair
is sampled from that year’s data using skip-gram.
Following Hamilton et al. (2016b), we use sub-
sampling with t = 10−5. As the number of texts
published since 1900 has increased five fold, we
weigh the frequencies so that the sums across each
year are equal.

For the binned models, we train each bin’s syn-
chronic model using the subset of the training data
corresponding to that time bin. For our model, we
sample (training word, context word, year) triples
from the entire training data as the year is an input
to our function.

4 Evaluation

4.1 Synchronic Accuracy

Method Time Spearman’s ρ

LargeBin 1990s bin 0.615
SmallBinPreInit 1995 bin 0.489
SmallBinReg 1995 bin 0.564
DiffTime start of 1995 0.694

Table 1: Synchronic accuracy of the methods. Time is
the point of time we use as our synchronic model.

Before we can evaluate the methods as models
of diachronic semantics, we must first ensure that
the methods model semantics accurately. To do
this, we follow Hamilton et al. (2016b) by per-
forming the MEN word similarity task on vec-
tors extracted from a fixed time point (Bruni et al.,
2012). The hope is that the word similarity predic-
tions of a model at that point in time highly corre-
late with word similarity judgments in the MEN
dataset. For the binned models, we used the vec-
tors from the bin best corresponding to 1995 to
reflect the 1990s bin chosen by Hamilton et al.
(2016b). DiffTime represents time as a continuous
variable, so we chose a time t that corresponds to
the start of 1995.

The results of MEN word similarity tasks is
in Table 1. All of the Spearman’s ρ values are
comparable to those found in Levy and Goldberg
(2014) and Hamilton et al. (2016b). Thus, all of
these models reflect human judgments compara-
ble to synchronic models. Thus, the predictions of
the models correlate with human judgments.

4.2 Synthetic Task
The goal of creating diachronic distributional
models is to help us understand how words change
meaning over time. To that end, we have created
a synthetic task to compare models by how accu-
rately they track semantic change.

Our task creates synthetic words that change be-
tween two senses over time via a sigmoidal path.
A sigmoidal path will allow us to emulate a word
starting from one sense, shifting gradually to a sec-
ond sense, then stabilizing on that second sense.
By using sigmoidal paths, we can explore how
well a model can track words that have switched
senses over time such as gay (lively to homosex-
ual) and broadcast (scattering seeds to televising
shows). A similar task is used to evaluate word
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sense disambiguation (Gale et al., 1992; Schütze,
1992).

The synthetic words are formed by a combina-
tion of two real words, e.g. banana and lobster
are combined together to form banana◦lobster.
The real words are randomly sampled from two
distinct semantic classes from the BLESS dataset
(Baroni and Lenci, 2011). We use BLESS classes
so that we can capture how semantically similar a
synthetic word is to its component words by com-
paring to other words in the same BLESS classes
as the component word. For example, we can cap-
ture how similar banana◦lobster is to banana by
comparing banana◦lobster to words in the fruit
BLESS class. See Appendix B for preprocessing
details. We denote the synthetic words with r1◦r2
where r1 and r2 are the component real words.

We also randomly generate the sigmoidal path
by which a synthetic word changes from one sense
to another. For real words r1 and r2, this path will
be denoted shift(t; r1◦r2) and is defined by the fol-
lowing equation:

shift(t; r1◦r2) = σ(s(t−m)) (9)

The value s is uniformly sampled from ( 1.0
110 ,

10.0
110 )

and represents the steepness of the sigmoidal
path. The value m is uniformly sampled from
{1930, . . . , 1980} and represents the point where
the synthetic word is equally both senses. For
our example synthetic word banana◦lobster,
banana◦lobster can transition from meaning ba-
nana to meaning lobster via the sigmoidal path
σ(0.05(t − 1957)) where 1957 is the time where
banana◦lobster is equally banana and lobster and
0.05 represents how gradually banana◦lobster
shifts senses.

We then use shift(t; r1◦r2) to integrate r1◦r2
into the real diachronic corpus data. Our training
data is a set of (target word, context word, year,
frequency) tuples extracted from a diachronic cor-
pus (see 3.5). For every tuple where r1 is the tar-
get word, we replace the target word with r1◦r2
and we multiply the frequency by shift(t; r1◦r2).
For every tuple where r2 is the target word, we
replace the target word with r1◦r2 and we mul-
tiply the frequency by 1 − shift(t; r1◦r2). In
other words, in the modified corpus, r1◦r2 has
shift(t; r1◦r2) percent of r1’s contexts at time t
and 1 − shift(t; r1◦r2) percent of r2’s contexts at
time t.

We train a model mod on this modified train-

ing data. This provides a representation for r1◦r2
over time. We can capture how much a model pre-
dicts r1◦r2 is more semantically similar to r1 than
r2 by comparing mod’s representation of r1◦r2 to
words in the same semantic category as r1 and r2.
We use BLESS classes as our notion of semantic
category. If cls1 is the BLESS class of r1 and cls2
is the BLESS class of r2, then mod’s prediction
for how much more similar r1◦r2 is to r1 than r2,
rec(t; r1◦r2,mod), is defined as follows:

rec(t; r1◦r2,mod) =
1

|cls1|
∑

r′1∈cls1
simmod(r1◦r2, r′1, t)

− 1

|cls2|
∑

r′2∈cls2
simmod(r1◦r2, r′2, t) (10)

simmod(r1◦r2, r′1, t) is the cosine similarity be-
tween mod’s word vector for r1◦r2 at time t and
mod’s word vector for r′1 at time t.

Method
AMSE

1900–2009
AMSE

1950–2009

LargeBin 62.52 51.71
SmallBinPreInit 171.43 49.88
SmallBinReg 106.79 42.67
DiffTime 25.67 11.48

Table 2: Model performance under the synthetic eval-
uation. The values are the mean sum of squares error
(MSSE) for each method. Lower value is better. The
first column is MSSE using all times. The second col-
umn is MSSE using years 1950 to 2009.

To evaluate a model in its ability to capture
semantic shift, we use the mean sum of squares
error (MSSE) between rec(t; r1◦r2,mod) and
shift(t; r1◦r2) across all synthetic words. The
function rec(t; r1◦r2,mod) is model mod’s pre-
diction of how much more similar r1◦r2 is to r1
than r2. The gold value of rec(t; r1◦r2,mod)
would then be the sigmoidal path that defines
how r1◦r2 semantically shifts from r1 to r2 over
time, shift(t; r1◦r2). To evaluate how accurately
mod predicted the semantic trajectory of r1◦r2,
we calculate the mean squared error between
rec(t; r1◦r2,mod) and shift(t; r1◦r2) as follows:
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2009∑

t=1900

(rec(t; r1◦r2,mod)− shift(t; r1◦r2))2

(11)

As rec(t; r1◦r2,mod) and shift(t; r1◦r2)
have different scales, we Z-scale both the
rec(t; r1◦r2,mod) values and the shift(t; r1◦r2)
values before calculating the mean squared error.

We use three sets of 15 synthetic words and
the average is calculated over all 45 words. The
synthetic words and BLESS classes we used are
contained in the supplementary material. The re-
sults are in Table 2. The column AMSE is MSSE
when all years are taken into account. Kim et al.
(2014) noted that small bin models require an ini-
tialization period, so the column AMSE (1950-)
is MSSE when only years 1950 to 2009 are taken
into account and the years 1900 to 1949 are used
as the initialization period. From the table, we see
our model outperforms the three benchmark mod-
els in both cases. Using a paired t-test, we found
that the reduction in MSSE between our model
and the benchmark models are statistically signif-
icant.

1900 1940 1980

−
1.

0
0.

0
1.

0

LrgBin

Year

1900 1940 1980

−
1.

0
0.

0
1.

0

SmlBinInit

Year

1900 1940 1980

−
1.

0
0.

0
1.

0

SmlBinReg

1900 1940 1980

−
1.

0
0.

0
1.

0

DiffTime

Figure 3: Graph Comparisons between shift(t; r1◦r2)
(red) and rec(t; r1◦r2,) (blue) for the synthetic word
pistol◦elm. The x-axis are the years and the y-axis are
the values of shift(t; r1◦r2). rec(t; r1◦r2,mod) and
shift(t; r1◦r2) have been Z-scaled.

In Figure 3, we plot shift(t; r1◦r2) and
rec(t; r1◦r2,mod) for the synthetic word
pistol◦elm. Each method has a subgraph. The
predictions of the large bin model LargeBin
appear as a step function with large steps (top
left graph). These large steps seem to cause the
predicted shift (blue curve) to poorly correlate
with the gold shift (red curve). Next, we consider
the small bin models SmallBinPreInit (top right

graph) and SmallBinReg (bottom left graph).
Both predicted shifts have an initial portion that
poorly fits the generated shift (between 1900 and
1950). From Kim et al. (2014), it takes several
iterations for small bin models to stabilize due
to each bin being fed limited data. Additionally,
there are fluctuations in the graphs of the predicted
shift, which we attribute to the high variance of
data per bin. In contrast to the other models, our
predicted shift tightly fits the gold shift (bottom
right graph).

Although this evaluation provides useful infor-
mation on the quality of an diachronic distribu-
tional model, it has some weaknesses. The first is
that it is a synthetic task that operates on synthetic
words. Thus, we have limited ability to under-
stand how well a model will perform on real world
data. Second, we only generate words that shift
from one sense to another. This fails to account
for other common changes, such as gaining/losing
senses and narrowing/broadening. Finally, by us-
ing a sigmoidal function to generate how words
change meaning, we may have privileged contin-
uous models that incorporate a sigmoidal function
in their architecture. We are working towards im-
proving this evaluation to remove these issues.

4.3 Speed of word use change

In this section, we evaluate our model’s ability to
measure the speed at which a word is changing.
Our model is differentiable with respect to time.
Thus, we can get the derivative of useW (w, t)
with respect to t to model how word w is chang-
ing usage at time t. We l2-normalize useW (w, t)
beforehand to reduce frequency effects. We then
get the magnitude of this normalized derivative to
model the speed at which a word is changing at a
given time.

We explore the connection between speed and
the nearest neighbors to a word in Figure 4. First,
we use apple as a baseline for discussion. We
chose apple, because the meaning of the word has
remained relatively stable throughout the 1900s.
With apple, we see a low speed over time and
a consistency in the cosine similarity to apple’s
nearest neighbors. While it is true that apple has
other meanings beyond the fruit, such as referring
to Apple Inc., those meanings are much rarer, es-
pecially in the fiction corpus we use.

In contrast to apple, the word gay has a very
high speed and a drastic change for gay’s nearest
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Figure 4: Speed and nearest neighbors over time of selected words. The top graphs as the speed at which a word
changes usage according to our model. The bottom graphs are selected nearest neighbors for those words. Each of
the chosen nearest neighbors appear as a top 10 nearest neighbor to the word at some year.

neighbors. This makes sense as gay is well estab-
lished to have experienced a drastic sense change
in the mid to late 1900s (Harper, 2014).

Next, we explore the word mail. The word mail
has a moderately high speed. This may be re-
flective of the fact that there have been incredible
changes in the medium by which we send mail,
e.g. changing from cables to email. A possible
reason for the speed only being moderately high is
that, even though the medium by which we send
mail has changed, many of the same uses of mail,
e.g. sending, receiving, opening, etc., remain the
same. We see this reflected in the nearest neigh-
bors as well as mail shifts from a high similarity
to cable to a high similarity to e (as in email),
yet mail is consistently similar to postal and sta-
tionery.

The next word we will explore is the word cana-
dian. We chose this word as we were surprised to
find that canadian has one of the fastest speeds
in the 1930s to 1940s. The nearest neighbors to
canadian have shifted from geographic terms like
port and railhead to civil terms like federal and

national. In further analysis, we discovered that
this may be reflective of a larger push to form
a Canadian identity in the early 1900s (Francis,
1997). The nearest neighbors to canadian may re-
flect the change from being a part of the British
Empire to having its own unique national identity.

The final word we will explore is cell. The word
cell also has a high speed over time. However,
there is a spike in the speed during the 1980s. An-
alyzing the nearest neighbors we see a rapid rise
in similarity to pager and handset, which indi-
cates that this spike may be related to the rapid
rise of cell phone use. Additionally, this exam-
ple demonstrates a weakness in our approach. Our
graph shows that our model predicts that the word
cell gradually changed meaning over time and that
cell started changing meaning much earlier than
expected. This prediction error comes from the
smoothing out of the output caused by represent-
ing time as a continuous variable.

Even though we are able to extract interesting
insights from the speed of word use change, Fig-
ure 4 also exhibits some limitations. In particu-
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lar, most words have a sharp rise in speed in the
1930s and a steep decline in speed in the 1980s.
We believe this is an artifact of our representation
of word use as a function of time as there is a sin-
gle time vector that influences all words. In the
future, we will explore model variants to address
this.

4.4 Automatic extraction of time periods

Figure 5: Distribution of time points where a node in
h1 is zero. We could interpret these points as barriers
between time periods.

We can inspect h1, the first layer in the time sub-
network, to gain further understanding of what our
model is doing. We do this by analyzing the time
points where a node in h1 is zero.

As the activation function in h1 is tanh, a node
in h1 switches from positive to negative (or vice
versa) at the time points where it is zero. Thus, the
time points where a node is zero should indicate
barriers between time periods.

We visualize the time points where a node is
zero in Figure 5. We see that we have a fairly
even distribution of points until the 1940s, a large
burst of points in the 1950s-1960s, and two points
in the 1980s. Thus, there are many time periods
before the 1940s (which may be caused by noisi-
ness of the data in the first half of the century), a
big transition between time periods in the 1950s-
1960s, and a transition between time periods in the
1980s. Thus, these are time points that the model
perceives as having increased semantic change.

However, there is a weakness to this analysis.
Only 16% of the 100 nodes in h1 are zero for time
points between 1900 and 2009. Thus, a vast ma-
jority of nodes do not correspond to transitions be-
tween time periods.

5 Conclusion

Diachronic distributional models are a helpful tool
in studying semantic shift. In this paper, we intro-
duced our model of diachronic distributional se-

mantics. Our model incorporates two hypothe-
ses that better help the model capture how words
change usage over time. The first hypothesis is
that semantic change is gradual and the second
hypothesis is that words can change usage due to
common causes.

Additionally, we have developed a novel syn-
thetic task to evaluate how accurately a model
tracks the semantic shift of a word across time.
This task directly measures semantic shift, is
quantifiable, allows model comparison, and fo-
cuses on the trajectory of a word over time.

We have also used the fact that our model is
differentiable to create a measure of the speed at
which a word is changing. We then explored this
measure’s capabilities and limitations.
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A Hyperparameters and preprocessing
details

We used data from the English Fiction section of
the Google Books ngram corpus (Lin et al., 2012).
We use the English fiction specifically, because it
is less unbalanced than the full English section
and less influenced by technical texts (Pechenick
et al., 2015). We only use the years 1900 to 2009
as there is limited data before 1900. Both the
set of target words and the set of context words
are the top 100,000 words by average frequency
across the decades as generated by Hamilton et al.
(2016b). We take a sampling approach to gener-
ating word vectors, so the corpus was converted
into a list of (target word, context word, year, fre-
quency) tuples. Frequency is the expected number
of times the target word is in context of the context
word that year. As the number of texts published
since 1900 has increased five fold, we weigh the
the frequencies so that the sums across each year
are equal.

For every model, the representation of a word’s
use at time t is a 300 dimensional vector. For
SmallBinReg, α1 is set to 1000 and α2 is set
to 1. This choice of hyperparameters comes from
Bamler and Mandt (2017). For DiffT ime, ev-
ery hidden layer is 100 dimensional, except for
embedW (w) which is 300 dimensional.

We trained each method using random mini-
batching with 10,000 samples each iteration and
990 epochs total. For LargeBin, since our study

spans 11 decades (1900-2009), the synchronic
model for each decade is trained for 99 epochs.
For SmallBinPreInit and SmallBinReg, since our
study spans 110 years, the synchronic model for
each year is trained for 9 epochs.

B BLESS class preprocessing

BLESS Class Size

bird 10
building 7
clothing 10
fruit 7
furniture 8
ground mammal 17
tool 12
tree 6
vehicle 6
weapon 7

Table 3: BLESS classes with the number of elements
in each class after our preprocessing.

In this section, we discuss the BLESS prepro-
cessing details. In the original dataset, there are
200 words categorized into 17 classes. How-
ever, we remove words that do not rank in the top
20,000 by frequency in any decade in our training
data to ensure that the synthetic words do not lack
context words at a given time. We then remove
BLESS classes with less than 6 members to ensure
that there are a sufficient number of words in each
class. See Table 3 for the resulting list of BLESS
classes and the number of members of each class.
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Abstract

Modeling hypernymy, such as poodle is-a
dog, is an important generalization aid to
many NLP tasks, such as entailment, coref-
erence, relation extraction, and question an-
swering. Supervised learning from labeled
hypernym sources, such as WordNet, limits
the coverage of these models, which can be
addressed by learning hypernyms from un-
labeled text. Existing unsupervised meth-
ods either do not scale to large vocabularies
or yield unacceptably poor accuracy. This
paper introduces distributional inclusion vec-
tor embedding (DIVE), a simple-to-implement
unsupervised method of hypernym discov-
ery via per-word non-negative vector embed-
dings which preserve the inclusion property
of word contexts in a low-dimensional and
interpretable space. In experimental evalua-
tions more comprehensive than any previous
literature of which we are aware—evaluating
on 11 datasets using multiple existing as well
as newly proposed scoring functions—we find
that our method provides up to double the pre-
cision of previous unsupervised embeddings,
and the highest average performance, using a
much more compact word representation, and
yielding many new state-of-the-art results.

1 Introduction

Numerous applications benefit from compactly
representing context distributions, which assign
meaning to objects under the rubric of distribu-
tional semantics. In natural language process-
ing, distributional semantics has long been used
to assign meanings to words (that is, to lex-
emes in the dictionary, not individual instances
of word tokens). The meaning of a word in
the distributional sense is often taken to be the
set of textual contexts (nearby tokens) in which
that word appears, represented as a large sparse
bag of words (SBOW). Without any supervision,

Word2Vec (Mikolov et al., 2013), among other
approaches based on matrix factorization (Levy
et al., 2015a), successfully compress the SBOW
into a much lower dimensional embedding space,
increasing the scalability and applicability of the
embeddings while preserving (or even improving)
the correlation of geometric embedding similari-
ties with human word similarity judgments.

While embedding models have achieved im-
pressive results, context distributions capture more
semantic information than just word similarity.
The distributional inclusion hypothesis (DIH)
(Weeds and Weir, 2003; Geffet and Dagan, 2005;
Cimiano et al., 2005) posits that the context set of a
word tends to be a subset of the contexts of its hy-
pernyms. For a concrete example, most adjectives
that can be applied to poodle can also be applied
to dog, because dog is a hypernym of poodle (e.g.
both can be obedient). However, the converse is
not necessarily true — a dog can be straight-haired
but a poodle cannot. Therefore, dog tends to have
a broader context set than poodle. Many asymmet-
ric scoring functions comparing SBOW features
based on DIH have been developed for hypernymy
detection (Weeds and Weir, 2003; Geffet and Da-
gan, 2005; Shwartz et al., 2017).

Hypernymy detection plays a key role in
many challenging NLP tasks, such as textual
entailment (Sammons et al., 2011), corefer-
ence (Ponzetto and Strube, 2006), relation extrac-
tion (Demeester et al., 2016) and question answer-
ing (Huang et al., 2008). Leveraging the variety
of contexts and inclusion properties in context dis-
tributions can greatly increase the ability to dis-
cover taxonomic structure among words (Shwartz
et al., 2017). The inability to preserve these fea-
tures limits the semantic representation power and
downstream applicability of some popular unsu-
pervised learning approaches such as Word2Vec.

Several recently proposed methods aim to en-
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code hypernym relations between words in dense
embeddings, such as Gaussian embedding (Vil-
nis and McCallum, 2015; Athiwaratkun and
Wilson, 2017), Boolean Distributional Seman-
tic Model (Kruszewski et al., 2015), order em-
bedding (Vendrov et al., 2016), H-feature detec-
tor (Roller and Erk, 2016), HyperVec (Nguyen
et al., 2017), dual tensor (Glavaš and Ponzetto,
2017), Poincaré embedding (Nickel and Kiela,
2017), and LEAR (Vulić and Mrkšić, 2017). How-
ever, the methods focus on supervised or semi-
supervised settings where a massive amount of hy-
pernym annotations are available (Vendrov et al.,
2016; Roller and Erk, 2016; Nguyen et al., 2017;
Glavaš and Ponzetto, 2017; Vulić and Mrkšić,
2017), do not learn from raw text (Nickel and
Kiela, 2017) or lack comprehensive experiments
on the hypernym detection task (Vilnis and Mc-
Callum, 2015; Athiwaratkun and Wilson, 2017).

Recent studies (Levy et al., 2015b; Shwartz
et al., 2017) have underscored the difficulty of
generalizing supervised hypernymy annotations to
unseen pairs — classifiers often effectively memo-
rize prototypical hypernyms (‘general’ words) and
ignore relations between words. These findings
motivate us to develop more accurate and scal-
able unsupervised embeddings to detect hyper-
nymy and propose several scoring functions to an-
alyze the embeddings from different perspectives.

1.1 Contributions

• A novel unsupervised low-dimensional embed-
ding method via performing non-negative ma-
trix factorization (NMF) on a weighted PMI ma-
trix, which can be efficiently optimized using
modified skip-grams.

• Theoretical and qualitative analysis illustrate
that the proposed embedding can intuitively
and interpretably preserve inclusion relations
among word contexts.

• Extensive experiments on 11 hypernym detec-
tion datasets demonstrate that the learned em-
beddings dominate previous low-dimensional
unsupervised embedding approaches, achieving
similar or better performance than SBOW, on
both existing and newly proposed asymmetric
scoring functions, while requiring much less
memory and compute.

2 Method

The distributional inclusion hypothesis (DIH) sug-
gests that the context set of a hypernym tends to
contain the context set of its hyponyms. When
representing a word as the counts of contextual
co-occurrences, the count in every dimension of
hypernym y tends to be larger than or equal to the
corresponding count of its hyponym x:

x � y ⇐⇒ ∀c ∈ V, #(x, c) ≤ #(y, c), (1)

where x � y means y is a hypernym of x, V is
the set of vocabulary, and #(x, c) indicates the
number of times that word x and its context word
c co-occur in a small window with size |W | in
the corpus of interest D. Notice that the con-
cept of DIH could be applied to different context
word representations. For example, Geffet and
Dagan (2005) represent each word by the set of its
co-occurred context words while discarding their
counts. In this study, we define the inclusion prop-
erty based on counts of context words in (1) be-
cause the counts are an effective and noise-robust
feature for the hypernymy detection using only the
context distribution of words (Clarke, 2009; Vulić
et al., 2016; Shwartz et al., 2017).

Our goal is to produce lower-dimensional em-
beddings preserving the inclusion property that the
embedding of hypernym y is larger than or equal
to the embedding of its hyponym x in every di-
mension. Formally, the desired property can be
written as

x � y ⇐⇒ x[i] ≤ y[i] , ∀i ∈ {1, ..., L}, (2)

where L is number of dimensions in the embed-
ding space. We add additional non-negativity con-
straints, i.e. x[i] ≥ 0,y[i] ≥ 0,∀i, in order to in-
crease the interpretability of the embeddings (the
reason will be explained later in this section).

This is a challenging task. In reality, there are
a lot of noise and systematic biases that cause the
violation of DIH in Equation (1) (i.e. #(x, c) >
#(y, c) for some neighboring word c), but the
general trend can be discovered by processing
thousands of neighboring words in SBOW to-
gether (Shwartz et al., 2017). After the compres-
sion, the same trend has to be estimated in a much
smaller embedding space which discards most of
the information in SBOW, so it is not surprising
to see most of the unsupervised hypernymy detec-
tion studies focus on SBOW (Shwartz et al., 2017)
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and the existing unsupervised embedding meth-
ods like Gaussian embedding have degraded ac-
curacy (Vulić et al., 2016).

2.1 Inclusion Preserving Matrix
Factorization

Popular methods of unsupervised word embed-
ding are usually based on matrix factoriza-
tion (Levy et al., 2015a). The approaches first
compute a co-occurrence statistic between the wth
word and the cth context word as the (w, c)th el-
ement of the matrix M [w, c]. Next, the matrix M
is factorized such that M [w, c] ≈ wT c, where w
is the low dimension embedding of wth word and
c is the cth context embedding.

The statistic in M [w, c] is usually related to
pointwise mutual information (Levy et al., 2015a):
PMI(w, c) = log( P (w,c)

P (w)·P (c)), where P (w, c) =
#(w,c)
|D| , |D| =

∑
w∈V

∑
c∈V

#(w, c) is number of co-

occurrence word pairs in the corpus, P (w) =
#(w)
|D| , #(w) =

∑
c∈V

#(w, c) is the frequency of

the word w times the window size |W |, and simi-
larly for P (c). For example, M [w, c] could be set
as positive PMI (PPMI), max(PMI(w, c), 0), or
shifted PMI, PMI(w, c) − log(k′), which (Levy
and Goldberg, 2014) demonstrate is connected to
skip-grams with negative sampling (SGNS).

Intuitively, since M [w, c] ≈ wT c, larger em-
bedding values of w at every dimension seems
to imply larger wT c, larger M [w, c], larger
PMI(w, c), and thus larger co-occurrence count
#(w, c). However, the derivation has two flaws:
(1) c could contain negative values and (2) lower
#(w, c) could still lead to larger PMI(w, c) as
long as the #(w) is small enough.

To preserve DIH, we propose a novel word
embedding method, distributional inclusion vec-
tor embedding (DIVE), which fixes the two
flaws by performing non-negative factorization
(NMF) (Lee and Seung, 2001) on the matrix M ,
where M [w, c] =

log(
P (w, c)

P (w) · P (c)
· #(w)

kI · Z
) = log(

#(w, c)|V |
#(c)kI

),

(3)
where kI is a constant which shifts PMI value like
SGNS, Z = |D|

|V | is the average word frequency,
and |V | is the vocabulary size. We call this weight-
ing term #(w)

Z inclusion shift.
After applying the non-negativity constraint and

inclusion shift, the inclusion property in DIVE

(i.e. Equation (2)) implies that Equation (1) (DIH)
holds if the matrix is reconstructed perfectly. The
derivation is simple: If the embedding of hyper-
nym y is greater than or equal to the embedding
of its hyponym x in every dimension (x[i] ≤
y[i] , ∀i), xT c ≤ yT c since context vector c is non-
negative. Then,M [x, c] ≤M [y, c] tends to be true
because wT c ≈ M [w, c]. This leads to #(x, c) ≤
#(y, c) because M [w, c] = log(#(w,c)|V |

#(c)kI
) and

only #(w, c) changes with w.

2.2 Optimization

Due to its appealing scalability properties during
training time (Levy et al., 2015a), we optimize our
embedding based on the skip-gram with negative
sampling (SGNS) (Mikolov et al., 2013). The ob-
jective function of SGNS is

lSGNS =
∑

w∈V

∑

c∈V
#(w, c) log σ(wT c) +

∑

w∈V
k′

∑

c∈V
#(w, c) E

cN∼PD

[log σ(−wT cN)],
(4)

where w ∈ R, c ∈ R, cN ∈ R, σ is the logis-
tic sigmoid function, and k′ is a constant hyper-
parameter indicating the ratio between positive
and negative samples.

Levy and Goldberg (2014) demonstrate SGNS
is equivalent to factorizing a shifted PMI matrix
M ′, where M ′[w, c] = log( P (w,c)

P (w)·P (c) · 1
k′ ). By

setting k′ = kI ·Z
#(w) and applying non-negativity

constraints to the embeddings, DIVE can be op-
timized using the similar objective function:

lDIV E =
∑

w∈V

∑

c∈V
#(w, c) log σ(wT c) +

kI
∑

w∈V

Z

#(w)

∑

c∈V
#(w, c) E

cN∼PD

[log σ(−wT cN)],
(5)

where w ≥ 0, c ≥ 0, cN ≥ 0, and kI is a constant
hyper-parameter. PD is the distribution of negative
samples, which we set to be the corpus word fre-
quency distribution (not reducing the probability
of drawing frequent words like SGNS) in this pa-
per. Equation (5) is optimized by ADAM (Kingma
and Ba, 2015), a variant of stochastic gradient
descent (SGD). The non-negativity constraint is
implemented by projection (Polyak, 1969) (i.e.
clipping any embedding which crosses the zero
boundary after an update).

The optimization process provides an alterna-
tive angle to explain how DIVE preserves DIH.
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id Top 1-5 words Top 51-55 words

1 find, specie, species, animal, bird hunt, terrestrial, lion, planet, shark

2 system, blood, vessel, artery, intestine function, red, urinary, urine, tumor

3 head, leg, long, foot, hand shoe, pack, food, short, right

4 may, cell, protein, gene, receptor neuron, eukaryotic, immune, kinase, generally

5 sea, lake, river, area, water terrain, southern, mediterranean, highland, shallow

6 cause, disease, effect, infection, increase stress, problem, natural, earth, hazard

7 female, age, woman, male, household spread, friend, son, city, infant

8 food, fruit, vegetable, meat, potato fresh, flour, butter, leave, beverage

9 element, gas, atom, rock, carbon light, dense, radioactive, composition, deposit

10 number, million, total, population, estimate increase, less, capita, reach, male

11 industry, export, industrial, economy, company centre, chemical, construction, fish, small

Output: Embedding of every word 
(e.g. rodent and mammal) 

Input: Plaintext corpus

mammal
rodent

many specie of rodent and reptile 
live in every corner of the province

whether standard carcinogen 
assay on rodent be successful

geographic region for describe species 
distribution - to cover mammal ,

ammonia solution do not usually cause 
problem for human and other mammal

separate the aquatic mammal from fish

…..

…..

…..

…..

Figure 1: The embedding of the words rodent and mammal trained by the co-occurrence statistics of context words
using DIVE. The index of dimensions is sorted by the embedding values of mammal and values smaller than 0.1
are neglected. The top 5 words (sorted by its embedding value of the dimension) tend to be more general or more
representative on the topic than the top 51-105 words.

The gradients for the word embedding w is

dlDIV E

dw
=

∑

c∈V
#(w, c)(1− σ(wT c))c −

kI
∑

cN∈V

#(cN )

|V | σ(wT cN)cN.

(6)

Assume hyponym x and hypernym y satisfy DIH
in Equation (1) and the embeddings x and y are
the same at some point during the gradient as-
cent. At this point, the gradients coming from
negative sampling (the second term) decrease the
same amount of embedding values for both x and
y. However, the embedding of hypernym y would
get higher or equal positive gradients from the first
term than x in every dimension because #(x, c) ≤
#(y, c). This means Equation (1) tends to imply
Equation (2) because the hypernym has larger gra-
dients everywhere in the embedding space.

Combining the analysis from the matrix fac-
torization viewpoint, DIH in Equation (1) is ap-
proximately equivalent to the inclusion property in
DIVE (i.e. Equation (2)).

2.3 PMI Filtering
For a frequent target word, there must be many
neighboring words that incidentally appear near
the target word without being semantically mean-
ingful, especially when a large context window
size is used. The unrelated context words cause
noise in both the word vector and the context vec-
tor of DIVE. We address this issue by filtering
out context words c for each target word w when
the PMI of the co-occurring words is too small
(i.e. log( P (w,c)

P (w)·P (c)) < log(kf )). That is, we set

#(w, c) = 0 in the objective function. This pre-
processing step is similar to computing PPMI in
SBOW (Bullinaria and Levy, 2007), where low
PMI co-occurrences are removed from SBOW.

2.4 Interpretability

After applying the non-negativity constraint, we
observe that each latent factor in the embedding is
interpretable as previous findings suggest (Pauca
et al., 2004; Murphy et al., 2012) (i.e. each dimen-
sion roughly corresponds to a topic). Furthermore,
DIH suggests that a general word appears in more
diverse contexts/topics. By preserving DIH using
inclusion shift, the embedding of a general word
(i.e. hypernym of many other words) tends to have
larger values in these dimensions (topics). This
gives rise to a natural and intuitive interpretation of
our word embeddings: the word embeddings can
be seen as unnormalized probability distributions
over topics. In Figure 1, we visualize the unnor-
malized topical distribution of two words, rodent
and mammal, as an example. Since rodent is a kind
of mammal, the embedding (i.e. unnormalized top-
ical distribution) of mammal includes the embed-
ding of rodent when DIH holds. More examples
are illustrated in our supplementary materials.

3 Unsupervised Embedding Comparison

In this section, we compare DIVE with other unsu-
pervised hypernym detection methods. In this pa-
per, unsupervised approaches refer to the methods
that only train on plaintext corpus without using
any hypernymy or lexicon annotation.
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Dataset BLESS EVALution LenciBenotto Weeds Medical LEDS
Random 5.3 26.6 41.2 51.4 8.5 50.5

Word2Vec + C 9.2 25.4 40.8 51.6 11.2 71.8
GE + C 10.5 26.7 43.3 52.0 14.9 69.7

GE + KL 7.6 29.6 45.1 51.3 15.7 64.6 (803)
DIVE + C·∆S 16.3 33.0 50.4 65.5 19.2 83.5

Dataset TM14 Kotlerman 2010 HypeNet WordNet Avg (10 datasets) HyperLex
Random 52.0 30.8 24.5 55.2 23.2 0

Word2Vec + C 52.1 39.5 20.7 63.0 25.3 16.3
GE + C 53.9 36.0 21.6 58.2 26.1 16.4

GE + KL 52.0 39.4 23.7 54.4 25.9 9.6 (20.63)
DIVE + C·∆S 57.2 36.6 32.0 60.9 32.7 32.8

Table 1: Comparison with other unsupervised embedding methods. The scores are AP@all (%) for the first 10
datasets and Spearman ρ (%) for HyperLex. Avg (10 datasets) shows the micro-average AP of all datasets except
HyperLex. Word2Vec+C scores word pairs using cosine similarity on skip-grams. GE+C and GE+KL compute
cosine similarity and negative KL divergence on Gaussian embedding, respectively.

3.1 Experiment Setup

The embeddings are tested on 11 datasets.
The first 4 datasets come from the recent re-
view of Shwartz et al. (2017)1: BLESS (Ba-
roni and Lenci, 2011), EVALution (Santus
et al., 2015), Lenci/Benotto (Benotto, 2015), and
Weeds (Weeds et al., 2014). The next 4 datasets
are downloaded from the code repository of the
H-feature detector (Roller and Erk, 2016)2: Med-
ical (i.e., Levy 2014) (Levy et al., 2014), LEDS
(also referred to as ENTAILMENT or Baroni
2012) (Baroni et al., 2012), TM14 (i.e., Tur-
ney 2014) (Turney and Mohammad, 2015), and
Kotlerman 2010 (Kotlerman et al., 2010). In ad-
dition, the performance on the test set of Hy-
peNet (Shwartz et al., 2016) (using the random
train/test split), the test set of WordNet (Vendrov
et al., 2016), and all pairs in HyperLex (Vulić
et al., 2016) are also evaluated.

The F1 and accuracy measurements are some-
times very similar even though the quality of pre-
diction varies, so we adopted average precision,
AP@all (Zhu, 2004) (equivalent to the area under
the precision-recall curve when the constant inter-
polation is used), as the main evaluation metric.
The HyperLex dataset has a continuous score on
each candidate word pair, so we adopt Spearman
rank coefficient ρ (Fieller et al., 1957) as suggested
by the review study of Vulić et al. (2016). Any
OOV (out-of-vocabulary) word encountered in the
testing data is pushed to the bottom of the predic-
tion list (effectively assuming the word pair does
not have hypernym relation).

1https://github.com/vered1986/
UnsupervisedHypernymy

2https://github.com/stephenroller/
emnlp2016/

We trained all methods on the first 51.2 mil-
lion tokens of WaCkypedia corpus (Baroni et al.,
2009) because DIH holds more often in this subset
(i.e. SBOW works better) compared with that in
the whole WaCkypedia corpus. The window size
|W | of DIVE and Gaussian embedding are set as
20 (left 10 words and right 10 words). The num-
ber of embedding dimensions in DIVE L is set to
be 100. The other hyper-parameters of DIVE and
Gaussian embedding are determined by the train-
ing set of HypeNet. Other experimental details are
described in our supplementary materials.

3.2 Results

If a pair of words has hypernym relation, the words
tend to be similar (sharing some context words)
and the hypernym should be more general than
the hyponym. Section 2.4 has shown that the em-
bedding could be viewed as an unnormalized topic
distribution of its context, so the embedding of hy-
pernym should be similar to the embedding of its
hyponym but having larger magnitude. As in Hy-
perVec (Nguyen et al., 2017), we score the hyper-
nym candidates by multiplying two factors corre-
sponding to these properties. The C·∆S (i.e. the
cosine similarity multiply the difference of sum-
mation) scoring function is defined as

C ·∆S(wq → wp) =
wT

q wp

||wq||2 · ||wp||2
· (‖wp‖1 − ‖wq‖1),

(7)

where wp is the embedding of hypernym and wq

is the embedding of hyponym.
As far as we know, Gaussian embedding

(GE) (Vilnis and McCallum, 2015) is the state-
of-the-art unsupervised embedding method which
can capture the asymmetric relations between a
hypernym and its hyponyms. Gaussian embedding
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encodes the context distribution of each word as a
multivariate Gaussian distribution, where the em-
beddings of hypernyms tend to have higher vari-
ance and overlap with the embedding of their hy-
ponyms. In Table 1, we compare DIVE with
Gaussian embedding3 using the code implemented
by Athiwaratkun and Wilson (2017)4 and with
word cosine similarity using skip-grams. The per-
formances of random scores are also presented for
reference. As we can see, DIVE is usually signifi-
cantly better than other unsupervised embedding.

4 SBOW Comparison

Unlike Word2Vec, which only tries to preserve the
similarity signal, the goals of DIVE cover preserv-
ing the capability of measuring not only the simi-
larity but also whether one context distribution in-
cludes the other (inclusion signal) or being more
general than the other (generality signal).

In this experiment, we perform a comprehen-
sive comparison between SBOW and DIVE using
multiple scoring functions to detect the hypernym
relation between words based on different types of
signal. The window size |W | of SBOW is also
set as 20, and experiment setups are the same as
that described in Section 3.1. Notice that the com-
parison is inherently unfair because most of the
information would be lost during the aggressive
compression process of DIVE, and we would like
to evaluate how well DIVE can preserve signals
of interest using the number of dimensions which
is several orders of magnitude less than that of
SBOW.

4.1 Unsupervised Scoring Functions

After trying many existing and newly proposed
functions which score a pair of words to detect hy-
pernym relation between them, we find that good
scoring functions for SBOW are also good scor-
ing functions for DIVE. Thus, in addition to C·∆S
used in Section 3.2, we also present 4 other best
performing or representative scoring functions in
the experiment (see our supplementary materials
for more details):

3 Note that higher AP is reported for some models in
previous literature: 80 (Vilnis and McCallum, 2015) in
LEDS, 74.2 (Athiwaratkun and Wilson, 2017) in LEDS, and
20.6 (Vulić et al., 2016) in HyperLex. The difference could
be caused by different train/test setup (e.g. How the hyper-
parameters are tuned, different training corpus, etc.). How-
ever, DIVE beats even these results.

4https://github.com/benathi/word2gm

• Inclusion: CDE (Clarke, 2009) computes the
summation of element-wise minimum over
the magnitude of hyponym embedding (i.e.
||min(wp,wq)||1

||wq ||1 ). CDE measures the degree of vi-
olation of equation (1). Equation (1) holds if
and only if CDE is 1. Due to noise in SBOW,
CDE is rarely exactly 1, but hypernym pairs
usually have higher CDE. Despite its effective-
ness, the good performance could mostly come
from the magnitude of embeddings/features in-
stead of inclusion properties among context dis-
tributions. To measure the inclusion properties
between context distributions dp and dq (wp and
wq after normalization, respectively), we use
negative asymmetric L1 distance (−AL1)5 as
one of our scoring function, where

AL1 = min
a

∑

c

w0 ·max(adq[c]− dp[c], 0)+

max(dp[c]− adq[c], 0),
(8)

and w0 is a constant hyper-parameter.

• Generality: When the inclusion property in (2)
holds, ||y||1 =

∑
i y[i] ≥ ∑

i x[i] = ||x||1.
Thus, we use summation difference (||wp||1 −
||wq||1) as our score to measure generality sig-
nal (∆S).

• Similarity plus generality: Computing cosine
similarity on skip-grams (i.e. Word2Vec + C in
Table 1) is a popular way to measure the similar-
ity of two words, so we multiply the Word2Vec
similarity with summation difference of DIVE
or SBOW (W·∆S) as an alternative of C·∆S.

4.2 Baselines
• SBOW Freq: A word is represented by the fre-

quency of its neighboring words. Applying PMI
filter (set context feature to be 0 if its value is
lower than log(kf )) to SBOW Freq only makes
its performances closer to (but still much worse
than) SBOW PPMI, so we omit the baseline.

• SBOW PPMI: SBOW which uses PPMI of
its neighboring words as the features (Bulli-
naria and Levy, 2007). Applying PMI filter to
SBOW PPMI usually makes the performances
worse, especially when kf is large. Similarly,
a constant log(k′) shifting to SBOW PPMI (i.e.
max(PMI − log(k′), 0)) is not helpful, so we
set both kf and k′ to be 1.
5The meaning and efficient implementation of AL1 are

illustrated in our supplementary materials
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AP@all (%)
BLESS EVALution Lenci/Benotto

CDE AL1 ∆S W·∆S C·∆S CDE AL1 ∆S W·∆S C·∆S CDE AL1 ∆S W·∆S C·∆S

SBOW

Freq 6.3 7.3 5.6 11.0 5.9 35.3 32.6 36.2 33.0 36.3 51.8 47.6 51.0 51.8 51.1
PPMI 13.6 5.1 5.6 17.2 15.3 30.4 27.7 34.1 31.9 34.3 47.2 39.7 50.8 51.1 52.0

PPMI w/ IS 6.2 5.0 5.5 12.4 5.8 36.0 27.5 36.3 32.9 36.4 52.0 43.1 50.9 51.9 50.7
All wiki 12.1 5.2 6.9 12.5 13.4 28.5 27.1 30.3 29.9 31.0 47.1 39.9 48.5 48.7 51.1

DIVE
Full 9.3 7.6 6.0 18.6 16.3 30.0 27.5 34.9 32.3 33.0 46.7 43.2 51.3 51.5 50.4

w/o PMI 7.8 6.9 5.6 16.7 7.1 32.8 32.2 35.7 32.5 35.4 47.6 44.9 50.9 51.6 49.7
w/o IS 9.0 6.2 7.3 6.2 7.3 24.3 25.0 22.9 23.5 23.9 38.8 38.1 38.2 38.2 38.4

Kmean (Freq NMF) 6.5 7.3 5.6 10.9 5.8 33.7 27.2 36.2 33.0 36.2 49.6 42.5 51.0 51.8 51.2

AP@all (%)
Weeds Micro Average (4 datasets) Medical

CDE AL1 ∆S W·∆S C·∆S CDE AL1 ∆S W·∆S C·∆S CDE AL1 ∆S W·∆S C·∆S

SBOW

Freq 69.5 58.0 68.8 68.2 68.4 23.1 21.8 22.9 25.0 23.0 19.4 19.2 14.1 18.4 15.3
PPMI 61.0 50.3 70.3 69.2 69.3 24.7 17.9 22.3 28.1 27.8 23.4 8.7 13.2 20.1 24.4

PPMI w/ IS 67.6 52.2 69.4 68.7 67.7 23.2 18.2 22.9 25.8 22.9 22.8 10.6 13.7 18.6 17.0
All wiki 61.3 48.6 70.0 68.5 70.4 23.4 17.7 21.7 24.6 25.8 22.3 8.9 12.2 17.6 21.1

DIVE
Full 59.2 55.0 69.7 68.6 65.5 22.1 19.8 22.8 28.9 27.6 11.7 9.3 13.7 21.4 19.2

w/o PMI 60.4 56.4 69.3 68.6 64.8 22.2 21.0 22.7 28.0 23.1 10.7 8.4 13.3 19.8 16.2
w/o IS 49.2 47.3 45.1 45.1 44.9 18.9 17.3 17.2 16.8 17.5 10.9 9.8 7.4 7.6 7.7

Kmean (Freq NMF) 69.4 51.1 68.8 68.2 68.9 22.5 19.3 22.9 24.9 23.0 12.6 10.9 14.0 18.1 14.6

AP@all (%)
LEDS TM14 Kotlerman 2010

CDE AL1 ∆S W·∆S C·∆S CDE AL1 ∆S W·∆S C·∆S CDE AL1 ∆S W·∆S C·∆S

SBOW

Freq 82.7 70.4 70.7 83.3 73.3 55.6 53.2 54.9 55.7 55.0 35.9 40.5 34.5 37.0 35.4
PPMI 84.4 50.2 72.2 86.5 84.5 56.2 52.3 54.4 57.0 57.6 39.1 30.9 33.0 37.0 36.3

PPMI w/ IS 81.6 54.5 71.0 84.7 73.1 57.1 51.5 55.1 56.2 55.4 37.4 31.0 34.4 37.8 35.9
All wiki 83.1 49.7 67.9 82.9 81.4 54.7 50.5 52.6 55.1 54.9 38.5 31.2 32.2 35.4 35.3

DIVE
Full 83.3 74.7 72.7 86.4 83.5 55.3 52.6 55.2 57.3 57.2 35.3 31.6 33.6 37.4 36.6

w/o PMI 79.3 74.8 72.0 85.5 78.7 54.7 53.9 54.9 56.5 55.4 35.4 38.9 33.8 37.8 36.7
w/o IS 64.6 55.4 43.2 44.3 46.1 51.9 51.2 50.4 52.0 51.8 32.9 33.4 28.1 30.2 29.7

Kmean (Freq NMF) 80.3 64.5 70.7 83.0 73.0 54.8 49.0 54.8 55.6 54.8 32.1 37.0 34.5 36.9 34.8

AP@all (%)
HypeNet WordNet Micro Average (10 datasets)

CDE AL1 ∆S W·∆S C·∆S CDE AL1 ∆S W·∆S C·∆S CDE AL1 ∆S W·∆S C·∆S

SBOW

Freq 37.5 28.3 46.9 35.9 43.4 56.6 55.2 55.5 56.2 55.6 31.1 28.2 31.5 31.6 31.2
PPMI 23.8 24.0 47.0 32.5 33.1 57.7 53.9 55.6 56.8 57.2 30.1 23.0 31.1 32.9 33.5

PPMI w/ IS 38.5 26.7 47.2 35.5 37.6 57.0 54.1 55.7 56.6 55.7 31.8 24.1 31.5 32.1 30.3
All wiki 23.0 24.5 40.5 30.5 29.7 57.4 53.1 56.0 56.4 57.3 29.0 23.1 29.2 30.2 31.1

DIVE
Full 25.3 24.2 49.3 33.6 32.0 60.2 58.9 58.4 61.1 60.9 27.6 25.3 32.1 34.1 32.7

w/o PMI 31.3 27.0 46.9 33.8 34.0 59.2 60.1 58.2 61.1 59.1 28.5 26.7 31.5 33.4 30.1
w/o IS 20.1 21.7 20.3 21.8 22.0 61.0 56.3 51.3 55.7 54.7 22.3 20.7 19.1 19.6 19.9

Kmean (Freq NMF) 33.7 22.0 46.0 35.6 45.2 58.4 60.2 57.7 60.1 57.9 29.1 24.7 31.5 31.8 31.5

Table 2: AP@all (%) of 10 datasets. The box at lower right corner compares the micro average AP across all
10 datasets. Numbers in different rows come from different feature or embedding spaces. Numbers in different
columns come from different datasets and unsupervised scoring functions. We also present the micro average AP
across the first 4 datasets (BLESS, EVALution, Lenci/Benotto and Weeds), which are used as a benchmark for
unsupervised hypernym detection (Shwartz et al., 2017). IS refers to inclusion shift on the shifted PMI matrix.

Spearman ρ (%)
HyperLex

CDE AL1 ∆S W·∆S C·∆S

SBOW

Freq 31.7 19.6 27.6 29.6 27.3
PPMI 28.1 -2.3 31.8 34.3 34.5

PPMI w/ IS 32.4 2.1 28.5 31.0 27.4
All wiki 25.3 -2.2 28.0 30.5 31.0

DIVE
Full 28.9 18.7 31.2 33.3 32.8

w/o PMI 29.2 22.2 29.5 31.9 29.2
w/o IS 11.5 -0.9 -6.2 -10.0 -11.6

Kmean (Freq NMF) 30.6 3.3 27.5 29.5 27.6

Table 3: Spearman ρ (%) in HyperLex.

SBOW Freq SBOW PPMI DIVE
5799 3808 20

Table 4: The average number of non-zero dimensions
across all testing words in 10 datasets.

• SBOW PPMI w/ IS (with additional inclu-
sion shift): The matrix reconstructed by DIVE
when kI = 1. Specifically, w[c] =

max(log( P (w,c)

P (w)∗P (c)∗ Z
#(w)

), 0).

• SBOW all wiki: SBOW using PPMI features
trained on the whole WaCkypedia.

• DIVE without the PMI filter (DIVE w/o PMI)

• NMF on shifted PMI: Non-negative matrix fac-
torization (NMF) on the shifted PMI without
inclusion shift for DIVE (DIVE w/o IS). This
is the same as applying the non-negative con-
straint on the skip-gram model.
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• K-means (Freq NMF): The method first uses
Mini-batch k-means (Sculley, 2010) to clus-
ter words in skip-gram embedding space into
100 topics, and hashes each frequency count in
SBOW into the corresponding topic. If running
k-means on skip-grams is viewed as an approx-
imation of clustering the SBOW context vec-
tors, the method can be viewed as a kind of
NMF (Ding et al., 2005).

DIVE performs non-negative matrix factoriza-
tion on PMI matrix after applying inclusion shift
and PMI filtering. To demonstrate the effective-
ness of each step, we show the performances of
DIVE after removing PMI filtering (DIVE w/o
PMI), removing inclusion shift (DIVE w/o IS),
and removing matrix factorization (SBOW PPMI
w/ IS, SBOW PPMI, and SBOW all wiki). The
methods based on frequency matrix are also tested
(SBOW Freq and Freq NMF).

4.3 Results and Discussions

In Table 2, we first confirm the finding of the pre-
vious review study of Shwartz et al. (2017): there
is no single hypernymy scoring function which al-
ways outperforms others. One of the main reasons
is that different datasets collect negative samples
differently. For example, if negative samples come
from random word pairs (e.g. WordNet dataset),
a symmetric similarity measure is a good scor-
ing function. On the other hand, negative sam-
ples come from related or similar words in Hy-
peNet, EVALution, Lenci/Benotto, and Weeds, so
only estimating generality difference leads to the
best (or close to the best) performance. The neg-
ative samples in many datasets are composed of
both random samples and similar words (such as
BLESS), so the combination of similarity and gen-
erality difference yields the most stable results.

DIVE performs similar or better on most of the
scoring functions compared with SBOW consis-
tently across all datasets in Table 2 and Table 3,
while using many fewer dimensions (see Table 4).
This leads to 2-3 order of magnitude savings on
both memory consumption and testing time. Fur-
thermore, the low dimensional embedding makes
the computational complexity independent of the
vocabulary size, which drastically boosts the scal-
ability of unsupervised hypernym detection es-
pecially with the help of GPU. It is surprising
that we can achieve such aggressive compression
while preserving the similarity, generality, and in-

clusion signal in various datasets with different
types of negative samples. Its results on C·∆S and
W·∆S outperform SBOW Freq. Meanwhile, its
results onAL1 outperform SBOW PPMI. The fact
that W·∆S or C·∆S usually outperform generality
functions suggests that only memorizing general
words is not sufficient. The best average perfor-
mance on 4 and 10 datasets are both produced by
W·∆S on DIVE.

SBOW PPMI improves the W·∆S and C·∆S
from SBOW Freq but sacrifices AP on the inclu-
sion functions. It generally hurts performance to
directly include inclusion shift in PPMI (PPMI w/
IS) or compute SBOW PPMI on the whole WaCk-
ypedia (all wiki) instead of the first 51.2 million
tokens. The similar trend can also be seen in Ta-
ble 3. Note that AL1 completely fails in the Hy-
perLex dataset using SBOW PPMI, which sug-
gests that PPMI might not necessarily preserve the
distributional inclusion property, even though it
can have good performance on scoring functions
combining similarity and generality signals.

Removing the PMI filter from DIVE slightly
drops the overall precision while removing inclu-
sion shift on shifted PMI (w/o IS) leads to poor
performances. K-means (Freq NMF) produces
similar AP compared with SBOW Freq but has
worse AL1 scores. Its best AP scores on differ-
ent datasets are also significantly worse than the
best AP of DIVE. This means that only making
Word2Vec (skip-grams) non-negative or naively
accumulating topic distribution in contexts cannot
lead to satisfactory embeddings.

5 Related Work

Most previous unsupervised approaches focus on
designing better hypernymy scoring functions for
sparse bag of word (SBOW) features. They are
well summarized in the recent study (Shwartz
et al., 2017). Shwartz et al. (2017) also evaluate
the influence of different contexts, such as chang-
ing the window size of contexts or incorporating
dependency parsing information, but neglect scal-
ability issues inherent to SBOW methods.

A notable exception is the Gaussian embedding
model (Vilnis and McCallum, 2015), which repre-
sents each word as a Gaussian distribution. How-
ever, since a Gaussian distribution is normalized, it
is difficult to retain frequency information during
the embedding process, and experiments on Hy-
perLex (Vulić et al., 2016) demonstrate that a sim-
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ple baseline only relying on word frequency can
achieve good results. Follow-up work models con-
texts by a mixture of Gaussians (Athiwaratkun and
Wilson, 2017) relaxing the unimodality assump-
tion but achieves little improvement on hypernym
detection tasks.

Kiela et al. (2015) show that images retrieved
by a search engine can be a useful source of in-
formation to determine the generality of lexicons,
but the resources (e.g. pre-trained image classifier
for the words of interest) might not be available in
many domains.

Order embedding (Vendrov et al., 2016) is a
supervised approach to encode many annotated
hypernym pairs (e.g. all of the whole Word-
Net (Miller, 1995)) into a compact embedding
space, where the embedding of a hypernym should
be smaller than the embedding of its hyponym
in every dimension. Our method learns embed-
ding from raw text, where a hypernym embed-
ding should be larger than the embedding of its
hyponym in every dimension. Thus, DIVE can be
viewed as an unsupervised and reversed form of
order embedding.

Non-negative matrix factorization (NMF) has
a long history in NLP, for example in the con-
struction of topic models (Pauca et al., 2004).
Non-negative sparse embedding (NNSE) (Murphy
et al., 2012) and Faruqui et al. (2015) indicate that
non-negativity can make embeddings more inter-
pretable and improve word similarity evaluations.
The sparse NMF is also shown to be effective in
cross-lingual lexical entailment tasks but does not
necessarily improve monolingual hypernymy de-
tection (Vyas and Carpuat, 2016). In our study, we
show that performing NMF on PMI matrix with
inclusion shift can preserve DIH in SBOW, and
the comprehensive experimental analysis demon-
strates its state-of-the-art performances on unsu-
pervised hypernymy detection.

6 Conclusions

Although large SBOW vectors consistently show
the best all-around performance in unsupervised
hypernym detection, it is challenging to compress
them into a compact representation which pre-
serves inclusion, generality, and similarity signals
for this task. Our experiments suggest that the
existing approaches and simple baselines such as
Gaussian embedding, accumulating K-mean clus-
ters, and non-negative skip-grams do not lead to

satisfactory performance.
To achieve this goal, we propose an inter-

pretable and scalable embedding method called
distributional inclusion vector embedding (DIVE)
by performing non-negative matrix factorization
(NMF) on a weighted PMI matrix. We demon-
strate that scoring functions which measure in-
clusion and generality properties in SBOW can
also be applied to DIVE to detect hypernymy, and
DIVE performs the best on average, slightly better
than SBOW while using many fewer dimensions.

Our experiments also indicate that unsupervised
scoring functions which combine similarity and
generality measurements work the best in general,
but no one scoring function dominates across all
datasets. A combination of unsupervised DIVE
with the proposed scoring functions produces new
state-of-the-art performances on many datasets in
the unsupervised regime.

7 Acknowledgement

This work was supported in part by the Center
for Data Science and the Center for Intelligent
Information Retrieval, in part by DARPA under
agreement number FA8750-13-2-0020, in part by
Defense Advanced Research Agency (DARPA)
contract number HR0011-15-2-0036, in part by
the National Science Foundation (NSF) grant
numbers DMR-1534431 and IIS-1514053 and in
part by the Chan Zuckerberg Initiative under the
project Scientific Knowledge Base Construction.
The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.
The views and conclusions contained herein are
those of the authors and should not be interpreted
as necessarily representing the official policies
or endorsements, either expressed or implied, of
DARPA, or the U.S. Government, or the other
sponsors.

References
Ben Athiwaratkun and Andrew Gordon Wilson. 2017.

Multimodal word distributions. In ACL.

Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do,
and Chung-chieh Shan. 2012. Entailment above the
word level in distributional semantics. In EACL.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi,
and Eros Zanchetta. 2009. The WaCky wide web:
a collection of very large linguistically processed

493



web-crawled corpora. Language resources and
evaluation 43(3):209–226.

Marco Baroni and Alessandro Lenci. 2011. How we
BLESSed distributional semantic evaluation. In
Workshop on GEometrical Models of Natural Lan-
guage Semantics (GEMS).

Giulia Benotto. 2015. Distributional models for
semantic relations: A study on hyponymy and
antonymy. PhD Thesis, University of Pisa .

John A Bullinaria and Joseph P Levy. 2007. Extracting
semantic representations from word co-occurrence
statistics: A computational study. Behavior re-
search methods 39(3):510–526.

Philipp Cimiano, Andreas Hotho, and Steffen Staab.
2005. Learning concept hierarchies from text cor-
pora using formal concept analysis. J. Artif. Intell.
Res.(JAIR) 24(1):305–339.

Daoud Clarke. 2009. Context-theoretic semantics for
natural language: an overview. In workshop on
geometrical models of natural language semantics.
pages 112–119.

Thomas Demeester, Tim Rocktäschel, and Sebastian
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Abstract

This paper presents a corpus and experiments
to mine possession relations from text. Specif-
ically, we target alienable and control posses-
sions, and assign temporal anchors indicating
when the possession holds between possessor
and possessee. We present new annotations for
this task, and experimental results using both
traditional classifiers and neural networks. Re-
sults show that the three subtasks (predicting
possession existence, possession type and tem-
poral anchors) can be automated.

1 Introduction

Every language has a way of expressing posses-
sive relationships (Aikhenvald and Dixon, 2012).
Possession is an asymmetric semantic relation be-
tween two entities, where one entity (the pos-
sessee) belongs to the other entity (the possessor)
(Stassen, 2009). When it comes to defining pos-
session, belongs includes a wide range of relation-
ships, including (hereafter, we use x to refer to
the possessor, and y to refer to the possessee) kin-
ship (e.g., [my]x oldest [son]y), part-whole (e.g.,
the [car]x’s [dashboard]y), physical and tempo-
rary possession (e.g., [I]x have John’s [book]y),
possession of something intangible (e.g., [John]x
got the [flu]y last year) and proximity (e.g., The
[shelf]x has a [glass sculpture]y).

Possession relations can be divided into alien-
able (also referred to as acquired, transferable,
non-intimate, etc.) and inalienable (also referred
to as inherent, inseparable, intimate, etc.). Pos-
sessees that can be separated from their posses-
sors are alienable, and possessees that cannot nor-
mally be separated from their possessors are in-
alienable (Heine, 1997). For example, [John]x’s
[condo]y is alienable, and [John]x’s [arm]y is in-
alienable (some previous works would call the lat-
ter a part-whole relation instead). Tham (2004)

defines control possession as a relation in which
the possessor has temporary control of the pos-
sessee, but does not necessarily alienably possess
it (e.g., [John]x borrowed the [car]y for the week-
end). Following the aforecited works, possession
goes beyond ownership of property.

Possession relations can be expressed in a wide
variety of syntactic constructions, including noun
phrases (e.g., [John]x’s [car]y) and clauses (e.g.,
[John]x bought a [blue car]y). The subject of a
verb can map to either the possessor as exempli-
fied above, or to the possessee (e.g., The [car]y be-
longs to [John]x) (Aikhenvald and Dixon, 2012).

Within computational linguistics, possession re-
lationships have usually been studied as part of
larger studies that target all relations between ar-
guments connected with a syntactic pattern (e.g.,
possessive constructions, nominals). Addition-
ally, previous efforts have mostly targeted alien-
able possession—or alternatively, ownership. The
work presented here takes a different approach.
We start by pairing people (plausible possessors)
with physical objects (plausible possesses). Then,
we determine whether a possession relationship
exists, and if so, (a) determine the type (alienable
or control) and (b) assign temporal anchors with
respect to the event of which the possessor is the
subject. We target all verbs, not only prototypi-
cal verbs of possession (e.g., have, get). Thus, our
approach extracts possessions intuitive to humans
when there is no specific possession cue (e.g., we
extract a control possession from The [computer]y
at work was slow, [I]x didn’t get anything done).

The main contributions of this paper are:
(a) deterministic procedure to pair plausible pos-
sessors and possessees; (b) corpus annotating pos-
session existence, possession type and temporal
anchors; (c) detailed corpus analysis per verb and
type of possession; and (d) experimental results
showing that the task can be automated.
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2 Possession Relations

The literature has studied possession relations ex-
tensively from theoretical and conceptual points of
views. Here, we succinctly present some of the
most influential works in the area.

The very definition of possession is not set in
stone. Aikhenvald (2013) distinguishes three core
meanings for possessive noun phrases that occur
across languages: ownership (of property), whole-
part (often referred to as part-whole), and kin-
ship. Following a cross-linguistic perspective, she
discusses possessions and time (present and for-
mer possession relationships, e.g., my tooth vs.
my former axe), temporary and permanent pos-
session (e.g., borrow vs. acquire) and others.
Heine (1997) classifies possession relationships
depending on the possessor and possessee. First,
he makes a distinction between human (e.g., [I]x
have a [house]y) and non-human possessors (e.g.
[This house]x has [two bedrooms]y). Second, he
differentiates three kinds of possession depend-
ing on the possessee: concrete possession (e.g.,
[I]x have [two cats]y), social possession (e.g., [I]x
have [two sisters]y), and abstract possession (e.g.,
[I]x have [an idea]y). Miller and Johnson-Laird
(1976) differentiate between three kinds of pos-
session: inherent, accidental, and physical; and
provide the following example: He owns an um-
brella (inherent), but she’s borrowed it (acciden-
tal), though she doesn’t have it with her (physical).

Possession relationships have also been defined
in terms of their parameters. Stassen (2009) con-
sider two parameters: permanent contact and con-
trol. These parameters are binary, and four kinds
of possessions emerge from combining them:
alienable (permanent contact: +, control: +), in-
alienable (+, -), temporary (-, +), and abstract (-
, -). Similarly, Heine (1997) defines five binary
parameters: human possessor, concrete possessee,
spatial proximity, temporal permanence, and con-
trol. Combining these parameters, he defines 7
kinds of possessions: alienable, physical, tempo-
rary, inalienable, abstract, inanimate inalienable
and inanimate alienable possession.

Most influential to the work presented here,
Tham (2004) presents four types of posses-
sion: (a) inalienable (e.g., John has a daugh-
ter), (b) alienable (e.g., John has a car), (c) con-
trol (e.g., John has the car (for the weekend)), and
(d) focus (e.g., John has the window (to clean)). In
this paper, we target alienable and control posses-

sions. We discard inalienable possessions because
automated extraction has been studied before—
at least partially, e.g., part-whole (Girju et al.,
2006)—and focus possessions because they only
occurred 5 times in the corpus we work with.

3 Previous Work

Within computational linguistics, possession re-
lations have been mostly studied as one of the
many relations encoded in a given syntactic con-
struction. For example, Tratz and Hovy (2013)
extract semantic relations within English posses-
sives. They propose a set of 18 relations, e.g.
temporal (e.g., [today]x’s [rates]y), extent (e.g.,
[6 hours]y’ [drive]x). Their controller / owner /
user relation (one relation with three aliases) is the
closest relation to the alienable and control pos-
sessions we target in this paper. Unlike them, we
distinguish between alienable and control posses-
sions, and assign temporal anchors to possessions.
Additionally, we are not restricted to possessive
constructions. Instead, we start by pairing poten-
tial possessors and possessees within a sentence.

Extracting semantic relations between noun
compounds (Nakov and Hearst, 2013; Tratz and
Hovy, 2010) usually includes extracting posses-
sion relations, e.g., [family]x [estate]y. Because
they target noun compounds, they disregard nu-
merous possessions encoded in text at the clause
or sentence level. Although they do extract many
relations from noun compounds beyond posses-
sions, they do not distinguish between alienable
and control possessions, or temporally anchor re-
lations with respect to events in which the posses-
sor participates.

To the best of our knowledge, the work by
Banea et al. (2016) is the only one on extract-
ing possession relations without imposing syntac-
tic constraints. They build a dataset working with
blog texts, but do not present results on automatic
extraction. Their definition of possession includes
alienable and control possessions, but they do not
distinguish between them. Additionally, they only
consider as possessors the author of a blog, and as
possessees concrete nouns in the blog posts by the
possessor. Regarding time, they annotate posses-
sions at the time of the utterance. Unlike them, we
distinguish between alienable and control posses-
sions, and assign temporal anchors with respect to
an event in which the possessor participates.
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She keeps track of the rest of her hats by stapling Polaroid snapshots to the outside of each hatbox.
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prep

det
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det
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prep det

pobj

Pairs generated: (She, hats) and (She, hatbox)

Figure 2: Sample sentence, dependency tree and pairs (x, y) generated with the steps in Section 4.1.

antiquity.n.01, block.n.01, cone.n.01, con-
tainer.n.01, covering.n.02, decker.n.01, de-
vice.n.01, fabric.n.01, fixture.n.01, float.n.01, fur-
nishing.n.01, insert.n.01, layer.n.01, lemon.n.01,
marker.n.01, plaything.n.01, ready-made.n.01,
squeaker.n.01, strip.n.01, vehicle.n.01

Figure 1: WordNet synsets used to restrict possessees
(y) when generating pairs (x, y). lemma.n.y indicates
the yth synset of noun lemma.

4 A Corpus of Possession Relations

We create a corpus1 following two steps. First,
we generate intrasentential pairs (x, y) of poten-
tial possessors (x) and possessees (y). Second, we
annotate whether a possession exists, and if so, the
type and temporal anchors. Generating pairs a pri-
ori proved more effective than giving annotators
plain text and asking them to annotate possessions.

We add our annotations to OntoNotes (Hovy
et al., 2006). Doing so has several advantages.
First, OntoNotes contains texts from several do-
mains and genres (e.g., conversational telephone
speech, weblogs, broadcast), thus we not only
work with newswire. Second, OntoNotes in-
cludes part-of-speech tags, named entities and
parse trees, three annotation layers that allow us
to streamline the corpus creation process.

4.1 Pairing Potential Possessors and
Possessees

Our goal is to obtain pairs (x, y) such that it is
plausible that x is the possessor of possessee y. To
do so, we follow these steps:

1. Collect as potential possessors all PERSON
named entities and personal pronouns (part-
of-speech tag PRP) I, he, she, we and they.

2. Discard potential possessors that are not
the nominal subject (nsubj syntactic depen-
dency) of a verb. Let us name that verb verbx.

1Available at http://www.cse.unt.edu/˜blanco

possessee (y) is
subsumed by

possessor (x) is a
pronoun person NE All

device.n.01 295 74 369
container.n.01 189 30 219
covering.n.02 138 54 192
vehicle.n.01 124 36 160
fabric.n.01 6 7 13
block.n.01 9 2 11
plaything.n.01 3 2 5
fixture.n.01 4 0 4
antiquity.n.01 2 0 2
other 4 0 4
All 774 205 979

Table 1: Counts of pairs (x, y) generated per type of
potential possessor (x) and possessee (c).

3. For each possessor, collect as potential pos-
sessees all nouns reachable from verbx in the
dependency tree and subsumed in WordNet
(Miller, 1995) by the synsets in Figure 1.

Step (1) selects most people (not groups), and is
inspired by Aikhenvald (2013, p. 11), who states
that possessors are usually animate. Step (2) re-
duces the number of potential possessors, but note
that we do not impose any restriction on verbx,
which may or may not be a verb of caused posses-
sion (Beavers, 2011). Finally, Step (3) restricts the
kind of objects considered as possessees. The list
of synsets was defined after analyzing the Word-
Net noun hierarchy and prior to generating pairs.
Most of these synsets are children of artifact.n.01,
other children of artifact.n.01 were discarded be-
cause intuitively they cannot be possessees. For
example, we discard mystification.n.02: some-
thing designed to mystify or bewilder.

Figure 2 shows a sample sentence and the pairs
generated. Note that these pairs include distant
possessor-possessee pairs, not only subject-object
pairs. Nouns track, rest, Polaroid and snapshot are
discarded as potential possessees because they are
not subsumed by the synsets in Figure 1.
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Labels % κ

yes, never, unk, inv 86.1 0.79
alienable, control 82.5 0.77
before yes, before no 83.6 0.68
during yes, during no 88.8 0.75
after yes, after no 83.6 0.59

Table 2: Inter-annotator agreements (raw percentage
and Cohen’s κ). κ values in the 0.60–0.80 range
are considered substantial, over 0.80 would be perfect
(Artstein and Poesio, 2008).

The total number of pairs generated after exe-
cuting Steps (1–3) is 2,025. In order to reduce the
annotation effort, we set to annotate 1,000 pairs.
After trying several strategies, we reduce the num-
ber of pairs as follows. First, we discard pairs with
verbx see, think, believe, say and tell because pi-
lot annotations revealed that almost no possessions
can be extracted from them (1,757 pairs left). Sec-
ond, we discard pairs (x, y) such that verbx oc-
curs five or less times (979 pairs left). Table 1
presents basic counts per type of possessor (named
entity or personal pronoun) and possessee (Word-
Net synset) for the 979 pairs.

4.2 Annotating Possession Existence, Types
and Temporal Information

After automatically generating pairs of poten-
tial possessors and possessees, annotators validate
them manually. Annotations were done in-house,
and the annotation interface showed the current
sentence (with x, y and verbx highlighted), as well
as the previous and next sentences.

The annotation process includes two major
steps. First, annotators decide whether a posses-
sion relation exists between x and y based on the
three sentences provided. More specifically, they
choose from the following labels:
• yes if a possession exists at some point of

time with respect to verbx;
• never if a possession does not exist at any

point of time with respect to verbx;
• unk if it is sound to ask whether x is the pos-

sessor of possessee y, but there is not enough
information to choose yes or never; and
• inv if either the potential possessor x is not

animate, or the potential possessee y is non-
sensical in the given context.

Second, annotators make two more decisions if
the first label is yes:
• Possession type: whether the possession is
alienable or control.

Before During After
yes no yes no yes no

Alienable 69.8 30.2 55.9 44.1 92.6 7.4
Control 28.8 71.2 85.3 14.7 33.3 66.7
All 52.0 48.0 68.7 31.3 67.8 32.2

Table 3: Percentage of alienable and control POSSES-
SION relations annotated yes and no per temporal an-
chor (before, during, after) with respect to verbx (i.e.,
the verb of which the possessor is the subject).

• Temporal anchors: whether the possession is
true at some point of time before, during,
and at some point of time after verbx takes
place (three binary decisions).

Following the literature (Tham, 2004), we de-
fine alienable possession as a possessor owning
a possessee, and control possession as a posses-
sor having control of the possessee, but not nec-
essarily ownership. Annotators were instructed to
use world knowledge and fully interpret the sen-
tences provided beyond what is explicitly stated.
We present annotation examples in Section 5.1
Inter-Annotator Agreement. The annotations
were done by two graduate students. Both of them
annotated 35% of all pairs (possession existence,
possession type and temporal anchors). We show
inter-annotator agreements in Table 2. Cohen’s κ
for possession detection (labels yes, never, unk
and inv) is 0.79, and 0.77 when including posses-
sion type (labels alienable and control). An-
swering whether the possession is true before, dur-
ing or after verbx obtains lower coefficients: 0.68,
0.75 and 0.59 respectively. Not surprisingly, the
agreement for during is higher. Note that κ coef-
ficients in the range 0.60–0.80 are considered sub-
stantial, and coefficients over 0.80 are usually con-
sidered perfect (Artstein and Poesio, 2008). Given
these high agreement, the rest of pairs (65%) were
annotated once.

5 Corpus Analysis

Figure 3 presents percentages per label for all
verbs and the top 10 most frequent verbs. Overall,
36.5% of pairs are validated (alienable: 20.6%,
control: 15.9%), and only 5.8% of pairs are an-
notated unk. The relatively high percentage of
inv label is mostly due to potential possessees
that can only be possessed in certain contexts, e.g.,
compare [They]x asked [regulators]y to suggest
new ways to [. . . ] (inv) vs. [They]x replaced the
[regulators]y to control the flow of water (yes).
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Figure 3: Percentage of labels for all verbs and the top 10 most frequent verbs of which the possessor is the subject.
From left to right, they occurred 135, 44, 38, 37, 37, 34, 26, 24, 24, and 24 times respectively.

The percentage distributions depends heavily
on the verb at hand. Note that several verbs
with high alienable and control labels are
not prototypical verbs of possession (e.g., go, use,
know). When a possession holds, the type is most
likely control for most verbs. The only excep-
tions are have (23.7% vs. 17.7%), get (32.4%
vs. 10.8%), make (29.4% vs. 17.6%) and know
(16.6% vs. 8.3%). The most productive verb as
far as alienable possession is get (32.4%), and as
far as control possessions, use (43.2%).

Labels per temporal anchor with respect to
verbx (binary flags for before, during and af-
ter) and possession type are presented in Table 3.
Alienable and control possessions show opposite
trends for before and after, and substantially dif-
ferent distributions for during. The vast major-
ity of control possessions are true during verbx
(85.3% vs. 14.7%), as well as a more modest ma-
jority of alienable possessions (55.9% vs. 44.1%).
Alienable and control possessions, however, have
opposite temporal anchors for before and after.
Specifically, most alienable possessions are true
before and after verbx (69.8% and 92.6% respec-
tively), and most control possessions are not true
before and after verbx (71.2% and 66.7%).

5.1 Examples of Annotations

We present annotation examples using selected
pairs of possessors and possessees in Table 4.

In Sentence (1), annotators interpreted that the
relationship between he and car is an alienable
possession. While not explicitly stated, annotators
interpreted that he is an adult, and world knowl-

edge tells us that most adults own the cars they
drive unless a modifier indicates otherwise (e.g.,
rental car, my father’s car). Regarding temporal
anchors, the possession between he and car is true
before and during died, but not after.

Sentence (2) is a common example of alienable
possession that is true after verbx. The subject of a
verb of creation (e.g., make, build) often becomes
an alienable possessor of the direct object after the
verb, but not before or during (because the object
has not come into being yet).

Sentence (3) and (4) exemplify control posses-
sions. In Sentence (3), He is borrowing my fa-
ther’s car for a period of time, and thus He has
control over but does not own it. Regarding tem-
poral anchors, nothing in the sentence indicates
that He will have control over the car before or af-
ter kept. Note that our procedure to generate pairs
would not generate the pair (father, car), but pre-
vious work has targeted possessives (Section 3).

In Example (4), verbx is felt, yet we extract a
valid control possession. I is crew member of a
warship and is describing his experience while on
board. Annotators understood he had control over
the ship (at least partially) before, during and after,
as felt did not last long and there is no indication
that I left the boat immediately before or after felt.

Sentences (5–7) present examples in which an-
notators did not annotate a possession relation (la-
bels never, unk, and inv). In Sentence (5), the
mask belongs to Joseph. There is no indication
that a possession relation exists between LaToya
and mask, although LaToya was in close spatial
proximity of the mask worn by Joseph.
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Text (sentence of interest and context if relevant) and pair (x, y) Label B D A
1 But [he]x had extreme mood swings and [died]verbx in a [car]y crash driv-

ing to work when I was five.
alienable 3 3 7

2 After moving to the unoccupied zone, [Wang]x began [carving]verbx
[seals]y in his spare time to support himself.

alienable 7 7 3

3 [He]y [kept]verbx my father’s [car]y for a year, without writing a confis-
cation order for it.

control 7 3 7

4 The horror and the heroics of the [. . . ] were relived this evening by one
of the crew, Liutenant Ann Chamberlain.
[I]x just [felt]verbx a large—not so much a bang, but, to me, from where I
was, it seemed like something had rammed the [ship]y.

control 3 3 3

5 [LaToya]x also [described]verbx being awakened in the night by Joseph
wearing a “monster [mask]y.”

never n/a

6 [They]x [asked]verbx him to come to them immediately because the re-
ported [car]y had been seized.

unk n/a

7 Will your political party straighten up and say, damn it, [we]x [have]verbx
to drop some of our ideological [baggage]y?

inv n/a

Table 4: Example of annotations for selected pairs (x, y). Recall that temporal anchors (B: before, D: during, A:
After) are annotated with respect to verbx and only if the main label is yes, i.e., if there is an alienable or control
POSSESSION between x and y (Section 4.2).

In Sentence (6), it is the case that They have
some knowledge about the car that was seized, and
it appears that him—not They—may be the alien-
able possessor. It is unclear, however, whether
They and car are related by a control possession,
thus annotators chose label unk.

Finally, Sentence (7) exemplifies label inv.
While baggage is most of the time a concrete ob-
ject that passes the restrictions on potential pos-
sessees (Section 4), in this context, it is part of the
metaphor ideological baggage. Since we only tar-
get concrete possessees, annotators chose inv.

6 Experiments and Results

We conduct experiments using Support Vector
Machines and neural networks. Each pair (x, y)
becomes an instance, and we create stratified train
(80%) and test (20%) sets. We report results us-
ing the test set after tuning hyper parameters us-
ing 10-fold cross validation. More specifically, we
train five classifiers and experiment with all in-
stances but the ones annotated inv. The first clas-
sifier predicts possession existence (yes, never
or unk). The second classifier predicts possession
types, i.e., classifies pairs between which a pos-
session holds (yes) into alienable or control.
The third, fourth and fifth classifiers predict tem-
poral anchors, i.e., classify pairs between which
a possession holds—either alienable or control—
into before yes or before no, during yes

or during no, and after yes or after no.

6.1 Support Vector Machines
We trained the five classifiers using the SVM
implementation in scikit-learn (Pedregosa et al.,
2011). We tuned hyper-parameters C and γ us-
ing 10-fold cross validation, and used the features
that are summarized in Table 5.

Verb features include the word and POS tag for
the verb, previous and next tokens, as well as in-
formation regarding the outgoing and incoming
dependencies. We also include a binary flag indi-
cating whether the verb is a possession verb from
the list collected by Viberg (2010, Table 1).

Possessor and Possessee features are very sim-
ilar to Verb features, but we consider the concate-
nation of words and POS tags. Possessee features
also include information derived from the Word-
Net hypernym paths to the root in the noun hierar-
chy, i.e., entity.n.01. More specifically, WN synset
captures the synset from Figure 1 the possessee is
subsumed by, and WN path are features capturing
the top 6 synsets in the hypernym path from the
possessee to entity.n.01. Finally, Path features in-
clude three syntactic paths (syntactic dependency
types and up / down symbols): from the posses-
sor to the verb, from the possessee to the verb,
and from the possessor to the possessee. The fea-
ture set is heavily inspired in many previous works
(e.g, (Gildea and Jurafsky, 2002)).

We experimented with SVMs to establish a
strong supervised baseline using linguistic infor-
mation, and to compare with neural networks that
take as input only words along with information
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Feature Description

Verb

word and tag word form and part-of-speech tag of verb
is possession verb flag indicating whether verb is in the list of possession verbs
previous, next tokens word form and part-of-speech tags of the previous and next tokens
dependency out outgoing syntactic dependency type
dependencies in flags indicating the incoming syntactic dependencies
left, right children number of incoming syntactic dependencies to the left and right of verb

Possessor

words concatenation of words
pos tags part-of-speech tag (full tag and first character, i.e., pronoun or noun)
previous, next tokens word form and part-of-speech tags of the previous and next tokens
dependency out outgoing syntactic dependency type
dependencies in flags indicating the incoming syntactic dependencies

Possessee
same as possessor same features extracted for the possessor
WN synset WordNet synset from Figure 1 the possessee is subsumed by
WN path WordNet synsets from entity.n.01 to the possessee

Paths
possessor to verb syntactic path between possessor and verb
possessee to verb syntactic path between possessee and verb
possessor to possessee syntactic path between possessor and possessee

Table 5: Feature set used to extract possession relations (existence, type and temporal anchors) with Support
Vector Machines.) and possession type (alienable or control).

regarding who is the potential possessor, possessee
and verbx.

6.2 Neural Networks
We experiment with feedforward and Long Short-
Term Memory networks, and use the implemen-
tations in Keras (Chollet et al., 2015) using Ten-
sorFlow backend (Abadi et al., 2015). All net-
works use GloVe embeddings with 100 dimen-
sions (Pennington et al., 2014) and the Adam op-
timizer (Kingma and Ba, 2014). Regarding input,
we experiment with the potential possessor x, pos-
sessee y, verbx, and the rest of the sentence. The
three architectures are depicted in Figure 4.
Feedforward Neural Network. The feedforward
neural network takes as input the embeddings of
the potential possessor x, possessee y and verbx.
It has a fully connected hidden layer with 50 neu-
rons and uses softmax in the output layer of size
3 for predicting possession existence (yes, never
and unk) or size 2 for predicting possession type
(alienable and control) and temporal anchors
(yes and never for before, during and after).
LSTMppv. The first Long Short-Term Memory
network takes as input a fixed-length sequence
consisting of the potential possessor x, possessee
y and verbx. We used 100 LSTM units (output di-
mension) and the output layer also uses softmax.
While this LSTM has access to the same informa-
tion than the feedforward network, we expect that
the input, output and forget gates will learn to up-
date the cell state to better solve our task.

LSTMsent. The architecture of the second Long
Short-Term Memory network is the same than
LSTMppv, but the input is different. LSTMsent

takes as input the sequence of words from which
the potential possessor x, possessee y and verbx
were extracted. Each element in the input is rep-
resented by the concatenation of its word embed-
ding and an additional embedding indicating if the
token is the potential possessor x, possessee y,
verbx, or none of them. Unlike the other two net-
works, LSTMsent has access to the full sentence,
and we expect that the memory update mechanism
(i.e., the input, output and forget gates) will learn
the context most relevant for our task.

6.3 Results
Possession Existence and Type. Table 6 presents
results obtained with the majority baseline (pos-
session existence: always never, possession type:
always alienable), SVMs and the three neu-
ral networks. All models outperform the major-
ity baseline in both tasks (possession existence
F1: 0.24, possession type F1: 0.40), and the three
neural architectures outperform SVM (existence:
0.57–0.74 vs. 0.56, type: 0.61–0.67 vs. 0.58).

Regarding possession existence, the vanilla
feedforward neural network alone performs simi-
lar to the SVM (F1: 0.57 vs. 0.56), indicating that
word embeddings capture the kind of verbs and
(potential) possessors and possessees more likely
to have a possession relationship. Despite the
small dataset (total: 979 pairs), the LSTMs out-
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Figure 4: Neural network architectures: feedforward neural network (top left), LSTMppv (top right), and
LSTMsent (bottom). We exemplify the architectures with Example 1 from Table 4, But [he]x had extreme mood
swings and [died]verbx in a [car]y crash driving to work when I was five (only partially shown with LSTMsent).

Maj. baseline SVM, all feats. FFNN LSTMppv LSTMsent

P R F1 P R F1 P R F1 P R F1 P R F1
yes .00 .00 .00 .57 .65 .61 .54 .53 .54 .65 .69 .67 .74 .72 .73
never .41 1.0 .58 .61 .53 .56 .59 .59 .59 .71 .79 .75 .73 .82 .77
unk .00 .00 .00 .44 .43 .44 .56 .59 .58 .75 .49 .59 .80 .65 .72
Weighted Avg. .17 .41 .24 .56 .56 .56 .57 .57 .57 .70 .69 .69 .75 .75 .74
alienable .56 1.0 .72 .64 .57 .61 .68 .75 .71 .67 .80 .73 .67 .60 .63
control .00 .00 .00 .53 .59 .56 .64 .56 .60 .67 .50 .57 .56 .62 .59
Weighted Avg. .32 .56 .40 .59 .58 .58 .66 .67 .66 .67 .67 .67 .62 .61 .61

Table 6: Results obtained using the majority baseline (possession existence: never, possession type:
alienable), SVMs with the best feature combination (all features), and neural networks. Note that we report
results for the possession existence (yes, never or unk) and possession type (alienable or control).

perform the feedforward neural network (0.74 vs.
0.57). LSTMppv performs surprisingly well (F1:
0.69) even though it only has access to the posses-
sor, possessee and verbx. LSTMsent highly ben-
efits from having access to the full sentence (F1:
0.74). This shows that context plays a vital role in
deciding the existence of possession.

Regarding possession type, the feedforward
neural network is comparable to LSTMppv. Intu-
itively, distinguishing between alienable and con-
trol possessions can be done mostly based on the
possessor, possessee and verbx, and the embed-
dings capture this kind of information. For exam-
ple, verbs such as use and rent indicate a control
possession, while acquire indicates alienable pos-
session.

Temporal Anchors. Table 7 presents results ob-
tained with SVMs and the best neural network ar-
chitecture in this subtask. LSTMppv performs sim-
ilar to the SVM (before: 0.71 vs. 0.76, during:
0.75 vs. 0.72, after: 0.70 vs. 0.73). As expected,
F1 scores are higher with the labels that occur
more often: yes is more frequent than never with
all temporal anchors, especially during and after
(Table 3), and F1 scores for yes are higher than
for never (before: 0.73 vs. 0.68, during: 0.82 vs.
0.59, after: 0.77 vs. 0.54).

7 Conclusions

Possession relations are present in all languages,
and they can reflect relationships, values, concepts
and cultural changes (Aikhenvald, 2013). In this
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Before During After
P R F1 P R F1 P R F1

SVM, all feats.
Yes 0.76 0.82 0.78 0.78 0.82 0.80 0.78 0.86 0.82
No 0.77 0.71 0.74 0.57 0.52 0.55 0.61 0.48 0.54
Weighted Avg. 0.76 0.76 0.76 0.72 0.72 0.72 0.72 0.74 0.73

LSTMppv

Yes 0.71 0.76 0.73 0.80 0.84 0.82 0.79 0.76 0.77
No 0.71 0.65 0.68 0.62 0.57 0.59 0.52 0.57 0.54
Weighted Avg. 0.71 0.71 0.71 0.74 0.75 0.75 0.70 0.69 0.70

Table 7: Results obtained using SVMs with the best feature combination (all features) and the best neural network
architecture when predicting temporal anchors with respect to verby for a POSSESSION (both alienable and control).

paper, we mine possessions from text. Specifi-
cally, we extract alienable and control possessions,
and specify temporal anchors with respect to the
verb of which the possessor is the subject.

We have created the first corpus annotating
types of possessions following two steps. First,
we automatically pair potential possessors and
possessees, resulting in 979 pairs. Second, we
manually validate pairs by annotating possession
existence (yes, never, unk and inv), types
(alienable or control) and temporal anchors
(before yes / no, during yes / no, after yes
/ no). Inter-annotator Cohen’s κ coefficients show
that the annotation task can be done reliably (Ta-
ble 2). Experimental results show that the task can
be automated, and that neural networks outper-
form SVMs trained with features extracted from
linguistic structure although we experiment with a
relatively small dataset.

Beyond fundamental research, we believe that
mining possession types has several applications.
For example, marketers may target people who do
not alienably possess something, and certain skills
may be inferred from the kind of objects people
have control possessions over (e.g., an individual
having a control possession of an 18-wheeler most
likely knows how to drive large trucks and has a
commercial driver’s license).
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Abstract

Although neural tensor networks (NTNs) have
been successful in many natural language pro-
cessing tasks, they require a large number of
parameters to be estimated, which often results
in overfitting and long training times. We ad-
dress these issues by applying eigendecompo-
sition to each slice matrix of a tensor to reduce
the number of parameters. We evaluate our
proposed NTN models in two tasks. First, the
proposed models are evaluated in a knowledge
graph completion task. Second, a recursive
NTN (RNTN) extension of the proposed mod-
els is evaluated on a logical reasoning task.
The experimental results show that our pro-
posed models learn better and faster than the
original (R)NTNs.

1 Introduction

Alongside the nonlinear activation functions, lin-
ear mapping by matrix multiplication is an es-
sential component of neural network (NN) mod-
els, as it determines the feature interaction and
thus the expressiveness of models. In addition
to the matrix-based mapping, neural tensor net-
works (NTNs) (Socher et al., 2013a) employ a 3-
dimensional tensor to capture direct interactions
among input features. Due to the large expres-
sive capacity of 3D tensors, NTNs have been suc-
cessful in an array of natural language process-
ing (NLP) and machine learning tasks, includ-
ing knowledge graph completion (KGC) (Socher
et al., 2013a), sentiment analysis (Socher et al.,
2013b), and reasoning with logical semantics
(Bowman et al., 2015). However, since a 3D ten-
sor has a large number of parameters, NTNs need
longer time to train than other NN models. More-
over, the millions of parameters often make the
model suffer from overfitting (Yang et al., 2015).

To solve these problems, we propose two new
parameter reduction techniques for NTNs. These

techniques drastically decrease the number of pa-
rameters in an NTN without diminishing its ex-
pressiveness. We use the matrix decomposition
techniques that are utilized for KGC in Yang et al.
(2015) and Trouillon et al. (2016). Yang et al.
(2015) imposed a constraint that a matrix in the
bilinear term in their model had to be diagonal.
As mentioned in a subsequent section, this is es-
sentially equal to assuming that the matrix be
symmetric and performing eigendecomposition.
Trouillon et al. (2016) also applied eigendecom-
position to a matrix by regarding it as the real part
of a normal matrix. Following these studies, we
perform simultaneous diagonalization on all slice
matrices of a NTN tensor. As a result, mapping
by a 3D (n × n × k) tensor is replaced with an
array of k “triple inner products” of two input vec-
tors and a weight vector. Thus, we obtain two new
NTN models where the number of parameters is
reduced from O(n2k) to O(nk).

On a KGC task, these parameter-reduced NTNs
(NTN-Diag and NTN-Comp) alleviate overfitting
and outperform the original NTN. Moreover, our
proposed NTNs can learn faster than the original
NTN. We also show that our proposed models per-
form better and learn faster in a recursive setting
by examining a logical reasoning task.

2 Background

We consider mapping in a neural network (NN)
layer that takes two vectors as input, such as
recursive neural networks. Recurrent neural
networks also has this structure, with one input
vector being the hidden state from the previous
time step. As a mapping before activation in the
NN layer, linear mapping (matrix multiplication)
is commonly used:

W1x1 + W2x2 = [W1, W2]

[
x1

x2

]
= Wx.
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Here, since x1, x2 ∈ Rn, W1, W2 ∈ Rk×n, this
linear mapping is a transformation from R2n to
Rk. Linear mapping, which is a standard com-
ponent of NNs, has been applied successfully in
many tasks. However, it cannot consider the in-
teraction between different components of two in-
put vectors, which renders it not ideal for model-
ing complex compositional structures such as trees
and graphs.

To alleviate this problem, some models such as
NTNs (Socher et al., 2013a) have explored 3D ten-
sors to yield more expressive mapping:

xT
1 W [1:k]x2 =




xT
1 W [1]x2

xT
1 W [2]x2

...
xT

1 W [k]x2




=




sum
(
W [1] ⊙ (x1 ⊗ x2)

)

sum
(
W [2] ⊙ (x1 ⊗ x2)

)
...

sum
(
W [k] ⊙ (x1 ⊗ x2)

)




where W [1:k] ∈ Rn×n×k. The output of this map-
ping is an array of k bilinear products in the form
of xT

1 W [i]x2. Thus, this is also a transforma-
tion from R2n to Rk. Each element of the out-
put of this mapping equals the sum of W [i] ⊙
(x1 ⊗ x2), where ⊙ and ⊗ represent, respectively,
the Hadamard and the outer products. Hence this
mapping captures the direct interaction between
different components (or “features”) in two input
vectors. Thanks to this expressiveness, NTNs are
effective in tasks such as knowledge graph com-
pletion (Socher et al., 2013a), sentiment analy-
sis (Socher et al., 2013b), and logical reasoning
(Bowman et al., 2015).

Although mapping by a 3D tensor provides ex-
pressiveness, it has a large number (O(n2k)) of
parameters. Due to this, NTNs often suffer from
overfitting and long training times.

3 Matrix Decomposition

3.1 Simple Matrix Decomposition (SMD)
To reduce the number of parameters of a slice
matrix W [i] ∈ Rn×n in a tensor, simple ma-
trix decomposition (SMD) is commonly used (Bai
et al., 2009). SMD factorizes W [i] into a prod-
uct of two low rank matrices S[i] ∈ Rn×m and
T [i] ∈ Rm×n (m ≪ n):

W [i] ≃ S[i]T [i]. (1)

By plugging (1) into bilinear term xT
1 W [i]x2, we

obtain the approximation xT
1 S[i]T [i]x2. SMD re-

duces the number of parameters of W [i] from n2

to 2nm. However, the dimension m for S and T
is a hyperparameter and must be determined prior
to training.

3.2 Simultaneous Diagonalization
This section introduces two techniques that can
simultaneously diagonalize all slice matrices
W [1], . . . , W [i], . . . , W [k] ∈ Rn×n. As described
in (Liu et al., 2017), we make use of the fact that
if matrices V [1:k] form a commuting family: i.e.,
V [i]V [j] = V [j]V [i], ∀i, j ∈ {1, 2, . . . , k}, they
can be diagonalized by a shared orthogonal or uni-
tary matrix. Both of the two techniques reduce
the number of parameters of W [i] to O(n) from
O(n2).

3.2.1 Orthogonal Diagonalization
Many NLP datasets contain symmetric patterns.
For example, if binary relation (Bob, is relative of,
Alice) holds in a knowledge graph, then (Alice,
is relative of, Bob) should also hold in it. En-
glish phrases “dog and cat” and “cat and dog”
have identical meaning. For symmetric structures,
we can reasonably suppose that each slice ma-
trix W [i] of a 3D tensor is symmetric because
xT

1 W [i]x2 must equal xT
2 W [i]x1.

When W [i] ∈ Rn×n is symmetric, it can be di-
agonalized as:

W [i] = O[i]W [i]′O[i]T

where O[i] ∈ Rn×n is an orthogonal matrix and
W [i]′ ∈ Rn×n is a diagonal matrix. Note that an
orthogonal matrix O[i] may not be equal to Oj

if i ̸= j. However, if all of the slice matrices
W [1], . . . , W [i], . . . , W [k] ∈ Rn×n are commut-
ing, we can diagonalize every slice matrix with the
same orthogonal matrix O. By substituting W [i]

with OW [i]′OT into bilinear term xT
1 W [i]x2, we

can rewrite it as follows:

xT
1 W [i]x2 = xT

1 OW [i]′OTx2

= yT
1 W [i]′y2

= ⟨y1, w
[i], y2⟩ (2)

where y1 = OTx1, y2 = OTx2, w[i] =
diag(W [i]′) ∈ Rn and ⟨a, b, c⟩ denotes a “triple
inner product” defined by ⟨a, b, c⟩ =

∑n
l=1 alblcl.

This reduces the number of parameters in a single
slice matrix from n2 to n.
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3.2.2 Unitary Diagonalization
Since most of the structures in the NLP data are
not symmetric, the symmetric matrix assumption
is usually violated. To obtain more expressive di-
agonal matrix, we regard each slice matrix W [i] as
the real part of a complex matrix and consider its
eigendecomposition.

For any real matrix W [i], there exists a complex
normal matrix Z [i] whose real part is equal to it:
W [i] = ℜ

(
Z [i]

)
. ℜ (·) represents an operation

that takes the real part of a complex number, vec-
tor or matrix. Further, any complex normal ma-
trix can be diagonalized by a unitary matrix. With
these two properties, any real matrix W [i] can be
diagonalized as follows (Trouillon et al., 2016):

W [i] = ℜ
(
Z [i]

)
= ℜ

(
U [i]Z [i]′U [i]∗

)
.

Here, U [i] ∈ Cn×n is a unitary matrix, Z [i]′ ∈
Cn×n is a diagonal matrix, and U [i]∗ is the con-
jugate transpose of U [i]. To guarantee that ev-
ery slice matrix can be diagonalized with the same
unitary matrix U instead of U [i], we assume all
of the normal matrices Z [1], . . . , Z [i], . . . , Z [k] ∈
Cn×n are commuting as in Section 3.2.1.

Substituting ℜ
(
UZ [i]′U∗

)
whose U is the

same unitary matrix in all slice matrices, we can
rewrite every bilinear term xT

1 W [i]x2 as follows:

xT
1 W [i]x2 = ℜ

(
⟨y1, w

[i], y2⟩
)

= ⟨ℜ(y1), ℜ(w[i]), ℜ(y2)⟩
+ ⟨ℜ(y1), ℑ(w[i]), ℑ(y2)⟩
+ ⟨ℑ(y1), ℜ(w[i]), ℑ(y2)⟩
− ⟨ℑ(y1), ℑ(w[i]), ℜ(y2)⟩, (3)

where y1 = UTx1, y2 = U∗x2, w[i] =
diag(Z [i]′) ∈ Cn, and ⟨y1, w

[i], y2⟩ is the triple
Hermitian inner product of y1, w[i] and y2 de-
fined by ⟨a, b, c⟩ =

∑n
l=1 alblcl. This technique

reduces the number of parameters of the matrices
from n2 to 2n. As shown in the right-hand side
of Eq. (3), ℜ

(
⟨y1, w

[i], y2⟩
)

can be replaced with
three additions and a subtraction of the triple inner
product of real vectors.

4 Neural Network Models

This section introduces the baseline and our pro-
posed models. After describing them, we explain
how to extend them for handling compositional
structures like binary trees.

Model # of Parameters

NN (2n + 1)k
NTN (n2 + 2n + 1)k
NTN-SMD (2mn + 2n + 1)k
NTN-Diag (3n + 1)k
NTN-Comp (6n + 1)k

Table 1: Comparison of the number of parameters
among the models

4.1 Baseline Models
Neural Network (NN)
First, we describe a standard single layer neural
network (NN) model for two vectors x1, x2 ∈ Rn.
The model uses linear mapping V ∈ Rk×2n to
combine two input vectors:

f(V

[
x1

x2

]
+ b)

where b ∈ Rk is a bias term and f is a non-linear
activation function. The NN model has only (2n+
1)k parameters, and does not consider the direct
interactions between x1 and x2.

Neural Tensor Network (NTN)
Socher et al. (2013a) proposed a neural tensor net-
work (NTN) model that uses a 3D tensor W [1:k] ∈
Rn×n×k to combine two input vectors:

f(xT
1 W [1:k]x2 + V

[
x1

x2

]
+ b).

Unlike the standard NN model, NTN can directly
relate two input vectors using a tensor. However,
it has too many parameters; (n2 + 2n + 1)k.

NTN-SMD
Although the NTN model has tremendous ex-
pressive power, it is extremely time-consuming
to compute, since a naive 3D tensor product in-
cur O(n2k) computation time. To overcome this
weakness, Zhao et al. (2015) and Liu et al. (2015)
independently introduced simple matrix decompo-
sition (SMD) to the NTN model by replacing each
slice matrix W [i] with its factorized approxima-
tion given by Eq. (1):

f(xT
1 S[1:k]T [1:k]x2 + V

[
x1

x2

]
+ b)

where S[1:k] ∈ Rn×m×k, T [1:k] ∈ Rm×n×k.
When m ≪ n, the NTN-SMD model drastically
reduces the number of parameters compared to the
original NTN model; i.e., from (n2 + 2n + 1)k to
(2mn + 2n + 1)k.
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4.2 NTNs with Diagonal Slice Matrices
In this paper, we introduce two new NTN models:
NTN-Diag and NTN-Comp, both of which reduce
the number of parameters in a 3D tensor more than
NTN-SMD with little loss in the model’s gener-
alization performance. Table 1 summarizes the
number of parameters in each model.

NTN-Diag
We replace all slice matrices W [i] of W [1:k] with
the triple inner product formulation of Eq. (2) by
assuming that they are symmetric and commuting.
As a result, we derive the following new NTN for-
mulation:

f(




⟨x1, w
[1], x2⟩
...

⟨x1, w
[k], x2⟩


 + V

[
x1

x2

]
+ b)

where w[i] ∈ Rn, ∀i ∈ {1, 2, . . . , k}. Thus, under
the symmetric and commuting matrix constraints,
we regard mapping by a 3D tensor as an array of k
triple inner products. The total number of param-
eters is just (3n + 1)k.

NTN-Comp
By assuming that W [1], . . . , W [i], . . . , W [k] are
real parts of normal matrices forming a commut-
ing family, we can replace each slice matrix of a
tensor term in NTN with the triple Hermitian in-
ner product shown in Eq. (3):

f(




ℜ
(
⟨x1, w

[1], x2⟩
)

...
ℜ

(
⟨x1, w

[k], x2⟩
)


+ℜ

(
V

[
x1

x2

])
+b)

where x1, x2 ∈ Cn, V ∈ Cn×n and w[i] ∈ Cn,
∀i ∈ {1, 2, . . . , k}. Similar to NTN-Diag, we re-
gard mapping by a 3D tensor as an array of k triple
Hermitian inner products. The total number of pa-
rameters is just (6n + 1)k. As is clear of its form,
NTN-Diag is a special case of NTN-Comp whose
vectors x1, x2 and w[i] are constrained to be real.

4.3 Recursive Neural Tensor Networks
We extend the above NTN models to handle com-
positional structures. As a representative of com-
positional structures, we consider a binary tree
where each NTN layer computes a vector repre-
sentation for a node by combining two vectors
from its child nodes in the lower layer. Except
for NTN-Comp, the models implement mappings

Rn → Rk so that each of their layers can receive
its lower layer’s output directly, if k equals to n.
Thus, the models do not have to be modified for
them. However, NTN-Comp cannot receive its
lower layer’s output as it is because NTN-Comp is
a mapping from Cn to Rk. To solve this problem,
we set k to 2n and treat the output y′ ∈ R2n as the
concatenation of vectors representing the real and
imaginary parts of y ∈ Cn:

ℜ(y) = (y′
1, · · · , y′

n), ℑ(y) = (y′
n+1, · · · , y′

2n).

Note that this approach is valid since Eq. (3) can
actually be defined in real vector space by trans-
forming the complex vectors in Cn into real vec-
tors in R2n.

5 Related Work

Knowledge Graph Completion

In KGC, researchers usually design scoring func-
tion Φ for the given triplet (s, r, o) to judge
whether it is a fact or not. Here (s, r, o) denotes
that entity s is linked to entity o by relation r.
RESCAL (Nickel et al., 2011) uses eT

s Wreo as
Φ, where es, eo are entity embedding vectors and
Wr is an embedding matrix of relation r. This
bilinear operation is effective for the task, but its
computational cost is high and it suffers from over-
fitting. To overcome these problems, DistMult
(Yang et al., 2015) adopts the triple inner prod-
uct ⟨es, wr, eo⟩ as Φ, where wr is an embed-
ding vector of relation r. This solves those prob-
lems, but it degrades the model’s ability to cap-
ture directionality of relations, because the scor-
ing function of DistMult is symmetric with re-
spect to s and o; i.e., ⟨es, wr, eo⟩ = ⟨eo, wr, es⟩.
To reconcile the complexity and expressiveness of
a model, ComplEx (Trouillon et al., 2016) uses
complex vectors for entity and relation embed-
dings. As scoring function Φ, they adopted the
triple Hermitian inner product ℜ (⟨es, wr, eo⟩),
where eo denotes the complex conjugate of eo.
Since ℜ (⟨es, wr, eo⟩) ̸= ℜ (⟨eo, wr, es⟩), Com-
plEx solves the expressiveness problem of Dist-
Mult without full matrices as relation embed-
dings. We can regard DistMult as a special case
of RESCAL with a symmetric matrix constraint
on Wr. ComplEx is also a RESCAL variant with
Wr as the real part of a normal matrix. Our re-
search is based on these works, but to the best of
our knowledge, no previous work applied this ap-
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proach to reduce the number of parameters in a
tensor.

NN Architectures
To give additional expressiveness power to stan-
dard (R)NNs, many architectures have been pro-
posed, such as LSTM (Hochreiter and Schmid-
huber, 1997), GRU (Cho et al., 2014), and CNN
(LeCun et al., 1998). NTN (Socher et al., 2013a)
and RNTN (Socher et al., 2013b) are other such
architectures. However, (R)NTNs differ in that
they only add 3D tensor mapping to standard neu-
ral networks. Thus, they can also be regarded as
a powerful basic component of NNs because 3D
tensor mapping can be applied to more compli-
cated architectures such as those examples.

Parameter Reduction in NN
Several researchers reduced the number of param-
eters of NNs by using specific parameter shar-
ing mechanisms. Cheng et al. (2015) used circu-
lant matrix mapping instead of conventional linear
mapping and improved the time complexity of the
matrix-vector product by using Fast Fourier Trans-
formation (FFT). Circulant matrix

C(w) =




w1 wn . . . w3 w2

w2 w1 . . . w4 w3

...
...

. . .
...

...
wn−1 wn−2 . . . w1 wn

wn wn−1 . . . w2 w1




for wT = (w1, . . . , wn) can be factorized
into F−1 diag(F w) F with the Fourier matrix
F. By assuming each slice matrix W [i] of
W [1:k] is circulant, we get the same scoring
function as that in Eq. (3); xT

1 W [i]x2 =

xT
1 F−1 diag(F w[i]) F x2 = ℜ(⟨x′

1, w
[i]′, x2

′⟩)
where x′

1 = F x1, x′
2 = F x2, and w[i]′ =

1
n diag(F w[i]) are complex vectors in Cn. In this
sense, NTN-Comp is equivalent to NTN where
slice matrices of the 3D tensor are restricted to be
circulant. Hayashi and Shimbo (2017) established
a more detailed proof of the equivalence. Lu et al.
(2016) employed a Toeplitz-like structured matrix,
reducing parameters of LSTM. Chen et al. (2015)
used a feature hashing technique to reduce param-
eters in RNN. Although these techniques can also
be extended to reduce the number of tensor-related
parameters in NTN, the former needs FFT opera-
tions; i.e., O(n log n) computation time, and the
latter’s contribution is only a reduction in memory
consumption.

Dataset |E| |R| #Train #Valid #Test

FB15k 14,951 1,345 483,142 50,000 59,701
WN18 40,943 18 141,442 5,000 5,000

Table 2: Dataset statistics.

6 Experiment

6.1 Knowledge Graph Completion

To evaluate their performance for link prediction
on knowledge graphs, we compared our proposed
methods (NTN-Diag and NTN-Comp) to baseline
methods (NTN (Socher et al., 2013a) and NTN-
SMD).

Task
Let E and R denote entities and relations, respec-
tively. A relational triplet, or simply a triplet,
(s, r, o) is a triple with s, o ∈ E and r ∈ R. It
represents a proposition that relation r holds be-
tween subject entity s and object entity o. A triplet
is called a fact if the proposition it denote is true.
A knowledge graph is a collection of knowledge
triplets, with the understanding that all its mem-
ber triplets are facts. It is called a graph because
each triplet can be regarded as an edge in a di-
rected graph; the vertices in this graph represent
entities in E , and each edge is labeled by a relation
in R. Let G be a knowledge graph, viewed as a
collection of facts. Knowledge graph completion
(KGC) is the task of predicting whether unknown
triplet (s′, r′, o′) ̸∈ G such that s′, o′ ∈ E , r′ ∈ R
is a fact or not.

Models and Loss Function
The standard approach to KGC is to design a score
function Φ : E × R × E → R that assigns a large
value when a triplet seems to be a fact. Socher
et al. (2013a) defined it as follows.

uT
r f

(
eT

s W [1:k]
r eo + Vr

[
es

eo

]
+ br

)

Here, es, eo ∈ Rn are entity embeddings and
Wr, Vr, br, ur are parameters for each relation r.
ur is a k-dimensional vector to map f ’s output
Rk to R which indicates a score. f is the hy-
perbolic tangent. To compare the performances of
the baselines and proposed models, we change the
mapping before an activation. For NTN-SMD, we
change term eT

s W
[1:k]
r eo to eT

s S
[1:k]
r T

[1:k]
r eo. To

apply NTN-Diag and NTN-Comp in this model,
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WN18 FB15K

MRR Hits@ MRR Hits@

model Filter Raw 1 3 10 Filter Raw 1 3 10

NN 0.111 0.106 7.0 11.7 18.3 0.259 0.165 17.9 28.1 41.7
NTN (k = 1) 0.740 0.512 67.6 78.4 85.2 0.347 0.188 24.1 39.3 55.2
NTN (k = 4) 0.754 0.530 69.3 79.5 86.3 0.380 0.198 27.1 43.0 59.2

NTN-SMD (m = 1) 0.243 0.216 15.9 26.1 40.9 0.278 0.172 19.3 30.1 44.7
NTN-SMD (m = 2) 0.224 0.199 15.1 23.8 37.2 0.298 0.177 20.7 32.7 47.8
NTN-SMD (m = 3) 0.299 0.255 20.4 32.4 49.2 0.312 0.183 21.7 34.5 49.9
NTN-SMD (m = 10) 0.533 0.413 42.2 59.4 74.5 0.333 0.188 22.8 37.5 53.8
NTN-SMD (m = 25) 0.618 0.463 52.1 67.8 80.0 0.341 0.187 23.2 38.6 55.5

NTN-Diag 0.824 0.590 74.8 89.6 92.7 0.443 0.238 31.5 51.2 68.5
NTN-Comp 0.857 0.610 80.1 90.9 93.1 0.490 0.246 36.3 56.7 71.9

DistMult∗ 0.822 0.532 72.8 91.4 93.6 0.654 0.242 54.6 73.3 82.4
ComplEx∗ 0.941 0.587 93.6 94.5 94.7 0.692 0.242 59.9 75.9 84.0

Table 3: Mean Reciprocal Rank (MRR) and Hits@n for the models tested on WN18 and FB15k. MRR is reported
in the raw and filtered settings. Hits@n metrics are percentages of test examples that lie in the top n ranked results.
We report Hits@n in the filtered setting. ∗Results are those in (Trouillon et al., 2016)

we assume all slice matrices of tensors among re-
lations form a commuting family. The loss func-
tion used to train the models is shown below:

N∑

i=1

C∑

c=1

max
(
0, 1 − Φ

(
T (i)

)
+ Φ

(
T (i)

c

))

+λ∥Ω∥2
2,

where λ∥Ω∥2
2 is an L2 regularization term, T (i)

denotes the i-th example of training data of size
N , and T

(i)
c is one of C randomly sampled neg-

ative examples for the i-th training example. We
generated negative samples of a triplet (s, r, o) by
corrupting its subject or object entity.

Experimental Setup
We used the Wordnet (WN18) and Freebase
(FB15k) datasets to verify the benefits of our pro-
posed methods. The dataset statistics are given
in Table 2. We selected hyper-parameters based
on Socher et al. (2013a) and Yang et al. (2015):
For all of the models, the size of mini-batches was
set to 1000, the dimensionality of the entity vector
to d = 100, and the regularization parameter to
0.0001; the tensor slice size was set to k = 4 for
all models, except NTN for which we also tested
with k = 1 to see the influence of the slice size
on the performance. We performed 300 epochs of
training for Wordnet and 100 on Freebase using
Adagrad (Duchi et al., 2011) with the initial learn-
ing rate set to 0.1.

For evaluation, we removed the subject or ob-
ject entity of each test example and then replaced

it with all the entities in E . We computed the
scores of these corrupted triplets and ranked them
in descending order of scores. We here report
the results collected in filtered and raw settings.
In the filtered setting, given test example (s, r, o),
we remove from the ranking all the other positive
triplets that appear in either training, validation,
or test dataset, whereas the raw metrics do not re-
move these triplets.

Result
Experimental results are shown in Table 3. We ob-
serve the following:

• The performance of NN and NTNs differs
considerably; Apparently, NN is inadequate
for this task.

• By comparing the results of NTNs with dif-
ferent slice sizes, we see that k = 4 performs
better than k = 1.

• NTN-SMDs perform better than NN, but are
all inferior to NTNs, although their results
improved as m (the rank of decomposed ma-
trices) is increased.

• NTN-Diag achieved better results than NTN,
although it has far fewer parameters than
NTN and the datasets contain many unsym-
metrical triplets. This demonstrates that
NTN-Diag solves the overfitting problem of
NTN without sacrificing the expressiveness
power. NTN-Diag also has fewer parameters
than the smallest (m = 1) NTN-SMD. Thus,
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Conjunctive normal form
m∧

i=1

ni∨
j=1

Aij

Disjunctive normal form
m∨

i=1

ni∧
j=1

Aij

Table 4: Conjunctive and disjunctive normal forms in
propositional logic. Aij is a literal, which is a propo-
sitional variable or its negation. For example, p1 and
¬p2 are literal, but not ¬¬p3.

Name Symbol Set-theoretic definition

Entailment A ⊏ B A ⊂ B
Reverse entailment A ⊐ B A ⊃ B
Equivalence A ≡ B A = B
Alternation A | B A ∩ B = ∅ ∧ A ∪ B ̸= D
Negation A ∧ B A ∩ B = ∅ ∧ A ∪ B = D
Cover A ⌣ B A ∩ B ̸= ∅ ∧ A ∪ B = D
Independence A # B else

Table 5: Natural logic relations over formula pairs. A
and B denote a formula in propositional logic.

we conclude that NTN-Diag is a better alter-
native of NTN than NTN-SMD is, in terms of
both accuracy and computational cost.

• NTN-Comp outperformed NTN-Diag, show-
ing that its flexible constraint on matrices
yielded additional expressiveness. However,
NTN-Diag and NTN-Comp do not exceed
DistMult and ComplEx, respectively, in al-
most all measures.

Although not shown in the table, in this exper-
iment, NTN-Diag and NTN-Comp was, respec-
tively, 3 and 1.7 times as fast as NTN to train.

6.2 Logical Reasoning

To validate the performance of our proposed mod-
els in a recursive neural network setting, we ex-
perimentally tested them by having them solve a
semantic compositionality problem in logic.

Task
This task definition basically follows Bowman
et al. (2015): Given a pair of artificially generated
propositional logic formulas, classify the relation
between the formulas into one of the seven basic
semantic relations of natural logic (MacCartney
and Manning, 2009). Table 5 shows these seven
relation types. The formulas consist of propo-
sitional variables, negation, and conjunction and
disjunction connectives. Although Bowman et al.
(2015) generated formulas with no constraint on
its form, we restricted them to disjunctive normal

not p3
∧ p3

p3 ⊏ (p3 or p2)
(p1 or(p2 or p4))) ⊐ (p2 and not p4)

Table 6: Short examples of type of formulas and their
relations in datasets.

P (⊐) = 0.8

(p1 or (p2 or p4)) vs (p2 and not p4)

(p1 or (p2 or p4))

p1 (p2 or p4)

p2 p4

(p2 and not p4)

p2 not p4

andor

or

Softmax classifier

Comparison
N(T)N layer

Composition
RN(T)N layer

Figure 1: Comparison and composition layers. not p4

is treated as an embedding.

form (DNF) or conjunctive normal form (CNF)
(Table 4). Recall that any propositional formula
can be transformed into these forms.

Models and Loss Function
Following Bowman et al. (2015), we constructed
a model that infers the relations between formula
pairs, as described in Table 6.

The model consists of two layers: composition
and comparison layers (Figure 1). The composi-
tion layer outputs the embeddings of both left and
right formulas by recursive neural networks. Sub-
sequently, the comparison layer compares the two
embeddings using a single layer neural network,
and then a softmax classifier receives its output. In
the composition layer, we set different parameters
for and and or operations. As a loss function, we
used cross entropy with L2 regularization and ap-
ply the NTNs in Section 4 to the comparison layer
and uses RNTNs for as the composition layer.

Experimental Setup
In this experiment, an example is a pair of propo-
sitional formulas, and its class label is the seven
relation types between the pair. We generated
examples following the protocol described in
Bowman et al. (2015), with the exception that
the formulas are restricted to CNF or DNF, as
mentioned above. We obtained 62,589 training
examples, 13,413 validation examples, and 55,150
test examples. Each formula in the training and
validation examples contains up to four logical
operators, whereas those in the test examples have

512



Model 1 2 3 4 5 6 7 8 9 10 11 12 Avg.

Majority class 56.0 53.0 53.4 53.2 55.9 56.5 56.5 57.8 56.5 57.7 56.8 59.9 56.1
RNN 98.0 97.5 95.5 93.3 89.9 86.1 82.8 79.9 74.8 73.2 71.8 71.7 84.5
RNTN 99.9 99.5 98.2 95.7 92.7 88.5 84.7 81.2 78.1 77.5 74.4 74.4 87.0

RNTN-SMD (m = 1) 93.7 92.5 90.9 89.1 86.9 84.1 81.7 79.8 76.1 75.7 75.3 75.1 83.4
RNTN-SMD (m = 2) 93.0 93.4 91.7 90.3 88.2 85.5 82.7 81.4 77.6 77.0 75.4 75.8 84.3
RNTN-SMD (m = 4) 90.2 90.3 89.4 87.6 86.0 83.6 81.2 79.6 76.5 75.2 74.6 75.7 82.4
RNTN-SMD (m = 8) 86.8 84.9 83.5 82.5 81.1 79.1 76.6 75.6 72.4 71.3 70.9 71.2 77.9
RNTN-SMD (m = 16) 86.6 83.9 82.4 81.4 80.2 78.6 76.5 75.5 73.1 72.7 72.2 73.3 78.0

RNTN-Diag 99.9 98.9 98.5 97.4 94.9 91.5 87.6 85.0 80.3 78.5 77.1 75.2 88.7
RNTN-Comp 99.3 98.1 98.0 96.9 94.3 90.6 86.1 83.5 79.2 76.6 74.5 74.6 87.6

Table 7: Result of logical inference for Tests 1–12. Example in Test n has n logical operators in either or both
left and right formulas. Each score is the average accuracy of five trials of the λ that achieved best performance
on validation set. “Majority class” denotes the ratio of the majority class (relation “#”, i.e., Independence; see
Table 5).

Model Accuracy (Std. Dev.)

RNN 95.0 (0.8)
RNTN 97.2 (0.4)

RNTN-SMD (m = 1) 90.1 (3.4)
RNTN-SMD (m = 2) 91.4 (4.6)
RNTN-SMD (m = 4) 88.6 (7.1)
RNTN-SMD (m = 8) 82.7 (10.2)
RNTN-SMD (m = 16) 81.8 (11.7)

RNTN-Diag 98.1 (0.1)
RNTN-Comp 97.5 (0.1)

Table 8: Average accuracy and standard deviation on
the validation dataset. The reported values are average
over the best-performing model λ in each method.

up to 12 logical operators. Every formula consists
of up to four variables taken from six propositional
variables that are shared among all the examples.
Hyperparameters and optimization are based on
Bowman et al. (2015): Embedding size d = 25
(for RNN, d = 45) and the output size of com-
parison layer is k = 75, and we used AdaDelta
(Zeiler, 2012) for an optimizer. We searched for
the best coefficient λ of L2 regularization in λ ∈
{0.0001, 0.0003, 0.0005, 0.0007, 0.0009, 0.001},
whereas Bowman et al. (2015) set λ to 0.001 for
RNN and 0.0003 for RNTN.

Result
The results are shown in Table 7. From the table,
we observe the following:

• As with KGC, the large difference in per-
formance between RNN and RNTN suggests
that this logical reasoning task requires fea-
ture interactions to be captured1.

1Bowman (2016) also evaluated TreeLSTM, but its ad-
vantage over RNN was unclear in their experiment. For that

• RNTN-Diag achieved the best accuracy ex-
cept for Tests 2 and 12 and outperformed
RNTN except for Test 2. This is not surpris-
ing because both and and or are symmetric:
p1 and p2 equals p2 and p1. This matches
the tensor term in RNTN-Diag which is sym-
metric with respect to x1 and x2.

• RNTN-Comp was the second best except for
Tests 1–3 and 10–12. For all tests, its accu-
racy was comparable with or superior to that
of RNTN.

• RNTN-SMD (m = 1) was inferior to RNTN
for most test sets, although some good re-
sults were observed with m = 1, 2, 3 on
Tests 11 and 12. Indeed, except for Tests 9–
12, RNTN-SMD (m = 1) was inferior even
to RNN despite the larger number of param-
eters in RNTN-SMD. RNTN-SMD (m = 2)
obtained better results than m = 1, but it is
still worse than RNTN except for Tests 10-
12. Further increase in m (m = 4, 8, 16)
worsened the accuracy despite an increase of
the number of parameters.

We also evaluated the stability of the model
over different trials and hyperparameters. Table 8
shows the best average accuracy for each com-
pared model (among all the tested λ) on the vali-
dation set. The parenthesized figures (on the right-
most column) show the standard deviation over
five independent trials used for computing the av-
erage, i.e., all five trials used the same λ value that
achieved the best average accuracy. We see that
RNTN-SMDs have larger standard deviations than

reason, we did not test TreeLSTM in this paper.
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(a) Validation set.

(b) Test 12.

Figure 2: Sensitivity of accuracy to λ.

RNTN, RNTN-Diag and RNTN-Comp. This indi-
cates that RNTN-SMD is a less reliable model.

RNTN-SMDs are also unstable, not only within
the same λ, but also between different λs. Fig-
ure 2 describes how accuracies are impacted by
λs. The top graph shows validation accuracies
between different λ values. RNTN, RNTN-Diag
and RNTN-Comp are stable, whereas RNN and
RNTN-SMDs have steep drops. The bottom one
describes the accuracies for Test 12. This also
shows that RNTN-SMDs are unstable and that
RNTN-Diag achieves distinctive performances.

Finally, Figure 3 shows that training times in-
crease quadratically with dimension for RNTN
that has O(n2k) parameters, but not for our meth-
ods, which have only O(nk) parameters.

7 Conclusion

We proposed two new parameter reduction meth-
ods for tensors in NTNs. The first method con-
strains the slice matrices to be symmetric, and the
second assumes them to be normal matrices. In
both methods, the number of a 3D tensor param-

Figure 3: Training times of the models.

eters is reduced from O(n2k) to O(nk) after the
constrained matrices are eigendecomposed. By re-
moving the tensor’s surplus parameters, our meth-
ods learn better and faster as was shown in exper-
iments.2 Future work will test the versatility of
our proposals, RNTN-Diag and RNTN-Comp, in
other tasks that deal with data sets exhibiting cari-
ous structures.
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Abstract

Word vector specialisation (also known as
retrofitting) is a portable, light-weight ap-
proach to fine-tuning arbitrary distributional
word vector spaces by injecting external
knowledge from rich lexical resources such
as WordNet. By design, these post-processing
methods only update the vectors of words oc-
curring in external lexicons, leaving the repre-
sentations of all unseen words intact. In this
paper, we show that constraint-driven vector
space specialisation can be extended to unseen
words. We propose a novel post-specialisation
method that: a) preserves the useful linguistic
knowledge for seen words; while b) propagat-
ing this external signal to unseen words in or-
der to improve their vector representations as
well. Our post-specialisation approach explic-
its a non-linear specialisation function in the
form of a deep neural network by learning to
predict specialised vectors from their original
distributional counterparts. The learned func-
tion is then used to specialise vectors of unseen
words. This approach, applicable to any post-
processing model, yields considerable gains
over the initial specialisation models both in in-
trinsic word similarity tasks, and in two down-
stream tasks: dialogue state tracking and lexi-
cal text simplification. The positive effects per-
sist across three languages, demonstrating the
importance of specialising the full vocabulary
of distributional word vector spaces.

1 Introduction

Word representation learning is a key research area
in current Natural Language Processing (NLP),
with its usefulness demonstrated across a range
of tasks (Collobert et al., 2011; Chen and Manning,
2014; Melamud et al., 2016b). The standard tech-
niques for inducing distributed word representa-
tions are grounded in the distributional hypothesis
(Harris, 1954): they rely on co-occurrence informa-
tion in large textual corpora (Mikolov et al., 2013b;

Pennington et al., 2014; Levy and Goldberg, 2014;
Levy et al., 2015; Bojanowski et al., 2017). As a
result, these models tend to coalesce the notions of
semantic similarity and (broader) conceptual relat-
edness, and cannot accurately distinguish antonyms
from synonyms (Hill et al., 2015; Schwartz et al.,
2015). Recently, we have witnessed a rise of in-
terest in representation models that move beyond
stand-alone unsupervised learning: they leverage
external knowledge in human- and automatically-
constructed lexical resources to enrich the semantic
content of distributional word vectors, in a process
termed semantic specialisation.

This is often done as a post-processing (some-
times referred to as retrofitting) step: input word
vectors are fine-tuned to satisfy linguistic con-
straints extracted from lexical resources such as
WordNet or BabelNet (Faruqui et al., 2015; Mrkšić
et al., 2017). The use of external curated knowl-
edge yields improved word vectors for the benefit
of downstream applications (Faruqui, 2016). At
the same time, this specialisation of the distribu-
tional space distinguishes between true similarity
and relatedness, and supports language understand-
ing tasks (Kiela et al., 2015; Mrkšić et al., 2017).

While there is consensus regarding their benefits
and ease of use, one property of the post-processing
specialisation methods slips under the radar: most
existing post-processors update word embeddings
only for words which are present (i.e., seen) in the
external constraints, while vectors of all other (i.e.,
unseen) words remain unaffected. In this work, we
propose a new approach that extends the speciali-
sation framework to unseen words, relying on the
transformation of the vector (sub)space of seen
words. Our intuition is that the process of fine-
tuning seen words provides implicit information on
how to leverage the external knowledge to unseen
words. The method should preserve the already in-
jected knowledge for seen words, simultaneously
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propagating the external signal to unseen words in
order to improve their vectors.

The proposed post-specialisation method can be
seen as a two-step process, illustrated in Fig. 1a:
1) We use a state-of-the-art specialisation model
to transform the subspace of seen words from the
input distributional space into the specialised sub-
space; 2) We learn a mapping function based on
the transformation of the “seen subspace”, and then
apply it to the distributional subspace of unseen
words. We allow the proposed post-specialisation
model to learn from large external linguistic re-
sources by implementing the mapping as a deep
feed-forward neural network with non-linear acti-
vations. This allows the model to learn the general-
isation of the fine-tuning steps taken by the initial
specialisation model, itself based on a very large
number (e.g., hundreds of thousands) of external
linguistic constraints.

As indicated by the results on word similar-
ity and two downstream tasks (dialogue state
tracking and lexical text simplification) our post-
specialisation method consistently outperforms
state-of-the-art methods which specialise seen
words only. We report improvements using three
distinct input vector spaces for English and for
three test languages (English, German, Italian), ver-
ifying the robustness of our approach.

2 Related Work and Motivation

Vector Space Specialisation A standard ap-
proach to incorporating external and background
knowledge into word vector spaces is to pull the
representations of similar words closer together
and to push words in undesirable relations (e.g.,
antonyms) away from each other. Some models
integrate such constraints into the training proce-
dure and jointly optimize distributional and non-
distributional objectives: they modify the prior or
the regularisation (Yu and Dredze, 2014; Xu et al.,
2014; Bian et al., 2014; Kiela et al., 2015), or
use a variant of the SGNS-style objective (Liu
et al., 2015; Ono et al., 2015; Osborne et al., 2016;
Nguyen et al., 2017). In theory, word embeddings
obtained by these joint models could be as good as
representations produced by models which fine-
tune input vector space. However, their perfor-
mance falls behind that of fine-tuning methods (Wi-
eting et al., 2015). Another disadvantage is that
their architecture is tied to a specific underlying
model (typically word2vec models).

In contrast, fine-tuning models inject external
knowledge from available lexical resources (e.g.,
WordNet, PPDB) into pre-trained word vectors as
a post-processing step (Faruqui et al., 2015; Rothe
and Schütze, 2015; Wieting et al., 2015; Nguyen
et al., 2016; Mrkšić et al., 2016; Cotterell et al.,
2016; Mrkšić et al., 2017). Such post-processing
models are popular because they offer a portable,
flexible, and light-weight approach to incorporating
external knowledge into arbitrary vector spaces,
yielding state-of-the-art results on language under-
standing tasks (Faruqui et al., 2015; Mrkšić et al.,
2016; Kim et al., 2016; Vulić et al., 2017b).

Existing post-processing models, however, suf-
fer from a major limitation. Their modus operandi
is to enrich the distributional information with ex-
ternal knowledge only if such knowledge is present
in a lexical resource. This means that they update
and improve only representations of words actually
seen in external resources. Because such words
constitute only a fraction of the whole vocabulary
(see Sect. 4), most words, unseen in the constraints,
retain their original vectors. The main goal of this
work is to address this shortcoming by specialising
all words from the initial distributional space.

3 Methodology: Post-Specialisation

Our starting point is the state-of-the-art specialisa-
tion model ATTRACT-REPEL (AR) (Mrkšić et al.,
2017), outlined in Sect. 3.1. We opt for the
AR model due to its strong performance and
ease of use, but we note that the proposed post-
specialisation approach for specialising unseen
words, described in Sect. 3.2, is applicable to any
post-processor, as empirically validated in Sect. 5.

3.1 Initial Specialisation Model: AR

Let Vs be the vocabulary, A the set of synony-
mous ATTRACT word pairs (e.g., rich and wealthy),
and R the set of antonymous REPEL word pairs
(e.g., increase and decrease). The ATTRACT-REPEL

procedure operates over mini-batches of such
pairs BA and BR. Let each word pair (xl, xr) in
these sets correspond to a vector pair (xl,xr). A
mini-batch of batt attract word pairs is given by
BA = [(x1

l ,x
1
r), . . . , (x

k1
l ,x

k1
r )] (analogously for

BR, which consists of brep pairs).
Next, the sets of negative exam-

ples TA = [(t1l , t
1
r), . . . , (t

k1
l , t

k1
r )] and

TR = [(t1l , t
1
r), . . . , (t

k2
l , t

k2
r )] are defined as

pairs of negative examples for each A and R
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pair in mini-batches BA and BR. These negative
examples are chosen from the word vectors present
in BA or BR so that, for each A pair (xl,xr), the
negative example pair (tl, tr) is chosen so that tl
is the vector closest (in terms of cosine distance) to
xl and tr is closest to xr.1 The negatives are used
1) to force A pairs to be closer to each other than
to their respective negative examples; and 2) to
force R pairs to be further away from each other
than from their negative examples. The first term
of the cost function pulls A pairs together:

Att(BA, TA) =

batt∑

i=1

[
τ
(
δatt + xi

lt
i
l − xi

lx
i
r

)

+τ
(
δatt + xi

rt
i
r − xi

lx
i
r

) ]
(1)

where τ(z) = max(0, z) is the standard rectifier
function (Nair and Hinton, 2010) and δatt is the at-
tract margin: it determines how much closer these
vectors should be to each other than to their respec-
tive negative examples. The second, REPEL term
in the cost function is analogous: it pushes R word
pairs away from each other by the margin δrep.

Finally, in addition to the A and R terms, a regu-
larisation term is used to preserve the semantic con-
tent originally present in the distributional vector
space, as long as this information does not contra-
dict the injected external knowledge. Let V(B) be
the set of all word vectors present in a mini-batch,
the distributional regularisation term is then:

Reg(BA,BR) =
∑

xi∈V (BA∪BR)

λreg ‖x̂i − xi‖2 (2)

where λreg is the L2-regularisation constant and x̂i
denotes the original (distributional) word vector for
word xi. The full ATTRACT-REPEL cost function is
finally constructed as the sum of all three terms.

3.2 Specialisation of Unseen Words
Problem Formulation The goal is to learn a
global transformation function that generalises the
perturbations of the initial vector space made by
ATTRACT-REPEL (or any other specialisation pro-
cedure), as conditioned on the external constraints.
The learned function propagates the signal coded
in the input constraints to all the words unseen dur-
ing the specialisation process. We seek a regression

1Similarly, for each R pair (xl,xr), the negative pair
(tl, tr) is chosen from the in-batch vectors so that tl is the
vector furthest away from xl and tr is furthest from xr . All
vectors are unit length (re)normalised after each epoch.

function f : Rdim → Rdim, where dim is the vec-
tor space dimensionality. It maps word vectors from
the initial vector space X to the specialised target
space X′. Let X̂′ = f(X) refer to the predicted
mapping of the vector space, while the mapping of
a single word vector is denoted x̂′i = f(xi).

An input distributional vector space Xd repre-
sents words from a vocabulary Vd. Vd may be di-
vided into two vocabulary subsets: Vd = Vs ∪ Vu,
Vs ∩ Vu = ∅, with the accompanying vector sub-
spaces Xd = Xs tXu. Vs refers to the vocabulary
of seen words: those that appear in the external
linguistic constraints and have their embeddings
changed in the specialisation process. Vu denotes
the vocabulary of unseen words: those not present
in the constraints and whose embeddings are unaf-
fected by the specialisation procedure.

The AR specialisation process transforms only
the subspace Xs into the specialised subspace X′s.
All words xi ∈ Vs may now be used as training
examples for learning the explicit mapping function
f from Xs into X′s. If N = |Vs|, we in fact rely on
N training pairs: (xi,x′i) = {xi ∈ Xs,x

′
i ∈ X′s}.

Function f can then be applied to unseen words
x ∈ Vu to yield the specialised subspace X̂′u =
f(Xu). The specialised space containing all words
is then Xf = X′s ∪ X̂′u. The complete high-level
post-specialisation procedure is outlined in Fig. 1a.

Note that another variant of the approach could
obtain Xf as Xf = f(Xd), that is, the entire distri-
butional space is transformed by f . However, this
variant seems counter-intuitive as it forgets the ac-
tual output of the initial specialisation procedure
and replaces word vectors from X′s with their ap-
proximations, i.e., f -mapped vectors.2

Objective Functions As mentioned, the N seen
words xi ∈ Vs in fact serve as our “pseudo-
translation” pairs supporting the learning of a cross-
space mapping function. In practice, in its high-
level formulation, our mapping problem is equiva-
lent to those encountered in the literature on cross-
lingual word embeddings where the goal is to learn
a shared cross-lingual space given monolingual vec-
tor spaces in two languages andN1 translation pairs
(Mikolov et al., 2013a; Lazaridou et al., 2015; Vulić
and Korhonen, 2016b; Artetxe et al., 2016, 2017;
Conneau et al., 2017; Ruder et al., 2017). In our
setup, the standard objective based on L2-penalised

2We have empirically confirmed the intuition that the first
variant is superior to this alternative. We do not report the
actual quantitative comparison for brevity.
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xi ∈ Xu
f : Deep neural network

(non-linear regression) x̂′
i ∈ X̂′

u
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(distributional)

Linguistic Constraints
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· · ·
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(a) High-level illustration
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(b) Low-level implementation: deep feed-forward neural network

Figure 1: (a) High-level illustration of the post-specialisation approach: the subspace Xs of the initial
distributional vector space Xd = Xs ∪Xu is first specialised/fine-tuned by the ATTRACT-REPEL speciali-
sation model (or any other post-processing model) to obtain the transformed subspace X′s. The words
present (i.e., seen) in the input set of linguistic constraints are now assigned different representations in
Xs (the original distributional vector) and X′s (the specialised vector): they are therefore used as training
examples to learn a non-linear cross-space mapping function. This function is then applied to all word
vectors xi ∈ Xu representing words unseen in the constraints to yield a specialised subspace X̂′u. The
final space is Xf = X′s ∪ X̂′u, and it contains transformed representations for all words from the initial
space Xd. (b) The actual implementation of the non-linear regression function which maps from Xu to
X̂′u: a deep feed-forward fully-connected neural net with non-linearities and H hidden layers.

least squares may be formulated as follows:

fMSE = arg min||f(Xs)−X′s||2F (3)

where || · ||2F denotes the squared Frobenius norm.
In the most common form f(Xs) is simply a lin-
ear map/matrix Wf ∈ Rdim×dim (Mikolov et al.,
2013a) as follows: f(X) = WfX.

After learning f based on the Xs → X′s trans-
formation, one can simply apply f to unseen words:
X̂′u = f(Xu). This linear mapping model, termed
LINEAR-MSE, has an analytical solution (Artetxe
et al., 2016), and has been proven to work well with
cross-lingual embeddings. However, given that the
specialisation model injects hundreds of thousands
(or even millions) of linguistic constraints into the
distributional space (see later in Sect. 4), we sus-
pect that the assumption of linearity is too limiting
and does not fully hold in this particular setup.

Using the same L2-penalized least squares objec-
tive, we can thus replace the linear map with a non-
linear function f : Rdim → Rdim. The non-linear
mapping, illustrated by Fig. 1b, is implemented as a
deep feed-forward fully-connected neural network
(DFFN) with H hidden layers and non-linear acti-
vations. This variant is called NONLINEAR-MSE.

Another variant objective is the contrastive
margin-based ranking loss with negative sampling
(MM) similar to the original ATTRACT-REPEL ob-
jective, used in other applications in prior work
(e.g., for cross-modal mapping) (Weston et al.,
2011; Frome et al., 2013; Lazaridou et al., 2015;
Kummerfeld et al., 2015). Let x̂′i = f(xi) denote
the predicted vector for the word xi ∈ Vs, and let
x′i refer to the “true” vector of xi in the specialised
space X′s after the AR specialisation procedure. The
MM loss is then defined as follows:

JMM =

N∑

i=1

k∑

j 6=i

τ
(
δmm − cos

(
x̂′i,x

′
i

)
+ cos

(
x̂′i,x

′
j

))

where cos is the cosine similarity measure, δmm is
the margin, and k is the number of negative sam-
ples. The objective tries to learn the mapping f so
that each predicted vector x̂′i is by the specified
margin δmm closer to the correct target vector x′i
than to any other of k target vectors x′j serving as
negative examples.3 Function f can again be either
a simple linear map (LINEAR-MM), or implemented
as a DFFN (NONLINEAR-MM, see Fig. 1b).

3We have also experimented with a simpler hinge loss
function without negative examples, formulated as J =
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4 Experimental Setup

Starting Word Embeddings (Xd = Xs ∪ Xu)
To test the robustness of our approach, we exper-
iment with three well-known, publicly available
collections of English word vectors: 1) Skip-Gram
with Negative Sampling (SGNS-BOW2) (Mikolov
et al., 2013b) trained on the Polyglot Wikipedia (Al-
Rfou et al., 2013) by Levy and Goldberg (2014)
using bag-of-words windows of size 2; 2) GLOVE

Common Crawl (Pennington et al., 2014); and 3)
FASTTEXT (Bojanowski et al., 2017), a SGNS vari-
ant which builds word vectors as the sum of their
constituent character n-gram vectors. All word em-
beddings are 300-dimensional.4

AR Specialisation and Constraints (Xs → X′s)
We experiment with linguistic constraints used be-
fore by (Mrkšić et al., 2017; Vulić et al., 2017a):
they extracted monolingual synonymy/ATTRACT

pairs from the Paraphrase Database (PPDB)
(Ganitkevitch et al., 2013; Pavlick et al., 2015)
(640,435 synonymy pairs in total), while their
antonymy/REPEL constraints came from BabelNet
(Navigli and Ponzetto, 2012) (11,939 pairs).5

The coverage of Vd vocabulary words in the
constraints illustrates well the problem of unseen
words with the fine-tuning specialisation models.
For instance, the constraints cover only a small
subset of the entire vocabulary Vd for SGNS-BOW2:
16.6%. They also cover only 15.3% of the top 200K
most frequent Vd words from FASTTEXT.

Network Design and Parameters (Xu → X̂′u)
The non-linear regression function f : Rd → Rd
is a DFFN with H hidden layers, each of dimen-
sionality d1 = d2 = . . . = dH = 512 (see Fig. 1b).
Non-linear activations are used in each layer and
∑N

i=1 τ
(
δmm − cos(x̂′i,x′i)

)
. For instance, with δmm =

1.0 the idea is to learn a mapping f that, for each xi enforces
the predicted vector and the correct target vector to have a
maximum cosine similarity. We do not report the results with
this variant as, although it outscores the MSE-style objective,
it was consistently outperformed by the MM objective.

4For further details regarding the architectures and training
setup of the used vector collections, we refer the reader to
the original papers. Additional experiments with other word
vectors, e.g., with CONTEXT2VEC (Melamud et al., 2016a)
(which uses bidirectional LSTMs (Hochreiter and Schmidhu-
ber, 1997) for context modeling), and with dependency-word
based embeddings (Bansal et al., 2014; Melamud et al., 2016b)
lead to similar results and same conclusions.

5We have experimented with another set of constraints
used in prior work (Zhang et al., 2014; Ono et al., 2015),
reaching similar conclusions: these were extracted from Word-
Net (Fellbaum, 1998) and Roget (Kipfer, 2009), and comprise
1,023,082 synonymy pairs and 380,873 antonymy pairs.

omitted only before the final output layer to enable
full-range predictions (see Fig. 1b again).

The choices of non-linear activation and ini-
tialisation are guided by recent recommendations
from the literature. First, we use swish (Ramachan-
dran et al., 2017; Elfwing et al., 2017) as non-
linearity, defined as swish(x) = x · sigmoid(βx).
We fix β = 1 as suggested by Ramachandran et al.
(2017).6 Second, we use the HE normal initialisa-
tion (He et al., 2015), which is preferred over the
XAVIER initialisation (Glorot and Bengio, 2010)
for deep models (Mishkin and Matas, 2016; Li
et al., 2016), although in our experiments we do
not observe a significant difference in performance
between the two alternatives. We set H = 5 in
all experiments without any fine-tuning; we also
analyse the impact of the network depth in Sect. 5.

Optimisation For the AR specialisation step, we
adopt the original suggested model setup. Hyper-
parameter values are set to: δatt = 0.6, δrep = 0.0,
λreg = 10−9 (Mrkšić et al., 2017). The models are
trained for 5 epochs with Adagrad (Duchi et al.,
2011), with batch sizes set to batt = brep = 50,
again as in the original work.

For training the non-linear mapping with DFFN
(Fig. 1b), we use the Adam algorithm (Kingma
and Ba, 2015) with default settings. The model is
trained for 100 epochs with early stopping on a
validation set. We reserve 10% of all available seen
data (i.e., the words from Vs represented in Xs and
X′s) for validation, the rest are used for training. For
the MM objective, we set δmm = 0.6 and k = 25
in all experiments without any fine-tuning.

5 Results and Discussion

5.1 Intrinsic Evaluation: Word Similarity

Evaluation Protocol The first set of experiments
evaluates vector spaces with different specialisation
procedures intrinsically on word similarity bench-
marks: we use the SimLex-999 dataset (Hill et al.,
2015), and SimVerb-3500 (Gerz et al., 2016), a
recent verb pair similarity dataset providing simi-
larity ratings for 3,500 verb pairs.7 Spearman’s ρ

6According to Ramachandran et al. (2017), for deep net-
works swish has a slight edge over the family of LU/ReLU-
related activations (Maas et al., 2013; He et al., 2015; Klam-
bauer et al., 2017). We also observe a minor (and insignificant)
difference in performance in favour of swish.

7While other gold standards such as WordSim-353 (Finkel-
stein et al., 2002) or MEN (Bruni et al., 2014) coalesce the no-
tions of true semantic similarity and (more broad) conceptual
relatedness, SimLex and SimVerb provide explicit guidelines
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Setup: hold-out Setup: all

GLOVE SGNS-BOW2 FASTTEXT GLOVE SGNS-BOW2 FASTTEXT

SL SV SL SV SL SV SL SV SL SV SL SV

Distributional: Xd .408 .286 .414 .275 .383 .255 .408 .286 .414 .275 .383 .255
+AR specialisation: X′s .408 .286 .414 .275 .383 .255 .690 .578 .658 .544 .629 .502
++Mapping unseen: Xf

LINEAR-MSE .504 .384 .447 .309 .405 .285 .690 .578 .656 .551 .628 .502
NONLINEAR-MSE .549 .407 .484 .344 .459 .329 .694 .586 .663 .556 .631 .506
LINEAR-MM .548 .422 .468 .329 .419 .308 .697 .582 .663 .554 .628 .487
NONLINEAR-MM .603 .480 .531 .391 .471 .349 .705 .600 .667 .562 .638 .507

Table 1: Spearman’s ρ correlation scores for three word vector collections on two English word similarity
datasets, SimLex-999 (SL) and SimVerb-3500 (SV), using different mapping variants, evaluation protocols,
and word vector spaces: from the initial distributional space Xd to the fully specialised space Xf . H = 5.
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Figure 2: The results of the hold-out experiments on SimLex-999 and SimVerb-3500 after applying our
non-linear vector space transformation with different depths (hidden layer size H , see Fig. 1b). The
results are presented as averages over 20 runs with the NONLINEAR-MM variant, the shaded regions are
spanned by the maximum and minimum scores obtained. Thick horizontal lines refer to Spearman’s
rank correlations achieved in the initial space Xd. H = 0 denotes the standard linear regression model
(Mikolov et al., 2013a; Lazaridou et al., 2015) (LINEAR-MM shown since it outperforms LINEAR-MSE).

rank correlation is used as the evaluation metric.
We evaluate word vectors in two settings. First,

in a synthetic hold-out setting, we remove all lin-
guistic constraints which contain words from the
SimLex and SimVerb evaluation data, effectively
forcing all SimLex and SimVerb words to be un-
seen by the AR specialisation model. The spe-
cialised vectors for these words are estimated by
the learned non-linear DFFN mapping model. Sec-
ond, the all setting is a standard “real-life” scenario
where some test (SimLex/SimVerb) words do occur
in the constraints, while the mapping is learned for
the remaining words.

Results and Analysis The results with the three
word vector collections are provided in Tab. 1. In
addition, Fig. 2 plots the influence of the network

to discern between the two, so that related but non-similar
words (e.g. tiger and jungle) have a low rating.

depth H on the model’s performance.

The results suggest that the mapping of unseen
words is universally useful, as the highest corre-
lation scores are obtained with the final fully spe-
cialised vector space Xf for all three input spaces.
The results in the hold-out setup are particularly
indicative of the improvement achieved by our post-
specialisation method. For instance, it achieves a
+0.2 correlation gain with GLOVE on both SimLex
and SimVerb by specialising vector representations
for words present in these datasets without seeing
a single external constraint which contains any of
these words. This suggests that the perturbation
of the seen subspace Xs by ATTRACT-REPEL con-
tains implicit knowledge that can be propagated
to Xu, learning better representations for unseen
words. We observe small but consistent improve-
ments across the board in the all setup. The smaller
gains can be explained by the fact that a majority of
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SimLex and SimVerb words are present in the ex-
ternal constraints (93.7% and 87.2%, respectively).

The scores also indicate that both non-linearity
and the chosen objective function contribute to the
quality of the learned mapping: largest gains are
reported with the NONLINEAR-MM variant which
a) employs non-linear activations and b) replaces
the basic mean-squared-error objective with max-
margin. The usefulness of the latter has been estab-
lished in prior work on cross-space mapping learn-
ing (Lazaridou et al., 2015). The former indicates
that the initial AR transformation is non-linear. It is
guided by a large number of constraints; their effect
cannot be captured by a simple linear map as in
prior work on, e.g., cross-lingual word embeddings
(Mikolov et al., 2013a; Ruder et al., 2017).

Finally, the analysis of the network depth H
indicates that going deeper helps only to a cer-
tain extent. Adding more layers allows for a richer
parametrisation of the network (which is beneficial
given the number of linguistic constraints used by
AR). This makes the model more expressive, but it
seems to saturate with larger H values.

Post-Specialisation with Other Post-Processors
We also verify that our post-specialisation approach
is not tied to the ATTRACT-REPEL method, and is in-
deed applicable on top of any post-processing spe-
cialisation method. We analyse the impact of post-
specialisation in the hold-out setting using the orig-
inal retrofitting (RFit) model (Faruqui et al., 2015)
and counter-fitting (CFit) (Mrkšić et al., 2016) in
lieu of attract-repel. The results on word similarity
with the best-performing NONLINEAR-MM variant
are summarised in Tab. 2.

The scores again indicate the usefulness of post-
specialisation. As expected, the gains are lower

Figure 3: DST labels (user goals given by slot-value
pairs) in a multi-turn dialogue (Mrkšić et al., 2015).

GLOVE SGNS-BOW2 FASTTEXT

SL SV SL SV SL SV

Xd .408 .286 .414 .275 .383 .255
Xf : RFit .493 .365 .412 .285 .413 .279
Xf : CFit .540 .401 .439 .318 .306 .441

Table 2: Post-specialisation applied to two
other post-processing methods. SL: SimLex; SV:
SimVerb. Hold-out setting. NONLINEAR-MM.

than with ATTRACT-REPEL. RFit falls short of CFit
as by design it can leverage only synonymy (i.e.,
ATTRACT) external constraints.

5.2 Downstream Task I: DST
Next, we evaluate the usefulness of post-
specialisation for two downstream tasks – dialogue
state tracking and lexical text simplification – in
which discerning semantic similarity from other
types of semantic relatedness is crucial. We first
evaluate the importance of post-specialisation for
a downstream language understanding task of dia-
logue state tracking (DST) (Henderson et al., 2014;
Williams et al., 2016), adopting the evaluation pro-
tocol and data of Mrkšić et al. (2017).

DST: Model and Evaluation The DST model is
the first component of modern dialogue pipelines
(Young, 2010), which captures the users’ goals at
each dialogue turn and then updates the dialogue
state. Goals are represented as sets of constraints
expressed as slot-value pairs (e.g., food=Chinese).
The set of slots and the set of values for each slot
constitute the ontology of a dialogue domain. The
probability distribution over the possible states is
the system’s estimate of the user’s goals, and it is
used by the dialogue manager module to select the
subsequent system response (Su et al., 2016). An
example in Fig. 3 illustrates the DST pipeline.

For evaluation, we use the Neural Belief Tracker
(NBT), a state-of-the-art DST model which was
the first to reason purely over pre-trained word
vectors (Mrkšić et al., 2017).8 The NBT uses no
hand-crafted semantic lexicons, instead compos-
ing word vectors into intermediate utterance and
context representations.9 For full model details, we
refer the reader to the original paper. The impor-
tance of word vector specialisation for the DST
task (e.g., distinguishing between synonyms and
antonyms by pulling northern and north closer in

8https://github.com/nmrksic/neural-belief-tracker
9The NBT keeps word vectors fixed during training to

enable generalisation for words unseen in DST training data.
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ENGLISH hold-out all

Distributional: Xd .797 .797
+AR Spec.: X′s ∪Xu .797 .817
++Mapping: Xf = X′s ∪ X̂′u
LINEAR-MM .815 .818
NONLINEAR-MM .827 .835

Table 3: DST results in two evaluation settings
(hold-out and all) with different GLOVE variants.

the vector space while pushing north and south
away) has been established (Mrkšić et al., 2017).

Again, as in prior work the DST evaluation is
based on the Wizard-of-Oz (WOZ) v2.0 dataset
(Wen et al., 2017; Mrkšić et al., 2017), comprising
1,200 dialogues split into training (600 dialogues),
development (200), and test data (400). In all exper-
iments, we report the standard DST performance
measure: joint goal accuracy, and report scores as
averages over 5 NBT training runs.

Results and Analysis We again evaluate word
vectors in two settings: 1) hold-out, where linguis-
tic constraints with words appearing in the WOZ
data are removed, making all WOZ words unseen
by ATTRACT-REPEL; and 2) all. The results for
the English DST task with different GLOVE word
vector variants are summarised in Tab. 3; similar
trends in results are observed with two other word
vector collections. The scores maintain conclusions
established in the word similarity task. First, seman-
tic specialisation with ATTRACT-REPEL is again
beneficial, and discerning between synonyms and
antonyms improves DST performance. However,
specialising unseen words (the final Xu vector
space) yields further improvements in both evalua-
tion settings, supporting our claim that the speciali-
sation signal can be propagated to unseen words.

This downstream evaluation again demonstrates
the importance of non-linearity, as the peak scores
are reported with the NONLINEAR-MM variant.
More substantial gains in the all setup are observed
in the DST task compared to the word similarity
task. This stems from a lower coverage of the WOZ
data in the AR constraints: 36.3% of all WOZ words
are unseen words. Finally, the scores are higher on
average in the all setup, since this setup uses more
external constraints for AR, and consequently uses
more training examples to learn the mapping.

Other Languages We test the portability of our
framework to two other languages for which we
have similar evaluation data: German (DE) and

Italian (IT). SimLex-999 has been translated and
rescored in the two languages by Leviant and
Reichart (2015), and the WOZ data were trans-
lated and adapted by Mrkšić et al. (2017). Exactly
the same setup is used as in our English exper-
iments, without any additional language-specific
fine-tuning. Linguistic constraints were extracted
from the same sources: synonyms from the PPDB
(135,868 in DE, 362,452 in IT), antonyms from
BabelNet (4,124 in DE, and 16,854 in IT). Our
starting distributional vector spaces are taken from
prior work: IT vectors are from (Dinu et al., 2015),
DE vectors are from (Vulić and Korhonen, 2016a).
The results are summarised in Tab. 4.

Our post-specialisation approach yields consis-
tent improvements over the initial distributional
space and the AR specialisation model in both tasks
and for both languages. We do not observe any gain
on IT SimLex in the all setup since IT constraints
have almost complete coverage of all IT SimLex
words (99.3%; the coverage is 64.8% in German).
As expected, the DST scores in the all setup are
higher than in the hold-out setup due to a larger
number of constraints and training examples.

Lower absolute scores for Italian and German
compared to the ones reported for English are
due to multiple factors, as discussed previously by
Mrkšić et al. (2017): 1) the AR model uses less lin-
guistic constraints for DE and IT; 2) distributional
word vectors are induced from smaller corpora; 3)
linguistic phenomena (e.g., cases and compound-
ing in DE) contribute to data sparsity and also make
the DST task more challenging. However, it is im-
portant to stress the consistent gains over the vector
space specialised by the state-of-the-art ATTRACT-
REPEL model across all three test languages. This
indicates that the proposed approach is language-
agnostic and portable to multiple languages.

5.3 Downstream Task II: Lexical
Simplification

In our second downstream task, we examine the
effects of post-specialisation on lexical simplifica-
tion (LS) in English. LS aims to substitute complex
words (i.e., less commonly used words) with their
simpler synonyms in the context. Simplified text
must keep the meaning of the original text, which
is discerning similarity from relatedness is impor-
tant (e.g., in “The automobile was set on fire” the
word “automobile” should be replaced with “car”
or “vehicle” but not with “wheel” or “driver”).
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GERMAN ITALIAN

SimLex (Similarity) WOZ (DST) SimLex (Similarity) WOZ (DST)
hold-out all hold-out all hold-out all hold-out all

Distributional: Xd .267 .267 .487 .487 .363 .363 .618 .618
+AR Spec.: X′s ∪Xu .267 .422 .487 .535 .363 .616 .618 .634
++Mapping: Xf

LINEAR-MM .354 .449 .485 .533 .401 .616 .627 .633
NONLINEAR-MM .367 .466 .496 .538 .428 .616 .637 .647

Table 4: Results on word similarity (Spearman’s ρ) and DST (joint goal accuracy) for German and Italian.

Vectors Specialisation Acc. Ch.

Distributional: Xd 66.0 94.0
GLOVE +AR Spec.: X′s ∪Xu 67.6 87.0

++Mapping: Xf 72.3 87.6

Distributional: Xd 57.8 84.0
FASTTEXT +AR Spec.: X′s ∪Xu 69.8 89.4

++Mapping: Xf 74.3 88.8

Distributional: Xd 56.0 79.1
SGNS-BOW2 +AR Spec.: X′s ∪Xu 64.4 86.7

++Mapping: Xf 70.9 86.8

Table 5: Lexical simplification performance with
post-specialisation applied on three input spaces.

We employ LIGHT-LS (Glavaš and Štajner,
2015), a lexical simplification algorithm that: 1)
makes substitutions based on word similarities in a
semantic vector space, and 2) can be provided an
arbitrary embedding space as input.10 For a com-
plex word, LIGHT-LS considers the most similar
words from the vector space as simplification can-
didates. Candidates are ranked according to several
features, indicating simplicity and fitness for the
context (semantic relatedness to the context of the
complex word). The substitution is made if the best
candidate is simpler than the original word. By pro-
viding vector spaces post-specialised for semantic
similarity to LIGHT-LS, we expect to more often
replace complex words with their true synonyms.

We evaluate LIGHT-LS performance in the all
setup on the LS benchmark compiled by Horn et al.
(2014), who crowdsourced 50 manual simplifica-
tions for each complex word. As in prior work,
we evaluate performance with the following met-
rics: 1) Accurracy (Acc.) is the number of correct
simplifications made (i.e., the system made the sim-
plification and its substitution is found in the list of
crowdsourced substitutions), divided by the total
number of indicated complex words; 2) Changed
(Ch.) is the percentage of indicated complex words

10https://github.com/codogogo/lightls

that were replaced by the system (whether or not
the replacement was correct).

LS results are summarised in Tab. 5. Post-
specialised vector spaces consistently yield 5-6%
gain in Accuracy compared to respective distribu-
tional vectors and embeddings specialised with the
state-of-the-art ATTRACT-REPEL model. Similar
to DST evaluation, improvements over ATTRACT-
REPEL demonstrate the importance of specialising
the vectors of the entire vocabulary and not only
the vectors of words from the external constraints.

6 Conclusion and Future Work

We have presented a novel post-processing model,
termed post-specialisation, that specialises word
vectors for the full vocabulary of the input vec-
tor space. Previous post-processing specialisation
models fine-tune word vectors only for words oc-
curring in external lexical resources. In this work,
we have demonstrated that the specialisation of the
subspace of seen words can be leveraged to learn
a mapping function which specialises vectors for
all other words, unseen in the external resources.
Our results across word similarity and downstream
language understanding tasks show consistent im-
provements over the state-of-the-art specialisation
method for all three test languages.

In future work, we plan to extend our approach
to specialisation for asymmetric relations such as
hypernymy or meronymy (Glavaš and Ponzetto,
2017; Nickel and Kiela, 2017; Vulić and Mrkšić,
2018). We will also investigate more sophisticated
non-linear functions. The code is available at:
https://github.com/cambridgeltl/
post-specialisation/.
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Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
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Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
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Ivan Vulić and Nikola Mrkšić. 2018. Specialising word
vectors for lexical entailment. In Proceedings of
NAACL-HLT.
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Abstract

The recent tremendous success of unsuper-
vised word embeddings in a multitude of ap-
plications raises the obvious question if simi-
lar methods could be derived to improve em-
beddings (i.e. semantic representations) of
word sequences as well. We present a sim-
ple but efficient unsupervised objective to train
distributed representations of sentences. Our
method outperforms the state-of-the-art unsu-
pervised models on most benchmark tasks,
highlighting the robustness of the produced
general-purpose sentence embeddings.

1 Introduction

Improving unsupervised learning is of key impor-
tance for advancing machine learning methods, as
to unlock access to almost unlimited amounts of
data to be used as training resources. The ma-
jority of recent success stories of deep learning
does not fall into this category but instead relied
on supervised training (in particular in the vision
domain). A very notable exception comes from
the text and natural language processing domain,
in the form of semantic word embeddings trained
unsupervised (Mikolov et al., 2013b,a; Penning-
ton et al., 2014). Within only a few years from
their invention, such word representations – which
are based on a simple matrix factorization model
as we formalize below – are now routinely trained
on very large amounts of raw text data, and have
become ubiquitous building blocks of a majority
of current state-of-the-art NLP applications.

While very useful semantic representations are
available for words, it remains challenging to pro-
duce and learn such semantic embeddings for
longer pieces of text, such as sentences, para-
graphs or entire documents. Even more so, it re-

* indicates equal contribution

mains a key goal to learn such general-purpose
representations in an unsupervised way.

Currently, two contrary research trends have
emerged in text representation learning: On one
hand, a strong trend in deep-learning for NLP
leads towards increasingly powerful and com-
plex models, such as recurrent neural networks
(RNNs), LSTMs, attention models and even Neu-
ral Turing Machine architectures. While ex-
tremely strong in expressiveness, the increased
model complexity makes such models much
slower to train on larger datasets. On the other end
of the spectrum, simpler “shallow” models such
as matrix factorizations (or bilinear models) can
benefit from training on much larger sets of data,
which can be a key advantage, especially in the
unsupervised setting.

Surprisingly, for constructing sentence embed-
dings, naively using averaged word vectors was
shown to outperform LSTMs (see Wieting et al.
(2016b) for plain averaging, and Arora et al.
(2017) for weighted averaging). This example
shows potential in exploiting the trade-off be-
tween model complexity and ability to process
huge amounts of text using scalable algorithms,
towards the simpler side. In view of this trade-
off, our work here further advances unsupervised
learning of sentence embeddings. Our proposed
model can be seen as an extension of the C-BOW
(Mikolov et al., 2013b,a) training objective to train
sentence instead of word embeddings. We demon-
strate that the empirical performance of our re-
sulting general-purpose sentence embeddings very
significantly exceeds the state of the art, while
keeping the model simplicity as well as training
and inference complexity exactly as low as in aver-
aging methods (Wieting et al., 2016b; Arora et al.,
2017), thereby also putting the work by (Arora
et al., 2017) in perspective.
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Contributions. The main contributions in this
work can be summarized as follows:

• Model. We propose Sent2Vec1, a sim-
ple unsupervised model allowing to com-
pose sentence embeddings using word vec-
tors along with n-gram embeddings, simulta-
neously training composition and the embed-
ding vectors themselves.

• Efficiency & Scalability. The computational
complexity of our embeddings is only O(1)
vector operations per word processed, both
during training and inference of the sentence
embeddings. This strongly contrasts all neu-
ral network based approaches, and allows our
model to learn from extremely large datasets,
in a streaming fashion, which is a crucial ad-
vantage in the unsupervised setting. Fast in-
ference is a key benefit in downstream tasks
and industry applications.

• Performance. Our method shows signifi-
cant performance improvements compared to
the current state-of-the-art unsupervised and
even semi-supervised models. The resulting
general-purpose embeddings show strong ro-
bustness when transferred to a wide range of
prediction benchmarks.

2 Model

Our model is inspired by simple matrix factor
models (bilinear models) such as recently very
successfully used in unsupervised learning of
word embeddings (Mikolov et al., 2013b,a; Pen-
nington et al., 2014; Bojanowski et al., 2017)
as well as supervised of sentence classification
(Joulin et al., 2017). More precisely, these models
can all be formalized as an optimization problem
of the form

min
U ,V

∑

S∈C
fS(UV ιS) (1)

for two parameter matrices U ∈ Rk×h and V ∈
Rh×|V|, where V denotes the vocabulary. Here,
the columns of the matrix V represent the learnt
source word vectors whereas those of U represent
the target word vectors. For a given sentence S,

1 All our code and pre-trained models will be made
publicly available on http://github.com/epfml/
sent2vec

which can be of arbitrary length, the indicator vec-
tor ιS ∈ {0, 1}|V| is a binary vector encoding S
(bag of words encoding).

Fixed-length context windows S running over
the corpus are used in word embedding methods
as in C-BOW (Mikolov et al., 2013b,a) and GloVe
(Pennington et al., 2014). Here we have k = |V|
and each cost function fS : Rk → R only de-
pends on a single row of its input, describing the
observed target word for the given fixed-length
context S. In contrast, for sentence embeddings
which are the focus of our paper here, S will
be entire sentences or documents (therefore vari-
able length). This property is shared with the su-
pervised FastText classifier (Joulin et al., 2017),
which however uses soft-max with k � |V| being
the number of class labels.

2.1 Proposed Unsupervised Model

We propose a new unsupervised model, Sent2Vec,
for learning universal sentence embeddings. Con-
ceptually, the model can be interpreted as a natu-
ral extension of the word-contexts from C-BOW
(Mikolov et al., 2013b,a) to a larger sentence con-
text, with the sentence words being specifically
optimized towards additive combination over the
sentence, by means of the unsupervised objective
function.

Formally, we learn a source (or context) embed-
ding vw and target embeddinguw for each wordw
in the vocabulary, with embedding dimension h
and k = |V| as in (1). The sentence embedding
is defined as the average of the source word em-
beddings of its constituent words, as in (2). We
augment this model furthermore by also learning
source embeddings for not only unigrams but also
n-grams present in each sentence, and averaging
the n-gram embeddings along with the words, i.e.,
the sentence embedding vS for S is modeled as

vS := 1
|R(S)|V ιR(S) =

1
|R(S)|

∑

w∈R(S)

vw (2)

where R(S) is the list of n-grams (including un-
igrams) present in sentence S. In order to pre-
dict a missing word from the context, our objective
models the softmax output approximated by neg-
ative sampling following (Mikolov et al., 2013b).
For the large number of output classes |V| to be
predicted, negative sampling is known to signifi-
cantly improve training efficiency, see also (Gold-
berg and Levy, 2014). Given the binary logistic
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loss function ` : x 7→ log (1 + e−x) coupled with
negative sampling, our unsupervised training ob-
jective is formulated as follows:

min
U ,V

∑

S∈C

∑

wt∈S

(
`
(
u>wt

vS\{wt}
)

+
∑

w′∈Nwt

`
(
− u>w′vS\{wt}

))

where S corresponds to the current sentence and
Nwt is the set of words sampled negatively for
the word wt ∈ S. The negatives are sampled2

following a multinomial distribution where each
word w is associated with a probability qn(w) :=√
fw
/ (∑

wi∈V
√
fwi

)
, where fw is the normal-

ized frequency of w in the corpus.
To select the possible target unigrams (posi-

tives), we use subsampling as in (Joulin et al.,
2017; Bojanowski et al., 2017), each word w be-
ing discarded with probability 1 − qp(w) where
qp(w) := min

{
1,
√
t/fw + t/fw

}
. Where t is

the subsampling hyper-parameter. Subsampling
prevents very frequent words of having too much
influence in the learning as they would introduce
strong biases in the prediction task. With positives
subsampling and respecting the negative sampling
distribution, the precise training objective function
becomes

min
U ,V

∑

S∈C

∑

wt∈S

(
qp(wt)`

(
u>wt

vS\{wt}
)

(3)

+ |Nwt |
∑

w′∈V
qn(w

′)`
(
− u>w′vS\{wt}

))

2.2 Computational Efficiency
In contrast to more complex neural network based
models, one of the core advantages of the pro-
posed technique is the low computational cost for
both inference and training. Given a sentence S
and a trained model, computing the sentence rep-
resentation vS only requires |S| · h floating point
operations (or |R(S)| · h to be precise for the n-
gram case, see (2)), where h is the embedding di-
mension. The same holds for the cost of training
with SGD on the objective (3), per sentence seen
in the training corpus. Due to the simplicity of the

2To efficiently sample negatives, a pre-processing table
is constructed, containing the words corresponding to the
square root of their corpora frequency. Then, the negatives
Nwt are sampled uniformly at random from the negatives ta-
ble except the target wt itself, following (Joulin et al., 2017;
Bojanowski et al., 2017).

model, parallel training is straight-forward using
parallelized or distributed SGD.

Also, in order to store higher-order n-grams effi-
ciently, we use the standard hashing trick, see e.g.
(Weinberger et al., 2009), with the same hashing
function as used in FastText (Joulin et al., 2017;
Bojanowski et al., 2017).

2.3 Comparison to C-BOW

C-BOW (Mikolov et al., 2013b,a) aims to predict
a chosen target word given its fixed-size context
window, the context being defined by the average
of the vectors associated with the words at a dis-
tance less than the window size hyper-parameter
ws. If our system, when restricted to unigram
features, can be seen as an extension of C-BOW
where the context window includes the entire sen-
tence, in practice there are few important differ-
ences as C-BOW uses important tricks to facilitate
the learning of word embeddings. C-BOW first
uses frequent word subsampling on the sentences,
deciding to discard each token w with probability
qp(w) or alike (small variations exist across imple-
mentations). Subsampling prevents the generation
of n-grams features, and deprives the sentence of
an important part of its syntactical features. It also
shortens the distance between subsampled words,
implicitly increasing the span of the context win-
dow. A second trick consists of using dynamic
context windows: for each subsampled word w,
the size of its associated context window is sam-
pled uniformly between 1 and ws. Using dynamic
context windows is equivalent to weighing by the
distance from the focus word w divided by the
window size (Levy et al., 2015). This makes the
prediction task local, and go against our objective
of creating sentence embeddings as we want to
learn how to compose all n-gram features present
in a sentence. In the results section, we report
a significant improvement of our method over C-
BOW.

2.4 Model Training

Three different datasets have been used to train
our models: the Toronto book corpus3, Wikipedia
sentences and tweets. The Wikipedia and Toronto
books sentences have been tokenized using the
Stanford NLP library (Manning et al., 2014),
while for tweets we used the NLTK tweets tok-
enizer (Bird et al., 2009). For training, we select a

3http://www.cs.toronto.edu/˜mbweb/
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sentence randomly from the dataset and then pro-
ceed to select all the possible target unigrams us-
ing subsampling. We update the weights using
SGD with a linearly decaying learning rate.

Also, to prevent overfitting, for each sentence
we use dropout on its list of n-grams R(S) \
{U(S)}, where U(S) is the set of all unigrams
contained in sentence S. After empirically try-
ing multiple dropout schemes, we find that drop-
ping K n-grams (n > 1) for each sentence is
giving superior results compared to dropping each
token with some fixed probability. This dropout
mechanism would negatively impact shorter sen-
tences. The regularization can be pushed further
by applying L1 regularization to the word vec-
tors. Encouraging sparsity in the embedding vec-
tors is particularly beneficial for high dimension h.
The additional soft thresholding in every SGD step
adds negligible computational cost. See also Ap-
pendix B. We train two models on each dataset,
one with unigrams only and one with unigrams
and bigrams. All training parameters for the mod-
els are provided in Table 5 in the appendix. Our
C++ implementation builds upon the FastText li-
brary (Joulin et al., 2017; Bojanowski et al., 2017).
We will make our code and pre-trained models
available open-source.

3 Related Work

We discuss existing models which have been pro-
posed to construct sentence embeddings. While
there is a large body of works in this direction –
several among these using e.g. labelled datasets of
paraphrase pairs to obtain sentence embeddings in
a supervised manner (Wieting et al., 2016a,b; Con-
neau et al., 2017) to learn sentence embeddings –
we here focus on unsupervised, task-independent
models. While some methods require ordered raw
text i.e., a coherent corpus where the next sentence
is a logical continuation of the previous sentence,
others rely only on raw text i.e., an unordered col-
lection of sentences. Finally, we also discuss alter-
native models built from structured data sources.

3.1 Unsupervised Models Independent of
Sentence Ordering

The ParagraphVector DBOW model (Le and
Mikolov, 2014) is a log-linear model which is
trained to learn sentence as well as word embed-
dings and then use a softmax distribution to predict
words contained in the sentence given the sentence

vector representation. They also propose a dif-
ferent model ParagraphVector DM where they
use n-grams of consecutive words along with the
sentence vector representation to predict the next
word.

(Lev et al., 2015) also presented an early ap-
proach to obtain compositional embeddings from
word vectors. They use different compositional
techniques including static averaging or Fisher
vectors of a multivariate Gaussian to obtain sen-
tence embeddings from word2vec models.

Hill et al. (2016a) propose a Sequential (De-
noising) Autoencoder, S(D)AE. This model first
introduces noise in the input data: Firstly each
word is deleted with probability p0, then for each
non-overlapping bigram, words are swapped with
probability px. The model then uses an LSTM-
based architecture to retrieve the original sentence
from the corrupted version. The model can then
be used to encode new sentences into vector rep-
resentations. In the case of p0 = px = 0, the
model simply becomes a Sequential Autoencoder.
Hill et al. (2016a) also propose a variant (S(D)AE
+ embs.) in which the words are represented by
fixed pre-trained word vector embeddings.

Arora et al. (2017) propose a model in which
sentences are represented as a weighted average
of fixed (pre-trained) word vectors, followed by
post-processing step of subtracting the principal
component. Using the generative model of (Arora
et al., 2016), words are generated conditioned on
a sentence “discourse” vector cs:

Pr[w | cs] = αfw + (1− α)exp(c̃
>
s vw)

Zc̃s

,

where Zc̃s :=
∑

w∈V exp(c̃
>
s vw) and c̃s :=

βc0 + (1 − β)cs and α, β are scalars. c0 is the
common discourse vector, representing a shared
component among all discourses, mainly related
to syntax. It allows the model to better generate
syntactical features. The αfw term is here to en-
able the model to generate some frequent words
even if their matching with the discourse vector c̃s
is low.

Therefore, this model tries to generate sentences
as a mixture of three type of words: words match-
ing the sentence discourse vector cs, syntacti-
cal words matching c0, and words with high fw.
(Arora et al., 2017) demonstrated that for this
model, the MLE of c̃s can be approximated by∑

w∈S
a

fw+avw, where a is a scalar. The sentence
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discourse vector can hence be obtained by sub-
tracting c0 estimated by the first principal com-
ponent of c̃s’s on a set of sentences. In other
words, the sentence embeddings are obtained by
a weighted average of the word vectors strip-
ping away the syntax by subtracting the com-
mon discourse vector and down-weighting fre-
quent tokens. They generate sentence embed-
dings from diverse pre-trained word embeddings
among which are unsupervised word embeddings
such as GloVe (Pennington et al., 2014) as well
as supervised word embeddings such as paragram-
SL999 (PSL) (Wieting et al., 2015) trained on the
Paraphrase Database (Ganitkevitch et al., 2013).

In a very different line of work, C-PHRASE
(Pham et al., 2015) relies on additional informa-
tion from the syntactic parse tree of each sentence,
which is incorporated into the C-BOW training
objective.

Huang and Anandkumar (2016) show that sin-
gle layer CNNs can be modeled using a tensor
decomposition approach. While building on an
unsupervised objective, the employed dictionary
learning step for obtaining phrase templates is
task-specific (for each use-case), not resulting in
general-purpose embeddings.

3.2 Unsupervised Models Depending on
Sentence Ordering

The SkipThought model (Kiros et al., 2015) com-
bines sentence level models with recurrent neu-
ral networks. Given a sentence Si from an or-
dered corpus, the model is trained to predict Si−1
and Si+1.

FastSent (Hill et al., 2016a) is a sentence-
level log-linear bag-of-words model. Like
SkipThought, it uses adjacent sentences as the pre-
diction target and is trained in an unsupervised
fashion. Using word sequences allows the model
to improve over the earlier work of paragraph2vec
(Le and Mikolov, 2014). (Hill et al., 2016a) aug-
ment FastSent further by training it to predict the
constituent words of the sentence as well. This
model is named FastSent + AE in our compar-
isons.

Compared to our approach, Siamese C-BOW
(Kenter et al., 2016) shares the idea of learning to
average word embeddings over a sentence. How-
ever, it relies on a Siamese neural network archi-
tecture to predict surrounding sentences, contrast-
ing our simpler unsupervised objective.

Note that on the character sequence level in-
stead of word sequences, FastText (Bojanowski
et al., 2017) uses the same conceptual model to ob-
tain better word embeddings. This is most similar
to our proposed model, with two key differences:
Firstly, we predict from source word sequences to
target words, as opposed to character sequences to
target words, and secondly, our model is averaging
the source embeddings instead of summing them.

3.3 Models requiring structured data

DictRep (Hill et al., 2016b) is trained to map dic-
tionary definitions of the words to the pre-trained
word embeddings of these words. They use two
different architectures, namely BOW and RNN
(LSTM) with the choice of learning the input word
embeddings or using them pre-trained. A similar
architecture is used by the CaptionRep variant,
but here the task is the mapping of given image
captions to a pre-trained vector representation of
these images.

4 Evaluation Tasks

We use a standard set of supervised as well as un-
supervised benchmark tasks from the literature to
evaluate our trained models, following (Hill et al.,
2016a). The breadth of tasks allows to fairly mea-
sure generalization to a wide area of different do-
mains, testing the general-purpose quality (univer-
sality) of all competing sentence embeddings. For
downstream supervised evaluations, sentence em-
beddings are combined with logistic regression to
predict target labels. In the unsupervised evalua-
tion for sentence similarity, correlation of the co-
sine similarity between two embeddings is com-
pared to human annotators.

Downstream Supervised Evaluation. Sen-
tence embeddings are evaluated for various su-
pervised classification tasks as follows. We
evaluate paraphrase identification (MSRP) (Dolan
et al., 2004), classification of movie review sen-
timent (MR) (Pang and Lee, 2005), product re-
views (CR) (Hu and Liu, 2004), subjectivity clas-
sification (SUBJ) (Pang and Lee, 2004), opinion
polarity (MPQA) (Wiebe et al., 2005) and ques-
tion type classification (TREC) (Voorhees, 2002).
To classify, we use the code provided by (Kiros
et al., 2015) in the same manner as in (Hill et al.,
2016a). For the MSRP dataset, containing pairs of
sentences (S1, S2) with associated paraphrase la-
bel, we generate feature vectors by concatenating
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their Sent2Vec representations |vS1 − vS2 | with
the component-wise product vS1 � vS2 . The pre-
defined training split is used to tune the L2 penalty
parameter using cross-validation and the accuracy
and F1 scores are computed on the test set. For
the remaining 5 datasets, Sent2Vec embeddings
are inferred from input sentences and directly fed
to a logistic regression classifier. Accuracy scores
are obtained using 10-fold cross-validation for the
MR, CR, SUBJ and MPQA datasets. For those
datasets nested cross-validation is used to tune the
L2 penalty. For the TREC dataset, as for the
MRSP dataset, the L2 penalty is tuned on the pre-
defined train split using 10-fold cross-validation,
and the accuracy is computed on the test set.

Unsupervised Similarity Evaluation. We per-
form unsupervised evaluation of the learnt sen-
tence embeddings using the sentence cosine sim-
ilarity, on the STS 2014 (Agirre et al., 2014)
and SICK 2014 (Marelli et al., 2014) datasets.
These similarity scores are compared to the gold-
standard human judgements using Pearson’s r
(Pearson, 1895) and Spearman’s ρ (Spearman,
1904) correlation scores. The SICK dataset con-
sists of about 10,000 sentence pairs along with
relatedness scores of the pairs. The STS 2014
dataset contains 3,770 pairs, divided into six dif-
ferent categories on the basis of the origin of sen-
tences/phrases, namely Twitter, headlines, news,
forum, WordNet and images.

5 Results and Discussion

In Tables 1 and 2, we compare our results with
those obtained by (Hill et al., 2016a) on different
models. Table 3 in the last column shows the dra-
matic improvement in training time of our mod-
els (and other C-BOW-inspired models) in con-
trast to neural network based models. All our
Sent2Vec models are trained on a machine with
2x Intel Xeon E5−2680v3, 12 cores @2.5GHz.
Along with the models discussed in Section 3, this
also includes the sentence embedding baselines
obtained by simple averaging of word embeddings
over the sentence, in both the C-BOW and skip-
gram variants. TF-IDF BOW is a representation
consisting of the counts of the 200,000 most com-
mon feature-words, weighed by their TF-IDF fre-
quencies. To ensure coherence, we only include
unsupervised models in the main paper. Perfor-
mance of supervised and semi-supervised models
on these evaluations can be observed in Tables 6

and 7 in the appendix.
Downstream Supervised Evaluation Results.

On running supervised evaluations and observing
the results in Table 1, we find that on an aver-
age our models are second only to SkipThought
vectors. Also, both our models achieve state
of the art results on the CR task. We also ob-
serve that on half of the supervised tasks, our
unigrams + bigram model is the best model af-
ter SkipThought. Our models are weaker on the
MSRP task (which consists of the identification of
labelled paraphrases) compared to state-of-the-art
methods. However, we observe that the models
which perform very strongly on this task end up
faring very poorly on the other tasks, indicating a
lack of generalizability.

On rest of the tasks, our models perform ex-
tremely well. The SkipThought model is able to
outperform our models on most of the tasks as it is
trained to predict the previous and next sentences
and a lot of tasks are able to make use of this con-
textual information missing in our Sent2Vec mod-
els. For example, the TREC task is a poor measure
of how one predicts the content of the sentence
(the question) but a good measure of how the next
sentence in the sequence (the answer) is predicted.

Unsupervised Similarity Evaluation Results.
In Table 2, we see that our Sent2Vec models
are state-of-the-art on the majority of tasks when
comparing to all the unsupervised models trained
on the Toronto corpus, and clearly achieve the
best averaged performance. Our Sent2Vec mod-
els also on average outperform or are at par with
the C-PHRASE model, despite significantly lag-
ging behind on the STS 2014 WordNet and News
subtasks. This observation can be attributed to
the fact that a big chunk of the data that the C-
PHRASE model is trained on comes from English
Wikipedia, helping it to perform well on datasets
involving definition and news items. Also, C-
PHRASE uses data three times the size of the
Toronto book corpus. Interestingly, our model out-
performs C-PHRASE when trained on Wikipedia,
as shown in Table 3, despite the fact that we use
no parse tree information.

Official STS 2017 benchmark. In the official
results of the most recent edition of the STS 2017
benchmark (Cer et al., 2017), our model also sig-
nificantly outperforms C-PHRASE, and in fact de-
livers the best unsupervised baseline method.

4For the Siamese C-BOW model trained on the Toronto
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Data Model MSRP
(Acc / F1) MR CR SUBJ MPQA TREC Average

Unordered Sentences:
(Toronto Books;

70 million sentences,
0.9 Billion Words)

SAE 74.3 / 81.7 62.6 68.0 86.1 76.8 80.2 74.7
SAE + embs. 70.6 / 77.9 73.2 75.3 89.8 86.2 80.4 79.3
SDAE 76.4 / 83.4 67.6 74.0 89.3 81.3 77.7 78.3
SDAE + embs. 73.7 / 80.7 74.6 78.0 90.8 86.9 78.4 80.4
ParagraphVec DBOW 72.9 / 81.1 60.2 66.9 76.3 70.7 59.4 67.7
ParagraphVec DM 73.6 / 81.9 61.5 68.6 76.4 78.1 55.8 69.0
Skipgram 69.3 / 77.2 73.6 77.3 89.2 85.0 82.2 78.5
C-BOW 67.6 / 76.1 73.6 77.3 89.1 85.0 82.2 79.1
Unigram TFIDF 73.6 / 81.7 73.7 79.2 90.3 82.4 85.0 80.7
Sent2Vec uni. 72.2 / 80.3 75.1 80.2 90.6 86.3 83.8 81.4
Sent2Vec uni. + bi. 72.5 / 80.8 75.8 80.3 91.2 85.9 86.4 82.0

Ordered Sentences:
Toronto Books

SkipThought 73.0 / 82.0 76.5 80.1 93.6 87.1 92.2 83.8
FastSent 72.2 / 80.3 70.8 78.4 88.7 80.6 76.8 77.9
FastSent+AE 71.2 / 79.1 71.8 76.7 88.8 81.5 80.4 78.4

2.8 Billion words C-PHRASE 72.2 / 79.6 75.7 78.8 91.1 86.2 78.8 80.5

Table 1: Comparison of the performance of different models on different supervised evaluation tasks. An underline indicates
the best performance for the dataset. Top 3 performances in each data category are shown in bold. The average is calculated as
the average of accuracy for each category (For MSRP, we take the accuracy). )

STS 2014 SICK 2014
Model News Forum WordNet Twitter Images Headlines Test + Train Average
SAE .17/.16 .12/.12 .30/.23 .28/.22 .49/.46 .13/.11 .32/.31 .26/.23
SAE + embs. .52/.54 .22/.23 .60/.55 .60/.60 .64/.64 .41/.41 .47/.49 .50/.49
SDAE .07/.04 .11/.13 .33/.24 .44/.42 .44/.38 .36/.36 .46/.46 .31/.29
SDAE + embs. .51/.54 .29/.29 .56/.50 .57/.58 .59/.59 .43/.44 .46/.46 .49/.49
ParagraphVec DBOW .31/.34 .32/.32 .53/.50 .43/.46 .46/.44 .39/.41 .42/.46 .41/.42
ParagraphVec DM .42/.46 .33/.34 .51/.48 .54/.57 .32/.30 .46/.47 .44/.40 .43/.43
Skipgram .56/.59 .42/.42 .73/.70 .71/.74 .65/.67 .55/.58 .60/.69 .60/.63
C-BOW .57/.61 .43/.44 .72/.69 .71/.75 .71/.73 .55/.59 .60/.69 .60/.65
Unigram TF-IDF .48/.48 .40/.38 .60/.59 .63/.65 .72/.74 .49/.49 .52/.58 .55/.56
Sent2Vec uni. .62/.67 .49/.49 .75/.72 .70/.75 .78/.82 .61/.63 .61/.70 .65/.68
Sent2Vec uni. + bi. .62/.67 .51/.51 .71/.68 .70/.75 .75/.79 .59/.62 .62/.70 .65/.67
SkipThought .44/.45 .14/.15 .39/.34 .42/.43 .55/.60 .43/.44 .57/.60 .42/.43
FastSent .58/.59 .41/.36 .74/.70 .63/.66 .74/.78 .57/.59 .61/.72 .61/.63
FastSent+AE .56/.59 .41/.40 .69/.64 .70/.74 .63/.65 .58/.60 .60/.65 .60/.61
Siamese C-BOW4 .58/.59 .42/.41 .66/.61 .71/.73 .65/.65 .63/.64 − −
C-PHRASE .69/.71 .43/.41 .76/.73 .60/.65 .75/.79 .60/.65 .60/.72 .63/.67

Table 2: Unsupervised Evaluation Tasks: Comparison of the performance of different models on Spearman/Pearson corre-
lation measures. An underline indicates the best performance for the dataset. Top 3 performances in each data category are
shown in bold. The average is calculated as the average of entries for each correlation measure.

Macro Average. To summarize our contribu-
tions on both supervised and unsupervised tasks,
in Table 3 we present the results in terms of the
macro average over the averages of both super-
vised and unsupervised tasks along with the train-
ing times of the models5. For unsupervised tasks,
averages are taken over both Spearman and Pear-
son scores. The comparison includes the best per-
forming unsupervised and semi-supervised meth-
ods described in Section 3. For models trained
on the Toronto books dataset, we report a 3.8 %
points improvement over the state of the art. Con-
sidering all supervised, semi-supervised methods
and all datasets compared in (Hill et al., 2016a),

corpus, supervised evaluation as well as similarity evaluation
results on the SICK 2014 dataset are unavailable.

5time taken to train C-PHRASE models is unavailable

we report a 2.2 % points improvement.
We also see a noticeable improvement in ac-

curacy as we use larger datasets like Twitter and
Wikipedia. We furthermore see that the Sent2Vec
models are faster to train when compared to meth-
ods like SkipThought and DictRep, owing to the
SGD optimizer allowing a high degree of paral-
lelizability.

We can clearly see Sent2Vec outperforming
other unsupervised and even semi-supervised
methods. This can be attributed to the superior
generalizability of our model across supervised
and unsupervised tasks.

Comparison with Arora et al. (2017). We also
compare our work with Arora et al. (2017) who
also use additive compositionality to obtain sen-
tence embeddings. However, in contrast to our
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Type Training corpus Method Supervised
average

Unsupervised
average

Macro
average

Training time
(in hours)

unsupervised twitter (19.7B words) Sent2Vec uni. + bi. 83.5 68.3 75.9 6.5*
unsupervised twitter (19.7B words) Sent2Vec uni. 82.2 69.0 75.6 3*
unsupervised Wikipedia (1.7B words) Sent2Vec uni. + bi. 83.3 66.2 74.8 2*
unsupervised Wikipedia (1.7B words) Sent2Vec uni. 82.4 66.3 74.3 3.5*
unsupervised Toronto books (0.9B words) Sent2Vec books uni. 81.4 66.7 74.0 1*
unsupervised Toronto books (0.9B words) Sent2Vec books uni. + bi. 82.0 65.9 74.0 1.2*

semi-supervised structured dictionary dataset DictRep BOW + emb 80.5 66.9 73.7 24**
unsupervised 2.8B words + parse info. C-PHRASE 80.5 64.9 72.7 −
unsupervised Toronto books (0.9B words) C-BOW 79.1 62.8 70.2 2
unsupervised Toronto books (0.9B words) FastSent 77.9 62.0 70.0 2
unsupervised Toronto books (0.9B words) SkipThought 83.8 42.5 63.1 336**

Table 3: Best unsupervised and semi-supervised methods ranked by macro average along with their training times. ** indicates
trained on GPU. * indicates trained on a single node using 30 threads. Training times for non-Sent2Vec models are due to Hill
et al. (2016a). For CPU based competing methods, we were able to reproduce all published timings (+-10%) using our same
hardware as for training Sent2Vec.

Dataset
Unsupervised

GloVe (840B words)
+ WR

Semi-supervised
PSL + WR

Sent2Vec Unigrams
(19.7B words)
Tweets Model

Sent2Vec Unigrams + Bigrams
(19.7B words)
Tweets Model

STS 2014 0.685 0.735 0.710 0.701
SICK 2014 0.722 0.729 0.710 0.715
Supervised average 0.815 0.807 0.822 0.835

Table 4: Comparison of the performance of the unsupervised and semi-supervised sentence embeddings by (Arora et al., 2017)
with our models. Unsupervised comparisons are in terms of Pearson’s correlation, while comparisons on supervised tasks are
stating the average described in Table 1.

model, they use fixed, pre-trained word embed-
dings to build a weighted average of these em-
beddings using unigram probabilities. While we
couldn’t find pre-trained state of the art word em-
beddings trained on the Toronto books corpus, we
evaluated their method using GloVe embeddings
obtained from the larger Common Crawl Corpus6,
which is 42 times larger than our twitter corpus,
greatly favoring their method over ours.

In Table 4, we report an experimental compar-
ison to their model on unsupervised tasks. In
the table, the suffix W indicates that their down-
weighting scheme has been used, while the suf-
fix R indicates the removal of the first princi-
pal component. They report values of a ∈
[10−4, 10−3] as giving the best results and used
a = 10−3 for all their experiments. We observe
that our results are competitive with the embed-
dings of Arora et al. (2017) for purely unsuper-
vised methods. It is important to note that the
scores obtained from supervised task-specific PSL
embeddings trained for the purpose of semantic
similarity outperform our method on both SICK
and average STS 2014, which is expected as our
model is trained purely unsupervised.

In order to facilitate a more detailed compari-
son, we also evaluated the unsupervised Glove +
WR embeddings on downstream supervised tasks

6http://www.cs.toronto.edu/˜mbweb/

and compared them to our twitter models. To use
Arora et al. (2017)’s method in a supervised setup,
we precomputed and stored the common discourse
vector c0 using 2 million random Wikipedia sen-
tences. On an average, our models outperform
their unsupervised models by a significant margin,
this despite the fact that they used GloVe embed-
dings trained on larger corpora than ours (42 times
larger). Our models also outperform their semi-
supervised PSL + WR model. This indicates our
model learns a more precise weighing scheme than
the static one proposed by Arora et al. (2017).

Figure 1: Left figure: the profile of the word vector L2-
norms as a function of log(fw) for each vocabulary word w,
as learnt by our unigram model trained on Toronto books.
Right figure: down-weighting scheme proposed by Arora
et al. (2017): weight(w) = a

a+fw
.

The effect of datasets and n-grams. Despite
being trained on three very different datasets, all
of our models generalize well to sometimes very
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specific domains. Models trained on Toronto Cor-
pus are the state-of-the-art on the STS 2014 im-
ages dataset even beating the supervised Caption-
Rep model trained on images. We also see that
addition of bigrams to our models doesn’t help
much when it comes to unsupervised evaluations
but gives a significant boost-up in accuracy on
supervised tasks. We attribute this phenomenon
to the ability of bigrams models to capture some
non-compositional features missed by unigrams
models. Having a single representation for “not
good” or “very bad” can boost the supervised
model’s ability to infer relevant features for the
corresponding classifier. For semantic similarity
tasks however, the relative uniqueness of bigrams
results in pushing sentence representations further
apart, which can explain the average drop of scores
for bigrams models on those tasks.

On learning the importance and the direction
of the word vectors. Our model – by learning
how to generate and compose word vectors – has
to learn both the direction of the word embeddings
as well as their norm. Considering the norms of
the used word vectors as by our averaging over the
sentence, we observe an interesting distribution of
the “importance” of each word. In Figure 1 we
show the profile of the L2-norm as a function of
log(fw) for each w ∈ V , and compare it to the
static down-weighting mechanism of Arora et al.
(2017). We can observe that our model is learn-
ing to down-weight frequent tokens by itself. It
is also down-weighting rare tokens and the norm
profile seems to roughly follow Luhn’s hypothesis
(Luhn, 1958), a well known information retrieval
paradigm, stating that mid-rank terms are the most
significant to discriminate content.

6 Conclusion
In this paper, we introduce a novel, computa-
tionally efficient, unsupervised, C-BOW-inspired
method to train and infer sentence embeddings.
On supervised evaluations, our method, on an av-
erage, achieves better performance than all other
unsupervised competitors with the exception of
SkipThought. However, SkipThought vectors
show a very poor performance on sentence simi-
larity tasks while our model is state-of-the-art for
these evaluations on average. Also, our model is
generalizable, extremely fast to train, simple to un-
derstand and easily interpretable, showing the rel-
evance of simple and well-grounded representa-
tion models in contrast to the models using deep

architectures. Future work could focus on aug-
menting the model to exploit data with ordered
sentences. Furthermore, we would like to investi-
gate the model’s ability to use pre-trained embed-
dings for downstream transfer learning tasks.
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A Parameters for training models

Model Embedding
Dimensions

Minimum
word count

Minimum
Target word

Count

Initial
Lear ning

Rate
Epochs Subsampling

hyper-parameter

Bigrams
Dropped

per sentence

Number of
negatives
sampled

Book corpus
Sent2Vec
unigrams

700 5 8 0.2 13 1× 10−5 - 10

Book corpus
Sent2Vec

unigrams + bigrams
700 5 5 0.2 12 5× 10−6 7 10

Wiki Sent2Vec
unigrams 600 8 20 0.2 9 1× 10−5 - 10

Wiki Sent2Vec
unigrams + bigrams 700 8 20 0.2 9 5× 10−6 4 10

Twitter Sent2Vec
unigrams 700 20 20 0.2 3 1× 10−6 - 10

Twitter Sent2Vec
unigrams + bigrams 700 20 20 0.2 3 1× 10−6 3 10

Table 5: Training parameters for the Sent2Vec models

B L1 regularization of models

Optionally, our model can be additionally improved by adding an L1 regularizer term in the objective
function, leading to slightly better generalization performance. Additionally, encouraging sparsity in the
embedding vectors is beneficial for memory reasons, allowing higher embedding dimensions h.

We propose to apply L1 regularization individually to each word (and n-gram) vector (both source and
target vectors). Formally, the training objective function (3) then becomes

min
U ,V

∑

S∈C

∑

wt∈S
qp(wt)

((
`
(
u>wt

vS\{wt}
)
+ τ(‖uwt‖1 + ‖vS\{wt}‖1)

)
+ (4)

|Nwt |
∑

w′∈V
qn(w

′)
(
`
(
− u>w′vS\{wt}

)
+ τ(‖uw′‖1)

))

where τ is the regularization parameter.
Now, in order to minimize a function of the form f(z) + g(z) where g(z) is not differentiable over the

domain, we can use the basic proximal-gradient scheme. In this iterative method, after doing a gradient
descent step on f(z) with learning rate α, we update z as

zn+1 = proxα,g(zn+ 1
2
) (5)

where proxα,g(x) = argminy{g(y)+ 1
2α‖y−x‖22} is called the proximal function (Rockafellar, 1976)

of g with α being the proximal parameter and zn+ 1
2

is the value of z after a gradient (or SGD) step on zn.
In our case, g(z) = ‖z‖1 and the corresponding proximal operator is given by

proxα,g(x) = sign(x)�max(|xn| − α, 0) (6)

where � corresponds to element-wise product.
Similar to the proximal-gradient scheme, in our case we can optionally use the thresholding operator

on the updated word and n-gram vectors after an SGD step. The soft thresholding parameter used for
this update is τ ·lr′

|R(S\{wt})| and τ · lr′ for the source and target vectors respectively where lr′ is the current
learning rate, τ is the L1 regularization parameter and S is the sentence on which SGD is being run.

We observe that L1 regularization using the proximal step gives our models a small boost in perfor-
mance. Also, applying the thresholding operator takes only |R(S \ {wt})| · h floating point operations
for the updating the word vectors corresponding to the sentence and (|N |+ 1) · h for updating the target
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as well as the negative word vectors, where |N | is the number of negatives sampled and h is the em-
bedding dimension. Thus, performing L1 regularization using soft-thresholding operator comes with a
small computational overhead.

We set τ to be 0.0005 for both the Wikipedia and the Toronto Book Corpus unigrams + bigrams
models.

C Performance comparison with Sent2Vec models trained on different corpora

Data Model MSRP (Acc / F1) MR CR SUBJ MPQA TREC Average

Unordered Sentences:
(Toronto Books)

Sent2Vec uni. 72.2 / 80.3 75.1 80.2 90.6 86.3 83.8 81.4
Sent2Vec uni. + bi. 72.5 / 80.8 75.8 80.3 91.2 85.9 86.4 82.0
Sent2Vec uni. + bi. L1-reg 71.6 / 80.1 76.1 80.9 91.1 86.1 86.8 82.1

Unordered sentences: Wikipedia
(69 million sentences; 1.7 B words)

Sent2Vec uni. 71.8 / 80.2 77.3 80.3 92.0 87.4 85.4 82.4
Sent2Vec uni. + bi. 72.4 / 80.8 77.9 80.9 92.6 86.9 89.2 83.3
Sent2Vec uni. + bi. L1-reg 73.6 / 81.5 78.1 81.5 92.8 87.2 87.4 83.4

Unordered sentences: Twitter
(1.2 billion sentences; 19.7 B words)

Sent2Vec uni. 71.5 / 80.0 77.1 81.3 90.8 87.3 85.4 82.2
Sent2Vec uni. + bi. 72.4 / 80.6 78.0 82.1 91.8 86.7 89.8 83.5

Other structured
Data Sources

CaptionRep BOW 73.6 / 81.9 61.9 69.3 77.4 70.8 72.2 70.9
CaptionRep RNN 72.6 / 81.1 55.0 64.9 64.9 71.0 62.4 65.1
DictRep BOW 73.7 / 81.6 71.3 75.6 86.6 82.5 73.8 77.3
DictRep BOW+embs 68.4 / 76.8 76.7 78.7 90.7 87.2 81.0 80.5
DictRep RNN 73.2 / 81.6 67.8 72.7 81.4 82.5 75.8 75.6
DictRep RNN+embs. 66.8 / 76.0 72.5 73.5 85.6 85.7 72.0 76.0

Table 6: Comparison of the performance of different Sent2Vec models with different semi-
supervised/supervised models on different downstream supervised evaluation tasks. An underline
indicates the best performance for the dataset and Sent2Vec model performances are bold if they per-
form as well or better than all other non-Sent2Vec models, including those presented in Table 1.

STS 2014 SICK 2014 Average
Model News Forum WordNet Twitter Images Headlines Test + Train
Sent2Vec book corpus uni. .62/.67 .49/.49 .75/.72. .70/.75 .78/.82 .61/.63 .61/.70 .65/.68
Sent2Vec book corpus uni. + bi. .62/.67 .51/.51 .71/.68 .70/.75 .75/.79 .59/.62 .62/.70 .65/.67
Sent2Vec book corpus uni. + bi. L1-reg .62/.68 .51/.52 .72/.70 .69/.75 .76/.81 .60/.63 .62/.71 .66/.68
Sent2Vec wiki uni. .66/.71 .47/.47 .70/.68 .68/.72 .76/.79 .63/.67 .64/.71 .65/.68
Sent2Vec wiki uni. + bi. .68/.74 .50/.50 .66/.64 .67/.72 .75/.79 .62/.67 .63/.71 .65/.68
Sent2Vec wiki uni. + bi. L1-reg .69/.75 .52/.52 .72/.69 .67/.72 .76/.80 .61/.66 .63/.72 .66/.69
Sent2Vec twitter uni. .67/.74 .52/.53 .75/.72 .72/.78 .77/.81 .64/.68 .62/.71 .67/.71
Sent2Vec twitter uni. + bi. .68/.74 .54/.54 .72/.69 .70/.77 .76/.79 .62/.67 .63/.72 .66/.70
CaptionRep BOW .26/.26 .29/.22 .50/.35 .37/.31 .78/.81 .39/.36 .45/.44 .54/.62
CaptionRep RNN .05/.05 .13/.09 .40/.33 .36/.30 .76/.82 .30/.28 .36/.35 .51/.59
DictRep BOW .62/.67 .42/.40 .81/.81 .62/.66 .66/.68 .53/.58 .61/.63 .58/.66
DictRep BOW + embs. .65/.72 .49/.47 .85/.86 .67/.72 .71/.74 .57/.61 .61/.70 .62/.70
DictRep RNN .40/.46 .26/.23 .78/.78 .42/.42 .56/.56 .38/.40 .47/.49 .49/.55
DictRep RNN + embs. .51/.60 .29/.27 .80/.81 .44/.47 .65/.70 .42/.46 .52/.56 .49/.59

Table 7: Unsupervised Evaluation: Comparison of the performance of different Sent2Vec models with
semi-supervised/supervised models on Spearman/Pearson correlation measures. An underline indicates
the best performance for the dataset and Sent2Vec model performances are bold if they perform as well
or better than all other non-Sent2Vec models, including those presented in Table 2.

D Dataset Description

STS 2014 SICK 2014 Wikipedia
Dataset

Twitter
Dataset

Book Corpus
DatasetSentence Length News Forum WordNet Twitter Images Headlines Test + Train

Average 17.23 10.12 8.85 11.64 10.17 7.82 9.67 25.25 16.31 13.32
Standard Deviation 8.66 3.30 3.10 5.28 2.77 2.21 3.75 12.56 7.22 8.94

Table 8: Average sentence lengths for the datasets used in the comparison.
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Abstract
Training data for sentiment analysis are abun-
dant in multiple domains, yet scarce for other
domains. It is useful to leveraging data avail-
able for all existing domains to enhance per-
formance on different domains. We investigate
this problem by learning domain-specific rep-
resentations of input sentences using neural
network. In particular, a descriptor vector is
learned for representing each domain, which
is used to map adversarially trained domain-
general Bi-LSTM input representations into
domain-specific representations. Based on this
model, we further expand the input representa-
tion with exemplary domain knowledge, col-
lected by attending over a memory network
of domain training data. Results show that our
model outperforms existing methods on multi-
domain sentiment analysis significantly, giv-
ing the best accuracies on two different bench-
marks.

1 Introduction

Sentiment analysis has received constant research
attention due to its importance to business (Pang
et al., 2002; Hu and Liu, 2004; Choi and Cardie,
2008; Socher et al., 2012; Vo and Zhang, 2015;
Tang et al., 2014). For multiple domains, such as
movies, restaurants and digital products, manu-
ally annotated datasets have been made available.
A useful research question is how to leverage re-
sources available across all domains to improve
sentiment classification on a certain domain.

One naive domain-agnostic baseline is to com-
bine all training data, ignoring domain differ-
ences. However, domain knowledge is one valu-
able source of information available. To utilize
this, there has been recent work on domain-aware
models via multi-task learning (Liu et al., 2016;
Nam and Han, 2016), building an output layer for
each domain while sharing a representation net-
work. Given an input sentence and a specific test

domain, the output layer of the test domain is cho-
sen for calculating the output.

These methods have been shown to improve
over the naive domain-agnostic baseline. How-
ever, a limitation is that outputs for different do-
mains are constructed using the same domain-
agnostic input representation, which leads to weak
utilization of domain knowledge. For different do-
mains, sentiment words can differ. For example,
the word “beast” can be a positive indicator of
camera quality, but irrelevant to restaurants or
movies. Also, “easy” is frequently used in the elec-
tronics domain to express positive sentiment (e.g.
the camera is easy to use), while expressing nega-
tive sentiment in the movie domain (e.g. the end-
ing of this movie is easy to guess).

We address this issue by investigating a model
that learns domain-specific input representations
for multi-domain sentiment analysis. In particular,
given an input sentence, our model first uses a bi-
directional LSTM to learn a general sentence-level
representation. For better utilizing data from all
domains, we use adversarial training (Ganin and
Lempitsky, 2015; Goodfellow et al., 2014) on the
Bi-LSTM representation.

The general sentence representation is then
mapped into a domain-specific representation by
attention over the input sentence using explic-
itly learned domain descriptors, so that the most
salient parts of the input are selected for the spe-
cific domain for sentiment classification. Some ex-
amples are shown in Figure 2, where our model
pays attention to word “engaging” for movie re-
views, but not for laptops, restaurants or cameras.
Similarly, the word “beast” receives attention for
laptops and cameras, but not for restaurants or
movies.

In addition to the domain descriptors, we further
introduce a memory network for explicitly repre-
senting domain knowledge. Here domain knowl-
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(a) Mix: shared parameters for all domains.
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(c) Our model: domain knowledge is better utilized by do-
main descriptors, memories and adversarial training.

Figure 1: Models.

edge refers to example training data in a specific
domain, which can offer useful background con-
text. For example, given a sentence ‘Keep cool
if you think it’s a wonderful life will be a heart-
warming tale about life like finding nemo’, algo-
rithms can mistakenly classify it as positive based
on ‘wonderful’ and ‘heartwarming’, ignoring the
fact that ‘it’s a wonderful life’ is a movie. In
this case, necessary domain knowledge revealed in
other sentences, such as ‘The last few minutes of
the movie: it’s a wonderful life don’t cancel out all
the misery the movie contained’ is helpful. Given
a domain-specific input representation, we make
attention over the domain knowledge memory net-
work to obtain a background context vector, which
is used in conjunction with the input representa-

tion for sentiment classification.
Results on two real-world datasets show that our

model outperforms the aforementioned multi-task
learning methods for domain-aware training, and
also generalizes to unseen domains. Our code is
released1.

2 Problem Definition

Formally, we assume the existence ofm sentiment
datasets {Di}mi=1, each being drawn from a do-
main i. Di contains |Di| data points (sij , di, y

i
j),

where sij is a sequence of words w1, w2...w|sij |,

each being drawn from a vocabulary V , yij in-
dicates the sentiment label (e.g. yij ∈ {−1,+1}
for binary sentiment classification) and di is a do-
main indicator (since we use 1 to m to number
each domain, di = i). The task is to learn a func-
tion f which maps each input (sij , di) to its cor-
responding sentiment label yij . The challenge of
the task lies in how to improve the generaliza-
tion performance of mapping function f both in-
domain and cross-domain by exploring the corre-
lations between different domains.

3 Baselines

3.1 Domain-Agnostic Model

One naive baseline solution ignores the domain
characteristics when learning f . It simply com-
bines the datasets {Di}mi=1 into one and learns a
single mapping function f . We refer to this base-
line as Mix, which is depicted in Figure 1 (a).

Given an input sij , its word sequence
w1, w2...w|sij | is fed into a word embedding
layer to obtain embedding vectors x1, x2...x|sij |.
The word embedding layer is parameterized by an
embedding matrix Ew ∈ RK×|V |, where K is the
embedding dimension.

Bidirectional LSTM: To acquire a seman-
tic representation of input sij , a bidirectional
extension (Graves and Schmidhuber, 2005) of
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) is applied to capture
sentence-level semantics both left-to-right and
right-to-left. As a result, two sequences of hid-

den states are obtained, denoted as
�
h1,

�
h2...

�
h|sij |

and
�
h1,

�
h2...

�
h|sij |, respectively. We concatenate

�
ht

1https://github.com/leuchine/
multi-domain-sentiment
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and
�
ht at each time step to obtain the hidden states

h1, h2...h|sij |, which are of sizes 2K.
Output Layer: Average pooling (Boureau

et al., 2010) is applied on the hidden states
h1, h2...h|sij | to obtain an input representation Iij
for sij ,

Iij =

∑|sij |
t=1 ht
|sij |

(1)

Finally, softmax is applied over Iij to obtain
a probability distribution of all sentiment labels.
During training, cross entropy is used as loss
function, denoted as L(f(sij), y

i
j) for data points

(sij , di, y
i
j), and AdaGrad (Duchi et al., 2011) is

applied to update parameters.

3.2 Multi-Domain Training

We build a second baseline for domain-aware
sentiment analysis. A state-of-the-art architecture
(Liu et al., 2016; Nam and Han, 2016) is used
as depicted in Figure 1 (b), where m mapping
functions fi are learned for each domain. Given
the input representation Iij obtained in Equation 1,
multi-task learning is conducted, where each do-
main has a domain-specific set of parameters for
softmax to predict sentiment labels with shared
input representation layers. The input domain in-
dicator di instructs which set of softmax param-
eters to use here and each domain has its own
cross entropy loss Li(fi(sij , di), y

i
j) for data points

(sij , di, y
i
j). We denote this baseline as Multi.

4 Method

4.1 Domain-Aware Input Representation

The above baseline Multi achieves state-of-the-
art performance for multi-domain sentiment anal-
ysis (Liu et al., 2016), yet the domain indica-
tor di is used solely to select softmax parame-
ters. As a result, domain knowledge is hidden and
under-utilized. Similar to Mix and Multi, we use
a Bi-LSTM to learn representations shared across
domains. However, we introduce domain-specific
layers to better capture domain characteristics as
shown in Figure 1 (c).

Different domains have their own sentiment lex-
icons and domain differences largely lie in which
words are relatively more important for deciding
the sentiment signals. We use the neural atten-
tion mechanism (Bahdanau et al., 2014) to select

words, obtaining domain-specific input represen-
tations.

In our model, domain descriptors are intro-
duced to explicitly capture domain characteristics,
which are parametrized by a matrix N ∈ R2K×m.
Each domain descriptor corresponds to one col-
umn of N and has a length of 2K, the same as the
bidirectional LSTM hidden states ht. This matrix
is automatically learned during training.

Given an input (sij , di), we apply an embed-
ding layer and Bi-LSTM to generate its domain-
general representation h1, h2, ..., h|sij | and use the
corresponding domain descriptor Ni to weigh
h1, h2, ..., h|sij | for obtaining a domain-specific
representation. To this end, there are two most
commonly used attention mechanisms: additive
attention (Bahdanau et al., 2014) and dot prod-
uct attention (Ashish Vaswani, 2017). We choose
additive attention here, which utilizes a feed-
forward network with a single hidden layer, since
it achieves better accuracies in our development.
The input representation Iij becomes a weighted
sum of hidden states:

Iij =

|sij |∑

t=1

aijtht s.t.

|sij |∑

t=1

aijt = 1 (2)

The weight aijt reflects the similarity between the
domain i’s descriptor Ni and the hidden state ht.
aijt is evaluated as:

lijt = vT tanh(PNi +Qht)

aijt =
exp(lijt)

∑|sij |
p=1 exp(l

i
jp)

(3)

Here P ∈ R4K×2K , Q ∈ R4K×2K and v ∈ R4K

are parameters of additive attention. P and Q lin-
early project Ni and ht to a hidden layer, respec-
tively. The projected space is set as 4K empiri-
cally, since we find it beneficial to project the vec-
tors into a larger layer. v serves as the output layer.
Softmax is applied to normalize lijt. We name this
method DSR for learning domain-specific repre-
sentations.

4.2 Self-Attention over Domain Descriptors
DSR uses a single domain descriptor to attend
over input words. However, relations between do-
mains are not considered (e.g. sentiment lexicons
for domain ‘camera’ are more similar to the lex-
icons of domain ‘laptop’ than those of domain
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‘restaurant’). To model the interaction between
domains, a self-attention layer is applied using dot
product attention empirically, as shown in Figure
1 (c):

Nnew
i = N softmax(NTNi) (4)

We compute dot products between Ni and every
domain descriptors. The dot products are normal-
ized using the softmax function, and Nnew

i is a
weighted sum of all domain descriptors. Nnew

i is
used to attend over hidden states, employing Equa-
tion 2 and 3. During back propagation training, do-
main descriptors of similar domains could be up-
dated simultaneously. We name this method DSR-
sa, which denotes domain-specific representation
with self-attention.

4.3 Explicit Domain Knowledge
To further capture domain characteristics, we de-
vise a memory network (Weston et al., 2014;
Sukhbaatar et al., 2015; Kumar et al., 2016) frame-
work to explicitly represent domain knowledge.
Our memory networks hold example training data
of a specific domain for retrieving context data
during predictions.

Formally, we use a memory M i ∈ R2K×|Di|

(|Di| is the total number of training instances of
domain i) to hold domain-specific representations
Iij of training instances for the domain i.

Memory Network: We directly set Iij as the jth
column of the memory M i. Formally,

M i
j = Iij (5)

Obtaining A Context Vector Using Back-
ground Knowledge: Given an input Iij , we gen-
erate a context vector Cij to support predictions by
memory reading:

Cij =M i softmax((M i)T Iij) (6)

Dot product attention is applied here, which is
faster and more space-efficient than additive at-
tention, since it can be implemented using highly
optimized matrix multiplication. Dot products are
performed between Iij and each column ofM i and
the scores are normalized using the softmax func-
tion. The final context vector is a weighted sum of
M i’s columns.

Output: We concatenate the context vector and
the domain-specific input representation, feed-
ing the result to softmax layers. Similar to the

baseline Multi, each domain has its own loss
Li(fi(s

i
j , di), y

i
j). We name this method as DSR-

ctx for context vector enhancements.
Reducing Memory Size: In the naive imple-

mentation, the memory size |M i| is equal to the to-
tal number of saved sequences, which can be very
large in practice. We explore two ways to reduce
memory size.

(1) Organizing memory by the vocabulary. We
set |M i| = |V |, where each memory column of
M i corresponds to a word in the vocabulary. Dur-
ing memory writing, Iij updates all the columns
that correspond to the words w in its input se-
quence sij by exponential moving average:

M i
w = decay ∗M i

w + (1− decay)Iij

In this way, two input representations update the
same column of the memory network if and only
if they share at least one common word.

(2) Fixing the memory size by clustering. |M i|
is set to a fixed size and Iij only updates the mem-
ory column that is most similar to Iij , i.e. Iij only
update the column argmax (M i)T Iij . In this way,
semantically similar inputs are clustered and up-
date the same column.

4.4 Adversarial Training
We use embeddings and Bi-LSTM, parametrized
by θdg, to generate domain-general represen-
tations. However, the distributions of domain-
general representations for all domains can be dif-
ferent (Goodfellow et al., 2014), which contami-
nates the representations (Liu et al., 2017) and im-
poses negative effects for in-domain predictions.
For cross-domain testing, the discrepancies cause
domain shift, which harms prediction accuracies
on target domains (Ganin and Lempitsky, 2015).
Thus, models that can generate domain-invariant
representations for all domains are favorable for
utilizing multi-domain datasets.

We incorporate adversarial training to enhance
the domain-general representations. As shown in
Figure 1 (c), domain classifier layers are intro-
duced, parametrized by θdc, which predicts how
likely the input sequence sij comes from each
domain i. We denote its cross entropy loss as
Lat(fat(s

i
j), di) for data points (sij , di, y

i
j) from

domain i (note that we use di as its label instead
of input here).

Now consisting of domain-general layers,
domain-specific layers and domain classifier lay-
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ers, the model is trained by a minimax game.
For dataset Di drawn from domain i, we mini-
mize its loss Li(fi(sij , di), y

i
j) for sentiment pre-

dictions, while maximizing the domain classifier
loss Lat(fat(sij), di), controlled by λ:

min
θdg ,θds

∑

Di

Li(fi(s
i
j , di), y

i
j)− λLat(fat(sij), di),

(7)
where θds is the set of domain-specific parameters
including domain descriptors, attention weights
and softmax parameters. We fix θdc and update
θdg and θds here. Its adversarial part maximizes
the loss by updating θdc, while fixing θdg and θds.

max
θdc

∑

Di

Li(fi(s
i
j , di), y

i
j)− λLat(fat(sij), di)

(8)
Equations 7 and 8 are performed iteratively to gen-
erate domain-invariant representations. We name
this method DSR-at.

5 Experiments

We evaluate the effectiveness of the model both in-
domain and cross-domain. The former refers to the
setting where the domain of the test data falls into
one of the m training data domains, and the latter
refers to the setting where the test data comes from
one unknown domain.

5.1 Experimental Settings
We conduct experiments on two benchmark
datasets. The datasets are balanced, so we use ac-
curacy as the evaluation metric in the experiments.

The dataset 1 contains four domains. The statis-
tics are shown in Table 1 , which also shows the
accuracies using baseline method Mix trained and
tested on each domain. Camera2 consists of re-
views with respect to digital products such as cam-
eras and MP3 players (Hu and Liu, 2004). Lap-
top and Restaurant are laptop and restaurant re-
views, respectively, obtained from SemEval 2015
Task 123. Movie4 are movie reviews provided by
Pang and Lee (2004).

The dataset 2 is Blitzer’s multi-domain senti-
ment dataset (Blitzer et al., 2007), which contains

2http://www.cs.uic.edu/˜liub/FBS/
sentiment-analysis.html

3Since the original dataset targets aspect-level sentiment
analysis, we remove the sentences with opposite polarities on
different aspects. The remaining sentences are labeled with
the unambiguous polarity.

4https://www.cs.cornell.edu/people/
pabo/movie-review-data/

Domain Instance Vocab Size Accuracy
Camera (CR) 3770 5340 0.802
Laptop (LT) 1907 2837 0.871
Restaurant (RT) 1572 2930 0.783
Movie (M) 10662 18765 0.773

Table 1: Dataset 1 statistics.

product reviews taken from Amazon.com, includ-
ing 25 product types (domains) such as books,
beauty and music. More statistics can be found at
its official website5.

Given each dataset, we randomly select 80%,
10% and 10% of the instances as training, devel-
opment and testing sets, respectively.

5.2 Baselines and Hyperparameters

In addition to the Mix baseline, the Multi baseline
(Liu et al., 2016) and our domain-aware models,
DSR, DSR-sa, DSR-ctx, DSR-at, we also experi-
ment with the following baselines:

MTRL (Zhang and Yeung, 2012) is a state-of-
the-art multi-task learning method with discrete
features. The method models covariances between
task classifiers, and in turn the covariances regu-
larize task-specific parameters. The feature extrac-
tion for MTRL follows (Blitzer et al., 2007). We
use this baseline to demonstrate the effectiveness
of dense features generated by neural models.

MDA (Chen et al., 2012) is a cross-domain
baseline, which utilizes marginalized de-noising
auto-encoders to learn a shared hidden represen-
tation by reconstructing pivot features from cor-
rupted inputs.

FEMA (Yang and Eisenstein, 2015) is a cross-
domain baseline, which utilizes techniques from
neural language models to directly learn feature
embeddings and is more robust to domain shift.

NDA (Kim et al., 2016) is a cross-domain base-
line, which uses m+ 1 LSTMs, where one LSTM
captures global information across all m domains
and the remaining m LSTM capture domain-
specific information.

We set the size of word embeddings K to 300,
which are initialized using the word2vec model6

on news. To obtain the best performance, the
parameters are set using grid search based on
development results. The dropout ratio is cho-
sen from [0.3, , 1]. Learning rate is chosen from

5https://www.cs.jhu.edu/˜mdredze/
datasets/sentiment/

6https://code.google.com/archive/p/
word2vec/
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Dataset Method
Train Test MTRL Mix Multi DSR DSR-sa DSR-ctx DSR-at

LT+RT LT 0.817 0.896 0.90 0.908 0.911 0.914 0.92*
LT+RT RT 0.781 0.820 0.85 0.860 0.859 0.863 0.883*
LT+M LT 0.825 0.882 0.90 0.887 0.90 0.904 0.913*
LT+M M 0.743 0.778 0.772 0.788 0.79 0.803 0.811*
LT+CR LT 0.869 0.904 0.906 0.921 0.915 0.92 0.925
LT+CR CR 0.774 0.800 0.802 0.822 0.826 0.832 0.844*
RT+M RT 0.792 0.830 0.833 0.853 0.86 0.883 0.9*
RT+M M 0.729 0.765 0.785 0.795 0.801 0.816 0.83*
RT+CR RT 0.783 0.828 0.822 0.847 0.851 0.878 0.887*
RT+CR CR 0.756 0.804 0.814 0.812 0.817 0.831 0.84*
M+CR M 0.745 0.775 0.788 0.798 0.802 0.830 0.839*
M+CR CR 0.758 0.799 0.811 0.819 0.812 0.817 0.812
Average 0.778 0.818 0.832 0.842 0.845 0.857 0.867*

Table 2: Results using two training domains on dataset
1. * denotes p < 0.01 VS. the second best using Mc-
Nemar’s test.

[0.0001, 0.001, , 1]. The vocabulary size is cho-
sen from [6000, 8000, , 16000]. The batch size
is chosen from [10, , 100]. λ is chosen from
[0.0001, 0.001, , 1]. As a result, the mini-batch
size, the size of the vocabulary V , dropout rate,
learning rate for AdaGra and λ for adversarial
training are set to 50, 10000, 0.4, 0.5 and 0.1, re-
spectively. Also, gradient clipping (Pascanu et al.,
2013) is adopted to prevent gradient exploding
and vanishing during training process. Since all
datasets only have thousands of instances, we set
memory network sizes as training instance sizes in
the experiments.

5.3 Working with Known Domains

In this section, we perform in-domain validations.
We first combine two datasets for training and test
on each domain’s hold-out testing dataset. The re-
sults on dataset 1 are shown in Table 2 (the results
on Blitzer’s dataset exhibit similar results and are
omitted due to space constraints).

The accuracies of MTRL are significantly
lower than the neural models, which demonstrates
the effectiveness of dense features over discrete
features. The baseline Mix improves the average
accuracy from 0.778 to 0.818, and most multi-
domain training accuracies are better compared
to single-domain training in Table 1. Mix sim-
ply combines the two datasets for trainings and
ignores domain characteristics, yet improves over
single dataset training. This demonstrates that
more data reduces over-fitting and leads to bet-
ter generalization capabilities. Multi further im-
proves the average accuracy by 1.4%, which con-
firms the effectiveness of utilizing domain infor-
mation.

Among our models, DSR further improves the
accuracy over Multi by 1%, which confirms the

effectiveness of domain-specific input representa-
tions in multi-domain sentiment analysis. DSR-sa
slightly outperforms DSR by 0.03%. Adopting an
additional self-attention layer, DSR-sa trains simi-
lar domain descriptors together, thus better model-
ing domain relations, which will be further studied
in Section 5.5.2. DSR-ctx outperforms DSR-sa
by 1.2%, which demonstrates the effectiveness of
memory networks in utilizing domain-specific ex-
ample knowledge. DSR-at gives significantly the
best results, confirming that domain-invariant rep-
resentations achieved by adversarial training in-
deed benefit in-domain training. The results are
significant using McNeymar’s test.

The results combining all the 4 domains and the
25 domains of the two datasets are shown in the ‘In
domain’ sections of Table 3 and Table 4, respec-
tively. Here the models are trained using all do-
mains’ training data, and tested on each domain’s
hold-out test data. Similar patterns are observed
as in Table 2 and DSR-at achieves significantly
the best accuracies (0.867 and 0.907 for the two
datasets, respectively).

5.4 Working with Unknown New Domains

We validate the algorithms cross-domain. For
dataset 1, models are trained on three domains,
yet validated and tested on the other domain. For
dataset 2, models are trained on 24 domains, yet
validated and tested on the 25th.

Since DSR-at hasm outputs (one for each train-
ing domain), we adopt an ensemble approach to
obtain a single output for unknown test domains.
In particular, since the domain classifier outputs
probabilities on how likely the test data come from
each training domain, we use these probabilities as
weights to average the m outputs.

For NDA, Multi, DSR and DSR-sa and DSR-
ctx, we use average pooling to combine them out-
puts. Since MDA and FEMA are devised to train
on a single source domain, we combine the train-
ing data of m domains for training.

The results are shown in the ‘Cross domain’
section of Table 3 and Table 4, respectively. One
observation is that cross-domain accuracies are
worse than in-domain accuracies, showing chal-
lenges in unknown-domain testing.

Contrast between our models and FEMA/NDA
shows the advantage of leveraging resources from
all domains, versus a single source domain for
cross-domain modelling. Among the baselines,
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In domain Cross domain
Dataset MTRL Mix Multi DSR DSR-sa DSR-ctx DSR-at MTRL Mix MDA Multi FEMA NDA DSR DSR-sa DSR-ctx DSR-at

LT 0.813 0.831 0.900 0.897 0.902 0.898 0.915* 0.763 0.792 0.801 0.808 0.811 0.816 0.822 0.823 0.854 0.878*
RT 0.776 0.801 0.825 0.841 0.845 0.855 0.870* 0.772 0.786 0.789 0.779 0.774 0.776 0.78 0.784 0.814 0.847*
M 0.800 0.803 0.783 0.807 0.812 0.820 0.828* 0.616 0.636 0.642 0.668 0.679 0.684 0.692 0.695 0.725 0.729
CR 0.775 0.786 0.819 0.825 0.828 0.836 0.854* 0.714 0.721 0.736 0.735 0.741 0.745 0.751 0.753 0.789 0.809*

Average 0.791 0.805 0.832 0.843 0.847 0.852 0.867* 0.716 0.734 0.742 0.748 0.751 0.755 0.761 0.764 0.796 0.815*

Table 3: In-domain learning and cross-domain results on dataset 1. * denotes p < 0.01 VS. the second best.

In domain Cross domain
Dataset MTRL Mix Multi DSR DSR-sa DSR-ctx DSR-at MTRL Mix MDA Multi FEMA NDA DSR DSR-sa DSR-ctx DSR-at
Apparel 0.883 0.912 0.921 0.927 0.928 0.92 0.938* 0.828 0.843 0.863 0.854 0.865 0.873 0.882 0.899 0.896 0.909*

Electronics 0.853 0.881 0.899 0.884 0.879 0.883 0.891 0.804 0.826 0.836 0.849 0.845 0.834 0.857 0.859 0.861 0.875*
Office 0.863 0.88 0.89 0.903 0.914 0.925 0.933* 0.824 0.825 0.818 0.824 0.843 0.839 0.854 0.876 0.883 0.894*

Automotive 0.842 0.864 0.873 0.886 0.891 0.902 0.917* 0.791 0.786 0.791 0.797 0.816 0.826 0.835 0.847 0.857 0.867*
Gourmet 0.814 0.838 0.84 0.852 0.856 0.858 0.863* 0.777 0.775 0.764 0.784 0.796 0.803 0.814 0.826 0.832 0.828
Outdoor 0.853 0.889 0.899 0.903 0.907 0.915 0.927* 0.785 0.796 0.805 0.815 0.836 0.829 0.856 0.861 0.867 0.887*

Baby 0.816 0.853 0.86 0.875 0.877 0.892 0.91* 0.803 0.816 0.814 0.821 0.834 0.84 0.845 0.878 0.873 0.895*
Grocery 0.862 0.886 0.898 0.907 0.911 0.917 0.933* 0.806 0.817 0.826 0.846 0.846 0.862 0.88 0.873 0.865 0.886*
Software 0.851 0.876 0.88 0.893 0.898 0.904 0.92* 0.795 0.811 0.816 0.836 0.845 0.836 0.85 0.862 0.884 0.897*
Beauty 0.816 0.843 0.8567 0.862 0.867 0.864 0.889* 0.756 0.768 0.775 0.785 0.795 0.804 0.812 0.812 0.838 0.851*
Health 0.871 0.901 0.904 0.896 0.897 0.896 0.907 0.785 0.807 0.819 0.832 0.845 0.848 0.843 0.834 0.857 0.871*
Sports 0.851 0.883 0.899 0.889 0.882 0.895 0.9 0.759 0.768 0.775 0.784 0.816 0.819 0.821 0.836 0.848 0.864*
Book 0.743 0.803 0.79 0.804 0.809 0.815 0.822* 0.694 0.705 0.716 0.723 0.745 0.743 0.751 0.758 0.779 0.798*

Jewelry 0.816 0.891 0.881 0.893 0.891 0.894 0.909* 0.762 0.769 0.774 0.785 0.795 0.808 0.815 0.835 0.857 0.874*
Camera 0.912 0.937 0.968 0.966 0.959 0.968 0.989* 0.869 0.878 0.886 0.896 0.894 0.908 0.917 0.925 0.942 0.963*
Kitchen 0.815 0.858 0.863 0.875 0.887 0.894 0.913* 0.759 0.768 0.775 0.776 0.794 0.818 0.826 0.856 0.865 0.884 *

Toy 0.823 0.863 0.875 0.881 0.884 0.88 0.892* 0.814 0.824 0.815 0.803 0.813 0.832 0.826 0.843 0.845 0.857*
Phone 0.879 0.936 0.94 0.943 0.949* 0.941 0.933 0.805 0.813 0.808 0.818 0.821 0.833 0.836 0.856 0.874 0.894*

Magazine 0.835 0.874 0.872 0.883 0.895 0.917 0.937* 0.805 0.819 0.817 0.816 0.83 0.841 0.845 0.857 0.871 0.896*
Video 0.851 0.873 0.882 0.891 0.896 0.912 0.925* 0.754 0.774 0.794 0.795 0.815 0.822 0.834 0.845 0.855 0.875*

Games 0.867 0.886 0.89 0.883 0.886 0.887 0.9* 0.681 0.684 0.708 0.718 0.723 0.734 0.746 0.765 0.781 0.778
Music 0.752 0.782 0.8 0.798 0.8 0.798 0.81* 0.775 0.769 0.779 0.784 0.795 0.824 0.815 0.823 0.842 0.858*
Dvd 0.795 0.826 0.834 0.847 0.854 0.867 0.889* 0.801 0.794 0.804 0.794 0.814 0.827 0.835 0.845 0.851 0.875*

Instrument 0.873 0.943 0.957* 0.896 0.906 0.898 0.9 0.814 0.805 0.813 0.815 0.825 0.836 0.833 0.835 0.845 0.865*
Tools 0.887 0.915 0.931 0.928 0.93 0.932 0.94* 0.805 0.814 0.828 0.835 0.846 0.857 0.864 0.866 0.873 0.897*

Average 0.841 0.875 0.884 0.887 0.89 0.895 0.907* 0.786 0.794 0.801 0.807 0.82 0.827 0.835 0.847 0.858 0.873*

Table 4: In-domain learning and cross-domain results on dataset 2. * denotes p < 0.01 VS. the second best.

NDA also considered domain-specific representa-
tions. On the other hand, it duplicates the full set of
model parameters for each domain, yet underper-
forms DSR and DSR-sa, which records only one
domain descriptor vector for each domain. The
contrast shows the advantages of learning domain
descriptors explicitly in terms of both efficiency
and accuracy.

Similar to the known domain results, DST-
sa and DSR-ctx further improve upon DSR
and DSR-sa, showing the effectiveness of do-
main memory and adversarial learning. On both
datasets, DSR-at achieves significantly the best
performances, which shows the advantages of
domain-invariant representations for unknown-
domain testing.

5.5 Case Study

5.5.1 Input Attention

To obtain a better understanding of input attention
with domain descriptors, we examine the attention
weights of inputs and three examples are displayed
in Figure 2, where the x axis denotes the four do-
mains from the first dataset and the y axis shows
the words.

In Figure 2 (a), the domain-specific word ‘ease’
is only selected for the domains LT and CR, while
the domain-independent word ‘great’ is salient in
all domains. Similarly, in Figure 2 (b), ‘meaty’ and
‘engaging’ are only salient in RT and M, respec-
tively. In Figure 2 (c), the domain-specific word
‘beast’ is chosen in LT and CR.

These confirm the effectiveness of input at-
tention and DSR-ctx has the capability to pick
out sentiment lexicons in conformity with domain
characteristics.

5.5.2 Domain Descriptors
With the self-attention layer, one interesting ques-
tion is whether learned domain descriptors can re-
flect domain similarities/dissimilarities.

We take out the twenty-five domain descriptors
for Blitzer’s dataset and calculate the cosine sim-
ilarities between each pair. Also, we calculate the
cosine similarities of twenty-five domains based
on unigram and bigram representations for ground
truth. Pearson correlation coefficient is used to
measure the correlations between two sets of co-
sine values. The final score is 0.796, which shows
that domain descriptor similarities can serve as in-
dicators for domain similarities.
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Figure 2: Attention values (0: black, 1: white).

5.5.3 Memory Network Attention
We further study the attention of memory net-
works by randomly picking instances in the test
sets and listing the context instances with the
greatest attention weights obtained from Equation
6. The results of three test instances and their con-
text instances are shown in Table .

One observation is that semantically similar in-
stances are selected to provide extra knowledge
for predictions (e.g. a1, a2, b3, c1, c2, c3). An-
other observation is that the sentiment polarities
between test instances and selected context in-
stances are usually the same. We conclude that the
memory networks are capable of selecting instruc-
tive instances for facilitating predictions.

6 Related Work

Domain Adaptation (Blitzer et al., 2007; Titov,
2011; Yu and Jiang, 2015) adapts classifiers
trained on a source domain to an unseen target
domain. One stream of work focuses on learn-
ing a general representation for different domains
based on the co-occurrences of domain-specific
and domain-independent features (Blitzer et al.,
2007; Pan et al., 2011; Yu and Jiang, 2015; Yang
et al., 2017). Another stream of work tries to
identify domain-specific words to improve cross-
domain classification (Bollegala et al., 2011; Li
et al., 2012; Zhang et al., 2014; Qiu and Zhang,
2015). Different from previous work, we utilize
multiple source domains for cross-domain valida-
tion, which makes our method more general and
domain-aware.

Multi-domain Learning jointly learn multiple
domains to improve generalization. One strand of
work (Dredze and Crammer, 2008; Saha et al.,
2011; Zhang and Yeung, 2012) uses covari-

This place blew me away. By far my new favorite
restaurant on the upper-east side.
(a1) This is one of my favorite spot, very relaxing. The food
is great all the times. Celebrated my engagement and my
wedding here. It was very well organized.
(a2) This is one of my favorite restaurants and it is not to be
missed.
(a3) I didn’t complain. I liked the atmosphere so much.
I started accessing and transferring files to find it to be
extremely slow.
(b1) Only thing I don’t like about it is slow in changing apps,
boot up, and sometime it has problem connect through
bluetooth.
(b2) I must say, this one is quite slow to open an application.
(b3) The subscription files are still a little slower to transfer,
but it ’s only by about 10% or so.
Keep cool if you think it’s a wonderful life will be a
heartwarming tale about life like finding nemo.
(c1) I heard so much about It’s a wonderful life’s happy ending
and I just wasn’t prepared for so much misery.
(c2) The last few minutes of the movie: its a wonderful life
dont cancel out all the misery the movie contained.
(c3) It’s a wonderful life was so incredibly over-sentimental
and highly manipulative.

Table 5: Memory Network Attention.

ance matrix to model domain relatedness, jointly
learns domain-specific parameters and domain-
independent parameters of linear classifiers. An-
other strand of work (Liu et al., 2016; Nam and
Han, 2016) adopts neural network with shared in-
put layers and multiple output layers for predic-
tion. Our work belongs to the latter, yet we intro-
duce domain descriptor matrix and memory net-
works to better capture domain characteristics and
achieve better performance.

Memory Networks reason with inference com-
ponents combined with a long-term memory com-
ponent. Weston et al. (2014) devise a memory net-
work to explicitly store the entire input sequences
for question answering. An end-to-end memory
network is further proposed by Sukhbaatar et al.
(2015) by storing embeddings of input sequences,
which requires much less supervision compared to
Weston et al. (2014). Kumar et al. (2016) intro-
duces a general dynamic memory network, which
iteratively attends over episodic memories to gen-
erate answers. Xiong et al. (2016) extends Kumar
et al. (2016) by introducing a new architecture to
cater image inputs and better capture input depen-
dencies. In similar spirits, our memory network
stores the domain-specific training instances for
obtaining context knowledge.

7 Conclusion

We investigated domain representations in multi-
task learning for multi-domain sentiment anal-
ysis, showing that leveraging domain descrip-
tors, examples and adversarial training to learn
domain representations give significant improve-
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ments compared with strong multi-task learning
baselines.
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Abstract

Target-dependent classification tasks, such as
aspect-level sentiment analysis, perform fine-
grained classifications towards specific targets.
Semantic compositions over tree structures are
promising for such tasks, as they can poten-
tially capture long-distance interactions be-
tween targets and their contexts. However,
previous work that operates on tree structures
resorts to syntactic parsers or Treebank an-
notations, which are either subject to noise
in informal texts or highly expensive to ob-
tain. To address above issues, we propose a
reinforcement learning based approach, which
automatically induces target-specific sentence
representations over tree structures. The un-
derlying model is a RNN encoder-decoder that
explores possible binary tree structures and a
reward mechanism that encourages structures
that improve performances on downstream
tasks. We evaluate our approach on two bench-
mark tasks: firm-specific cumulative abnormal
return prediction (based on formal news texts)
and aspect-level sentiment analysis (based on
informal social media texts). Experimental re-
sults show that our model gives superior per-
formances compared to previous work that op-
erates on parsed trees. Moreover, our approach
gives some intuitions on how target-specific
sentence representations can be achieved from
its word constituents.

1 Introduction

We investigate target-dependent classification
problem in this paper, with a special focus on
the sentence level. Target-dependent classification
aims to identify the fine-grained polarities of sen-
tences towards specific targets, which is challeng-
ing but also important for deep text understand-
ing. The definitions of polarity vary across dif-
ferent tasks, which can be positive or negative in

∗* Corresponding author

Task Example
Aspect-level Sen-
timent Analysis

The food is good but the service is
dreadful.

Stance Detection I don’t care about global climate
change.

Firm-specific
Financial News
Analysis

Nike sues Wal-Mart for Patent In-
fringement.

Table 1: Samples of target-dependent classification
tasks. The targets of interest are in bold.

aspect-level sentiment analysis, favor or against
in stance detection, and rise or drop in financial
news analysis towards the stock price movement
of a particular firm.

Table 1 gives examples of three target-
dependent classification tasks. We can find that
there can be multiple target mentions in the same
text scope, which makes it challenging for generic
sentence representation approaches. For the first
example, a restaurant manager or a potential cus-
tomer may be interested in both food and service;
however, the sentiment polarities towards the two
targets are different. Hence, it would be beneficial
for such tasks to tailor the sentence representations
with respect to particular targets.

Tree structures are promising for such tasks, as
they can potentially capture long-distance depen-
dencies between target words and their contexts
(Li et al., 2015). Therefore, it is not surprising
to find work that exploits the syntactically parsed
trees for learning target-specific sentence repre-
sentations. Dong et al. (2014) and Chang et al.
(2016) adapted the word orders in a parsed tree,
depending on their distances to the target entities.
Nguyen et al. (2015) extended Dong et al. (2014)
by combining the constituency tree and the depen-
dency tree of a sentence. An important assump-
tion of such work is that different tree structures
lead to different semantic representations even for
the same sentence. However, they all resort to ex-
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ternal syntactic resources, such as parse trees or
Treebank annotations (Marcus et al., 1993), which
limits their broader applications. On the one hand,
annotated data are highly expensive to produce;
and informal texts, such those on the social me-
dia, remain a challenge for syntactic parsers (Kong
et al., 2014). On the other hand, the tree structures
in their pipeline-style architecture are fixed during
training, which cascade errors to later representa-
tion learning stage.

A desirable solution would be to automatically
and dynamically induce the tree structures for
target-specific sentence representations. However,
the challenge is that the absence of external su-
pervisions makes it difficult to evaluate the qual-
ity of the tree structures and train the parameters.
Inspired by Yogatama et al. (2016), we propose
a reinforcement learning based approach that in-
tegrates target information and generates target-
specific tree structures that benefit downstream
classification tasks.

The underlying framework consists of two key
components, a RNN encoder-decoder that ex-
plores possible binary tree structures according to
a given target, and a tree-structured neural net-
work that composes the input words into sentence
representation based on the structure. The RE-
INFORCE algorithm with the self-critic baseline
(Rennie et al., 2016) is applied to update the pa-
rameters of the two components.

We evaluate our approach on two benchmark
tasks: a firm-specific cumulative abnormal return
prediction task (based on formal news texts) and
an aspect-level sentiment analysis task (based on
informal social media texts). Experimental results
show that our approach achieves superior perfor-
mances compared to baseline methods that oper-
ate on parsed trees. Moreover, our model sheds
lights on understanding how sentences are com-
posed from its word constituents towards specific
targets.

2 Problem Definition

We formalize the problem of learning sentence
representations for target-dependent classification
tasks as constructing and semantically compos-
ing the target-specific binary syntactic trees of
sentences. The input of the model is a tuple
(x, xtarget, ctarget), in which x is a sentence of
n words {x1, x2, · · · , xn}; xtarget is the target
of interest mentioned in the sentence and ctarget

Figure 1: For input sequence {x1, x2, x3}, the shift-
reduce orders can be {S,S,R,S,R} and {S,S,S,R,R},
where S stands for SHIFT and R stands for REDUCE.

is the polarity regarding the target. For sen-
tence x, we can construct a valid binary syntac-
tic tree by n SHIFT and n − 1 REDUCE tran-
sitions a = {a0, a1, · · · , a2n−1}, in which at ∈
{SHIFT,REDUCE} specifies the transition taken
at step t. The SHIFT transition adds a leaf node to
the tree while the REDUCE transition combines
two leaf nodes to form a parent node.

Figure 1 illustrates two examples on how can
we construct a binary tree by only using SHIFT
and REDUCE transitions and how can we ob-
tain different binary trees by varying the SHIFT-
REDUCE transition orders.

We design a transition generator G (Sec-
tion 3.1) for generating transition orders a,
G(x, xtarget) → a and a composition function C
(Section 3.2) that composes sentence x following
the transition orders a into sentence representation
s, C(a,x)→ s.

Our ultimate goal is to use the sentence rep-
resentation s for target-dependent classification.
The objective is thus to minimize the negative log-
likelihood Eq 1 with L2 norm, in which θ denotes
all the parameters of our model.

J(θ) = − logP (ctarget|s; θ) + λ||θ||2 (1)

3 Model

The architecture of our proposed approach is il-
lustrated in Figure 2, which is made up of two
main components, a transition generator G and a
composition function C. The transition generator
is a RNN encoder-decoder that generates discrete
target-specific SHIFT-REDUCE transition orders,
given a sentence and the target of interest. The
composition function is a tree-structured neural
network that semantically composes the word con-
stituents following the transition orders. The main
challenges for such a framework are two-fold. On
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Figure 2: The framework of our proposed method. The left side is a variant of standard encoder-decoder that gen-
erates discrete SHIFT-REDUCE transition orders. It considers the target information at decoding. The right side
is a composition function that semantically composes word representations into sentence representation following
the transition orders. REINFORCE with the self-critical baseline is applied to reward the generated structures and
update the parameters.

the one hand, the transition generator is fully un-
supervised as we do not resort to external syntactic
resources. On the other hand, the transitions gen-
erated at each step are discrete, making it difficult
to train and propagate errors to update the model
parameters. We give details of the two compo-
nents and how we address the challenges in this
section.

3.1 Transition Generator

The basic idea of the transition generator is to
generate different transition orders given differ-
ent targets. We propose using the RNN encoder-
decoder framework (Cho et al., 2014), which has
shown capacity in shift-reduce parsing (Vinyals
et al., 2015; Liu and Zhang, 2017b). A stan-
dard RNN encoder-decoder contains two recurrent
neural networks, one for encoding a sequence of
variable-length into a vector representation and the
other for decoding the representation back into an-
other variable-length sequence.

Encoder We employ a standard Long Short-
Term Memory (LSTM) (Hochreiter and Schmid-
huber, 1997) as our encoder. Given the input sen-
tence {x1, x2, · · · , xn}, we first obtain their word
vectors {−→e (x1),−→e (x2), · · · ,−→e (xn)} by looking
them up from a pre-trained embedding matrix −→e .
We reverse the input sentence and feed their word
embeddings sequentially to the LSTM. The hid-
den states of each token {h1, h2, · · · , hn} are kept
for the decoding stage. The hidden state and cell
state of the last LSTM unit are used as the initial
states for decoder.

Decoder Following Bahdanau et al. (2014),
we use an attention-based decoder. The decoder
aligns with all the encoder hidden states at each
step of decoding to obtain a context vector ct, such

that each input words show different weights at
decoding. We denote the hidden states of our de-
coder as {d1, d2, · · · , d2n−1}. The attention score
over each of the encoder hidden state hi is com-
puted by:

uit = dt−1 � hi (2)

ait =
exp(uit)∑
i′ exp(u

i′
t )

(3)

ct =
n∑

i=1

ait · hi, (4)

in which � denotes element-wise dot product; ait
is the normalized attention score and the context
vector ct is a weighted sum of all the encoder hid-
den states.

To enable the target of interest to influence the
decoding process, we enrich the input of the de-
coder by concatenating the target entity. The hid-
den state of the decoder at time t is obtained by:

dt = LSTM(ct ⊕−→e (at−1)⊕−→e (xtarget), dt−1), (5)

in which ⊕ denotes concatenation operation;
xtarget is the embedding of the target entity;
−→e (at−1) is the embedding of the last decoded
transition and ct is the context vector.

Decoding In a supervised RNN decoder setting,
the goal of each step is to estimate the conditional
probability

P (at|a1:t−1, ct, dt) = g(at−1, ct, dt), (6)

in which a1:t−1 are previously decoded transi-
tions, ct is the context vector, dt is current de-
coder hidden state and g is non-linear network.
P (at|a1:t−1, ct, dt} is a distribution over the tran-
sition space {SHIFT,REDUCE}. By comparing
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the decoded outputs with the ground-truth labels,
the prediction errors can back-propagate to update
parameters of the encoder-decoder network.

However, it is no more applicable in our set-
tings, as we do not have any explicit supervisions
from external syntactic resources. To make train-
ing the transition generator possible, we resort to
a reinforcement learning framework, obtaining the
transitions by sampling from a policy network.
We represent the current state St by concatenating
−→e (at−1),−→e (xtarget), ct, dt.

St = [−→e (at−1)⊕−→e (xtarget)⊕ ct ⊕ dt] (7)

The policy network π(at|St) is defined by Eq 8,

π(at|St) ∝ exp(g(St)), (8)

in which g is a one-layer non-linear feed-forward
neural network. We decode the transition at by
sampling from the distributions given by the pol-
icy network.

3.2 Composition Function

When a valid binary tree of a sentence is gener-
ated, we use the composition function to obtain
the representation following the transition orders.
We maintain two data structures at composition; a
buffer that stores words yet to be processed and a
stack that stores the partially completed subtrees.
Initially, the stack is empty, and the buffer stores
all the words in the sentence. The operations spec-
ified by SHIFT and REDUCE are as follows.

• For a SHIFT transition, the buffer pops the
topmost word out and pushes it to the top of
the stack.

• For a REDUCE transition, the topmost two
elements of the stack are popped out and
composed. Their compositions are then
pushed back to the stack.

To produce a valid binary tree, we follow Yo-
gatama et al. (2016) to disallow SHIFT transi-
tion when the buffer is empty and forbid REDUCE
transition when the stack has no more than two el-
ements.

We use a tree-LSTM (Tai et al., 2015) to seman-
tically compose the top two elements of the stack.
Initially, the hidden state ht and the cell state st of

leaf nodes are given by another LSTM. The tree-
LSTM works as follows,




it
f lt
f rt
ot
gt



=




σ
σ
σ

tanh


 ·W ·

[
hlt
hrt

]
(9)

st = f lt � slt + f rt � srt + it � gt
ht = ot � tanh(ŝt),

in which � denotes element-wise dot product;
it and ot are the input and output gate, respec-
tively; f lt and f rt are the left and right forget gates;
hlt, h

r
t , s

l
t, s

r
t are the hidden and cell states of the

left and right nodes in the subtree. The hidden
state of the topmost node is used as the represen-
tation for the input sentence.

3.3 Training with REINFORCE
The goal for training is to optimize the parameters
of the transition generator θG and the composition
function θC . It is easy to optimize θC , the output
of which is directly connected to the classifier, the
classification loss can back-propagate to update its
parameters.

However, the transitions sampled from the pol-
icy network π(a|S) are discrete, which makes θG
no more differentiable to our objective. A possi-
ble solution is to maximize the expected reward
Ep(a;θG)R(a). As we are in a reinforcement learn-
ing setting, we can immediately receive a reward
R(a) for transitions a = {a1, a2, · · · , at} at the
end of the classification. The reward is defined as
the logarithm of classification probability for the
right label ctarget,R(a) = logP (ctarget|C(a,x)).

However, it is computationally intractable to
compute Ep(a;θG)R(a), as the number of possi-
ble transition orders a is exponentially large. To
address this, we use the REINFORCE algorithm
to approximate the gradients by running M exam-
ples.

5θGJ(θG) ≈ −
1

M

M∑

m=1

[5θG log p(a)Rm(a)]

(10)

The5θG log p(a) can be used to update θG.
REINFORCE algorithm is non-biased but may

have high variance. To reduce the variance, a
widely used trick is to subtract a baseline from
the reward. It has been theoretically proven that
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any baselines that do not depend on the actions
are applicable. In this paper, we follow Rennie et
al. (2016) to apply a self-critical baseline to the re-
wards. Rather than estimating a baseline reward,
the self-critical method uses the outputs given by
the test-time inference algorithm as the baselines.
This can thus alleviate the over-fitting problem on
test dataset.

At inference, we use a greedy decoding strategy
by selecting the most probable transitions given by
the policy network (Eq 8).

âi = argmax
ai

π(ai|St) (11)

The self-critical baseline reward is R(â) =
logP (ctarget|C(â,x)), the formula to update θG
become Eq 12.

5θG J(θG) ≈

− 1

M

M∑

m=1

[5θG log p(a)(Rm(a)−Rm(â))]

(12)

4 Experiments and Results

The proposed approach is evaluated on two aspect-
level tasks: (1) firm-oriented cumulative abnormal
return prediction on formal financial news texts
and (2) aspect-level sentiment analysis on infor-
mal social media texts.

4.1 Firm-specific cumulative abnormal
return prediction

Firm-specific Cumulative Abnormal Return
(CAR) prediction task (Chang et al., 2016) studies
the impact of new information towards a specific
firm. Multiple firms may be involved in the
same new event, however, the event can present
different impacts to these firms. Conceptually,
Abnormal Return is the difference between
the actual return of a stock and its expected
return. The expected return can be approximated
by daily indexes, such as S&P 500 index. For
example, if a stock is expected to rise by 5%,
but on the event day, it rises by 2%, although
it gives a positive return, the abnormal return
is -3%. Cumulative Abnormal Return is the
accumulated abnormal return in an event window,
which is usually triggered by new events. We use
a three-day window (-1, 0, 1), denoted as CAR3,
with event day centering at day 0. We predict
whether an event has positive or negative impact
to the cumulative abnormal return of a given firm.

Training Development Test
+CAR3 7167 354 728
-CAR3 7102 387 731
Total 14269 741 1459
Firms 1216 302 424

Table 2: Number of CAR3 in the datasets

4.1.1 Data

We use the same news dataset as Chang et al.
(2016), which are abstracts extracted from the
Reuters news dataset released by Ding et al.
(2014; 2015; 2016). Compared to the full texts
of news documents, abstracts are supposed to be
more informative and less noisy. Ding et al.
(2014) show that modeling abstracts alone can
achieve comparable or even better performances
compared to full texts in stock market prediction.
To better interpret our approach, we only extract
event days with a single news document, which
covers over 70% cases in the dataset. This final
dataset yields a total of 16469 instances, including
1291 firms, of which 10% are reserved for valida-
tion, and 20% are used for testing. The numbers of
positive and negative CAR3 examples and number
of firms in the subsets are listed in Table 2.

4.1.2 Baseline

To evaluate the performance of our approach on
formal news texts, we compare with state-of-the-
art target-independent and target-dependent base-
lines. Among the baselines, Sentiment-based
and Bi-LSTM are target-independent, which learn
generic representations for sentences, while Bi-
LSTM + Attention and TGT-CTX-TLSTM are
target-dependent.

Sentiment-Based Sentiments among breaking
news, earning reports and online message boards,
are found to be correlated with market volatil-
ity (Schumaker and Chen, 2009; Das and Chen,
2007). We adopt lexicon-based sentiment analysis
as our baseline, using the sentiment lexicons re-
leased by Loughran and McDonald (2011). We
follow the prior literature (Mayew and Venkat-
achalam, 2012) and use the count of posi-
tive words, negative words, the differences be-
tween positives and negatives, and their length-
normalized values as our feature vectors.

Bi-LSTM We stack a forward and a backward
LSTM to capture the contextual representations
for the sentence. The last hidden states of both
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Parameters Value
word dimension 200
LSTM hidden dimension 200
dropout probablity 0.5
batch size 64
initial learning rate 0.0005

Table 3: Hyper-parameters for firm-oriented cumula-
tive abnormal return task

directions are concatenated and then used for clas-
sification.

Bi-LSTM + Attention We extend vanilla Bi-
LSTM by adding an attention mechanism over the
hidden states. We concatenated the hidden states
ĥt = {hlt, hrt} of each input token xt, the target
representation −→e target is adopted to weigh each
of the hidden states.

ut = v> tanh(W1
−→e (xtarget) +W2ht + b)

(13)

at = softmax(ut) (14)

dt =
∑

atht (15)

TGT-CTX-TLSTM The method of Chang et al.
(2016), which we follow and is used as our main
baseline. It is a hybrid model which integrates
both sequential information and syntactic parse
tree information. As the first step, the abstract is
parsed with an external syntactic parser to obtain
the dependency relations between the words. The
parse tree are then adapted and binarized depend-
ing on their distances to targets in the dependency
graph. A tree-structured Long Short-Term Mem-
ory Network (Tai et al., 2015) is then applied to
learn a vector representation of the binarized tree
structure.

4.1.3 Parameters & Metrics
The hyper-parameters used in this paper are listed
in Table 3. We pretrain word vectors with the
Word2Vec (Mikolov et al., 2013) tool on the news
dataset released by Ding et al. (2014), which are
fine-tuned during training. The embeddings of tar-
get firms are obtained by averaging their words of
constituents.

We use macro-F1 to evaluate the performance
on both positive and negative classes.

4.1.4 Test Results
The macro-F1 scores of our method and baselines
are presented in Table 4. Sentiment-based method

Figure 3: Accuracy with respect to sentence length.

gives the highest F1 score on the positive class.
However, its performance is not consistent on the
negative class, which suggests that it tends to mis-
classify the sentence as positive. Bi-LSTM + At-
tention outperforms the vanilla one without atten-
tion and is much robust in both positive and neg-
ative analysis. Our approach achieves an overall
Macro-F1 of 58.2%, with an F1 score of 57.2%
and 59.2% on positive and negative classes, re-
spectively. Compared to the state-of-the-art model
that exploits automatically parsed structures, we
obtain an over 2% absolute gains without using
explicit supervisions in learning the structures.

Method Class F1-score

Sentiment-based
+CAR3 0.597
-CAR3 0.476
Macro 0.536

Bi-LSTM
+CAR3 0.557
-CAR3 0.490
Macro 0.523

Bi-LSTM + Attention
+CAR3 0.575
-CAR3 0.523
Macro 0.549

TD-CTX-TLSTM
+CAR3 0.552
-CAR3 0.570
Macro 0.561

Our Approach
+CAR3 0.572
-CAR3 0.592
Macro 0.582

Table 4: Results for cumulative abnormal return pre-
diction task

4.1.5 Accuracy Versus Sentence Length
Longer sentences are much more challenging for
syntactic parsers. To gain insights on the perfor-
mances of our approach on long sentences, we fur-
ther inspect the accuracies with regards to different
sentence lengths. As shown in Figure 3, we com-
pare with structure-dependent baseline TGT-CTX-
TLSTM. We divide the sentences into seven bins,
each of which contains sentences with length [5 ∗
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i, 5 ∗ (i+1)]. TGT-CTX-TLSTM gives higher ac-
curacies over sentences with shorter lengths, while
the accuracies decline sharply over sentences with
lengths of over 30. Our approach is more consis-
tent on both long and short sentences. As the sen-
tence length grows, the accuracy our model grad-
ually increases, showing its robustness and effec-
tiveness across sentences of variable lengths.

4.2 Aspect-level Sentiment Analysis

To verify our proposed approach on informal so-
cial media texts, we apply it to aspect-level sen-
timent analysis on tweets. Aspect-level senti-
ment analysis aims to identify sentiment polari-
ties towards specific targets mentioned in a sen-
tence. Target-specific sentence representations can
be naturally applied to this task.

Dataset #Target #Positive #Negative #Neutral
Training 6248 1568 1560 3127
Testing 692 173 173 346

Table 5: Statistics of aspect-level sentiment analysis
datasets

4.2.1 Dataset

We apply our model to a benchmark aspect-level
sentiment analysis dataset used in previous work
(Dong et al., 2014). The statistics of the dataset
are shown in Table 5. The target entities and cor-
responding ground-truth labels are annotated. The
labels belong to one of {positive, neutral, nega-
tive}, thus the task is a three-way classification.

4.2.2 Baselines

We compare our approach with feature-based and
neural-based models.

Jiang et al. (2011) They extract rich target-
dependent and target-independent lexical and syn-
tactic features for classification.

Dong et al. (2014) They adapt the parse tree of
a sentence concerning the target with predefined
rules and use recursive neural network (Socher
et al., 2013) to learn a target-specific sentence rep-
resentation.

4.2.3 Parameters & Metrics

The parameter settings are listed in Table 6.
We use 100-dimension GloVe vectors which are
pre-trained on a large Twitter Corpus (Penning-
ton et al., 2014) and fine-tuned during training.

Parameters Value
word dimension 100
LSTM hidden dimension 100
dropout probablity 0.5
batch size 32
initial learning rate 0.0005

Table 6: Hyper-parameters for aspect-level sentiment
analysis

The commonly-used metrics classification accu-
racy and macro-F1 are adopted to evaluate the per-
formances.

Model Acc F1
Jiang et al.(2011) 63.4 63.3
Dong et al.(2014) 66.3 65.9
Our Method 68.2 66.3

Table 7: Final results on aspect-level sentiment analy-
sis task

4.2.4 Final Results
The final results on aspect-level sentiment analy-
sis task are shown in Table 7. Dong et al. (2014)
are used as our main baseline, as they build target-
specific sentence representation over adapted tree
structures. Neural-based models outperform Jiang
et al. (2011), which did a lot of feature engi-
neerings, showing the effectiveness of automati-
cally induced features. Our approach gives supe-
rior performances compared to Dong et al. (2014),
which operates on parsed trees. We achieve 68.2%
classification accuracy and 66.3 macro-F1. We
do not rely on a preprocessing syntactic parser as
the first step to obtain the tree structures. On the
one hand, social media texts are informal and ex-
tremely noisy, which remains a challenge for syn-
tactic parsers. The pipeline-style architecture of
Dong et al. (2014) cascades parse errors to later
stages, which will hurt the performances on down-
stream tasks. On the other hand, the adapted tree
structures in Dong et al. (2014), while in our ap-
proach, the tree structures are also tuned dynam-
ically during training, so as to find the optimal
structures that would benefit downstream classifi-
cation tasks.

4.3 Case Study
To gain further insights on the induced structures,
we inspect the shift-reduce trees our approach gen-
erated in this section. We present two examples
that our model gives high confidences in Figure
4. For the sentence “Nike NKE.N has sued Wal-
Mart WMT.N, saying the world ’s largest retailer
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Figure 4: Two tree structures generated by our model. We removed stop words and punctuations. The upper tree
structure is for the sentence “Nike NKE.N has sued Wal-Mart WMT.N, saying the world ’s largest retailer is selling
athletic shoes that infringe on its design patents” and the bottom one is for the sentence “Walgreen WAG.N , which
operates the largest U.S. drugstore chain , raised its dividend on Monday.”

is selling athletic shoes that infringe on its de-
sign patents”, the core part “Nike sued Wal-mart”
and the rest of the sentence are in two separate
subtrees, which reduces potentially information
loss about the key event when composing them
into sentence representation. Similarly, for the
sentence “Walgreen WAG.N , which operates the
largest U.S. drugstore chain , raised its dividend
on Monday.”, the model learns to make the tar-
get “Walgreen” and key event “raised its dividend
on Monday” close to each other in the tree, al-
though there are sequentially many words in be-
tween. These are good examples given by our
model, we also find a lot of highly left- or right-
biased tree structures. Intuitively, the completely
left- and right-biased tree structures are equivalent
to forward and backward sequential structures, re-
spectively.

5 Related Work

Our model is related to the following research ar-
eas, each having tremendous literatures.

5.1 Target-specific Sentence Representation
It is beneficial for numerous tasks, such as aspect-
level sentiment analysis and stance detection, to
have the sentence representations being tailored to
specific targets. Early approaches rely on feature
engineering by extracting target-dependent fea-
tures (Jiang et al., 2011), while recent work mainly
focuses on semantic compositions over the vec-
tor space with deep neural models. Depending on
how they model the target and context, we further
classify related work into three categories.

The first category relies on syntactic parse trees.
Dong et al. (2014) are among the first to ex-
ploit tree structures, in which they adapt the parse
trees based on the dependency relations between

the words and the target, and then use a recursive
neural network to learn the sentence representa-
tions. Similarly, Chang et al. (2016) explore a
hybrid model that considers both sequential and
structural information of a sentence. Nguyen et
al. (2015) extend Dong et al. (2014) by combin-
ing the constituency tree and the dependency tree
of a sentence. The performances of their methods
highly rely on external parsers, which is subject to
noise in informal social media texts.

The second category models the interactions be-
tween the target and its left context and right con-
text. Vo and Zhang (2015) split a sentence into
three parts and use pooling function to automatic
inducing features for a given target. Similar to Vo
and Zhang (2015), Zhang et al. (2016) exploit the
gates instead of pooling functions to control the
information flow of contexts. Tang et al. (2015)
model by concatenating the word embeddings and
target entity embeddings and use two LSTMs to
encode left- and right contexts. Liu et al. (2017a)
propose to use the attention mechanism to assign
different weights to the left and right context de-
pending on the target.

The third category controls the information flow
from the target to the sentence representation. Au-
genstein et al. (2016) use conditional encoding to
encode the target and use it as the initial states for
the sentence representation.

Our method belongs to the first category that ex-
ploits tree structures. The main difference is we
do not use external supervision from dependency
parser or treebank annotations.

5.2 Neural-based Syntactic Constituency
Parsing

Our work is related to syntactic constituency pars-
ing as we build the tree structure in a transition
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manner. Syntactic constituency parsing is a funda-
mental task in natural language processing, which
uses phrase structure to organize words into nested
constituents. Early approaches rely on proba-
bilistic context-free grammars or transition-based
models with rich features (Collins, 1997; Klein
and Manning, 2003). Recently, recursive neural
network (Socher et al., 2013) and neural-based
transition model (Liu and Zhang, 2009) are also
applied, which achieve competitive or even bet-
ter performances compared to traditional state-of-
the-art approaches that rely on hand-crafted fea-
tures. Vinyals et al. (2015), from which we get
inspirations, use the RNN Encoder-Decoder to en-
code the sentence and generate its corresponding
full parse tree. Bowman et al. (2016) propose
a Stack SPINN framework that integrates parsing
and interpreting the sentence in a hybrid model.
Yogatama et al. (2016) extend their model by us-
ing reinforcement learning to build the tree struc-
tures that can improve performances of end tasks.

We differ from the aforementioned approaches
in two aspects. First, we do not use any explicit
supervisions to guide the decoder. The parameters
of our framework are optimized by the objective
of end tasks. Another difference is that we learn
target-specific instead of general-purpose sentence
representations.

6 Conclusion

In this paper, we propose a framework that au-
tomatically induces target-specific sentence rep-
resentations over tree structures without recourse
to external syntactic resources. Experimental re-
sults on formal and informal texts showed that our
approach is both robust and effective compared
to previous work that operates on parsed trees.
Moreover, the approach gives intuitions on how
sentence structures are composed from their word
constituents concerning a specific target.
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Abstract

Text might contain or invoke multiple emo-
tions with varying intensities. As such, emo-
tion detection, to predict multiple emotions as-
sociated with a given text, can be cast into a
multi-label classification problem. We would
like to go one step further so that a ranked list
of relevant emotions are generated where top
ranked emotions are more intensely associat-
ed with text compared to lower ranked emo-
tions, whereas the rankings of irrelevant emo-
tions are not important. A novel framework of
relevant emotion ranking is proposed to tackle
the problem. In the framework, the objective
loss function is designed elaborately so that
both emotion prediction and rankings of on-
ly relevant emotions can be achieved. More-
over, we observe that some emotions co-occur
more often while other emotions rarely co-
exist. Such information is incorporated into
the framework as constraints to improve the
accuracy of emotion detection. Experimental
results on two real-world corpora show that
the proposed framework can effectively deal
with emotion detection and performs remark-
ably better than the state-of-the-art emotion
detection approaches and multi-label learning
methods.

1 Introduction

With the growing prosperity of Web 2.0, people
tend to share their feelings, attitudes and opin-
ions through the social platforms such as online
news sites, blogs. Detecting emotions from tex-
t can enhance the understanding of users’ emo-
tional states, which is useful in many downstream
applications, such as human-computer interaction
and personalized recommendation. Therefore, it is
crucial to analyze and predict emotions from text
accurately (Picard and Picard, 1997).

Research on emotion detection can be rough-
ly categorized into two types: lexicon-based and

learning-based approaches. Lexicon-based ap-
proaches usually rely on emotion lexicons (Lei
et al., 2014; Rao et al., 2012). They cannot deal
with text when words can’t be found in emo-
tion lexicons. Learning-based approaches can be
furthered classified into unsupervised and super-
vised learning methods. Unsupervised approach-
es do not require annotated data for training. For
example, by adding an emotion layer into tradi-
tional topic models, emotion-topic models were
constructed to detect users’ emotions (Bao et al.,
2012, 2009). Supervised learning approaches con-
sider each emotion category as a class label and
emotion detection is cast as a classification prob-
lem. If only choosing the strongest emotion as the
emotion label for a given text, emotion detection
is essentially a single-label classification prob-
lem (Lin et al., 2008; Quan et al., 2015). To predic-
t multiple emotions simultaneously, emotion de-
tection can be solved in the multi-label classifica-
tion framework (Bhowmick, 2009). Moreover, to
predict both multiple emotions and their intensi-
ties, some approaches have been proposed using
emotion distribution learning (Zhou et al., 2016).
Some lexicon-based approaches such as (Wang
and Pal, 2015) can also output multiple emotions
with intensities using non-negative matrix factor-
ization.

In this paper, we are interested in exploring e-
motion ranking from either readers’ perspective
or writers’ perspective in two different real-world
corpora. In both cases, a given text is associated
with multiple emotions. For example, Figure 1 il-
lustrates an online news article crawled from Sina
News Society Channel together with readers’ emo-
tion votes. It can be observed that when read-
ing the news article, readers expressed differen-
t emotions with the majority showed “Sadness”
and “Anger”. We notice that some emotions such
as “Touching”, “Curiosity” and “Amusement” on-
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2-year-old baby found abandoned in garbage heap by his runaway mother and drug-

taking father

Recently, a netizen seek help for a 2-year-old baby who is alone at home unattended and

starving because of his runaway mother and drug-taking father. According to the

published pictures, the baby lives in a messy home with garbage everywhere. ……

妈妈出走爸爸吸毒 2岁娃无人管活在恶臭垃圾堆
近日网友发求助称因母亲离家出走父亲长期吸毒精神不正常，留下2岁的小“臭蛋”独自在家
无人照料甚至连吃的都没有。在发布的图片中,小“臭蛋”居住的家里凌乱不堪垃圾地。……

Figure 1: An example of an online news article from
Sina Society Channel with voted emotions.

ly received 1 to 3 votes. In comparison to the to-
tal number of votes received, these votes could be
considered as outliers or irrelevances. Also, the
extremely low emotion votes might be due to read-
ers’ clicking errors. Taking into account such e-
motions during the learning process could intro-
duce bias. Therefore, we aim to differentiate rele-
vant emotions from irrelevant ones and only learn
the rankings of relevant emotions while neglecting
the irrelevant ones.

Our work makes the following contributions:

• We propose a novel framework based on rel-
evant emotion ranking to identify multiple e-
motions and produce the rankings of relevant
emotions from text. In the framework, the
objective emotion loss function is designed
elaborately so that both emotion prediction
and rankings for only relevant emotions are
achieved without being affected by irrelevan-
t ones. To the best of our knowledge, it is
the first attempt to perform emotion detec-
tion and relevant emotion ranking at the same
time.

• As some emotions co-occur more often while
others rarely co-exist, the prior knowledge of
emotion relationships is incorporated into the
framework as a constraint. Such emotion re-
lationship can provide important cues for e-
motion detection.

• Experimental results on two real-world cor-
pora show that the proposed framework can
effectively deal with the emotion detection
problem and performs better than the state-
of-the-art emotion detection methods and
multi-label learning methods.

2 Related work

Emotion detection is one of the subfields of sen-
timent analysis where emotions are more fine-
grained and expressive. In general, emotion detec-
tion approaches can be categorized into two types:
lexicon-based and learning-based approaches.

Lexicon-based approaches usually rely on emo-
tion lexicons consisting of words and their cor-
responding emotion labels. For example, Aman
and Szpakowicz (2007) classified emotional and
non-emotional sentences with a predefined emo-
tion lexicon. Emotional dictionaries could also be
constructed from training corpora of news articles
and be used to predict the readers’ emotion of a
new articles (Lei et al., 2014; Rao et al., 2012).
Agrawal and An (2012) proposed a context-based
approach to detect emotions from text at sentence
level. An emotion vector for each potential affec-
t bearing word based on the semantic relation be-
tween emotion concepts and words was generated.
The emotion vector was then tuned based on the
syntactic dependencies within a sentence struc-
ture. Other lexicon-based approach such as (Wang
and Pal, 2015) can also output multiple emotions
with intensities using non-negative matrix factor-
ization with constraints derived based on an emo-
tion lexicon.

Learning-based approaches can be further cat-
egoried as unsupervised and supervised learning
methods. Unsupervised learning approaches do
not require labelled data for training. For exam-
ple, the emotion-topic models (Bao et al., 2012,
2009) were proposed by adding an extra emotion
layer into traditional topic models such as Latent
Dirichlet Allocation (Blei et al., 2003), thus cap-
turing the generation of both emotion and text at
the same time.

Supervised learning approaches typically cast
emotion detection as a classification problem by
considering each emotion category as a class label.
If only choosing the strongest emotion as the label
for a given text, emotion detection is essentially
a single-label classification problem. Lin, Yang
and Chen (2008) studied the classification of news
articles into different categories based on reader-
s’ emotions with various combinations of feature
sets. Strapparava and Mihalcea (2008) proposed
several knowledge-based and corpus-based meth-
ods for emotion classification. Quan et al. (2015)
proposed a logistic regression model with emotion
dependency for emotion detection. Latent vari-
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ables were introduced to model the latent structure
of input text. To predict multiple emotions simul-
taneously, emotion detection can be solved using
multi-label classification. Bhowmick (2009) pre-
sented a method for classifying news sentences in-
to multiple emotion categories using an ensemble
based multi-label classification technique. Zhou
et al. (2016) proposed a novel approach based on
emotion distribution learning to predict multiple
emotions with different intensities in a single sen-
tence.

3 Methodology

Assuming a set of T emotions E = {e1, e2, ...eT }
and a set of n instances X = {x1, x2, x3, ..., xn},
each instance xi ∈ Rd is associated with a ranked
list of its relevant emotions Ri ⊆ E and also a
list of irrelevant emotions Ri = E − Ri. Rele-
vant emotion ranking aims to learn a score func-
tion g(xi) = [g1(xi), ..., gT (xi)] assigning a s-
core gt(xi) to each emotion et, (t ∈ {1, ..., T}).
As mentioned before, it is unnecessary to consid-
er the rankings of irrelevant emotions since they
might introduce errors into the model during the
learning process. In order to differentiate relevant
emotions from irrelevant ones, we need to define a
threshold gΘ(x) which could be simply set to 0 or
learned from data (Fürnkranz et al., 2008). Those
emotions with scores lower than the threshold will
be considered as irrelevant and hence discarded.
The identification of relevant emotions and their
ranking can be obtained simultaneously according
to their scores assigned by the ranking function g.
Here, the predicted relevant emotions of instance
xi are denoted as R̂i = {et ∈ E|gt(xi)>gΘ(xi)}.

3.1 Emotion Loss Function

The goal of relevant emotion ranking is to learn the
parameter of the ranking function g. Without loss
of generality, we assume that g are linear models,
i.e., gt(xi) = wᵀ

t · xi, t ∈ {1, 2, 3, ..., T} ∪ {Θ},
where Θ denotes the threshold. Relevant emo-
tion ranking can be regarded as a special case of
multi-label learning. Several evaluation criteria
typically used in multi-label learning can also be
used to measure the ranking function’s ability of
distinguishing relevant emotions from irrelevan-
t ones, such as hamming loss, one error, coverage,
ranking loss, and average precision as suggested
in (Zhang and Zhou, 2014). However, these multi-
label criteria cannot meet our requirement exactly

as none of them considers the ranking among emo-
tions which are considered relevant. Therefore, by
incorporating PRO loss (Xu et al., 2013), the loss
function for the instance xi is defined as follows:

L(xi, Ri,≺,g) =
∑

et∈Ri∪{Θ}

∑

es∈≺(et)

1

normt,s
lt,s

(1)
where et refers to the emotion belonging to rele-

vant emotion set Ri or the threshold Θ of instance
xi while es refers to the emotion which is less rel-
evant than et denoted as ≺. Thus, (et, es) repre-
sents four types of emotion pairs: i.e., (relevant,
relevant), (relevant, irrelevant), (relevant, thresh-
old), and (threshold, irrelevant). The normaliza-
tion term normt,s is used to balance those four
types of emotion pairs to avoid dominated terms
by their respective set sizes. The set sizes of the
four different types of emotion pairs mentioned
above are |Ri| × (|Ri| − 1)/2, |Ri| × |Ri|, |Ri|,
and |Ri|, respectively. Here, lt,s refers to a modi-
fied 0-1 error. Specifically,

lt,s =





1, gt(xi) < gs(xi)
1
2 , gt(xi) = gs(xi)

0, otherwise

Note that lt,s is non-convex and difficult to op-
timize. Thus, a large margin surrogate convex
loss (Vapnik and Vapnik, 1998) implemented in
hinge form is used instead as follows:

L̂(xi,Ri,≺,g) =
∑

et∈Ri∪{Θ}

∑

es∈≺(et)

1

normt,s
(1 + gs(xi)− gt(xi))+

(2)

where (u)+ = max{0, u}.
However, Eq. 2 ignores the relationships be-

tween different emotions. As mentioned in In-
troduction section, some emotions often co-occur
such as “joy” and “love” while some rarely co-
exist such as “joy” and “anger”. Such relation-
ship information among emotions can provide im-
portant clues for emotion ranking. Therefore, we
incorporate this information into the emotion loss
function as constraints. The objective function
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L̂(xi, Ri,≺,g) can be redefined as:

L̂ω(xi, Ri,≺,g) =
∑

et∈Ri∪{Θ}

∑

es∈≺(et)

1

normt,s
×

(1 + gs(xi)− gt(xi) + ωts(wt − ws))+

(3)

where the weight ωts models the relationship
between the t-th emotion and the s-th emotion in
the emotion set and can be calculated in multiple
ways. Since the Pearson correlation coefficient
(Nicewander, 1988) is the most familiar measure
of relationship between two variables, we use it
to measure the relationship of two emotions using
their original emotion scores across each corpus.

From the above, it can be observed that the
goal of relevant emotion ranking can be achieved
through predicting an accurate relevant emotion
set as well as the ranking of relevant emotions.

3.2 Relevant Emotion Ranking
After defining an appropriate loss function, we
need to define a way to minimize the empirical er-
ror measured by the appropriate loss function and
at the same time to control the complexity of the
resulting model. It can be done by introducing
a maximum margin strategy and regularization to
deal with emotion ranking data, where a set of lin-
ear classifiers are optimized to minimize the emo-
tion loss function mentioned before while having
a large margin. We could potentially use an ap-
proach based on a label ranking method (Elisseeff
and Weston, 2001). It is worth mentioning that the
margin of the (relevant, relevant) label pair needs
to be dealt with carefully, which is not considered
in (Elisseeff and Weston, 2001).

The learning procedure of relevant emotion
ranking (RER) is illustrated in Figure 2. The big
rectangular dash line boxes denoted by x1 to xn
represent n instances in the training set. In each
small box, ei, i ∈ {1, ...T} ∪ {Θ} represents an
emotion of the instance where the shaded smal-
l boxes represent the relevant emotions while the
dashed small boxes represent irrelevant ones and
the last one eΘ is the threshold. Each emotion’s
corresponding weight vector is wi. We use mt,s

to represents the margin between label et and es.
There are four types of emotion pairs’ margins in
total, i.e., (relevant, relevant), (relevant, irrelevan-
t), (relevant, threshold), and (threshold, irrelevan-
t). Different types of emotion pairs’ margins are

denoted using different text/line colors. For each
training instance xi, margin(xi) represents the
margin of instance xi which can be obtained by
taking the minimum margin of all its possible la-
bel pairs mt,s. Similarly, the margin of the learn-
ing system margin(learningsystem) can be ob-
tained by taking the minimum margin of all the
training instances. By maximizing the margin of
the learning system, the weight vector of each e-
motion can be derived from which the predicted
emotion set and the ranking of relevant emotions
can be obtained.

The learning system is composed of T + 1 lin-
ear classifiers [w1; ...;wT ;wΘ] with one classifier
for each emotion label and the threshold, where
wt, t ∈ {1, ...T} ∪ {Θ} is the weight vector for
the t-th classifier of emotion et. For a training in-
stance xi and its corresponding emotion label set
Ei, the learning system’s margin on instance xi is
defined as follows by considering its ranking abil-
ity on xi’s four types of emotion pairs, i.e., (rel-
evant, relevant), (relevant, irrelevant), (relevant,
threshold), and (threshold, irrelevant):

min
et∈Ri∪{Θ},es∈≺(et)

〈wt − ws, xi〉
||wt − ws||

(4)

Here, 〈u, v〉 returns the inner product u>v.
For each emotion pair (et, es), its discrimination
boundary corresponds to the hyperplane 〈wt −
ws, xi〉 = 0. Therefore, Eq. 4 returns the mini-
mum value as the margin on instance xi. The mar-
gin on the whole training set G can be calculated
as follows:

min
xi∈G

min
et∈Ri∪{Θ},es∈≺(et)

〈wt − ws, xi〉
||wt − ws||

(5)

If the learning algorithm is capable of properly
ranking the four types of label pairs for each train-
ing instance, Eq. 5 will return a positive margin.
In this ideal case, the final goal is to maximize the
margin in Eq. 5:

max
wj

min
xi∈G

min
et∈Ri∪{Θ},es∈≺(et)

1

||wt − ws||
s.t.〈wt − ws, xi〉 ≥ 1, 1 ≤ i ≤ n, 1 ≤ j ≤ T + 1

(6)
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margin(learning system)=min(margin(x1),…,margin(xn))

max(margin(learning system))
(relevant, relevant) (relevant, irrelevant) (relevant, threshold) (threshold, irrelevant)

e  w    g  (x1) e   w   g  (xn)

Figure 2: The overall framework of our proposed Relevant Emotion Ranking (RER) method.

Suppose we have sufficient training examples
such that for each label pair (et, es), there ex-
ists xi ∈ Gsatisfying et ∈ Ri ∪ {Θ}, es ∈≺ (et).
Thus, the objective in Eq.6 becomes equivalent to
maxwj min1≤s<t≤T+1

1
||wt−ws|| and can be rewrit-

ten as minwj max1≤s<t≤T+1 ||wt − ws||.
Moreover, to overcome the complexity brought

in by the max operator, the objective of the op-
timization problem can be re-written by approx-
imating the max operator with the sum operator.
Thus, the objective of Eq. 6 can be transformed
as:

min
wj

T+1∑

t=1

||wt||2

s.t. 〈wt − ws, xi〉 ≥ 1, 1 ≤ i ≤ n, (7)

1 ≤ j ≤ T + 1, et ∈ Ri ∪ {Θ}, es ∈ ≺ (et)

To accommodate real-world scenarios where
constraints in Eq. 7 can not be fully satisfied, s-
lack variables can be incorporated into the objec-
tive function:

min
wj ,ξits

T+1∑

t=1

||wt||2 + λ

n∑

i=1

∑

et∈Ri∪{Θ}

∑

es∈≺(et)

1

normt,s
ξits

s.t.〈wt − ws, xi〉 ≥ 1− ξits, 1 ≤ j ≤ T + 1, ξits ≥ 0
(8)

Since ξits does not need to be optimized since
it can be easily determined by wt, ws. The final
objective function can be reformulated as:

min
wt,L̂

T+1∑

t=1

||wt||2 + λ

n∑

i=1

L̂(xi, Ri,≺,g) (9)

As can be seen, Eq.9 consists of two parts bal-
anced by the trade-off parameter λ. Specifically,
the first part corresponds to the maximum margin
of the learning system and it can also represent the
complexity of the learning system, while the sec-
ond part corresponds to the emotion loss function
of the learning system implemented in hinge form.

3.3 Parameter Estimation
Let w = [w1; ...;wT ;wΘ], Eq. 9 is cast into a gen-
eral form in SVM-type:

min
w,ξ

1

2
||w||2 + λC>ξ

s.t. Aw ≥ 1p − ξ, ξ ≥ 0p

(10)

where p is the total number of label pairs, cal-
culated by

∑n
i=1

∑
et∈Ri∪{Θ}

∑
es∈≺(et)

normt,s

and 1p(0p) is the p × 1 all one (zero) vector. The
entries in vector C correspond to the weights of
hinge losses, i.e., the normalization term to bal-
ance the four kinds of label pairs. The matrix A
corresponds to the constraints for instances which
reflects the emotion relationships and the margin
of the label pairs.
ξ does not need to be optimized since it can be

easily determined by w. Hence the objective func-
tion can be reformulated into the following form
without ξ:

min
w

F (w, G) =
1

2
||w||2 + λC>(1p −Aw)+

(11)
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Through minimizing the objective function
F (w, G), we can finally obtain parameter w and
the ranking function g. Eq. 11 involves a large
scale optimization. To address Eq. 11, we con-
sider an efficient Alternating Direction Method of
Multipliers (ADMM) solution (Bertsekas and T-
sitsiklis, 1989). The basic idea of ADMM is to
take the decomposition-coordinate procedure such
that the solution of subproblems can be coordi-
nated to find the solution to the original problem.
We decompose G into M disjoint subsets, i.e.,
{G1, G2, ..., GM} and then Eq. 11 is converted in-
to the following form:

min
w0,w1,wm

M∑

m=1

F (wm, Gm),

s.t. wm = w0,∀m = 1, ...,M

(12)

The surrogate augmented Lagrangian Function
(LF) was introduced into Eq. 12 and it was cast
into the following form:

LF ({w0,w1, ...,wm}, {αm}Mm=1, β) =

M∑

m=1

F (wm, Gm)

+

M∑

m=1

(αm)>(wm −w0) +
β

2

M∑

m=1

||wm −w0||2

(13)

where α, β are the Lagrange multiplies. The up-
dating process of Eq. 13 is shown in Algorithm 1.

Algorithm 1 Parameter updating process.
1: Decompose data setG intoM disjoint subsets

i.e., {G1, G2, ..., GM}. Set iteration i = 0.
2: Initialize {w0

0,w
1
0, ...,w

M
0 , α1

0, ..., α
M
0 } as

zeros.
3: while not converged do
4: Set i = i+ 1
5: Update w0

i , {wm
i , α

m
i }Mm=1 as:

{wm
i }Mm=1 =

argmin
w1..wm

LF (w0
i−1, {wm

i−1, α
m
i−1}Mm=1, β)

w0
i = argmin

w0

LF (w0, {wm
i−1, α

m
i−1}Mm=1, β

αmi = αmi−1 + β(wm
i − w0

i )
>,∀m =

1, 2, ...,M
6: end while

Output: Final w0

4 Experiments

4.1 Setup

We evaluate the proposed approach on two real-
world corpora, one is document level and the other
is sentence level:
Sina Social News (News) was collected from
the Sina news Society channel where readers can
choose one of the six emotions such as Amusemen-
t, Touching, Anger, Sadness, Curiosity, and Shock
after reading a news article. As Sina is one of the
largest online news sites in China, it is sensible to
carry out experiments to explore the readers’ emo-
tion (social emotion). News articles with less than
20 votes were discarded since few votes can not
be considered as proper representation of social
emotion. In total, 5,586 news articles published
from January 2014 to July 2016 were kept, togeth-
er with the readers’ emotion votes.
Ren-CECps corpus (Blogs) (Quan and Ren,
2010) contains 34,719 sentences selected from
blogs in Chinese. Each sentence is annotated with
eight basic emotions from writer’s perspective, in-
cluding anger, anxiety, expect, hate, joy, love,
sorrow and surprise, together with their emotion
scores indicating the level of emotion intensity
which range from 0 to 1. Higher scores represents
higher emotion intensity.

The statistics of the two corpora are shown in
Table 1.

Sina Social News Ren-CECps Corpus
Category #Votes Category #Scores
Touching 694,006 Joy 1,349.6
Shock 572,651 Hate 6,103.9
Amusement 869,464 Love 2,911.1
Sadness 837,431 Sorrow 2,042.5
Curiosity 212,559 Surprise 3,873.9
Anger 1,109,315 Anger 7,832.1

Anxiety 5,006.4
Expect 610.4

All 4,295,426 All 29,729.9

Table 1: Statistics for the two corpora used in our ex-
periments.

The two corpora were preprocessed by using
word segmentation and filtering. The python jie-
ba segmenter is used for the segmentation and a
removal of stop words is performed based on a
stop word thesaurus. Words appeared only once
or appeared in less than two documents were re-
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moved to alleviate data sparsity. We used the s-
ingle layer long short-term memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997) to ex-
tract the features of each text. LSTM is one kind
of recurrent neural networks, which can capture
sequence information from text and can represen-
t meanings of inputs in the reduced dimensional
space. It treats text as a sequence of word embed-
dings and outputs a state vector over each word,
which contains the information of the previous
words. The final state vector can be used as the
representation of the text. In our experiments, we
set the dimension of each text representation to
100. During LSTM model training, we optimized
the hyper parameters using a development dataset
which is built using external data. We train LST-
M using a learning rate of 0.001, a dropout rate of
0.3 and categorical cross-entropy as the loss func-
tion. The mini batch (Cotter et al., 2011) size is
set to 32. After that, the learned text representa-
tions are fed into the proposed system for relevant
emotion ranking as has been previously presented
in the Methodology section.

4.2 Comparison with Baselines
There are only few baselines which address multi-
ple emotions learning from text. We first compare
the proposed framework with two baselines which
have previously achieved the state-of-the-art per-
formances on multi-emotion detection.

• Emotion Distribution Learning (EDL)
(Zhou et al., 2016): It learns a mapping func-
tion from texts to their emotion distribution-
s describing multiple emotions and their re-
spective intensities based on label distribu-
tion learning. Moreover, the relationships of
emotions are captured based on the Plutchik’s
wheel of emotions which are subsequently
incorporated into the learning algorithm in
order to improve the accuracy of emotion de-
tection.

• EmoDetect (Wang and Pal, 2015): It out-
puts the emotion distribution based on a di-
mensionality reduction method using non-
negative matrix factorization which com-
bines several constraints such as emotions
bindings, topic correlations and emotion lex-
icons in a constraint optimization framework.

For each method, 10-fold cross validation is
conducted using the same feature construction

Name Definition

PRO Loss 1
n

∑n
i=1

∑
et∈Ri∪{Θ}

∑
es∈≺(et)

1
normt,s

lt,s

lt,s is a modified 0-1 error;normt,sis the set size of label pair(t, s)

Hamming Loss 1
nT

∑n
i=1 |R̂i4Ri|

Ranking Loss 1
n

∑n
i=1(

∑
(et,es)∈Ri×Ri δ[gt(xi) < gs(xi)])/(|Ri| × |Ri|)

where δ is the indicator function.

One Error 1
n

∑n
i=1 δ[argmax

et
gt(xi) /∈ Ri]

Average Precision 1
n

∑n
i=1

1
|Ri|×

(
∑

t:et∈Ri
|{es ∈ Ri|gs(xi) > gt(xi)}|)/(|{es|gs(xi) > gt(xi)}|)

Coverage 1
n

∑n
i=1 maxt:et∈Ri |{es|gs(xi) > gt(xi)}|

Subset Accuracy 1
n

∑n
i=1 δ[R̂i = Ri]

F1exam
1
n

∑n
i=1 2|Ri ∩ R̂i|/(|Ri|+ |R̂i|)

MicroF1 F1(
T∑
t=1

TPt,
T∑
t=1

FPt,
T∑
t=1

TNt,
T∑
t=1

FNt)

MacroF1 1
T

T∑
t=1

F1(TPt, FPt, TNt, FNt)

Table 2: Evaluation criteria for the Multi-Label Learn-
ing (MLL) methods. TPt, FPt, TNt, FNt represent
the number of true positive, false positive, true nega-
tive, and false negative test examples with respect to
emotion t respectively. F1(TPt, FPt, TNt, FNt) rep-
resent specific binary classification metric F1 (Man-
ning et al., 2008).

method to get the final performance. Supposing
n test instances and T emotion categories, sever-
al evaluation criteria as presented in Table 2 typ-
ically used in multi-label learning can be used to
measure the efficiency of the proposed framework
and the baseline approaches. PRO Loss concern-
ing the prediction on all labels as well as the rank-
ings of only relevant labels. Hamming loss eval-
uates how many times an emotion label is mis-
classified. Ranking loss evaluates the fraction of
reversely ordered emotion pairs. One-error eval-
uates the fraction of sentences whose top-ranked
emotion is not in the relevant emotion set. Aver-
age precision evaluates the average fraction of the
relevant emotions ranked higher than a particular
emotion. Coverage evaluates how many steps are
needed to move down the ranked emotion list so as
to cover all the relevant emotions of the example.
Subset Accuracy evaluates the fraction of correct-
ly classified examples, i.e. the predicted label set
is identical to the ground-truth label set. F1exam
evaluates the averaged F1 (Manning et al., 2008)
over instances. MicroF1 pools each document de-
cisions across categories, and then computes an
effectiveness measure on the pooled contingency
table. MacroF1 take the average of F1 for all cat-
egories. Note that the threshold Θ is removed be-
fore evaluation. It should be pointed out that met-
rics from PRO Loss to F1exam work by evaluating
the learning systems performance on each test ex-
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ample separately, and then returning the mean val-
ue across the test set. MicroF1 and MacroF1 work
by evaluating the learning systems performance on
each emotion category separately, and then return-
ing the macro/micro-averaged value across all e-
motion categories.

The evaluation results using 10 different eval-
uation criteria are shown in Table 3. It can be
observed that our proposed method Relevant E-
motion Ranking(RER) outperforms baseline ap-
proaches on all 10 evaluation metrics on both
datasets.

Datasets Evaluation Criterion
Methods

RER RERc EDL EmoDetect

News

PRO loss(↓) 0.1992 0.1913 0.2596 0.2465
Hamming Loss(↓) 0.2318 0.2277 0.2671 0.2696
Ranking Loss(↓) 0.1477 0.1405 0.1689 0.1769
One-error(↓) 0.1579 0.1562 0.2115 0.1903
Average Precision(↑) 0.8775 0.8789 0.8028 0.7865
Coverage(↓) 2.1398 2.1316 2.1595 2.2348
Subset Accuracy(↓) 0.1899 0.1822 0.2026 0.2243
F1exam(↑) 0.7062 0.7143 0.6503 0.6469
MicroF1(↑) 0.7086 0.7171 0.6346 0.6375
MacroF1(↑) 0.6244 0.6291 0.5641 0.5767

Blogs

PRO loss(↓) 0.2354 0.2321 0.2739 0.2912
Hamming Loss(↓) 0.2054 0.2014 0.2102 0.2202
Ranking Loss(↓) 0.2137 0.2102 0.2589 0.2781
One-error(↓) 0.4556 0.4550 0.5227 0.5352
Average Precision(↑) 0.6749 0.6803 0.6411 0.5663
Coverage(↓) 2.1269 2.1268 2.1699 2.8956
Subset Accuracy(↓) 0.1663 0.1663 0.2116 0.2321
F1exam(↑) 0.5080 0.5114 0.4606 0.4650
MicroF1(↑) 0.5093 0.5116 0.4620 0.4552
MacroF1(↑) 0.4102 0.4161 0.3923 0.3622

Table 3: Comparison with emotion detection baselines.
“↓” indicates “the smaller the better”, while “↑” indi-
cates “the larger the better”. The best performance on
each evaluation measure is highlighted by boldface.

We have also extended RER by incorporating
emotion relationships as constraints into the learn-
ing framework, denoted as RERc in Table 3. The
correlation of every pair of emotions is calculat-
ed based on their respective votes from news ar-
ticles or scores from blogs. It can be observed
from Table 3 that in almost all cases, incorporating
the constraints gives better performance. It should
be pointed out that the results of the baseline ap-
proach EDL are slightly different from those re-
ported in (Zhou et al., 2016) since we employ L-
STM for feature construction instead of recursive
autoencoders.

Since relevant emotion ranking can be seen as
an extension of multi-label learning, the proposed
framework is also compared with 8 widely used
multi-label learning methods using the threshold

Θ which is initialized as 0.15 after normalization,
such as ML-KNN (Zhang and Zhou, 2007), LIFT
(Zhang, 2011), CLR (Fürnkranz et al., 2008),
Rank-SVM (Zhang and Zhou, 2014) , MLLOC
(Huang and Zhou, 2012), BP-MLL (Zhang and
Zhou, 2006), ECC (Read et al., 2009) and ML-
RBF (Zhang, 2009). ML-KNN is based on the
traditional k-nearest neighbor (KNN) algorithm.
LIFT constructs features specific to each emotion
by conducting clustering analysis on its positive
or negative instances. CLR transforms MLL into
a label ranking problem by pairwise comparison
which considers each label pairs and rank all the
labels without recognizing that only the rankings
of relevant ones are crucial. Rank-SVM focus-
es on distinguishing relevant from irrelevant while
neglecting the rankings of relevant ones. MLLOC
tries to exploit emotion correlations in the expres-
sion data locally. The global discrimination fitting
and local correlation sensitivity are incorporated
into a unified framework. BP-MLL is derived
from the back propagation algorithm through em-
ploying a novel error function capturing the char-
acteristics of multi-label learning. ECC applies
classifier chains in an ensemble framework. ML-
RBF gets the multi-label neural networks adopted
from the traditional Radial Basis Function (RBF)
neural networks.

Anger Anxiety Expect Hate
)í(angry) ³ù(fear) 64(blessing) ?�(hate)
²ä(rage) ��(lose) 34(happy) J�(hypocrisy)
��(complain) �Õ(lonely) {Ð(fine) ��(hype)
1µ(criticize) Øå(pressure) ��(dream) Ã·(shameless)
|Ã(interest) y¢(reality) gd(freedom) Ãã(means)
ÜÀ(discriminate) ))(strange) �"(long for) yY(silly)
��(stop) %((heart) F"(hope) L¤(waste)
�I(accuse) Û£(pain) ÆS(learn¤ ��(behind)
dN(annoy) ��(imagine) &g(faith) Z9(dirty)
Ã·(shameless) ú³(hurt) [p(home) Ð¢(lie)

Joy Love Sorrow Surprised
¯W(happy) {w(beautiful) �Õ(lonely) ÐÛ(curious)
p,(joyful ) O�(love) úb(tears) ¯ç(surprise)
*l(friend) *l(friend) O�(love) �¯(shock)
aÄ(touching) 34(happiness) N((solitude) ¯Û(wonder)
%�(mood) ¯f(child) Û£(pain) ¯<(amazing)
§æ(warm) )·(life) a�(feeling) ¿	(accident)
�É(enjoy) �1(sunshine) ú³(hurt) ¯h(fright)
,¯(excited) §æ(warmth) ��(lose) ¯�(scream)
Â¼(harvest) gg(miss) gg(miss) Ø²¿(accidently)
��(smile) �O(lovely) )¹(life) �É(amazed)

Figure 3: The top 10 words for each emotion label from
Blogs dataset.

For the MLL methods, the value of k is set to
8 in ML-KNN, ratio is 0.02 and µ is 2 in ML-
RBF. Linear kernel is used in LIFT. Rank-SVM
uses the RBF kernel with the width σ equals to 1.
The CR4.5 is used as the base classifier for CLR
and ECC. The evaluation results of the proposed
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Datasets Evaluation Criterion Methods
RERc ML-KNN LIFT CLR Rank-SVM MLLOC BP-MLL ECC ML-RBF

News

PRO loss(↓) 0.1913 0.2551 0.2426 0.2487 0.2670 0.3429 0.2603 0.2823 0.2658
Hamming Loss(↓) 0.2277 0.2876 0.3118 0.3023 0.3127 0.3241 0.3040 0.3079 0.3599
Ranking Loss(↓) 0.1405 0.1898 0.1987 0.2142 0.2271 0.3234 0.1897 0.2563 0.1949
One-error(↓) 0.1562 0.2366 0.1881 0.2242 0.2258 0.2025 0.2043 0.2151 0.2240
Average Precision(↑) 0.8789 0.8095 0.7945 0.7916 0.8001 0.7545 0.8044 0.6245 0.8106
Coverage(↓) 2.1316 2.3602 2.4641 2.3453 2.6093 3.1272 2.4032 2.4122 2.4390
Subset Accuracy(↓) 0.1822 0.1916 0.1857 0.2386 0.1839 0.2107 0.2765 0.2222 0.2609
F1exam(↑) 0.7143 0.6215 0.6262 0.6032 0.6244 0.5193 0.5879 0.5108 0.6147
MicroF1(↑) 0.7171 0.6280 0.6131 0.6177 0.6268 0.5389 0.6231 0.5699 0.6160
MacroF1(↑) 0.6291 0.5587 0.5593 0.5658 0.5613 0.4913 0.5563 0.4573 0.5543

Blogs

PRO loss(↓) 0.2321 0.3036 0.2912 0.3041 0.2869 0.3523 0.3429 0.2867 0.2922
Hamming Loss(↓) 0.2014 0.2409 0.2242 0.2162 0.2585 0.2156 0.2241 0.2301 0.2204
Ranking Loss(↓) 0.2102 0.2928 0.2881 0.2947 0.3024 0.4532 0.3234 0.3345 0.2364
One-error(↓) 0.4550 0.5543 0.5152 0.5229 0.5606 0.6143 0.4625 0.6635 0.4679
Average Precision(↑) 0.6803 0.5897 0.5963 0.6370 0.5832 0.4532 0.5545 0.5256 0.6412
Coverage(↓) 2.1268 2.4448 2.4356 2.2671 2.5962 3.5634 3.1272 2.7756 2.5067
Subset Accuracy(↓) 0.1663 0.1978 0.2116 0.1938 0.2321 0.2251 0.2107 0.2236 0.1803
F1exam(↑) 0.5114 0.4616 0.4620 0.4509 0.4832 0.4931 0.5093 0.4986 0.4997
MicroF1(↑) 0.5116 0.4720 0.4552 0.4859 0.4962 0.4902 0.4889 0.5003 0.5051
MacroF1(↑) 0.4161 0.3632 0.3656 0.4056 0.3965 0.3853 0.3813 0.3957 0.4086

Table 4: Comparison with Multi-Label Learning (MLL) Methods.“↓” indicates “the smaller the better”, while “↑”
indicates “the larger the better”. The best performance on each evaluation measure is highlighted by boldface.

approach in comparison to all MLL baselines are
presented in Table 4. RERc performs the best on
all evaluation measures. It verifies the advantage
of RERc due to its consideration of varying inten-
sities of the emotion labels and the ignorance of
irrelevant ones during the learning of the relevant
emotion ranking model. We also observe that, in
most cases, the performance on the News dataset
is better than that in the Blogs dataset. This may
due to different types of text observed in these two
platforms. News articles are more formal while
bogs typically contain informal language and are
more colloquial.

4.3 Result Analysis

To fully understand the emotion detection results,
we generate the top 10 most frequent words in the
test set for each emotion label from Blogs dataset
presented in Figure 3. Intuitively, we can find that
most top words are quite expressive of their asso-
ciated emotions. For example, the word “happy”
delivers the emotion of Joy and the word “tears”
tells Sorrow, etc. Moreover, we also observe that
there are some common words across multiple e-
motion categories. For instance, “friend” appears
in both Joy and Love. The results demonstrate that
the proposed framework can learn emotions from
text precisely.

5 Conclusions

In this paper, we have proposed a novel frame-
work to detect multiple emotions from text based
on relevant emotion ranking. Moreover, the rela-
tionships between emotions are incorporated in-
to the learning framework as constraints. Exper-
imental results on both News and Blogs datasets
show that the proposed framework is able to de-
tect multiple emotions as well as generating rank-
ings of relevant emotions. It performs remarkably
better than the state-of-the-art baselines on multi-
emotion detection and also outperforms several d-
ifferent methods used for multi-label learning. In
the future, we will explore the possibility of ex-
tending the current framework by detecting emo-
tions at more fine-grained level, for example, e-
motions associated with specific events reported
in text.
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Abstract
Efficient word representations play an impor-
tant role in solving various problems related to
Natural Language Processing (NLP), datamin-
ing, text mining etc. The issue of data spar-
sity poses a great challenge in creating effi-
cient word representation model for solving
the underlying problem. The problem is more
intensified in resource-poor scenario due to
the absence of sufficient amount of corpus. In
this work, we propose to minimize the effect
of data sparsity by leveraging bilingual word
embeddings learned through a parallel corpus.
We train and evaluate Long Short Term Mem-
ory (LSTM) based architecture for aspect level
sentiment classification. The neural network
architecture is further assisted by the hand-
crafted features for the prediction.We show the
efficacy of the proposed model against state-
of-the-art methods in two experimental setups
i.e. multi-lingual and cross-lingual.

1 Introduction

Sentiment analysis (Pang and Lee, 2005) tries to
automatically extract the subjective information
from a user written textual content and classifies it
into one of the predefined set of classes, e.g. posi-
tive, negative, neutral or conflict. Sentiment anal-
ysis performed on coarser level (i.e. document or
sentence level) does not provide enough informa-
tion for a user who is critical of finer details such
as battery life of a laptop or service of a restau-
rant etc. Aspect level sentiment analysis (ABSA)
(Pontiki et al., 2014) serves such a purpose, which
first identifies the features (or aspects) mentioned
in the text and then classifies it into one of the tar-
get classes. For example, the following review is
for a restaurant where the writer shares her/his ex-
perience. Though s/he likes the food but certainly
not happy with the service.
One of the best food we had in a while but the

service was very disappointing.

Analyzing such reviews on sentence level will re-
flect only an overall sentiment (i.e. conflict) of the
sentence ignoring critical information such as food
and service qualities. However, ABSA will first
identify all the aspects in the text (i.e. food and ser-
vice) and then associate positivewith food and neg-
ative with service. Identification of aspect terms
is also known as aspect term extraction or opin-
ion target extraction. In this work, we focus on the
second problem i.e. aspect level sentiment classi-
fication.
Literature survey suggests a wide range of re-

search on sentiment analysis (at the document or
sentence level) is being carried out in recent years
(Turney, 2002; Kim and Hovy, 2004; Jagtap and
Pawar, 2013; Poria et al., 2016; Kaljahi and Foster,
2016; Gupta et al., 2015). However, most of these
researches are focused on resource-rich language
like English. Like many other Natural Language
Processing (NLP) problems, research on sentiment
analysis involving Indian languages (e.g. Hindi,
Bengali etc.) are very limited (Joshi et al., 2010;
Bakliwal et al., 2012; Kumar et al., 2015; Balamu-
rali et al., 2012; Singhal and Bhattacharyya, 2016).
Due to the scarcity of various qualitative resources
and/or tools in such languages, the problems have
become more challenging and non-trivial to solve.
The research onABSA involving Indian languages
has started only very recently, for e.g. (Akhtar
et al., 2016a,b).

2 Motivation and Problem Definition

Indian languages are resource-constrained in na-
ture as there is a lack of ready availability of dif-
ferent qualitative lexical resources and tools. In
a supervised machine learning framework, good
amount of training data always have a great impact
on the overall system performance. Low-resource
languages (such as the Indian [Hindi etc.]) usu-
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ally suffer due to the non-availability of sufficient
training data instances. In order to solve the data
and resource scarcity problem in one language, re-
searchers often utilize cross-lingual setup to lever-
age the resource-richness of other languages by
projecting the task into a common problem space
(Zhou et al., 2016; Balamurali et al., 2012; Sing-
hal and Bhattacharyya, 2016; Barnes et al., 2016).
The projection is often performed with the help of
machine translation or bilingual dictionaries.
In recent times, deep learning (DL) techniques

have shown success in solving several NLP prob-
lems. A good word representation is the essence
of any deep learning approach. In the absence of
qualitative word embeddings, it turns out to be a
non-trivial task for any DL framework to effec-
tively learn hidden features (e.g. lexical, syntactic,
semantics etc.), which may effect the performance.
The quality of word embeddings can be preserved
by employing state-of-the-art distributedword rep-
resentation models such as Word2Vec (Mikolov
et al., 2013) or GloVe (Pennington et al., 2014) pro-
vided a huge corpus to train on. Due to this limi-
tation, quality of word embeddings in Indian lan-
guages usually are not at par with that of resource-
rich languages like English.
Data sparsity in word representation (i.e. ab-

sence of representation of any word) is another
problem that often has to be dealt with. In order
to solve any NLP task, out-of-vocabulary (OOV)
words in a word embedding model pose a serious
challenge to the underlying learning algorithm. For
a missing word representation, the literature sug-
gests two possible solutions: a) zero vector (Bah-
danau et al., 2017) or b) random vector (Dhingra
et al., 2017). However, in both the cases the resul-
tant vector could be completely out of context and
often does not fit well with others. Further, word
embedding of a word in a source language has ab-
solutely no correlationwith theword embedding of
the same word (translated) in the target language,
hence, it cannot be directly used for training and/or
testing in a cross-lingual setup. The prime motiva-
tion of the work is to minimize the effect of data
sparsity and thereby, enabling any deep learning
framework to effectively learn its hidden features.
In this paper, we propose to solve the data

sparsity problem in a resource-scarce language
scenario (here, primarily Hindi and also French
embeddings) by leveraging the information of
resource-rich languages (here, English embed-

dings)1. We hypothesize that addressing data spar-
sity in an intelligent manner would yield increased
performance. We utilize bi-lingual word embed-
ding (Luong et al., 2015) trained on English-Hindi
and English-French parallel corpus to bridge the
language divergence in the vector space. The pro-
posed method is based on a deep learning (DL)
architecture named Long Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997). We
try to establish our hypothesis through experiments
on aspect based sentiment classification task in
both the setups i.e. multi-lingual and cross-lingual
for English-Hindi and English-French language
pairs. Aspect based sentiment classification deals
with assigning the sentiment polarity (i.e. positive,
negative, neutral or conflict) to the aspect terms.
For evaluation, we use the datasets provided in
(Akhtar et al., 2016a) for Hindi, SemEval-2014
shared task on ABSA (Pontiki et al., 2014) for
English and SemEval-2016 shared task on ABSA
(Pontiki et al., 2016) dataset for French.

2.1 Contributions
Major contributions of our current work are as fol-
lows: a) we train and use bilingual embeddings
on Amazon product review corpus consisting of
parallel sentences of English-Hindi and English-
French, which serve as a bridge between the two
languages; b) we propose to solve the problem of
data sparsity in low-resource language word em-
bedding by utilizing the word embedding created
on resource-rich language; and c) to further im-
prove the system’s prediction we extract and use
various English side semantic features of the ma-
chine translated words.
As we already mentioned, the research on

ABSA involving Indian languages are limited.
Some of the recent works include the one re-
ported in (Akhtar et al., 2016a,b). The authors in
(Barnes et al., 2016) employed bilingual word em-
beddings for sentiment classification in a cross-
lingual setup. To the best of our knowledge, our
current attempt is the very first of its kind to
employ bilingual word embeddings for a multi-
lingual scenario. Our proposed system differs with
the existing systems in the following ways.

1. Setup: System (Barnes et al., 2016) defines a
cross-lingual setup while (Singhal and Bhat-

1We use French to show how generic our proposed ap-
proach is. Compared to English, French does not have enough
sentiment annotated data
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tacharyya, 2016) is multi-lingual in nature. In
contrast, our proposed system is applied to
both multi-lingual and cross-lingual setups.

2. Approach: System (Akhtar et al., 2016a) de-
fines classical feature driven approach while
the system (Barnes et al., 2016) utilized bi-
lingual word embeddings as feature values to
train a Support VectorMachine (SVM) classi-
fier. Rest of the systems (Akhtar et al., 2016b;
Singhal and Bhattacharyya, 2016) (including
the proposed one) are based on deep neu-
ral network architecture. However, the tech-
niques employed are very much different.
Akhtar et al. (2016b) is a CNN-SVM based
system with the assistance of multi-objective
optimized features, while Singhal and Bhat-
tacharyya (2016) is a CNN based system that
translate the source language texts into target
language text (English) for training and eval-
uation. In comparison, our proposed method
employ LSTM to solve the data sparsity prob-
lem in both multi-lingual as well as cross-
lingual setups.

3. Problem addressed: Authors in (Singhal
and Bhattacharyya, 2016) focused on sen-
tence level sentiment classification while our
present work focuses on fine-grained senti-
ment classification at the aspect level.

4. Word Embeddings: The proposed system
employs shared vector-space bilingual word
embeddings for training and testing while
(Singhal and Bhattacharyya, 2016) projected
the source language train & test data into tar-
get language using machine translation and
utilizes target side pre-computed word vec-
tors for training the system.Whereas, the sys-
tem reported in (Akhtar et al., 2016b) em-
ployed mono-lingual word embeddings for
training and evaluation.

5. Data Sparsity: The system of (Akhtar et al.,
2016b) does not address the problem of data
sparsity, while our proposed system tries to
minimize the effect of data sparsity. Our pro-
posed system tackles the data sparsity prob-
lem by replacing the OOV word with its
translated form which usually happens to
be its closest neighbor in the shared vector
space, hence, the semantic closeness is pre-
served to an extent. Whereas, system (Sing-

hal and Bhattacharyya, 2016) addressed the
data sparsity by translating every word of the
source language into target language which
may introduce loss of sentiment in the target
language as a side-effect (Mohammad et al.,
2016).

6. Hand-crafted Features: The proposed sys-
tem employs much richer set of lexicon
based features than that of (Singhal and Bhat-
tacharyya, 2016). Also, we do not augment
polar words in the training instances as done
in (Singhal and Bhattacharyya, 2016), rather
we use sentiment scores of these lexicons as
features themselves in the training and test-
ing instances.Whereas, the authors in (Akhtar
et al., 2016b) obtained an optimized fea-
ture vector through the application of multi-
objective genetic algorithm.

3 Proposed Methodology
We propose to use a Long Short Term Memory
(LSTM) architecture on top of bilingual word em-
beddings for the prediction. LSTM is a special
kind of recurrent neural network (RNN) which ef-
ficiently captures long term dependencies. Bidi-
rectional LSTM is an extended version of LSTM
which takes both forward and backward sequences
into account. Our model consists of two bidi-
rectional LSTM layers followed by two fully-
connected layers and an output layer.

3.1 Bilingual Word Embedding

We employ bilingual word embeddings (Luong
et al., 2015) trained on a parallel English-Hindi
(and English-French) corpus. We generate
a parallel corpus for Amazon product re-
view datasets2 (consisting of approx. 7.2M
sentences) using an in-house product review
domain based English→Hindi (English→French)
Statistical Machine Translation (SMT) sys-
tem (English→Hindi: 39.5 BLEU score and
English→French: 37.9 BLEU score). We employ
widely used and standard machine translation tool
Moses (Koehn et al., 2007) to train the phrase-
based SMT system. The alignment information
are obtained from the mosesdecoder (Koehn et al.,
2007) during translation of the reviews.
The parallel corpus along with the alignment in-

formation are used to train two (English and Hindi)
2http://snap.stanford.edu/data/other.html
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Skip-Gram word2vec (Mikolov et al., 2013) mod-
els which share the common vector space. If a
word WS is aligned to word WT , then the context
information CT of target word WT is also used as
context of the source word WS along with its own
context CS for computing word vectors. By uti-
lizing the context information of both source and
target side, resultant word embeddings of WS and
WT are semantically closer to each other in the
vector space.
Bilingual skip-gram model creates two sepa-

rate word embeddings, i.e. one each for source
(Hindi) and target language (English). First, we
extract word representations for all the words in
a sentence from the Hindi bilingual word embed-
dings. Subsequently at the second step we trans-
late all the OOV words (words whose representa-
tions are missing in Hindi bilingual embeddings)
into English and then perform another lookup in
English embeddings. For instance, if embedding
of a word ‘अ͚छा|achcha’ is unknown we translate
it in English as ‘good’, and use its word embed-
dings in place of the source word ‘अ͚छा|achcha’.
Thus the missing representation of OOV word is
replaced by its translated target side representa-
tion. Since, both English and Hindi word embed-
dings share a common vector space, this replace-
ment strategy proves to be an effective technique.
In our case, we observe a reduction of approxi-
mately 65% and 37% OOV words, respectively
for Hindi and French by our proposed replace-
ment strategy. Consequently, an increase in accu-
racy value is observed during evaluation.
Hindi is a morphologically rich language. Many

inflected words in Hindi share a common trans-
lated word in English. For example, based on the
gender of the subject Hindi has two forms for word
‘goes’: ‘जाता है | jAtA hai’ (male) or ‘जाती है
| jAtI hai’ (female). Therefore, if representation
of one word (जाता है | jAtA hai) is missing in
Hindi embedding we can still find its representa-
tion in English through its translation i.e. ‘goes’.
Bilingual embedding also helps in addressing the
spelling variation cases. For e.g. two differently
spelled words in Hindi such as ‘किͭबनशेन | kambi-
neshana’ and ‘कंबीनशेन | kaMbIneshana’ translate
to an English word ‘combination’.
We repeat the above process for English-French

language pair to obtain two (English and French)
word2vec models. We also released computed bi-
lingual word embeddings for the research commu-

nity3.

3.2 Features
We employ various hand-crafted features to assist
the network. We try to leverage the effectiveness
of English side resources by translating a word
into English and then extracting its feature repre-
sentation. We use following set of features in our
task. It should be noted that we do not include any
lexical or syntactic features during training as dis-
tributed word embedding models are good at cap-
turing such features. So, during the training phase,
network adapts its weights to learn the relevant set
of these features from the word embeddings itself.

1. Bing Liu (Ding et al., 2008) & MPQA
(Wiebe and Mihalcea, 2006) lexicons: We
define a feature that marks the positiv-
ity/negativity scores of the words in a sen-
tence. We assign a score of +1 & -1, respec-
tively to each positive and negative word in
the sentence. For unseen words, we use score
as 0. We extract one such feature from each
lexicon.

2. SentiWordNet (Baccianella et al., 2010):
Three features are extracted for every word
denoting its positivity (posScore), negativity
(negScore) and objectivity (1 - [posScore +
negScore]) scores, respectively.

3. Semantic Orientation (SO) (Hatzivas-
siloglou and McKeown, 1997): Semantic
orientation defines the association of a word
w.r.t. its positivity and negativity. Semantic
orientation (SO) of a word is the difference of
point-wise mutual information of a wordw in
positive and negative reviews. We calculate
the SO score of each word in the context
window of size ±5 and take the cumulative
SO score as the feature value.

3.3 Cross-lingual and Multi-lingual Setups
We evaluate our proposed approach for two se-
tups i.e. multi-lingual and cross-lingual setups. In
multi-lingual setup, the proposed model is trained
and evaluated on datasets of the same language i.e.
Hindi or French. We pre-process our datasets to
reduce the effect of data sparsity by utilizing the
resource-rich language i.e. English. In contrast, the

3Bi-lingual word embeddings available at http://www.
iitp.ac.in/~ai-nlp-ml/resources.html
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cross-lingual setup employs dataset of resource-
rich language (i.e. English) for training and during
evaluation Hindi or French dataset is used. Simi-
lar to the multi-lingual setup, we pre-process the
test dataset to reduce the effect of data sparsity in
cross-lingual setup as well.
An overall schema of the proposed methodol-

ogy is depicted in Figure 1 for both multi-lingual
and cross-lingual setups. Figures 1a and 1b show
the training architectures for the cross-lingual and
multi-lingual scenarios, respectively. Since our
test datasets for both the variants are in Hindi
(or French), testing scenario for cross-lingual and
multi-lingual setups are also the same as repre-
sented in Figure 1c.
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Word
Embeddings
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Neural
Network
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WE lookup
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Training set
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(a) Training scenario in cross-lingual setup.

(b) Training scenario in multi-lingual setup

(c) Testing scenario in cross-lingual and multi-lingual setup.

Figure 1: Proposed schema for English-Hindi and
English-French language pairs.

3.4 Neural Network Architecture
For the successful marriage of word embeddings
and extracted features, we try three different archi-
tectures as depicted in Figure 2. In the first archi-
tecture (A1, Figure 2a), we concatenate extracted
features of each word of an instance with the corre-
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(a) Architecture A1

(b) Architecture A2

(c) Architecture A3

Figure 2: Neural Network Architectures.

sponding word representations and pass it through
a LSTM network followed by dense and output
layers. In the second architecture (A2, Figure 2b),
we do not combine features and word representa-
tions together. Rather, we learn sentence embed-
dings through a LSTM network and then concate-
nate it with the extracted features before feeding
to the dense layer. Finally, in the third architec-
ture (A3, Figure 2c), we train separate LSTMs
for the extracted features and word embeddings.
Subsequently, we merge their representations at
the dense layer. The choice of separate LSTMs
for the hand-crafted features in architecture A3 is
driven by the fact that the dimension of a word
embedding is usually very high as compared to its
corresponding hand-crafted features. If trained to-
gether, as in architecture A1, extracted features of
low dimension usually get overshadowed by the
high-dimensional word embeddings. Thus making
it non-trivial for the network to learn from the ex-
tracted features. Further, to exploit the sequence
information of words in a sentence we pass hand-
crafted features of each word through a separate
LSTM layer. For example, in the following review
sentence, there are two positive words (‘liking’
and ‘recommending’) and only one negative word
(‘far’). In a model that takes into account only
the simple polar word score, the sentence would
have high relevance towards the positive senti-
ment. However, the sequence information of the
phrase “far from liking and recommending” dic-
tates the negative sentiment of the sentence.

“I’m far from liking and recommending this
phone to anyone.”
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In contrast to A3, architecture A2 does not rely on
the sequence information of the extracted features
and let the network to learn on its own.
We use 300 dimension word embeddings for the

experiments. Each LSTM layer contains 100 neu-
rons while two dense layers contain 100 and 50
neurons respectively.

4 Experimental Results

In this section, we describe the datasets, experi-
mental setup, results and provide necessary anal-
ysis.

4.1 Datasets
We use Hindi ABSA dataset released by (Akhtar
et al., 2016a) for our evaluation purpose. A to-
tal of 5,417 review sentences are present along
with 4,509 aspect terms. Each aspect term belongs
to one of the four sentiment classes: ‘positive’,
‘negative’, ‘neutral’ and ‘conflict’. We split the
dataset into 70%, 10% and 20% as training, de-
velopment and test, respectively for the experi-
ment. For French case, we use the SemEval-2016
shared task on ABSA (Pontiki et al., 2016) restau-
rant dataset. It consists of 2,429 review sentences
and 3,482 aspect terms. In cross-lingual setup, we
utilize English dataset of SemEval-2014 shared
task on ABSA (Pontiki et al., 2014) for training
and Hindi ABSA dataset for testing. The English
dataset comprises of product reviews in two do-
mains i.e. restaurant and laptop. However, we only
employ laptop domain dataset as most of the re-
views in Hindi ABSA datasets belong to the elec-
tronics domain. For training in cross-lingual setup,
we combine the training and gold test dataset to-
gether. In total, there are 3,845 review sentences
comprising of 3,012 aspect terms. For English-
French case, we use English restaurant dataset
of SemEval-2016 shared task on ABSA (Pontiki
et al., 2016) for the training and French ABSA
dataset (Pontiki et al., 2016) for evaluation. The
SemEval-2016 English restaurant dataset contains
3,365 aspect terms across 2,676 review sentences.

4.2 Experiments
We use Python based neural network library,
Keras4 for implementation. For English-Hindi, all
the four classes (namely positive, negative, neu-
tral and conflict) were considered, whereas for
English-French three classes (all except conflict

4http://keras.io

class) were used for classification. Since there is no
false class, we use accuracy value asmetric tomea-
sure the performance of the system. Also, we uti-
lize accuracy value for the direct comparison with
the existing state-of-the-art systems. LSTM net-
work is trained with early stopping criteria on (i.e.
preserving best learned parameter at each epoch).
We set the number of epochs and patience value
as 100 & 20 respectively. In other words, we run
the experiments for maximum 100 epochs and if
validation loss does not reduce for consecutive 20
epochs training stops and reports the best epoch
attained so far. As activation function, we utilize
‘tanh’ at the intermediate layers, while for classi-
fication, we use ‘softmax’ at the output layer. To
prevent the network from over-fitting, we incor-
porate an efficient regularization technique called
‘Dropout’ (Srivastava et al., 2014). At each layer
of training, dropout skips few hidden neurons ran-
domly. We fix dropout rate to be 45% during train-
ing while for optimization we use ‘adam’ opti-
mizer (Kingma and Ba, 2014).

Experimental results for aspect sentiment clas-
sification in multi-lingual and cross-lingual setups
are reported in Figure 3 for both the language pairs.
In total, we evaluate our model for four cases i.e. a.
En-Hi multi-lingual, b. En-Hi cross-lingual, c. En-
Fr multi-lingual and d. En-Fr cross-lingual sce-
narios. The non-root four-boxed nodes report per-
formance of the respective methods for the four
cases. The left subtree represents LSTM based
baseline system that utilizes monolingual word
embedding (WE) (i.e. word2vec model trained
only on 7.2M Hindi and French sentences re-
spectively). Whereas the right subtree represents
usage of bilingual word embeddings in all the
cases. Comparison between monolingual WE and
bilingual WE shows competing results. Mono-
lingual WE (aM : 63.64%) in multi-lingual sce-
nario performs better than the bilingual WE (aB:
62.51%) for English-Hindi case, while bilingual
WE (cB: 70.89%) reports better performance as
compared with monolingualWE (aM : 66.29%) for
English-French case. We observe a performance
loss of approx. 1 point with bilingual embeddings
for English-Hindi case. However, after address-
ing the problem of data sparsity (i.e. when OOV
words are translated and corresponding English
word embeddings are computed) the same LSTM
network reports an improved accuracy value of
64.83% (aBO) for English-Hindi case, thus observ-
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a:Multi-lingual - En-Hi scenario
b: Cross-lingual - En-Hi scenario
c:Multi-lingual - En-Fr scenario
d: Cross-lingual - En-Fr scenario

Baseline (Monolingual WE)

Features (En)

A1
aMF3: 69.74
bMF1: 50.12
cMF1: 70.63
dMF1: 55.23

A2
aMF3: 71.25
bMF2: 52.91
cMF2: 72.28
dMF2: 55.84

A3
aMF3: 71.98
bMF3: 56.49
cMF3: 69.91
dMF3: 61.14

aM : 63.64
bM : 16.29
cM : 66.29
dM : 50.69

Bilingual WE

Embeddings (OOV)

Features (En)

A1
aBOF1: 71.32
bBOF1: 56.68
cBOF1: 72.42
dBOF1: 68.24

A2
aBOF2: 73.50
bBOF2: 56.90
cBOF2: 72.14
dBOF2: 68.66

A3
aBOF3: 76.29
bBOF3: 60.39
cBOF3: 71.72
dBOF3: 69.49

aBO: 64.83
bBO: 50.79
cBO: 72.42
dBO: 65.32

aB: 62.51
bB: 48.94
cB: 70.89
dB: 63.64

Figure 3: Aspect classification in Multi-lingual and Cross-lingual setups for English-Hindi and English-
French scenarios: Left subtree represents various baselines and their corresponding results. Right subtree rep-
resents the proposed approach at different levels. Four-box rectangles at non-root levels show accuracy values
for a. multi-lingual (En-Hi), b. cross-lingual (En-Hi), c. multi-lingual (En-Fr) & d. cross-lingual (En-Fr) scenar-
ios respectively. OOV: Out-of-vocabulary words. A1:Word embeddings and extracted features are combined and
fed into single LSTM network. A2: Extracted features are directly merged with LSTM output of word embedding.
A3: One LSTM network each for word embeddings and extracted features. Subscripts M: monolingual WE; B:
bilingual WE; O: Embeddings(OOV); F: Features; 1,2,3: Architecture A1, A2 & A3 respectively.

ing a performance increase of more than 2 points.
For English-French case, we also observe the im-
provement with embeddings of OOVs. This sug-
gests that the richness of target language (English)
word embeddings helps the system to efficiently
solve the problem encountered in resource-poor
source language. Since the resources are limited
for resource-poor language we try to leverage the
high-quality lexicon features of English in our sys-
tem. Consequently, we introduce the extracted fea-
tures of Section 3.2 to the network. For English-
Hindi multi-lingual scenario, the performance in-
crements from A1 to A2 to A3 indicate that the
resource-richness of English language plays a cru-
cial role in classification. While we incorporate
English side lexicon features for English-French
multi-lingual scenario, we observe no performance
improvement like the others. For this case, our sys-
tem reports an accuracy of 72.42% with (cBOF1)
and without (cBO) the use of extra features.

Results of cross-lingual setup for English-Hindi

case, where we train the network utilizing English
dataset and evaluate the model on Hindi dataset,
are reported in row 2 of the four-boxed nodes in
Figure 3. The baseline model for cross-lingual se-
tups (left subtree of Figure 3) employs monolin-
gual word embeddings of English and Hindi for
training and testing respectively. Since the vector
spaces of two different languages are completely
unrelated, it is no surprise that the baseline sys-
tem achieves merely 16.29% (bM ) accuracy. Us-
ing only the bilingual word embeddings the sys-
tem achieves 48.94% (bB) accuracy. By increas-
ing the coverage of input word embeddings us-
ing machine translation the proposed system ob-
tains an increased accuracy of 50.79% (bBO). This
improvement in accuracy, again, justifies the use
of translated words for obtaining the word em-
beddings. Further, with the inclusion of target-side
lexicon based features our proposed approach re-
ports a significant performance improvement of
approximately 6-10 points for all the three archi-
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tectures (bBOF1, bBOF2 & bBOF3).
Results of English-French cross-lingual sce-

nario are reported in row 4 of the four-boxed nodes
in Figure 3. We observe similar phenomenon in
cross-lingual setup with the English-French case
as well. The baseline system, where we utilize sep-
arate monolingual WE for training and testing in
English and French respectively, reports an accu-
racy of 50.69% (dM ), while employing bilingual
embeddings the system obtains a sharp jump of ap-
prox. 13 points with an accuracy value of 63.64%
(dB). Further, with the inclusion of OOV words
and lexicon features performance of the system im-
proves to 65.32% (dBO) and 69.49% (dBOF3), re-
spectively.
We observe four phenomena from these results:

i) use of lexicon-based features is the driving force
in predicting the sentiment; ii) qualitative lexicons
of the resource-rich language can assist in solv-
ing the problems of resource-poor languages; iii)
embeddings of the OOV words improves the per-
formance of the system with or without assistance
of extra features; and iv) use of separate LSTMs
(one for word embeddings and the other for fea-
tures) helps the network to efficiently extract rel-
evant features for prediction without interfering
each other (except for the multi-lingual English-
French scenario).

4.3 Comparative Analysis
Comparative results reported in Figure 4 show that
our proposed system clearly outperforms the base-
line model in both the setups and for both the lan-
guage pairs. In multi-lingual setup, we compare
the proposed model against three state-of-the-art
systems (Akhtar et al., 2016a; Singhal and Bhat-
tacharyya, 2016; Akhtar et al., 2016b) for English-
Hindi case. An accuracy of 65.96% was reported
by the system (Akhtar et al., 2016b), while the sys-
tem (Singhal and Bhattacharyya, 2016) obtained
an accuracy of 68.31%. However, our proposed
system reports an accuracy of 76.29%,which is ap-
prox. 10% & 8% higher compared to the systems
of (Akhtar et al., 2016b) and (Singhal and Bhat-
tacharyya, 2016) respectively. In English-French
case, our proposed system reports an improvement
of approx. 6 points over the baseline. For cross-
lingual setup in English-Hindi case, we compare
our proposed method with the state-of-the-art sys-
tem proposed in (Barnes et al., 2016; Singhal and
Bhattacharyya, 2016). On the same dataset their
systems reported to have achieved an accuracies
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Figure 4: Comparison with the baseline and state-of-
the-art methods.

of 39.47% & 56.22% as compared to 60.39% of
our proposed system. In English-French case, the
system proposed in (Barnes et al., 2016) obtains
accuracy value of 55.64% against 69.49% in our
proposed architecture. Statistical significance tests
(t-test) confirm that performance increments in the
proposed model are significant w.r.t. state-of-the-
art methods with p-value=0.03 and p-value=0.01
respectively in multi-lingual and cross-lingual se-
tups.

4.4 Discussions
The prime motivation of our current work is to
minimize the effect of data sparsity while learn-
ing through deep neural network architecture. For
this, we propose to use bilingual embeddings com-
puted from a parallel corpus, which is created uti-
lizing a MT system. Similarly, absence of a large
aligned corpus in resource-poor language can be
addressed through the application of a MT system.
Since, the MT system is not fully accurate, there
must be some errors introduced while translating.
This, in turn, affects the bilingual word embed-
ding. Another limitation of our work is that 7.2M
sentences is not a big number in terms of word
embedding computation. However, the underlying
method performs considerably better compared to
the state-of-the-art systems, even with all these
constraints.
To show the effectiveness of bilingual embed-

dings in minimizing data sparsity, we also experi-
ment with a mono-lingual Hindi embeddings com-
puted on 53M sentences. Following the proposed
approach (except computing embeddings for OOV
words), we obtain an accuracy of 77.74% in aspect
classification task. Table 1 shows comparison with
mono-lingual and multi-lingual approach for clas-
sification. Despite all those limitations discussed
above (i.e. SMT error & corpus size), the proposed
method with bilingual embeddings (76.29%) per-
forms considerably at par against the monolin-
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gual embeddings created from a very large cor-
pus of 53M (77.74%). However, the monolingual
WE computed using the same amount of corpus
(i.e. 7.2M sentences) produces an accuracy of only
63.64%. Further with the help of lexicon based fea-
tures accuracy of this system increases to 70.86%
(compared to 76.29% of our proposed model). It
is also to be observed that performance of the sys-
tem is improved by just including representations
of the OOV words. Performance of the proposed
system would have been much better if we would
not have above mentioned limitations.

Models Bilingual Models Monolingual
Size = 7.2M Size = 7.2M Size = 53M

Bilingual 62.51 Monolingual 63.64 68.74
Bilingual + Embedding
(OOV)

64.83

Bilingual + Embedding
(OOV) + Feature (Eng)

76.29 Monolingual +
Feature (Eng)

70.86 77.74

Table 1: Comparative analysis of monolingual embed-
dings and bilingual embeddings in multi-lingual setup.

4.5 Error Analysis
We perform error analysis on the obtained results.
Quantitatively, ‘neutral’ is the most problematic
class in both multi-lingual and cross-lingual se-
tups. It mainly confuses with ‘positive’ class. Ap-
proximately, 20% & 40% of ‘neutral’ instances
are tagged as ‘positive’ in multi-lingual and cross-
lingual setups, respectively. Our system does not
predict ‘conflict’ class at all, possibly due to the in-
sufficient number of instances for training. Quali-
tatively, following are the few cases where our sys-
tem performs below par.

• Lack of polar information inside context:
Our system finds it challenging to classify
sentiment of the aspect terms whose polar in-
formation lie outside the context window. In
the following sentence aspect term is ‘वज़न
|weight’ and the actual sentiment towards it
is positive. The polar information ‘तलुना मӒ
लगभग आधा |about half as compared’ and
‘हͰका |lighter’ are far from the aspect term,
hence, not captured within the context win-
dow.
Devanagari: इसका वज़न नए आईपडै कҴ
तलुना मӒ लगभग आधा है और यह अͨय उपलͫध
7-इंच टेबले͟स से भी हͰका ह।ै
Transliteration: isakA vaZana nae AIpaiDa
kI tulanA meM lagabhaga AdhA hai aura
yaha anya upalabdha 7-iMcha TebaleTsa se
bhI halkA hai.

Translation: Its weight is about half as com-
pared to the new iPad and it is lighter than
other available 7-inch tablets.

• Implicit sentiment: Presence of implicit sen-
timent is not correctly classified by the pro-
posed system. Following review contains
‘बनावट |built’ as an aspect term and its neg-
ative sentiment is derived from the phrase
‘բािःटक फҴल |plastic feel’.
Devanagari: इस टेबलेट कҴ बनावट काफҴ
բािःटक फҴल देता ह।ै
Transliteration: isa TebaleTa kI banAvaTa
kAphI plAsTika phIla detA hai.
Translation: The built of this tablet gives a
fairly plastic feel.

5 Conclusion
In this paper, we present a deep learning based
LSTM architecture built on top of bilingual word
embeddings for aspect level sentiment classifi-
cation. Bilingual word embeddings try to bridge
the language barrier between a resource-rich and
resource-poor languages in a shared vector space.
We propose to reduce the effect of data sparsity in a
resource-poor language word embeddings by pro-
jecting OOV words into target side and utilize the
target side word embeddings. In addition, we also
exploit various resources of English for assisting
the proposed model. We show the effectiveness of
the proposed method in two different setups, i.e.
multi-lingual and cross-lingual. Experimental re-
sults show that the proposed system outperforms
various state-of-the-art systems in both the setups.
In future, we would like to explore the application
of proposed method in another aspect level senti-
ment analysis task known as aspect term extraction
or opinion target extraction.
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Abstract

For over a decade, machine learning has been
used to extract opinion-holder-target struc-
tures from text to answer the question Who ex-
pressed what kind of sentiment towards what?.
Recent neural approaches do not outperform
the state-of-the-art feature-based models for
Opinion Role Labeling (ORL). We suspect
this is due to the scarcity of labeled train-
ing data and address this issue using differ-
ent multi-task learning (MTL) techniques with
a related task which has substantially more
data, i.e. Semantic Role Labeling (SRL). We
show that two MTL models improve signif-
icantly over the single-task model for label-
ing of both holders and targets, on the devel-
opment and the test sets. We found that the
vanilla MTL model which makes predictions
using only shared ORL and SRL features, per-
forms the best. With deeper analysis we deter-
mine what works and what might be done to
make further improvements for ORL.

1 Introduction

Fine-Grained Opinion Analysis (FGOA) aims to:
(i) detect opinion expressions (O) that convey at-
titudes such as sentiments, agreements, beliefs or
intentions (like feared in example (1)), (ii) mea-
sure their intensity (e.g. strong), (iii) identify their
holders (H), i.e. entities that express an attitude
(e.g. it), (iv) identify their targets (T), i.e. enti-
ties or propositions at which the attitude is di-
rected (e.g. violence) and (v) classify their target-
dependent attitude (e.g. negative sentiment)1.

(1) Australia said [it]H [feared]Oneg [violence]T
if voters thought the election had been stolen.

As the commonly accepted benchmark corpus
MPQA (Wiebe et al., 2005) uses span-based an-
notations to represent opinion entities (opinions,

1Examples are drawn from MPQA (Wiebe et al., 2005).

holders and targets), the task is usually approached
with sequence labeling techniques and the BIO
encoding scheme (Choi et al., 2006; Yang and
Cardie, 2013; Katiyar and Cardie, 2016). Initially
pipeline models were proposed which first pre-
dict opinion expressions and then, given an opin-
ion, label its opinion roles, i.e. holders and tar-
gets (Kim and Hovy, 2006; Johansson and Mos-
chitti, 2013). Pipeline models have been sub-
stituted with so-called joint models that simulta-
neously identify all opinion entities, and predict
which opinion role is related to which opinion
(Choi et al., 2006; Yang and Cardie, 2013; Katiyar
and Cardie, 2016). Recently an LSTM-based joint
model was proposed (Katiyar and Cardie, 2016)
that unlike the prior work (Choi et al., 2006; Yang
and Cardie, 2013) does not depend on external re-
sources (such as syntactic parsers or named en-
tity recognizers). The neural variant does not out-
perform the feature-based CRF model (Yang and
Cardie, 2013) in Opinion Role Labeling (ORL).

Both the neural and the CRF joint models
achieve about 55% F1 score for predicting which
targets relate to which opinions in MPQA. Thus,
these models are not yet ready to answer the ques-
tion this line of research is usually motivated with:
Who expressed what kind of sentiment towards
what?. Our goal is to investigate the limitations
of neural models in solving different subtasks of
FGOA on MPQA and to gain a better understand-
ing of what is solved and what is next.

We suspect that one of the fundamental obsta-
cles for neural models trained on MPQA is its
small size. One way to address scarcity of labeled
data is to use multi-task learning (MTL) with ap-
propriate auxiliary tasks. A promising auxiliary
task candidate for ORL is Semantic Role Labeling
(SRL), the task of predicting predicate-argument
structure of a sentence, which answers the ques-
tion Who did what to whom, where and when?.
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Australia said it feared violence if voters thought the election had been stolen .
say.01 A0 - A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 -
fear.01 - - A0 - A1 AM-ADV AM-ADV AM-ADV AM-ADV AM-ADV AM-ADV AM-ADV AM-ADV -

think.01 - - - - - - A0 - A1 A1 A1 A1 A1 -
steal.01 - - - - - - - - A1 A1 - - - -

Table 1: Output of the SRL demo.

Table 1 illustrates the output of the SRL demo2 for
example (1), following the PropBank SRL scheme
(Palmer et al., 2005)3.

SRL4ORL. The semantic roles of the predicate
fear (marked blue bold) correspond to the opin-
ion roles H and T, according to MPQA. For this
reason, the output of SRL systems has been com-
monly used for feature-based FGOA models (Kim
and Hovy, 2006; Johansson and Moschitti, 2013;
Choi et al., 2006; Yang and Cardie, 2013). Ad-
ditionally, a considerable amount of training data
is available for training SRL models (Table 2 in
Sec. 3), which made neural SRL models success-
ful (Zhou and Xu, 2015; Yang and Mitchell, 2017).

Obstacles. Although SRL is similar in nature
to ORL, it cannot solve ORL for all cases (Rup-
penhofer et al., 2008). In example (2) holder and
target of the predicate please correspond to A1, A0
semantic roles respectively, wheres for the predi-
cate fear in (1) holder and target correspond to A0,
A1 respectively. We took into account this ob-
servation when deciding on an appropriate MTL
model by splitting its parameters into shared and
task-specific ones (i.e. hard-parameter sharing).

(2) [I]A1H am very [pleased]Opos that [the Coun-
cil has now approved the Kyoto Protocol
thus enabling the EU to proceed with its
ratification]A0T .

A further obstacle for properly exploiting SRL
training data with MTL could be specificities, in-
consistency and incompleteness of the MPQA an-
notations. In example (3), Rice expressed his
negative sentiment towards the three countries in
question by setting the criteria which states some-
thing negative about those countries: they are re-
pressive and grave human rights violators [...]. In
this case, the model should not pick any local se-
mantic role for the target.

(3) The criteria [set by]Oneg [Rice]H are the fol-
lowing: [the three countries in question]T are

2http://barbar.cs.lth.se:8081
3Henceforth we use the PropBank SRL framework.

repressive and grave human rights violators,
and aggressively seeking weapons [...].

In examples (4–5), the same opinion expression
concerned realizes different scopes for the target.
A model which exploits SRL knowledge could be
biased to always label targets as complete SRL
role constituents, as in example (5).

(4) Rice told us [the administration]H was
[concerned]Oneg that [Iraq]T would take ad-
vantage of the 9/11 attacks.

(5) [The Chinese government]H is deeply
[concerned]Oneg about [the sudden deterio-
ration in the Middle East situation]T , Tang
said.

Regarding incompleteness, prior work (Kati-
yar and Cardie, 2016) has shown that their model
makes reasonable predictions in sentences which
do not have annotations at all, e.g. [mothers]H
[care]O for [their young]T , in: From the fact that
mothers care for their young, we can not deduce
that they ought to do so, Hume argued.

The examples above show that incorporating
SRL knowledge via multi-task learning is a rea-
sonable way to improve ORL, but at the same time
they alert us that given the specificities of MPQA
and ORL annotations in general, it is not obvious
whether MTL can overcome divergences in the an-
notation schemes of opinion and semantic role la-
beling. We investigate this research question by
adopting one of the recent successful architectures
for SRL (Zhou and Xu, 2015) and experiment with
different multi-task learning frameworks.

Our contributions are: (i) we adapt a recently
proposed neural SRL model for ORL, (ii) we en-
hance the model using different MTL techniques
with SRL to tackle the problem of scarcity of la-
beled data for ORL, (iii) we show that most of the
MTL models improve the single-task model for la-
beling of both holders and targets on development
and test sets, and two of them make yield signif-
icant improvements, (iv) by deeper analysis we
provide a better understanding of what is solved
and where to head next for neural ORL.
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Figure 1: Fully-shared
(FS) MTL.

Figure 2: Hierarchical-
MTL (H-MTL).

2 Neural MTL for SRL and ORL

Neural multi-task learning (MTL) receives a lot of
attention and new MTL architectures emerge reg-
ularly. Yet there is no clear consensus which MTL
architecture to use in which conditions. We exper-
iment with well-received architectures that could
adapt to different cases of ORL from Section 1.

As a general neural architecture for single- and
multi-task learning we use the recently proposed
SRL model (Zhou and Xu, 2015) (Z&X-STL)
which successfully labels semantic roles without
any syntactic guidance. This model consists of a
stack of bi-directional LSTMs and a CRF which
makes the final prediction. The inputs to the first
LSTM are not only token embeddings but three
additional features: embedding of the predicate,
embedding of the context of the predicate and an
indicator feature (1 if the current token is in the
predicate context, 0 otherwise). Thus, every sen-
tence is processed as many times as there are pred-
icates in it. Adapting this model for labeling of
opinion roles is straightforward, the only differ-
ence being that opinion expressions can be multi-
words and only two opinion roles are assigned.

MTL techniques aim to learn several tasks
jointly by leveraging knowledge from all tasks. In
the context of neural networks, MTL is commonly
used in such a way that it is predefined which
layers have tied parameters and which are task-
specific (i.e. hard-parameter sharing). There are
various ways of defining which parameters should
be shared and how to train them.

Fully-shared (FS) MTL model. A fully-shared
model (Fig. 1) shares all parameters of the general
model except the output layer. Each task has a
task-specific output layer which makes the predic-
tion based on the representation produced by the
final LSTM. When training on a mini-batch of a
certain task, parameters of the output layer of the

Figure 3: (Adversarial) state-private ((A)SP) MTL.

other tasks are not updated. This model should
be effective for constructions with a clear mapping
between opinion and semantic roles such as {H 7→
A0, T 7→ A1} as in example (1) (Sec. 1).

Hierarchical MTL (H-MTL) model. For NLP
applications, often some given (high-level) task
is supposed to benefit from another (low-level)
task more than the other way around, e.g. parsing
from POS tagging. This intuition lead to design-
ing hierarchical MTL models (Søgaard and Gold-
berg, 2016; Hashimoto et al., 2017) in which pre-
dictions for low-level tasks are not made on the
basis of the representation produced at the final
LSTM, but on the representation produced by a
lower-layer LSTM (Fig. 2). Task-specific layers
atop shared layers could potentially give the model
more power to distinguish or ignore certain se-
mantic roles. If so, this MTL model is more suit-
able for examples like (2) and (3) (Sec. 1).

Shared-private (SP) MTL model. In the state-
private model, in addition to the stack of shared
LSTMs, each task has a stack of task-specific
LSTMs (Liu et al., 2017) (Fig. 3). Representa-
tions at the outermost shared LSTM and the task-
specific LSTM are concatenated and passed to the
task-specific output layer. The ORL representa-
tion produced independently from SRL gives the
model the ability to utilize the shared and entirely
task-specific information. For labeling of targets,
it is expected that for examples (1) & (5) the model
relies mostly on the shared representation, for ex-
amples (2) & (4) on both shared and ORL-specific
representations, and for example (3) solely on the
ORL-specific representation.

Adversarial shared-private (ASP) model.
The limitation of the SP model is that it does
not prevent the shared layers from capturing task-
specific features. To ensure this, ASP extends the
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task train size dev size test size |Y|
CoNLL’05 SRL 90750 3248 6071 106

MPQA (4-CV) ORL 3141.25 1055 1036.75 7
MPQA (10-CV) ORL 3516.3 1326 349.3 7

Table 2: Datasets w/ nb. of SRL predicates/ORL opin-
ions in train, dev & test set, size of label inventory.

SP model with a task discriminator (Liu et al.,
2017). The task discriminator (Fig. 3, marked red)
predicts to which task the current batch of data
belongs, based on the representation produced by
the shared LSTMs. If the shared LSTMs are task-
invariant, the discriminator should perform badly.
Thus, we update the shared parameters to maxi-
mize the discriminator’s cross-entropy loss. At the
same time we want the discriminator to challenge
the shared LSTMs, so we update the discrimi-
nator’s parameters to minimize its cross-entropy
loss. This minmax optimization is known as ad-
versarial training and recently it gained a lot of
attention for NLP applications (Liu et al., 2017;
Chen et al., 2017; Kim et al., 2017; Qin et al.,
2017; Wu et al., 2017; Gui et al., 2017; Li et al.,
2017; Zhang et al., 2017; Joty et al., 2017).

3 Experimental setup

3.1 Datasets
For SRL we use the newswire CoNLL-2005
shared task dataset (Carreras and Màrquez, 2005),
annotated with PropBank predicate-argument
structures. Sections 2-21 of the WSJ corpus (Char-
niak et al., 2000) are used for training and section
24 as dev set. The test set consists of section 23 of
WSJ and 3 sections of the Brown corpus.

For ORL we use the manually annotated MPQA
2.0. corpus (Wiebe et al., 2005; Wilson, 2008). It
mostly contains news documents, but also travel
guides, transcripts of spoken conversations, e-
mails, fundraising letters, textbook chapters and
translations of Arabic source texts.

We report detailed pre-processing of MPQA4

and data statistics in the Supplementary Material.

3.2 Evaluation metrics
For both tasks we adopt evaluation metrics from
prior work. For SRL, precision is defined as the
proportion of semantic roles predicted by a system

4Examples how to use our scripts can be
found at https://github.com/amarasovic/
naacl-mpqa-srl4orl/blob/master/generate_
mpqa_jsons.py.

which are correct, recall is the proportion of gold
roles which are predicted by a system, F1 score is
the harmonic mean of precision and recall.

In case of ORL, we report 10-fold CV5 and re-
peated 4-fold CV with binary F1 score and propo-
rtional F1 score, for holders and targets separately.
Binary precision is defined as the proportion of
predicted holders (targets) that overlap with the
gold holder (target), binary recall is the proportion
of gold holders (targets) for which the model pre-
dicts an overlapping holder (target). Proportional
recall measures the proportion of the overlap be-
tween a gold holder (target) and an overlapping
predicted holder (target), proportional precision
measures the proportion of the overlap between a
predicted holder (target) and an overlapping gold
holder (target). F1 scores are the harmonic means
of the corresponding precision and recall.

3.3 Training details

We evaluate our models using two evaluation set-
tings. First, we follow Katiyar and Cardie (2016)
which set aside 132 documents for development
and used the remaining 350 documents for 10-fold
CV. However, in the 10-fold CV setting, the size
of the tests sets is 3 times smaller than the dev set
size (Table 2, row 3), and, consequently, results in
high-variance estimates on the test sets. Therefore
we additionally evaluate our models with 4-fold
CV. We set aside 100 documents for development
and use 25% of the remaining documents for test-
ing. The resulting test sets are comparable in size
to the dev set (Table 2, row 2). We run 4-fold CV
twice with two different random seeds. We do not
tune hyperparameters (HPs), but follow suggesti-
ons proposed in the thorough HP study for seque-
nce labeling tasks (Reimers and Gurevych, 2017).
HPs can be found in the Supplementary Material.

4 Results

We evaluate all models after every
⌈ train size

batch size

⌉
it-

eration on the ORL dev set and save them if they
achieve a higher arithmetic mean of proportional
F1 scores of holders and targets on the ORL dev
set. The saved models are used for testing.

We report the mean of F1 scores over 10 folds
and the standard deviation (appears as a subscript)
of all models in Table 3. We report the mean of F1
scores over 4 folds and 2 different seed (8 evalua-

5We used the same splits as the prior work (Katiyar and
Cardie, 2016). We thank the authors for providing the splits.
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dev (MPQA)

holder target

binary F1 prop. F1 binary F1 prop. F1

Z&X-STL 80.151.10 76.871.26 74.620.67 70.231.04
FS-MTL 83.68•0.44 81.45•0.58 76.23•0.75 73.01•0.93
H-MTL 84.14•0.72 81.86•0.48 76.11•0.61 72.55•0.73
SP-MTL 82.18•30.89 79.66•30.72 74.9931.17 71.3231.81

ASP-MTL 82.63•30.84 80.20•30.99 74.24•30.58 70.1631.29

test (MPQA)

holder target

binary F1 prop. F1 binary F1 prop. F1

Z&X-STL 80.242.91 77.982.90 76.302.55 71.182.55
FS-MTL 83.47•2.26 81.80•2.26 77.602.52 73.772.28
H-MTL 84.03•2.65 82.34•2.51 77.412.14 73.101.96
SP-MTL 82.19•2.49 80.11•32.36 76.013.03 71.513.34

ASP-MTL 83.15•2.92 81.12•2.66 75.892.66 71.212.78

Table 3: ORL 10-fold CV results.

dev (MPQA)

holder target

binary F1 prop. F1 binary F1 prop. F1

Z&X-STL 79.731.19 77.061.14 76.090.94 70.451.07
FS-MTL 83.58•0.69 82.16•0.59 78.32•1.57 75.09•2.27
H-MTL 82.36•30.81 80.84•30.98 78.11•0.82 74.89•1.33
SP-MTL 82.21•30.79 80.23•30.88 76.1431.18 71.1430.97

ASP-MTL 81.4131.27 79.39•31.45 76.491.39 72.13•1.87

test (MPQA)

holder target

binary F1 prop. F1 binary F1 prop. F1

Z&X-STL 80.421.92 77.482.06 73.841.17 67.032.13
FS-MTL 83.67•1.52 81.59•1.50 77.04•1.45 73.01•2.53
H-MTL 82.80•1.87 80.40•1.91 77.12•1.34 73.16•1.78
SP-MTL 82.51•2.17 80.03•2.00 74.6131.32 68.7032.32

ASP-MTL 81.7731.74 79.3231.62 74.92•30.84 69.89•1.80

Table 4: ORL repeated 4-fold CV results.

tions) and the standard deviation of all models in
Table 4. Evaluation metrics follow Section 3.2.

We mark significant difference between MTL
models and the single-task (Z&X-STL) model,
observed using a Kolmogorov-Smirnov signifi-
cance test (p < 0.05) (Massey Jr, 1951), with • in
superscript and between the FS-MTL model and
other MTL models with 3.

STL vs. MTL. In the 10-fold CV evaluation
setting (Table 3), the FS-MTL and the H-MTL
models improve over the Z&X-STL model in all
evaluation measures, for both holders and targets.
When evaluated in the repeated 4-fold CV setting
(Table 4), all MTL models improve over the Z&X-
STL model in all evaluation measures, for both
holders and targets.

The FS-MTL and the H-MTL models improve
significantly in all evaluation measures, for both
holders and targets, on both dev and test sets, when
evaluated with repeated 4-fold CV. With 10-fold
CV the improvements are also significant, except
for targets on the test set. This is probably due
to the small size of the test sets (Table 2, row 3),
which results in a high-variance estimate. Indeed,
standard deviations on the 10-fold CV test sets are
always much higher compared to the dev set or to
the test sets of 4-fold CV.

It is not surprising that larger improvements are
visible in the labeling of holders. They are usually
short, less ambiguous and often presented with the

A0 semantic role, whereas annotating targets is a
challenging task even for humans.6

Larger improvements are visible for propor-
tional F1 score than for binary F1 score. That is,
more data and SRL knowledge helps the model to
better annotate the scope of opinion roles.

Comparing MTL models. In Section 2 we in-
troduced MTL models with task-specific LSTM
layers hypothesizing that these layers should give
MTL models more power to adapt to a variety of
potentially problematic cases that we illustrated in
the Introduction. However, our results show that
the FS-MTL model performs significantly better
or comparable to MTL models that include task-
specific layers. Reimers and Gurevych (2017)
show that MTL is especially sensitive to the selec-
tion of HPs. Thus, a firm and solid comparison of
the different MTL models requires thorough HP
optimization, to properly control the number of
parameters and regularization of the models. We
leave HP optimization for future work.

5 Analysis

Our aim in this section is to analyze what the pro-
posed models are good at, in which ways MTL im-
proves over the single-task ORL model and what
could be done to achieve further progress.

We evaluate the FS-MTL and the Z&X-STL
6Wilson (2008) reports annotator agreement for target la-

beling of 86.00 binary F1 score.
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1 Malinga FS,ZX said according to the guidelines in the booklet, the election had been legitimate .

2
movie um-hum that ’s interesting so that was a good movie too well do you FS,ZX think we’ve covered baseball i think so
okay well have a good night

3 The nation FS,ZX should certainly be concerned about the plans to build a rocket launch pad , work on the infrastructure
for which is due to start in 2002 , with launches beginning from 2004 .

4 Bam on Sunday said she FS,ZX believed Zimbabwe’s election was not free and fair , adding they were not in line with
international standards as well as those of her organisation .

5 The majority report , endorsed only by the ANC , said the observer mission FS,ZX had noted that over three million
Zimbabweans had cast their votes and this substantially represented the will of the people .

Table 5: The dev examples for which both models (FS-MTL, Z&X-STL) correctly predict the holder in 6/8 trials.

1
Indonesia has come under pressure from several quarters to take tougher action against alleged terrorist leaders but has

played down the threat ZXFS .

2 Mugabe even talked about his desire to keep safeguarding Zimbabwe ’s sovereignty and land ZX in spirit FS when he dies
, a dream which the veteran leader said forced him to sacrifice a bright teaching career in the 1950s to lead [...].

3
Under his blueprint , the government hopes to stabilize the economy through curtailing state expenditure , reforming public

enterprises and expanding agriculture FS,ZX .

4
He said those who thought the election process would be rigged were supporters of the MDC party , adding that they were
prejudging and wanted to direct the process FS,ZX .

5 People in the rural areas support the ruling party because our party has been genuine on its policy on land reform FS,ZX .

Table 6: The dev examples for which both models (FS-MTL, Z&X-STL) correctly predict the target in 6/8 trials.

easy hard

% opinions that are predicates 91.32 93.33
% holders that are subjects 77.84 38.79
% holders that are A0 roles 74.10 33.33
avg. distance between holders & opinions 1.54 7.56

Table 7: Statistics of holder prediction.

easy hard

% opinions that are predicates 92.58 89.20
% target’s heads that are objects 22.12 14.77
% targets that are A1 roles 70.62 42.61
% targets that are A2 roles 9.00 0.57
avg. distance between targets & opinions 2.29 8.46

Table 8: Statistics of target prediction.

models on the ORL dev set using 4-fold CV re-
peated twice with different seeds (8 evaluation tri-
als). We say that a model predicts a role of a
given opinion expression correctly if the model
predicts a role that overlaps with the correct role
in at least 6 out of 8 evaluation trials. If a model
predicts a role that overlaps with the correct role
in at most 2 out of 8 trials, we say that the model
predicts the role incorrectly. The requirement on
6-8 (in)correct predictions reduces the risk of an-
alyzing inconsistent predictions and enables us to

draw firmer conclusions. We analyze the follow-
ing scenarios:

(i) both the FS-MTL model and the Z&X-STL
model make correct predictions (Tables 5–6)

(ii) the FS-MTL model makes a correct predic-
tion, while the Z&X-STL makes an incorrect
prediction (Tables 11–12)

(iii) both models make wrong predictions (Tables
9–10)

In the following, we categorize predictions in
case (i) as easy cases, and predictions in case (iii)
as hard cases.

In Tables 5–6 and 9–12, the opinion expression
is bolded, the correct role is italicized, predictions
of the FS-MTL model are colored blue (subscript
FS), predictions of the Z&X-STL model are col-
ored yellow (subscript ZX) and green marks pre-
dictions where both models agree. For simplic-
ity, we show only holders or targets, although the
models predict both roles jointly.

What works well? There are 668/1055 in-
stances in the dev set for which both models pre-
dict holders correctly, and 663/1055 for targets.

Examples 1–5 in Table 5 suggest that holders
that can be properly labeled by both models (easy
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1 It would be entirely improper if , in its defense of Israel FS , the United States continues to exert pressure on [...] .

2 Indonesia FS,ZX has come under pressure from several quarters to take tougher action against alleged terrorist leaders
but has played down the threat .

3
Australia should adhere to the Cardinal Principle of International Law , which states that all nations in the world must first
respect and promote the humanitarian interests and progress of all humankind .

4
The department said that it will cost $ 600 for an HIV/AIDS patient per year at this time , and the following years this cost
is expected to stand at just $ 400/year for one patient as the production of such drugs becomes stable .

5
The Organisation of African Unity OAU ZX also backed Zimbabwean President Robert Mugabe ’s re-election , with

its observer team FS,ZX describing the poll as ” transparent , credible , free and fair ” .

6
Regarding the American proposed Anti-Missile Defense System too , neither Russia , China , Japan , nor even the European
Union , had shown any enthusiasm ; rather they FS had all FS,ZX expressed their reserves on the project .

7 The president renewed his pledge to thwart terrorist groups FS,ZX who want to ” mate up ” with regimes hoping to acquire
weapons of mass destruction and said ” nations will come with us ” if the US-led war on terrorism is extended .

Table 9: The dev examples for which both models (FS-MTL, Z&X-STL) incorrectly predict the holder in 6/8
trials.

1
State-sanctioned land invasions , several times declared illegal by Zimbabwe ’s courts , as well as a drought have disrupted
Zimbabwe ’s food production and famine is already looming in much of the country .

2 But he told the nation FS,ZX that in spite of stiff opposition to the agrarian reforms from powerful Western countries ,
especially the country ’s former colonial power of Britain , he would press ahead to seize farms from whites and [...] .

3
If the Europeans wish to influence Israel in the political arena – in a direction that many in Israel would support whole-
heartedly – they will not be able to promote their positions in such a manner .

4 They FS,ZX are fully aware that these are dangerous individuals , he said during a press conference [...] .

5 And her little girl just complained , ” I don’t want to wash the dishes ” .

6 During President Bush’s speech , I thought of heckling ZX ; ’ What are you going to do with the Kyoto Protocol ? FS’

7 At first I didn’t want to apply for it FS,ZX , but the principal called me during the summer months and said , ” Sandra the
time is running out , you need to apply ”.

Table 10: The dev examples for which both models (FS-MTL, Z&X-STL) incorrectly predict the target in 6/8
trials.

cases) are subjects of their governing heads or A0
roles. The statistics in Table 7 (col. 1, rows 2–
3) supports this observation.7 In contrast, holders
that both models predict incorrectly (hard cases)
are less frequently subjects or A0 roles (col. 2,
rows 2–3). Also, easy holders are close to the cor-
responding opinion expression: the average dis-
tance is 1.54 tokens (Table 7, row 4), contrary to
the hard holders with the average distance of 7.56.

Examples 1–5 in Table 6 suggest that targets
that can be properly labeled by both models are
objects of their governing heads or A1 roles. Ta-
ble 8, row 3, shows that the majority of the easy
targets are indeed A1 roles, in contrast to the hard
targets. Similar to holders, the easy targets are in
average 7 tokens closer to the opinion expression.

What to do for further improvement? There
are 165/1055 instances in the dev set for which

7The statistics is calculated using the output of mate-tools
(Björkelund et al., 2010).

both models predict holders incorrectly, and 176
for targets.

As we have seen so far, many holders that are
subjects or A0 roles, and targets that are A1 roles,
are properly labeled by both models. However, a
considerable amount of such holders and targets
are not correctly predicted (Table 7–8, col. 2, rows
2–3). Thus our models do not work flawlessly for
all such cases. A distinguishing property of the
hard cases is the distance of the role from the opin-
ion. Thus, future work should advance the model’
s ability to capture long-range dependencies.

Examples in Table 9 demonstrate that holders,
harder to label with our models, occur with the
corresponding opinions in more complicated syn-
tactic constructions. In the first example, the FS-
MTL model does not recognize the possessive and
is possibly biased towards picking the country (Is-
real), which occurs immediately after the opinion.
In the second example, the opinion expression is
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1
Yoshihisa Murasawa , a management consultant for Booz-Allen & Hamilton Japan Inc. , said his firm FS,ZX will likely be

recommending acquisitions of Japanese companies more ZX often to foreign clients in the future .

2 The source FS , interviewed by Interfax in Grozny , expressed confidence that that the command of the Russian forces in
Chechnya would soon “ be able to obtain documentary confirmation ” that Khattab was dead .

3 The Commonwealth team earlier this week FS said that ” the conditions in Zimbabwe did not adequately allow the free
and fair expression of will by the electorate ”.

4 Publishing such biased reports will only create mistrust among nations FS regarding the objectives and independence of
the UN Commission on Human Rights .

5
The Inkatha Freedom Party , Democratic Alliance , New National Party , African Christian Democratic Party , the Pan

Africanist Congress and the United Christian Democratic Party ZX had disagreed with the ANC FS conclusion .

6 The Nigerian leader , President Olusegun Obasanjo ZX , had urged the minister FS,ZX not to attack Blair frontally over
Britain ’s negative position regarding Zimbabwe , but to deal [...] .

7 US diplomats ZX say Bush FS,ZX will seek to support Kim ’s Nobel Prize winning policy by offering new talks with the
North , while remaining firm about North Korea ’s missile sales and its feared chemical and biological weapons programmes.

Table 11: The dev examples for which the FS-MTL model correctly predicts the holder in 6/8 trials, whereas the
Z&X-STL model predicts incorrectly in 6/8 trials.

1 In most cases he described the legal punishments FS like floggings and executions of murderers and major drug traffickers
that are applied based on the Shria , or Islamic law as human rights violations .

2 In another verbal attack Kharazi accused the United States FS of wanting to exercise ” world dictatorship ” since the ”
horrible attacks ” of September 11 .

3
He said those who thought the election process would be rigged were supporters of the MDC party , adding that they were
prejudging and wanted to direct the process ZX .

4
However , the fact that certain countries have a more balanced view of the conflict ZX is not the only reason to doubt that
anti-Israeli decisions FS will , in fact , be adopted .

5 But his tough stand on P’yongyang FS has provoked concern in Seoul ZX , where President Kim Tae-chung , who is in
the last year of his five-year term , has been trying to prise the hermit state out of isolation .

Table 12: The dev examples for which the FS-MTL model correctly predicts the target in 6/8 trials, whereas the
Z&X-STL model predicts incorrectly in 6/8 trials.

a nominal predicate and the holder is its object.
The sentence is in passive voice but the models
probably interpret it in the active voice and thus
make the wrong prediction. In the third exam-
ple, the opinion expression is the head of the rel-
ative clause that modifies the holder. These ex-
amples raise the following questions: would im-
proved consistency with syntax lead to improve-
ments for ORL and could we train a dependency
parsing model with SRL and ORL to help the
models handle syntactically harder cases?

Example 4 shows that holders specific to the
MPQA annotation schema are hard to label as they
require inference skills: from the department said,
we can defeasibly infer that it is the department
who expects [this cost] to stand at just $400/year
[...]. To handle such cases, it would be worth try-
ing training our models jointly with models for
recognizing textual entailment.

Examples 6–7 illustrate that some gap in per-

formance stems from difficulties in processing
MPQA. Example 5 has no gold holder, but the
models make plausible predictions. For example
6, FS-MTL predicts the discontinuous holder they
... all, while MPQA allows only contiguous enti-
ties. Therefor our evaluation scripts interpret they
and all as two separate holders and deem all as
incorrect, resulting with lower precision. Finally,
for example 7 our models make plausible predic-
tions. However, the gold holder is always the en-
tity from the coreference cluster that is the closest
to the opinion.8 The evaluation scripts needs to be
extended such that predicting any entity from the
coreference cluster is considered to be correct. To
conclude, to better evaluate future developments,
it would be worth curating MPQA instances with
missing roles and extending evaluation to account
for coreferent holders and discontinuous roles.

The examples in Table 10 demonstrate that dif-
8We followed the prior work (Katiyar and Cardie, 2016).
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ficulties in labeling targets originate from simi-
lar reasons as for holders. Examples 1–3 demon-
strate complex syntactic constructions, examples
4–6 MPQA-specific annotations that require infer-
ence and example 7 exemplifies a missing target.

How does MTL help? There are 18/1055 in-
stances in the dev set for which the FS model pre-
dicts the holder correctly and the Z&X-STL model
does not, and 19/1055 for targets.

For holders, for 9 out 18 of such examples, the
Z&X-STL model does not predict anything (as in
examples 2–5 in Table 11). From examples 1–
5 we notice that SRL data helps to handle more
complex syntactic constructions. From examples
5–7 we observed that using MTL with SRL helps
to handle cases when more than one person or or-
ganization is present in the close neighborhood of
the opinion. For targets, for 11 out of 18 cases the
Z&X-STL model does not predict anything as in
examples 1–2 in Table 11. We conclude that the
greatest improvements from the FS-MTL model
comes from having far fewer missing roles.

6 Related work

FGOA. Closest to our work are Yang and Cardie
(2013) (Y&C) and Katiyar and Cardie (2016)
(K&C). They as well label both holders and targets
in MPQA. By contrast, our focus is on the task of
ORL. We thus refrain from predicting opinion ex-
pressions first, to ensure a reproducible evaluation
setup on a fixed set of gold opinion expressions.
The MTL models we develop in this work will,
however, be the basis for the full task in a later
stage. Because of these differences, direct com-
parison to Y&C and K&C is not possible. How-
ever, if we compare our results we notice a big gap
that demonstrates that opinion expression extrac-
tion is the import step in FGOA. Similar to K&C,
Liu et al. (2015) jointly labels opinion expressions
and their targets in reviews.

Some work focuses entirely on labeling of opin-
ion expressions (Yang and Cardie, 2014; Irsoy
and Cardie, 2014). Other work looks into spe-
cific subcategories of ORL: opinion role induction
for verbal predicates (Wiegand and Ruppenhofer,
2015), categorization of opinion words into actor
and speaker view (Wiegand et al., 2016b), opinion
roles extraction on opinion compounds (Wiegand
et al., 2016a). Wiegand and Ruppenhofer (2015)
report 72.54 binary F1 score for labeling of hold-
ers in MPQA (results for targets are not reported).

Neural SRL. New neural SRL models have
emerged (He et al., 2017; Yang and Mitchell,
2017; Marcheggiani and Titov, 2017) since we
started this work. In future work we can improve
our models with such new proposals.

Auxiliary tasks for MTL. Other work inves-
tigates under which conditions MTL is effective.
Martı́nez Alonso and Plank (2017) show that the
best auxiliary tasks have low kurtosis of labels
(usually a small label set) and high entropy (la-
bels occur uniformly). We show that the best MTL
model for ORL is the model which uses shared
layers only. Thus it seems reasonable to consider
only a small and uniform SRL label set {A0, A1}.

Bingel and Søgaard (2017) show that MTL
works when the main task has a flattening learn-
ing curve, but the auxiliary task curve is still steep.
We notice such behavior in our learning curves.

7 Conclusions

We address the problem of scarcity of annotated
training data for labeling of opinion holders and
targets (ORL) using multi-task learning (MTL)
with Semantic Role Labeling (SRL). We adapted
a recently proposed neural SRL model for ORL
and enhanced it with different MTL techniques.
Two MTL models achieve significant improve-
ments with all evaluation measures, for both hold-
ers and targets, on both dev and test set, when eval-
uated with repeated 4-fold CV. We recommend
evaluation with comparable dev and test set sizes
for future work, as this enables more reliable eval-
uation.

With deeper analysis we show that future devel-
opments should improve the ability of the models
to capture long-range dependencies, investigate if
consistency with syntax can improve ORL, and
consider other auxiliary tasks such as dependency
parsing or recognizing textual entailment. We em-
phasize that future improvements can be measured
more reliably if opinion expressions with missing
roles are curated and if the evaluation considers
all mentions in opinion role coreference chains as
well as discontinuous roles.

Acknowledgments

This work has been supported by the German Re-
search Foundation as part of the Research Training
Group Adaptive Preparation of Information from
Heterogeneous Sources (AIPHES) under grant
No. GRK 1994/1.

591



References
Joachim Bingel and Anders Søgaard. 2017. Identify-

ing beneficial task relations for multi-task learning
in deep neural networks. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers. Association for Computational Linguistics,
Valencia, Spain, pages 164–169. http://www.
aclweb.org/anthology/E17-2026.

Anders Björkelund, Bernd Bohnet, Love Hafdell, and
Pierre Nugues. 2010. A high-performance syntac-
tic and semantic dependency parser. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics: Demonstrations. Association for
Computational Linguistics, pages 33–36.

Xavier Carreras and Lluı́s Màrquez. 2005. Intro-
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Abstract

Previously, neural methods in grammatical er-
ror correction (GEC) did not reach state-of-
the-art results compared to phrase-based sta-
tistical machine translation (SMT) baselines.
We demonstrate parallels between neural GEC
and low-resource neural MT and successfully
adapt several methods from low-resource MT
to neural GEC. We further establish guide-
lines for trustable results in neural GEC and
propose a set of model-independent methods
for neural GEC that can be easily applied in
most GEC settings. Proposed methods include
adding source-side noise, domain-adaptation
techniques, a GEC-specific training-objective,
transfer learning with monolingual data, and
ensembling of independently trained GEC
models and language models. The combined
effects of these methods result in better than
state-of-the-art neural GEC models that out-
perform previously best neural GEC systems
by more than 10% M2 on the CoNLL-2014
benchmark and 5.9% on the JFLEG test set.
Non-neural state-of-the-art systems are outper-
formed by more than 2% on the CoNLL-2014
benchmark and by 4% on JFLEG.

1 Introduction
Most successful approaches to automated grammat-
ical error correction (GEC) are based on methods
from statistical machine translation (SMT), espe-
cially the phrase-based variant. For the CoNLL
2014 benchmark on grammatical error correction
(Ng et al., 2014), Junczys-Dowmunt and Grund-
kiewicz (2016) established a set of methods for
GEC by SMT that remain state-of-the-art. Systems
(Chollampatt and Ng, 2017; Yannakoudakis et al.,
2017) that improve on results by Junczys-Dowmunt
and Grundkiewicz (2016) use their set-up as a back-
bone for more complex systems.

The view that GEC can be approached as a ma-
chine translation problem by translating from erro-
neous to correct text originates from Brockett et al.
(2006) and resulted in many systems (e.g. Felice
et al., 2014; Susanto et al., 2014) that represented
the current state-of-the-art at the time.

In the field of machine translation proper, the
emergence of neural sequence-to-sequence meth-
ods and their impressive results have lead to a
paradigm shift away from phrase-based SMT to-
wards neural machine translation (NMT). During
WMT 2017 (Bojar et al., 2017) authors of pure
phrase-based systems offered “unconditional sur-
render”1 to NMT-based methods.

Based on these developments, one would expect
to see a rise of state-of-the-art neural methods for
GEC, but as Junczys-Dowmunt and Grundkiewicz
(2016) already noted, this is not the case. Interest-
ingly, even today, the top systems on established
GEC benchmarks are still mostly phrase-based or
hybrid systems (Chollampatt and Ng, 2017; Yan-
nakoudakis et al., 2017; Napoles and Callison-
Burch, 2017). The best “pure” neural systems (Ji
et al., 2017; Sakaguchi et al., 2017; Schmaltz et al.,
2017) are several percent behind.2

If we look at recent MT work with this in mind,
we find one area where phrased-based SMT domi-
nates over NMT: low-resource machine translation.
Koehn and Knowles (2017) analyze the behavior
of NMT versus SMT for English-Spanish systems
trained on 0.4 million to 385.7 million words of par-
allel data, illustrated in Figure 1. Quality for NMT

1Ding et al. (2017) on their news translation shared task
poster http://www.cs.jhu.edu/˜huda/papers/
jhu-wmt-2017.pdf

2After submission of this work, Chollampatt and Ng (2018)
published impressive new results for neural GEC with some
overlap with our methods. However, our results stay ahead on
all benchmarks while using simpler models.
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Figure 1: BLEU scores for English-Spanish systems
trained on 0.4M to 385.7M words of parallel data.
Source: Koehn and Knowles (2017)

Corpus Sent. Tokens Public

NUCLE* 57.1K 1.2M Yes
Lang-8 NAIST* 1.9M 25.0M Yes
CLC FCE 30.9K 0.5M Yes
CLC 1.9M 29.2M No

Table 1: Statistics for existing GEC training data sets.
Data sets marked with * are used in this work.

starts low for small corpora, outperforms SMT at
a corpus size of about 15 million words, and with
increasing size beats SMT with a large in-domain
language model.

Table 1 lists existing training resources for the
English as-a-second-language (ESL) grammatical
error correction task. Publicly available resources,
NUS Corpus of Learner English (NUCLE) by
Dahlmeier et al. (2013), Lang-8 NAIST (Mizumoto
et al., 2012) and CLC FCE (Yannakoudakis et al.,
2011) amount to about 27M tokens. Among these
the Lang-8 corpus is quite noisy and of low quality.
The Cambridge Learner Corpus (CLC) by Nicholls
(2003) — probably the best resource in this list —
is non-public and we would strongly discourage
reporting results that include it as training data as
this makes comparisons difficult.

Contrasting this with Fig. 1, we see that for
about 20M tokens NMT systems start outperform-
ing SMT models without additional large language
models. Current state-of-the-art GEC systems
based on SMT, however, all include large-scale in-

domain language models either following the steps
outlined in Junczys-Dowmunt and Grundkiewicz
(2016) or directly re-using their domain-adapted
Common-Crawl language model.

It seems that the current state of neural meth-
ods in GEC reflects the behavior for NMT sys-
tems trained on smaller data sets. Based on this,
we conclude that we can think of GEC as a low-
resource, or at most mid-resource, machine transla-
tion problem. This means that techniques proposed
for low-resource (neural) MT should be applicable
to improving neural GEC results.

In this work we show that adapting techniques
from low-resource (neural) MT and SMT-based
GEC methods allows neural GEC systems to catch
up to and outperform SMT-based systems. We
improve over the previously best-reported neural
GEC system (Ji et al., 2017) on the CoNLL 2014
test set by more than 10% M2, over a compara-
ble pure SMT system by Junczys-Dowmunt and
Grundkiewicz (2016) by 6%, and outperform the
state-of-the-art result of Chollampatt and Ng (2017)
by 2%. On the JFLEG data set, we report the cur-
rently best results, outperforming the previously
best pure neural system (Sakaguchi et al., 2017) by
5.9% GLEU and the best reported results (Chol-
lampatt and Ng, 2017) by 3% GLEU.

In Section 2, we describe our NMT-based base-
line for GEC, and follow recommendations from
the MT community for a trustable neural GEC sys-
tem. In Section 3, we adapt neural models to make
better use of sparse error-annotated data, trans-
ferring low-resource MT and GEC-specific SMT
methods to neural GEC. This includes a novel train-
ing objective for GEC. We investigate how to lever-
age monolingual data for neural GEC by transfer
learning in Section 4 and experiment with language
model ensembling in Section 5. Section 6 explores
deep NMT architectures. In Section 7, we provide
an overview of the experiments and how results re-
late to the JFLEG benchmark. We also recommend
a model-independent toolbox for neural GEC.

2 A trustable baseline for neural GEC

In this section, we combine insights from Junczys-
Dowmunt and Grundkiewicz (2016) for grammati-
cal error correction by phrase-based statistical ma-
chine translation and from Denkowski and Neubig
(2017) for trustable results in neural machine trans-
lation to propose a trustable baseline for neural
grammatical error correction.
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Test/Dev set Sent. Annot. Metric

CoNLL-2013 test 1,381 1 M2

CoNLL-2014 test 1,312 2 M2

JFLEG dev 754 4 GLEU
JFLEG test 747 4 GLEU

Table 2: Statistics for test and development data.

2.1 Training and test data

To make our results comparable to state-of-the-art
results in the field of GEC, we limit our training
data strictly to public resources. In the case of
error-annotated data, as marked in Table 1, these
are the NUCLE (Dahlmeier et al., 2013) and Lang-
8 NAIST (Mizumoto et al., 2012) data sets. We
do not include the FCE corpus (Yannakoudakis
et al., 2011) to maintain comparability to Junczys-
Dowmunt and Grundkiewicz (2016) and Chollam-
patt and Ng (2017). We strongly urge the com-
munity to not use the non-public CLC corpus for
training, unless contrastive results without this cor-
pus are provided as well.

We choose the CoNLL-2014 shared task test set
(Ng et al., 2014) as our main benchmark and the
test set from the 2013 edition of the shared task
(Ng et al., 2013) as a development set. For these
benchmarks we report MaxMatch (M2) scores
(Dahlmeier and Ng, 2012). Where appropriate,
we will provide results on the JFLEG dev and test
sets (Napoles et al., 2017) using the GLEU metric
(Sakaguchi et al., 2016) to demonstrate the gener-
ality of our methods. Table 2 summarizes test/dev
set statistics for both tasks.

For most our experiments, we report M2 on
CoNLL-2013 test (Dev) and precision (Prec.), re-
call (Rec.), M2 (Test) on the CoNLL-2014 test set.

2.2 Preprocessing and sub-words

As both benchmarks, CoNLL and JFLEG, are
provided in NLTK-style tokenization (Bird et al.,
2009), we use the same tokenization scheme for our
training data. We truecase line beginnings and es-
cape special characters using scripts included with
Moses (Koehn et al., 2007). Following Sakaguchi
et al. (2017), we apply the Enchant3 spell-checker
to the JFLEG data before evaluation. No spell-
checking is used for the CoNLL test sets.

We follow the recommendation by Denkowski
and Neubig (2017) to use byte-pair encoding (BPE)
sub-word units (Sennrich et al., 2016b) to solve the

3https://github.com/AbiWord/enchant

large-vocabulary problem of NMT. This is a well
established procedure in neural machine translation
and has been demonstrated to be generally superior
to UNK-replacement methods. It has been largely
ignored in the field of grammatical error correction
even when word segmentation issues have been
explored (Ji et al., 2017; Schmaltz et al., 2017). To
our knowledge, this is the first work to use BPE
sub-words for GEC, however, an analysis on advan-
tages of word versus sub-word or character level
segmentation is beyond the scope of this paper. A
set of 50,000 monolingual BPE units is trained on
the error-annotated data and we segment training
and test/dev data accordingly. Segmentation is re-
versed before evaluation.

2.3 Model and training procedure

Implementations of all models explored in this
work4 are available in the Marian5 toolkit (Junczys-
Dowmunt et al., 2018). The attentional encoder-
decoder model in Marian is a re-implementation
of the NMT model in Nematus (Sennrich et al.,
2017b). The model differs from the model intro-
duced by Bahdanau et al. (2014) by several aspects,
the most important being the conditional GRU with
attention for which Sennrich et al. (2017b) provide
a concise description.

All embedding vectors consist of 512 units; the
RNN states of 1024 units. The number of BPE
segments determines the size of the vocabulary of
our models, i.e. 50,000 entries. Source and target
side use the same vocabulary. To avoid overfitting,
we use variational dropout (Gal and Ghahramani,
2016) over GRU steps and input embeddings with
probability 0.2. We optimize with Adam (Kingma
and Ba, 2014) with an average mini-batch size of
ca. 200. All models are trained until convergence
(early-stopping with a patience of 10 based on de-
velopment set cross-entropy cost), saving model
checkpoints every 10,000 mini-batches. The best
eight model checkpoints w.r.t. the development set
M2 score of each training run are averaged element-
wise (Junczys-Dowmunt et al., 2016) resulting in
a final single model. During decoding we use a
beam-size of 24 and normalize model scores by
length.6

4Models, system configurations and outputs are avail-
able from https://github.com/grammatical/
neural-naacl2018

5https://github.com/marian-nmt/marian
6We used a larger beam-size than usual due to experiments

with re-ranking of n-best lists not included in the paper. We
did not see any differences compared to smaller beams.
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CoNLL JFLEG
Run Dev Prec. Rec. Test Dev Test

1 20.2 68.6 11.8 34.9 47.6 52.3
2 21.3 64.6 10.3 31.5 47.1 51.8
3 21.7 64.8 10.6 32.0 47.1 52.4
4 22.0 67.1 10.9 33.0 47.1 52.0

Avg 21.3 – – 32.9 47.2 52.1
Ens 19.3 70.8 9.5 30.9 47.0 52.5

Table 3: Instable results for multiple baseline runs ver-
sus average and ensemble — for the CoNLL bench-
mark.

2.4 Optimizer instability

Junczys-Dowmunt and Grundkiewicz (2016) no-
ticed that discriminative parameter tuning for GEC
by phrase-based SMT leads to unstable M2 results
between tuning runs. This is a well-known effect
for SMT parameter tuning and Clark et al. (2011)
recommend reporting results for multiple tuning
runs. Junczys-Dowmunt and Grundkiewicz (2016)
perform four tuning runs and calculate parameter
centroids following Cettolo et al. (2011).

Neural sequence-to-sequence training is discrim-
inative optimization and as such prone to instabil-
ity. We already try to alleviate this by averaging
over eight best checkpoints, but as seen in Table 3,
results for M2 remain unstable for runs with differ-
ently initialized weights. An amplitude of 3 points
M2 on the CoNLL-2014 test set is larger than most
improvements reported in recent papers. None of
the recent works on neural GEC account for in-
stability, hence it is unclear if observed outcomes
are actual improvements or lucky picks among by-
products of instability. We therefore strongly sug-
gest to provide results for multiple independently
trained models. Otherwise improvements of less
than 2 or 3 points of M2 remain doubtful. Interest-
ingly, GLEU on the JFLEG data seems to be more
stable than M2 on CoNLL data.

2.5 Ensembling of independent models

Running multiple experiments to provide aver-
aged results seems prohibitively expensive, but
Denkowski and Neubig (2017) and others (e.g.
Sutskever et al., 2014; Sennrich et al., 2017a) show
that ensembling of independently trained models
leads to consistent rewards for MT. For our base-
line in Table 3 the opposite seems to be true for
M2. This is likely the reason why no other work on
neural GEC mentions results for ensembles.
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Average of 4
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Model Dev Prec. Rec. Test

Baseline 19.3 70.8 9.5 30.9
+Dropout-Src. 27.5 72.4 15.5 41.7
+Domain-Adapt. 30.0 69.2 17.3 43.3
+Error-Adapt. 34.5 70.8 20.8 47.8
+Tied-Emb. 33.0 73.0 20.2 48.0
+Edit-MLE 37.6 65.3 27.1 51.0

Table 4: Results (M2) on the CoNLL benchmark for
GEC-specific adaptations.

On closer inspection, however, we see that the
drop in M2 for ensembles is due to a precision bias.
M2 being an F-score penalizes increasing distance
between precision and recall. The increase in pre-
cision for ensembles is to be expected and we see
it later consistently for all experiments. Ensem-
bles choose corrections for which all independent
models are fairly confident. This leads to fewer but
better corrections, hence an increase in precision
and a drop in recall. If the models are weak as our
baseline, this can result in a lower score. It would,
however, be unwise to dismiss ensembles, as we
can use their bias towards precision to our advan-
tage whenever they are combined with methods
that aim to increase recall. This is true for nearly
all remaining experiments.

3 Adaptations for GEC

The methods described in this section turn our base-
line into a more GEC-specific system. Most have
been inspired by techniques from low-resource MT
or closely related domain-adaptation techniques
for NMT. All modifications are applied incremen-
tally, later models include enhancements from the
previous ones.
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3.1 Source-word dropout as corruption

GEC can be treated as a denoising task where
grammatical errors are corruptions that have to be
reduced. By introducing more corruption on the
source side during training we can teach the model
to reduce trust into the source input and to apply
corrections more freely. Dropout is one way to in-
troduce noise, but for now we only drop out single
units in the embedding or GRU layers, something
the model can easily recover from. To make the
task harder, we add dropout over source words, set-
ting the full embedding vector for a source word
to 1/psrc with a probability of psrc. During our
experiments, we found psrc = 0.2 to work best.

Table 4 show impressive gains for this simple
method (+Dropout-Src.). Results for the ensemble
match the previously best results on the CoNLL-
2014 test set for pure neural systems (without the
use of an additional monolingual language model)
by Ji et al. (2017) and Schmaltz et al. (2017).

3.2 Domain adaptation

The NUCLE corpus matches the domain of the
CoNLL benchmarks perfectly. It is however much
smaller than the Lang-8 corpus. A setting like
this seems to be a good fit for domain-adaptation
techniques. Sennrich et al. (2016a) oversample
in-domain news data in a larger non-news train-
ing corpus. We do the same by adding the NU-
CLE corpus ten times to the training corpus. This
can also be seen as similar to Junczys-Dowmunt
and Grundkiewicz (2016) who tune phrase-based
SMT parameters on the entire NUCLE corpus. Re-
spectable improvements on both CoNLL test sets
(+Domain-Adapt. in Table 4) are achieved.

3.3 Error adaptation

Junczys-Dowmunt and Grundkiewicz (2016) no-
ticed that when tuning on the entire NUCLE cor-
pus, even better results can be achieved if the error
rate of NUCLE is adapted to the error rate of the
original dev set. In NUCLE only 6% of tokens
contain errors, while the CoNLL-2013 test set has
an error-rate of about 15%. Following Junczys-
Dowmunt and Grundkiewicz (2016), we remove
correct sentences from the ten-fold oversampled
NUCLE data greedily until an error-rate of 15%
is achieved. This can be interpreted as a type of
GEC-specific domain adaptation. We mark this
method as +Domain-Adapt. in Table 4 and report
for the ensemble the so far strongest results for any
neural GEC system on the CoNLL benchmark.

CoNLL JFLEG
Λ Dev Prec. Rec. Test Dev Test

1 33.5 67.5 20.8 46.6 48.9 53.9
3 36.8 59.8 28.8 49.2 51.2 56.5
5 36.2 54.0 30.8 47.0 50.9 55.7

Table 5: Results for model type +Tied-Emb. trained
with edit-weighted MLE and chosen Λ.

3.4 Tied embeddings

Press and Wolf (2016) showed that parameter ty-
ing between input and output embeddings7 for lan-
guage models leads to improved perplexity. Simi-
larly, three-way weight-tying between source, tar-
get and output embeddings for neural machine
translation seems to improve translation quality in
terms of BLEU while also significantly decreasing
the number of parameters in the model. In mono-
lingual cases like GEC, where source and target
vocabularies are (mostly) equal, embedding-tying
seems to arise naturally. Output layer, decoder and
encoder embeddings all share information which
may further enhance the signal from corrective ed-
its. The M2 scores for +Tied-Emb. in Table 4 are
inconclusive, but we see improvements in conjunc-
tion with later modifications.

3.5 Edit-weighted MLE objective

Previously, we applied error-rate adaptation to
strengthen the signal from corrective edits in the
training data. In this section, we investigate the
effects of directly modifying the training loss to
incorporate weights for corrective edits.

Assuming that each target token yj has been
generated by a source token xi, we scale the loss
for each target token yj by a factor Λ if yj differs
from xi, i.e. if yj is part of an edit. Hence, log-
likelihood loss takes the following form:

L(x, y, a) = −
Ty∑

t=1

λ(xat , yt) logP (yt|x, y<t),

λ(xat , yt) =

{
Λ if xat 6= yt
1 otherwise

,

where (x, y) is a training sentence pair and a is
a word alignment at ∈ {0, 1, . . . , Tx} such that
source token xat generates target token yt. Align-
ments are computed for each sentence pair with
fast-align (Dyer et al., 2013).

7Output embeddings are encoded in the last output layer
of a neural language or translation model.
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This is comparable to reinforcement learning
towards GLEU as introduced by Sakaguchi et al.
(2017) or training against diffs by Schmaltz et al.
(2017). In combination with previous modifica-
tions, edit-weighted Maximum Likelihood Estima-
tion (MLE) weighting seem to outperform both
methods. The parameter Λ introduces an additional
hyper-parameter that requires tuning for specific
tasks and affects the precision/recall trade-off. Ta-
ble 5 shows Λ = 3 seems to work best among the
tested values when chosen to maximize M2 on the
CoNLL-2013 dev set.

For this setting, we achieve our strongest results
of 50.95 M2 on the CoNLL benchmark (system
+Edit-MLE) yet. This outperforms the results of
a phrase-based SMT system with a large domain-
adapted language model from Junczys-Dowmunt
and Grundkiewicz (2016) by 1% M2 and is the first
neural system to beat this strong SMT baseline.

4 Transfer learning for GEC
Many ideas in low-resource neural MT are rooted
in transfer learning. In general, one first trains
a neural model on high-resource data and then
uses the resulting parameters to initialize param-
eters of a new model meant to be trained on low-
resource data only. Various settings are possible,
e.g. initializing from models trained on large out-
of-domain data and continuing on in-domain data
(Miceli Barone et al., 2017) or using related lan-

guage pairs (Zoph et al., 2016). Models can also
be partially initialized by pre-training monolingual
language models (Ramachandran et al., 2017) or
only word-embeddings (Gangi and Federico, 2017).
In GEC, Yannakoudakis et al. (2017) apply pre-
trained monolingual word-embeddings as initial-
izations for error-detection models to re-rank SMT
n-best lists. Approaches based on pre-training with
monolingual data appear to be particularly well-
suited to the GEC task. Junczys-Dowmunt and
Grundkiewicz (2016) published 300GB of com-
pressed monolingual data used in their work to
create a large domain-adapted Common-Crawl n-
gram language model.8 We use the first 100M lines.
Preprocessing follows section 2.2 including BPE
segmentation.

4.1 Pre-training embeddings

Similarly to Gangi and Federico (2017) or Yan-
nakoudakis et al. (2017), we use Word2vec
(Mikolov et al., 2013) with standard settings to
create word vectors. Since weights between source,
target and output embeddings are tied, these embed-
dings are inserted once into the model, but affect
computations three-fold, see the blue elements in
Figure 2. The remaining parameters of the model
are initialized randomly. We refer to this adaptation
as +Pretrain-Emb.

8https://github.com/grammatical/
baselines-emnlp2016
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Model Dev Prec. Rec. Test

+Tied-Emb. 33.0 73.0 20.2 48.0
+Pretrain-Emb. 35.5 69.1 22.8 49.1
+Pretrain-Dec. 36.2 69.1 23.8 50.1

+Edit-MLE 37.6 65.3 27.1 51.0
+Pretrain-Emb. 38.2 64.4 28.4 51.4
+Pretrain-Dec. 40.3 65.2 32.2 54.1

Table 6: Results (M2) on the CoNLL benchmark set for
GEC-specific adaptations.

4.2 Pre-training decoder parameters

Following Ramachandran et al. (2017), we first
train a GRU-based language model on the monolin-
gual data. The architecture of the language model
corresponds as much as possible to the structure
of the decoder of the sequence-to-sequence model.
All pieces that rely on the attention mechanism
or the encoder have been removed. After training
for two epochs, all red parameters (including em-
bedding layers) in Figure 2 are copied from the
language model to the decoder. Remaining param-
eters are initialized randomly. This configuration
is called +Pretrain-Dec. We pretrain each model
separately to make sure that all weights have been
initialized randomly.

4.3 Results for transfer learning

Table 6 summarizes the results for our transfer
learning experiments. We compare the effects of
pre-training with and without the edit-weighted
MLE objective and can see that pre-training has
significantly positive effects in both settings.

The last result of 53.3% M2 on the CoNLL-2014
benchmark matches the currently highest reported
numbers (53.14% M2) by Chollampatt and Ng

Model Dev Prec. Rec. Test

+Tied-Emb 33.0 73.0 20.2 48.0
+GRU-LM 40.2 59.8 36.2 52.9

+Edit-MLE 37.6 65.3 27.1 51.0
+GRU-LM 40.3 61.9 34.5 53.4

+Pretrain-Dec. 40.3 65.2 32.2 54.1
+GRU-LM 41.6 62.2 36.6 54.6

Table 7: Ensembling with a neural language model.

(2017) for a much more complex system and out-
performs the highest neural GEC system (Ji et al.,
2017) by 8% M2.

5 Ensembling with language models

Phrase-based SMT systems benefit naturally from
large monolingual language models, also in the
case of GEC as shown by Junczys-Dowmunt and
Grundkiewicz (2016). Previous work (Xie et al.,
2016; Ji et al., 2017) on neural GEC used n-gram
language models to incorporate monolingual data.
Xie et al. (2016) built a large 5-gram model and
integrated it directly into their beam search algo-
rithm, while Ji et al. (2017) re-use the language
model provided by Junczys-Dowmunt and Grund-
kiewicz (2016) for n-best list re-ranking.

We already combined monolingual data with our
GEC models via pre-training, but exploiting sepa-
rate language models is attractive as no additional
training is required. Here, we reuse the neural lan-
guage model created for pre-training.

Similarly to Xie et al. (2016), the score s(y|x)
for a correction y of sentence x is calculated as

s(y|x) =
1

|y|

[
4∑

i=1

logPi(y|x) + α logPLM(y)

]
,

where Pi(y|x) is a translation probability for the
i-th model in an ensemble of 4. PLM(y) is the
language model probability for y weighted by α.
We normalize by sentence length |y|. Using the
dev set, we choose α that maximizes this score via
linear search in range [0, 2] with step 0.1.

Table 7 summarizes results for language model
ensembling with three of our intermediate config-
urations. All configurations benefit from the lan-
guage model in the ensemble, although gains for
the pre-trained model are rather small.
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6 Deeper NMT models

So far we analyzed model-independent9 methods
— only training data, hyper-parameters, parame-
ter initialization, and the objective function were
modified. In this section we investigate if these
techniques can be generalized to deeper or differ-
ent architectures.

6.1 Architectures

We consider two state-of-the-art NMT architectures
implemented in Marian:

Deep RNN A deep RNN-based model (Miceli
Barone et al., 2017) proposed by Sennrich et al.
(2017a) for their WMT 2017 submissions. This
model is based on the shallow model we used until
now. It has single layer RNNs in the encoder and
decoder, but increases depth by stacking multiple
GRU-style blocks inside one RNN cell. A single
RNN step passes through all blocks before recur-
sion. The encoder RNN contains 4 stacked GRU
blocks, the decoder 8 (1 + 7 due to the conditional
GRU). Following Sennrich et al. (2017a), we en-
able layer-normalization in the RNN-layers. State
and embedding dimensions used throughout this
work and in Sennrich et al. (2017a) are the same.

Transformer The self-attention-based model by
Vaswani et al. (2017). We base our model on their
default architecture of 6 complex attention/self-
attention blocks in the encoder and decoder and
use the same model dimensions — embeddings
vector size is 512 (as before), filter size is 2048.

6.2 Training settings

As the deep models are less reliably trained with
asynchronous SGD, we change the training algo-
rithm to synchronous SGD and for both models
follow the recipe proposed in Vaswani et al. (2017),
with an effective base learning rate of 0.0003, learn-
ing rate warm-up during the first 16,000 iterations,
and an inverse square-root decay after the warm-
up. As before, we average the best 8 checkpoints.
We increase dropout probability over RNN layers
to 0.3 for Deep-RNN and similarly set dropout
between transformer layers to 0.3. Source-word
dropout as a noising technique remains unchanged.

9The pre-training procedure however needs to be adapted
to model architecture if we want to take advantage of every
shared parameter, otherwise matching parameter subsets could
probably be used successfully.

Model Dev Prec. Rec. Test

+Pretrain-Dec. 40.3 65.2 32.2 54.1
+GRU-LM 41.6 62.2 36.6 54.6

+Deep-RNN 41.1 64.3 35.2 55.2
+Deep-RNN-LM 41.9 61.3 40.2 55.5

+Transformer 41.5 63.0 38.9 56.1
+Transformer-LM 42.9 61.9 40.2 55.8

Table 8: Shallow (Pretrain-Dec.) versus deep ensem-
bles, with and without corresponding language models.

6.3 Pre-training deep models

We reuse all methods included up to +Pretrain-Dec.
The pre-training procedure as described in section
4.1 needs to be modified in order to maximize the
number of pre-trained parameters for the larger
model architectures. Again, we train decoder-only
models as typical language models by removing
all elements that depend on the encoder, including
attention-mechanisms over the source context. We
can keep the decoder self-attention layers in the
transformer model. We train for two epochs on our
monolingual data reusing the hyper-parameters for
the parallel case above.

6.4 Results

Table 8 summarizes the results for deeper models
on the CoNLL dev and test set. Both deep models
improve significantly over the shallow model with
the transformer model reaching our best result re-
ported on the CoNLL 2014 test set. For that test set
it seems that ensembling with language models that
were used for pre-training is ineffective when mea-
sured with M2; while on the JFLEG data measured
with GLEU we see strong improvements (Fig. 3b).

7 A standard tool set for neural GEC

We summarize the results for our experiments in
Figure 3 and provide results on the JFLEG test set.
Weights for the independent language model in the
full ensemble were chosen on the respective dev
sets for both tasks. Comparing results according to
both benchmarks and evaluation metrics (M2 for
CoNLL, GLEU for JFLEG), it seems we can isolate
the following set of reliable methods for state-of-
the-art neural grammatical error correction:

• Ensembling neural GEC models with mono-
lingual language models;

• Dropping out entire source embeddings;
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Figure 3: Comparison on the CoNLL-2014 test set and JFLEG test for all investigated methods.

• Weighting edits in the training objective dur-
ing optimization (+Edit-MLE);

• Pre-training on monolingual data;

• Ensembling of independently trained models;

• Domain and error adaptation (+Domain-
Adapt., Error-Adapt.) towards a specific
benchmark;

• Increasing model depth.

Combinations of these generally10 model-
independent methods helped raising the perfor-
mance of pure neural GEC systems by more than
10% M2 on the CoNLL 2014 benchmark, also out-
performing the previous state-of-the-art (Chollam-
patt and Ng, 2017), a hybrid phrase-based system
with a complex spell-checking system by 2%. We
also showed that a pure neural system can easily

10Increasing depth or changing the architecture to the Trans-
former model is clearly not model-independent.

outperform a strong pure phrase-based SMT sys-
tem (Junczys-Dowmunt and Grundkiewicz, 2016)
when similarly adapted to the GEC task.

On the JFLEG benchmark we outperform the
previously-best pure neural system (Sakaguchi
et al., 2017) by 5.9% GLEU (4.5% if no monolin-
gual data is used). Improvements over SMT-based
system like Napoles and Callison-Burch (2017)11

and Chollampatt and Ng (2017) are significant and
constitute the new state-of-the-art on the JFLEG
test set.
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Abstract

Cross-lingual Hypernymy Detection involves
determining if a word in one language (“fruit”)
is a hypernym of a word in another language
(“pomme” i.e. apple in French). The abil-
ity to detect hypernymy cross-lingually can aid
in solving cross-lingual versions of tasks such
as textual entailment and event coreference.
We propose BISPARSE-DEP, a family of un-
supervised approaches for cross-lingual hyper-
nymy detection, which learns sparse, bilingual
word embeddings based on dependency con-
texts. We show that BISPARSE-DEP can sig-
nificantly improve performance on this task,
compared to approaches based only on lexical
context. Our approach is also robust, show-
ing promise for low-resource settings: our
dependency-based embeddings can be learned
using a parser trained on related languages,
with negligible loss in performance. We also
crowd-source a challenging dataset for this
task on four languages – Russian, French,
Arabic, and Chinese. Our embeddings and
datasets are publicly available.1

1 Introduction

Translation helps identify correspondences in
bilingual texts, but other asymmetric semantic re-
lationships can improve language understanding
when translations are not exactly equivalent. One
such relationship is cross-lingual hypernymy –
identifying that écureuil (“squirrel” in French) is
a kind of rodent, or ворона (“crow” in Russian)
is a kind of bird. The ability to detect hypernyms
across languages serves as a building block in a
range of cross-lingual tasks, including Recogniz-
ing Textual Entailment (RTE) (Negri et al., 2012,

∗ These authors contributed equally.
1https://github.com/yogarshi/

bisparse-dep/

2013), constructing multilingual taxonomies (Fu
et al., 2014), event coreference across multilingual
news sources (Vossen et al., 2015), and evaluating
Machine Translation output (Padó et al., 2009).

Building models that can robustly identify hy-
pernymy across the spectrum of human languages
is a challenging problem, that is further com-
pounded in low resource settings. At first glance,
translating words to English and then identify-
ing hypernyms in a monolingual setting may ap-
pear to be a sufficient solution. However, this ap-
proach cannot capture many phenomena. For in-
stance, the English words cook, leader and super-
visor can all be hypernyms of the French word
chef, as the French word does not have a exact
translation in English covering its possible usages.
However, translating chef to cook and then deter-
mining hypernymy monolingually precludes iden-
tifying leader or supervisor as a hypernyms of
chef. Similarly, language-specific usage patterns
can also influence hypernymy decisions. For in-
stance, the French word chroniqueur translates to
chronicler in English, but is more frequently used
in French to refer to journalists (making journalist
its hypernym).2

This motivates approaches that directly detect
hypernymy in the cross-lingual setting by extend-
ing distributional methods for detecting monolin-
gual hypernymy, as in our prior work (Vyas and
Carpuat, 2016). State-of-the-art distributional ap-
proaches (Roller and Erk, 2016; Shwartz et al.,
2017) for detecting monolingual hypernymy re-
quire syntactic analysis (eg. dependency parsing),
which may not available for many languages. Ad-
ditionally, limited training resources make unsu-
pervised methods more desirable than supervised
hypernymy detection approaches (Roller and Erk,

2All examples are from our dataset.
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2016). Furthermore, monolingual distributional
approaches cannot be applied directly to the cross-
lingual task, because the vector spaces of two lan-
guages need to be aligned using a cross-lingual re-
source (a bilingual dictionary, for instance).

We tackle these challenges by proposing
BISPARSE-DEP - a family of robust, unsuper-
vised approaches for identifying cross-lingual hy-
pernymy. BISPARSE-DEP uses a cross-lingual
word embedding model learned from a small bilin-
gual dictionary and a variety of monolingual syn-
tactic context extracted from a dependency parsed
corpus. BISPARSE-DEP exhibits robust behavior
along multiple dimensions. In the absence of a
dependency treebank for a language, it can learn
embeddings using a parser trained on related lan-
guages. When exposed to less monolingual data,
or a lower quality bilingual dictionary, BISPARSE-
DEP degrades only marginally. In all these cases,
it compares favorably with models that have been
supplied with all necessary resources, showing
promise for low-resource settings. We extensively
evaluate BISPARSE-DEP on a new crowd-sourced
cross-lingual dataset, with over 2900 hypernym
pairs, spanning four languages from distinct fami-
lies – French, Russian, Arabic and Chinese – and
release the datasets for future evaluations.

2 Related Work

Cross-lingual Distributional Semantics
Cross-lingual word embeddings have been
shown to encode semantics across languages in
tasks such as word similarity (Faruqui and Dyer,
2014) and lexicon induction (Vulić and Moens,
2015). Our works stands apart in two aspects
(1) In contrast to tasks involving similarity and
synonymy (symmetric relations), the focus of our
work is on detecting asymmetric relations across
languages, using cross-lingual embeddings. (2)
Unlike most previous work, we use dependency
context instead of lexical context to induce cross-
lingual embeddings, which allows us to abstract
away from language specific word order, and (as
we show) improves hypernymy detection.

More closely related is our prior work (Vyas
and Carpuat, 2016) where we used lexical context
based embeddings to detect cross-lingual lexical
entailment. In contrast, the focus of this work is
on hypernymy, a more well-defined relation than
entailment. Also, we improve upon our previ-
ous approach by using dependency based embed-
dings (§6.1), and show that the improvements hold
even when exposed to data scarce settings (§6.3).

The tired traveler roamed the sandy desert, seeking food

det

amod

nsubj
dobj

advcl

amod

det dobj

Figure 2: Example Dependency Tree.

We also do a more comprehensive evaluation on
four languages paired with English, instead of just
French.

Dependency Based Embeddings In monolin-
gual settings, dependency based embeddings have
been shown to outperform window based embed-
dings on many tasks (Bansal et al., 2014; Hill
et al., 2014; Melamud et al., 2016). Roller and Erk
(2016) showed that dependency embeddings can
help in recovering Hearst patterns (Hearst, 1992)
like “animals such as cats”, which are known to
be indicative of hypernymy. Shwartz et al. (2017)
demonstrated that dependency based embeddings
are almost always superior to window based em-
beddings for identifying hypernyms in English.
Our work uses dependency based embeddings in
a cross-lingual setting, a less explored research
direction. A key novelty of our work also lies
in its use of syntactic transfer to derive depen-
dency contexts. This scenario is more relevant in
a cross-lingual setting, where treebanks might not
be available for many languages.

3 Our Approach – BISPARSE-DEP

We propose BISPARSE-DEP, a family of ap-
proaches that uses sparse, bilingual, dependency
based word embeddings to identify cross-lingual
hypernymy.

Figure 1 shows an overview of the end-to-
end pipeline of BISPARSE-DEP. The two key
components of this pipeline are: (1) Dependency
based contexts (§3.1), which help us generalize
across languages with minimal customization by
abstracting away language-specific word order.
We also discuss how to extract such contexts in the
absence of a treebank in the language (§3.2) using
a (weak) dependency parser trained on related lan-
guages. (2) Bilingual sparse coding (§3.3), which
allows us to align dependency based word embed-
dings in a shared semantic space using a small
bilingual dictionary. The resulting sparse bilingual
embeddings can then be used with a unsupervised
entailment scorer (§3.4) to predict hypernymy for
cross-lingual word pairs.

608



SVD 

Xf Af

SVD 

Xe Ae

Bilingual	
Sparse	
Coding	

(Sec. 3.3) 

Bilingual 
Dictionary 

Weak  
Dep. Parser 
(Sec. 3.2) 

FR Corpus 

Dep. Parser 

EN Corpus Parsed 
Corpus 

co-
occurrence  

matrix 

Parsed 
Corpus 

pomme 

fruit 

Unsupervised 
Entailment 

Scorer 
(Sec 3.4) 

0.8 

Dep.-Based 
Context Extraction 

(Sec. 3.1) 

Dep.-Based 
Context Extraction 

co-
occurrence  

matrix 

Figure 1: The BISPARSE-DEP approach, which learns sparse bilingual embeddings using dependency based con-
texts. The resulting sparse embeddings, together with an unsupervised entailment scorer, can detect hypernyms
across languages (e.g., pomme is a fruit).

3.1 Dependency Based Context Extraction
The context of a word can be described in mul-
tiple ways using its syntactic neighborhood in a
dependency graph. For instance, in Figure 2, we
describe the context for a target word (traveler) in
the following two ways:

• FULL context (Padó and Lapata, 2007; Ba-
roni and Lenci, 2010; Levy and Goldberg,
2014): Children and parent words, concate-
nated with the label and direction of the re-
lation (eg. roamed#nsubj−1 and tired#amod
are contexts for traveler).
• JOINT context (Chersoni et al., 2016): Par-

ent concatenated with each of its siblings (eg.
roamed#desert and roamed#seeking are con-
texts for traveler).

These two contexts exploit different amounts of
syntactic information – JOINT does not require la-
beled parses, unlike FULL. The JOINT context
combines parent and sibling information, while
FULL keeps them as distinct contexts. Both en-
code directionality into the context, either through
label direction or through sibling-parent relations.

We use word-context co-occurrences generated
using these contexts in a distributional semantic
model (DSM) in lieu of window based contexts to
generate dependency based embeddings.

3.2 Dependency Contexts without a
Treebank

Using dependency contexts in multilingual set-
tings may not always be possible, as dependency
treebanks are not available for many languages. To
circumvent this issue, we use related languages to
train a weak dependency parser.

We train a delexicalized parser using treebanks
of related languages, where the word form based

features are turned off, so that the parser is trained
on purely non-lexical features (e.g. POS tags).
The rationale behind this is that related languages
show common syntactic structure that can be
transferred to the original language, with delex-
icalized parsing (Zeman and Resnik, 2008; Mc-
Donald et al., 2011, inter alia) being one popular
approach.3

3.3 Bilingual Sparse Coding
Given a dependency based co-occurrence matrix
described in the previous section(s), we generate
BISPARSE-DEP embeddings using the framework
from our prior work (Vyas and Carpuat, 2016),
which we henceforth call BISPARSE. BISPARSE
generates sparse, bilingual word embeddings us-
ing a dictionary learning objective with a spar-
sity inducing l1 penalty. We give a brief overview
of this approach, the full details of which can be
found in our prior work.

For two languages with vocabularies ve and vf ,
and monolingual dependency embeddings Xe and
Xf , BISPARSE solves the following objective:

argmin
Ae,De,Af ,Df

ve∑

i=1

1

2
||AeiDe

T −Xei||22 +λe||Aei||1

+

vf∑

j=1

1

2
||Af jDf

T −Xf j ||22 +λf ||Af j ||1

+
∑

i,j

1

2
λxSij ||Aei −Af j ||22 (1)

s.t. Ak > 0 ‖Dki‖22≤ 1 k ∈ {e, f}

where S is a translation matrix, and Ae and Af

3More sophisticated techniques for transferring syntactic
knowledge have been proposed (Ammar et al., 2016; Rasooli
and Collins, 2017), but we prioritize simplicity and show that
a simple delexicalized parser is effective.
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are sparse matrices which are bilingual represen-
tations in a shared semantic space. The transla-
tion matrix S (of size ve×vf ) captures correspon-
dences between the vocabularies (of size ve and
vf ) of two languages. For instance, each row of S
can be a one-hot vector that identifies the word in f
that is most frequently aligned with the e word for
that row in a large parallel corpus, thus building a
one-to-many mapping between the two languages.

3.4 Unsupervised Entailment Scorer
A variety of scorers can be used to quantify the
directional relationship between two words, given
feature representations of these words (Lin, 1998;
Weeds and Weir, 2003; Lenci and Benotto, 2012).
Once the BISPARSE-DEP embeddings are con-
structed, we use BalAPinc (Kotlerman et al., 2009)
to score word pairs for hypernymy. BalAPinc
is based on the distributional inclusion hypothe-
sis (Geffet and Dagan, 2005) and computes the
geometric mean of 1) LIN (Lin, 1998), a symmet-
ric score that captures similarity, and 2) APinc, an
asymmetric score based on average precision.

4 Crowd-Sourcing Annotations

There is no publicly available dataset to evaluate
models of hypernymy detection across multiple
languages. While ontologies like Open Multi-
lingual WordNet (OMW) (Bond and Foster, 2013)
and BabelNet (Navigli and Ponzetto, 2012) con-
tain cross-lingual links, these resources are semi-
automatically generated and hence contain noisy
edges. Thus, to get reliable and high-quality test
beds, we collect evaluation datasets using Crowd-
Flower4. Our datasets span four languages from
distinct families - French (Fr), Russian (Ru), Ara-
bic (Ar) and Chinese (Zh) - paired with English.

To begin the annotation process, we first pool
candidate pairs using hypernymy edges across
languages from OMW and BabelNet, along
with translations from monolingual hypernymy
datasets (Baroni and Lenci, 2011; Baroni et al.,
2012; Kotlerman et al., 2010).

4.1 Annotation Setup
The annotation task requires annotators to be flu-
ent in both English and the non-English language.
To ensure only fluent speakers perform the task,
for each language, we provide task instructions in
the non-English language itself. Also, we restrict
the task to annotators verified by CrowdFlower to
have those language skills. Finally, annotators also

4http://crowdflower.com

pair #crowdsourced #pos (= #neg)

French-English 2115 763
Russian-English 2264 706
Arabic-English 2144 691
Chinese-English 2165 806

Table 1: Crowd-sourced dataset statistics. #pos (#neg)
denote positives (negatives) in the evaluation set. We
deliberately under-sample negatives to have a balanced
evaluation set.

need to pass a quiz based on a small amount of
gold standard data to gain access to the task.

Annotators choose between three options for
each word pair (pf , qe), where pf is a non-English
word and qe is a English word : “pf is a kind of
qe”, “qe is a part of pf” and “none of the above”.
Word pairs labeled with the first option are con-
sidered as positive examples while those labeled
as “none of the above” are considered as nega-
tive.5 The second option was included to filter out
meronymy examples that were part of the noisy
pool. We leave it to the annotator to infer whether
the relation holds between any senses of pf or qe,
if either of them are polysemous.

For every candidate hypernym pair (pf , qe),
we also ask annotators to judge its reversed and
translated hyponym pair (qf , pe). For instance, if
(citron, food) is a hypernym candidate, we also
show annotators (aliments, lemon) which is a
potential hyponym candidate (potential, because
as mentioned in §1, translation need not preserve
semantic relationships). The purpose of present-
ing the hyponym pair, (qf , pe), is two-fold. First,
it emphasizes the directional nature of the task.
Second, it identifies hyponym pairs, which we use
as negative examples. The hyponym pairs are
challenging since differentiating them from hyper-
nyms truly requires detecting asymmetry.

Each pair was judged by at least 5 annotators,
and judgments with 80% agreement (at least 4 an-
notators agree) are considered for the final dataset.
This is a stricter condition than certain monolin-
gual hypernymy datasets - for instance, EVALu-
tion (Santus et al., 2015) - where agreement by
3 annotators is deemed sufficient. Inter-annotator
agreement measured using Fleiss’ Kappa (Fleiss,
1971) was 58.1 (French), 53.7 (Russian), 53.2
(Arabic) and 55.8 (Chinese). This indicates mod-
erate agreement, on par with agreement obtained
on related fine-grained semantic tasks (Pavlick
et al., 2015). We cannot compare with monolin-

5We collected more negative pairs than positive, but sam-
pled so as to keep a balanced dataset for ease of evaluation.
We will release all annotated pairs along with the dataset.

610



gual hypernymy annotator agreement as, to the
best of our knowledge, such numbers are not avail-
able for existing test sets. Dataset statistics are
shown in Table 1.

We observed that annotators were able to agree
on pairs containing polysemous words where hy-
pernymy holds for some sense. For instance, for
the French-English pair (avocat, professional), the
French word avocat can either mean lawyer or av-
ocado, but the pair was annotated as a positive
example. Hence, we leave it to the annotators to
handle polysemy by choosing the most appropri-
ate sense.

4.2 Two Evaluation Test Sets
To verify if the crowdsourced hyponyms are chal-
lenging negative examples we create two evalua-
tion sets. Both share the (crowdsourced) positive
examples, but differ in their negatives:

• HYPER-HYPO – negative examples are the
crowdsourced hyponyms.
• HYPER-COHYPO – negative examples are

cohyponyms drawn from OMW.

Cohyponyms are words sharing a common hyper-
nym. For instance, bière (“beer” in French) and
vodka are cohyponyms since they share a common
hypernym in alcool/alcohol. We choose cohy-
ponyms for the second test set because: (a) They
require differentiating between similarity (a sym-
metric relation) and hypernymy (an asymmetric
relation). For instance, bière and vodka are highly
similar yet, they do not have a hypernymy relation-
ship. (b) Cohyponyms are a popular choice of neg-
ative examples in many entailment datasets (Ba-
roni and Lenci, 2011).

5 Experimental Setup

5.1 Data and Evaluation Setup
Training BISPARSE-DEP requires a dependency
parsed monolingual corpus, and a translation ma-
trix for jointly aligning the monolingual vectors.
We compute the translation matrix using word
alignments derived from parallel corpora (see cor-
pus statistics in Table ??). While we use paral-
lel corpora to generate the translation matrix to be
comparable to baselines (§5.2), we can obtain the
matrix from any bilingual dictionary.

The monolingual corpora are parsed using
Yara Parser (Rasooli and Tetreault, 2015),
trained on the corresponding treebank from
the Universal Dependency Treebank (McDonald
et al., 2013) (UDT-v1.4). Yara Parser was

chosen as it is fast, and competitive with state-
of-the-art parsers (Choi et al., 2015). The mono-
lingual corpora was POS-tagged using TurboTag-
ger (Martins et al., 2013). We induce dependency
contexts for words by first thresholding the lan-
guage vocabulary to the top 50,000 nouns, verbs
and adjectives. A co-occurrence matrix is com-
puted over this vocabulary using the context types
in §3.1.

Inducing Dependency Contexts The entries of
the word-context co-occurrence matrix are re-
weighted using Positive Pointwise Mutual Infor-
mation (Bullinaria and Levy, 2007). The result-
ing matrix is reduced to 1000 dimensions using
SVD (Golub and Kahan, 1965).6 These vectors
are used as Xe,Xf in the setup from §3.3 to gen-
erate 100 dimensional sparse bilingual vectors.

Evaluation We use accuracy as our evalua-
tion metric, as it is easy to interpret when the
classes are balanced (Turney and Mohammad,
2015). Both evaluation datasets – HYPER-HYPO
and HYPER-COHYPO – are split into 1:2 dev/test
splits. BalAPinc has two tunable parameters - 1) a
threshold that indicates the BalAPinc score above
which all examples are labeled as positive, 2) the
maximum number of features to consider for each
word. We use the tuning set to tune the two pa-
rameters as well as the various hyper-parameters
associated with the models.

5.2 Contrastive Approaches
We compare our BISPARSE-DEP embeddings
with the following approaches:

MONO-DEP (Translation baseline) For word
pair (pf , qe) in test data, we translate pf to English
using the most common translation in the transla-
tion matrix. Hypernymy is then determined using
sparse, dependency based embeddings in English.

BISPARSE-LEX (Window context) Predeces-
sor of the BISPARSE-DEP model from our previ-
ous work (Vyas and Carpuat, 2016). This model
induces sparse, cross-lingual embeddings using
window based context.

BIVEC+ (Window context) Our extension of
the BIVEC model of Luong et al. (2015). BIVEC
generates dense, cross-lingual embeddings using
window based context, by substituting aligned
word pairs within a window in parallel sentences.
By default, BIVEC only trains using parallel data,

6Chosen based on preliminary experiments with
{500,1000,2000,3000} dimensional vectors for En-Fr.
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Language Parallel Data #sent. Monolingual Data #sent.

English – – Wackypedia (Baroni et al., 2009) 43M

Arabic ISI (Munteanu and Marcu, 2007) 1.1M Arabic Gigaword 3.0 (Graff, 2007) 17MNewsCommentary, Wikipedia (Tiedemann, 2012)

Chinese FBIS (LDC2003E14) 9.5M Chinese Gigaword 5.0 (Parker, 2011) 58M

French Europarl (Koehn, 2005) 2.7M Wikipedia♣ 20M
NewsCommentary�, Wikipedia (Tiedemann, 2012)

Russian Yandex-1M♠ 1.6M Wikipedia♣ 22M

� = www.statmt.org/wmt15/training-parallel-nc-v10.tgz,♣ = dumps.wikimedia.org/xxwiki/20161201/
♠ = translate.yandex.ru/corpus

Table 2: Training data statistics for different languages. Note that while we use parallel corpora for computing
translation dictionaries, our approach does not require it, and can work with any bilingual dictionary.

and so we initialize it with monolingually trained
window based embeddings to ensure fair compar-
ison.

CL-DEP (Dependency context) The model
from Vulić (2017), which induces dense, depen-
dency based cross-lingual embeddings by trans-
lating syntactic word-context pairs using the
most common translation, and jointly training a
word2vecf7 model for both languages. Vulić
(2017) showed improvements for word similarity
and bilingual lexicon induction. We report the first
results using CL-DEP on this task.

5.3 Evaluating Robustness of BISPARSE-DEP

We investigate how robust BISPARSE-DEP is
when exposed to data scarce settings. Evaluating
on a truly low resource language is complicated
by the fact that obtaining an evaluation dataset for
such a language is difficult. Therefore, we simu-
late such settings for the languages in our dataset
in multiple ways.

No Treebank If a treebank is not available for a
language, dependency contexts have to be induced
using treebanks from other languages (§3.2),
which can affect the quality of the dependency-
based embeddings. To simulate this, we train
a delexicalized parser for the languages in our
dataset. We use treebanks from Slovenian,
Ukrainian, Serbian, Polish, Bulgarian, Slovak and
Czech (40k sentences) for training the Russian
parser, and treebanks from English, Spanish, Ger-
man, Portuguese, Swedish and Italian (66k sen-
tences) for training the French parser. UDT does
not (yet) have languages in the same family as
Arabic or Chinese, so for the sake of complete-
ness, we train Arabic and Chinese parsers on
delexicalized treebanks of the language itself. Af-

7bitbucket.org/yoavgo/word2vecf/

ter delexicalized training, the Labeled Attachment
Score (LAS) on the UDT test set dropped by sev-
eral points for all languages – from 76.6% to
60.0% for Russian, 83.7% to 71.1% for French,
from 76.3% to 62.4% for Arabic and from 80.3%
to 53.3% for Chinese. The monolingual corpora
are then parsed with these weaker parsers, and co-
ocurrences and dependency contexts are computed
as before.

Subsampling Monolingual Data To simulate
low-resource behavior along another axis, we
subsample the monolingual corpora used by
BISPARSE-DEP to induce monolingual vectors,
Xe,Xf . Specifically, we learn Xe and Xf using
progressively smaller corpora.

Quality of Bilingual Dictionary We study the
impact of the quality of the bilingual dictionary
used to create the translation matrix S. This exper-
iment involves using increasingly smaller parallel
corpora to induce the translation dictionary.

6 Experiments

We aim to answer the following questions – (a)
Are dependency based embeddings superior to
window based embeddings for identifying cross-
lingual hypernymy? (§6.1) (b) Does directionality
in the dependency context help cross-lingual hy-
pernymy identification? (§6.2) (c) Are our models
robust in data scarce settings (§6.3)? (d) Is the an-
swer to (a) predicated on the choice of entailment
scorer? (§6.4)?

6.1 Dependency v/s Window Contexts

We compare the performance of models de-
scribed in §5.2 with the BISPARSE-DEP (FULL
and JOINT) models. We evaluate the models on
the two test splits described in §4.2 – HYPER-
HYPO and HYPER-COHYPO.
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Model ↓ En With → Ru Zh Ar Fr Avg.

Translation Baseline

MONO-DEP 50.1 52.3 51.8 54.5 52.2

Win. Based

BISPARSE-LEX 56.6 53.7 50.9 52.0 53.3
BIVEC+ 55.8 52.0 51.5 53.4 53.2

Dep. Based

CL-DEP 60.2 54.4 56.7* 53.8 56.3
BISPARSE-DEP (Full) 59.0 55.9 52.6 56.6 56.0
BISPARSE-DEP (Joint) 53.8 57.0* 52.4 59.9* 55.8

BISPARSE-DEP (Unlab) 55.9 51.2 53.3 55.9 54.1

(a) Performance on HYPER-HYPO.

Model ↓ En With → Ru Zh Ar Fr Avg.

Translation Baseline

MONO-DEP 58.7 50.0 65.1 56.9 57.7

Win. Based

BISPARSE-LEX 63.8 55.8 65.8 63.2 62.2
BIVEC+ 55.9 64.9 62.2 54.1 58.3

Dep. Based

CL-DEP 56.2 62.7 63.1 61.0 60.0
BISPARSE-DEP (Full) 63.6 67.3 66.8* 66.7* 66.1
BISPARSE-DEP (Joint) 60.6 63.6 65.9 64.9 63.8

BISPARSE-DEP (Unlab) 58.6 66.7 62.4 61.5 62.4

(b) Performance on HYPER-COHYPO.

Table 3: Comparing the different approaches from §5.2 with our BISPARSE-DEP approach on HYPER-HYPO
and HYPER-COHYPO (random baseline= 0.5). Bold denotes the best score for each language, and the * on the
best score indicates a statistically significant (p < 0.05) improvement over the next best score, using McNemar’s
test (McNemar, 1947). Across both datasets, BISPARSE-DEP models outperform window based models and the
translation baseline on an average.

Hyper-Hypo Results Table 3a shows the re-
sults on HYPER-HYPO. First, the benefit of cross-
lingual modeling (as opposed to translation) is ev-
ident in that almost all models (except CL-DEP
on French) outperform the translation baseline.
Among dependency based models, BISPARSE-
DEP (FULL) and CL-DEP consistently outper-
form both window models, while BISPARSE-DEP
(JOINT) outperforms them on all except Russian.
BISPARSE-DEP (JOINT) is the best model overall
for two languages (French and Chinese), CL-DEP
for one (Arabic), with no statistically significant
differences between BISPARSE-DEP (JOINT) and
CL-DEP for Russian. This confirms that depen-
dency context is more useful than window context
for cross-lingual hypernymy detection.

Hyper-Cohypo Results The trends observed on
HYPER-HYPO also hold on HYPER-COHYPO i.e.
dependency based models continue to outperform
window based models (Table 3b).

Overall, BISPARSE-DEP (FULL) performs best
in this setting, followed closely by BISPARSE-
DEP (JOINT). This suggests that the sibling infor-
mation encoded in JOINT is useful to distinguish
hypernyms from hyponyms (HYPER-HYPO re-
sults), while the dependency labels encoded in
FULL help to distinguish hypernyms from co-
hyponyms. Also note that all models improve sig-
nificantly on the HYPER-COHYPO set, suggesting
that discriminating hypernyms from cohyponyms
is easier than discriminating them from hyponyms.

While the BISPARSE-DEP models were gen-
erally performing better than window models on
both test sets, CL-DEP was not as consistent (e.g.,

it was worse than the best window model on
HYPER-COHYPO). As shown by Turney and Mo-
hammad (2015), BalAPinc is designed for sparse
embeddings and is likely to perform poorly with
dense embeddings. This explains the relatively in-
consistent performance of CL-DEP.

Besides establishing the challenging nature
of our crowd-sourced set, the experiments on
HYPER-COHYPO and HYPER-HYPO also demon-
strate the ability of the BISPARSE-DEP models to
discriminate between different lexical semantic re-
lations (viz. hypernymy and cohyponymy) in a
cross-lingual setting. We will investigate this abil-
ity more carefully in future work.

6.2 Ablating Directionality in Context
The context described by the FULL and JOINT
BISPARSE models encodes directional informa-
tion (§3.1) either in the form of label direction
(FULL), or using sibling information (JOINT).
Does such directionality in the context help to cap-
ture the asymmetric relationship inherent to hy-
pernymy? To answer this, we evaluate a third
BISPARSE-DEP model which uses UNLABELED
dependency contexts. This is similar to the FULL
context, except we do not concatenate the label of
the relation to the context word (parent or chil-
dren). For instance, for traveler in Fig. 2, contexts
will be roamed and tired.

Experiments on both HYPER-HYPO and
HYPER-COHYPO (bottom row, Tables 3a and
3b) highlight that directional information is indeed
essential - UNLABELED almost always performs
worse than FULL and JOINT, and in many cases
worse than even window based models.
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Model ↓ En With → Ru Zh Ar Fr Avg.

Hyper-Hypo

Best Win. 56.6 53.7 51.5 53.4 53.8
Delex. 59.1* 55.1* 54.6* 56.1* 56.2
Best Dep. 60.2 57.0* 56.7* 59.9* 58.5

Hyper-Cohypo

Best Win. 63.8 64.9 65.8 63.2 64.4
Delex. 59.4 65.7* 67.5* 66.3* 64.7
Best Dep. 63.6* 67.3* 66.8* 66.7 66.1

Table 4: Robustness in absence of a treebank: The
delexicalized model is competitive to the best depen-
dency based and the best window based models on both
test sets. For each dataset, * indicates a statistically
significant (p < 0.05) improvement over the next best
model in that column, using McNemar’s test (McNe-
mar, 1947).

6.3 Evaluating Robustness of BISPARSE-DEP

No Treebank We run experiments (Table 4) for
all languages with a version of BISPARSE-DEP
that use the FULL context type for both English
and the non-English (target) language, but the tar-
get language contexts are derived from a corpus
parsed using a delexicalized parser (§5.3).

This model compares favorably on all language
pairs against the best window based and the best
dependency based model. In fact, it almost consis-
tently outperforms the best window based model
by several points, and is only slightly worse than
the best dependency-based model.

Further analysis revealed that the good per-
formance of the delexicalized model is due to
the relative robustness of the delexicalized parser
on frequent contexts in the co-occurrence matrix.
Specifically, we found that in French and Rus-
sian, the most frequent contexts were derived from
amod, nmod, nsubj and dobj edges.8 For in-
stance, the nmod edge appears in 44% of Rus-
sian contexts and 33% of the French contexts. The
delexicalized parser predicts both the label and di-
rection of the nmod edge correctly with an F1 of
68.6 for Russian and 69.6 for French. In contrast, a
fully-trained parser achieves a F1 of 76.7 for Rus-
sian and 76.8 for French for the same edge.

Small Monolingual Corpus In Figure 4, we use
increasingly smaller monolingual corpora (10%,
20%, 40%, 60% and 80%) sampled at random
to induce the monolingual vectors for BISPARSE-
DEP (FULL) model. Trends (Figure 4) indicate
that BISSPARSE-DEP models that use only 40%
of the original data remain competitive with the
BISSPARSE-LEX model that has access to the full

8Together they make up at least 70% of the contexts.
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Figure 3: Robustness to Small Corpus For most lan-
guages, BISPARSE-DEP outperforms the correspond-
ing best window based model for each language on
HYPER-HYPO, with about 40% of the monolingual
corpora.
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Figure 4: Robustness to Noisy Dictionary For most
languages, BISPARSE-DEP outperforms the corre-
sponding best window based model on HYPER-HYPO,
with increasingly lower quality dictionaries.

data. Robust performance with smaller monolin-
gual corpora is helpful since large-enough mono-
lingual corpora are not always easily available.

Quality of Bilingual Dictionary Bilingual dic-
tionaries derived from smaller amounts of parallel
data are likely to be of lower quality than those de-
rived from larger corpora. Hence, to analyze the
impact of dictionary quality on BISPARSE-DEP
(FULL), we use increasingly smaller parallel cor-
pora to induce bilingual dictionaries used as the
score matrix S (§3.3). We use the top 10%, 20%,
40%, 60% and 80% sentences from the parallel
corpora. The trends in Figure 4 show that even
with a lower quality dictionary, BISPARSE-DEP
performs better than BISPARSE-LEX.

6.4 Choice of Entailment Scorer

We change the entailment scorer from BalAPinc to
SLQS (Santus et al., 2014) and redo experiments
from §6.1 to see if the conclusions drawn depend
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on the choice of the entailment scorer. SLQS
is based on the distributional informativeness hy-
pothesis, which states that hypernyms are less “in-
formative” than hyponyms, because they occur in
more general contexts. The informativeness Eu of
a word u is defined to be the median entropy of
its top N dimensions, Eu = medianNk=1H(ck),
where H(ci) denotes the entropy of dimension ci.
The SLQS score for a pair (u, v) is the relative dif-
ference in entropies,

SLQS(u→ v) = 1− Eu
Ev

Recent work (Shwartz et al., 2017) has found
SLQS to be more successful than other metrics in
monolingual hypernymy detection.

The trends observed in these experiments are
consistent with those in §6.1 – both BISPARSE-
DEP models still outperform window-based mod-
els. Also, the delexicalized version of BISPARSE-
DEP outperforms the window-based models,
showing that the robust behavior demonstrated in
§6.3 is also invariant across metrics.

We also found that using BalAPinc led to bet-
ter results than SLQS . For both BISPARSE-DEP
models, BalAPinc wins across the board for two
languages (Russian and Chinese), and wins half
the time for the other two languages compared to
SLQS . We leave detailed comparison of these and
other scores to future work.

7 Conclusion

We introduced BISPARSE-DEP, a new distribu-
tional approach for identifying cross-lingual hy-
pernymy, based on cross-lingual embeddings de-
rived from dependency contexts. We showed that
using BISPARSE-DEP is superior for the cross-
lingual hypernymy detection task, when compared
to standard window based models and a transla-
tion baseline. Further analysis also showed that
BISPARSE-DEP is robust to various low-resource
settings. In principle, BISPARSE-DEP can be used
for any language that has a bilingual dictionary
with English and a “related” language with a tree-
bank. We also introduced crowd-sourced cross-
lingual hypernymy datasets for four languages for
future evaluations.

Our approach has the potential to complement
existing work on creating cross-lingual ontolo-
gies such as BabelNet and the Open Multilingual
Wordnet, which are noisy because they are com-
piled semi-automatically, and have limited lan-
guage coverage. In general, distributional ap-
proaches can help refine ontology construction for

any language where sufficient resources are avail-
able.

It remains to be seen how our approach per-
forms for other language pairs beyond simluated
low-resource settings. We anticipate that replac-
ing our delexicalized parser with more sophis-
ticated transfer strategies (Rasooli and Collins,
2017; Aufrant et al., 2016) might be beneficial
in such settings.While our delexicalized parsing
based approach exhibits robustness, it can bene-
fit from more sophisticated approaches for transfer
parsing (Rasooli and Collins, 2017; Aufrant et al.,
2016) to improve parser performance. We aim to
explore these and other directions in the future.
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Abstract

Translation-based methods for grammar cor-
rection that directly map noisy, ungrammat-
ical text to their clean counterparts are able
to correct a broad range of errors; how-
ever, such techniques are bottlenecked by the
need for a large parallel corpus of noisy and
clean sentence pairs. In this paper, we con-
sider synthesizing parallel data by noising a
clean monolingual corpus. While most pre-
vious approaches introduce perturbations us-
ing features computed from local context win-
dows, we instead develop error generation
processes using a neural sequence transduc-
tion model trained to translate clean exam-
ples to their noisy counterparts. Given a
corpus of clean examples, we propose beam
search noising procedures to synthesize ad-
ditional noisy examples that human evalua-
tors were nearly unable to discriminate from
nonsynthesized examples. Surprisingly, when
trained on additional data synthesized us-
ing our best-performing noising scheme, our
model approaches the same performance as
when trained on additional nonsynthesized
data.

1 Introduction

Correcting noisy, ungrammatical text remains a
challenging task in natural language processing.
Ideally, given some piece of writing, an error cor-
rection system would be able to fix minor typo-
graphical errors, as well as grammatical errors that
involve longer dependencies such as nonidiomatic
phrasing or errors in subject-verb agreement. Ex-
isting methods, however, are often only able to
correct highly local errors, such as spelling errors
or errors involving articles or prepositions.

Classifier-based approaches to error correction
are limited in their ability to capture a broad
range of error types (Ng et al., 2014). Machine
translation-based approaches—that instead trans-

Noise
(Decode)

Denoise

"New Orleans"
"NLP"

"new Orleens"
"nlp"

2. Synthesize data

"new Orleens"
"nlp"

"New Orleans"
"NLP"

3. Train/decode denoising model

1. Train noising model

Noise
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"Louisiana"
"conference"

"louiseana"
"conferance"

Figure 1: Overview of method. We first train a noise
model on a seed corpus, then apply noise during de-
coding to synthesize data that is in turn used to train
the denoising model.

late noisy, ungrammatical sentences to clean, cor-
rected sentences—can flexibly handle a large vari-
ety of errors; however, such approaches are bottle-
necked by the need for a large dataset of source-
target sentence pairs.

To address this data sparsity problem, we pro-
pose methods for synthesizing noisy sentences
from clean sentences, thus generating an addi-
tional artificial dataset of noisy and clean sentence
pairs. A simple approach to noise clean text is to
noise individual tokens or bigrams, for example by
replacing each token with a random draw from the
unigram distribution. This type of approach, how-
ever, tends to generate highly unrealistic noise and
fails to capture phrase-level phenomena. Other
rule-based approaches fail to capture a diverse set
of error types.

We consider a method inspired by the back-
translation procedure for machine transla-
tion (Sennrich et al., 2015). Our method combines
a neural sequence transduction trained on a seed
corpus of clean→noisy pairs with beam search
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noising procedures to produce more diversity in
the decoded outputs. This technique addresses
two issues with existing synthesis techniques for
grammar correction:

1. By using a neural model trained end-to-end
on a large corpus of noisy and clean sen-
tences, the model is able to generate rich, di-
verse errors that better capture the noise dis-
tribution of real data.

2. By encouraging diversity through applying
noise to hypotheses during decoding, we
avoid what we refer to as the one-to-many
problem, where decoding from a model
trained on clean→noisy examples results in
overly clean output, since clean subphrases
still form the majority of noisy examples.

We perform experiments using several noising
methods to validate these two claims, yielding
gains on two benchmarks. Our main empirical re-
sult is that, starting with only clean news data and
models trained on a parallel corpus of roughly 1.3
million sentences, we can train models with addi-
tional synthesized data that nearly match the per-
formance of models trained on 3 million nonsyn-
thesized examples.

2 Related work

Noising While for images, there are natural nois-
ing primitives such as rotations, small translational
shifts, and additive Gaussian noise, similar primi-
tives are not as well developed for text data. Sim-
ilarly, while denoising autoencoders for images
have been shown to help with representation learn-
ing (Vincent et al., 2010), similar methods for
learning representations are not well developed for
text. Some recent work has proposed noising—
in the form of dropping or replacing individual
tokens—as a regularizer when training sequence
models, where it has been demonstrated to have a
smoothing effect on the softmax output distribu-
tion (Bowman et al., 2015; Xie et al., 2017; Dai
and Le, 2015; Kumar et al., 2015).
Grammar correction Recent work by Chollam-
patt and Ng (2018) has achieved impressive per-
formance on the benchmarks we consider using
convolutional encoder-decoder models. Previous
work using data synthesis for grammatical error
correction (GEC) has introduced errors by exam-
ining the distribution of error types, then apply-
ing errors according to those distributions together

with lexical or part-of-speech features based on a
small context window (Brockett et al., 2006; Fe-
lice, 2016). While these methods can introduce
many possible edits, they are not as flexible as
our approach inspired by the backtranslation pro-
cedure for machine translation (Sennrich et al.,
2015). This is important as neural language mod-
els not explicitly trained to track long-range lin-
guistic dependencies can fail to capture even sim-
ple noun-verb errors (Linzen et al., 2016). Re-
cently, in the work perhaps most similar to ours,
Rei et al. (2017) propose using statistical machine
translation and backtranslation along with syntac-
tic patterns for generating errors, albeit for the er-
ror detection task.
Neural machine translation Recent end-to-
end neural network-based approaches to machine
translation have demonstrated strong empirical re-
sults (Sutskever et al., 2014; Cho et al., 2014).
Building off of these strong results on machine
translation, we use neural encoder-decoder models
with attention (Bahdanau et al., 2014) for both our
data synthesis (noising) and grammar correction
(denoising) models. Although many recent works
on NMT have focused on improving the neural
network architecture, the model architecture is or-
thogonal to the contributions in this work, where
we instead focus on data synthesis. In parallel
to our work, work on machine translation without
parallel corpora has also explored applying noise
to avoid copying when pretraining autoencoders
by swapping adjacent words (Lample et al., 2017;
Artetxe et al., 2017).
Diverse decoding Key to the data generation pro-
cedure we describe is adding noise to the scores
of hypotheses during beam search–otherwise, de-
coded outputs tend to contain too few errors. This
is inspired by work in dialogue, in which neural
network models tend to produce common, overly
generic responses such as “I don’t know” (Sordoni
et al., 2015; Serban et al., 2015). To mitigate this
issue, Li et al. (2015) and others have proposed
methods to increase the diversity of neural net-
work outputs. We adopt a similar approach to Li
et al. (2015) to generate noisier hypotheses during
decoding.

3 Method

We first briefly describe the neural model we use,
then detail the noising schemes we apply when
synthesizing examples.
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Figure 2: Model architecture used for both noising and
denoising networks.

3.1 Model
In order to generate noisy examples as well as
to translate ungrammatical examples to their cor-
rected counterparts, we need to choose a sequence
transduction model. Based off their strong empir-
ical performance, we use a neural network-based
model for this work.

Our method uses two neural encoder-decoder
models:

1. The first is the noising model, which, given
a clean sentence, is used to generate a
noised version of that sentence. This model
is trained on a seed corpus of parallel
clean→noisy sentences.

2. The second is the denoising model, which,
given a noisy, ungrammatical sentence, gen-
erates the clean, corrected sentence.

For both models, we use the same convolutional
encoder-decoder to model

p(Y |X) =
TY∏

t=1

p(yt|X, y1:t−1; θ)

where X = (x1, x2, . . . , xTX ) is the source se-
quence and Y = (y1, y2, . . . , yTY ) the corre-
sponding target sequence, and we minimize the
training loss

`(θ) = − log
TY∑

t=1

p(yt|X, y1:t−1; θ)

thus maximizing log-likelihood. The model ar-
chitecture we use is similar to that described by

Kalchbrenner et al. (2016) and Gehring et al.
(2017). Gated convolutions are applied with
masking—to avoid peeking at future inputs when
training using teacher forcing—such that they
form an autoregressive network similar to a recur-
rent neural network with gated hidden units. This
architecture was selected so that training steps
could be parallelized across the time dimension
through the use of convolutions. However, we em-
phasize that the architecture is not a focus of this
paper, and we would expect that RNN architec-
tures with LSTM cells would achieve similar re-
sults. For simplicity and to avoid handling out-
of-vocabulary words, we use character-level tok-
enization. Figure 2 illustrates the model architec-
ture.

3.2 Noising

The amount of parallel data is often the limiting
factor in the performance of neural network sys-
tems. In order to obtain more parallel examples
for the grammar correction task, we take clean text
Y and apply noise, yielding noisy text Ỹ , then
train a denoising model to map from Ỹ back to Y .
The noising process used to generate Ỹ greatly af-
fects final performance. First, we consider noising
methods which we use as our baselines, as well as
the drawbacks for each method.

• appending clean examples: We first con-
sider simply appending clean examples with
no noise applied to both the source and the
target. The aim is for the decoder to learn a
better language model when trained on addi-
tional clean text, similar to the motivation de-
scribed in Dai and Le (2015). However, for
the models we consider, the attention mecha-
nism allows copying of source to target. Thus
the addition of examples where source and
target are identical data may also cause the
model to become too conservative with edits
and thus reduce the recall of the system.

• token noising: Here we simply consider a
context window of at most two characters
or words and allow word/character deletions
and transpositions.

First, for every character in each word we
sample deletions, followed by transpositions.
Then we sample deletions and transpositions
for every word in the sentence. Deletion and
transposition probabilities were selected such
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Figure 3: Illustration of random noising with beam width 2. Darker shading indicates less probable expansions.
In this example, greedy decoding would yield “How are you”. Applying noise penalties, however, results in the
hypotheses “How is you/he”. Note that applying a penalty does not always result in an expansion falling off the
beam.

that overall character and word-level edit dis-
tances roughly matched the edit distances be-
tween clean and noisy examples in our par-
allel seed corpus. While this method is fast
to apply, it tends to produce highly unrealis-
tic errors leading to a mismatch between the
synthesized and real parallel data.

• reverse noising: For reverse noising, we sim-
ply train a reverse model from Y → X us-
ing our parallel noisy-clean corpus and run
standard beam search to generate noisy tar-
gets Ỹ from clean inputs Y . However, we
find vanilla reverse noising tends to be too
conservative. This is due to the one-to-many
problem where a clean sentence has many
possible noisy outputs which mostly consist
of clean phrases. The output then contains
far fewer errors on average than the original
noisy text.

To address the drawback of the reverse noising
scheme, we draw inspiration from ideas for in-
creasing diversity of outputs in dialogue (Li et al.,
2016). During the beam search procedure, we add
noise to the scores of hypotheses on the beam to
encourage decoding to stray from the greedy out-
put. Recall that during beam search, we iteratively
grow a set of hypotheses H = {h1, h2, . . .}, only
keeping the top hypotheses after each step of de-
coding according to some scoring function s(h).
Extending the reverse noising scheme, the beam
search noising schemes we consider are:

• rank penalty noising We directly apply the

method of Li et al. (2016). At every step
of the search procedure, siblings from the
same parent are penalized by adding kβrank
to their scores, where k is their rank (in de-
scending log-likelihood) amongst their sib-
lings and βrank is a penalty hyperparameter
corresponding to some log-probability.

• top penalty noising Only the top (most-
probable) hypothesis htop of the beam is pe-
nalized by adding βtop to its score s(htop).

• random noising Every hypothesis is penal-
ized by adding rβrandom to its score, where
r is drawn uniformly from the interval [0, 1].
For sufficiently large βrandom, this leads to a
random shuffling of the ranks of the hypothe-
ses according to their scores.

An illustration of the random noising algo-
rithm is shown in Figure 3. Note that although
rank penalty noising should encourage hypotheses
whose parents have similar scores to remain on the
beam, it can also tend to leave the hypothesis from
greedy decoding on the beam in the case where
softmax output distributions are highly peaked.
This is much more of an issue for tasks that in-
volve significant copying of source to target, such
as grammar correction. Note also that the random
noising can yield more diverse outputs than top
penalty noising, depending on the probability with
which each is applied. All of the beam search nois-
ing methods described are intended to increase the
diversity and the amount of noise in the synthe-
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Corpus Sent. Pairs

CoNLL 2014 60K
Lang-8 1.3M
Lang-8 expanded 3.3M
synthesized (NYT 2007) 1.0M
base (CoNLL + L8) 1.3M
expanded (CoNLL + L8 expanded) 3.3M

Table 1: Summary of training corpora.

sized outputs Ỹ . By performing beam search nois-
ing, we can produce errors such as those shown in
Table 4.

3.3 Denoising
Once noised data has been generated, denoising
simply involves using a neural sequence transduc-
tion model to backtranslate the noised text to the
original clean text. For denoising, during decod-
ing we apply length normalization as well as a
coverage penalty to the scoring function s(h) (Wu
et al., 2016). The final scoring function also incor-
porates a 5-gram language model trained on a sub-
set of Common Crawl, estimated with Kneser-Ney
smoothing using KenLM (Heafield, 2011). We in-
corporate the language model during final rerank-
ing by modifying the score for a completed hy-
pothesis s(h) to be

sLM(h) = s(h) + λ log pLM(h)

where λ is a hyperparameter and pLM(h) is given
by the language model.

4 Experiments

To determine the effectiveness of the described
noising schemes, we synthesize additional data us-
ing each and evaluate the performance of models
trainined using the additional data on two bench-
marks.
Datasets For training our sequence transduction
models, we combine the publicly available En-
glish Lang-8 dataset, a parallel corpus collected
from a language learner forum, with training data
from the CoNLL 2014 challenge (Mizumoto et al.,
2011; Ng et al., 2014). We refer to this as the
“base” dataset. Junczys-Dowmunt and Grund-
kiewicz (2016) additionally scraped 3.3M pairs of
sentences from Lang-8. Although this expanded
dataset, which we call the “expanded” dataset, is
not typically used when comparing performance

on grammar correction benchmarks, we use it in-
stead to compare performance when training on
additional synthesized data versus nonsynthesized
data. For clean text to be noised, we use the LDC
New York Times corpus for 2007, which yields
roughly 1 million sentences. A summary of the
data used for training is given in Table 1.

We use the CoNLL 2013 evaluation set as our
development set in all cases (Ng et al., 2013). Our
test sets are the CoNLL 2014 evaluation set and
the JFLEG test set (Ng et al., 2014; Napoles et al.,
2017). Because CoNLL 2013 only has a single
set of gold annotations while CoNLL 2014 has
two, performance metrics tend to be significantly
higher on CoNLL 2014. We report precision, re-
call, and F0.5 score, which is standard for the task,
as precision is valued over recall. On JFLEG, we
report results with the GLEU metric (similar to
BLEU) developed for the dataset.
Training and decoding details All models are
trained using stochastic gradient descent with an-
nealing based on validation perplexity on a small
held-out subset of the Lang-8 corpus. We apply
both dropout and weight decay regularization. We
observed that performance tended to saturate after
30 epochs. Decoding is done with a beam size of
8; in early experiments, we did not observe sig-
nificant gains with larger beam sizes (Koehn and
Knowles, 2017).

4.1 CoNLL

Results for the CoNLL 2013 (dev) and 2014 (test)
datasets but with and without language model
reranking are given in Table 2. In general, adding
noised data helps, while simply adding clean data
leads the model to be too conservative. Overall,
we find that the random noising scheme yields the
most significant gain of 4.5 F -score. Surprisingly,
we find that augmenting the base dataset with
synthesized data generated with random noising
yields nearly the same performance when com-
pared to using only nonsynthesized examples. To
determine whether this might be due to overfitting,
we reduced the dropout rate when training on the
“expanded” dataset, but did not observe better re-
sults.

The random noising scheme achieves the
best performance, while the top noising scheme
matches the best performance on the development
set but not the test set. We believe this is due to a
mismatch between the CoNLL 2013 dev and 2014
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Method Dev (no LM) Dev Test

P R F0.5 P R F0.5 P R F0.5

none 50.7 10.5 28.7 48.4 17.2 35.5 52.7 27.5 44.5
clean 56.1 9.4 28.1 47.5 16.9 34.8 52.3 27.5 44.3
token 49.7 11.9 30.4 47.7 18.7 36.4 51.4 30.3 45.1

reverse 53.1 13.0 32.8 50.5 19.1 38.0 54.7 29.6 46.8
rank 51.3 12.3 31.4 51.0 18.3 37.6 54.3 29.3 46.4
top 49.1 17.4 36.0 47.7 23.9 39.8 50.9 34.7 46.6

random 50.0 17.9 36.8 48.9 23.0 39.9 54.2 35.4 49.0

expanded 64.4 11.2 33.0 54.9 20.0 40.7 57.2 32.0 49.4

Yuan and Briscoe (2016) — — — — — — — — 39.9
Ji et al. (2017) — — 28.6 — — 33.5 — — 45.2

Junczys-Dowmunt et al. (2016) — — — — — — 61.3 28.0 49.5
Chollampatt and Ng (2018) — — — — — — 65.5 33.1 54.8

Table 2: Results on CoNLL 2013 (Dev) and CoNLL 2014 (Test) sets. All results use the “base” parallel corpus of
1.3M sentence pairs along with additional synthesized data (totaling 2.3M sentence pairs) except for “expanded”,
which uses 3.3M nonsynthesized sentence pairs (and no synthesized data).

tets sets. Since the 2013 dev set has only a single
annotator, methods are encouraged to target higher
recall, such that the top noising scheme was opti-
mized for precision over recall. To check this, we
ran decoding on CoNLL 2014 using the best dev
settings with no language model, and found that
the top noising scheme yielded an F0.5-score of
45.2, behind only random (47.1) and ahead of to-
ken (42.0) and reverse (43.9) noising. Overall, we
find the data synthesis method we describe to yield
large gains in recall.

For completeness, we also compare to other
state-of-the-art systems, such as the phrase-based
machine translation system by Junczys-Dowmunt
and Grundkiewicz (2016), who performed param-
eter tuning with sparse and dense features by
cross-validation on the CoNLL 2014 training set.
Chollampatt and Ng (2018) achieve even higher
state-of-the-art results using the neural machine
translation model of Gehring et al. (2017) along
with improvements to the reranking procedure.

4.2 JFLEG

Recently, Napoles et al. (2017) introduced the JF-
LEG dataset, intended to evaluate the fluency of
grammar correction systems rather than simply the
precision and recall of edits. The evaluation metric
proposed is GLEU, a variant of BLEU score. Most
results for this task were reported with hyperpa-
rameter settings from the CoNLL task; hence we

report results with the best settings on our CoNLL
2013 dev set. Results are shown in Table 31. To-
ken noising performs surprisingly well; we sus-
pect this is because a significant portion of er-
rors in the JFLEG dataset are spelling errors, as
demonstrated from strong gains in performance by
using a spelling checker reported by Chollampatt
and Ng (2018).

5 Discussion

Our experiments illustrate that synthesized paral-
lel data can yield large gains on the grammar cor-
rection task. However, what factors make for an
effective data synthesis technique? We consider
the properties of the noising scheme and the cor-
responding data that lead to better performance.

5.1 Realism and Human Evaluation

First, we manually compare each of the different
noising methods to evaluate how “realistic” the
errors introduced are. This is reminiscent of the
generative adversarial network setting (Goodfel-
low et al., 2014), where the generator seeks to pro-
duce samples that fool the discriminator. Here the
discriminator is a human evaluator who, given the
clean sentence Y , tries to determine which of two
sentences X and Ỹ is the true noisy sentence, and
which is the synthesized sentence. To be clear,

1Comparisons taken from https://github.com/
keisks/jfleg

624



Scheme P R F0.5 GLEU

none 68.9 44.2 62.0 53.9
clean 69.2 42.8 61.6 54.1
token 69.2 47.6 63.5 55.9
reverse 69.1 42.1 61.3 53.8
rank 68.3 43.3 61.2 54.4
top 67.3 48.2 62.4 55.5
random 69.1 48.5 63.7 56.6

expanded 72.7 45.9 65.1 56.2

Sakaguchi et al. (2017)† 54.0
Ji et al. (2017) 53.4
Yuan and Briscoe (2016) 52.1
Junczys-Dowmunt et al. (2016) 51.5
Chollampatt and Ng (2018) 57.5

Table 3: Results on the JFLEG test set (we use best
hyperparameter settings from CoNLL dev set). GLEU
is a variant of BLEU developed for this task; higher is
better (Napoles et al., 2017). †Tuned to JFLEG dev set.

we do not train with a discriminator—the beam
search noising procedures we proposed alone are
intended to yield convincing errors.

For each noising scheme, we took 100 (X,Y )
pairs from the development set (500 randomly
chosen pairs combined), then generated Ỹ from
Y . We then shuffled the examples and the order of
X and Ỹ such that the identity ofX and Ỹ as well
as the noising scheme used to generate Ỹ were
unknown2. Given Y , the task for human evalu-
ators is to predict whether X or Ỹ was the syn-
thesized example. For every example, we had two
separate evaluators label the sentence they thought
was synthesized. We chose to do this labeling task
ourselves (blind to system) since we were famil-
iar with the noising schemes used to generate ex-
amples, which should reduce the number of mis-
classifications. Results are shown in Figure 4, and
examples of the evaluation task are provided in Ta-
ble 4.

5.2 Noise Frequency and Diversity
Comparing the performance using different nois-
ing methods on the CoNLL 2014 dataset to the hu-
man evaluation in the previous section, we see that
generating errors which match the real distribu-
tion tends to result in higher performance, as seen
by the poor performance of token noising relative

2Hence the human labelers cannot favor a particular
scheme unless it can be distinguished from Ỹ .
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Figure 4: Percentage of time human evaluators mis-
classified synthesized noisy sentence Ỹ (vs. X) when
using each noising scheme, along with 95% confidence
intervals. The best we can expect any scheme to do is
50%.
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Figure 5: Mean edit distance between sentence pairs
in X and Y after augmentation with noised sentences.
none contains no synthesized examples while clean
refers to the baseline of simply appending clean exam-
ples (source = target).

to the other methods. Injecting the appropriate
amount of noise is important as well, as seen by
improved performance when using beam search
noising to increase diversity of outputs, and no
performance gain when simply adding clean text.

We observe that token noising, despite match-
ing the frequency of errors, fails to generate re-
alistic errors (Figure 4). On the other hand, re-
verse noising yields significantly more convincing
errors, but the edit distance between synthesized
examples is significantly lower than in real data
(Figure 5). A combination of sufficient amounts
of noise and rich, diverse errors appears to lead to
better model performance.

5.3 Error Type Distribution Mismatch

Mismatches in the distribution of error types can
often severely impact the performance of data syn-
thesis techniques for grammar correction (Felice,
2016). For example, only synthesizing noun num-
ber articles or preposition errors based on rules
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Sentence 1 or 2

clean Day after day , I get up at 8 o‘clock .
1 I got up at 8 o‘clock day after day .
2 Day after day , I get up 8 o‘clock in the week .

clean Thanks Giving Day in Korea is coming soon .
1 In Korea , it ’s coming soon , thanks Giving day .
2 Thanks Giving Day in korea is coming soon .

clean After I practiced , I could play the song perfectly .
1 After the results , I could accomplish without a fault .
2 When I tried that , I could play the song perfectly .

clean Currently , I ’m studying to take the TOEIC exam for my future career .
1 I am studying to take TOEIC exam for career of my future .
2 Currently , I will have take TOEIC exam for future career .

clean There is one child who is 15 years old and a mother who is around 50 .
1 There are one child who is 15 years old and mother is around 50 .
2 It has one child , 15 years old and the mother who is around 50 years old .

clean But at the beginning , I suffered from a horrible pain in my jaw .
1 But at the first time , I suffer from a horrible pain on my jaw .
2 But at the beginning , I suffered from a horrible pain in my jaw joint .

Table 4: Examples of nonsynthesized and synthesized sentences from validation set. Which example (1 or 2) was
synthesized? Answers:1,1,2,1,2,1

Art/Det Wci Nn Prep Wform Mec Vt Trans Vform Rloc-

Error Type
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Figure 6: Recall vs. error type for the ten most frequent
error types in our dev set. Noising improves recall uni-
formly across error types (See Ng et al. (2014) for a
description of error types).

may improve the performance for those two er-
ror types, but may hurt overall performance. In
contrast, the approaches we consider, with the ex-
ception of token noising, are fully data-driven, and
hence we would expect gains across all different
error types. We observe this is the case for ran-
dom noising, as shown in Figure 6.

5.4 Data Sparsity and Domain Adaptation
Domain adaptation can yield significant differ-
ences in performance for dissimilar domains (such
as those of the datasets used in our experi-
ments) (Daumé III, 2009). The Lang-8, CoNLL,
and JFLEG datasets contain online forum data and
essay data from English learners. The n-gram lan-
guage model is estimated using Common Crawl
data from the web. The clean data which we noise
is collected from a news corpus. Yet each dataset

yields significant gains. This suggests that at cur-
rent levels of system performance, data sparsity
remains the key data issue, more so than domain
adaptation.

It is also possible that LDC New York Times
data is better matched to the CoNLL essay data
than the Lang-8 forum data, and this in part ac-
counts for the large gains we observe from training
on synthesized data.

6 Conclusion

In this work, we address one of the key issues
for developing translation-based grammar correc-
tion systems: the need for a large corpus of par-
allel data. We propose synthesizing parallel data
by noising clean text, where instead of applying
noise based on finite context windows, we instead
train a reverse model and apply noise during the
beam search procedure to synthesize noisy exam-
ples that human evaluators were nearly unable to
distinguish from real examples. Our experiments
suggest that the proposed data synthesis technique
can yields almost as strong results as when train-
ing with additional nonsynthesized data. Hence,
we hope that parallel data becomes less of a bot-
tleneck, and more emphasis can be placed on de-
veloping better models that can capture the longer
dependencies and structure in the text.
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Abstract

Building curious machines that can answer as
well as ask questions is an important challenge
for AI. The two tasks of question answering
and question generation are usually tackled
separately in the NLP literature. At the same
time, both require significant amounts of su-
pervised data which is hard to obtain in many
domains. To alleviate these issues, we pro-
pose a self-training method for jointly learning
to ask as well as answer questions, leveraging
unlabeled text along with labeled question an-
swer pairs for learning. We evaluate our ap-
proach on four benchmark datasets: SQUAD,
MS MARCO, WikiQA and TrecQA, and show
significant improvements over a number of es-
tablished baselines on both question answer-
ing and question generation tasks. We also
achieved new state-of-the-art results on two
competitive answer sentence selection tasks:
WikiQA and TrecQA.

1 Introduction

Question Answering (QA) is a well-studied prob-
lem in NLP which focuses on answering questions
using some structured or unstructured sources of
knowledge. Alongside question answering, there
has also been some work on generating ques-
tions (QG) (Heilman, 2011; Du et al., 2017; Tang
et al., 2017) which focuses on generating ques-
tions based on given sources of knowledge.

QA and QG are closely related1 tasks. However,
NLP literature views the two as entirely separate
tasks. In this paper, we explore this relationship
between the two tasks by jointly learning to gen-
erate as well as answer questions. An improved
ability to generate as well as answer questions will
help us build curious machines that can interact
with humans in a better manner. Joint modeling of

1We can think of QA and QG as inverse of each other.

QA and QG is useful as the two can be used in con-
junction to generate novel questions from free text
and then answers for the generated questions. We
use this idea to perform self-training (Nigam and
Ghani, 2000) and leverage free text to augment the
training of QA and QG models.

QA and QG models are typically trained on
question answer pairs which are expensive to ob-
tain in many domains. However, it is cheaper
to obtain large quantities of free text. Our self-
training procedure leverages unlabeled text to
boost the quality of our QA and QG models. This
is achieved by a careful data augmentation proce-
dure which uses pre-trained QA and QG models to
generate additional labeled question answer pairs.
This additional data is then used to retrain our QA
and QG models and the procedure is repeated.

This addition of synthetic labeled data needs
to be performed carefully. During self-training,
typically the most confident samples are added to
the training set (Zhu, 2005) in each iteration. We
use the performance of our QA and QG models
as a proxy for estimating the confidence value of
the questions. We describe a suite of heuristics
inspired from curriculum learning (Bengio et al.,
2009) to select the questions to be generated and
added to the training set at each epoch. Curricu-
lum learning is inspired from the incremental na-
ture of human learning and orders training sam-
ples on the easiness scale so that easy samples can
be introduced to the learning algorithm first and
harder samples can be introduced successively.
We show that introducing questions in increasing
order of hardness leads to improvements over a
baseline that introduces questions randomly.

We use a seq2seq model with soft attention
(Sutskever et al., 2014; Bahdanau et al., 2014)
for QG and a neural model inspired from Atten-
tive Reader (Hermann et al., 2015; Chen et al.,
2016) for QA. However, these can be any QA
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and QG models. We evaluate our approach on
four datasets: SQUAD, MS MARCO, WikiQA and
TrecQA. We use a corpus of English Wikipedia
as unlabeled text. Our experiments show that
the self-training approach leads to significant im-
provements over a number of established ap-
proaches in QA and QG on these benchmarks. On
the two answer sentence selection QA tasks: (Wik-
iQA and TrecQA), we obtain state-of-the-art.

2 Problem Setup

In this work, we focus on the task of machine com-
prehension where the goal is to answer a question
q based on a passage p. We model this as an an-
swer sentence selection task i.e., given the set of
sentences in the passage p, the task is to select
the sentence s ∈ p that contains the answer a.
Treating QA as an answer sentence selection task
is quite common in literature (e.g. see Yu et al.,
2014). We model QG as the task of transforming
a sentence in the passage into a question. Previ-
ous work in QG (Heilman and Smith, 2009) trans-
forms text sentences into questions via some set of
manually engineered rules. However, we take an
end-to-end neural approach.

Let D0 be a labeled dataset of (passage, ques-
tion, answer) triples where the answer is given by
selecting a sentence in the passage. We also as-
sume access to unlabeled text T which will be
used to augment the training of the two models.

3 The Question Answering Model

Since we model QA as the task of selecting an an-
swer sentence from the passage, we treat each sen-
tence in the corresponding passage as a candidate
answer for every input question.

We employ a neural network model inspired
from the Attentive Reader framework proposed in
Hermann et al. (2015); Chen et al. (2016). We
map all words in the vocabulary to correspond-
ing d dimensional vector representations via an
embedding matrix E ∈ Rd×V . Thus, the input
passage p can be denoted by the word sequence
{p1, p2, . . . p|p|} and the question q can similarly
be denoted by the word sequence {q1, q2, . . . q|q|}
where each token pi ∈ Rd and qi ∈ Rd.

We use a bi-directional LSTM (Graves et al.,
2005) with dropout regularization as in Zaremba
et al. (2014) to encode contextual embeddings of

each word in the passage:

~ht = LSTM1

(
pt, ~ht−1

)
, ~ht = LSTM2

(
pt, ~ht+1

)

The final contextual embeddings ht are given by
concatenation of the forward and backward pass
embeddings: ht = [~ht; ~ht]. Similarly, we use an-
other bi-directional LSTM and encode contextual
embeddings of each word in the question.

Then, we use attention mechanism (Bahdanau
et al., 2014) to compute the alignment distribution
a based on the relevance among passage words
and the question: ai = softmax

(
qTWhi

)
. The

output vector o is a weighted combination of all
contextual embeddings: o =

∑
i
aihi. Finally, the

correct answer a∗ among the set of candidate an-
swers A is given by: a∗ = argmax

a∈A
wTo.

We learn the model by maximizing the log-
likelihood of correct answers. Given the training
set {p(i),q(i),a(i)}Ni=1, the log-likelihood is:

LQA =
N∑

i=1

logP
(
a(i)|p(i),p(i); θ

)

Here, θ represents all the model parameters to be
estimated.

4 The Question Generation Model

We use a seq2seq model (Sutskever et al., 2014)
with soft attention (Bahdanau et al., 2014) as our
QG model. The model transduces an input se-
quence x to an input sequence y. Here, the in-
put sequence is a sentence in the passage and
the output sequence is a generated question. Let
x = {x1, x2, . . . , x|x|}, y = {y1, y2, . . . , y|y|}
and Y be the space of all possible output ques-
tions. Thus, we can represent the QG task as find-
ing ŷ ∈ Y such that: ŷ = argmax

y
P (y|x).

Here, P (y|x) is the conditional probability of a
question sequence y given input sequence x.
Decoder: Following Sutskever et al. (2014), the
conditional factorizes over token level predictions:

P (y|x) =
|y|∏

t=1

P (yt|y<t,x)

Here, y<t represents the subsequence of words
generated prior to the time step t. For the decoder,
we again follow Sutskever et al. (2014):

P (yt|y<t,x) = softmax
(
Wtanh

(
Wt[h

(d)
t ; ct]

))
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Here, h(d)
t is the decoder RNN state at time step

t, and ct is the attention based encoding of the in-
put sequence x at decoding time step t (described
later). Also W and Wt are model parameters
to be learned. We use an LSTM with dropout
(Zaremba et al., 2014) as the decoder RNN. The
LSTM generates the new decoder state h

(d)
t given

the representation of previously generated word
yt1 obtained using a look-up dictionary, and the
previous decoder state h

(d)
t−1.

Encoder: We use a bi-directional LSTM (Graves
et al., 2005) with attention mechanism as our sen-
tence encoder. We use two LSTM’s: one that
makes a forward pass in the sequence and another
that makes a backward pass as in the QA model
described earlier. We use dropout regularization
for LSTMs as in Zaremba et al. (2014) in our
implementation. The final context dependent to-
ken representation h

(e)
t is the concatenation of the

forward and backward pass token representations:

h
(e)
t = [~h

(e)
t ; ~h

(e)

t ]. To obtain the final context de-
pendent token representation cj at the decoding
time step j, we take a weighted average over to-

ken representations: c
(d)
j =

|x|∑
i=1

aijh
(e)
i . Follow-

ing Bahdanau et al. (2014), the attention weights
aij are calculated by bilinear scoring followed by
softmax normalization:

aij =

exp

(
h
(e)
j

T
W h

(d)
i

)

∑
i′
exp

(
h
(e)
j

T
W h

(d)
i′

)

Learning and Inference: We train the en-
coder decoder framework by maximizing data log-
likelihood on a large training set with respect to all
the model parameters θ. Let {x(i),y(i)}Ni=1 be the
training set. The log-likelihood can be written as:

LQG =

N∑

i=1

logP
(
y(i)|x(i); θ

)

=
N∑

i=1

|y(i)|∑

j=1

logP
(
y
(i)
j |x(i),y

(i)
<j ; θ

)

We use beam search for inference. As in previous
works, we introduce a <UNK> token to model
rare words during decoding. These <UNK> to-
kens are finally replaced by the token in the input
sentence with the highest attention score.

5 Self-training Framework for Joint
Training of QA and QG models

In our self-training framework, we are given
unlabeled text in addition to the labeled pas-
sages, question and answer pairs. Self-training
(Yarowsky, 1995; Riloff et al., 2003), also known
as self-teaching, is one of the earliest techniques
for using unlabeled data along with labeled data to
improve learning. During self-training, the learner
keeps on labeling unlabeled examples and retrain-
ing itself on an enlarged labeled training set. We
extend self-training to jointly learn two models
(namely, QA and QG) iteratively. The QA and
QG models are first trained on the labeled corpus.
Then, the QG model is used to create more ques-
tions from the unlabeled text corpus and the QA
model is used to answer these newly created ques-
tions. These new questions (carefully selected by
an oracle – details later) and the original labelled
data is then used to (stochastically) update these
two models. This procedure can be repeated as
long as both the two models continue to improve.

Algorithm 1: Self-training QA and QG.
1 θ

(0)
qa ← Train initial QA model.

2 θ
(0)
qg ← Train initial QG model.

3 Init: i = 0
4 while performance on dev set rises do
5 CQi ← Set of candidate questions generated using

our QG model θ(i)qg from the unlabeled text T
which are not in D.

6 Qi ← k ×mi questions drawn from CQi using
our question selector oracleQS.

7 Ai ← Set of answers to questions Qi obtained
using our QA model θ(i)qa.

8 Let Di be the set of chosen questions Qi and
answers Ai.

9 Subsample S1 ⊂ Di of size k1 and S2 ⊂ D0 of
size k2. Let S = S1 ∪ S2

10 θ
(i+1)
qa ← Update QA model on S.

11 θ
(i+1)
qg ← Update QG model on S.

12 i++
13 end

Algorithm 1 describes the procedure in detail.
In each succesive iteration, we allow the addi-
tion of more questions than that introduced in
the previous iteration by a multiplicative factor.
This sheme adds fewer questions initially when
the QA and QG models are weak and more ques-
tions thereafter when the two models have (hope-
fully) improved. We found that this scheme works
better in practice than addiing a fixed number of
questions in each iteration. The two models are
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updated on a subsample of the newly generated
datapoints and original unlabelled data.

Self-training has been seldom used in NLP.
Most prominently, it has been used for WSD
(Yarowsky, 1995), noun learning (Riloff et al.,
2003) and AMR parsing and generation (Konstas
et al., 2017). However, it has not been explored in
this way for QA and QG.

5.1 The Question Selection Oracle

A key challenge in self-training is selecting which
unlabeled data sample to label (iwhich generated
questions to add to the training set). The self-
training process may erroneously generate some
bad or incorrect questions which can sidetrack the
learning process. Thus, we implement a question
selection oracle which determines which questions
to add among the potentially very large set of ques-
tions generated by the QG model in each iteration.

Traditional wisdom in self-training (Yarowsky,
1995; Riloff et al., 2003) advises selecting a subset
of questions on which the models have the highest
confidence. We experiment with this idea, propos-
ing multiple self-training oracles which introduce
questions in the order of how confident the QA and
QG models are on the new potential question:

• QG: The QG oracle introduces the question
in the order of how confident the QG model is
on generating the question. This is calculated
by a number of heuristics (described later).

• QA: The QA oracle introduces the question
in the order of how confident the QA model
is on answering the question. This too is cal-
culated by some heuristics (described later).

• QA+QG: The QA+QG oracle introduces a
question when both QA and QG models are
confident about the question. The oracle
computes the minimum confidence of the QA
and QG models for a question and introduces
questions which have the the highest mini-
mum confidence score.

Our question selection heurisitcs are based on
the ideas of curriculum learning and diversity:

1. Curriculum learning (Bengio et al., 2009;
Sachan and Xing, 2016a) requires ordering
questions on the easiness scale, so that easy
questions can be introduced to the learning
algorithm first and harder questions can be

introduced successively. The main challenge
in learning the curriculum is that it requires
the identification of easy and hard questions.
In our setting, such a ranking of easy and
hard questions is difficult to obtain. A human
judgement of ‘easiness’ of a question might
not correlate with what is easy for our algo-
rithms in its feature and hypothesis space. We
explore various heuristics that define a mea-
sure of easiness and learn the ordering by se-
lecting questions using this measure.

2. A number of cognitive scientists (Cantor,
1946) argue that alongside curriculum learn-
ing, it is important to introduce diverse (even
if sometimes hard) samples. Inspired by this,
we introduce a measure of diversity and show
that we can achieve further improvements by
coupling the curriculum learning heuristics
with a measure for diversity.

Curriculum Learning: Studies in cognitive sci-
ence (Skinner, 1958; Peterson, 2004; Krueger and
Dayan, 2009) have shown that humans learn much
better when the training examples are not ran-
domly presented but organized in increasing or-
der of difficulty. In the machine learning commu-
nity, this idea was introduced with the nomencla-
ture of curriculum learning (Bengio et al., 2009),
where a curriculum is designed by ranking sam-
ples based on manually curated difficulty mea-
sures. A manifestation of this idea is self-paced
learning (SPL) (Kumar et al., 2010; Jiang et al.,
2014, 2015) which selects samples based on the
local loss term of the sample. We extend this idea
and explore the following heuristics for our vari-
ous oracles:
1) Greedy Optimal (GO): The simplest greedy
heuristic is to pick a question q which has the min-
imum expected effect on the QA and QG models.
The expected effect on adding q can be written as:

∑

a∈A
p(a∗ = a)E[LQA/QG]

Here, LQA/QG is LQA, LQG or min (LQA,LQG)
depending on which oracle we are using. p(a∗ =
a) can be estimated by computing the scores of
each of the answer candidates for q and normaliz-
ing them. E[LQA/QG] can be estimated by retrain-
ing the model(s) after adding this question.
2) Change in Objective (CiO): Choose question
q that causes the smallest increase in LQA/QG. If
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there are multiple questions with the smallest in-
crease in objective, pick one of them randomly.
3) Mini-max (M2): Choose question q that mini-
mizes the expected risk when including the ques-
tion with the answer candidate a that yields the
maximum error.

q̂ = argmin
q

max
a∈A
LQA/QG

4) Expected Change in Objective (ECiO): In
this greedy heuristic, we pick a question q which
has the minimum expected effect on the model.
The expected effect can be written as:

∑

a

p(a∗ = a)× E
[
LQA/QG

]

Here, p(a∗ = a) can again be achieved by com-
puting the scores of each of the answer candidates
for q and normalizing them and E

[
LQA/QG

]
can

be estimated by evaluating the model.
5) Change in Objective-Expected Change in
Objective (CiO - ECiO): We pick a question q
which has the minimum value of the difference
between the change in objective and the expected
change in objective described above. Intuitively,
the difference represents how much the model is
surprised to see this new question.
Time Complexity: GO and CiO require updating
the model, M2 and ECiO require performing in-
ference on candiate questions, and CiO - ECiO re-
quires retraining as well as inference. Thus, M2

and ECiO are computationally most efficient.
Ensembling: We introduce an ensembling strat-
egy that combines the heuristics into an ensem-
ble. We tried two ensembling strategies. The first
strategy computes the average score over all the
heuristics for all potential (top-K in beam) ques-
tions and picks questions with the highest average.
The second strategy uses minimum instead of the
average. Minimum works better than average in
practice and we use it in our experiments. The use
of minimum is inspired by agreement-based learn-
ing (Liang et al., 2008), a well-known extension of
self-training which uses multiple views of the data
(described using different feature sets or models)
and adds new unlabeled samples to the training set
when multiple models agree on the label.
Diversity: The strategy of introducing easy ques-
tions first and then gradually introducing harder
questions is intuitive as it allows the learner to im-
prove gradually. Yet, it has one key deficiency.
With curriculum learning, by focusing on easy

questions first, our learning algorithm is usually
not exposed to a diverse set of questions. This
is particularly a problem for deep-learning ap-
proaches that learn representations during the pro-
cess of learning. Hence, when a harder question
arrives, it can be difficult for the learner to ad-
just to the new question as the current represen-
tation may not be appropriate for the new level
of question difficulty. We tackle this by introduc-
ing an explore and exploit (E&E) strategy. E&E
ensures that while we still select easy questions
first, we also want to make our selection as di-
verse as possible. We define a measure for di-
versity as the angle between the question vectors:
∠qi,qj = Cosine−1

(
|qiqj |
||qi||||qj ||

)
. E&E picks the

question which optimizes a convex combination
(tuned on the dev set) of the curriculum learning
objective and sum of angles between the candidate
questions and the questions in the training set.

6 Experiments

Implementation Details: We perform the same
preprocessing on all the text. We lower-case all
the text. We use NLTK for word tokenization.
For training our neural networks, we only keep
the most frequent 50k words (including entity and
placeholder markers), and map all other words to a
special <UNK> token. We choose word embed-
ding size d = 100, and use the 100-dimensional
pretrained GloVe word embeddings (Pennington
et al., 2014) for initialization. We set k, m, k1
and k2 (hyperparameters for self-training) by grid
search on a held-out development set.
Datasets: We report our results on four datasets:
SQUAD (Rajpurkar et al., 2016), MS MARCO
(Nguyen et al., 2016), WikiQA (Yang et al., 2015)
and TrecQA (Wang et al., 2007). SQUAD is a
cloze-style reading comprehension dataset with
questions posed by crowd workers on a set of
Wikipedia articles, where the answer to each ques-
tion is a segment of text from the corresponding
reading passage. MS MARCO contains questions
which are real anonymized queries issued through
Bing or Cortana and the documents are related
web pages which may or help answer the question.
WikiQA is also a datset of queries taken from Bing
query logs. Based on user clicks, each query is
associated with a Wikipedia page. The summary
paragraph of the page is taken as candidate answer
sentences, with labels on whether the sentence is a
correct answer to the question provided by crowd
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SQUAD MS MARCO WikiQA TrecQA
Train Dev Test Train Dev Test Train Dev Test Train Dev Test

#Questions 82,326 4,806 5,241 87,341 5,273 5,279 1,040 140 293 1,229 82 100
#Question-Answer Pairs 676,193 39,510 42,850 440,573 26,442 26,604 20,360 2,733 6,165 53,417 1,148 1,517

Table 1: Statistics of the four datasets used in evaluating our QA and QG models.

workers. Finally, TrecQA is a QA answer sentence
selection dataset from the TREC QA track.

While WikiQA and TrecQA are directly answer
sentence selection tasks, the other two are not.
Hence, we treat the SQUAD and MS MARCO tasks
as the answer sentence selection task assuming a
one to one correspondence between answer sen-
tences and annotated correct answer spans. Note
that only a very small proportion of answers (<
0.2% in training set) span two or more sentences.
Since SQUAD and MS MARCO have a hidden test
set, we only use the training and development sets
for our evaluation purposes and we further split the
provided development set into a dev and test set.
This is also the data analysis setting used in pre-
vious works (Du et al., 2017; Tang et al., 2017).
In fact, we use the same setting as in Tang et al.
(2017) for comparison. The statistics of the four
datasets and the respective train, dev and test splits
are given in Table 1. For WikiQA and TrecQA
datasets, we use the standard data splits. We use
a large randomly subsampled corpus of English
Wikipedia and use the first paragraph of each doc-
ument as unlabeled text for self-training.
Evaluation Metrics: Following Tang et al.
(2017), we evaluate our QA system with three
standard evaluation metrics: Mean Average Pre-
cision (MAP), Mean Reciprocal Rank (MRR) and
Precision@1 (P@1). For QG, we follow Du et al.
(2017) and use automatic evaluation metrics from
MT and summarization: BLEU-4 (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2014)
and RougeL (Lin, 2004) to measure the overlap be-
tween generated and ground truth questions.
Baselines: For SQUAD and MS MARCO datasets,
we use four QA baselines that have been used
in previous works (Tang et al., 2017). The first
two baselines, WordCnt and NormWordCnt, have
been taken from Yang et al. (2015) and Yin
et al. (2015), and are based on simple word over-
lap which have been shown to be strong base-
lines. These compute word co-occurrence be-
tween a question sentence and the candidate an-
swer sentence. While WordCnt uses unnormalized
word co-occurrence, NormWordCnt uses normal-
ized word co-occurrence. The third and fourth
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Figure 1: MAP for our best self-trained QA model
(with 10,000 Wikipedia paragraphs) without any cur-
riculum learning (i.e. candidate questions are added
randomly) vs epochs.

baselines are CDSSM (Shen et al., 2014) and
ABCNN (Yin et al., 2015) which use a neural
network approach to model semantic relatedness
of sentence pairs. For the WikiQA and TrecQA
dataset, we report results of various existing state-
of-the-art approaches on the two datasets2.

For QG, we compare our model against the fol-
lowing four baselines used in previous work (Du
et al., 2017). The first baseline is a simple IR base-
lines taken from Rush et al. (2015) which gener-
ates questions by memorizing them from the train-
ing set and uses edit distance (Levenshtein, 1966)
to calculate distance between a question and the
input sentence. The second baseline is a MT sys-
tem – MOSES (Koehn et al., 2007) which mod-
els question generation as a translation task where
raw sentences are treated as source texts and ques-
tions are treated as target texts. The third baseline,
DirectIn, uses the longest sub-sentence of the in-
put sentence (using a set of simple sentence split-
ters) as the question. The fourth baseline, H&S
is a rule-based overgenerate-and-rank system pro-
posed by Heilman and Smith (2010).
The Question Selection Oracle: The first ques-
tion we wish to answer is: Is careful question se-
lection even necessary? To answer this, we plot
MAP scores for our best QA model (QA+QG, En-
semble+E&E) when we do not have a curriculum
learning based oracle (i.e. an oracle which picks
questions to be added to the dataset randomly) in
Figure 1 as a function of epochs. We observe that

2https://aclweb.org/aclwiki/Question_
Answering_(State_of_the_art)
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Figure 2: MAP for the best models for the three or-
acles: QA, QG and QA+QG. Also on the same plot,
MAP when we have no curriculum learning.

SQUAD MS MARCO
MAP MRR P@1 MAP MRR P@1

WordCnt 0.396 0.401 0.179 0.809 0.817 0.689
NormWordCnt 0.422 0.429 0.203 0.871 0.879 0.796
CDSSM 0.443 0.449 0.228 0.798 0.804 0.672
ABCNN 0.469 0.477 0.263 0.869 0.875 0.784
Tang et al. (2017) 0.484 0.491 0.275 0.864 0.872 0.781
Ens+E&E(0) 0.471 0.478 0.263 0.858 0.865 0.774
Ens+E&E(100) 0.524 0.493 0.273 0.881 0.890 0.799
Ens+E&E(1000) 0.537 0.502 0.284 0.885 0.895 0.801
M2 0.489 0.490 0.268 0.860 0.872 0.785
ECiO 0.498 0.494 0.273 0.877 0.886 0.793
GO 0.506 0.495 0.274 0.879 0.889 0.793
CiO 0.511 0.498 0.277 0.879 0.890 0.795
CiO-ECiO 0.517 0.500 0.280 0.881 0.892 0.798
Ensemble 0.539 0.504 0.284 0.886 0.895 0.800
Ens+E&E(10000) 0.539 0.507 0.289 0.889 0.896 0.801

Table 2: Performance of our models and QA baselines
on SQUAD and MS MARCO datasets. Shaded part of
the table shows results of various question selection
heuristics when 10000 Wiki paragraphs are used as un-
labeled data.

the MAP score degrades instead of improving with
time. This supports our claim that we need to aug-
ment the training set by a more careful procedure.

We also plot MAP scores for our best QA model
(Ensemble+E&E) when we use various question
selection oracles as a function of the amount of
unlabeled data in Figure 2. We can observe that
when we do not have a curriculum learning based
oracle, the MAP score degrades by having more
and more unlabeled data. We also observe that
the QA+QG oracle performs better than QA and
QG which confirms that the best oracle is one that
selects questions in increasing degree of hardness
in terms of both question answering and question
generation. This holds for all the experimental set-
tings. Thus we only show results for the QA+QG
strategies in our future experiments.
Evaluating Question Answering: First, we eval-
uate our models on the question answering task.
Ensemble+E&E(K) is the variant where we per-
form self-training using K Wikipedia paragraphs.
Hence, Ensemble+E&E(0) is the variant of our

MAP MRR
CNN (Yang et al., 2015) 0.665 0.652
APCNN (Santos et al., 2016) 0.696 0.689
NASM (Miao et al., 2016) 0.707 0.689
ABCNN (Yin et al., 2015) 0.702 0.692
KVMN (Miller et al., 2016) 0.707 0.727
Wang et al. (2016b) 0.706 0.723
Wang et al. (2016a) 0.734 0.742
Wang and Jiang (2016) 0.743 0.755
Tang et al. (2017) 0.700 0.684
Ensemble+E&E(0) 0.691 0.675
Ensemble+E&E(100) 0.718 0.719
Ensemble+E&E(1000) 0.734 0.733
M2 0.719 0.704
ECiO 0.721 0.708
GO 0.725 0.710
CiO 0.727 0.719
CiO-ECiO 0.734 0.724
Ensemble 0.743 0.743
Ensemble+E&E(10000) 0.754 0.753

Table 3: Performance of our models and the QA base-
lines on the WikiQA dataset. Shaded part of the table
shows the effect of various question selection heuris-
tics when 10000 Wikipedia paragraphs are used as un-
labeled data. Our model achieves the state-of-the-art.

MAP MRR
He and Lin (2016) 0.758 0.822
He et al. (2015) 0.762 0.830
Tay et al. (2017) 0.770 0.825
Rao et al. (2016) 0.780 0.834
Ensemble+E&E(0) 0.742 0.813
Ensemble+E&E(100) 0.776 0.831
Ensemble+E&E(1000) 0.783 0.836
M2 0.759 0.816
ECiO 0.762 0.822
GO 0.759 0.823
CiO 0.762 0.826
CiO-ECiO 0.767 0.830
Ensemble 0.789 0.843
Ensemble+E&E(10000) 0.798 0.854

Table 4: Performance of our models and the QA base-
lines on the TrecQA dataset. Shaded part of the table
shows the effect of various question selection heuris-
tics when 10000 Wikipedia paragraphs are used as un-
labeled data. Our model achieves the state-of-the-art.

model without any self-training. We vary K to
see the impact of the size of unlabeled Wikipedia
paragraphs on the self-training model.

Table 2 shows the results of the QA evaluations
on the SQUAD and MS MARCO datasets. We can
observe that our QA model has competetive or
better performance over all the baselines on both
datasets in terms of all the three evaluation met-
rics. When we incorporate ensembling or diver-
sity, we see a further improvement in the result.

Tables 3 and 4 show results of QA evaluations
on the WikiQA and TrecQA datasets, respectively.
We can again observe that our QA model is com-
petitive to all the baselines. When we introduce
ensembling and diversity while jointly learning the
QA and QG models, we see incremental improve-
ments. In both these answer sentence selection
tasks, our approach achieves new state-of-the-art.
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SQUAD MS MARCO WikiQA TrecQA
B M R B M R B M R B M R

IR 1.07 7.77 20.85 0.81 5.42 15.78 0.93 6.89 19.98 0.83 5.73 16.34
MOSES 0.31 10.49 17.88 0.27 9.74 15.82 0.32 10.26 17.27 0.29 9.86 17.02
DirectIn 11.25 14.91 22.51 10.82 13.35 20.38 10.94 14.18 22.01 9.59 12.21 19.76
H&S 11.23 16.00 31.03 10.16 15.07 30.00 10.35 15.30 30.72 9.19 12.72 23.38
Tang et al. (2017) 5.03 - - 9.31 - - 3.15 - - - - -
Du et al. (2017) 12.28 16.62 39.75 - - - - - - - - -
Ens.+E&E(0) 12.31 16.67 39.78 11.14 15.60 37.26 11.38 16.08 38.42 10.96 14.25 27.27
Ens.+E&E(100) 14.14 18.70 42.46 13.25 17.10 40.28 13.10 17.00 40.93 11.63 15.05 29.07
Ens.+E&E(1000) 14.27 18.78 42.93 13.61 17.87 41.23 13.22 18.34 42.72 12.24 15.93 30.26
M2 12.46 16.95 40.27 11.56 15.93 38.32 11.83 16.84 39.26 11.52 16.42 28.92
ECiO 12.79 17.40 40.92 12.11 16.32 38.86 12.14 17.04 39.82 11.67 16.59 29.12
GO 13.12 17.73 41.24 12.75 16.66 39.47 12.56 17.62 40.31 11.61 16.52 29.10
CiO 13.59 17.94 41.57 13.00 16.83 40.02 12.88 18.13 40.97 11.97 16.68 29.89
CiO-ECiO 13.97 18.18 41.90 13.41 17.16 40.65 13.22 18.34 41.28 12.24 16.65 29.63
Ensemble 14.37 18.57 42.73 13.56 17.40 40.92 14.26 18.91 43.26 13.32 16.76 30.12
Ens.+E&E(10000) 14.28 18.79 42.97 13.74 17.89 41.07 15.26 19.45 44.77 14.87 16.88 31.91

Table 5: Performance (B: BLEU4, M: METEOR, and R: ROUGE) of our model variants and various QG baselines
on SQUAD, MS MARCO and WikiQA datasets. The shaded part of the table shows the effect of various question
selection heuristics when 10000 Wikipedia paragraphs are used as unlabeled data. The performance numbers for
Tang et al. (2017) and Du et al. (2017) were not reported for all the settings.

Evaluating Question Generation: Table 5 shows
the results for QG on the four datasets on each
of the three evaluation metrics on all the four
datasets. We can observe that the QG model de-
scribed in our paper performs much better than all
the baselines. We again observe that self-training
while jointly training the QA and QG models leads
to even better performance. These results show
that self-training and leveraging the relationship
between QA and QG is very useful for boosting
the performance of the QA and QG models, while
additionally only using cheap unlabeled data.

Human Evaluations: We asked two people not
involved with this research to evaluate 1000 (ran-
domly selected) questions generated by our best
QG model and our best performing baseline (Du
et al., 2017) on SQUAD for fluency and correct-
ness on a scale of 1 to 5. The raters were also
shown the passage sentence used to generate the
question. The raters were blind to which system
produced which question. The Pearson correla-
tion between the raters’ judgments was r = 0.89
for fluency and r = 0.78 for correctness. In our
analyses, we used the averages of the two raters’
judgments. The evaluation showed that our sys-
tem generates questions that are more fluent and
correct than those by the baseline. The mean flu-
ency rating of our best system was 4.15 compared
to 3.35 for the baseline, a difference which is sta-
tistically significant (t-test, p < 0.001).
Evaluating the Question Selection Oracle: As
discussed earlier, the choice of which subset of
questions to add to our labeled dataset while self-
training is important. To evaluate the various
heuristics proposed in our paper, we show the ef-
fect of the question selection oracle on the final

QA and QG performance in Tables 2, 3, 4 and 5.
These comparisions are shown in the shaded grey
portions of the tables for self-training with 10,000
Wikipedia paragraphs as unlabeled data.

We can observe that all the proposed heuristics
(and ensembling and diversity strategies) lead to
improvements in the final performance of both QA
and QG. The heuristics arranged in increasing or-
der of performance are: M2, ECiO, GO, CiO and
CiO-ECiO. While the choice of which heuristic to
pick seems to make a lesser impact on the final
performance, we do see a much more significant
performance gain by ensembling to combine the
various heuristics and using E&E to incorporate
diversity. The incorporatation of diversity is im-
portant because the neural network models which
learnt latent representions of data usually find it
hard to adjust to new level of difficulty of ques-
tions as the current representation may not be ap-
propriate for the new level of difficulty.
Low data scenarios: A key advantage of our self-
training approach is that it can leverage unlabeled
text, and thus requires less labeled data. To test
this, we plot MAP for our best self-training model
and various QA baselines as we vary the propor-
tion of labeled training set in Figure 3. However,
we keep the unlabeled text fixed (10K Wikipedia
paragraphs). We observe that all the baselines sig-
nificantly drop in performance as we reduce the
proportion of labeled training set. However, the
drop happens at a much slower rate for our self-
trained model. Thus, we can conclude that our ap-
proach requires less labeled data as compared to
the baselines.
Does more unlabeled text always help?: An-
other important question is: Does more unlabeled
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Figure 3: MAP for the best self-training model and QA
baselines as we vary the proportion of labeled training
set but keep the unlabeled text fixed (10K Wikipedia
paragraphs).

text always improve our models? Will the perfor-
mance improve if we add more and more unsuper-
vised data during self-training. According to our
results in Tables 2, 3, 4 and 5, the answer is ”prob-
ably yes”. As we can observe from these tables,
the performance of the QA and QG models im-
proves as we increase K, the size of the unsuper-
vised data during training of the various Ensem-
ble+E&E(K) models. Having said that, we do see
a tapering effect on the performance results, so it is
clear that the performance will be capped by some
upper-bound and we will need better ways of mod-
eling language and meaning to make progress.

7 Related Work

Our work proposes an approach for joint model-
ing QA and QG. While QA has recieved a lot
of attention from the research community with
large scale community evaluations such as NTCIR,
TREC, CLEF spurring progress, the focus on QG
is much more recent. Recently, there has been a
renewed interest in reading comprehensions (also
known as machine comprehension – a nomencla-
ture popularized by Richardson et al. (2013)). Var-
ious approaches (Sachan et al., 2015; Wang et al.,
2015; Sachan and Xing, 2016b; Sachan et al.,
2016; Narasimhan and Barzilay, 2015) have been
proposed for solving this task. After the release of
large benchmarks such as SQUAD, MS MARCO
and WikiQA, there has been a surge in interest
on using neural network or deep-learning models
for QA (Yin et al., 2015; Seo et al., 2016; Shen
et al., 2016; Chen et al., 2017; Liu et al., 2017;
Hu et al., 2017). In our work, we deal with the
answer sentence selection task and adapt the At-
tentive Reader framework proposed in Hermann

et al. (2015); Chen et al. (2016) as our base model.
While, all these models were trained on question
answer pairs, we propose a self-training solution
to additionally leverage unsupervised text.

Similarly, there have been works on QG.
Traditionally, rule based approaches with post-
processing (Woo et al., 2016; Heilman and Smith,
2009, 2010) were the norm in QG. However, re-
cent papers build on neural network approaches
such as seq2seq (Du et al., 2017; Tang et al.,
2017; Zhou et al., 2017), CNNs and RNNs (Duan
et al., 2017) for QG. We also choose the seq2seq
paradigm in our work. However, we leverage un-
supervised text in contrast to these models.

Finally, some very recent works have concur-
rently recognized the relationship between QA
and QG and have proposed joint training (Tang
et al., 2017; Wang et al., 2017) for the two. Our
work differs from these as we additionally pro-
pose self-training to leverage unlabeled data to
improve the two models. Self-training has sel-
dom been used in NLP. Most prominently, they
have been used for word sense disambiguation
(Yarowsky, 1995), noun learning (Riloff et al.,
2003) and recently, AMR parsing and generation
(Konstas et al., 2017). However, it has not been
explored in this way for QA and QG.

An important decision in the workings of our
self-training algorithm was the question selection
using curriclum learning. While curriculum learn-
ing has seldom been used in NLP, we draw some
ideas for curriculum learning from Sachan and
Xing (2016a) who conduct a case study of curricu-
lum learning for question answering. However,
their work focuses only on QA and not QG.

8 Conclusion

We described self-training algorithms for jointly
learning to answer and ask questions while lever-
aging unlabeled data. We experimented with neu-
ral models for question answering and question
generation and various careful strategies for ques-
tion filtering based on curriculum learning and di-
versity promotion. This led to improved perfor-
mance for both question answering and question
generation on multiple datasets and new state-of-
the-art results on WikiQA and TrecQA datasets.
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Abstract

Answering complex questions is a time-
consuming activity for humans that requires
reasoning and integration of information. Re-
cent work on reading comprehension made
headway in answering simple questions, but
tackling complex questions is still an ongo-
ing research challenge. Conversely, seman-
tic parsers have been successful at handling
compositionality, but only when the informa-
tion resides in a target knowledge-base. In this
paper, we present a novel framework for an-
swering broad and complex questions, assum-
ing answering simple questions is possible us-
ing a search engine and a reading comprehen-
sion model. We propose to decompose com-
plex questions into a sequence of simple ques-
tions, and compute the final answer from the
sequence of answers. To illustrate the viabil-
ity of our approach, we create a new dataset
of complex questions, COMPLEXWEBQUES-
TIONS, and present a model that decomposes
questions and interacts with the web to com-
pute an answer. We empirically demonstrate
that question decomposition improves perfor-
mance from 20.8 precision@1 to 27.5 preci-
sion@1 on this new dataset.

1 Introduction

Humans often want to answer complex questions
that require reasoning over multiple pieces of ev-
idence, e.g., “From what country is the winner
of the Australian Open women’s singles 2008?”.
Answering such questions in broad domains can
be quite onerous for humans, because it requires
searching and integrating information from multi-
ple sources.

Recently, interest in question answering (QA)
has surged in the context of reading comprehen-
sion (RC), where an answer is sought for a ques-
tion given one or more documents (Hermann et al.,
2015; Joshi et al., 2017; Rajpurkar et al., 2016).

q :What city is the birthplace of the author of

‘Without end’, and hosted Euro 2012?

Decompose:

q1 : Author of ‘Without End’? {Ken Follett, Adam Zagajewski}
q2 : Birthplace of Ken Follett {Cardiff}
q3 : Birthplace of Adam Zagajewski {Lviv}
q4 : What cities hosted Euro 2012? {Warsaw, Kiev, Lviv, ...}
Recompose:

a :({Cardiff} ∪ {Lviv}) ∩ {Warsaw, Kiev, Lviv, ...}={Lviv}

Figure 1: Given a complex questions q, we decom-
pose the question to a sequence of simple questions
q1, q2, . . . , use a search engine and a QA model to an-
swer the simple questions, from which we compute the
final answer a.

Neural models trained over large datasets led to
great progress in RC, nearing human-level perfor-
mance (Wang et al., 2017). However, analysis of
models revealed (Jia and Liang, 2017; Chen et al.,
2016) that they mostly excel at matching questions
to local contexts, but struggle with questions that
require reasoning. Moreover, RC assumes docu-
ments with the information relevant for the answer
are available – but when questions are complex,
even retrieving the documents can be difficult.

Conversely, work on QA through semantic pars-
ing has focused primarily on compositionality:
questions are translated to compositional pro-
grams that encode a sequence of actions for find-
ing the answer in a knowledge-base (KB) (Zelle
and Mooney, 1996; Zettlemoyer and Collins,
2005; Artzi and Zettlemoyer, 2013; Krishna-
murthy and Mitchell, 2012; Kwiatkowski et al.,
2013; Liang et al., 2011). However, this reliance
on a manually-curated KB has limited the cover-
age and applicability of semantic parsers.

In this paper we present a framework for QA
that is broad, i.e., it does not assume information
is in a KB or in retrieved documents, and compo-
sitional, i.e., to compute an answer we must per-
form some computation or reasoning. Our thesis
is that answering simple questions can be achieved
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by combining a search engine with a RC model.
Thus, answering complex questions can be ad-
dressed by decomposing the question into a se-
quence of simple questions, and computing the an-
swer from the corresponding answers. Figure 1
illustrates this idea. Our model decomposes the
question in the figure into a sequence of simple
questions, each is submitted to a search engine,
and then an answer is extracted from the search
result. Once all answers are gathered, a final an-
swer can be computed using symbolic operations
such as union and intersection.

To evaluate our framework we need a dataset
of complex questions that calls for reasoning
over multiple pieces of information. Because an
adequate dataset is missing, we created COM-
PLEXWEBQUESTIONS, a new dataset for com-
plex questions that builds on WEBQUESTION-
SSP, a dataset that includes pairs of simple ques-
tions and their corresponding SPARQL query. We
take SPARQL queries from WEBQUESTIONSSP
and automatically create more complex queries
that include phenomena such as function composi-
tion, conjunctions, superlatives and comparatives.
Then, we use Amazon Mechanical Turk (AMT) to
generate natural language questions, and obtain a
dataset of 34,689 question-answer pairs (and also
SPARQL queries that our model ignores). Data
analysis shows that examples are diverse and that
AMT workers perform substantial paraphrasing of
the original machine-generated question.

We propose a model for answering complex
questions through question decomposition. Our
model uses a sequence-to-sequence architecture
(Sutskever et al., 2014) to map utterances to short
programs that indicate how to decompose the
question and compose the retrieved answers. To
obtain supervision for our model, we perform
a noisy alignment from machine-generated ques-
tions to natural language questions and automati-
cally generate noisy supervision for training.1

We evaluate our model on COMPLEXWE-
BQUESTIONSand find that question decompo-
sition substantially improves precision@1 from
20.8 to 27.5. We find that humans are able to
reach 63.0 precision@1 under a limited time bud-
get, leaving ample room for improvement in future
work.

To summarize, our main contributions are:

1We differ training from question-answer pairs for future
work.

Conj {Lviv}

Comp {Cardiff, Lviv}

birthplace of VAR SimpQA {KF, AZ}

author of ‘Without End’

SimpQA {Warsaw, Lviv, ...}

what cities hosted Euro 2012

Figure 2: A computation tree for “What city is the
birthplace of the author of ‘Without end’, and hosted
Euro 2012?”. The leaves are strings, and inner nodes
are functions (red) applied to their children to produce
answers (blue).

1. A framework for answering complex ques-
tions through question decomposition.

2. A sequence-to-sequence model for question
decomposition that substantially improves
performance.

3. A dataset of 34,689 examples of complex and
broad questions, along with answers, web
snippets, and SPARQL queries.

Our dataset, COMPLEXWEBQUESTIONS, can
be downloaded from http://nlp.cs.tau.
ac.il/compwebq and our codebase can be
downloaded from https://github.com/
alontalmor/WebAsKB.

2 Problem Formulation

Our goal is to learn a model that given a ques-
tion q and a black box QA model for answering
simple questions, SIMPQA(·), produces a com-
putation tree t (defined below) that decomposes
the question and computes the answer. The model
is trained from a set of N question-computation
tree pairs {qi, ti}Ni=1 or question-answer pairs
{qi, ai}Ni=1.

A computation tree is a tree where leaves are
labeled with strings, and inner nodes are labeled
with functions. The arguments of a function are
its children sub-trees. To compute an answer, or
denotation, from a tree, we recursively apply the
function at the root to its children. More formally,
given a tree rooted at node t, labeled by the func-
tion f , that has children c1(t), . . . , ck(t), the de-
notation JtK = f(Jc1(t)K, . . . , Jck(t)K) is an ar-
bitrary function applied to the denotations of the
root’s children. Denotations are computed recur-
sively and the denotation of a string at the leaf is
the string itself, i.e., JlK = l. This is closely re-
lated to “semantic functions” in semantic parsing
(Berant and Liang, 2015), except that we do not in-
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teract with a KB, but rather compute directly over
the breadth of the web through a search engine.

Figure 2 provides an example computation tree
for our running example. Notice that words at
the leaves are not necessarily in the original ques-
tion, e.g., “city” is paraphrased to “cities”. More
broadly, our framework allows paraphrasing ques-
tions in any way that is helpful for the function
SIMPQA(·). Paraphrasing for better interaction
with a QA model has been recently suggested by
Buck et al. (2017) and Nogueira and Cho (2016).

We defined the function SIMPQA(·) for an-
swering simple questions, but in fact it comprises
two components in this work. First, the question
is submitted to a search engine that retrieves a list
of web snippets. Next, a RC model extracts the
answer from the snippets. While it is possible to
train the RC model jointly with question decompo-
sition, in this work we pre-train it separately, and
later treat it as a black box.

The expressivity of our QA model is determined
by the functions used, which we turn to next.

3 Formal Language

Functions in our formal language take arguments
and return values that can be strings (when decom-
posing or re-phrasing the question), sets of strings,
or sets of numbers. Our set of functions includes:

1. SIMPQA(·): Model for answering simple
questions, which takes a string argument and
returns a set of strings or numbers as answer.

2. COMP(·, ·): This function takes a string con-
taining one unique variable VAR, and a set
of answers. E.g., in Figure 2 the first argu-
ment is “birthplace of VAR”, and the sec-
ond argument is “{KEN FOLLETT, ADAM

ZAGAJEWSKI}”. The function replaces the
variable with each answer string represen-
tation and returns their union. Formally,
COMP(q,A) = ∪a∈ASIMPQA(q/a), where
q/a denotes the string produced when re-
placing VAR in q with a. This is similar
to function composition in CCG (Steedman,
2000), or a join operation in λ-DCS (Liang,
2013), where the string is a function applied
to previously-computed values.

3. CONJ(·, ·): takes two sets and returns their
intersection. Other set operations can be de-
fined analogously. As syntactic sugar, we al-
low CONJ(·) to take strings as input, which
means that we run SIMPQA(·) to obtain a set

and then perform intersection. The root node
in Figure 2 illustrates an application of CONJ.

4. ADD(·, ·): takes two singleton sets of num-
bers and returns a set with their addition.
Similar functions can be defined analogously.
While we support mathematical operations,
they were not required in our dataset.

Other logical operations In semantic parsing
superlative and comparative questions like “What
is the highest European mountain?” or “What Eu-
ropean mountains are higher than Mont Blanc?”
are answered by joining the set of European moun-
tains with their elevation. While we could add
such functions to the formal language, answering
such questions from the web is cumbersome: we
would have to extract a list of entities and a numer-
ical value for each. Instead, we handle such con-
structions using SIMPQA directly, assuming they
are mentioned verbatim on some web document.

Similarly, negation questions (“What countries
are not in the OECD?”) are difficult to handle
when working against a search engine only, as this
is an open world setup and we do not hold a closed
set of countries over which we can perform set
subtraction.

In future work, we plan to interface with tables
(Pasupat and Liang, 2015) and KBs (Zhong et al.,
2017). This will allow us to perform set operations
over well-defined sets, and handle in a composi-
tional manner superlatives and comparatives.

4 Dataset

Evaluating our framework requires a dataset of
broad and complex questions that examine the im-
portance of question decomposition. While many
QA datasets have been developed recently (Yang
et al., 2015; Rajpurkar et al., 2016; Hewlett et al.,
2016; Nguyen et al., 2016; Onishi et al., 2016; Hill
et al., 2015; Welbl et al., 2017), they lack a focus
on the importance of question decomposition.

Most RC datasets contain simple questions that
can be answered from a short input document. Re-
cently, TRIVIAQA (Joshi et al., 2017) presented a
larger portion of complex questions, but still most
do not require reasoning. Moreover, the focus of
TRIVIAQA is on answer extraction from docu-
ments that are given. We, conversely, highlight
question decomposition for finding the relevant
documents. Put differently, RC is complemen-
tary to question decomposition and can be used
as part of the implementation of SIMPQA. In Sec-
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1. Seed Question

2. SPARQL

3. Machine-generated

4. Natural language

What movies have robert pattinson starred in?
ns:rebert_pattinson ns:film.actor.film ?c .
?c ns:film.performance.film ?x .
?x ns:film.film.produced_by ns:erwin_stoff

What movies have robert pattinson starred in and that 
was produced by Erwin Stoff?

Which Robert Pattinson film was produced by Erwin Stoff?

Figure 3: Overview of data collection process.

tion 6 we demonstrate that question decomposi-
tion is useful for two different RC approaches.

4.1 Dataset collection

To generate complex questions we use the dataset
WEBQUESTIONSSP (Yih et al., 2016), which
contains 4,737 questions paired with SPARQL
queries for Freebase (Bollacker et al., 2008).
Questions are broad but simple. Thus, we sample
question-query pairs, automatically create more
complex SPARQL queries, generate automatically
questions that are understandable to AMT work-
ers, and then have them paraphrase those into nat-
ural language (similar to Wang et al. (2015)). We
compute answers by executing complex SPARQL
queries against Freebase, and obtain broad and
complex questions. Figure 3 provides an example
for this procedure, and we elaborate next.

Generating SPARQL queries Given a
SPARQL query r, we create four types of
more complex queries: conjunctions, superlatives,
comparatives, and compositions. Table 1 gives the
exact rules for generation. For conjunctions, su-
perlatives, and comparatives, we identify queries
in WEBQUESTIONSSP whose denotation is a set
A, |A| ≥ 2, and generate a new query r′ whose
denotation is a strict subset A′,A′ ⊂ A,A′ 6= φ.
For conjunctions this is done by traversing the
KB and looking for SPARQL triplets that can
be added and will yield a valid set A′. For
comparatives and superlatives we find a numerical
property common to all a ∈ A, and add a triplet
and restrictor to r accordingly. For compositions,
we find an entity e in r, and replace e with a
variable y and add to r a triplet such that the
denotation of that triplet is {e}.

Machine-generated (MG) questions To have
AMT workers paraphrase SPARQL queries into
natural language, we need to present them in an
understandable form. Therefore, we automatically
generate a question they can paraphrase. When
we generate new SPARQL queries, new predi-

cates are added to the query (Table 1). We man-
ually annotated 687 templates mapping KB pred-
icates to text for different compositionality types
(with 462 unique KB predicates), and use those
templates to modify the original WebQuestionsSP
question according to the meaning of the gener-
ated SPARQL query. E.g., the template for ?x

ns:book.author.works written obj is “the au-
thor who wrote OBJ”. For brevity, we provide the
details in the supplementary material.

Question Rephrasing We used AMT workers
to paraphrase MG questions into natural language
(NL). Each question was paraphrased by one
AMT worker and validated by 1-2 other workers.
To generate diversity, workers got a bonus if the
edit distance of a paraphrase was high compared to
the MG question. A total of 200 workers were in-
volved, and 34,689 examples were produced with
an average cost of 0.11$ per question. Table 1
gives an example for each compositionality type.

A drawback of our method for generating data
is that because queries are generated automatically
the question distribution is artificial from a se-
mantic perspective. Still, developing models that
are capable of reasoning is an important direc-
tion for natural language understanding and COM-
PLEXWEBQUESTIONS provides an opportunity to
develop and evaluate such models.

To summarize, each of our examples contains
a question, an answer, a SPARQL query (that our
models ignore), and all web snippets harvested by
our model when attempting to answer the ques-
tion. This renders COMPLEXWEBQUESTIONS

useful for both the RC and semantic parsing com-
munities.

4.2 Dataset analysis

COMPLEXWEBQUESTIONS builds on the WE-
BQUESTIONS (Berant et al., 2013). Questions in
WEBQUESTIONS are usually about properties of
entities (“What is the capital of France?”), of-
ten with some filter for the semantic type of the
answer (“Which director”, “What city”). WE-
BQUESTIONS also contains questions that refer to
events with multiple entities (“Who did Brad Pitt
play in Troy?”). COMPLEXWEBQUESTIONS con-
tains all these semantic phenomena, but we add
four compositionality types by generating compo-
sition questions (45% of the times), conjunctions
(45%), superlatives (5%) and comparatives (5%).
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Composit. Complex SPARQL query r′ Example (natural language)

CONJ. r. ?x pred1 obj. or “What films star Taylor Lautner and have costume designs by Nina Proctor?”
r. ?x pred1 ?c. ?c pred2 obj.

SUPER. r. ?x pred1 ?n.ORDER BY DESC(?n) LIMIT 1 “Which school that Sir Ernest Rutherford attended has the latest founding date?”
COMPAR. r. ?x pred1?n. FILTER ?n < V “Which of the countries bordering Mexico have an army size of less than 1050?”
COMP. r[e/y]. ?y pred1obj. “Where is the end of the river that originates in Shannon Pot?”

Table 1: Rules for generating a complex query r′ from a query r (’.’ in SPARQL corresponds to logical and). The
query r returns the variable ?x, and contains an entity e. We denote by r[e/y] the replacement of the entity e with
a variable ?y. pred1 and pred2 are any KB predicates, obj is any KB entity, V is a numerical value, and ?c is a
variable of a CVT type in Freebase which refers to events. The last column provides an example for a NL question
for each type.

Figure 4: MG and NL questions similarity with nor-
malized edit-distance, and the DICE coefficient (bars
are stacked).

Paraphrasing To generate rich paraphrases, we
gave a bonus to workers that substantially modi-
fied MG questions. To check whether this worked,
we measured surface similarity between MG and
NL questions, and examined the similarity. Using
normalized edit-distance and the DICE coefficient,
we found that NL questions are different from MG
questions and that the similarity distribution has
wide support (Figure 4).

Figure 5: Heat map for similarity matrix between a
MG and NL question. The red line indicates a known
MG split point. The blue line is the approximated NL
split point.

We created a heuristic for approximating the
amount of word re-ordering performed by AMT
workers. For every question, we constructed a ma-
trix A, where Aij is the similarity between token
i in the MG question and token j in the NL ques-
tion. Similarity is 1 if lemmas match, or cosine
similarity according to GloVe embeddings (Pen-
nington et al., 2014), when above a threshold, and
0 otherwise. The matrix A allows us to estimate
whether parts of the MG question were re-ordered
when paraphrased to NL (details in supplementary
material). We find that in 44.7% of the conjunc-
tion questions and 13.2% of the composition ques-
tions, word re-ordering happened, illustrating that
substantial changes to the MG question have been
made. Figure 5 illustrates the matrix A for a pair
of questions with re-ordering.

Qualitative analysis We randomly sampled 100
examples from the development set and manually
identified prevalent phenomena in the data. We
present these types in Table 2 along with their fre-
quency. In 18% of the examples a conjunct in the
MG question becomes a modifier of a wh-word in
the NL question (WH-MODIFIER). In 22% sub-
stantial word re-ordering of the MG questions oc-
curred, and in 42% a minor word re-ordering oc-
curred (“number of building floors is 50” para-
phrased as “has 50 floors”). AMT workers used
a synonym in 54% of the examples, they omitted
words in 27% of the examples and they added new
lexical material in 29%.

To obtain intuition for operations that will be
useful in our model, we analyzed the 100 exam-
ples for the types of operations that should be ap-
plied to the NL question during question decom-
position. We found that splitting the NL question
is insufficient, and that in 53% of the cases a word
in the NL question needs to be copied to multiple
questions after decomposition (row 3 in Table 3).
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Type MG question NL question %

WH-MODIFIER what movies does leo howard play in and that is 113.0 Which Leo Howard movie lasts 113 minutes? 18%
minutes long?

MAJOR REORD. Where did the actor that played in the film Hancock 2 What high school did the actor go to who was in the movie 22%
go to high school? Hancock 2?

MINOR REORD. what to do and see in vienna austria What building in Vienna, Austria has 50 floors? 42%
and the number of building floors is 50?

SYNONYM where does the body of water under Kineshma Where does the body of water under Kineshma Bridge originate? 54%
Bridge start?

SKIP WORD what movies did miley cyrus play in and involves What movie featured Miley Cyrus and involved Cirkus? 27%
organization Cirkus?

ADD WORD what to do if you have one day in bangkok and Which amusement park, that happens to be the one that opened 29%
the place is an amusement park that opened earliest? earliest, should you visit if you have only one day to spend

in Bangkok?

Table 2: Examples and frequency of prevalent phenomena in the NL questions for a manually analyzed subset (see
text).

Moreover, words that did not appear in the MG
question need to be added in 39% of the cases, and
words need to be deleted in 28% of the examples.

5 Model and Learning

We would like to develop a model that translates
questions into arbitrary computation trees with ar-
bitrary text at the tree leaves. However, this re-
quires training from denotations using methods
such as maximum marginal likelihood or rein-
forcement learning (Guu et al., 2017) that are dif-
ficult to optimize. Moreover, such approaches in-
volve issuing large amounts of queries to a search
engine at training time, incurring high costs and
slowing down training.

Instead, we develop a simple approach in this
paper. We consider a subset of all possible compu-
tation trees that allows us to automatically gener-
ate noisy full supervision. In what follows, we de-
scribe the subset of computation trees considered
and their representation, a method for automati-
cally generating noisy supervision, and a pointer
network model for decoding.

Representation We represent computation trees
as a sequence of tokens, and consider trees with
at most one compositional operation. We denote
a sequence of question tokens qi:j = (qi, . . . , qj),
and the decoded sequence by z. We consider the
following token sequences (see Table 3):

1. SimpQA: The function SIMPQA is applied
to the question q without paraphrasing. In
prefix notation this is the tree SIMPQA(q).

2. Comp i j: This sequence of tokens corre-
sponds to the following computation tree:
COMP(q1:i−1◦VAR◦qj+1:|q|, SIMPQA(qi:j)),
where ◦ is the concatenation operator. This is
used for questions where a substring is an-
swered by SIMPQA and the answers replace

a variable before computing a final answer.
3. Conj i j: This sequence of tokens

corresponds to the computation tree
CONJ(SIMPQA(q0:i−1), SIMPQA(qj ◦
qi:|q|)). The idea is that conjunction can
be answered by splitting the question in a
single point, where one token is copied to
the second part as well (“film” in Table 3). If
nothing needs to be copied, then j = −1.

This representation supports one compositional
operation, and a single copying operation is al-
lowed without any re-phrasing. In future work,
we plan to develop a more general representation,
which will require training from denotations.

Supervision Training from denotations is diffi-
cult as it involves querying a search engine fre-
quently, which is expensive. Therefore, we take
advantage of the the original SPARQL queries
and MG questions to generate noisy programs for
composition and conjunction questions. Note that
these noisy programs are only used as supervision
to avoid the costly process of manual annotation,
but the model itself does not assume SPARQL
queries in any way.

We generate noisy programs from SPARQL
queries in the following manner: First, we au-
tomatically identify composition and conjunction
questions. Because we generated the MG ques-
tion, we can exactly identify the split points (i, j in
composition questions and i in conjunction ques-
tions) in the MG question. Then, we use a rule-
based algorithm that takes the alignment matrix A
(Section 4), and approximates the split points in
the NL question and the index j to copy in con-
junction questions. The red line in Figure 5 corre-
sponds to the known split point in the MG ques-
tion, and the blue one is the approximated split
point in the NL question. The details of this rule-
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Program Question Split
SimpQA “What building in Vienna, Austria has 50 floors” -
Comp 5 9 “Where is the birthplace of the writer of Standup Shakespeare” “Where is the birthplace of VAR”

“the writer of Standup Shakespeare”
Conj 5 1 “What film featured Taylor Swift and “What film featured Taylor Swift”

was directed by Deborah Aquila” “film and was directed by Deborah Aquila”

Table 3: Examples for the types of computation trees that can be decoded by our model.

based algorithm are in the supplementary material.
Thus, we obtain noisy supervision for all com-

position and conjunction questions and can train
a model that translates questions q to representa-
tions z = z1 z2 z3, where z1 ∈ {Comp,Conj}
and z2, z3 are integer indices.

Pointer network The representation z points to
indices in the input, and thus pointer networks
(Vinyals et al., 2015) are a sensible choice. Be-
cause we also need to decode the tokens COMP

and CONJ, we use “augmented pointer networks”,
(Zhong et al., 2017): For every question q, an aug-
mented question q̂ is created by appending the to-
kens “COMP CONJ” to q. This allows us to de-
code the representation z with one pointer network
that at each decoding step points to one token in
the augmented question. We encode q̂ with a one-
layer GRU (Cho et al., 2014), and decode z with a
one-layer GRU with attention as in Jia and Liang
(2016). The only difference is that we decode to-
kens from the augmented question q̂ rather than
from a fixed vocabulary.

We train the model with token-level cross-
entropy loss, minimizing

∑
j log pθ(zj |x, z1:j−1).

Parameters θ include the GRU encoder and de-
coder, and embeddings for unknown tokens (that
are not in pre-trained GloVe embeddings (Pen-
nington et al., 2014)).

The trained model decodes COMP and CONJ

representations, but sometimes using SIMPQA(q)
without decomposition is better. To handle such
cases we do the following: We assume that we al-
ways have access to a score for every answer, pro-
vided by the final invocation of SIMPQA (in CONJ

questions this score is the maximum of the scores
given by SIMPQA for the two conjuncts), and use
the following rule to decide if to use the decoded
representation z or SIMPQA(q). Given the scores
for answers given by z and the scores given by
SIMPQA(q), we return the single answer that has
the highest score. The intuition is that the confi-
dence provided by the scores of SIMPQA is corre-
lated with answer correctness. In future work we
will train directly from denotations and will han-

dle all logical functions in a uniform manner.

6 Experiments

In this section, we aim to examine whether ques-
tion decomposition can empirically improve per-
formance of QA models over complex questions.

Experimental setup We used 80% of the exam-
ples in COMPLEXWEBQUESTIONS for training,
10% for development, and 10% for test, training
the pointer network on 24,708 composition and
conjunction examples. The hidden state dimen-
sion of the pointer network is 512, and we used
Adagrad (Duchi et al., 2010) combined with L2

regularization and a dropout rate of 0.25. We
initialize 50-dimensional word embeddings using
GloVe and learn embeddings for missing words.

Simple QA model As our SIMPQA function,
we download the web-based QA model of Talmor
et al. (2017). This model sends the question to
Google’s search engine and extracts a distribution
over answers from the top-100 web snippets us-
ing manually-engineered features. We re-train the
model on our data with one new feature: for ev-
ery question q and candidate answer mention in a
snippet, we run RASOR, a RC model by lee et al.
(2016), and add the output logit score as a feature.
We found that combining the web-facing model of
Talmor et al. (2017) and RASOR, resulted in im-
proved performance.

Evaluation For evaluation, we measure preci-
sion@1 (p@1), i.e., whether the highest scoring
answer returned string-matches one of the correct
answers (while answers are sets, 70% of the ques-
tions have a single answer, and the average size of
the answer set is 2.3).

We evaluate the following models and oracles:
1. SIMPQA: running SIMPQA on the entire

question, i.e., without decomposition.
2. SPLITQA: Our main model that answers

complex questions by decomposition.
3. SPLITQAORACLE: An oracle model that

chooses whether to perform question decom-
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System Dev. Test
SIMPQA 20.4 20.8
SPLITQA 29.0 27.5
SPLITQAORACLE 34.0 33.7
RCQA 18.7 18.6
SPLITRCQA 21.5 22.0
GOOGLEBOX 2.5 -
HUMAN 63.0 -

Table 4: precision@1 results on the development set
and test set for COMPLEXWEBQUESTIONS.

position or use SIMPQA in hindsight based
on what performs better.

4. RCQA: This is identical to SIMPQA, except
that we replace the RC model from Talmor
et al. (2017) with the the RC model DOCQA
(Clark and Gardner, 2017), whose perfor-
mance is comparable to state-of-the-art on
TRIVIAQA.

5. SPLITRCQA: This is identical to SPLITQA,
except that we replace the RC model from
Talmor et al. (2017) with DOCQA.

6. GOOGLEBOX: We sample 100 random de-
velopment set questions and check whether
Google returns a box that contains one of the
correct answers.

7. HUMAN: We sample 100 random develop-
ment set questions and manually answer the
questions with Google’s search engine, in-
cluding all available information. We limit
the amount of time allowed for answering to
4 minutes.

Table 4 presents the results on the development
and test sets. SIMPQA, which does not decom-
pose questions obtained 20.8 p@1, while by per-
forming question decomposition we substantially
improve performance to 27.5 p@1. An upper
bound with perfect knowledge on when to decom-
pose is given by SPLITQAORACLE at 33.7 p@1.

RCQA obtained lower performance SIMPQA,
as it was trained on data from a different distri-
bution. More importantly SPLITRCQA outper-
forms RCQA by 3.4 points, illustrating that this
RC model also benefits from question decomposi-
tion, despite the fact that it was not created with
question decomposition in mind. This shows the
importance of question decomposition for retriev-
ing documents from which an RC model can ex-
tract answers. GOOGLEBOX finds a correct an-
swer in 2.5% of the cases, showing that complex
questions are challenging for search engines.

To conclude, we demonstrated that question de-

composition substantially improves performance
on answering complex questions using two inde-
pendent RC models.

Analysis We estimate human performance
(HUMAN) at 63.0 p@1. We find that answering
complex questions takes roughly 1.3 minutes on
average. For questions we were unable to answer,
we found that in 27% the answer was correct but
exact string match with the gold answers failed;
in 23.1% the time required to compute the answer
was beyond our capabilities; for 15.4% we could
not find an answer on the web; 11.5% were of
ambiguous nature; 11.5% involved paraphrasing
errors of AMT workers; and an additional 11.5%
did not contain a correct gold answer.

SPLITQA decides if to decompose questions or
not based on the confidence of SIMPQA. In 61%
of the questions the model chooses to decompose
the question, and in the rest it sends the question
as-is to the search engine. If one of the strategies
(decomposition vs. no decomposition) works, our
model chooses that right one in 86% of the cases.
Moreover, in 71% of these answerable questions,
only one strategy yields a correct answer.

We evaluate the ability of the pointer network
to mimic our labeling heuristic on the develop-
ment set. We find that the model outputs the ex-
act correct output sequence 60.9% of the time, and
allowing errors of one word to the left and right
(this often does not change the final output) accu-
racy is at 77.1%. Token-level accuracy is 83.0%
and allowing one-word errors 89.7%. This shows
that SPLITQA learned to identify decomposition
points in the questions. We also observed that of-
ten SPLITQA produced decomposition points that
are better than the heuristic, e.g., for “What is the
place of birth for the lyricist of Roman Holiday”,
SPLITQA produced “the lyricist of Roman Hol-
iday”, but the heuristic produced “the place of
birth for the lyricist of Roman Holiday”. Addi-
tional examples of SPLITQA question decompo-
sitions are provided in Table 5.

ComplexQuestions To further examine the abil-
ity of web-based QA models, we run an experi-
ment against COMPLEXQUESTIONS (Bao et al.,
2016), a small dataset of question-answer pairs de-
signed for semantic parsing against Freebase.

We ran SIMPQA on this dataset (Table 6) and
obtained 38.6 F1 (the official metric), slightly
lower than COMPQ, the best system, which op-
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Question Split-1 Split-2
“Find the actress who played Hailey Rogers, “the actress who played Hailey Rogers” “Find VAR , what label is she signed to”
what label is she signed to”
“What are the colors of the sports team whose “the sports team whose arena stadium “What are the colors of VAR”
arena stadium is the AT&T Stadium” is the AT&T Stadium”
“What amusement park is located in Madrid “What amusement park is located in “park includes the stunt fall ride”
Spain and includes the stunt fall ride” Madrid Spain and”
“Which university whose mascot is “Which university whose mascot is “university Derek Fisher attend”
The Trojan did Derek Fisher attend” The Trojan did”

Table 5: Examples for question decompositions from SPLITQA.

System Dev. F1 Test F1

SIMPQA 40.7 38.6
SPLITQARULE 43.1 39.7
SPLITQARULE++ 46.9 -
COMPQ - 40.9

Table 6: F1 results for COMPLEXQUESTIONS.

erates directly against Freebase. 2 By analyzing
the training data, we found that we can decom-
pose COMP questions with a rule that splits the
question when the words “when” or “during” ap-
pear, e.g., “Who was vice president when JFK was
president?”.3 We decomposed questions with this
rule and obtained 39.7 F1 (SPLITQARULE). An-
alyzing the development set errors, we found that
occasionally SPLITQARULE returns a correct an-
swer that fails to string-match with the gold an-
swer. By manually fixing these cases, our devel-
opment set F1 reaches 46.9 (SPLITQARULE++).
Note that COMPQ does not suffer from any string
matching issue, as it operates directly against the
Freebase KB and thus is guaranteed to output the
answer in the correct form. This short experiment
shows that a web-based QA model can rival a se-
mantic parser that works against a KB, and that
simple question decomposition is beneficial and
leads to results comparable to state-of-the-art.

7 Related work

This work is related to a body of work in seman-
tic parsing and RC, in particular to datasets that
focus on complex questions such as TRIVIAQA
(Joshi et al., 2017), WIKIHOP (Welbl et al., 2017)
and RACE (Lai et al., 2017). Our distinction is in
proposing a framework for complex QA that fo-
cuses on question decomposition.

Our work is related to Chen et al. (2017) and
Watanabe et al. (2017), who combined retrieval
and answer extraction on a large set of documents.
We work against the entire web, and propose ques-

2By adding the output logit from RASOR, we improved
test F1 from 32.6, as reported by Talmor et al. (2017), to 38.6.

3The data is too small to train our decomposition model.

tion decomposition for finding information.
This work is also closely related to Dunn et al.

(2017) and Buck et al. (2017): we start with ques-
tions directly and do not assume documents are
given. Buck et al. (2017) also learn to phrase ques-
tions given a black box QA model, but while they
focus on paraphrasing, we address decomposition.

Another important related research direction is
Iyyer et al. (2016), who answered complex ques-
tions by decomposing them. However, they used
crowdsourcing to obtain direct supervision for the
gold decomposition, while we do not assume such
supervision. Moreover, they work against web
tables, while we interact with a search engine
against the entire web.

8 Conclusion

In this paper we propose a new framework for
answering complex questions that is based on
question decomposition and interaction with the
web. We develop a model under this framework
and demonstrate it improves complex QA perfor-
mance on two datasets and using two RC mod-
els. We also release a new dataset, COMPLEXWE-
BQUESTIONS, including questions, SPARQL pro-
grams, answers, and web snippets harvested by
our model. We believe this dataset will serve the
QA and semantic parsing communities, drive re-
search on compositionality, and push the commu-
nity to work on holistic solutions for QA.

In future work, we plan to train our model di-
rectly from weak supervision, i.e., denotations,
and to extract information not only from the web,
but also from structured information sources such
as web tables and KBs.
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Abstract 

We introduce MeSys, a meaning-based ap-
proach, for solving English math word 
problems (MWPs) via understanding and 
reasoning in this paper. It first analyzes the 
text, transforms both body and question 
parts into their corresponding logic forms, 
and then performs inference on them. The 
associated context of each quantity is rep-
resented with proposed role-tags (e.g., 
nsubj, verb, etc.), which provides the flex-
ibility for annotating an extracted math 
quantity with its associated context infor-
mation (i.e., the physical meaning of this 
quantity). Statistical models are proposed 
to select the operator and operands. A 
noisy dataset is designed to assess if a 
solver solves MWPs mainly via under-
standing or mechanical pattern matching. 
Experimental results show that our ap-
proach outperforms existing systems on 
both benchmark datasets and the noisy da-
taset, which demonstrates that the pro-
posed approach understands the meaning 
of each quantity in the text more. 

1 Introduction 

The math word problem (MWP) (see Figure 1) is 
frequently chosen to study natural language un-
derstanding and simulate human problem solving 
(Bakman, 2007; Hosseini et al., 2014; Liang et 
al., 2016) for the following reasons: (1) the an-
swer to the MWP cannot be simply extracted by 
performing keyword/pattern matching. It thus 
shows the merit of understanding and inference. 

(2) An MWP usually possesses less complicated 
syntax and requires less amount of domain 
knowledge, so the researchers can focus on the 
task of understanding and reasoning. (3) The 
body part of MWP that provides the given infor-
mation for solving the problem consists of only a 
few sentences. The understanding and reasoning 
procedures thus could be more efficiently 
checked. (4) The MWP solver has its own appli-
cations such as Computer Math Tutor (for stu-
dents in primary school) and Helper for Math in 
Daily Life (for adults who are not good in solving 
mathematics related real problems). 

According to the approaches used to identify 
entities, quantities, and to select operations and 
operands, previous MWP solvers can be classified 
into: (1) Rule-based approaches (Mukherjee and 
Garain, 20081; Hosseini et al., 2014), which make 
all related decisions based on a set of rules; (2) 
Purely statistics-based approaches (Kushman et 
al., 2014; Roy et al., 2015; Zhou et al., 2015;  
Upadhyay et al., 2016), in which all related deci-
sions are done via a statistical classifier; (3) DNN-
based approaches (Ling et al., 2017; Wang et al., 
2017), which map the given text into the corre-
sponding math operation/equation via a DNN; and 
(4) Mixed approaches, which identify entities and 
quantities with rules, yet, decide operands and op-
erations via statistical/DNN classifiers. This cate-
gory can be further divided into two subtypes: (a) 
Without understanding (Roy and Roth, 2015; 
Koncel-Kedziorski et al., 2015; Huang et al., 
2017; Shrivastava et al., 2017), which does not 
check the entity-attribute consistency between 
each quantity and the target of the given question; 
and (b) With understanding (Lin et al., 2015; Mi-
tra and Baral, 2016; Roy and Roth, 2017), which 
also checks the entity-attribute consistency while 
solving the problem. 
                                                      
1 It is a survey paper which reviews most of the rule-based 
approaches before 2008. 

Math Word Problem 
Mike takes 88 minutes to walk to school. If he rides 
a bicycle to school, it would save him 64 minutes. 
How much time did Mike save? 

Solution 
88 – 64 = 22 

Figure 1: An example of math word problem. 
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However, a widely covered rule-set is difficult 
to construct for the rule-based approach. Also, it is 
awkward in resolving ambiguity problem. In con-
trast, the performance of purely statistics-based 
approaches deteriorates significantly when the 
MWP includes either irrelevant information or in-
formation gaps (Hosseini et al., 2014), as it is 
solved without first understanding the meaning. 

For the category (4a), since the physical mean-
ing is only implicitly utilized and the result is not 
generated via inference, it would be difficult to 
explain how the answer is obtained in a human 
comprehensible way. Therefore, the categories 
(2), (3) and (4a) belong to the less favored direct 
translation approach2  (Pape, 2004). 

In contrast, the approaches of (4b) can avoid 
the problems mentioned above. However, among 
them, Mitra and Baral (2016) merely handled Ad-
dition and Subtraction. Only the meaning-based 
framework proposed by Lin et al. (2015) can han-
dle general MWPs via understanding and reason-
ing. Therefore, it is possible to explain how the 
answer is obtained in a human comprehensible 
way (Huang et al., 2015). However, although their 
design looks promising, only a few Chinese 
MWPs had been tested and performance was not 
evaluated. Accordingly, it is hard to make a fair 
comparison between their approach and other 
state-of-the-art methods. In addition, in their pro-
totype system, the desired operands of arithmetic 
operations are identified with predefined lexico-
syntactic patterns and ad-hoc rules. Reusing the 
patterns/rules designed for Chinese in another 
language is thus difficult even if it is possible. 

In this paper, we adopt the framework proposed 
by Lin et al. (2015) to solve English MWPs (for 
its potential in solving difficult/complex MWPs 
and providing more human comprehensible ex-
planations). Additionally, we make the following 
improvements: (1) A new statistical model is pro-
posed to select operands for arithmetic operations, 
and its model parameters can be automatically 
learnt via weakly supervised learning (Artzi and 
Zettlemoyer, 2013). (2) A new informative and 
robust feature-set is proposed to select the desired 
arithmetic operation. (3) We show the proposed 
approach significantly outperforms other existing 
systems on the common benchmark datasets re-
ported in the literature. (4) A noisy dataset with 
                                                      
2 According to (Pape, 2004), the meaning-based approach of 
solving MWPs achieves the best performance among vari-
ous behaviors adopted by middle school children. 

more irrelevant quantities in MWPs is created and 
released. It could be used to check if an approach 
really understands what a given MWP looks for. 
(5) An experiment is conducted to compare vari-
ous approaches on this new dataset. The superior 
performance of our system demonstrates that the 
proposed meaning-based approach has good po-
tential in handling difficult/complex MWPs. 

2 System Description 

The adopted meaning-based framework (Lin et 
al., 2015) is a pipeline with following four stages 
(see Figure 2): (1) Language Analysis, (2) Solu-
tion Type Identification, (3) Logic Form Trans-
formation and (4) Logic Inference. We use the 
Stanford CoreNLP suite (Manning et al., 2014) as 
the language analysis module. The other three 
modules are briefly described below. Last, we 
adopt the weakly supervised learning (Artzi and 
Zettlemoyer, 2013; Kushman et al., 2014) to au-
tomatically learn the model parameters without 
manually annotating each MWP with the adopted 
solution type and selected operands benchmark. 

2.1 Solution Type Identification (STI) 

After language analysis, each MWP is assigned 
with a specific solution type (such as Addition, 
Multiplication, etc.) which indicates the stereo-
type math operation pattern that should be adopt-
ed to solve this problem. We classify the English 
MWPs released by Hosseini et al. (2014) and Roy 
and Roth (2015) into 6 different types: Addition, 
Subtraction, Multiplication, Division, Sum and 
TVQ-F3. An SVM (Chang and Lin, 2011) is used 
to identify the solution type with 26 features. Most 
of them are derived from some important proper-
ties associated with each quantity. 

                                                      
3 TVQ-F means to get the final state of a Time-Variant-
Quantity that involves both Addition and Subtraction. 

 
Figure 2: The diagram of MeSys framework 
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In addition to the properties Entity4 and Verb 
(Hosseini et al., 2014) associated with the quanti-
ty, we also introduce a new property Time which 
encodes the tense and aspect of a verb into an in-
teger to specify a point in the timeline.  We assign 
2, 4, and 6 to the tenses Past, Present and Future, 
respectively, and then adjust it with the aspect-
values -1, 0 and 1 for Perfect, Simple, and Pro-
gressive, respectively. 

Another property Anchor is associated with the 
unknown quantity asked in the question sentence. 
If the subject of the question sentence is a noun 
phrase (e.g., “how many apples does John 
have?”), Anchor is the subject (i.e., John). If the 
subject is an expletive nominal (e.g. “how many 
apples are there in the box?”), then Anchor is the 
associated nominal modifier nmod (i.e., “box”).  
Otherwise, Anchor is set to “Unknown”. 

Inspired by (Hosseini et al., 2014), we trans-
form Verb to Verb-Class (VC) which is positive, 
negative or stative. A verb is positive/negative if it 
increases/decreases the associated quantity of the 
subject. For example, in the sentence “Tom bor-
rowed 3 dollars from Mike”, the verb is positive 
because the money of subject “Tom” increases. 

However, a positive verb does not always imply 
the Addition operation. If the question is “How 
much money does Mike have now?” for the above 
body sentence, the operation should be Subtrac-
tion. Two new properties Anchor-Role (AR) and 
Action (A) are thus proposed: ARi indicates the 
role that Anchor associated with qi, and is set to 
nsubj/obj/nmod/φ. Ai is determined by following 
rules: (1) Ai=positive if (VCi, ARi) is either (posi-
tive, nsubj) or (negative, obj/nmod). (2) 
Ai=negative if (VCi, ARi) is either (negative, 

                                                      
4 In our works, the term “Entity” also includes the unit of 
the quantity (e.g., “cup of coffee”). 

nsubj) or (positive, obj/nmod). (3) Otherwise,  
Ai=VCi. 

To rule out the noisy quantities introduced by 
irrelevant information, we further associate each 
known quantity with the property Relevance (R) 
according to the unknown quantity asked in the 
question sentence. Let qi denote the i-th known 
quantity, Ei denote the entity of qi, Xi denote the 
property X of qi, qU denote the unknown quantity 
asked, and XU denote the property X of qU. Ri is 
specified with following rules: (1) Ri=2 (Directly-
Related) if either {Anchor is Unknown & Ei en-
tails EU} or {Anchor is not Unknown & ARi≠φ & 
Ei entails EU} (2) Ri=1 (Indirectly-Related) if 
there is a qj which maps5 to  qi and Rj=2 (i.e., qj is 
Directly-Related). (3) Ri=0 (Unrelated) otherwise. 

The solution type is identified by an SVM 
based on 26 binary features. Let the symbols p, n, 
s, A, E, R, T, V, SB, SQ and wQ stand for positive, 
negative, stative, Action, Entity, Relevance, Time, 
Verb, “a body sentence”, “the question sentence” 
and “a word in question sentence” respectively. 
Also, let I(x) be the indicator function to check if x 
is true. The 26 features are briefly described as 
follows: 

(1) VCU=p;  (2) ∃Ri=2 s.t. Ai=p;  (3) ∃Ri=2 s.t. Ai=n;   
(4) ∃Ri=2 s.t. Ai=s;  (5) ∑𝑖𝑖 I( Ri =2) > 2;  
(6) ∑𝑖𝑖 I( Ri=2 & Ai ∈{p, n} ) = 2; 
(7) ∃Ri=2 s.t. Ai=p & TU<Ti; 
(8) ∃Ri=2 s.t. Ai=n & TU<Ti;   
(9) ∃Ri=2 s.t. Ai=s & Ti=max Tj; 
(10) ∃Ri=2 s.t. Ai=s & Ti<TU; 
(11) TU ≥ max Ti;   (12) TU ≤ min Ti;   
(13) ∀Ri=2, Vi are the same;  (14) ∀Ri=2 s.t. Ti=TU;   
(15) ∀Ri=2, Ti are the same;  
(16) ∃Ri=2, ∃Rj=1 s.t. qi maps to qj & qi > qj; 

                                                      
5 That is, 𝑞𝑞𝑖𝑖 is linked to a directly-related quantity 𝑞𝑞𝑗𝑗 under 
an expression such as “2 pencils weigh 30 grams”. 

 
Figure 3: An example of logic form transformation 
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(17) ∃Ri=2, ∃Rj=1 s.t. qi maps to qj & qi is associated 
with a word “each/every/per/a/an”;  

(18) ∃Ri=2, ∃Rj=1 s.t. qi maps to qj & qj is associated 
with a word “each/every/per/a/an”;  

(19) ∃qi, qj, qk s.t. Ri = Rj = Rk =2 & Vi = Vj = Vk;  
(20) ∃wQ ∈{total, in all, altogether, sum};  
(21) ∃wQ ∈{more, than} or ∃wQ s.t. wQ-POS=RBR;   
(22) ∃wQ =“left”;  (23). ∃qi appears in SQ; 
(24) “the rest V EU” appears in SB (V for any verb); 
(25) “each NN” appears in SQ (NN for any noun); 

(26) AnchorU is Unknown/nmod & VCU = s. 

2.2 Logic Form Transformation (LFT) 

The results of language analysis are transformed 
into a logic form, which is expressed with the 
first-order logic (FOL) formalism (Russell and 
Norvig, 2009). Figure 3 shows how to transform 
the sentence (a) “Pack 100 candies into 5 boxes.” 
into the corresponding logic form (d). First, the 
dependency tree (b) is transformed into the se-
mantic representation tree (c) adopted by Lin et 
al., (2015). Afterwards, according to the procedure 
proposed in (Lin et al., 2015), the domain-
dependent logic expressions are generated in (d). 

The domain-dependent logic expressions are 
related to crucial generic math facts, such as quan-
tities and relations between quantities. The FOL 
function quan(quanid, unit6,entity)=number is for 
describing the quantity fact. The first argument 
denotes its unique identifier. The other arguments 
and the function value describe its meaning. An-
other FOL predicate qmap(mapid, quanid1, quanid2) 
(denotes the mapping from quanid1 to quanid2) is 
for describing a relation between two quantity 
facts, where the first argument is a unique identi-
fier to represent this relation. 

The role-tags (e.g., verb, dobj, etc.) associated 
with  quanid  and  mapid  denote  entity  attributes 
(i.e., the physical meaning of the quantity), are 
created to help the logic inference module find the 
                                                      
6 This second argument denotes the associated unit used to 
count the entity. It is set to “#” if the unit of the entity is not 
specified. 

solution. For example, quan(q2,#,box) = 5 & 
verb(q2,pack) &… means that q2 is the quantity of 
boxes being packed. With those role-tags, the sys-
tem can select the operands more reliably, and the 
inference engine can also derive new quantities to 
solve complex MWPs which require multi-step 
arithmetic operations (see section 2.3). 

The question in the MWP is also transformed 
into an FOL-like utility function according to the 
solution type to ask the logic inference module to 
find out the answer. For example, the utility func-
tion instance Division(quan(q1, #, candy), 
quan(q2, #, box)) asks the inference module to di-
vide “100 candies” by “5 boxes”. Since associated 
operands must be specified before calling those 
utility functions, a statistical model (see section 
2.4) is used to identify the appropriate quantities. 

2.3 Logic Inference 

The logic inference module adopts the inference 
engine from (Lin et al., 2015). Figure 4 shows how 
it uses inference rules to derive new facts from the 
initial facts directly provided from the description. 
The MWP (a) provides some facts (b) generated 
from the LFT module. An inference rule (c) 7 , 
which implements the common sense that people 
must pay money to buy something, is unified with 
the given facts (b) and derives new facts (d). The 
facts associated with q6 can be interpreted as 
“Mary paid 0.5 dollar for two puddings”. 

The inference engine (IE) also provides 5 utili-
ty functions, including Addition, Subtraction, 
Multiplication and Division, and Sum. The first 
four utilities all return a value by performing the 
named math operation on its two input arguments. 
On the other hand, Sum(function,condition) re-
turns the sum of the values of FOL function in-
stances which can be unified with the first argu-
ment (i.e., function) and satisfy the second argu-
ment (i.e., condition). For example, according to 
                                                      
7 In the inference rule, $q is a meta symbol to ask the infer-
ence engine to generate a unique identifier for the newly de-
rived quantity fact. 

(a) A sandwich is priced at $0.75. A pudding is priced at $0.25. Tim bought 2 sandwiches and 4 puddings. Mary bought 2 puddings. 
How much money should Tim pay? 

(b) …price(sandwich,0.75)&price(pudding,0.25)…   quan(q1,#,sandwich)=2&verb(q1,buy)&nsubj(q1,Tim)… 
quan(q2,#,pudding)=4&verb(q2,buy)&nsubj(q2,Tim)…   quan(q3,#,pudding)=2&verb(q3,buy)&nsubj(q3,Mary)… 
ASK Sum(quan(?q,dollar,#),verb(?q,pay)&nsubj(?q,Tim)) 

(c) quan(?q,?u,?o)&verb(?q,buy)&nsubj(?q,?a)&price(?o,?p)  quan($q,dollar,#)=quan(?q,?u,?o)×?p & verb($q,pay) & nsubj($q,?a) 
(d) quan(q4,dollar,#)=1.5&verb(q4,pay)&nsubj(q4,Tim)…   quan(q5,dollar,#)=1&verb(q5,pay)&nsubj(q5,Tim)… 

quan(q6,dollar,#)=0.5&verb(q6,pay)&nsubj(q6,Mary) 
Figure 2: A logic inference example 

(a) A sandwich is priced at $0.75. A pudding is priced at $0.25. Tim bought 2 sandwiches and 4 puddings. Mary bought 2 puddings. 
How much money should Tim pay? 

(b) …price(sandwich,0.75)&price(pudding,0.25)…   quan(q1,#,sandwich)=2&verb(q1,buy)&nsubj(q1,Tim)… 
quan(q2,#,pudding)=4&verb(q2,buy)&nsubj(q2,Tim)…   quan(q3,#,pudding)=2&verb(q3,buy)&nsubj(q3,Mary)… 
ASK Sum(quan(?q,dollar,#),verb(?q,pay)&nsubj(?q,Tim)) 

(c) quan(?q,?u,?o)&verb(?q,buy)&nsubj(?q,?a)&price(?o,?p)  quan($q,dollar,#)=quan(?q,?u,?o)×?p & verb($q,pay) & nsubj($q,?a) 
(d) quan(q4,dollar,#)=1.5&verb(q4,pay)&nsubj(q4,Tim)…   quan(q5,dollar,#)=1&verb(q5,pay)&nsubj(q5,Tim)… 

quan(q6,dollar,#)=0.5&verb(q6,pay)&nsubj(q6,Mary) 
Figure 4: A logic inference example 

655



 
 
 
 

   

the last line in Figure 4(b), three newly derived 
quantity facts q4, q5 and q6 (in 4(d)) can be uni-
fied with the first argument quan(?q,dollar,#) in 
4(c), but only q4 and q5 satisfy the second ar-
gument verb(?q,pay)&nsubj(?q,Tim). As a result, 
the answer 2.5 is returned by taking sum on the 
values of the quantity facts quan(q4,dollar,#) and 
quan(q5,dollar,#).  

2.4 Probabilistic Operand Selection 

The most error-prone part in the LFT module is 
instantiating the utility function of math operation 
especially if many irrelevant quantity facts appear 
in the given MWP. Figure 5 shows the LFT mod-
ule needs to select two quantity facts (among 4) 
for Addition. Please note that the question quantity 
qQ, transformed from “how many flowers”, is not a 
candidate for operand selection. 

Lin et al., (2015) used predefined lexico-
syntactic patterns and ad-hoc rules to instantiate 
utility functions. However, their rule-based ap-
proach fails when the MWP involves more quanti-
ties. Therefore, we propose a statistical model to 
select operands for the utility functions Addition, 
Subtraction, Multiplication and Division. The op-
erand selection procedure can be regarded as find-
ing the most likely configuration (𝑜𝑜1𝑛𝑛, 𝑟𝑟), where 
𝑜𝑜1𝑛𝑛 = 𝑜𝑜1,⋯ , 𝑜𝑜𝑛𝑛  is a sequence of random indica-
tors which denote if the corresponding quantity 
will be selected as an operand, and 𝑟𝑟 is a tri-state 
variable to represent the relation between the val-
ues of two operands (i.e., 𝑟𝑟 = −1, 0 or 1 ; which 
denote that the first operand is less than, equal to, 
or greater than the second operand, respectively). 
Given a solution type 𝑠𝑠, the MWP logic expres-
sions 𝕃𝕃 and the 𝑛𝑛 quantities 𝑞𝑞1𝑛𝑛 = 𝑞𝑞1,⋯ , 𝑞𝑞𝑛𝑛  in 𝕃𝕃. 
The procedure is formulated as: 

𝑃𝑃(𝑟𝑟, 𝑜𝑜1𝑛𝑛|𝑞𝑞1𝑛𝑛,𝕃𝕃, 𝑠𝑠) ≈ 𝑃𝑃(𝑟𝑟|𝑠𝑠) × 𝑃𝑃(𝑜𝑜1𝑛𝑛|𝑞𝑞1𝑛𝑛,𝕃𝕃, 𝑠𝑠), (1) 

𝑃𝑃(𝑟𝑟|𝑠𝑠) simply refers to Relative Frequency (as it 
has only a few parameters and we have enough 
training samples).  𝑃𝑃(𝑜𝑜1𝑛𝑛|𝑞𝑞1𝑛𝑛,𝕃𝕃, 𝑠𝑠)  is further de-
rived as: 

𝑃𝑃(𝑜𝑜1𝑛𝑛|𝑞𝑞1𝑛𝑛,𝕃𝕃, 𝑠𝑠)
≈ ∏ 𝑃𝑃(𝑜𝑜𝑖𝑖|𝑞𝑞𝑖𝑖 ,𝕃𝕃, 𝑠𝑠)𝑛𝑛

𝑖𝑖=1 ≈ ∏ 𝑃𝑃�𝑜𝑜𝑖𝑖�Φ(𝑞𝑞𝑖𝑖 ,𝕃𝕃, 𝑠𝑠)�,𝑛𝑛
𝑖𝑖=1

  (2) 

where Φ(∙) is a feature extraction function to map 
𝑞𝑞𝑖𝑖 and its context into a feature vector. Here, the 
probabilistic factor 𝑃𝑃�𝑜𝑜𝑖𝑖�Φ(𝑞𝑞𝑖𝑖,𝕃𝕃, 𝑠𝑠)�  is obtained 
via an SVM classifier (Chang and Lin, 2011). 
Φ(∙) extracts total 25 features (specified as fol-

lows, and 24 of them are binary) for 𝑞𝑞𝑖𝑖. The fol-
lowing 11 of them are independent on the ques-
tion in the MWP: 

1. Four features to indicate if 𝑠𝑠 is Addition, Sub-
traction, Multiplication or Division. 

2. A feature to indicate if 𝑞𝑞𝑖𝑖  is within a 
qmap(…). 

3. A feature to indicate if 𝑞𝑞𝑖𝑖 = 1. 
4. Five features to indicate if 𝑛𝑛 < 2, 𝑛𝑛 = 2, 𝑛𝑛 =

3, 𝑛𝑛 = 4 or 𝑛𝑛 > 4; where 𝑛𝑛 is the number of 
quantities in Eq (1). 

Φ(∙) also extracts features by matching the logic 
expressions of 𝑞𝑞𝑖𝑖 with those of question quantity 
qQ to check the role-tag consistencies between 𝑞𝑞𝑖𝑖 
and qQ. Another fourteen features are extracted 
with three indicator functions 𝐼𝐼𝑚𝑚(⋅), 𝐼𝐼𝑒𝑒(⋅),
𝐼𝐼∃(⋅) and one tri-state function 𝑇𝑇𝑚𝑚(⋅) as follows: 

[ 𝐼𝐼𝑚𝑚(𝑞𝑞𝑖𝑖 , qQ, entity), 𝐼𝐼𝑒𝑒(𝑞𝑞𝑖𝑖 , qQ, entity),
 𝐼𝐼𝑚𝑚(𝑞𝑞𝑖𝑖 , qQ, verb), 𝐼𝐼𝑒𝑒(𝑞𝑞𝑖𝑖 , qQ, verb),
 𝐼𝐼∃(qQ, nsubj),𝑇𝑇𝑚𝑚(𝑞𝑞𝑖𝑖 , qQ, nsubj),
 𝐼𝐼∃(qQ, modifier), 𝐼𝐼𝑚𝑚(𝑞𝑞𝑖𝑖 , qQ, modifier),   
 𝐼𝐼∃(qQ, place), 𝐼𝐼𝑚𝑚(𝑞𝑞𝑖𝑖 , qQ, place),
 𝐼𝐼∃(qQ, temporal), 𝐼𝐼𝑚𝑚(𝑞𝑞𝑖𝑖 , qQ, temporal),
 𝐼𝐼∃(qQ, xcomp), 𝐼𝐼𝑚𝑚(𝑞𝑞𝑖𝑖 , qQ, xcomp) ]

 

where the indicator functions 𝐼𝐼𝑚𝑚(𝑥𝑥,𝑦𝑦, 𝑧𝑧) checks if 
the 𝑧𝑧 of 𝑥𝑥 matches the 𝑧𝑧 of 𝑦𝑦, 𝐼𝐼𝑒𝑒(𝑥𝑥,𝑦𝑦, 𝑧𝑧) checks if 
the 𝑧𝑧 of 𝑥𝑥 entails the 𝑧𝑧 of 𝑦𝑦 and 𝐼𝐼∃(𝑦𝑦, 𝑧𝑧) checks if 
the 𝑧𝑧 of 𝑦𝑦 exists. 𝑇𝑇𝑚𝑚(𝑞𝑞𝑖𝑖, qQ, nsubj) returns “exact-
match” (if nsubj of 𝑞𝑞𝑖𝑖  matches nsubj of qQ ), 
“quasi-match” (if nsubj of qQ does not exist or is a 
plural pronoun), and “unmatch”. 
𝐼𝐼𝑒𝑒(⋅)  uses the WordNet hypernym and 

hyponym relationship to judge whether one 
entity/verb entails another one or not via checking 
if they are in an inherited hypernym-path in 
WordNet. The entity, verb and nsubj of a quantity 
are determined according to the logic expressions. 
The modifier, place, temporal and xcomp of a 
quantity are extracted from the dependency tree 
with some lexico-syntactic patterns. For example, 
the modifier and place of the quantity in the 
sentence “There are 30 red flowers in the garden.” 
are “red” and “garden” respectively. The temporal 

(a)  Tim bought 2 roses and 3 lilies. Mary bought 4 roses 
and 5 lilies. How many flowers did Tim buy? 

(b) quan(q1,#,rose)=2&verb(q1,buy)&nsubj(q1,Tim)… 
quan(q2,#,lily)=3&verb(q2,buy)&nsubj(q2,Tim)… 
quan(q3,#,rose)=4&verb(q3,buy)&nsubj(q3,Mary)… 
quan(q4,#,lily)=5&verb(q4,buy)&nsubj(q4,Mary)… 
quan(qQ,#,flower)&verb(qQ,buy)&nsubj(qQ,Tim)… 

Figure 5: An example for operand selection 
 

656



 
 
 
 

   

and xcomp of a quantity are extracted according to 
the dependency relations “tmod” (i.e., temporal 
modifier) and “xcomp” (i.e., open clausal 
complement), respectively. 

3 Datasets for Performance Evaluation  

The AI2 dataset provided by Hosseini et al. (2014) 
and the IL dataset released by Roy and Roth 
(2015) are adopted to compare our approach with 
other state-of-the-art methods. The AI2 dataset 
has 395 MWPs on addition and subtraction, with 
121 MWPs containing irrelevant information 
(Hosseini et al., 2014). It is the most popular one 
for comparing different approaches. On the other 
hand, the IL dataset consists of 562 elementary 
MWPs which can be solved by one of the four 
arithmetic operations (i.e., +, −, ×, and ÷) without 
any irrelevant quantity. It is the first publicly 
available dataset for comparing performances that 
covers all four arithmetic operations. 

However, the difficulty of solving an MWP de-
pends not only on the number of arithmetic opera-
tions required, but also on how many irrelevant 
quantities inside, and even on how the quantities 
are described. One way to test if a proposed ap-
proach solves the MWPs with understanding is to 
check whether it is robust to those irrelevant quan-
tities. Therefore, it is desirable to have a big 
enough dataset that contains irrelevant quantities 
which are created under different situations (e.g., 
confusing with an irrelevant agent, entity, or mod-
ifier, etc.) and allow us to probe the system weak-
ness from different angles. We thus create a new 
dataset with more irrelevant quantities8. But be-
fore we do that, we need to know how difficult the 
task of solving the given MWPs is. Therefore, we 
first propose a way to measure how easy that a 
system solves the problem by simply guessing. 

3.1 Perplexity-flavor Measure 

We propose to adopt the Perplexity to measure the 
task difficulty, which evaluates how likely a solver 
will get the correct answer by guessing. Every 
MWP in the datasets can be associated with a so-
lution expression template, such as “⊡ + ⊡” or 
“⊡−⊡”, where the symbol  ⊡ represents a slot 
to hold a quantity. The solution can be obtained by 
placing correct quantities at appropriate slots. A 
                                                      
8 The IL dataset does not include any irrelevant information; 
on the other hand, the AI2 dataset only contains 121 MWPS 
with irrelevant information (but not systematically created). 

random baseline is to solve an MWP by guessing. 
It first selects a solution expression template ac-
cording to the prior distribution of the templates 
and then places quantities into the selected tem-
plate according to the uniform distribution. 

The expected accuracy of the random baseline 
on solving an MWP is a trivial combination and 
permutation exercise9. For example, the expected 
accuracy of solving an MWP associated with “⊡
+ ⊡” template is 𝑝𝑝⊡+⊡ × 𝐶𝐶𝑛𝑛 2

−1
, where the fac-

tor 𝑝𝑝⊡+⊡  denotes the prior probability of the 
template “⊡ + ⊡” and 𝑛𝑛 is the total number of 
quantities (including irrelevant ones) in the MWP. 
On the other hand, expected accuracy of solving 
an MWP associated with “⊡−⊡”10 template is 
𝑝𝑝⊡−⊡ × 𝑃𝑃𝑛𝑛 2

−1
. Let 𝐴𝐴𝑖𝑖 denote the expected accu-

racy of solving the 𝑖𝑖-th MWP in a dataset. The ac-
curacy of the random baseline on the dataset of 
size 𝑁𝑁 is then computed as 𝐴𝐴 = (1/𝑁𝑁) × ∑ 𝐴𝐴𝑖𝑖𝑁𝑁

𝑖𝑖=1 . 
The word “Accuracy” comprises the opposite 

sense of the word “Perplexity”11 (i.e., in the sense 
of how hard a prediction problem is). The lower 
the Accuracy is, the higher the Perplexity is. 
Therefore, we transform the Accuracy measure in-
to a Perplexity-Flavor measure (PP) via the for-
mula: 

PP = 2− log2 𝐴𝐴 
For instance, the Perplexity-Flavor measures of 
AI2 and IL datasets are 4.46 and 8.32 respectively. 

3.2 Noisy Dataset 

Human Math/Science tests have been considered 
more suitable for judging AI progress than Turing 
test (Clark and Etzioni, 2016). In our task, solving 
MWPs is mainly regarded as a test for intelligence 
(not just for creating a Math Solver package). By 
injecting various irrelevant quantities into original 
MWPs, a noisy dataset is thus created to assess if 
a solver solves the MWPs mainly via understand-
ing or via mechanical/statistical pattern matching. 
If a system solves an MWP mainly via pattern 
matching, it would have difficulty in solving a 
similar MWP augmented from the original one 
with some irrelevant quantities. Therefore, we 
first create a noisy dataset by selecting some 
                                                      
9 Let 𝐶𝐶𝑛𝑛 𝑘𝑘 denote 𝑘𝑘-combinations of 𝑛𝑛 and 𝑃𝑃𝑛𝑛 𝑘𝑘 denote 𝑘𝑘-
permutations of 𝑛𝑛. 
10 We assume the operands have different values and, there-
fore, they are not permutable for the subtraction operator. 
11 The Perplexity of a uniform distribution over k discrete 
events (such as casting a fair k-sided dice) is k. 
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MWPs that can be correctly solved, and then 
augmenting each of them with an additional noisy 
sentence which involves an irrelevant quantity. 
This dataset is created to examine if the solver 
knows that this newly added quantity is irrelevant. 

Figure 6 shows how we inject noise into an 
MWP (a).  (a.1) is  created  by  associating  an  ir-
relevant quantity to a new subject (i.e., Mary). 
Here the ellipse symbol “…” denotes unchanged 
text. (a.2) is obtained by associating an irrelevant 
quantity to a new entity (i.e., books). In addition, 
we also change modifiers (such as yellow, red, …) 
to add new noisy sentence (not shown here). Since 
the noisy dataset is not designed to assess the lexi-
con coverage rate of a solver, we reuse the words 
in the original dataset as much as possible while 
adding new subjects, entities and modifiers. 

136 MWPs that both Illinois Math Solver 12 
(Roy and Roth, 2016) and our system can correct-
ly solve are selected from the AI2 and IL datasets. 
This subset is denoted as OSS (Original Sub-Set). 
Afterwards, based on the 136 MWPs of OSS, we 
create a noisy dataset of 396 MWPs by adding ir-
relevant quantities. This noisy dataset is named as 
NDS13. Table 1 lists the size of MWPs, Perplexi-
ties (PP), and the average numbers of quantities in 
each MWP of these two datasets. 

4 Experimental Results and Discussion 

We compare our approach with (Roy and Roth, 
2015) and (Roy and Roth, 2017) because they 
achieved the state-of-the-art performance on the 
IL dataset. In the approach of (Roy and Roth, 
2015), each quantity in the MWP was associated 
with a quantity schema whose attributes are ex-
tracted from the context of the quantity. Based on 
the attributes, several statistical classifiers were 
used to select operands and determine the opera-
tor. They also reported the performances on the 
AI2 dataset to compare their approach with those 
                                                      
12 We submit MWPs to Illinois Math Solver 
(https://cogcomp.cs.illinois.edu/page/demo_view/Math) in 
May and June, 2017. 
13 The noisy dataset can be downloaded from 
https://github.com /chaochun/nlu-mwp-noise-dataset. It in-
cludes 102 Addition, 147 Subtraction, 101 Multiplication 
and 46 Division MWPs. 

of others (e.g., Kushman et al. (2014), which is a 
purely statistical approach that aligns the text with 
various pre-extracted equation templates). Roy 
and Roth (2017) further introduced the concept of 
Unit Dependency Graphs to reinforce the con-
sistency of physical units among selected oper-
ands associated with the same operator. 

To compare the performance of the statistical 
method with the DNN approach, we only imple-
ment a Bi-directional RNN-based Solution Type 
Identifier (as our original statistical Operand Se-
lector is relatively much better). It consists of a 
word embedding layer (for both body and ques-
tion parts), and a bidirectional GRU layer as an 
encoder. We apply the attention mechanism to 
scan all hidden state sequence of body by the last 
hidden state of question to pay more attention to 
those more important (i.e., more similar between 
the body and the question) words. Lastly, it out-
puts the solution type by a softmax function. We 
train it for 100 epochs, with mini-batch-size = 128 
and learning-rate = 0.001; the number of nodes in 
the hidden layer is 200, and the drop-out rate is 
0.714.   

We follow the same n-fold cross-validation 
evaluation setting adopted in (Roy and Roth, 
2015) exactly. Therefore, various performances 
could be directly compared. Table 2 lists the accu-
racies of different systems in solving the MWPs 
                                                      
14 Since the dataset is not large enough for splitting a devel-
opment set, we choose those hyper parameters based on the 
test set in coarse grain. Therefore, the DNN performance we 
show here might be a bit optimistic. 

 AI2 IL 
STI (Statistical) 83.0 83.1 

STI (DNN) 74.5 68.8 
LFT 92.1 94.8 

Table 3: Performances of different STIs and LFT 

(a) Tim has 10 yellow flowers and 12 red flowers. How 
many flowers does Tim have? 

(a.1) Tim has … Mary has 3 yellow flowers. How many … 
(a.2) Tim has … Tim also has 3 books. How many … 

Figure 6: Examples of noisy sentences 

 OSS NDS 
# MWPs 136 396 

Perplexity (PP) 7.42 18.83 
#Quantities 2.64 3.62 

Table 1: Perplexity measures of OSS and NDS  

 AI2 IL 
Our system (Statistical) 81.5 81.0 
Our system (DNN) 69.8 70.6 
(Roy and Roth, 2017) 76.2 74.4 
(Roy and Roth, 2015) 78.0 73.9 
(Kushman et al., 2014) 64.0 73.7 

Table 2: Performances of various approaches 
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of various datasets. The performance of (Roy and 
Roth, 2017) system is directly delivered by their 
code15. The last two rows are extracted from (Roy 
and Roth, 2015). The results show that our per-
formances of the statistical approach significantly 
outperform that of our DNN approach and other 
systems on every dataset. 

The performances of STI and LFT modules are 
listed in Table 3. As described in section 2, the 
benchmark for both solution type and the operand 
selection benchmark are automatically determined 
by weakly supervised learning. The first and sec-
ond rows of Table 3 show the solution type accu-
racies of our statistical and DNN approaches, re-
spectively. The third row shows the operand selec-
tion accuracy obtained by given the solution type 
benchmark. Basically, LFT accuracies are from 
92% to 95%, and the system accuracies are domi-
nated by STI. We analyzed errors resulted from 
our statistical STI on AI2 and IL datasets, respec-
tively. For AI2, major errors come from: (1) fail-
ure of ruling out some irrelevant quantities (40%), 
and (2) making confusion between TVQ-F and 
Sum these two solution types (20%) for those cas-
es that only involve addition operation (however, 
both types would return the same answer). For IL, 
major errors come from: (1) requiring additional 
information (35%), and (2) not knowing Part-
Whole relation (17%). Table 4 shows a few ex-
amples for different STI error types. 

The left-half of Table 5 shows the performances 
on the OSS and NDS datasets. Recall that OSS is 
created by selecting some MWPs which both Illi-
nois Math Solver (Roy and Roth, 2016) and our 
system16 can correctly solve. Therefore, both sys-
tems have 100% accuracy in solving the OSS da-
taset. However, these two systems behave very 
differently while solving the noisy dataset. The 
much higher accuracy of our system on the noisy 
dataset shows that our meaning-based approach 
understands the meaning of each quantity more. 
Therefore, it is less confused17 with the irrelevant 
quantities.  

One MWP in the noisy dataset that confuses Il-
linois Math Solver (IMS) is “Tom has 9 yellow 
balloons. Sara has 8 yellow balloons. Bob has 5 
yellow flowers. How many yellow balloons do 
                                                      
15 https://github.com/CogComp/arithmetic. 
16 In evaluating the performances on OSS and NDS datasets, 
our system is trained on the folds 2-5 of the IL dataset. 
17 Since the gap between two different types of approaches 
is quite big, those 396 examples on OSS and 196 examples 
on NDS are sufficient to confirm the conclusion. 

they have in total?”, where the underlined sen-
tence is the added noisy sentence. The solver sums 
all quantities and gives the wrong answer 22, 
which reveals that IMS cannot understand that the 
quantity “5 yellow flowers” is irrelevant to the 
question “How many yellow balloons?”. On the 
contrary, our system avoids this mistake. 

Although the meaning of each quantity is ex-
plicitly checked in our LFT module, our system 
still cannot correctly solve all MWPs in NDS. The 
error analysis reveals that the top-4 error sources 
are STI, LFT, CoreNLP and incorrect problem 
construction (for 27%, 27%, 18%, 18%), which 
indicates that our STI and LFT still cannot com-
pletely prevent the damage caused from the noisy 
sentences (which implies that more consistency 
check for quantity meaning should be done). The 
remaining errors are due to incorrect quantity ex-
traction, lacking common-sense or not knowing 
entailment relationship between two entities. 

A similar experiment is performed to check if 
the DNN approach will be affected by the noisy 
information more. We first select 124 MWPs (de-
noted as OSS′) from OSS that can be correctly 
solved by both our statistical and DNN approach-
es and then filter out 350 derived MWPs (denotes 
as NDS′) from NDS. The right-half of Table 5 
shows that the performance of the DNN approach 
drops more than the statistical approach does in 
the noisy dataset, which indicates that our statisti-
cal approach is less sensitive to the irrelevant 
quantities and more close to human’s approach. 

 
Statis-
tical 

R&R,  
2016 

 Statis-
tical DNN 

OSS 100 100 OSS′ 100 100 
NDS 82.1 28.5 NDS′ 81.4 75.4 

Table 5: Performances on the OSS and NDS 

Error Type Example 
Confusing 
TVQ-F and 
Sum solu-
tion type 

Sally found 9 seashells, Tom found 
7 seashells, and Jessica found 5 sea-
shells on the beach. How many sea-
shells did they find together? 

Requiring 
additional 

information 

A garden has 52 rows and 15 col-
umns of bean plans. How many 
plants are there in all? 

Not know-
ing Part-

Whole re-
lationship 

Eric wants to split a collection of 
peanuts into groups of 8. Eric has 64 
peanuts. How many groups will be  
created? 

Table 4: Examples for different STI error types 
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5 Related Work 

To the best of our knowledge, MWP solvers pro-
posed before 2014 all adopted the rule-based ap-
proach. Mukherjee and Garain (2008) had given a 
good survey for all related approaches before 
2008. Afterwards, Ma et al. (2010) proposed a 
MSWPAS system to simulate human arithmetic 
multi-step addition and subtraction behavior with-
out evaluation. Besides, Liguda and Pfeiffer 
(2012) proposed a model based on augmented 
semantic networks, and claimed that it could solve 
multi-step MWPs and complex equation systems 
and was more robust to irrelevant information (al-
so no evaluation). 

Recently, Hosseini et al. (2014) proposed a 
Container-Entity based approach, which solved 
the MWP with a sequence of state transition. And 
Kushman et al. (2014) proposed the first statistical 
approach, which heuristically extracts some alge-
braic templates from labeled equations, and then 
aligns them with the given sentence. Since no se-
mantic analysis is conducted, the performance is 
quite limited. 

In more recent researches (Roy and Roth, 2015; 
Koncel-Kedziorski et al., 2015; Roy and Roth, 
2017), quantities in an MWP were associated with 
attributes extracted from their contexts. Based on 
the attributes, several statistical classifiers were 
used to select operands and determine operators to 
solve multi-step MWPs. Since the physical mean-
ing of each quantity is not explicitly considered in 
getting the answer, the reasoning process cannot 
be explained in a human comprehensible way. Be-
sides, Shi et al. (2015) attacked the number word 
problem, which only deal with numbers, with a 
semantic parser. Mitra and Baral (2016) mapped 
MWPs into three types of problems, including 
Part-Whole, Change and Comparison. Each prob-
lem was associated with a generic formula. They 
used a log-linear model to determine how to in-
stantiate the formula with quantities and solve the 
only one Unknown variable. They achieved the 
best performance on the AI2 dataset. However, 
their approach cannot handle Multiplication or 
Division related MWPs. Recently, DNN-based 
approaches (Ling et al, 2017; Wang et al, 2017) 
have emerged. However, they only attacked alge-
braic word problems, and required a very large 
training-set. 

Our proposed approach mainly differs from 
those previous approaches in combining the statis-
tical framework with logic inference, and also in 

adopting the meaning-based statistical approach 
for selecting the desired operands. 

6 Conclusion 

A meaning-based logic form represented with 
role-tags (e.g., nsubj, verb, etc.) is first proposed 
to associate the extracted math quantity with its 
physical meaning, which then can be used to iden-
tify the desired operands and filter out irrelevant 
quantities. Afterwards, a statistical framework is 
proposed to perform understanding and reasoning 
based on those logic expressions. We further 
compare the performance with a typical DNN ap-
proach, the results show the proposed approach is 
still better. We will try to integrate domain con-
cepts into the DNN approach to improve the 
learning efficiency in the future. 

The main contributions of our work are: (1) 
Adopting a meaning-based approach to solve 
English math word problems and showing its su-
periority over other state-of-the-art systems on 
common datasets. (2) Proposing a statistical mod-
el to select operands by explicitly checking the 
meanings of quantities against the meaning of the 
question sentence. (3) Designing a noisy dataset to 
test if a system solves the problems by under-
standing. (4) Proposing a perplexity-flavor meas-
ure to assess the complexity of a dataset. 
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Abstract

Temporal orientation refers to an individual’s
tendency to connect to the psychological con-
cepts of past, present or future, and it af-
fects personality, motivation, emotion, de-
cision making and stress coping processes.
The study of the social media users’ psycho-
demographic attributes from the perspective of
human temporal orientation can be of utmost
interest and importance to the business and
administrative decision makers as it can pro-
vide an extra precious information for them to
make informed decisions. In this paper, we
propose a very first study to demonstrate the
association between the sentiment view of the
temporal orientation of the users and their dif-
ferent psycho-demographic attributes by an-
alyzing their tweets. We first create a tem-
poral orientation classifier in a minimally su-
pervised way which classifies each tweet of
the users in one of the three temporal cate-
gories, namely past, present, and future. A
deep Bi-directional Long Short Term Memory
(BLSTM) is used for the tweet classification
task. Our tweet classifier achieves an accuracy
of 78.27% when tested on a manually created
test set. We then determine the users’ overall
temporal orientation based on their tweets on
the social media. The sentiment is added to
the tweets at the fine-grained level where each
temporal tweet is given a sentiment with either
of the positive, negative or neutral. Our exper-
iment reveals that depending upon the senti-
ment view of temporal orientation, a user’s at-
tributes vary. We finally measure the correla-
tion between the users’ sentiment view of tem-
poral orientation and their different psycho-
demographic factors using regression.

1 Introduction

The rapid growth of social media data in recent
years has encouraged different studies which only
existed at the psychological level (theory or pure

logic). Various attributes of users can be analyzed
from the texts they write on the social media plat-
form. The studies include age, gender prediction
(Marquardt et al., 2014; Sap et al., 2014), psy-
chological well being (Dodds et al., 2011; Choud-
hury et al., 2013), and a host of other behavioural,
psychological and medical phenomena (Kosinski
et al., 2013). However, a few works exist which
analyze these factors using socio-economic char-
acteristics of the Twitter users.

Time is generally defined by a dimension where
the events are ordered from the past through the
present into the future which includes duration and
intervals. Major studies on time have been done
for event detection (Ihler et al., 2006; Batal et al.,
2012; Sakaki et al., 2013) which are mainly of the
subjective consent. In contrast, temporal orien-
tation of a user is defined by his/her tendency to
emphasize past, present or future (Zimbardo and
Boyd, 2015) which gives more objective consent
of time. The growth of social media content has
enabled us to study this objective consent more
precisely.

Past studies have established a consistent link
between the temporal orientation and several user
characteristics such as age, gender, education, and
psychological traits (Webley and Nyhus, 2006;
Adams and Nettle, 2009; Schwartz et al., 2013;
Zimbardo and Boyd, 2015). However, the senti-
ment dimension (positive, negative or neutral) of
the temporal orientation is merely studied at the
empirical level on a large-scale. For example, peo-
ple who are optimistic are future-oriented and pos-
itive at the same time. So, only defining the tempo-
ral orientation cannot specify the optimistic peo-
ple correctly. We need the sentiment dimension as
well to find the exact correlation.

In this paper, we first develop a temporal-
orientation classifier to classify tweets into past,
present, and future and then group over the users
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to create user-level assessments. We use a Bidi-
rectional Long Short Term Memory (Bi-LSTM)
network for tweet temporal classification where
tweet vectors are fed to generate the classifica-
tion model. We propose a hash tag-based mini-
mally supervised method with the two-pass filter-
ing to create the past, present and future-oriented
tweets for the training of the Bi-LSTM network.
We manually examined trending hashtags in Twit-
ter for a specific period of time and selected hash-
tags which represent past, present/ongoing, or fu-
ture events. The English tweets containing one
of the selected hashtags are crawled using Twit-
ter streaming API.1 The tweet temporal orienta-
tion classifier is validated on a manually annotated
test set. Finally, we use this classifier to automat-
ically classify a large dataset consisting of ≈10
million tweets from 5,191 users mapped to their
user-level features.

Besides these three temporal categories (past,
present or future), we have considered the posi-
tive, negative and neutral sentiments of the tweets
for the fine-grained classification. The user-level
tweets with a particular temporal orientation is fur-
ther subdivided into either positive, negative or
neutral sentiment. Finally, we evaluated whether
the sentiment view of temporal orientation (i.e.
past-positive, past-negative, past-neutral, present-
positive, present-negative, present-neutral, future-
positive, future-negative, and future-neutral) of
the users is related to their several psycho-
demographic attributes. In this research, we have
considered five psycho-demographic attributes,
namely age, eduction, relationship, intelligence,
and optimism.

Our contributions are summarised as below:

• We introduce the sentiment dimensions in the
human temporal orientation to infer the social
media users’ psycho-demographic attributes
on a large-scale.

• We propose a minimally supervised approach
to the temporal orientation classification task
that leverages large quantities of unlabeled
data and requires no hand-annotated training
corpora. The empirical evidence shows that
the method performs reasonably well.

• We create a gold-standard temporal orienta-
tion tweet corpus.

1https://dev.twitter.com/streaming/
overview. Last accessed on 10-01-2018.

• We define a way to find a novel associ-
ation between the sentiment view of tem-
poral orientation and the different psycho-
demographic factors of the tweet users.

2 Related Background

The temporal study has recently received an in-
creased attention in several application domains of
Natural Language Processing (NLP) and Informa-
tion Retrieval (IR). The introduction of the Tem-
pEval task (Verhagen et al., 2009) and the sub-
sequent challenges i.e. TempEval-2 and -3 (Ver-
hagen et al., 2010; UzZaman et al., 2013) in the
Semantic Evaluation workshop series have clearly
established the importance of time in dealing with
the different NLP tasks. Alonso et al. (2011) re-
viewed the current research trends and presented a
number of interesting applications along with the
open problems.

The shared task like the NTCIR-11 Temporalia
task (Joho et al., 2014) further pushed this idea and
proposed to distinguish whether a given query is
related to past, recency, future or atemporal. It is
the first such challenge, which is organized to pro-
vide a common platform for designing and analyz-
ing the time-aware information access systems. In
parallel, new trends have emerged in the context of
the human temporal orientation (Schwartz et al.,
2013; Sap et al., 2014; Park et al., 2015; Schwartz
et al., 2015; Park et al., 2017). The underlying
idea is to understand how the past, present, and
future emphasis in the text may affect people’s fi-
nances, health, and happiness. For that purpose,
the temporal classifiers are built to detect the over-
all temporal dimension of a given sentence. For
instance, the following sentence “can’t wait to get
a pint tonight” would be tagged as future.

In summary, most of the temporal text pro-
cessing applications have been mainly relying on
the rule-based time taggers, for e.g. HeidelTime
(Strötgen and Gertz, 2015) or SUTime (Chang and
Manning, 2012) to identify and normalize time
mentions in the texts. Although interesting results
have been reported (UzZaman et al., 2013), but the
coverage is limited to the finite number of rules
they implement.

The time perspective and its importance in var-
ious social science and psychological studies is
well established in literature. It plays a funda-
mental role in our interpersonal relation influenced
by cognitive process (Zimbardo and Boyd, 2015).

664



This is also useful in forming goals, expectations
and imaginations. Time perspective is a funda-
mental process, which intern, influenced by many
user attributes such as age, religion, education etc.
In their research, Zimbardo and Boyd (2015) have
shown that the negative view of the past is related
to depression, anxiety, unhappiness, and low self-
esteem but the positive view of the past is related
to self-esteem and happiness. The hedonistic view
of the present is related to novelty seeking and sen-
sation seeking whereas the fatalistic view of the
present is related to aggression, anxiety and de-
pression. The future is related to conscientious-
ness but negatively correlated with depression and
anxiety.

Another research suggests that the satisfaction
with life of the older adults depends on their pos-
itive views of past (Kazakina, 1999). In their re-
search, Drake et al. (2008) described that the past-
positive is positively correlated to happiness. The
link between the past-negative and many psycho-
logical distress like depression and anxiety has
been well established in literature (Cully et al.,
2001). A focus on the future is very effective for
functioning positively. The future orientation also
helps in better health in later life (Kahana et al.,
2005). In a research, George (2009) evaluated
that subjective well-being, happiness, psychologi-
cal well-being, positive effects and morale refer to
the positive orientation towards life.

Past research has established that the time per-
spective is an important factor to determine the hu-
man emotional intelligence (Stolarski et al., 2011).
In our work, we measure the relationship with
different level of intelligence and the sentiment
view of the temporal orientation by more objec-
tive consent of the time perspective, i.e. tempo-
ral orientation from the tweets on the social me-
dia. In a social science research, Guthrie et al.
(2009) have shown that the future time perspec-
tive is associated with the current socioeconomic
status, and the past-fatalistic time perspective is
associated with the both current and childhood so-
cioeconomic status.

Although these kinds of research exist exten-
sively in the psychological study, it is not well ex-
plored with the empirical study using more objec-
tive consent of the time perspective, i.e the tempo-
ral orientation. As per our best knowledge, only a
very few studies exist that focus on the temporal
orientation where only the coarse-grained classes

have been considered (Schwartz et al., 2015; Park
et al., 2017). In these researches, many user at-
tributes were correlated with the temporal orien-
tation which include conscientiousness, age, gen-
der, openness, extraversion, agreeableness, neu-
roticism, satisfaction with life, depression, IQ,
number of friends etc. In our work, we incorpo-
rated fine-grained temporal orientation and found
the correlation with the users’ age, education, re-
lationship, intelligence, and optimism. The fine-
grained study of the temporal orientation only ex-
isted at the theoretical level validated with very
limited user dataset. Besides validating these find-
ings in the empirical way for the large number of
users, we also discuss some previously unexplored
relationships.

3 Methodology

We first create a deep temporal-orientation clas-
sifier to capture the temporal orientation (past,
present and future) of the users’ tweets. Thereafter
we further classify the users’ tweets at the fine-
grained level by associating sentiment, i.e. pos-
itive, negative or neutral for each temporal cate-
gory. We compare our temporal-orientation clas-
sifier with an existing state-of-the-art method.

3.1 Temporal Orientation Classification

The temporal orientation of tweets is defined by
classifying each tweet T in one of the temporal
categories t, where t ∈ { past, present, or fu-
ture}. Given the following tweet “Let me change
lanes and turn left legally”, the temporal orienta-
tion classifier should predict it as an instance of
future orientation. At first we create a temporal
oriented tweet dataset in a minimally supervised
way by exploiting the hashtag information. Deep
Bi-LSTM network is then trained on this dataset.
We use LSTM networks (Hochreiter and Schmid-
huber, 1997) as these are well known for capturing
the long-term dependencies within the text.

Many times we fail to capture the temporal ori-
entation of a text using just the tense information
or the existing temporal keywords. In particu-
lar, the tweet “Today I have a plan for a meet-
ing at night.” is future-oriented. Here, the tempo-
ral keyword ‘Today’ has a time sense of present
whereas the tense of the verb is also present.
The deep learning networks have been very use-
ful to correctly capture the temporal dimension of
these kinds of tweets. Although the basic Artifi-
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cial Neural Networks (ANNs) (Schalkoff, 1997)
and Convolutional Neural Network (CNN) (Le-
Cun et al., 1995) capture the temporal orienta-
tion of many tweets correctly, they fail to properly
identify where the validating temporal information
in the tweet has a long dependency between them.
For example, the tweet “Working in the same unit
today with different staff was much better.” has
temporal orientation as past. Here, the word which
has a temporal sense (i.e. working, today, was) are
placed at a distance from each other. This moti-
vates us to use the LSTM network.

Bidirectional Long Short Term Memory Net-
works (Bi-LSTM): LSTMs are a special kind of
recurrent neural network (RNN) capable of learn-
ing long-term dependencies in the text by effec-
tively handling the vanishing or exploding gradi-
ent problem. The Bidirectional LSTMs (Schuster
and Paliwal, 1997) train two LSTMs, instead of
one, on the input sequence. The first on the in-
put sequence and the second on a reversed copy of
the input sequence. It is designed to capture in-
formation of the sequential dataset and maintain
the contextual features from the past and the fu-
ture. This can provide an additional context to the
network and result in faster and even fuller learn-
ing on the problem without keeping the redundant
context information.

Figure 1: Temporal Orientation learning architecture.

The previous study on the temporal orientation
classification based on machine learning includes
a supervised classification based on the manu-
ally created training set (Schwartz et al., 2015).
The multi-class classification was based on a one
vs rest approach. But adapting the multiple bi-
nary classifiers is not always the best way to deal

with a multi-class classification problem. It re-
quires building of three independent classifiers for
each temporal category, which consumes more
time. Unlike this approach, we incorporate a deep
learning-based multi-class classification method
for the temporal orientation. The training corpus
is generated in a minimally supervised way and
fitted to the Bi-LSTM network.

Our experiment uses Bi-LSTM with 200 neu-
rons at the input layer. The loss function we
used is categorical cross-entropy and the opti-
mizer used is Root Mean Square Propagation (rm-
sprop). We repeat the training for 100 number
of epochs with batch size set to 128. We also
employ dropout (Srivastava et al., 2014) for reg-
ularization with a dropout rate of 0.2 to prevent
over-fitting. All of these attributes are finalized by
parameter tuning with the performance obtained
on 10-fold cross-validation using the grid search
method. Tweet vectors are generated by existing
Glove vectors (Pennington et al., 2014) for tweets2

of 200 dimensions which are trained on 27 billion
tweets. We also validate our model on the valida-
tion set which was 10% of the training set.

3.2 Sentiment View of Temporal Orientation

We use an existing sentiment classifier available
with the NLTK toolkit (Bird, 2006) to classify the
user-level tweets into positive, negative or neu-
tral.3 Sentiment is added at the fine-grained level
of the temporal orientation. Given the tweets of a
user, the sentiment view of temporal orientation of
that user is defined by the following equation:

orientations,t(user) =
|tweetss/t(user)|
|tweetst(user)|

(1)

where, (t ∈ { past, present, or future}), and (s ∈
{ positive, negative, or neutral}), in equation (1).
Here, we first classify each user’s tweet into the
past, present or future temporal category. Then for
each temporal category, we find the percentage of
each sentiment class (i.e positive, negative or neu-
tral) to obtain the sentiment view of temporal ori-
entation.

We measure the correlation between a user’s
sentiment view of temporal orientation with their

2https://nlp.stanford.edu/projects/
glove/

3As we are using a sentiment classifier from well known
NLTK library, we are not validating it on a manually-tagged
test set.
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age, education, intelligence, optimism, and rela-
tionship using a linear regression (LR) classifier
(Neter et al., 1996).

4 Data Sets

For experiments we categorize the datasets into
three kinds: training, test and user-level. Train-
ing set consists of 27k tweets, whereas the test set
is manually annotated with 741 tweets.4 The user-
level tweets consist of ≈10 million tweets from
5,191 users mapped to their user-level features.

4.1 Training Set

Training tweets are collected using the Twitter
streaming API.5 The tweets are collected for the
duration of September 2017 and October 2017.
We consider day-wise trending topics during this
period.6 We only consider those hashtags which
signify a temporal event. Finally, we chose world-
wide trending events and collected the tweets
based on the hashtags.

The collection of the temporal tweets are based
on the following three hypotheses: (a) if a trend-
ing topic is of a future event then mostly people
would write the futuristic tweets; (b) if a trend-
ing topic is about a past incident, then the peo-
ple would write more about the past but they also
write about the present effects of that event; (c) the
tweets of trending present event are most critical
to handle as besides writing about the present in-
cidents, people always join the links with the past
incidents and also give opinion about the future ef-
fects.

The task was challenging as the tweets contain
a lot of noises and people use various ways to re-
fer to the past, the present and the future. To deal
with the pitfalls described in the hypotheses, we
filter the tweets using a two-pass filtering method.
The method is based on two assumptions (a) ev-
ery meaningful sentence should contain a verb. (b)
mostly past-oriented tweets have tense of the verb
as past.

The first assumption is well-established in lit-
erature, whereas the second assumption is based
on our observation on the tweets and validation
against a tense-based classifier. In the first pass of

4All the developed resources are available at http://
www.iitp.ac.in/˜ai-nlp-ml/resources.html

5https://developer.twitter.com/en/docs
6The reason for this selection strategy was the fact that

during the passage of time, the future events become present
event and the present event becomes past event.

the filtering method, we filter out the tweets which
do not contain a verb. The verb part-of-speech tag
is determined using the CMU tweet-tagger (Gim-
pel et al., 2011). In the second pass of the filter-
ing method, we removed the tweets having tense
as past from the tweets of the present and future
events.

The CMU tweet-tagger does not provide verbs
in different sub-categories. For this reason, we
also retrieve the Part-of-Speech (PoS) tag infor-
mation from the Standford PoS-tagger (Manning
et al., 2014) for all the tweets to get the sub-
categories of verb (i.e. VB, VBD, VBG, VBN,
VBP, VBZ). We observed that although Stand-
ford PoS-tagger assigned the required verb sub-
categories, it also incorrectly tagged some non-
verbs as verbs. This is the reason why we consid-
ered only those verbs for sub-categorization which
were identified (as verbs) by the CMU tweet-
tagger.

We varied the training set starting from 3K
(equally distributed) to 30K and observed that the
accuracy on the gold standard test set did not im-
prove after 27K training instances. Few example
tweets with the trending topics are depicted in Ta-
ble 1.

4.2 Test Set

We evaluate our temporal-orientation classifier on
a manually created test set. To get proper assess-
ment on the user-level test set, we randomly se-
lected 800 tweets from the user-level test tweets.
Three annotators (post-graduate level students)
were asked to tag the tweets in one of the four
available classes, namely past, present, future and
other. The annotation guidelines were as follows:

• Tag a tweet as past if it talks about an event
which has started as well as ended or the un-
derlaying temporal connotation of the tweet
refers to the past time.

• Tag a tweet as present if it talks about an
event which started but not ended yet or the
tweet has a present temporal connotation,

• Tag a tweet as future if it talks about an event
which is yet to happen.

• Tag a tweet as other in case they found it
difficult to get the exact temporal tag for the
tweets.
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Temporal Orientation Hashtag Example Sentence

Past
#Elections2016 did it have influence? of course it did.

#CPC17 just heard gazza made a guest appearance outside the tory conference.

Present
#HappyHalloween when you leave for work early but atlanta traffic has other ideas.

#LHHH i am trying to figure out who this is
#WorldTeachersDay hats off to all the teachers who work hard to not only educate but protect kids everyday.

Future
#U17WC 2017 fifa u17 world cup starts in 3 days
#2Point0 gonna treat us with 3d visual extravaganza!

#FutureDecoded want to get your hands on a new? enter our giveaway at for your chance to win.

Table 1: Example tweets for different temporal orientation categories with trending topics.

We measured the multi-rater kappa agreement
(Fleiss, 1971) among the annotators and it was
found to have a substantial kappa value of 0.82.
The higher kappa value indicates that associat-
ing text with temporal dimensions, namely, past,
present, future, and other is relatively straightfor-
ward task for humans by using world knowledge
than words (Dias et al., 2014). Moreover, our
inter-annotator agreement value is in line with the
literature.7 Finally, we select the temporal class
of a tweet based on the majority voting among the
annotators. The distribution of annotated tweets is
as follows:

• Past- 375 Tweets

• Present- 164 Tweets

• Future- 202 Tweets

• Other- 59 Tweets

We removed tweets tagged as Other and used 741
tweets as the test set.8

4.3 User-level Test Set

The user-level tweets consist of ≈10 million
tweets from 5,191 users mapped to their user-
level psycho-demographic features developed by
Preoţiuc-Pietro et al. (2015) are used for this cur-
rent work. In particular, we use five psycho-
demographic attributes such as age, education, in-
telligence, optimism, and relationship for our ex-
periment. The users’ psycho-demographic fea-
tures are automatically deduced based on the
users’ published texts. Preoţiuc-Pietro et al.
(2015) used a predictive model to automatically
infer user-level features. The method uses vari-
ous user properties (annotated using crowdsourc-

7Inter-annotator agreement value for the same task in
Schwartz et al. (2015) is 0.83.

8We only considered past, present and future classes for
the reason justified in Schwartz et al. (2015).

ing) including age, gender, income, education, re-
lationship status, optimism and life satisfaction as
well as all the tweets published by a user to infer
user-level features.

5 Experimental Results

We first evaluate our temporal orientation classi-
fier which measures the orientation of each tweet
as either of past, present or future. The classifier
was trained on the training set and evaluated on
the test set. We obtain the highest accuracy of
78.27% over 741 test samples. For comparative
evaluation, we can consider a strong baseline sys-
tem proposed by Schwartz et al. (2015). The base-
line system was built following a supervised learn-
ing strategy over different features such as ngrams,
time expression, PoS tags, tweet length, and tem-
poral class-specific lexicons. The system achieved
an accuracy of 71.8% when tested over 500 man-
ually annotated data. The baseline was not re-
producible as both the training and test set were
manually tagged and the datasets were not avail-
able.9 The baseline model was constructed using
the manually annotated data, creation of which in-
volved considerable efforts and expenses. In con-
trast, we follow a minimally supervised method
(does not incur any manual effort) to create our
own datasets which are of acceptable quality. We
show the results in Table 2.

Orientation Precision Recall F1-measure
Past 81.75 92.0 86.57

Present 79.04 50.61 61.71
Future 71.02 75.24 73.07

Table 2: Precision, Recall and F1-measure of our
proposed temporal orientation classification model on
manually annotated test data.

9We approached the authors of Schwartz et al. (2015) for
the data. They did not share the data due to copyright issues.
This is the reason for generating our own gold-standard test
set.
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Results in Table 2 show that the past class is
the most correctly classified followed by the fu-
ture and the present. We observe low recall for
the present class as many present tweets were
mis-classified into either past or present class.
The confusion matrix is shown in Figure 2. The

Figure 2: Confusion matrix for the temporal orientation
classification.

present class is mis-classified into future when the
tweet is of the declarative type. For example, the
tweet “Its not a casserole as theres no binding ma-
trix” has present orientation but our classifier clas-
sifies it as of future orientation. Another reason
could be the fact that the words in the sentence rep-
resenting present temporal orientation are not in
the correct form (Its, theres). The present classes
are mis-classified into the past classes in those
cases where mainly the existence of the tense of
a verb is past but actually the tweet has present
orientation. For example, the tweet “For me gloves
and mitts made for Cross Country skiing work well
for ventilated warmth” is mis-classified into past
because of the existence of the word (made) which
has tense as past. The tweets with future orien-
tation are mostly mis-classified into past orienta-
tion. These kinds of mis-classification is due to
either for the presence of past tense or the tweet
is a compound sentence which has an independent
clause of the past orientation. For example, the
tweet “Hoping to have fun among my friends but
wishing I were with you instead” has a future ori-
entation but it is mis-classified into the past orien-
tation.

We measure the potential limitations of the
NLTK sentiment classifier on 100 randomly se-
lected tweets from the test set. The manual ob-

servation shows that the classifier generally mis-
classifies where the sentiment of the tweet is not
well understood (example: “Big Trucks parked all
over). In some cases, the tweets having conflict
sentiment are mis-classified in either of positive or
negative class. For example, the tweet “I am very
sorry that is a working weekend for me but thank-
ing you very much for the invitation has a conflict
sentiment but the classifier classified it into an in-
stance of negative sentiment.

We measure the predictive power of the senti-
ment view of temporal orientation by performing
regression on different psycho-demographic fac-
tors. The correlation results between the users’
sentiment view of temporal orientation and their
psycho-demographic factors using linear regres-
sion are presented in Table 3 and Table 4. The
performance is measured using a standard met-
ric, namely Pearson’s correlation coefficient r be-
tween the inferred and the target values. All
the results in Table 3 and Table 4 are statisti-
cally significant when tested against null hypothe-
sis (p value <0.05).

6 Discussion and Findings

We measure the correlation between the Twitter
users’ psycho-demographic features and their sen-
timent view of temporal orientation. In this sec-
tion, all the discussions and analyses are based on
the correlation results over the user test set.

6.1 Demographic Correlates

We select ‘age’, ‘education’ and ‘relationship’ as
demographic features for this study. The correla-
tion coefficients between the users’ demographic
attributes and their sentiment view of temporal ori-
entation are shown in Table 3.

Results in Table 3 demonstrate that any
user’s past-orientation is significantly correlated
(0.4677) with their age. In other words, it sug-
gests that when people age they think more about
the past than the present and future. To the best
of our knowledge, psychology literature (Nurmi,
2005; Steinberg et al., 2009) has not established
the correlation of the past orientation with age.
Our finding is consistent with a recent compu-
tational study on the human temporal orienta-
tion (Schwartz et al., 2015) which shows positive
correlation between age and the past orientation.
However, we also observed that the users’ age has
the highest positive correlation (0.5235) with the
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User Attribute Past Past-Pos Past-Neg Past-Neu Present Present-Pos Present-Neg Present-Neu Future Future-Pos Future-Neg Future-Neu
Age 0.4677 0.3736 -0.0639 -0.3086 0.0802 0.4392 -0.0538 -0.3635 -0.4547 0.5235 -0.0186 -0.4590

Education:degree -0.0577 -0.0281 -0.1340 0.0853 0.0347 -0.0402 -0.1588 0.1013 0.0340 -0.0393 -0.1470 0.0807
Education:graduate degree -0.2214 -0.1837 -0.2136 0.2625 -0.0082 -0.2139 -0.2454 0.2898 0.2004 -0.2259 -0.2603 0.2817

Education:high school 0.1137 0.0780 0.1748 -0.1488 -0.0264 0.0970 0.2048 -0.1702 -0.0878 0.0997 0.1994 -0.1507
Relationship:divorced -0.3100 -0.2414 -0.2106 0.3139 -0.0299 -0.2946 -0.2425 0.3596 0.2898 -0.3139 -0.2654 0.3614

Relationship:in a relationship 0.0306 0.0240 0.0742 -0.0560 0.0169 0.0208 0.0596 -0.0431 -0.0355 0.0326 0.0664 -0.0496
Relationship:married -0.0859 -0.0385 -0.1593 0.1075 0.0173 -0.0605 -0.1800 0.1279 0.0677 -0.0546 -0.1812 0.1049
Relationship:single 0.1280 0.0822 0.1613 -0.1479 -0.0107 0.1082 0.1936 -0.1755 -0.1082 0.1069 0.1866 -0.1531

Table 3: Correlation between users sentiment view of temporal orientation and their different demographic features
using LR. Here, pos-positive, neg-negative, neu-neutral.

User Attribute Past Past-Pos Past-Neg Past-Neu Present Present-Pos Present-Neg Present-Neu Future Future-Pos Future-Neg Future-Neu
Intelligence:below average -0.0565 -0.0680 0.0724 0.0289 -0.0370 -0.0691 0.0885 0.02401 0.0685 -0.0718 0.0792 0.0391

Intelligence:average 0.1777 0.1422 0.0996 -0.1725 0.0237 0.1604 0.1105 -0.1868 -0.1694 0.1697 0.1277 -0.1904
Intelligence:much above -0.2946 -0.2466 -0.2123 0.3198 -0.0333 -0.2928 -0.2451 0.3590 0.2778 -0.3122 -0.2736 0.3625

Optimism:optimist 0.0696 0.1397 -0.0173 -0.1212 0.0097 0.1486 -0.0144 -0.1245 0.0666 0.1604 -0.0023 -0.1417
Optimism:pessimist 0.0536 -0.0670 0.1695 -0.0167 -0.0110 -0.0430 0.1815 -0.0375 -0.0420 -0.0415 0.1708 -0.0164
Optimism:neither -0.0550 -0.1027 0.0014 0.0944 -0.0033 -0.1132 -0.0010 0.0999 0.0504 -0.1224 -0.0103 0.1119

Table 4: Correlation between users sentiment view of temporal orientation and their different psychological fea-
tures using LR. Here, pos-positive, neg-negative, neu-neutral.

future-positive. It indicates that people become
positively future-orientated when they age, though
not surprising, yet somewhat novel. The results
indicate that only considering the temporal ori-
entation without the sentiment dimensions can be
sometimes misleading as we can observe that the
negative future-orientation has a negative correla-
tion (-0.4547) with age while the future-positive
has a positive correlation with age.

Figure 3 explains how the trends of the senti-
ment view of temporal orientation varies from age
10 to 60. We observe that for all the temporal
classes, the positive sentiment increases rapidly
with the increase of age. Most interestingly, for
all the temporal orientation people become neg-
ative up to the age of 28 and then their negative
sentiment steadily reduces. We also observe that
human’s neutral sentiment rapidly decreases up to
the age of 27 and then it decreases steadily.

The second demographic attribute we consid-
ered is ‘education’. We measure the correla-
tion between the temporal orientation and three
different levels of education: degree, gradu-
ate degree, and high school. In the psycholog-
ical literature (Horstmanshof and Zimitat, 2007;
Richardson et al., 2012), it was reviewed that
the students’ temporal orientations is a new di-
mension to approaches in enhancing student en-
gagement in the academics. It was found that
the first year students of university were more
future-oriented rather than present or past ori-
ented. From our results in Table 3, we found
that the users who have education of degree level
are present-oriented. But interestingly they nei-

Figure 3: Standardized sentiment view of temporal
orientation of the users over their age. Smoothing
was done using loess smoothing estimates. Here, pos-
positive, neg-negative, neu-neutral.

ther think positively nor negatively-they express
more neutral sentiment. Users with education of
graduate degree are found to be future-oriented.
Here, the fine-grained classification suggests that
they also express the neutral sentiment. Interest-
ingly, we found that the users with education of
high school had positive correlation with past ori-
entation. However, when we considered the sen-
timent dimension, we found that it was actually
correlated with present orientation with negative
sentiment.

Our third and final demographic feature ‘rela-
tionship’ is categorized into four types in our cur-
rent study: divorced, in a relationship, married,
and single. From the results in Table 3, we observe
that the users who are divorced found to be more
future oriented and they seem to express the neu-
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tral sentiment. The in a relationship users seem
to be more past-oriented. They also found to be
negative minded. Married people are found to be
present oriented while expressing the neutral sen-
timent. The users who are single, are generally
futuristic but they are negative about it.

6.2 Psychological Correlates

We chose two psychological factors, intelligence
and optimism. The correlation coefficient results
are shown in Table 4.

The intelligence level of the users was
measured in three sub-categories: intelli-
gence:below average, intelligence:average and
intelligence:much above. Some novel findings
have been observed through our results. We
found a modest yet significant positive correlation
between intelligence below average and negative
view of the present orientation. It suggests that
the users having intelligence below average are
present oriented but they seem to have negative
view of it. Surprisingly, we found that average
intelligent users are past-oriented but considering
the sentiment dimension they seem to be more
future-positive. However, this should be validated
with further investigation. We found that the
users who have intelligence much above are
more future orientated. Interestingly, we found
a negative correlation with the future-positive.
However, we found a positive correlation (0.3614)
with the future-neutral which suggests that the
users with much above intelligence are futuristic
and they express a neutral view.

We chose three categories of optimism: opti-
mistic, pessimistic, and neither for our observa-
tion. The result shown in Table 4 suggests that the
optimistic people are future oriented. They also
seem to have positive sentiment. Although the
link between the future orientation and optimism
is well established in literature (Lennings, 2000;
Busseri et al., 2013), there is no empirical study
for a large number of users. We find a relatively
higher positive correlation between the pessimist
and the present-negative which suggests that the
pessimistic people are negative minded and focus
more on present. People who are neither opti-
mistic nor pessimistic are found to be future ori-
ented with the neutral sentiment which is also a
novel finding.

7 Conclusion and Future Work

This paper presents a first large-scale study to
associate the psycho-demographic profile of the
Twitter users with their sentiment view of tempo-
ral orientation based on language they use in Twit-
ter. We first detect the temporal orientation of the
tweets using the Bi-LSTM based temporal orien-
tation classifier. We generated the temporal cat-
egories of our training set in a minimally super-
vised way. We created a benchmark dataset for
the evaluation of our temporal orientation classi-
fier. The temporal orientation classifier achieved
an accuracy of 78.27% when run on the manu-
ally tagged test data. We added the sentiment di-
mension at the fine-grained level of the temporal
orientation. The associations between the users’
sentiment view of temporal orientation and their
different psycho-demographic attributes (age, ed-
ucation, intelligence, optimism, and relationship)
are somewhat novel in the context of the com-
putational social science studies. Whereas the
study on the temporal orientation concentrated on
a coarse-grained level, we focused on the fine-
grained level of temporal orientation which opens
more aspects of the social, economic, and psycho-
logical research which was not possible previously
on a large scale.

Acknowledging the possible limitations of this
study including the quality of the sentiment clas-
sifier and a low recall of the present temporal ori-
entation, in future, we will consider more sophis-
ticated sentiment classifier for better performance
and explore more linguistic insight into consider-
ation to improve the performance of the temporal
orientation classifier. We also like to extend our
work with the link to more behavioral study and
analysis.
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Abstract

Word embeddings obtained from neural net-
work models such as Word2Vec Skipgram
have become popular representations of word
meaning and have been evaluated on a vari-
ety of word similarity and relatedness norm-
ing data. Skipgram generates a set of word
and context embeddings, the latter typically
discarded after training. We demonstrate the
usefulness of context embeddings in predict-
ing asymmetric association between words
from a recently published dataset of produc-
tion norms (Jouravlev and McRae, 2016). Our
findings suggest that humans respond with
words closer to the cue within the context em-
bedding space (rather than the word embed-
ding space), when asked to generate themati-
cally related words.

1 Introduction

Modern distributional semantic models such as
Word2Vec (Mikolov et al., 2013a,b) and GloVe
(Pennington et al., 2014) have been evaluated
on a variety of word similarity and relatedness
datasets. A considerable amount of attention has
been paid to what models and, more recently,
what parameter settings and input data produce
embedding representations that better reflect sim-
ilarity/relatedness between words, taking human
normative judgments as the gold standard (Baroni
et al., 2014; Kiela et al., 2015; Levy et al., 2015;
Melamud et al., 2016; Sahlgren and Lenci, 2016).

Similarity between two words is often assumed
to be a direction-less measure (e.g., car and truck
are similar due to feature overlap), whereas relat-
edness is inherently directional (e.g., broom and
floor share a functional relationship). In addition,
it is well established in human behavioral data
that similarity and relatedness judgments are both
asymmetric. For example, humans judge leop-
ard to be much more similar to tiger than tiger

is to leopard (Tversky and Gati, 1982). A concor-
dant asymmetry is seen in relation tasks: in free
association data, baby is a much more likely re-
sponse when cued with stork than stork would be
as a response when cued with baby (Nelson et al.,
1999). The distinction between similarity and re-
latedness, and the asymmetry of the judgments
have typically been ignored in recent evaluations
of popular embedding models.

There is ample experimental evidence in the
psycholinguistic literature that similarity and relat-
edness are both well represented in human behav-
ior (see Hutchison (2003), for a review), and are
qualitatively distinct representations or processes.
In semantic priming paradigms, a target word is
processed more efficiently when briefly preceded
by a related or similar word (e.g., honey-bee or
wasp-bee) relative to a neutral or unrelated prime
(e.g., chair-bee). Facilitation is seen for word
pairs that are purely category coordinates (lawyer-
surgeon) or purely associates (scalpel-surgeon),
and pairs that share both types of relations (nurse-
surgeon) tend to see an additive processing ben-
efit that reflects the privilege of both similarity
and relatedness, an effect generally referred to as
the “associative boost” (Chiarello et al., 1990; Lu-
cas, 2000). Asymmetries are the norm in seman-
tic priming data, leading to the early theoretical
prominence of spreading activation models to ac-
count for human data.

Free association data provide complimentary
evidence of the qualitative distinction between re-
latedness and similarity in human memory. In
a free association task, participants are provided
with a cue word and are asked to rapidly re-
spond with a word that comes to mind first. Huge
norms of human responses have been collected
over the years; for example, (Nelson et al., 1999)
early norms contain three-quarters of a million re-
sponses to over 5,000 cue words across 6,000 par-
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ticipants. More recently, (De Deyne et al., 2016)
have more than doubled the size of Nelsons norms
in multiple languages by gamifying the task1 . The
majority of responses in free association data are
based on thematic relatedness rather than similar-
ity per se (De Deyne and Storms, 2008). As with
semantic priming, free association norms are dom-
inated by asymmetric relations: While stork has
a very high probability of eliciting baby as a re-
sponse across participants, cuing with baby brings
so many competitors to mind that it is extremely
unlikely to respond with stork (Hutchison, 2003).

The difficulty of accounting for similarity and
relatedness with a single vector representation for
each word has led to the suggestion that distinct
representations, and perhaps even distinct learn-
ing models, are needed for optimal performance
on these distinct tasks (Mandera et al., 2017). It
may be unrealistic to expect a single vector repre-
sentation to account for qualitatively distinct simi-
larity and relatedness data. Further, asymmetries
in human similarity and relatedness tasks have
been used as strong evidence against spatial mod-
els of semantics such as word embedding models,
and in favor of Bayesian models (Griffiths et al.,
2007); but see (Jones et al., 2017). The cosine be-
tween two word vectors is inherently symmetric:
leopard-tiger has the same cosine as tiger-leopard.

In order to understand how distributional rep-
resentation of words reflect similarity and related-
ness one should study the algorithms. Each cell of
a word vector in a count model indicates the first-
order association between the target word and a
context word, document, or topic. Dimensionality
reduction algorithms are applied to obtain denser
representations that can demonstrate second-order
relatedness/similarity between words (e.g. ap-
plying SVD to PMI matrix). Relative to these
classic models, predictive distributional models
such as Word2Vec are generally more compli-
cated. Decomposition and interpretation of the
neural word embeddings is less straightforward
because the final vectors incrementally converge
from a predict-and-update process based on a lo-
cal objective function rather than by global count-
ing or a batch abstraction process. Most evalua-
tive studies of predictive distributional semantics
have viewed these models as a black box, consid-
ering only at the output vectors. For example, the
Word2Vec Skipgram architecture has easily taken

1https://smallworldofwords.org

the lead and become representative of the predic-
tive distributional semantic models, but little at-
tention has been paid to what statistical informa-
tion is best represented in the two resulting em-
bedding sets. The Skipgram is a feed-forward net-
work with localist input and output layers, and one
hidden layer which determines the dimensionality
of the final vectors. It is trained on word-context
pairs with an objective function trying to minimize
the error of predicting context words within a spe-
cific window around the center word. At the end
of training, two matrices are produced, one rep-
resenting word embeddings and the other repre-
senting context embeddings for each and every
vocabulary word. While word embeddings have
been used as the output of Skipgram in many pre-
vious studies, little attention has been paid to the
context embeddings and the usefulness of these
vectors in performing lexical semantic tasks (Levy
et al., 2015; Melamud et al., 2015; Aoki et al.,
2017).

Recently, Asr and Jones (2017) used an artificial
language to evaluate how hyperparameter settings
affected the Skipgrams representation of first- vs.
second-order statistical sources. In natural lan-
guages, paradigmatic and syntagmatic informa-
tion sources are non-independent, confounding
similarity and relatedness judgments. Words that
are more similar tend to also share functional,
script, or thematic relations (Hutchison, 2003; Lu-
cas, 2000); e.g., surgeon-nurse. Asr and Jones
artificial language was engineered to disentangle
the two sources of statistical information. Fol-
lowing on suggestions by Levy et al. (2015), Asr
and Jones found that averaging context vectors
with the word vectors (w+c post-processing) pro-
duced optimal organization of the semantic space
for both paradigmatic and syntagmatic structure.
The goal of the current work is to more systemat-
ically explore the integration of word and context
vectors in similarity and relatedness data; our two
core objectives are:

1. To evaluate the Skipgram model on thematic
relatedness production norms, which implic-
itly manifests asymmetric relations between
words compared to the typical evaluation on
direction-less similarity/relatedness.

2. To explore novel ways of computing relat-
edness scores by contributing both word and
context embeddings produced by Word2Vecs
Skipgram architecture.
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2 Similarity vs. Relatedness Data

One of the famous datasets on word similar-
ity/relatedness is Wordsim353 (Finkelstein et al.,
2001) including 353 English word pairs, and a re-
vised version (Agirre et al., 2009) splitting similar
from related word pairs (WrordSim). These data
have been repeatedly used in comparative studies
on distributional semantic models. Recently, the
division between similarity and relatedness judg-
ments has been highlighted in the literature, re-
sulting in development of new datasets with more
specific annotation instructions.

Hill et al. (2015) introduced the SimLex-999
dataset (SimLex) for purified evaluation of word
similarity by asking the annotators explicitly not
to score based on degree of relatedness. For ex-
ample, the word pair coast-shore received an av-
erage similarity score of 9.00 in SimLex and 9.10
in WordSim, while the related word pair clothes-
closet was assigned an average score of 1.96 in
SimLex and 8.00 in WordSim. More recently,
Jouravlev and McRae (2016) collected pure re-
latedness data through a production experiment.
They presented participants with cue words and
instructed them to response only with directly re-
lated words and not taxonomically similar words.
This database (ProNorm) includes responses to
100 object words, providing us with directional re-
latedness score for 1,169 word pairs.

The important distinction of SimLex and
ProNorm datasets compared to other available
similarity/relatedness data is the explicit instruc-
tion of participants to pay attention to one aspect
of word relations and not the other. The ProNorm
dataset, also has an advantage of a more natural
setup, where associatively related words were gen-
erated by participants, rather than being selected
by language experts and only rated by the partici-
pants. In this paper, we use ProNorm as the main
dataset to investigate how word embedings should
be used to measure relatedness between two words
and how the free recall experiment can be simu-
lated for the model. The SimLex dataset is used to
set a baseline for comparison against the similar-
ity measurement task, which is the most common
intrinsic benchmark for evaluation of word em-
beddings. Finally, we use the WordSim dataset to
explore whether the observed differences between
vector-based measures of similarity and related-
ness come out if the benchmark data is collected
in implicit setup, where participants did not know

they were rating for similarity or relatedness.

3 Word and Context Embeddings

Word embeddings produced by the Skipgram ar-
chitecture have been used in many previous stud-
ies as the word meaning representation and are the
main output of the model. In the original imple-
mentation of Word2Vec, the context embeddings
(weights on the hidden to output layer of the neural
network) were discarded after learning was com-
plete. Inspired by Pennington et al. (2014) in
the architecture of the GloVe model, Levy et al.
(2015) proposed that the final word embeddings
in Word2Vec could be obtained from the aver-
age of word and context embeddings. They im-
plemented word + context (w+c) as a useful post
processing option for the Word2Vec Skipgram al-
gorithm in their published version of the model2.
The w+c option allows computation of word sim-
ilarity based upon both first and second-order co-
occurrence information. The cosine similarity be-
tween two words based on the dot product of their
w+c embeddings, which we call the AA measure
(A standing for the average of word and context
embeddings of a word), includes the following
terms:

cos(a, b) =
WaWb + CaCb +WaCb + CaWa

2
√
WaCa + 1

√
WbCb + 1

(1)
While traditional measures, i.e., WW (cosine

similarity of the word embeddings), and AA (co-
sine similarity of the word+context embeddings)
are suitable predictors for words similarity, we
hypothesize that the asymmetric measures WC
(word embedding of the first word and context em-
bedding of the second) and CW (context embed-
ding of the first word and word embedding of the
second) should be better indicators of relatedness.
This decomposition of similarity measures is es-
pecially useful when asymmetric associations be-
tween words are being inferred: the asymmetric
measures reserve the direction and the type of re-
lation: WC reflects the likelihood of the second
word occurring in the context of the first word,
and CW reflects the likelihood of the first word oc-
curring in the context of the second word. These
two quantities are different, given that the W and
C matrices are obtained from two different layers

2https://bitbucket.org/omerlevy/
hyperwords
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of the neural network, one connected to the input
layer and the other to the output layer.

4 Experiments

SimLex and ProNorm provide complementary
scores on similarity and relatedness between
words. In order to demonstrate and examine how
word embeddings should be used in asymmetric
relatedness measurement, we designed two exper-
iments. In both experiments word and context
embeddings were obtained from Skipgram models
trained on a tokenized English Wikipedia dump3.
We slightly modified the original Word2Vec Skip-
gram implementation by Levy et al. (2015) to save
both word and context vectors.

We tested vector spaces with varying dimen-
sionalities (dim=100/200/300) and number of con-
text words (win=3/6/10), as well as minimum
occurrence cutoff (min=1/5), negative samples
(neg=1/5) and iterations (iter=1/5). These vari-
ations were tested to ensure the observed pat-
terns reported in the experiments, but we report
numerical results only for best performing mod-
els. In particular, higher dimensional vectors with
dim=300 produced consistently better alignment
with human scoring data. We also found min=1,
neg=5 and iter=5 to be the optimal parameter set-
tings across all experiments.

5 Quantitative Evaluation

Our first experiment follows an established eval-
uation strategy by computing the Spearman cor-
relation coefficient between the set of similar-
ity measures produced by the word embedding
model (WW/CC/WC/CW/AA) and the similar-
ity/relatedness scores taken from the SimLex and
ProNorm datasets. As ProNorm score of a word
pair (w1, w2), we simply use the total number of
times a response wordw2 was produced by all sub-
jects givenw1 as a cue word. Interested readers are
encouraged to see Jouravlev and McRae (2016) for
more details on the data collection procedure.

Our hypothesis is that for taxonomic similarity
judgment the classic WW measure, i.e., the co-
sine of the word vectors of w1 and w2 would per-
form best, especially given the fact that in collec-
tion of similarity norms the direction between two
words was not a factor. For explicit relatedness
judgment, on the other hand, we expect one of

3https://sites.google.com/site/rmyeid/
projects/polyglot

the asymmetric measures to be the best predictor.
WC, which is the cosine between the word em-
bedding of the cue w1 and the context embedding
of the response w2 tells us how likely we would
see w2 and similar words in the context of w1.
CW reflects the opposite way relatedness, mean-
ing how likely it is to see w1 and similar words
in the context of w2. Note that these two quan-
tities are different both mathematically and con-
ceptually, because they are obtained from gener-
alization over word occurrences in many different
contexts. We hypothesize that WC should be the
best predictor for the ProNorm score of (w1, w2)
given that production in the constrained setup of
the ProNorm experiment was guided by thematic
relatedness, making it more like a non-syntactic
language modeling task: guessing which other
words/concepts might appear within the context of
the current word.

SimLex and ProNorm collections have almost
the same number of word pairs. However, it is
important to note that ordering ProNorm word
pairs based on their relatedness scores is proba-
bly more difficult than ordering the SimLex list
of word pairs. This is because in the ProNorm
data collection setup, all word pairs were basically
generated based on relatedness, whereas in Sim-
Lex, experimental items were pre-designed in a
way they covered a wide range of closely simi-
lar to totally different word pairs. Ordering Sim-
Lex should in turn be harder than ordering words
in the old WordSim353 similar and related word
pair collections, because each of the latter subsets
has a much smaller number of items compared to
SimLex collection.

In order to demonstrate the difference between
the tasks of ordering words based on similarity
vs. relatedness in an explicit setup (SimLex and
ProNorm) with an implicit, i.e., a mixed setup we
include WordSim353 (Agirre et al., 2009) in our
experiment. We hypothesize that the patterns of
superiority of one vector-based measure to another
in ranking word pairs based on their similarity and
relatedness should come out even if people were
not explicitly instructed to pay attention to a spe-
cific aspect.

5.1 Results

Table 1 displays correlation scores between simi-
larity ratings in SimLex and Skipgram similarity
measures introduced in the previous section (all
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Measure 300-3 300-6 300-10

WW 0.44 0.42 0.41
CC 0.40 0.40 0.39
WC 0.34 0.36 0.37
CW 0.32 0.36 0.35
AA 0.42 0.41 0.41
AllReg 0.46 0.43 0.41

Table 1: Spearman correlation between human simi-
larity judgments (SimLex) and Skipgram measures.

Measure 300-3 300-6 300-10

WW 0.19 0.22 0.23
CC 0.18 0.19 0.20
WC 0.24 0.25 0.26
CW 0.20 0.20 0.20
AA 0.20 0.22 0.22
AllReg 0.24 0.27 0.27

Table 2: Spearman correlation between forward relat-
edness scores (ProNorm) and Skipgram measures.

significant at p < 0.001). Results on models with
dim=300 and win=3/6/10 are reported (see Ap-
pendix for supplementary results). The WW mea-
sure exhibits consistently a better alignment with
the human rating data compared to the all other
measure. This suggests that second-order co-
occurrence information plays the main role in sim-
ilarity between two words. In collection of Sim-
Lex, subjects were asked explicitly not to rate sim-
ilarity based on thematic relatedness. It is likely
that the human ratings were affected not only by
co-occurrence information encoded in word em-
beddings but also in context embeddings. As we
expected, the best predictors of this data are the
symmetric similarity measures, and in particular,
WW. The last row of the table includes Spear-
man correlation between human similarity judg-
ment and a linear regression model using all Skip-
gram measures as predictors. Thus, numbers in
this row show an upper bound for Spearman scores
of the individual measures (obtained from an opti-
mal weighting of all individual measures).

Table 2 shows the Spearman correlation be-
tween ProNorm scores and the Skipgram mea-
sures (all significant at p < 0.001). As we hypoth-
esized, WC stands out as the best predictor, sug-
gesting that human responses to a cue word (when
asked to name related words) are more likely to

be found in the vicinity of the cue word within
the context embedding space rather than within
the word embedding space. The correlation be-
tween the ProNorm scores with WC is larger than
with WW or AA scores. This indicates the im-
portance of the knowledge encoded in the context
embeddings, but specifically the prediction power
of the asymmetric similarity measure compared to
the symmetric ones. Interestingly, CW is not as
good as WC in this task. This reveals the impor-
tance of the direction in associative relatedness be-
tween words such as baby and stork, which seems
to correlate with their vector representations. Fi-
nally, the regression model, which applies an op-
timal weighing on different Skipgram measures
finds the best fit, whereas AA which gives equal
weights to symmetric and asymmetric measures
fails to compete with WC alone. Comparisons be-
tween Tables 1 and 2 suggest that, similarity and
relatedness are best approximated by symmetric
and asymmetric measures, respectively.

We next examined the WordSim353 data to
evaluate whether above implications apply also
to ratings collected in implicit setup, i.e., where
human subjects were not instructed to response
based either on taxonomic similarity or associa-
tive relatedness. We examine each subset of Word-
Sim353 separately and treat them like similarity
and relatedness data. Table 3 shows results on
these two collections of word pairs with best pa-
rameter setup; i.e., with dim=300 and win=3 and
64. Similar to our previous experiments on the
other datasets, relative ranking of similar word
pairs is best predicted with commonly used mea-
sure WW alone, which is indicative of second-
order co-occurrence similarity. For related word
pairs, asymmetric measures WC and CW, which
are indicative of first-level co-occurrence come out
as better individual predictors compared to WW.
However, the balanced combination of all, i.e., the
AA measure seems to be the consistent winner
across both datasets. This finding suggests that
when similarity/relatedness is scored by people as
an overall degree of closeness between words and
without explicit instruction to focus on one aspect,
the most reliable predictor would be a cosine mea-
sure that considers both symmetric and asymmet-
ric types of relations between words.

4Results for win=10 were not as good as in other condi-
tions for this experiment, therefore we only report the very
best setups with win=3 and 6.
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Similar pairs Related pairs

300-3 300-6 300-3 300-6

WW 0.79 0.81 0.62 0.63
CC 0.76 0.77 0.58 0.61
WC 0.76 0.79 0.65 0.69
CW 0.76 0.78 0.65 0.67
AA 0.80 0.81 0.65 0.67
AllReg 0.80 0.82 0.69 0.70

Table 3: Spearman correlation between scores from
WordSim353 subsets and Skipgram measures.

6 Qualitative Evaluation

Our first experiment focused on discovering the
best vector-based predictor for similarity and re-
latedness between two words. We found that con-
sidering context vectors in calculation of the sim-
ilarity score produces a superior predictor, spe-
cially for relatedness, compared to the tradition-
ally used measure (WW) based only on word vec-
tors. The experiment in this section is a more tan-
gible evaluation of the Word2Vec model in a relat-
edness task when a cue word is given. The aim is
to simulate the production experiment with which
the ProNorm data were collected and to evaluate
whether using the WC measure will give us more
true responses than WW.

For the purpose of this experiment, we use the
Skipgram model with dim=300 and win=10 as
these settings produced the best overall perfor-
mance in the quantitative experiment on ProNorm
data. The simulation procedure is as follows: For
each cue word w1 in the ProNorm dataset, each
model generates the n most similar words in the
vocabulary and we count how many of the human
responses were contained in each set. The first
model looks up nearest neighbors of w1 within the
word space (thus using WW as the proximity mea-
sure) and the second model searches for the near-
est neighbors of w1 within the Context space (thus
using WC as the proximity measure). Variable n
indicates the total number of guesses a model is
allowed to make when responding to a given cue
word. In other words, n is the size of the sub-
space explored around the cue word within each
distributional semantic space. Since our previous
experiment showed a higher correlation between
WC and the relatedness norms, we expect that
neighboring words within the context embedding
space (in the vicinity of the cues word embedding)

Figure 1: Number of human responses found in word
and context embedding spaces near the word embed-
ding of the cue (x-axis) as the search space is in-
creased (y-axis).

should be more populated with related words (i.e.,
human responses) compared to neighboring words
within the word embedding space. Regarding the
above procedure, we first extract the word embed-
ding of the cue w1 and then consider all human
responses for that cue, i.e. w2 of all existing pairs
(w1, w2) in the dataset, within both the word and
context embedding spaces. If, as results of the
previous experiment suggest, WC is a better mea-
sure of forward relatedness, then a larger portion
of human responses should be found in neighbor-
ing words within the context space than within the
word space surrounding the cue word.

6.1 Results

Our distributional spaces are constructed based
on Wikipedia text; therefore, the model vocabu-
lary is very large and noisy. While the top-rank
guesses of the model (both measures) are indeed
similar/related to the cue words, a lot of them are
more frequent in the training corpus genre, i.e.
Wikipedia language, than in the simpler language
humans (e.g., subjects of the ProNorm study) use
when recalling direct relations. For example, in
response to the cue word restaurant subjects of
the ProNorm study generated words such as plate,
food, menu, drink, and chef. In addition to cor-
rect guesses, both WW and WC models trained
on web corpora generated words such as bistro,
eatery, hotel, grill and buffet as closest words to
restaurant. Another example would be the cue
word house, which in the ProNorm experiment
triggered door, family, bricks, bed, window, roof,
furniture, fireplace, chimney, and kitchen. The
WW model generated the following words as top
candidates, which are in fact taxonomically sim-
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ilar, to house: mansion, farmhouse, and cottage.
WC model generates relatively more thematically
related words, some of which are correct guesses
(overlapping with human data) and some are not:
barn, residence, estate, dining, room, stables, fire-
place, family, and kitchen. On average, only one
human response per cue can be found in the top
30 model responses. Blue and candy bars in Fig-
ure 6 show the total number of correct guesses by
the model using WW and WC measures, respec-
tively. This quantity is the total correct guesses for
all 100 cues in the ProNorm dataset (x-axis), when
the n most similar neighboring words are exam-
ined in each space (y-axis). We explored n values
between 10 and 100.

Table 4 shows an example of our simulation
for the word car. As the search space widens up
to 100 most similar words in the vicinity of the
cue word embedding, more overlap is observed
between human responses and model responses.
In addition to synonymous words such as automo-
bile, the majority of incorrect guesses for the cue
word car are names of automobile models such
as suv and bmw. The W space around the cue
word embedding is more populated with such tax-
onomically similar words compared to the C space
around the cue word. On the other hand, as the
results suggest, thematically related words such
as driver and steering wheel can more easily be
found within the surrounding C space. This pat-
tern is very consistent across all the cue words
in the ProNorm dataset, suggesting that WC is a
more valid measure of forward thematic related-
ness. This qualitative observation suggests that the
differences between the Spearman correlations in
Table 2 were meaningful, and vector-based mea-
sures of similarity and relatedness, i.e., WW and
WC, return different sets of neighboring words to
a given cue word.

7 Related Work

Word embeddings learned from unlabeled text us-
ing different models such as Word2Vec and Glove
are currently being used for representation of in-
put to deep neural networks that carry out a variety
of NLP tasks. Word similarity/relatedness datasets
have been the basis for intrinsic evaluation of word
embeddings. These datasets provide researchers
with insights about how word relations are demon-
strated in a distributional space. Previous work has
employed WordSim353, SimLex999 and several

n Correct guesses by each measure

20
WW tires
WC tires|driver

50
WW tires
WC tires|driver|driving

100
WW tires
WC tires|driver|driving|steering wheel

Table 4: Human responses for the cue word car found
in top-n neighboring words within the word and con-
text embedding spaces using WW and WC measures.

other established similarity/relatedness datasets
for evaluation of word embeddings (Baroni et al.,
2014; Kiela et al., 2015; Levy et al., 2015; Mela-
mud et al., 2016; Sahlgren and Lenci, 2016).

A closely related previous study to the cur-
rent study is the comprehensive evaluation of
Word2Vec and three other distributional semantic
models by Levy et al. (2015), where they demon-
strated that all the models could learn word rela-
tions to similar extent if hyper-parameters were
carefully tuned. In particular, Levy et al. dis-
cussed the effect of averaging word and context
vectors on capturing first and second-order simi-
larity. However, the w+c option did not make it
to their result tables because it was not selected as
one of the generally optimal settings, while men-
tioned to be useful to test.

Asr and Jones (2017) looked more closely
into this optional parameter setting in their study
of count-based vs. predictive distributional se-
mantic models (Word2Vec Skipgram vs. PPMI
SVD). Using an artificial language framework,
they showed that considering the w+c option
would extend the range of word-to-word cosine
similarity scores, and directly affect the topol-
ogy of word clusters in the distributional space.
However, none of the mentioned works studied
the individual terms in the cosine similarity ob-
tained from Word2Vec Skipgram when the w+c
option is used, thus they left the question of using
these terms for replicating psycholinguistic data
on asymmetric association open. Another related
line of research in NLP is work on retrofitting
of word embeddings using additional lexical re-
sources to reflect specific relations between words
more strongly (Faruqui et al., 2015; Kiela et al.,
2015). Kiela et al. (2015) looked into the partic-
ular case of similarity and relatedness. They pro-
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posed using Thesaurus synonymy data and free-
association data in training of the word embed-
dings to obtain vectors suitable for similarity and
relatedness, respectively. In contrast to this cate-
gory of work though, the objective of our research
is elaborating the functionality of the word em-
bedding algorithms and how their general-purpose
output should be interpreted and queried rather
than trying to maximize the performance of the
model on a given task by modifying training data
or the training mechanism.

Our study adds to the existing body of re-
search by employing word relatedness data col-
lected within a standard psychology experiment
and showing how first- vs. second-order informa-
tion accumulated on the two layers of the popular
Skipgram model can be used for different tasks.
We showed that the distributional measure for cap-
turing asymmetric relatedness between two words
is different from a measure that captures taxo-
nomic similarity even though both types of infor-
mation are obtained from a unified model trained
on a single source of co-occurrence data.

8 Conclusions

Word and context embeddings produced by
Word2Vec Skipgram are two different semantic
representations of the vocabulary words within the
same Euclidean space. We proposed several mea-
sures for complementary similarity and related-
ness judgments computed based on these embed-
dings. Asymmetric measures obtained from the
inner product of a vector from the word embed-
ding space and a vector from the context embed-
ding space are representative of first-order the-
matic relations between words.

We examined our proposal using a recently
published dataset of production norms (Jouravlev
and McRae, 2016) and confirmed when people
were explicitly asked to recall thematically related
words, their responses were more likely located
within the context embedding space in the vicin-
ity of the cues word embedding. In other words,
WC, where W is the word embedding of the cue
and C is the context embedding of the response,
best measures forward thematic relatedness.

We also ran experiments on pure similarity
judgment by employing a commonly used dataset
of word pairs scored according to taxonomic sim-
ilarity rather than other types of relations (Hill
et al., 2015). Human judgments on word similar-

ity taken from this data were best predicted by a
symmetric measure, the classic WW cosine sim-
ilarity between the word vectors. This suggests
that the best measures of taxonomic similarity and
thematic relatedness are different in distributional
space, even though information involved in both
measurements is collected from the same set of co-
occurrence features.

Based on the observations made in the paper,
we can also argue that the free recall task in the
constraint manner where people are asked to name
related words (such as in Jouravlev and McRae’s
study) is similar to the task of predicting context
words for the given cue word. This is an important
finding for the psycholinguitic research trying to
study the mechanisms in lexical production tasks.
For NLP research, these findings motivate taking
different approaches in problems where thematic
relations between words is important for the task,
e.g., in assessment of text coherence, question an-
swering, or language generation.

Finally, our experiments elaborated the func-
tionality of the two transformation matrices in
Word2Vec architecture. We repeated some of
our experiments with GloVe, another popular
word embedding model with two final sets of
(word/context) vectors. We found similar patterns
of relative goodness of measures: WW was con-
sistently better in scoring similarity between two
words and WC was better in measuring the the-
matic relatedness. However, the asymmetry be-
tween WC and CW did not come out clearly in
these experiments and the overall performance of
the GloVe model in the similarity task was much
lower than Skipgram. A closer investigation of
the GloVe model architecture will be necessary for
argumentation about its different results (B Ap-
pendix includes results of our preliminary exper-
iments with GloVe). Other vector space models
obtained from non-neural architectures can also
be examined in this framework. For example,
Levy et al. (2015) showed that the w+c option (us-
ing the average of word and context embeddings
as word vectors) could be simulated in a count-
based model that applies SVD to the PMI matrix
of word-context co-occurrences. Examining these
models on similarity vs. relatedness using our pro-
posed measures will be left for the future.5

5Code for running all experiments using Word2Vec and
GloVe models is available at https://github.com/
FTAsr/wordvet
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A Appendix

Supplementary results on SimLex and ProNorm
datasets using Skipgram with dim=100 & 200 are
presented here. Patterns of how WW and CW
measures predict similarity and relatedness are
consistently repeated in these parameter settings.

Measure 100-3 100-6 100-10

WW 0.36 0.36 0.34
WC 0.31 0.32 0.33

Measure 200-3 200-6 200-10

WW 0.42 0.40 0.39
WC 0.34 0.35 0.35

Table 5: Spearman correlation between similarity
scores (SimLex) and Skipgram measures.

Measure 100-3 100-6 100-10

WW 0.18 0.19 0.19
WC 0.19 0.21 0.21

Measure 200-3 200-6 200-10

WW 0.19 0.20 0.21
WC 0.22 0.24 0.24

Table 6: Spearman correlation between similarity
scores (ProNorm) and Skipgram measures.

B Supplementary Results using GloVe

Supplementary result on SimLex and ProNorm
datasets using GloVe models with dim=300 and
win=3/6/10 are presented in this section. GloVe
had a general disadvantage in learning word simi-
larity (SimLex) compared to Skipgram. Patterns
of how WW and CW measures predict similar-
ity and relatedness are nevertheless similar across
models: WC is much better than WW for related-
ness prediction.

Measure 300-3 300-6 300-10

WW 0.25 0.26 0.16
CC 0.26 0.25 0.18
WC 0.13 0.17 0.16
CW 0.15 0.17 0.14
AA 0.26 0.27 0.20

AllReg 0.29 0.30 0.25

Table 7: Spearman correlation between similarity
scores (SimLex) and GloVe measures.

Measure 300-3 300-6 300-10

WW 0.15 0.16 0.14
CC 0.13 0.17 0.14
WC 0.22 0.21 0.21
CW 0.19 0.21 0.22
AA 0.20 0.21 0.19

AllReg 0.22 0.21 0.24

Table 8: Spearman correlation between relatedness
scores (ProNorm) and GloVe measures.
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Abstract

Current measures for evaluating text simplifi-
cation systems focus on evaluating lexical text
aspects, neglecting its structural aspects. In
this paper we propose the first measure to ad-
dress structural aspects of text simplification,
called SAMSA. It leverages recent advances in
semantic parsing to assess simplification qual-
ity by decomposing the input based on its se-
mantic structure and comparing it to the out-
put. SAMSA provides a reference-less auto-
matic evaluation procedure, avoiding the prob-
lems that reference-based methods face due to
the vast space of valid simplifications for a
given sentence. Our human evaluation experi-
ments show both SAMSA’s substantial corre-
lation with human judgments, as well as the
deficiency of existing reference-based mea-
sures in evaluating structural simplification.1

1 Introduction

Text simplification (TS) addresses the translation
of an input sentence into one or more simpler sen-
tences. It is a useful preprocessing step for several
NLP tasks, such as machine translation (Chan-
drasekar et al., 1996; Mishra et al., 2014) and rela-
tion extraction (Niklaus et al., 2016), and has also
been shown useful in the development of reading
aids, e.g., for people with dyslexia (Rello et al.,
2013) or non-native speakers (Siddharthan, 2002).

The task has attracted much attention in the
past decade (Zhu et al., 2010; Woodsend and La-
pata, 2011; Wubben et al., 2012; Siddharthan and
Angrosh, 2014; Narayan and Gardent, 2014), but
has yet to converge on an evaluation protocol that
yields comparable results across different methods
and strongly correlates with human judgments.
This is in part due to the difficulty to combine
the effects of different simplification operations

1All data and code are available in https://github.
com/eliorsulem/SAMSA.

(e.g., deletion, splitting and substitution). Xu et al.
(2016) has recently made considerable progress
towards that goal, and proposed to tackle it both
by using an improved reference-based measure,
named SARI, and by increasing the number of ref-
erences. However, their research focused on lex-
ical, rather than structural simplification, which
provides a complementary view of TS quality as
this paper will show.

This paper focuses on the evaluation of the
structural aspects of the task. We introduce the
semantic measure SAMSA (Simplification Auto-
matic evaluation Measure through Semantic An-
notation), the first structure-aware measure for TS
in general, and the first to use semantic structure
in this context in particular. SAMSA stipulates
that an optimal split of the input is one where each
predicate-argument structure is assigned its own
sentence, and measures to what extent this asser-
tion holds for the input-output pair in question, by
using semantic structure. SAMSA focuses on the
core semantic components of the sentence, and is
tolerant towards the deletion of other units.2

For example, SAMSA will assign a high score
to the output split “John got home. John gave
Mary a call.” for the input sentence “John got
home and gave Mary a call.”, as it splits each
of its predicate-argument structures to a different
sentence. Splits that alter predicate-argument re-
lations such as “John got home and gave. Mary
called.” are penalized by SAMSA.

SAMSA’s use of semantic structures for TS
evaluation has several motivations. First, it pro-
vides means to measure the extent to which the
meaning of the source is preserved in the output.
Second, it provides means for measuring whether
the input sentence was split to semantic units of

2We do not consider other structural operations, such as
passive to active transformations (Canning, 2002), that are
currently not treated by corpus-based simplification systems.
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the right granularity. Third, defining a semantic
measure that does not require references avoids
the difficulties incurred by their non-uniqueness,
and the difficulty in collecting high quality ref-
erences, as reported by Xu et al. (2015) and by
Narayan and Gardent (2014) with respect to the
Parallel Wikipedia Corpus (PWKP; Zhu et al.,
2010). SAMSA is further motivated by its use
of semantic annotation only on the source side,
which allows to evaluate multiple systems using
same source-side annotation, and avoids the need
to parse system outputs, which can be garbled.

In this paper we use the UCCA scheme for
defining semantic structure (Abend and Rap-
poport, 2013). UCCA has been shown to be pre-
served remarkably well across translations (Sulem
et al., 2015) and has also been successfully used
for machine translation evaluation (Birch et al.,
2016) (Section 2). We note, however, that
SAMSA can be adapted to work with any se-
mantic scheme that captures predicate-argument
relations, such as AMR (Banarescu et al., 2013)
or Discourse Representation Structures (Kamp,
1981), as used by Narayan and Gardent (2014).

We experiment with SAMSA both where se-
mantic annotation is carried out manually, and
where it is carried out by a parser. See Section 4.
We conduct human rating experiments and com-
pare the resulting system rankings with those pre-
dicted by SAMSA. We find that SAMSA’s rank-
ings obtain high correlations with human rank-
ings, and compare favorably to existing reference-
based measures for TS. Moreover, our results
show that existing measures, which mainly target
lexical simplification, are ill-suited to predict hu-
man judgments where structural simplification is
involved. Finally, we apply SAMSA to the dataset
of the QATS shared task on simplification evalu-
ation (Štajner et al., 2016). We find that SAMSA
obtains comparative correlation with human judg-
ments on the task, despite operating in a more
restricted setting, as it does not use human rat-
ings as training data and focuses only on struc-
tural aspects of simplicity. Section 2 presents pre-
vious work. Section 3 discusses UCCA. Section
4 presents SAMSA. Section 5 details the collec-
tion of human judgments. Our experimental setup
for comparing our human and automatic rankings
is given in Section 6, and results are given in Sec-
tion 7, showing superior results for SAMSA. A
discussion on the results is presented in Section 8.

Section 9 presents experiments with SAMSA on
the QATS evaluation benchmark.

2 Related Work
Evaluation Metrics for Text Simplification.
As pointed out by Xu et al. (2016), many of the
existing measures for TS evaluation do not gener-
alize across systems, because they fail to capture
the combined effects of the different simplification
operations. The two main directions pursued are
direct human judgments and automatic measures
borrowed from machine translation (MT) evalua-
tion. Human judgments generally include gram-
maticality (or fluency), meaning preservation (or
adequacy) and simplicity. Human evaluation is
usually carried out with a small number of sen-
tences (18 to 20), randomly selected from the test
set (Wubben et al., 2012; Narayan and Gardent,
2014, 2016).

The most commonly used automatic measure
for TS is BLEU (Papineni et al., 2002). Using 20
source sentences from the PWKP test corpus with
5 simplified sentences for each of them, Wubben
et al. (2012) investigated the correlation of BLEU
with human evaluation, reporting positive correla-
tion for simplicity, but no correlation for adequacy.
Štajner et al. (2014) explored the correlation with
human judgments of six automatic metrics: co-
sine similarity with a bag-of-words representation,
METEOR (Denkowski and Lavie, 2011), TERp
(Snover et al., 2009), TINE (Rios et al., 2011) and
two sub-components of TINE: T-BLEU (a variant
of BLEU which uses lower n-grams when no 4-
grams are found) and SRL (based on semantic role
labeling). Using 280 pairs of a source sentence
and a simplified output with only structural mod-
ifications, they found positive correlations for all
the metrics except TERp with respect to meaning
preservation and positive albeit lower correlations
for METEOR, T-BLEU and TINE with respect
to grammaticality. Human simplicity judgments
were not considered in this experiment. In this pa-
per we collect human judgments for grammatical-
ity, meaning preservation and structural simplic-
ity. To our knowledge, this is the first work to tar-
get structural simplicity evaluation, and it does so
both through elicitation of human judgments and
through the definition of SAMSA.

Xu et al. (2016) were the first to propose two
evaluation measures tailored for simplification, fo-
cusing on lexical simplification. The first met-
ric is FKBLEU, a combination of iBLEU (Sun
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and Zhou, 2012), originally proposed for evaluat-
ing paraphrase generation by comparing the out-
put both to the reference and to the input, and of
the Flesch-Kincaid Index (FK), a measure of the
readability of the text (Kincaid et al., 1975). The
second one is SARI (System output Against Refer-
ences and against the Input sentence) which com-
pares the n-grams of the system output with those
of the input and the human references, separately
evaluating the quality of words that are added,
deleted and kept by the systems. They found that
FKBLEU and even more so SARI correlate better
with human simplicity judgments than BLEU. On
the other hand, BLEU (with multiple references)
outperforms the other metrics on the dimensions
of grammaticality and meaning preservation.

As the Parallel Wikipedia Corpus (PWKP),
usually used in simplification research, has been
shown to contain a large portion of problematic
simplifications (Xu et al., 2015; Hwang et al.,
2015), Xu et al. (2016) further proposed to use
multiple references (instead of a single reference)
in the evaluation measures. SAMSA addresses
this issue by directly comparing the input and the
output of the simplification system, without re-
quiring manually curated references.

Structural Measures for Text-to-text Genera-
tion. Other than measuring the number of splits
(Narayan and Gardent, 2014, 2016), which only
assesses the frequency of this operation and not
its quality, no structural measures were previously
proposed for the evaluation of structural simplifi-
cation. The need for such a measure is pressing,
given recent interest in structural simplification,
e.g., in the Split and Rephrase task (Narayan et al.,
2017), which focuses on sentence splitting.

In the task of sentence compression, which
is similar to simplification in that they both in-
volve deletion and paraphrasing, Clarke and Lap-
ata (2006) showed that a metric that uses syntactic
dependencies better correlates with human evalu-
ation than a metric based on surface sub-strings.
Toutanova et al. (2016) found that structure-aware
metrics obtain higher correlation with human eval-
uation over bigram-based metrics, in particular
with grammaticality judgments, but that they do
not significantly outperform bigram-based metrics
on any parameter. Both Clarke and Lapata (2006)
and Toutanova et al. (2016) use reference-based
metrics that use syntactic structure on both the out-
put and the references. SAMSA on the other hand

uses linguistic annotation only on the source side,
with semantic structures instead of syntactic ones.

Semantic structures were used in MT evalua-
tion, for example in the MEANT metric (Lo et al.,
2012), which compares the output and the refer-
ence sentences, both annotated using SRL (Se-
mantic Role Labeling). Lo et al. (2014) proposes
the XMEANT variant, which compares the SRL
structures of the source and output (without us-
ing references). As some frequent constructions
like nominal argument structures are not addressed
by the SRL annotation, Birch et al. (2016) pro-
posed HUME, a human evaluation metric based
on UCCA, using the semantic annotation only on
the source side when comparing it to the output.
We differ from HUME in proposing an automatic
metric, tackling monolingual text simplification,
rather than MT.

The UCCA annotation has also been recently
used for the evaluation of Grammatical Error Cor-
rection (GEC). The USIM metric (Choshen and
Abend, 2018) measures the semantic faithfulness
of the output to the source by comparing their re-
spective UCCA graphs.

Semantic Structures in Text Simplification. In
most of the work investigating the structural oper-
ations involved in text simplification, both in rule-
based systems (Siddharthan and Angrosh, 2014)
and in statistical systems (Zhu et al., 2010; Wood-
send and Lapata, 2011), the structures that were
considered were syntactic. Narayan and Gardent
(2014, 2016) proposed to use semantic structures
in the simplification model, in particular in order
to avoid splits and deletions which are inconsis-
tent with the semantic structures. SAMSA identi-
fies such incoherent splits, e.g., a split of a phrase
describing a single event, and penalizes them.

Glavas and Štajner (2013) presented two sim-
plification systems based on event extraction. One
of them, named Event-wise Simplification, trans-
forms each factual event motion into a separate
sentence. This approach fits with SAMSA’s stip-
ulation, that an optimal structural simplification
is one where each (UCCA-) event in the input
sentence is assigned a separate output sentence.
However, unlike in their model, SAMSA stipu-
lates that not only should multiple events evoked
by a verb in the same sentence be avoided in a
simplification, but penalizes sentences containing
multiple events evoked by a lexical item of any
category. For example, the sentence “John’s un-
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expected kick towards the gate saved the game”
which has two events, one evoked by “kick” (a
noun) and another by “saving” (a verb) can be con-
verted to “John kicked the ball towards the gate. It
saved the game.”

3 UCCA’s Semantic Structures
In this section we will briefly describe the UCCA
scheme, focusing on the concepts of Scenes
and Centers which are key in the definition of
SAMSA. UCCA (Universal Cognitive Conceptual
Annotation; Abend and Rappoport, 2013) is a se-
mantic annotation scheme based on typological
(Dixon, 2010b,a, 2012) and cognitive (Langacker,
2008) theories which aims to represent the main
semantic phenomena in the text, abstracting away
from syntactic detail. UCCA structures are di-
rected acyclic graphs whose nodes (or units) cor-
respond either to the leaves of the graph (including
the words of the text) or to several elements jointly
viewed as a single entity according to some se-
mantic or cognitive consideration. Unlike AMR,
UCCA semantic units are directly anchored in the
text (Abend and Rappoport, 2017; Birch et al.,
2016), which allows easy inclusion of a word-to-
word alignment in the metric model (Section 4).

UCCA Scenes. A Scene, which is the most ba-
sic notion of the foundational layer of UCCA con-
sidered here, describes a movement, an action or a
state which persists in time. Every Scene contains
one main relation, which can be either a Process or
a State. The Scene may contain one or more Par-
ticipants, which are interpreted in a broad sense,
including locations and destinations. For example,
the sentence “He ran into the park” has a single
Scene whose Process is “ran”. The two Partici-
pants are “He” and “into the park”.

Scenes can have several roles in the text. First,
they can provide additional information about an
established entity (Elaborator Scenes) as for ex-
ample the Scene “who entered the house” in the
sentence “The man who entered the house is
John”. They can also be one of the Participants
of another Scene, for example, “he will be late” in
the sentence: “He said he will be late”. In the other
cases, the Scenes are annotated as parallel Scenes
(H) which can be linked by a Linker (L): “WhenL
[he will arrive at home]H , [he will call them]H”.

Unit Centers. With regard to units which are not
Scenes, the category Center denotes the semantic

head of the unit. For example, “dogs” is the center
of the expression “big brown dogs” and “box” is
the center of “in the box”. There could be more
than one Center in a non-Scene unit, for example
in the case of coordination, where all conjuncts are
Centers.

4 The SAMSA Metric

SAMSA’s main premise is that a structurally cor-
rect simplification is one where: (1) each sentence
contains a single event from the input (UCCA
Scene), (2) the main relation of each of the events
and their participants are retained in the output.

For example, consider “John wrote a book. I
read that book.” as a simplification of “I read the
book that John wrote.”. Each output sentence con-
tains one Scene, which has the same Scene ele-
ments as the source, and would thus be deemed
correct by SAMSA. On the other hand, the out-
put “John wrote. I read the book.” is an incor-
rect split of that sentence, since a participant of
the “writing” Scene, namely “the book” is absent
in the split sentence. SAMSA would indeed pe-
nalize such a case.

Similarly, Scenes which have elements across
several sentences receive a zero score by SAMSA.
As an example, consider the sentence “The com-
bination of new weapons and tactics marks this
battle as the end of chivalry”, and erroneous split
“The combination of new weapons and tactics. It
is the end of chivalry.” (adapted from the output of
a recent system on the PWKP corpus), which does
not preserve the original meaning.

4.1 Matching Scenes to Sentences

SAMSA is based on two external linguistic re-
sources. One is a semantic annotation (UCCA in
our experiments) of the source side, which can
be carried out either manually or automatically,
using the TUPA parser3 (Transition-based UCCA
parser; Hershcovich et al., 2017) for UCCA.
UCCA decomposes each sentence s into a set of
Scenes {sc1, sc2, .., scn}, where each scene sci
contains a main relation mri (sub-span of sci) and
a set of zero or more participants Ai.

The second resource is a word-to-word align-
ment A between the words in the input and one or
zero words in the output. The monolingual align-
ment thus permits SAMSA not to penalize out-
puts that involve lexical substitutions (e.g., “com-

3https://github.com/danielhers/tupa
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mence” might be aligned with “start”). We denote
by ninp the number of UCCA Scenes in the input
sentence and by nout the number of sentences in
the output.

Given an input sentence’s UCCA Scenes
sc1, . . . , scninp , a non-annotated output of
a simplification system split into sentences
s1, . . . , snout , and their word alignment A, we
distinguish between two cases:
1. ninp ≥ nout: in this case, we compute the

maximal Many-to-1 correspondence between
Scenes and sentences. A Scene is matched to
a sentence in the following way. We say that
a leaf l in a Scene sc is consistent in a Scene-
sentence mapping M which maps sc to a sen-
tence s, if there is a word w ∈ s which l aligns
to (according to the word alignment A). The
score of matching a Scene sc to a sentence s
is then defined to be the total number of con-
sistent leaves in sc. We traverse the Scenes in
their order of occurrence in the text, selecting
for each the sentence that maximizes the score.
If ninp = nout, once a sentence is matched to
a Scene, it cannot be matched to another one.
Ties between sentences are broken towards the
sentence that appeared first in the output.

M∗(sci) = argmaxsscore(sci, s)

s.t. s /∈ {M∗(sc1), . . . ,M∗(sci−1)} if ninp = nout

2. ninp < nout: In this case, a Scene will neces-
sarily be split across several sentences. As this
is an undesired result, we assign this instance a
score of zero.

4.2 Score Computation
Minimal Centers. The minimal center of a
UCCA unit u is UCCA’s notion of a semantic
head word, defined through recursive rules not un-
like the head propagation rules used for converting
constituency structures to dependency structures.
More formally, we define the minimal center of a
UCCA unit u (here a Participant or a Main Re-
lation) to be the UCCA graph’s leaf reached by
starting from u and iteratively selecting the child
tagged as Center. If a Participant (or a Center in-
side a Participant) is a Scene, its center is the main
relation (Process or State) of the Scene.

For example, the center of the unit “The previ-
ous president of the commission” (u1) is “presi-
dent of the commission”. The center of the latter
is “president”, which is a leaf in the graph. So the
minimal center of u1 is “president”.

Given the input sentence Scenes
{sc1, ..., scninp}, the output sentences
{s1, ..., snout}, and a mapping between them
M∗, SAMSA is defined as:
nout

ninp

1

2ninp

∑

sci

[
1M∗(sci)

(MRi) +
1

ki

ki∑

j=1

1M∗(sci)
(Par

(j)
i )
]

where MRi is the minimal center of the main
relation (Process or State) of sci, and Par

(j)
i (j =

1, . . . , ki) are the minimal centers of the Partici-
pants of sci.

For an output sentence s, 1s(u) is a function
from the input units to {0, 1}, which returns 1 iff
u is aligned (according to A) with a word in s.4

The role of the non-splitting penalty term
nout/ninp in the SAMSA formula is to penalize
cases where the number of sentences in the output
is smaller than the number of Scenes. In order to
isolate the effect of the non-splitting penalty, we
experiment with an additional metric SAMSAabl
(reads “SAMSA ablated”), which is identical to
SAMSA but does not take this term into account.
Corpus-level SAMSA and SAMSAabl scores are
obtained by averaging their sentence scores.

In the case of implicit units i.e. omitted units
that do not appear explicitly in the text (Abend and
Rappoport, 2013), since the unit preservation can-
not be directly captured, the score t for the rele-
vant unit will be set to 0.5. For example, in the
Scene “traveling is fun”, the people who are trav-
eling correspond to an implicit Participant. As im-
plicit units are not covered by TUPA, this will only
be relevant for the semi-automatic implementation
of the metric (see Section 6).

5 Human Evaluation Benchmark

5.1 Evaluation Protocol

For testing the automatic metric, we first build a
human evaluation benchmark, using 100 sentences
from the complex part of the PWKP corpus and
the outputs of six recent simplification systems for
these sentences:5 (1) TSM (Zhu et al., 2010) using
Tree-Based SMT, (2) RevILP (Woodsend and La-
pata, 2011) using Quasi-Synchronous Grammars,
(3) PBMT-R (Wubben et al., 2012) using Phrase-
Based SMT, (4) Hybrid (Narayan and Gardent,

4In some cases, the unit u can be a sequence of centers
(if there are several minimal centers). In these cases, 1s(u)
returns 1 iff the condition holds for all centers.

5All the data can be found here: http:
//homepages.inf.ed.ac.uk/snaraya2/data/
simplification-2016.tgz.
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2014), a supervised system using DRS, (5) UN-
SUP (Narayan and Gardent, 2016), an unsuper-
vised system using DRS, and (6) Split-Deletion
(Narayan and Gardent, 2016), the unsupervised
system with only structural operations.

All these systems explicitly address at least one
type of structural simplification operation. The
last system, Split-Deletion, performs only struc-
tural (i.e., no lexical) operations. It is thus an
interesting test case for SAMSA since here the
aligner can be replaced by a simple match be-
tween identical words. In total we obtain 600 sys-
tem outputs from the six systems, as well as 100
sentences from the simple Wikipedia side of the
corpus, which serve as references. Five in-house
annotators with high proficiency in English eval-
uated the resulting 700 input-output pairs by an-
swering the questions in Table 1.6

Qa addresses grammaticality, Qb and Qc cap-
ture two complementary aspects of meaning
preservation (the addition and the removal of in-
formation) and Qd addresses structural simplicity.
Possible answers are: 1 (“no”), 2 (“maybe”) and
3 (“yes”). Following Glavas and Štajner (2013),
we used a 3 point Likert scale, which has recently
been shown to be preferable over a 5 point scale
through human studies on sentence compression
(Toutanova et al., 2016).

Question Qd was accompanied by a negative
example 7 showing a case of lexical simplification,
where a complex word is replaced by a simple one.
A positive example was not included so as not to
bias the annotators by revealing the nature of the
operations our experiments focus on (i.e., splitting
and deletion).

The PWKP test corpus (Zhu et al., 2010) was
selected for our experiments over the development
and test sets used in (Xu et al., 2016), as the lat-
ter’s selection process was explicitly biased to-
wards input-output pairs that mainly contain lex-
ical simplifications.

Qa Is the output grammatical?

Qb Does the output add information, compared to
the input?

Qc Does the output remove important information,
compared to the input?

Qd Is the output simpler than the input, ignoring
the complexity of the words?

Table 1: Questions for the human evaluation

6Each input-output pair was rated by all five annotators.
7Other questions appeared without any example.

5.2 Human Score Computation
Given the annotator’s answers, we consider the
following scores. First, the grammaticality score
G is the answer to Qa. By inverting (changing 1 to
3 and 3 to 1) the answer for Qb, we obtain a Non-
Addition score indicating to which extent no addi-
tional information has been added. Similarly, in-
verting the answer to Qc yields the Non-Removal
score. Averaging these two scores, we obtain the
meaning preservation score P . Finally, the struc-
tural simplicity score S is the answer to Qd. Each
of these scores is averaged over the five annotators.
We further compute an average human score:

AvgHuman =
1

3
(G + P + S)

5.3 Inter-annotator Agreement
Inter-annotator agreement rates are computed in
two ways. Table 2 presents the absolute agree-
ment and Cohen’s quadratic weighted κ (Cohen,
1968). Table 3 presents Spearman’s correlation
(ρ) between the human ratings of the input-output
pairs (top row), and between the resulting system
scores (bottom row). In both cases, the agreement
between the five annotators is computed as the av-
erage agreement over the 10 annotator pairs.

Qa Qb Qc Qd
Total 0.58 (0.56) 0.74 (0.30) 0.53 (0.45) 0.57 (0.10)

TSM 0.59 (0.47) 0.75 (0.27) 0.50 (0.40) 0.43 (0.08)
RevILP 0.61 (0.59) 0.78 (0.27) 0.60 (0.43) 0.62 (0.11)

PBMT-R 0.47 (0.42) 0.70 (0.20) 0.58 (0.31) 0.76 (0.10)
Hybrid 0.59 (0.46) 0.77 (0.26) 0.52 (0.48) 0.72 (0.15)
UNSUP 0.51 (0.42) 0.59 (0.10) 0.45 (0.17) 0.52 (0.04)

Split-Deletion 0.59 (0.48) 0.93 (0.02) 0.45 (0.29) 0.55 (0.04)
Reference 0.70 (0.40) 0.66 (0.46) 0.52 (0.58) 0.41 (0.12)

Table 2: Inter-annotator absolute agreement (and
quadratic weighted κ), averaged over the 10 annotator
pairs. Rows correspond to systems, columns to ques-
tions. The top “Total” row refers to the concatenation
of the outputs of all 6 systems together with the refer-
ence sentences.

Qa Qb Qc Qd AvgHuman
Sen. 0.63∗ 0.30∗ 0.48∗ 0.11∗∗ 0.49∗

Sys. 0.92∗∗ 0.54 (0.1) 0.64 (0.06) 0.14 (0.4) 0.64 (0.06)

Table 3: Spearman’s correlation (and p-values) of the
system-level (top row) and sentence-level (bottom row)
ratings of the five annotators. ∗p < 10−5, ∗∗p = 0.002.

6 Experimental Setup

We further compute SAMSA for the 100 sen-
tences of the PWKP test set and the correspond-
ing system outputs. Experiments are conducted in
two settings: (1) a semi-automatic setting where
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UCCA annotation was carried out manually by
a single expert UCCA annotator using the UC-
CAApp annotation software (Abend et al., 2017),
and according to the standard annotation guide-
lines;8 (2) an automatic setting where the UCCA
annotation was carried out by the TUPA parser
(Hershcovich et al., 2017). Sentence segmenta-
tion of the outputs was carried out using the NLTK
package (Loper and Bird, 2002). For word align-
ments, we used the aligner of Sultan et al. (2014).9

7 Correlation with Human Evaluation

We compare the system rankings obtained by
SAMSA and by the four human parameters. We
find that the two leading systems according to
AvgHuman and SAMSA turn out to be the same:
Split-Deletion and RevILP. This is the case both
for the semi-automatic and the automatic imple-
mentations of the metric. A Spearman ρ correla-
tion between the human and SAMSA scores (com-
paring their rankings) is presented in Table 4.

We compare SAMSA and SAMSAabl to the
reference-based measures SARI10 (Xu et al.,
2016) and BLEU, as well as to the negative Lev-
enshtein distance to the reference (-LDSR). We
use the only available reference for this corpus, in
accordance with the standard practice. SARI is a
reference-based measure, based on n-gram overlap
between the source, output and reference, and fo-
cuses on lexical (rather than structural) simplifica-
tion. For completeness, we include the other two
measures reported in Narayan and Gardent (2016),
which are measures of similarity to the input (i.e.,
they quantify the tendency of the systems to in-
troduce changes to the input): the negative Lev-
enshtein distances between the output and input
compared to the original complex corpus (-LDSC),
and the number of sentences split by each of the
systems.

The highest correlation with AvgHuman and
grammaticality is obtained by semi-automatic
SAMSA (0.58 and 0.54), a high correlation espe-
cially in comparison to the inter-annotator agree-
ment on AvgHuman (0.64, Table 3). The auto-
matic version obtains high correlation with hu-
man judgments in these settings, where for struc-

8http://www.cs.huji.ac.il/˜oabend/
ucca.html

9https://github.com/ma-sultan/
monolingual-word-aligner

10Data and code for can be found in https://github.
com/cocoxu/simplification.

tural simplicity, it scores somewhat higher than the
semi-automatic SAMSA. The highest correlation
with structural simplicity is obtained by the num-
ber of sentences with splitting, where SAMSA
(automatic and semi-automatic) is second and
third highest, although when restricted to multi-
Scene sentences, the correlation for SAMSA
(semi-automatic) is higher (0.89, p = 0.009 and
0.77, p = 0.04).

The highest correlation for meaning preserva-
tion is obtained by SAMSAabl which provides
further evidence that the retainment of semantic
structures is a strong predictor of meaning preser-
vation (Sulem et al., 2015). SAMSA in itself does
not correlate with meaning preservation, probably
due to its penalization of under-splitting sentences.

Note that the standard reference-based mea-
sures for simplification, BLEU and SARI, obtain
low and often negative correlation with human rat-
ings. We believe that this is the case because SARI
and BLEU admittedly focus on lexical simplifica-
tion, and are difficult to use to rank systems which
also perform structural simplification.

Our results thus suggest that SAMSA provides
additional value in predicting the quality of a sim-
plification system and should be reported in tan-
dem with more lexically-oriented measures.

8 Discussion

Human evaluation parameters. The fact that
the highest correlations for structural simplicity
and meaning preservation are obtained by dif-
ferent metrics (SAMSA and SAMSAabl respec-
tively) highlights the complementarity of these
two parameters for evaluating TS quality but also
the difficulty of capturing them together. Indeed, a
given sentence-level operation could both change
the original meaning by adding or removing infor-
mation (affecting the P score) and increase sim-
plicity (S). On the other hand, the identity trans-
formation perfectly preserves the meaning of the
original sentence without making it simpler.

For examining this phenomenon, we compute
Spearman’s correlation at the system-level be-
tween the simplicity and meaning preservation hu-
man scores. We obtain a correlation of -0.77
(p = 0.04) between S and P . The correlation be-
tween S and the two sub-components of P , the
Non-Addition and the Non-Removal scores, are
-0.43 (p = 0.2) and -0.77 (p = 0.04) respec-
tively. These negative correlations support our use

691



Reference-less Reference-based ∆ from Source
SAMSA SAMSAabl BLEU SARI -LDSR -LDSC # Split Sents.

Semi-Auto. Auto. Semi-Auto. Auto.
G 0.54 (0.1) 0.37 (0.2) 0.14 (0.4) 0.14 (0.4) 0.09 (0.4) -0.77 (0.04) -0.43 (0.2) -0.09 (0.4) 0.09 (0.4)
P -0.09 (0.4) -0.37 (0.2) 0.54 (0.1) 0.54 (0.1) 0.37 (0.2) -0.14 (0.4) 0.03 (0.5) 0.37 (0.2) -0.49 (0.2)
S 0.54 (0.1) 0.71 (0.06) -0.71 (0.06) -0.71 (0.06) -0.60 (0.1) -0.43 (0.2) -0.43 (0.2) -0.54 (0.1) 0.83 (0.02)

AvgHuman 0.58 (0.1) 0.35 (0.1) 0.09 (0.2) 0.09 (0.2) 0.06 (0.5) -0.81 (0.02) -0.46 (0.2) -0.12 (0.4) 0.14 (0.4)

Table 4: Spearman’s correlation of system scores i.e. Pearson’s correlation of system rankings (and p-values),
between evaluation measures (columns) and human judgments (rows). The ranking is between the six simplifica-
tion systems experimented with. The left block of columns corresponds to the SAMSA and SAMSAabl measures,
in their semi-automatic and automatic forms. The middle block of columns corresponds to the reference-based
measures SARI and BLEU, as well as -LDSR, which is the negative Levenshtein distances of the system output
from the reference. The right block corresponds to measures of conservatism, and reflect how well the tendency
of the systems to introduce changes to the input correlates with the human rankings. The block includes -LDSC,
the negative Levenshtein distance from the source sentence, and the number of input sentences split by each of
the systems. Levenshtein distances are taken as negative in order to capture similarity between the output and
source/reference. The measure with the highest correlation in each row is boldfaced.

of an average human score for assessing the over-
all quality of the simplification.

Distribution at the sentence level. In addition
to the system-level analysis presented in Section
7, we also investigate the behavior of SAMSA at
the sentence level by examining its joint distribu-
tion with the human evaluation scores. Focusing
on the AvgHuman score and the automatic im-
plementation of SAMSA and using the same data
as in Section 7, we consider a single pair of scores
(AvgHumani,SAMSAi), 1 ≤ i ≤ 100, for each
of the 100 source sentences, averaging over the
SAMSA and human scores obtained for the 6 sim-
plification systems (See Figure 1).

The joint distribution indicates a positive cor-
relation between SAMSA and AvgHuman. The
corresponding Pearson correlation is indeed 0.27
(p = 0.03).

9 Evaluation on the QATS Benchmark

In order to provide further validation for SAMSA
predictive value for quality of simplification
systems, we report SAMSA’s correlation with
a recently proposed benchmark, used for the
QATS (Quality Assessment for Text Simplifica-
tion) shared task (Štajner et al., 2016).

Setup. The test corpus contains 126 sentences
taken from 3 datasets described in Štajner et al.
(2016)11: (1) EventS: original sentences from the
EMM News-Brief12 and their syntactically sim-
plified versions (with significant content reduc-
tion) by the EventSimplify TS system (Glavas

11http://qats2016.github.io/shared.html
12emm.newsbrief.eu/NewsBrief/

clusteredition/en/latest.html

and Štajner, 2013)13 (the test corpus contains 54
pairs from this dataset), (2) EncBrit: original sen-
tences from the Encyclopedia Britannica (Barzilay
and Elhadad, 2003) and their automatic simplifica-
tions obtained using ATS systems based on several
phrase-based statistical MT systems (Štajner et al.,
2015) trained on Wikipedia TS corpus (Coster
and Kauchak, 2011) (24 pairs), and (3) LSLight:
sentences from English Wikipedia and their auto-
matic simplifications (Glavaš and Štajner, 2015)
by three different lexical simplification systems
(Biran et al., 2011; Horn et al., 2014; Glavaš and
Štajner, 2015) (48 pairs).

Human evaluation is also provided by this re-
source, with scores for overall quality, grammat-
icality, meaning preservation and simplicity. Im-
portantly, the simplicity score does not explicitly
refer to the output’s structural simplicity, but rather
to its readability. We focus on the overall human
score, and compare it to SAMSA. Since different
systems were used to simplify different portions of
the input, correlation is taken at the sentence level.

We use the same implementations of SAMSA.
Manual UCCA annotation is here performed by
one of the authors of this paper.
Results. We follow Štajner et al. (2016) and
report the Pearson correlations (at the sentence
level) between the rankings of the metrics and
the human evaluation scores. Results show that
the semi-automatic/automatic SAMSA obtains a
Pearson correlation of 0.32 and 0.28 with the hu-
man scores. This places these measures in the 3rd
and 4th places in the shared task, where the only
two systems that surpassed it are marginally better,
with scores of 0.33 and 0.34, and where the next

13takelab.fer.hr/data/symplify
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Figure 1: Joint distribution of the automatic SAMSA and the AvgHuman scores at the sentence level. Each point
in the graph corresponds to a single source sentence. In addition to the scatter plot, a least-squares regression line
is presented.

system in QATS obtained a correlation of 0.23.
This correlation by SAMSA was obtained in

more restricted conditions, compared to the mea-
sures that competed in QATS. First, SAMSA com-
putes its score by only considering the UCCA
structure of the source, and an automatic word-
to-word alignment between the source and out-
put. Most QATS systems, including OSVCML
and OSVCML2 (Nisioi and Nauze, 2016) which
scored highest on the shared task, use an ensem-
ble of classifiers based on bag-of-words, POS tags,
sentiment information, negation, readability mea-
sures and other resources. Second, the systems
participating in the shared task had training data
available to them, annotated by the same anno-
tators as the test data. This was used to train
classifiers for predicting their score. This gives
the QATS measures much predictive strength,
but hampers their interpretability. SAMSA on
the other hand is conceptually simple and inter-
pretable. Third, the QATS shared task does not
focus on structural simplification, but experiments
on different types of systems. Indeed, some of
the data was annotated by systems that exclusively
perform lexical simplification, which is orthogo-
nal to SAMSA’s structural focus.

Given these factors, SAMSA’s competitive cor-
relation with the participating systems in QATS
suggests that structural simplicity, as reflected by
the correct splitting of UCCA Scenes, captures a
major component in overall simplification qual-
ity, underscoring SAMSA’s value. These promis-
ing results also motivate a future combination of
SAMSA with classifier-based metrics.

10 Conclusion
We presented the first structure-aware metric for
text simplification, SAMSA, and the first evalua-
tion experiments that directly target the structural
simplification component, separately from the lex-
ical component. We argue that the structural and
lexical dimensions of simplification are loosely re-
lated, and that TS evaluation protocols should as-
sess both. We empirically demonstrate that strong
measures that assess lexical simplification quality
(notably SARI), fail to correlate with human judg-
ments when structural simplification is performed
by the evaluated systems. Our experiments show
that SAMSA correlates well with human judg-
ments in such settings, which demonstrates its use-
fulness for evaluating and tuning statistical sim-
plification systems, and shows that structural eval-
uation provides a complementary perspective on
simplification quality.
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Abstract
A major proportion of a text summary includes
important entities found in the original text.
These entities build up the topic of the sum-
mary. Moreover, they hold commonsense in-
formation once they are linked to a knowledge
base. Based on these observations, this pa-
per investigates the usage of linked entities to
guide the decoder of a neural text summarizer
to generate concise and better summaries. To
this end, we leverage on an off-the-shelf entity
linking system (ELS) to extract linked entities
and propose Entity2Topic (E2T), a module
easily attachable to a sequence-to-sequence
model that transforms a list of entities into a
vector representation of the topic of the sum-
mary. Current available ELS’s are still not suf-
ficiently effective, possibly introducing unre-
solved ambiguities and irrelevant entities. We
resolve the imperfections of the ELS by (a) en-
coding entities with selective disambiguation,
and (b) pooling entity vectors using firm atten-
tion. By applying E2T to a simple sequence-
to-sequence model with attention mechanism
as base model, we see significant improve-
ments of the performance in the Gigaword
(sentence to title) and CNN (long document
to multi-sentence highlights) summarization
datasets by at least 2 ROUGE points.

1 Introduction

Text summarization is a task to generate a shorter
and concise version of a text while preserving the
meaning of the original text. The task can be di-
vided into two subtask based on the approach: ex-
tractive and abstractive summarization. Extrac-
tive summarization is a task to create summaries
by pulling out snippets of text form the origi-
nal text and combining them to form a summary.
Abstractive summarization asks to generate sum-
maries from scratch without the restriction to use

∗Amplayo and Lim are co-first authors with equal con-
tribution. Names are arranged alphabetically.

The Los Angeles Dodgers acquired South Korean
right-hander Jae Seo from the New York Mets on 
Wednesday in a four-player swap.

Input Text

Korea’s Seo headed to Dodgers from Mets

Summary Topic: Entity Distribution

 Los Angeles Dodgers -> /wiki/Los_Angeles_Dodgers
 South Korean -> /wiki/South_Korean
 Jae Seo -> /wiki/Seo_Jae-woong
New York Mets -> /wiki/New_York_Mets
Wednesday -> /wiki/Wednesday_Night_Baseball
 swap -> /wiki/Trade_(sports)
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Figure 1: Observations on linked entities in summaries.
O1: Summaries are mainly composed of entities. O2:
Entities can be used to represent the topic of the sum-
mary. O3: Entity commonsense learned from a large
corpus can be used.

the available words from the original text. Due
to the limitations of extractive summarization on
incoherent texts and unnatural methodology (Yao
et al., 2017), the research trend has shifted towards
abstractive summarization.

Sequence-to-sequence models (Sutskever et al.,
2014) with attention mechanism (Bahdanau et al.,
2014) have found great success in generating ab-
stractive summaries, both from a single sentence
(Chopra et al., 2016) and from a long document
with multiple sentences (Chen et al., 2016). How-
ever, when generating summaries, it is necessary
to determine the main topic and to sift out unnec-
essary information that can be omitted. Sequence-
to-sequence models have the tendency to include
all the information, relevant or not, that are found
in the original text. This may result to uncon-
cise summaries that concentrates wrongly on ir-
relevant topics. The problem is especially severe
when summarizing longer texts.

In this paper, we propose to use entities found in
the original text to infer the summary topic, miti-
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gating the aforementioned problem. Specifically,
we leverage on linked entities extracted by em-
ploying a readily available entity linking system.
The importance of using linked entities in summa-
rization is intuitive and can be explained by look-
ing at Figure 1 as an example. First (O1 in the Fig-
ure), aside from auxiliary words to construct a sen-
tence, a summary is mainly composed of linked
entities extracted from the original text. Second
(O2), we can depict the main topic of the sum-
mary as a probability distribution of relevant enti-
ties from the list of entities. Finally (O3), we can
leverage on entity commonsense learned from a
separate large knowledge base such as Wikipedia.

To this end, we present a method to ef-
fectively apply linked entities in sequence-to-
sequence models, called Entity2Topic (E2T).
E2T is a module that can be easily attached to
any sequence-to-sequence based summarization
model. The module encodes the entities extracted
from the original text by an entity linking system
(ELS), constructs a vector representing the topic
of the summary to be generated, and informs the
decoder about the constructed topic vector. Due to
the imperfections of current ELS’s, the extracted
linked entities may be too ambiguous and coarse
to be considered relevant to the summary. We
solve this issue by using entity encoders with se-
lective disambiguation and by constructing topic
vectors using firm attention.

We experiment on two datasets, Gigaword and
CNN, with varying lengths. We show that apply-
ing our module to a sequence-to-sequence model
with attention mechanism significantly increases
its performance on both datasets. Moreover, when
compared with the state-of-the-art models for each
dataset, the model obtains a comparable perfor-
mance on the Gigaword dataset where the texts are
short, and outperforms all competing models on
the CNN dataset where the texts are longer. Fur-
thermore, we provide analysis on how our model
effectively uses the extracted linked entities to pro-
duce concise and better summaries.

2 Usefulness of linked entities in
summarization

In the next subsections, we present detailed ar-
guments with empirical and previously examined
evidences on the observations and possible issues
when using linked entities extracted by an entity
linking system (ELS) for generating abstractive

summaries. For this purpose, we use the devel-
opment sets of the Gigaword dataset provided in
(Rush et al., 2015) and of the CNN dataset pro-
vided in (Hermann et al., 2015) as the experi-
mental data for quantitative evidence and refer the
readers to Figure 1 as the running example.

2.1 Observations

As discussed in Section 1, we find three observa-
tions that show the usefulness of linked entities for
abstractive summarization.

First, summaries are mainly composed of linked
entities extracted from the original text. In the ex-
ample, it can be seen that the summary contains
four words that refer to different entities. In fact,
all noun phrases in the summary mention at least
one linked entity. In our experimental data, we ex-
tract linked entities from the original text and com-
pare them to the noun phrases found in the sum-
mary. We report that 77.1% and 75.1% of the noun
phrases on the Gigaword and CNN datasets, re-
spectively, contain at least one linked entity, which
confirms our observation.

Second, linked entities can be used to represent
the topic of the summary, defined as a multinomial
distribution over entities, as graphically shown in
the example, where the probabilities refer to the
relevance of the entities. Entities have been pre-
viously used to represent topics (Newman et al.,
2006), as they can be utilized as a controlled vo-
cabulary of the main topics in a document (Hulpus
et al., 2013). In the example, we see that the en-
tity “Jae Seo” is the most relevant because it is the
subject of the summary, while the entity “South
Korean” is less relevant because it is less impor-
tant when constructing the summary.

Third, we can make use of the entity common-
sense that can be learned as a continuous vector
representation from a separate larger corpus (Ni
et al., 2016; Yamada et al., 2017). In the ex-
ample, if we know that the entities “Los Ange-
les Dodgers” and “New York Mets” are American
baseball teams and “Jae Seo” is a baseball player
associated with the teams, then we can use this in-
formation to generate more coherent summaries.
We find that 76.0% of the extracted linked enti-
ties are covered by the pre-trained vectors1 in our
experimental data, proving our third observation.

1https://github.com/idio/wiki2vec
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2.2 Possible issues
Despite its usefulness, linked entities extracted
from ELS’s have issues because of low precision
rates (Hasibi et al., 2016) and design challenges in
training datasets (Ling et al., 2015). These issues
can be summarized into two parts: ambiguity and
coarseness.

First, the extracted entities may be ambiguous.
In the example, the entity “South Korean” is am-
biguous because it can refer to both the South
Korean person and the South Korean language,
among others2. In our experimental data, we ex-
tract (1) the top 100 entities based on frequency,
and (2) the entities extracted from 100 randomly
selected texts, and check whether they have disam-
biguation pages in Wikipedia or not. We discover
that 71.0% of the top 100 entities and 53.6% of
the entities picked at random have disambiguation
pages, which shows that most entities are prone to
ambiguity problems.

Second, the linked entities may also be too com-
mon to be considered an entity. This may intro-
duce errors and irrelevance to the summary. In
the example, “Wednesday” is erroneous because it
is wrongly linked to the entity “Wednesday Night
Baseball”. Also, “swap” is irrelevant because al-
though it is linked correctly to the entity “Trade
(Sports)”, it is too common and irrelevant when
generating the summaries. In our experimental
data, we randomly select 100 data instances and
tag the correctness and relevance of extracted en-
tities into one of four labels: A: correct and rel-
evant, B: correct and somewhat relevant, C: cor-
rect but irrelevant, and D: incorrect. Results show
that 29.4%, 13.7%, 30.0%, and 26.9% are tagged
with A, B, C, and D, respectively, which shows
that there is a large amount of incorrect and irrele-
vant entities.

3 Our model

To solve the issues described above, we present
Entity2Topic (E2T), a module that can be easily
attached to any sequence-to-sequence based ab-
stractive summarization model. E2T encodes the
linked entities extracted from the text and trans-
forms them into a single topic vector. This vector
is ultimately concatenated to the decoder hidden
state vectors. The module contains two submod-
ules specifically for the issues presented by the en-

2https://en.wikipedia.org/wiki/South_
Korean

tity linking systems: the entity encoding submod-
ule with selective disambiguation and the pooling
submodule with firm attention.

Overall, our full architecture can be illustrated
as in Figure 2, which consists of an entity link-
ing system (ELS), a sequence-to-sequence with at-
tention mechanism model, and the E2T module.
We note that our proposed module can be eas-
ily attached to more sophisticated abstractive sum-
marization models (Zhou et al., 2017; Tan et al.,
2017) that are based on the traditional encoder-
decoder framework and consequently can produce
better results. The code of the base model and the
E2T are available online3.

3.1 Base model

As our base model, we employ a basic encoder-
decoder RNN used in most neural machine trans-
lation (Bahdanau et al., 2014) and text summariza-
tion (Nallapati et al., 2016) tasks. We employ a
two-layer bidirectional GRU (BiGRU) as the re-
current unit of the encoder. The BiGRU consists
of a forward and backward GRU, which results to
sequences of forward and backward hidden states
(
−→
h 1,
−→
h 2, ...,

−→
h n) and (

←−
h 1,
←−
h 2, ...,

←−
h n), respec-

tively:

−→
h i = GRU(xi,

−→
h i−1)

←−
h i = GRU(xi,

←−
h i+1)

The forward and backward hidden states are
concatenated to get the hidden state vectors of the
tokens (i.e. hi = [

−→
h i;
←−
h i]). The final states of

the forward and backward GRU are also concate-
nated to create the final text representation vector
of the encoder s = [

−→
h n;
←−
h 1]. These values are

calculated per layer, where xt of the second layer
is ht of the first layer. The final text representation
vectors are projected by a fully connected layer
and are passed to the decoder as the initial hidden
states s0 = s.

For the decoder, we use a two-layer uni-
directional GRU with attention. At each time step
t, the previous token yt−1, the previous hidden
state st−1, and the previous context vector ct−1 are
passed to a GRU to calculate the new hidden state
st, as shown in the equation below.

st = GRU(wt−1, st−1, ct−1)

3https://github.com/rktamplayo/
Entity2Topic
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The Los Angeles Dodgers acquired 
South Korean right-hander Jae Seo
from the New York Mets on 
Wednesday in a four-player swap.

Input Text

Entity List

① /wiki/Los_Angeles_Dodgers
② /wiki/South_Korean
③ /wiki/Seo_Jae-woong
④ /wiki/New_York_Mets
⑤ /wiki/Wednesday_Night_Baseball
⑥ /wiki/Trade_(sports)

Entity Linking System

The Los Angeles Dodgers acquired South

…

Sequence-to-Sequence with Attention

<START> Korea’s Seo

Korea’s Seo headed

…

Attention Mechanism

Bi-GRU
Text

Encoder

GRU
Text

Decoder

1 2 3 4 5 6

Entity Encoder with Selective Disambiguation

Entity2Topic Module

Pooling with Firm Attention

Figure 2: Full architecture of our proposed sequence-to-sequence model with Entity2Topic (E2T) module.

The context vector ct is computed using the
additive attention mechanism (Bahdanau et al.,
2014), which matches the current decoder state
st and each encoder state hi to get an importance
score. The scores are then passed to a softmax and
are used to pool the encoder states using weighted
sum. The final pooled vector is the context vector,
as shown in the equations below.

gt,i = v>a tanh(Wast−1 + Uahi)

at,i =
exp(gt,i)∑
i exp(gt,i)

ct =
∑

i

at,ihi

Finally, the previous token yt−1, the current
context vector ct, and the current decoder state
st are used to generate the current word yt with
a softmax layer over the decoder vocabulary, as
shown below.

ot =Wwwt−1 +Wcct +Wsst

p(yt|y<t) = softmax(Woot)

3.2 Entity encoding submodule

After performing entity linking to the input text us-
ing the ELS, we receive a sequential list of linked
entities, arranged based on their location in the
text. We embed these entities to d-dimensional
vectors E = {e1, e2, ..., em} where ei ∈ Rd.
Since these entities may still contain ambiguity,
it is necessary to resolve them before applying
them to the base model. Based on the idea that
an ambiguous entity can be disambiguated using
its neighboring entities, we introduce two kinds of
disambiguating encoders below.

Globally disambiguating encoder One way to
disambiguate an entity is by using all the other
entities, putting more importance to entities that
are nearer. For this purpose, we employ an RNN-
based model to globally disambiguate the entities.
Specifically, we use BiGRU and concatenate the
forward and backward hidden state vectors as the
new entity vector:

−→
h i = GRU(ei,

−→
h i−1)

←−
h i = GRU(ei,

←−
h i+1)

e′i = [
−→
h i;
←−
h i]

Locally disambiguating encoder Another way
to disambiguate an entity is by using only the di-
rect neighbors of the entity, putting no importance
value to entities that are far. To do this, we em-
ploy a CNN-based model to locally disambiguate
the entities. Specifically, we do the convolution
operation using filter matrices Wf ∈ Rh×d with
filter size h to a window of h words. We do this
for different sizes of h. This produces new fea-
ture vectors ci,h as shown below, where f(.) is a
non-linear function:

ci,h = f([ei−(h−1)/2; ...; ei+h(+1)/2]
>Wf + bf )

The convolution operation reduces the number
of entities differently depending on the filter size
h. To prevent loss of information and to produce
the same amount of feature vectors ci,h, we pad
the entity list dynamically such that when the filter
size is h, the number of paddings on each side is
(h− 1)/2. The filter size h therefore refers to the
number of entities used to disambiguate a middle
entity. Finally, we concatenate all feature vectors
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Globally Disambiguating Encoder (RNN)

2 3 4 5 6 7 8

Locally Disambiguating Encoder (CNN)

2 3 4 1 2 3 4 5

𝒉 = 𝟑 𝒉 = 𝟓

or

Disambiguating 
Encoder

2 3 4… …

tanh

σ tanhtanh

1

Figure 3: Entity encoding submodule with selective
disambiguation applied to the entity 3©. The left fig-
ure represents the full submodule while the right figure
represents the two choices of disambiguating encoders.

of different h’s for each i as the new entity vector:

e′i = [ci,h1 ; ci,h2 ; ...]

The question on which disambiguating encoder
is better has been a debate; some argued that using
only the local context is appropriate (Lau et al.,
2013) while some claimed that additionally using
global context also helps (Wang et al., 2015). The
RNN-based encoder is good as it smartly makes
use of all entities, however it may perform bad
when there are many entities as it introduces noise
when using a far entity during disambiguation.
The CNN-based encoder is good as it minimizes
the noise by totally ignoring far entities when dis-
ambiguating, however determining the appropri-
ate filter sizes h needs engineering. Overall, we
argue that when the input text is short (e.g. a sen-
tence), both encoders perform comparably, other-
wise when the input text is long (e.g. a document),
the CNN-based encoder performs better.

Selective disambiguation It is obvious that not
all entities need to be disambiguated. When a
correctly linked and already adequately disam-
biguated entity is disambiguated again, it would
make the entity very context-specific and might
not be suitable for the summarization task. Our en-
tity encoding submodule therefore uses a selective
mechanism that decides whether to use the disam-
biguating encoder or not. This is done by intro-
ducing a selective disambiguation gate d. The final
entity vector ẽi is calculated as the linear transfor-

mation of ei and e′i:

e′i = encoder(ei)

d = σ(Wde
′
i + bd)

ẽi = d× f(Wxei + bx)+

(1− d)× f(Wye
′
i + by)

The full entity encoding submodule is illus-
trated in Figure 3. Ultimately, the submodule
outputs the disambiguated entity vectors Ẽ =
{ẽ1, ẽ2, ..., ẽm}.

3.3 Pooling submodule
The entity vectors Ẽ are pooled to create a sin-
gle topic vector t that represents the topic of the
summary. One possible pooling technique is to
use soft attention (Xu et al., 2015) on the vectors
to determine the importance value of each vector,
which can be done by matching each entity vector
with the text vector s from the text encoder as the
context vector. The entity vectors are then pooled
using weighted sum. One problem with soft at-
tention is that it considers all entity vectors when
constructing the topic vector. However, not all en-
tities are important and necessary when generat-
ing summaries. Moreover, a number of these en-
tities may be erroneous and irrelevant, as reported
in Section 2.2. Soft attention gives non-negligible
important scores to these entities, thus adds unnec-
essary noise to the construction of the topic vector.

Our pooling submodule instead uses firm at-
tention mechanism to consider only top k entities
when constructing the topic vector. This is done in
a differentiable way as follows:

G = v>a tanh(WaẼ + Uas)

K = top k(G)

P = sparse vector(K, 0,−∞)

g′i = gi + pi

ai =
exp(g′i)∑
i exp(g

′
i)

t =
∑

i

aiẽi

where the functions K = top k(G) gets the
indices of the top k vectors in G and P =
sparse vector(K, 0,−∞) creates a sparse vector
where the values of K is 0 and −∞ otherwise4.
The sparse vector P is added to the original impor-
tance score vector G to create a new importance

4We use −109 to represent −∞.
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score vector. In this new vector, important scores
of non-top k entities are−∞. When softmax is ap-
plied, this gives very small, negligible, and close-
to-zero values to non-top k entities. The value k
depends on the lengths of the input text and sum-
mary. Moreover, when k increases towards infin-
ity, firm attention becomes soft attention. We de-
cide k empirically (see Section 5).

3.4 Extending from the base model

Entity2Topic module extends the base model as
follows. The final text representation vector s is
used as a context vector when constructing the
topic vector t in the pooling submodule. The topic
vector t is then concatenated to the decoder hidden
state vectors si, i.e. s′i = [si; t]. The concatenated
vector is finally used to create the output vector:

oi =Wwwi−1 +Wcci +Wss
′
i

4 Related work

Due to its recent success, neural network mod-
els have been used with competitive results on ab-
stractive summarization. A neural attention model
was first applied to the task, easily achieving state-
of-the-art performance on multiple datasets (Rush
et al., 2015). The model has been extended to
instead use recurrent neural network as decoder
(Chopra et al., 2016). The model was further ex-
tended to use a full RNN encoder-decoder frame-
work and further enhancements through lexical
and statistical features (Nallapati et al., 2016). The
current state-of-the-art performance is achieved by
selectively encoding words as a process of distill-
ing salient information (Zhou et al., 2017).

Neural abstractive summarization models have
also been explored to summarize longer docu-
ments. Word extraction models have been previ-
ously explored, performing worse than sentence
extraction models (Cheng and Lapata, 2016). Hi-
erarchical attention-based recurrent neural net-
works have also been applied to the task, owing to
the idea that there are multiple sentences in a doc-
ument (Nallapati et al., 2016). Finally, distraction-
based models were proposed to enable models
to traverse the text content and grasp the overall
meaning (Chen et al., 2016). The current state-of-
the-art performance is achieved by a graph-based
attentional neural model, considering the key fac-
tors of document summarization such as saliency,
fluency and novelty (Tan et al., 2017).

Dataset Gigaword CNN
num(data) 4.0M 84K

avg(inputWord) 31.4 774.9
avg(outputWord) 8.2 48.1
min(inputEntity) 1 1
max(inputEntity) 36 743
avg(inputEntity) 4.5 94.6

Table 1: Dataset statistics.

Previous studies on the summarization tasks
have only used entities in the preprocessing stage
to anonymize the dataset (Nallapati et al., 2016)
and to mitigate out-of-vocabulary problems (Tan
et al., 2017). Linked entities for summarization
are still not properly explored and we are the first
to use linked entities to improve the performance
of the summarizer.

5 Experimental settings

Datasets We use two widely used summariza-
tion datasets with different text lengths. First, we
use the Annotated English Gigaword dataset as
used in (Rush et al., 2015). This dataset receives
the first sentence of a news article as input and
use the headline title as the gold standard sum-
mary. Since the development dataset is large, we
randomly selected 2000 pairs as our development
dataset. We use the same held-out test dataset used
in (Rush et al., 2015) for comparison. Second, we
use the CNN dataset released in (Hermann et al.,
2015). This dataset receives the full news arti-
cle as input and use the human-generated multiple
sentence highlight as the gold standard summary.
The original dataset has been modified and pre-
processed specifically for the document summa-
rization task (Nallapati et al., 2016). In addition to
the previously provided datasets, we extract linked
entities using Dexter5 (Ceccarelli et al., 2013), an
open source ELS that links text snippets found in
a given text to entities contained in Wikipedia. We
use the default recommended parameters stated in
the website. We summarize the statistics of both
datasets in Table 1.

Implementation For both datasets, we further
reduce the size of the input, output, and entity vo-
cabularies to at most 50K as suggested in (See
et al., 2017) and replace less frequent words to

5http://dexter.isti.cnr.it/
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“<unk>”. We use 300D Glove6 (Pennington
et al., 2014) and 1000D wiki2vec7 pre-trained vec-
tors to initialize our word and entity vectors. For
GRUs, we set the state size to 500. For CNN, we
set h = 3, 4, 5 with 400, 300, 300 feature maps,
respectively. For firm attention, k is tuned by cal-
culating the perplexity of the model starting with
smaller values (i.e. k = 1, 2, 5, 10, 20, ...) and
stopping when the perplexity of the model be-
comes worse than the previous model. Our pre-
liminary tuning showed that k = 5 for Gigaword
dataset and k = 10 for CNN dataset are the best
choices. We use dropout (Srivastava et al., 2014)
on all non-linear connections with a dropout rate
of 0.5. We set the batch sizes of Gigaword and
CNN datasets to 80 and 10, respectively. Training
is done via stochastic gradient descent over shuf-
fled mini-batches with the Adadelta update rule,
with l2 constraint (Hinton et al., 2012) of 3. We
perform early stopping using a subset of the given
development dataset. We use beam search of size
10 to generate the summary.

Baselines For the Gigaword dataset, we com-
pare our models with the following abstractive
baselines: ABS+ (Rush et al., 2015) is a fine tuned
version of ABS which uses an attentive CNN en-
coder and an NNLM decoder, Feat2s (Nallap-
ati et al., 2016) is an RNN sequence-to-sequence
model with lexical and statistical features in the
encoder, Luong-NMT (Luong et al., 2015) is a
two-layer LSTM encoder-decoder model, RAS-
Elman (Chopra et al., 2016) uses an attentive
CNN encoder and an Elman RNN decoder, and
SEASS (Zhou et al., 2017) uses BiGRU encoders
and GRU decoders with selective encoding. For
the CNN dataset, we compare our models with
the following extractive and abstractive baselines:
Lead-3 is a strong baseline that extracts the first
three sentences of the document as summary,
LexRank extracts texts using LexRank (Erkan
and Radev, 2004), Bi-GRU is a non-hierarchical
one-layer sequence-to-sequence abstractive base-
line, Distraction-M3 (Chen et al., 2016) uses
a sequence-to-sequence abstractive model with
distraction-based networks, and GBA (Tan et al.,
2017) is a graph-based attentional neural abstrac-
tive model. All baseline results used beam search
and are gathered from previous papers. Also,

6https://nlp.stanford.edu/projects/
glove/

7https://github.com/idio/wiki2vec

Model RG-1 RG-2 RG-L
BASE: s2s+att 34.14 15.44 32.47

BASE+E2Tcnn+sd 37.04 16.66 34.93
BASE+E2Trnn+sd 36.89 16.86 34.74

BASE+E2Tcnn 36.56 16.56 34.57
BASE+E2Trnn 36.52 16.21 34.32

BASE+E2Tcnn+soft 36.56 16.44 34.58
BASE+E2Trnn+soft 36.38 16.12 34.20

ABS+ 29.78 11.89 26.97
Feat2s 32.67 15.59 30.64

Luong-NMT 33.10 14.45 30.71
RAS-Elman 33.78 15.97 31.15

SEASS 36.15 17.54 33.63

Table 2: Results on the Gigaword dataset using the full-
length F1 variants of ROUGE.

Model RG-1 RG-2 RG-L
BASE: s2s+att 25.5 5.8 20.0

BASE+E2Tcnn+sd 31.9 10.1 23.9
BASE+E2Trnn+sd 27.6 7.9 21.5

BASE+E2Tcnn 26.6 7.3 20.7
BASE+E2Trnn 26.1 6.9 20.1

BASE+E2Tcnn+soft 26.6 7.0 20.6
BASE+E2Trnn+soft 25.0 6.7 19.8

Lead-3 26.1 9.6 17.8
LexRank 26.1 9.6 17.7
Bi-GRU 19.5 5.2 15.0

Distraction-M3 27.1 8.2 18.7
GBA 30.3 9.8 20.0

Table 3: Results on the CNN dataset using the full-
length F1 ROUGE metric.

we compare our final model BASE+E2T with the
base model BASE and some variants of our model
(without selective disambiguation, using soft at-
tention).

6 Results

We report the ROUGE F1 scores for both datasets
of all the competing models using ROUGE F1
scores (Lin, 2004). We report the results on the
Gigaword and the CNN dataset in Table 2 and Ta-
ble 3, respectively. In Gigaword dataset where the
texts are short, our best model achieves a compara-
ble performance with the current state-of-the-art.
In CNN dataset where the texts are longer, our best
model outperforms all the previous models. We
emphasize that E2T module is easily attachable
to better models, and we expect E2T to improve
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Model 1st 2nd 3rd 4th mean
GOLD 0.27 0.34 0.21 0.18 2.38
BASE 0.14 0.15 0.28 0.43 3.00

BASE+E2Trnn 0.12 0.24 0.39 0.25 2.77
BASE+E2Tcnn 0.47 0.27 0.12 0.14 1.93

Table 4: Human evaluations on the Gigaword dataset.
Bold-faced values are the best while red-colored values
are the worst among the values in the evaluation metric.

their performance as well. Overall, E2T achieves
a significant improvement over the baseline model
BASE, with at least 2 ROUGE-1 points increase
in the Gigaword dataset and 6 ROUGE-1 points
increase in the CNN dataset. In fact, all variants
of E2T gain improvements over the baseline, im-
plying that leveraging on linked entities improves
the performance of the summarizer. Among the
model variants, the CNN-based encoder with se-
lective disambiguation and firm attention performs
the best.

Automatic evaluation on the Gigaword dataset
shows that the CNN and RNN variants of
BASE+E2T have similar performance. To break
the tie between both models, we also conduct hu-
man evaluation on the Gigaword dataset. We in-
struct two annotators to read the input sentence
and rank the competing summaries from first to
last according to their relevance and fluency: (a)
the original summary GOLD, and from models (b)
BASE, (c) BASE+E2Tcnn, and (d) BASE+E2Trnn.
We then compute (i) the proportion of every rank-
ing of each model and (ii) the mean rank of each
model. The results are reported in Table 4. The
model with the best mean rank is BASE+E2Tcnn,
followed by GOLD, then by BASE+E2Trnn and
BASE, respectively. We also perform ANOVA and
post-hoc Tukey tests to show that the CNN vari-
ant is significantly (p < 0.01) better than the RNN
variant and the base model. The RNN variant does
not perform as well as the CNN variant, contrary
to the automatic ROUGE evaluation above. In-
terestingly, the CNN variant produces better (but
with no significant difference) summaries than the
gold summaries. We posit that this is due to the
fact that the article title does not correspond to the
summary of the first sentence.

Selective disambiguation of entities We show
the effectiveness of the selective disambiguation
gate d in selecting which entities to disambiguate
or not. Table 6 shows a total of four different ex-
amples of two entities with the highest/lowest d

values. In the first example, sentence E1.1 con-
tains the entity “United States” and is linked with
the country entity of the same name, however
the correct linked entity should be “United States
Davis Cup team”, and therefore is given a high d
value. On the other hand, sentence E1.2 is linked
correctly to the country “United States”, and thus
is given a low d value.. The second example pro-
vides a similar scenario, where sentence E2.1 is
linked to the entity “Gold” but should be linked to
the entity “Gold medal”. Sentence E2.2 is linked
correctly to the chemical element. Hence, the for-
mer case received a high value d while the latter
case received a low d value.

Entities as summary topic Finally, we provide
one sample for each dataset in Table 5 for case
study, comparing our final model that uses firm
attention (BASEcnn+sd), a variant that uses soft
attention (BASEcnn+soft), and the baseline model
(BASE). We also show the attention weights of the
firm and soft models.

In the Gigaword example, we find three ob-
servations. First, the base model generated a
less informative summary, not mentioning “mex-
ico state” and “first edition”. Second, the soft
model produced a factually wrong summary, say-
ing that “guadalajara” is a mexican state, while
actually it is a city. Third, the firm model is able
to solve the problem by focusing only on the five
most important entities, eliminating possible noise
such as “Unk” and less crucial entities such as
“Country club”. We can also see the effective-
ness of the selective disambiguation in this exam-
ple, where the entity “U.S. state” is corrected to
mean the entity “Mexican state” which becomes
relevant and is therefore selected.

In the CNN example, we also find that the base-
line model generated a very erroneous summary.
We argue that this is because the length of the in-
put text is long and the decoder is not guided as to
which topics it should focus on. The soft model
generated a much better summary, however it fo-
cuses on the wrong topics, specifically on “Iran’s
nuclear program”, making the summary less gen-
eral. A quick read of the original article tells us
that the main topic of the article is all about the two
political parties arguing over the deal with Iran.
However, the entity “nuclear” appeared a lot in the
article, which makes the soft model wrongly focus
on the “nuclear” entity. The firm model produced
the more relevant summary, focusing on the po-
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Gigaword Dataset Example
Original western mexico @state @jalisco will host the first edition of the @UNK dollar @lorena ochoa invitation @golf tournament on nov. ##-## #### , in @guadalajara

@country club , the @lorena ochoa foundation said in a statement on wednesday .
Gold mexico to host lorena ochoa golf tournament in ####
Baseline guadalajara to host ochoa tournament tournament

Entities: U.S. state Jalisco Unk Lorena Ochoa Golf Guadalajara Country club Lorena Ochoa

Soft 0.083 0.086 0.124 0.101 0.080 0.161 0.189 0.177
mexico state guadalajara to host ochoa ochoa invitation

Firm 0.173 0.197 0.000 0.213 0.215 0.000 0.00 0.202
mexican state to host first edition of ochoa invitation

CNN Dataset Example
Original URL: http://edition.cnn.com/2015/04/05/politics/netanyahu-iran-deal/index.html

Gold netanyahu says third option is “ standing firm ” to get a better deal .
political sparring continues in u.s. over the deal with iran .

Baseline

netanyahu says he is a country of “ UNK cheating ” and that it is a country of “ UNK cheating ”
netanyahu says he is a country of “ UNK cheating ” and that “ is a very bad deal ”
he says he says he says the plan is a country of “ UNK cheating ” and that it is a country of “ UNK cheating ”
he says the u.s. is a country of “ UNK cheating ” and that is a country of “ UNK cheating ”

Soft
benjamin netanyahu : “ i think there ’s a third alternative , and that is standing firm , ” netanyahu tells cnn .
he says he does not roll back iran ’s nuclear ambitions .
“ it does not roll back iran ’s nuclear program . ”

Firm new : netanyahu : “ i think there ’s a third alternative , and that is standing firm , ” netanyahu says .
obama ’s comments come as democrats and republicans spar over the framework announced last week to lift western sanctions on iran .

Table 5: Examples from Gigaword and CNN datasets and corresponding summaries generated by competing
models. The tagged part of text is marked bold and preceded with at sign (@). The red color fill represents the
attention scores given to each entity. We only report the attention scores of entities in the Gigaword example for
conciseness since there are 80 linked entities in the CNN example.

Text d

Linked entity: https://en.wikipedia.org/wiki/United_States
E1.1: andy roddick got the better of dmitry tursunov in straight sets on
friday , assuring the @united states a #-# lead over defending champions
russia in the #### davis cup final .

0.719

E1.2: sir alex ferguson revealed friday that david beckham ’s move to the
@united states had not surprised him because he knew the midfielder
would not return to england if he could not come back to manchester
united .

0.086

Linked entity: https://en.wikipedia.org/wiki/Gold
E2.1: following is the medal standing at the ##th olympic winter games
-lrb- tabulated under team , @gold , silver and bronze -rrb- : UNK

0.862

E2.2: @gold opened lower here on monday at ###.##-### .## us dollars
an ounce , against friday ’s closing rate of ###.##-### .## .

0.130

Table 6: Examples with highest/lowest disambiguation
gate d values of two example entities (United States
and gold). The tagged part of text is marked bold and
preceded with at sign (@).

litical entities (e.g. “republicans”, “democrats”).
This is due to the fact that only the k = 10 most
important elements are attended to create the sum-
mary topic vector.

7 Conclusion

We proposed to leverage on linked entities to im-
prove the performance of sequence-to-sequence
models on neural abstractive summarization task.
Linked entities are used to guide the decoding pro-
cess based on the summary topic and common-
sense learned from a knowledge base. We intro-
duced Entity2Topic (E2T), a module that is easily
attachable to any model using an encoder-decoder
framework. E2T applies linked entities into the
summarizer by encoding the entities with selec-
tive disambiguation and pooling them into one
summary topic vector with firm attention mecha-
nism. We showed that by applying E2T to a basic

sequence-to-sequence model, we achieve signifi-
cant improvements over the base model and con-
sequently achieve a comparable performance with
more complex summarization models.
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Abstract

We present NEWSROOM, a summarization
dataset of 1.3 million articles and summaries
written by authors and editors in newsrooms
of 38 major news publications. Extracted from
search and social media metadata between
1998 and 2017, these high-quality summaries
demonstrate high diversity of summarization
styles. In particular, the summaries combine
abstractive and extractive strategies, borrow-
ing words and phrases from articles at vary-
ing rates. We analyze the extraction strategies
used in NEWSROOM summaries against other
datasets to quantify the diversity and difficulty
of our new data, and train existing methods on
the data to evaluate its utility and challenges.
The dataset is available online at summari.es.

1 Introduction

The development of learning methods for auto-
matic summarization is constrained by the lim-
ited high-quality data available for training and
evaluation. Large datasets have driven rapid im-
provement in other natural language generation
tasks, such as machine translation, where data
size and diversity have proven critical for mod-
eling the alignment between source and target
texts (Tiedemann, 2012). Similar challenges exist
in summarization, with the additional complica-
tions introduced by the length of source texts and
the diversity of summarization strategies used by
writers. Access to large-scale high-quality data
is an essential prerequisite for making substan-
tial progress in summarization. In this paper, we
present NEWSROOM, a dataset with 1.3 million
news articles and human-written summaries.

NEWSROOM’s summaries were written by au-
thors and editors in the newsrooms of news, sports,
entertainment, financial, and other publications.
The summaries were published with articles as
HTML metadata for social media services and

Abstractive Summary: South African photographer

Anton Hammerl, missing in Libya since April 4th, was

killed in Libya more than a month ago.

Mixed Summary: A major climate protest in New York

on Sunday could mark a seminal shift in the politics of

global warming, just ahead of the U.N. Climate Summit.

Extractive Summary: A person familiar with the search

tells The Associated Press that Texas has offered its head

coaching job to Louisvilles Charlie Strong and he is

expected to accept.

Figure 1: NEWSROOM summaries showing different
extraction strategies, from time.com, mashable.com,
and foxsports.com. Multi-word phrases shared be-
tween article and summary are underlined. Novel
words used only in the summary are italicized.

search engines page descriptions. NEWSROOM

summaries are written by humans, for common
readers, and with the explicit purpose of summa-
rization. As a result, NEWSROOM is a nearly two
decade-long snapshot representing how single-
document summarization is used in practice across
a variety of sources, writers, and topics.

Identifying large, high-quality resources for
summarization has called for creative solutions
in the past. This includes using news head-
lines as summaries of article prefixes (Napoles
et al., 2012; Rush et al., 2015), concatenating bul-
let points as summaries (Hermann et al., 2015;
See et al., 2017), or using librarian archival sum-
maries (Sandhaus, 2008). While these solutions
provide large scale data, it comes at the cost of
how well they reflect the summarization problem
or their focus on very specific styles of summa-
rizations, as we discuss in Section 4. NEWSROOM

is distinguished from these resources in its combi-
nation of size and diversity. The summaries were
written with the explicit goal of concisely sum-
marizing news articles over almost two decades.
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Rather than rely on a single source, the dataset in-
cludes summaries from 38 major publishers. This
diversity of sources and time span translate into a
diversity of summarization styles.

We explore NEWSROOM to better understand
the dataset and how summarization is used in prac-
tice by newsrooms. Our analysis focuses on a key
dimension, extractivenss and abstractiveness: ex-
tractive summaries frequently borrow words and
phrases from their source text, while abstractive
summaries describe the contents of articles pri-
marily using new language. We develop mea-
sures designed to quantify extractiveness and use
these measures to subdivide the data into extrac-
tive, mixed, and abstractive subsets, as shown in
Figure 1, displaying the broad set of summariza-
tion techniques practiced by different publishers.

Finally, we analyze the performance of
three summarization models as baselines for
NEWSROOM to better understand the challenges
the dataset poses. In addition to automated
ROUGE evaluation (Lin, 2004a,b), we design and
execute a benchmark human evaluation protocol
to quantify the output summaries relevance and
quality. Our experiments demonstrate that NEWS-
ROOM presents an open challenge for summariza-
tion systems, while providing a large resource
to enable data-intensive learning methods. The
dataset and evaluation protocol are available on-
line at summari.es.

2 Existing Datasets

There are a several frequently used summarization
datasets. Listed in Figure 2 are examples from
four datasets. The examples are chosen to be rep-
resentative: they have scores within 5% of their
dataset average across our analysis measures (Sec-
tion 4). To illustrate the extractive and abstrac-
tive nature of summaries, we underline multi-word
phrases shared between the article and summary,
and italicize words used only in the summary.

2.1 Document Understanding Conference

Datasets produced for the Document Understand-
ing Conference (DUC)1 are small, high-quality
datasets developed to evaluate summarization sys-
tems (Harman and Over, 2004; Dang, 2006).

DUC data consist of newswire articles paired
with human summaries written specifically for
DUC. One distinctive feature of the DUC datasets

1http://duc.nist.gov/

DUC
Example Summary: Floods hit north Mozambique as
aid to flooded south continues

Start of Article: MAPUTO, Mozambique (AP) — Just
as aid agencies were making headway in feeding hundreds
of thousands displaced by flooding in southern and cen-
tral Mozambique, new floods hit a remote northern region
Monday. The Messalo River overflowed [...]

Gigaword
Example Summary: Seve gets invite to US Open

Start of Article: Seve Ballesteros will be playing in next
month’s US Open after all. The USGA decided Tuesday
to give the Spanish star a special exemption. American
Ben Crenshaw was also given a special exemption by the
United States Golf Association. Earlier this week [...]

New York Times Corpus
Example Summary: Annual New York City Toy Fair
opens in Manhattan; feud between Toy Manufacturers of
America and its landlord at International Toy Center leads
to confusion and turmoil as registration begins; dispute dis-
cussed.

Start of Article: There was toylock when the Toy Fair
opened in Manhattan yesterday. The reason? A family
feud between the Toy Manufacturers of America and its
landlord at Fifth Avenue and 23d Street. Toy buyers and
exhibitors arriving to attend the kickoff of the [...]

CNN / Daily Mail
Example Summary:
• Eight Al Jazeera journalists are named on an Egyptian

charge sheet, the network says

• The eight were among 20 people named ‘Most are not
employees of Al Jazeera,” the network said

• The eight include three journalists jailed in Egypt

Start of Article: Egyptian authorities have served Al
Jazeera with a charge sheet that identifies eight of its staff
on a list of 20 people – all believed to be journalists – for al-
legedly conspiring with a terrorist group, the network said
Wednesday. The 20 are wanted by Egyptian [...]

Figure 2: Example summaries for existing datasets.

is the availability of multiple reference summaries
for each article. This is a major advantage of DUC
compared to other datasets, especially when evalu-
ating with ROUGE (Lin, 2004b,a), which was de-
signed to be used with multiple references. How-
ever, DUC datasets are small, which makes it dif-
ficult to use them as training data.

DUC summaries are often used in conjunc-
tion with larger training datasets, including Gi-
gaword (Rush et al., 2015; Chopra et al., 2016),
CNN / Daily Mail (Nallapati et al., 2017; Paulus
et al., 2017; See et al., 2017), or Daily Mail
alone (Nallapati et al., 2016b; Cheng and Lapata,
2016). The data have also been used to evaluate
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unsupervised methods (Dorr et al., 2003; Mihal-
cea and Tarau, 2004; Barrios et al., 2016).

2.2 Gigaword

The Gigaword Corpus (Napoles et al., 2012) con-
tains nearly 10 million documents from seven
newswire sources, including the Associated Press,
New York Times Newswire Service, and Washing-
ton Post Newswire Service. Compared to other ex-
isting datasets used for summarization, the Giga-
word corpus is the largest and most diverse in its
sources. While Gigaword does not contain sum-
maries, prior work uses Gigaword headlines as
simulated summaries (Rush et al., 2015; Chopra
et al., 2016). These systems are trained on Giga-
word to recreate headlines given the first sentence
of an article. When used this way, Gigaword’s
simulated summaries are shorter than most natu-
ral summary text. Gigaword, along with similar
text-headline datasets (Filippova and Altun, 2013),
are also used for the related sentence compression
task (Dorr et al., 2003; Filippova et al., 2015).

2.3 New York Times Corpus

The New York Times Annotated Corpus (Sand-
haus, 2008) is the largest summarization dataset
currently available. It consists of carefully cu-
rated articles from a single source, The New York
Times. The corpus contains several hundred thou-
sand articles written between 1987–2007 that have
paired summaries. The summaries were written
for the corpus by library scientists, rather than at
the time of publication. Our analysis in Section 4
reveals that the data are somewhat biased toward
extractive strategies, making it particularly useful
as an extractive summarization dataset. Despite
this, limited work has used this dataset for summa-
rization (Hong and Nenkova, 2014; Durrett et al.,
2016; Paulus et al., 2017).

2.4 CNN / Daily Mail

The CNN / Daily Mail question answering
dataset (Hermann et al., 2015) is frequently used
for summarization. The dataset includes CNN
and Daily Mail articles, each associated with sev-
eral bullet point descriptions. When used in sum-
marization, the bullet points are typically con-
catenated into a single summary.2 The dataset
has been used for summarization as is (See
et al., 2017), or after pre-processing for entity

2https://github.com/abisee/cnn-dailymail

anonymization (Nallapati et al., 2017). This dif-
ferent usage makes comparisons between sys-
tems using these data challenging. Addition-
ally, some systems use both CNN and Daily Mail
for training (Nallapati et al., 2017; Paulus et al.,
2017; See et al., 2017), whereas others use only
Daily Mail articles (Nallapati et al., 2016b; Cheng
and Lapata, 2016). Our analysis shows that the
CNN / Daily Mail summaries have strong bias to-
ward extraction (Section 4). Similar observations
about the data were made by Chen et al. (2016)
with respect to the question answering task.

3 Collecting NEWSROOM Summaries

The NEWSROOM dataset was collected using so-
cial media and search engine metadata. To cre-
ate the dataset, we performed a Web-scale crawl-
ing of over 100 million pages from a set of online
publishers. We identify newswire articles and use
the summaries provided in the HTML metadata.
These summaries were created to be used in search
engines and social media.

We collected HTML pages and metadata us-
ing the Internet Archive (Archive.org), accessing
archived pages of a large number of popular news,
sports, and entertainment sites. Using Archive.org
provides two key benefits. First, the archive pro-
vides an API that allows for collection of data
across time, not limited to recently available arti-
cles. Second, the archived URLs of the dataset ar-
ticles are immutable, allowing distribution of this
dataset using a thin, URL-only list.

The publisher sites we crawled were selected
using a combination of Alexa.com top overall
sites, as well as Alexa’s top news sites.3 We sup-
plemented the lists with older lists published by
Google of the highest-traffic sites on the Web.4 We
excluded sites such as Reddit that primarily aggre-
gate rather than produce content, as well as pub-
lisher sites that proved to have few or no articles
with summary metadata available, or have articles
primarily in languages other than English. This
process resulted in a set of 38 publishers that were
included in the dataset.

3Alexa removed the extended public list in 2017, see:
https://web.archive.org/web/2016/https://www.alexa.com/
topsites/category/News

4Google removed this list in 2013, see:
https://web.archive.org/web/2012/http://www.google.com/
adplanner/static/top1000
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3.1 Content Scraping
We used two techniques to identify article pages
from the selected publishers on Archive.org: the
search API and index-page crawl. The API al-
lows queries using URL pattern matching, which
focuses article crawling on high-precision subdo-
mains or paths. We used the API to search for
content from the publisher domains, using specific
patterns or post-processing filtering to ensure arti-
cle content. In addition, we used Archive.org to
retrieve the historical versions of the home page
for all publisher domains. The archive has content
from 1998 to 2017 with varying degrees of time
resolution. We obtained at least one snapshot of
each page for every available day. For each snap-
shot, we retrieved all articles listed on the page.

For both search and crawled URLs, we per-
formed article de-duplication using URLs to con-
trol for varying URL fragments, query parameters,
protocols, and ports. When performing the merge,
we retained only the earliest article version avail-
able to prevent the collection of stale summaries
that are not updated when articles are changed.

3.2 Content Extraction
Following identification and de-duplication, we
extracted the article texts and summaries and fur-
ther cleaned and filtered the dataset.
Article Text We used Readability5 to extract
HTML body content. Readability uses HTML
heuristics to extract the main content and title of
a page, producing article text without extraneous
HTML markup and images. Our preliminary test-
ing, as well as comparison by Peters (2015), found
Readability to be one of the highest accuracy con-
tent extraction algorithms available. To exclude
inline advertising and image captions sometimes
present in extractions, we applied additional filter-
ing of paragraphs with fewer than five words. We
excluded articles with no body text extracted.
Summary Metadata We extracted the article
summaries from the metadata available in the
HTML pages of articles. These summaries are
often written by newsroom editors and journal-
ists to appear in social media distribution and
search results. While there is no standard meta-
data format for summaries online, common fields
are often present in the page’s HTML. Popular
metadata field types include: og:description, twit-
ter:description, and description. In cases where

5https://pypi.org/project/readability-lxml/0.6.2/

Dataset Size 1,321,995 articles
Training Set Size 995,041 articles

Mean Article Length 658.6 words
Mean Summary Length 26.7 words

Total Vocabulary Size 6,925,712 words
Occurring 10+ Times 784,884 words

Table 1: Dataset Statistics

different metadata summaries were available, and
were different, we used the first field available ac-
cording to the order above. We excluded articles
with no summary text of any type. We also re-
moved article-summary pairs with a high amount
of precisely-overlapping text to remove rule-based
automatically-generated summaries fully copied
from the article (e.g., the first paragraph).

3.3 Building the Dataset

Our scraping and extraction process resulted in a
set of 1,321,995 article-summary pairs. Simple
dataset statistics are shown in Table 1. The data are
divided into training (76%), development (8%),
test (8%), and unreleased test (8%) datasets using
a hash function of the article URL. We use the ar-
ticles’ Archive.org URLs for lightweight distribu-
tion of the data. Archive.org is an ideal platform
for distributing the data, encouraging its users to
scrape its resources. We provide the extraction and
analysis scripts used during data collection for re-
producing the full dataset from the URL list.

4 Data Analysis

NEWSROOM contains summaries from different
topic domains, written by many authors, over the
span of more than two decades. This diversity is
an important aspect of the dataset. We analyze the
data to quantify the differences in summarization
styles and techniques between the different publi-
cations to show the importance of reflecting this
diversity. In Sections 6 and 7, we examine the ef-
fect of the dataset diversity on the performance of
a variety of summarization systems.

4.1 Characterizing Summarization Strategies

We examine summarization strategies using three
measures that capture the degree of text overlap
between the summary and article, and the rate of
compression of the information conveyed.

Given an article textA = 〈a1, a2, . . . , an〉 con-
sisting of a sequence of tokens ai and the corre-
sponding article summary S = 〈s1, s2, · · · , sm〉
consisting of tokens si, the set of extractive frag-
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function F(A,S)
F ← ∅, 〈i, j〉 ← 〈1, 1〉
while i ≤ |S| do

f ← 〈 〉
while j ≤ |A| do

if si = aj then
〈i′, j′〉 ← 〈i, j〉
while si′ = aj′ do
〈i′, j′〉 ← 〈i′ + 1, j′ + 1〉

if |f | < (i′ − i− 1) then
f ← 〈si · · · si′−1〉

j ← j′

else
j ← j + 1

〈i, j〉 ← 〈i+max{|f |, 1}, 1〉
F ← F ∪ {f}

return F

Figure 3: Procedure to compute the set F(A,S) of ex-
tractive phrases in summary S extracted from articleA.
For each sequential token of the summary, si, the pro-
cedure iterates through tokens of the text, aj . If tokens
si and aj match, the longest shared token sequence af-
ter si and aj is marked as the extraction starting at si.

mentsF(A,S) is the set of shared sequences of to-
kens inA and S. We identify these extractive frag-
ments of an article-summary pair using a greedy
process. We process the tokens in the summary in
order. At each position, if there is a sequence of to-
kens in the source text that is prefix of the remain-
der of the summary, we mark this prefix as extrac-
tive and continue. We prefer to mark the longest
prefix possible at each step. Otherwise, we mark
the current summary token as abstractive. The set
F(A,S) includes all the tokens sequences iden-
tified as extractive. Figure 3 formally describes
this procedure. Underlined phrases of Figures 1
and 2 are examples of fragments identified as ex-
tractive. Using F(A,S), we compute two mea-
sures: extractive fragment coverage and extractive
fragment density.

Extractive Fragment Coverage The coverage
measure quantifies the extent to which a summary
is derivative of a text. COVERAGE(A,S) measures
the percentage of words in the summary that are
part of an extractive fragment with the article:

COVERAGE(A,S) =
1

|S|
∑

f∈F(A,S)

|f | .

For example, a summary with 10 words that bor-
rows 7 words from its article text and includes 3
new words will have COVERAGE(A,S) = 0.7.

Extractive Fragment Density The density
measure quantifies how well the word sequence
of a summary can be described as a series of ex-
tractions. For instance, a summary might contain

many individual words from the article and there-
fore have a high coverage. However, if arranged in
a new order, the words of the summary could still
be used to convey ideas not present in the article.
We define DENSITY(A,S) as the average length
of the extractive fragment to which each word in
the summary belongs. The density formulation is
similar to the coverage definition but uses a square
of the fragment length:

DENSITY(A,S) =
1

|S|
∑

f∈F(A,S)

|f |2 .

For example, an article with a 10-word summary
made of two extractive fragments of lengths 3
and 4 would have COVERAGE(A,S) = 0.7 and
DENSITY(A,S) = 2.5.
Compression Ratio We use a simple dimension
of summarization, compression ratio, to further
characterize summarization strategies. We define
COMPRESSION as the word ratio between the ar-
ticle and summary:

COMPRESSION(A,S) = |A|
/
|S| .

Summarizing with higher compression is chal-
lenging as it requires capturing more precisely the
critical aspects of the article text.

4.2 Analysis of Dataset Diversity
We use density, coverage, and compression to un-
derstand the distribution of human summariza-
tion techniques across different sources. Figure 4
shows the distributions of summaries for differ-
ent domains in the NEWSROOM dataset, along
with three major existing summarization datasets:
DUC 2003-2004 (combined), CNN / Daily Mail,
and the New York Times Corpus.
Publication Diversity Each NEWSROOM publi-
cation shows a unique distribution of summaries
mixing extractive and abstractive strategies in
varying amounts. For example, the third entry on
the top row shows the summarization strategy used
by BuzzFeed. The density (y-axis) is relatively
low, meaning BuzzFeed summaries are unlikely to
include long extractive fragments. While the cov-
erage (x-axis) is more varied, BuzzFeed’s cover-
age tends to be lower, indicating that it frequently
uses novel words in summaries. The publication
plots in the figure are sorted by median compres-
sion ratio. We observe that publications with lower
compression ratio (top-left of the figure) exhibit
higher diversity along both dimensions of extrac-
tiveness. However, as the median compression ra-
tio increases, the distributions become more con-
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CNN / Daily Mail
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Figure 4: Density and coverage distributions across the different domains and existing datasets. NEWSROOM
contains diverse summaries that exhibit a variety of summarization strategies. Each box is a normalized bivariate
density plot of extractive fragment coverage (x-axis) and density (y-axis), the two measures of extraction described
in Section 4.1. The top left corner of each plot shows the number of training set articles n and the median com-
pression ratio c of the articles. For DUC and New York Times, which have no standard data splits, n is the total
number of articles. Above, top left to bottom right: Plots for each publication in the NEWSROOM dataset. We omit
TMZ, Economist, and ABC for presentation. Below, left to right: Plots for each summarization dataset showing
increasing diversity of summaries along both dimensions of extraction in NEWSROOM.
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centrated, indicating that summarization strategies
become more rigid.

Dataset Diversity Figure 4 demonstrates how
DUC, CNN / Daily Mail, and the New York Times
exhibit different human summarization strategies.
DUC summarization is fairly similar to the high-
compression newsrooms shown in the lower publi-
cation plots in Figure 4. However, DUC’s median
compression ratio is much higher than all other
datasets and NEWSROOM publications. The fig-
ure shows that CNN / Daily Mail and New York
Times are skewed toward extractive summaries
with lower compression ratios. CNN / Daily Mail
shows higher coverage and density than all other
datasets and publishers in our data. Compared
to existing datasets, NEWSROOM covers a much
larger range of summarization styles, ranging from
both highly extractive to highly abstractive.

5 Performance of Existing Systems

We train and evaluate several summarization sys-
tems to understand the challenges of NEWSROOM

and its usefulness for training systems. We eval-
uate three systems, each using a different sum-
marization strategy with respect to extractive-
ness: fully extractive (TextRank), fully abstrac-
tive (Seq2Seq), and mixed (pointer-generator).
We further study the performance of the pointer-
generator model on NEWSROOM by training three
systems using different dataset configurations. We
compare these systems to two rule-based systems
that provide baseline (Lede-3) and an extractive
oracle (Fragments).

Extractive: TextRank TextRank is a sentence-
level extractive summarization system. The sys-
tem was originally developed by Mihalcea and Ta-
rau (2004) and was later further developed and im-
proved by Barrios et al. (2016). TextRank uses an
unsupervised sentence-ranking approach similar
to Google PageRank (Page et al., 1999). TextRank
picks a sequence of sentences from a text for
the summary up to a maximum allowable length.
While this maximum length is typically preset by
the user, in order to optimize ROUGE scoring,
we tune this parameter to optimize ROUGE-1 F1-
score on the NEWSROOM training data. We ex-
perimented with values between 1–200, and found
the optimal value to be 50 words. We use tuned
TextRank of in Tables 2, 3, and in the supplemen-
tary material.

Abstractive: Seq2Seq / Attention Sequence-
to-sequence models with attention (Cho et al.,
2014; Sutskever et al., 2014; Bahdanau et al.,
2014) have been applied to various language tasks,
including summarization (Chopra et al., 2016;
Nallapati et al., 2016a). The process by which the
model produces tokens is abstractive, as there is no
explicit mechanism to copy tokens from the input
text. We train a TensorFlow implementation6 of
the Rush et al. (2015) model using NEWSROOM.
Mixed: Pointer-Generator The pointer-
generator model (See et al., 2017) uses abstractive
token generation and extractive token copy-
ing using a pointer mechanism (Vinyals et al.,
2015; Gülçehre et al., 2016), keeping track of
extractions using coverage (Tu et al., 2016). We
evaluate three instances of this model by varying
the training data: (1) Pointer-C: trained on the
CNN / Daily Mail dataset; (2) Pointer-N: trained
on the NEWSROOM dataset; and (3) Pointer-S:
trained on a random subset of NEWSROOM train-
ing data the same size as the CNN / Daily Mail
training. The last instance aims to understand the
effects of dataset size and summary diversity.
Lower Bound: Lede-3 A common automatic
summarization strategy of online publications is
to copy the first sentence, first paragraph, or
first k words of the text and treat this as the sum-
mary. Following prior work (See et al., 2017; Nal-
lapati et al., 2017), we use the Lede-3 baseline, in
which the first three sentences of the text are re-
turned as the summary. Though simple, this base-
line is competitive with state-of-the-art systems.
Extractive Oracle: Fragments This system has
access to the reference summary. Given an arti-
cle A and its summary S, the system computes
F(A,S) (Section 4). Fragments concatenates the
fragments in F(A,S) in the order they appear in
the summary, representing the best possible per-
formance of an ideal extractive system. Only sys-
tems that are capable of abstractive reasoning can
outperform the ROUGE scores of Fragments.

6 Automatic Evaluation

We study model performance of NEWSROOM,
CNN / Daily Mail, and the combined DUC 2003
and 2004 datasets. We use the five systems de-
scribed in Section 5, including the extractive ora-
cle. We also evaluate the systems using subsets of

6https://github.com/tensorflow/models/tree/f87a58/
research/textsum
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DUC 2003 & 2004 CNN / DAILY MAIL NEWSROOM - T NEWSROOM - U

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Lede-3 12.99 3.89 11.44 38.64 17.12 35.13 30.49 21.27 28.42 30.63 21.41 28.57
Fragments 87.04 68.45 87.04 93.36 83.19 93.36 88.46 76.03 88.46 88.48 76.06 88.48

TextRank 15.75 4.06 13.02 29.06 11.14 24.57 22.77 9.79 18.98 22.76 9.80 18.97
Abs-N 2.44 0.04 2.37 5.07 0.16 4.80 5.88 0.39 5.32 5.90 0.43 5.36
Pointer-C 12.40 2.88 10.74 32.51 11.90 28.95 20.25 7.32 17.30 20.29 7.33 17.31
Pointer-S 15.10 4.55 12.42 34.33 13.79 28.42 24.50 12.60 20.33 24.48 12.52 20.30
Pointer-N 17.29 5.01 14.53 31.61 11.70 27.23 26.02 13.25 22.43 26.04 13.24 22.45

Table 2: ROUGE-1, ROUGE-2, and ROUGE-L scores for baselines and systems on two common existing datasets,
the combined DUC 2003 & 2004 datasets and CNN / Daily Mail dataset, and the released (T) and unreleased (U)
test sets of NEWSROOM. The best results for non-baseline systems in the lower parts of the table are in bold.

EXTRACTIVE MIXED ABSTRACTIVE NEWSROOM - D

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Lede-3 53.05 49.01 52.37 25.15 12.88 22.08 13.69 2.42 11.24 30.72 21.53 28.65
Fragments 98.95 97.89 98.95 92.68 82.09 92.68 73.43 47.66 73.43 88.46 76.07 88.46

TextRank 32.43 19.68 28.68 22.30 7.87 17.75 13.54 1.88 10.46 22.82 9.85 19.02
Abs-N 6.08 0.21 5.42 5.67 0.15 5.08 6.21 1.07 5.68 5.98 0.48 5.39
Pointer-C 28.34 14.65 25.21 20.22 6.51 16.88 13.11 1.62 10.72 20.47 7.50 17.51
Pointer-S 37.29 26.56 33.34 23.71 10.59 18.79 13.89 2.22 10.34 24.83 12.94 20.66
Pointer-N 39.11 27.95 36.17 25.48 11.04 21.06 14.66 2.26 11.44 26.27 13.55 22.72

Table 3: Performance of the baselines and systems on the three extractiveness subsets of the NEWSROOM devel-
opment set, and the overall scores of systems on the full development set (D). The best results for non-baseline
systems in the lower parts of the table are in bold.

NEWSROOM to characterize the sensitivity of sys-
tems to different levels of extractiveness in refer-
ence summaries. We use the F1-score variants of
ROUGE-1, ROUGE-2, and ROUGE-L to account
for different summary lengths. ROUGE scores
are computed with the default configuration of the
Lin (2004b) ROUGE v1.5.5 reference implemen-
tation. Input article text and reference summaries
for all systems are tokenized using the Stanford
CoreNLP tokenizer (Manning et al., 2014).

Table 2 shows results for summarization sys-
tems on DUC, CNN / Daily Mail, and NEWS-
ROOM. In nearly all cases, the fully extrac-
tive Lede-3 baseline produces the most success-
ful summaries, with the exception of the relatively
extractive DUC. Among models, NEWSROOM-
trained Pointer-N performs best on all datasets
other than CNN / Daily Mail, an out-of-domain
dataset. Pointer-C, which has access to only a lim-
ited subset of NEWSROOM, performs worse than
Pointer-N on average. However, despite not being
trained on CNN / Daily Mail, Pointer-S outper-
forms Pointer-C on its own data under ROUGE-N
and is competitive under ROUGE-L. Finally, both
Pointer-N and Pointer-S outperform other systems
and baselines on DUC, whereas Pointer-C does
not outperform Lede-3.

Table 3 shows development results on the

NEWSROOM data for different level of extractive-
ness. Pointer-N outperforms the remaining models
across all extractive subsets of NEWSROOM and,
in the case of the abstractive subset, exceeds the
performance of Lede-3. The success of Pointer-N
and Pointer-S in generalizing and outperforming
models on DUC and CNN / Daily Mail indicates
the usefulness of NEWSROOM in generalizing to
out-of-domain data. Similar subset analysis for
our other two measures, coverage and compres-
sion, are included in the supplementary material.

7 Human Evaluation

ROUGE scores systems using frequencies of
shared n-grams. Evaluating systems with ROUGE
alone biases scoring against abstractive systems,
which rely more on paraphrasing. To overcome
this limitation, we provide human evaluation of
the different systems on NEWSROOM. While
human evaluation is still uncommon in summa-
rization work, developing a benchmark dataset
presents an opportunity for developing an accom-
panying protocol for human evaluation.

Our evaluation method is centered around three
objectives: (1) distinguishing between syntactic
and semantic summarization quality, (2) provid-
ing a reliable (consistent and replicable) measure-
ment, and (3) allowing for portability such that the
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DIMENSION PROMPT

Informativeness How well does the summary capture
the key points of the article?

Relevance Are the details provided by the sum-
mary consistent with details in the ar-
ticle?

Fluency Are the individual sentences of the
summary well-written and grammati-
cal?

Coherence Do phrases and sentences of the sum-
mary fit together and make sense col-
lectively?

Table 4: The prompts given to Amazon Mechanical
Turk crowdworkers for evaluating each summary.

SEMANTIC SYNTACTIC

INF REL FLU COH Avg.

Lede-3 3.98 4.13 4.13 4.08 4.08
Fragments 2.91 3.26 3.09 3.06 3.08

TextRank 3.61 3.92 3.87 3.86 3.81
Abs-N 2.09 2.35 2.66 2.50 2.40
Pointer-C 3.55 3.78 3.22 3.30 3.46
Pointer-S 3.77 4.02 3.56 3.56 3.73
Pointer-N 3.36 3.82 3.43 3.39 3.50

Table 5: Average performance of systems as scored by
human evaluators. Each summary was scored by three
different evaluators. Dimensions, from left to right: in-
formativeness, relevance, fluency, and coherence, and
a mean of the four dimensions for each system.

measure can be applied to other models or sum-
marization datasets.

We select two semantic and two syntactic di-
mensions for evaluation based on experiments
with evaluation tasks by Paulus et al. (2017)
and Tan et al. (2017). The two semantic di-
mensions, summary informativeness (INF) and
relevance (REL), measure whether the system-
generated text is useful as a summary, and ap-
propriate for the source text, respectively. The
two syntactic dimensions, fluency (FLU) and co-
herence (COH), measure whether individual sen-
tences or phrases of the summary are well-written
and whether the summary as a whole makes sense
respectively. Evaluation was performed on 60
summaries, 20 from each extractive NEWSROOM

subset. Each system-article pair was evaluated by
three unique raters. Exact prompts given to raters
for each dimension are shown in Table 4.

Table 5 shows the mean score given to each sys-
tem under each of the four dimensions, as well as
the mean overall score (rightmost column). No
summarization system exceeded the scores given
to the Lede-3 baseline. However, the extractive
oracle designed to maximize n-gram based evalu-
ation performed worse than the majority of sys-

tems under human evaluation. While the fully
abstractive Abs-N model performed very poorly
under automatic evaluation, it fared slightly bet-
ter when scored by humans. TextRank received
the highest overall score. TextRank generates full
sentences extracted from the article, and raters
preferred TextRank primarily for its fluency and
coherence. The pointer-generator models do not
have this advantage, and raters did not find the
pointer-generator models to be as syntactically
sound as TextRank. However, raters preferred
the informativeness and relevance of the Pointer-S
and Pointer-N models, though not the Pointer-C
model, over TextRank.

8 Conclusion

We present NEWSROOM, a dataset of articles and
their summaries written in the newsrooms of on-
line publications. NEWSROOM is the largest sum-
marization dataset available to date, and exhibits
a wide variety of human summarization strate-
gies. Our proposed measures and the analysis of
strategies used by different publications and arti-
cles propose new directions for evaluating the dif-
ficulty of summarization tasks and for developing
future summarization models. We show that the
dataset’s diversity of summaries presents a new
challenge to summarization systems. Finally, we
find that using NEWSROOM to train an existing
state-of-art mixed-strategy summarization model
results in performance improvements on out-of-
domain data. The NEWSROOM dataset is available
online at summari.es.
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Additional Evaluation

In Section 4, we discuss three measures of sum-
marization diversity: coverage, density, and com-
pression. In addition to quantifying diversity of
summarization strategies, these measures are help-
ful for system error analysis. We use the density
measurement to understand how system perfor-
mance varies when compared against references
using different extractive strategies by subdivid-
ing NEWSROOM into three subsets by extractive-
ness and evaluating using ROUGE on each. We
show here a similar analysis using the remaining
two measures, coverage and compression. Results
for subsets based on coverage and compression are
shown in Tables 6 and 7.

LOW COVERAGE MEDIUM HIGH COVERAGE

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Lede-3 15.07 4.02 12.66 29.66 18.69 26.98 46.89 41.25 45.77
Fragments 72.45 46.16 72.45 93.41 83.08 93.41 99.13 98.16 99.13

TextRank 14.43 2.80 11.36 23.62 9.48 19.27 30.15 17.04 26.18
Abs-N 6.25 1.09 5.72 5.61 0.15 5.05 6.10 0.19 5.40
Pointer-C 13.99 2.46 11.57 21.70 8.06 18.47 25.80 12.06 22.57
Pointer-S 15.16 3.63 11.61 26.95 14.51 22.30 32.42 20.77 28.15
Pointer-N 16.07 3.78 12.85 28.79 15.31 24.79 34.03 21.67 30.62

Table 6: Performance of the baselines and systems on the three coverage subsets of the NEWSROOM development
set. Article-summary pairs with low coverage have reference summaries that borrow words less frequently from
their texts and contain more novel words and phrases. Article-summary pairs with high coverage borrow more
words from their text and include fewer novel words and phrases.

LOW COMPRESSION MEDIUM HIGH COMPRESSION

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Lede-3 42.89 34.91 41.06 30.62 20.77 28.30 18.57 8.83 16.53
Fragments 87.78 77.20 87.78 89.73 77.66 89.73 87.88 73.34 87.88

TextRank 30.35 17.51 26.67 22.98 8.69 18.56 15.07 3.31 11.78
Abs-N 6.27 0.75 5.65 6.22 0.52 5.60 5.48 0.18 4.93
Pointer-C 27.47 13.49 24.18 20.05 6.25 16.76 14.07 2.89 11.76
Pointer-S 35.42 23.43 30.89 24.11 11.28 19.45 15.31 4.46 11.98
Pointer-N 36.96 24.52 33.43 25.56 11.68 21.47 16.57 4.72 13.52

Table 7: Performance of the baselines and systems on the three compression subsets of the NEWSROOM devel-
opment set. Article-summary pairs with low compression have longer reference summaries with respect to their
texts. Article-summary pairs with high compression have shorter reference summaries with respect to their texts.
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Abstract
Traditional approaches to semantic parsing
(SP) work by training individual models for
each available parallel dataset of text-meaning
pairs. In this paper, we explore the idea of
polyglot semantic translation, or learning se-
mantic parsing models that are trained on mul-
tiple datasets and natural languages. In par-
ticular, we focus on translating text to code
signature representations using the software
component datasets of Richardson and Kuhn
(2017a,b). The advantage of such models is
that they can be used for parsing a wide va-
riety of input natural languages and output
programming languages, or mixed input lan-
guages, using a single unified model. To fa-
cilitate modeling of this type, we develop a
novel graph-based decoding framework that
achieves state-of-the-art performance on the
above datasets, and apply this method to two
other benchmark SP tasks.

1 Introduction

Recent work by Richardson and Kuhn (2017a,b);
Miceli Barone and Sennrich (2017) considers the
problem of translating source code documentation
to lower-level code template representations as
part of an effort to model the meaning of such doc-
umentation. Example documentation for a number
of programming languages is shown in Figure 1,
where each docstring description in red describes
a given function (blue) in the library. While cap-
turing the semantics of docstrings is in general
a difficult task, learning the translation from de-
scriptions to formal code representations (e.g., for-
mal representations of functions) is proposed as a
reasonable first step towards learning more gen-
eral natural language understanding models in the
software domain. Under this approach, one can
view a software library, or API, as a kind of par-
allel translation corpus for studying text → code
or code→ text translation.

1. (en, Java) Documentation

*Returns the greater of two long values
public static long max(long a, long b)

2. (en, Python) Documentation
max(self, a, b):

"""Compares two values numerically
and returns the maximum"""

3. (en, Haskell) Documentation
--| "The largest element of a non-empty structure"
maximum :: forall z. Ord a a => t a -> a

4. (de, PHP) Documentation

*gibt den größeren dieser Werte zurück.
max (mixed $value1, mixed $value2)

Figure 1: Example source code documentation.

Richardson and Kuhn (2017b) extracted the
standard library documentation for 10 popular
programming languages across a number of natu-
ral languages to study the problem of text to func-
tion signature translation. Initially, these datasets
were proposed as a resource for studying semantic
parser induction (Mooney, 2007), or for building
models that learn to translate text to formal mean-
ing representations from parallel data. In follow-
up work (Richardson and Kuhn, 2017a), they pro-
posed using the resulting models to do automated
question-answering (QA) and code retrieval on
target APIs, and experimented with an additional
set of software datasets built from 27 open-source
Python projects.

As traditionally done in SP (Zettlemoyer and
Collins, 2012), their approach involves learning
individual models for each parallel dataset or lan-
guage pair, e.g., (en, Java), (de, PHP), and (en,
Haskell). Looking again at Figure 1, we notice
that while programming languages differ in terms
of representation conventions, there is often over-
lap between the functionality implemented and
naming in these different languages (e.g., the max
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function), and redundancy in the associated lin-
guistic descriptions. In addition, each English
description (Figure 1.1-1.3) describes max dif-
ferently using the synonyms greater, maximum,
largest. In this case, it would seem that training
models on multiple datasets, as opposed to single
language pairs, might make learning more robust,
and help to capture various linguistic alternatives.

With the software QA application in mind, an
additional limitation is that their approach does
not allow one to freely translate a given descrip-
tion to multiple output languages, which would be
useful for comparing how different programming
languages represent the same functionality. The
model also cannot translate between natural lan-
guages and programming languages that are not
observed during training. While software docu-
mentation is easy to find in bulk, if a particular
API is not already documented in a language other
than English (e.g., Haskell in de), it is unlikely
that such a translation will appear without consid-
erable effort by experienced translators. Similarly,
many individual APIs may be too small or poorly
documented to build individual models or QA ap-
plications, and will in some way need to bootstrap
off of more general models or resources.

To deal with these issues, we aim to learn more
general text-to-code translation models that are
trained on multiple datasets simultaneously. Our
ultimate goal is to build polyglot translation mod-
els (cf. Johnson et al. (2016)), or models with
shared representations that can translate any input
text to any output programming language, regard-
less of whether such language pairs were encoun-
tered explicitly during training. Inherent in this
task is the challenge of building an efficient poly-
glot decoder, or a translation mechanism that al-
lows such crossing between input and output lan-
guages. A key challenge is ensuring that such a de-
coder generates well-formed code representations,
which is not guaranteed when one simply applies
standard decoding strategies from SMT and neural
MT (cf. Cheng et al. (2017)). Given our ultimate
interest in API QA, such a decoder must also fa-
cilitate monolingual translation, or being able to
translate to specific output languages as needed.

To solve the decoding problem, we introduce
a new graph-based decoding and representation
framework that reduces to solving shortest path
problems in directed graphs. We investigate
several translation models that work within this

framework, including traditional SMT models and
models based on neural networks, and report state-
of-the-art results on the technical documentation
task of Richardson and Kuhn (2017b,a). To show
the applicability of our approach to more conven-
tional SP tasks, we apply our methods to the Geo-
Query domain (Zelle and Mooney, 1996) and the
Sportscaster corpus (Chen et al., 2010). These
experiments also provide insight into the main
technical documentation task and highlight the
strengths and weaknesses of the various transla-
tion models being investigated.

2 Related Work

Our approach builds on the baseline models intro-
duced in Richardson and Kuhn (2017b) (see also
Deng and Chrupała (2014)). Their work is posi-
tioned within the broader SP literature, where tra-
ditionally SMT (Wong and Mooney, 2006a) and
parsing (Zettlemoyer and Collins, 2009) methods
are used to study the problem of translating text
to formal meaning representations, usually center-
ing around QA applications (Berant et al., 2013).
More recently, there has been interest in using neu-
ral network approaches either in place of (Dong
and Lapata, 2016; Kočiský et al., 2016) or in
combination with (Misra and Artzi, 2016; Jia and
Liang, 2016; Cheng et al., 2017) these traditional
models, the latter idea we look at in this paper.

Work in NLP on software documentation has
accelerated in recent years due in large part to the
availability of new data resources through web-
sites such as StackOverflow and Github (cf. Al-
lamanis et al. (2017)). Most of this recent work
focuses on processing large amounts of API data
in bulk (Gu et al., 2016; Miceli Barone and Sen-
nrich, 2017), either for learning longer executable
programs from text (Yin and Neubig, 2017; Rabi-
novich et al., 2017), or solving the inverse prob-
lem of code to text generation (Iyer et al., 2016;
Richardson et al., 2017). In contrast to our work,
these studies do not look explicitly at translating
to target APIs, or at non-English documentation.

The idea of polyglot modeling has gained some
traction in recent years for a variety of problems
(Tsvetkov et al., 2016) and has appeared within
work in SP under the heading of multilingual SP
(Jie and Lu, 2014; Duong et al., 2017). A related
topic is learning from multiple knowledge sources
or domains (Herzig and Berant, 2017), which is
related to our idea of learning from multiple APIs.
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When building models that can translate between
unobserved language pairs, we use the term zero-
shot translation from Johnson et al. (2016).

3 Baseline Semantic Translator

Problem Formulation Throughout the paper,
we refer to target code representations as API com-
ponents. In all cases, components will consist
of formal representations of functions, or func-
tion signatures (e.g., long max(int a, int
b)), which include a function name (max), a
sequence of arguments (int a, int b), and
other information such as a return value (long)
and namespace (for more details, see Richard-
son (2018)). For a given API dataset D =
{(xi, zi)}ni=1 of size n, the goal is to learn a model
that can generate exactly a correct component se-
quence z = (z1, .., z|z|), within a finite space C of
signatures (i.e., the space of all defined functions),
for each input text sequence x = (x1, ..., x|x|).
This involves learning a probability distribution
p(z | x). As such, one can think of this underlying
problem as a constrained MT task.

In this section, we describe the baseline ap-
proach of Richardson and Kuhn (2017b). Techni-
cally, their approach has two components: a sim-
ple word-based translation model and task specific
decoder, which is used to generate a k-best list of
candidate component representations for a given
input x. They then use a discriminative model to
rerank the translation output using additional non-
world level features. The goal in this section is
to provide the technical details of their translation
approach, which we improve in Section 4.

3.1 Word-based Translation Model

The translation models investigated in Richardson
and Kuhn (2017b) use a noisy-channel formula-
tion where p(z | x) ∝ p(x | z)p(z) via Bayes
rule. By assuming a uniform prior on output com-
ponents, p(z), the model therefore involves esti-
mating p(x | z), which under a word-translation
model is computed using the following formula:
p(x | z) =

∑
a∈A p(x, a | z), where the summa-

tion ranges over the set of all many-to-one word
alignments A from x → z, with |A| equal to
(|z| + 1)|x|. They investigate various types of
sequence-based alignment models (Och and Ney,
2003), and find that the classic IBM Model 1 out-
performs more complex word models. This model
factors in the following way and assumes an inde-

pendent word generation process:

p(x | z) =
1

|A|

|x|∏

j=1

|z|∑

i=0

pt(xj | zi) (1)

where each pt defines a multinomial distribution
over a given component term z for all words x.

The decoding problem for the above transla-
tion model involves finding the most likely out-
put ẑ, which requires solving an arg maxz over
Equation 1. In the general case, this problem is
known to be NP-complete for the models under
consideration (Knight, 1999) largely due to the
large space of possible predictions z. Richardson
and Kuhn (2017b) avoid these issues by exploiting
the finiteness of the target component search space
(an idea we also pursue here and discuss more be-
low), and describe a constrained decoding algo-
rithm that runs in time O(|C| log |C|). While this
works well for small APIs, it becomes less feasi-
ble when dealing with large sets of APIs, as in the
polyglot case, or with more complex semantic lan-
guages typically used in SP (Liang, 2013).

4 Shortest Path Framework

To improve the baseline translation approach used
previously (Section 3.1), we pursue a graph based
approach. Given the formulation above and the
finiteness of our prediction space C, our approach
exploits the fact that we can represent the complete
component search space for any set of APIs as a
directed acyclic finite-state automaton (DAFSA),
such as the one shown graphically in Figure 2. The
underlying graph is constructed by concatenat-
ing all of the component representations for each
API of interest and applying standard finite-state
construction and minimization techniques (Mohri,
1996). Each path in the resulting compact automa-
ton is therefore a well-formed component repre-
sentation.

Using an idea from Johnson et al. (2016), we
add to each component representation an artificial
token that identifies the output programming lan-
guage or library. For example, the two edges from
the initial state 0 in Figure 2 are labeled as 2C
and 2Clojure, which identify the C and Clojure
programming languages respectively. All paths
starting from the right of these edges are there-
fore valid paths in each respective programming
language. The paths starting from the initial state
0, in contrast, correspond to all valid component
representations in all languages.
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Figure 2: A DAFSA representation for a portion of the component sequence search space C that includes math
functions in C and Clojure, and an example path/translation (in bold): 2C numeric math ceil arg.

Decoding reduces to the problem of finding a
path for a given text input x. For example, given
the input the ceiling of a number, we would want
to find the paths corresponding to the component
translations numeric math ceil arg (in C)
and algo math ceil x (in Clojure) in the
graph shown in Figure 2. Using the trick above,
our setup facilitates both monolingual decoding,
i.e., generating components specific to a particular
output language (e.g., the C language via the path
shown in bold), and polyglot decoding, i.e., gener-
ating any output language by starting at the initial
state 0 (e.g., C and Clojure).

We formulate the decoding problem using a
variant of the well-known single source shortest
path (SSSP) algorithm for directed acyclic graphs
(DAGs) (Johnson (1977)). This involves a graph
G = (V,E) (nodes V and labeled edges E, see
graph in Figure 2), and taking an off-line topo-
logical sort of the graph’s vertices. Using a data
structure d ∈ R|V | (initialized as ∞|V |, as shown
in Figure 2), the standard SSSP algorithm (which
is the forward update variant of the Viterbi algo-
rithm (Huang, 2008)) works by searching forward
through the graph in sorted order and finding for
each node v an incoming labeled edge u, with la-
bel z, that solves the following recurrence:

d(v) = min
(u,z):(u,v,z)∈E

{
d(u) + w(u, v, z)

}
(2)

where d(u) is shortest path score from a unique
source node b to the incoming node u (computed
recursively) andw(u, v, z) is the weight of the par-
ticular labeled edge. The weight of the resulting
shortest path is commonly taken to be the sum
of the path edge weights as given by w, and the
output translation is the sequence of labels associ-
ated with each edge. This algorithm runs in linear
time over the size of the graph’s adjacency matrix
(Adj) and can be extended to find k SSSPs. In
the standard case, a weighting function w is pro-

Algorithm 1 Lexical Shortest Path Search
Input: Input x of size n, DAG G = (V,E), lexical transla-

tion function pt, source node b with initial score o.
Output: Shortest component path
1: d[V [G]]←∞, π[V [G]]← Nil, d[b]← o
2: s[V [G], n]← 0.0 . Shortest path sums at each node
3: for each vertex u ≥ b ∈ V [G] in sorted order do
4: for each vertex and label (v, z) ∈ Adj[u] do
5: score← −log

[ ∏n
i pt(xi | z) + s[u, i]

]
6: if d[v] > score then
7: d[v]← score, π[v]← u
8: for i in 1, .., n do . Update scores
9: s[v, i]← pt(xi | z) + s[u, i]

10: return FINDPATH(π, |V |, b)

vided by assuming a static weighted graph. In our
translation context, we replace w with a transla-
tion model, which is used to dynamically generate
edge weights during the SSSP search for each in-
put x by scoring the translation between x and each
edge label z encountered.

Given this general framework, many differ-
ent translation models can be used for scoring.
In what follows, we describe two types of de-
coders based on lexical translation (or unigram)
and neural sequence models. Technically, each
decoding algorithm involves modifying the stan-
dard SSSP search procedure by adding an addi-
tional data structure s to each node (see Figure 2),
which is used to store information about transla-
tions (e.g., running lexical translation scores, RNN
state information) associated with particular short-
est paths. By using these two very different mod-
els, we can get insight into the challenges asso-
ciated with the technical documentation transla-
tion task. As we show in Section 6, each model
achieves varying levels of success when subjected
to a wider range of SP tasks, which reveals differ-
ences between our task and other SP tasks.

4.1 Lexical Translation Shortest Path

In our first model, we use the lexical translation
model and probability function pt in Equation 1 as
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the weighting function, which can be learned ef-
ficiently off-line using the EM algorithm. When
attempting to use the SSSP procedure to compute
this equation for a given source input x, we im-
mediately have the problem that such a compu-
tation requires a complete component representa-
tion z (Knight and Al-Onaizan, 1998). We use an
approximation1 that involves ignoring the normal-
izer |A| and exploiting the word independence as-
sumption of the model, which allows us to incre-
mentally compute translation scores for individ-
ual source words given output translations corre-
sponding to shortest paths during the SSSP search.

The full decoding algorithm in shown in Algo-
rithm 1, where the red highlights the adjustments
made to the standard SSSP search as presented in
Cormen et al. (2009). The main modification in-
volves adding a data structure s ∈ R|V | × |x| (ini-
tialized as 0.0|V |×|x| at line 2) that stores a running
sum of source word scores given the best trans-
lations at each node, which can be used for com-
puting the inner sum in Equation 1. For example,
given an input utterance ceiling function, s6 in Fig-
ure 2 contains the independent translation scores
for words ceiling and function given the edge la-
bel numeric and pt. Later on in the search, these
scores are used to compute s7, which will provide
translation scores for each word given the edge se-
quence numeric math. Taking the product over any
given sj (as done in line 7 to get score) will give
the probability of the shortest path translation at
the particular point j. Here, the transformation
into − log space is used to find the minimum in-
coming path. Standardly, the data structure π can
be used to retrieve the shortest path back to the
source node b (done via the FINDPATH method).

4.2 Neural Shortest Path

Our second set of models use neural networks to
compute the weighting function in Equation 2. We
use an encoder-decoder model with global atten-
tion (Bahdanau et al., 2014; Luong et al., 2015),
which has the following two components:

Encoder Model The first is an encoder net-
work, which uses a bi-directional recurrent neural
network architecture with LSTM units (Hochre-
iter and Schmidhuber, 1997) to compute a se-
quence of forward annotations or hidden states
(
−→
h 1, ...,

−→
h |x|) and a sequence of backward hid-

1Details about the approx. are provided as supp. material.

den states (
←−
h , ...,

←−
h |x|) for the input sequence

(x1, ..., x|x|). Standardly, each word is then rep-
resented as the concatenation of its forward and
backward states: hj = [

−→
h j ,
←−
h j ].

Decoder Model The second component is a de-
coder network, which directly computes the con-
ditional distribution p(z | x) as follows:

p(z | x) =

|z|∑

i=1

log pΘ(zi | z<i, x) (3)

pΘ(zi | z<i, x) ∼ softmax(f(Θ, z<i, x)) (4)

where f is a non-linear function that encodes in-
formation about the sequence z<i and the input
x given the model parameters Θ. We can think
of this model as an ordinary recurrent language
model that is additionally conditioned on the input
x using information from our encoder. We imple-
ment the function f in the following way:

f(Θ, z<i, x) = Woηi + bo (5)

ηi = MLP(ci, gi) (6)

gi = LSTMdec(gi−1,Eoutzi−1
, ci) (7)

where MLP is a multi-layer perceptron model with
a single hidden layer, Eout ∈ R|Σdec|×e is a ran-
domly initialized embedding matrix, gi is the de-
coder’s hidden state at step i, and ci is a context-
vector that encodes information about the input x
and the encoder annotations. Each context vec-
tor ci in turn is a weighted sum of each annota-
tion hj against an attention vector αi,j , or ci =∑|x|

j=1 αi,jhj , which is jointly learned using an ad-
ditional single layered multi-layer perceptron de-
fined in the following way:

αi,j ∝ exp(ei,j); ei,j = MLP(gi−1, hj) (8)

Lexical Bias and Copying In contrast to stan-
dard MT tasks, we are dealing with a relatively
low-resource setting where the sparseness of the
target vocabulary is an issue. For this reason, we
experimented with integrating lexical translation
scores using a biasing technique from Arthur et al.
(2016). Their method is based on the following
computation for each token zi:

biasi =


pt′(z1 | x1) . . . pt′(z1 | x|x|)
...

. . .
...

pt′(z|Σdec| | x1) . . . pt′(z|Σdec| | x|x|)





αi,1

...
αi,|x|



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Algorithm 2 Neural Shortest Path Search
Input: Input x, DAG G, neural parameters Θ and non-linear

function f , beam size l, source node b with init. score o.
Output: Shortest component path
1: d[V [G]]←∞, d[b]← o, π[V [G]]← Nil
2: s[V [G]]← Nil . Path state information
3: s[b]← InitState() . Initialize source state
4: for each vertex u ≥ b ∈ V [G] in sorted order do
5: if isinf(d[u]) then continue
6: p← s[u] . Current state at node u, or z<i

7: L1
[l] ← arg max

(v1,...,vk)∈Adj[u]

softmax(f(Θ, p, x))

8: for each vertex and label (v, z) ∈ L do
9: score← − log pΘ(z | p, x) + d[u]

10: if d[v] > score then
11: d[v]← score, π[v]← u
12: s[v]← UpdateState(p, z)

13: return FINDPATH(π, |V |, b)

The first matrix uses the inverse (pt′) of the lex-
ical translation function pt already introduced to
compute the probability of each word in the target
vocabulary Σdec (the columns) with each word in
the input x (the rows), which is then weighted by
the attention vector from Equation 8. biasi is then
used to modify Equation 5 in the following way:

fbias(Θ, z<i, x) = Woηi + bo+
log(biasi + ε)

where ε is a hyper-parameter that helps to preserve
numerical stability and biases more heavily on the
lexical model when set lower.

We also experiment with the copying mecha-
nism from Jia and Liang (2016), which works by
allowing the decoder to choose from a set of latent
actions, aj , that includes writing target words ac-
cording to Equation 5, as done standardly, or copy-
ing source words from x, or copy[xi] according
to the attention scores in Equation 8. A distribu-
tion is then computed over these actions using a
softmax function and particular actions are cho-
sen accordingly during training and decoding.

Decoding and Learning The full decoding pro-
cedure is shown in Algorithm 2, where the differ-
ences with the standard SSSP are again shown in
red. We change the data structure s to contain the
decoder’s RNN state at each node. We also mod-
ify the scoring (line 7, which uses Equation 4) to
consider only the top l edges or translations at that
point, as opposed to imposing a full search. When
l is set to 1, for example, the procedure does a
greedy search through the graph, whereas when l
is large the procedure is closer to a full search.

In general terms, the decoder described above

works like an ordinary neural decoder with the
difference that each decision (i.e., new target-side
word translation) is constrained (in line 7) by the
transitions allowed in the underlying graph in or-
der to ensure wellformedness of each component
output. Standardly, we optimize these models us-
ing stochastic gradient descent with the objective
of finding parameters Θ̂ that minimize the negative
conditional log-likelihood of the training dataset.

4.3 Monolingual vs. Polyglot Decoding

Our framework facilitates both monolingual and
polyglot decoding. In the first case, the decoder
requires a graph associated with the output seman-
tic language (more details in next section) and a
trained translation model. The latter case requires
taking the union of all datasets and graphs (with
artificial identifier tokens) for a collection of tar-
get datasets and training a single model over this
global dataset. In this setting, we can then de-
code to a particular language using the language
identifiers or decode without specifying the output
language. The main focus in this paper is investi-
gating polyglot decoding, and in particular the ef-
fect of training models on multiple datasets when
translating to individuals APIs or SP datasets.

When evaluating our models and building QA
applications, it is important to be able to generate
the k best translations. This can easily be done in
our framework by applying standard k SSSP algo-
rithms (Brander and Sinclair, 1995). We use an
implementation of the algorithm of Yen (1971),
which works on top of the SSSP algorithms in-
troduced above by iteratively finding deviating or
branching paths from an initial SSSP (more details
provided in supplementary materials).

5 Experiments

We experimented with two main types of re-
sources: 45 API documentation datasets and two
multilingual benchmark SP datasets. In the for-
mer case, our main objective is to test whether
training polyglot models (shown as polyglot in Ta-
bles 1-2) on multiple datasets leads to an improve-
ment when compared to training individual mono-
lingual models (shown as monolingual in Tables
1-2). Experiments involving the latter datasets are
meant to test the applicability of our general graph
and polyglot method to related SP tasks, and are
also used for comparison against our main techni-
cal documentation task.
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Figure 3: Test Acc@1 for the best monolingual models (in yellow/left) compared with the best lexical polyglot
model (green/right) across all 45 technical documentation datasets.

5.1 Datasets
Technical API Docs The first dataset includes
the Stdlib and Py27 datasets of Richardson and
Kuhn (2017b,a), which are publicly available via
Richardson (2017). Stdlib consists of short de-
scription and function signature pairs for 10 pro-
gramming languages in 7 languages, and Py27
contains the same type of data for 27 popular
Python projects in English mined from Github. We
also built new datasets from the Japanese transla-
tion of the Python 2.7 standard library, as well as
the Lua stdlib documentation in a mixture of Rus-
sian, Portuguese, German, Spanish and English.

Taken together, these resources consist of
79,885 training pairs, and we experiment with
training models on Stdlib and Py27 separately as
well as together (shown as + more in Table 1).
We use a BPE subword encoding (Sennrich et al.,
2015) of both input and output words to make the
representations more similar and transliterated all
datasets (excluding Japanese datasets) to an 8-bit
latin encoding. Graphs were built by concate-
nating all function representations into a single
word list and compiling this list into a minimized
DAFSA. For our global polyglot dataset, this re-
sulted in a graph with 218,505 nodes, 313,288
edges, and 112,107 paths or component represen-
tations over an output vocabulary of 9,324 words.

Mixed GeoQuery and Sportscaster We run ex-
periments on the GeoQuery 880 corpus using the
splits from Andreas et al. (2013), which includes
geography queries for English, Greek, Thai, and
German paired with formal database queries, as
well as a seed lexicon or NP list for each language.
In addition to training models on each individual
dataset, we also learn polyglot models trained on
all datasets concatenated together. We also created
a new mixed language test set that was built by re-

placing NPs in 803 test examples with one or more
NPs from a different language using the NP lists
mentioned above (see examples in Figure 4). The
goal in the last case is to test our model’s ability to
handle mixed language input. We also ran mono-
lingual experiments on the English Sportscaster
corpus, which contains human generated soccer
commentary paired with symbolic meaning repre-
sentation produced by a simulation of four games.

For GeoQuery graph construction, we built a
single graph for all languages by extracting gen-
eral rule templates from all representations in the
dataset, and exploited additional information and
patterns using the Geobase database and the se-
mantic grammars used in (Wong and Mooney,
2006b). This resulted in a graph with 2,419 nodes,
4,936 edges and 39,482 paths over an output vo-
cabulary of 164. For Sportscaster, we directly
translated the semantic grammar provided in Chen
and Mooney (2008) to a DAFSA, which resulted in
a graph with 98 nodes, 86 edges and 830 paths.

5.2 Experimental Setup
For the technical datasets, the goal is to see if our
model generates correct signature representations
from unobserved descriptions using exact match.
We follow exactly the experimental setup and data
splits from Richardson and Kuhn (2017b), and
measure the accuracy at 1 (Acc@1), accuracy in
top 10 (Acc@10), and MRR.

For the GeoQuery and Sportscaster experi-
ments, the goal is to see if our models can gen-
erate correct meaning representations for unseen
input. For GeoQuery, we follow Andreas et al.
(2013) in evaluating extrinsically by checking that
each representation evaluates to the same answer
as the gold representation when executed against
the Geobase database. For Sportscaster, we evalu-
ate by exact match to a gold representation.
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Method Acc@1 Acc@10 MRR

st
dl

ib
mono. RK Trans + rerank 29.9 69.2 43.1

Lexical SP 33.2 70.7 45.9
poly. Lexical SP + more 33.1 69.7 45.5

Neural SP + bias 12.1 34.3 19.5
Neural SP + copy bias 13.9 36.5 21.5

py
27

mono. RK Trans + rerank 32.4 73.5 46.5
Lexical SP 41.3 77.7 54.1

poly. Lexical SP + more 40.5 76.7 53.1
Neural SP + bias 8.7 25.5 14.2
Neural SP + copy bias 9.0 26.9 15.1

Table 1: Test results on the Stdlib and Py27 tasks
averaged over all datasets and compared against the
best monolingual results from Richardson and Kuhn
(2017b,a), or RK

5.3 Implementation and Model Details
We use the Foma finite-state toolkit of Hulden
(2009) to construct all graphs used in our exper-
iments. We also use the Cython version of Dynet
(Neubig et al., 2017) to implement all the neural
models (see supp. materials for more details).

In the results tables, we refer to the lexical and
neural models introduced in Section 4 as Lexi-
cal Shortest Path and Neural Shortest Path, where
models that use copying (+ copy) and lexical bias-
ing (+ bias) are marked accordingly. We also ex-
perimented with adding a discriminative reranker
to our lexical models (+ rerank), using the ap-
proach from Richardson and Kuhn (2017b), which
uses additional lexical (e.g., word match and align-
ment) features and other phrase-level and syntax
features. The goal here is to see if these additional
(mostly non-word level) features help improve on
the baseline lexical models.

6 Results and Discussion

Technical Documentation Results Table 1
shows the results for Stdlib and Py27. In
the monolingual case, we compare against the
best performing models in Richardson and Kuhn
(2017b,a). As summarized in Figure 3, our ex-
periments show that training polyglot models on
multiple datasets can lead to large improvements
over training individual models, especially on the
Py27 datasets where using a polyglot model re-
sulted in a nearly 9% average increase in accuracy
@1. In both cases, however, the best perform-
ing lexical models are those trained only on the
datasets they are evaluated on, as opposed to train-
ing on all datasets (i.e., + more). This is surprising
given that training on all datasets doubles the size
of the training data, and shows that adding more
data does not necessarily boost performance when
the additional data is from another distribution.

Method Acc@1 Acc@10
UBL (Kwiatkowski et al., 2010) 74.2 –
TreeTrans (Jones et al., 2012) 76.8 –
nHT (Susanto and Lu, 2017) 83.3 –

St
an

da
rd

G
eo

qu
er

y

m
on

ol
in

gu
al

Lexical Shortest Path 68.6 92.4
Lexical Shortest Path + rerank 74.2 94.1
Neural Shortest Path 73.5 91.1
Neural Shortest Path + bias 78.0 92.8
Neural Shortest Path + copy bias 77.8 92.1

po
ly

gl
ot

Lexical Shortest Path 67.3 92.9
Lexical Shortest Path + rerank 75.2 94.7
Neural Shortest Path 78.0 91.4
Neural Shortest Path + bias 78.9 91.7
Neural Shortest Path + copy bias 79.6 91.9

M
ix

ed

po
ly

. Best Monolingual Model 4.2 18.2
Lexical Shortest Path + rerank 71.1 94.3
Neural Shortest Path + copy bias 75.2 90.0

m
on

o.

PCFG (Börschinger et al., 2011) 74.2 –
wo-PCFG (Börschinger et al., 2011) 86.0 –

Sp
or

ts
ca

st
er

Lexical Shortest Path 40.3 86.8
Lexical Shortest Path + rerank 70.3 90.2
Neural Shortest Path 81.9 94.8
Neural Shortest Path + bias 83.4 93.9
Neural Shortest Path + copy bias 83.3 90.5

Table 2: Test results for the standard (above) and mixed
(middle) GeoQuery tasks averaged over all languages,
and results for the English Sportscaster task (below).

The neural models are strongly outperformed
by all other models both in the monolingual and
polyglot case (only the latter results shown), even
when lexical biasing is applied. While surpris-
ing, this is consistent with other studies on low-
resource neural MT (Zoph et al., 2016; Östling and
Tiedemann, 2017), where datasets of comparable
size to ours (e.g., 1 million tokens or less) typi-
cally fail against classical SMT models. This re-
sult has also been found in relation to neural AMR
semantic parsing, where similar issues of sparsity
are encountered (Peng et al., 2017). Even by dou-
bling the amount of training data by training on all
datasets (results not shown), this did not improve
the accuracy, suggesting that much more data is
needed (more discussion below).

Beyond increases in accuracy, our polyglot
models support zero-shot translation as shown
in Figure 4, which can be used for translat-
ing between unobserved language pairs (e.g.,
(es,Clojure), (ru,Haskell) as shown in 1-2),
or for finding related functionality across differ-
ent software projects (as shown in 3). These re-
sults were obtained by running our decoder model
without specifying the output language. We note,
however, that the decoder can be constrained to
selectively translate to any specific programming
language or project (e.g., in a QA setting). Future
work will further investigate the decoder’s poly-
glot capabilities, which is currently hard to evalu-
ate since we do not have an annotated set of func-
tion equivalences between different APIs.
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1. Source API (stdlib): (es, PHP) Input: Devuelve el mensaje asociado al objeto lanzado.

O
ut

pu
t Language: PHP Function Translation: public string Throwable::getMessage ( void )

Language: Java Function Translation: public String lang.getMessage( void )
Language: Clojure Function Translation: (tools.logging.fatal throwable message & more)

2. Source API (stdlib): (ru, PHP) Input: konvertiruet stroku iz formata UTF-32 v format UTF-16.

O
ut

pu
t Language: PHP Function Translation: string PDF utf32 to utf16 ( ... )

Language: Ruby Function Translation: String#toutf16 => string
Language: Haskell Function Translation: Encoding.encodeUtf16LE :: Text -> ByteString

3. Source API (py): (en, stats) Input: Compute the Moore-Penrose pseudo-inverse of a matrix.

O
ut

pu
t Project: sympy Function Translation: matrices.matrix.base.pinv solve( B, ... )

Project: sklearn Function Translation: utils.pinvh( a, cond=None,rcond=None,... )
Project: stats Function Translation: tools.pinv2( a,cond=None,rcond=None )

4. Mixed GeoQuery (de/gr) Input: Wie hoch liegt der höchstgelegene punkt inΑλαμπάμα?
Logical Form Translation: answer(elevation 1(highest(place(loc 2(stateid(’alabama’))))))

Figure 4: Examples of zero-shot translation when running in polyglot mode (1-3, function representations shown
in a conventionalized format), and mixed language parsing (4).

Semantic Parsing Results SP results are sum-
marized in Table 2. In contrast, the neural mod-
els, especially those with biasing and copying,
strongly outperform all other models and are com-
petitive with related work. In the GeoQuery case,
we compare against two classic grammar-based
models, UBL and TreeTrans, as well as a fea-
ture rich, neural hybrid tree model (nHT). We also
see that the polyglot Geo achieves the best per-
formance, demonstrating that training on multi-
ple datasets helps in this domain as well. In the
Sportscaster case we compare against two PCFG
learning approaches, where the second model (wo-
PCFG) involves a grammar with complex word-
order constraints.

The advantage of training a polyglot model is
shown on the results related to mixed language
parsing (i.e., the middle set of results). Here we
compared against the best performing monolin-
gual English model (Best Mono. Model), which
does not have a way to deal with multilingual NPs.
We also find the neural model to be more robust
than the lexical models with reranking.

While the lexical models overall perform poorly
on both tasks, the weakness of this model is par-
ticularly acute in the Sportscaster case. We found
that mistakes are largely related to the ordering of
arguments, which these lexical (unigram) models
are blind to. That these models still perform rea-
sonably well on the Geo task shows that such or-
dering issues are less of a factor in this domain.

Discussion Having results across related SP
tasks allows us to reflect on the nature of the main
technical documentation task. Consistent with re-
cent findings (Dong and Lapata, 2016), we show
that relatively simple neural sequence models are
competitive with, and in some cases outperform,
traditional grammar-based SP methods on bench-

mark SP tasks. However, this result is not ob-
served in our technical documentation task, in part
because this problem is much harder for neural
learners given the sparseness of the target data and
lack of redundancy. For this reason, we believe our
datasets provide new challenges for neural-based
SP, and serve as a cautionary tale about the scal-
ability and applicability of commonly used neural
models to lower-resource SP problems.

In general, we believe that focusing on polyglot
and mixed language decoding is not only of inter-
est to applications (e.g, mixed language API QA)
but also allows for new forms of SP evaluation that
are more revealing than only translation accuracy.
When comparing the accuracy of the best mono-
lingual Geo model and the worst performing neu-
ral polyglot model, one could mistakingly think
that these models have equal abilities, though the
polyglot model is much more robust and general.
Moving forward, we hope that our work helps to
motivate more diverse evaluations of this type.

7 Conclusion

We look at learning from multiple API libraries
and datasets in the context of learning to translate
text to code representations and other SP tasks. To
support polyglot modeling of this type, we devel-
oped a novel graph based decoding method and
experimented with various SMT and neural MT
models that work in this framework. We report a
mixture of positive results specific to each task and
set of models, some of which reveal interesting
limitations of different approaches to SP. We also
introduced new API and mixed language datasets
to facilitate further work on polyglot SP.
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Abstract

We present two neural models for event fac-
tuality prediction, which yield significant per-
formance gains over previous models on three
event factuality datasets: FactBank, UW, and
MEANTIME. We also present a substantial
expansion of the It Happened portion of the
Universal Decompositional Semantics dataset,
yielding the largest event factuality dataset to
date. We report model results on this extended
factuality dataset as well.

1 Introduction

A central function of natural language is to convey
information about the properties of events. Per-
haps the most fundamental of these properties is
factuality: whether an event happened or not.

A natural language understanding system’s abil-
ity to accurately predict event factuality is impor-
tant for supporting downstream inferences that are
based on those events. For instance, if we aim to
construct a knowledge base of events and their par-
ticipants, it is crucial that we know which events
to include and which ones not to.

The event factuality prediction task (EFP) in-
volves labeling event-denoting phrases (or their
heads) with the (non)factuality of the events de-
noted by those phrases (Saurı́ and Pustejovsky,
2009, 2012; de Marneffe et al., 2012). Figure
1 exemplifies such an annotation for the phrase
headed by leave in (1), which denotes a factual
event (⊕=factual, 	=nonfactual).

(1) Jo failed to leave no trace. ⊕
In this paper, we present two neural models of
event factuality (and several variants thereof). We
show that these models significantly outperform
previous systems on four existing event factual-
ity datasets – FactBank (Saurı́ and Pustejovsky,
2009), the UW dataset (Lee et al., 2015), MEAN-
TIME (Minard et al., 2016), and Universal De-

failed

Jo leave

to trace

no

.

+

Inside context

Outside context

Figure 1: Event factuality (⊕=factual) and inside v.
outside context for leave in the dependency tree.

compositional Semantics It Happened v1 (UDS-
IH1; White et al., 2016) – and we demonstrate the
efficacy of multi-task training and ensembling in
this setting. In addition, we collect and release an
extension of the UDS-IH1 dataset, which we refer
to as UDS-IH2, to cover the entirety of the English
Universal Dependencies v1.2 (EUD1.2) treebank
(Nivre et al., 2015), thereby yielding the largest
event factuality dataset to date.1

We begin with theoretical motivation for the
models we propose as well as discussion of prior
EFP datasets and systems (§2). We then describe
our own extension of the UDS-IH1 dataset (§3),
followed by our neural models (§4). Using the
data we collect, along with the existing datasets,
we evaluate our models (§6) in five experimental
settings (§5) and analyze the results (§7).

2 Background

2.1 Linguistic description

Words from effectively every syntactic category
can convey information about the factuality of an
event. For instance, negation (2a), modal auxil-
iaries (2b), determiners (2c), adverbs (2d), verbs
(2e), adjectives (2f), and nouns (2g) can all con-

1Data available at decomp.net.
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vey that a particular event – in the case of (2), a
leaving event – did not happen.

(2) a. Jo didn’t leave.
b. Jo might leave.
c. Jo left no trace.
d. Jo never left.
e. Jo failed to leave.
f. Jo’s leaving was fake.
g. Jo’s leaving was a hallucination.

Further, such words can interact to yield non-
trivial effects on factuality inferences: (3a) con-
veys that the leaving didn’t happen, while the su-
perficially similar (3b) does not.

(3) a. Jo didn’t remember to leave. 	
b. Jo didn’t remember leaving. ⊕

A main goal of many theoretical treatments of fac-
tuality is to explain why these sorts of interactions
occur and how to predict them. It is not possible to
cover all the relevant literature in depth, and so we
focus instead on the broader kind of interactions
our models need to be able to capture in order to
correctly predict the factuality of an event denoted
by a particular predicate—namely, interactions be-
tween that predicate’s outside and inside context,
exemplified in Figure 1.

Outside context Factuality information coming
from the outside context is well-studied in the
domain of clause-embedding predicates, which
break into at least four categories: factives, like
know and love (Kiparsky and Kiparsky, 1970;
Karttunen, 1971b; Hintikka, 1975); implicatives,
like manage and fail (Karttunen, 1971a, 2012,
2013; Karttunen et al., 2014), veridicals, like prove
and verify (Egré, 2008; Spector and Egré, 2015),
and non-veridicals, like hope and want.

Consider the factive-implicative verb forget
(Karttunen, 1971a; White, 2014).

(4) a. Jo forgot that Bo left. ⊕
b. Jo forgot to leave. 	

(5) a. Jo didn’t forget that Bo left. ⊕
b. Jo didn’t forget to leave. ⊕

When a predicate directly embedded by forget is
tensed, as in (4a) and (5a), we infer that that predi-
cate denotes a factual event, regardless of whether
forget is negated. In contrast, when a predicate di-
rectly embedded by forget is untensed, as in (4b)
and (5b), our inference is dependent on whether
forget is negated. Thus, any model that correctly
predicts factuality will need to not only be able to

represent the effect of individual words in the out-
side context on factuality inferences, it will fur-
thermore need to represent their interaction.

Inside context Knowledge of the inside context
is important for integrating factuality information
coming from a predicate’s arguments—e.g. from
determiners, like some and no.

(6) a. Some girl ate some dessert. ⊕
b. Some girl ate no dessert. 	
c. No girl ate no dessert. ⊕

In simple monoclausal sentences like those in (6),
the number of arguments that contain a negative
quantifier, like no, determine the factuality of the
event denoted by the verb. An even number (or
zero) will yield a factuality inference and an odd
number will yield a nonfactuality inference. Thus,
as for outside context, any model that correctly
predicts factuality will need to integrate interac-
tions between words in the inside context.

The (non)necessity of syntactic information
One question that arises in the context of inside
and outside information is whether syntactic infor-
mation is strictly necessary for capturing the rele-
vant interactions between the two. To what extent
is linear precedence sufficient for accurately com-
puting factuality?

We address these questions using two bidirec-
tional LSTMs—one that has a linear chain topol-
ogy and another that has a dependency tree topol-
ogy. Both networks capture context on either side
of an event-denoting word, but each does it in
a different way, depending on its topology. We
show below that, while both networks outperform
previous models that rely on deterministic rules
and/or hand-engineered features, the linear chain-
structured network reliably outperforms the tree-
structured network.

2.2 Event factuality datasets

Saurı́ and Pustejovsky (2009) present the Fact-
Bank corpus of event factuality annotations, built
on top of the TimeBank corpus (Pustejovsky et al.,
2006). These annotations (performed by trained
annotators) are discrete, consisting of an epistemic
modal {certain, probable, possible} and a polar-
ity {+,−}. In FactBank, factuality judgments are
with respect to a source; following recent work,
here we consider only judgments with respect to
a single source: the author. The smaller MEAN-
TIME corpus (Minard et al., 2016) includes sim-
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Dataset Train Dev Test Total

FactBank 6636 2462 663 9761
MEANTIME 967 210 218 1395
UW 9422 3358 864 13644
UDS-IH2 22108 2642 2539 27289

Table 1: Number of annotated predicates.

ilar discrete factuality annotations. de Marneffe
et al. (2012) re-annotate a portion of FactBank us-
ing crowd-sourced ordinal judgments to capture
pragmatic effects on readers’ factuality judgments.

Lee et al. (2015) construct an event factuality
dataset – henceforth, UW – on the TempEval-3
data (UzZaman et al., 2013) using crowdsourced
annotations on a [−3, 3] scale (certainly did not
happen to certainly did), with over 13,000 pred-
icates. Adopting the [−3, 3] scale of Lee et al.
(2015), Stanovsky et al. (2017) assemble a Uni-
fied Factuality dataset, mapping the discrete anno-
tations of both FactBank and MEANTIME onto
the UW scale. Each scalar annotation corresponds
to a token representing the event, and each sen-
tence may have more than one annotated token.

The UDS-IH1 dataset (White et al., 2016) con-
sists of factuality annotations over 6,920 event to-
kens, obtained with another crowdsourcing proto-
col. We adopt this protocol, described in §3, to col-
lect roughly triple this number of annotations. We
train and evaluate our factuality prediction models
on this new dataset, UDS-IH2, as well as the uni-
fied versions of UW, FactBank, and MEANTIME.

Table 1 shows the number of annotated predi-
cates in each split of each factuality dataset used in
this paper. Annotations relevant to event factuality
and polarity appear in a number of other resources,
including the Penn Discourse Treebank (Prasad
et al., 2008), MPQA Opinion Corpus (Wiebe and
Riloff, 2005), the LU corpus of author belief com-
mitments (Diab et al., 2009), and the ACE and
ERE formalisms. Soni et al. (2014) annotate Twit-
ter data for factuality.

2.3 Event factuality systems

Nairn et al. (2006) propose a deterministic algo-
rithm based on hand-engineered lexical features
for determining event factuality. They associate
certain clause-embedding verbs with implication
signatures (Table 2), which are used in a recur-
sive polarity propagation algorithm. TruthTeller
is also a recursive rule-based system for factual-
ity (“predicate truth”) prediction using implication
signatures, as well as other lexical- and depen-

dency tree-based features (Lotan et al., 2013).
Several systems use supervised models trained

over rule-based features. Diab et al. (2009) and
Prabhakaran et al. (2010) use SVMs and CRFs
over lexical and dependency features for predict-
ing author belief commitments, which they treat as
a sequence tagging problem. Lee et al. (2015) train
an SVM on lexical and dependency path features
for their factuality dataset. Saurı́ and Pustejovsky
(2012) and Stanovsky et al. (2017) train support
vector models over the outputs of rule-based sys-
tems, the latter with TruthTeller.

3 Data collection

Even the largest currently existing event factuality
datasets are extremely small from the perspective
of related tasks, like natural language inference
(NLI). Where FactBank, UW, MEANTIME, and
the original UDS-IH1 dataset have on the order of
30,000 labeled examples combined, standard NLI
datasets, like the Stanford Natural Language Infer-
ence (SNLI; Bowman et al. 2015) dataset, have on
the order of 500,000.

To begin to remedy this situation, we collect an
extension of the UDS-IH1 dataset. The resulting
UDS-IH2 dataset covers all predicates in EUD1.2.
Beyond substantially expanding the amount of
publicly available event factuality annotations, an-
other major benefit is that EUD1.2 consists en-
tirely of gold parses and has a variety of other an-
notations built on top of it, making future multi-
task modeling possible.

We use the protocol described by White et al.
(2016) to construct UDS-IH2. This protocol in-
volves four kinds of questions for a particular
predicate candidate:

1. UNDERSTANDABLE: whether the sentence is
understandable

2. PREDICATE: whether or not a particular word
refers to an eventuality (event or state)

3. HAPPENED: whether or not, according to the
author, the event has already happened or is
currently happening

4. CONFIDENCE: how confident the annotator is
about their answer to HAPPENED from 0-4

If an annotator answers no to either UNDER-
STANDABLE or PREDICATE, HAPPENED and
CONFIDENCE do not appear.

The main differences between this protocol and
the others discussed above are: (i) instead of ask-
ing about annotator confidence, the other proto-
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Figure 2: Relative frequency of factuality ratings in
training and development sets.

cols ask the annotator to judge either source con-
fidence or likelihood; and (ii) factuality and confi-
dence are separated into two questions. We choose
to retain White et al.’s protocol to maintain consis-
tency with the portions of EUD1.2 that were al-
ready annotated in UDS-IH1.

Annotators We recruited 32 unique annotators
through Amazon’s Mechanical Turk to annotate
20,580 total predicates in groups of 10. Each pred-
icate was annotated by two distinct annotators. In-
cluding UDS-IH1, this brings the total number of
annotated predicates to 27,289.

Raw inter-annotator agreement for the HAP-
PENED question was 0.84 (Cohen’s κ=0.66)
among the predicates annotated only for UDS-
IH2. This compares to the raw agreement score of
0.82 reported by White et al. (2016) for UDS-IH1.

To improve the overall quality of the annota-
tions, we filter annotations from annotators that
display particularly low agreement with other an-
notators on HAPPENED and CONFIDENCE. (See
the Supplementary Materials for details.)

Pre-processing To compare model results on
UDS-IH2 to those found in the unified datasets
of Stanovsky et al. (2017), we map the HAP-
PENED and CONFIDENCE ratings to a single FAC-
TUALITY value in [-3,3] by first taking the mean
confidence rating for each predicate and mapping
FACTUALITY to 3

4CONFIDENCE if HAPPENED and
-34CONFIDENCE otherwise.

Response distribution Figure 2 plots the distri-
bution of factuality ratings in the train and dev
splits for UDS-IH2, alongside those of FactBank,
UW, and MEANTIME. One striking feature of
these distributions is that UDS-IH2 displays a
much more entropic distribution than the other
datasets. This may be due to the fact that, un-

like the newswire-heavy corpora that the other
datasets annotate, EUD1.2 contains text from gen-
res – weblogs, newsgroups, email, reviews, and
question-answers – that tend to involve less report-
ing of raw facts. One consequence of this more en-
tropic distribution is that, unlike the datasets dis-
cussed above, it is much harder for systems that
always guess 3 – i.e. factual with high confi-
dence/likelihood – to perform well.

4 Models

We consider two neural models of factuality: a
stacked bidirectional linear chain LSTM (§4.1)
and a stacked bidirectional child-sum dependency
tree LSTM (§4.2). To predict the factuality vt for
the event referred to by a word wt, we use the hid-
den state at t from the final layer of the stack as
the input to a two-layer regression model (§4.3).

4.1 Stacked bidirectional linear LSTM
We use a standard stacked bidirectional linear
chain LSTM (stacked L-biLSTM), which extends
the unidirectional linear chain LSTM (Hochreiter
and Schmidhuber, 1997) by adding the notion of
a layer l ∈ {1, . . . , L} and a direction d ∈ {→
,←} (Graves et al., 2013; Sutskever et al., 2014;
Zaremba and Sutskever, 2014).
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where ◦ is the Hadamard product; prev→(t) =

t − 1 and prev←(t) = t + 1, and x
(l,d)
t = xt

if l = 1; and x
(l,d)
t = [h

(l−1,→)
t ;h

(l−1,←)
t ] other-

wise. We set g to the pointwise nonlinearity tanh.

4.2 Stacked bidirectional tree LSTM
We use a stacked bidirectional extension to the
child-sum dependency tree LSTM (T-LSTM; Tai
et al., 2015), which is itself an extension of a stan-
dard unidirectional linear chain LSTM (L-LSTM).
One way to view the difference between the L-
LSTM and the T-LSTM is that the T-LSTM re-
defines prev→(t) to return the set of indices that
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correspond to the children of wt in some depen-
dency tree. Because the cardinality of these sets
varies with t, it is necessary to specify how multi-
ple children are combined. The basic idea, which
we make explicit in the equations for our exten-
sion, is to define ftk for each child index k ∈
prev→(t) in a way analogous to the equations in
§4.1 – i.e. as though each child were the only child
– and then sum across k within the equations for
it, ot, ĉt, ct, and ht.

Our stacked bidirectional extension (stacked T-
biLSTM) is a minimal extension to the T-LSTM
in the sense that we merely define the downward
computation in terms of a prev←(t) that returns
the set of indices that correspond to the parents of
wt in some dependency tree (cf. Miwa and Bansal
2016, who propose a similar, but less minimal,
model for relation extraction). The same method
for combining children in the upward computa-
tion can then be used for combining parents in
the downward computation. This yields a minimal
change to the stacked L-biLSTM equations.
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ĥ
(l,d)
t ;x

(l,d)
t

]
+ b(l,d)

c

)

c
(l,d)
t = i

(l,d)
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We use a ReLU pointwise nonlinearity for g.
These minimal changes allow us to represent the
inside and the outside contexts of word t (at layer
l) as single vectors: ĥ(l,→)

t and ĥ
(l,←)
t .

An important thing to note here is that – in con-
trast to other dependency tree-structured T-LSTMs
(Socher et al., 2014; Iyyer et al., 2014) – this T-
biLSTM definition does not use the dependency
labels in any way. Such labels could be straight-
forwardly incorporated to determine which param-
eters are used in a particular cell, but for current
purposes, we retain the simpler structure (i) to
more directly compare the L- and T-biLSTMs and
(ii) because a model that uses dependency labels
substantially increases the number of trainable pa-

rameters, relative to the size of our datasets.

4.3 Regression model
To predict the factuality vt for the event referred
to by a word wt, we use the hidden states from the
final layer of the stacked L- or T-biLSTM as the
input to a two-layer regression model.

h
(L)
t = [h

(L,→)
t ;h

(L,←)
t ]

v̂t = V2 g
(
V1h

(L)
t + b1

)
+ b2

where v̂t is passed to a loss function L(v̂t, vt): in
this case, smooth L1 – i.e. Huber loss with δ = 1.
This loss function is effectively a smooth variant
of the hinge loss used by Lee et al. (2015) and
Stanovsky et al. (2017).

We also consider a simple ensemble method,
wherein the hidden states from the final layers of
both the stacked L-biLSTM and the stacked T-
biLSTM are concatenated and passed through the
same two-layer regression model. We refer to this
as the H(ybrid)-biLSTM.2

5 Experiments

Implementation We implement both the L-
biLSTM and T-biLSTM models using pytorch
0.2.0. The L-biLSTM model uses the stock
implementation of the stacked bidirectional lin-
ear chain LSTM found in pytorch, and the T-
biLSTM model uses a custom implementation,
which we make available at decomp.net.

Word embeddings We use the 300-dimensional
GloVe 42B uncased word embeddings (Penning-
ton et al., 2014) with an UNK embedding whose
dimensions are sampled iid from a Uniform[-1,1].
We do not tune these embeddings during training.

Hidden state sizes We set the dimension of the
hidden states h

(l,d)
t and cell states c

(l,d)
t to 300

for all layers of the stacked L- and stacked T-
biLSTMs – the same size as the input word em-
beddings. This means that the input to the regres-
sion model is 600-dimensional, for the stacked L-
and T-biLSTMs, and 1200-dimensional, for the
stacked H-biLSTM. For the hidden layer of the
regression component, we set the dimension to
half the size of the input hidden state: 300, for

2See Miwa and Bansal 2016; Bowman et al. 2016 for al-
ternative ways of hybridizing linear and tree LSTMs for se-
mantic tasks. We use the current method since it allows us
to make minimal changes to the architectures of each model,
which in turn allows us to assess the two models’ ability to
capture different aspects of factuality.
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Verb Signature Type Example

know +|+ fact. Jo knew that Bo ate.
manage +|− impl. Jo managed to go.
neglect −|+ impl. Jo neglected to call Bo.
hesitate ◦|+ impl. Jo didn’t hesitate to go.
attempt ◦|− impl. Jo didn’t attempt to go.

Table 2: Implication signature features from Nairn
et al. (2006). As an example, a signature of −|+ indi-
cates negative implication under positive polarity (left
side) and positive implication under negative polarity
(right side); ◦ indicates neither positive nor negative
implication.

the stacked L- and T-biLSTMs, and 600, for the
stacked H-biLSTM.

Bidirectional layers We consider stacked L-, T-
, and H-biLSTMs with either one or two layers. In
preliminary experiments, we found that networks
with three layers badly overfit the training data.

Dependency parses For the T- and H-biLSTMs,
we use the gold dependency parses provided in
EUD1.2 when training and testing on UDS-IH2.
On FactBank, MEANTIME, and UW, we follow
Stanovsky et al. (2017) in using the automatic de-
pendency parses generated by the parser in spaCy
(Honnibal and Johnson, 2015).3

Lexical features Recent work on neural mod-
els in the closely related domain of generic-
ity/habituality prediction suggests that inclusion of
hand-annotated lexical features can improve clas-
sification performance (Becker et al., 2017). To
assess whether similar performance gains can be
obtained here, we experiment with lexical features
for simple factive and implicative verbs (Kiparsky
and Kiparsky, 1970; Karttunen, 1971a). When in
use, these features are concatenated to the net-
work’s input word embeddings so that, in princi-
ple, they may interact with one another and inform
other hidden states in the biLSTM, akin to how
verbal implicatives and factives are observed to in-
fluence the factuality of their complements. The
hidden state size is increased to match the input
embedding size. We consider two types:

Signature features We compute binary features
based on a curated list of 92 simple implicative
and 95 factive verbs including their their type-level
“implication signatures,” as compiled by Nairn
et al. (2006).4 These signatures characterize the

3In rebuilding the Unified Factuality dataset (Stanovsky
et al., 2017), we found that sentence splitting was potentially
sensitive to the version of spaCy used. We used v1.9.0.

4http://web.stanford.edu/group/csli_

implicative or factive behavior of a verb with re-
spect to its complement clause, how this behav-
ior changes (or does not change) under negation,
and how it composes with other such verbs under
nested recursion. We create one indicator feature
for each signature type.

Mined features Using a simplified set of pattern
matching rules over Common Crawl data (Buck
et al., 2014), we follow the insights of Pavlick and
Callison-Burch (2016) – henceforth, PC – and use
corpus mining to automatically score verbs for im-
plicativeness. The insight of PC lies in Karttunen’s
(1971a) observation that “the main sentence con-
taining an implicative predicate and the comple-
ment sentence necessarily agree in tense.”

Accordingly, PC devise a tense agreement score
– effectively, the ratio of times an embedding pred-
icate’s tense matches the tense of the predicate
it embeds – to predict implicativeness in English
verbs. Their scoring method involves the use of
fine-grained POS tags, the Stanford Temporal Tag-
ger (Chang and Manning, 2012), and a number
of heuristic rules, which resulted in a confirma-
tion that tense agreement statistics are predictive
of implicativeness, illustrated in part by observing
a near perfect separation of a list of implicative and
non-implicative verbs from Karttunen (1971a).

dare to 1.00 intend to 0.83
bother to 1.00 want to 0.77
happen to 0.99 decide to 0.75
forget to 0.99 promise to 0.75
manage to 0.97 agree to 0.35
try to 0.96 plan to 0.20
get to 0.90 hope to 0.05
venture to 0.85

Table 3: Implicative (bold) and non-implicative (not
bold) verbs from Karttunen (1971a) are nearly sepa-
rable by our tense agreement scores, replicating the re-
sults of PC.

We replicate this finding by employing a simpli-
fied pattern matching method over 3B sentences
of raw Common Crawl text. We efficiently search
for instances of any pattern of the form: I $VERB
to * $TIME, where $VERB and $TIME are
pre-instantiated variables so their corresponding
tenses are known, and ‘*’ matches any one to three
whitespace-separated tokens at runtime (not pre-
instantiated).5 Our results in Table 3 are a close

lnr/Lexical_Resources
5To instantiate $VERB, we use a list of 1K clause-

embedding verbs compiled by (White and Rawlins, 2016)
as well as the python package pattern-en to conjugate
each verb in past, present progressive, and future tenses; all
conjugations are first-person singular. $TIME is instantiated
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FactBank UW Meantime UDS-IH2
MAE r MAE r MAE r MAE r

All-3.0 0.8 NAN 0.78 NAN 0.31 NAN 2.255 NAN
Lee et al. 2015 - - 0.511 0.708 - - - -
Stanovsky et al. 2017 0.59 0.71 0.42† 0.66 0.34 0.47 - -
L-biLSTM(2)-S 0.427 0.826 0.508 0.719 0.427 0.335 0.960† 0.768
T-biLSTM(2)-S 0.577 0.752 0.600 0.645 0.428 0.094 1.101 0.704
L-biLSTM(2)-G 0.412 0.812 0.523 0.703 0.409 0.462 - -
T-biLSTM(2)-G 0.455 0.809 0.567 0.688 0.396 0.368 - -
L-biLSTM(2)-S+lexfeats 0.429 0.796 0.495 0.730 0.427 0.322 1.000 0.755
T-biLSTM(2)-S+lexfeats 0.542 0.744 0.567 0.676 0.375 0.242 1.087 0.719
L-biLSTM(2)-MultiSimp 0.353 0.843 0.503 0.725 0.345 0.540 - -
T-biLSTM(2)-MultiSimp 0.482 0.803 0.599 0.645 0.545 0.237 - -
L-biLSTM(2)-MultiBal 0.391 0.821 0.496 0.724 0.278 0.613† - -
T-biLSTM(2)-MultiBal 0.517 0.788 0.573 0.659 0.400 0.405 - -
L-biLSTM(1)-MultiFoc 0.343 0.823 0.516 0.698 0.229† 0.599 - -
L-biLSTM(2)-MultiFoc 0.314 0.846 0.502 0.710 0.305 0.377 - -
T-biLSTM(2)-MultiFoc 1.100 0.234 0.615 0.616 0.395 0.300 - -
L-biLSTM(2)-MultiSimp w/UDS-IH2 0.377 0.828 0.508 0.722 0.367 0.469 0.965 0.771†
T-biLSTM(2)-MultiSimp w/UDS-IH2 0.595 0.716 0.598 0.609 0.467 0.345 1.072 0.723
H-biLSTM(2)-S 0.488 0.775 0.526 0.714 0.442 0.255 0.967 0.768
H-biLSTM(1)-MultiSimp 0.313† 0.857† 0.528 0.704 0.314 0.545 - -
H-biLSTM(2)-MultiSimp 0.431 0.808 0.514 0.723 0.401 0.461 - -
H-biLSTM(2)-MultiBal 0.386 0.825 0.502 0.713 0.352 0.564 - -
H-biLSTM(2)-MultiSimp w/UDS-IH2 0.393 0.820 0.481 0.749† 0.374 0.495 0.969 0.760

Table 4: All 2-layer systems, and 1-layer systems if best in column. State-of-the-art in bold; † is best in column
(with row shaded in purple). Key: L=linear, T=tree, H=hybrid, (1,2)=# layers, S=single-task specific, G=single-
task general, +lexfeats=with all lexical features, MultiSimp=multi-task simple, MultiBal=multi-task balanced,
MultiFoc=multi-task focused, w/UDS-IH2=trained on all data incl. UDS-IH2. All-3.0 is the constant baseline.

replication of PC’s findings. Prior work such as by
PC is motivated in part by the potential for corpus-
linguistic findings to be used as fodder in down-
stream predictive tasks: we include these agree-
ment scores as potential input features to our net-
works to test whether contemporary models do in
fact benefit from this information.

Training For all experiments, we use stochastic
gradient descent to train the LSTM parameters and
regression parameters end-to-end with the Adam
optimizer (Kingma and Ba, 2015), using the de-
fault learning rate in pytorch (1e-3). We con-
sider five training regimes:6

1. SINGLE-TASK SPECIFIC (-S) Train a sepa-
rate instance of the network for each dataset,
training only on that dataset.

2. SINGLE-TASK GENERAL (-G) Train one in-
stance of the network on the simple con-
catenation of all unified factuality datasets,
{FactBank, UW, MEANTIME}.

3. MULTI-TASK SIMPLE (-MULTISIMP) Same

with each of five past tense phrases (“yesterday,” “last week,”
etc.) and five corresponding future tense phrases (“tomor-
row,” “next week,” etc). See Supplement for further details.

6Multi-task can have subtly different meanings in the NLP
community; following terminology from Mou et al. (2016),
our use is best described as “semantically equivalent transfer”
with simultaneous (MULT) network training.

as SINGLE-TASK GENERAL, except the net-
work maintains a distinct set of regression
parameters for each dataset; all other param-
eters (LSTM) remain tied. “w/UDS-IH2” is
specified if UDS-IH2 is included in training.

4. MULTI-TASK BALANCED (-MULTIBAL)
Same as MULTI-TASK SIMPLE but upsam-
pling examples from the smaller datasets to
ensure that examples from those datasets are
seen at the same rate.

5. MULTI-TASK FOCUSED (-MULTIFOC) Same
as MULTI-TASK SIMPLE but upsampling ex-
amples from a particular target dataset to
ensure that examples from that dataset are
seen 50% of the time and examples from
the other datasets are seen 50% (evenly dis-
tributed across the other datasets).

Calibration Post-training, network predictions
are monotonically re-adjusted to a specific dataset
using isotonic regression (fit on train split only).

Evaluation Following Lee et al. (2015) and
Stanovsky et al. (2017), we report two evalua-
tion measures: mean absolute error (MAE) and
Pearson correlation (r). We would like to note,
however, that we believe correlation to be a bet-
ter indicator of performance for two reasons: (i)
for datasets with a high degree of label imbalance
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Mean Linear Tree
Modal Negated Label MAE MAE #

NONE no 1.00 0.93 1.03 2244
NONE yes -0.19 1.40 1.69 98
may no -0.38 1.00 0.99 14
would no -0.61 0.85 0.99 39
ca(n’t) yes -0.72 1.28 1.55 11
can yes -0.75 0.99 0.86 6
(wi)’ll no -0.94 1.47 1.14 8
could no -1.03 0.97 1.32 20
can no -1.25 1.02 1.21 73
might no -1.25 0.66 1.06 6
would yes -1.27 0.40 0.86 5
should no -1.31 1.20 1.01 22
will no -1.88 0.75 0.86 75

Table 5: Mean gold labels, counts, and MAE for L-
biLSTM(2)-S and T-biLSTM(2)-S model predictions
on UDS-IH2-dev, grouped by modals and negation.

(Figure 2), a baseline that always guesses the mean
or mode label can be difficult to beat in terms of
MAE but not correlation, and (ii) MAE is harder
to meaningfully compare across datasets with dif-
ferent label mean and variance.

Development Under all regimes, we train the
model for 20 epochs – by which time all models
appear to converge. We save the parameter values
after the completion of each epoch and then score
each set of saved parameter values on the devel-
opment set for each dataset. The set of parameter
values that performed best on dev in terms of Pear-
son correlation for a particular dataset were then
used to score the test set for that dataset.

6 Results

Table 4 reports the results for all of the 2-layer L-,
T-, and H-biLSTMs.7 The best-performing sys-
tem for each dataset and metric are highlighted in
purple, and when the best-performing system for a
particular dataset was a 1-layer model, that system
is included in Table 4.

New state of the art For each dataset and met-
ric, with the exception of MAE on UW, we achieve
state of the art results with multiple systems. The
highest-performing system for each is reported in
Table 4. Our results on UDS-IH2 are the first re-
ported numbers for this new factuality resource.

Linear v. tree topology On its own, the biL-
STM with linear topology (L-biLSTM) performs
consistently better than the biLSTM with tree

7Full results are reported in the Supplementary Materials.
Note that the 2-layer networks do not strictly dominate the
1-layer networks in terms of MAE and correlation.

Mean
Relation Label L-biLSTM T-biLSTM #

root 1.07 1.03 0.96 949
conj 0.37 0.44 0.46 316
advcl 0.46 0.53 0.45 303
xcomp -0.42 -0.57 -0.49 234
acl:relcl 1.28 1.40 1.31 193
ccomp 0.11 0.31 0.34 191
acl 0.77 0.59 0.58 159
parataxis 0.44 0.63 0.79 127
amod 1.92 1.88 1.81 76
csubj 0.36 0.38 0.27 37

Table 6: Mean predictions for linear (L-biLSTM-S(2))
and tree models (T-biLSTM-S(2)) on UDS-IH2-dev,
grouped by governing dependency relation. Only the
10 most frequent governing dependency relations in
UDS-IH2-dev are shown.

topology (T-biLSTM). However, the hybrid topol-
ogy (H-biLSTM), consisting of both a L- and T-
biLSTM is the top-performing system on UW for
correlation (Table 4). This suggests that the T-
biLSTM may be contributing something comple-
mentary to the L-biLSTM.

Evidence of this complementarity can be seen
in Table 6, which contains a breakdown of system
performance by governing dependency relation,
for both linear and tree models, on UDS-IH2-dev.
In most cases, the L-biLSTM’s mean prediction is
closer to the true mean. This appears to arise in
part because the T-biLSTM is less confident in its
predictions – i.e. its mean prediction tends to be
closer to 0. This results in the L-biLSTM being too
confident in certain cases – e.g. in the case of the
xcomp governing relation, where the T-biLSTM
mean prediction is closer to the true mean.

Lexical features have minimal impact Adding
all lexical features (both SIGNATURE and MINED)
yields mixed results. We see slight improve-
ments on UW, while performance on the other
datasets mostly declines (compare with SINGLE-
TASK SPECIFIC). Factuality prediction is precisely
the kind of NLP task one would expect these types
of features to assist with, so it is notable that, in
our experiments, they do not.

Multi-task helps Though our methods achieve
state of the art in the single-task setting, the best
performing systems are mostly multi-task (Table
4 and Supplementary Materials). This is an ideal
setting for multi-task training: each dataset is
relatively small, and their labels capture closely-
related (if not identical) linguistic phenomena.
UDS-IH2, the largest by a factor of two, reaps the
smallest gains from multi-task.
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Attribute #

Grammatical error present, incl. run-ons 16
Is an auxiliary or light verb 14
Annotation is incorrect 13
Future event 12
Is a question 5
Is an imperative 3
Is not an event or state 2
One or more of the above 43

Table 7: Notable attributes of 50 instances from UDS-
IH2-dev with highest absolute prediction error (using
H-biLSTM(2)-MultiSim w/UDS-IH2).

7 Analysis

As discussed in §2, many discrete linguistic phe-
nomena interact with event factuality. Here we
provide a brief analysis of some of those inter-
actions, both as they manifest in the UDS-IH2
dataset, as well as in the behavior of our models.
This analysis employs the gold dependency parses
present in EUD1.2.

Table 5 illustrates the influence of modals and
negation on the factuality of the events they have
direct scope over. The context with the high-
est factuality on average is no direct modal and
no negation (first row); all other modal contexts
have varying degrees of negative mean factuality
scores, with will as the most negative. This is
likely a result of UDS-IH2 annotation instructions
to mark future events as not having happened.

Table 7 shows results from a manual error anal-
ysis on 50 events from UDS-IH2-dev with high-
est absolute prediction error (using H-biLSTM(2)-
MultiSim w/UDS-IH2). Grammatical errors (such
as run-on sentences) in the underlying text of
UDS-IH2 appear to pose a particular challenge for
these models; informal language and grammatical
errors in UDS-IH2 is a substantial distinction from
the other factuality datasets used here.

manage to 2.78 agree to -1.00
happen to 2.34 forget to -1.18
dare to 1.50 want to -1.48
bother to 1.50 intend to -2.02
decide to 0.10 promise to -2.34
get to -0.23 plan to -2.42
try to -0.24 hope to -2.49

Table 8: UDS-IH2-train: Infinitival-taking verbs sorted
by the mean annotation scores of their complements
(xcomp), with direct negation filtered out. Implica-
tives are in bold.

In §6 we observe that the linguistically-motivated
lexical features that we test (+lexfeats) do not have
a big impact on overall performance. Tables 8 and
9 help nuance this observation.

Verb L-biLSTM(2)-S +lexfeats #

decide to 3.28 2.66 2
forget to 0.67 0.48 2
get to 1.55 1.43 9
hope to 1.35 1.23 5
intend to 1.18 0.61 1
promise to 0.40 0.49 1
try to 1.14 1.42 12
want to 1.22 1.17 24

Table 9: MAE of L-biLSTM(2)-S and L-biLSTM(2)-
S+lexfeats, for predictions on events in UDS-IH2-dev
that are xcomp-governed by an infinitival-taking verb.

Table 8 shows that we can achieve simi-
lar separation between implicatives and non-
implicatives as the feature mining strategy pre-
sented in §5. That is, those features may be re-
dundant with information already learnable from
factuality datasets (UDS-IH2). Despite the un-
derperformance of these features overall, Table 9
shows that they may still improve performance in
the subset of instances where they appear.

8 Conclusion

We have proposed two neural models of event
factuality prediction – a bidirectional linear-chain
LSTM (L-biLSTM) and a bidirectional child-
sum dependency tree LSTM (T-biLSTM) – which
yield substantial gains over previous models based
on deterministic rules and hand-engineered fea-
tures. We found that both models yield such
gains, though the L-biLSTM outperforms the T-
biLSTM; for some datasets, an ensemble of the
two (H-biLSTM) improves over either alone.

We have also extended the UDS-IH1 dataset,
yielding the largest publicly-available factuality
dataset to date: UDS-IH2. In experiments, we see
substantial gains from multi-task training over the
three factuality datasets unified by Stanovsky et al.
(2017), as well as UDS-IH2. Future work will fur-
ther probe the behavior of these models, or extend
them to learn other aspects of event semantics.
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A Appendix

A.1 Dataset filtering
We filter our dataset to remove annotators with
very low agreement in two ways: (i) based on the
their agreement with other annotators on the HAP-
PENED question; and (ii) based on the their agree-
ment with other annotators on the CONFIDENCE

question.
For the HAPPENED question, we computed, for

each pair of annotators and each item that both of
those annotators annotated, whether the two re-
sponses were equal. We then fit a random ef-
fects logistic regression to response equality with
random intercepts for annotator. The Best Lin-
ear Unbiased Predictors (BLUPs) for each anno-
tator were then extracted and z-scored. Annota-
tors were removed if their z-scored BLUP was less
than -2.

For the CONFIDENCE question, we first ridit-
scored the ratings by annotator; and for each pair
of annotators and each item that both of those an-
notators annotated, we computed the difference
between the two ridit-scored confidences. We then
fit a random effects linear regression to the result-
ing difference after logit-transformation with ran-
dom intercepts for annotator. The same BLUP-
based exclusion procedure was then used.

This filtering results in the exclusion of one an-
notator, who is excluded for low agreement on
HAPPENED. 4,179 annotations are removed in the
filtering, but because we remove only a single an-
notator, there remains at least one annotation for
every predicate.

A.2 Mining Implicatives
All options for instantiating the $TIME pattern
variable, described in §5, are listed here.

• Past Tense Phrases: earlier today, yesterday,
last week, last month, last year

• Future Tense Phrases: later today, tomorrow,
next week, next month, next year

A.3 Full Results
Table 10 presents the full set of results, including
all 1-layer and 2-layer models, and performance
on development splits.
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Abstract

Previous representation learning techniques
for knowledge graph representation usually
represent the same entity or relation in differ-
ent triples with the same representation, with-
out considering the ambiguity of relations and
entities. To appropriately handle the semantic
variety of entities/relations in distinct triples,
we propose an accurate text-enhanced knowl-
edge graph representation learning method,
which can represent a relation/entity with dif-
ferent representations in different triples by ex-
ploiting additional textual information. Specif-
ically, our method enhances representations by
exploiting the entity descriptions and triple-
specific relation mention. And a mutual atten-
tion mechanism between relation mention and
entity description is proposed to learn more
accurate textual representations for further
improving knowledge graph representation.
Experimental results show that our method
achieves the state-of-the-art performance on
both link prediction and triple classification
tasks, and significantly outperforms previous
text-enhanced knowledge representation mod-
els.

1 Introduction

Knowledge graphs such as Freebase (Bollacker
et al., 2008), YAGO (Suchanek et al., 2007)
and WordNet (Miller, 1995) are among the most
widely used resources in NLP applications. Typi-
cally, a knowledge graph consists of a set of triples
{(h, r, t)}, where h, r, t stand for head entity, rela-
tion and tail entity respectively.

Learning distributional representation of knowl-
edge graph has attracted many research attentions
in recent years. By projecting all elements in a
knowledge graph into a dense vector space, the se-
mantic distance between all elements can be eas-
ily calculated, and thus enables many applications

Figure 1: A demonstration of our accurate text-
enhanced model. The meanings of relation parentOf
in different triples are distinguished by their entity
descriptions, and the relation parentOf emphasizes
words which describe its social relationship in entity
descriptions.

such as link prediction and triple classification
(Socher et al., 2013).

Recently, translation-based models, including
TransE (Bordes et al., 2013), TransH (Wang et al.,
2014), TransD (Ji et al., 2015) and TransR (Lin
et al., 2015b), have achieved promising results
in distributional representation learning of knowl-
edge graph. ComplEx (Trouillon et al., 2016)
has achieved the state-of-the-art performance on
multiple tasks, such as triple classification and
link prediction. Unfortunately, all of these meth-
ods only utilize the structure information of
knowledge graph, which inevitably suffer from
the sparseness and incompleteness of knowledge
graph. Even worse, structure information usually
cannot distinguish the different meanings of rela-
tions and entities in different triples.

To address the above problem, additional in-
formation is introduced to enrich the knowledge
representations, including entity types and logic
rules. However, most researches of this line are
limited by manually constructed logic rules, which
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are knowledge graph sensitive and require the ex-
pert knowledge. Another type of widely used re-
sources is textual information, such as entity de-
scriptions and words co-occurrence with entities
(Socher et al., 2013; Wang et al., 2014; Zhong
et al., 2015).

The main drawback of the above methods is
that they represent the same entity/relation in dif-
ferent triples with a unique representation. Un-
fortunately, by detailed analyzing the triples in
knowledge graph, we find two problems of the
unique representation: (1) Relations are ambigu-
ous, i.e., the accurate semantic meaning of a re-
lation in a specific triple is related to the en-
tities in the same triple. For example, the re-
lation “parentOf” may refer to two different
meanings of (i.e., “father” and “mother”), depend-
ing on the entities in triples. (2) Because differ-
ent relations may concern different attributes of
an entity, the same entity may express different
aspects in different triples. For example, differ-
ent words in the description of “Barack Obama”
should be emphasized by relations “parentOf”
and “professionOf”. The ambiguity of en-
tity/relation has been considered as one of the pri-
mary reasons why translation-based models can-
not handle 1-to-N, N-to-1 and N-to-N categories
of relations (Wang et al., 2014). Wang et al. (2016)
tried to solve the two issues using words co-
occurrence with the entities in the same sentences.
Despite its apparent success, there remains a ma-
jor drawback: this method suffers from noisy text,
which reduces the value of textual information.

To solve above problems, this paper proposes
an accurate text-enhanced knowledge representa-
tion model, which can enhance the representations
of entities and relations by incorporating accurate
textual information for each triple. To learn the
representation of a given triple, we first extract
its accurate relation mentions from text corpus,
which reflect the specific relationship between its
head entity and tail entity. Then a mutual attention
mechanism between relation mention and entity
descriptions (extracted from knowledge graph), is
introduced to enhance the representations of en-
tities and relations. For example, the two triples
in Figure 1 have the same “parentOf” relation-
ship, but have different underlying semantics “was
the father of ” and “was the mother of ” respec-
tively. Besides, our mutual attention mechanism
enables knowledge representation focusing more

on related information from text information. For
example, the “parentOf” relation will concern
more about the social relations and gender at-
tributes of a person, rather than his/her jobs, which
are also contained in its descriptions. And such
a relation-specific entity description will make an
entity has more appropriate, relation-specific rep-
resentations in different triples.

Concretely, we employ BiLSTM model (Schus-
ter and Paliwal, 1997; Graves and Schmidhuber,
2005) with mutual attention mechanism (Zhou
et al., 2016) to learn representations for relation
mentions and entity descriptions. Specifically, in
order to generate triple-specific textual represen-
tation of entities and relation, a mutual attention
mechanism is proposed to model relation between
entity descriptions and relation mention of one
triple. Then the learned textual representations are
incorporated with previous traditional transition-
based representations, which are, learned from
structural information of knowledge graph, di-
rectly to obtain enhanced triple specific represen-
tations of elements.

We evaluate our method on both link pre-
diction task and triple classification task, using
benchmark datasets from Freebase1 and WordNet2

with the text corpus. Experimental results show
that, our model achieves the state-of-the-art per-
formance, and significantly outperforms previous
text-enhanced models.

The main contributions are threefold: (i) To the
best of our knowledge, this is the first work which
simultaneously exploits both relation mention and
entity description to handle the ambiguity of re-
lations and entities (Section 3). (ii) We propose
a mutual attention mechanism which exploits the
textual representations of relation and entity to
enhance each other (Section 3.2). (iii) This pa-
per achieves new state-of-the-art performances on
triple classification tasks over two most widely
used benchmarks (Section 4).

2 Related Work

Currently, a lot of structural-based knowledge rep-
resentation learning methods have been proposed
for knowledge graph completion, including Bi-
linear Model (Sutskever, 2009), Distance Model
(Bordes et al., 2011), Unstructured Model (Bor-
des et al., 2012), Neural Tensor Network (Socher

1http://www.freebase.com
2http://www.princeton.edu/wordnet
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et al., 2013), Single Layer Model (Socher et al.,
2013). And many translation-based methods are
introduced, including TransE (Bordes et al., 2013)
and its extensions like TransH (Wang et al., 2014),
TransD (Ji et al., 2015), TransR (Lin et al., 2015b).
Xiao et al. (2016a) proposed a manifold-based
embedding principle to deal with the overstrict
geometric form of translation-based assumption.
Trouillon et al. (2016) employed complex value
embeddings to understand the structural informa-
tion.

In recent years, many methods improve the
knowledge representation by exploiting additional
information. For example, both the path informa-
tion and logic rules have been proved to be ben-
eficial for knowledge representation (Lin et al.,
2015a; Toutanova et al., 2016; Xiong et al., 2017;
Xie et al., 2016; Xu et al., 2016).

One other direction to enhance knowledge
representation is to utilize entity descriptions
of entities and relations. Socher et al. (2013)
proposed a neural tensor network model which
enhances an entity’s representation using the av-
erage of the word embeddings in its name. Wang
et al. (2014) proposed a model which combines
entity embeddings with word embeddings using
its names and Wikipedia anchors. Zhong et al.
(2015) further improved the model of Wang et al.
(2014) by aligning entity and text using entity
descriptions. Zhang et al. (2015) proposed to
model entities with word embeddings of entity
names or entity descriptions. Xie et al. (2016)
proposed a model to learn the embeddings of
a knowledge graph by modelling both knowl-
edge triples and entity descriptions. Xu et al.
(2016) learns different representations for entities
based on the attention from relation. The textual
mentions of relations are also explored by Fan
et al. (2014). The universal schema based models
(Riedel et al., 2013; Toutanova et al., 2015) en-
hance knowledge representation by incorporating
textual triples, which assume that all the extracted
triples express a relationship between the entities
and they treat each pattern as a separate relation.
The main drawback of these methods is that
they assume all the relation mentions will express
relationship between entity pairs, which inevitably
introduces a lot of noisy information. For ex-
ample, the sentence “Miami Dolphins in
1966 and the Cincinnati Bengals
in 1968” does not express any relation-

ship between “miami dolphins” and
“cincinnati bengals”. Even worse,
the diversity of language often leads to the data
sparsity problem.

To resolve the ambiguity of entities and rela-
tions in different triples (i.e., a relation/entity may
have different meanings in different triples), Xiao
et al. (2016b) proposed a generative model to han-
dle the ambiguous relations. Wang et al. (2016)
extended the translation-based models by textual
information, which assigns a relation with differ-
ent representations for different entity pairs, using
words co-occurred with both entities in a triple.
However, the words co-occur with an entity pair
nay also not express the meanings of the relation
between them, which will inevitably introduce
noisy information for the specific triple. Compared
with these methods the main advantages of our
methods are: (i) We filters out noisy textual infor-
mation for accurate enrich knowledge representa-
tion. (ii) We simultaneously take the ambiguity of
entities and relations in various triples into consid-
eration.

3 Accurate Text-enhanced Knowledge
Graph Representation

This section presents our accurate text-enhanced
knowledge graph representation learning frame-
work. We first describe how to extract accurate
textual information for a given triple, and then we
propose a textual representation learning model,
which generates textual representations for both
entities and relation in a specific triple. Finally,
we describe how to enhance knowledge represen-
tations based on the textual representations.

The framework of the proposed approach is il-
lustrated in Figure 2.

3.1 Text Information Extraction

Given a triple, our method will first extract accu-
rate textual mentions of its relation from a text cor-
pus. For example, we will extract the relation men-
tion “Barack Hussein Obama Sr was the father
of Barack Obama.” for the triple (Barack Hussein
Obama Sr, parentOf, Barack Obama)]]. We collect
relation mentions by two steps: (1) Entity linking:
linking entity names in a text corpus to entities in
a knowledge graph. (2) Relation mention extrac-
tion: collecting accurate relation mentions which
express the meanings of the relation in a given
triple.
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Figure 2: Framework of the proposed approach.

Entity Linking. Given a sentence D =
(w1, w2, ..., wn), and an entity set E =
(e1, e2, ..., em), we first recognize entities of
E in D to construct a new sentence D′ =
(w1, ..., e1, ..., em, ..., wn), where wi represents
the ith word in D and ej corresponds to the jth
entity in E. There are many general entity linking
tools can be used for this purpose. The proposed
method employs a simple and precise method to
link entities of Freebase and WordNet as Wang
et al. (2016). Concretely, we link a Wikipedia
inner-link as an entity of Freebase if they have
the same titles, and link a word in the corpus as
a WordNet entity if the word belongs to one of its
synsets.

Relation Mention Extraction. To extract ac-
curate relation text mentions for a specific triple,
we first collect all sentences containing both en-
tities of the triple as candidate text mentions.
And then, we calculate the similarity between a
text mention and the relation based on WordNet.
For example, for the triple of (Steve Jobs, /peo-
ple/person/parents, Paul Jobs), we treat a sentence
as its accurate relation mention only if the sen-
tence contains both of its entities and at least one
hyponym/synonyms word of the relation. We col-
lect accurate relation mentions for triples in Word-
Net in a similar way.

In this way, we can extract accurate rela-
tion mentions for triples with high precision.
However, if a relation mention doesn’t contain
any hyponym/synonym words of the relation,
our method would be unable to identify it. For
example, the sentence “In 1961 Obama was
born in Hawaii, US” expresses the meanings
of /people/person/nationality

in the triple (Barack
Obama,/people/person/nationality,
USA ) but without any words belonging to the
hyponym or synonyms of “nationality”. For this,
we further employ word embeddings to compute
the similarity. Concretely, we represent a relation
by averaging the pre-trained word embeddings of
its last two words. Then we extract a sentence as
an accurate relation mention of a given triple if
the similarity between a word in the sentence and
the relation representation is above a threshold,
with the similarity between a word and a relation
is calculated by the cosine similarity of their
representations.

3.2 Learning Textual Representation

As mentioned above, the underlying semantics of
entities and relations vary from different triples,
and different attributes of an entity are concerned
by different relations. In this section, we first uti-
lize BiLSTM to encode relation mentions and en-
tity descriptions. And then, we propose a mu-
tual attention mechanism to learn more accurate
text representations of relations and entities. Our
model contains four layers including Embedding
layer, BiLSTM layer and Mutual Attention Layer,
and the details of these layers are described as fol-
lows.

Embedding Layer. To learn the distributional
representation of relation mentions and entity de-
scriptions, we convert words into distributional
representations based on lookup word embeddings
matrix (Mikolov et al., 2013). Concretely, given a
relation mention m = {w1, w2, w3, ..., wn}, we
transform the word wi into its distributional repre-
sentation ~ei ∈ dw using a word embeddings ma-

748



trix. We use the same pre-trained word embed-
dings as input for the BiLSTM networks of rela-
tion mentions and entity descriptions.

BiLSTM Layer. To learn the representation
of text mentions, we utilize a BiLSTM (Long
Short-Term Memory) (Hochreiter and Schmidhu-
ber, 1997; Le and Zuidema, 2015; Zhou et al.,
2016) model to compose the words in a sequence
into the distributional representation. Concretely,
we employ a two layer Bidirectional LSTM net-
work to generate text representations. The detailed
description of LSTM is presented in (Hochreiter
and Schmidhuber, 1997). Two different BiLSTM
networks are employed to encode relation men-
tions and entity descriptions respectively.

Mutual Attention Layer. Attention based neu-
ral networks have recently achieved success in a
wide range of tasks, including machine transla-
tion, speech recognition and paraphrase detection
(Luong et al., 2015; Yang et al., 2016; Yin et al.,
2016; Vaswani et al., 2017). In this paper, we in-
troduce a mutual attention to improve text repre-
sentations. Given a triple, the goal of our mutual
attention mechanism is two-fold. On one hand, our
model wants to identify words in relation mention
associated with the entity descriptions in the same
triple. On the other hand, our model wants to rec-
ognize words in entity descriptions which are em-
phasized by its relation. To achieve the above goal,
we first infer the representations of entity descrip-
tions using relation representation as attention:

ai(e) =
exp(score(~hi,

~r′))
∑

i′ exp(score(
~hi′ ,

~r′))
(1)

score(~hi,
~r′) = ~hi

T
We

~r′ (2)

where ~r′ ∈ dw is the representation of the rela-
tion mention by averaging all the hidden vectors
of BiLSTM, ~hi is the hidden representation of wi,
and We ∈ dw×2×h is a trained parameter matrix.
The relation-sensitive representation of the entity
description is generated as follows:

~e∗ = tanh(~aTeHe) (3)

where ~ae ∈ dm is the relation-specific attention
vector over the words in the entity description,
dm is the length of the description, He ∈ dm×h

is the hidden representation matrix generated by
BiLSTM, and ~e∗ ∈ dh is the representation of the
description. In this way, we learn the representa-
tions of entity descriptions of head entity ~e∗h ∈ dh

and tail entity ~e∗t ∈ dh with the attention from re-
lation representation.

The above two entity description representa-
tions are utilized as the attention for learning the
triple-sensitive relation mention representation as
follows:

~e = ~e∗h +
~e∗t (4)

ai(r) =
exp(score(~hi, ~e))∑
i′ exp(score(

~hi′ , ~e))
(5)

score(~hi, ~e) = ~hi
T
Wr~e (6)

where ~e∗h and ~e∗t are representations of head en-
tity description and tail entity description respec-
tively, ~hi is the hidden vector of wi for each word
in the text mention, and Wr ∈ dw×2×h is a trained
parameter matrix. The representation of the triple-
sensitive relation mention is generated as Formula
(7):

~r∗ = tanh(~ar
THr) (7)

where ~ar
T ∈ dn is the triple-sensitive attention

vector over the words in the relation mention, dn

is the length of the relation mention, Hr ∈ dn×h
is the hidden representation matrix generated by
BiLSTM, and ~r∗ ∈ dh is the representation of the
mention. In this way, we learn the triple-attention
representation of all text mentions.

3.3 Text-Enhanced Representation Learning
In this section, we introduce how to incorporate
the learned textual representations with represen-
tations learned from knowledge graph structure
using previous methods.

For each given triple and its accurate textual in-
formation, we enhance the representations of the
relation and entities based on the text representa-
tions of entities ~e∗h ∈ dh, ~e∗t ∈ dh and relation
~r∗ ∈ dh. Specifically, we enhance the relation and
entity representations as follows:
Re(~rate) = α ·Re( ~rkg) + (1−α) · ~r∗, 0 ≤ α ≤ 1

(8)

Re(~hate) = α ·Re( ~hkg)+(1−α) · ~e∗h, 0 ≤ α ≤ 1
(9)

Re(~tate) = α ·Re( ~tkg) + (1− α) · ~e∗t , 0 ≤ α ≤ 1
(10)

where α represents the weight factor for the struc-
tural representations, ~rkg ∈ dh, ~hkg ∈ dh and
~tkg ∈ dh represent the distributional representa-

tions of relation r head entity h and tail entity t
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learned from structural information of knowledge
graph, ~r∗ ∈ dh, ~e∗h ∈ dh and ~e∗t ∈ dh represent the
vectors of the text mention, head and tail entity de-
scriptions for the triple, ~rate ∈ dh,~hate and~tate are
the accurate text-enhanced representations of rela-
tion, head and tail entity, respectively. Note that,
we enhance the real part vector of an entity with
the textual representation of the entity as Formula
(9) and (10), and treat the matrix representation of
a relation as a vector with each element the same
as the element in diagonal matrix, and then en-
hance its real part as Formula (8). In this way, we
enhance the representation of knowledge graph,
and calculate the plausibility of a triple based on
their score functions.

If there is no accurate relation mention ex-
tracted for a triple, we only utilize the knowledge
embeddings to estimate the plausibility of the
triple, and the weight factor α is set to 1 in
this case. For example, if there is no accu-
rate relation mention extracted for triple (Su
Shi, /people/person/profession,
Artist), then only its structural representations
will be utilized to compute the plausibility of the
triple. And α is set to 1 for the triples if none of
the entities in it is linked.

3.4 Model Training
In the training process, the (h, r, t, ht, rt, tt) tuples
are used as supervision, where ht, rt and tt are
the description of head entity, relation text men-
tion and the description of tail entity, respectively.
Since there are only correct triples in the knowl-
edge graph, following Lin et al. (2015a), we con-
struct the corrupted tuples (h′, r, t′, ht, rt, tt) ∈
KG′ for a (h, r, t, ht, rt, tt) ∈ KG by randomly
replacing head/tail entity with entities from knowl-
edge graph using Bernoulli Sampling Method
(Wang et al., 2014). Furthermore, to train the
model of text representation model, we construct
the corrupted tuples (h, r, t, h′t, r

′
t, t
′
t) ∈ KG′ for

a (h, r, t, ht, rt, tt) ∈ KG by random replacing
the text information. We use the following margin-
based ranking loss:

L =
∑

q∈KG

∑

q′∈KG′
max(0, γ+f(q)−f(q′)) (11)

where f is the score function of our model, and
γ > 0 is the margin between golden tuples and
negative tuples, KG is the set of tuples in train-
ing dataset, and KG′ is the corrupted set of tu-
ples. The parameters of our model are optimized

using the stochastic gradient descent (SGD) algo-
rithm. To accelerate the training process and avoid
overfitting, we initialize the representations of en-
tities and relations using base models and initial-
ize word representations with the pre-trained word
embeddings, and all these embeddings are fine-
tuned during training.

4 Experiments

In this section, we first describe the settings in our
experiments, and then we conduct experiments of
link prediction and triple classification tasks and
compare our method with base models and the
state-of-the-art baselines.

4.1 Experiment Settings
In this paper, we evaluate our model on four
benchmark datasets: WN11, WN18, FB13 and
FB15k (Bordes et al., 2013; Socher et al., 2013;
Wang et al., 2014). For the text corpus, we use a
snapshot of the English Wikipedia (Wiki) (Shaoul
and Westbury, 2010) 3 dump in April 2016, which
contains more than 1.2 billion tokens. We link en-
tities in the text corpus to entities in Freebase and
synsets in WordNet as described above, and re-
place entities with HEAD TAG and TAIL TAG.
The text descriptions of entities are freely avail-
able4. In addition, we pre-process the word-entity
corpus, including stemming, lowercasing and re-
moving words with fewer than 5 occurrences. The
statistics of the datasets and linked-entities in text
corpus are shown in Table 1.

Dataset WN11 WN18 FB13 FB15K
#Train 112,581 141,442 316,232 483,142
#Valid 2,609 5,000 5,908 50,000
#Test 10,544 5,000 23,733 59,071

# Entities 38,696 40,943 75,043 14,951
# Relations 11 18 13 1,345

#1-to-1 0 0 0 247
#1-to-N 0 0 0 179
#N-to-1 0 0 1 225
#N-to-N 11 18 12 694
#Linked 31,432 34,159 66,328 13,567

Table 1: Statistics of different datasets and the number
of entities linked in Wikipedia, #Linked represents the
number of entities linked in the text corpus. #N-to-1 is
the number of N-to-1 type of relations.

As introduced above, we implement our frame-
work using TransE, TransH, TransR and Com-
plEx as base models, and evaluate on two classi-

3https://www.wikipedia.org/
4https://github.com/xrb92/DKRL
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cal tasks: link prediction and triple classification.
We refer AATE E as the proposed model which
enhances TransE with accurate textual informa-
tions and mutual attention mechanism, and refer
ATE E as the proposed model without mutual at-
tention mechanism to reveal the effect of our atten-
tion mechanism.

To speed up training and reduce overfitting,
we employ the SkipGram model of word2vec
(Mikolov et al., 2013) to pre-train the word em-
beddings with the dimension of word embeddings
is dw = 200, the windows size is 5, the number of
iterations is 5, and the number of negative sam-
ples is 10. And we pre-train the representations
of entities and relations of knowledge graph us-
ing the mentioned base models, and the parame-
ters are empirically tuned as follows: the dimen-
sion of vectors is dkg = 200, the number of epochs
is 2000 and the margin is 1.0. We implement our
model based on the OpenKE 5 framework.

In our experiments, the hyper-parameters of
BiLSTM are empirically set as follows: the num-
ber of hidden units is dh = 200, the learning
rates for SGD are among {0.1, 0.001, 0.0001},
the margin λ values are among {0.5, 1.0, 2.0}
and the batch sizes are among {100, 500, 2000}.
We employ two different BiLSTM networks with
the same hyper-parameters to learn the represen-
tations of text mentions and entity descriptions.
And all the parameters are learned jointly, includ-
ing BiLSTM networks and knowledge representa-
tions.

4.2 Link Prediction

Link prediction aims to predict missing head or
tail entity of a triple, which is a widely employed
evaluation task for knowledge graph completion
models (Bordes et al., 2011; Wang et al., 2016).
Concretely, given a head entity h (or tail entity
t) and a relation r, the system will return a rank
list of candidate entities for tail entity. Following
(Bordes et al., 2013; Lin et al., 2015b), we con-
duct the link prediction task on WN18 and FB15k
datasets.

In the testing phase, for each triple (h, r, t),
we replace its head/tail entity with all entities to
construct candidate triples, and extract text men-
tions from the text corpus for each candidate triple.
Then we rank all these entities in descending or-
der of the scores, which are calculated by our

5http://openke.thunlp.org/

score function. Based on the entity ranking list,
we employ two evaluation metrics from (Bor-
des et al., 2013): (1) mean rank of correct en-
tities (MR); and (2) proportion of correct enti-
ties in top-10 rank entities Hit@10 (Hit10). A
good link predictor should achieve low MR and
high Hit@10. We tuned model parameters using
validate datasets. We implement our framework
using TransE, TransH, TransR and ComplEx as
base models, and treat these base models as base-
lines. Furthermore, we also compare our method
with the state-of-the-art results from Unstructured,
SME, TransD, TEKE , Jointly (Xu et al., 2016),
TransG and Mainifold, and we report the results
from their original papers. The overall results are
presented in Table 2.

Models WN18 FB15K
MR Hit10 MR Hit10

Others

UnS 304 38.2 154 40.8
SME 533 74.1 979 6.3

TransD 212 92.2 91 77.3
TransG 345 94.7 50 88.2

Mainifold - 94.9 - 88.1

Jointly LSTM 95 91.6 90 69.7
A-LSTM 123 90.9 73 75.5

TransE

TransE 251 89.2 125 47.1
TEKE E 127 93.8 79 67.6
ATE E 158 91.7 89 57.1

AATE E 123 94.1 76 76.1

TransH

TransH 303 86.7 84 58.5
TEKE H 128 93.6 75 70.4
ATE H 167 92.5 80 68.2

AATE H 132 94.0 73 74.6

TransR

TransR 219 91.7 78 65.5
TEKE R 203 92.3 79 68.5
ATE R 210 92.1 80 67.2

AATE R 185 93.7 77 69.4

ComplEx
ComplEx 219 94.7 78 84.0
ATE C 217 94.7 61 86.2

AATE C 179 94.9 52 88.0

Table 2: Evaluation results of link prediction.

From Table 2, we can see that both ATE and
AATE models surpass all base models (TransE,
TransH, TransR and ComplEx) on all metrics.
This result verifies that the textual information
is beneficial for structure-based knowledge graph
representation learning models. Compared with
the ATE models, the AATE models achieve bet-
ter results on link prediction task, which verifies
that the mutual attention between entity descrip-
tion and relation mention is effect for selecting
meaningful words and enhancing the learning of
knowledge graph representation.

For translation-based models, the proposed
method achieves the best result based on TransE.
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This is probably because TransH and TransR
have tried to project the entity embeddings into
the space of relation space, which may lead to
the fact that the text information could not en-
hance the entity representation directly. In addi-
tion, our method implemented based on Com-
plEx has achieve better performances w.r.t TEKE
(Wang et al., 2016) on all metrics, that verifies the
importance of filtering out the noisy information.

4.2.1 Analysis on 1-to-N, N-to-1 and N-to-N
Relations

To better analyse the effect of textual information
for knowledge graph representation learning, this
section presents the results of our model on dif-
ferent categories of relations including 1-N, N-1
and N-N on link prediction task. We present the
results of our models based on TransE and of all
baselines.

From Table 3, we can see that, both of our pro-
posed methods have achieved higher performance
over the base model on all types of relations (1-
to-N, N-to-1 and N-to-N). In addition, our AATE
model achieves better results than the Jointly(A-
LSTM) model. Since both of AATE and Joint (A-
LSTM) are implemented based on TransE, we ver-
ify that the triple-specific relation mention is valu-
able to improving the knowledge representation.
Another reason why our proposed model achieves
better results is that the attention from textual rep-
resentation of relation and entity is more effective
than the attention using structural representation
for textual representation.

4.2.2 Fault Analysis
To gain more insight, we present a failure analysis
to explore possible limitations and weaknesses of
our model. In particular, several illustrative triples
from the test set of FB15K are listed in Table 4.
The tail entities of those triples are failed to be
ranked in the top-10 candidates.

It can be seen from Table 4 that, the fail-
ures are mostly caused by the data sparsity
problem, which results in relatively limited
occurrences of entities and relations. All of
“Elementary school”, “Abugida”,
“interests/collection category
/sub categories” and “martial arts/
martial artist/martial art” appear
less than 4 times in training data. It must also
be mentioned that the triple “(Abugida,
language /language writing system/

languages, Khmer language)” is in-
cluded in the training data. Therefore, we
can infer the first triple in Table 4 based on
the above triple due to the general logic that
“language/human language/writing
system” and “/language/language
writing system/languages” are a pair

of inverse relations. Consequently, we believe it
is important to incorporate the logic rules into
knowledge embeddings, especially for the entities
and relations with limited occurrences.

4.3 Triple Classification

In this section, we assess different models on the
triple classification task. Triple classification aims
to judge whether a given triple (h, r, t) is true fact
or not, and it is usually modeled as a binary clas-
sification task (Socher et al., 2013; Bordes et al.,
2013; Wang et al., 2016). Following Socher et al.
(2013) we evaluate different systems on WN11
and FB13 datasets.

Given a triple (h, r, t) and all its accurate rela-
tion mentions and entity descriptions of this triple,
In our experiments, a triple will be classified as a
true fact if the score obtained by function f is be-
low the relation-specific threshold δr, otherwise it
will be classified as a false fact. The δr and the
weight factor of α are optimized by maximizing
classification accuracy on validation dataset, and
different values of δr will be set for different rela-
tions. We use the same settings as link prediction
task, all parameters are optimized on the validation
datasets to obtain the best accuracies. We compare
our method with all base models and the state-of-
the-art performances from TransD, TEKE (Wang
et al., 2016), TransG, Mainfold, and we report the
best results from their original papers. The results
are listed in Table 5.

From Table 5, we can see that: (1) The accu-
rate textual information can consistently increase
the accuracies on triple classification task. In all of
the four base models, our model achieves signif-
icant improvements over TransE, TransH, TransR
and ComplEx. This results verify that our method
is a useful framework for exploiting textual in-
formation to enhance structure-based models; (2)
Our method achieves better results on all datasets
than TEKE. This result reveals that it is impor-
tant to filter out the noisy data for knowledge
graph representation learning. (3) Compared with
the ATE model, our relation-sensitive attention
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Prediction Head (Hits@10) Prediction Tail (Hits@10)
Relation Category 1-to-N N-to-1 N-to-N 1-to-N N-to-1 N-to-N

#Triples in Test 2,078 6,084 109,526 2,078 6,084 109,526
Jointly(A-LSTM) 95.1 21.1 47.9 30.8 94.7 53.1

TransE 65.7 18.2 47.2 19.7 66.7 50.0
ATE E 80.2 22.1 47.6 20.3 67.7 60.0

AATE E 96.1 35.2 49.1 32.2 98.3 60.3

Table 3: Hit@10 of link prediction on different type of relations on FB15k dataset.

No Head Entity (#) Relation (#) Tail Entity (#)
1 Upper Canada College (16) education/educational institution/school type (728) Elementary school (1)
2 Khmer language (9) language/human language/writing system (41) Abugida (1)
3 Film (255) interests/collection category/sub categories (3) Star Wars (31)
4 Jean-Claude Van Damme (28) martial arts/martial artist/martial art (1) Taekwondo (155)

Table 4: The triples whose tail entities were failed to be ranked in top 10 candidates, # is the number of occurrences
of the entity/relation in the training data.

Models WN11 FB13 AVG.

Others

TransD 86.4 89.1 87.8
TransG 87.4 87.3 87.4

Mainfold 87.5 87.2 87.4

TransE

TransE 75.9 81.5 78.7
TEKE E 84.1 75.1 79.6
ATE E 84.3 75.4 79.9

AATE E 86.1 86.4 86.3

TransH

TransH 78.8 83.3 81.1
TEKE H 84.8 84.2 84.5
ATE H 85.1 83.9 84.5

AATE H 86.7 86.2 86.5

TransR

TransR 85.9 82.5 84.2
TEKE R 86.1 81.6 83.7
ATE R 86.2 84.4 85.3

AATE R 86.4 85.2 85.8

ComplEx

ComplEx 86.2 85.7 86.0
ATE C 87.2 87.1 87.2

AATE C 88.0 87.2 87.6

Table 5: Evaluation results of triple classification.

model improves the accuracies on all the datasets.
We believe this is because mutual attention mech-
anism can better identify the relation-sensitive
words from entity descriptions and extract entity-
sensitive words from relation mention.

The results demonstrate that, our method has
achieved the best performances on the triple clas-
sification task, which verifies that it is critical
to filter out noisy text information to determine
whether a triple should be added into knowledge
graph or not.

5 Conclusions

In this paper, we propose an accurate text-
enhanced knowledge graph representation frame-
work, which can utilize accurate textual infor-
mation enhance the knowledge representations of
a triple, and can effectively handle the ambigu-

ity of relations and entities through a mutual at-
tention model between relation mentions and en-
tity descriptions. Experiment results show that
our method can achieve the state-of-the-art per-
formance, and significantly outperforms previous
text-enhanced knowledge representation models.
And the mutual attention between relation men-
tions and entity descriptions can significantly im-
prove the performance of knowledge representa-
tion. For future work, we want to further exploit
entity types and logic rules as constraints to fur-
ther improve knowledge representations.
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Abstract

How to identify, extract, and use phrasal
knowledge is a crucial problem for the
task of Recognizing Textual Entailment
(RTE). To solve this problem, we pro-
pose a method for detecting paraphrases
via natural deduction proofs of semantic
relations between sentence pairs. Our so-
lution relies on a graph reformulation of
partial variable unifications and an algo-
rithm that induces subgraph alignments
between meaning representations. Experi-
ments show that our method can automat-
ically detect various paraphrases that are
absent from existing paraphrase databases.
In addition, the detection of paraphrases
using proof information improves the ac-
curacy of RTE tasks.

1 Introduction

Recognizing Textual Entailment (RTE) is a chal-
lenging natural language processing task that aims
to judge whether one text fragment logically fol-
lows from another text fragment (Dagan et al.,
2013). Logic-based approaches have been suc-
cessful in representing the meanings of complex
sentences, ultimately having a positive impact on
RTE (Bjerva et al., 2014; Beltagy et al., 2014;
Mineshima et al., 2015, 2016; Abzianidze, 2015,
2016). Although logic-based approaches succeed
in capturing the meanings of functional or logi-
cal words, it is difficult to capture the meanings
of content words or phrases using genuine logical
inference alone. This remains a crucial problem
in accounting for lexical relations between content
words or phrases via logical inference. To solve
this problem, previous logic-based approaches use
knowledge databases such as WordNet (Miller,
1995) to identify lexical relations within a sen-

tence pair. While this solution has been success-
ful in handling word-level paraphrases, its exten-
sion to phrase-level semantic relations is still an
unsolved problem. There are three main difficul-
ties that prevent an effective identification and use
of phrasal linguistic knowledge.

The first difficulty is the presence of out-of-
context phrase relations in popular databases such
as the Paraphrase Database (PPDB) (Ganitkevitch
et al., 2013). PPDB may suggest paraphrases that
do not adhere to the context of our relevant text
segments nor to their semantic structure, which
might be problematic.

The second difficulty is finding semantic phrase
correspondences between the relevant text seg-
ments. Typical approaches only rely on sur-
face (Beltagy et al., 2013) or syntactic correspon-
dences (Arase and Tsujii, 2017), often producing
inaccurate alignments that significantly impact our
inference capabilities. Instead, a mechanism to
compute semantic phrase correspondences could
potentially produce, if available, more coherent
phrase pairs and solve the recurring issue of dis-
continuity.

The third difficulty is the intrinsic lack of cov-
erage of databases for logical inference despite
their large size. Whereas there is a relatively
small number of possible word-to-word corre-
spondences and thus their semantic relations can
be enumerated, the same is not true for all phrase
pairs that might be of interest. One alternative is to
use functions of infinite domain (e.g., cosine simi-
larity) between phrase representations (Tian et al.,
2016), but these techniques are still under devel-
opment, and we have not seen definitive successful
applications when combined with logic systems.

In this study, we tackle these three problems.
The contributions of this paper are summarized
as follows: First, we propose a new method of
detecting phrase correspondences through natu-
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ral deduction proofs of semantic relations for a
given sentence pair. Second, we show that our
method automatically extracts various paraphrases
that compensate for a shortage in previous para-
phrase databases. Experiments show that ex-
tracted paraphrases using proof information im-
prove the accuracy of RTE tasks.

2 Related Work

In this section, we review previous logical in-
ference systems that are combined with lexi-
cal knowledge. The RTE system developed by
Abzianidze (2016) uses WordNet as axioms and
adds missing knowledge manually from the train-
ing dataset; however, this technique requires con-
siderable human effort and is not extended to han-
dle phrasal knowledge.

Martı́nez-Gómez et al. (2017) proposed an RTE
system with an on-the-fly axiom injection mech-
anism guided by a natural deduction theorem
prover. Pairs of unprovable sub-goals and plau-
sible single premises are identified by means of
a variable unification routine and then linguis-
tic relations between their logical predicates are
checked using lexical knowledge such as Word-
Net and VerbOcean (Chklovski and Pantel, 2004).
However, this mechanism is limited to capturing
word-to-word relations within a sentence pair.

Bjerva et al. (2014) proposes an RTE system
where WordNet relations are used as axioms for
word-to-word knowledge in theorem proving. For
phrasal knowledge, PPDB is used to rephrase an
input sentence pair instead of translating para-
phrases into axioms. However, this solution ig-
nores logical contexts that might be necessary
when applying phrasal knowledge. Moreover, it
does not apply to discontinuous phrases.

Beltagy et al. (2016) uses WordNet and PPDB
as lexical knowledge in the RTE system. To in-
crease their coverage of phrasal knowledge, the
system combines a resolution strategy to align
clauses and literals in a sentence pair and a sta-
tistical classifier to identify their semantic relation.
However, this strategy only considers one possible
set of alignments between fragments of a sentence
pair, possibly causing inaccuracies when there are
repetitions of content words and meta-predicates.

In our research, we propose an automatic phrase
abduction mechanism to inject phrasal knowledge
during the proof construction process. In addition,
we consider multiple alignments by backtracking

the decisions on variable and predicate unifica-
tions, which is a more flexible strategy. We rep-
resent logical formulas using graphs, since this is
a general formalism that is easy to visualize and
analyze. However, we use natural deduction (see
Section 3.2) as a proof system instead of Markov
Logic Networks for inference. Some research has
investigated graph operations for semantic pars-
ing (Reddy et al., 2014, 2016) and abstractive sum-
marization (Liu et al., 2015); we contribute to
these ideas by proposing a subgraph mapping al-
gorithm that is useful for performing natural lan-
guage inferences.

Considerable research efforts have been focused
on the identification and extraction of paraphrases.
One successful technique is associated with bilin-
gual pivoting (Bannard and Callison-Burch, 2005;
Zhao et al., 2008), in which alternative phrase
translations are used as paraphrases at a certain
probability. However, this technique requires
large bilingual parallel corpora; moreover, word
alignment errors likely cause noisy paraphrases.
Another strategy is to extract phrase pairs from
a monolingual paraphrase corpus using align-
ments between syntactic trees, guided by a lin-
guistically motivated grammar (Arase and Tsujii,
2017). The main difference between these stud-
ies and ours is that they typically attempt align-
ment between words or syntactic trees, whereas
we perform alignments between meaning repre-
sentations, which enables the acquisition of more
general paraphrases by distinguishing functional
words from content words. This point is impor-
tant in distinguishing among different semantic re-
lations (e.g., antonyms and synonyms). In addi-
tion, word and syntactic alignments potentially ig-
nore coreferences, making it difficult to find rela-
tions between many-to-many sentences. Semantic
alignments enable this because coreferences must
refer to the same variable as the original entity.

3 Logic-based Approach to RTE

3.1 Meaning representation

In logic-based approaches to RTE, a text T and a
hypothesisH are mapped onto logical formulas T ′

and H ′. To judge whether T entails H , we check
whether T ′ ⇒ H ′ is a theorem in a logical system.

For meaning representations, we use Neo-
Davidsonian event semantics (Parsons, 1990). In
this approach, a verb is analyzed as a one-place
predicate over events. Both the arguments of a
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y1skip

x1 girl

x2 rope

x3 sidewalk

subj

obj

on

Figure 1: A graph for the basic formula (2).

verb and modifiers are linked to events by seman-
tic roles, and the entire sentence is closed by ex-
istential quantification over events. For example,
(1) is mapped onto (2).

(1) A girl is skipping rope on a sidewalk.

(2) ∃x1∃x2∃x3∃y1 (girl(x1) ∧ rope(x2)∧
sidewalk(x3) ∧ skip(y1) ∧ (subj(y1) = x1) ∧
(obj(y1)=x2) ∧ on(y1, x3))

We use xi as a variable for entities and yj for
events. In this semantics, we represent all con-
tent words (e.g., girl and skip) as one-place predi-
cates. Regarding functional words, we represent a
preposition like on as a two-place predicate, e.g.,
on(y1, x3). We also use a small set of semantic
roles such as subj and obj as a functional term
and use equality (=) to connect an event and its
participant, as in subj(y1)=x1.

To be precise, the set of atomic formulas A in
this event semantics is defined by the rule

A ::= F(t) | G(t, u) | t = u

where F(t) is a one-place predicate (for con-
tent words), G(t, u) is a two-place predicate (for
prepositions), t and u are a term. A term is de-
fined as a constant, a variable, or a functional term
of the form f(t) where f is a semantic role and t
is a term.

We call a formula constructed by conjunctions
and existential quantifiers a basic formula in event
semantics. Thus, a set of basic formulas ϕ in event
semantics is defined as:

ϕ ::= A | ϕ ∧ ϕ | ∃t ϕ
The formula in (2) is an instance of a basic
formula, which captures the predicate-argument
structure of a sentence.

On top of the system of basic formulas, we have
a full language of event semantics with negation
(¬), disjunction (∨), implication (→), and a uni-
versal quantifier (∀). These operators are used to
represent additional logical features.

There is a natural correspondence between ba-
sic formulas and directed acyclic graphs (DAGs).
Figure 1 shows an example1. In the graph rep-
resentation, constants and variables correspond to
vertices; both two-place predicates for preposi-
tions (e.g., on(y1, x1)) and functional terms for
semantic roles (e.g., subj(y1) = x1) are repre-
sented as edges. A one-place predicate F(t) in a
logical formula can be represented as a functional
relation isa(t,F), where isa is an expression re-
lating a term t and a predicate F represented as a
vertex. The isa edges are unlabeled for simplicity.

3.2 Natural deduction and word abduction

We use the system of natural deduction (Prawitz,
1965; Troelstra and Schwichtenberg, 2000) to cap-
ture phrase correspondences from a sentence pair
(T,H), following the strategies for word axiom
injection developed by Martı́nez-Gómez et al.
(2017) and Yanaka et al. (2017). The sentence
pair (T,H) is first mapped to a pair of formulas
(T ′, H ′). T ′ is initially set to the premise P , and
H ′ is set to the goal G to be proved.

If formulas P andG are basic formulas, then the
proving strategy is to decompose them into a set
of atomic formulas using inference rules for con-
junctions and existential quantifiers. The premise
P is decomposed into a pool of premises P =
{pi(θi) | i ∈ {1, . . . ,m}}, where each pi(θi) is
an atomic formula and θi is a list of terms appear-
ing in pi(θi). The goal G is also decomposed into
a set of sub-goals G = {gj(θ′j) | j ∈ {1, . . . , n}},
where θ′j is a list of terms appearing in gj(θ

′
j).

The proof is performed by searching for a
premise pi(θi) whose predicate matches that of a
sub-goal gj(θ′j). If such a premise is found, then
variables in θ′j are unified to those in θi and the
sub-goal gj(θ′j) can be removed from G. If all the
sub-goals can be removed, we prove T ′ → H ′.
In the presence of two or more variables with the
same predicate, there might be multiple possible
variable unifications. Modern theorem provers ex-
plore these multiple possibilities in search of a
configuration that proves a theorem.

Sub-goals may remain unproved when T log-
ically does not entail H i.e., when there are no
premise predicates pi that are matched with gj . In
this case, the system tries word axiom injection,
called word abduction. More specifically, if there

1See Jones (2016) for some variants of graphical repre-
sentations of logical formulas.
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is a premise pi(θi) whose predicate has a linguis-
tic relation (according to linguistic knowledge2)
with that of a sub-goal gj(θ′j), then variables in θ′j
are unified with those in θi and the sub-goal gj(θ′j)
can be removed from G.

3.3 Graph illustration
Figure 2 shows an example to illustrate how the
system works. To begin with, the input sentence
pair (T,H) is mapped onto a pair of formulas,
(T ′, H ′). T ′ is initially placed to the premise P ,
and H ′ to the goal G. Note that these are basic
formulas, and they are thus decomposed to the fol-
lowing sets of formulas P and G, respectively:
P = {lady(x1),meat(x2), cut(y1),up(y1),

precisely(y1), subj(y1)=x1,obj(y1)=x2}
G = {woman(x3),meat(x4), cut(y2),piece(x5),

into(y2, x5), subj(y2)=x3,obj(y2)=x4}
Steps 1 to 3 in Figure 2 demonstrate the vari-

able unification routine and word axiom injection
using graphs. Note that in step 1, all variables in
formulas in P or G are initially different.

In step 2, we run a theorem proving mecha-
nism that uses graph terminal vertices as anchors
to unify variables between formulas inP and those
in G. The premise meat(x2) in P matches the
predicate meat of the sub-goal meat(x4) in G
and the variable unification x4 := x2 is applied
(and similarly for the sub-goal cut(y2) in G with
the variable unification y2 := y1).

In step 3, we use the previous variable unifica-
tion on y1, the subj edge in P and G and the ax-
iom ∀x.lady(x)→ woman(x) from external knowl-
edge to infer that x3 := x1.

4 Phrase Abduction

There is one critical reason that the word-to-
word axiom injection described in Section 3.2
fails to detect phrase-to-phrase correspondences.
That is, the natural deduction mechanism decom-
poses the goal G into atomic sub-goals that are
then proved one-by-one (word-by-word), indepen-
dently of each other except for the variable unifi-
cation effect. This mechanism is particularly prob-
lematic when we attempt to prove phrases that
resist decomposition, two-place predicates (e.g.,
into(x, y)), or failures in variable unification (e.g.,
due to inaccurate semantics). Thus, we propose a
method to detect phrase-to-phrase correspondence
through natural deduction proofs.

2As given in a linguistic ontology or database such as
WordNet or VerbOcean.

4.1 Phrase pair detection

We detect phrase-to-phrase entailing relations be-
tween T ′ and H ′ by finding alignments between
the subgraphs of their meaning representations
when T ′ ⇒ H ′ or T ′ ⇒ ¬H ′ hold. Find-
ing subgraph alignments is a generalization of
the subgraph isomorphism problem, which is NP-
complete3. In this paper, we approximate a solu-
tion to this problem by using a combination of a
backtracking variable unification and a determin-
istic graph search on the neighborhood of non-
unified variables.

Using our running example in Figure 2, step 4
displays our proposed subgraph alignment. The
variable x5 in the graph of G cannot be unified
with any variable in the graph of P . This is a
very common case in natural language inferences,
as there might be concepts in H that are not di-
rectly supported by concepts in T . In this research,
we propose spanning a subgraph starting at non-
unified variables (e.g., x5 in G) whose boundaries
are semantic roles (e.g., subj, obj). Its candidate
semantics from P are then the attributes of its cor-
responding unified variables from G (e.g. cut up
precisely→ cut into pieces).

4.2 Graph alignments

To formalize this solution we introduce some
graph notation. Let V = Vu ∪ V ū ∪ L be the
set of vertices, where Vu is the set of unified vari-
ables (e.g. x1, x2, y1), V ū is the set of non-unified
variables (e.g. x5), and L is a set of predicates
(e.g., lady, woman). Let E be the set of labeled,
directed edges 〈v, l, v′〉 where v, v′ ∈ V and l are
labels that may represent a functional relation isa,
a preposition or a semantic role. We denote a set
of two-place predicates for prepositions as PREP
and a set of functional terms for semantic roles as
ARGS; e.g., ARGS = {subj,obj}. A graph that
represents P is then a tuple GP = 〈VP , EP〉, and
similarly, for G, GG = 〈VG , EG〉.

We can now define a function to span a
subgraph in the neighborhood of non-unified
variables v ∈ V ūG in the graph of G. We call
a connected set of edges in which no semantic
roles appear, i.e., {〈v, l, v′〉 | l 6∈ ARGS}, a
phrase set. Let E(x) be the phrase set in E
such that each vertex is connected to x with
an incoming or outgoing edge, that is, E(x) =
{(vi, l, vk) ∈ E | (x = vi ∨ x = vk) ∧ l 6∈ ARGS} .

3Emmert-Streib et al. (2016) gives a good overview.
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y1

cut
up

precisely

x1 x2lady meat

subj obj

y2

cut

x3 x4

x5

woman meat

piece

subj obj

into

T : A lady is cutting up some meat precisely H: Some meat is being cut into pieces by a woman
T ′ : ∃x1∃x2∃y1(lady(x1) ∧meat(x2) ∧ cut(y1) ∧

up(y1)∧precisely(y1)∧subj(y1, x1)∧obj(y1, x2))
H ′ : ∃x3∃x4∃x5∃y2(meat(x4) ∧woman(x3) ∧ cut(y2) ∧
piece(x5) ∧ into(y2, x5) ∧ subj(y2, x3) ∧ obj(y2, x4))

Step 1:
Make graphs

from formulas.

y1

cut
up

precisely

x1 x2lady meat

subj obj

y1

cut

x3 x2

x5

woman meat

piece

subj obj

into

Step 2:
Anchor terminal

vertices and unify
variables x4 := x2

and y2 := y1.

y1

cut
up

precisely

x1 x2lady meat

subj obj

y1

cut

x1 x2

x5

woman meat

piece

subj obj

into

Step 3:
Use graph constraints

and knowledge
(lady is a woman)
to unify x3 := x1.

y1

cut
up

precisely

x1 x2lady meat

subj obj

y1

cut

x1 x2

x5

woman meat

piece

subj obj

into

Step 4:
Induce subgraph

alignment with non-
unified variable x5.

Figure 2: A graph representation of a theorem proving routine on basic formulas and variable unification.
Dotted circles represent non-unified variables at each step, whereas edges without labels are attributes.
The graph of the left side is the set of premises P and the graph of the right side is the set of sub-goals
G. Colored subgraphs represent a word or a phrase to which our axiom injection mechanism applies.

Note that E(x) induces a subgraph in a given
graph G and the condition l /∈ ARGS sets the
boundaries of the subgraph by excluding the
semantic roles of verb phrases. Given two phrase
sets E and E′, we say E′ is reachable from E,
written E ∼ E′, if E and E′ share at least one
variable vertex. Let ∼∗ be the transitive closure of
∼. Given a set of edges EG and a variable v, we
define the extended phrase set, written Reach(v),
as follows:

Reach(v) = {e ∈ E | EG(v) ∼∗ E}
that is, the set of edges e that can be reached from
v without crossing an edge with a semantic role

label. This function defines a partition or equiva-
lence class for non-unified variables v ∈ V ūG , and
each of these partitions induce a (possibly discon-
tinuous) phrase in G that remains unproved.

The corresponding subgraph in P to each of
these partitions is given by the vertices and edges
connected with a path of length one to the unified
variables that appear in Reach(v). That is,

Corr(v) = {e ∈ EP(v′), v′ ∈ V [v]
G ∩ VP}

where V [v]
G denotes the vertices in the subgraph of

G induced by the partition Reach(v).
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A subgraph alignment betweenP and G is given
by the pair of 〈Corr(v),Reach(v)〉 for all v ∈ V ūG ,
where the phrases can be read from the predicates
in the vertices and edges labeled with prepositions.

We define a mapping (·)• from a labeled edge
〈v, l, v′〉 to an atomic formula as follows.

〈v, l, v′〉• =





v′(v) if l is isa
l(v, v′) if l ∈ PREP
l(v) = v′ if l ∈ ARGS

Let E be a set of labeled edges, and let E• be{
〈v, l, v′〉• | 〈v, l, v′〉 ∈ E

}
. The phrase axiom

generated for each non-unified variable v ∈ V ūG
is defined as
∀θC.(

∧
Corr(v)• → ∃θR. (

∧
Reach(v)•)),

where θC is a set of free variables appearing in
Corr(v)• (which includes v) and θR is a set of
free variables appearing in Reach(v)• but not in
Corr(v)•.

In Figure 2, the only non-unified variable in the
sub-goal in step 4 is x5, that is, V ūG = {x5}. Then,
starting from the variable x5, Reach(x5) is

{〈y1, into, x5〉 , 〈x5, isa,piece〉} .

Now V
[x5]
G = {y1, x5}, and thus Corr(x5) is

{〈y1, isa, cut〉 , 〈y1, isa,up〉 , 〈y1, isa,precisely〉} .
Finally, the following is the axiom generated from
〈Corr(x5),Reach(x5)〉4.

∀y1(cut(y1) ∧ up(y1) ∧ precisely(y1)→
∃x5(into(y1, x5) ∧ piece(x5))).

4.3 Non-basic formulas
If formulas P and G are not basic formulas (i.e.,
they contain logical operators other than ∧ and
∃), they are decomposed according to inference
rules of natural deduction. There are two types
of inference rules: introduction rules decompose
a goal formula into smaller sub-goals, and elimi-
nation rules decompose a formula in the pool of
premises into smaller ones. Figure 3 shows intro-
duction rules and elimination rules for decompos-
ing non-basic formulas including negation, dis-
junction, implication, and a universal quantifier.
By applying inference rules, a proof of non-basic
formulas appearing in sub-goals can be decom-
posed to a set of subproofs that only have basic
formulas in sub-goals. If a universal quantifier ap-
pears in premises, it is treated in the same way as
other premises.

4Note that this axiom is logically equivalent to
∀y1(cut(y1) ∧ up(y1) ∧ precisely(y1)→
∃x5(cut(y1) ∧ into(y1, x5) ∧ piece(x5)))

indicated in the colored subgraphs in step 4 of Figure 2.

P :

G : A ∨ B

P :

G : A

∨-I

P :

G : A ∨ B

P :

G : B

∨-I

P : A ∨ B
G : C

P : A
G : C

P : B
G : C

∨-E

P :

G : A → B

P : A
G : B

→-I

P : A → B
G : B

P :

G : A

→-E

P :

G : ¬A

P : A
G : False

¬-I

P : ¬A
G : False

P :

G : A

¬-E

P :

G : ∀xA(x)

P :

G : A(x)

∀-I

P : ∀xA(x)

G :

P : A(t)

G :

∀-E

Figure 3: Inference rules used for decomposing
non-basic formulas. P is a premise andG is a sub-
goal. The initial formulas are at the top, with the
formulas obtained by applying the inference rules
shown below.

P : ¬∃y1∃x1(man(x1) ∧ cut(y1) ∧ potato(x2)
∧ (subj(y1) = x1) ∧ (obj(y1) = x2)

G : ¬∃y1∃x1∃x2∃x3(man(x1) ∧ slice(y1) ∧ potato(x2)
∧ into(y1, x3)∧piece(x3)∧(subj(y1)=x1)∧ (obj(y1)=x2)

P : ¬∃y1∃x1(man(x1) ∧ cut(y1) ∧ potato(x2)
∧ (subj(y1) = x1) ∧ (obj(y1) = x2)

P0 : ∃y1∃x1∃x2∃x3(man(x1) ∧ slice(y1) ∧ potato(x2)
∧ into(y1, x3)∧piece(x3)∧(subj(y1)=x1)∧ (obj(y1)=x2)

G0 : False

P0 : ∃y1∃x1∃x2∃x3(man(x1) ∧ slice(y1) ∧ potato(x2)
∧ into(y1, x3)∧piece(x3)∧(subj(y1)=x1)∧ (obj(y1)=x2)

G1 : ∃y1∃x1(man(x1) ∧ cut(y1) ∧ potato(x2)
∧ (subj(y1) = x1) ∧ (obj(y1) = x2)

¬-I (G)

¬-E (P )

Figure 4: Proof process for the contradiction.

For example, consider the following sentence
pair with the gold label “no” (contradiction):
T : A man is not cutting a potato
H: A man is slicing a potato into pieces

Figure 4 shows the proof process of T ′ ⇒ ¬H ′.
To prove the contradiction, the formulas T ′ and
¬H ′ are set to P and G, respectively. Then, the
negation in G is removed by applying the intro-
duction rule (¬-I) toG. Here, False is the propo-
sitional constant denoting the contradiction. In
the second stage of the proof, the goal is to prove
False in G0 from the two premises P and P0. By
applying (¬-E) to P , we can eliminate the nega-
tion from P , resulting in the new goal G1.

As both the premise P0 and the sub-goal G1 are
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basic formulas, the procedure described in the pre-
vious sections applies to the pair (P0, G1); these
basic formulas are decomposed into atomic ones,
and then the word-to-word abduction generates the
desired axiom ∀y1(cut(y1)→slice(y1)). Finally,
the graph alignment applies in the same way as
described in Figure 2, which generates the phrase
axiom:

∀y1(cut(y1)→ ∃x5(into(y1, x5) ∧ piece(x5)))

Using this axiom, one can complete the proof of
the contradiction between T ′ and H ′.

5 Experiments

5.1 Dataset selection

We use the SemEval-2014 version of the SICK
dataset (Marelli et al., 2014) for evaluation. The
SICK dataset is a dataset for semantic textual sim-
ilarity (STS) as well as for RTE. It was origi-
nally designed for evaluating compositional distri-
butional semantics, so it contains logically chal-
lenging problems involving quantifiers, negation,
conjunction, and disjunction, as well as inferences
with lexical and phrasal knowledge.

The SNLI dataset (Bowman et al., 2015) con-
tains inference problems requiring phrasal knowl-
edge. However, it is not concerned with logi-
cally challenging expressions; the semantic rela-
tionships between a premise and a hypothesis are
often limited to synonym/hyponym lexical sub-
stitution, replacements of short phrases, or exact
word matching. This is because hypotheses are of-
ten parallel to the premise in structures and vocab-
ularies. The FraCaS dataset (Cooper et al., 1994)
also contains logically complex problems. How-
ever, it is confined to purely logical inferences
and thus does not contain problems requiring in-
ferences with lexical and phrasal knowledge. For
these reasons, we choose the SICK dataset to eval-
uate our method of using logical inference to ex-
tract phrasal knowledge.

The SICK dataset contains 9927 sentence pairs
with a 5000/4927 training/test split. These sen-
tence pairs are manually annotated with three
types of labels yes (entailment), no (contradic-
tion), or unknown (neutral) (see Table 1 for exam-
ples). In RTE tasks, we need to consider a direc-
tional relation between words such as hypernym
and hyponym to prove entailment and contradic-
tion. Hence, to extract phrasal knowledge for RTE
tasks, we use the training data whose gold label is

entailment or contradiction, excluding those with
the neutral label.

5.2 Experimental setup

For the natural deduction proofs, we used
ccg2lambda (Martı́nez-Gómez et al., 2016)5, a
higher-order automatic inference system, which
converts CCG derivation trees into semantic rep-
resentations and conducts natural deduction proofs
automatically. We parsed the tokenized sentences
of the premises and hypotheses using three wide-
coverage CCG parsers: C&C (Clark and Curran,
2007), EasyCCG (Lewis and Steedman, 2014),
and depccg (Yoshikawa et al., 2017). CCG deriva-
tion trees (parses) were converted into logical se-
mantic representations based on Neo-Davidsonian
event semantics (Section 3.1). The validation of
semantic templates used for semantic representa-
tions was conducted exclusively on the trial split
of the SICK dataset. We used Coq (Bertot and
Castran, 2010), an interactive natural deduction
theorem prover that we run fully automatically
with a number of built-in theorem-proving rou-
tines called tactics, which include first-order logic.

We compare phrase abduction with different ex-
perimental conditions. No axioms is our sys-
tem without axiom injection. W2W is the previ-
ous strategy of word abduction (Martı́nez-Gómez
et al., 2017). P2P is our strategy of phrase ab-
duction; W2W+P2P combines phrase abduction
with word abduction. In addition, we compare
our system with three purely logic-based (unsuper-
vised) approaches: The Meaning Factory (Bjerva
et al., 2014), LangPro (Abzianidze, 2015), and
UTexas (Beltagy et al., 2014). We also com-
pare our system with machine learning-based ap-
proaches: the current state-of-the-art deep learn-
ing model GRU (Yin and Schütze, 2017), a log-
linear regression model SemEval-2014 best (Lai
and Hockenmaier, 2014), and a hybrid approach
combining a logistic regression model and proba-
bilistic logic PL+eclassif (Beltagy et al., 2016).

5.3 Extracted paraphrases

We extracted 9445 axioms from the SICK train-
ing dataset. The proving time average to extract
phrasal axioms was only 3.0 seconds for a one-
sentence pair6. Table 2 shows some examples of

5Available at https://github.com/mynlp/ccg2lambda.
6Ours is a polynomial-time instance of the graph match-

ing problem, where the vertex cover set (maximum number
of variables in a phrase) is bounded to a small constant.
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ID Text Hypothesis Entailment
3941 A boy is looking at a calendar There is nobody checking a calendar No
5938 Vegetables are being put into a pot by a man Someone is pouring ingredients into a pot Yes
5930 The man is not doing exercises Two men are fighting Unknown

Table 1: Examples in the SICK dataset with different entailment labels and similarity scores.

Kind Text Hypothesis

noun phrase
A blond woman is sitting on the roof of A woman with blond hair is sitting on the roof of
a yellow vehicle, and two people are inside a yellow vehicle, and two people are inside

verb phrase The person is setting fire to the cameras
Some cameras are being burned by a person
with a blow torch

verb phrase
A man and a woman are walking together A man and a woman are hiking
through the woods through a wooded area

prepositional phrase
A child, who is small, is outdoors climbing A small child is outdoors climbing steps
steps outdoors in an area full of grass in a grassy area

antonym A woman is putting make-up on The woman is removing make-up

Table 2: Examples of phrase alignments constructed by phrasal axiom injection.

Prec. Rec. Acc.
GRU − − 87.1

PL+eclassif − − 85.1

SemEval2014 Best Score 81.6 81.9 84.6

The Meaning Factory 93.6 60.6 81.6

LangPro 98.0 58.1 81.4

UTexas − − 80.4

W2W+P2P 84.2 77.3 84.3

W2W 97.1 63.6 83.1

P2P 85.6 72.1 83.0

No axioms 98.9 46.5 76.7

Table 3: RTE results on the SICK dataset.

paraphrases we extracted from the natural deduc-
tion proof in the training set. In particular, the
examples of verb phrases show our method has
the potential to capture long paraphrases. Each
paraphrase in Table 2 is not contained in Word-
Net and PPDB. There are many instances of non-
contiguous phrases in the SICK dataset, in par-
ticular, verb-particle phrases. Shown in Table 2,
our semantic alignment can detect non-contiguous
phrases through the variable unification process,
which is one of the main advantages over other
shallow/syntactic methods. In addition, Table 2
shows our method is not limited to hypernym or
hyponym relations, but it is also capable for de-
tecting antonym phrases.

5.4 RTE evaluation results

Table 3 shows the experimental results. The re-
sults show that the combination of word abduc-
tion and phrase abduction improved the accuracy.
When the W2W+P2P result is substituted for the
W2W result, there is a 1.1% increase in accuracy

(from 83.1% to 84.3%). The accuracy of P2P
is almost equal to that of W2W. This is because
the recall improves from 63.6% to 72.1% while
the precision decreases from 97.1% to 85.6%.
The increase in false positive cases caused this
result; some details of false positive cases are
described in the next subsection. W2W+P2P
outperformed other purely logic-based systems.
The machine learning-based approaches outper-
form W2W+P2P, but unlike these approaches, pa-
rameter estimation is not used in our method. This
suggests that our method has the potential to in-
crease the accuracy by using a classifier.

5.5 Positive examples and error analysis

Table 4 shows some positive and negative exam-
ples on RTE with the SICK dataset. For ID 9491,
the sentence pair requires the paraphrase from a
field of brown grass to a grassy area, not included
in previous lexical knowledges. Our phrasal ax-
iom injection can correctly generate this para-
phrase from a natural deduction proof, and the sys-
tem proves the entailment relation.

ID 2367 is also a positive example of phrasal ax-
iom injection. The phrasal axiom between set fire
to cameras and burn cameras with a blow torch
was generated. This example shows that our se-
mantic alignment succeeds in acquiring a general
paraphrase by separating logical expressions such
as some from content words and also by account-
ing for syntactic structures such as the passive-
active alternation.

For ID 3628, the axiom shown in the table was
extracted from the following sentence pair with
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ID Sentence Pair Gold Pred Axiom

9491 A group of four brown dogs are playing in a field of brown grass Yes Yes ∀x1(field(x1) ∧ brown(x1) ∧ grass(x1)
Four dogs are playing in a grassy area → grassy(x1) ∧ area(x1))

2367 A person is burning some cameras with a blow torch Yes Yes ∀x1∀y1(burn(y1) ∧with(y1, x1) ∧ blow torch(x1) ∧ camera(obj(y1))
The person is setting fire to the cameras → set(y1) ∧ fire(obj(y1)) ∧ to(y1,obj(y1)) ∧ camera(obj(y1)))

3628 A pan is being dropped over the meat Unk Yes ∀y1(pan(obj(y1))→ into(y1,obj(y1)))The meat is being dropped into a pan

96 A man is jumping into an empty pool
There is no biker jumping in the air Unk No ∀y1(jump(y1)→ ∃x1(in(y1, x1) ∧ air(x1)))

∀y1(man(y1)→ biker(y1))

408 A group of explorers is walking through the grass Yes UnkSome people are walking

Table 4: Positive and negative examples on RTE from the SICK dataset.

their entailment label:
T1: A woman is putting meat in a pan

H1: Someone is dropping the meat into a pan

But the phrase drop over does not entail the phrase
drop into, and a proof for the inference is over-
generated in ID 3628. We extracted all possible
phrasal axioms from the training dataset, so noisy
axioms can be extracted as a consequence of mul-
tiple factors such as parsing errors or potential dis-
ambiguation in the training dataset. One possible
solution for decreasing such noisy axioms would
be to use additive composition models (Tian et al.,
2016) and asymmetric learnable scoring functions
to calculate the confidence on these asymmetric
entailing relations between phrases.

ID 96 is also an example of over-generation
of axioms. The first axiom, ∀y1(jump(y1) →
∃x1(in(y1, x1) ∧ air(x1))) was extracted from the
proof of T1 ⇒ H1:
T1: A child in a red outfit is jumping on a trampoline

H1: A little boy in red clothes is jumping in the air

The second axiom ∀y1(man(y1) → biker(y1)) was
extracted from the proof of T2 ⇒ H2:
T2: A man on a yellow sport bike is doing a wheelie and a

friend on a black bike is catching up

H2: A biker on a yellow sport bike is doing a wheelie and a

friend on a black bike is catching up

Although these axioms play a role in the proofs
of T1 ⇒ H1 and T2 ⇒ H2, the wrong ax-
iom ∀y1(man(y1) → biker(y1)) causes the over-
generation of a proof for the inference in ID 96.
The correct one would rather be ∀x1∀y1(man(y1) ∧
on(y1, x1)∧bike(x1)→ biker(y1)). In this case, it is
necessary to bundle predicates in a noun-phrase by
specifying the types of a variable (entity or event)
when making phrase alignments.

For ID 408, the word explorer is not con-
tained in the training entailment dataset and
hence the relevant axiom ∀x1(explorer(x1) →
people(x1)) was not generated. While our logic-
based method enables detecting semantic phrase
correspondences in a sentence pair in an unsuper-

vised way, our next step is to predict unseen para-
phrases of this type.

6 Conclusion

In this paper, we proposed a method of detect-
ing phrase correspondences through natural de-
duction proofs of semantic relations between sen-
tence pairs. The key idea is to attempt a proof with
automatic phrasal axiom injection by the careful
management of variable sharing during the proof
construction process. Our method identifies se-
mantic phrase alignments by monitoring the proof
of a theorem and detecting unproved sub-goals
and logical premises. The method of detecting se-
mantic phrase alignments would be applicable to
other semantic parsing formalisms and meaning
representation languages such as abstract meaning
representations (AMR) (Banarescu et al., 2013).
Experiment results showed that our method de-
tected various phrase alignments including non-
contiguous phrases and antonym phrases. This re-
sult may contribute to previous phrase alignment
approaches. The extracted phrasal axioms im-
proved the accuracy of RTE tasks.

In future work, we shall enhance this method-
ology of phrasal axiom injection to predict unseen
paraphrases. The pairs of premises and sub-goals
that can be detected through the proof process con-
duct semantic alignments in a sentence pair. With
the use of an additive composition model of dis-
tributional vectors, we can evaluate the validity of
such semantic alignments. A combination of our
phrasal axiom injection and additive composition
model of distributional vectors has the potential to
detect unseen paraphrases in a sentence pair.
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Abstract

We present an effective end-to-end memory
network model that jointly (i) predicts whether
a given document can be considered as rele-
vant evidence for a given claim, and (ii) ex-
tracts snippets of evidence that can be used to
reason about the factuality of the target claim.
Our model combines the advantages of con-
volutional and recurrent neural networks as
part of a memory network. We further in-
troduce a similarity matrix at the inference
level of the memory network in order to ex-
tract snippets of evidence for input claims
more accurately. Our experiments on a pub-
lic benchmark dataset, FakeNewsChallenge,
demonstrate the effectiveness of our approach.

1 Introduction

Recently, an unprecedented amount of false infor-
mation has been flooding the Internet with aims
ranging from affecting individual people’s beliefs
and decisions (Mihaylov et al., 2015; Mihaylov
and Nakov, 2016) to influencing major events such
as political elections (Vosoughi et al., 2018). Con-
sequently, manual fact checking has emerged with
the promise to support accurate and unbiased anal-
ysis of rumors spreading in social medias, as well
as of claims made by public figures or news media.

As manual fact checking is a very tedious task,
automatic fact checking has been proposed as a
possible alternative. This is often broken into in-
termediate steps in order to alleviate the task com-
plexity. One such step is stance detection, which
is also useful for human experts as a stand-alone
task. The task aims to identify the relative per-
spective of a piece of text with respect to a claim,
typically modeled using labels such as agree, dis-
agree, discuss, and unrelated; Figure 1 gives some
examples.

∗Work conducted while these authors were at QCRI.

Claim: Robert Plant Ripped up $800M Led Zeppelin Re-
union Contract.

Stance Snippet
agree Led Zeppelin’s Robert Plant turned down £500m

to reform supergroup...
disagree Robert Plant’s publicist has described as “rub-

bish” a Daily Mirror report that he rejected a
£500m Led Zeppelin reunion...

discuss Robert Plant reportedly tore up an $800 million
Led Zeppelin reunion deal...

unrelated Richard Branson’s Virgin Galactic is set to launch
SpaceShipTwo today...

Figure 1: Examples of snippets of text and their stance
with respect to the target claim.

Here, we address the problem of stance detection
using a novel model based on end-to-end memory
networks (Sukhbaatar et al., 2015), which incorpo-
rates convolutional and recurrent neural networks,
as well as a similarity matrix. Our model jointly
addresses the problems of predicting the stance of
a text with respect to a given claim, and of extract-
ing relevant text snippets as support for the predic-
tion of the model. We further introduce a similar-
ity matrix, which we use at inference time in order
to improve the extraction of relevant snippets.

The experimental results on the Fake News
Challenge benchmark dataset show that our
model, which is very feature-light, performs close
to the state of the art. Our contributions can
be summarized as follows: (i) We apply a novel
memory network model enhanced with CNN and
LSTM networks for stance detection. (ii) We fur-
ther propose a novel extension of the general ar-
chitecture based on a similarity matrix, which we
use at inference time, and we show that this exten-
sion offers sizable performance gains. (iii) Finally,
we show that our model is capable of extracting
meaningful snippets from a given text document,
which is useful not only for stance detection, but
more importantly can support human experts who
need to decide on the factuality of a given claim.
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2 Stance Detection Memory Networks

Long-term memory is necessary to determine the
stance of a long document with respect to a claim,
as relevant parts of a document—paragraphs or
text snippets—can indicate the perspective of a
document with respect to a claim. Memory net-
works have been designed to remember past in-
formation (Sukhbaatar et al., 2015) and they can
be particularly well-suited for stance detection
since they can use a variety of inference strategies
alongside their memory component.

In this section, we present a novel memory net-
work for stance detection. It contains a new infer-
ence component that incorporates a similarity ma-
trix to extract, with better accuracy, textual snip-
pets that are relevant to the input claims.

2.1 Overview of the network

A memory network is a 5-tuple {M, I,G,O,R},
where the memory M is a sequence of objects or
representations, the input I is a component that
maps the input to its representation, the general-
ization component G (Sukhbaatar et al., 2015) up-
dates the memory with respect to new input, the
output O generates an output for each new input
and the current memory state, and finally, the re-
sponse R converts the output into a desired re-
sponse format, e.g., a textual response or an ac-
tion. These components can potentially use many
different machine learning models.

Our new memory network for stance detection
is a 6-tuple {M, I, F,G,O,R}, where F repre-
sents the new inference component. It takes an
input document d as evidence and a textual state-
ment s as a claim and converts them into their cor-
responding representations in the input I . Then, it
passes them to the memory M . Next, the relevant
parts of the input are identified in F , and after-
wards they are used by G to update the memory.
Finally, O generates an output from the updated
memory, and converts it to a desired response for-
mat with R. The network architecture is depicted
in Figure 2. We describe the components below.

2.2 Input Representation Component

The input to the stance detection algorithm is a
document d as evidence and a textual statement
s as a claim, (see lines 2 and 3 in Table 1). Each d
is segmented into paragraphs xj of varied lengths,
where each xj is considered as a piece of evidence
for stance detection.

1 Inputs:
2 (1) A document (d) as a set of pieces of evidence {xj}
3 (2) A textual statement containing a claim (s)

4 Outputs:
5 (1) predicting the relative perspective (or stance) of (d, s)

to a claim as agree, disagree, discuss, unrelated.
6 Inference outputs:
7 (2) Top K evidence pieces xj with their similarity scores
8 (3) Top K snippets of xj with their similarity scores

9 Memory Network Model:
10 1. Input memory representation (I):
11 d→ (X,W,E)

12 (X,W,E)
TimeDistributed(LSTM)−−−−−−−−−−−−−−−−−→ {m1, ...,mn}

13 (X,W,E)
TimeDistributed(CNN)−−−−−−−−−−−−−−−−→ {c1, .., cn}

14 s
LSTM,CNN−−−−−−−−→ slstm, scnn

15 2. Memory (M), updating memory (G) and inference (F):
16 mj = mj � P j

tfidf, ∀j
17 P j

lstm = slstm
ᵀ ×M×mj , ∀j

18 cj = cj � P j
lstm, ∀j

19 P j
cnn = scnn

ᵀ ×M′ × cj ,∀j

20 3. Output memory representation (O): o =
[
mean({cj});

21
[
max({P j

cnn});mean({P j
cnn})

]
;
[
max({P j

lstm});
mean({P j

lstm})
]
;
[
max({P j

tfidf});mean({P j
tfidf})

]]

22 4. Generating the final prediction (R):
23 [o; slstm; scnn]

MLP−−−→ δ

24 5. Inference (F) outputs:
25 P j

cnn −→ {a set of evidence}+ {similarity scores}
26 M ′ −→ {snippets}+ {similarity scores}

Table 1: Summary of our memory network algorithm
for stance detection.

Indeed, a paragraph usually presents a coherent ar-
gument, unified under one or more inter-related
topics. The input component in our model con-
verts each d into a set of pieces of evidence in a
three dimensional (3D) tensor space as shown be-
low (see line 11 in Table 1):

d = (X,W,E) (1)

where X = {x1, ..., xn} is a set of paragraphs
considered as pieces of evidence; each xj is rep-
resented by a set of words W = {w1, ..., wv}—
drawn from a global vocabulary of size v—and a
set of neural representations E = {e1, ..., ev} for
words in W . This 3D space is illustrated as a cube
in Figure 2.

Each xj is encoded from the 3D space into a se-
mantic representation at the input component us-
ing a Long Short-Term Memory (LSTM) network.
The lower left component in Figure 2 shows our
LSTM network, which operates on our input as
follows (see also line 12 in Table 1):

(X,W,E)
T imeDistributed(LSTM)−−−−−−−−−−−−−−−−→ {m1, ...,mn}

(2)
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Figure 2: The architecture of our memory network model for stance detection.

where mj is the LSTM representation of xj , and
TimeDistributed() indicates a wrapper that enables
training the LSTM over all pieces of evidence by
applying the same LSTM model to each time-step
of a 3D input tensor, i.e., (X,W,E).

While LSTM networks were designed to ef-
fectively capture and memorize their inputs (Tan
et al., 2016), Convolutional Neural Networks
(CNNs) emphasize the local interaction between
the individual words in the input word sequence,
which is important for obtaining an effective rep-
resentation. Here, we use a CNN in order to en-
code each xj into its representation cj as shown
below (see line 13 in Table 1).

(X,W,E)
T imeDistributed(CNN)−−−−−−−−−−−−−−−→ {c1, .., cn}

(3)
As shown in the left-top corner of Figure 2, this
representation is passed as a new input to the com-
ponent M of our memory network model. More-
over, we keep track of the computed n-grams from
the CNN so that we can use them later in the in-
ference and in the response components (see sec-
tions 2.3 and 2.6). For this purpose, we use a
Maxout layer (Goodfellow et al., 2013) to take the
maximum across k affine feature maps computed
by the CNN, i.e., pooling across channels.

Previous work investigated the combination
of convolutional and recurrent representations,
which were fed to the other network as input (Tan
et al., 2016; Donahue et al., 2015; Zuo et al., 2015;
Sainath et al., 2015). In contrast, we feed individ-
ual outputs into our memory network separately,
and we let it decide which representation better
helps the target task. We demonstrate the effec-
tiveness of this choice in our experiments.

Furthermore, we convert each input claim s into
its representation using the corresponding LSTM
and CNN networks as follows:

s
LSTM,CNN−−−−−−−−→ slstm, scnn (4)

where slstm and scnn are the representations of s
computed using LSTM and CNN networks, re-
spectively. Note that these are separate networks
with different parameters from those used to en-
code the pieces of evidence.

Lines 10–14 of Table 1 describe the above steps
in representing I in our memory network. This
component encodes each input document d into
a set of pieces of evidence {xj}∀j: it computes
LSTM and CNN representations, mj and cj , re-
spectively, for each xj , and LSTM and CNN rep-
resentations, slstm and scnn, for each claim s.

2.3 Inference Component
The resulting representations can serve to compute
semantic similarity between claims and pieces of
evidence. We define the similarity P jlstm between s
and xj as follows (see line 17 in Table 1):

P jlstm = slstm
ᵀ ×M×mj , ∀j (5)

where slstm ∈ Rq and mj ∈ Rd are the LSTM rep-
resentations of s and xj , respectively, and M ∈
Rq×d is a similarity matrix capturing their similar-
ity. For this purpose, M maps s and xj into the
same space as shown in Figure 3. M is a set of
q × d parameters of the network, which are opti-
mized during the training.

In a similar fashion, we compute the similarity
P jcnn between xj and s using the CNN representa-
tions as follows (see line 19 in Table 1):

P jcnn = scnn
ᵀ ×M′ × cj ,∀j (6)

769



s:
 (s

ls
tm

, s
cn

n)

M

s' xj: (mj , cj)

sim(slstm , mj)
or

sim(scnn , cj)

Figure 3: Matching a claim s and a piece of evidence
xj using a similarity matrix M . Here, slstm and scnn are
the LSTM and CNN representations of s, whereas mj

and cj are the LSTM and CNN representations of xj .

where scnn ∈ Rq′ and cj ∈ Rd′ are the represen-
tations of s and xj obtained with CNN, respec-
tively. The similarity matrix M ′ ∈ Rq′×d′ is a
set of q′ × d′ parameters of the network and is
optimized during the training. P jlstm and P jcnn in-
dicate the claim-evidence similarity vectors com-
puted based on the LSTM and on the CNN repre-
sentations of s and xj , respectively.

The rationale behind using the similarity matrix
is that in our memory network model, as Figure 3
shows, we seek a transformation of the input claim
such that s′ =M × s in order to obtain the closest
facts to the claim.

In fact, the relevant parts of the input document
with respect to the input claim can be captured at
a different level, e.g., using M ′ for the n-gram
level or using the claim-evidence P jlstm or P jcnn,∀j
at the paragraph level. We note that (i) P jlstm uses
LSTM to take the word order and long-length de-
pendencies into account, and (ii) P jcnn uses CNN
to take n-grams and local dependencies into ac-
count, as explained in sections 2.2 and 2.3. Ad-
ditionally, we compute another semantic similar-
ity vector, P jtfidf, by applying a cosine similarity
between the TF.IDF (Spärck Jones, 2004) repre-
sentation of xj and s. This is particularly useful
for stance detection as it can help detect unrelated
pieces of evidence.

2.4 Memory and Generalization Components
The information flow and updates in the mem-
ory is as follows: first, the representation vector
{mj}∀j is passed to the memory and updated us-
ing the claim-evidence similarity vector {P jtfidf}:

mj = mj � P jtfidf, ∀j (7)

The reason for this weighting is to filter out
most unrelated evidence with respect to the claim.
The updated mj in conjunction with slstm are
used by the inference component–component F to
compute {P jlstm} as explained in Section 2.3.

Then, {P jlstm} is used to update the new input set
{cj}∀j to the memory:

cj = cj � P jlstm,∀j (8)

Finally, the updated cj in conjunction with scnn

are used to compute P jcnn as explained in Sec. 2.3.

2.5 Output Representation Component
In memory networks, the memory output depends
on the final goal, which, in our case, is to detect
the relative perspective of a document to a claim.
For this purpose, we apply the following equation:

o =
[
mean({cj});

[
max({P jcnn});mean({P jcnn})

]
;
[
max({P jlstm});

mean({P jlstm})
]
;
[
max({P jtfidf});mean({P jtfidf})

]]

(9)

where mean({cj}) is the average vector of cj rep-
resentations. Furthermore, we compute the max-
imum and the average similarity between each
piece of evidence and the claim using P jtfidf, P

j
lstm

and P jcnn, which are computed for each evidence
and claim in the inference component F . The
maximum similarity identifies the part of docu-
ment xj that is most similar to the claim, while the
average similarity measures the overall similarity
between the document and the claim.

2.6 Response and Output Generation
This component computes the final stance of a
document with respect to a claim. For this pur-
pose, the concatenation of vectors o, slstm and scnn

is fed into a Multi-Layer Perceptron (MLP), where
a softmax predicts the stance of the document with
respect to the claim, as shown below (see also lines
22–23 in Table 1):

[o; slstm; scnn]
MLP−−−→ δ (10)

where δ is a softmax function. In addition to the
resulting stance, we extract snippets from the in-
put document that best indicate the perspective of
the document with respect to the claim. For this
purpose, we use P jcnn and M ′ as explained in Sec-
tion 2.3 (see also lines 24–26 in Table 1).

The overall model is shown in Figure 2 and a
summary of the model is presented in Table 1. All
the model parameters, including those of (i) CNN
and LSTM in I , (ii) the similarity matrices M
and M ′ in F , and (iii) the MLP in R, are jointly
learned during the training process.
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3 Experiments and Evaluation

3.1 Data
We use the dataset provided by the Fake News
Challenge,1 where each example consists of a
claim–document pair with the following possi-
ble relations between them: agree (the document
agrees with the claim), disagree (the document
disagrees with the claim), discuss (the document
discusses the same topic as the claim, but does not
take a stance with respect to the claim), unrelated
(the document discusses a different topic than the
topic of the claim). The data includes a total
of 75.4K claim–document pairs, which link 2.5K
unique articles with 2.5K unique claims, i.e., each
claim is associated with 29.8 articles on average.

3.2 Settings
We use 100-dimensional word embeddings from
GloVe (Pennington et al., 2014), which were
trained on two billion tweets. We further use
Adam as an optimizer and categorical cross-
entropy as a loss. We use 100-dimensional units
for the LSTM embeddings, and 100 feature maps
with filter width of 5 for the CNN. We consider the
first p = 9 paragraphs for each document, where p
is the median of the number of paragraphs.

We optimize the hyper-parameters of the mod-
els using a validation dataset (20% of the training
data). Finally, as the data is largely imbalanced to-
wards the unrelated class, during training, we ran-
domly select an equal number of instances from
each class at each epoch.

3.3 Evaluation Measures
We use the following evaluation measures:

Accuracy: The number of correctly classified
examples divided by the total number of examples.
It is equivalent to micro-averaged F1.

Macro-F1: We calculate F1 for each class, and
then we average across all classes.

Weighted Accuracy: This is a weighted, two-
level scoring scheme, which is applied to each test
example. First, if the example is from the un-
related class and the model correctly predicts it,
the score is incremented by 0.25; otherwise, if the
example is related and the model predicts agree,
disagree, or discuss, the score is incremented by
0.25. Second, there is a further increment by 0.75
for each related example if the model predicts the
correct label: agree, disagree, or discuss.

1Available at www.fakenewschallenge.org

Finally, the score is normalized by dividing it
by the total number of test examples. The ra-
tionale behind this metric is that the binary re-
lated/unrelated classification task is expected to be
much easier, while also being arguably less rele-
vant to fake news detection than the stance detec-
tion task, which aims to further classify relevant
instances as agree, disagree, or discuss. There-
fore, the former task is given less weight and
the latter task is given more weight through the
weighted accuracy metric.

3.4 Baselines

Given the imbalanced nature of our data, we use
two baselines in which we label all testing exam-
ples with the same label: (i) unrelated and (ii) dis-
cuss. The former is the majority class baseline,
which is a reasonable baseline for Accuracy and
macro-F1, while the latter is a potentially better
baseline for Weighted Accuracy.

We further use CNN and LSTM, and combina-
tions thereof as baselines, since they form compo-
nents of our model, and also because they yield
state-of-the-art results for text, image, and video
classification (Tan et al., 2016; Donahue et al.,
2015; Zuo et al., 2015; Sainath et al., 2015).

Finally, we include the official baseline from the
challenge, which is a Gradient Boosting classifier
with word and n-gram overlap features, as well as
indicators for refutation and polarity.

3.5 Our Models

sMemNN: This is our model presented in Fig-
ure 2. Note that unlike the CNN+LSTM and
the LSTM+CNN baselines above, which feed the
output of one network into the other one, the
sMemNN model feeds the individual outputs of
both the CNN and the LSTM networks into the
memory network, and lets it decide how much to
rely on each of them. This consideration also facil-
itates reasoning and explaining model predictions,
as we will discuss in more detail below.

sMemNN (dotProduct): This is a version of
sMemNN, where the similarity matrices are re-
placed by the dot product between the represen-
tation of the claims and of the evidence. For this
purpose, we first project the claim representation
to a dense layer that has the same size as the rep-
resentation of each piece of evidence, and then we
compute the dot product between the resulting rep-
resentation and the representation of the evidence.
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Methods Total
Parameters

Trainable
Parameters

Weighted
Accuracy Macro-F1 Accuracy

1. All-unrelated – – 39.37 20.96 72.20
2. All-discuss – – 43.89 7.47 17.57
3. CNN 2.7M 188.7K 40.66 24.44 41.53
4. LSTM 2.8M 261.3K 57.23 37.23 60.21
5. CNN+LSTM 4.2M 361.5K 42.02 27.36 48.54
6. LSTM+CNN 2.8M 281.5K 60.21 40.33 65.36
7. Gradient Boosting – – 75.20 46.13 86.32
8. sMemNN (dotProduct) 5.4M 275.2K 75.13 50.21 83.85
9. sMemNN 5.5M 377.5K 78.97 56.75 87.27
10. sMemNN (with TF) 110M 105M 81.23 56.88 88.57

Table 2: Evaluation results on the test data.

sMemNN (with TF): Since our LSTM and
CNN networks use a limited number of starting
paragraphs2 for an input document, we enrich our
model with the BOW representation of documents
and claims as well as their TF.IDF-based cosine
similarity. We concatenate these vectors with the
memory outputs (section 2.5) and pass them to
the R component (section 2.6) of sMemNN. We
expect these BOW vectors provide useful infor-
mation that are not initially incorporated into the
sMemNN model.

3.6 Results
Table 2 reports the performance of all models on
the test dataset. The All-unrelated and the All-
discuss baselines perform poorly across the eval-
uation measures, except for All-unrelated, which
achieves high accuracy, which is due to unrelated
being by far the dominant class in the dataset.

Next, we can see that the LSTM model consis-
tently outperforms the CNN across all evaluation
measures. Although the larger number of parame-
ters of the LSTM can play a role, we believe that
its superiority comes from it being able to remem-
ber previously observed relevant pieces of text.

Next, we see systematic improvements for the
combinations of the CNN and the LSTM mod-
els: CNN+LSTM is better than CNN alone, and
LSTM+CNN is better than LSTM alone. Bet-
ter performance is achieved by the LSTM+CNN
model, where claims and evidence are first pro-
cessed by a LSTM and then fed into a CNN.

The Gradient Boosting model achieves sizable
improvement over the above baseline neural mod-
els. However, we should note that these neural
models do not have the rich hand-crafted features
that were used in the Gradient Boosting model.

2Due to the long length of documents, it is impractical to
consider all paragraphs when training LSTM and CNN.

Row 9 shows the results for our memory net-
work model (sMemNN), which consistently out-
performs all other baseline models across all eval-
uation metrics, achieving 10.62 and 3.77 points
of absolute improvement in terms of Macro-F1
and Weighted Accuracy, respectively, over the best
baseline (Gradient Boosting). We believe this is
due to the memory network being able to capture
good text snippets. As we will see below, these
snippets are also useful for explaining the model’s
predictions. Comparing row 9 to row 8, we can
see the importance of our proposed similarity ma-
trix: replacing that matrix by a simple dot product
hurts the performance of the model considerably
across all evaluation measures, thus lowering it to
the level of the Gradient Boosting model.

Finally, row 10 shows the results for our mem-
ory network model enriched by BOW representa-
tion. As we expected, it improves the performance
of sMemNN - perhaps by capturing useful infor-
mation from paragraphs beyond the starting few.

To put the results of sMemNN in perspective,
we should mention that the best system at the Fake
News Challenge (Baird et al., 2017) achieved a
macro-F1 of 57.79, which is not significantly dif-
ferent from our results at the 0.05 significance
level (p-value=0.53). Yet, they have an ensemble
combining the feature-rich Gradient Boosting sys-
tem with neural networks. In contrast, we only use
raw text as input and no ensembles, and our main
goal is to study a new memory network model and
its explainability component.

Further analysis of the outputs (namely, the con-
fusion matrices) of the different models we exper-
imented with reveals the following general trends:
(i) The unrelated examples are easy to detect, and
most models show high performance for this class.
(ii) The agree and the disagree examples are often
misclassified as discuss by the baseline models.
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Claim 1: man saved from bear attack - thanks to his justin bieber ringtone
Evidence Id Pj

cnn Evidence Snippet
2069-3 0.89 ... fishing in the yakutia republic , russia , igor vorozhbitsyn is lucky to be alive after

his justin bieber ringtone , baby , scared off a bear that was attacking him 0.41 ...
2069-7 1.0 ... but as the bear clawed vorozhbitsyn ’ s face and back his mobile phone rang

, the ringtone selected was justin bieber ’ s hit song baby . rightly startled 1.00 ,

the bear retreated back into 0.39 the forest ...
true label: agree; predicted label: agree

Claim 2: 50ft crustacean , dubbed crabzilla , photographed lurking beneath the waters in whitstable
Evidence Id Pj

cnn Evidence Snippet
24835-1 0.0046 ... a marine biologist has killed off claims -0.0008 that a giant crab is 0.0033 living on the

kent coast - insisting the image is probably a well - doctored hoax 0.0012 ...
24835-7 -0.0008 ... i don ’ t know what the currents are like around that harbour or what sort of they might

produce in the sand , but i think it ’ s more conceivable that someone is playing 0.0007

about with the photo ...
true label: disagree; predicted label: disagree

Table 3: Examples of highly ranked snippets of evidence for an input claim, which are automatically extracted by
our inference component. The P jcnn column and the values in the top-right corner of the highlighted snippets show
the similarity between the claim and evidence, and between the claim and snippets of the evidence, respectively.
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Figure 4: Effect of data coverage. The left y-axis shows
the fraction of data observed during training (cover-
age), the right y-axis shows the loss during training.

This is mainly because the document that dis-
cusses a claim often shares the same topic with
the claim, but then it does not take a stance with
respect to that claim. (iii) The disagree examples
are the most difficult ones for all models, probably
because they represent by far the smallest class.

4 Discussion

4.1 Training Data Coverage

As discussed previously, we balance the data at
each training iteration by randomly selecting z in-
stances from each of the four target classes, where
z is the size of the class with the minimum num-
ber of training instances. Here, we investigate the
amount of training data that gets actually used.

For this purpose, at each training iteration, we re-
port the proportion of the training instances from
each class that have been used for training so far,
either at the current or at any of the previous iter-
ations. As Figure 4 shows, our random data sam-
pling procedure eventually covers almost all train-
ing instances. Since the disagree class is the small-
est, its instances remain fully covered through-
out the process. Moreover, almost all other re-
lated instances, i.e., agree and discuss, are ob-
served during training, as well as a large fraction
of the dominating unrelated examples. Note that
the model achieves its best (lowest) loss on the val-
idation dataset at iteration 31, when almost all re-
lated training instances are observed. This hap-
pens while the corresponding fraction for the un-
related pairs is around 50%, i.e., a considerable
number of the unrelated instances are not required
to be used for training.

4.2 Explainability

One of the main advantages of our memory net-
work model, compared to the baselines and to re-
lated work in general, is that it has the capacity
to explain its predictions by extracting snippets
from each piece of evidence that supports its pre-
diction. As we explained in Section 2.3, our in-
ference component predicts the similarity between
each piece of evidence xj and the claim s at the n-
grams level using the similarity matrix M ′ and the
claim-evidence similarity vector P jcnn. Below, we
explore our model’s explainability in more detail.
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Figure 5: Prediction explainability. Sub-figures (a)-(c) show the precision of our model at explaining its predictions
when the pieces of evidence are (a) fixed-length n-grams (n = 5), (b) combinations of several consecutive n-grams
with similar scores, or (c) the entire sentence, if it includes at least one extracted n-gram snippet.

Table 3 shows examples of two claims and the
snippets extracted as evidence. Column P jcnn
shows the overall similarity between the evidence
and the corresponding claim as computed by the
inference component of our model. The high-
lighted texts are the snippets with the highest sim-
ilarity to the claim as extracted by the same com-
ponent. The values on the snippets’ top-right show
the claim-snippet similarity values obtained by the
inference component.

Note that all snippets are fixed-length, namely
5-grams; however, in case there are several con-
secutive n-grams with similar scores, for better il-
lustration, we combine them into a single snippet
and we report their average values (see the snippet
for evidence 2069-3). As these examples show,
our model can accurately predict the stance of
these pieces of evidence against their correspond-
ing claims. Also, claim 2 and its corresponding
evidence are shown at the second row of Table 3.
As this example shows, the similarity values asso-
ciated with snippets are either too small or nega-
tive, e.g., see the similarity value for the snippet
“biologist has killed off claims.” We can see that
these help the model to make accurate predictions.

We conduct the following experiment to quan-
tify the performance of our memory network at
explaining its predictions: we randomly sam-
ple 100 agree/disagree claim–document examples
from our gold data, and we manually evaluate the
top five pieces of evidence that our model provides
to support/oppose the corresponding claims. 3

3In 76 cases, our model correctly classified the
agree/disagree examples when the evaluation was conducted,
and it further provided arguably adequate snippets.

Figure 5(a) shows the precision of our memory
network model at explaining its predictions when
each supporting/opposing piece of evidence is an
n-gram snippet of fixed length (n = 5) for the
agree and the disagree classes, and their combina-
tions at the top-k ranks, k = {1, . . . , 5}. We can
see in the figure that the model achieves precision
of 0.28, 0.32, 0.35, 0.25, and 0.33 at ranks 1–5.
Moreover, we find that it can accurately identify
useful key phrases such as officials declared the
video, according to previous reports, believed will
come, president in his tweets as supporting pieces
of evidence, and proved a hoax, shot down a cnn
report, would be skeptical as opposing pieces of
evidence.

Note that this relatively low precision of
our memory network model at explaining its
agree/disagree predictions is mainly due to the un-
supervised nature of this task as no gold snippets
justifying the document’s gold stance with respect
to the target claim are available in the Fake News
Challenge dataset.4

Furthermore, our evaluation setup is at the n-
gram level in Figure 5(a). However, if we conduct
a more coarse-grained evaluation where we com-
bine consecutive n-grams with similar scores into
a single snippet, the precision for these new snip-
pets will improve to 0.40, 0.38, 0.42, 0.38, and
0.42 at ranks 1–5, as Figure 5(b) shows. If we fur-
ther extend the evaluation to the sentence level, the
precision will jump to 0.60, 0.58, 0.55, 0.62, and
0.57 at ranks 1–5, as we can see in Figure 5(c).

4Some other recent datasets, to be presented at this same
HLT-NAACL’2018 conference, do have such gold evidence
annotations (Baly et al., 2018; Thorne et al., 2018).
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5 Related Work

While stance detection is an interesting task in its
own right, e.g., for media monitoring, it is also
an important component for fact checking and ve-
racity inference.5 Automatic fact checking was
envisioned by Vlachos and Riedel (2014) as a
multi-step process that (i) identifies check-worthy
statements (Hassan et al., 2015; Gencheva et al.,
2017; Jaradat et al., 2018), (ii) generates questions
to be asked about these statements (Karadzhov
et al., 2017), (iii) retrieves relevant information to
create a knowledge base (Shiralkar et al., 2017),
and (iv) infers the veracity of these statements,
e.g., using text analysis (Castillo et al., 2011;
Rashkin et al., 2017) or information from external
sources (Mihaylova et al., 2018; Karadzhov et al.,
2017; Popat et al., 2017).

There have been some nuances in the way re-
searchers have defined the stance detection task.
SemEval-2016 Task 6 (Mohammad et al., 2016)
targets stances with respect to some target propo-
sition, e.g., entities, concepts or events, as in-
favor, against, or neither. The winning model
in the task was based on transfer learning: a Re-
current Neural Network trained on a large Twitter
corpus was used to predict task-relevant hashtags
and to initialize a second recurrent neural network
trained on the provided dataset for stance predic-
tion (Zarrella and Marsh, 2016). Subsequently,
Zubiaga et al. (2016) detected the stance of tweets
toward rumors and hot topics using linear-chain
conditional random fields (CRFs) and tree CRFs
that analyze tweets based on their position in tree-
like conversational threads.

Most commonly, stance detection is defined
with respect to a claim, e.g., as in the 2017 Fake
News Challenge. The best system in the chal-
lenge was an ensemble of gradient-boosted de-
cision trees with rich features (e.g., sentiment,
word2vec, singular value decomposition (SVD)
and TF.IDF features, etc.) and a deep convolu-
tional neural network to address the stance detec-
tion problem (Baird et al., 2017).

Unlike the above work, we use a feature-light
memory network that jointly infers the stance and
highlights relevant snippets of evidence with re-
spect to a given claim.

5Yet, stance detection and fact checking are typically sup-
ported by separate datasets. Two notable upcoming excep-
tions, both appearing in this HLT-NAACL’2018, are (Thorne
et al., 2018) for English and (Baly et al., 2018) for Arabic.

6 Conclusion

We studied the problem of stance detection, which
aims to predict whether a given document sup-
ports, challenges, or just discusses a given claim.
The nature of the task requires a machine learn-
ing model to focus on the relevant paragraphs of
the evidence. Moreover, in order to understand
whether a paragraph supports a claim, there is a
need to refer to information in other paragraphs.
CNNs or LSTMs are not well-suited for this task
as they cannot model complex dependencies such
as semantic relationships with respect to entire
previous paragraphs. In contrast, memory net-
works are exactly designed to remember previous
information. However, given the large size of doc-
uments and paragraphs, basic memory networks
do not handle well irrelevant and noisy informa-
tion, which we confirmed in our experiments.

Thus, we proposed a novel extension of general
memory networks based on a similarity matrix and
a stance filtering component, which we apply at
the inference level, and we have shown that this
extension offers sizable performance gains mak-
ing memory networks competitive. Moreover, our
model can extract meaningful snippets from docu-
ments that can explain the stance of a given claim.

In future work, we plan to extend the inference
component to select an optimal set of explanations
for each prediction, and to explain the model as a
whole, not only at the instance level.

Acknowledgment

This research was carried out in collaboration be-
tween the MIT Computer Science and Artificial
Intelligence Laboratory (CSAIL) and the HBKU
Qatar Computing Research Institute (QCRI).

References
Sean Baird, Doug Sibley, and Yuxi Pan. 2017. Ta-

los targets disinformation with fake news challenge
victory. https://blog.talosintelligence.com/2017/06/
talos-fake-news-challenge.html.

Ramy Baly, Mitra Mohtarami, James Glass, Lluís
Màrquez, Alessandro Moschitti, and Preslav Nakov.
2018. Integrating stance detection and fact checking
in a unified corpus. In Proceedings of HLT-NAACL.
New Orleans, LA, USA.

Carlos Castillo, Marcelo Mendoza, and Barbara
Poblete. 2011. Information credibility on Twitter.
In Proceedings of WWW. Hyderabad, India, pages
675–684.

775



Jeff Donahue, Lisa Anne Hendricks, Sergio Guadar-
rama, Marcus Rohrbach, Subhashini Venugopalan,
Trevor Darrell, and Kate Saenko. 2015. Long-term
recurrent convolutional networks for visual recog-
nition and description. In Proceedings of CVPR.
Boston, MA, USA, pages 2625–2634.

Pepa Gencheva, Preslav Nakov, Lluís Màrquez, Al-
berto Barrón-Cedeño, and Ivan Koychev. 2017.
A context-aware approach for detecting worth-
checking claims in political debates. In Proceedings
of RANLP. Varna, Bulgaria, pages 267–276.

Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza,
Aaron Courville, and Yoshua Bengio. 2013. Maxout
networks. In Proceedings of ICML. Atlanta, GA,
USA, pages 1319–1327.

Naeemul Hassan, Chengkai Li, and Mark Tremayne.
2015. Detecting check-worthy factual claims in
presidential debates. In Proceedings CIKM. Mel-
bourne, Australia, pages 1835–1838.

Israa Jaradat, Pepa Gencheva, Alberto Barrón-Cedeño,
Lluís Màrquez, and Preslav Nakov. 2018. Claim-
Rank: Detecting check-worthy claims in Arabic and
English. In Proceedings of HLT-NAACL. New Or-
leans, LA, USA.

Georgi Karadzhov, Preslav Nakov, Lluís Màrquez,
Alberto Barrón-Cedeño, and Ivan Koychev. 2017.
Fully automated fact checking using external
sources. In Proceedings of RANLP. Varna, Bulgaria,
pages 344–353.

Todor Mihaylov, Georgi Georgiev, and Preslav Nakov.
2015. Finding opinion manipulation trolls in news
community forums. In Proceedings of CoNLL. Bei-
jing, China, pages 310–314.

Todor Mihaylov and Preslav Nakov. 2016. Hunting for
troll comments in news community forums. In Pro-
ceedings of ACL. Berlin, Germany.

Tsvetomila Mihaylova, Preslav Nakov, Lluis Marquez,
Alberto Barron-Cedeno, Mitra Mohtarami, Georgi
Karadzhov, and James Glass. 2018. Fact checking in
community forums. In Proceedings of AAAI. New
Orleans, LA, USA.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiao-Dan Zhu, and Colin Cherry. 2016.
SemEval-2016 task 6: Detecting stance in tweets.
In Proceedings of SemEval. Berlin, Germany, pages
31–41.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of EMNLP. Doha,
Qatar, pages 1532–1543.

Kashyap Popat, Subhabrata Mukherjee, Jannik Ströt-
gen, and Gerhard Weikum. 2017. Where the truth
lies: Explaining the credibility of emerging claims
on the web and social media. In Proceedings of
WWW. Perth, Australia, pages 1003–1012.

Hannah Rashkin, Eunsol Choi, Jin Yea Jang, Svitlana
Volkova, and Yejin Choi. 2017. Truth of varying
shades: Analyzing language in fake news and po-
litical fact-checking. In Proceedings of EMNLP.
Copenhagen, Denmark, pages 2931–2937.

Tara N Sainath, Oriol Vinyals, Andrew Senior, and
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Abstract

We present a gradient-tree-boosting-based
structured learning model for jointly disam-
biguating named entities in a document. Gra-
dient tree boosting is a widely used machine
learning algorithm that underlies many top-
performing natural language processing sys-
tems. Surprisingly, most works limit the use
of gradient tree boosting as a tool for regu-
lar classification or regression problems, de-
spite the structured nature of language. To the
best of our knowledge, our work is the first
one that employs the structured gradient tree
boosting (SGTB) algorithm for collective en-
tity disambiguation. By defining global fea-
tures over previous disambiguation decisions
and jointly modeling them with local features,
our system is able to produce globally opti-
mized entity assignments for mentions in a
document. Exact inference is prohibitively ex-
pensive for our globally normalized model. To
solve this problem, we propose Bidirectional
Beam Search with Gold path (BiBSG), an ap-
proximate inference algorithm that is a variant
of the standard beam search algorithm. BiBSG
makes use of global information from both
past and future to perform better local search.
Experiments on standard benchmark datasets
show that SGTB significantly improves upon
published results. Specifically, SGTB outper-
forms the previous state-of-the-art neural sys-
tem by near 1% absolute accuracy on the pop-
ular AIDA-CoNLL dataset.1

1 Introduction

Entity disambiguation (ED) refers to the process
of linking an entity mention in a document to its
corresponding entity record in a reference knowl-
edge base (e.g., Wikipedia or Freebase). As a core
information extraction task, ED plays an impor-
tant role in the language understanding pipeline,
underlying a variety of downstream applications

1When ready, the code will be published at https://
github.com/bloomberg/sgtb.

such as relation extraction (Mintz et al., 2009;
Riedel et al., 2010), knowledge base population (Ji
and Grishman, 2011; Dredze et al., 2010), and
question answering (Berant et al., 2013; Yih et al.,
2015). This task is challenging because of the
inherent ambiguity between mentions and the re-
ferred entities. Consider, for example, the men-
tion ‘Washington’, which can be linked to a city, a
state, a person, an university, or a lake (Fig. 1).

Fortunately, simple and effective features have
been proposed to capture the ambiguity that are
designed to model the similarity between a men-
tion (and its local context) and a candidate en-
tity, as well as the relatedness between entities
that co-occur in a single document. These are
typically statistical features estimated from entity-
linked corpora, and similarity features that are
pre-computed using distance metrics such as co-
sine. For example, a key feature for ED is the
prior probability of an entity given a specific men-
tion, which is estimated from mention-entity co-
occurrence statistics. This simple feature alone
can yield 70% to 80% accuracy on both news and
Twitter texts (Lazic et al., 2015; Guo et al., 2013).

To capture the non-linear relationships between
the low-dimensional dense features like statistical
features, sophisticated machine learning models
such as neural networks and gradient tree boost-
ing are preferred over linear models. In particu-
lar, gradient tree boosting has been shown to be
highly competitive for ED in recent work (Yang
and Chang, 2015; Yamada et al., 2016). How-
ever, although achieving appealing results, exist-
ing gradient-tree-boosting-based ED systems typ-
ically operate on each individual mention, with-
out attempting to jointly resolve entity mentions
in a document together. Joint entity disambigua-
tion has been shown to significantly boost perfor-
mance when used in conjunction with other ma-
chine learning techniques (Ratinov et al., 2011;
Hoffart et al., 2011). However, how to train a
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global gradient tree boosting model that produces
coherent entity assignments for all the mentions in
a document is still an open question.

In this work, we present, to the best of our
knowledge, the first structured gradient tree boost-
ing (SGTB) model for collective entity disam-
biguation. Building on the general SGTB frame-
work introduced by Yang and Chang (2015), we
develop a globally normalized model for ED that
employs a conditional random field (CRF) ob-
jective (Lafferty et al., 2001). The model per-
mits the utilization of global features defined be-
tween the current entity candidate and the entire
decision history for previous entity assignments,
which enables the global optimization for all the
entity mentions in a document. As discussed in
prior work (Smith and Johnson, 2007; Andor et al.,
2016), globally normalized models are more ex-
pressive than locally normalized models.

As in many other global models, our SGTB
model suffers from the difficulty of computing the
partition function (normalization term) for training
and inference. We adopt beam search to address
this problem, in which we keep track of multiple
hypotheses and sum over the paths in the beam. In
particular, we propose Bidirectional Beam Search
with Gold path (BiBSG) technique that is specif-
ically designed for SGTB model training. Com-
pared to standard beam search strategies, BiBSG
reduces model variance and also enjoys the advan-
tage in its ability to consider both past and future
information when predicting an output.

Our contributions are:

• We propose a SGTB model for collectively
disambiguating entities in a document. By
jointly modeling local decisions and global
structure, SGTB is able to produce globally
optimal entity assignments for all the men-
tions.

• We present BiBSG, an efficient algorithm for
approximate bidirectional inference. The al-
gorithm is tailored to SGTB models, which
can reduce model variance by generating
more point-wise functional gradients for es-
timating the auxiliary regression models.

• SGTB achieves state-of-the-art (SOTA) re-
sults on various popular ED datasets, and
it outperforms the previous SOTA systems
by 1-2% absolute accuracy on the AIDA-
CoNLL (Hoffart et al., 2011) dataset.

2 Model

In this section, we present a SGTB model for col-
lective entity disambiguation. We first formally
define the task of ED, and then describe a struc-
tured learning formalization for producing glob-
ally coherent entity assignments for mentions in a
document. Finally, we show how to optimize the
model using functional gradient descent.

For an input document, assume that we are
given all the mentions of named entities within
it. Also assume that we are given a lexicon that
maps each mention to a set of entity candidates in
a given reference entity database (e.g., Wikipedia
or Freebase). The ED system maps each mention
in the document to an entry in the entity database.
Since a mention is often ambiguous on its own
(i.e., the lexicon maps the mention to multiple en-
tity candidates), the ED system needs to lever-
age two types of contextual information for dis-
ambiguation: local information based on the en-
tity mention and its surrounding words, and global
information that exploits the document-level co-
herence of the predicted entities. Note that model-
ing entity-entity coherence is very challenging, as
the long-range dependencies between entities cor-
respond to exponentially large search space.

We formalize this task as a structured learning
problem. Let x be a document with T target men-
tions, and y = {yt}Tt=1 be the entity assignments
of the mentions in the document. We use S(x,y)
to denote the joint scoring function between the
input document and the output structure. In tradi-
tional NLP tasks, such as part-of-speech tagging
and named entity recognition, we often rely on
low-order Markov assumptions to decompose the
global scoring function into a summation of lo-
cal functions. ED systems, however, are often re-
quired to model nonlocal phenomena, as any pair
of entities is potentially interdependent. There-
fore, we choose the following decomposition:

S(x,y) =
T∑

t=1

F (x, yt,y1:t−1), (1)

where F (x, yt,y1:t−1) is a factor scoring function.
Specifically, a local prediction yt depends on all
the previous decisions, y1:t−1 in our model, which
resembles recurrent neural network (RNN) mod-
els (Elman, 1990; Hochreiter and Schmidhuber,
1997).

We adopt a CRF loss objective, and define a
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Figure 1: (a) Example document x with entity candidates for each mention (gold entities are in bold); (b) the m-th
SGTB update iteration: (i) conduct beam search to sample candidate entity sequences (§ 3), (ii) compute point-
wise functional gradients for each candidate sequence, (iii) fit a regression tree to the negative functional gradient
points with input features, φ, (iv) update the factor scoring function, F , by adding the trained regression tree.

distribution over possible output structures as fol-
lows:

p(y|x) = exp{∑T
t=1 F (x, yt,y1:t−1)}

Z(x)
, (2)

where

Z(x) =
∑

y′∈Gen(x)
exp{

T∑

t=1

F (x, y′t,y
′
1:t−1)}

and Gen(x) is the set of all possible sequences
of entity assignments depending on the lexicon.
Z(x) is then a global normalization term. As
shown in previous work, globally normalized
models are very expressive, and also avoid the
label bias problem (Lafferty et al., 2001; Andor
et al., 2016). The inference problem is to find

argmax
y∈Gen(x)

p(y|x) = argmax
y∈Gen(x)

T∑

t=1

F (x, yt,y1:t−1).

(3)

2.1 Structured gradient tree boosting
An overview of our SGTB model is shown
in Fig. 1. The model minimizes the negative log-
likelihood of the data,

L(y∗, S(x,y)) = − log p(y∗|x)
= logZ(x)− S(x,y∗), (4)

where y∗ is the gold output structure.

In a standard CRF, the factor scoring func-
tion is typically assumed to have this form:
F (x, yt,y1:t−1) = θ>φ(x, yt,y1:t−1), where
φ(x, yt,y1:t−1) is the feature function and θ are
the model parameters. The key idea of SGTB is
that, instead of defining a parametric model and
optimizing its parameters, we can directly opti-
mize the factor scoring function F (·) iteratively
by performing gradient descent in function space.
In particular, suppose F (·) = Fm−1(·) in them-th
iteration, we will update F (·) as follows:

Fm(x, yt,y1:t−1) = Fm−1(x, yt,y1:t−1)

− ηmgm(x, yt,y1:t−1),
(5)

where

gm(x, yt,y1:t−1) =
∂L(y∗, S(x,y))
∂F (x, yt,y1:t−1))

= p(y1:t|x)− 1[y1:t = y∗1:t]
(6)

is the functional gradient, ηm is the learning rate,
and 1[·] represents an indicator function, which
returns 1 if the predicted sequence matches the
gold one, and 0 otherwise. We initialize F (·) to
0 (F0(·) = 0).

We can approximate the negative func-
tional gradient −gm(·) with a regression
tree model hm(·) by fitting the training data
{φ(x(i), y

(i)
t ,y

(i)
1:t−1)} to the point-wise negative

functional gradients (also known as residuals)
{−gm(x(i), y

(i)
t ,y

(i)
1:t−1)}. Then the factor scoring
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function can be obtained by

F (x, yt,y1:t−1) =
M∑

m=1

ηmhm(x, yt,y1:t−1),

(7)
where hm(x, yt,y1:t−1) is called a basis function.
We set ηm = 1 in this work.

3 Training

Training the SGTB model requires computing
the point-wise functional gradients with respect
to training documents and candidate entity se-
quences. This is challenging, due to the exponen-
tial output structure search space. First, we are not
able to enumerate all possible candidate entity se-
quences. Second, computing the conditional prob-
abilities shown in Eq. 6 is intractable, as it is pro-
hibitively expensive to compute the partition func-
tionZ(x) in Eq. 2. Beam search can be used to ad-
dress these problems. We can compute point-wise
functional gradients for candidate entity sequences
in the beam, and approximately compute the parti-
tion function by summing over the elements in the
beam.

In this section, we present a bidirectional beam
search training algorithm that always keeps the
gold sequence in the beam. The algorithm is tai-
lored to SGTB, and improves standard training
methods in two aspects: (1) it reduces model vari-
ance by collecting more point-wise function gra-
dients to train a regression tree; (2) it leverages
information from both past and future to conduct
better local search.

3.1 Beam search with gold path
The early update (Collins and Roark, 2004) and
LaSO (Daumé III and Marcu, 2005; Xu and Fern,
2007) strategies are widely adopted with beam
search for updating model parameters in previous
work. Both methods keep track of the location of
the gold path in the beam while decoding a train-
ing sequence. A gradient update step will be taken
if the gold path falls out of the beam at a specific
time step t or after the last step T . Adapting the
strategies to SGTB training is straightforward. We
will compute point-wise functional gradients for
all candidate entity sequences after time step T or
when the gold sequence falls out the beam. Both
early update and LaSO are typically applied to on-
line learning scenarios, in which model parame-
ters are updated after passing one or a few training
sequences.

SGTB training, however, fits the batch learning
paradigm. In each training epoch, a SGTB model
will be updated only once using the regression
tree model fit on the point-wise negative functional
gradients. The gradients are calculated with re-
spect to the output sequences obtained from beam
search. We propose a simple training strategy that
computes and collects point-wise functional gra-
dients at every step of a training sequence. In
addition, instead of passively monitoring the gold
path, we always keep the gold path in the beam
to ensure that we have valid functional gradients
at each time step. The new beam search training
method, Beam Search with Gold path (BSG), gen-
erates much more point-wise functional gradients
than early update or LaSO, which can reduce the
variance of the auxiliary regression tree model. As
a result, SGTB trained with BSG consistently out-
performs early update or LaSO in our exploratory
experiments, and it also requires fewer training
epochs to converge.2

3.2 Bidirectional beam search
During beam search, if we consider a decision
made at time step t, the joint probability p(y|x)
can be factorized around t as follows:

p(y|x) = p(y1:t−1|x) · p(yt|y1:t−1,x)

·p(yt+1:T |yt,y1:t−1,x).
(8)

Traditional beam search performs inference in
a unidirectional (left-to-right) fashion. Since the
beam search at time step t considers only the beam
sequences that were committed to so far, {y1:t−1},
it effectively approximates the above probability
by assuming that all futures are equally likely, i.e.
p(yt+1:T |yt,y1:t−1,x) is uniform. Therefore, at
any given time, there is no information from the
future when incorporating the global structure.

In this work, we adopt a Bidirectional Beam
Search (BiBS) methodology that incorporates
multiple beams to take future information into ac-
count (Sun et al., 2017). It makes two simplify-
ing assumptions that better approximate the joint
probability above while remaining tractable: (1)
future predictions are independent of past predic-
tions given yt; (2) p(yt) is uniform. These yield
the following approximation:

p(yt+1:T |yt,y1:t−1,x) = p(yt+1:T |yt,x)
∝ p(yt|yt+1:T ,x) · p(yt+1:T |x).

(9)

2Early update and LaSO perform similarly, thus we only
report results for early update in § 5.
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Substituting this back into Eq. 8 therefore yields:

p(y|x) ∝ p(y1:t−1|x) · p(yt|y1:t−1,x)

·p(yt|yt+1:t,x) · p(yt+1:T |x),
(10)

which decomposes into multiplication of a for-
ward probability and a backward probability.
In (Sun et al., 2017), these are retrieved from for-
ward and backward recurrent networks, whereas
in our work we use the joint scores (log proba-
bilities shown in Eq. 1) computed for partial se-
quences from forward and backward beams.

Algorithm 1: Bidirectional Beam Search with
Gold path (BiBSG)

Input : input document x, candidate sequences {y},
joint scoring function S(x,yt1:t2)

Output: beam sequence set C
C ← ∅
while not converged do

// forward beam search
for t = 1, · · · , T do

C(F ) ← top-By1:t
[S(x,y1:t) + S(x,yT :t)]

// add gold subsequence
C(F ) ← C(F ) ∪ {y∗1:t}
C ← C ∪ C(F )

end
// backward beam search
for t = T, · · · , 1 do

C(B) ← top-ByT :t
[S(x,yT :t) + S(x,y1:t)]

// add gold subsequence
C(B) ← C(B) ∪ {y∗T :t}
C ← C ∪ C(B)

end
end

The full inference algorithm, Bidirectional
Beam Search with Gold path (BiBSG), is pre-
sented in Alg. 1. When performing the forward
pass to update the forward beam, forward joint
scores, S(x,y1:t), are computed with respect to
current forward beam, and backward joint scores,
S(x,yT :t), are computed with respect to previous
backward beam. A similar procedure is used for
the backward pass. The search converges very
fast, and we use two rounds of bidirectional search
as a good approximation. Finally, SGTB-BiBSG
compares the conditional probabilities p(y(·)|x) of
the best scoring output sequences y(F) and y(B) ob-
tained from the forward and backward beams. The
final prediction is the sequence with the higher
conditional probability score.

4 Implementation

We provide implementation details of our SGTB
systems, including entity candidate generation,

adopted local and global features, and some efforts
to make training and inference faster.

4.1 Candidate selection

We use a mention prior p̂(y|x) to select en-
tity candidates for a mention x. Follow-
ing Ganea and Hofmann (2017), the prior is com-
puted by averaging mention prior probabilities
built from mention-entity hyperlink statistics from
Wikipedia3 and a large Web corpus (Spitkovsky
and Chang, 2012). Given a mention, we select the
top 30 entity candidates according to p̂(y|x).

We also use a simple heuristic proposed
by Ganea and Hofmann (2017) to improve candi-
date selection for persons: for a mention x, if there
are mentions of persons that contain x as a contin-
uous subsequence of words, then we consider the
candidate set obtained from the longest mention
for the mention x.

4.2 Features

The feature function φ(x, yt,y1:t−1) can be de-
composed into the summation of a local feature
function φL(x, yt) and a global feature function
φG(yt,y1:t−1).

Local features We consider standard local fea-
tures that have been used in prior work, includ-
ing mention priors p(y|x) obtained from differ-
ent resources; entity popularity features based on
Wikipedia page view count statistics;4 named en-
tity recognition (NER) type features given by an
in-house NER system trained on the CoNLL 2003
NER data (Tjong Kim Sang and De Meulder,
2003); entity type features based on Freebase type
information; and three textual similarity features
proposed by Yamada et al. (2016).5

Global features Three features are utilized to
characterize entity-entity relationships: entity-
entity co-occurrence counts obtained from
Wikipedia, and two cosine similarity scores
between entity vectors based on entity embed-
dings from (Ganea and Hofmann, 2017) and
Freebase entity embeddings released by Google6

3We use a Wikipedia snapshot as of Feb. 2017.
4We obtain the statistics of Feb. 2017 and Dec. 2011

from https://dumps.wikimedia.org/other/
pagecounts-ez/merged/ .

5We obtain embeddings jointly trained for words and en-
tities from (Ganea and Hofmann, 2017).

6https://code.google.com/archive/p/
word2vec/
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respectively. We denote the entity-entity features
between entities yt and yt′ as φE(yt, yt′).

At step t of a training sequence, we quantify the
coherence of yt with respect to previous decisions
y1:y−1 by first extracting entity-entity features be-
tween yt and yt′ where 1 ≤ t′ ≤ t − 1, and then
aggregating the information to have a global fea-
ture vector φG(yt,y1:t−1) of a fixed length:

φG(yt,y1:t−1) =
t−1∑

t′=1

φE(yt, yt′)

t− 1

⊕ t−1
max
t′=1

φE(yt, yt′),

where ⊕ denotes concatenation of vectors.

4.3 Efficiency

Global models are powerful and effective, but of-
ten at a cost of efficiency. We discuss ways to
speed up training and inference for SGTB models.

Many of the adopted features such as mention
priors and entity-entity co-occurrences can be ex-
tracted once and retrieved later with just a hash
map lookup. The most expensive features are the
cosine similarity features based on word and en-
tity embeddings. By normalizing the embeddings
to have a unit norm, we can obtain the similarity
features using dot products. We find this simple
preprocessing makes feature extraction faster by
two orders of magnitude.

SGTB training can be easily parallelized, as the
computation of functional gradients are indepen-
dent for different documents. During each train-
ing iteration, we randomly split training docu-
ments into different partitions, and then calculate
the point-wise functional gradients for documents
of different partitions in parallel.

5 Experiments

In this section, we evaluate SGTB on some of
the most popular datasets for ED. After describing
the experimental setup, we compare SGTB with
previous state-of-the-art (SOTA) ED systems and
present our main findings in § 5.3.

5.1 Data

We use six publicly available datasets to validate
the effectiveness of SGTB. AIDA-CoNLL (Hof-
fart et al., 2011) is a widely adopted dataset for
ED based on the CoNLL 2003 NER dataset (Tjong
Kim Sang and De Meulder, 2003). It is

Dataset # mention # doc # mention
per doc

AIDA-train 18,448 946 19.5
AIDA-dev 4,791 216 22.1
AIDA-test 4,485 231 19.4

AQUAINT 727 50 14.5
MSNBC 656 20 32.8
ACE 257 36 7.1

CWEB 11,154 320 34.8
WIKI 6,821 320 21.3

Table 1: Statistics of the ED datasets used in this work.

further split into training (AIDA-train), de-
velopment (AIDA-dev), and test (AIDA-test)
sets.7 AQUAINT (Milne and Witten, 2008),
MSNBC (Cucerzan, 2007), and ACE (Ratinov
et al., 2011) are three datasets for Wikification,
which also contain Wikipedia concepts beyond
named entities. These datasets were recently
cleaned and updated by Guo and Barbosa (2016).
WIKI and CWEB are automatically annotated
datasets built from the ClueWeb and Wikipedia
corpora by Guo and Barbosa (2016). The statis-
tics of these datasets are available in Table 1.

5.2 Experimental settings
Following previous work (Guo and Barbosa, 2016;
Ganea and Hofmann, 2017), we evaluate our mod-
els on both in-domain and cross-domain testing
settings. In particular, we train our models on
AIDA-train set, tune hyperparameters on AIDA-
dev set, and test on AIDA-test set (in-domain test-
ing) and all other datasets (cross-domain testing).
We follow prior work and report in-KB accuracies
for AIDA-test and Bag-of-Title (BoT) F1 scores
for the other test sets.

Two AIDA-CoNLL specific resources have
been widely used in previous work. In order to
have fair comparisons with these works, we also
adopt them only for the AIDA datasets. First, we
use a mention prior obtained from aliases to candi-
date entities released by Hoffart et al. (2011) along
with the two priors described in § 4.1. Second, we
also experiment with PPRforNED, an entity can-
didate selection system released by Pershina et al.
(2015). It is unclear how candidates were pruned,
but the entity candidates generated by this sys-
tem have high recall and low ambiguity, and they
contribute to some of the best results reported for
AIDA-test (Yamada et al., 2016; Sil et al., 2018).

7AIDA-dev and AIDA-test are also referred as AIDA-a
and AIDA-b datasets in previous work.
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Competitive systems We implement four com-
petitive ED systems, and three of them are based
on variants of our proposed SGTB algorithm.8

Gradient tree boosting is a local model that em-
ploys only local features to make independent de-
cisions for every entity mention. Note that our lo-
cal model is different from that presented by Ya-
mada et al. (2016), where they treat ED as binary
classification for each mention-entity pair. SGTB-
BS is a Structured Gradient Tree Boosting model
trained with Beam Search with early update strat-
egy. SGTB-BSG uses Beam Search with Gold path
training strategy presented in § 3.1. Finally, SGTB-
BiBSG exploits Bidirectional Beam Search with
Gold path to leverage information from both past
and future for better local search.

In addition, we compare against best published
results on all the datasets. To ensure fair compar-
isons, we group results according to candidate se-
lection system that different ED systems adopted.

Parameter tuning We tune all the hyperparam-
eters on the AIDA-dev set. We use recommended
hyperparameter values from scikit-learn to train
regression trees, except for the maximum depth
of the tree, which we choose from {3, 5, 8}. Af-
ter a set of preliminary experiments, we select the
beam size from {3, 4, 5, 6}. The best values for
the two hyperparameters are 3 and 4 respectively.
As mentioned in § 2, the learning rate is set to 1.
We train SGTB for at most 500 epochs (i.e., fit at
most 500 regression trees). During training, we
check the performance on the development set ev-
ery 25 epochs to perform early stopping. Training
takes 3 hours for SGTB-BS and SGTB-BSG, and
takes 9 hours for SGTB-BiBSG on 16 threads.

5.3 Results

In-domain results In-domain evaluation results
are presented in Table 2. As shown, SGTB
achieves much better performance than all pre-
viously published results. Specifically, SGTB-
BiBSG outperforms the previous SOTA sys-
tem (Ganea and Hofmann, 2017) by 0.8% accu-
racy, and improves upon the best published results
when employing the PPRforNED candidate selec-
tion system by 1.9% accuracy. Global informa-
tion is clearly useful, as it helps to boost the per-
formance by 2-4 points of accuracy, depending on
the candidate generation system. In terms of beam

8Our implementations are based on the scikit-learn pack-
age (Pedregosa et al., 2011).

System PPRforNED In-KB acc.

Published results
Lazic et al. (2015) 86.4
Huang et al. (2015) 86.6
Chisholm and Hachey (2015) 88.7
Ganea et al. (2016) 87.6
Guo and Barbosa (2016) 89.0
Globerson et al. (2016) 91.0
Yamada et al. (2016) 91.5
Ganea and Hofmann (2017) 92.2

Our implementations
Gradient tree boosting 88.4
SGTB-BS 91.7
SGTB-BSG 92.4
SGTB-BiBSG 93.0

Published results
Pershina et al. (2015) X 91.8
Yamada et al. (2016) X 93.1
Sil et al. (2018) X 94.0

Our implementations
Gradient tree boosting X 93.1
SGTB-BS X 95.1
SGTB-BSG X 95.5
SGTB-BiBSG X 95.9

Table 2: In-domain evaluation: in-KB accuracy results
on the AIDA-test set. Checked PPRforNED indicates
that the system uses PPRforNED (Pershina et al., 2015)
to select candidate entities.The best results are in bold.

search training strategies, BiBSG consistently out-
performs BSG and beam search with early update.
By employing more point-wise functional gradi-
ents to train the regression trees and leveraging
global information from both past and future to
carry on local search, BiBSG is able to find bet-
ter global solutions than alternative training strate-
gies.

Cross-domain results As presented in Table 3,
cross-domain experimental results are a little more
mixed. SGTB-BS and SGTB-BSG perform quite
competitively compared with SGTB-BiBSG. In a
cross-domain evaluation setting, the test data is
drawn from a different distribution as the train-
ing data. Therefore, less expressive models may
be preferred as they may learn more abstract
representations that will generalize better to out-
of-domain data. Nevertheless, our SGTB mod-
els achieve better performance than best pub-
lished results on three of the five popular ED
datasets. Specifically, SGTB-BS outperforms the
prior SOTA system by absolute 4% F1 on the
CWEB dataset, and SGTB-BiBSG performs con-
sistently well across different datasets.
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System AQUAINT MSNBC ACE CWEB WIKI

Published results
Fang et al. (2016) 88.8 81.2 85.3 - -
Ganea et al. (2016) 89.2 91.0 88.7 - -
Milne and Witten (2008) 85.0 78.0 81.0 64.1 81.7
Hoffart et al. (2011) 56.0 79.0 80.0 58.6 63.0
Ratinov et al. (2011) 83.0 75.0 82.0 56.2 67.2
Cheng and Roth (2013) 90.0 90.0 86.0 67.5 73.4
Guo and Barbosa (2016) 87.0 92.0 88.0 77.0 84.5
Ganea and Hofmann (2017) 88.5 93.7 88.5 77.9 77.5

Our implementations
Gradient tree boosting 90.3 91.1 89.2 78.8 75.0
SGTB-BS 90.5 92.4 88.9 81.7 76.4
SGTB-BSG 89.4 92.5 88.6 81.7 78.4
SGTB-BiBSG 89.9 92.6 88.5 81.8 79.2

Table 3: Cross-domain evaluation: Bag-of-Title (BoT) F1 results on ED datasets. The best results are in bold.

6 Related work

Entity disambiguation Most ED systems con-
sist of a local component that models relatedness
between a mention and a candidate entity, as well
as a global component that produces coherent en-
tity assignments for all mentions within a docu-
ment. Recent research has largely focused on joint
resolution of entities, which is usually performed
by maximizing the global topical coherence be-
tween entities. As discussed above, directly op-
timizing the coherence objective is computation-
ally intractable, and several heuristics and approx-
imations have been proposed to address the prob-
lem. Hoffart et al. (2011) use an iterative heuristic
to remove unpromising mention-entity edges. Ya-
mada et al. (2016) employ a two-stage approach,
in which global information is incorporated in
the second stage based on local decisions from
the first stage. Approximate inference techniques
have been widely adopted for ED. Cheng and Roth
(2013) use an integer linear program (ILP) solver.
Belief propagation (BP) and its variant loopy be-
lief propagation (LBP) have been used by Ganea
et al. (2016) and Ganea and Hofmann (2017) re-
spectively. We employ another standard approx-
imate inference algorithm, beam search, in this
work. To make beam search a better fit for SGTB
training, we propose BiBSG that improves beam
search training on stability and effectiveness.

Structured gradient tree boosting Gradient
tree boosting has been used in some of the most
accurate systems for a variety of classification and
regression problems (Babenko et al., 2011; Wu
et al., 2010; Yamada et al., 2016). However, gradi-
ent tree boosting is seldom studied in the context

of structured learning, with only a few exceptions.
Dietterich et al. (2004) propose TreeCRF that re-
places the linear scoring function of a CRF with
a scoring function given by a gradient tree boost-
ing model. TreeCRF achieves comparable or bet-
ter results than CRF on some linear chain struc-
tured prediction problems. Bagnell et al. (2007)
extend the Maximum Margin Planning (MMP;
Ratliff et al., 2006) algorithm to structured predic-
tion problems by learning new features using gra-
dient boosting machines. Yang and Chang (2015)
present a general SGTB framework that is flex-
ible in the choice of loss functions and specific
structures. They also apply SGTB to the task of
tweet entity linking with a special non-overlapping
structure. By decomposing the structures into lo-
cal substructures, exact inference is tractable in all
the aforementioned works. Our work shows that
we can train SGTB models efficiently and effec-
tively even with approximate inference. This ex-
tends the utility of SGTB models to a wider range
of interesting structured prediction problems.

7 Conclusion and future work

In this paper, we present a structured gradient tree
boosting model for entity disambiguation. Entity
coherence modeling is challenging, as exact in-
ference is prohibitively expensive due to the pair-
wise entity relatedness terms in the objective func-
tion. We propose an approximate inference al-
gorithm, BiBSG, that is designed specifically for
SGTB to solve this problem. Experiments on
benchmark ED datasets suggest that the expressive
SGTB models are extremely good at dealing with
the task of ED. SGTB significantly outperforms
all previous systems on the AIDA-CoNLL dataset,
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and it also achieves SOTA results on many other
ED datasets even in the cross-domain evaluation
setting. SGTB is a family of structured learning
algorithms that can be potentially applied to other
core NLP tasks. In the future, we would like to in-
vestigate the effectiveness of SGTB on other infor-
mation extraction tasks, such as relation extraction
and coreference resolution.
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Abstract

Ontologies compartmentalize types and rela-
tions in a target domain and provide the se-
mantic backbone needed for a plethora of prac-
tical applications. Very often different on-
tologies are developed independently for the
same domain. Such “parallel” ontologies
raise the need for a process that will estab-
lish alignments between their entities in order
to unify and extend the existing knowledge.
In this work, we present a novel entity align-
ment method which we dub DeepAlignment.
DeepAlignment refines pre-trained word vec-
tors aiming at deriving ontological entity de-
scriptions which are tailored to the ontol-
ogy matching task. The absence of explicit
information relevant to the ontology match-
ing task during the refinement process makes
DeepAlignment completely unsupervised. We
empirically evaluate our method using stan-
dard ontology matching benchmarks. We
present significant performance improvements
over the current state-of-the-art, demonstrat-
ing the advantages that representation learning
techniques bring to ontology matching.

1 Introduction

Translation across heterogeneous conceptual sys-
tems is an important challenge for cognitive sci-
ence (Goldstone and Rogosky, 2002; Stolk et al.,
2016). Ontology Matching constitutes the task
of establishing correspondences between seman-
tically related entities (i.e. classes and proper-
ties) from different ontologies, as illustrated in
Figure 1. Similarly, ontology matching is crucial
for accomplishing a mutual understanding across
heterogeneous artificial cognitive agents (Taylor,
2015). However, despite the many proposed solu-
tions, it is widely accepted that there is no solution
robust enough to deal with the high ontological
linguistic variability (Shvaiko and Euzenat, 2008,

Entity

Conference Dinner

Television Episode

Entity

MealMenu

Banquet

TV Episode

Figure 1: Example of alignments (black lines) and mis-
alignments (red crossed lines) between ontologies.

2013); hampering, thus, the discovery of shared
meanings.

Research in automatic ontology matching has
focused on engineering features from terminolog-
ical, structural, extensional (ontology instances)
and semantic model information extracted from
the ontological model. These features are then
used to compute ontological entity similarities that
will guide the ontology matching. Deriving such
features for a given problem is an extremely time
consuming task. To make matters worse, these
features do not transfer in other domains. As
Cheatham and Hitzler (2013) have recently shown,
the performance of ontology matching based on
different textual features varies greatly with the
type of ontologies under consideration.

At the same time, machine learning research
is characterised by a shift from feature engineer-
ing based approaches to feature and representa-
tion learning as a result of the performance im-
provements brought by deep learning methods.
A by now classical example is the unsupervised
learning of semantic word representations based
on the distributional hypothesis (Harris, 1954),
i.e. the assumption that semantically similar or re-
lated words appear in similar contexts (Deerwester
et al., 1990; Bengio et al., 2003; Mikolov et al.,
2013a,c; Pennington et al., 2014). Word vectors
have the potential to bring significant value to on-
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tology matching given the fact that a great deal of
ontological information comes in textual form.

One drawback of these semantic word embed-
dings is that they tend to coalesce the notions of se-
mantic similarity and conceptual association (Hill
et al., 2016b). For instance, the word “harness” is
highly related to the word “horse”, as they share
strong associations, i.e. a harness is often used on
horses (Lofi, 2016). From an ontological point of
view, however, these types should not be similar.
Moreover, as unsupervised learning requires even
larger text corpora, the learned vectors tend to
bring closer words with similar frequency instead
of similar meaning (Faruqui et al., 2016). Clearly,
word representations that reflect frequency instead
of meaning is an undesired feature if we seek to
exploit word vectors for ontology matching; align-
ment based on such representations will reflect
similar frequency instead of similar meaning.

A number of lightweight vector space repre-
sentation refining techniques were introduced re-
cently in an effort to correct these biases (Faruqui
et al., 2015; Mrkšić et al., 2016). They use syn-
onymy and antonymy constraints extracted from
semantic lexicons to refine the learned word rep-
resentations and make them better suited for se-
mantic similarity tasks. Such methods are a way
to inject domain-specific knowledge to tailor the
learned word representations to a given task. As
a result, we can exploit the synonymy/antonymy
constraints to learn semantic word representations
that are better candidates for ontology matching.

In this paper we learn representations of on-
tological entities instead of feature engineering
them. We use the learned representations to com-
pute the entities’ semantic distances and to subse-
quently perform the ontology matching task. In or-
der to represent the ontological entities, we exploit
the textual information that accompanies them.
We represent words by learning their representa-
tions using synonymy and antonymy constraints
extracted from general lexical resources and infor-
mation captured implicitly in ontologies. We cast
the problem of ontology matching as an instance
of the Stable Marriage problem (Gale and Shap-
ley, 1962) using the entities semantic distances.

Our approach has a number of advantages. The
word embeddings we establish are tailored to the
domains and ontologies we want to match. The
method relies on a generic unsupervised represen-
tation learning solution which is important given

the small size of training sets in ontology matching
problems. We evaluate our approach on the Con-
ference dataset provided by the Ontology Align-
ment Evaluation Initiative (OAEI) campaign and
on a real world alignment scenario between the
Schema.org and the DBpedia Ontologies. We
compare our method to state-of-the-art ontology
matching systems and show significant perfor-
mance gains on both benchmarks. Our approach
demonstrates the advantages that representation
learning can bring to the task of ontology match-
ing and shows a novel way to study the problem in
the setting of recent advances in NLP.

2 Related Work

2.1 Selecting Features for Ontology Matching

The vast majority of ontology matching research
follows the feature engineering approach (Wang
and Xu, 2008; Cruz et al., 2009; Khadir et al.,
2011; Jiménez-Ruiz and Grau, 2011; Fahad et al.,
2012; Ngo and Bellahsene, 2012; Gulić et al.,
2016). Features are generated using a broad range
of techniques (Anam et al., 2015; Harispe et al.,
2015), ranging from the exploitation of termino-
logical information, including structural similari-
ties and logical constraints, such as datatype prop-
erties, cardinality constraints, etc.

Ontology matching is done by acting on the
aforementioned features in different ways. Heuris-
tic methods that rely on aggregation functions,
such as max, min, average, weighted sum, etc.,
to fuse the information found in these features
are quite popular (Anam et al., 2015). Other ap-
proaches use first order logic and cast ontology
matching as a satisfiability problem (Giunchiglia
et al., 2004; Jiménez-Ruiz and Grau, 2011).

Several works exploit supervised machine
learning for Ontology Matching. Mao et al. (2011)
cast ontology mapping as a binary classification
problem. They generate various domain indepen-
dent features to describe the characteristics of the
entities and train an SVM classifier on a set which
provides positive and negative examples of en-
tity alignments. In general, the number of real
alignments is orders of magnitude smaller than the
number of possible alignments which introduces a
serious class imbalance problem (Mao et al., 2008)
hindering learning. Since we only use supervision
to refine the word vector representations we avoid
altogether the class imbalance problem.
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2.2 Deep Learning for Ontology Matching

Deep learning has so far limited impact on on-
tology matching. To the best of our knowledge,
only two approaches, (Zhang et al., 2014; Xi-
ang et al., 2015), have explored the use of unsu-
pervised deep learning techniques. Zhang et al.
(2014) are considered to be the first ones that
use word vectors in ontology matching. They
train word2vec (Mikolov et al., 2013a) vectors on
Wikipedia. They use the semantic transformations
to complement the lexical information, i.e. names,
labels and comments, describing entities. Their
entity matching strategy is based on maximum
similarity; for every entity e in the source ontol-
ogy O, the algorithm finds the most similar entity
e′ in the target ontology O′. Their experiments
on the OAEI benchmarks show that their tech-
niques, even when combined with classical NLP
techniques, could not outperform the state-of-the-
art. In contrast, we refine pre-trained word embed-
dings with the intention of leveraging a new word
vector set that is tailored to the ontology matching
task.

Xiang et al. (2015) propose an entity represen-
tation learning algorithm based on Stacked Auto-
Encoders (Bengio et al., 2007). To describe an
entity they use a combination of its class ID, la-
bels, comments, properties descriptions and its in-
stances’ descriptions. The entities’ similarity is
computed with a fixed point algorithm. They per-
form the entity matching using the Stable Mar-
riage algorithm. Training such powerful models
with so small training sets is problematic. We
overcome this by using a transfer learning ap-
proach, known to reduce learning sample com-
plexity (Pentina and Ben-David, 2015), to adapt
pre-trained word vectors to a given ontological do-
main.

3 DeepAlignment

We present an ontology matching approach
that uses information from ontologies and ad-
ditional knowledge sources to extract syn-
onymy/antonymy relations which we use to refine
pre-trained word vectors so that they are better
suited for the ontology matching task. We repre-
sent each ontological entity as the bag of words of
its textual description, which we complement with
the refined word embeddings. We match the en-
tities of two different ontologies using the Stable
Marriage algorithm over the entities’ pairwise dis-

tances. We compute the aforementioned distances
using a variant of a document similarity metric.

3.1 Preliminaries

Before we proceed with the presentation of the
method, we will provide a formal definition of
what an entity correspondence is. Given two on-
tologies O and O′, we define the correspondence
between two entities e ∈ O and e′ ∈ O′ as the
five-element tuple:

core,e′ =< id, e, e′, r, n > (1)

where r is a matching relation between e and e′

(e.g., equivalence, subsumption) and n ∈ [0, 1] is
the degree of confidence of the matching relation
between e and e′ (Euzenat and Shvaiko, 2013).
The id holds the unique identifier of the mapping.
Unlike the majority of ontology alignment sys-
tems which discover one-to-one equivalence map-
pings (Anam et al., 2015), we focus on discov-
ering many-to-many mappings. We will also in-
troduce some additional notation used in the pa-
per. Let u1, u2 ∈ Rd be two d-dimensional vec-
tors, we compute their cosine distance as follows:
d(u1, u2) = 1 − cos(u1, u2). For x ∈ R, we de-
fine the rectifier activation function as: τ(x) =
max(x, 0).

3.2 Learning Domain Specific Word Vectors

The counter-fitting method (Mrkšić et al., 2016)
uses synonymy and antonymy relations extracted
from semantic lexicons to refine and adapt pre-
trained word embeddings for given semantic simi-
larity tasks. We broaden the concept of antonymy
relations and allow for a larger class of ontology
relations to define antonymies. This allows us to
inject domain knowledge encoded in ontologies
and produce more appropriate word vectors for the
ontology matching task. In the rest of the sec-
tion we revise the main elements of the counter-
fitting method and describe how we can exploit it
for learning domain specific word embeddings.

Let V = {v1, v2, . . . vN} be an indexed set
of word vectors of size N . The counter-fitting
method transforms a pretrained vector set V into a
new one V ′ = {v′1, v′2, . . . v′N}, based on a set of
synonymy and antonymy constraints S and A, re-
spectively. This is done by solving the following
non-convex optimization problem:

min
V ′

κ1AR(V ′) + κ2SA(V ′) + κ3V SP (V, V ′)
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The AR(V ′) function defined as:

AR(V ′) =
∑

(u,w)∈A
τ(1− d(v′u, v

′
w))

is called antonym repel and pushes the refined
word vectors of “antonymous” words to be away
from each other. As we already mentioned, we ex-
tend the notion of antonymy relations with respect
to its more narrow traditional linguistic definition.
We consider that two entities in a given ontology
are “antonymous” if they have not been explicitly
stated as equivalent, in the sense of a logical asser-
tion or a synonymy relation found in a semantic
lexicon.

The SA(V ′) function defined as:

SA(V ′) =
∑

(u,w)∈S
d(v′u, v

′
w)

is called synonym attract and brings closer the
transformed word vectors of synonyms. In or-
der to extract synonymy information we search
for paraphrases in semantic lexicons. Concretely,
let ω1 = {word11, word12, . . . , word1m}, ω2 =
{word21, word22, . . . , word2n} be the textual in-
formation of two entities from different ontolo-
gies. If the combination {word1i , word2j} or
{word2j , word1i } for some i ∈ {1, . . . ,m} and
j ∈ {1, . . . , n} appears as a paraphrase in any
semantic lexicon then we add the synonymy in-
formation (u,w) in the set S of synonymy con-
straints.

The V SP (V, V ′) function defined as:

V SP (V, V ′) =

N∑

i=1

∑

j∈N(i)

τ(d(v′i, v
′
j)− d(vi, vj))

forces the refined vector space to reflect the origi-
nal word-vector distances. N(i) is the set of words
that lie within ρ distance from the i-th word vec-
tor in the original vector-space. The experiments
show that the value of ρ does not affect signifi-
cantly the performance of the whole algorithm, so
for computational efficiency we fix it to ρ = 0.05.
We minimize the objective function with stochas-
tic gradient descent (SGD). We use as a conver-
gence criterion the norm of the gradient. We con-
tinue updating the model until this is smaller than
10−5. In our experiments we typically observe
convergence with less than 25 iterations.

3.3 Semantic Distance Between Entities
As before, let V ′ be the refined word vectors
and ω1 = {word11, word12, . . . , word1m}, ω2 =
{word21, word22, . . . , word2n} be the textual infor-
mation that describes two entities from different
ontologies. The textual information of an entity
can be extracted from different sources, such as
the entity’s name, label, comments, etc. We re-
place the appearance of a word with its refined
word vector. Hence, we end up with two sets of
word vectors Q and S, respectively. In order to
do the matching of the entities of two ontologies
we use a semantic distance over the entities’ repre-
sentations, here the set of word vectors associated
with each entity.

There have been many ways to compute the se-
mantic similarity of two word sets, such as the
Word Moving Distance (Kusner et al., 2015) and
the Dual Embedding Space Model (DESM) (Nal-
isnick et al., 2016). We will base our semantic dis-
tance δ on a slight variation of the DESM similar-
ity metric. Our metric δ computes the distance of
two sets of word vectors Q and S as follows:

δ(Q,S) =
1

|Q|
∑

qi∈Q
d(qi, S̄) (2)

where S̄ = 1
|S|
∑
sj∈S

sj
‖sj‖ is the normalised average

of the word embeddings that constitute the set of
words S.

Hence, one of the word vectors’ sets is repre-
sented by the centroid of its normalized vectors.
The overall set-to-set distance δ is the normalized
average of the cosine distance d between the com-
puted centroid and the other’s set word vectors. A
first observation is that the introduced distance is
not symmetric. Ideally, we would expect the se-
mantic distance of two word sets to be irrelevant
of the order of the inputs. To make it symmetric,
we redefine the distance between two sets of word
vectors as:

dis(ω1, ω2) = max(δ(Q,S), δ(S,Q)) (3)

It is important to note that dis(ω1, ω2) is not a
proper distance metric as it does not satisfy the tri-
angle inequality property. Despite this fact, it has
proved to work extremely well on all the ontology
matching scenarios.

3.4 Ontology Matching
Similar to the work in (Xiang et al., 2015) we use
the extension of the Stable Marriage Assignment
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problem to unequal sets (Gale and Shapley, 1962;
McVitie and Wilson, 1970). The stable marriage
algorithm computes one-to-one mappings based
on a preference m × n matrix, where m and n is
the number of entities in ontologies O and O′, re-
spectively. Note that the violation of the triangle
inequality by our semantic distance (equation 3)
is not an impediment to the Stable Marriage algo-
rithm (Gale and Shapley, 1962).

The majority of the ontology matching sys-
tems produce equivalence mappings with cardinal-
ity one-to-one. Hence, one entity e in ontology O
can be mapped to at most one entity in e′ inO′ and
vice versa. According to a recent review (Anam
et al., 2015) only two out of almost twenty ontol-
ogy matching systems provide solutions to detect
many-to-many mappings. However, ontology de-
signers focus on different degrees of granularity,
so it is expected that one entity from some ontol-
ogy can correspond to more than one entities in
another ontology and vice-verca.

To address this problem, we present an algo-
rithm that extends the one-to-one mappings of the
previous step to many-to-many. The basic idea is
that some alignments that were omitted by the Sta-
ble Marriage solution were very close to the opti-
mal alignment and they should also be included
in the final alignment set. However, despite the
use of refined word vectors, we cannot completely
avoid the problems that come from the semantic
similarity and conceptual association coalescence.
The solution of this problem comes from the ob-
servation that we can add the constraint that the
mapping should be extended only in the case that
the new entity that will be added will share a sub-
sumption relation with the existing one. Below we
give a more formal definition of what we will call
an ε-optimal mapping between two entities e and
e′ that belong to two different ontologiesO andO′

respectively.

Definition 1 Let e → e′ be the optimal mapping
- produced by the Stable Marriage Solution - from
the entity e ∈ O to the entity e′ ∈ O′, where O
and O′ are two different ontologies. Let e → e′′

be another mapping, where e′′ ∈ O′. Given an
ε > 0, we call the mapping e→ e′′ ε-optimal with
respect to the mapping e → e′ if and only if the
following two hold:

• |dis(ω1, ω2) − dis(ω1, ω3)| < ε, where ω1,
ω2, ω3 is the textual information of entities e,
e′ and e′′, respectively.

Algorithm 1 extendMap(e, h, O′, Pe, ie′ , n, ε, r)
Require: source entity: e

hash function from integers to entities: h
subsumption’s transitive closure: O′
sorted (increasingly) preference matrix: Pe
index of optimal solution: ie′
number of target’s ontology entities: n
ε−optimality value: ε
number of relatives: r

Ensure: sequence of the ε−optimal mappings
1: Initialization: list = ∅
2: opt = Pe[ie′ ]
3: e′ = h(ie′)
4: for i = min(ie′ + 1, n) to min(ie′ + r, n) do
5: tmp = Pe[i]
6: if abs(opt− tmp) < ε then
7: ei = h(i)
8: if (ei, e

′) ∈ O′ or (e′, ei) ∈ O′ then
9: list.append(e→ ei)

10: end if
11: end if
12: end for

• e′ and e′′ should be logically related with
a subsumption relation. Equivalently, there
must be either a logical assertion that e′ is
subclass of e′′ or e′′ is subclass of e′.

The subsumption restriction requires that the ex-
tended alignments share a taxonomic relation, in
order to avoid matchings between entities that are
conceptually associated. We iteratively search for
ε-optimal mappings according to the algorithm 1
to extend the established one-to-one mappings to
many-to-many. For efficiency reasons, we do not
check all the entities, but only the r closest entities
according to the dis(ω1, ω2) distance. As a final
step, we iteratively pass through all the produced
alignments and we discard those with dis(ω1, ω2)
greater than a hyperparameter value thres.

4 Experiments

In this section, we present the experiments we
performed on the OAEI conference dataset and
in one real word alignment scenario between the
Schema.org and DBpedia ontologies. One of the
main problems that we have encountered with the
comparative evaluation of our algorithm is that
even though numerous ontology matching algo-
rithms exist, for only a very small portion of them
either the respective software or the system’s out-
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put is publicly available. To the best of our knowl-
edge, among all the systems tested in the confer-
ence dataset only AML (Cruz et al., 2009) and
LogMap (Jiménez-Ruiz and Grau, 2011) are pub-
licly available. As it happens these are two of
the state-of-the-art systems. Moreover, AML of-
fers solutions to detect many-to-many alignments
(Faria et al., 2015) and, thus, constitutes a compet-
itive baseline against which we will compare the
performance of extendMap which also provides
many-to-many alignments.

When training to refine the vector representa-
tions an unbalanced proportion of synonymy and
antonymy constraints sets can cause problems; the
set with the lower cardinality will have limited im-
pact on the final word representations. To over-
come this problem, we run an additional step of
the counter-fitting procedure, using only a small
random subset of the supernumerary constraints
and all constraints of the minority set. We ran-
domly undersample the larger set and reduce its
cardinality to that of the smaller set. We call
this additional step the recounter-fitting process.
To demonstrate the importance of the recounter-
fitting process and test the behavior of the pre-
trained word vectors in the absence of synonymy
and/or antonymy relations, we have conducted ad-
ditional experiments which we also present.

In all of our experiments we have applied the
counter-fitting process upon the Paragram-SL999
word vectors provided by Wieting et al. (2015).
With respect to the textual information extracted
for each entity, we have only used the entity’s ID
(rdf:ID). To estimate the precision, recall and F1
measure of all the systems, that we consider for
testing, and check for the statistical significance
of the results we use an approximate randomiza-
tion test with 1048576 shuffles, as described in
Yeh (2000).

4.1 Semantic Lexicons

Let ω1 = {word11, word12, . . . , word1m}, ω2 =
{word21, word22, . . . , word2n} be the textual infor-
mation that accompanies two entities from differ-
ent ontologies. We extracted the synonymy and
antonymy constraints that we used in the experi-
ments from the following semantic lexicons:

WordNet: a well known lexical database for
the English language (Miller, 1995). In our experi-
ments we did not use WordNet synonyms. Instead,
we have included WordNet antonymy pairs to-

gether with the ”antonymy” relations extracted by
the ontologies. The strategy that we have followed
in order to create the WordNet’s antonymy pairs
is that every two words with antonymous word
senses, we have considered them as antonyms.

PPDB 2.0: the latest release of the Paraphrase
Database (Pavlick et al., 2015). We have used this
database in two different ways. We have used
the largest available single-token terms (XXXL
version) in the database and we have extracted
the Equivalence relations as synonyms, and the
Exclusion relations as antonyms. Additionally,
we have searched the whole XXXL version of
PPDB for paraphrases based on the words ap-
peared in two entities from different ontologies.
Namely, our strategy was the following: If the
pair (word1i , word

2
j ) or the pair (word2j , word

1
i )

appeared on the PPDB and their type of relation
was not Exclusion, we considered it as synonym.

WikiSynonyms: a semantic lexicon which is
built by exploiting the Wikipedia redirects to dis-
cover terms that are mostly synonymous (Dakka
and Ipeirotis, 2008). In our experiments we have
used it only on the Schema.org1 - DBpedia2 sce-
nario. Our strategy was the following: we search
if there exist synonyms in the WikiSynonyms for
the ω1 and ω2. If this is the case, we extract them
and we stop there. In the opposite case we extract
the synonyms for each word1i and word2j .

4.2 Hyperparameter Tuning

We tuned the hyperparameters on a set of 100
alignments which we generated by randomly sam-
pling the synonyms and antonyms extracted from
WordNet and PPDB. We chose the vocabulary of
the 100 alignments so that it is disjoint to the vo-
cabulary that we used in the alignment experi-
ments, described in the evaluation benchmarks, in
order to avoid any information leakage from train-
ing to testing. We tuned to maximize the F1 mea-
sure. In particular, we did a coarse grid search
over a parameter space for κ1, κ2, κ3, r, ε and
thres. We considered κ1, κ2 ∈ [0.35, 0.45] and
κ3 ∈ [0.1, 0.2] with common step 0.01, r ∈ [1, 10]
with step 1, ε ∈ [0.01, 0.1] with step 0.01 and
thres ∈ [0.3, 0.7] with step 0.05. We trained for
25 epochs for each hyperparameter using SGD.

1https://github.com/schemaorg/
schemaorg/blob/sdo-callisto/data/
releases/3.2/schema.ttl

2http://downloads.dbpedia.org/2014/
dbpedia_2014.owl.bz2
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The best values were the following: κ1 = 0.4,
κ2 = 0.4, κ3 = 0.1, r = 8, ε = 0.07 and
thres = 0.5. We used the selected configuration
on all the alignment scenarios described below.

4.3 Evaluation Benchmarks
One of our evaluation benchmarks comes from the
Ontology Alignment Evaluation Initiative (OAEI),
which organizes annual campaigns for evaluating
ontology matching systems. The external to OAEI
evaluation benchmark comes from the provided
alignments between the Schema.org and the DB-
pedia ontologies. We provide some further details
for each dataset below:

OAEI Conference Dataset: It contains 7 on-
tologies addressing the same domain, namely the
conference organization. These ontologies are
suitable for ontology matching task because of
their heterogeneous character of origin. The over-
all performance (micro-precision, micro-recall,
micro-F1) of the systems is tested upon 21 dif-
ferent test cases. Specifically, we summed up
the individual true positives, false positives and
false negatives based on the system results for
the different ontology matching tasks and, in the
next step, we computed the performance metrics.
The original reference alignment is not closed un-
der the alignment relation, so the transitive clo-
sure should be computed before proceeding on the
evaluation of the systems.

Schema.org - DBpedia Alignment: It cor-
responds to the incomplete mapping of the
Schema.org and DBpedia ontologies. Schema.org
is a collaborative, community activity with a mis-
sion to create, maintain, and promote schemas for
structured data on the Internet, on web pages, in
email messages, and beyond. On the other hand,
DBpedia is a crowd-sourced community effort to
extract structured information from Wikipedia and
make this information available on the Web. This
alignment corresponds to a real case scenario be-
tween two of the most widely used ontologies in
the web today.

4.4 Experimental Results
All the systems presented in the Conference
dataset experiments (Table 1) fall into the category
of feature engineering. CroMatch (Gulić et al.,
2016), AML (Cruz et al., 2009), XMap (Djeddi
and Khadir, 2010) perform ontology matching
based on heuristic methods that rely on ag-
gregation functions. LogMap and LogMapBio

(Jiménez-Ruiz and Grau, 2011) use logic-based
reasoning over the extracted features and cast the
ontology matching to a satisfiability problem.

4.4.1 OAEI Conference Dataset
Table 1 shows the performance of our algorithm
compared to the five top performing systems on
the Conference 2016 benchmark, according to
the results published in OAEI3. DeepAligment
achieves the highest micro-F1 measure and the
highest recall. We were able to perform statisti-
cal significance test only for the two systems that
were publicly available. DeepAlignment is signif-
icantly better than both of them with a p-value ≤
0.05. In order to explore the performance effect of
the many-to-many mappings that DeepAlignment
produces we also did experiments where our ex-
tendMap algorithm was not used, thus generating
only one-to-one alignments. We give these results
under the DeepAlignment∗ listing. It can be seen
that DeepAlignment∗ achieves the same level of
recall as the state-of-the-art systems and this with
no feature engineering. When we compare the
performance of DeepAlignment∗ and DeepAlign-
ment we see that the use of extendMap generates
correct many-to-many alignments and thus it does
not produce large numbers of false positives. In
any case, however, we retain a small precision
which indicates a semantic similarity and concep-
tual association coalescence.

System Precision Recall Micro-F1
DeepAlignment 0.71 0.80 0.75

CroMatch 0.76 0.69 0.72
AML 0.79 0.65 0.71

DeepAlignment∗ 0.68 0.68 0.68
XMap 0.81 0.58 0.67

LogMap 0.79 0.58 0.66
LogMapBio 0.75 0.58 0.65
StringEquiv 0.83 0.50 0.62

Table 1: Results on Conference OAEI dataset. StringE-
quiv corresponds to ontology matching by simple
string equivalence check.

We perform additional experiments to inves-
tigate the importance of the counter-fitting step,
which are summarized in Table 2. In all of these
experiments, we have applied the extendMap al-
gorithm. The last row of Table 2, corresponds to
the best result reported in Table 1. The first row

3http://oaei.ontologymatching.org/
2016/
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gives the results of executing the algorithm with-
out the counter-fitting process, just by providing
the Paragram-SL999 word vectors.

Parameters Precision Recall Micro-F1Synonyms Antonyms
No No 0.63 0.55 0.59
No Yes 0.67 0.51 0.58
Yes No 0.69 0.72 0.71
Yes Restricted 0.65 0.78 0.71
Yes Yes 0.71 0.80 0.75

Table 2: Experiments on Conference OAEI dataset.

The results support the importance of the
counter-fitting process, which succeeds in tailor-
ing the word embeddings to the ontology match-
ing task. By injecting only antonymy information
(second row), we observe an increase in precision,
but a decrease in recall. This behavior is due to the
fact that the antonym repel factor imposes an or-
thogonality constraint to the word vectors, leading
to higher values of the dis distance. In absence of
synonymy information, the majority of words tend
to become “antonymous”. The third row of Table
2 gives the performance when we also include syn-
onyms extracted from PPDB but no antonymy in-
formation. We can see that this leads to a large in-
crease of all the recorded performance metrics. Fi-
nally, we also include antonymy information only
from the Cmt and the Conference ontologies found
in the Conference dataset. This has two effects:
an increase in recall, but a decrease in precision.
This can be explained by the fact that even though
all ontologies describe the same domain the de-
scription granularity provided by each of them is
not capable of giving all the antonymy relations
needed to provide more refined alignments.

4.4.2 Schema.org - DBpedia Alignment
Table 3 summarizes the obtained results from the
matching of the Schema.org and DBpedia ontolo-
gies. The fact that the alignment is incomplete
restricts us on testing the performance only on
the recall. To make the comparison as fair as
possible, we did not apply the extendMap algo-
rithm. We should highlight that we have ap-
plied the recounter-fitting process because the syn-
onyms that we have extracted from the PPDB
and WikiSynonyms were very few compared to
the constructed “antonyms”. The results of the
LogMap system show a quite similar behavior
with the experiments conducted in the conference
dataset. However the recall of AML is zero. It

System Recall
DeepAlignment∗ 0.82

LogMap 0.5
AML 0

Table 3: Results on aligning Schema.org and DBpedia
ontologies.

discovers none of the available alignments even
though it manages to recall other quite reasonable
matchings, which, however, are not included in the
ground truth. According to our understanding, this
might be an indication of the absence of domain
transferability of the extracted features as well as
of the implemented metrics. We summarize in Ta-

Parameters RecallRecounter-fitting Synonyms Antonyms
No No No 0.71
No No Yes 0.76
No Yes No 0.84
No Yes Yes 0.76
Yes Yes Restricted 0.82

Table 4: Experiments on aligning Schema.org and DB-
pedia ontologies. Restricted indicates that we choose
only a small random subset of the antonymy con-
straints.

ble 4 the results of the experiments we did on the
two domains to study the effect of counter-fitting
and recounter-fitting. As we can see, even without
the counter-fitting, the semantic embeddings show
quite good results. This provides evidence on the
importance of using representation learning tech-
niques instead of the classical feature engineering
choice. By injecting only antonymy information
(second row), we observe a different behavior in
the recall metric compared to the one presented in
Table 2. This can be explained by the fact that
while the antonym repel factor imposes an orthog-
onality constraint, its effect is by no means univer-
sal to the whole word vector space. Therefore, a
misalignment can be pushed far away leaving the
space open for a true alignment to be detected.
With the addition of the extracted synonyms, we
observe an increase of 0.13 in the recall. However,
the insertion of the extracted “antonyms” leads to
lower performance. This shows practically the
importance of applying the recounter-fitting pro-
cess that allows both the synonym attract and the
antonym repel factors to affect the word vectors.
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4.5 Further Analysis
DeepAlignment vs. initial word vectors. To in-
vestigate the impact of the initial pre-trained word
vectors on DeepAlignment’s performance, we car-
ried out two additional experiments, this time us-
ing a set of word2vec vectors (Mikolov et al.,
2013b), trained on the Google news dataset4. We
report and compare the obtained results to the
ones produced by the use of Paragram-SL999 vec-
tors in Table 5. In the absence of counter-fitting,

Counter
fitting

Word
Vectors

Conference Schema.org
DBpedia

P R Micro-F1 R
No word2vec 0.64 0.52 0.58 0.74
No Paragram 0.63 0.55 0.59 0.71
Yes word2vec 0.67 0.75 0.71 0.75
Yes Paragram 0.71 0.80 0.75 0.76

Table 5: Dependency of DeepAlignment’s perfor-
mance on the choice of the initial word vectors6.

the word2vec vectors achieve better results on the
Schema.org - DBpedia scenario, however, they ex-
hibit lower performance on the conference dataset.
This observation is in accordance with recent stud-
ies (Hill et al., 2016a) which show that different
word vectors optimization objectives yield repre-
sentations tailored to different applications and do-
mains. After the application of the counter-fitting
process, the use of Paragram-SL999 vectors leads
to a better performance. This fact provides addi-
tional evidence that word vectors which reflect se-
mantic similarity are better candidates for being
further tailored to the ontology matching task.

DeepAlignment vs. resources’ coverage. The
choice and coverage of the different lexical re-
sources may have a determining factor on the per-
formance of DeepAlignment. For that reason, we
present in Table 6 a set of experiments where we
exclude a part of the synonymy/antonymy rela-
tions from the various semantic lexicons. For both
the matching scenarios, we experimented with ex-
cluding all the antonyms from PPDB and Wik-
iSynonyms. For the conference dataset, we addi-
tionaly experimented with including only a sub-
set of PPDB synonyms (50% coverage). Finally,
we carried out one experiment where we excluded
all the synonymy information extracted from Wik-
iSynonyms for the Schema.org - DBpedia sce-
nario. The resulted performance is presented in

4https://code.google.com/p/word2vec
6For the Schema.org - DBpedia scenario’s experiments,

the recounter-fitting process has not been applied.

the rows 1, 4, 2, 5 of Table 6, respectively. The re-
ported results provide evidence that the greater the
coverage of synonyms and antonyms, the greater
the performance of DeepAlignment will be.

Dataset Experiment
Setting P R Micro-F1

Conference

With no antonyms from
PPDB & WikiSynonyms

0.67 0.76 0.71

With only a subset of
the PPDB synonyms

0.67 0.76 0.71

With all the available
synonyms/antonyms

0.71 0.80 0.75

Schema.org
DBpedia

With no antonyms from
PPDB & WikiSynonyms

- 0.76 -

With no synonyms from
WikiSynonyms

- 0.73 -

With all the available
synonyms & antonyms

- 0.76 -

Table 6: Dependency of DeepAlignment’s perfor-
mance on the external resources’ coverage6.

5 Conclusion

In this paper, we propose the refinement of pre-
trained word vectors with the purpose of deriv-
ing ontological entity descriptions which are tai-
lored to the ontology matching task. The refined
word representations are learned so that they in-
corporate domain knowledge encoded in ontolo-
gies as well as knowledge extracted from seman-
tic lexicons. The refinement procedure does not
use any explicit information relevant to the ontol-
ogy matching task making the entity representa-
tion task completely unsupervised. We perform
ontology matching by applying the Stable Mar-
riage algorithm over the entities’ pairwise dis-
tances. Our experimental results demonstrate sig-
nificant performance gains over the state-of-the-
art and show a novel way to study the problem of
ontology matching under the setting of NLP.

Acknowledgments

We would like to thank the anonymous review-
ers for their insightful comments on the paper.
This project was supported by the Swiss State
Secretariat for Education, Research and Inno-
vation SERI (SERI; contract number 15.0303)
through the European Union’s Horizon 2020 re-
search and innovation programme (grant agree-
ment No 688203; bIoTope). This paper reflects
the authors’ view only, and the EU as well as the
Swiss Government is not responsible for any use
that may be made of the information it contains.

795



References
Sarawat Anam, Yang Sok Kim, Byeong Ho Kang, and

Qing Liu. 2015. Review of ontology matching ap-
proaches and challenges. International journal of
Computer Science and Network Solutions 3(3):1–27.
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Abstract

Recurrent neural networks have achieved
state-of-the-art results in many artificial in-
telligence tasks, such as language modeling,
neural machine translation, speech recognition
and so on. One of the key factors to these
successes is big models. However, training
such big models usually takes days or even
weeks of time even if using tens of GPU
cards. In this paper, we propose an efficient
architecture to improve the efficiency of such
RNN model training, which adopts the group
strategy for recurrent layers, while exploiting
the representation rearrangement strategy be-
tween layers as well as time steps. To demon-
strate the advantages of our models, we con-
duct experiments on several datasets and tasks.
The results show that our architecture achieves
comparable or better accuracy comparing with
baselines, with a much smaller number of pa-
rameters and at a much lower computational
cost.

1 Introduction

Recurrent Neural Networks (RNNs) have been
widely used for sequence learning, and achieved
state-of-the-art results in many artificial intelli-
gence tasks in recent years, including language
modeling (Zaremba et al., 2014; Merity et al.,
2017), neural machine translation (Sutskever
et al., 2014; Bahdanau et al., 2014), and speech
recognition (Graves et al., 2013).

To get better accuracy, recent state-of-the-art
RNN models are designed toward big scale, in-
clude going deep (stacking multiple recurrent lay-
ers) (Pascanu et al., 2013a) and/or going wide (in-
creasing dimensions of hidden states). For exam-
ple, an RNN based commercial Neural Machine
Translation (NMT) system would employ tens of
layers in total, resulting in a large model with hun-
dreds of millions of parameters (Wu et al., 2016).
However, when the model size increases, the com-
putational cost, as well as the memory needed for

the training, increases dramatically. The training
cost of aforementioned NMT model reaches as
high as 1019 FLOPs, and the training procedure
spends several days with even 96 GPU cards (Wu
et al., 2016) – such complexity is prohibitively ex-
pensive.

While above models benefit from big neural
networks, it is observed that such networks often
have redundancy of parameters (Kim and Rush,
2016), motivating us to improve parameter ef-
ficiency and design more compact architectures
that are more efficient in training while keeping
good performance. Recently, many efficient archi-
tectures for convolution neural networks (CNNs)
have been proposed to reduce training cost in com-
puter vision domain. Among them, the group con-
volution is one of the most widely used and suc-
cessful attempts (Szegedy et al., 2015; Chollet,
2016; Zhang et al., 2017b), which splits the chan-
nels into groups and conducts convolution sepa-
rately for each group. It’s essentially a diagonal
sparse operation to the convolutional layer, which
reduces the number of parameters as well as the
computation complexity linearly w.r.t. the group
size. Empirical results for such group convolu-
tion optimization show great speed up with small
degradation on accuracy. In contrast, there are
very limited attempts for designing better archi-
tectures for RNNs.

Inspired by those works on CNNs, in this pa-
per, we generalize the group idea to RNNs to con-
duct recurrent learning in the group level. Differ-
ent from CNNs, there are two kinds of parame-
ter redundancy in RNNs: (1) the weight matrices
transforming a low-level feature representation to
a high-level one may contain redundancy, and (2)
the recurrent weight matrices transferring the hid-
den state of the current step to the hidden state of
the next step may also contain redundancy. There-
fore, when designing efficient RNNs, we need to
consider both the kinds of redundancy.
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We present a simple architecture for efficient
sequence learning which consists of group recur-
rent layers and representation rearrangement lay-
ers. First, in a recurrent layer, we split both the
input of the sequence and the hidden states into
disjoint groups, and do recurrent learning sepa-
rately for each group. This operation clearly re-
duces the model complexity, and can learn intra-
group features efficiently. However, it fails to cap-
ture dependency cross different groups. To recover
the inter-groups correlation, we further introduce
a representation rearrangement layer between any
two consecutive recurrent layers, as well as any
two time steps. With these two operations, we
explicitly factorize a recurrent temporal learning
into intra-group temporal learning and inter-group
temporal learning with a much smaller number of
parameters.

The group recurrent layer we proposed is equiv-
alent to the standard recurrent layer with a block-
diagonal sparse weight matrix. That is, our model
employs a uniform sparse structure which can be
computed very efficiently. To show the advantages
of our model, we analyze the computation cost and
memory usage comparing with standard recurrent
networks. The efficiency improvement is linear to
the number of groups. We conduct experiments
on language modeling, neural machine translation
and abstractive summarization by using a state-of-
the-art RNN architecture as baseline. The results
show that our model can achieve comparable or
better accuracy, with a much smaller number of
parameters and in a shorter training time.

The remainder of this paper is organized as fol-
lows. We first present our newly proposed archi-
tecture and conduct in depth analysis on its effi-
ciency improvement. Then we show a series of
empirical study to verify the effectiveness of our
methods. Finally, to better position our work, we
introduce some related work and then conclude
our work.

2 Architecture

In this section, we introduce our proposed archi-
tecture for RNNs. Before getting into the details
of the group recurrent layer and representation re-
arrangement layer in our architecture, we first re-
visit the vanilla RNNs.

An RNN is a neural network with recurrent lay-
ers that capture temporal dynamics of a sequence
with arbitrary length. It recursively applies a tran-

sition function to its internal hidden state for each
symbol of input sequence. The hidden state at time
step t is computed as a function f of the current in-
put symbol xt and the previous hidden state ht−1
in a recurrent form:

ht = f (xt, ht−1) . (1)

For vanilla RNN, the commonly used state-to-
state transition function is,

ht = tanh (Wxt + Uht−1) , (2)

where W is the input-to-hidden weight matrix, U
is the state-to-state recurrent weight matrix, and
tanh is the hyperbolic tangent function. Our work
is independent to the choices of the recurrent func-
tion (f in Equation 1). For simplicity, in the fol-
lowing, we take the vanilla RNN as an example to
introduce and analyze our new architecture.

We aim to design an efficient RNN architec-
ture by reducing the parameter redundancy while
keeping accuracy at the same time. Inspired by
the success of group convolution in CNN, our ar-
chitecture employs the group strategy to achieve
a sparsely connected structure between neurons
of recurrent layers, and employs the representa-
tion rearrangement to recover the correlation that
may destroyed by the sparsity. At a high level, we
explicitly factorize the recurrent learning as inter-
group recurrent learning and intra-group recurrent
learning. In the following, we will describe our
RNN architecture in detail, which consists of a
group recurrent layer for intra-group correlation
and a representation rearrangement layer for inter-
group correlation.

2.1 Group recurrent layer for intra-group
correlation

For standard recurrent layer, the model complexity
increases quadratically with the dimension of hid-
den state. Suppose the input x is with dimension
M , while the hidden state is with dimension N .
Then, for standard vanilla RNN cell, according to
Equation 2, the number of parameters, as well as
the computation cost is

N2 +N ∗M. (3)

It’s obvious that the hidden state dimension
largely determines the model complexity. Opti-
mization on reducing computation w.r.t the hid-
den state is the key to improve the overall effi-
ciency. Accordingly, we present a group recurrent
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(a) (b) (c)

Figure 1: Illustration of group recurrent network architecture. hkt,i represents the hidden state of k-th group in i-th
layer for time step t (a) The standard recurrent neural networks. (b) The group recurrent neural networks without
representation rearrangement. This is efficient but the output only depends on the input in corresponding feature
group. (c) Our proposed group recurrent neural network architecture, constituted with group recurrent layer and
representation rearrangement layer.

layer which adopts a group strategy to approxi-
mate the standard recurrent layer. Specifically, we
consider to split both the input xt and hidden state
ht into K disjoint groups as {x1t , x2t , ..., xKt } and
{h1t , h2t , ..., hKt } respectively, where xit, h

i
t repre-

sent the input and hidden state for i-th group at
time step t. Based on this split, we then per-
form recurrent computation in every group inde-
pendently. This will captures the intra-group tem-
poral correlation within the sequence. Formally,
in the group recurrent layer, we first compute the
hidden state of each group hit as

hit = fi(x
i
t, h

i
t−1), i = 1, 2, ...,K. (4)

Then, concatenating all the hidden states from
each group together,

ht = concat(h1t , h
2
t , ..., h

K
t ) (5)

we get the output of the group recurrent layer. The
group recurrent layer is illustrated as Figure 2(a)
and Figure 1(b).

Obviously, by splitting the features and hidden
states into K groups, the number of parameters
and the computation cost of recurrent layer reduce
to

K ∗ ((N
K

)2 +
N

K
∗ M
K

) =
N2 +N ∗M

K
(6)

Comparing Equation 3 with Equation 6, the group
recurrent is K times more efficient than the stan-
dard recurrent layer, in terms of both computa-
tional cost and number of parameters.

Although the theoretical computational cost is
attractive, the speedup ratio also depends on the

(a) (b)

Figure 2: Illustration of group recurrent network along
the temporal direction. (a) The group recurrent neu-
ral network without representation rearrangement. (b)
Our proposed group recurrent neural network with rep-
resentation rearrangement.

implementation details. A naive implementation
of Equation 4 would introduce a for loop, which
is not efficient since the additional overhead and
poor parallelism. In order to really achieve linear
speed up, we employ a batch matrix multiplication
to assemble the computation of different groups in
a single round of matrix multiplication. This op-
eration is critical especially when each group isn’t
big enough to fully utilize the entire GPU compu-
tation power.

2.2 Representation rearrangement for
inter-group correlation

Group recurrent layer is K times more efficient
comparing with the standard recurrent layer. But,
it only captures the temporal correlation inside
a single feature group and fails to learn depen-
dency across features from different groups. more
specifically, the internal state of RNN only con-
tains history from corresponding group (Figure

801



1(b)). Similar problem also exists in the vertical
direction of group recurrent layers (Figure 2(a)).
Consider a network with multiple stacked group
recurrent layers, the output of the specific group
are only get from the corresponding input group.
Obviously, there will be a significant drop of rep-
resentation power since many feature correlations
are cut off by this architecture.

To recover the inter-group correlations, one
simple way is adding a projection layer to trans-
form the hidden state outputted by the group re-
current layer, like the 1 × 1 convolution used
in depthwise separable convolutional (Chollet,
2016). However, such method would bring addi-
tional N2 computation complexity and model pa-
rameters.

Inspired by the idea of permuting channels be-
tween convolutional layers in recent CNN archi-
tectures (Zhang et al., 2017a,b), we propose to add
representation rearrangement layer between con-
secutive group recurrent layers (Figure 1(c)), as
well as the time steps within a group recurrent
layer (Figure 2(b)). The representation rearrange-
ment aims to rearrange the hidden representation,
to make sure the subsequent layers, or time steps,
can see features from all input groups.

The representation rearrangement layer is
parameter-free and simple. We leverage the same
implementation in (Zhang et al., 2017b) to con-
duct the rearrangement. It’s finished with basic
tensor operations reshape, and transpose, which
brings (almost) no runtime overhead in our ex-
periments. Consider the immediate representation
ht ∈ RN outputted by group recurrent layer with
group number K. First, we reshape the repre-
sentation to add an additional group dimension,
resulting in a tensor with new shape (K,N/K).
Second, we transpose the two dimensions of the
temporary tensor, changing the tensor shape to
(N/K,K). Finally, we reshape the tensor along
the first axis to restore the representation to its
original shape (a vector of size N ). Figure 3 illus-
trates the operations with a simple example whose
representation is with size 8 and group number is
2.

Combining the group recurrent layer and repre-
sentation rearrangement layer, we rebuild the re-
current layer into an efficient and effective layer.
We note that, different from convolutional neural
networks that are only deep in space, the stack
RNNs are deep in both space and time. Figure 1

illustrates our architecture along the spatial direc-
tion, and Figure 2 illustrates our architecture along
the temporal direction. By applying group op-
eration and representation rearrangement in both
space and time, we build a new recurrent neural
network with high efficiency.

3 Discussion

In this section, we analyze the relation between
group recurrent layer and standard recurrent layer,
and discuss the advantages of group recurrent net-
works.

3.1 Relation to standard recurrent layer
The group recurrent layer in Equation 4 and 5 can
be re-formulated as

ht = tanh (




W 1 0 · · · 0
0 W 2 · · · 0
...

...
. . .

...
0 0 · · · WK







x1t
x2t
...
xKt




+




U1 0 · · · 0
0 U2 · · · 0
...

...
. . .

...
0 0 · · · UK







h1t
h2t
...
hKt


)

(7)

From the reformulation, we can see group recur-
rent layer is equivalent to standard recurrent layer
with block-diagonal sparse weight matrix. Our
method employs a group level sparsity in recurrent
computation, leading to a uniform sparse struc-
ture. This uniform sparse structure can enjoy the
efficient computing of dense matrix, as we dis-
cussed in Section 2.1. This reformulation also
shows that there is no connection across neurons in
different groups. Increasing the group number will
lead to higher sparse rate. This sparse structure
may limit the representation ability of our model.
In order to recover the correlation across differ-
ent groups, we add representation rearrangement
to make up for representation ability.

3.2 Model capacity
We have shown that with same width of recur-
rent layer, our architecture with group number K
achieves a compact model, which hasK times less
number of parameters than the standard recurrent
network. Therefore with same number of param-
eters, group recurrent networks can provide more
possibility to try more complex model without any
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Figure 3: Illustration of the implementation of repre-
sentation rearrangement with basic tensor operation.

additional computation and parameter overhead.
Given a standard recurrent neural network, we can
construct a corresponding group recurrent neural
network with same number of parameters, but with
K times wider, or with K times deeper. A factor
smaller than K would make our networks still ef-
fective than standard recurrent network, but with
wider and/or deeper recurrent layers. This could
somehow compensate the potential performance
drop due to the aggressive sparsity when group
number is too large. Therefore, our architecture
provides large model space to find a better trade-
off between parameter and performance given a
fixed resource budget. And our model is a more
effective RNN architecture when the network goes
deeper and wider.

At last, we note that our architecture focuses on
improving the efficiency of recurrent layers. Thus
the whole parameter and computational cost re-
duction depend on the ratio of recurrent layer in
the entire network. Consider a text classification
task, a often used RNN model would introduce an
embedding layer for the input tokens and a soft-
max layer for the output, making the parameter re-
duction and speedup for the whole network is not
strictly linear with the group number. However,
we argue that for deeper and/or wider RNN whose
recurrent layers dominate the parameter and com-
putational cost, our method would enjoy more ef-
ficiency improvement.

4 Experiments

In this section, we present results on three se-
quence learning tasks to show the effectiveness of
our method: 1). language modeling; 2). neural
machine translation; 3). abstractive summariza-
tion.

4.1 Language modeling
For evaluating the effectiveness of our approach,
we perform language modeling over Penn Tree-
bak (PTB) dataset (Marcus et al., 1993). We
use the data preprocessed by (Mikolov et al.,
2010) 1, which consists of 929K training words,
73K validation words, and 82K test words. It
has 10K words in its vocabulary. We compare
our method (named Group LSTM) with the stan-
dard LSTM baseline (Zaremba et al., 2014) and
its two variants with Bayesian dropout (named
LSTM + BD) (Gal and Ghahramani, 2016) and
with word tying (named LSTM + WT) (Press and
Wolf, 2017). Following the big model settings
in (Zaremba et al., 2014; Gal and Ghahramani,
2016; Inan et al., 2016) , all experiments use a
two-layer LSTM with 1, 500 hidden units and an
embedding of size 1, 500. We set group number
2 in this experiment since PTB is a relative sim-
ple dataset. We use Stochastic Gradient Descent
(SGD) to train all models.

Results We compare the word level perplexity
obtained by the standard LSTM baseline mod-
els and our group variants, in which we replace
the standard LSTM layer with our group LSTM
layer. As shown in Table 1, Group LSTM achieves
comparable performance with the standard LSTM
baseline, but with a 27% parameter reduction. A
variant using Bayesian dropout (BD) is proposed
by (Gal and Ghahramani, 2016) to prevent over-
fitting and improve performance. We test our
model with LSTM + BD, achieving similar re-
sults with above comparison. Finally, we compare
our model with the recently proposed word tying
(WT) technology, which ties input embedding and
output embedding with same weights. Our model
achieves even better perplexity than the results re-
ported by (Press and Wolf, 2017). Since word ty-
ing reduces the number of parameters of embed-
ding and softmax layers, thus improving the ratio
of LSTM layer parameter. Our method achieves a
35% parameter reduction.

4.2 Neural machine translation
We then study our model in neural machine trans-
lation. We conduct experiments on two translation
tasks, German-English task (De-En for short) and
English-German task (En-De for short). For De-
En translation, we use data from the De-En ma-

1http://www.fit.vutbr.cz/˜imikolov/
rnnlm/simple-examples.tgz
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Model Parameters Validation Set Test Set
LSTM (Zaremba et al., 2014) 66M 82.2 78.4
2 Group LSTM 48M 82.0 78.6
LSTM + BD (Gal and Ghahramani, 2016) 66M 77.9 75.2
2 Group LSTM + BD 48M 79.9 75.8
LSTM + WT (Press and Wolf, 2017) 51M 77.4 74.3
2 Group LSTM + WT 33M 76.8 73.3
LSTM + BD + WT (Press and Wolf, 2017) 51M 75.8 73.2
2 Group LSTM + BD + WT 33M 75.6 71.8

Table 1: Single model complexity on validation and test sets for the Penn Treebank language modeling task. BD
is Bayesian dropout. WT is word tying.

chine translation track of the IWSLT 2014 evalua-
tion campaign (Cettolo et al., 2014). We follow the
pre-processing described in previous works (Wu
et al., 2017). The training data comprises about
153K sentence pairs. The size of validation data
set is 6, 969, and the test set is 6, 750. For En-De
translation, we use a widely adopted dataset (Jean
et al., 2015; Wu et al., 2016). Specifically, part of
data in WMT’14 is used as the training data, which
consists of 4.5M sentences pairs. newstest2012
and newstest2013 are concatenated as the valida-
tion set and newstest2014 acts as test set. These
two datasets are preprocessed by byte pair encod-
ing (BPE) with vocabulary of 25K and 30K for
De-En and En-De respectively, and the max length
of sub-word sentence is 64.

Our model is based on RNNSearch model (Bah-
danau et al., 2014), but replacing the standard
LSTM layer with our group LSTM layer. There-
fore, we name our model as Group RNNSearch
model. The model is constructed by LSTM en-
coder and decoder with attention, where the first
layer of encoder is bidirectional LSTM. For De-
En, we use two layers for both encoder and de-
coder. The embedding size is 256, which is same
as the hidden size for all LSTM layers. As for En-
De, we use four layers for encoder and decoder 2.
The embedding size is 512 and the hidden size is
1024 3. All the models are trained by Adadelta
(Zeiler, 2012) with initial learning rate 1.0. The
gradient is clipped with threshold 2.5. The mini-
batch size is 32 for De-En and 128 for En-De. We
use dropout (Srivastava et al., 2014) with rate 0.1
for all layers except the layer before softmax with
0.5. We halve the learning rate according to the
validation performance.

2For easy to implement, we still keep the first layer with
attention computation in the decoder as original LSTM layer.

3In our implementation, suppose the hidden size is d, after
the first bi-directional LSTM layer in the encoder, the hidden
size of the above LSTM layers in the encoder should be 2×d.

Model Params BLEU
NPMT (Huang et al., 2017) Unclear 30.08

RNNSearch 6.0M 31.03
2 Group RNNSearch 4.3M 31.08
4 Group RNNSearch 3.4M 30.96
8 Group RNNSearch 3.0M 30.73
16 Group RNNSearch 2.7M 30.35

Table 2: BLEU scores on IWSLT 2014 De-En test set.
We report BLEU score results together with number of
parameters of recurrent layers.

Model Params BLEU
DeepLAU (Wang et al., 2017) Unclear 23.80

GNMT (Wu et al., 2016) 160M‡ 24.61
2 Group RNNSearch 111M 23.93
4 Group RNNSearch 78M 23.61

Table 3: BLEU scores on WMT’14 En-De test set. We
report BLEU score results together with number of pa-
rameters of recurrent layers. Numbers with ‡ are ap-
proximately calculated by ourselves according to the
settings described in the paper.

Results We compute tokenized case-sensitive
BLEU (Papineni et al., 2002) 4 score as evalua-
tion metric. For decoding, we use beam search
(Sutskever et al., 2014) with beam size 5.

From Table 2, we can observe that on De-En
task, Group RNNSearch models achieve compa-
rable or better BLEU score compared with the
RNNSearch but with much less number of param-
eters. Specifically, with group number 2 and 4,
we achieve about 28% and 43% parameter reduc-
tion of recurrent layers respectively. Note that our
results also outperform the state-of-the-art result
reported in NPMT (Huang et al., 2017).

The En-De translation results are shown in
Table 3. We compare our Group RNNSearch
models with Google’s GNMT system (Wu et al.,
2016) and DeepLAU (Wang et al., 2017). Our 4

4https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl
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Group RNNSearch model achieves 23.61, which
is comparable to DeepLAU (23.80). Our 2 Group
RNNSearch model achieves a BLEU score of
23.93, slightly less than GNMT (24.61), but out-
performs the DeepLAU. More importantly, our
Group RNNSearch models decrease more than
30% and 50% RNN parameters with 2 groups and
4 groups respectively compared with GNMT.

4.3 Abstractive summarization

At last, we valid our approach on abstractive sum-
marization task. We train on the Gigaword corpus
(Graff and Cieri, 2003) and pre-process it iden-
tically to (Rush et al., 2015; Shen et al., 2016),
resulting in 3.8M training article-headline pairs,
190K for validation and 2, 000 for test. Similar
to (Shen et al., 2016), we use a source and target
vocabulary consisting of 30K words.

The model is almost same as the one used in
De-En machine translation, which is a two lay-
ers RNNSearch model, except that the embedding
size is 512, and the LSTM hidden size in both en-
coder and decoder is 512. The initial values of all
weight parameters are uniformly sampled between
(−0.05, 0.05). We train our Group RNNSearch
model by Adadelta (Zeiler, 2012) with learning
rate 1.0 and gradient clipping threshold 1.5 (Pas-
canu et al., 2013b). The mini-batch size is 64.

Results We evaluate the summarization task by
commonly used ROUGE (Lin, 2004) F1 score.
During decoding, we use beam search with beam
size 10. The results are shown in Table 4.

From Table 4, we can observe that the perfor-
mance is consistent with machine translation task.
Our Group RNNSearch model achieves compa-
rable results with RNNSearch, and our 2 Group
RNNSearch model even outperforms RNNSearch
baseline. Besides, we compare with several other
widely adopted methods, our models also show
strong performance. Therefore, we can keep
the good performance even though we reduce
the parameters of the recurrent layers by nearly
50%, which greatly proves the effectiveness of our
method.

4.4 Ablation analysis

In addition to showing that group RNN can
achieve competing or better performance with
much less number of parameters, we further study
the effect of group number to training speed and
convergence, and the effect of representation rear-

Model Params R-1 R-2 R-L
(Rush et al., 2015) - 29.8 11.9 26.9

(Luong et al., 2015) - 33.1 14.4 30.7
(Chopra et al., 2016) - 33.8 15.9 31.1

RNNSearch 24.1M 34.4 15.8 31.8
2 Group RNNSearch 17.0M 34.8 15.9 32.1
4 Group RNNSearch 13.5M 34.3 15.7 31.6
8 Group RNNSearch 11.8M 34.3 15.6 31.6

16 Group RNNSearch 10.9M 33.8 15.3 31.2

Table 4: ROUGE F1 scores on abstractive summariza-
tion test set. RG-N stands for N-gram based ROUGE
F1 score, RG-L stands for longest common subse-
quence based ROUGE F1 score. Params stands for the
parameters of the recurrent layers.

Group without with (improvement)
2 82.5 78.6 (+4.7%)
4 86.6 82.6 (+4.6%)

Table 5: The effect of representation rearrangement to
model performance.

rangement to performance. Due to space limita-
tion, we only report results for language modeling
on PTB dataset; for other tasks we have similar
results.

In Figure 4, the left one shows that how num-
ber of parameters and training speed vary when
group number ranging from 1 to 16. We can see
that the number of parameters (of recurrent lay-
ers) is reduced linearly when increasing number
of groups. In the meantime, we also achieves sub-
stantial speed up about throughput when increas-
ing group number. We note that the speedup is
sub-linear instead of linear since our method fo-
cuses on the speedup on recurrent layers, as dis-
cussed in Section 3.2. Besides, we also com-
pare the convergence curve in the right of Figure
4, which shows that our method (almost) doesn’t
slow down the convergence in terms of epoch
number. Considering the throughput speedup of
our method, we can accelerate training by a large
margin.

At last, we study the role that representation re-
arrangement layer plays in our architecture. We
compare Group LSTM with and without repre-
sentation rearrangement between layers and time
steps, with the group number 2 and 4 respectively.
From Table 5, we can see that the models with
representation rearrangement consistently outper-
forms the ones without representation rearrange-
ment. This shows the representation rearrange-
ment is critical for group RNN.
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Figure 4: Illustration of group recurrent network analysis. Left: The number of parameters and the training speed
(word per second, WPS) on different group numbers. Right: The test perplexity (convergence curve) along the
training epochs.

5 Related Work

Improving RNN efficiency for sequence learning
is a hot topic in recent deep learning research. For
parameter and computation reduction, LightRNN
(Li et al., 2016) is proposed to solve big vocabu-
lary problem with a 2-component shared embed-
ding, while our work addresses the parameter re-
dundancy caused by recurrent layers. To speed up
RNN, Persistent RNN (Diamos et al., 2016) is pro-
posed to improve the RNN computation through-
put by mapping deep RNN efficiently onto GPUs,
which exploits GPU’s inverted memory hierarchy
to reuse network weights over multiple time steps.
(Neil et al., 2017) proposes delta networks for op-
timizing the matrix-vector multiplications in RNN
computation by considering the temporal proper-
ties of the data. Quasi-RNN (Bradbury et al.,
2016) and SRU (Lei and Zhang, 2017) are pro-
posed for speeding up RNN computation by de-
signing novel recurrent units which relax depen-
dency between time steps. Different from these
works, we optimize RNN from the perspective
of network architecture innovation by adopting a
group strategy.

There is a long history about the group idea
in deep learning, especially in convolutional neu-
ral networks, aiming to improve the computation
efficiency and parameter efficiency. Such works
can date back at least to AlexNet (Krizhevsky
et al., 2012), which splits the convolutional lay-
ers into 2 independent groups for the ease of
model-parallelism. The Inception (Szegedy et al.,
2015) architecture proposes a module that em-
ploys uniform sparsity to improve the parameter
efficiency. Going to the extreme of Inception, the

Xception (Chollet, 2016) adopts a depthwise sep-
arable convolution, where each spatial convolu-
tion only works on a single channel. MobileNet
(Howard et al., 2017) uses the same idea for effi-
cient mobile model. IGCNet (Zhang et al., 2017a)
and ShuffleNet (Zhang et al., 2017b) also adopt
the group convolution idea, and further permute
the features across consecutive layers. Similar to
these works, we also exploit the group strategy.
But we focus on efficient sequence learning with
RNN, which, different from CNN, contains an in-
ternal memory and an additional temporal direc-
tion. In the RNN literature, there is only one paper
(Kuchaiev and Ginsburg, 2017), to our best knowl-
edge, exploiting the group strategy. However, this
work assumes the features are group independent,
thus failing to capturing the inter-group correla-
tion. Our work employs a representational rear-
rangement mechanism, which avoids the assump-
tion and improves the performance, as shown in
our empirical experiments.

6 Conclusion

We have presented an efficient RNN architecture
for sequence learning. Our architecture employs
a group recurrent layer to learn intra-group cor-
relation efficiently, and representation rearrange-
ment layer to recover inter-group correlation for
keeping representation ability. We demonstrate
our model is more efficient in terms of parameters
and computational cost. We conduct extensive ex-
periments on language modeling, neural machine
translations and abstractive summarization, show-
ing that our method achieves competing perfor-
mance with much less computing resource.
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Bentivogli, and Marcello Federico. 2014. Report on
the 11th iwslt evaluation campaign, iwslt 2014.

François Chollet. 2016. Xception: Deep learning with
depthwise separable convolutions. arXiv preprint
arXiv:1610.02357 .

Sumit Chopra, Michael Auli, and Alexander M Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In NAACL. pages
93–98.

Greg Diamos, Shubho Sengupta, Bryan Catanzaro,
Mike Chrzanowski, Adam Coates, Erich Elsen,
Jesse Engel, Awni Hannun, and Sanjeev Satheesh.
2016. Persistent rnns: Stashing recurrent weights
on-chip. In International Conference on Machine
Learning. pages 2024–2033.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in neural information
processing systems. pages 1019–1027.

David Graff and C Cieri. 2003. English gigaword, lin-
guistic data consortium.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and sig-
nal processing (icassp), 2013 ieee international con-
ference on. IEEE, pages 6645–6649.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. 2017. Mo-
bilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint
arXiv:1704.04861 .

Po-Sen Huang, Chong Wang, Dengyong Zhou, and
Li Deng. 2017. Neural phrase-based machine trans-
lation. CoRR abs/1706.05565.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2016. Tying word vectors and word classifiers:
A loss framework for language modeling. arXiv
preprint arXiv:1611.01462 .
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Abstract

In this paper we introduce a new publicly
available dataset for verification against
textual sources, FEVER: Fact Extraction
and VERification. It consists of 185,445
claims generated by altering sentences ex-
tracted from Wikipedia and subsequently
verified without knowledge of the sen-
tence they were derived from. The
claims are classified as SUPPORTED, RE-
FUTED or NOTENOUGHINFO by annota-
tors achieving 0.6841 in Fleiss κ. For
the first two classes, the annotators also
recorded the sentence(s) forming the nec-
essary evidence for their judgment. To
characterize the challenge of the dataset
presented, we develop a pipeline approach
and compare it to suitably designed ora-
cles. The best accuracy we achieve on la-
beling a claim accompanied by the correct
evidence is 31.87%, while if we ignore the
evidence we achieve 50.91%. Thus we be-
lieve that FEVER is a challenging testbed
that will help stimulate progress on claim
verification against textual sources.

1 Introduction

The ever-increasing amounts of textual informa-
tion available combined with the ease in sharing it
through the web has increased the demand for ver-
ification, also referred to as fact checking. While
it has received a lot of attention in the context of
journalism, verification is important for other do-
mains, e.g. information in scientific publications,
product reviews, etc.

In this paper we focus on verification of textual
claims against textual sources. When compared
to textual entailment (TE)/natural language infer-
ence (Dagan et al., 2009; Bowman et al., 2015),

the key difference is that in these tasks the passage
to verify each claim is given, and in recent years it
typically consists a single sentence, while in veri-
fication systems it is retrieved from a large set of
documents in order to form the evidence. Another
related task is question answering (QA), for which
approaches have recently been extended to han-
dle large-scale resources such as Wikipedia (Chen
et al., 2017). However, questions typically pro-
vide the information needed to identify the answer,
while information missing from a claim can of-
ten be crucial in retrieving refuting evidence. For
example, a claim stating “Fiji’s largest island is
Kauai.” can be refuted by retrieving “Kauai is the
oldest Hawaiian Island.” as evidence.

Progress on the aforementioned tasks has bene-
fited from the availability of large-scale datasets
(Bowman et al., 2015; Rajpurkar et al., 2016).
However, despite the rising interest in verification
and fact checking among researchers, the datasets
currently used for this task are limited to a few
hundred claims. Indicatively, the recently con-
ducted Fake News Challenge (Pomerleau and Rao,
2017) with 50 participating teams used a dataset
consisting of 300 claims verified against 2,595 as-
sociated news articles which is orders of magni-
tude smaller than those used for TE and QA.

In this paper we present a new dataset for claim
verification, FEVER: Fact Extraction and VER-
ification. It consists of 185,445 claims manu-
ally verified against the introductory sections of
Wikipedia pages and classified as SUPPORTED,
REFUTED or NOTENOUGHINFO. For the first two
classes, systems and annotators need to also return
the combination of sentences forming the neces-
sary evidence supporting or refuting the claim (see
Figure 1). The claims were generated by human
annotators extracting claims from Wikipedia and
mutating them in a variety of ways, some of which
were meaning-altering. The verification of each
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claim was conducted in a separate annotation pro-
cess by annotators who were aware of the page but
not the sentence from which original claim was
extracted and thus in 31.75% of the claims more
than one sentence was considered appropriate ev-
idence. Claims require composition of evidence
from multiple sentences in 16.82% of cases. Fur-
thermore, in 12.15% of the claims, this evidence
was taken from multiple pages.

To ensure annotation consistency, we developed
suitable guidelines and user interfaces, resulting
in inter-annotator agreement of 0.6841 in Fleiss κ
(Fleiss, 1971) in claim verification classification,
and 95.42% precision and 72.36% recall in evi-
dence retrieval.

To characterize the challenges posed by FEVER
we develop a pipeline approach which, given a
claim, first identifies relevant documents, then se-
lects sentences forming the evidence from the doc-
uments and finally classifies the claim w.r.t. ev-
idence. The best performing version achieves
31.87% accuracy in verification when requiring
correct evidence to be retrieved for claims SUP-
PORTED or REFUTED, and 50.91% if the correct-
ness of the evidence is ignored, both indicating the
difficulty but also the feasibility of the task. We
also conducted oracle experiments in which com-
ponents of the pipeline were replaced by the gold
standard annotations, and observed that the most
challenging part of the task is selecting the sen-
tences containing the evidence. In addition to pub-
lishing the data via our website1, we also publish
the annotation interfaces2 and the baseline system3

to stimulate further research on verification.

2 Related Works

Vlachos and Riedel (2014) constructed a dataset
for claim verification consisting of 106 claims,
selecting data from fact-checking websites such
as PolitiFact, taking advantage of the labelled
claims available there. However, in order to de-
velop claim verification components we typically
require the justification for each verdict, includ-
ing the sources used. While this information is
usually available in justifications provided by the
journalists, they are not in a machine-readable
form. Thus, also considering the small number of
claims, the task defined by the dataset proposed

1 http://fever.ai
2https://github.com/awslabs/fever
3https://github.com/sheffieldnlp/

fever-baselines

Claim: The Rodney King riots took place in
the most populous county in the USA.

[wiki/Los Angeles Riots]
The 1992 Los Angeles riots,
also known as the Rodney King riots
were a series of riots, lootings, ar-
sons, and civil disturbances that
occurred in Los Angeles County, Cali-
fornia in April and May 1992.

[wiki/Los Angeles County]
Los Angeles County, officially
the County of Los Angeles,
is the most populous county in the USA.

Verdict: Supported

Figure 1: Manually verified claim requiring evidence
from multiple Wikipedia pages.

remains too challenging for the ML/NLP methods
currently available. Wang (2017) extended this ap-
proach by including all 12.8K claims available by
Politifact via its API, however the justification and
the evidence contained in it was ignored in the ex-
periments as it was not machine-readable. Instead,
the claims were classified considering only the text
and the metadata related to the person making the
claim. While this rendered the task amenable to
current NLP/ML methods, it does not allow for
verification against any sources and no evidence
needs to be returned to justify the verdicts.

The Fake News challenge (Pomerleau and Rao,
2017) modelled verification as stance classifica-
tion: given a claim and an article, predict whether
the article supports, refutes, observes (neutrally
states the claim) or is irrelevant to the claim. It
consists of 50K labelled claim-article pairs, com-
bining 300 claims with 2,582 articles. The claims
and the articles were curated and labeled by jour-
nalists in the context of the Emergent Project (Sil-
verman, 2015), and the dataset was first proposed
by Ferreira and Vlachos (2016), who only classi-
fied the claim w.r.t. the article headline instead of
the whole article. Similar to recognizing textual
entailment (RTE) (Dagan et al., 2009), the systems
were provided with the sources to verify against,
instead of having to retrieve them.

A differently motivated but closely related
dataset is the one developed by Angeli and Man-
ning (2014) to evaluate natural logic inference
for common sense reasoning, as it evaluated sim-
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ple claims such as “not all birds can fly” against
textual sources — including Wikipedia — which
were processed with an Open Information Extrac-
tion system (Mausam et al., 2012). However, the
claims were small in number (1,378) and limited
in variety as they were derived from eight binary
ConceptNet relations (Tandon et al., 2011).

Claim verification is also related to the multilin-
gual Answer Validation Exercise (Rodrigo et al.,
2009) conducted in the context of the TREC
shared tasks. Apart from the difference in dataset
size (1,000 instances per language), the key dif-
ference is that the claims being validated were an-
swers returned to questions by QA systems. The
questions and the QA systems themselves pro-
vide additional context to the claim, while in our
task definition the claims are outside any partic-
ular context. In the same vein, Kobayashi et al.
(2017) collected a dataset of 412 statements in
context from high-school student exams that were
validated against Wikipedia and history textbooks.

3 Fact extraction and verification dataset

The dataset was constructed in two stages4 :

Claim Generation Extracting information from
Wikipedia and generating claims from it.

Claim Labeling Classifying whether a claim is
supported or refuted by Wikipedia and select-
ing the evidence for it, or deciding there’s not
enough information to make a decision.

3.1 Task 1 - Claim Generation

The objective of this task was to generate claims
from information extracted from Wikipedia. We
used the June 2017 Wikipedia dump, processed
it with Stanford CoreNLP (Manning et al., 2014),
and sampled sentences from the introductory sec-
tions of approximately 50,000 popular pages.5

The annotators were given a sentence from the
sample chosen at random, and were asked to gen-
erate a set of claims containing a single piece of
information, focusing on the entity that its original
Wikipedia page was about. We asked the annota-
tors to generate claims about a single fact which
could be arbitrarily complex and allowed for a va-
riety of expressions for the entities.

4The annotation guidelines for both stages are provided in
the supplementary materials

5These consisted of 5,000 from a Wikipedia ‘most ac-
cessed pages’ list and the pages hyperlinked from them.

If only the source sentences were used to gen-
erate claims then this would result in trivially ver-
ifiable claims, as the new claims would in essence
be simplifications and paraphrases. At the other
extreme, if we allowed world knowledge to be
freely incorporated it would result in claims that
would be hard to verify on Wikipedia alone. We
address this issue by introducing a dictionary: a
list of terms that were (hyper-)linked in the orig-
inal sentence, along with the first sentence from
their corresponding Wikipedia pages. Using this
dictionary, we provide additional knowledge that
can be used to increase the complexity of the gen-
erated claims in a controlled manner.

The annotators were also asked to generate mu-
tations of the claims: altered versions of the origi-
nal claims, which may or may not change whether
they are supported by Wikipedia, or even if they
can be verified against it. Inspired by the opera-
tors used in Natural Logic Inference (Angeli and
Manning, 2014), we specified six types of mu-
tation: paraphrasing, negation, substitution of an
entity/relation with a similar/dissimilar one, and
making the claim more general/specific.

During trials of the annotation task, we dis-
covered that the majority of annotators had dif-
ficulty generating non-trivial negation mutations
(e.g. mutations beyond adding “not” to the orig-
inal). Besides providing numerous examples for
each mutation, we also redesigned the annotation
interface so that all mutation types were visible
at once and highlighted mutations that contained
“not” in order to discourage trivial negations. Fi-
nally, we provided the annotators with an ontology
diagram to illustrate the different levels of entity
similarity and class membership.

This process resulted in claims (both extracted
and mutated) with a mean length of 9.4 tokens
which is comparable to the average hypothesis
length of 8.3 tokens in Bowman et al. (2015).

3.2 Task 2 - Claim Labeling
The annotators were asked to label each individ-
ual claim generated during Task 1 as SUPPORTED,
REFUTED or NOTENOUGHINFO. For the first two
cases, the annotators were asked to find the evi-
dence from any page that supports or refutes the
claim (see Figure 2 for a screenshot of the inter-
face). In order to encourage inter-annotator con-
sistency, we gave the following general guideline:
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If I was given only the selected sen-
tences, do I have strong reason to be-
lieve the claim is true (supported) or
stronger reason to believe the claim is
false (refuted). If I’m not certain, what
additional information (dictionary) do I
have to add to reach this conclusion.

In the annotation interface, all sentences from
the introductory section of the page for the main
entity of the claim and of every linked entity in
those sentences were provided as a default source
of evidence (left-hand side in Fig. 2). Using this
interface the annotators recorded the sentences
necessary to justify their classification decisions.
In order to allow exploration beyond the main and
linked pages, we also allowed annotators to add
an arbitrary Wikipedia page by providing its URL
and the system would add its introductory section
as additional sentences that could be then selected
as evidence (right-hand side in Fig. 2). The title
of the page could also be used as evidence to re-
solve co-reference, but this decision was not ex-
plicitly recorded. We did not set a hard time limit
for the task, but the annotators were advised not to
spend more than 2-3 minutes per claim. The label
NOTENOUGHINFO was used if the claim could
not be supported or refuted by any amount of in-
formation in Wikipedia (either because it is too
general, or too specific).

3.3 Annotators

The annotation team consisted of a total of 50
members, 25 of which were involved only in the
first task. All annotators were native US English
speakers and were trained either directly by the
authors, or by experienced annotators. The inter-
face for both tasks was developed by the authors
in collaboration with an initial team of two anno-
tators. Their notes and suggestions were incorpo-
rated into the annotation guidelines.

The majority of the feedback received from the
annotators was very positive: they found the task
engaging and challenging, and after the initial
stages of annotation they had developed an under-
standing of the needs of the task which let them
discuss solutions about edge cases as a group.

3.4 Data Validation

Given the complexity of the second task (claim
labeling), we conducted three forms of data val-
idation: 5-way inter-annotator agreement, agree-

ment against super-annotators (defined in Sec-
tion 3.4.2), and manual validation by the authors.
The validation for claim generation was done im-
plicitly during claim labeling. As a result 1.01% of
claims were skipped, 2.11% contained typos and
6.63% of the generated claims were flagged as too
vague/ambiguous and were excluded e.g. or “Sons
of Anarchy premiered.”.

3.4.1 5-way Agreement
We randomly selected 4% (n = 7506) of claims
which were not skipped to be annotated by 5 an-
notators. We calculated the Fleiss κ score (Fleiss,
1971) to be 0.6841 which we consider encourag-
ing given the complexity of the task. In compari-
son Bowman et al. (2015) reported a κ of 0.7 for a
simpler task, since the annotators were given the
premise/evidence to verify a hypothesis against
without the additional task of finding it.

3.4.2 Agreement against Super-Annotators
We randomly selected 1% of the data to be anno-
tated by super-annotators: expert annotators with
no suggested time restrictions. The purpose of
this exercise was to provide as much coverage of
evidence as possible. We instructed the super-
annotators to search over the whole Wikipedia
for every possible sentence that could be used as
evidence. We compared the regular annotations
against this set of evidence and the precision/recall
was 95.42% and 72.36% respectively.

3.4.3 Validation by the Authors
As a final quality control step, we chose 227 exam-
ples and annotated them for accuracy of the labels
and the evidence provided. We found that 91.2%
of the examples were annotated correctly. 3% of
the claims were mistakes in claim generation that
had not been flagged during labeling. We found a
similar number of these claims which did not meet
the guidelines during a manual error analysis of
the baseline system (Section 5.8).

3.4.4 Findings
When compared against the super-annotators, all
except two annotators achieved > 90% precision
and all but 9 achieved recall > 70% in evidence
retrieval. The majority of the low-recall cases are
for claims such as “Akshay Kumar is an actor.”
where the super-annotator added 34 sentences as
evidence, most of them being filmography listings
(e.g. “In 2000, he starred in the Priyadarshan-
directed comedy Hera Pheri”).
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Figure 2: Screenshot of Task 2 - Claim Labeling

During the validation by the authors, we found
that most of the examples that were annotated in-
correctly were cases where the label was correct,
but the evidence selected was not sufficient (only
4 out of 227 examples were labeled incorrectly ac-
cording to the guidelines).

We tried to resolve this issue by asking our an-
notators to err on the side of caution. For example,
while the claim “Shakira is Canadian” could be la-
beled as REFUTED by the sentence “Shakira is a
Colombian singer, songwriter, dancer, and record
producer”, we advocated that unless more explicit
evidence is provided (e.g. “She was denied Cana-
dian citizenship”), the claim should be labeled
as NOTENOUGHINFO, since dual citizenships are
permitted, and the annotators’ world knowledge
should not be factored in.

A related issue is entity resolution. For a claim
like “David Beckham was with United.”, it might
be trivial for an annotator to accept “David Beck-
ham made his European League debut playing
for Manchester United.” as supporting evidence.
This implicitly assumes that “United” refers to
“Manchester United”, however there are many
Uniteds in Wikipedia and not just football clubs,
e.g. United Airlines. The annotators knew the
page of the main entity and thus it was relatively
easy to resolve ambiguous entities. While we pro-
vide this information as part of the dataset, we ar-
gue that it should only be used for system train-
ing/development.

4 Baseline System Description

We construct a simple pipelined system com-
prising three components: document retrieval,
sentence-level evidence selection and textual en-
tailment. Each component is evaluated in isolation
through oracle evaluations on the development set
and we report the final accuracies on the test set.

Document Retrieval We use the document re-
trieval component from the DrQA system (Chen
et al., 2017) which returns the k nearest docu-
ments for a query using cosine similarity between
binned unigram and bigram Term Frequency-
Inverse Document Frequency (TF-IDF) vectors.

Sentence Selection Our simple sentence selec-
tion method ranks sentences by TF-IDF similar-
ity to the claim. We sort the most-similar sen-
tences first and tune a cut-off using validation ac-
curacy on the development set. We evaluate both
DrQA and a simple unigram TF-IDF implementa-
tion to rank the sentences for selection. We further
evaluate impact of sentence selection on the RTE
module by predicting entailment given the original
documents without sentence selection.

Recognizing Textual Entailment We compare
two models for recognizing textual entailment.
For a simple well-performing baseline, we se-
lected Riedel et al. (2017)’s submission from the
2017 Fake News Challenge. It is a multi-layer per-
ceptron (MLP) with a single hidden layer which
uses term frequencies and TF-IDF cosine similar-
ity between the claim and evidence as features.
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Evaluating the state-of-the-art in RTE, we used
a decomposable attention (DA) model between
the claim and the evidence passage (Parikh et al.,
2016). We selected it because at the time of de-
velopment this model was the highest scoring sys-
tem for the Stanford Natural Language Inference
task (Bowman et al., 2015) with publicly available
code that did not require the input text to be parsed
syntactically, nor was an ensemble.

The RTE component must correctly classify a
claim as NOTENOUGHINFO when the evidence
retrieved is not relevant or informative. However,
the instances labeled as NOTENOUGHINFO have
no evidence annotated, thus cannot be used to train
RTE for this class. To overcome this issue, we
simulate training instances for the NOTENOUGH-
INFO through two methods: sampling a sentence
from the nearest page (NEARESTP) to the claim
as evidence using our document retrieval compo-
nent and sampling a sentence from Wikipedia uni-
formly at random (RANDOMS).

5 Experiments

5.1 Dataset Statistics

We partitioned the annotated claims into training,
development and test sets. We ensured that each
Wikipedia page used to generate claims occurs in
exactly one set. We reserved a further 19,998 ex-
amples for use as a test set for a shared task.

Split SUPPORTED REFUTED NEI
Training 80,035 29,775 35,639

Dev 3,333 3,333 3,333
Test 3,333 3,333 3,333

Reserved 6,666 6,666 6,666

Table 1: Dataset split sizes for SUPPORTED, REFUTED
and NOTENOUGHINFO (NEI) classes

5.2 Evaluation

Predicting whether a claim is SUPPORTED, RE-
FUTED or NOTENOUGHINFO is a 3-way classi-
fication task that we evaluate using accuracy. In
the case of the first two classes, appropriate ev-
idence must be provided, at a sentence-level, to
justify the classification. We consider an answer
returned correct for the first two classes only if
correct evidence is returned. Given that the devel-
opment and test datasets have balanced class dis-
tributions, a random baseline will have ∼ 33% ac-

curacy if one ignores the requirement for evidence
for SUPPORTED and REFUTED.

We evaluate the correctness of the evidence
retrieved by computing the F1-score of all the
predicted sentences in comparison to the human-
annotated sentences for those claims requiring
evidence on our complete pipeline system (Sec-
tion 5.7). As in Fig. 1, some claims require multi-
hop inference involving sentences from more than
one document to be correctly supported as SUP-
PORTED/REFUTED. In this case all sentences must
be selected for the evidence to be marked as cor-
rect. We report this as the proportion of fully sup-
ported claims. Some claims may be equally sup-
ported by different pieces of evidence; in this case
one complete set of sentences should be predicted.

Systems that select information that the anno-
tators did not will be penalized in terms of preci-
sion. We recognize that it is not feasible to ensure
that the evidence selection annotations are com-
plete, nevertheless we argue that they are useful
for automatic evaluation during system develop-
ment. For a more reliable evaluation we advocate
crowd-sourcing annotations of false-positive pre-
dictions at a later date in a similar manner to the
TAC KBP Slot Filler Validation (Ellis et al., 2016).

5.3 Document Retrieval
The document retrieval component of the base-
line system returns the k nearest documents to the
claim using the DrQA (Chen et al., 2017) TF-IDF
implementation to return the k-nearest documents.
In the scenario where evidence from multiple doc-
uments is required, k must be greater than this
figure. We simulate the upper bound in accuracy
using an oracle 3-way RTE classifier that predicts
SUPPORTED/REFUTED ones correctly only if the
documents containing the supporting/refuting evi-
dence are returned by document retrieval and al-
ways predicts NOTENOUGHINFO instances cor-
rectly independently of the evidence. Results are
shown in Table 2.

5.4 Sentence Selection
Mirroring document retrieval, we extract the top l-
most similar sentences from the k-most relevant
documents using TF-IDF vector similarity. We
modified document retrieval component of DrQA
(Chen et al., 2017) to select sentences using bi-
gram TF-IDF with binning and compared this to
a simple unigram TF-IDF implementation using
NLTK (Loper and Bird, 2002). Using the param-
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k
Fully Oracle

Supported (%) Accuracy (%)

1 25.31 50.21
5 55.30 70.20

10 65.86 77.24
25 75.92 83.95
50 82.49 90.13

100 86.59 91.06

Table 2: Dev. set document retrieval evaluation.

eters k = 5 documents and l = 5 sentences,
55.30% of claims (excluding NOTENOUGHINFO)
can be fully supported or refuted by the retrieved
documents before sentence selection (see Table 2).
After applying the sentence selection component,
44.22% of claims can be fully supported using the
extracted sentences with DrQA and only 34.03%
with NLTK. This would yield oracle accuracies of
62.81% and 56.02% respectively.

5.5 Recognizing Textual Entailment

The RTE component is trained on labeled claims
paired with sentence-level. Where multiple sen-
tences are required as evidence, the strings are
concatenated. As discussed in Section 4, such
data is not annotated for claims labeled NOTE-
NOUGHINFO, thus we compare random sampling-
based and similarity-based strategies for generat-
ing it. We evaluate classification accuracy on the
development set in an oracle evaluation, assuming
correct evidence sentences are selected (Table 3).
Additionally, for the DA model, we predict entail-
ment given evidence, using the AllenNLP (Gard-
ner et al., 2017) pre-trained Stanford Natural Lan-
guage Inference (SNLI) model for comparison.

Model Accuracy (%)

NEARESTP RANDOMS SNLI

MLP 65.13 73.81 -
DA 80.82 88.00 38.54

Table 3: Oracle classification on claims in the develop-
ment set using gold sentences as evidence

The random sampling (RANDOMS) approach
(where a sentence is sampled at random from
Wikipedia in place of evidence for claims la-
beled as NOTENOUGHINFO) yielded sentences
that were not only semantically different to the

claim, but also unrelated. While the the accu-
racy of models trained with sampling approach is
higher in oracle evaluation setting, this may not
yield a better system in the pipeline setting. In
contrast, the nearest page (NEARESTP) method
samples a sentence from the highest-ranked page
returned by our document retrieval module. This
simulates finding related information that may not
be sufficient to support or refute a claim. We will
evaluate both RANDOMS and NEARESTP in the
full pipeline setting, but we will not pursue the
SNLI-trained model further as it performed sub-
stantially worse.

5.6 Full Pipeline
The complete pipeline consists of the DrQA docu-
ment retrieval module (Section 5.3), DrQA-based
sentence retrieval module (Section 5.4), and the
decomposable attention RTE model (Section 5.5).
The two parameters: k, describing the number
documents and l, describing the number sentences
to return were found using grid-search optimiz-
ing the RTE accuracy with the DA model. For
the pipeline, we set k = 5 and l = 5 and re-
port the development set accuracy, both with and
without the requirement to provide correct evi-
dence for the SUPPORTED/REFUTED predictions
(marked as ScoreEv and NoScoreEv respec-
tively).

Model Accuracy (%)

NoScoreEv ScoreEv

MLP / NP 41.86 19.04
MLP / RS 40.63 19.42
DA / NP 52.09 32.57
DA / RS 50.37 23.53

Table 4: Full pipeline results on development set

The decomposable attention model trained with
NEARESTP is the most accurate when evidence is
considered. Inspection of the confusion matrices
shows that the RANDOMS strategy harms recall
for the NOTENOUGHINFO class. This is due to the
difference between the sampled pages in the train-
ing set and the ones retrieved in the development
set causing related but uninformative evidence to
be misclassified as SUPPORTED and REFUTED.

Ablation of the sentence selection module We
evaluate the impact of the sentence selection mod-
ule on both the RTE accuracy by removing it.
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While the sentence selection module may improve
accuracy in the RTE component, it is discarding
sentences that are required as evidence to support
claims, harming performance (see Section 5.4).
We assess the accuracies in both oracle setting
(similar to Section 5.5) (see Table 5) as well as
in the full pipeline (see Table 6).

In the oracle setting, the decomposable atten-
tion models are worst affected by removal of the
sentence selection module: exhibiting an substan-
tial decrease in accuracy. The NEARESTP train-
ing regime exhibits a 17% decrease and the RAN-
DOMS accuracy decreases by 19%, despite near-
perfect recall of the NOTENOUGHINFO class.

Model Oracle Accuracy (%)

NEARESTP RANDOMS

MLP 57.16 73.36
DA 63.68 69.05

Table 5: Oracle accuracy on claims in the dev. set using
gold documents as evidence (c.f. Table 3).

In the pipeline setting, we run the RTE compo-
nent without sentence selection using k = 5 most
similar predicted documents. The removal of the
sentence selection component decreased the accu-
racy (NOSCOREEV) approximately 10% for both
decomposable attention models.

Model Accuracy (%)

NEARESTP RANDOMS

MLP 38.85 40.45
DA 41.57 40.62

Table 6: Pipeline accuracy on the dev. set without the
sentence selection module (c.f. Table 4).

5.7 Evaluating Full Pipeline on Test Set
We evaluate our pipeline approach on the test set
based on the results observed in Section 5.6. First,
we use DrQA to select select 5 documents near-
est to the claim. Then, we select 5 sentences using
our DrQA-based sentence retrieval component and
concatenate them. Finally, we predict entailment
using the Decomposable Attention model trained
with the NEARESTP strategy. The classification
accuracy is 31.87%. Ignoring the requirement for
correct evidence (NoScoreEv) the accuracy is
50.91%, which highlights that while the systems

were predicting the correct label, the evidence se-
lected was different to that which the human anno-
tators chose. The recall of the document and sen-
tence retrieval modules for claims which required
evidence on the test set was 45.89% (considering
complete groups of evidence) and the precision
10.79%. The resulting F1 score is 17.47%.

5.8 Manual Error Analysis

Using the predictions on the test set, we sampled
961 of the predictions with an incorrect label or in-
correct evidence and performed a manual analysis.
Of these, 28.51% (n = 274) had the correct pre-
dicted label but did not satisfy the requirements for
evidence. The information retrieval component of
the pipeline failed to identify any correct evidence
in 58.27% (n = 560) of cases which accounted for
the large disparity between accuracy of the sys-
tem when evidence was and was not considered.
Where suitable evidence was found, the RTE com-
ponent incorrectly classified 13.84% (n = 133) of
claims.

The pipeline retrieved new evidence that had
not been identified by annotators in 21.85% (n =
210) of claims. This was in-line with our expec-
tation given the measured recall rate of annotators
(see Section 3.4.2), who achieved recall of 72.36%
of evidence identified by the super-annotators.

We found that 4.05% (n = 41) of claims did
not meet our guidelines. Of these, there were 11
claims which could be checked without evidence
as these either tautologous or self-contradictory.
Some correct claims appeared ungrammatical due
to the mis-parsing of named entities (e.g. Exotic
Birds is the name of a band but could be parsed
as a type of animal). Annotator errors (where the
wrong label was applied) were present in 1.35%
(n = 13) of incorrectly classified claims.

Interestingly, our system found new evidence
that contradicted the gold evidence in 0.52% (n =
5) of cases. This was caused either by entity
resolution errors or by inconsistent information
present in Wikipedia pages (e.g. Pakistan was de-
scribed as having both the 41st and 42nd largest
GDP in two different pages).

5.9 Ablation of Training Data

To evaluate whether the size of the dataset is
suitable for training the RTE component of the
pipeline, we plot the learning curves for the DA
and MLP models (Fig. 3). For each model, we
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trained 5 models with different random initial-
izations using the NEARESTP method (see Sec-
tion 5.5). We selected the highest performing
model when evaluated on development set and re-
port the oracle RTE accuracy on the test set. We
observe that with fewer than 6000 training in-
stances, the accuracy of DA is unstable. How-
ever, with more data, its accuracy increases with
respect to the log of the number of training in-
stances and exceeds that of MLP. While both
learning curves exhibit the typical diminishing re-
turn trends, they indicate that the dataset is large
enough to demonstrate the differences of models
with different learning capabilities.
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Figure 3: Learning curves for the RTE models.

6 Discussion

The pipeline presented and evaluated in the pre-
vious section is one possible approach to the task
proposed in our dataset, but we envisage differ-
ent ones to be equally valid and possibly bet-
ter performing. For instance, it would be inter-
esting to test how approaches similar to natural
logic inference (Angeli and Manning, 2014) can
be applied, where a knowledge base/graph is con-
structed by reading the textual sources and then a
reasoning process over the claim is applied, possi-
bly using recent advances in neural theorem prov-
ing (Rocktäschel and Riedel, 2017). A different
approach could be to consider a combination of
question generation (Heilman and Smith, 2010)
followed by a question answering model such as
BiDAF (Seo et al., 2016), possibly requiring modi-
fication as they are designed to select a single span
of text from a document rather than return one or
more sentences as per our scoring criteria. The
sentence-level evidence annotation in our dataset

will help develop models selecting and attending
to the relevant information from multiple docu-
ments and non-contiguous passages. Not only will
this enhance the interpretability of predictions, but
also facilitate the development of new methods for
reading comprehension.

Another use case for the FEVER dataset is
claim extraction: generating short concise textual
facts from longer encyclopedic texts. For sources
like Wikipedia or news articles, the sentences can
contain multiple individual claims, making them
not only difficult to parse, but also hard to evalu-
ate against evidence. During the construction on
the FEVER dataset, we allowed for an extension
of the task where simple claims can be extracted
from multiple complex sentences.

Finally, we would like to note that while we
chose Wikipedia as our textual source, we do not
consider it to be the only source of information
worth considering in verification, hence not using
TRUE or FALSE in our classification scheme. We
expect systems developed on the dataset presented
to be portable to different textual sources.

7 Conclusions

In this paper we have introduced FEVER, a pub-
licly available dataset for fact extraction and veri-
fication against textual sources. We discussed the
data collection and annotation methods and shared
some of the insights obtained during the annota-
tion process that we hope will be useful to other
large-scale annotation efforts.

In order to evaluate the challenge this dataset
presents, we developed a pipeline approach that
comprises information retrieval and textual entail-
ment components. We showed that the task is
challenging yet feasible, with the best performing
system achieving an accuracy of 31.87%.

We also discussed other uses for the FEVER
dataset and presented some further extensions that
we would like to work on in the future. We believe
that FEVER will provide a stimulating challenge
for claim extraction and verification systems.
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Abstract
We study the problem of textual relation em-
bedding with distant supervision. To combat
the wrong labeling problem of distant super-
vision, we propose to embed textual relations
with global statistics of relations, i.e., the co-
occurrence statistics of textual and knowledge
base relations collected from the entire cor-
pus. This approach turns out to be more ro-
bust to the training noise introduced by distant
supervision. On a popular relation extraction
dataset, we show that the learned textual re-
lation embedding can be used to augment ex-
isting relation extraction models and signifi-
cantly improve their performance. Most re-
markably, for the top 1,000 relational facts dis-
covered by the best existing model, the preci-
sion can be improved from 83.9% to 89.3%.

1 Introduction

Relation extraction requires deep understanding of
the relation between entities. Early studies mainly
use hand-crafted features (Kambhatla, 2004; Zhou
et al., 2005), and later kernel methods are intro-
duced to automatically generate features (Zelenko
et al., 2003; Culotta and Sorensen, 2004; Bunescu
and Mooney, 2005; Zhang et al., 2006). Recently
neural network models have been introduced to
embed words, relations, and sentences into con-
tinuous feature space, and have shown a remark-
able success in relation extraction (Socher et al.,
2012; Zeng et al., 2014; Xu et al., 2015b; Zeng
et al., 2015; Lin et al., 2016). In this work, we
study the problem of embedding textual relations,
defined as the shortest dependency path1 between
two entities in the dependency graph of a sentence,
to improve relation extraction.

Textual relations are one of the most discrimina-
tive textual signals that lay the foundation of many

∗∗ Equally contributed.
1We use fully lexicalized shortest dependency path with

directional and typed dependency relations.

relation extraction models (Bunescu and Mooney,
2005). A number of recent studies have explored
textual relation embedding under the supervised
setting (Xu et al., 2015a,b, 2016; Liu et al., 2016),
but the reliance on supervised training data lim-
its their scalability. In contrast, we embed textual
relations with distant supervision (Mintz et al.,
2009), which provides much larger-scale training
data without the need of manual annotation. How-
ever, the assertion of distant supervision, “any sen-
tence containing a pair of entities that participate
in a knowledge base (KB) relation is likely to ex-
press the relation,” can be violated more often than
not, resulting in many wrongly labeled training ex-
amples. A representative example is shown in Fig-
ure 1. Embedding quality is thus compromised by
the noise in training data.

Our main contribution is a novel way to com-
bat the wrong labeling problem of distant supervi-
sion. Traditional embedding methods (Xu et al.,
2015a,b, 2016; Liu et al., 2016) are based on lo-
cal statistics, i.e., individual textual-KB relation
pairs like in Figure 1 (Left). Our key hypothesis is
that global statistics is more robust to noise than
local statistics. For individual examples, the rela-
tion label from distant supervision may be wrong
from time to time. But when we zoom out to
consider the entire corpus, and collect the global
co-occurrence statistics of textual and KB rela-
tions, we will have a more comprehensive view
of relation semantics: The semantics of a tex-
tual relation can then be represented by its co-
occurrence distribution of KB relations. For ex-
ample, the distribution in Figure 1 (Right) indi-
cates that the textual relation SUBJECT

nsubjpass←−−−− born
nmod:in−−−−→ OBJECT mostly means place of birth, and
is also a good indicator of nationality, but not
place of death. Although it is still wrongly la-
beled with place of death a number of times, the
negative impact becomes negligible. Similarly,
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Michael_Jackson        was        born        in        the        US

nsubjpass nmod:in

Michael_Jackson US

place_of_birth

place_of_death

Text Corpus Knowledge Base

Michael_Jackson        died      in        the        US

nsubj nmod:in

Michael_Jackson US

nsubjpass←−−−−− born nmod:in−−−−→ nsubj←−−− died nmod:in−−−−→
place of birth 1868 14
nationality 389 20
place of death 37 352
. . . . . . . . .

Figure 1: The wrong labeling problem of distant supervision, and how to combat it with global statistics. Left:
conventional distant supervision. Each of the textual relations will be labeled with both KB relations, while only
one is correct (blue and solid), and the other is wrong (red and dashed). Right: distant supervision with global
statistics. The two textual relations can be clearly distinguished by their co-occurrence distribution of KB relations.
Statistics are based on the annotated ClueWeb data released in (Toutanova et al., 2015).

we can confidently believe that SUBJECT
nsubj←−− died

nmod:in−−−−→ OBJECT means place of death in spite of
the noise. Textual relation embedding learned on
such global statistics is thus more robust to the
noise introduced by the wrong labeling problem.

We augment existing relation extractions using
the learned textual relation embedding. On a pop-
ular dataset introduced by Riedel et al. (2010),
we show that a number of recent relation extrac-
tion models, which are based on local statistics,
can be greatly improved using our textual relation
embedding. Most remarkably, a new best perfor-
mance is achieved when augmenting the previous
best model with our relation embedding: The pre-
cision of the top 1,000 relational facts discovered
by the model is improved from 83.9% to 89.3%, a
33.5% decrease in error rate. The results suggest
that relation embedding with global statistics can
capture complementary information to existing lo-
cal statistics based models.

The rest of the paper is organized as follows. In
Section 2 we discuss related work. For the mod-
eling part, we first describe how to collect global
co-occurrence statistics of relations in Section 3,
then introduce a neural network based embedding
model in Section 4, and finally discuss how to
combine the learned textual relation embedding
with existing relation extraction models in Section
5. We empirically evaluate the proposed method
in Section 6, and conclude in Section 7.

2 Related Work

Relation extraction is an important task in infor-
mation extraction. Early relation extraction meth-
ods are mainly feature-based (Kambhatla, 2004;
Zhou et al., 2005), where features in various lev-
els, including POS tags, syntactic and dependency
parses, are integrated in a max entropy model.
With the popularity of kernel methods, a large
number of kernel-based relation extraction meth-

ods have been proposed (Zelenko et al., 2003; Cu-
lotta and Sorensen, 2004; Bunescu and Mooney,
2005; Zhang et al., 2006). The most related work
to ours is by Bunescu and Mooney (Bunescu and
Mooney, 2005), where the importance of shortest
dependency path for relation extraction is first val-
idated.

More recently, relation extraction research has
been revolving around neural network models,
which can alleviate the problem of exact feature
matching of previous methods and have shown
a remarkable success (e.g., (Socher et al., 2012;
Zeng et al., 2014)). Among those, the most related
are the ones embedding shortest dependency paths
with neural networks (Xu et al., 2015a,b, 2016;
Liu et al., 2016). For example, Xu et al. (2015b)
use a RNN with LSTM units to embed shortest
dependency paths without typed dependency rela-
tions, while a convolutional neural network is used
in (Xu et al., 2015a). However, they are all based
on the supervised setting with a limited scale. In
contrast, we embed textual relations with distant
supervision (Mintz et al., 2009), which provides
much larger-scale training data at a low cost.

Various efforts have been made to combat the
long-criticized wrong labeling problem of dis-
tant supervision. Riedel et al. (2010), Hoffmann
et al. (2011), and Surdeanu et al. (2012) have
attempted a multi-instance learning (Dietterich
et al., 1997) framework to soften the assumption
of distant supervision, but their models are still
feature-based. Zeng et al. (2015) combine multi-
instance learning with neural networks, with the
assumption that at least one of the contextual sen-
tences of an entity pair is expressing the target re-
lation, but this will lose useful information in the
neglected sentences. Instead, Lin et al. (2016)
use all the contextual sentences, and introduce
an attention mechanism to weight the contextual
sentences. Li et al. (2017) also use an attention
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mechanism to weight contextual sentences, and in-
corporate additional entity description information
from knowledge bases. Luo et al. (2017) manage
to alleviate the negative impact of noise by mod-
eling and learning noise transition patterns from
data. Liu et al. (2017) propose to infer the true
label of a context sentence using a truth discov-
ery approach (Li et al., 2016). Wu et al. (2017)
incorporate adversarial training, i.e., injecting ran-
dom perturbations in training, to improve the ro-
bustness of relation extraction. Using PCNN+ATT
(Lin et al., 2016) as base model, they show that ad-
versarial training can improve its performance by a
good margin. However, the base model implemen-
tation used by them performed inferior to the one
in the original paper and in ours, and therefore the
results are not directly comparable. No prior study
has exploited global statistics to combat the wrong
labeling problem of distant supervision. Another
unique aspect of this work is that we focus on com-
pact textual relations, while previous studies along
this line have focused on whole sentences.

In universal schema (Riedel et al., 2013) for KB
completion and relation extraction as well as its
extensions (Toutanova et al., 2015; Verga et al.,
2016), a binary matrix is constructed from the
entire corpus, with entity pairs as rows and tex-
tual/KB relations as columns. A matrix entry is
1 if the relational fact is observed in training, and
0 otherwise. Embeddings of entity pairs and re-
lations, either directly or via neural networks, are
then learned on the matrix entries, which are still
individual relational facts, and the wrong label-
ing problem remains. Global co-occurrence fre-
quencies (see Figure 1 (Right)) are not taken into
account, which is the focus of this study. An-
other distinction is that our method directly mod-
els the association between textual and KB rela-
tions, while universal schema learns embedding
for shared entity pairs and use that as a bridge be-
tween the two types of relations. It is an interest-
ing venue for future research to comprehensively
compare these two modeling approaches.

3 Global Statistics of Relations

When using a corpus to train statistical models,
there are two levels of statistics to exploit: local
and global. Take word embedding as an exam-
ple. The skip-gram model (Mikolov et al., 2013)
is based on local statistics: During training, we
sweep through the corpus and slightly tune the

nsubjpass

SUBJECT born

nmod:in

OBJECT

nsubj

SUBJECT died

nmod:in

OBJECT

place_of_birth

place_of_death

... ...

0.73

0.89

Figure 2: Relation graph. The left node set is textual
relations, and the right node set is KB relations. The
raw co-occurrence counts are normalized such that the
KB relations corresponding to the same textual rela-
tion form a valid probability distribution. Edges are
colored by textual relation and weighted by normalized
co-occurrence statistics.

embedding model in each local window (e.g., 10
consecutive words). In contrast, in global statis-
tics based methods, exemplified by latent semantic
analysis (Deerwester et al., 1990) and GloVe (Pen-
nington et al., 2014), we process the entire cor-
pus to collect global statistics like word-word co-
occurrence counts, normalize the raw statistics,
and train an embedding model directly on the nor-
malized global statistics.

Most existing studies on relation extraction are
based on local statistics of relations, i.e., models
are trained on individual relation examples. In this
section, we describe how we collect global co-
occurrence statistics of textual and KB relations,
and how to normalize the raw statistics. By the
end of this section a bipartite relation graph like
Figure 2 will be constructed, with one node set
being textual relations T , and the other being KB
relations R. The edges are weighted by the nor-
malized co-occurrence statistics of relations.

3.1 Relation Graph Construction
Given a corpus and a KB, we first do entity link-
ing on each sentence, and do dependency pars-
ing if at least two entities are identified2. For
each entity pair (e, e′) in the sentence, we ex-
tract the fully lexicalized shortest dependency path
as a textual relation t, forming a relational fact
(e, t, e′). There are two outcomes from this step:
a set of textual relations T = {ti}, and the sup-
port S(ti) for each ti. The support of a textual
relation is a multiset containing the entity pairs of
the textual relation. The multiplicity of an entity
pair, mS(ti)(e, e

′), is the number of occurrences
of the corresponding relational fact (e, ti, e

′) in
2In the experiments entity linking is assumed given, and

dependency parsing is done using Stanford Parser (Chen and
Manning, 2014) with universal dependencies.
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the corpus. For example, if the support of ti is
S(ti) = {(e1, e′1) , (e1, e′1) , (e2, e′2) , . . . }, entity
pair (e1, e

′
1) has a multiplicity of 2 because the re-

lational fact (e1, ti, e
′
1) occur in two sentences. We

also get a set of KB relations R = {rj}, and the
support S(rj) of a KB relation rj is the set of en-
tity pairs having this relation in the KB, i.e., there
is a relational fact (e, rj , e

′) in the KB. The num-
ber of co-occurrences of a textural relation ti and
a KB relation rj is

nij =
∑

(e,e′)∈S(rj)
mS(ti)(e, e

′), (1)

i.e., every occurrence of relational fact (e, ti, e
′) is

counted as a co-occurrence of ti and rj if (e, e′) ∈
S(rj). A bipartite relation graph can then be con-
structed, with T and R as the node sets, and the
edge between ti and rj has weight nij (no edge if
nij = 0), which will be normalized later.

3.2 Normalization

The raw co-occurrence counts have a heavily
skewed distribution that spans several orders of
magnitude: A small portion of relation pairs co-
occur highly frequently, while most relation pairs
co-occur only a few times. For example, a textual
relation, SUBJECT

nsubjpass←−−−− born nmod:in−−−−→ OBJECT, may
co-occur with the KB relation place of birth

thousands of times (e.g., “Michelle Obama was
born in Chicago”), while a synonymous but
slightly more compositional textual relation, SUB-

JECT
nsubjpass←−−−− born nmod:in−−−−→ city nmod:of−−−−→ OBJECT, may only

co-occur with the same KB relation a few times in
the entire corpus (e.g., “Michelle Obama was born
in the city of Chicago”). Learning directly on the
raw co-occurrence counts, an embedding model
may put a disproportionate amount of weight on
the most frequent relations, and may not learn well
on the majority of rarer relations. Proper normal-
ization is therefore necessary, which will encour-
age the embedding model to learn good embed-
ding not only for the most frequent relations, but
also for the rarer relations.

A number of normalization strategies have been
proposed in the context of word embedding, in-
cluding correlation- and entropy-based normal-
ization (Rohde et al., 2005), positive pointwise
mutual information (PPMI) (Bullinaria and Levy,
2007), and some square root type transforma-
tion (Lebret and Collobert, 2014). A shared goal
is to reduce the impact of the most frequent words,

e.g., “the” and “is,” which tend to be less informa-
tive for the purpose of embedding.

We have experimented with a number of nor-
malization strategies and found that the following
strategy works best for textual relation embedding:
For each textual relation, we normalize its co-
occurrence counts to form a probability distribu-
tion over KB relations. The new edge weights of
the relation graph thus become wij = p̃(rj |ti) =
nij/

∑
j′ nij′ . Every textual relation is now asso-

ciated with a set of edges whose weights sum up to
1. We also experimented with PPMI and smoothed
PPMI with α = 0.75 (Levy et al., 2015) that are
commonly used in word embedding. However, the
learned textual relation embedding turned out to
be not very helpful for relation extraction. One
possible reason is that PPMI (even the smoothed
version) gives inappropriately large weights to rare
relations (Levy et al., 2015). There are many tex-
tual relations that correspond to none of the tar-
get KB relations but are falsely labeled with some
KB relations a few times by distant supervision.
PPMI gives large weights to such falsely labeled
cases because it thinks these events have a chance
significantly higher than random.

4 Textual Relation Embedding

Next we discuss how to learn embedding of textual
relations based on the constructed relation graph.
We call our approach Global Relation Embedding
(GloRE) in light of global statistics of relations.

4.1 Embedding via RNN

Given the relation graph, a straightforward way of
relation embedding is matrix factorization, simi-
lar to latent semantic analysis (Deerwester et al.,
1990) for word embedding. However, textual re-
lations are different from words in that they are
sequences composed of words and typed depen-
dency relations. Therefore, we use recurrent neu-
ral networks (RNNs) for embedding, which re-
spect the compositionality of textual relations and
can learn the shared sub-structures of different tex-
tual relations (Toutanova et al., 2015). For the ex-
amples in Figure 1, an RNN can learn, from both
textual relations, that the shared dependency rela-
tion “nmod:in” is indicative of location modifiers.
It is worth noting that other models like convolu-
tional neural networks can also be used, but it is
not the focus of this paper to compare all the alter-
native embedding models; rather, we aim to show
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-nsubjpass born nmod:in-nsubjpass born nmod:in <GO>

place_of_birth : 0.73

Figure 3: Embedding model. Left: A RNN with GRU
for embedding. Middle: embedding of textual relation.
Right: a separate GRU cell to map a textual relation
embedding to a probability distribution over KB rela-
tions.

the effectiveness of global statistics with a reason-
able embedding model.

For a textual relation, we first decompose it
into a sequence of tokens {x1, ..., xm}, which in-
cludes lexical words and directional dependency
relations. For example, the textual relation SUB-

JECT
nsubjpass←−−−− born nmod:in−−−−→ OBJECT is decomposed to a

sequence of three tokens {−nsubjpass, born, nmod:in},
where “−” represents a left arrow. Note that we
include directional dependency relations, because
both the relation type and the direction are critical
in determining the meaning of a textual relation.
For example, the dependency relation “nmod:in”
often indicates a location modifier and is thus
strongly associated with location-related KB re-
lations like place of birth. The direction also
plays an important role. Without knowing the di-
rection of the dependency relations, it is impossi-
ble to distinguish child of and parent of.

An RNN with gated recurrent units
(GRUs) (Cho et al., 2014) is then applied to
consecutively process the sequence as shown in
Figure 3. We have also explored more advanced
constructs like attention, but the results are simi-
lar, so we opt for a vanilla RNN in consideration
of model simplicity.

Let φ denote the function that maps a token xl
to a fixed-dimensional vector, the hidden state vec-
tors of the RNN are calculated recursively:

hl = GRU
(
φ(xl),hl−1

)
. (2)

GRU follows the definition in Cho et al. (2014).

4.2 Training Objective

We use global statistics in the relation graph to
train the embedding model. Specifically, we
model the semantics of a textual relation as its co-
occurrence distribution of KB relations, and learn
textual relation embedding to reconstruct the cor-
responding co-occurrence distributions.

We use a separate GRU cell followed by soft-
max to map a textual relation embedding to a
distribution over KB relations; the full model
thus resembles the sequence-to-sequence architec-
ture (Sutskever et al., 2014). Given a textual rela-
tion ti and its embedding hm, the predicted condi-
tional probability of a KB relation rj is thus:

p(rj |ti) = softmax(GRU(φ(<GO>),hm))j ,
(3)

where ()j denotes the j-th element of a vector, and
<GO>is a special token indicating the start of de-
coding. The training objective is to minimize

Θ =
1

|E|
∑

i,j:p̃(rj |ti)>0

(log p(rj |ti)− log p̃(rj |ti))2 ,

(4)
where E is the edge set of the relation graph. It
is modeled as a regression problem, similar to
GloVe (Pennington et al., 2014).

Baseline. We also define a baseline approach
where the unnormalized co-occurrence counts are
directly used. The objective is to maximize:

Θ′ =
1∑
i,j nij

∑

i,j:nij>0

nij log p(rj |ti). (5)

It also corresponds to local statistics based embed-
ding, i.e., when the embedding model is trained
on individual occurrences of relational facts with
distant supervision. Therefore, we call it Local
Relation Embedding (LoRE).

5 Augmenting Relation Extraction

Learned from global co-occurrence statistics of re-
lations, our approach provides semantic matching
information of textual and KB relations, which is
often complementary to the information captured
by existing relation extraction models. In this sec-
tion we discuss how to combine them together to
achieve better relation extraction performance.

We follow the setting of distantly supervised re-
lation extraction. Given a text corpus and a KB
with relation set R, the goal is to find new rela-
tional facts from the text corpus that are not al-
ready contained in the KB. More formally, for
each entity pair (e, e′) and a set of contextual sen-
tences C containing this entity pair, a relation ex-
traction model assigns a scoreE(z|C) to each can-
didate relational fact z = (e, r, e′), r ∈ R. On the
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other hand, our textual relation embedding model
works on the sentence level. It assign a score
G(z|s) to each contextual sentence s in C as for
how well the textual relation t between the entity
pair in the sentence matches the KB relation r, i.e.,
G(z|s) = p(r|t). It poses a challenge to aggregate
the sentence-level scores to get a set-level score
G(z|C), which can be used to combine with the
original score E(z|C) to get a better evaluation of
the candidate relational fact.

One straightforward aggregation is max
pooling, i.e., only using the largest score
maxs∈C G(z|s), similar to the at-least-one
strategy used by Zeng et al. (2015). But it will
lose the useful signals from those neglected
sentences (Lin et al., 2016). Because of the wrong
labeling problem, mean pooling is problematic as
well. The wrongly labeled contextual sentences
tend to make the aggregate scores more evenly
distributed and therefore become less informative.
The number of contextual sentences positively
supporting a relational fact is also an important
signal, but is lost in mean pooling.

Instead, we use summation with a trainable cap:

G(z|C) = min (cap,
∑

s∈C
G(z|s)), (6)

In other words, we additively aggregate the sig-
nals from all the contextual sentences, but only to
a bounded degree.

We simply use a weighted sum to combine
E(z|C) and G(z|C), where the trainable weights
will also handle the possibly different scale of
scores generated by different models:

Ẽ(z|C) = w1E(z|C) + w2G(z|C). (7)

The original score E(z|C) is then replaced by the
new score Ẽ(z|C). To find the optimal values for
w1, w2 and cap, we define a hinge loss:

ΘMerge =
1

K

K∑

k=1

max
{

0, 1 + Ẽ(z−k )− Ẽ(z+k )
}
,

(8)
where {z+k }Kk=1 are the true relational facts from
the KB, and {z−k }Kk=1 are false relational facts gen-
erated by replacing the KB relation in true rela-
tional facts with incorrect KB relations.

Data # of sentences # of entity pairs # of relational facts from KB

Train 570,088 291,699 19,429
Test 172,448 96,678 1,950

Table 1: Statistics of the NYT dataset.

6 Experiments

In this experimental study, we show that GloRE
can greatly improve the performance of several re-
cent relation extraction models, including the pre-
vious best model on a standard dataset.

6.1 Experimental Setup
Dataset. Following the literature (Hoffmann
et al., 2011; Surdeanu et al., 2012; Zeng et al.,
2015; Lin et al., 2016), we use the relation extrac-
tion dataset introduced in (Riedel et al., 2010),
which was generated by aligning New York Times
(NYT) articles with Freebase (Bollacker et al.,
2008). Articles from year 2005-2006 are used
as training, and articles from 2007 are used as
testing. Some statistics are listed in Table 1.
There are 53 target KB relations, including a
special relation NA indicating that there is no
target relation between entities.

We follow the approach described in Section 3
to construct the relation graph from the NYT train-
ing data. The constructed relation graph contains
321,447 edges with non-zero weight. We further
obtain a training set and a validation set from the
edges of the relation graph. We have observed
that using a validation set totally disjoint from the
training set leads to unstable validation loss, so we
randomly sample 300K edges as the training set,
and another 60K as the validation set. The two sets
can have some overlap. For the merging model
(Eq. 8), 10% of the edges are reserved as the vali-
dation set.

Relation extraction models. We evaluate with
four recent relation extraction models whose
source code is publicly available3. We use the op-
timized parameters provided by the authors.

• CNN+ONE and PCNN+ONE (Zeng et al.,
2015): A convolutional neural network
(CNN) is used to embed contextual sentences
for relation classification. Multi-instance
learning with at-least-one (ONE) assumption
is used to combat the wrong labeling prob-
lem. In PCNN, piecewise max pooling is

3https://github.com/thunlp/NRE
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Figure 4: Held-out evaluation: other base relation extraction models and the improved versions when augmented
with GloRE.
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Figure 5: Held-out evaluation: the previous best-
performing model can be further improved when aug-
mented with GloRE. PCNN+ATT+TM is a recent
model (Luo et al., 2017) whose performance is slightly
inferior to PCNN+ATT. Because the source code is
not available, we did not experiment to augment this
model with GloRE. Another recent method (Wu et al.,
2017) incorporates adversarial training to improve
PCNN+ATT, but the results are not directly comparable
(see Section 2 for discussion). Finally, Ji et al. (2017)
propose a model similar to PCNN+ATT, but the perfor-
mance is inferior to PCNN+ATT and is not shown here
for clarity.

used to handle the three pieces of a contextual
sentence (split by the two entities) separately.

• CNN+ATT and PCNN+ATT (Lin et al.,
2016): Different from the at-least-one as-
sumption which loses information in the ne-
glected sentences, these models learn soft at-
tention weights (ATT) over contextual sen-
tences and thus can use the information of all
the contextual sentences. PCNN+ATT is the
best-performing model on the NYT dataset.

Evaluation settings and metrics. Similar to pre-
vious work (Riedel et al., 2010; Zeng et al., 2015),
we use two settings for evaluation: (1) Held-out
evaluation, where a subset of relational facts in
KB is held out from training (Table 1), and is later
used to compare against newly discovered rela-
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Figure 6: Held-out evaluation: GloRE brings the
largest improvement to BASE (PCNN+ATT), which
further shows that GloRE captures useful information
for relation extraction that is complementary to existing
models.

tional facts. This setting avoids human labor but
can introduce some false negatives because of the
incompleteness of the KB. (2) Manual evaluation,
where the discovered relational facts are manually
judged by human experts. For held-out evaluation,
we report the precision-recall curve. For manual
evaluation, we report Precision@N , i.e., the pre-
cision of the top N discovered relational facts.

Implementation. Hyper-parameters of our model
are selected based on the validation set. For the
embedding model, the mini-batch size is set to
128, and the state size of the GRU cells is 300.
For the merging model, the mini-batch size is set
to 1024. We use Adam with parameters recom-
mended by the authors for optimization. Word em-
beddings are initialized with the 300-dimensional
word2vec vectors pre-trained on the Google News
corpus4. Early stopping based on the validation
set is employed. Our model is implemented us-
ing Tensorflow (Abadi et al., 2016), and the source
code is available at https://github.com/
ppuliu/GloRE.

4https://code.google.com/archive/p/
word2vec/
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Figure 7: Held-out evaluation: LoRE vs. GloRE.

6.2 Held-out Evaluation

Existing Models + GloRE. We first show that
our approach, GloRE, can improve the perfor-
mance of the previous best-performing model,
PCNN+ATT, leading to a new state of the art
on the NYT dataset. As shown in Figure 5,
when PCNN+ATT is augmented with GloRE, a
consistent improvement along the precision-recall
curve is observed. It is worth noting that al-
though PCNN+ATT+GloRE seems to be inferior
to PCNN+ATT when recall < 0.05, as we will
show via manual evaluation, it is actually due to
false negatives.

We also show in Figure 4 that the improvement
brought by GloRE is general and not specific to
PCNN+ATT; the other models also get a consis-
tent improvement when augmented with GloRE.

To investigate whether the improvement
brought by GloRE is simply from ensemble, we
also augment PCNN+ATT with the other three
base models in the same way as described in
Section 5. The results in Figure 6 show that
pairwise ensemble of existing relation extraction
models does not yield much improvement, and
GloRE brings much larger improvement than the
other models.

In summary, the held-out evaluation results sug-
gest that GloRE captures useful information for re-
lation extraction that is not captured by these local
statistics based models.

LoRE v.s. GloRE. We compare GloRE with the
baseline approach LoRE (Section 4) to show the
advantage of normalization on global statistics.
We use PCNN+ATT as the base relation extrac-
tion model. As shown in Figure 7, GloRE consis-
tently outperforms LoRE. It is worth noting that
LoRE can still improve the base relation extrac-
tion model when recall > 0.15, further confirming

Precision@N 100 300 500 700 900 1000

PCNN+ATT 97.0 93.7 92.8 89.1 85.2 83.9
PCNN+ATT+LoRE 97.0 95.0 94.2 91.6 89.6 87.0
PCNN+ATT+GloRE 97.0 97.3 94.6 93.3 90.1 89.3

Table 2: Manual evaluation: false negatives from held-
out evaluation are manually corrected by human ex-
perts.

the usefulness of directly embedding textual rela-
tions in addition to sentences.

6.3 Manual Evaluation

Due to the incompleteness of the knowledge base,
held-out evaluation introduces some false nega-
tives. The precision from held-out evaluation is
therefore a lower bound of the true precision.
To get a more accurate evaluation of model per-
formance, we have human experts to manually
check the false relational facts judged by held-
out evaluation in the top 1,000 predictions of
three models, PCNN+ATT, PCNN+ATT+LoRE
and PCNN+ATT+GloRE, and report the corrected
results in Table 2. Each prediction is examined
by two human experts who reach agreement with
discussion. To ensure fair comparison, the experts
are not aware of the provenance of the predictions.
Under manual evaluation, PCNN+ATT+GloRE
achieves the best performance in the full range of
N . In particular, for the top 1,000 predictions,
GloRE improves the precision of the previous best
model PCNN+ATT from 83.9% to 89.3%. The
manual evaluation results reinforce the previous
observations from held-out evaluation.

6.4 Case Study

Table 3 shows two examples. For better illustra-
tion, we choose entity pairs that have only one
contextual sentence.

For the first example, PCNN+ATT predicts that
most likely there is no KB relation between the
entity pair, while both LoRE and GloRE identify
the correct relation with high confidence. The tex-
tual relation clearly indicates that the head entity
is (appos) a criminologist at (nmod:at) the tail entity.

For the second example, there is no KB rela-
tion between the entity pair, and PCNN+ATT is
indeed able to rank NA at the top. However, it
is still quite confused by nationality, prob-
ably because it has learned that sentences about
a person and a country with many words about
profession (“poet,” “playwright,” and “novelist”)
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Contextual Sentence Textual Relation PCNN+ATT Predictions LoRE Predictions GloRE Predictions

[Alfred Blumstein]head, a
criminologist at [Carnegie Mellon
University]tail, called . . .

appos←−−− criminologist
nmod:at−−−−→

NA (0.63) employee of (1.00) employee of (0.96)
employee of (0.36) NA (0.00) NA (0.02)
founder of (0.00) founder of (0.00) founder of (0.02)

[Langston Hughes]head, the
American poet, playwright and
novelist, came to [Spain]tail to . . .

-nsubj←−−− came to−→
NA (0.58) place of death (0.35) NA (0.73)
nationality (0.38) NA (0.33) contain location (0.07)
place lived (0.01) nationality (0.21) employee of (0.06)

Table 3: Case studies. We select entity pairs that have only one contextual sentence, and the head and tail entities
are marked. The top 3 predictions from each model with the associated probabilities are listed, with the correct
relation bold-faced.

likely express the person’s nationality. As a re-
sult, its prediction on NA is not very confident.
On the other hand, GloRE learns that if a person
“came to” a place, likely it is not his/her birth-
place. In the training data, due to the wrong label-
ing problem of distant supervision, the textual re-
lation is wrongly labeled with place of death
and nationality a couple of times, and both
PCNN+ATT and LoRE suffer from the train-
ing noise. Taking advantage of global statistics,
GloRE is more robust to such noise introduced by
the wrong labeling problem.

7 Conclusion

Our results show that textual relation embedding
trained on global co-occurrence statistics captures
useful relational information that is often comple-
mentary to existing methods. As a result, it can
greatly improve existing relation extraction mod-
els. Large-scale training data of embedding can be
easily solicited from distant supervision, and the
global statistics of relations provide a natural way
to combat the wrong labeling problem of distant
supervision.

The idea of relation embedding based on global
statistics can be further expanded along several di-
rections. In this work we have focused on embed-
ding textual relations, but it is in principle bene-
ficial to jointly embed knowledge base relations
and optionally entities. Recently a joint embed-
ding approach has been attempted in the context
of knowledge base completion (Toutanova et al.,
2015), but it is still based on local statistics, i.e.,
individual relational facts. Joint embedding with
global statistics remains an open problem. Com-
pared with the size of the training corpora for word
embedding (up to hundred of billions of tokens),
the NYT dataset is quite small in scale. Another
interesting venue for future research is to construct
much larger-scale distant supervision datasets to
train general-purpose textual relation embedding

that can help a wide range of downstream rela-
tional tasks such as question answering and textual
entailment.
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Abstract

Implicit arguments are not syntactically con-
nected to their predicates, and are therefore
hard to extract. Previous work has used mod-
els with large numbers of features, evaluated
on very small datasets. We propose to train
models for implicit argument prediction on a
simple cloze task, for which data can be gen-
erated automatically at scale. This allows us to
use a neural model, which draws on narrative
coherence and entity salience for predictions.
We show that our model has superior perfor-
mance on both synthetic and natural data. 1

1 Introduction

When parts of an event description in a text are
missing, this event cannot be easily extracted, and
it cannot easily be found as the answer to a ques-
tion. This is the case with implicit arguments, as
in this example from the reading comprehension
dataset of Hermann et al. (2015):

Text: More than 2,600 people have been
infected by Ebola in Liberia, Guinea,
Sierra Leone and Nigeria since the out-
break began in December, according to
the World Health Organization. Nearly
1,500 have died.

Question: The X outbreak has killed
nearly 1,500.

In this example, it is Ebola that broke out, and
Ebola was also the cause of nearly 1,500 people
dying, but the text does not state this explicitly.
Ebola is an implicit argument of both outbreak and
die, which is crucial to answering the question.

We are particularly interested in implicit argu-
ments that, like Ebola in this case, do appear in
the text, but not as syntactic arguments of their

1Our code is available at https://github.com/
pxch/event_imp_arg.

predicates. Event knowledge is key to determin-
ing implicit arguments. In our example, diseases
are maybe the single most typical things to break
out, and diseases also typically kill people.

The task of identifying implicit arguments was
first addressed by Gerber and Chai (2010) and
Ruppenhofer et al. (2010). However, the datasets
for the task were very small, and to our knowledge
there has been very little further development on
the task since then.

In this paper, we address the data issue by train-
ing models for implicit argument prediction on a
simple cloze task, similar to the narrative cloze
task (Chambers and Jurafsky, 2008), for which
data can be generated automatically at scale. This
allows us to train a neural network to perform the
task, building on two insights. First, event knowl-
edge is crucial for implicit argument detection.
Therefore we build on models for narrative event
prediction (Granroth-Wilding and Clark, 2016; Pi-
chotta and Mooney, 2016a), using them to judge
how coherent the narrative would be when we fill
in a particular entity as the missing (implicit) ar-
gument. Second, the omitted arguments tend to
be salient, as Ebola is in the text from which the
above example is taken. So in addition to narra-
tive coherence, our model takes into account entity
salience (Dunietz and Gillick, 2014).

In an evaluation on a large automatically gener-
ated dataset, our model clearly outperforms even
strong baselines, and we find salience features to
be important to the success of the model. We also
evaluate against a variant of the Gerber and Chai
(2012) model that does not rely on gold features,
finding that our simple neural model outperforms
their much more complex model.

Our paper thus makes two major contributions.
1) We propose an argument cloze task to gener-
ate synthetic training data at scale for implicit ar-
gument prediction. 2) We show that neural event

831



models for narrative schema prediction can be
used on implicit argument prediction, and that a
straightforward combination of event knowledge
and entity salience can do well on the task.

2 Related Work

While dependency parsing and semantic role la-
beling only deal with arguments that are available
in the syntactic context of the predicate, implicit
argument labeling seeks to find argument that are
not syntactically connected to their predicates, like
Ebola in our introductory example.

The most relevant work on implicit argument
prediction came from Gerber and Chai (2010),
who built an implicit arguments dataset by select-
ing 10 nominal predicates from NomBank (Mey-
ers et al., 2004) and manually annotating implicit
arguments for all occurrences of these predicates.
In an analysis of their data they found implicit ar-
guments to be very frequent, as their annotation
added 65% more arguments to NomBank. Gerber
and Chai (2012) also trained a linear classifier for
the task relying on many hand-crafted features, in-
cluding gold features from FrameNet (Baker et al.,
1998), PropBank (Palmer et al., 2005) and Nom-
Bank. This classifier has, to the best of our knowl-
edge, not been outperformed by follow-up work
(Laparra and Rigau, 2013; Schenk and Chiarcos,
2016; Do et al., 2017). We evaluate on the Gerber
and Chai dataset below. Ruppenhofer et al. (2010)
also introduced an implicit argument dataset, but
we do not evaluate on it as it is even smaller and
much more complex than Gerber and Chai (2010).
More recently, Modi et al. (2017) introduced the
referent cloze task, in which they predicted a man-
ually removed discourse referent from a human
annotated narrative text. This task is closely re-
lated to our argument cloze task.

Since we intend to exploit event knowledge in
predicting implicit arguments, we here refer to
recent work on statistical script learning, started
by Chambers and Jurafsky (2008, 2009). They
introduced the idea of using statistical informa-
tion on coreference chains to induce prototypi-
cal sequences of narrative events and participants,
which is related to the classical notion of a script
(Schank and Abelson, 1977). They also proposed
the narrative cloze evaluation, in which one event
is removed at random from a sequence of narrative
events, then the missing event is predicted given
all context events. We use a similar trick to de-

fine a cloze task for implicit argument prediction,
discussed in Section 3.

Many follow-up papers on script learning have
used neural networks. Rudinger et al. (2015)
showed that sequences of events can be efficiently
modeled by a log-bilinear language model. Pi-
chotta and Mooney (2016a,b) used an LSTM to
model a sequence of events. Granroth-Wilding
and Clark (2016) built a network that produces
an event representation by composing its compo-
nents. To do the cloze task, they select the most
probable event based on pairwise event coherence
scores. For our task we want to do something sim-
ilar: We want to predict how coherent a narrative
would be with a particular entity candidate filling
the implicit argument position. So we take the
model of Granroth-Wilding and Clark (2016) as
our starting point.

The Hermann et al. (2015) reading comprehen-
sion task, like our cloze task, requires systems to
guess a removed entity. However in their case the
entity is removed in a summary, not in the main
text. In their case, the task typically amounts to
finding a main text passage that paraphrases the
sentence with the removed entity; this is not the
case in our cloze task.

3 The Argument Cloze Task

We present the argument cloze task, which allows
us to automatically generate large scale data for
training (Section 6.1) and evaluation (Section 5.1).

In this task, we randomly remove an entity from
an argument position of one event in the text. The
entity in question needs to appear in at least one
other place in the text. The task is then for the
model to pick, from all entities appearing in the
text, the one that has been removed. We first de-
fine what we mean by an event, then what we mean
by an entity. Like Pichotta and Mooney (2016a);
Granroth-Wilding and Clark (2016), we define an
event e as consisting of a verbal predicate v, a sub-
ject s, a direct object o, and a prepositional object
p (along with the preposition). Here we only al-
low one prepositional argument in the structure, to
avoid variable length input in the event composi-
tion model.2 By an entity, we mean a coreference
chain with a length of at least two – that is, the
entity needs to appear at least twice in the text.

For example, from a piece of raw text (Figure

2In case of multiple prepositional objects, we select the
one that is closest to the predicate.
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Manville Corp. said it will build a $ 24 million power 
plant to provide electricity to its Igaras pulp and paper 
mill in Brazil .

The company said the plant will ensure that it has 
adequate energy for the mill and will reduce the mill’s 
energy costs .

(a) A piece of raw text from OntoNotes corpus.

x0 = The company    x1 = mill    x2 = power plant

e0: ( build-pred,  x0-subj,  x2-dobj,  — )
e1: ( provide-pred,  —,  electricity-dobj,  x1-prep_to )
e2: ( ensure-pred,  x2-subj,  —,  — )
e3: ( has-pred,  x0-subj,  energy-dobj,  x1-prep_for )
e4: ( reduce-pred,  x2-subj,  cost-dobj,  — )

(b) Extracted events (e0~e4) and entities (x0~x2), using gold
annotations from OntoNotes.

e0, e2, e3, e4: same as above
e1: ( provide-pred,  —,  electricity-dobj,  ??-prep_to )

x0 = The company    x1 = mill    x2 = power plant

(c) Example of an argument cloze task for prep to of e1.

Figure 1: Example of automatically extracted
events and entities and an argument cloze task.

1a), we automatically extract a sequence of events
from a dependency parse, and a list of entities from
coreference chains. In Figure 1b, e0~e4 are events,
x0~x2 are entities. The arguments electricity-dobj
and energy-dobj are not in coreference chains and
are thus not candidates for removal. An exam-
ple of the argument cloze task is shown in Figure
1c. Here the prep to argument of e1 has been re-
moved.

Coreference resolution is very noisy. Therefore
we use gold coreference annotation for creating
evaluation data, but automatically generated coref-
erence chains for creating training data.

4 Methods

4.1 Modeling Narrative Coherence

We model implicit argument prediction as select-
ing the entity that, when filled in as the implicit
argument, makes the overall most coherent nar-
rative. Suppose we are trying to predict the di-
rect object argument of some target event et. Then

we complete et by putting an entity candidate into
the direct object argument position, and check the
coherence of the resulting event with the rest of
the narrative. Say we have a sequence of events
e1, e2, . . . , en in a narrative, and a list of entity
candidates x1, x2, . . . , xm. Then for any candidate
xj , we first complete the target event to be

et(j) = (vt, st, xj , pt), j = 1, . . . ,m (1)

where vt, st, and pt are the predicate, subject, and
prepositional object of et respectively, and xj is
filled as the direct object. (Event completion for
omitted subjects and prepositional objects is anal-
ogous.)

Then we compute the narrative coherence score
Sj of the candidate xj by3

Sj =
n

max
c=1, c 6=t

coh
(
~et(j), ~ec

)
, j = 1, . . . ,m

(2)
where ~et(j) and ~ec are representations for the
completed target event et(j) and one context event
ec, and coh is a function computing a coherence
score between two events, both depending on the
model being used. The candidate xj with the high-
est score Sj is then selected as our prediction.

4.2 The Event Composition Model

To model coherence (coh) between a context event
and a target event, we build an event composition
model consisting of three parts, as shown in Fig-
ure 2: event components are representated through
event-based word embeddings, which encode
event knowledge in word representations; the ar-
gument composition network combines the com-
ponents to produce event representations; and the
pair composition network compute a coherence
score for two event representations.

This basic architecture is as in the model of
Granroth-Wilding and Clark (2016). However our
model is designed for a different task, argument
cloze rather than narrative cloze, and for our task
entity-specific information is more important. We
therefore create the training data in a different way,
as described in Section 4.2.1. We now discuss the
three parts of the model in more detail.

Event-Based Word Embeddings The model
takes word embeddings of both predicates and

3We have also tried using the sum instead of the maxi-
mum, but it did not perform as well across different models
and datasets.
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Context Event

Argument Index

Target Event (Missing Object       ) 

Entity Salience

Coherence Score

Pair Composition
Network

Event-Based
Word Embeddings

Argument Composition
Network

Extra Features

vt st ot ptvc sc oc pc ot

coh

Figure 2: Diagram for event composition model. Input: a context event and a target event. Event-Based
Word Embeddings: embeddings for components of both events that encodes event knowledge. Argu-
ment Composition Network: produces an event representation from its components. Pair Composition
Network: computes a coherence score coh from two event representations. Extra Features: argument
index and entity salience features as additional input to the pair composition network.

arguments as input to compute event representa-
tions. To better encode event knowledge in word
level, we train an SGNS (skip-gram with nega-
tive sampling) word2vec model (Mikolov et al.,
2013) with event-specific information. For each
extracted event sequence, we create a sentence
with the predicates and arguments of all events in
the sequence. An example of such a training sen-
tence is given in Figure 3.

build-pred  company-subj  plant-dobj  provide-pred  
electricity-dobj  mill-prep_to  ensure-pred  plant-subj  
has-pred  company-subj  energy-dobj  mill-prep_for  
reduce-pred  plant-subj  cost-dobj

Figure 3: Event-based word2vec training sentence,
constructed from events and entities in Figure 1b.

Argument Composition Network The argu-
ment composition network (dark blue area in Fig-
ure 2) is a two-layer feedforward neural network
that composes an event representation from the
embeddings of its components. Non-existent ar-
gument positions are filled with zeros.

Pair Composition Network The pair composi-
tion network (light blue area in Figure 2) computes
a coherence score coh between 0 and 1, given the
vector representations of a context event and a tar-
get event. The coherence score should be high
when the target event contains the correct argu-
ment, and low otherwise. So we construct the

training objective function to distinguish the cor-
rect argument from wrong ones, as described in
Equation 3.

4.2.1 Training for Argument Prediction
To train the model to pick the correct candidate,
we automatically construct training samples as
event triples consisting of a context event ec, a pos-
itive event ep, and a negative event en. The con-
text event and positive event are randomly sam-
pled from an observed sequence of events, while
the negative event is generated by replacing one
argument of positive event by a random entity in
the narrative, as shown in Figure 4.

x0 = The company    x1 = mill    x2 = power plant

Context: ( build-pred,  x0-subj,  x2-dobj,  — )
Positive: ( reduce-pred,  x2-subj,  cost-dobj,  — )
Negative: ( reduce-pred,  x1-subj,  cost-dobj,  — )

Figure 4: Example of an event triple constructed
from events and entities in Figure 1b.

We want the coherence score between ec and
ep to be close to 1, while the score for ec and en
should be close to 0. Therefore, we train the model
to minimize cross-entropy as follows:

1

m

m∑

i=1

− log(coh(eci, epi))−log(1−coh(eci, eni))

(3)
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where eci, epi, and eni are the context, positive,
and negative events of the ith training sample re-
spectively.

4.3 Entity Salience

Implicit arguments tend to be salient entities in
the document. So we extend our model by en-
tity salience features, building on recent work by
Dunietz and Gillick (2014), who introduced a sim-
ple model with several surface level features for
entity salience detection. Among the features they
used, we discard those that require external re-
sources, and only use the remaining three features,
as illustrated in Table 1. Dunietz and Gillick found
mentions to be the most powerful indicator for en-
tity salience among all features. We expect similar
results in our experiments, however we include all
three features in our event composition model for
now, and conduct an ablation test afterwards.

Feature Description
1st loc Index of the sentence where the

first mention of the entity appears
head count Number of times the head word

of the entity appears
mentions A vector containing the numbers

of named, nominal, pronominal,
and total mentions of the entity

Table 1: Entity salience features from Dunietz and
Gillick (2014).

The entity salience features are directly passed
into the pair composition network as additional in-
put. We also add an extra feature for argument
position index (encoding whether the missing ar-
gument is a subject, direct object, or prepositional
object), as shown in the red area in Figure 2.

5 Evaluation Datasets

5.1 Argument Cloze Evaluation

Previous implicit argument datasets were very
small. To overcome that limitation, we automat-
ically create a large and comprehensive evaluation
dataset, following the argument cloze task setting
in Section 3.

Since the events and entities are extracted from
dependency labels and coreference chains, we do
not want to introduce systematic error into the
evaluation from imperfect parsing and coreference
algorithms. Therefore, we create the evaluation set

from OntoNotes (Hovy et al., 2006), which con-
tains human-labeled dependency and coreference
annotation for a large corpus. So the extracted
events and entities in the evaluation set are gold.
Note that this is only for evaluation; in training we
do not rely on any gold annotations (Section 6.1).

There are four English sub-corpora in
OntoNotes Release 5.04 that are annotated
with dependency labels and coreference chains.
Three of them, which are mainly from broadcast
news, share similar statistics in document length,
so we combine them into a single dataset and
name it ON-SHORT as it consists mostly of short
documents. The fourth subcorpus is from the
Wall Street Journal and has significantly longer
documents. We call this subcorpus ON-LONG
and evaluate on it separately. Some statistics are
shown in Table 2.

ON-SHORT ON-LONG

# doc 1027 597
# test cases 13018 18208

Avg # entities 12.06 36.95

Table 2: Statistics on argument cloze datasets.

5.2 The Gerber and Chai (G&C) Dataset

The implicit argument dataset from Gerber and
Chai (2010) (referred as G&C henceforth) con-
sists of 966 human-annotated implicit argument
instances on 10 nominal predicates.

To evaluate our model on G&C, we convert the
annotations to the input format of our model as fol-
lows: We map nominal predicates to their verbal
form, and semantic role labels to syntactic argu-
ment types based on the NomBank frame defini-
tions. One of the examples (after mapping seman-
tic role labels) is as follows:

[Participants]subj will be able to trans-
fer [money]dobj to [other investment
funds]prep to. The [investment]pred
choices are limited to [a stock fund and
a money-market fund]prep to.

For the nominal predicate investment, there are
three arguments missing (subj, dobj, prep to). The
model first needs to determine that each of those
argument positions in fact has an implicit filler.
Then, from a list of candidates (not shown here), it

4LDC Catalog No. LDC2013T19
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needs to select Participants as the implicit subj ar-
gument, money as the implicit dobj argument, and
either other investment funds or a stock fund and a
money-market fund as the implicit prep to.

6 Experiments

6.1 Implementation Details
We train our neural model using synthetic data as
described in Section 3. For creating the training
data, we do not use gold parses or gold coreference
chains. We use the 20160901 dump of English
Wikipedia5, with 5,228,621 documents in total.
For each document, we extract plain text and break
it into paragraphs, while discarding all structured
data like lists and tables6. We construct a sequence
of events and entities from each paragraph, by run-
ning Stanford CoreNLP (Manning et al., 2014) to
obtain dependency parses and coreference chains.
We lemmatize all verbs and arguments. We in-
corporate negation and particles in verbs, and nor-
malize passive constructions. We represent each
argument by the corresponding entity’s represen-
tative mention if it is linked to an entity, otherwise
by its head lemma. We keep verbs and arguments
with counts over 500, together with the 50 most
frequent prepositions, leading to a vocabulary of
53,345 tokens; all other words are replaced with an
out-of-vocabulary token. The most frequent verbs
(with counts over 100,000) are down-sampled.

For training the event-based word embeddings,
we create pseudo-sentences (Section 4.2) from all
events of all sequences (approximately 87 million
events) as training samples. We train an SGNS
word2vec model with embedding size = 300, win-
dow size = 10, subsampling threshold = 10−4, and
negative samples = 10, using the Gensim package
(Řehůřek and Sojka, 2010).

For training the event composition model, we
follow the procedure described in Section 4.2.1,
and extract approximately 40 million event triples
as training samples7. We use a two-layer feed-
forward neural network with layer sizes 600 and
300 for the argument composition network, and
another two-layer network with layer sizes 400
and 200 for the pair composition network. We use
cross-entropy loss with `2 regularization of 0.01.

5https://dumps.wikimedia.org/enwiki/
6We use the WikiExtractor tool at https://github.

com/attardi/wikiextractor.
7We only sample one negative event for each pair of con-

text and positive events for fast training, though more training
samples are easily accessible.

We train the model using stochastic gradient de-
scent (SGD) with a learning rate of 0.01 and a
batch size of 100 for 20 epochs.

To study how the size of the training set af-
fects performance, we downsample the 40 million
training samples to another set of 8 million train-
ing samples. We refer to the resulting models as
EVENTCOMP-8M and EVENTCOMP-40M.

6.2 Evaluation on Argument Cloze

For the synthetic argument cloze task, we compare
our model with 3 baselines.

RANDOM Randomly select one entity from the
candidate list.

MOSTFREQ Always select the entity with high-
est number of mentions.

EVENTWORD2VEC Use the event-based word
embeddings described in Section 4.2 for predi-
cates and arguments. The representation of an
event e is the sum of the embeddings of its com-
ponents, i.e.,

~e = ~v + ~s+ ~o+ ~p (4)

where ~v,~s, ~o, ~p are the embeddings of verb, sub-
ject, object, and prepositional object, respectively.
The coherence score of two events in this base-
line model is their cosine similarity. Like in our
main model, the coherence score of the candidate
is then the maximum pairwise coherence score, as
described in Section 4.1.

The evaluation results on the ON-SHORT

dataset are shown in Table 3. The EVENT-
WORD2VEC baseline is much stronger than the
other two, achieving an accuracy of 38.40%. In
fact, EVENTCOMP-8M by itself does not do
better than EVENTWORD2VEC, but adding en-
tity salience greatly boosts performance. Using
more training data (EVENTCOMP-40M) helps by
a substantial margin both with and without entity
salience features.

To see which of the entity salience features are
important, we conduct an ablation test with the
EVENTCOMP-8M model on ON-SHORT. From
the results in Table 4, we can see that in our task,
as in Dunietz and Gillick (2014), the entity men-
tions features, i.e., the numbers of named, nomi-
nal, pronominal, and total mentions of the entity,
are most helpful. In fact, the other two features
even decrease performance slightly.
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Figure 5: Performance of EVENTCOMP (with and without entity salience) and two baseline models by
(a) argument type, (b) part-of-speech tag of the head word of the entity, and (c) entity frequency.

Accuracy (%)

RANDOM 8.29
MOSTFREQ 22.76
EVENTWORD2VEC 38.40

EVENTCOMP-8M 38.26
+ entity salience 45.05

EVENTCOMP-40M 41.89
+ entity salience 47.75

Table 3: Evaluation on ON-SHORT.

Features Accuracy (%)

no entity salience feature 38.26

– mentions 39.02
– head count 45.71
– 1st loc 45.65

all entity salience features 45.05

Table 4: Ablation test on entity salience features.
(Using EVENTCOMP-8M on ON-SHORT.)

We take a closer look at several of the mod-
els in Figure 5. Figure 5a breaks down the re-
sults by the argument type of the removed argu-
ment. On subjects, the EVENTWORD2VEC base-
line matches the performance of EVENTCOMP,
but not on direct objects and prepositional objects.
Subjects are semantically much less diverse than
the other argument types, as they are very often an-
imate. A similar pattern is apparent in Figure 5b,
which has results by the part-of-speech tag of the
head word of the removed entity. Note that an en-
tity is a coreference chain, not a single mention; so
when the head word is a pronoun, this is an entity

which has only pronoun mentions. A pronoun en-
tity provides little semantic content beyond, again,
animacy. And again, EVENTWORD2VEC per-
forms well on pronoun entities, but less so on en-
tities described by a noun. It seems that EVENT-
WORD2VEC can pick up on a coarse-grained pat-
tern such as animate/inanimate, but not on more
fine-grained distinctions needed to select the right
noun, or to select a fitting direct object or prepo-
sitional object. This matches the fact that EVENT-
WORD2VEC gets a less clear signal on the task,
in two respects: It gets much less information
than EVENTCOMP on the distinction between ar-
gument positions,8 and it only looks at overall
event similarity while EVENTCOMP is trained to
detect narrative coherence. Entity salience con-
tributes greatly across all argument types and parts
of speech, but more strongly on subjects and pro-
nouns. This is again because subjects, and pro-
nouns, are semantically less distinct, so they can
only be distinguished by relative salience.

Figure 5c analyzes results by the frequency of
the removed entity, that is, by its number of men-
tions. The MOSTFREQ baseline, unsurprisingly,
only does well when the removed entity is a highly
frequent one. The EVENTCOMP model is much
better than MOSTFREQ at picking out the right
entity when it is a rare one, as it can look at the
semantic content of the entity as well as its fre-
quency. Entity salience boosts the performance of
EVENTCOMP in particular for frequent entities.

The ON-LONG dataset, as discussed in Sec-
tion 5.1, consists of OntoNotes data with much

8As shown in Figure 3, the “words” for which embed-
dings are computed are role-lemma pairs.

837



longer documents than found in ON-SHORT.
Evaluation results on ON-LONG are shown in Ta-
ble 5. Although the overall numbers are lower
than those for ON-SHORT, we are selecting from
36.95 candidates on average, more than 3 times
more than for ON-SHORT. Considering that the
accuracy of randomly selecting an entity is as low
as 2.71%, the performance of our best performing
model, with an accuracy of 27.87%, is quite good.

Accuracy (%)

RANDOM 2.71
MOSTFREQ 17.23
EVENTWORD2VEC 21.49

EVENTCOMP-8M 18.79
+ entity salience 26.23

EVENTCOMP-40M 21.79
+ entity salience 27.87

Table 5: Evaluation on ON-LONG.

6.3 Evaluation on G&C

The G&C data differs from the Argument Cloze
data in two respects. First, not every argument po-
sition that seems to be open needs to be filled: The
model must additionally make a fill / no-fill de-
cision. Whether a particular argument position is
typically filled is highly predicate-specific. As the
small G&C dataset does not provide enough data
to train our neural model on this task, we instead
train a simple logistic classifier, the fill / no-fill
classifier, with a small subset of shallow lexical
features used in Gerber and Chai (2012), to make
the decision. These features describe the syntactic
context of the predicate. We use only 14 features;
the original Gerber and Chai model had more than
80 features, and our re-implementation, described
below, has around 60.

The second difference is that in G&C, an event
may have multiple open argument positions. In
that case, the task is not just to select a candidate
entity, but also to determine which of the open ar-
gument positions it should fill. So the model must
do multi implicit argument prediction. We can
flexibly adapt our method for training data gener-
ation to this case. In particular, we create extra
negative training events, in which an argument of
the positive event has been moved to another argu-
ment position in the same event, as shown in Fig-
ure 6. We can then simply train our EVENTCOMP

model on this extended training data. We refer to
the extra training process as multi-arg training.

x0 = The company    x1 = mill    x2 = power plant

Context: ( build-pred,  x0-subj,  x2-dobj,  — )
Positive: ( reduce-pred,  x2-subj,  cost-dobj,  — )
Negative: ( reduce-pred,  —,  cost-dobj,  x2-prep )

Figure 6: Event triples for training multi implicit
argument prediction.

We compare our models to that of Gerber and
Chai (2012). However, their original logistic re-
gression model used many features based on gold
annotation from FrameNet, PropBank and Nom-
Bank. To create a more realistic evaluation setup,
we re-implement a variant of their original model
by removing gold features, and name it GCAUTO.
Results from GCAUTO are directly comparable to
our models, as both are trained on automatically
generated features. 9

P R F1

Gerber and Chai (2012) 57.9 44.5 50.3
GCAUTO 49.9 40.1 44.5

EVENTCOMP-8M 8.9 27.9 13.5
+ fill / no-fill classifier 22.0 22.3 22.1

+ multi-arg training 43.5 44.1 43.8
+ entity salience 45.7 46.4 46.1

EVENTCOMP-40M 9.4 30.3 14.3
+ fill / no-fill classifier 23.7 24.0 23.9

+ multi-arg training 46.7 47.3 47.0
+ entity salience 49.3 49.9 49.6

Table 6: Evaluation on G&C dataset.

We present the evaluation results in Table 6.
The original EVENTCOMP models do not per-
form well, which is as expected since the model
is not designed to do the fill / no-fill decision and
multi implicit argument prediction tasks as de-
scribed above. With the fill / no-fill classifier,
precision rises by around 13 points because this
classifier prevents many false positives. With ad-
ditional multi-arg training, F1 score improves by
another 22-23 points. At this point, our model

9To be fair, we also tested adding the fill / no-fill classi-
fier to GCAUTO. However the classifier only increases preci-
sion at the cost of reducing recall, and GCAUTO already has
higher precision than recall. The resulting F1 score is actu-
ally worse, and thus is not reported here.
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achieves a performance comparable to the much
more complex G&C reimplementation GCAUTO.
Adding entity salience features further boosts both
precision and recall, showing that implicit argu-
ments do tend to be filled by salient entities, as we
had hypothesized. Again, more training data sub-
stantially benefits the task. Our best performing
model, at 49.6 F1, clearly outperforms GCAUTO,
and is comparable with the original Gerber and
Chai (2012) model trained with gold features. 10

7 Conclusion

In this paper we have addressed the task of im-
plicit argument prediction. To support training at
scale, we have introduced a simple cloze task for
which data can be generated automatically. We
have introduced a neural model, which frames im-
plicit argument prediction as the task of select-
ing the textual entity that completes the event in
a maximally narratively coherent way. The model
prefers salient entities, where salience is mainly
defined through the number of mentions. Evalu-
ating on synthetic data from OntoNotes, we find
that our model clearly outperforms even strong
baselines, that salience is important throughout for
performance, and that event knowledge is partic-
ularly useful for the (more verb-specific) object
and prepositional object arguments. Evaluating
on the naturally occurring data from Gerber and
Chai, we find that in a comparison without gold
features, our model clearly outperforms the pre-
vious state-of-the-art model, where again salience
information is important.

The current paper takes a first step towards pre-
dicting implicit arguments based on narrative co-
herence. We currently use a relatively simple
model for local narrative coherence; in the future
we will turn to models that can test global coher-
ence for an implicit argument candidate. We also
plan to investigate how the extracted implicit ar-
guments can be integrated into a downstream task
that makes use of event information, in particular
we would like to experiment with reading compre-
hension.
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Abstract

Extracting temporal relations (before, after,
overlapping, etc.) is a key aspect of under-
standing events described in natural language.
We argue that this task would gain from the
availability of a resource that provides prior
knowledge in the form of the temporal order
that events usually follow. This paper devel-
ops such a resource – a probabilistic knowl-
edge base acquired in the news domain – by
extracting temporal relations between events
from the New York Times (NYT) articles over
a 20-year span (1987–2007). We show that ex-
isting temporal extraction systems can be im-
proved via this resource. As a byproduct, we
also show that interesting statistics can be re-
trieved from this resource, which can poten-
tially benefit other time-aware tasks. The pro-
posed system and resource are both publicly
available1.

1 Introduction

Time is an important dimension of knowledge rep-
resentation. In natural language, temporal infor-
mation is often expressed as relations between
events. Reasoning over these relations can help
figuring out when things happened, estimating
how long things take, and summarizing the time-
line of a series of events. Several recent SemEval
workshops are a good showcase of the importance
of this topic (Verhagen et al., 2007, 2010; Uz-
Zaman et al., 2013; Llorens et al., 2015; Minard
et al., 2015; Bethard et al., 2015, 2016, 2017).

One of the challenges in temporal relation ex-
traction is that it requires high-level prior knowl-
edge of the temporal order that events usually fol-
low. In Example 1, we have deleted events from
several snippets from CNN, so that we cannot use
our prior knowledge of those events. We are also

1http://cogcomp.org/page/publication_
view/830

told that e1 and e2 have the same tense, and e3
and e4 have the same tense, so we cannot resort
to their tenses to tell which one happens earlier.
As a result, it is very difficult even for humans
to figure out the temporal relations (referred to as
“TempRels” hereafter) between those events. This
is because rich temporal information is encoded
in the events’ names, and this often plays an in-
dispensable role in making our decisions. In the
first paragraph of Example 1, it is difficult to un-
derstand what really happened without the actual
event verbs; let alone the TempRels between them.
In the second paragraph, things are even more in-
teresting: if we had e3:dislike and e4:stop, then
we would know easily that “I dislike” occurs af-
ter “they stop the column”. However, if we had
e3:ask and e4:help, then the relation between e3
and e4 is now reversed and e3 is before e4. We
are in need of the event names to determine the
TempRels; however, we do not have them in Ex-
ample 1. In Example 2, where we show the com-
plete sentences, the task has become much easier
for humans due to our prior knowledge, namely,
that explosion usually leads to casualties and that
people usually ask before they get help. Moti-
vated by these examples (which are in fact very
common), we believe in the importance of such
a prior knowledge in determining TempRels be-
tween events.

Example 1: Difficulty in understanding TempRels
when event content is missing. Note that e1 and e2
have the same tense, and e3 and e4 have the same tense.
More than 10 people have (e1:died), police said. A car
(e2:exploded) on Friday in the middle of a group of men
playing volleyball.
The first thing I (e3:ask) is that they (e4:help) writing
this column.

However, most existing systems only make use
of rather local features of these events, which can-
not represent the prior knowledge humans have
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Example Pairs Before (%) After (%)
accept determine 42 26

ask help 86 9
attend schedule 1 82
accept propose 10 77

die explode 14 83
. . .

Table 1: TEMPROB is a unique source of informa-
tion of the temporal order that events usually fol-
low. The probabilities below do not add up to 100%
because less frequent relations are omitted. The word
sense numbers are not shown here for convenience.

about these events and their “typical” order. As
a result, existing systems almost always attempt
to solve the situations shown in Example 1, even
when they are actually presented with input as in
Example 2. The first contribution of this work is
thus the construction of such a resource in the form
of a probabilistic knowledge base, constructed
from a large New York Times (NYT) corpus.
We hereafter name our resource TEMporal rela-
tion PRObabilistic knowledge Base (TEMPROB),
which can potentially benefit many time-aware
tasks. A few example entries of TEMPROB are
shown in Table 1. Second, we show that exist-
ing TempRel extraction systems can be improved
using TEMPROB, either in a local method or in
a global method (explained later), by a signif-
icant margin in performance on the benchmark
TimeBank-Dense dataset (Cassidy et al., 2014).

Example 2: The original sentences in Example 1.
More than 10 people have (e1:died), police said. A car
(e2:exploded) on Friday in the middle of a group of men
playing volleyball.
The first thing I (e3:ask) is that they (e4:help) writing
this column.

The rest of the paper is organized as follows.
Section 2 provides a literature review of TempRels
extraction in NLP. Section 3 describes in detail the
construction of TEMPROB. In Sec. 4, we show
that TEMPROB can be used in existing TempRels
extraction systems and lead to significant improve-
ment. Finally, we conclude in Sec. 5.

2 Related Work

The TempRels between events can be represented
by an edge-labeled graph, where the nodes are
events, and the edges are labeled with TempRels
(Chambers and Jurafsky, 2008; Do et al., 2012;
Ning et al., 2017). Given all the nodes, we work
on the TempRel extraction task, which is to assign

labels to the edges in a temporal graph (a “vague”
or “none” label is often included to account for the
non-existence of an edge).

Early work includes Mani et al. (2006); Cham-
bers et al. (2007); Bethard et al. (2007); Verhagen
and Pustejovsky (2008), where the problem was
formulated as learning a classification model for
determining the label of every edge locally with-
out referring to other edges (i.e., local methods).
The predicted temporal graphs by these methods
may violate the transitive properties that a tempo-
ral graph should possess. For example, given three
nodes, e1, e2, and e3, a local method can pos-
sibly classify (e1,e2)=before, (e2,e3)=before, and
(e1,e3)=after, which is obviously wrong since be-
fore is a transitive relation and (e1,e2)=before and
(e2,e3)=before dictate that (e1,e3)=before. Recent
state-of-the-art methods, (Chambers et al., 2014;
Mirza and Tonelli, 2016), circumvented this is-
sue by growing the predicted temporal graph in a
multi-step manner, where transitive graph closure
is performed on the graph every time a new edge
is labeled. This is conceptually solving the struc-
tured prediction problem greedily. Another fam-
ily of methods resorted to Integer Linear Program-
ming (ILP) (Roth and Yih, 2004) to get exact infer-
ence to this problem (i.e., global methods), where
the entire graph is solved simultaneously and the
transitive properties are enforced naturally via ILP
constraints (Bramsen et al., 2006; Chambers and
Jurafsky, 2008; Denis and Muller, 2011; Do et al.,
2012). A most recent work brought this idea even
further, by incorporating structural constraints into
the learning phase as well (Ning et al., 2017).

The TempRel extraction task has a strong de-
pendency on prior knowledge, as shown in our
earlier examples. However, very limited atten-
tion has been paid to generating such a resource
and to make use of it; to our knowledge, the
TEMPROB proposed in this work is completely
new. We find that the time-sensitive relations pro-
posed in Jiang et al. (2016) is a close one in litera-
ture (although it is still very different). Jiang et al.
(2016) worked on the knowledge graph comple-
tion task. Based on YAGO2 (Hoffart et al., 2013)
and Freebase (Bollacker et al., 2008), it manually
selects a small number of relations that are time-
sensitive (10 relations from YAGO2 and 87 rela-
tions from Freebase, respectively). Exemplar re-
lations are wasBornIn→diedIn→ and graduate-
From→workAt, where → means temporally be-
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fore.
Our work significantly differs from the time-

sensitive relations in Jiang et al. (2016) in the
following aspects. First, scale difference: Jiang
et al. (2016) can only extract a small number of
relations (<100), but we work on general seman-
tic frames (tens of thousands) and the relations
between any two of them, which we think has
broader applications. Second, granularity differ-
ence: the smallest granularity in Jiang et al. (2016)
is one year2, i.e., only when two events happened
in different years can they know the temporal or-
der of them, but we can handle implicit temporal
orders without having to refer to the physical time
points of events (i.e., the granularity can be ar-
bitrarily small). Third, domain difference: while
Jiang et al. (2016) extracts time-sensitive relations
from structured knowledge bases (where events
are explicitly anchored to a time point), we extract
relations from unstructured natural language text
(where the physical time points may not even ex-
ist in text). Our task is more general and it allows
us to extract much more relations, as reflected by
the 1st difference above.

Another related work is the VerbOcean
(Chklovski and Pantel, 2004), which extracts
temporal relations between pairs of verbs using
manually designed lexico-syntactic patterns (there
are in total 12 such patterns), in contrast to the
automatic extraction method proposed in this
work. In addition, the only termporal relation
considered in VerbOceans is before, while we
also consider relations such as after, includes,
included, equal, and vague. As expected, the
total numbers of verbs and before relations in
VerbOcean is about 3K and 4K, respectively, both
of which are much smaller than TEMPROB, which
contains 51K verb frames (i.e., disambiguated
verbs), 9.2M (verb1, verb2, relation) entries,
and up to 80M temporal relations altogether.

All these differences necessitate the construc-
tion of a new resource for TempRel extraction,
which we explain below.

3 TEMPROB: A Probabilistic Resource
for TempRels

In the TempRel extraction task, people have usu-
ally assumed that events are already given. How-
ever, to construct the desired resource, we need

2We notice that the smallest granularity in Freebase itself
is one day, but Jiang et al. (2016) only used years.

to extract events (Sec. 3.1) and extract TempRels
(Sec. 3.2), from a large, unannotated3 corpus
(Sec. 3.3). We also show some interesting statis-
tics discovered in TEMPROB that may benefit
other tasks (Sec. 3.4). In the next, we describe
each of these elements.

3.1 Event Extraction

Extracting events and the relations between them
(e.g., coreference, causality, entailment, and tem-
poral) have long been an active area in the NLP
community. Generally speaking, an event is con-
sidered to be an action associated with corre-
sponding participants involved in this action. In
this work, following (Peng and Roth, 2016; Peng
et al., 2016; Spiliopoulou et al., 2017) we con-
sider semantic-frame based events, which can be
directly detected via off-the-shelf semantic role la-
beling (SRL) tools. This aligns well with previous
works on event detection (Hovy et al., 2013; Peng
et al., 2016).

Depending on the events of interest, the SRL
results are often a superset of events and need to
be filtered afterwards (Spiliopoulou et al., 2017).
For example, in ERE (Song et al., 2015) and Event
Nugget Detection (Mitamura et al., 2015), events
are limited to a set of predefined types (such as
“Business”, “Conflict”, and “Justice”); in the con-
text of TempRels, existing datasets have focused
more on predicate verbs rather than nominals4

(Pustejovsky et al., 2003; Graff, 2002; UzZaman
et al., 2013). Therefore, we only look at verb se-
mantic frames in this work due to the difficulty of
getting TempRel annotation for nominal events,
and we will use “verb (semantic frames)” inter-
changeably with “events” hereafter in this paper.

3.2 TempRel Extraction

Given the events extracted in a given article (i.e.,
given the nodes in a graph), we next explain how
the TempRels are extracted (that is, the edge labels
in the graph).

3.2.1 Features
We adopt the commonly used feature set in
TempRel extraction (Do et al., 2012; Ning et al.,
2017) and here we simply list them for repro-
ducibility. For each pair of nodes, the follow-

3Unannotated with TempRels.
4Some nominal events were indeed annotated in Time-

Bank (Pustejovsky et al., 2003), but their annotation did not
align well with modern nominal-SRL methods.
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ing features are extracted. (i) The part-of-speech
(POS) tags from each individual verb and from
its neighboring three words. (ii) The distance be-
tween them in terms of the number of tokens. (iii)
The modal verbs between the event mention (i.e.,
will, would, can, could, may and might). (iv)
The temporal connectives between the event men-
tions (e.g., before, after and since). (v) Whether
the two verbs have a common synonym from
their synsets in WordNet (Fellbaum, 1998). (vi)
Whether the input event mentions have a common
derivational form derived from WordNet. (vii) The
head word of the preposition phrase that covers
each verb, respectively.

3.2.2 Learning

With the features defined above, we need to train
a system that can annotate the TempRels in each
document. The TimeBank-Dense dataset (TB-
Dense) (Cassidy et al., 2014) is known to have
the best quality in terms of its high density of
TempRels and is a benchmark dataset for the
TempRel extraction task. It contains 36 docu-
ments from TimeBank (Pustejovsky et al., 2003)
which were re-annotated using the dense event
ordering framework proposed in (Cassidy et al.,
2014). We follow its label set (denoted by R) of
before, after, includes, included, equal, and vague
in this study.

Due to the slight event annotation difference in
TBDense, we collect our training data as follows.
We first extract all the verb semantic frames from
the raw text of TBDense. Then we only keep those
semantic frames that are matched to an event in
TBDense (about 85% semantic frames are kept in
this stage). By doing so, we can simply use the
TempRel annotations provided in TBDense. Here-
after the TBDense dataset used in this paper refers
to this version unless otherwise specified.

We group the TempRels by the sentence dis-
tance of the two events of each relation5. Then
we use the averaged perceptron algorithm (Freund
and Schapire, 1998) implemented in the Illinois
LBJava package (Rizzolo and Roth, 2010) to learn
from the training data described above. Since only
relations that have sentence distance 0 or 1 are an-
notated in TBDense, we will have two classifiers,
one for same sentence relations, and one for neigh-
boring sentence relations, respectively.

5That is, the difference of the appearance order of the sen-
tence(s) containing the two target events.

Note that TBDense was originally split into
Train (22 docs), Dev (5 docs), and Test (9 docs).
In all subsequent analysis, we combined Train and
Dev and we performed 3-fold cross validation on
the 27 documents (in total about 10K relations) to
tune the parameters in any classifier.

3.2.3 Inference
When generating TEMPROB, we need to pro-
cess a large number of articles, so we adopt the
greedy inference strategy described earlier due
to its computational efficiency (Chambers et al.,
2014; Mirza and Tonelli, 2016). Specifically, we
apply the same-sentence relation classifier before
the neighboring-sentence relation classifier; when-
ever a new relation is added in this article, a tran-
sitive graph closure is performed immediately. By
doing this, if an edge is already labeled during the
closure phase, it will not be labeled again, so con-
flicts are avoided.

3.3 Corpus

As mentioned earlier, the source corpus on which
we are going to construct TEMPROB is comprised
of NYT articles from 20 years (1987-2007)6. It
contains more than 1 million documents and we
extract events and corresponding features from
each document using the Illinois Curator pack-
age (Clarke et al., 2012) on Amazon Web Services
(AWS) Cloud. In total, we discovered 51K unique
verb semantic frames and 80M relations among
them in the NYT corpus (15K of the verb frames
had more than 20 relations extracted and 9K had
more than 100 relations).

3.4 Interesting Statistics

We first describe the notations that we are going to
use. We denote the set of all verb semantic frames
by V . Let Di, i = 1, . . . , N be the i-th document
in our corpus, where N is the total number of doc-
uments. Let Gi = (Vi, Ei) be the temporal graph
inferred from Di using the approach described
above, where Vi ⊆ V is the set of verbs/events
extracted in Di and Ei = {(vm, vn, rmn)}m<n ⊆
Vi × Vi × R is the edge set of Di, which is com-
posed of TempRel triplets; specifically, a TempRel
triplet (vm, vn, rmn) ∈ Ei represents that in docu-
ment Di, the TempRel between vm and vn is rmn.
Due to the symmetry in TempRels, we only keep
the triplets with m < n in Ei. Assuming that the

6https://catalog.ldc.upenn.edu/LDC2008T19
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verbs in Vi are ordered by their appearance order
in text, then m < n means that in the i-th docu-
ment, vm appears earlier in text than vn does.

Given the usual confusion between that one
event is temporally before another and that one
event is physically appearing before another in
text, we will refer to temporally before as T-
Before and physically before as P-Before. Us-
ing this language, for example, Ei only keeps the
triplets that vm is P-Before vn in Di.

3.4.1 Extreme cases
We first show extreme cases that some events are
almost always labeled as T-Before or T-After in
the corpus. Specifically, for each pair of verbs
vi, vj ∈ V , we define the following ratios:

ηb =
C(vi, vj , before)

C(vi, vj , before) + C(vi, vj , after)
, ηa = 1 − ηb,

(1)

where C(vi, vj , r) is the count of vi P-Before vj

with TempRel r ∈ R:

C(vi, vj , r) =
N∑

i=1

∑

(vm,vn,rmn)∈Ei

I{vm=vi&vn=vj&rmn=r},

(2)

where I{·} is the indicator function. Add-one
smoothing technique from language modeling is
used to avoid divided-by-zero errors. In Table 2,
we show some event pairs with either ηb > 0.9
(upper part) or ηa > 0.9 (lower part).

We think the examples from Table 2 are in-
tuitively appealing: chop happens before taste,
clean happens after contaminate, etc. More in-
terestingly, in the lower part of the table, we show
pairs in which the physical order is different from
the temporal order: for example, when achieve
is P-Before desire, it is still labeled as T-After in
most cases (104 out of 111 times), which is cor-
rect intuitively. In practice, e.g., in the TBDense
dataset (Cassidy et al., 2014), roughly 30%-40%
of the P-Before pairs are T-After. Therefore, it is
important to be able to capture their temporal or-
der rather than simply taking their physical order if
one wants to understand the temporal implication
of verbs.

3.4.2 Distribution of Following Events
For each verb v, we define the marginal count of
v being P-Before to arbitrary verbs with TempRel
r ∈ R as C(v, r) =

∑
vi∈V C(v, vi, r). Then for

every other verb v′, we define

P (v T-Before v′|v T-Before) ≜ C(v, v′, before)

C(v, before)
, (3)

Example Pairs #T-Before #T-After
chop.01 taste.01 133 8

concern.01 protect.01 110 10
conspire.01 kill.01 113 6
debate.01 vote.01 48 5

dedicate.01 promote.02 67 7
fight.01 overthrow.01 98 8

achieve.01 desire.01 7 104
admire.01 respect.01 7 121
clean.02 contaminate.01 3 82

defend.01 accuse.01 13 160
die.01 crash.01 8 223

overthrow.01 elect.01 3 100

Table 2: Several extreme cases from TEMPROB,
where some event is almost always labeled to be T-
Before or T-After throughout the NYT corpus. By “ex-
treme”, we mean that either the probability of T-Before
or T-After is larger than 90%. The upper part of the
table shows the pairs that are both P-Before and T-
Before, while the lower part shows the pairs that are
P-Before but T-After. In TEMPROB, there are about
7K event pairs being extreme cases.

which is the probability of v T-Before v′, condi-
tioned on v T-Before anything. Similarly, we de-
fine

P (v T-After v′|v T-After) ≜ C(v, v′, after)

C(v, after)
. (4)

For a specific verb, e.g., v=investigate, each
verb v′ ∈ V is sorted by the two conditional
probabilities above. Then the most probable
verbs that temporally precede or follow v are
shown in Fig. 1, where the y-axes are the corre-
sponding conditional probabilities. We can see
reasonable event sequences like {involve, kill,
suspect, steal}→investigate→{report, prosecute,
pay, punish}, which indicates the possibility of
using TEMPROB for event sequence predictions
or story cloze tasks. There are also suspicious
pairs like know in the T-Before list of investi-
gate (Fig. 1a), report in the T-Before list of bomb
(Fig. 1b), and play in the T-After list of mourn
(Fig. 1c). Since the arguments of these verb
frames are not considered here, whether these few
seemingly counter-intuitive pairs come from sys-
tem error or from a special context needs further
investigation.

4 Experiments

In the above, we have explained the construction
of TEMPROB and shown some interesting exam-
ples from it, which were meant to visualize its cor-
rectness. In this section, we first quantify the cor-
rectness of the prior obtained in TEMPROB, and
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(a) investigate (b) bomb

(c) mourn (d) sentence

Figure 1: Top events that most frequently precede or follow “investigate”, “bomb”, “mourn”, or “sentence”
in time, sorted by their conditional probabilities in h. Word senses have been disambiguated and the “bomb”
and “sentence” here are their verb meanings. There are some possible errors (e.g., report is T-Before bomb) and
some unclear pairs (e.g., know is T-Before investigate and play is T-After mourn), but overall the event sequences
discovered here are reasonable. More examples can be found in the appendix.

then show TEMPROB can be used to improve ex-
isting TempRel extraction systems.

4.1 Quality Analysis of TEMPROB

In Table 2, we showed examples with either ηb or
ηa > 0.9. We argued that they seem correct. Here
we quantify the “correctness” of ηb and ηa based
on TBDense. Specifically, we collected all the
gold T-Before and T-After pairs. Let τ ∈ [0.5, 1)
be a constant threshold. Imagine a naive predic-
tor such that for each pair of events vi and vj , if
ηb > τ , it predicts that vi is T-Before vj ; if ηa > τ ,
it predicts that vi is T-After vj ; otherwise, it pre-
dicts that vi is T-Vague to vj . We expect that a
higher ηb (or ηa) represents a higher confidence for
an instance to be labeled T-Before (or T-After).

Table 3 shows the performance of this predictor,
which meets our expectation and thus justifies the
validity of TEMPROB. As we gradually increase
the value of τ in Table 3, the precision increases
in roughly the same pace with τ , which indicates
that the values of ηb and ηa

7 from TEMPROB in-
deed represent the confidence level. The decrease
in recall is also expected because more examples
are labeled as T-Vague when τ is larger.

To further justify the quality, we also used
7Recall the definitions of ηb and ηa in Eq. (1).

Threshold τ
Dist=0 Dist=1

P R P R
0.5 65.6 61.3 58.5 53.3
0.6 69.8 44.5 60.5 36.9
0.7 74.6 29.2 63.6 18.7
0.8 81.0 13.9 64.8 6.9
0.9 82.9 5.0 76.9 1.2

Table 3: Validating ηb and ηa from TEMPROB based
on the T-Before and T-After examples in TBDense.
Performances are decomposed into same sentence ex-
amples (Dist=0) and contiguous sentence examples
(Dist=1). A larger threshold leads to a higher precision,
so ηb and ηa indeed represent a notion of confidence.

another dataset that is not in the TempRel do-
main. Instead, we downloaded the EventCausality
dataset8 (Do et al., 2011). For each causally re-
lated pair e1 and e2, if EventCausality annotates
that e1 causes e2, we changed it to be T-Before;
if EventCausality annotates that e1 is caused by
e2, we changed it to be T-after. Therefore, based
on the assumption that the cause event is T-Before
the result event, we converted the EventCausality
dataset to be a TempRel dataset and it thus could
also be used to evaluate the quality of TEMPROB.
We adopted the same predictor used in Table 3

8http://cogcomp.org/page/resource_
view/27
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with τ = 0.5 and in Table 4, we compared it
with two baselines: (i) always predicting T-Before
and (ii) always predicting T-After. First, the accu-
racy (66.2%) in Table 4 is rather consistent with its
counterpart in Table 3, confirming the stability of
statistics from TEMPROB. Second, by directly us-
ing the prior statistics ηb and ηa from TEMPROB,
we can improve the precision of both labels with
a significant margin relative to the two baselines
(17.0% for “T-Before” and 15.9% for “T-After”).
Overall, the accuracy was improved by 11.5%.

System T-Before T-After Acc.P R P R
T-Before Only 54.7 100.0 0 0 54.7
T-After Only 0 0 45.3 100 45.3

τ = 0.5 71.7 63.3 61.2 69.8 66.2

Table 4: Further justification of ηb and ηa from
TEMPROB on the EventCausality dataset. The
thresholding predictor from Table 3 with τ = 0.5 is
used here. Compared to always predicting the major-
ity label (i.e., T-Before in this case), τ = 0.5 signifi-
cantly improved the performance for both labels, with
the overall accuracy improved by 11.5%.

4.2 Improving TempRel Extraction

The original purpose of TEMPROB was to improve
TempRel extraction. We show it from two per-
spectives: How effective the prior distributions ob-
tained from TEMPROB are (i) as features in local
methods and (ii) as regularization terms in global
methods. The results below were evaluated on the
test split of TB-Dense (Cassidy et al., 2014).

4.2.1 Improving Local Methods
We first test how well the prior distributions from
TEMPROB can be used as features in improving
local methods for TempRel extraction. In Ta-
ble 5, we used the original feature set proposed
in Sec. 3.2.1 as the baseline, and added the prior
distribution obtained from TEMPROB on top of
it. Specifically, we added ηb (see Eq. (1)) and
{fr}r∈R, respectively, where {fr}r∈R is the prior
distributions of all labels, i.e.,

fr(vi, vj) =
C(vi, vj , r)∑

r′∈R C(vi, vj , r′)
, r ∈ R. (5)

Recall function C is defined in Eq. (2). All com-
parisons were decomposed to same sentence rela-
tions (Dist=0) and neighboring sentence relations
(Dist=1) for a better understanding of the behav-
ior. All classifiers were trained using the averaged

perceptron algorithm (Freund and Schapire, 1998)
and tuned by 3-fold cross validation.

From Table 5, we can see that simply adding ηb

into the feature set could improve the original sys-
tem F1 by 1.8% (Dist=0) and 3.0% (Dist=1). If we
further add as features the full set of prior distri-
butions {fr}r∈R, the improvement comes to 2.7%
and 6.5%, respectively. Noticing that the feature is
more helpful for Dist=1, we think that it is because
distant pairs usually have less lexical dependency
and thus need more prior information provided by
our new feature. With Dist=0 and Dist=1 com-
bined (numbers not shown in the Table), the 3rd
line improved the ”original” by 4.7% in F1 and by
5.1% in the temporal awareness F-score (another
metric used in the TempEval3 workshop).

Feature Set Dist=0 Dist=1
P R F1 P R F1

Original 44.5 57.1 50.0 49.0 36.9 42.1
+ηb 46.2 58.9 51.8 55.3 38.1 45.1

+{fr}r∈R 46.9 60.1 52.7 51.3 46.2 48.6
Note The performances here are consistently lower than
those in Table 3 because in Table 3, only T-Before and T-
After examples are considered, but here all labels are taken
into account and the problem is more practical and harder.

Table 5: Using prior distributions derived from
TEMPROB as features in an example local method.
Incorporating ηb to the original feature set already
yields better performance. By using the full set of prior
distributions, {fr}r∈R, the final system improves the
original in almost all metrics, and the improvement is
statistically significant with p<0.005 per the McNe-
mar’s test.

4.2.2 Improving Global Methods

As mentioned earlier in Sec. 2, many systems
adopt a global inference method via integer lin-
ear programming (ILP) (Roth and Yih, 2004) to
enforce transitivity constraints over an entire tem-
poral graph (Bramsen et al., 2006; Chambers and
Jurafsky, 2008; Denis and Muller, 2011; Do et al.,
2012; Ning et al., 2017). In addition to the us-
age shown in Sec. 4.2.1, the prior distributions
from TEMPROB can also be used to regularize
the conventional ILP formulation. Specifically, in
each document, let Ir(ij) ∈ {0, 1} be the indi-
cator function of relation r for event i and event
j; let xr(ij) ∈ [0, 1] be the corresponding soft-
max score obtained from the local classifiers (de-
pending on the sentence distance between i and
j). Then the ILP objective for global inference is
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formulated as follows.

Î = argmax
I

∑

ij∈E

∑

r∈R

(xr(ij) + λfr(ij))Ir(ij) (6)

s.t. ΣrIr(ij) = 1
(uniqueness)

, Ir(ij) = Ir̄(ji),
(symmetry)

Ir1(ij) + Ir2(jk) − ΣM
m=1Irm

3
(ik) ≤ 1,

(transitivity)

for all distinct events i, j, and k, where E =
{ij | sentence dist(i, j)≤ 1}, λ adjusts the regu-
larization term and was heuristically set to 0.5 in
this work, r̄ is the reverse relation of r, and M is
the number of possible relations for r3 when r1

and r2 are true. Note our difference from the ILP
in (Ning et al., 2017) is the underlined regulariza-
tion term fr(ij) (which itself is defined in Eq. (5))
obtained from TEMPROB.

No. System P R F1 Faware

1 Baseline 48.1 44.4 46.2 42.5
2 +Feature: {fr}r∈R 50.6 52.0 51.3 49.1
3 +Regularization 51.3 53.0 52.1 49.6

Table 6: Regularizing global methods by the prior
distribution derived from TEMPROB. The “+”
means adding a component on top of its preceding line.
Faware is the temporal awareness F-score, another eval-
uation metric used in TempEval3. The baseline sys-
tem is to use (unregularized) ILP on top of the original
system in Table 5. System 3 is the proposed. Per the
McNemar’s test, System 3 is significantly better than
System 1 with p<0.0005.

We present our results on the test split of TB-
Dense in Table 6, which is an ablation study show-
ing step-by-step improvements in two metrics. In
addition to the straightforward precision, recall,
and F1 metric, we also compared the F1 of the tem-
poral awareness metric used in TempEval3 (UzZa-
man et al., 2013). The awareness metric performs
graph reduction and closure before evaluation so
as to better capture how useful a temporal graph
is. Details of this metric can be found in UzZaman
and Allen (2011); UzZaman et al. (2013); Ning
et al. (2017).

In Table 6, the baseline used the original fea-
ture set proposed in Sec. 3.2.1 and applied global
ILP inference with transitivity constraints. Tech-
nically, it is to solve Eq. (6) with λ = 0 (i.e., un-
regularized) on top of the original system in Ta-
ble 5. Apart from some implementation details,
this baseline is also the same as many existing
global methods as Chambers and Jurafsky (2008);
Do et al. (2012). System 2, “+Feature: {fr}r∈R”,

Label P R F1

before +0.3 +15 +6
after +4 +4 +4
equal +11 0 +2

includes +17 0 +0.2
included +8 0 +2

vague +3 -4 -1

Table 7: Label-wise performance improvement of
System 3 over System 1 in Table 6. We can see that
incorporating TEMPROB improves the recall of before
and after, and improves the precision of all labels, with
a slight drop in the recall of vague.

is to add prior distributions as features when train-
ing the local classifiers. Technically, the scores
xr(ij)’s in Eq. (6) used by baseline were changed.
We know from Table 5 that adding {fr}r∈R made
the local decisions better. Here the performance
of System 2 shows that this was also the case
for the global decisions made via ILP: both pre-
cision and recall got improved, and F1 and aware-
ness were both improved by a large margin, with
5.1% in F1 and 6.6% in awareness F1. On top
of this, System 3 sets λ = 0.5 in Eq. (6) to add
regularizations to the conventional ILP formula-
tion. The sum of these regularization terms repre-
sents a confidence score of how coherent the pre-
dicted temporal graph is to our TEMPROB, which
we also want to maximize. Even though a con-
siderable amount of information from TEMPROB

had already been encoded as features (as shown by
the large improvements by System 2), these regu-
larizations were still able to further improve the
precision, recall and awareness scores. To sum
up, the total improvement over the baseline sys-
tem brought by TEMPROB is 5.9% in F1 and 7.1%
in awareness F1, both with a notable margin. Ta-
ble 7 furthermore decomposes this improvement
into each TempRel label.

To compare with state-of-the-art systems,
which all used gold event properties (i.e., Tense,
Aspect, Modality, and Polarity), we retrained Sys-
tem 3 in Table 6 with these gold properties and
show the results in Table 8. We reproduced the
results of CAEVO9 (Chambers et al., 2014) and
Ning et al. (2017)10 and evaluated them on the par-
tial TBDense test split11. Under both metrics, the

9https://github.com/nchambers/caevo
10http://cogcomp.org/page/publication_

view/822
11There are 731 relations in the partial TBDense test split

(201 before, 138 after, 39 includes, 31 included, 14 equal,
and 308 vague).
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proposed system achieved the best performance.
An interesting fact is that even without these gold
properties, our System 3 in Table 6 was already
better than CAEVO (on Line 1) and Ning et al.
(2017) (on Line 2) in both metrics. This is appeal-
ing because in practice, those gold properties may
not exist, but our proposed system can still gener-
ate state-of-the-art performance without them.

No. System P R F1 Faware

Partial TBDense*: Focus of this work.
1 CAEVO 52.3 43.7 47.6 46.7
2 Ning et al. (2017) 47.4 56.3 51.5 49.1
3 Proposed 50.0 62.4 55.5 52.8

Complete TBDense: Naive augmentation.
4 CAEVO 51.8 32.6 40.0 45.7
5 Ning et al. (2017) 46.2 40.6 43.2 48.5
6 Proposed** 47.2 42.4 44.7 49.2

*Note that TEMPROB is only available for events extracted
by SRL (See Sec. 3.2.2 for details).
**Augment the output of Line 3 with predictions from Ning
et al. (2017).

Table 8: Comparison of the proposed TempRel ex-
traction method with two best-so-far systems us-
ing two metrics. Since TEMPROB is only on SRL
verb events, Partial TBDense is the focus of our work,
where we can see significant improvement brought by
simply using the prior knowledge from TEMPROB. Per
the McNemar’s test, Line 3 is better than Line 2 with
p<0.0005. For interested readers, we also naively aug-
mented the proposed method to the complete TBDense
and show state-of-the-art performance on it.

For readers who are interested in the complete
TBDense dataset, we also performed a naive aug-
mentation as follows. Recall that System 3 only
makes predictions to a subset of the complete TB-
Dense dataset. We kept this subset of predictions,
and filled the missing predictions by Ning et al.
(2017). Performances of this naively augmented
proposed system is compared with CAEVO and
Ning et al. (2017) on the complete TBDense
dataset. We can see that by replacing with predic-
tions from our proposed system, Ning et al. (2017)
got a better precision, recall, F1, and awareness F1,
which is the new state-of-the-art on all reported
performances on this dataset. Note that the aware-
ness F1 scores on Lines 4-5 are consistent with re-
ported values in Ning et al. (2017). To our knowl-
edge, the results in Table 8 is the first in literature
that reports performances in both metrics, and it is
promising to see that the proposed method outper-
formed state-of-the-art methods in both metrics.

5 Conclusion

Temporal relation (TempRel) extraction is an im-
portant and challenging task in NLP, partly due to
its strong dependence on prior knowledge. Moti-
vated by practical examples, this paper argues that
a resource of the temporal order that events usually
follow is helpful. To construct such a resource, we
automatically processed a large corpus from NYT
with more than 1 million documents using an ex-
isting TempRel extraction system and obtained the
TEMporal relation PRObabilistic knowledge Base
(TEMPROB). The TEMPROB is a good show-
case of the capability of such prior knowledge,
and it has shown its power in improving exist-
ing TempRel extraction systems on a benchmark
dataset, TBDense. The resource and the system
reported in this paper are both publicly available12

and we hope that it can foster more investigations
into time-related tasks.
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Abstract
We introduce a new task called Multimodal
Named Entity Recognition (MNER) for noisy
user-generated data such as tweets or Snapchat
captions, which comprise short text with ac-
companying images. These social media posts
often come in inconsistent or incomplete syn-
tax and lexical notations with very limited
surrounding textual contexts, bringing signif-
icant challenges for NER. To this end, we cre-
ate a new dataset for MNER called SnapCap-
tions (Snapchat image-caption pairs submitted
to public and crowd-sourced stories with fully
annotated named entities). We then build upon
the state-of-the-art Bi-LSTM word/character
based NER models with 1) a deep image net-
work which incorporates relevant visual con-
text to augment textual information, and 2)
a generic modality-attention module which
learns to attenuate irrelevant modalities while
amplifying the most informative ones to ex-
tract contexts from, adaptive to each sam-
ple and token. The proposed MNER model
with modality attention significantly outper-
forms the state-of-the-art text-only NER mod-
els by successfully leveraging provided visual
contexts, opening up potential applications of
MNER on myriads of social media platforms.

1 Introduction

Social media with abundant user-generated posts
provide a rich platform for understanding events,
opinions and preferences of groups and individ-
uals. These insights are primarily hidden in un-
structured forms of social media posts, such as
in free-form text or images without tags. Named
entity recognition (NER), the task of recognizing
named entities from free-form text, is thus a criti-
cal step for building structural information, allow-
ing for its use in personalized assistance, recom-
mendations, advertisement, etc.

While many previous approaches (Lample
et al., 2016; Ma and Hovy, 2016; Chiu and

(a) (b)

Figure 1: Multimodal NER + modality attention.
(a) Visual contexts help recognizing polysemous entity
names (‘Monopoly’ as in a board game versus an eco-
nomics term). (b) Modality attention successfully sup-
presses word embeddings of a unknown token (‘Marsh-
melloooo’ with erroneously trailing ‘o’s), and focuses
on character-based context (e.g. capitalized first letter,
and lexical similarity to a known named entity (‘Marsh-
mello’, a music producer)) for correct prediction.

Nichols, 2015; Huang et al., 2015; Lafferty et al.,
2001) on NER have shown success for well-
formed text in recognizing named entities via
word context resolution (e.g. LSTM with word
embeddings) combined with character-level fea-
tures (e.g. CharLSTM/CNN), several additional
challenges remain for recognizing named enti-
ties from extremely short and coarse text found
in social media posts. For instance, short so-
cial media posts often do not provide enough tex-
tual contexts to resolve polysemous entities (e.g.
“monopoly is da best ”, where ‘monopoly’ may
refer to a board game (named entity) or a term
in economics). In addition, noisy text includes
a huge number of unknown tokens due to in-
consistent lexical notations and frequent mentions
of various newly trending entities (e.g. “xoxo
Marshmelloooo ”, where ‘Marshmelloooo’ is a
mis-spelling of a known entity ‘Marshmello’, a
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music producer), making word embeddings based
neural networks NER models vulnerable.

To address the challenges above for social me-
dia posts, we build upon the state-of-the-art neu-
ral architecture for NER with the following two
novel approaches (Figure 1). First, we propose to
leverage auxiliary modalities for additional con-
text resolution of entities. For example, many pop-
ular social media platforms now provide ways to
compose a post in multiple modalities - specifi-
cally image and text (e.g. Snapchat captions, Twit-
ter posts with image URLs), from which we can
obtain additional context for understanding posts.
While “monopoly” in the previous example is am-
biguous in its textual form, an accompanying snap
image of a board game can help disambiguate
among polysemous entities, thereby correctly rec-
ognizing it as a named entity.

Second, we also propose a general modal-
ity attention module which chooses per decod-
ing step the most informative modality among
available ones (in our case, word embeddings,
character embeddings, or visual features) to ex-
tract context from. For example, the modality
attention module lets the decoder attenuate the
word-level signals for unknown word tokens (e.g.
“Marshmellooooo” with trailing ‘o’s) and ampli-
fies character-level features intsead (e.g. capital-
ized first letter, lexical similarity to other known
named entity token ‘Marshmello’, etc.), thereby
suppressing noise information (“UNK” token em-
bedding) in decoding steps. Note that most of
the previous literature in NER or other NLP
tasks combine word and character-level informa-
tion with naive concatenation, which is vulnerable
to noisy social media posts. When an auxiliary
image is available, the modality attention module
determines to amplify this visual context e.g. in
disambiguating polysemous entities, or to atten-
uate visual contexts when they are irrelevant to
target named entities, e.g. selfies, etc. Note that
the proposed modality attention module is distinct
from how attention is used in other sequence-to-
sequence literature (e.g. attending to a specific to-
ken within an input sequence). Section 2 provides
the detailed literature review.

Our contributions are three-fold: we propose
(1) an LSTM-CNN hybrid multimodal NER net-
work that takes as input both image and text for
recognition of a named entity in text input. To the
best of our knowledge, our approach is the first

work to incorporate visual contexts for named en-
tity recognition tasks. (2) We propose a general
modality attention module that selectively chooses
modalities to extract primary context from, max-
imizing information gain and suppressing irrele-
vant contexts from each modality (we treat words,
characters, and images as separate modalities). (3)
We show that the proposed approaches outperform
the state-of-the-art NER models (both with and
without using additional visual contexts) on our
new MNER dataset SnapCaptions, a large collec-
tion of informal and extremely short social media
posts paired with unique images.

2 Related Work

Neural models for NER have been recently pro-
posed, producing state-of-the-art performance on
standard NER tasks. For example, some of the
end-to-end NER systems (Passos et al., 2014; Chiu
and Nichols, 2015; Huang et al., 2015; Lample
et al., 2016; Ma and Hovy, 2016) use a recur-
rent neural network usually with a CRF (Laf-
ferty et al., 2001; McCallum and Li, 2003) for
sequence labeling, accompanied with feature ex-
tractors for words and characters (CNN, LSTMs,
etc.), and achieve the state-of-the-art performance
mostly without any use of gazetteers information.
Note that most of these work aggregate textual
contexts via concatenation of word embeddings
and character embeddings. Recently, several work
have addressed the NER task specifically on noisy
short text segments such as Tweets, etc. (Baldwin
et al., 2015; Aguilar et al., 2017). They report per-
formance gains from leveraging external sources
of information such as lexical information (e.g.
POS tags, etc.) and/or from several preprocessing
steps (e.g. token substitution, etc.). Our model
builds upon these state-of-the-art neural models
for NER tasks, and improves the model in two
critical ways: (1) incorporation of visual contexts
to provide auxiliary information for short media
posts, and (2) addition of the modality attention
module, which better incorporates word embed-
dings and character embeddings, especially when
there are many missing tokens in the given word
embedding matrix. Note that we do not explore
the use of gazetteers information or other auxiliary
information (POS tags, etc.) (Ratinov and Roth,
2009) as it is not the focus of our study.

Attention modules are widely applied in sev-
eral deep learning tasks (Xu et al., 2015; Chan
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et al., 2015; Sukhbaatar et al., 2015; Yao et al.,
2015). For example, they use an attention mod-
ule to attend to a subset within a single input (a
part/region of an image, a specific token in an in-
put sequence of tokens, etc.) at each decoding step
in an encoder-decoder framework for image cap-
tioning tasks, etc. (Rei et al., 2016) explore var-
ious attention mechanisms in NLP tasks, but do
not incorporate visual components or investigate
the impact of such models on noisy social media
data. (Moon and Carbonell, 2017) propose to use
attention for a subset of discrete source samples
in transfer learning settings. Our modality atten-
tion differs from the previous approaches in that
we attenuate or amplifies each modality input as
a whole among multiple available modalities, and
that we use the attention mechanism essentially to
map heterogeneous modalities in a single joint em-
bedding space. Our approach also allows for re-
use of the same model for predicting labels even
when some of the modalities are missing in input,
as other modalities would still preserve the same
semantics in the embeddings space.

Multimodal learning is studied in various do-
mains and applications, aimed at building a joint
model that extracts contextual information from
multiple modalities (views) of parallel datasets.

The most relevant task to our multimodal NER
system is the task of multimodal machine transla-
tion (Elliott et al., 2015; Specia et al., 2016), which
aims at building a better machine translation sys-
tem by taking as input a sentence in a source lan-
guage as well as a corresponding image. Sev-
eral standard sequence-to-sequence architectures
are explored (e.g. a target-language LSTM de-
coder that takes as input an image first).

Other previous literature include study of
Canonical Correlation Analysis (CCA) (Dhillon
et al., 2011) to learn feature correlations among
multiple modalities, which is widely used in many
applications. Other applications include image
captioning (Xu et al., 2015), audio-visual recogni-
tion (Moon et al., 2015), visual question answer-
ing systems (Antol et al., 2015), etc.

To the best of our knowledge, our approach is
the first work to incorporate visual contexts for
named entity recognition tasks.

3 Proposed Methods

Figure 2 illustrates the proposed multimodal NER
(MNER) model. First, we obtain word embed-

Figure 2: The main architecture for our multimodal
NER (MNER) network with modality attention. At
each decoding step, word embeddings, character em-
beddings, and visual features are merged with modality
attention. Bi-LSTM/CRF takes as input each token and
produces an entity label.

dings, character embeddings, and visual features
(Section 3.1). A Bi-LSTM-CRF model then takes
as input a sequence of tokens, each of which com-
prises a word token, a character sequence, and an
image, in their respective representation (Section
3.2). At each decoding step, representations from
each modality are combined via the modality at-
tention module to produce an entity label for each
token (3.3). We formulate each component of the
model in the following subsections.

Notations: Let x = {xt}Tt=1 a sequence of in-
put tokens with length T , with a corresponding la-
bel sequence y = {yt}Tt=1 indicating named en-
tities (e.g. in standard BIO formats). Each in-
put token is composed of three modalities: xt =

{x(w)
t ,x

(c)
t ,x

(v)
t } for word embeddings, character

embeddings, and visual embeddings representa-
tions, respectively.

3.1 Features

Similar to the state-of-the-art NER approaches
(Lample et al., 2016; Ma and Hovy, 2016; Aguilar
et al., 2017; Passos et al., 2014; Chiu and Nichols,
2015; Huang et al., 2015), we use both word em-
beddings and character embeddings.

Word embeddings are obtained from an unsu-
pervised learning model that learns co-occurrence
statistics of words from a large external corpus,
yielding word embeddings as distributional se-
mantics (Mikolov et al., 2013). Specifically, we
use pre-trained embeddings from GloVE (Pen-
nington et al., 2014).
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Character embeddings are obtained from a Bi-
LSTM which takes as input a sequence of char-
acters of each token, similarly to (Lample et al.,
2016). An alternative approach for obtaining char-
acter embeddings is using a convolutional neural
network as in (Ma and Hovy, 2016), but we find
that Bi-LSTM representation of characters yields
empirically better results in our experiments.

Visual embeddings: To extract features from
an image, we take the final hidden layer represen-
tation of a modified version of the convolutional
network model called Inception (GoogLeNet)
(Szegedy et al., 2014, 2015) trained on the Ima-
geNet dataset (Russakovsky et al., 2015) to clas-
sify multiple objects in the scene. Our implemen-
tation of the Inception model has deep 22 lay-
ers, training of which is made possible via “net-
work in network” principles and several dimen-
sion reduction techniques to improve computing
resource utilization. The final layer representa-
tion encodes discriminative information describ-
ing what objects are shown in an image, which
provide auxiliary contexts for understanding tex-
tual tokens and entities in accompanying captions.

Incorporating this visual information onto the
traditional NER system is an open challenge, and
multiple approaches can be considered. For in-
stance, one may provide visual contexts only as
an initial input to decoder as in some encoder-
decoder image captioning systems (Vinyals et al.,
2015). However, we empirically observe that
an NER decoder which takes as input the vi-
sual embeddings at every decoding step (Section
3.2), combined with the modality attention mod-
ule (Section 3.3), yields better results.

Lastly, we add a transform layer for
each feature e.g. x

(w)
t ,x

(c)
t ,x

(v)
t :=

σw(x
(w)
t ), σc(x

(c)
t ), σv(x

(v)
t ) before it is fed

to the NER entity LSTM.

3.2 Bi-LSTM + CRF for Multimodal NER
Our MNER model is built on a Bi-LSTM and CRF
hybrid model. We use the following implementa-
tion for the entity Bi-LSTM.

it = σ(Wxiht−1 +Wcict−1)

ct = (1− it)� ct−1
+ it � tanh(Wxcxt +Whcht−1)

ot = σ(Wxoxt +Whoht−1 +Wcoct)

ht = LSTM(xt) (1)

= ot � tanh(ct)

where xt is a weighted average of three modalities
xt = {x(w)

t ;x
(c)
t ;x

(v)
t } via the modality attention

module, which will be defined in Section 3.3. Bias
terms for gates are omitted here for simplicity of
notation.

We then obtain bi-directional entity token rep-
resentations

←→
ht = [

−→
ht;
←−
ht] by concatenating its

left and right context representations. To enforce
structural correlations between labels in sequence
decoding,

←→
ht is then passed to a conditional ran-

dom field (CRF) to produce a label for each token
maximizing the following objective.

y∗ = argmax
y

p(y|←→h ;WCRF) (2)

p(y|←→h ;WCRF) =

∏
t ψt(yt−1,yt;

←→
h )

∑
y′
∏
t ψt(y

′
t−1,y′t;

←→
h )

where ψt(y
′,y′;

←→
h ) is a potential function,

WCRF is a set of parameters that defines the po-
tential functions and weight vectors for label pairs
(y′,y′). Bias terms are omitted for brevity of for-
mulation.

The model can be trained via log-likelihood
maximization for the training set {(xi,yi)}:

L(WCRF) =
∑

i

log p(y|←→h ;W) (3)

3.3 Modality Attention
The modality attention module learns a unified
representation space for multiple available modal-
ities (e.g. words, characters, images, etc.), and
produces a single vector representation with ag-
gregated knowledge among multiple modalities,
based on their weighted importance. We motivate
this module from the following observations.

A majority of the previous literature combine
the word and character-level contexts by sim-
ply concatenating the word and character em-
beddings at each decoding step, e.g. ht =

LSTM([x
(w)
t ;x

(c)
t ]) in Eq.1. However, this naive

concatenation of two modalities (word and char-
acters) results in inaccurate decoding, specifically
for unknown word token embeddings (e.g. an
all-zero vector x

(w)
t = 0 or a random vector

x
(w)
t = ε ∼ U(−σ,+σ) is assigned for any un-

known token xt, thus ht = LSTM([0;x
(c)
t ]) or

LSTM([ε;x
(c)
t ])). While this concatenation ap-

proach does not cause significant errors for well-
formatted text, we observe that it induces per-
formance degradation for our social media post
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datasets which contain a significant number of
missing tokens.

Similarly, naive merging of textual and visual
information (e.g. ht = LSTM([x

(w)
t ;x

(c)
t ;x

(v)
t ]))

yields suboptimal results as each modality is
treated equally informative, whereas in our
datasets some of the images may contain irrele-
vant contexts to textual modalities. Hence, ideally
there needs a mechanism in which the model can
effectively turn the switch on and off the modali-
ties adaptive to each sample.

To this end, we propose a general modality
attention module, which adaptively attenuates or
emphasizes each modality as a whole at each de-
coding step t, and produces a soft-attended context
vector xt as an input token for the entity LSTM.

[a
(w)
t ,a

(c)
t ,a

(v)
t ] = σ

(
Wm · [x(w)

t ;x
(c)
t ;x

(v)
t ] + bm

)

α
(m)
t =

exp(a
(m)
t )

∑
m′∈{w,c,v}

exp(a
(m′)
t )

∀m ∈ {w, c, v}

xt =
∑

m∈{w,c,v}
α
(m)
t x

(m)
t (4)

where αt = [α
(w)
t ;α

(c)
t ;α

(v)
t ] ∈ R3 is an atten-

tion vector at each decoding step t, and xt is a
final context vector at t that maximizes informa-
tion gain for xt. Note that the optimization of the
objective function (Eq.1) with modality attention
(Eq.4) requires each modality to have the same
dimension (e.g. x

(w)
t ,x

(c)
t ,x

(v)
t ∈ Rp), and that

the transformation via Wm essentially enforces
each modality to be mapped into the same unified
subspace, where the weighted average of which
encodes discrimitive features for recognition of
named entities.

When visual context is not provided with each
token (as in the traditional NER task), we can de-
fine the modality attention for word and character
embeddings only in a similar way:

[a
(w)
t ,a

(c)
t ] = σ

(
Wm · [x(w)

t ;x
(c)
t ] + bm

)
(5)

α
(m)
t =

exp(a
(m)
t )

∑
m′∈{w,c}

exp(a
(m′)
t )

∀m ∈ {w, c}

xt =
∑

m∈{w,c}
α
(m)
t x

(m)
t

Note that while we apply this modality attention
module to the Bi-LSTM+CRF architecture (Sec-
tion 3.2) for its empirical superiority, the module

itself is flexible and thus can work with other NER
architectures or for other multimodal applications.

4 Empirical Evaluation

4.1 SnapCaptions Dataset
The SnapCaptions dataset is composed of 10K
user-generated image (snap) and textual caption
pairs where named entities in captions are man-
ually labeled by expert human annotators (en-
tity types: PER, LOC, ORG, MISC). These cap-
tions are collected exclusively from snaps sub-
mitted to public and crowd-sourced stories (aka
Snapchat Live Stories or Our Stories). Examples
of such public crowd-sourced stories are “New
York Story” or “Thanksgiving Story”, which com-
prise snaps that are aggregated for various public
events, venues, etc. All snaps were posted be-
tween year 2016 and 2017, and do not contain
raw images or other associated information (only
textual captions and obfuscated visual descriptor
features extracted from the pre-trained Inception-
Net are available). We split the dataset into train
(70%), validation (15%), and test sets (15%). The
captions data have average length of 30.7 char-
acters (5.81 words) with vocabulary size 15,733,
where 6,612 are considered unknown tokens from
Stanford GloVE embeddings (Pennington et al.,
2014). Named entities annotated in the Snap-
Captions dataset include many of new and emerg-
ing entities, and they are found in various sur-
face forms (various nicknames, typos, etc.) To the
best of our knowledge, SnapCaptions is the only
dataset that contains natural image-caption pairs
with expert-annotated named entities.

4.2 Baselines
Task: given a caption and a paired image (if used),
the goal is to label every token in a caption in BIO
scheme (B: beginning, I: inside, O: outside) (Sang
and Veenstra, 1999). We report the performance of
the following state-of-the-art NER models as base-
lines, as well as several configurations of our pro-
posed approach to examine contributions of each
component (W: word, C: char, V: visual).

• Bi-LSTM/CRF (W only): only takes word to-
ken embeddings (Stanford GloVE) as input.
The rest of the architecture is kept the same.

• Bi-LSTM/CRF + Bi-CharLSTM (C only):
only takes a character sequence of each word
token as input. (No word embeddings)
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Modalities Model
4 Entity Types (%) Segmentation (%)

Prec. Recall F1 Prec. Recall F1

C Bi-LSTM/CRF + Bi-CharLSTM 5.0 28.1 8.5 68.6 10.8 18.6
W Bi-LSTM/CRF 38.2 53.3 44.6 82.5 50.1 62.4

W + C (Aguilar et al., 2017) 45.9 48.9 47.4 74.0 61.7 67.3
W + C (Ma and Hovy, 2016) 46.0 51.9 48.7 76.8 61.0 68.0
W + C (Lample et al., 2016) 47.7 49.9 48.8 74.4 63.3 68.4
W + C Bi-LSTM/CRF + Bi-CharLSTM w/ Modality Attention 49.4 51.7 50.5 75.7 63.3 68.9

W + C + V Bi-LSTM/CRF + Bi-CharLSTM + Inception 50.5 52.3 51.4 71.9 66.5 69.1
W + C + V Bi-LSTM/CRF + Bi-CharLSTM + Inception w/ Modality Attention 48.7 58.7 52.4 77.4 60.6 68.0

Table 1: NER performance on the SnapCaptions dataset with varying modalities (W: word, C: char, V: visual).
We report precision, recall, and F1 score for both entity types recognition (PER, LOC, ORG, MISC) and entity
segmentation (untyped recognition - named entity or not) tasks.

• Bi-LSTM/CRF + Bi-CharLSTM (W+C)
(Lample et al., 2016): takes as input both
word embeddings and character embed-
dings extracted from a Bi-CharLSTM. Entity
LSTM takes concatenated vectors of word
and character embeddings as input tokens.

• Bi-LSTM/CRF + CharCNN (W+C) (Ma and
Hovy, 2016): uses character embeddings ex-
tracted from a CNN instead.

• Bi-LSTM/CRF + CharCNN (W+C) + Multi-
task (Aguilar et al., 2017): trains the model to
perform both recognition (into multiple entity
types) as well as segmentation (binary) tasks.

• (proposed) Bi-LSTM/CRF + Bi-CharLSTM
with modality attention (W+C): uses the
modality attention to merge word and char-
acter embeddings.

• (proposed) Bi-LSTM/CRF + Bi-CharLSTM
+ Inception (W+C+V): takes as input visual
contexts extracted from InceptionNet as well,
concatenated with word and char vectors.

• (proposed) Bi-LSTM/CRF + Bi-CharLSTM
+ Inception with modality attention
(W+C+V): uses the modality attention
to merge word, character, and visual
embeddings as input to entity LSTM.

4.3 Results: SnapCaptions Dataset

Table 1 shows the NER performance on the Snap
Captions dataset. We report both entity types
recognition (PER, LOC, ORG, MISC) and named
entity segmentation (named entity or not) results.

Parameters: We tune the parameters of each
model with the following search space (bold in-
dicate the choice for our final model): character
embeddings dimension: {25, 50, 100, 150, 200,
300}, word embeddings size: {25, 50, 100, 150,
200, 300}, LSTM hidden states: {25, 50, 100,
150, 200, 300}, and x dimension: {25, 50, 100,
150, 200, 300}. We optimize the parameters with
Adagrad (Duchi et al., 2011) with batch size 10,
learning rate 0.02, epsilon 10−8, and decay 0.0.

Main Results: When visual context is available
(W+C+V), we see that the model performance
greatly improves over the textual models (W+C),
showing that visual contexts are complimentary
to textual information in named entity recognition
tasks. In addition, it can be seen that the modality
attention module further improves the entity type
recognition performance for (W+C+V). This re-
sult indicates that the modality attention is able
to focus on the most effective modality (visual,
words, or characters) adaptive to each sample to
maximize information gain. Note that our text-
only model (W+C) with the modality attention
module also significantly outperform the state-of-
the-art baselines (Aguilar et al., 2017; Ma and
Hovy, 2016; Lample et al., 2016) that use the same
textual modalities (W+C), showing the effective-
ness of the modality attention module for textual
models as well.

Error Analysis: Table 2 shows example cases
where incorporation of visual contexts affects pre-
diction of named entities. For example, the token
‘curry’ in the caption “The curry’s ” is poly-
semous and may refer to either a type of food or
a famous basketball player ‘Stephen Curry’, and
the surrounding textual contexts do not provide
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Caption (target) Visual Tags GT
Prediction

(W+C+V) (W+C)

+

“The curry’s ” parade, marching, urban area, ... B-PER B-PER O
“Grandma w dat lit Apple Crisp” funnel cake, melting, frozen, ... O O B-ORG
“Okay duke dumont ” DJ, guitarist, circus, ... B,I-PER B,I-PER O,O
“CSI with my hubby” TV, movie, television, ... B-MISC B-MISC B-ORG
“Twin day at angel stadium” stadium, arena, stampede, ... B,I-LOC B,I-LOC O,O
“LETS GO CID” drum, DJ, drummer, ... B-PER B-PER O
“MARSHMELLOOOOOOOOS” DJ, night, martini, ... B-PER B-PER O

-
“Y’all come see me at bojangles. ” floor, tile, airport terminal, ... B-ORG O B-ORG
“If u’re not watching this season of

monitor, suite, cubicle, ... B-MISC O B-MISC
bachelorette ur doing LIFE WRONG”

Table 2: Error analysis: when do images help NER? Ground-truth labels (GT) and predictions of our model with
vision input (W+C+V) and the one without (W+C) for the underlined named entities (or false positives) are shown.
For interpretability, visual tags (label output of InceptionNet) are presented instead of actual feature vectors used.

enough information to disambiguate it. On the
other hand, visual contexts (visual tags: ‘parade’,
‘urban area’, ...) provide similarities to the token’s
distributional semantics from other training exam-
ples (e.g. snaps from “NBA Championship Pa-
rade Story”), and thus the model successfully pre-
dicts the token as a named entity. Similarly, while
the text-only model erroneously predicts ‘Apple’
in the caption “Grandma w dat lit Apple Crisp”
as an organization (e.g. Apple Inc.), the visual
contexts (describing objects related to food) help
disambiguate the token, making the model pre-
dict it correctly as a non-named entity (a fruit).
Trending entities (musicians or DJs such as ‘CID’,
‘Duke Dumont’, ‘Marshmello’, etc.) are also rec-
ognized correctly with strengthened contexts from
visual information (describing concert scenes) de-
spite lack of surrounding textual contexts. A few
cases where visual contexts harmed the perfor-
mance mostly include visual tags that are unre-
lated to a token or its surrounding textual contexts.

Visualization of Modality Attention: Figure 3
visualizes the modality attention module at each
decoding step (each column), where amplified
modality is represented with darker color, and at-
tenuated modality is represented with lighter color.

For the image-aided model (W+C+V; upper row
in Figure 3), we confirm that the modality at-
tention successfully attenuates irrelevant signals
(e.g. selfies, etc.) and amplifies relevant modality-
based contexts in prediction of a given token.
In the example of “disney word essential = cof-
fee” with visual tags selfie, phone, person, the
modality attention successfully attenuates distract-

ing visual signals and focuses on textual modali-
ties, consequently making correct predictions. The
named entities in the examples of “Beautiful night
atop The Space Needle” and “Splash Mountain”
are challenging to predict because they are com-
posed of common nouns (space, needle, splash,
mountain), and thus they often need additional
contexts to correctly predict. In the training data,
visual contexts make stronger indicators for these
named entities (space needle, splash mountain),
and the modality attention module successfully at-
tends more to stronger signals.

For text-only model (W+C), we observe that
performance gains mostly come from the modal-
ity attention module better handling tokens unseen
during training or unknown tokens from the pre-
trained word embeddings matrix. For example,
while WaRriOoOrs and Kooler Matic are missing
tokens in the word embeddings matrix, it success-
fully amplifies character-based contexts (e.g. cap-
italized first letters, similarity to known entities
‘Golden State Warriors’) and suppresses word-
based contexts (word embeddings for unknown to-
kens e.g. ‘WaRriOoOrs’), leading to correct pre-
dictions. This result is significant because it shows
performance of the model, with an almost identi-
cal architecture, can still improve without having
to scale the word embeddings matrix indefinitely.

Figure 3 (b) shows the cases where the modality
attention led to incorrect predictions. For example,
the model predicts missing tokens HUUUGE and
Shampooer incorrectly as named entities by am-
plifying misleading character-based contexts (e.g.
capitalized first letters) or visual contexts (e.g.
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Figure 3: Visualization of modality attention (a) successful cases and (b) unsuccessful ones from SnapCaptions
test data. For each decoding step of a token (column), the modality attention module amplifies the most relevant
modality (darker) while attenuating irrelevant modalities (lighter). The model makes final predictions based on
weighted signals from all modalities. For interpretability, visual tags (label output of InceptionNet) are presented
instead of actual feature vectors used. GT: ground-truth, Pred: prediction by our model. Modalities- W: words, C:
characters, V: visual.

Vocab Size w/o M.A. w/ M.A.

100% 48.8 50.5

75% 48.7 50.1
50% 47.8 49.6
25% 46.4 48.7

Table 3: NER performance (F1) on SnapCaptions with
varying word embeddings vocabulary size. Mod-
els being compared: (W+C) Bi-LSTM/CRF + Bi-
CharLSTM w/ and w/o modality attention (M.A.)

concert scenes, associated contexts of which often
include named entities in the training dataset).

Sensitivity to Word Embeddings Vocabulary
Size: In order to isolate the effectiveness of the
modality attention module on textual models in
handling missing tokens, we report the perfor-
mance with varying word embeddings vocabulary
sizes in Table 3. By increasing the number of
missing tokens artificially by randomly removing
words from the word embeddings matrix (original
vocab size: 400K), we observe that while the over-
all performance degrades, the modality attention
module is able to suppress the peformance degra-
dation. Note also that the performance gap gen-
erally gets bigger as we decrease the vocabulary
size of the word embeddings matrix. This result is

significant in that the modality attention is able to
improve the model more robust to missing tokens
without having to train an indefinitely large word
embeddings matrix for arbitrarily noisy social me-
dia text datasets.

5 Conclusions

We proposed a new multimodal NER (MNER: im-
age + text) task on short social media posts. We
demonstrated for the first time an effective MNER
system, where visual information is combined
with textual information to outperform traditional
text-based NER baselines. Our work can be ap-
plied to myriads of social media posts or other arti-
cles across multiple platforms which often include
both text and accompanying images. In addition,
we proposed the modality attention module, a new
neural mechanism which learns optimal integra-
tion of different modes of correlated information.
In essence, the modality attention learns to attenu-
ate irrelevant or uninformative modal information
while amplifying the primary modality to extract
better overall representations. We showed that the
modality attention based model outperforms other
state-of-the-art baselines when text was the only
modality available, by better combining word and
character level information.
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Abstract

We propose a novel recurrent neural
network-based approach to simultane-
ously handle nested named entity recogni-
tion and nested entity mention detection.
The model learns a hypergraph represen-
tation for nested entities using features ex-
tracted from a recurrent neural network.
In evaluations on three standard data sets,
we show that our approach significantly
outperforms existing state-of-the-art meth-
ods, which are feature-based. The ap-
proach is also efficient: it operates lin-
early in the number of tokens and the num-
ber of possible output labels at any token.
Finally, we present an extension of our
model that jointly learns the head of each
entity mention.

1 Introduction

Named entity recognition (or named entity detec-
tion) is the task of identifying text spans associated
with proper names and classifying them according
to their semantic class such as person, organiza-
tion, etc. It is related to the task of mention detec-
tion (or entity mention recognition) in which text
spans referring to named, nominal or prominal en-
tities are identified and classified according to their
semantic class (Florian et al., 2004). Both named
entity recognition and entity mention detection are
fundamental components in information extrac-
tion systems: several downstream tasks such as re-
lation extraction (Mintz et al., 2009), coreference
resolution (Chang et al., 2013) and fine-grained
opinion mining (Choi et al., 2006) rely on both.

Many approaches have been successfully em-
ployed for the tasks of named entity recognition
and mention detection, including linear-chain con-
ditional random fields (Lafferty et al., 2001) and

semi-Markov conditional random fields (Sarawagi
and Cohen, 2005). However, most such methods
suffer from an inability to handle nested named
entities, nested entity mentions, or both. As a re-
sult, the downstream tasks necessarily ignore these
nested entities along with any semantic relations
among them. Consider, for example, the excerpts
below:

(S1) Employing the [EBV - transformed [human
B cell line]CELL LINE ]CELL LINE SKW6.4, we
demonstrate . . .

(S2) . . . [the burial site of [Sheikh Abbad]PERSON

]LOCATION is located . . .

S1 shows a nested named entity from the GENIA
dataset (Ohta et al., 2002): “human B cell line”
and “EBV - transformed human B cell line” are
both considered named entities of type CELL LINE

where the former is embedded inside the latter. S2,
derived from the ACE corpora1, shows a PERSON

named entity (“Sheikh Abbad”) nested in an en-
tity mention of type LOCATION (“the burial site
of Sheikh Abbad”). Most existing methods for
named entity recognition and entity mention de-
tection would miss the nested entity in each sen-
tence.

Unfortunately, nested entities can be fairly com-
mon: 17% of the entities in the GENIA corpus
are embedded within another entity; in the ACE
corpora, 30% of sentences contain nested named
entities or entity mentions, thus warranting the de-
velopment of efficient models to effectively handle
these linguistic phenomena.

Feature-based methods are the most common
among those proposed for handling nested named
entity and entity mention recognition. Alex et al.

1https://catalog.ldc.upenn.edu/
LDC2005T09 (ACE2004) and https://catalog.
ldc.upenn.edu/LDC2006T06 (ACE2005)
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(2007), for example, proposed a cascaded CRF
model but it does not identify nested named enti-
ties of the same type. Finkel and Manning (2009)
proposed building a constituency parser with con-
stituents for each named entity in a sentence. Their
approach is expensive, i.e., time complexity is cu-
bic in the number of words in the sentence. Lu and
Roth (2015) later proposed a mention hypergraph
model for nested entity detection with linear time
complexity. And recently, Muis and Lu (2017)
introduced a multigraph representation based on
mention separators for this task. All of these mod-
els depend on manually crafted features. In ad-
dition, they cannot be directly applied to extend
current state-of-the-art recurrent neural network-
based models — for flat named entity recognition
(Lample et al., 2016) or the joint extraction of en-
tities and relations (Katiyar and Cardie, 2016) —
to handle nested entities.

In this paper, we propose a recurrent neural
network-based model for nested named entity and
nested entity mention recognition. We present
a modification to the standard LSTM-based se-
quence labeling model (Sutskever et al., 2014)
that handles both problems and operates linearly
in the number of tokens and the number of pos-
sible output labels at any token. The proposed
neural network approach additionally jointly mod-
els entity mention head2 information, a subtask
found to be useful for many information extrac-
tion applications. Our model significantly outper-
forms the previously mentioned hypergraph model
of Lu and Roth (2015) and Muis and Lu (2017) on
entity mention recognition for the ACE2004 and
ACE2005 corpora. It also outperforms their model
on joint extraction of nested entity mentions and
their heads. Finally, we evaluate our approach on
nested named entity recognition using the GENIA
dataset and show that our model outperforms the
previous state-of-the-art parser-based approach of
Finkel and Manning (2009).

2 Related Work

Several methods have been proposed for named
entity recognition in the existing literature as sum-
marized by Nadeau and Sekine (2007) in their sur-
vey paper. Early techniques in the supervised do-
main have been based on hidden markov models
(e.g., Zhou and Su (2002)) or, later, conditional

2This involves identifying the headword of a named entity
or entity mention.

random fields (CRFs) (e.g., McDonald and Pereira
(2005)).

Many fewer approaches, however, have ad-
dressed the problem of nested entities. Alex
et al. (2007) presented several techniques based
on CRFs for nested named entity recognition for
the GENIA dataset. They obtained their best re-
sults from a cascaded approach, where they ap-
plied CRFs in a specific order on the entity types,
such that each CRF utilizes the output derived
from previous CRFs. Their approach could not
identify nested entities of the same type. Finkel
and Manning (2009) proposed a CRF-based con-
stituency parser for nested named entities such that
each named entity is a constituent in the parse tree.
Their model achieved state-of-the-art results on
the GENIA dataset. However, the time complexity
of their model is O(n3), where n is the number of
tokens in the sentence, making inference slow. As
a result, we do not adopt their parse tree-based rep-
resentation of nested entities and propose instead a
linear time directed hypergraph-based model sim-
ilar to that of Lu and Roth (2015). Directed hyper-
graphs were also introduced for parsing by Klein
and Manning (2001).

While most previous efforts for nested entity
recognition were limited to named entities, Lu
and Roth (2015) addressed the problem of nested
entity mention detection where mentions can ei-
ther be named, nominal or pronominal. Their
hypergraph-based approach is able to represent
the potentially exponentially many combinations
of nested mentions of different types. They
adopted a CRF-like log-linear approach to learn
these mention hypergraphs and employed several
hand-crafted features defined over the input sen-
tence and the output hypergraph structure. Our ap-
proach also learns a similar hypergraph represen-
tation with differences in the types of nodes and
edges in the hypergraph. It does not depend on any
manually crafted features. Also, our model learns
the hypergraph greedily and significantly outper-
forms their approach.

Recently, Muis and Lu (2017) introduced the
notion of mention separators for nested entity
mention detection. In contrast to the hypergraph
representation that we and Lu and Roth (2015)
adopt, they learn a multigraph representation and
are able to perform exact inference on their struc-
ture. It is an interesting orthogonal possible ap-
proach for nested entity mention detection. How-
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ever, we will show that our model also outper-
forms their approach on all tasks.

Recently, recurrent neural networks (RNNs)
have been widely applied to several sequence
labeling tasks achieving state-of-the-art results.
Lample et al. (2016) proposed neural models
based on long short term memory networks
(LSTMs) and CRFs for named entity recognition
and another transition-based approach inspired by
shift-reduce parsers. Both models achieve per-
formance comparable to a state-of-the-art model
(Luo et al., 2015), but neither handles nested
named entities.

3 Encoding Scheme

Figure 1 shows the desired sequence tagging out-
put for each of three overlapping PER entities
(“his”, “his fellow pilot” and “his fellow pi-
lot David Williams”) according to the standard
BILOU tag scheme. Our approach relies on the
fact that we can (1) represent these three tag se-
quences in the single hypergraph structure of Fig-
ure 2 and then (2) design an LSTM-based neu-
ral network that produces the correct nested en-
tity hypergraph for a given input sentence. In the
paragraphs just below we provide a general de-
scription of hypergraphs and our task-specific use
of them. Sections 3.1 and 3.2 describe the hy-
pergraph construction process; Section 4 presents
the LSTM-based sequence tagging method for au-
tomating hypergraph construction.

We express our structured prediction problem
such that it corresponds to building a hypergraph
that encodes the token-level gold labels for all en-
tities in the input sentence.3 In particular, we rep-
resent the problem as a directed hypergraph. For
those new to this formalism, directed hypergraphs
are very much like standard directed graphs except
that nodes are connected by hyperarcs that con-
nect a set of tail nodes to a set of head nodes. To
better explain our desired output structure, we fur-
ther distinguish between two types of hyperarcs
— normal edges (or arcs) that connect a single
tail node to a single head node, and hyperarcs that
contain more than one node either as the head or
as the tail. The former are shown as straight lines
in Figure 2; the latter as curved edges.

3We note that the complete hypergraph for the example
in Figure 1 would include nodes for all possible label types
at each timestep and all possible hyperarcs between them. In
this work, however, we only greedily build a sub-hypergraph
for the gold labels when training.

In our encoding of nested entities, a hyperarc is
introduced when two or more entity mentions re-
quiring different label types are present at the same
position. In Figure 2, for example, the nodes “O”
(corresponding to the input token “that”) and the
nodes “U PER” and “B PER” (corresponding to
the input token “his”) are connected by a hyper-
arc because three entity mentions start at this time
step from the tail “O” node (two of which share
the “B PER” tag).4

3.1 Hypergraph Construction

Let us first discuss how the problem of nested en-
tity recognition can be expressed as finding a hy-
pergraph. Our goal is to represent the BILOU tag
sequences associated with “his”, “his fellow pilot”
and “his fellow pilot David Williams” as the single
hypergraph structure of Figure 2. This is accom-
plished by collapsing the shared states (labels) in
the output entity label sequences into a single state
as shown in Figure 2: e.g., the three “O” labels for
“that” become a single “O”; the two “B PER” la-
bels at “his” are collapsed into one “B PER” node
that joins “U PER”, the latter of which represents
the entity mention “his”. Thus at any time step,
the representation size is bounded by the number
of possible output states instead of the potentially
exponential number of output sequences. We then
also adjust the directed edges such that they have
the same type of head node and the same type of
tail node as before in Figure 1.

If we look closely at Figure 2 then we realise
that there is an extra “O” node in the hypergraph
corresponding to the token “his” which did not ap-
pear in any entity output sequence in Figure 1:
in our task-specific hypergraph construction we
make sure that there is an “O” node at every
timestep to model the possibility of beginning of
a new entity. The need for this will become more
clear in Section 4.

Note that the hypergraph representation of our
model is similar to Lu and Roth (2015). Also, the
expressiveness of our model is exactly the same as
Lu and Roth (2015); Muis and Lu (2017). The ma-
jor difference in the two approaches is in learning.

4In contrast, note that the nodes “L PER” and “O” corre-
sponding to the input token “pilot” and the node “O” cor-
responding to the token “David” are connected by normal
edges. Hence, our hypergraph structure contains only one
special kind of hyperarc which connects a single tail node to
multiple head nodes. We do not have hyperarcs that connect
multiple tail nodes to a single head node.
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Figure 1: Nested entity mentions in an unfolded hypergraph. Each row corresponds to an entity mention
sequence using the well known B (beginning of mention), I (inside a mention), L (last token of an
entity mention), O (outside any entity mention), U (a single-token entity mention) tagging scheme.

Figure 2: Directed hypergraph constructed for the example shown in Figure 1. Curved edges represent
hyperarcs and straight edges are normal edges.

3.2 Edge Probability

In this section, we discuss our assignment of prob-
abilities to all the possible edges from a tail node
which helps in the greedy construction of the hy-
pergraph. Thus at any timestep t, let gt−1 be the
tail node and x be the current word of the sentence;
then we model probability distribution over all the
possible types of head nodes (different output tag
types) conditioned on the tail node and the current
word token. In our work we use hidden represen-
tations learned from an LSTM model as features to
learn these probability distributions using a cross-
entropy objective.

It is important to note that there are two types of
directed edges in this hypergraph – simple edges
for which there is only one head node for every
tail node which can be learned as in a traditional
sequence labeling task, or hyperarcs that connect
more than one head node to a tail node. We learn
the set of head nodes connected to a tail node by
expressing it as a multi-label learning problem as
described in Section 5.

3.3 Extracting Entity Mentions

As described in Section 3.2, we can assign prob-
abilities to the different types of edges in the hy-
pergraph and at the time of decoding we choose
for each token the (normal) edge(s) with maxi-
mum probability and the hyperarcs with probabil-
ity above a predefined threshold. Thus, we can
extract edges at the time of decoding. Ultimately,

however, we are interested in extracting nested en-
tities from the hypergraph. For this, we construct
an adjacency matrix from the edges discovered
and perform depth-first search from the sentence-
initial token to discover the entity mentions. This
is described in detail in Section 5.1.

4 Method

We use a standard LSTM-based sequence label-
ing model to learn the nested entity hypergraph
structure for an input sentence. Figure 3 shows
part of the network structure. It is a standard bi-
directional LSTM network except for a difference
in the top hidden layer. When computing the rep-
resentation of the top hidden layer L at any time
step t, in addition to making use of the hidden unit
representation from the previous time step t − 1
and hidden unit representation from the preceding
layer L− 1, we also input the label embedding of
the gold labels from the previous time step. For
the token “fellow” in Figure 3, for example, we
compute three different top hidden layer represen-
tations, conditioned respectively on the three la-
bels “U PER”, “B PER” and “O” from the previ-
ous time step t− 1. Thus, we can model complex
interactions between the input and the output. Be-
fore passing the learned hidden representation to
the next time step, we average the three different
top hidden layer representations. In this manner,
we can model the interactions between the differ-
ent overlapping labels and also it is computation-
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Figure 3: Dynamically computed network structure based on bi-LSTMs for nested entity mention ex-
traction. We show part of the structure for the entity mentions in the running example in Figure 1.

ally less expensive than storing the hidden layer
representations for each label sequence.

4.1 Multi-layer Bi-LSTM

We use a multi-layer bi-directional LSTM en-
coder, for its strength in capturing long-range de-
pendencies between tokens, a useful property for
information extraction tasks.

Using LSTMs, we can compute the hidden state−→
ht in the forward direction and

←−
ht in the backward

direction for every token, and use a linear combi-
nation of them as the token representation:

−→
h

(l)
t = LSTM(xt,

−→
h t−1)

←−
h

(l)
t = LSTM(xt,

←−
h t+1)

z
(l)
t =

−→
V
−→
h

(l)
t +

←−
V
←−
h

(l)
t + bl

4.2 Top Hidden Layer

At the top hidden layer, we have a decoder-style
model, with a crucial twist to accommodate the
hypergraph structure, which may have multiple
gold labels at the previous step. At each token t
and for each gold label at the previous step gkt−1,
our network takes the hidden representation from
the previous layer z(L−1)

t , the hidden decoder state
h

(L)
t−1, as well as the gold label embedding gkt−1

from the previous time step, and computes:

h
(L),k
t = LSTM(z

(L−1)
t ,h

(L)
t−1, g

k
t−1)

Unlike the encoder LSTM, this decoder LSTM
is single-directional and bifurcates when multiple
gold labels are present. We use the decoder hidden
states h

(L),k
t in the output layer for prediction, as

explained in Section 4.3. However, before passing

the hidden representation to the next time step we
average h

(L),k
t over all the gold labels k:

h
(L)
t =

1

|Gt−1|
∑

k

h
(L),k
t

Thus, h(L)
t summarizes the information for all the

gold labels from the previous time step.

4.3 Entity Extraction
For each token t and previous gold label gkt−1, we

use the decoder state h(L),k
t to predict a probability

distribution over the possible candidate labels us-
ing a linear layer followed by a normalizing trans-
form (illustrated below with softmax). The out-
puts can be interpreted as conditional probabilities
for the next label given the current gold label:

okt = Uh
(L),k
t + b

êkt = softmax(okt )

p(yt = c|yt−1 = gkt−1) = (ekt )c

Special care is required, however, since the desired
output has hyperarcs. As shown in Figure 2, there
is an hyperarc between “I PER” corresponding to
the token “fellow” and the label set “L PER” and
“I PER” corresponding to the token “pilot”. Thus,
in our network structure conditioned on the previ-
ous label “I PER” in this case, we would like to
predict both “L PER” and “I PER” as the next la-
bels. To accommodate this, we use a multi-label
training objective, as described in Section 5.

5 Training

We train our model using two different multi-label
learning objectives. The idea is to represent the
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ACE2004 ACE2005
Method P R F1 P R F1

MH-F (Lu and Roth, 2015) 70.0 59.2 63.8 70.0 56.9 62.8

Muis and Lu (2017) 72.7 58.0 64.5 69.1 58.1 63.1

LSTM-flat 70.3 48.4 57.3 62.4 49.4 55.1

LSTM-output layer 72.0 63.3 67.4 66.3 68.2 67.2

Our model (softmax) 72.2 65.2 68.5 70.1 67.9 69.0

Our model (sparsemax) 73.6 71.8 72.7 70.6 70.4 70.5

Table 1: Performance on ACE2004 and ACE2005 test set on mention extraction and classification.

gold labels as a distribution over all possible la-
bels, encoded as a vector e. Hence, for simple
edges, the distribution has a probability of 1 for
the unique gold label (eg = 1), and 0 everywhere
else. For hyperarcs, we distribute the probability
mass uniformly over all the gold labels in the gold
label set (ekg = 1

|G| for all k). Thus, for the exam-
ple described earlier in Section 4.3, both the labels
“L PER” and “I PER” receive a probability of 0.5
in the gold label distribution ekt , conditioned on
the label “I PER” from the previous time step.

Softmax. Our first training method uses soft-
max to estimate the predicted probabilities, and
the KL-divergence multi-label loss between the
true distribution ekt and the predicted distribution
êkt = softmax(okt ):

`kt(softmax) = −
∑

c

(
ekt

)
c
log
(
êkt

)
c

Sparsemax. Our second training method makes
use of sparsemax, recently introduced by Martins
and Astudillo (2016) as a sparse drop-in replace-
ment to softmax, as well as a loss function. Unlike
softmax, which always outputs a nonzero proba-
bility for any output, sparsemax outputs zero prob-
ability for most of the unlikely classes, leading to
good empirical results on multi-label tasks. For
our problem, there are only a few nested entities at
any timestep in the gold labels thus using a train-
ing objective that learns a sparse distribution is
more appropriate. Sparsemax can be used to filter
part of the output space as in the case for multi-
label problems thus leaving non-zero probability
on the desired output labels.

Formally, sparsemax returns the euclidean pro-
jection of its input o onto the probability simplex:

ê = sparsemax(o) := argmin
ê∈∆

‖o− ê‖2

The corresponding loss, a sparse version of the KL
divergence, is (up to a constant):

`kt(sparsemax) = −2ekt
>
okt+

∑

c:(êkt )c 6=0

(
(okt )

2
c − τ2

)

This function is convex and differentiable, and the
quantity τ is a biproduct of the simplex projection,
as described in Martins and Astudillo (2016).

For either choice of probability estimation, the
total loss of a training sample is the sum of losses
for each token and for each previous gold label:

L =
∑

t

∑

k∈Gt−1

`kt .

5.1 Decoding

At the time of inference, we greedily decode
our hypergraph from left-to-right to find the most
likely sub-hypergraph. During training, at each
timestep the most likely label set is learned condi-
tioned on a gold label from the previous timestep.
However, gold labels are not available at test time.
Thus, we use the predicted labels from the previ-
ous time step as an input to the current time step
to find the most likely label set. We use a hard
threshold T to determine the predicted label set
P kt = {c :

(
êkt
)
c
> T}

We can get the most likely label set P ct for
any predicted label at the previous time step c ∈
P kt−1 using the above decoding strategy. We now
combine these inferences to find the most likely
entity mention sequences. We construct an ad-
jacency matrix A for each time step, such that
A[êct−1][êkt ] += 1 for every c in the predicted la-
bel set P kt at timestep t conditioned on êkt and for
every k in predicted labels Pt−1 at time step t− 1.
This can be viewed as a directed hypergraph with
several connected components. We then perform
a depth-first search on this directed hypergraph to
find all the entity mentions in the sentence.
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5.2 Modeling Entity Heads for ACE datasets

The ACE datasets also have annotations for men-
tion heads along with the entity mentions. For
example, a sentence with the entity mention “the
U.S. embassy” also contains an annotation for its
head word which is “embassy” in this case. Thus,
we modify our model to also extract the head of
the entity mentions for ACE dataset. We jointly
model the entity mentions and their heads. To
do this, we propose a simple extension to our
model by only changing the output label sequence.
We introduce new labels starting with “H” to in-
dicate that the current token in the entity men-
tion is part of its head. Thus, we only change
the output label sequence for the entity mentions
to include the head label: We train with the la-
bel sequence “B ORG I ORG H ORG” instead of
“B ORG I ORG L ORG”. Also, for all our entity
sequences we predict the “O” tag at the end, hence
we can still extract the entity mentions. At decod-
ing time, we output the sequence of words with the
“H” tag as the head words for a mention.

6 Experiments

We evaluate our model on two tasks – nested entity
mention detection for the ACE corpora and nested
named entity recognition for the GENIA dataset.

6.1 ACE Experiments

6.1.1 Data
We perform experiments on the English section of
the ACE2004 and ACE2005 corpora. There are
7 main entity types — Person (PER), Organiza-
tion (ORG), Geographical Entities (GPE), Loca-
tion (LOC), Facility (FAC), Weapon (WEA) and
Vehicle (VEH). For each entity type, there are
annotations for the entity mention and mention
heads.

6.1.2 Evaluation Metrics
We use a strict evaluation metric similar to Lu and
Roth (2015): an entity mention is considered cor-
rect if both the mention span and the mention type
are exactly correct. Similarly, for the task of joint
extraction of entity mentions and mention heads,
the mention span, head span and the entity type
should all exactly match the gold label.

6.1.3 Baselines and Previous Models
We compare our model with the feature-based
model (MH-F) on hypergraph structure (Lu and

Roth, 2015) on both entity mention detection as
well as the joint mention and mention heads ex-
traction. We also compare with Muis and Lu
(2017) on entity mention detection only as their
model cannot detect head phrases of the entity
mentions. Lu and Roth (2015) compare their
approach with CRF-based approaches such as a
linear-chain CRF, semi-markov CRF and a cas-
caded approach (Alex et al., 2007) and show that
their model outperforms them. Hence, we do not
include those results in our paper.

We also implement several LSTM-based base-
lines for comparison. Our first baseline is a stan-
dard sequence labeling LSTM model (LSTM-flat).
A sequence model is not capable of handling
the nested mentions, so we remove the embed-
ded entity mention and keep the mention longer
in length. Our second baseline is a hypergraph
model (LSTM-output layer) except that the de-
pendencies are only modeled at the output layer
and hence there are no connections to the top-
hidden layer from the label embeddings from the
previous timestep; instead, these connections are
limited to the output layer.

6.1.4 Hyperparameters and Training Details
We use Adadelta (Zeiler, 2012) for training our
models. We initialize our word vectors with
300-dimensional word2vec (Mikolov et al., 2013)
word embeddings. These word embeddings are
tuned during training. We regularize our network
using dropout (Srivastava et al., 2014), with the
dropout rate tuned on the development set. There
are 3 hidden layers in our network and the dimen-
sionality of hidden units is 100 in all our experi-
ments. And we set the threshold T as 0.3.

6.1.5 Results
We show the performance of our approaches in
Table 1 compared to the previous state-of-the-art
system (Lu and Roth, 2015; Muis and Lu, 2017)
on both the ACE2004 and ACE2005 datasets. We
find that our LSTM-flat baseline that ignores em-
bedded entity mentions during training performs
worse than Lu and Roth (2015); however, our
other neural network-based approaches all outper-
form the previous feature-based approach. Among
the neural network-based models, we find that our
models that construct a hypergraph perform better
than the LSTM-flat models. Also, our approach
that models dependencies between the input and
the output by passing the prediction from the pre-
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ACE2004 ACE2005
Method P R F1 P R F1

MH-F (Lu and Roth, 2015) 74.4 50.0 59.8 63.4 53.8 58.3

Our model(softmax) 68.2 60.5 64.2 67.5 62.3 64.8

Our model(sparsemax) 72.3 66.8 69.7 70.6 69.8 70.2

Table 2: Performance on ACE2004 and ACE2005 test set on joint entity mention and its head prediction.
Muis and Lu (2017) do not predict head of the nested entity mentions.

vious timestep as shown in Figure 3 performs bet-
ter than the LSTM-output layer model which only
models dependencies at the output layer. Also,
as expected, the sparsemax method that produces
a sparse probability distribution performs better
than the softmax approach for modeling hyper-
edges. In summary, our sparsemax model is the
best performing model.

Joint Modeling of Heads We report the perfor-
mance of our best performing models on the joint
modeling of entity mentions and its head in Ta-
ble 2. We show that our sparsemax model is still
the best performing model. We also find that as
the total number of possible labels at any timestep
increases because of the way we implemented the
entity heads, the gains that we get after incorporat-
ing sparsemax are significantly higher compared
to the results shown in Table 1.

6.2 GENIA Experiments

6.2.1 Data
We also evaluate our model on the GENIA dataset
(Ohta et al., 2002) for nested named entity recog-
nition. We follow the same dataset split as Finkel
and Manning (2009); Lu and Roth (2015); Muis
and Lu (2017). Thus, the first 90% of the sen-
tences were used in training and the remaining
10% were used for evaluation. We also consider
five entity types – DNA, RNA, protein, cell line
and cell type.

6.2.2 Baselines and Previous Models
We compare our model with Finkel and Manning
(2009) based on a constituency CRF-based parser
and the mention hypergraph model by Lu and Roth
(2015) and a recent multigraph model by Muis and
Lu (2017).

6.2.3 Results
Table 3 shows the performance of our different
models compared to the previous models. Interest-
ingly, our LSTM-flat model outperforms Lu and

Method P R F1

Finkel and Manning (2009) 75.4 65.9 70.3

MH-F (Lu and Roth, 2015) 72.5 65.2 68.7

Muis and Lu (2017) 75.4 66.8 70.8

LSTM-flat 75.5 63.5 68.9

LSTM-output layer 78.4 67.9 72.8

Our model (softmax) 76.7 71.1 73.8
Our model (sparsemax) 79.8 68.2 73.6

Table 3: Performance on the GENIA dataset on
nested named entity recognition.

Roth (2015). We suspect that it is because we use
pretrained word embeddings5 trained on PubMed
data (Pyysalo et al., 2013) whereas Lu and Roth
(2015) did not have access to them. We again
find that our neural network model outperforms
the previous state-of-the-art (Finkel and Manning,
2009; Muis and Lu, 2017) system. However, we
see that both softmax and sparsemax models per-
form comparably on this dataset.

7 Error Analysis

Consistent with existing results on the joint model-
ing of related tasks in NLP, we find that joint mod-
eling of heads and their entity mentions leads to an
increase in F-score by 1pt (i.e., 71.4 for the sparse-
max model on the ACE2005 dataset) on the per-
formance of the entity mentions. The precision on
extracting entity mentions is 72.1 (vs. 70.6 in Ta-
ble 1) for our sparsemax model for the ACE2005
dataset.

Example S1 below compares the output from a
softmax vs. a sparsemax model on the joint mod-
eling of an entity mention and its head on the
ACE2005 dataset. Gold-standard annotations are
shown in red.

(S1) [[[ They]]]PERSON don’t abandon [[[[[
their]]]PERSON patients] ]PERSON, except

5Word vectors trained on PubMed data are available at
http://bio.nlplab.org/#source-data.
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for the high premiums of a few specialities?

Based on the gold standard, the models are re-
quired to extract “their” — an entity mention of
type PER as well as its head — and “their pa-
tients”, which overlaps with the previous entity
mention “their” and has the head word “patients”.
This means that the models are required to pre-
dict a hyperedge from “O” to “H PER; B PER”.
We find that the softmax model shown in blue
can only predict the entity mention “their” omit-
ting completely the entity mention “their patients”
whereas the sparsemax model shown in green can
predict both nested entities. Overall then, sparse-
max seems to allow the modeling of hyperedges
more efficiently compared to the softmax model
and performance gains are due to extracting more
nested entities with the help of sparsemax model.

7.1 Limitations and Future Directions
We also manually scanned the test set predictions
on ACE dataset for our sparsemax model to under-
stand its current limitations.

Document Context. Given the following sen-
tence

(S2) [They]VEHICLE roar, [they]VEHICLE screech.

the sparsemax model predicts both entity mentions
of “they” as PER entity type. Only if the previous
sentence in the corpus is accessible — “And if you
ride inside that tank, it is like riding in the bowels
of a dragon” — can we understand that “they” in
S2 refers to the tank and hence is a VEH. Thus, our
model can be improved by providing additional
context for each sentence rather than making pre-
dictions on each sentence in the corpus indepen-
dently.

Pronominal Entity Mention (It). Next, con-
sider examples S3 and S4:

(S3) [It]FACILITY also seemed to be [some kind of
monitoring station]FACILITY.

(S4) It does not matter to [these people]PERSON that
crime has skyrocketed . . .

In the example sentences, “It” refers to a facility
and an event, respectively. Our model does not
distinguish between the two cases and always pre-
dicts the token “It” as a non-entity. We found this
true for all occurrences of the token “It” in our test
set. The incorporation of coreference information
can potentially overcome this limitation.

Inconsistency in Gold-standard Annotations.
We also identified potential inconsistencies in the
gold-standard annotations.

(S5) . . . results may affect what happens to [both
of these teams]ORG, but in just . . .

For S5, the gold-standard annotation for “both of
these teams” is an ORG entity mention with the
token “teams” as its head word. Our sparsemax
model identifies the entity mention correctly but
instead predicts the token “both” as the head. It
also identifies “these teams” as another nested en-
tity mention with the head word “teams”. In con-
trast, however, we also found entity mentions such
as “all of the victims that get a little money” for
which the gold-standard has “all” annotated as its
head and another nested mention “the victims that
get a little money” with “victims” as the head.
We recognize this as an inconsistency in the gold-
standard annotation.

8 Conclusion and Future Work

In this paper, we present a novel recurrent
network-based model for nested named entity
recognition and nested entity mention detection.
We propose a hypergraph representation for this
problem and learn the structure using an LSTM
network in a greedy manner. We show that our
model significantly outperforms a feature based
mention hypergraph model (Lu and Roth, 2015)
and a recent multigraph model (Muis and Lu,
2017) on the ACE dataset. Our model also outper-
forms the constituency parser-based approach of
Finkel and Manning (2009) on the GENIA dataset.

In future work, it would be interesting to learn
global dependencies between the output labels for
such a hypergraph structure and training the model
globally. We can also experiment with different
representations such as the one in Finkel and Man-
ning (2009) and use the recent advances in neural
network approaches (Vinyals et al., 2015) to learn
the constituency parse tree efficiently.
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Abstract

Most work in relation extraction forms a
prediction by looking at a short span of
text within a single sentence containing a
single entity pair mention. This approach
often does not consider interactions across
mentions, requires redundant computation
for each mention pair, and ignores rela-
tionships expressed across sentence bound-
aries. These problems are exacerbated by
the document- (rather than sentence-) level
annotation common in biological text. In
response, we propose a model which simul-
taneously predicts relationships between all
mention pairs in a document. We form pair-
wise predictions over entire paper abstracts
using an efficient self-attention encoder. All-
pairs mention scores allow us to perform
multi-instance learning by aggregating over
mentions to form entity pair representa-
tions. We further adapt to settings without
mention-level annotation by jointly training
to predict named entities and adding a cor-
pus of weakly labeled data. In experiments
on two Biocreative benchmark datasets, we
achieve state of the art performance on the
Biocreative V Chemical Disease Relation
dataset for models without external KB re-
sources. We also introduce a new dataset
an order of magnitude larger than existing
human-annotated biological information ex-
traction datasets and more accurate than
distantly supervised alternatives.

1 Introduction

With few exceptions (Swampillai and Stevenson,
2011; Quirk and Poon, 2017; Peng et al., 2017),
nearly all work in relation extraction focuses on clas-
sifying a short span of text within a single sentence
containing a single entity pair mention. However,
relationships between entities are often expressed
across sentence boundaries or otherwise require a
larger context to disambiguate. For example, 30%
of relations in the Biocreative V CDR dataset (§3.1)

are expressed across sentence boundaries, such as in
the following excerpt expressing a relationship be-
tween the chemical azathioprine and the disease
fibrosis:

Treatment of psoriasis with azathioprine.
Azathioprine treatment benefited 19 (66%)
out of 29 patients suffering from severe pso-
riasis. Haematological complications were
not troublesome and results of biochemical
liver function tests remained normal. Min-
imal cholestasis was seen in two cases and
portal fibrosis of a reversible degree in eight.
Liver biopsies should be undertaken at regular
intervals if azathioprine therapy is contin-
ued so that structural liver damage may be
detected at an early and reversible stage.

Though the entities’ mentions never occur in the
same sentence, the above example expresses that
the chemical entity azathioprine can cause the side
effect fibrosis. Relation extraction models which
consider only within-sentence relation pairs can-
not extract this fact without knowledge of the
complicated coreference relationship between eight
and azathioprine treatment, which, without features
from a complicated pre-processing pipeline, cannot
be learned by a model which considers entity pairs
in isolation. Making separate predictions for each
mention pair also obstructs multi-instance learning
(Riedel et al., 2010; Surdeanu et al., 2012), a tech-
nique which aggregates entity representations from
mentions in order to improve robustness to noise in
the data. Like the majority of relation extraction
data, most annotation for biological relations is dis-
tantly supervised, and so we could benefit from a
model which is amenable to multi-instance learning.
In addition to this loss of cross-sentence and

cross-mention reasoning capability, traditional men-
tion pair relation extraction models typically intro-
duce computational inefficiencies by independently
extracting features for and scoring every pair of
mentions, even when those mentions occur in the
same sentence and thus could share representations.
In the CDR training set, this requires separately
encoding and classifying each of the 5,318 candi-
date mention pairs independently, versus encoding
each of the 500 abstracts once. Though abstracts
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are longer than e.g. the text between mentions,
many sentences contain multiple mentions, leading
to redundant computation.

However, encoding long sequences in a way which
effectively incorporates long-distance context can be
prohibitively expensive. Long Short Term Memory
(LSTM) networks (Hochreiter and Schmidhuber,
1997) are among the most popular token encoders
due to their capacity to learn high-quality repre-
sentations of text, but their ability to leverage the
fastest computing hardware is thwarted due to their
computational dependence on the length of the se-
quence — each token’s representation requires as
input the representation of the previous token, lim-
iting the extent to which computation can be par-
allelized. Convolutional neural networks (CNNs),
in contrast, can be executed entirely in parallel
across the sequence, but the amount of context
incorporated into a single token’s representation
is limited by the depth of the network, and very
deep networks can be difficult to learn (Hochreiter,
1998). These problems are exacerbated by longer
sequences, limiting the extent to which previous
work explored full-abstract relation extraction.

To facilitate efficient full-abstract relation ex-
traction from biological text, we propose Bi-affine
Relation Attention Networks (BRANs), a combi-
nation of network architecture, multi-instance and
multi-task learning designed to extract relations be-
tween entities in biological text without requiring
explicit mention-level annotation. We synthesize
convolutions and self-attention, a modification of
the Transformer encoder introduced by Vaswani
et al. (2017), over sub-word tokens to efficiently
incorporate into token representations rich context
between distant mention pairs across the entire ab-
stract. We score all pairs of mentions in parallel
using a bi-affine operator, and aggregate over men-
tion pairs using a soft approximation of the max
function in order to perform multi-instance learning.
We jointly train the model to predict relations and
entities, further improving robustness to noise and
lack of gold annotation at the mention level.

In extensive experiments on two benchmark bio-
logical relation extraction datasets, we achieve state
of the art performance for a model using no exter-
nal knowledge base resources in experiments on the
Biocreative V CDR dataset, and outperform com-
parable baselines on the Biocreative VI ChemProt
dataset. We also introduce a new dataset which
is an order of magnitude larger than existing gold-
annotated biological relation extraction datasets
while covering a wider range of entity and relation
types and with higher accuracy than distantly su-
pervised datasets of the same size. We provide a
strong baseline on this new dataset, and encourage
its use as a benchmark for future biological relation

extraction systems.1

2 Model

We designed our model to efficiently encode long
contexts spanning multiple sentences while forming
pairwise predictions without the need for mention
pair-specific features. To do this, our model first en-
codes input token embeddings using self-attention.
These embeddings are used to predict both entities
and relations. The relation extraction module con-
verts each token to a head and tail representation.
These representations are used to form mention
pair predictions using a bi-affine operation with re-
spect to learned relation embeddings. Finally, these
mention pair predictions are pooled to form entity
pair predictions, expressing whether each relation
type is expressed by each relation pair.

2.1 Inputs

Our model takes in a sequence of N token em-
beddings in Rd. Because the Transformer has no
innate notion of token position, the model relies
on positional embeddings which are added to the
input token embeddings.2 We learn the position
embedding matrix Pm×d which contains a sepa-
rate d dimensional embedding for each position,
limited to m possible positions. Our final input
representation for token xi is:

xi = si + pi

where si is the token embedding for xi and pi is
the positional embedding for the ith position. If i
exceeds m, we use a randomly initialized vector in
place of pi.
We tokenize the text using byte pair encoding

(BPE) (Gage, 1994; Sennrich et al., 2015). The
BPE algorithm constructs a vocabulary of sub-word
pieces, beginning with single characters. Then, the
algorithm iteratively merges the most frequent co-
occurring tokens into a new token, which is added
to the vocabulary. This procedure continues until
a pre-defined vocabulary size is met.

BPE is well suited for biological data for the fol-
lowing reasons. First, biological entities often have
unique mentions made up of meaningful subcompo-
nents, such as 1,2-dimethylhydrazine. Additionally,
tokenization of chemical entities is challenging, lack-
ing a universally agreed upon algorithm (Krallinger
et al., 2015). As we demonstrate in §3.3.2, the sub-
word representations produced by BPE allow the
model to formulate better predictions, likely due to
better modeling of rare and unknown words.

1Our code and data are publicly available at: https:
//github.com/patverga/bran.

2Though our final model incorporates some convolu-
tions, we retain the position embeddings.
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Figure 1: The relation extraction architecture.
Inputs are contextually encoded using the Trans-
former(Vaswani et al., 2017), made up of B
layers of multi-head attention and convolution
subcomponents. Each transformed token is then
passed through a head and tail MLP to produce
two position-specific representations. A bi-affine
operation is performed between each head and
tail representation with respect to each rela-
tion’s embedding matrix, producing a pair-wise
relation affinity tensor. Finally, the scores for
cells corresponding to the same entity pair are
pooled with a separate LogSumExp operation
for each relation to get a final score. The colored
tokens illustrate calculating the score for a given
pair of entities; the model is only given entity
information when pooling over mentions.

2.2 Transformer

We base our token encoder on the Transformer
self-attention model (Vaswani et al., 2017). The

Transformer is made up of B blocks. Each Trans-
former block, which we denote Transformerk, has
its own set of parameters and is made up of two
subcomponents: multi-head attention and a series
of convolutions3. The output for token i of block k,
b
(k)
i , is connected to its input b(k−1)i with a resid-
ual connection (He et al., 2016). Starting with
b
(0)
i = xi:

b
(k)
i = b

(k−1)
i +Transformerk(b

(k−1)
i )

2.2.1 Multi-head Attention
Multi-head attention applies self-attention multiple
times over the same inputs using separately nor-
malized parameters (attention heads) and combines
the results, as an alternative to applying one pass
of attention with more parameters. The intuition
behind this modeling decision is that dividing the
attention into multiple heads make it easier for the
model to learn to attend to different types of rele-
vant information with each head. The self-attention
updates input b(k−1)i by performing a weighted sum
over all tokens in the sequence, weighted by their
importance for modeling token i.

Each input is projected to a key k, value v, and
query q, using separate affine transformations with
ReLU activations (Glorot et al., 2011). Here, k,
v, and q are each in R d

H where H is the number
of heads. The attention weights aijh for head h
between tokens i and j are computed using scaled
dot-product attention:

aijh = σ

(
qTihkjh√

d

)

oih =
∑

j

vjh � aijh

with � denoting element-wise multiplication and σ
indicating a softmax along the jth dimension. The
scaled attention is meant to aid optimization by
flattening the softmax and better distributing the
gradients (Vaswani et al., 2017).
The outputs of the individual attention heads

are concatenated, denoted [·; ·], into oi. All layers
in the network use residual connections between
the output of the multi-headed attention and its in-
put. Layer normalization (Ba et al., 2016), denoted
LN(·), is then applied to the output.

oi = [o1; ...; oh]

mi = LN(b
(k−1)
i + oi)

2.2.2 Convolutions
The second part of our Transformer block is a stack
of convolutional layers. The sub-network used in

3The original Transformer uses feed-forward con-
nections, i.e. width-1 convolutions, whereas we use
convolutions with width > 1.
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Vaswani et al. (2017) uses two width-1 convolu-
tions. We add a third middle layer with kernel
width 5, which we found to perform better. Many
relations are expressed concisely by the immediate
local context, e.g. Michele’s husband Barack, or
labetalol-induced hypotension. Adding this explicit
n-gram modeling is meant to ease the burden on
the model to learn to attend to local features. We
use Cw(·) to denote a convolutional operator with
kernel width w. Then the convolutional portion of
the transformer block is given by:

t
(0)
i = ReLU(C1(mi))

t
(1)
i = ReLU(C5(t

(0)
i ))

t
(2)
i = C1(t

(1)
i )

Where the dimensions of t(0)i and t
(1)
i are in R4d

and that of t(2)i is in Rd.

2.3 Bi-affine Pairwise Scores
We project each contextually encoded token b(B)

i

through two separate MLPs to generate two new
versions of each token corresponding to whether
it will serve as the first (head) or second (tail)
argument of a relation:

eheadi =W
(1)
head(ReLU(W

(0)
headb

(B)
i ))

etaili =W
(1)
tail(ReLU(W

(0)
tailb

(B)
i ))

We use a bi-affine operator to calculate anN×L×N
tensor A of pairwise affinity scores, scoring each
(head, relation, tail) triple:

Ailj = (eheadi L)etailj

where L is a d×L× d tensor, a learned embedding
matrix for each of the L relations. In subsequent
sections we will assume we have transposed the
dimensions of A as d× d× L for ease of indexing.

2.4 Entity Level Prediction
Our data is weakly labeled in that there are labels
at the entity level but not the mention level, making
the problem a form of strong-distant supervision
(Mintz et al., 2009). In distant supervision, edges
in a knowledge graph are heuristically applied to
sentences in an auxiliary unstructured text corpus
— often applying the edge label to all sentences
containing the subject and object of the relation.
Because this process is imprecise and introduces
noise into the training data, methods like multi-
instance learning were introduced (Riedel et al.,
2010; Surdeanu et al., 2012). In multi-instance
learning, rather than looking at each distantly la-
beled mention pair in isolation, the model is trained
over the aggregate of these mentions and a single
update is made. More recently, the weighting func-
tion of the instances has been expressed as neural

network attention (Verga and McCallum, 2016; Lin
et al., 2016; Yaghoobzadeh et al., 2017).
We aggregate over all representations for each

mention pair in order to produce per-relation
scores for each entity pair. For each entity pair
(phead, ptail), let Phead denote the set of indices of
mentions of the entity phead, and let P tail denote
the indices of mentions of the entity ptail. Then
we use the LogSumExp function to aggregate the
relation scores from A across all pairs of mentions
of phead and ptail:

scores(phead, ptail) = log
∑

i∈Phead

j∈P tail

exp(Aij)

The LogSumExp scoring function is a smooth ap-
proximation to the max function and has the bene-
fits of aggregating information from multiple predic-
tions and propagating dense gradients as opposed
to the sparse gradient updates of the max (Das
et al., 2017).

2.5 Named Entity Recognition

In addition to pairwise relation predictions, we
use the Transformer output b(B)

i to make entity
type predictions. We feed b(B)

i as input to a linear
classifier which predicts the entity label for each
token with per-class scores ci:

ci =W (3)b
(B)
i

We augment the entity type labels with the BIO
encoding to denote entity spans. We apply tags
to the byte-pair tokenization by treating each sub-
word within a mention span as an additional token
with a corresponding B- or I- label.

2.6 Training

We train both the NER and relation extraction com-
ponents of our network to perform multi-class clas-
sification using maximum likelihood, where NER
classes yi or relation classes ri are conditionally
independent given deep features produced by our
model with probabilities given by the softmax func-
tion. In the case of NER, features are given by the
per-token output of the transformer:

1

N

N∑

i=1

logP (yi | b(B)
i )

In the case of relation extraction, the features for
each entity pair are given by the LogSumExp over
pairwise scores described in § 2.4. For E entity
pairs, the relation ri is given by:

1

E

E∑

i=1

logP (ri | scores(phead, ptail))
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We train the NER and relation objectives jointly,
sharing all embeddings and Transformer parame-
ters. To trade off the two objectives, we penalize
the named entity updates with a hyperparameter
λ.

3 Results
We evaluate our model on three datasets: The
Biocreative V Chemical Disease Relation bench-
mark (CDR), which models relations between
chemicals and diseases (§3.1); the Biocreative VI
ChemProt benchmark (CPR), which models rela-
tions between chemicals and proteins (§3.2); and a
new, large and accurate dataset we describe in §3.3
based on the human curation in the Chemical Toxi-
cology Database (CTD), which models relationships
between chemicals, proteins and genes.
The CDR dataset is annotated at the level of

paper abstracts, requiring consideration of long-
range, cross sentence relationships, thus evaluation
on this dataset demonstrates that our model is
capable of such reasoning. We also evaluate our
model’s performance in the more traditional setting
which does not require cross-sentence modeling by
performing experiments on the CPR dataset, for
which all annotations are between two entity men-
tions in a single sentence. Finally, we present a
new dataset constructed using strong-distant su-
pervision (§2.4), with annotations at the document
level. This dataset is significantly larger than the
others, contains more relation types, and requires
reasoning across sentences.

3.1 Chemical Disease Relations Dataset
The Biocreative V chemical disease relation extrac-
tion (CDR) dataset4 (Li et al., 2016a; Wei et al.,
2016) was derived from the Comparative Toxicoge-
nomics Database (CTD), which curates interactions
between genes, chemicals, and diseases (Davis et al.,
2008). CTD annotations are only at the document
level and do not contain mention annotations. The
CDR dataset is a subset of these original annota-
tions, supplemented with human annotated, entity
linked mention annotations. The relation annota-
tions in this dataset are also at the document level
only.

3.1.1 Data Preprocessing
The CDR dataset is concerned with extracting
only chemically-induced disease relationships (drug-
related side effects and adverse reactions) concern-
ing the most specific entity in the document. For
example tobacco causes cancer could be marked as
false if the document contained the more specific
lung cancer. This can cause true relations to be
labeled as false, harming evaluation performance.
To address this we follow (Gu et al., 2016, 2017)

4http://www.biocreative.org/

and filter hypernyms according to the hierarchy
in the MESH controlled vocabulary5. All entity
pairs within the same abstract that do not have an
annotated relation are assigned the NULL label.
In addition to the gold CDR data, Peng et al.

(2016) add 15,448 PubMed abstracts annotated in
the CTD dataset. We consider this same set of
abstracts as additional training data (which we
subsequently denote +Data). Since this data does
not contain entity annotations, we take the anno-
tations from Pubtator (Wei et al., 2013), a state
of the art biological named entity tagger and en-
tity linker. See §A.1 for additional data processing
details. In our experiments we only evaluate our
relation extraction performance and all models (in-
cluding baselines) use gold entity annotations for
predictions.
The byte pair vocabulary is generated over the

training dataset — we use a budget of 2500 tokens
when training on the gold CDR data, and a larger
budget of 10,000 tokens when including extra data
described above Additional implementation details
are included in Appendix A.

Data split Docs Pos Neg
Train 500 1,038 4,280
Development 500 1,012 4,136
Test 500 1,066 4,270
CTD 15,448 26,657 146,057

Table 1: Data statistics for the CDR Dataset and
additional data from CTD. Shows the total num-
ber of abstracts, positive examples, and negative
examples for each of the data set splits.

3.1.2 Baselines
We compare against the previous best reported
results on this dataset not using knowledge base
features.6 Each of the baselines are ensemble meth-
ods for within- and cross-sentence relations that
make use of additional linguistic features (syntactic
parse and part-of-speech). Gu et al. (2017) en-
code mention pairs using a CNN while Zhou et al.
(2016a) use an LSTM. Both make cross-sentence
predictions with featurized classifiers.

3.1.3 Results
In Table 2 we show results outperforming the base-
lines despite using no linguistic features. We show
performance averaged over 20 runs with 20 random
seeds as well as an ensemble of their averaged pre-
dictions. We see a further boost in performance
by adding weakly labeled data. Table 3 shows the

5https://www.nlm.nih.gov/mesh/download/
2017MeshTree.txt

6The highest reported score is from (Peng et al.,
2016), but they use explicit lookups into the CTD
knowledge base for the existence of the test entity pair.
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Model P R F1
Gu et al. (2016) 62.0 55.1 58.3
Zhou et al. (2016a) 55.6 68.4 61.3
Gu et al. (2017) 55.7 68.1 61.3
BRAN 55.6 70.8 62.1 ± 0.8
+ Data 64.0 69.2 66.2 ± 0.8
BRAN(ensemble) 63.3 67.1 65.1
+ Data 65.4 71.8 68.4

Table 2: Precision, recall, and F1 results on the
Biocreative V CDR Dataset.

Model P R F1
BRAN (Full) 55.6 70.8 62.1 ± 0.8
– CNN only 43.9 65.5 52.4 ± 1.3
– no width-5 48.2 67.2 55.7 ± 0.9
– no NER 49.9 63.8 55.5 ± 1.8

Table 3: Results on the Biocreative V CDR Dataset
showing precision, recall, and F1 for various model
ablations.

effects of ablating pieces of our model. ‘CNN only’
removes the multi-head attention component from
the transformer block, ‘no width-5’ replaces the
width-5 convolution of the feed-forward component
of the transformer with a width-1 convolution and
‘no NER’ removes the named entity recognition
multi-task objective (§2.5).

3.2 Chemical Protein Relations Dataset

To assess our model’s performance in settings where
cross-sentence relationships are not explicitly evalu-
ated, we perform experiments on the Biocreative VI
ChemProt dataset (CDR) (Krallinger et al., 2017).
This dataset is concerned with classifying into six
relation types between chemicals and proteins, with
nearly all annotated relationships occurring within
the same sentence.

3.2.1 Baselines
We compare our models against those competing in
the official Biocreative VI competition (Liu et al.,
2017). We compare to the top performing team
whose model is directly comparable with ours — i.e.
used a single (non-ensemble) model trained only on
the training data (many teams use the development
set as additional training data). The baseline mod-
els are standard state of the art relation extraction
models: CNNs and Gated RNNs with attention.
Each of these baselines uses mention-specific fea-
tures encoding relative position of each token to
the two target entities being classified, whereas our
model aggregates over all mention pairs in each sen-
tence. It is also worth noting that these models use
a large vocabulary of pre-trained word embeddings,
giving their models the advantage of far more model
parameters, as well as additional information from

Model P R F1
CNN† 50.7 43.0 46.5
GRU+Attention† 53.0 46.3 49.5
BRAN 48.0 54.1 50.8 ± .01

Table 4: Precision, recall, and F1 results on the
Biocreative VI Chem-Prot Dataset. † denotes re-
sults from Liu et al. (2017)

unsupervised pre-training.

3.2.2 Results
In Table 4 we see that even though our model
forms all predictions simultaneously between all
pairs of entities within the sentence, we are able
to outperform state of the art models classifying
each mention pair independently. The scores shown
are averaged across 10 runs with 10 random seeds.
Interestingly, our model appears to have higher
recall and lower precision, while the baseline models
are both precision-biased, with lower recall. This
suggests that combining these styles of model could
lead to further gains on this task.

3.3 New CTD Dataset
3.3.1 Data
Existing biological relation extraction datasets in-
cluding both CDR (§3.1) and CPR (§3.2) are rela-
tively small, typically consisting of hundreds or a
few thousand annotated examples. Distant supervi-
sion datasets apply document-independent, entity-
level annotations to all sentences leading to a large
proportion of incorrect labels. Evaluations on this
data involve either very small (a few hundred) gold
annotated examples or cross validation to predict
the noisy, distantly applied labels (Mallory et al.,
2015; Quirk and Poon, 2017; Peng et al., 2017).

We address these issues by constructing a new
dataset using strong-distant supervision containing
document-level annotations. The Comparative Tox-
icogenomics Database (CTD) curates interactions
between genes, chemicals, and diseases. Each rela-
tion in the CTD is associated with a disambiguated
entity pair and a PubMed article where the relation
was observed.

To construct this dataset, we collect the abstracts
for each of the PubMed articles with at least one
curated relation in the CTD database. As in §3.1,
we use PubTator to automatically tag and disam-
biguate the entities in each of these abstracts. If
both entities in the relation are found in the ab-
stract, we take the (abstract, relation) pair as a
positive example. The evidence for the curated re-
lation could occur anywhere in the full text article,
not just the abstract. Abstracts with no recovered
relations are discarded. All other entity pairs with
valid types and without an annotated relation that
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Types Docs Pos Neg
Total 68,400 166,474 1198,493
Chemical/Disease 64,139 93,940 571,932
Chemical/Gene 34,883 63,463 360,100
Gene/Disease 32,286 9,071 266,461

Table 5: Data statistics for the new CTD dataset.

occur in the remaining abstracts are considered neg-
ative examples and assigned the NULL label. We
additionally remove abstracts containing greater
than 500 tokens7. This limit removed about 10% of
the total data including numerous extremely long
abstracts. The average token length of the remain-
ing data was 2̃30 tokens. With this procedure, we
are able to collect 166,474 positive examples over
13 relation types, with more detailed statistics of
the dataset listed in Table 5.
We consider relations between chemical-disease,

chemical-gene, and gene-disease entity pairs down-
loaded from CTD8. We remove inferred relations
(those without an associated PubMed ID) and con-
sider only human curated relationships. Some
chemical-gene entity pairs were associated with
multiple relation types in the same document. We
consider each of these relation types as a separate
positive example.
The chemical-gene relation data contains over

100 types organized in a shallow hierarchy. Many
of these types are extremely infrequent, so we map
all relations to the highest parent in the hierar-
chy, resulting in 13 relation types. Most of these
chemical-gene relations have an increase and de-
crease version such as increase_expression and de-
crease_expression. In some cases, there is also an
affects relation (affects_expression) which is used
when the directionality is unknown. If the affects
version is more common, we map decrease and in-
crease to affects. If affects is less common, we drop
the affects examples and keep the increase and de-
crease examples as distinct relations, resulting in
the final set of 10 chemical-gene relation types.

3.3.2 Results
In Table 7 we list precision, recall and F1 achieved
by our model on the CTD dataset, both overall and
by relation type. Our model predicts each of the
relation types effectively, with higher performance
on relations with more support.

In Table 8 we see that our sub-word BPE model
out-performs the model using the Genia tokenizer
(Kulick et al., 2012) even though our vocabulary
size is one-fifth as large. We see a 1.7 F1 point
boost in predicting Pubtator NER labels for BPE.
This could be explained by the increased out-of-

7We include scripts to generate the unfiltered set of
data as well to encourage future research

8http://ctdbase.org/downloads/

Train Dev Test
Total 120k 15k 15k
Chemical/Disease
marker/mechanism 41,562 5,126 5,167
therapeutic 24,151 2,929 3,059
Gene/Disease
marker/mechanism 5,930 825 819
therapeutic 560 77 75
Chemical/Gene
increase_expression 15,851 1,958 2,137
increase_MP 5,986 740 638
decrease_expression 5,870 698 783
increase_activity 4,154 467 497
affects_response 3,834 475 508
decrease_activity 3,124 396 434
affects_transport 3,009 333 361
increase_reaction 2,881 367 353
decrease_reaction 2,221 247 269
decrease_MP 798 100 120

Table 6: Data statistics for the new CTD dataset
broken down by relation type. The first column lists
relation types separated by the types of the entities.
Columns 2–4 show the number of positive examples
of that relation type. MP stands for metabolic
processing.

vocabulary (OOV) rate for named entities. Word
training data has 3.01 percent OOV rate for tokens
with an entity. The byte pair-encoded data has an
OOV rate of 2.48 percent. Note that in both the
word-tokenized and byte pair-tokenized data, we
replace tokens that occur less than five times with
a learned UNK token.
Figure 2 depicts the model’s performance on re-

lation extraction as a function of distance between
entities. For example, the blue bar depicts perfor-
mance when removing all entity pair candidates
(positive and negative) whose closest mentions are
more than 11 tokens apart. We consider remov-
ing entity pair candidates with distances of 11, 25,
50, 100 and 500 (the maximum document length).
The average sentence length is 22 tokens. We see
that the model is not simply relying on short range
relationships, but is leveraging information about
distant entity pairs, with accuracy increasing as the
maximum distance considered increases. Note that
all results are taken from the same model trained
on the full unfiltered training set.

4 Related work
Relation extraction is a heavily studied area in the
NLP community. Most work focuses on news and
web data (Doddington et al., 2004; Riedel et al.,
2010; Hendrickx et al., 2009).9 Recent neural net-

9And TAC KBP: https://tac.nist.gov
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P R F1
Total
Micro F1 44.8 50.2 47.3
Macro F1 34.0 29.8 31.7
Chemical/Disease
marker/mechanism 46.2 57.9 51.3
therapeutic 55.7 67.1 60.8
Gene/Disease
marker/mechanism 42.2 44.4 43.0
therapeutic 52.6 10.1 15.8
Chemical/Gene
increases_expression 39.7 48.0 43.3
increases_MP 26.3 35.5 29.9
decreases_expression 34.4 32.9 33.4
increases_activity 24.5 24.7 24.4
affects_response 40.9 35.5 37.4
decreases_activity 30.8 19.4 23.5
affects_transport 28.7 23.8 25.8
increases_reaction 12.8 5.6 7.4
decreases_reaction 12.3 5.7 7.4
decreases_MP 28.9 7.0 11.0

Table 7: BRAN precision, recall and F1 results for
the full CTD dataset by relation type. The model
is optimized for micro F1 score across all types.

Model P R F1
Relation extraction
Words 44.9 48.8 46.7 ± 0.39
BPE 44.8 50.2 47.3 ± 0.19
NER
Words 91.0 90.7 90.9 ± 0.13
BPE 91.5 93.6 92.6 ± 0.12

Table 8: Precision, recall, and F1 results for CTD
named entity recognition and relation extraction,
comparing BPE to word-level tokenization.

work approaches to relation extraction have focused
on CNNs (dos Santos et al., 2015; Zeng et al., 2015)
or LSTMs (Miwa and Bansal, 2016; Verga et al.,
2016a; Zhou et al., 2016b) and replacing stage-wise
information extraction pipelines with a single end-
to-end model (Miwa and Bansal, 2016; Ammar
et al., 2017; Li et al., 2017). These models all
consider mention pairs separately.

There is also a considerable body of work specifi-
cally geared towards supervised biological relation
extraction including protein-protein (Pyysalo et al.,
2007; Poon et al., 2014; Mallory et al., 2015), drug-
drug (Segura-Bedmar et al., 2013), and chemical-
disease (Gurulingappa et al., 2012; Li et al., 2016a)
interactions, and more complex events (Kim et al.,
2008; Riedel et al., 2011). Our work focuses on mod-
eling relations between chemicals, diseases, genes
and proteins, where available annotation is often
at the document- or abstract-level, rather than the
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Figure 2: Performance on the CTD dataset when
restricting candidate entity pairs by distance. The
x-axis shows the coarse-grained relation type. The
y-axis shows F1 score. Different colors denote max-
imum distance cutoffs.

sentence level.
Some previous work exists on cross-sentence

relation extraction. Swampillai and Stevenson
(2011) and Quirk and Poon (2017) consider featur-
ized classifiers over cross-sentence syntactic parses.
Most similar to our work is that of Peng et al.
(2017), which uses a variant of an LSTM to encode
document-level syntactic parse trees. Our work
differs in three key ways. First, we operate over
raw tokens negating the need for part-of-speech
or syntactic parse features which can lead to cas-
cading errors. We also use a feed-forward neural
architecture which encodes long sequences far more
efficiently compared to the graph LSTM network of
Peng et al. (2017). Finally, our model considers all
mention pairs simultaneously rather than a single
mention pair at a time.
We employ a bi-affine function to form pairwise

predictions between mentions. Such models have
also been used for knowledge graph link prediction
(Nickel et al., 2011; Li et al., 2016b), with variations
such as restricting the bilinear relation matrix to
be diagonal (Yang et al., 2015) or diagonal and
complex (Trouillon et al., 2016). Our model is
similar to recent approaches to graph-based depen-
dency parsing, where bilinear parameters are used
to score head-dependent compatibility (Kiperwasser
and Goldberg, 2016; Dozat and Manning, 2017).

5 Conclusion

We present a bi-affine relation attention network
that simultaneously scores all mention pairs within
a document. Our model performs well on three
datasets, including two standard benchmark biolog-
ical relation extraction datasets and a new, large
and high-quality dataset introduced in this work.
Our model out-performs the previous state of the
art on the Biocreative V CDR dataset despite us-
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ing no additional linguistic resources or mention
pair-specific features.
Our current model predicts only into a fixed

schema of relations given by the data. However,
this could be ameliorated by integrating our model
into open relation extraction architectures such
as Universal Schema (Riedel et al., 2013; Verga
et al., 2016b). Our model also lends itself to other
pairwise scoring tasks such as hypernym prediction,
co-reference resolution, and entity resolution. We
will investigate these directions in future work.
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A Implementation Details

The model is implemented in Tensorflow (Abadi
et al., 2015) and trained on a single TitanX gpu.
The number of transformer block repeats is B = 2 .
We optimize the model using Adam (Kingma and
Ba, 2015) with best parameters chosen for ε, β1,
β2 chosen from the development set. The learning
rate is set to 0.0005 and batch size 32. In all of our
experiments we set the number of attention heads
to h = 4.

We clip the gradients to norm 10 and apply noise
to the gradients (Neelakantan et al., 2015). We
tune the decision threshold for each relation type
separately and perform early stopping on the devel-
opment set. We apply dropout (Srivastava et al.,
2014) to the input layer randomly replacing words
with a special UNK token with keep probability .85.
We additionally apply dropout to the input T (word
embedding + position embedding), interior layers,
and final state. At each step, we randomly sample
a positive or negative (NULL class) minibatch with
probability 0.5.

A.1 Chemical Disease Relations Dataset

Token embeddings are pre-trained using skipgram
(Mikolov et al., 2013) over a random subset of 10%
of all PubMed abstracts with window size 10 and
20 negative samples. We merge the train and devel-
opment sets and randomly take 850 abstracts for
training and 150 for early stopping. Our reported
results are averaged over 10 runs and using different
splits. All baselines train on both the train and
development set. Models took between 4 and 8
hours to train.
ε was set to 1e-4, β1 to .1, and β2 to 0.9. Gradi-

ent noise η = .1. Dropout was applied to the word
embeddings with keep probability 0.85, internal lay-
ers with 0.95 and final bilinear projection with 0.35
for the standard CRD dataset experiments. When
adding the additional weakly labeled data: word
embeddings with keep probability 0.95, internal
layers with 0.95 and final bilinear projection with
0.5.

A.2 Chemical Protein Relations Dataset

We construct our byte-pair encoding vocabulary
using a budget of 7500. The dataset contains an-
notations for a larger set of relation types than are
used in evaluation. We train on only the relation
types in the evaluation set and set the remaining
types to the Null relation. The embedding dimen-
sion is set to 200 and all embeddings are randomly
initialized. ε was set to 1e-8, β1 to .1, and β2 to 0.9.
Gradient noise η = 1.0. Dropout was applied to the
word embeddings with keep probability 0.5, internal
layers with 1.0 and final bilinear projection with
0.85 for the standard CRD dataset experiments.

A.3 Full CTD Dataset
We tune separate decision boundaries for each re-
lation type on the development set. For each pre-
diction, the relation type with the maximum prob-
ability is assigned. If the probability is below the
relation specific threshold, the prediction is set to
NULL. We use embedding dimension 128 with all
embeddings randomly initialized. Our byte pair
encoding vocabulary is constructed with a budget
of 50,000. Models took 1 to 2 days to train.
ε was set to 1e-4, β1 to .1, and β2 to 0.9. Gradi-

ent noise η = .1.Dropout was applied to the word
embeddings with keep probability 0.95, internal
layers with 0.95 and final bilinear projection with
0.5
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Abstract

We present data and methods that enable a
supervised learning approach to Open Infor-
mation Extraction (Open IE). Central to the
approach is a novel formulation of Open IE
as a sequence tagging problem, addressing
challenges such as encoding multiple extrac-
tions for a predicate. We also develop a bi-
LSTM transducer, extending recent deep Se-
mantic Role Labeling models to extract Open
IE tuples and provide confidence scores for
tuning their precision-recall tradeoff. Fur-
thermore, we show that the recently re-
leased Question-Answer Meaning Represen-
tation dataset can be automatically converted
into an Open IE corpus which significantly in-
creases the amount of available training data.
Our supervised model, made publicly avail-
able,1 outperforms the state-of-the-art in Open
IE on benchmark datasets.

1 Introduction

Open Information Extraction (Open IE) systems
extract tuples of natural language expressions that
represent the basic propositions asserted by a sen-
tence (see Figure 1). They have been used for
a wide variety of tasks, such as textual entail-
ment (Berant et al., 2011), question answering
(Fader et al., 2014), and knowledge base popu-
lation (Angeli et al., 2015). However, perhaps
due to limited data, existing methods use semi-
supervised approaches (Banko et al., 2007; Wu
and Weld, 2010), or rule-based algorithms (Fader
et al., 2011; Mausam et al., 2012; Del Corro and
Gemulla, 2013). In this paper, we present new data
and methods for Open IE, showing that supervised
learning can greatly improve performance.

∗Work performed while at Bar-Ilan University.
1Our code and models are made publicly available

at https://github.com/gabrielStanovsky/
supervised-oie

Mercury filling, particularly prevalent in the USA,
was banned in the EU, partly because it causes
antibiotic resistance.

(mercury filling; particularly prevalent; in the USA)

(mercury filling; causes; antibiotic resistance)

(mercury filling; was banned; in the EU; partly because it

causes antibiotic resistance)

Figure 1: Open IE extractions from an example
sentence. Each proposition is composed of a tu-
ple with a single predicate position (in bold), and
an ordered list of arguments, separated by semi-
colons.

We build on recent work that studies other
natural-language driven representations of predi-
cate argument structure, which can be annotated
by non-experts. Recently, Stanovsky and Dagan
(2016) created the first labeled corpus for eval-
uation of Open IE by an automatic translation
from question-answer driven semantic role label-
ing (QA-SRL) annotations (He et al., 2015). We
extend these techniques and apply them to the
QAMR corpus (Michael et al., 2018), an open
variant of QA-SRL that covers a wider range of
predicate-argument structures (Section 5). The
combined dataset is the first corpus that is large
and diverse enough to train an accurate extractor.

To train on this data, we formulate Open IE
as a sequence labeling problem. We introduce a
novel approach that can extract multiple, overlap-
ping tuples for each sentence (Section 3), extend-
ing recent deep BIO taggers used for semantic role
labeling (Zhou and Xu, 2015; He et al., 2017).
We also introduce a method to calculate extrac-
tion confidence, allowing us to effectively trade off
precision and recall (Section 4).

Experiments demonstrate that our approach out-
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performs state-of-the-art Open IE systems on sev-
eral benchmarks (Section 6), including three that
were collected independently of our work (Xu
et al., 2013; de Sá Mesquita et al., 2013; Schneider
et al., 2017). This shows that for Open IE, careful
data curation and model design can push the state
of the art using supervised learning.

2 Background

In this section we survey existing Open IE sys-
tems, against which we compare our system, and
available data for the task, that we will use for
training and testing our model.

2.1 Different Open IE Systems and Flavors

Open IE’s original goal (Banko et al., 2007) was
to extend traditional (closed) information extrac-
tion, such that all of the propositions asserted by
a given input sentence are extracted (see Figure
1 for examples). The broadness of this defini-
tion, along with the lack of a standard benchmark
dataset for the task, prompted the development of
various Open IE systems tackling different facets
of the task.

While most Open IE systems aim to extract the
common case of verbal binary propositions (i.e,
subject-verb-object tuples), some systems spe-
cialize in other syntactic constructions, includ-
ing noun-mediated relations (Yahya et al., 2014;
Pal and Mausam, 2016), n-ary relations (Akbik
and Löser, 2012), or nested propositions (Bhutani
et al., 2016).

Many different modeling approaches have also
been developed for Open IE. Some of the early
systems made use of distant supervision (Banko
et al., 2007; Wu and Weld, 2010), while the current
best systems use rule-based techniques to extract
predicate-argument structures as a post-processing
step over an intermediate representation. ReVerb
(Fader et al., 2011) extracts Open IE proposi-
tions from part of speech tags, OLLIE (Mausam
et al., 2012), ClausIE (Del Corro and Gemulla,
2013) and PropS (Stanovsky et al., 2016) post-
process dependency trees, and Open IE42 extracts
tuples from Semantic Role Labeling (SRL) struc-
tures. These systems typically associate a confi-
dence metric with each extraction, which allows
end applications to trade off precision and recall.

2https://github.com/dair-iitd/
OpenIE-standalone

2.2 Open IE Corpora

Recent work addressed the lack of labeled ref-
erence Open IE datasets for comparatively eval-
uating extractors. Stanovsky and Dagan (2016)
created a large Open IE corpus (OIE2016) for
verbal predicates by automatic conversion from
QA-SRL (He et al., 2015), a variant of traditional
SRL that labels arguments of verbs with sim-
ple, template-based natural language questions.
Schneider et al. (2017) aggregated datasets anno-
tated independently in previous Open IE efforts
(WEB and NYT (de Sá Mesquita et al., 2013),
PENN (Xu et al., 2013), and OIE2016) into a
common benchmarking suite.

In addition to these, we create and make avail-
able a new Open IE training corpus, All Words
Open IE (AW-OIE), derived from Question-
Answer Meaning Representation (QAMR)
(Michael et al., 2018), a recent extension of the
QA-SRL paradigm to free-form questions over
a wide range of predicate types (see Section 5).
Table 1 presents more details on these datasets.

3 Task Formulation

In this work, we choose to model an Open IE
proposition as a tuple consisting of a single predi-
cate operating over a non-empty set of arguments,
where the predicate and the arguments are con-
tiguous spans from the sentence. As with tradi-
tional (binary) Open IE, every tuple should be as-
serted by the sentence and the order of the tuple
elements should be such that it would be naturally
interpretable when reading from left to right (for
example, see the third tuple in Figure 1). As we
show in following sections, this formulation intu-
itively lends itself to BIO tagging, while being ex-
pressive enough to capture a wide range of propo-
sitions.

Formally, given an input sentence S =

Dataset Domain #Sent.
#Tuples

Train Dev Test
AW-OIE∗ Wikinews,Wiki 3300 12952 4213 -
OIE2016 News,Wiki 3200 5077 1671 1729
WEB-500 News,Web 500 - - 461
NYT-222 News,Wiki 222 - - 222
PENN-100 Mixed 100 - - 51

Table 1: Datasets used in this work, follow-
ing (Schneider et al., 2017). ∗AW-OIE (All Words
Open IE) was created in the course of this work,
see Section 5 for details.
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Open IE Encoding Examples

(a) The president claimed that he won the majority vote.
(The president; claimed that he won; the majority vote)
TheA0−B presidentA0−I claimedP−B thatP−I heP−I wonP−I theA1−B majorityA1−I voteA1−I

(b) Barack Obama, a former U.S president, was born in Hawaii.
(Barack Obama; was born in; Hawaii)
(a former U.S. president; was born in; Hawaii)
BarackA0−B ObamaA0−I ,O aA0−B formerA0−I U.S.A0−I presidentA0−I ,O wasP−B bornP−I inP−I HawaiiA1−B

(c) Theresa May plans for Brexit, on which the UK has voted last June.
(the UK; has voted on; Brexit; last June)
TheresaO MayO plansO forO BrexitA1−B ,O onO whichO theA0−B UKA0−I hasP−B votedP−I onP−I lastA2−B JuneA2−I

Table 2: Example sentences and respective Open IE extractions. The first line in each example presents
the input pairs (S, p), where S is the input sentence, and the predicate head, p, is denoted with an
underline. Below the inputs we present the corresponding Open IE extractions. The corresponding
encodings are presented below the dashed lines, where subscripts indicate the associated BIO label.
Demonstrating: (a) the encoding of a multi-word predicate, (b) several arguments collapsed into the
same A0 argument position, (c) argument position deviating from the sentence ordering.

(w1, . . . , wn), a tuple consists of (x1, . . . ,xm),
where each xi is a contiguous subspan of S. One
of the xi is distinguished as the predicate (marked
in bold in Figure 1), while the other spans are con-
sidered its arguments. Following this definition,
we reformulate Open IE as a sequence labeling
task, using a custom BIO3 (Ramshaw and Marcus,
1995; Sang and Veenstra, 1999) scheme adapted
from recent deep SRL models (He et al., 2017).

In our formulation, the set of Open IE tuples for
a sentence S are grouped by predicate head-word
p, as shown in Table 2. For instance, example
(b) lists two tuples for the predicate head “born”,
which is underlined in the sentence. Grouping tu-
ples this way allows us to run the model once for
each predicate head, and accumulate the predic-
tions across predicates to produce the final set of
extractions.

Open IE tuples deviate from SRL predicate-
argument structures in two major respects. First,
while SRL generally deals with single-word pred-
icates, Open IE uses multi-word predicates that of-
ten incorporate modals and embedded predicates.
For example, the first tuple in the table includes the
embedded predicate claimed that he won. Sec-
ond, Open IE generates multiple extractions from
a single predicate in certain syntactic construc-
tions (e.g., apposition, co-ordination or corefer-
ence). For instance, example (b) repeats the predi-
cate was born in for the two components of the

3Beginning, Inside, Outside

apposition Barack Obama, a former U.S. presi-
dent.

To model these unique challenges, we introduce
a custom BIO tagging scheme, shown in Table 2
below the dashed lines. Predicates are encoded
using the P label type, while arguments are rep-
resented using Ai labels, where i represents the
argument’s position within the extracted Open IE
tuple. While softer than SRL’s predicate-specific
argument roles (e.g., ARG0), these argument po-
sitions also capture semantic information because
they are arranged such that the tuple can be nat-
urally read as a standalone statement, regardless
of the complications of the source text’s syntax
(such as reorderings and long-distance dependen-
cies). For instance, in the last example in Table
2, the order of the arguments in the Open IE tuple
deviates from the ordering in the original sentence
due to a relative clause construction (headed by the
word Brexit).

Finally, multiple extractions per predicate are
encoded by assigning the same argument index to
all arguments appearing in that position across all
of the predicate’s extractions. For example, note
that the A0 argument label appears twice for the
apposition in example (b). To reconstruct the ex-
tractions from the BIO labels, we produce an ex-
traction for every possible way of choosing one
argument for each index.
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Obama

P(A0-B)

was

P(P-B)

born

P(P-I)

in

P(A1-B)

America

P(A1-I)

Embeddings

bi-LSTM

Softmax

Figure 2: RNN model architecture. Orange cir-
cles represent current word features: embedding
for word and part of speech. Yellow circles rep-
resent predicate features, duplicated and concate-
nated to all other word features.

O

58%

A1-I

15%

A0-I

9%

A2-I

5%
P-B

3% A0-B
3% A1-B
3% Other
4%

Figure 3: Word label distribution in the training set.

4 Supervised Open IE Model

Our model, named RnnOIE, is a bi-LSTM trans-
ducer, inspired by the state of the art deep learn-
ing approach for SRL suggested by Zhou and Xu
(2015) and He et al. (2017). The architecture is
shown in Figure 2.

Given an input instance of the form (S, p),
where S is the input sentence, and p is the word
index of the predicate’s syntactic head, we extract
a feature vector feat for every word wi ∈ S:

feat(wi, p) = emb(wi)⊕ emb(pos(wi))⊕
⊕ emb(wp)⊕ emb(pos(wp))

Here, emb(w) is a d-dimensional word embed-
ding, emb(pos(w)) is a 5-dimensional embedding
of w’s part of speech, and ⊕ denotes concatena-
tion. We duplicate the predicate head’s features on
all words to allow the model to more directly ac-
cess this information as it makes predicate-specific
word label predictions.

The features are fed into a bi-directional deep
LSTM transducer (Graves, 2012) which computes
contextualized output embeddings. The outputs
are used in softmaxes for each word, producing in-
dependent probability distributions over possible
BIO tags.

The model is trained with gold predicate heads,
using a per-word maximum likelihood objective.
Figure 3 depicts the overall word label distribu-
tion within the training set. The large percentage
of O labels demonstrates Open IE’s tendency to
shorten arguments, compared to SRL which con-
siders full syntactic constitutes as arguments.

Inference At inference time, we first identify
all verbs and nominal predicates in the sen-
tence as candidate predicate heads. We use a
Part Of Speech (POS) tagger to identify verbs,
and Catvar’s subcategorization frames (Habash
and Dorr, 2003) for nominalizations, identifying
nouns which share the same frame with a verbal
equivalent (e.g., acquisition with acquire). We
then generate an input instance for each candi-
date predicate head. For each instance, we tag
each word with its most likely BIO label under
the model, and reconstruct Open IE tuples from
the resulting sequence according to the method de-
scribed in Section 3, with the exception that we ig-
nore malformed spans (i.e., if an A0-I label is not
preceded by A0-I or A0-B, we treat it as O).

Assigning extraction confidence It is beneficial
for an Open IE system to associate a confidence
value with each predicted extraction to allow for
tuning its precision-recall tradeoff. Our model
does not directly produce confidence values for ex-
tractions, but it does assign probabilities to each
BIO label that it predicts. We experimented with
several heuristics to combine these predictions to
an extraction-level confidence metric. The best
performance on the development set was achieved
by multiplying the probabilities of the B and I la-
bels participating in the extraction.4 This metric
prefers shorter extractions, which correlates well
with the requirements of Open IE (Bhutani et al.,
2016).

Implementation details We implemented the
model using the Keras framework (Chollet, 2015)
with TensorFlow backend (Abadi et al., 2015). All

4We also tried taking the maximum or minimum observed
single word-label probability.
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Mercury filling, particularly prevalent in the USA, was banned in the EU, partly because it causes antibiotic resistance.

Predicate QA-SRL QAMR Open IE

made - What is the filling made of? mercury -

prevalent - What was particularly prevalent in
the USA? mercury filling

(mercury filling; partic-
ularly prevalent; in the
USA)

banned

What was banned?
mercury filling
Where was something banned?
the EU

What was banned in the EU partly
because it causes antibiotic resis-
tance? mercury filling

(mercury filling; was
banned; in the EU;
partly because it causes
antibiotic resistance)

Why was something banned? partly
because it causes antibiotic resistance

causes What caused something? mercury
filling

What did mercury filling cause? an-
tibiotic resistance

(mercury filling; caused;
antibiotic resistance)

What did something cause? antibiotic
resistance

Table 3: Comparison of QA-SRL, QAMR, and desired Open IE annotations for an example sentence,
adapted from the QAMR corpus.

hyperparameters were tuned on the OIE2016 de-
velopment set. The bi-LSTM transducer has 3 lay-
ers and each LSTM cell uses 128 hidden units and
a linear rectifier (ReLU) (Nair and Hinton, 2010)
activation function. The model was trained for
100 epochs in mini batches of 50 samples, with
10% word-level dropout. The word-embeddings
were initialized using the GloVe 300-dimensions
pre-trained embeddings (Pennington et al., 2014)
and were kept fixed during training. The part of
speech embeddings were randomly initialized and
updated during training. Finally, we use the av-
erage perceptron part-of-speech tagger (as imple-
mented in spaCy5) to predict parts of speech for
input features and verb predicate identification.

5 Open IE from QAMR

This section describes our approach for automat-
ically extracting Open IE tuples from QAMR
(Michael et al., 2018), a recent extension of QA-
SRL. While QA-SRL uses question templates cen-
tered on verbs, QAMR annotates free-form ques-
tions over arbitrary predicate types. The QAMR
corpus consists of annotations over 5, 000 sen-
tences. By extending the OIE2016 training set
with extractions from QAMR, we more than triple
the available amount of training data.

The extraction algorithm, as well as the
resulting corpus, are made publicly available
at https://github.com/gabrielStanovsky/

5https://spacy.io

supervised-oie.

5.1 The QAMR Corpus
Question-Answer Meaning Representation, or
QAMR (Michael et al., 2018), was recently pro-
posed as an extension of QA-SRL. Like QA-
SRL, QAMR represents predicate-argument struc-
ture with a set of question-answer pairs about a
sentence, where each answer is a span from the
sentence. However, while QA-SRL restricts ques-
tions to fit into a particular verb-centric template,
QAMR is more general, allowing any natural lan-
guage question that begins with a wh-word and
contains at least one word from the sentence. This
allows QAMR to express richer, more complex re-
lations. Consider, for example, the first two entries
for QAMR in Table 3. The first explicates the im-
plicit relation made of from the noun compound
mercury filling, and the second identifies the ad-
jectival predicate prevalent. Neither of these can
be represented in QA-SRL.

5.2 Extraction Algorithm
While QAMR’s broader scope presents an oppor-
tunity to vastly increase the number and coverage
of annotated Open IE tuples, it also poses addi-
tional challenges for the extraction algorithm. The
free-form nature of QAMR questions means that
some are over-expressive for Open IE, while in
many other cases it is less obvious how to extract a
predicate and a list of arguments from a question-
answer pair.
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What was banned in the EU partly because it causes antibiotic resistance ? mercury filling
P-B P-I A1-B A1-I A1-I A2-B A2-I A2-I A2-I A2-I A2-I A0-B A0-I

ROOT

aux

nsubjpass
pobj

advcl

substituted by

(mercury filling; was banned; in the EU; partly because it causes antibiotic resistance)

Figure 4: A QAMR (top) to Open IE (bottom) conversion example. The BIO labels for our encoding of
the Open IE tuple appear below the text. The root of the question’s dependency tree is the predicate,
while its syntactic constituents are the arguments. The answer appears as the first argument of the Open
IE tuple due to the passive construction.

Over-expressiveness The QAMR formalism al-
lows many constructions that diverge from Open
IE extractions, which generally are drawn verba-
tim from the source text. For example, the predi-
cate made is introduced in the QAMR for the sen-
tence in Table 3, despite not appearing in the sen-
tence. To circumvent this issue, we filter out ques-
tions which: (1) introduce new content words,6 (2)
have more than one wh-word, (3) do not start with
who, what, when or where, or (4) ask what did X
do?, delegating the predicate to the answer.

Detecting predicates and arguments While a
QA-SRL question has a designated predicate and
a single argument as the answer, in QAMR, the
predicate can appear anywhere in the question and
its arguments are spread between the question and
answer. For example, extracting an Open IE tuple
for the predicate banned in Table 3 requires de-
coupling the predicate and its arguments in the EU
and partly because it causes antibiotic resistance.
Our solution to this problem is illustrated in Figure
4. We first run each question through a syntactic
dependency parser. We then identify the predicate
as the head of the question’s dependency tree ex-
tended to include all dependents with an auxiliary
relation (e.g., aux, neg, or prt). The predicted ar-
guments are the predicate’s constituent argument
subtrees, while the answer to the question replaces
the subtree headed by the wh-word. Finally, we
employ similar heuristics to those used convert-
ing verbal QA-SRL to Open IE to find the correct
argument position for the answer (Stanovsky and
Dagan, 2016). For example, the passive construc-

6We do not count inflected forms of verbs from the sen-
tence, such as caused in the last entry of the table, as new
words.

QAMR Open IE Tuples

(The treaty of Brussels; was signed; on 17 March
1948; by Belgium, the Netherlands, Luxembourg,
France, and the UK)

(The treaty of Brussels; is the precursor to; the
NATO agreement)

(The scope of publishing; has expanded to in-
clude; websites, blogs, and the like.)

Table 4: Tuples from the All Words Open IE Cor-
pus, exemplifying n-ary extractions (top example),
non-verbal predicates (middle), and multi-word
predicates (bottom).

tion in Figure 4 implies that the answer should be
placed in the first argument position, while the ex-
istence of a prepositional object in, e.g., What did
he put on the table? signals that the answer should
be placed in the second argument position.

5.3 The All Words Open IE Corpus

As described by Michael et al. (2018), QAMR an-
notations were gathered via crowdsourcing in a
two-stage pipeline over Wikipedia and Wikinews
text. We use the training partition of the QAMR
dataset, which consists of 51,063 QA pairs over
3,938 sentences. Our filtering and conversion
from the QAMR corpus yields 12,952 Open IE
tuples (2.5 times the size of OIE2016’s training
corpus), composed of 7,470 (58%) verbal pred-
icates, 4,952 (38%) nominal predicates, and 530
(4%) adjectival predicates. See Table 4 for exam-
ple tuples, taken from the converted corpus.

Examining the results, we found that they are
not accurate enough to constitute a gold test cor-
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pus, partly because some relations were missed by
the annotators of QAMR and partly because of
noise introduced in the automatic extraction pro-
cess. Instead, we use this corpus to extend the train
partition of OIE2016. In the following section,
we show its usefulness in significantly improving
the precision and recall of our Open IE model.

6 Evaluation

We evaluate the performance of our model on the
four test sets discussed in Section 2.

6.1 Experimental Setup

Metrics We evaluate each system according to
three metrics. First, as is typical for Open IE, we
compute a precision-recall (PR) curve by evalu-
ating the systems’ performance at different extrac-
tion confidence thresholds. This curve is useful for
downstream applications which can set the thresh-
old according to their specific needs (i.e., recall
oriented versus precision oriented). Second, we
compute the area under the PR curve (AUC) as
a scalar measurement of the overall system per-
formance. Finally, for each system, we report a
single F1 score using a confidence threshold opti-
mized on the development set. This can serve as a
preset threshold for out-of-the-box use.

Matching function Similar to other cases in
NLP, we would like to allow some variability in
the predicted tuples. For example, for the sen-
tence The sheriff standing against the wall spoke
in a very soft voice we would want to treat both
(The Sheriff; spoke; in a soft voice) and (The sher-
iff standing against the wall; spoke; in a very soft
voice) as acceptable extractions. To that end, we
follow He et al. (2015) which judge an argument
as correct if and only if it includes the syntac-
tic head of the gold argument (and similarly for
predicates). For OIE2016, we use the available
Penn Treebank gold syntactic trees (Marcus et al.,
1993), while for the other test sets, we use pre-
dicted trees instead. While this metric may some-
times be too lenient, it does allow a more balanced
and fair comparison between systems which can
make different, but equally valid, span boundary
decisions.

Baselines We compare our model (RnnOIE)
against the top-performing systems of those eval-
uated most recently in Stanovsky and Dagan
(2016) and in Schneider et al. (2017): Open

IE4,7 ClausIE (Del Corro and Gemulla, 2013), and
PropS (Stanovsky et al., 2016).

6.2 Results

Table 5 reports the AUC and F1 scores of all of
the systems on the 4 test sets. In addition, the PR
curves for the two largest test sets (OIE2016 and
WEB) are depicted in Figures 5a and 5b. We re-
port results for two versions of our model: one
trained on the OIE2016 training set containing
only verbal predicates (RnnOIE-verb), and an-
other on the extended training set that includes the
automatic conversion of QAMR outlined in Sec-
tion 5 (RnnOIE-aw).

Overall, RnnOIE-aw outperforms the other sys-
tems across the datasets. On the larger test sets
(OIE2016 and WEB) it provides the best perfor-
mance in terms of AUC and F1, with a superior
precision-recall curve. On each of the smaller test
sets, it performs best on one metric and competi-
tively on the other.

Furthermore, on all of the test sets, extending
the training set significantly improves our model’s
performance, showing that it benefits from the ad-
ditional data and types of predicates available in
the QAMR dataset. While this is most notable in
the test sets which include nominalizations (WEB,
NYT, and PENN), it also improves the performance
on OIE2016, which is composed solely of verb
predicates.

6.3 Performance Analysis

In our analysis, we find that RnnOIE generalizes
to unseen predicates, produces more and shorter
arguments on average than are in the gold extrac-
tions, and, like all of the systems we tested, strug-
gles with nominal predicates.

Unseen predicates We split the propositions in
the gold and predicted OIE2016 test set into
two partitions, seen and unseen, based on whether
the predicate head’s lemma appears in the training
set. The unseen part contains 145 unique predi-
cate lemmas in 148 extractions, making up 24%
out of the 590 unique predicate lemmas and 7%
out of the 1993 total extractions in the test set.
We then evaluated RnnOIE-aw on each part sep-
arately. The resulting PR curves (Figure 5c) de-
pict overall good performance also on the unseen
part, competitive with previous Open IE systems.

7https://github.com/dair-iitd/
OpenIE-standalone
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OIE2016 WEB NYT PENN
AUC F1 (P, R) AUC F1 (P, R) AUC F1 (P, R) AUC F1 (P, R)

ClausIE .38 .59 (.49, .74) .40 .45 (.39,.53) .23 .30 (.24, .39) .28 .34 (.24, .61)

PropS .34 .56 (.64, .49) .45 .59 (.44, .89) .22 .37 (.25, .77) .28 .39 (.26, .81)

Open IE4 .42 .60 (.64, .56) .45 .56 (.63, .50) .24 .38 (.26, .74) .28 .43 (.37, .50)

RnnOIE-verb .45 .59 (.57, .62) .23 .46 (.38, .58) .09 .25 (.20,.33) .21 .38 (.35, .40)

RnnOIE-aw .48 .62 (.61, .64) .47 .67 (.83, .56) .25 .35 (.24,.67) .26 .44 (.31,.75)

Table 5: Performance of the OIE extractors on our test sets. Each system is tested in terms of Area Under
the PR Curve (AUC), and F1 (precision and recall in parenthesis).

(a) OIE2016 (b) WEB (c) Seen vs. unseen

Figure 5: Precision-recall curves of the different OIE systems on OIE2016 (5a), WEB (5b) and seen vs.
unseen predicates in RnnOIE-aw on OIE2016 (5c). See details in Section 6.

System # Tuples Args/Prop Words/Arg

Gold 1730 2.45 5.38

ClausIE 2768 2.00 5.78
PropS 1551 2.68 5.8
Open IE4 1793 3.07 4.55
RnnOIE-aw 1993 3.19 4.68

Table 6: Output statistics of the different systems
on OIE2016, versus the gold data.

This indicates that our model generalizes beyond
memorization of specific predicate templates.

Argument length and number In Table 6 we
compare statistics on the the outputs of the Open
IE systems on OIE2016 and the gold data. The
best performing systems, RnnOIE and OpenIE4,
tend to produce more arguments, and each argu-
ment tends to be shorter on average, in comparison
to other systems and gold.

Runtime analysis Since Open IE is intended to
be usable at web scale, we timed the different

Open IE systems on a batch of 3200 sentences
from OIE2016, running on a Xeon 2.3GHz CPU.
The results are presented in Table 8.8 We find
that our system fares well, processing only 12%
fewer sentences per second than the fastest sys-
tem, Open IE 4.0. Further, while these numbers
are reported on CPU for the sake of fair compari-
son, running our neural model on a GPU (NVIDIA
GeForce GTX 1080 Ti) boosts speed by a factor of
more than 10 (149.25 sentences per second, on av-
erage).

Error analysis All of the systems still lack in
recall across all tested corpora. We examined a
random sample of 100 recall errors shared by all
of the extractors across the tested datasets and
found several common error types, shown in Table
7. Notably, noun and nominalized predicates still
pose a challenge, appearing in 51% of the recall
errors (whereas they make up 24% of all extrac-
tions). 19% of the examined errors required some

8PropS and ClausIE’s relatively slow performance is in
part due to their hard-coded use of the Stanford parser, which
took on average 0.2 seconds per sentence. Using a faster
parser (e.g., spaCy) may improve this performance.
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Phenomenon % Example (sentence / gold tuple)

Noun 38
Andre Agassi did a similar thing in his hometown of Las Vegas a few years ago.
(Andre Agassi; hometown; Las Vegas)

Sent.-level
Inference

19
John Steinbeck also earned alot of awards, one being the Pulitzer Prize in 1940.
(John Steinbeck; earned; Pulitzer Prize)

Long sentence 14

“I don’t see any radical change for our company”, said David Westin, the president of
production for Capital CitiesABC Inc. “But in the next year or so, I would expect you
might see all sorts of new deals between networks and studios, joint ventures and
creative financing of programs.”
(David Westin; president; Capital Cities/ABC Inc.)

Nominalization 13
We first heard about this when the Google-Youtube acquisition news broke, and wrote
briefly about it here
(Google; acquisition; Youtube)

Noisy
Informal

13
But who knows, with Google’s “owning” of YouTube now ..they are now in the ‘media’
department with that deal... so who knows if they will move on to music stuff next :P
(Google; owning; YouTube)

PP-attachment 10
The novelist Franz Kafka was born of Jewish parentage in Prague in 1883.
(Franz Kafka; born; Prague)

Table 7: Analysis of frequently-occuring recall errors for all tested systems on a random sample of
100 sentences. For each phenomenon we list the percentage of sentences in which it occurs (possibly
overlapping with other phenomena), and a protoypical example, taken from the WEB corpus.

ClausIE PropS Open IE4 RnnOIE

CPU 4.07 4.59 15.38 13.51
GPU — — — 149.25

Table 8: Runtime analysis, measured in sentences
per second, of the different systems on 3200
sentences from the OIE2016 corpus on Xeon
2.3GHz CPU (top) and on an NVIDIA GeForce
GTX 1080 Ti (bottom). Baselines were only run
on CPU as they are currently not optimized for
GPU.

form of sentence level inference, such as determin-
ing event factuality or pronoun resolution. 14%
of the errors involved long sentences with over 40
words (where the average word count per sentence
is 29.4).

7 Conclusions and Future Work

We present a supervised model for Open IE, for-
mulating it as a sequence tagging problem and ap-
plying a bi-LSTM transducer to produce a state-
of-the-art Open IE system. Along the way, we
address several task-specific challenges, includ-
ing the BIO encoding of predicates with multiple

extractions and confidence estimation in our se-
quence tagging model. To train the system, we
leverage a recently published large scale corpus
for Open IE (Stanovsky and Dagan, 2016), and
further extend it using a novel conversion of the
QAMR corpus (Michael et al., 2018), which cov-
ers a wider range of predicates.

In addition to these contributions, this work
shows that Open IE can greatly benefit from future
research into the QA-SRL paradigm. For example,
Open IE would directly benefit from an automatic
QA-SRL extractor, while a more exhaustive or ex-
tensive annotation of QAMR would improve Open
IE’s performance on a wider range of predicates.
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Abstract
Prepositions are among the most frequent
words in English and play complex roles in
the syntax and semantics of sentences. Not
surprisingly, they pose well-known difficulties
in automatic processing of sentences (prepo-
sitional attachment ambiguities and idiosyn-
cratic uses in phrases). Existing methods
on preposition representation treat preposi-
tions no different from content words (e.g.,
word2vec and GloVe). In addition, recent
studies aiming at solving prepositional attach-
ment and preposition selection problems de-
pend heavily on external linguistic resources
and use dataset-specific word representations.
In this paper we use word-triple counts (one
of the triples being a preposition) to capture
a preposition’s interaction with its attachment
and complement. We then derive preposi-
tion embeddings via tensor decomposition on
a large unlabeled corpus. We reveal a new ge-
ometry involving Hadamard products and em-
pirically demonstrate its utility in paraphras-
ing phrasal verbs. Furthermore, our preposi-
tion embeddings are used as simple features
in two challenging downstream tasks: prepo-
sition selection and prepositional attachment
disambiguation. We achieve results compara-
ble to or better than the state-of-the-art on mul-
tiple standardized datasets.

1 Introduction

Prepositions are a linguistically closed class com-
prising some of the most frequent words; they play
an important role in the English language since
they encode rich syntactic and semantic informa-
tion. Many preposition-related tasks are challeng-
ing in computational linguistics because of their
polysemous nature and flexible usage patterns.
An accurate understanding and representation of
prepositions’ linguistic role is key to several im-
portant NLP tasks such as grammatical error cor-
rection and prepositional phrase attachment. A

first-order approach is to represent prepositions as
real-valued vectors via word embeddings such as
word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014).

Word embeddings have brought a renaissance
in NLP research; they have been very successful
in capturing word similarities as well as analo-
gies (both syntactic and semantic) and are now
mainstream in nearly all downstream NLP tasks
(such as question-answering (Chen et al., 2017)).
Despite this success, available literature does not
highlight any specific properties of word embed-
dings of prepositions. Indeed, many of the com-
mon prepositions have very similar vector rep-
resentations as shown in Table 1 for preposition
vectors trained using word2vec and GloVe (Ten-
sor embedding is our proposed representation for
prepositions). While this suggests that using avail-
able representations for prepositions diminishes
the distinguishing aspect between prepositions,
one could hypothesize that this is primarily be-
cause standard word embedding algorithms treat
prepositions no different from other content words
such as verbs and nouns, i.e., embeddings are cre-
ated based on co-occurrences with other words.
However, prepositions are very frequent and co-
occur with nearly all words, which means that
their co-occurrence ought to be treated differently.

Preposition pair Word2vec GloVe Tensor
(above, below) 0.85 0.78 0.22

(above, beneath) 0.40 0.45 0.15
(after, before) 0.83 0.70 0.44
(after, during) 0.56 0.42 0.16
(amid, despite) 0.47 0.37 0.12

(amongst, besides) 0.46 0.37 0.21
(beneath, inside) 0.55 0.47 0.29

Table 1: Cosine similarity between pairs of centered
prepositions using some word embeddings

Modern descriptive linguistic theory proposes
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to understand a preposition via its interactions
with both the head it attaches to (termed head)
and its complement (Huddleston, 1984; DeCar-
rico, 2000). This theory naturally suggests that
one should count co-occurrences of a given prepo-
sition with pairs of neighboring words. One way
of achieving this would be by considering a ten-
sor of triples (word1, word2, preposition), where
we do not restrict word1 and word2 to be the head
and complement words; instead we model a prepo-
sition’s interaction with all pairs of neighboring
words via a slice of a tensor X , where the slice is
populated by word co-occurrences restricted to a
context window of the specific preposition. Thus,
the tensor dimension is N × N × K where N is
the vocabulary size and K is the number of prepo-
sitions; since K ≈ 50, we note that N � K.

Using such a representation, we notice that the
resulting tensor is low rank and use it to ex-
tract embeddings for both preposition and non-
preposition words. In doing so, we use a com-
bination of standard ideas from word represen-
tations (such as weighted spectral decomposition
as in GloVe (Pennington et al., 2014)) and tensor
decompositions (alternating least squares (ALS)
methods (Sharan and Valiant, 2017)). We find that
the preposition embeddings extracted in this man-
ner are discriminative (see the preposition similar-
ity of the tensor embedding in Table 1). Note that
the smaller the cosine similarity is, the more dis-
tinct the representations are from each other. We
demonstrate that the resulting preposition repre-
sentation captures the core linguistic properties of
prepositions–the attachment and the complement
properties. Using both intrinsic evaluations and
downstream tasks, we show this by providing new
state-of-the-art results on well-known NLP tasks
involving prepositions.

Intrinsic evaluations: We show that the
Hadamard product of the embeddings of a verb
and a preposition that together make a phrasal
verb, closely approximates the representation of
this phrasal verb’s paraphrase as a single verb. Ex-
ample: vmade � vfrom ≈ vproduced � v, where
� represents the Hadamard product (i.e., element-
wise multiplication) of two vectors and v is a con-
stant vector (not associated with a specific word
and is defined later); this approximation validates
that prepositional semantics are appropriately en-
coded into their trained embeddings. We provide a
mathematical interpretation for this new geometry

while empirically demonstrating the paraphrasing
of compositional phrasal verbs.

Extrinsic evaluations: Our preposition embed-
dings are used as features for a simple classifier
in two well-known challenging downstream NLP
classification tasks. In both tasks, we perform as
well as or strictly better than the state-of-the-art on
multiple standardized datasets.

Preposition selection: While the context in which
a preposition occurs governs the choice of the
preposition, the specific preposition by itself sig-
nificantly influences the semantics of the context
in which it occurs. Furthermore, the choice of the
right preposition for a given context can be very
subtle. This idiosyncratic behavior of prepositions
is the reason behind preposition errors being one
of the most frequent error types made by second
language English speakers (Leacock et al., 2010)).
We demonstrate the utility of the preposition em-
beddings in the preposition selection task, which
is to choose the correct preposition to a given sen-
tence. We show this for a large set of contexts–
7, 000 combined instances from the CoNLL-2013
and the SE datasets (Prokofyev et al., 2014). Our
approach achieves 6% and 2% absolute improve-
ment over the previous state-of-the-art results on
the respective datasets.

Prepositional phrase attachment disambiguation:
Prepositional phrase attachment is a common
cause of structural ambiguity in natural language.
In the sentence “Pierre Vinken joined the board
as a voting member”, the prepositional phrase “as
a voting member” can attach to either “joined”
(the VP) or “the board” (the NP); in this case the
VP attachment is correct. Despite being exten-
sively studied over decades, prepositional attach-
ment continues to be a major source of syntac-
tic parsing errors (Brill and Resnik, 1994; Kum-
merfeld et al., 2012; de Kok and Hinrichs, 2016).
We use our prepositional representations as sim-
ple features to a standard classifier on this task.
Our approach tested on a widely studied standard
dataset (Belinkov et al., 2015) achieves 89% accu-
racy and compares favorably with the state-of-the
art. It is noteworthy that while the state-of-the-art
results are obtained with significant linguistic re-
sources, including syntactic parsers and the Word-
Net, our approach achieves a comparable perfor-
mance without relying on such resources.

We emphasize two aspects of our contributions:
(1) Word representations trained via pairwise
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word counts are previously shown to capture much
of the benefits of the unlabeled sentence-data; ex-
ample: (Sharan and Valiant, 2017) reports that
their word representations via word-triple counts
are better than others, but still significantly worse
than regular word2vec representations. One of our
main observations is that considering word-triple
counts makes most (linguistic) sense when one of
the words is a preposition. Furthermore, the spar-
sity of the corresponding tensor is no worse than
the sparsity of the regular word co-occurrence ma-
trix (since prepositions are so frequent and co-
occur with essentially every word). Taken to-
gether, these two points strongly suggest the ben-
efits of tensor representations in the context for
prepositions.
(2) The word and preposition representations via
tensor decomposition are simple features leading
to a standard classifier. In particular, we do not use
dependency parsing (which many prior methods
have relied on) or handcrafted features (Prokofyev
et al., 2014) or train task-specific representations
on the annotated training dataset (Belinkov et al.,
2015). The simplicity of our approach, combined
with the strong empirical results, lends credence
to the strength of the prepositional representations
found via tensor decompositions.

2 Method

We begin with a description of how the tensor with
triples (word, word, preposition) is formed and
empirically show that its slices are low-rank. Next,
we derive low dimensional vector representations
for words and prepositions via appropriate tensor
decomposition methods.
Tensor creation: Suppose thatK prepositions are
in the preposition set P = {p1, . . . , pK}; here
K is 49 in our preposition selection task, and
76 in the attachment disambiguation task. We
limited the number of prepositions to what was
needed in the dataset. The vocabulary, the set of
all words excluding the prepositions, contains N
words, V = {w1, . . . , wN}, and N ≈ 1M . We
generate a third order tensor XN×N×(K+1) from
the WikiCorpus (Al-Rfou et al., 2013) as follows.
We say two words co-occur if they appear within a
distance t of each other in a sentence. For k ≤ K,
the entry Xijk is the number of occurrences where
word wi co-occurs with preposition pk, and wj
also co-occurs with preposition pk in the same sen-
tence, and this is counted across all sentences in

Figure 1: Decaying normalized singular values of
slices.

the WikiCorpus. For 0 ≤ k ≤ K, X[:, :, k] is a
matrix of the count of the word pairs that co-occur
with the preposition k, and we call such a matrix a
slice.

Here we use a window of size t = 3. While
prepositions co-occur with many words, there are
also a number of other words which do not oc-
cur in the context of any preposition. In order to
make the maximal use of the data, we add an ex-
tra slice X[:, :,K + 1], where the entry Xij(K+1)

is the number of occurrences where wi co-occurs
with wj (within distance 2t = 6) but at least
one of them is not within a distance of t of any
preposition. Note that the preposition window of
3 is smaller than the word window of 6, since
it is known that the interaction between prepo-
sitions and neighboring words usually weakens
more sharply with distance when compared to that
of content words (Hassani and Lee, 2017).
Empirical properties of X: We find that the ten-
sor X is very sparse – only 1% of the tensor el-
ements are non-zero. Furthermore, log(1 + X[:
, :, k]) is low-rank (here the logarithm is applied
component-wise to every entry of the tensor slice).
Towards seeing this, we choose slices correspond-
ing to the prepositions “about”, “before”,“for”,
“in” and “of”, and plot their normalized singular
values in Figure 1. We see that the singular values
decay dramatically, suggesting the low-rank struc-
ture in each slice.
Tensor decomposition: We combine standard
ideas from word embedding algorithms and ten-
sor decomposition algorithms to arrive at the low-
rank approximation to the tensor log(1 + X). In
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particular, we consider two separate methods:
1. Alternating Least Squares (ALS). A generic

method to decompose a tensor into its modes is
via the CANDECOMP/PARAFAC (CP) decom-
position (Kolda and Bader, 2009). The tensor
log(1 + X) is decomposed into three modes:
Ud×N , Wd×N and Qd×(K+1), based on the so-
lutions to the optimization problem (1). Here ui,
wi and qi are the i-th column of U , W and Q,
respectively.

L = min
U,W,Q

N∑

i=1

N∑

j=1

K+1∑

k=1

( 〈ui,wj ,qk〉

− log(1 +Xijk) )
2 , (1)

where 〈a,b, c〉 = 1t(a � b � c) is the inner
product of three vectors a,b and c. Here 1 is
the column vector of all ones and � refers to the
Hadamard product. We can interpret the columns
of U as the word representations and the columns
ofQ as the preposition representations, each of di-
mension d (equal to 200 in this paper). There are
several algorithmic solutions to this optimization
problem in the literature, most of which are based
on alternating least squares methods (Kolda and
Bader, 2009; Comon et al., 2009; Anandkumar
et al., 2014) and we employ a recent one named
Orth-ALS (Sharan and Valiant, 2017) in this paper.
Orth-ALS periodically orthogonalizes the decom-
posed components while fixing two modes and up-
dating the remaining one. It is supported by the-
oretical guarantees and empirically outperforms
standard ALS methods in different applications.

2. Weighted Decomposition (WD): Based on
ideas from the literature on word embedding al-
gorithms, we also consider weighting different el-
ements of the tensors differently in order to reduce
the effect of the large dynamic range of the tensor
values. Specifically, we employ the GloVe objec-
tive function to our tensor model and minimize the
objective function (2):

Lweighted = min
U,W,Q

N∑

i=1

N∑

j=1

K+1∑

k=1

ωijk ( 〈ui,wj ,qk〉

+ bUi + bWj + bQk − log(Xijk + 1) )2 , (2)

where bUi is the scalar bias for the word i in the
matrix U . Similarly, bWj is the bias for the word j
in the matrix W , and bQk for preposition k in the
matrix Q. Bias terms are learned in such a way
as to minimize the loss function. Here ωijk is the

weight assigned to each tensor element Xijk, and
we use the weighting proposed by GloVe:

ωijk = min

((
Xijk

xmax

)α
, 1

)
.

We set the hyperparameters to be xmax = 10, and
α = 0.75 in this work. We solve this optimization
problem via standard gradient descent, arriving at
word representations U and tensor representations
Q.

3 Geometry of Phrasal Verbs

Representation Interpretation Suppose that we
have a phrase (h, pi, c) where h, pi and c are the
head word, the preposition i(i ≤ K) and the com-
plement respectively. The inner product of the
word vectors of h, pi and c reflects how frequently
h and c co-occur in the context of p. It also reflects
how cohesive the triple is.

Recall that there is an extra (K + 1)−th slice
that describes the word co-occurrences outside the
preposition window, which considers cases such
as the verb phrase (v, c) where v and c are the
verb and its complement without a preposition in
their shared context. Now consider a phrasal verb
sparked off and a verb phrase with head prompted.
For any complement word c that fits these two
phrases–the phrasal verb having h as its head verb
and pi as its preposition, and the other, the verb
phrase with v as its head–we can expect that

〈uh,qi,wc〉 ≈ 〈uv,qK+1,wc〉.

In other words uh � qi ≈ uv � qK+1, where a�
b denotes the pointwise multiplication (Hadamard
product) of vectors a and b. This suggests that:
(1) The vector qK+1 is a constant vector for all
(v, c) pairs, and that (2) we could paraphrase the
verb phrase (h, pi) by finding a verb v such that
uv � qK+1 is closest to uh � qi.

paraphrase = argmin
v
‖uv � qK+1 − uh � qi‖.

(3)

This shows that well-trained embeddings are able
to capture the relation between phrasal verbs and
their equivalent single verb forms.

In Table 2, we list paraphrases of some verb
phrases, which are generated from the weighted
tensor decomposition. As can be seen, the tensor
embedding gives reasonable paraphrasing, which
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Phrase replied to blocked off put in pray for dreamed of sparked off
Paraphrase answered intercepted place hope wanted prompted

Phrase stuck with derived from switched over asked for passed down blend in
Paraphrase stalled generated transferred requested delivered mix

Table 2: Paraphrasing of prepositional phrases.

validates that the trained embedding is inter-
pretable in terms of lexical semantics.

In the next two sections, we evaluate the pro-
posed tensor-based preposition embeddings in the
context of two important NLP downstream tasks:
preposition selection and preposition attachment
disambiguation. In this work, we use the En-
glish WikiCorpus (around 9 GB) as the train-
ing corpus for different sets of embeddings. We
train tensor embeddings with both Orth-ALS and
weighted decomposition. The implementation of
Orth-ALS is built upon the SPLATT toolkit (Smith
and Karypis, 2016). We perform orthogonaliza-
tion in the first 5 iterations in Orth-ALS decom-
position, and the training is completed when its
performance stabilizes. As for the weighted de-
composition, we train for 20 iterations, and its hy-
perparameters are set as xmax = 10, and α = 0.75.

We also include two baselines for comparison–
word2vec’s CBOW model and GloVe. We set
20 training iterations for both the models. The
hyperparameters in word2vec are set as: win-
dow size=6, negative sampling=25 and down-
sampling=1e-4. The hyperparameters in GloVe
are set as: window size=6, xmax=10, α=0.75 and
minimum word count=5. We note that all the rep-
resentations in this study–word2vec, GloVe and
our tensor embedding–are of dimension 200.

4 Downstream Application: Preposition
Selection

Grammatical error detection and correction consti-
tute important tasks in NLP. Among grammatical
errors, prepositional errors constitute about 13%
of all errors, ranking second among the most com-
mon error types (Leacock et al., 2010). This is
due to the fact that prepositions are highly poly-
semous and have idiosyncratic usage. Selecting a
preposition depends on how well we can capture
the interaction between a preposition and its con-
text. Hence we choose this task to evaluate how
well the lexical interactions are captured by differ-
ent methods.

Task. Given a sentence in English containing

FCE
# of sent 27119
# of prep 60279

Error ratio 4.8

CoNLL
# of sent 1375
# of prep 3241

Error ratio 4.7

SE
# of sent 5917
# of prep 15814

Error ratio 38.2

Table 3: Dataset statistics.

a preposition, we either replace the preposition
with the correct one or retain it. For example,
in the sentence “It can save the effort to carry-
ing a lot of cards,” “to” should be corrected as
“of.” Formally, there is a closed set of preposi-
tion candidates P = {p1, . . . , pm}. A preposi-
tion p is used in a sentence s consisting of words
s = {. . . , w−2, w−1, p, w1, w2, . . .}. If used in-
correctly, we need to replace p by another prepo-
sition p̂ ∈ P based on the context.

Dataset. For training, we use the data from
the Cambridge First Certificate in English (FCE)
exam, just as used by the state-of-the-art on prepo-
sition error correction (Prokofyev et al., 2014). As
for test data, we use two the CoNLL-2013 and
the Stack Exchange (SE) datasets. The CoNLL
dataset on preposition error correction was pub-
lished by the CoNLL 2013 shared task (Ng et al.,
2014), collected from 50 essays written by 25 non-
native English learners at a university. The SE
dataset consists of texts generated by non-native
speakers on the Stack Exchange website. De-
tailed statistics are shown in Table 3. We focus
on the most frequent 49 prepositions listed in Ap-
pendix A.

Evaluation metric. Three metrics–precision,
recall and F1 score–are used to evaluate the prepo-
sition selection performance.

Our algorithm. We first preprocess the dataset
by removing articles, determiners and pronouns,
and take a context window of 3. We divide the
task into two steps: error detection and error cor-
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Dataset Method Precision Recall F1 score

CoNLL

State-of-the-art 0.2592 0.3611 0.3017
Word2vec 0.1558 0.1579 0.1569

GloVe 0.1538 0.1578 0.1558
Our method (ALS) 0.3355 0.3355 0.3355
Our method (WD) 0.3590 0.3684 0.3636

SE

State-of-the-art 0.2704 0.2961 0.2824
Word2vec 0.2450 0.2585 0.2516

GloVe 0.2454 0.2589 0.2520
Our method (ALS) 0.2958 0.3146 0.3049
Our method (WD) 0.2899 0.3055 0.2975

Table 4: Performance on preposition selection.

rection. Firstly, we decide whether a preposition
is used correctly in the context. If not, we sug-
gest another preposition as replacement in the sec-
ond step. The detection step uses only three fea-
tures: the cosine similarity between the the current
preposition embedding and the average context
embedding, the rank of the preposition in terms of
this cosine similarity, and the probability that this
preposition is not changed in the training corpus.
We build a decision tree classifier with these three
features and find that we can identify errors with
98% F1 score in the CoNLL dataset and 96% in
the SE dataset.

For the error correction part, we only focus on
the errors detected in the first stage. Suppose that
the original preposition is q, and the candidate
preposition is p with the embedding vp. The word
vectors in the left context window are averaged as
the left context embedding v`, and the right vectors
are averaged to give the right context embedding
vr. We have the following features:

1. Embedding features: v`,vp and vr;

2. Pair similarity between the preposition and
the context: maximum of the similar-
ity of the preposition between the left
and the right context, i.e., pair sim =

max
(

vT
` vp

‖v`‖2·‖vp‖2 ,
vT
r vp

‖vr‖2·‖vp‖2

)
;

3. Triple similarity =
〈v`,vp,vr〉

‖v`‖3·‖vp‖3·‖vr‖3 ;

4. Confusion probability: the probability that q
is replaced by p in the training data.

A two-layer feed-forward neural network
(FNN) with hidden layer sizes of 500 and 10 is
trained with these features to score prepositions in

each sentence. The preposition with the highest
score is the suggested edit.

Baseline. The state-of-the-art on preposition
selection uses n-gram statistics from a large cor-
pus (Prokofyev et al., 2014). Features such as
point-wise mutual information (PMI) and part-of-
speech tags are fed into a supervised scoring sys-
tem. Given a sentence with a preposition to either
replace or retain, the preposition with the highest
score is chosen.

The performance of the baseline is affected by
both the system architecture and the features. To
evaluate the benefits brought about by our ten-
sor embedding-based features, we also consider
other baselines which have the same two-step ar-
chitecture whereas the features are generated from
word2vec and GloVe embeddings. These base-
lines allow us to compare the representation power
independent of the classifier.

Result. We compare our proposed embedding-
based method against baselines mentioned in Ta-
ble 4. We note that the proposed tensor embed-
dings achieve the best performance among all ap-
proaches. In particular, the tensor with weighted
decomposition has the highest F1 score on the
CoNLL dataset–a 6% improvement over the state-
of-the-art. However, the tensor with ALS de-
composition performs the best on the SE dataset,
achieving a 2% improvement over the state-of-
the art. We also note that with the same archi-
tecture, tensor embeddings perform much better
than word2vec and GloVe embeddings on both the
datasets. This validates the representation power
of tensor embeddings of prepositions.

To get a deeper insight into the importance of
the features in the preposition selection task, we
also performed an ablation analysis of the tensor
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Removed
feature

Left context
embedding

Prep
embedding

Right context
embedding

Pair
similarity

Triple
similarity

Confusion
score

CoNLL
Precision 0.1558 0.2662 0.3117 0.3247 0.3247 0.3506

Recall 0.1579 0.2697 0.3158 0.3289 0.3289 0.3553
F1 score 0.1569 0.2680 0.3137 0.3268 0.3268 0.3529

SE
Precision 0.2587 0.2796 0.2649 0.2658 0.2647 0.1993

Recall 0.2743 0.2964 0.2801 0.2818 0.2807 0.2114
F1 score 0.2663 0.2877 0.2726 0.2735 0.2725 0.2052

Table 5: Ablation analysis in preposition selection.

method with weighted decomposition as shown
in Table 5. We find that the left context is the
most important feature in for the CoNLL dataset,
whereas the confusion score is the most important
for the SE dataset. Pair similarity and triple sim-
ilarity are less important when compared with the
other features. This is because the neural network
was able to learn the lexical similarity from the
embedding features, thus reducing the importance
of the similarity features.

Discussion. Now we analyze different cases
where our approach selects the wrong preposi-
tion. (1) Limited context window. We focus on
the local context within a preposition’s window.
In some cases, we find that head words might be
out of the context window. An instance of this is
found in the sentence “prevent more of this kind
of tragedy to happening” to should be corrected as
from. Given the context window of 3, we cannot
get the lexical clues provided by prevent, which
leads to the selection error. (2) Preposition selec-
tion requires more context. Even when the con-
text window contains all the words on which the
preposition depends, it still may not be sufficient
to select the right one. For example, in the sen-
tence “it is controlled by some men in a bad pur-
pose” where our approach replaces the preposition
in with the preposition on given the high frequency
of the phrase “on purpose”. The correct preposi-
tion should be for based on the whole sentence.

5 Downstream Application:
Prepositional Attachment

In this section, we discuss the task of prepositional
phrase (PP) attachment disambiguation, a well-
studied, but hard task in syntactic parsing. The PP
attachment disambiguation inherently requires an
accurate description of the interactions among the
head, the preposition and the complement, which
becomes an ideal task to evaluate our tensor-based

embeddings.
Task. The English dataset used in this work

is collected from a linguistic treebank by (Be-
linkov et al., 2015). It provides 35, 359 training
and 1, 951 test instances. Each instance consists of
several head candidates, a preposition and a com-
plement word. The task is to pick the head to
which the preposition attaches. In the example “he
saw an elephant with long tusks”, the words “saw”
and “elephant” are the candidate head words.

Our algorithm. Let vh,vp and vc be embed-
dings for the head candidate h, preposition p and
child c respectively. We then use the following
features:

1. Embedding feature: candidate head, preposi-
tion and complement embedding;

2. Triple similarity: 〈vh,vp,vc〉
‖vh‖3·‖vp‖3·‖vc‖3 ;

3. Head-preposition similarity: vT
h vp

‖vh‖2·‖vp‖2· ;

4. Head-child similarity: vT
h vc

‖vh‖2·‖vc‖2· ;

5. Part-of-speech (pos) tag of candidates and
next words;

6. Distance between h and p.

We use a basic neural network, a two-layer feed-
forward network (FNN) with hidden-layers of size
1000 and 20, to take the input features and predict
the probability that a candidate is the head. The
candidate with the highest likelihood is chosen as
the head.

Baselines. For comparison, we include the
following state-of-the-art approaches in preposi-
tion attachment disambiguation. The linguistic re-
sources they used to enrich their features are listed
in Table 6.
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Classifier
HPCD

(enriching)
LRFR OntoLSTM FNN FNN FNN FNN

Embedding
method

GloVe Word2vec
Glove-

extended
Word2vec GloVe

Our method
(ALS)

Our method
(WD)

Resources
POS tag,
WordNet,
VerbNet

POS tag,
WordNet,
VerbNet

POS tag,
WordNet

POS tag POS tag POS tag POS tag

Accuracy 0.887 0.903 0.897 0.866 0.858 0.883 0.892

Table 6: Accuracy in prepositional attachment disambiguation.

(1) Head-Prep-Child-Dist (HPCD) Model (Be-
linkov et al., 2015): this compositional neural net-
work is used to train task-specific representations
of prepositions.
(2) Low-Rank Feature Representation (LRFR) (Yu
et al., 2016): this method incorporates word parts,
contexts and labels into a tensor, and uses decom-
posed vectors as features for disambiguation.
(3) Ontology LSTM (OntoLSTM) (Dasigi et al.,
2017): the vectors are initialized with GloVe, ex-
tended by AutoExtend (Rothe and Schütze, 2015),
and trained via LSTMs for head selection.

Similar to the experiments in the preposition
selection task (see Section 4), we also include
baselines which have the same feed-forward net-
work architecture but generate features with vec-
tors trained by word2vec and GloVe. They are de-
noted as FNN with different initializations in Ta-
ble 6. Since the attachment disambiguation is a se-
lection task, accuracy is a natural evaluation met-
ric.

Result. We compare the results of the differ-
ent approaches and the linguistic resources used
in Table 6, where we see that our simple classifier
built on the tensor representation is comparable in
performance to the state-of-the-art (within 1% of
the result). This result is notable considering that
prior competitive approaches have used significant
linguistic resources such as VerbNet and WordNet,
whereas we use none. With the same feed-forward
neural network as the classifier, our tensor-based
approaches (both ALS and WD) achieve better
performance than word2vec and GloVe.

An ablation analysis that is provided in Table 7
shows that the head vector feature affects the per-
formance the most (indicating that heads interact
more closely with prepositions), and the POS tag
feature comes second. The similarity features ap-
pear less important since the classifier has access
to the lexical relatedness via the embedding fea-

tures. Prior works have reported the importance
of the distance feature since 81.7% sentences take
the word closest to the preposition as the head. In
our experiments, the distance feature was found to
be less important compared to the embedding fea-
tures.
Discussion. We found that one source of attach-
ment disambiguation error is the lack of a broader
context in our features. A broader context is crit-
ical in examples such as “worked” and “system,”
which are head candidates of “for trades” in the
sentence “worked on a system for trading”. They
are reasonable heads in the expressions “worked
for trades” and “system for trades” and further dis-
ambiguation requires a context larger than what
we considered.

6 Related Work

Word representation. Word embeddings have
been successfully used in many NLP applications.
Word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014) show that embeddings can
capture lexical semantics very well. Zhang et al.
(2014) studied embeddings which can generalize
different similarity perspectives when combined
with corresponding linear transformations. Unlike
other words, the crucial syntactic roles of prepo-
sitions in addition to their rich semantic mean-
ings have been highlighted in prior works (Hovy
et al., 2010; Schneider et al., 2015). Neverthe-
less, word representations specifically focused on
prepositions are not available and to the best of our
knowledge, ours is the first work exploring this in-
triguing direction.

Tensor Decomposition. Tensors embed higher
order interaction among different modes, and the
tensor decomposition captures this interaction via
lower dimensional representations. There are sev-
eral decomposition methods such as Alternating
Least Square (ALS) (Kolda and Bader, 2009), Si-
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Removed
feature

Head
vector

Prep
vector

Child
vector

Head-prep
similarity

Head-child
similarity

Triple
similarity

POS Distance

Accuracy 0.843 0.871 0.880 0.877 0.885 0.873 0.850 0.872

Table 7: Ablation analysis in preposition attachment disambiguation.

multaneous Diagonalization (SD) (Kuleshov et al.,
2015) and optimization-based methods (Liu and
Nocedal, 1989; Moré, 1978). Orthogonalized Al-
ternating Least Square (Orth-ALS) adds the step
of component orthogonalization to each update
step in the ALS method (Sharan and Valiant,
2017). Owing to its theoretical guarantees and,
more relevantly due to its good empirical perfor-
mance, Orth-ALS is the algorithm of choice in this
paper.

Preposition Selection. Preposition selection,
an important area of study in computational lin-
guistics, is also a very practical topic in the context
of grammar correction and second language learn-
ing. Prior works have used hand-crafted heuristic
rules (Xiang et al., 2013), n-gram features (Proko-
fyev et al., 2014; Rozovskaya et al., 2013), and by
the use of POS tags and dependency relations to
enrich other features (Kao et al., 2013)–all toward
addressing preposition error correction.

Prepositional Attachment Disambiguation.
There is a storied literature on prepositional at-
tachment disambiguation, long recognized as an
important part of syntactic parsing (Kiperwasser
and Goldberg, 2016). Recent works, based on
word embeddings have pushed the boundary of
state of the art empirical results. A seminal
work in this direction is the Head-Prep-Child-
Dist Model, which trained embeddings in a com-
positional network to maximize the accuracy of
head prediction (Belinkov et al., 2015). The per-
formance has been further improved in conjunc-
tion with semantic and syntactic features. A
recent work has proposed an initialization with
semantics-enriched GloVe embeddings, and re-
trained representations with LSTM-RNNs (Dasigi
et al., 2017). Another recent work has used ten-
sor decompositions to capture the relation between
word representations and their labels (Yu et al.,
2016).

7 Conclusion

Co-occurrence counts of word pairs in sentences
and the resulting word vector representations (em-
beddings) have revolutionalized NLP research. A

natural generalization is to consider co-occurrence
counts of word triples, resulting in a third order
tensor. Partly due to the size of the tensor (a vocab-
ulary of 1M, leads to a tensor with 1018 entries!)
and partly due to the extreme dynamic range of en-
tries (including sparsity), word vector representa-
tions via tensor decompositions have largely been
inferior to their lower order cousins (i.e., regular
word embeddings).

In this work, we trek this well-trodden but ar-
duous terrain by restricting word triples to the sce-
nario when one of the words is a preposition. This
is linguistically justified, since prepositions are
understood to model interactions between pairs of
words. Numerically, this is also very well justi-
fied since the sparsity and dynamic range of the
resulting tensor is no worse than the original ma-
trix of pairwise co-occurrence counts; this is be-
cause prepositions are very frequent and co-occur
with essentially every word in the vocabulary.

Our intrinsic evaluations and new state-of-the-
art results in downstream evaluations lend strong
credence to the tensor-based approach to preposi-
tional representation. We expect our vector rep-
resentations of prepositions to be widely used in
more complicated downstream NLP tasks where
prepositional role is crucial, including “text to pro-
grams” (Guu et al., 2017).
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A Roster of Prepositions

The list of most frequent 49 Prepositions in the
task of preposition selection is shown below:

about, above, absent, across, after, against,
along, alongside, amid, among, amongst, around,
at, before, behind, below, beneath, beside, besides,
between, beyond, but, by, despite, during, except,
for, from, in, inside, into, of, off, on, onto, oppo-
site, outside, over, since, than, through, to, toward,
towards, under, underneath, until, upon, with.
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Abstract
A core part of linguistic typology is the clas-
sification of languages according to linguistic
properties, such as those detailed in the World
Atlas of Language Structure (WALS). Doing
this manually is prohibitively time-consuming,
which is in part evidenced by the fact that only
100 out of over 7,000 languages spoken in the
world are fully covered in WALS.

We learn distributed language representations,
which can be used to predict typological prop-
erties on a massively multilingual scale. Ad-
ditionally, quantitative and qualitative analy-
ses of these language embeddings can tell us
how language similarities are encoded in NLP
models for tasks at different typological levels.
The representations are learned in an unsuper-
vised manner alongside tasks at three typolog-
ical levels: phonology (grapheme-to-phoneme
prediction, and phoneme reconstruction), mor-
phology (morphological inflection), and syn-
tax (part-of-speech tagging).

We consider more than 800 languages and find
significant differences in the language rep-
resentations encoded, depending on the tar-
get task. For instance, although Norwegian
Bokmål and Danish are typologically close to
one another, they are phonologically distant,
which is reflected in their language embed-
dings growing relatively distant in a phonolog-
ical task. We are also able to predict typolog-
ical features in WALS with high accuracies,
even for unseen language families.

1 Introduction

For more than two and a half centuries, linguistic
typologists have studied languages with respect to
their structural and functional properties (Haspel-
math, 2001; Velupillai, 2012). Although typol-
ogy has a long history (Herder, 1772; Gabelentz,
1891; Greenberg, 1960, 1974; Dahl, 1985; Com-
rie, 1989; Haspelmath, 2001; Croft, 2002), com-
putational approaches have only recently gained

popularity (Dunn et al., 2011; Wälchli, 2014;
Östling, 2015; Cotterell and Eisner, 2017; Asgari
and Schütze, 2017; Malaviya et al., 2017; Bjerva
and Augenstein, 2018). One part of traditional ty-
pological research can be seen as assigning sparse
explicit feature vectors to languages, for instance
manually encoded in databases such as the World
Atlas of Language Structures (WALS, Dryer and
Haspelmath, 2013). A recent development which
can be seen as analogous to this is the process
of learning distributed language representations in
the form of dense real-valued vectors, often re-
ferred to as language embeddings (Tsvetkov et al.,
2016; Östling and Tiedemann, 2017; Malaviya
et al., 2017). We hypothesise that these language
embeddings encode typological properties of lan-
guage, reminiscent of the features in WALS, or
even of parameters in Chomsky’s Principles and
Parameters framework (Chomsky, 1993).

In this paper, we model languages in deep neu-
ral networks using language embeddings, consid-
ering three typological levels: phonology, mor-
phology and syntax. We consider four NLP tasks
to be representative of these levels: grapheme-to-
phoneme prediction and phoneme reconstruction,
morphological inflection, and part-of-speech tag-
ging. We pose three research questions (RQs):

RQ 1 Which typological properties are encoded
in task-specific distributed language repre-
sentations, and can we predict phonologi-
cal, morphological and syntactic properties
of languages using such representations?

RQ 2 To what extent do the encoded properties
change as the representations are fine tuned
for tasks at different linguistic levels?

RQ 3 How are language similarities encoded in
fine-tuned language embeddings?
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One of our key findings is that language represen-
tations differ considerably depending on the tar-
get task. For instance, for grapheme-to-phoneme
mapping, the differences between the representa-
tions for Norwegian Bokmål and Danish increase
rapidly during training. This is due to the fact that,
although the languages are typologically close to
one another, they are phonologically distant.

2 Related work

Computational linguistics approaches to typology
are now possible on a larger scale than ever before
due to advances in neural computational models.
Even so, recent work only deals with fragments of
typology compared to what we consider here.

Computational typology has to a large extent
focused on exploiting word or morpheme align-
ments on the massively parallel New Testament,
in approximately 1,000 languages, in order to in-
fer word order (Östling, 2015) or assign linguis-
tic categories (Asgari and Schütze, 2017). Wälchli
(2014) similarly extracts lexical and grammatical
markers using New Testament data. Other work
has taken a computational perspective on language
evolution (Dunn et al., 2011), and phonology (Cot-
terell and Eisner, 2017; Alishahi et al., 2017).

Language embeddings In this paper, we follow
an approach which has seen some attention in the
past year, namely the use of distributed language
representations, or language embeddings. Some
typological experiments are carried out by Östling
and Tiedemann (2017), who learn language em-
beddings via multilingual language modelling and
show that they can be used to reconstruct ge-
nealogical trees. Malaviya et al. (2017) learn lan-
guage embeddings via neural machine translation,
and predict syntactic, morphological, and phonetic
features.

Contributions Our work bears the most resem-
blance to Bjerva and Augenstein (2018), who fine-
tune language embeddings on the task of PoS tag-
ging, and investigate how a handful of typological
properties are coded in these for four Uralic lan-
guages. We expand on this and thus contribute
to previous work by: (i) introducing novel qual-
itative investigations of language embeddings, in
addition to thorough quantitative evaluations; (ii)
considering four tasks at three different typologi-
cal levels; (iii) considering a far larger sample of

several hundred languages; and (iv) grounding the
language representations in linguistic theory.

3 Background

3.1 Distributed language representations

There are several methods for obtaining dis-
tributed language representations by training a re-
current neural language model (Mikolov et al.,
2010) simultaneously for different languages
(Tsvetkov et al., 2016; Östling and Tiedemann,
2017). In these recurrent multilingual lan-
guage models with long short-term memory cells
(LSTM, Hochreiter and Schmidhuber, 1997), lan-
guages are embedded into an n-dimensional
space. In order for multilingual parameter shar-
ing to be successful in this setting, the neural net-
work is encouraged to use the language embed-
dings to encode features of language. In this pa-
per, we explore the embeddings trained by Östling
and Tiedemann (2017), both in their original state,
and by further tuning them for our four tasks.
These are trained by training a multilingual lan-
guage model with language representations on a
collection of texts from the New Testament, cov-
ering 975 languages. While other work has looked
at the types of representations encoded in different
layers of deep neural models (Kádár et al., 2017),
we choose to look at the representations only in
the bottom-most embedding layer. This is moti-
vated by the fact that we look at several tasks using
different neural architectures, and want to ensure
comparability between these.

3.1.1 Language embeddings as continuous
Chomskyan parameter vectors

We now turn to the theoretical motivation of the
language representations. The field of NLP is
littered with distributional word representations,
which are theoretically justified by distributional
semantics (Harris, 1954; Firth, 1957), summarised
in the catchy phrase You shall know a word by the
company it keeps (Firth, 1957). We argue that lan-
guage embeddings, or distributed representations
of language, can also be theoretically motivated by
Chomsky’s Principles and Parameters framework
(Chomsky and Lasnik, 1993; Chomsky, 1993,
2014). Language embeddings encode languages
as dense real-valued vectors, in which the dimen-
sions are reminiscent of the parameters found in
this framework. Briefly put, Chomsky argues that
languages can be described in terms of principles
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(abstract rules) and parameters (switches) which
can be turned either on or off for a given lan-
guage (Chomsky and Lasnik, 1993). An example
of such a switch might represent the positioning
of the head of a clause (i.e. either head-initial or
head-final). For English, this switch would be set
to the ‘initial’ state, whereas for Japanese it would
be set to the ‘final’ state. Each dimension in an n-
dimensional language embedding might also de-
scribe such a switch, albeit in a more continuous
fashion. The number of dimensions used in our
language representations, 64, is a plausible num-
ber of parameter vector dimensions (Dunn et al.,
2011). If we were able to predict typological fea-
tures using such representations, this lends support
to the argument that languages, at the very least,
can be represented by theoretically motivated pa-
rameter vectors, with the given dimensionality.

3.2 Typological features in the World Atlas of
Language Structure

In the experiments for RQ1 and RQ2 we predict
typological features extracted from WALS (Dryer
and Haspelmath, 2013). We choose to investi-
gate three linguistic levels of language: phonol-
ogy, morphology, and syntax. This is motivated by
three factors: (i) these features are related to NLP
tasks for which data is available for a large lan-
guage sample; (ii) the levels cover a range from
basic phonological and morphological structure,
to syntactic structure, allowing us to approach our
research question from several angles; and (iii) the
features in these categories are coded in WALS for
a relatively large selection of languages. We ex-
tract the three feature sets which represent these
typological levels of language from WALS.1

Phonological features cover 20 features rang-
ing from descriptions of the consonant and vowel
inventories of a particular language to presence
of tone and stress markers. As an example, con-
sider WALS feature 13A (Tone).2 This feature
takes three feature values: (i) no tones, (ii) simple
tone system, and (iii) complex tone system. Most
Indo-European languages, such as English, Span-
ish, and Russian, do not have any tones (i). Nor-
wegian and Swedish are exceptions to this, as they
both have simple tone systems (ii) similar to that
in Japanese. Finally, complex tone systems (iii)

1These are defined in the chapter structure in WALS:
http://wals.info/chapter

2http://wals.info/feature/13A

are typically found in several African languages
as well as languages in South-East Asia.

Morphological features cover a total of 41 fea-
tures. We consider the features included in the
Morphology chapter as well as those included in
the Nominal Categories chapter to be morpholog-
ical in nature.3 This includes features such as the
number of genders, usage of definite and indefinite
articles and reduplication. As an example, con-
sider WALS feature 37A (Definite Articles).4 This
feature takes five values: (i) Definite word dis-
tinct from demonstrative, (ii) Demonstrative word
used as definite article, (iii) Definite affix, (iv) No
definite, but indefinite article, and (v) No definite
or indefinite article. Again, most Indo-European
languages fall into category (i), with Norwegian,
Swedish, and Danish as relative outliers in cate-
gory (iii).

Word-order features cover 56 features, encod-
ing properties such as the ordering of subjects, ob-
jects and verbs. As an example, consider WALS
feature 81A (Order of Subject, Object and Verb).5

This feature takes all possible combinations of the
three word classes as its feature values, with the
addition of a special class for No dominant order.
Most languages in WALS fall into the categories
SOV (41.0%) and SVO (35.4%).

4 Method

The general set-up of the experiments in this pa-
per is as follows. We aim at answering our three
research questions dealing with typological prop-
erties and similarities as encoded in language em-
beddings. In order to do this, we attempt to predict
typological features as they are encoded in WALS,
using language embeddings which have been fine-
tuned during training on tasks related to different
typological properties. The main interest in this
paper is therefore not on how well each model per-
forms on a given NLP task, but rather on what the
resulting language embeddings encode.

Concretely, we use language embeddings ~li
from a given training iteration of a given task as
input to a k-NN classifier, which outputs the ty-
pological class a language belongs to (as coded
in WALS). We train separate classifiers for each

3This choice was made as, e.g., feature 37A (Definite Ar-
ticles) includes as a feature value whether a definite affix is
used.

4http://wals.info/feature/37A
5http://wals.info/feature/81A
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typological property and each target task. When
i = 0, this indicates the pre-trained language em-
beddings as obtained from Östling and Tiedemann
(2017). Increasing i indicates the number of it-
erations over which the system at hand has been
trained. In each experiment, for a given iteration
i, we consider each ~li ∈ L where L is the inter-
section Ltask ∩ Lpre, where Ltask is the set of
languages for a given task, and Lpre is the set of
languages for which we have pre-trained embed-
dings.

All results in the following sections are the
mean of three-fold cross-validation, and the mean
over the WALS features in each given category.6

We run the experiments in a total of three set-
tings: (i) evaluating on randomly selected lan-
guage/feature pairs from a task-related feature
set; (ii) evaluating on an unseen language fam-
ily from a task-related feature set; (iii) evaluating
on randomly selected language/feature pairs from
all WALS feature sets. This allows us to estab-
lish how well we can predict task-related features
given a random sample of languages (i), and a
sample from which a whole language family has
been omitted (ii). Finally, (iii) allows us to com-
pare the task-specific feature encoding with a gen-
eral one.

A baseline reference is also included, which
is defined as the most frequently occurring typo-
logical trait within each category.7 For instance,
in the morphological experiments, we only con-
sider the 41 WALS features associated with the
categories of morphology and nominal categories.
The overlap between languages for which we have
data for morphological inflection and languages
for which these WALS features are coded is rela-
tively small (fewer than 20 languages per feature).
This small dataset size is why we have opted for
a non-parametric k-Nearest Neighbours classifier
for the typological experiments. We use k = 1, as
several of the features take a large number of class
values, and might only have a single instance rep-
resented in the training set.

Table 1 shows the datasets we consider (detailed
in later sections), the typological class they are re-
lated to, the size of the language sample in the

6The mean accuracy score is a harsh metric, as some fea-
tures are very difficult to predict due to them, e.g., being very
language specific or taking a large number of different values.

7The languages represented in several of the tasks under
consideration have a high Indo-European bias. Hence, sev-
eral of the properties have a relatively skewed distribution,
providing us with a strong baseline.

task, and the size of the intersection Ltask ∩ Lpre.
The number of pre-trained language embeddings,
|Lpre|, is 975 in all cases. We focus the evaluation
for each task-specific language embedding set on
the typological property relevant to that dataset. In
addition, we also evaluate on a set of all typolog-
ical properties in WALS. Note that the evaluation
on all properties is only comparable to the evalu-
ation on each specific property, as the set of lan-
guages under consideration differs between tasks.

Dataset Class |Ltask| |Ltask ∩ Lpre|
G2P Phonology 311 102
ASJP Phonology 4,664 824
SIGMORPHON Morphology 52 29
UD Syntax 50 27

Table 1: Overview of tasks and datasets.

5 Phonology

5.1 Grapheme-to-phoneme

We use grapheme-to-phoneme (G2P) as a proxy
of a phonological task (Deri and Knight, 2016;
Peters et al., 2017). The dataset contains over
650,000 such training instances, for a total of 311
languages (Deri and Knight, 2016). The task is to
produce a phonological form of a word, given its
orthographic form and the language in which it is
written. Crucially, this mapping is highly different
depending on the language at hand. For instance,
take the word written variation, which exists in
both English and French:

(English, variation) -> ­vE@ri"eIS@n
(French, variation) -> ­vaKja"sjÕ

5.1.1 Experiments and Analysis
We train a sequence-to-sequence model with at-
tention for the task of grapheme-to-phoneme map-
ping.8 The model takes as input the characters of
each source form together with the language em-
bedding for the language at hand and outputs a
predicted phonological form. Input and output al-
phabets are shared across all languages. The sys-
tem is trained over 3,000 iterations.

Quantitative results Since we consider
Grapheme-to-Phoneme as a phonological task, we
focus the quantitative evaluation on phonological
features from WALS. We run experiments using
the language embeddings as features for a simple

8The system is described in detail in Section 8.
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k-NN classifier. The results in Table 2 indicate
that G2P is a poor proxy for language phonology,
however, as typological properties pertaining to
phonology are not encoded. That is to say, the
k-NN results do not outperform the baseline, and
performance is on par even after fine tuning (no
significant difference, p > 0.05). In the unseen
setting, however, we find that pre-trained language
embeddings are significantly better (p < 0.05)
at predicting the phonological features than both
fine-tuned ones and the baseline.

System / features Random phon. Unseen phon. All feat.

Most Frequent Class *75.46% 65.57% 79.90%
k-NN (pre-trained) 71.45% *86.54% 80.39%
k-NN (fine-tuned) 71.66% 82.36% 79.17%

Table 2: Accuracies on prediction of WALS features
with language embeddings fine-tuned on Grapheme-to-
Phoneme mapping. Asterisks indicate results signifi-
cantly higher than both other conditions (p < 0.05).

Qualitative results We now turn to why this
task is not a good proxy of phonology. The task of
grapheme-to-phoneme is more related to the pro-
cesses in the diachronic development of the writ-
ing system of a language than it is to the actual
genealogy or phonology of the language. This is
evident when considering the Scandinavian lan-
guages Norwegian and Danish which are typolog-
ically closely related, and have almost exactly the
same orthography. In spite of this fact, the phonol-
ogy of the two languages differs drastically due to
changes in Danish phonology, which impacts the
mapping from graphemes to phonemes severely.
Hence, the written forms of the two languages
should be very similar, which makes the language
embeddings based on language modelling highly
similar to one another. However, when the em-
beddings are fine-tuned on a task taking orthogra-
phy as well as phonology into account, this is no
longer the case. Figure 1 shows that the language
embeddings of Norwegian Bokmål and Danish di-
verge from each other, which is especially strik-
ing when comparing to the converging with the
typologically much more distant languages Taga-
log and Finnish. However, the absolute differ-
ence between Norwegian Bokmål and both Taga-
log/Finnish is still greater than that of Norwegian
Bokmål and Danish even after 3,000 iterations.

Figure 1: Language similarities between Norwegian,
and Danish/Tagalog/Finnish, as G2P-based embed-
dings are fine-tuned.

5.2 Phonological reconstruction

As a second phonological task, we look at phono-
logical reconstruction using word lists from the
Automated Similarity Judgement Program (ASJP,
Wichmann et al. (2016)). This resource contains
word lists of at least 40 words per language for
more than 4,500 languages. The task we consider
is to reproduce a given source phonological form,
also given the language, for instance:

(English, wat3r) -> wat3r

The intuition behind these experiments is that lan-
guages with similar phonetic inventories will be
grouped together, as reflected in changes in the
language embeddings.

5.2.1 Experiments and Analysis
We train a sequence-to-sequence model with at-
tention, framed as an auto-encoding problem, us-
ing the same sequence-to-sequence architecture
and setup as for the grapheme-to-phoneme task.
The model takes as input the characters of each
source form together with the language embed-
ding for the language at hand and outputs the pre-
dicted target form which is identical to the source
form.

Quantitative results Since we also consider
phonological reconstruction to be a phonologi-
cal task, we focus the quantitative evaluation on
phonological features from WALS. As with the
G2P experiments, Table 3 shows that the fine-
tuned embeddings do not offer predictive power
above the most frequent class baseline (p > 0.05).
Observing the changes in the language embed-
dings reveals that the embeddings are updated to
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a very small extent, indicating that these are not
used by the model to a large extent. This can be
explained by the fact that the task is highly similar
for each language, and that the model largely only
needs to learn to copy the input string.

We do, however find that evaluating on a set
with an unseen language family does yield results
significantly above baseline levels with the pre-
trained embeddings (p < 0.05), which together
with the G2P results indicate that the language
modelling objective does encode features to some
extent related to phonology.

System / features Random phon. Unseen phon. All feat.

Most Frequent Class *59.39% 63.71% *58.12%
k-NN (pre-trained) 53.02% *77.44% 51.6%
k-NN (fine-tuned) 53.09% *77.45% 51.9%

Table 3: Accuracies on prediction of WALS features
with language embeddings fine-tuned on Phonological
Reconstruction. Asterisks indicate results significantly
higher than non-bold conditions (p < 0.05).

6 Morphology

6.1 Morphological inflection

We use data from the Unimorph project, specif-
ically the data released for the SIGMORPHON-
2017 shared task (Cotterell et al., 2017).9 This
data covers 52 languages, thereby representing a
relatively large typological variety. Whereas the
shared task has two subtasks, namely inflection
and paradigm cell filling, we only train our sys-
tem using the inflection task. This was a choice
of convenience, as we are not interested in solv-
ing the task of morphological paradigm cell filling,
but rather observing the language embeddings as
they are fine-tuned. Furthermore we focus on the
high-resource setting in which we have access to
10,000 training examples per language. The in-
flection subtask is to generate a target inflected
form given a lemma with its part-of-speech as in
the following example:

(release, V;V.PTCP;PRS) -> releasing

6.1.1 Morphological experiments
We train a sequence-to-sequence model with
attention over 600 iterations, using the same
sequence-to-sequence architecture from the previ-
ous tasks.

9https://unimorph.github.io/

Quantitative results Since this is considered a
morphological task, Table 4 contains results using
the language embeddings to predict morphological
properties. The fine-tuned language embeddings
in this condition are able to predict morphological
properties in WALS significantly above baseline
levels and pre-trained embeddings (p < 0.05). We
further also obtain significantly better results in the
unseen setting (p < 0.05), in which the language
family evaluated on is not used in training. This
indicates that these properties are important to the
model when learning the task at hand.

System / Features Random morph. Unseen morph. All feat.

Most Frequent Class 77.98% 85.68% 84.12%
k-NN (pre-trained) 74.49% 88.83% 84.97%
k-NN (fine-tuned) *82.91% *91.92% 84.95%

Table 4: Accuracies on prediction of WALS features
with language embeddings fine-tuned on morpholog-
ical inflection. Asterisks indicate results significantly
higher than both other conditions (p < 0.05).

Qualitative results The performance of the
fine-tuned embeddings on prediction of morpho-
logical features is above baseline for most fea-
tures. For 18 out of the 35 features under consider-
ation both the baseline and k-NN performances are
at 100% from the outset, so these are not consid-
ered here.10 Figure 2 shows two of the remaining
17 features.11 We can observe two main patterns:
For some features such as 49A (Number of cases),
fine-tuning on morphological inflection increases
the degree to which the features are encoded in the
language embeddings. This can be explained by
the fact that the number of cases in a language is
central to how morphological inflection is treated
by the model. For instance, languages with the
same number of cases might benefit from sharing
certain parameters. On the other hand, the feature
38A (Indefinite Articles) mainly encodes whether
the indefinite word is distinct or not from the word
for one, and it is therefore not surprising that this
is not learned in morphological inflection.

7 Word order

7.1 Part-of-speech tagging
We use PoS annotations from version 2 of the
Universal Dependencies (Nivre et al., 2016). As

10This is partially explained by the fact that certain cate-
gories were completely uniform in the small sample as well
as by the Indo-European bias in the sample.

11The full feature set is included in the Supplements.
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Figure 2: Prediction of two morphological features in
WALS with morphological language embeddings, one
data point per 50 iterations.

we are mainly interested in observing the lan-
guage embeddings, we down-sample all training
sets to 1,500 sentences (approximate number of
sentences of the smallest data sets) so as to min-
imise any size-related effects.

7.1.1 Word-order experiments
We approach the task of PoS tagging using a fairly
standard bi-directional LSTM architecture based
on Plank et al. (2016), detailed in Section 8.

Quantitative results Table 5 contains results on
WALS feature prediction using language embed-
dings fine-tuned on PoS tagging. We consider both
the set of word order features, which are relevant
for the dataset, and a set of all WALS features.
Using the fine-tuned embeddings is significantly
better than both the baseline and the pre-trained
embeddings (p < 0.05), in both the random and
the unseen conditions, indicating that the model
learns something about word order typology. This
can be expected, as word order features are highly
relevant when assigning a PoS tag to a word.

System / features Random W-Order Unseen W-Order All feat.

Most Frequent Class 76.81% 82.47% 82.93%
k-NN (pre-trained) 76.66% 92.76% 82.69%
k-NN (fine-tuned) *80.81% *94.48% 83.55%

Table 5: Accuracies on prediction of WALS features
with language embeddings fine-tuned on PoS tagging.
Asterisks indicate the result in bold significantly out-
performing both other conditions (p < 0.05).

Qualitative results We now turn to the syntac-
tic similarities between languages as encoded in
the fine-tuned language embeddings. We con-
sider a set of the North-Germanic languages Ice-
landic, Swedish, Norwegian Nynorsk, Danish,
Norwegian Bokmål, the West-Germanic language

English, and the Romance languages Spanish,
French, and Italian. We apply hierarchical cluster-
ing using UPGMA (Michener and Sokal, 1957) to
the pre-trained language embeddings of these lan-
guages.12 Striking here is that English is grouped
together with the Romance languages. This can
be explained by the fact that English has a large
amount of vocabulary stemming from Romance
loan words, which under the task of language
modelling results in a higher similarity with such
languages. We then cluster the embeddings fine-
tuned on PoS tagging in the same way. In this con-
dition, English has joined the rest of the Germanic
languages’ cluster. This can be explained by the
fact that, in terms of word ordering and morpho-
syntax, English is more similar to these languages
than it is to the Romance ones.

We can also observe that, whereas the ortho-
graphically highly similar Norwegian Bokmål and
Danish form the first sub-cluster in the pre-trained
condition, Norwegian Nynorsk replaces Danish in
this pairing when fine-tuning on PoS tagging. This
can be explained by the fact that morpho-syntactic
similarities between the two written varieties of
Norwegian are more similar to one another.

8 Implementation

8.1 Sequence-to-sequence modelling
The system architecture used in the sequence-to-
sequence tasks, i.e., G2P, phonological reconstruc-
tion, and morphological inflection is depicted in
Figure 3. The system is based on that devel-
oped by Östling and Bjerva (2017) and is imple-
mented using Chainer (Tokui et al., 2015). We
modify the architecture by concatenating a lan-
guage embedding, ~l, to the character embeddings
before encoding. In the grapheme-to-phoneme
and phonological reconstruction experiments, the
one-hot feature mapping before decoding is irrel-
evant and therefore omitted. The rest of the hyper-
parameters are the same as in Östling and Bjerva
(2017).

8.2 Sequence labelling
This system is based on Plank et al. (2016), and is
implemented using DyNet (Neubig et al., 2017).
We train using the Adam optimisation algorithm
(Kingma and Ba, 2014) over a maximum of 10
epochs using early stopping. We make two modifi-
cations to the bi-LSTM architecture of Plank et al.

12Included in the Supplements due to space restrictions.
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2010) simultaneously for different languages
(Tsvetkov et al., 2016; Östling and Tiedemann,
2017). In these recurrent multilingual lan-
guage models with long short-term memory cells
(LSTM, Hochreiter and Schmidhuber, 1997), lan-
guages are embedded into a n-dimensional space.
In order for multilingual parameter sharing to be
successful in this setting, the neural network is en-
couraged to use the language embeddings to en-
code features of language. Other work has ex-
plored learning language embeddings in the con-
text of neural machine translation (Malaviya et al.,
2017). In this work, we explore the embeddings
trained by Östling and Tiedemann (2017), both in
their original state, and by further tuning them for
PoS tagging.

2.3 Typological data

In the experiments for RQ3, we attempt to pre-
dict typological features. We extract the features
we aim to predict from WALS (Dryer and Haspel-
math, 2013). We consider features which are en-
coded for all four Uralic languages in our sample.

2.4 Language Embeddings as Chomskyan
Parameter Vectors

3 Morphology

3.1 Morphological inflection

Unimorph

3.2 Morphological Experiments

We train a sequence-to-sequence model based
on the system developed by Östling and Bjerva
(2017). The neural architecture is modified so
as to include an embedded language representa-
tion. During training, the errors are also back-
propagated into this embedding, meaning that the
encoded representation will be fine-tuned as the
task is learned. The system architecture is de-
picted in Figure ??.
~l

4 Phonology

4.1 Grapheme-to-phoneme

g2p data

4.2 Phonological Experiments

We train a sequence-to-sequence model identical
to the morphological system, using grapheme-to-
phoneme data.

5 Morphosyntax

5.1 Part-of-speech tagging

We use PoS annotations from version 2 of the Uni-
versal Dependencies (Nivre et al., 2016). We focus
on the four Uralic languages present in the UD,
namely Finnish (based on the Turku Dependency
Treebank, Pyysalo et al., 2015), Estonian (Muis-
chnek et al., 2016), Hungarian (based on the Hun-
garian Dependency Treebank, Vincze et al., 2010),
and North Sámi (Sheyanova and Tyers, 2017). As
we are mainly interested in observing the language
embeddings, we down-sample all training sets to
1500 sentences (approximate number of sentences
in the Hungarian data), so as to minimise any size-
based effects.

6 Method and experiments

We approach the task of PoS tagging using a fairly
standard bi-directional LSTM architecture, based
on Plank et al. (2016). The system is implemented
using DyNet (Neubig et al., 2017). We train
using the Adam optimisation algorithm (Kingma
and Ba, 2014) over a maximum of 10 epochs,
using early stopping. We make two modifica-
tions to the bi-LSTM architecture of Plank et al.
(2016). First of all, we do not use any atomic
embedded word representations, but rather use
only character-based word representations. This
choice was made so as to encourage the model
not to rely on language-specific vocabulary. Ad-
ditionally, we concatenate a pre-trained language
embedding to each word representation. That is
to say, in the original bi-LSTM formulation of
Plank et al. (2016), each word w is represented as
~w + LSTMc(w), where ~w is an embedded word
representation, and LSTMc(w) is the final states
of a character bi-LSTM running over the charac-
ters in a word. In our formulation, each word w
in language l is represented as LSTMc(w) + ~l,
where LSTMc(w) is defined as before, and ~l is
an embedded language representation. We use a
two-layer deep bi-LSTM, with 100 units in each
layer. The character embeddings used also have
100 dimensions. We update the language repre-
sentations, ~l, during training. The language repre-
sentations are 64-dimensional, and are initialised
using the language embeddings from Östling and
Tiedemann (2017). All PoS tagging results re-
ported are the average of five runs, each with dif-
ferent initialisation seeds, so as to minimise ran-
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2010) simultaneously for different languages
(Tsvetkov et al., 2016; Östling and Tiedemann,
2017). In these recurrent multilingual lan-
guage models with long short-term memory cells
(LSTM, Hochreiter and Schmidhuber, 1997), lan-
guages are embedded into a n-dimensional space.
In order for multilingual parameter sharing to be
successful in this setting, the neural network is en-
couraged to use the language embeddings to en-
code features of language. Other work has ex-
plored learning language embeddings in the con-
text of neural machine translation (Malaviya et al.,
2017). In this work, we explore the embeddings
trained by Östling and Tiedemann (2017), both in
their original state, and by further tuning them for
PoS tagging.

2.3 Typological data

In the experiments for RQ3, we attempt to pre-
dict typological features. We extract the features
we aim to predict from WALS (Dryer and Haspel-
math, 2013). We consider features which are en-
coded for all four Uralic languages in our sample.

2.4 Language Embeddings as Chomskyan
Parameter Vectors

3 Morphology

3.1 Morphological inflection

Unimorph

3.2 Morphological Experiments

We train a sequence-to-sequence model based
on the system developed by Östling and Bjerva
(2017). The neural architecture is modified so
as to include an embedded language representa-
tion. During training, the errors are also back-
propagated into this embedding, meaning that the
encoded representation will be fine-tuned as the
task is learned. The system architecture is de-
picted in Figure ??.
~l

4 Phonology

4.1 Grapheme-to-phoneme

g2p data

4.2 Phonological Experiments

We train a sequence-to-sequence model identical
to the morphological system, using grapheme-to-
phoneme data.

5 Morphosyntax

5.1 Part-of-speech tagging

We use PoS annotations from version 2 of the Uni-
versal Dependencies (Nivre et al., 2016). We focus
on the four Uralic languages present in the UD,
namely Finnish (based on the Turku Dependency
Treebank, Pyysalo et al., 2015), Estonian (Muis-
chnek et al., 2016), Hungarian (based on the Hun-
garian Dependency Treebank, Vincze et al., 2010),
and North Sámi (Sheyanova and Tyers, 2017). As
we are mainly interested in observing the language
embeddings, we down-sample all training sets to
1500 sentences (approximate number of sentences
in the Hungarian data), so as to minimise any size-
based effects.

6 Method and experiments

We approach the task of PoS tagging using a fairly
standard bi-directional LSTM architecture, based
on Plank et al. (2016). The system is implemented
using DyNet (Neubig et al., 2017). We train
using the Adam optimisation algorithm (Kingma
and Ba, 2014) over a maximum of 10 epochs,
using early stopping. We make two modifica-
tions to the bi-LSTM architecture of Plank et al.
(2016). First of all, we do not use any atomic
embedded word representations, but rather use
only character-based word representations. This
choice was made so as to encourage the model
not to rely on language-specific vocabulary. Ad-
ditionally, we concatenate a pre-trained language
embedding to each word representation. That is
to say, in the original bi-LSTM formulation of
Plank et al. (2016), each word w is represented as
~w + LSTMc(w), where ~w is an embedded word
representation, and LSTMc(w) is the final states
of a character bi-LSTM running over the charac-
ters in a word. In our formulation, each word w
in language l is represented as LSTMc(w) + ~l,
where LSTMc(w) is defined as before, and ~l is
an embedded language representation. We use a
two-layer deep bi-LSTM, with 100 units in each
layer. The character embeddings used also have
100 dimensions. We update the language repre-
sentations, ~l, during training. The language repre-
sentations are 64-dimensional, and are initialised
using the language embeddings from Östling and
Tiedemann (2017). All PoS tagging results re-
ported are the average of five runs, each with dif-
ferent initialisation seeds, so as to minimise ran-

Concat.

Figure 3: System architecture used in the seq-to-seq
tasks (morphological inflection, G2P, and phonological
reconstruction). Figure adapted with permission from
Östling and Bjerva (2017).

(2016). First of all, we do not use any atomic em-
bedded word representations, but rather use only
character-based word representations. This choice
was made so as to encourage the model not to rely
on language-specific vocabulary. Additionally, we
concatenate a pre-trained language embedding to
each word representation. In our formulation,
each word w is represented as LSTMc(w) + ~l,
where LSTMc(w) is the final states of a charac-
ter bi-LSTM running over the characters in a word
and~l is an embedded language representation. We
use a two-layer deep bi-LSTM with 100 units in
each layer, and 100-dimensional character embed-
dings. The rest of the hyper-parameters are the
same as in Plank et al. (2016).13

9 Discussion and Conclusions

The language embeddings obtained by fine-tuning
on linguistic tasks at various typological levels
were found to include typological information
somehow related to the task at hand. This lends
some support to the theoretical foundations of
such representations, in that it shows that it is pos-
sible to learn something akin to a vector of contin-
uous Chomskyan parameters (Chomsky, 1993).

9.1 RQ1: Encoding of typological features in
task-specific language embeddings

The features which are encoded depend to a large
degree on the task at hand. The language em-
beddings resulting from the phonological tasks did
not encode phonological properties in the sense of
WALS features, whereas the pre-trained ones did.

13Both modified systems are included in the Supplements,
and will be made publicly available.
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Figure 4: Language similarities changing during fine
tuning.

The morphological language embeddings were
found to encode morphological features, and the
PoS language embeddings were similarly found to
encode word order features.

A promising result is the fact that we were able
to predict typological features for unseen language
families. That is to say, without showing, e.g., a
single Austronesian training instance to the k-NN
classifier, typological features could still be pre-
dicted with high accuracies. This indicates that we
can predict typological features with language em-
beddings, even for languages for which we have
no prior typological knowledge.

Table 6 contains a comparison of the top five
and bottom five feature prediction accuracies for
the ASJP task.14 In the case of the phonologically
oriented ASJP task it is evident that the embed-
dings still encode something related to phonology,
as four out of five best features are phonological.

9.2 RQ2: Change in encoding of typological
features

The changes in the features encoded in language
embeddings are relatively monotonic. Features are
either learnt, forgotten, or remain static throughout
training. This indicates that the language represen-
tations converge towards a single optimum.

9.3 RQ3: Language similarities

Training language embeddings in the task of mul-
tilingual language modelling has been found to re-
produce trees which are relatively close matches

14See the Supplement for the remaining tasks.
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to more traditional genealogical trees (Östling and
Tiedemann, 2017). We show a similar analysis
considering pre-trained and PoS fine-tuned em-
beddings, and it is noteworthy that fine-tuning on
PoS tagging in this case yielded a tree more faith-
ful to genealogical trees, such as those represented
on glottolog.org. Figure 4 shows an exam-
ple of this, in which a language modelling objec-
tive places English with Romance languages. This
makes sense, as the English lexicon contains a
large amount of Romance vocabulary. When fine-
tuning on PoS tagging, however, English is placed
among the Germanic languages, as it shares more
syntactic similarities with these.

Another striking result in terms of language
similarities in fine-tuned language embedding
spaces was found in the G2P task. We here found
that the phonological differences between some
otherwise similar languages, such as Norwegian
Bokmål and Danish, were accurately encoded.

Task Feature WALS Chapter Accuracy

ASJP

6A Phonology 89.45
18A Phonology 88.91
20A Morphology 82.74
19A Phonology 82.58

7A Phonology 80.97

144A Word Order 14.48
144L Word Order 10.07
62A Nominal Syntax 10.00
81B Word Order 9.52

133A Lexicon 8.18

Table 6: Top 5 and bottom 5 accuracies in feature pre-
diction using phonological language embeddings.
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Östen Dahl. 1985. Tense and Aspect Systems. Basil
Blackwell Ltd., NewYork.

Aliya Deri and Kevin Knight. 2016. Grapheme-to-
phoneme models for (almost) any language. In ACL.
Association for Computational Linguistics, pages
399–408.

Matthew S. Dryer and Martin Haspelmath, editors.
2013. WALS Online. Max Planck Institute for Evo-
lutionary Anthropology, Leipzig. http://wals.
info/.

Michael Dunn, Simon J Greenhill, Stephen C Levin-
son, and Russell D Gray. 2011. Evolved structure
of language shows lineage-specific trends in word-
order universals. Nature 473(7345):79–82.

J. R. Firth. 1957. A synopsis of linguistic theory pages
1930–1955. 1952–1959:1–32.

Georg von der Gabelentz. 1891. Die Sprachwis-
senschaft, ihre Aufgaben, Methoden und bisherigen
Ergebnisse. Leipzig.

915



Joseph Greenberg. 1974. Language typology: A his-
torical and analytic overview, volume 184. Walter
de Gruyter.

Joseph H Greenberg. 1960. A quantitative approach
to the morphological typology of language. Inter-
national journal of American linguistics 26(3):178–
194.

Z. Harris. 1954. Distributional structure. Word
10:146–162.

Martin Haspelmath. 2001. Language typology and lan-
guage universals: An international handbook, vol-
ume 20. Walter de Gruyter.

J. Herder. 1772. Abhandlung über den Ursprung der
Sprache. Berlin: Christian Friedrich Voß.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .
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Abstract

Dependency parsing research, which has made
significant gains in recent years, typically fo-
cuses on improving the accuracy of single-
tree predictions. However, ambiguity is inher-
ent to natural language syntax, and communi-
cating such ambiguity is important for error
analysis and better-informed downstream ap-
plications. In this work, we propose a tran-
sition sampling algorithm to sample from the
full joint distribution of parse trees defined by
a transition-based parsing model, and demon-
strate the use of the samples in probabilistic
dependency analysis. First, we define the new
task of dependency path prediction, inferring
syntactic substructures over part of a sentence,
and provide the first analysis of performance
on this task. Second, we demonstrate the use-
fulness of our Monte Carlo syntax marginal
method for parser error analysis and calibra-
tion. Finally, we use this method to propa-
gate parse uncertainty to two downstream in-
formation extraction applications: identifying
persons killed by police and semantic role as-
signment.1

1 Introduction

Dependency parsers typically predict a single tree
for a sentence to be used in downstream applica-
tions, and most work on dependency parsers seeks
to improve accuracy of such single-tree predic-
tions. Despite tremendous gains in the last few
decades of parsing research, accuracy is far from
perfect—but perfect accuracy may be impossible
since syntax models by themselves do not incorpo-
rate the discourse, pragmatic, or world knowledge
necessary to resolve many ambiguities.

In fact, although relatively unexamined, sub-
stantial ambiguity already exists within commonly
used discriminative probabilistic parsing models,

1Supporting code available at https://github.com/slanglab/
transition sampler

Figure 1: Example of a sentence with inherent ambigu-
ity. Top: output from a greedy parser. Bottom: edge
marginal probabilities from 100 samples in parenthe-
ses.

which define a parse forest—a probability distri-
bution p(y | x) over possible dependency trees
y ∈ Y(x) for an input sentence x.

For example, the top of Figure 1 shows the pre-
dicted parse y(greedy) from such a parser (Chen
and Manning, 2014), which resolves a preposi-
tional (PP) attachment ambiguity in one manner;
this prediction was selected by a standard greedy
transition-based algorithm (§2.1). However, the
bottom of Figure 1 shows marginal probabilities
of individual (relation, governor, child) edges un-
der this same model. These denote our estimated
probabilities, across all possible parse structures,
that a pair of words are connected with a particu-
lar relation (§2.4). For example, the two different
PP attachment readings both exist within this parse
forest with marginal probabilities

p( nmod(saw2, telescope7) | x) = 0.72 (1)

p( nmod(man4, telescope7) | x) = 0.28, (2)

where (1) implies she used a telescope to see the
man, and (2) implies she saw a man who had a
telescope.

These types of irreducible syntactic ambiguities
exist and should be taken into consideration when
analyzing syntactic information; for instance, one
could transmit multiple samples (Finkel et al.,
2006) or confidence scores (Bunescu, 2008) over
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ambiguous readings to downstream analysis com-
ponents.

In this work, we introduce a simple transi-
tion sampling algorithm for transition-based de-
pendency parsing (§2.2), which, by yielding ex-
act samples from the full joint distribution over
trees, makes it possible to infer probabilities of
long-distance or other arbitrary structures over the
parse distribution (§2.4). We implement transition
sampling—a very simple change to pre-existing
parsing software—and use it to demonstrate sev-
eral applications of probabilistic dependency anal-
ysis:

• Motivated by how dependency parses are typ-
ically used in feature-based machine learn-
ing, we introduce a new parsing-related
task—dependency path prediction. This task
involves inference over variable length de-
pendency paths, syntactic substructures over
only parts of a sentence.

• To accomplish this task, we define a Monte
Carlo syntax marginal inference method
which exploits information across samples of
the entire parse forest. It achieves higher ac-
curacy predictions than a traditional greedy
parsing algorithm, and allows tradeoffs be-
tween precision and recall (§4).

• We provide a quantitative measure of the
model’s inherent uncertainty in the parse,
whole-tree entropy, and show how it can be
used for error analysis (§3).

• We demonstrate the method’s (surprisingly)
reasonable calibration (§5).

• Finally, we demonstrate the utility of our
method to propagate uncertainty to down-
stream applications. Our method improves
performance for giving probabilistic seman-
tics to a rule-based event extractor to identify
civilians killed by police (§6), as well as se-
mantic role assignment (§7).

2 Monte Carlo dependency analysis

2.1 Overview of transition-based dependency
parsing

We examine the basic form of the Universal De-
pendencies formalism (Nivre et al., 2016), where,
for a sentence x of length N , a possible depen-
dency parse y is a set of (relation, governorToken,

childToken) edges, with a tree constraint that ev-
ery token in the parse has exactly one governor—
that is, for every token w ∈ {1..N}, there is ex-
actly one triple (r, g, w) ∈ y where it participates
as a child. The governor is either one of the ob-
served tokens, or a special ROOT vertex.

There exist a wide variety of approaches to ma-
chine learned, discriminative dependency parsing,
which often define a probability distribution p(y |
x) over a domain of formally legal dependency
parse trees y ∈ Y(x). We focus on transition-
based dependency parsers (Nivre, 2003; Kübler
et al., 2009), which (typically) use a stack-based
automaton to process a sentence, incrementally
building a set of edges. Transition-based parsers
are very fast, have runtimes linear in sentence
length, feature high performance (either state-of-
the-art, or nearly so), and are easier to implement
than other modeling paradigms (§2.5).

A probabilistic transition-based parser assumes
the following stochastic process to generate a
parse tree:

• Initialize state S0
• For n = 1, 2, . . .:

(A) an ∼ p(an | Sn−1)
(B) Sn := Update(Sn−1, an)
(C) Break if InEndState(Sn)

Most state transition systems (Bohnet et al., 2016)
use shift and reduce actions to sweep through to-
kens from left to right, pushing and popping them
from a stack to create the edges that populate a
new parse tree y. The action decision probabil-
ity, p(anext | Scurrent), is a softmax distribution
over possible next actions. It can be parameter-
ized by any probabilistic model, such as log-linear
features of the sentence and current state (Zhang
and Nivre, 2011), multilayer perceptrons (Chen
and Manning, 2014), or recurrent neural networks
(Dyer et al., 2015; Kiperwasser and Goldberg,
2016).

To predict a single parse tree on new data, a
common inference method is greedy decoding,
which runs a close variant of the above transi-
tion model as a deterministic automaton, replac-
ing stochastic step (A) with a best-action decision,
an := argmaxan p(an | Sn−1).2 An inferred ac-

2Since greedy parsing does not require probabilistic se-
mantics for the action model—the softmax normalizer does
not need to be evaluated—non-probabilistic training, such as
with hinge loss (SVMs), is a common alternative, including
in some of the cited work.
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tion sequence a1:n determines the resulting parse
tree (edge set) y; the relationship can be denoted
as y(a1:n).

2.2 Transition sampling
In this work, we propose to analyze the full joint
posterior p(y | x), and use transition sampling,
a very simple forward/ancestral sampling algo-
rithm,3 to draw parse tree samples from that dis-
tribution. To parse a sentence, we run the automa-
ton stochastically, sampling the action probability
in step (A). This yields one action sequence a1:n
from the full joint distribution of action sequences,
and therefore a parse y(a1:n) from the distribution
of parses. We can obtain as many parse samples as
desired by running the transition sampler S times,
yielding a collection (multiset) of parse structures
{y(s) | s ∈ {1..S}}, where each y(s) ∼ p(y | x)
is a full dependency parse tree.4 Runtime to draw
one parse sample is very similar to the greedy al-
gorithm’s runtime. We denote the set of unique
parses in the sample Ỹ(x).

We implement a transition sampler by modi-
fying an implementation of Chen and Manning’s
multilayer perceptron transition-based parser5 and
use it for all subsequent experiments.

2.3 MC-MAP single parse prediction
One minor use of transition sampling is a method
for predicting a single parse, by selecting the most
probable (common) parse tree in the sample,

ŷMC-MAP = argmax
y∈Ỹ

p̃(y | x) (3)

= argmax
y∈Ỹ

c(y)

S
(4)

where p̃(y | x) denotes the Monte Carlo estimate
of a parse’s probability, which is proportional to
how many times it appears in the sample: c(y) ≡∑S

s 1{y = y(s)}. Note that p̃(y | x) correctly
accounts for the case of an ambiguous transition
system where multiple different action sequences
can yield the same tree—i.e., y(a1:n) is not one-to-
one—since the transition sampler can sample the
multiple different paths.

3“Ancestral” refers to a directed Bayes net (e.g. Barber
(2012)) of action decisions, each conditioned on the full his-
tory of previous actions—not ancestors in a parse tree.

4Dyer et al. (2016) use the same algorithm to draw sam-
ples from a transition-based constituency parsing model, as
an importance sampling proposal to support parameter learn-
ing and single-tree inference.

5CoreNLP 3.8.0 with its ‘english UD’ pretrained model.

This “MC-MAP” method is asymptotically
guaranteed to find the model’s most probable parse
(argmaxy p(y | x)) given enough samples.6 By
contrast, greedy decoding and beam search have
no theoretical guarantees. MC-MAP’s disadvan-
tage is that it may require a large number of sam-
ples, depending on the difference between the top
parse’s probability compared to other parses in the
domain.

2.4 Monte Carlo Syntax Marginal (MCSM)
inference for structure queries

Beyond entire tree structures, parse posteriors also
define marginal probabilities of particular events
in them. Let f(y) → {0, 1} be a boolean-valued
structure query function of a parse tree—for ex-
ample, whether the tree contains a particular edge:

f(y) = 1{dobj(kill,Smith) ∈ y}

or more complicated structures, such as a length-2
dependency path:

f(y) = 1{nsubj(kill, cop)∧dobj(kill,Smith) ∈ y}.

More precisely, these queries are typically formu-
lated to check for edges between specific tokens,
and may check tokens’ string forms.

Although f(y) is a deterministic function, since
the parsing model is uncertain of the correct parse,
we find the marginal probability, or expectation,
of a structure query by integrating out the poste-
rior parse distribution—that is, the predicted prob-
ability that the parse has the property in question:

p(f(y) | x) =
∑

y∈Y(x)
f(y) p(y | x) (5)

≈ p̃(f(y) | x) =
∑

y∈Ỹ(x)
f(y)

c(y)

S
. (6)

Eq. 5 is the expectation with regard to the model’s
true probability distribution (p) over parses from
the domain of all possible parse trees Y(x) for a
sentence, while Eq. 6 is a Monte Carlo estimate
of the query’s marginal probability—the fraction
of parse tree samples where the structure query is
true. We use this simple method for all inference

6This holds since the Monte Carlo estimated probability
of any tree converges to its true probability, according to, e.g.,
Hoeffding’s inequality or the central limit theorem. Thus,
with enough samples, the tree with the highest true proba-
bility will have estimated probability higher than any other
tree’s.
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in this work, though importance sampling (Dyer
et al., 2016), particle filters (Buys and Blunsom,
2015), or diverse k-best lists (Zhang and McDon-
ald, 2014) could support more efficient inference
in future work.

2.5 Probabilistic inference for dependencies:
related work

Our transition sampling method aims to be an
easy-to-implement algorithm for a highly perfor-
mant class of dependency models, that conducts
exact probabilistic inference for arbitrary structure
queries in a reasonable amount of time. A wide
range of alternative methods have been proposed
for dependency inference that cover some, but per-
haps not all, of these goals.

For transition-based parsing, beam search is
a commonly used inference method that tries to
look beyond a single structure. Beam search can
be used to yield an approximate K-best list by
taking resulting structures on the beam, though
there are no theoretical guarantees about the result,
and runtime is no better than the transition sam-
pler.7 Finkel et al. (2006) further discuss trade-
offs between beam search and sampling, and find
they give similar performance when propagating
named entity recognition and PCFG parse infor-
mation to downstream tasks.

Graph-based parsers are the major alternative
modeling paradigm for dependency parsing; in-
stead of a sequence of locally normalized deci-
sions, they directly parameterize an entire tree’s
globally normalized probability. Parse samples
could be drawn from a graph-based model via
Markov chain Monte Carlo (Zhang et al., 2014),
which is asymptotically correct, but may require a
large amount of time to obtain non-autocorrelated
parses. A range of methods address inference for
specific queries in graph-based models—for ex-
ample, edge marginals for edge-factored models
via the matrix-tree theorem (Koo et al., 2007), or
approximate marginals with loopy belief propa-
gation (Smith and Eisner, 2008).8 By contrast,
our method is guaranteed to give correct marginal

7Loosely, if it takes N transitions to complete a parse,
and B possible actions at each transition must be evaluated,
our method evaluatesKNB actions to obtainK trees. Beam
search evaluates a similar number of actions when using aK-
sized beam, but also requires non-parallelizable management
of the beam’s priority queue.

8These papers infer marginals to support parameter learn-
ing, but we are not aware of previous work that directly ana-
lyzes or uses dependency parse marginals.

inferences for arbitrary, potentially long-distance,
queries.

Given the strong performance of graph-based
parsers in the single-structure prediction setting
(e.g. Zeman et al. (2017); Dozat et al. (2017)),
it may be worthwhile to further explore proba-
bilistic inference for these models. For example,
Niculae et al. (2018) present an inference algo-
rithm for a graph-based parsing model that infers
a weighted, sparse set of highly-probable parse
trees, and they illustrate that it can infer syntactic
ambiguities similar to Figure 1.

Dynamic programming for dependency parsing,
as far as we are aware, has only been pursued for
single-structure prediction (e.g. Huang and Sagae
(2010)), but in principle could be generalized to
calculate local structure query marginals via an
inside-outside algorithm, or to sample entire struc-
tures through an inside-outside sampler (Eisner,
2016), which Finkel et al. (2006) use to propagate
parse uncertainty for downstream analysis.

3 Exploratory error analysis via
whole-tree entropy calculations

In this section we directly explore the model’s in-
trinsic uncertainty, while §5 conducts a quantita-
tive analysis of model uncertainty compared to
gold standard structures. Parse samples are able
to both pass on parse uncertainty and yield useful
insights that typical error analysis approaches can-
not. For a sentence x, we can calculate the whole-
tree entropy, the model’s uncertainty of whole-tree
parse frequencies in the samples:

H(p) = −
∑

y∈Y(x)
p(y | x) log p(y | x)

≈ H(p̃) = −
∑

y∈Ỹ(x)

c(y)

S
log

c(y)

S
. (7)

Since this entropy estimate is only based on an S-
sample approximation of p, it is upper bounded at
log(S) in the case of a uniform MC distribution.
Another intuitive measure of uncertainty is sim-
ply the number of unique parses, that is, the cardi-
nality of the MC distribution’s domain (|Ỹ|); this
quantity is not informative for the true distribution
p, but in the MC distribution it is intuitively upper
bounded by S.9

9Shannon entropy, domain support cardinality, and top
probability (maxy∈Ỹ p̃(y)), which we show in Table 1, are
all instances of the more general Renyi entropy (Smith and
Eisner, 2007).
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Sentence Domain Size Top 3 Freq. Entropy

In Ramadi , there was a big demonstration . 3 [ 98, 1, 1 ] 0.112
US troops there clashed with guerrillas in a fight that left one Iraqi dead . 40 [ 33, 11, 6 ] 2.865
The sheikh in wheel - chair has been attacked with a F - 16 - launched bomb . 98 [ 2, 2, 1 ] 4.577

Table 1: Example sentences from the UD development set and summaries of their Monte Carlo parse distributions.
Domain Size gives |Ỹ100|, the number of unique parse structures in 100 samples. Top 3 Freq. gives the frequencies
of the 3 most probable structures in Ỹ100. Entropy is calculated according to Eq. 7; its upper bound is log(100) =
4.605.

Figure 2: Length of sentences (in number of tokens in
UD development set) against entropy (100 samples per
sentence).

We run our dependency sampler on the 2002
sentences in the Universal Dependencies 1.3 En-
glish Treebank development set, generating 100
samples per sentence; Table 1 shows example sen-
tences along with |Ỹ| and entropy statistics for
each sentence. We find that in general, as sentence
length increases, so does the entropy of the parse
distribution (Fig. 2). Moreover, we find that en-
tropy is a useful diagnostic tool. For example, 7%
of sentences in the UD development corpus with
fewer than 15 tokens and H(p̃) ≥ 2 exhibit un-
certainty around the role of ‘-’ (compare Sciences
- principally biology and thought-provoking), and
another 7% of such sentences exhibit uncertainty
around ‘s’ (potentially representing a plural or a
possessive).

4 Monte Carlo Syntax Marginals for
partial dependency parsing

Here we examine the utility of marginal inference
for predicting parts of dependency parses, using
the UD 1.3 Treebank’s English development set to
evaluate.10

10UD 1.3 is the UD version that this parsing model
is most similar to: https://mailman.stanford.edu/pipermail/

4.1 Greedy decoding

Using its off-the-shelf pretrained model with
greedy decoding, the CoreNLP parser achieves
80.8% labeled attachment score (LAS). LAS is
equivalent to both the precision and recall of pre-
dicting (rel,gov,child) triples in the parse tree.11

4.2 Minimum Bayes risk (MBR) decoding

A simple way to use marginal probabilities for
parse prediction is to select, for each token, the
governor and relation that has the highest marginal
probability. This method gives a minimum Bayes
risk (MBR) prediction of the parse, minimizing
the model’s expected LAS with regards to lo-
cal uncertainty; similar MBR methods have been
shown to improve accuracy in tagging and con-
stituent parsing (e.g. Goodman (1996); Petrov and
Klein (2007)). This method yields 81.4% LAS,
outperforming greedy parsing, though it may yield
a graph that is not a tree.

4.3 Syntax marginal inference for
dependency paths

An alternative view on dependency parsing is to
consider what structures are needed for down-
stream applications. One commonly used parse
substructure is the dependency path between two
words, which is widely used in unsupervised lex-
ical semantics (Lin and Pantel, 2001), distantly
supervised lexical semantics (Snow et al., 2005),
relation learning (Riedel et al., 2013), and super-
vised semantic role labeling (Hacioglu, 2004; Das
et al., 2014), as well as applications in economics
(Ghose et al., 2007), political science (O’Connor
et al., 2013), biology (Fundel et al., 2006), and the
humanities (Bamman et al., 2013, 2014).

parser-user/2017-November/003460.html
11LAS is typically defined as proportion of tokens whose

governor (and relation on that governor-child edge) are cor-
rectly predicted; this is equivalent to precision and recall of
edges if all observed tokens are evaluated. If, say, punctu-
ation is excluded from evaluation, this equivalence does not
hold; in this work we always use all tokens for simplicity.
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Figure 3: Precision-recall analysis against gold UD 1.3 English dev (§4.1) set for all dependency paths of lengths
1 to 7. Left: Each path length is a different color (1 in top-right, 7 in bottom-left), with greedy performance (©) as
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F1 is highest (�). Right: F1 for each method, as well as the confidence threshold for the marginal PR curve’s
max-F1 point. For path length 1, Greedy and MC-MAP F1 are the same as labeled attachment score (LAS).

In this work, we consider a dependency
path to be a set of edges from the depen-
dency parse; for example, a length-2 path p =
{nsubj(3, 1), dobj(3, 4)} connects tokens 1 and 4.
Let Pd(y) be the set of all length-d paths from
a parse tree y.12 Figure 3’s “Greedy” table col-
umn displays the F-scores for the precision and
recall of retrieving Pd(y(gold)) from the prediction
Pd(y(greedy)) for a series of different path lengths.
P1 gives individual edges, and thus is the same
as LAS (80.8%). Longer length paths see a rapid
decrease in performance; even length-2 paths are
retrieved with only ≈ 66% precision and recall.13

We are not aware of prior work that evaluates de-
pendency parsing beyond single edge or whole
sentence accuracy.

We define dependency path prediction as the
task of predicting a set of dependency paths for
a sentence; the paths do not necessarily have to
come from the same tree, nor even be consistent
with a single syntactic analysis. We approach
this task with our Monte Carlo syntax marginal
method, by predicting paths from the transition
sampling parser. Here we treat each possible path

12Path construction may traverse both up and down di-
rected edges; we represent a path as an edge set to evaluate its
existence in a parse. A path may not include the same vertex
twice. The set of all paths for a parse includes all paths from
all pairs of vertexes (observed tokens and ROOT).

13For length 1 paths, precision and recall are identical; this
does not hold for longer paths, though precision and recall
from a single parse prediction are similar.

as a structure query (§2.4) and return all paths
whose marginal probabilities are at least threshold
t. Varying t trades off precision and recall.

We apply this method to 100 samples per sen-
tence in the UD treebank. When we take all
length-1 paths that appear in every single sample
(i.e., estimated marginal probability 1.0), preci-
sion greatly increases to 0.969, while recall drops
to 0.317 (the top-left point on Figure 3’s teal
length-1 curve.) We can also accommodate appli-
cations which may prefer to have a higher recall:
predicting all paths with at least 0.01 probability
results in 0.936 recall (the bottom-right point on
the curve in Figure 3).14

This marginal path prediction method domi-
nates the greedy parser: for length-1 paths, there
are points on the marginal decoder’s PR curve that
achieve both higher precision and recall than the
greedy decoder, giving F1 of 82.4% when accept-
ing all edges with marginal probability at least
0.45. Furthermore, these advantages are more
prominent for longer dependency paths. For ex-
ample, for length-3 paths, the greedy parser only
achieves 50.6% F1, while the marginal parser im-

14 The 6.4% of gold-standard edges with predicted 0 prob-
ability often correspond to inconsistencies in the formalism
standards between the model and UD; for example, 0.7% of
the gold edges are ‘name’ relations among words in a name,
which the model instead analyzes as ‘compound’. Inspecting
gold edges’ marginal probabilities helps error analysis, since
when one views a single predicted parse, it is not always clear
whether observed errors are systematic, or a fluke for that one
instance.
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Figure 4: Calibration curves for marginal predictions
for several path lengths. Predictions below the y = x
line indicate overconfidence. Points denote the aver-
age predicted probability versus empirical (gold) prob-
ability among predicted paths within each dynamically
allocated bin.

proves a bit to 55.0% F1; strikingly, it is possible
to select high-confidence paths to get much higher
90.1% precision (at recall 11.6%, with confidence
threshold t = 0.95). Figure 3 also shows the pre-
cision/recall points on each curve for thresholds
t = 0.9 and t = 0.1.

We also evaluated the MC-MAP single-parse
prediction method (§2.3), which slightly, but con-
sistently, underperforms the greedy decoder at
all dependency lengths. More work is required
to understand whether this is is an inference or
modeling problem: for example, we may not
have enough samples to reliably predict a high-
probability parse; or, as some previous work finds
in the context of beam search, the label bias
phenomenon in this type of locally-normalized
transition-based parser may cause it to assign
higher probability to non-greedy analyses that
in fact have lower linguistic quality (Zhang and
Nivre, 2012; Andor et al., 2016).

5 Calibration

The precision-recall analysis shows that the pre-
dicted marginal probabilities are meaningful in a
ranking sense, but we can also ask whether they
are meaningful in a sense of calibration: predic-
tions are calibrated if, among all structures with
predicted probability q ± ε, they exist in the gold
parses with probability q. That is, predictions with

confidence q have precision q.15 If probabilities
are calibrated, that implies expectations with re-
gard to their distribution are unbiased, and may
also justify intuitive interpretations of probabili-
ties in exploratory analysis (§3). Calibration may
also have implications for joint inference, EM, and
active learning methods that use confidence scores
and confidence-based expectations.

We apply Nguyen and O’Connor (2015)’s adap-
tive binning method to analyze the calibration of
structure queries from an NLP system, by taking
the domain of all seen length-d paths from the
100 samples’ parse distribution for the treebank,
grouping by ranges of predicted probabilities to
have at least 5000 paths per bin, to ensure stability
of the local precision estimate.16

We find that probabilities are reasonably well
calibrated, if slightly overconfident—Figure 4
shows the average predicted probability per bin,
compared to how often these paths appear in the
gold standard (local precision). For example, for
edges (length-1 paths), predictions near 60% con-
fidence (the average among predictions in range
[0.42, 0.78]) correspond to edges that are actually
in the gold standard tree only 52.8% of the time.
The middle confidence range has worse calibra-
tion error, and longer paths perform worse. Still,
this level of calibration seems remarkably good,
considering there was no attempt to re-calibrate
predictions (Kuleshov and Liang, 2015) or to use a
model that specifically parameterizes the energy of
dependency paths (Smith and Eisner, 2008; Mar-
tins et al., 2010)—these predictions are simply a
side effect of the overall joint model for incremen-
tal dependency parsing.

6 Probabilistic rule-based IE: classifying
police fatalities

Supervised learning typically gives the most ac-
curate information extraction or semantic parsing
systems, but for many applications where train-

15This is a local precision, as opposed to the more usual tail
probability of measuring precision of all predictions higher
than some t—the integral of local precision. For example,
Figure 3’s length-1 t = 0.9 precision of 0.942 (4) is the av-
erage y value of several rightmost bins in Figure 4. This con-
trast corresponds to Efron (2010)’s dichotomy of local versus
global false discovery rates.

16This does not include gold-standard paths with zero pre-
dicted probability. As Nguyen and O’Connor found for se-
quence tagging and coreference, we find the prediction distri-
bution is heavily skewed to near 0 and 1, necessitating adap-
tive bins, instead of fixed-width bins, for calibration analysis
(Niculescu-Mizil and Caruana, 2005; Bennett, 2000).
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ing data is scarce, Chiticariu et al. (2013) argue
that rule-based systems are useful and widespread
in practice, despite their neglect in contemporary
NLP research. Syntactic dependencies are a use-
ful abstraction with which to write rule-based ex-
tractors, but they can be brittle due to errors in the
parser. We propose to integrate over parse sam-
ples to infer a marginal probability of a rule match,
increasing robustness and allowing for precision-
recall tradeoffs.

6.1 Police killings victim extraction

We examine the task of extracting the list of names
of persons killed by police from a test set of
web news articles in Sept–Dec 2016. We use the
dataset released by Keith et al. (2017), consisting
of 24,550 named entities e ∈ E and sentences from
noisy web news text extractions (that can be diffi-
cult to parse), each of which contains at least one
e (on average, 2.8 sentences/name) as well as key-
words for both police and killing/shooting. The
task is to classify whether a given name is a person
who was killed by police, given 258 gold-standard
names that have been verified by journalists.

6.2 Dependency rule exractor

Keith et al. present a baseline rule-based method
that uses Li and Ji (2014)’s off-the-shelf RPI-
JIE ACE event parser to extract (event type,
agent, patient) tuples from sentences, and assigns
fJIE(xi, e) = 1 iff the event type was a killing,
the agent’s span included a police keyword, and
the patient was the candidate entity e. An entity
is classified as a victim if at least one sentence is
classified as true, resulting in a 0.17 F1 score (as
reported in previous work).17

We define a similar syntactic dependency rule
system using a dependency parse as input: our ex-
tractor f(x, e, y) returns 1 iff the sentence has a
killing keyword k,18 which both

1. has an agent token a (defined as, governed by
nsubj or nmod) which is a police keyword, or
a has a (amod or compound) modifier that is
a police keyword; and,

2. has a patient token p (defined as, governed by
nsubjpass or dobj) contained in the candidate
name e’s span.

17This measures recall of the entire gold-standard victim
database, though the corpus only includes 57% of the victims.

18Police and killing/shooting keywords are from Keith
et al.’s publicly released software.
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Applying this f(x, e, y) classifier to greedy parser
output, it performs better than the RPI-JIE-based
rules (Figure 5, right), perhaps because it is better
customized for the particular task.

Treating f as a structure query, we then use our
Monte Carlo marginal inference (§2) method to
calculate the probability of a rule match for each
sentence—that is, the fraction of parse samples
where f(x, e, y(s)) is true—and infer the entity’s
probability with the noisy-or formula (Craven and
Kumlien, 1999; Keith et al., 2017). This gives soft
classifications for entities.

6.3 Results

The Monte Carlo method achieves slightly higher
F1 scores once there are at least 10 samples
(Fig. 5, right). More interestingly, the soft entity-
level classifications also allow for precision-recall
tradeoffs (Fig. 5, left), which could be used to
prioritize the time of human reviewers updating
the victim database (filter to higher precision), or
help ensure victims are not missed (with higher
recall). We found the sampling method retrieved
several true-positive entities where only a single
sentence had a non-zero rule prediction at proba-
bility 0.01—that is, the rule was only matched in
one of 100 sampled parses. Since current prac-
titioners are already manually reviewing millions
of news articles to create police fatality victim
databases, the ability to filter to high recall—even
with low precision—may be useful to help ensure
victims are not missed.

6.4 Supervised learning

Sampling also slightly improves supervised learn-
ing for this problem. We modify Keith et al.’s
logistic regression model based on a dependency
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path feature vector f(xi, y), instead creating fea-
ture vectors that average over multiple parse sam-
ples (Ep̃(y)[f(xi, y)]) at both train and test time.
With the greedy parser, the model results in 0.229
F1; using 100 samples slightly improves perfor-
mance to 0.234 F1.

7 Semantic role assignment

Semantic role labeling (SRL), the task to predict
argument structures (Gildea and Jurafsky, 2002),
is tightly tied to syntax, and previous work has
found it beneficial to conduct it with joint infer-
ence with constituency parsing, such as with top-k
parse trees (Toutanova et al., 2008) or parse tree
samples (Finkel et al., 2006). Since §4 shows
that Monte Carlo marginalization improves de-
pendency edge prediction, we hypothesize depen-
dency sampling could improve SRL as well.

SRL includes both identifying argument spans,
and assigning spans to specific semantic role la-
bels (argument types). We focus on just the second
task of semantic role assignment: assuming argu-
ment spans are given, to predict the labels. We
experiment with English OntoNotes v5.0 annota-
tions (Weischedel et al., 2013) according to the
CoNLL 2012 test split (Pradhan et al., 2013). We
focus only on predicting among the five core argu-
ments (Arg0 through Arg4) and ignore spans with
gold-standard adjunct or reference labels. We fit
a separate model for each predicate19 among the
2,160 predicates that occur at least once in both
the training and test sets (115,811 and 12,216 sen-
tences respectively).

Our semantic model of label zt ∈ {A0..A4}
for argument head token t and predicate token p,
psem(zt | p, y), is simply the conditional probabil-
ity of the label, conditioned on y’s edge between
t and p if one exists.20 (If they are not directly
connected, the model instead conditions on a ‘no
edge’ feature.) Probabilities are maximum likeli-
hood estimates from the training data’s (predicate,
argument label, path) counts, from either greedy

19That is, for each unique (lemma, framesetID) pair, such
as (view, view-02).

20The dataset’s argument spans must be reconciled with
predicted parse structures to define the argument head t; 90%
of spans are consistent with the greedy parser in that all the
span’s tokens have the same highest ancestor contained with
the span, which we define as the argument head. For incon-
sistent cases, we select the largest subtree (that is, highest
within-span ancestor common to the largest number of the
span’s tokens). It would be interesting to modify the sampler
to restrict to parses that are consistent with the span, as a form
of rejection sampling.

Method Accuracy

Baseline (most common) 0.393
Greedy 0.496
MCSM method, 100-samples 0.529

Table 2: Semantic role assignment accuracy on English
OntoNotes v5.0. The baseline is for each unique pred-
icate, predict the argument that was seen the most at
training time.

parses, or averaged among parse samples. To pre-
dict at test time, the greedy parsing model simply
uses p(zt | p, y(greedy)). The Monte Carlo model,
by contrast, treats it as a directed joint model and
marginalizes over syntactic analyses:

pMC(zt | p, x) =
∑

y∈Ỹ(x)
psem(zt | p, y) p̃syn(y | x).

The baseline accuracy of predicting the predicate’s
most common training-time argument label yields
0.393 accuracy, and the greedy parser performs at
0.496. The Monte Carlo method (with 100 sam-
ples) improves accuracy to 0.529 (Table 2). De-
pendency samples’ usefulness in this limited case
suggests they may help systems that use depen-
dency parses more broadly for SRL (Hacioglu,
2004; Das et al., 2014).

8 Conclusion

In this work, we introduce a straightforward al-
gorithm for sampling from the full joint distri-
bution of a transition-based dependency parser.
We explore using these parse samples to dis-
cover both parsing error and structural ambigu-
ities. Moreover, we find that our Monte Carlo
syntax marginal method not only dominates the
greedy method for dependency path prediction
(especially for longer paths), but also allows for
control of precision-recall tradeoffs. Propagat-
ing dependency uncertainty can potentially help a
wide variety of semantic analysis and information
extraction tasks.
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Abstract

We introduce neural particle smoothing, a
sequential Monte Carlo method for sampling
annotations of an input string from a given
probability model. In contrast to conventional
particle filtering algorithms, we train a proposal
distribution that looks ahead to the end of
the input string by means of a right-to-left
LSTM. We demonstrate that this innovation can
improve the quality of the sample. To motivate
our formal choices, we explain how our neural
model and neural sampler can be viewed as
low-dimensional but nonlinear approximations
to working with HMMs over very large state
spaces.

1 Introduction

Many structured prediction problems in NLP can
be reduced to labeling a length-T input string x
with a length-T sequence y of tags. In some cases,
these tags are annotations such as syntactic parts of
speech. In other cases, they represent actions that
incrementally build an output structure: IOB tags
build a chunking of the input (Ramshaw and Marcus,
1999), shift-reduce actions build a tree (Yamada and
Matsumoto, 2003), and finite-state transducer arcs
build an output string (Pereira and Riley, 1997).

One may wish to score the possible taggings us-
ing a recurrent neural network, which can learn to be
sensitive to complex patterns in the training data. A
globally normalized conditional probability model
is particularly valuable because it quantifies uncer-
tainty and does not suffer from label bias (Lafferty
et al., 2001); also, such models often arise as the
predictive conditional distribution p(y | x) corre-
sponding to some well-designed generative model
p(x,y) for the domain. In the neural case, however,
inference in such models becomes intractable. It is
hard to know what the model actually predicts and
hard to compute gradients to improve its predictions.

In such intractable settings, one generally falls
back on approximate inference or sampling. In the
NLP community, beam search and importance sam-

pling are common. Unfortunately, beam search con-
siders only the approximate-top-k taggings from
an exponential set (Wiseman and Rush, 2016), and
importance sampling requires the construction of a
good proposal distribution (Dyer et al., 2016).

In this paper we exploit the sequential structure
of the tagging problem to do sequential importance
sampling, which resembles beam search in that it
constructs its proposed samples incrementally—one
tag at a time, taking the actual model into account at
every step. This method is known as particle filtering
(Doucet and Johansen, 2009). We extend it here to
take advantage of the fact that the sampler has access
to the entire input string as it constructs its tagging,
which allows it to look ahead or—as we will show—
to use a neural network to approximate the effect
of lookahead. Our resulting method is called neural
particle smoothing.

1.1 What this paper provides

For x = x1 · · ·xT , let x:t and xt: respectively de-
note the prefix x1 · · ·xt and the suffix xt+1 · · ·xT .

We develop neural particle smoothing—a se-
quential importance sampling method which, given
a string x, draws a sample of taggings y from
pθ(y | x). Our method works for any conditional
probability model of the quite general form1

pθ(y | x)
def∝ expGT (1)

where G is an incremental stateful global scoring
model that recursively defines scores Gt of prefixes
of (x,y) at all times 0 ≤ t ≤ T :

Gt
def
= Gt−1 + gθ(st−1, xt, yt) (with G0

def
= 0) (2)

st
def
= fθ(st−1, xt, yt) (with s0 given) (3)

These quantities implicitly depend on x,y and θ.
Here st is the model’s state after observing the pair
of length-t prefixes (x:t,y:t). Gt is the score-so-far

1A model may require for convenience that each input end
with a special end-of-sequence symbol: that is, xT = EOS.
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of this prefix pair, while GT − Gt is the score-to-
go. The state st summarizes the prefix pair in the
sense that the score-to-go depends only on st and the
length-(T − t) suffixes (xt:,yt:). The local scoring
function gθ and state update function fθ may be
any functions parameterized by θ—perhaps neural
networks. We assume θ is fixed and given.

This model family is expressive enough to capture
any desired p(y | x). Why? Take any distribution
p(x,y) with this desired conditionalization (e.g.,
the true joint distribution) and factor it as

log p(x,y)=
∑T

t=1 log p(xt, yt | x:t−1,y:t−1)

=
∑T

t=1 log p(xt, yt | st−1)︸ ︷︷ ︸
use as gθ(st−1,xt,yt)

= GT (4)

by making st include as much information about
(x:t,y:t) as needed for (4) to hold (possibly st =
(x:t,y:t)).2 Then by defining gθ as shown in (4), we
get p(x,y) = expGT and thus (1) holds for each
x.

1.2 Relationship to particle filtering
Our method is spelled out in §4 (one may look now).
It is a variant of the popular particle filtering method
that tracks the state of a physical system in discrete
time (Ristic et al., 2004). Our particular proposal
distribution for yt can be found in equations (5), (6),
(25) and (26). It considers not only past observations
x:t as reflected in st−1, but also future observations
xt:, as summarized by the state s̄t of a right-to-left
recurrent neural network f̄ that we will train:

Ĥt
def
= hφ(s̄t+1, xt+1) + Ĥt+1 (5)

s̄t
def
= f̄φ(s̄t+1, xt+1) (with sT given) (6)

Conditioning the distribution of yt on future obser-
vations xt: means that we are doing “smoothing”
rather than “filtering” (in signal processing terminol-
ogy). Doing so can reduce the bias and variance of
our sampler. It is possible so long as x is provided in
its entirety before the sampler runs—which is often
the case in NLP.

1.3 Applications
Why sample from pθ at all? Many NLP systems
instead simply search for the Viterbi sequence y that
maximizes GT and thus maximizes pθ(y | x). If
the space of states s is small, this can be done effi-
ciently by dynamic programming (Viterbi, 1967); if

2Furthermore, st could even depend on all of x (if s0 does),
allowing direct expression of models such as stacked BiRNNs.

not, then A∗ may be an option (see §2). More com-
mon is to use an approximate method: beam search,
or perhaps a sequential prediction policy trained
with reinforcement learning. Past work has already
shown how to improve these approximate search
algorithms by conditioning on the future (Bahdanau
et al., 2017; Wiseman and Rush, 2016).

Sampling is essentially a generalization of
maximization: sampling from exp GT

temperature
approaches maximization as temperature→ 0. It
is a fundamental building block for other algorithms,
as it can be used to take expectations over the whole
space of possible y values. For unfamiliar readers,
Appendix E reviews how sampling is crucially used
in minimum-risk decoding, supervised training,
unsupervised training, imputation of missing data,
pipeline decoding, and inference in graphical
models.

2 Exact Sequential Sampling

To develop our method, it is useful to first consider
exact samplers. Exact sampling is tractable for only
some of the models allowed by §1.1. However, the
form and notation of the exact algorithms in §2 will
guide our development of approximations in §3.

An exact sequential sampler draws yt from
pθ(yt | x,y:t−1) for each t = 1, . . . , T in sequence.
Then y is exactly distributed as pθ(y | x).

For each given x,y:t−1, observe that

pθ(yt | x,y:t−1) (7)

∝ pθ(y:t | x) =
∑

yt:
pθ(y | x) (8)

∝∑yt:
expGT (9)

= exp (Gt + log
∑

yt:
exp (GT −Gt)︸ ︷︷ ︸

call this Ht

) (10)

= exp (Gt−1 + gθ(st−1, xt, yt) +Ht) (11)

∝ exp (gθ(st−1, xt, yt) +Ht) (12)

Thus, we can easily construct the needed distribu-
tion (7) by normalizing (12) over all possible values
of yt. The challenging part of (12) is to compute Ht:
as defined in (10), Ht involves a sum over exponen-
tially many futures yt:. (See Figure 1.)

We chose the symbols G and H in homage to
the A∗ search algorithm (Hart et al., 1968). In that
algorithm (which could be used to find the Viterbi
sequence), g denotes the score-so-far of a partial
solution y:t, and h denotes the optimal score-to-
go. Thus, g + h would be the score of the best
sequence with prefix y:t. Analogously, our Gt +
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x1=“On” x2=“Thursday” … xt-1=“Fed” xt=“raised” xt+1=“interest” xt+2=“rates” …

y1=“PREP” y2=“N” … yt-1=“N”

yt=“ADJ”

…

yt=“V”

yt+1=“V”

…

yt+1=“N”

…

yt+2=“N”

yt+2=“N”

Ht

x

y

gθ(st-1, xt, yt)

Gt-1

Figure 1: Sampling a single particle from a tagging model. y1, . . . , yt−1 (orange) have already been chosen, with a total
model score of Gt−1, and now the sampler is constructing a proposal distribution q (purple) from which the next tag yt will be
sampled. Each yt is evaluated according to its contribution to Gt (namely gθ) and its future score Ht (blue). The figure illustrates
quantities used throughout the paper, beginning with exact sampling in equations (7)–(12). Our main idea (§3) is to approximate
the Ht computation (a log-sum-exp over exponentially many sequences) when exact computation by dynamic programming is
not an option. The form of our approximation uses a right-to-left recurrent neural network but is inspired by the exact dynamic
programming algorithm.

Ht is the log of the total exponentiated scores of
all sequences with prefix y:t. Gt and Ht might be
called the logprob-so-far and logprob-to-go of y:t.

Just as A∗ approximates h with a “heuristic” ĥ,
the next section will approximate Ht using a neural
estimate Ĥt (equations (5)–(6)). However, the spe-
cific form of our approximation is inspired by cases
where Ht can be computed exactly. We consider
those in the remainder of this section.

2.1 Exact sampling from HMMs
A hidden Markov model (HMM) specifies a nor-
malized joint distribution pθ(x,y) = expGT over
state sequence y and observation sequence x,3 Thus
the posterior pθ(y | x) is proportional to expGT ,
as required by equation (1).

The HMM specifically defines GT by equa-
tions (2)–(3) with st = yt and gθ(st−1, xt, yt) =
log pθ(yt | yt−1) + log pθ(xt | yt).4

In this setting, Ht can be computed exactly by
the backward algorithm (Rabiner, 1989). (Details
are given in Appendix A for completeness.)

2.2 Exact sampling from OOHMMs
For sequence tagging, a weakness of (first-order)
HMMs is that the model state st = yt may contain
little information: only the most recent tag yt is
remembered, so the number of possible model states
st is limited by the vocabulary of output tags.

We may generalize so that the data generating
process is in a latent state ut ∈ {1, . . . , k} at each
time t, and the observed yt—along with xt—is gen-
erated from ut. Now k may be arbitrarily large. The

3The HMM actually specifies a distribution over a pair of in-
finite sequences, but here we consider the marginal distribution
over just the length-T prefixes.

4It takes s0 = BOS, a beginning-of-sequence symbol, so
pθ(y1 | BOS) specifies the initial state distribution.

model has the form

pθ(x,y) = expGT (13)

=
∑

u

T∏

t=1

pθ(ut | ut−1) · pθ(xt, yt | ut)

This is essentially a pair HMM (Knudsen and
Miyamoto, 2003) without insertions or deletions,
also known as an “ε-free” or “same-length” proba-
bilistic finite-state transducer. We refer to it here as
an output-output HMM (OOHMM).5

Is this still an example of the general model ar-
chitecture from §1.1? Yes. Since ut is latent and
evolves stochastically, it cannot be used as the state
st in equations (2)–(3) or (4). However, we can de-
fine st to be the model’s belief state after observing
(x:t,y:t). The belief state is the posterior probability
distribution over the underlying state ut of the sys-
tem. That is, st deterministically keeps track of all
possible states that the OOHMM might be in—just
as the state of a determinized FSA keeps track of
all possible states that the original nondeterministic
FSA might be in.

We may compute the belief state in terms of a
vector of forward probabilities that starts at α0,

(α0)u
def
=

{
1 if u = BOS (see footnote 4)
0 if u = any other state

(14)

and is updated deterministically for each 0 < t ≤ T
by the forward algorithm (Rabiner, 1989):

(αt)u
def
=

k∑

u′=1

(αt−1)u′ · pθ(u | u′) · pθ(xt, yt | u)

(15)
5This is by analogy with the input-output HMM (IOHMM)

of Bengio and Frasconi (1996), which defines p(y | x) directly
and conditions the transition to ut on xt. The OOHMM instead
defines p(y | x) by conditionalizing (13)—which avoids the
label bias problem (Lafferty et al., 2001) that in the IOHMM,
yt is independent of future input xt: (given the past input x:t).
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(αt)u can be interpreted as the logprob-so-far if the
system is in state u after observing (x:t,y:t). We
may express the update rule (15) by α>t = α>t−1P
where the matrix P depends on (xt, yt), namely
Pu′u

def
= pθ(u | u′) · pθ(xt, yt | u).

The belief state st
def
= JαtK ∈ Rk simply nor-

malizes αt into a probability vector, where JuK def
=

u/(u>1) denotes the normalization operator. The
state update (15) now takes the form (3) as desired,
with fθ a normalized vector-matrix product:

s>t = fθ(st−1, xt, yt)
def
= Js>t−1P K (16)

As in the HMM case, we define Gt as the log of
the generative prefix probability,

Gt
def
= log pθ(x:t,y:t) = log

∑
u(αt)u (17)

which has the form (2) as desired if we put

gθ(st−1, xt, yt)
def
= Gt −Gt−1 (18)

= log
α>t−1P1

α>t−11
= log (s>t−1P1)

Again, exact sampling is possible. It suffices to
compute (9). For the OOHMM, this is given by

∑
yt:

expGT = α>t βt (19)

where βT
def
= 1 and the backward algorithm

(βt)v
def
= pθ(xt: | ut = u) (20)

=
∑

ut:,yt:

pθ(ut:,xt:,yt: | ut = u)

=
∑

u′
pθ(u

′ | u) · p(xt+1 | u′)︸ ︷︷ ︸
call this Puu′

·(βt+1)u′

for 0 ≤ t < T uses dynamic programming to find
the total probability of all ways to generate the fu-
ture observations xt:. Note that αt is defined for
a specific prefix y:t (though it sums over all u:t),
whereas βt sums over all suffixes yt: (and over all
ut:), to achieve the asymmetric summation in (19).

Define s̄t
def
= JβtK ∈ Rk to be a normalized ver-

sion of βt. The βt recurrence (20) can clearly be ex-
pressed in the form s̄t = JP s̄t+1K, much like (16).

2.3 The logprob-to-go for OOHMMs
Let us now work out the definition of Ht for
OOHMMs (cf. equation (35) in Appendix A for
HMMs). We will write it in terms of Ĥt from §1.2.
Let us define Ĥt symmetrically to Gt (see (17)):

Ĥt
def
= log

∑

u

(βt)u (= log 1>βt) (21)

which has the form (5) as desired if we put

hφ(s̄t+1, xt+1)
def
= Ĥt − Ĥt+1 = log (1>P s̄t+1)

(22)

From equations (10), (17), (19) and (21), we see

Ht = log
(∑

yt:

expGT
)
−Gt

= log
α>t βt

(α>t 1)(1>βt)
+ log (1>βt)

= log s>t s̄t︸ ︷︷ ︸
call this Ct

+Ĥt (23)

where Ct ∈ R can be regarded as evaluating the
compatibility of the state distributions st and s̄t.

In short, the generic strategy (12) for exact sam-
pling says that for an OOHMM, yt is distributed as

pθ(yt | x,y:t−1) ∝ exp (gθ(st−1, xt, yt) +Ht)

∝ exp ( gθ(st−1, xt, yt)︸ ︷︷ ︸
depends on x:t,y:t

+ Ct︸︷︷︸
on x,y:t

+ Ĥt︸︷︷︸
on xt:

)

∝ exp (gθ(st−1, xt, yt) + Ct) (24)

This is equivalent to choosing yt in proportion to
(19)—but we now turn to settings where it is infea-
sible to compute (19) exactly. There we will use
the formulation (24) but approximate Ct. For com-
pleteness, we will also consider how to approximate
Ĥt, which dropped out of the above distribution
(because it was the same for all choices of yt) but
may be useful for other algorithms (see §4).

3 Neural Modeling as Approximation

3.1 Models with large state spaces
The expressivity of an OOHMM is limited by the
number of states k. The state ut ∈ {1, . . . , k} is a
bottleneck between the past (x:t,y:t) and the future
(xt:,yt:), in that past and future are conditionally
independent given ut. Thus, the mutual information
between past and future is at most log2 k bits.

In many NLP domains, however, the past seems
to carry substantial information about the future.
The first half of a sentence greatly reduces the un-
certainly about the second half, by providing infor-
mation about topics, referents, syntax, semantics,
and discourse. This suggests that an accurate HMM
language model p(x) would require very large k—
as would a generative OOHMM model p(x,y) of
annotated language. The situation is perhaps better
for discriminative models p(y | x), since much of
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the information for predicting yt: might be available
in xt:. Still, it is important to let (x:t,y:t) contribute
enough additional information about yt:: even for
short strings, making k too small (giving ≤ log2 k
bits) may harm prediction (Dreyer et al., 2008).

Of course, (4) says that an OOHMM can express
any joint distribution for which the mutual informa-
tion is finite,6 by taking k large enough for vt−1 to
capture the relevant info from (x:t−1,y:t−1).

So why not just take k to be large—say, k = 230

to allow 30 bits of information? Unfortunately, eval-
uatingGT then becomes very expensive—both com-
putationally and statistically. As we have seen, if
we define st to be the belief state JαtK ∈ Rk, up-
dating it at each observation (xt, yt) (equation (3))
requires multiplication by a k × k matrix P . This
takes time O(k2), and requires enough data to learn
O(k2) transition probabilities.

3.2 Neural approximation of the model

As a solution, we might hope that for the inputs
x observed in practice, the very high-dimensional
belief states JαtK ∈ Rk might tend to lie near a d-
dimensional manifold where d� k. Then we could
take st to be a vector in Rd that compactly encodes
the approximate coordinates of JαtK relative to the
manifold: st = ν(JαtK), where ν is the encoder.

In this new, nonlinearly warped coordinate sys-
tem, the functions of st−1 in (2)–(3) are no longer
the simple, essentially linear functions given by (16)
and (18). They become nonlinear functions operat-
ing on the manifold coordinates. (fθ in (16) should
now ensure that s>t ≈ ν(J(ν−1(st−1))>P K), and gθ
in (18) should now estimate log (ν−1(st−1))>P1.)
In a sense, this is the reverse of the “kernel trick”
(Boser et al., 1992) that converts a low-dimensional
nonlinear function to a high-dimensional linear one.

Our hope is that st has enough dimensions d� k
to capture the useful information from the true JαtK,
and that θ has enough dimensions� k2 to capture
most of the dynamics of equations (16) and (18).
We thus proceed to fit the neural networks fθ, gθ
directly to the data, without ever knowing the true k
or the structure of the original operators P ∈ Rk×k.

We regard this as the implicit justification for
various published probabilistic sequence models
pθ(y | x) that incorporate neural networks. These
models usually have the form of §1.1. Most simply,
(fθ, gθ) can be instantiated as one time step in an
RNN (Aharoni and Goldberg, 2017), but it is com-

6This is not true for the language of balanced parentheses.

mon to use enriched versions such as deep LSTMs.
It is also common to have the state st contain not
only a vector of manifold coordinates in Rd but also
some unboundedly large representation of (x,y:t)
(cf. equation (4)), so the fθ neural network can refer
to this material with an attentional (Bahdanau et al.,
2015) or stack mechanism (Dyer et al., 2015).

A few such papers have used globally normalized
conditional models that can be viewed as approx-
imating some OOHMM, e.g., the parsers of Dyer
et al. (2016) and Andor et al. (2016). That is the
case (§1.1) that particle smoothing aims to support.
Most papers are locally normalized conditional
models (e.g., Kann and Schütze, 2016; Aharoni and
Goldberg, 2017); these simplify supervised training
and can be viewed as approximating IOHMMs
(footnote 5). For locally normalized models,Ht = 0
by construction, in which case particle filtering
(which estimates Ht = 0) is just as good as particle
smoothing. Particle filtering is still useful for these
models, but lookahead’s inability to help them is
an expressive limitation (known as label bias) of
locally normalized models. We hope the existence
of particle smoothing (which learns an estimate
Ht) will make it easier to adopt, train, and decode
globally normalized models, as discussed in §1.3.

3.3 Neural approximation of logprob-to-go
We can adopt the same neuralization trick to approx-
imate the OOHMM’s logprob-to-go Ht = Ct + Ĥt.
We take s̄t ∈ Rd on the same theory that it is a low-
dimensional reparameterization of JβtK, and define
(f̄φ, hφ) in equations (5)–(6) to be neural networks.
Finally, we must replace the definition of Ct in (23)
with another neural network cφ that works on the
low-dimensional approximations:7

Ct
def
= cφ(st, s̄t) (except that CT

def
= 0) (25)

The resulting approximation to (24) (which does not
actually require hφ) will be denoted qθ,φ:

qθ,φ(yt | x,y:t−1)
def∝ exp (gθ(st−1, xt, yt) + Ct)

(26)

The neural networks in the present section are all
parameterized by φ, and are intended to produce an
estimate of the logprob-to-go Ht—a function of xt:,
which sums over all possible yt:.

By contrast, the OOHMM-inspired neural
networks suggested in §3.2 were used to specify an

7CT = 0 is correct according to (23). Forcing this ensures
HT = 0, so our approximation becomes exact as of t = T .
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actual model of the logprob-so-far Gt—a function
of x:t and y:t—using separate parameters θ.

Arguably φ has a harder modeling job than θ
because it must implicitly sum over possible futures
yt:. We now consider how to get corrected samples
from qθ,φ even if φ gives poor estimates of Ht, and
then how to train φ to improve those estimates.

4 Particle smoothing

In this paper, we assume nothing about the given
model GT except that it is given in the form of
equations (1)–(3) (including the parameter vector θ).

Suppose we run the exact sampling strategy but
approximate pθ in (7) with a proposal distribution
qθ,φ of the form in (25)–(26). Suppressing the sub-
scripts on p and q for brevity, this means we are
effectively drawing y not from p(y | x) but from

q(y | x) =

T∏

t=1

q(yt | x,y:t−1) (27)

If Ct ≈ Ht+const within each yt draw, then q ≈ p.
Normalized importance sampling corrects

(mostly) for the approximation by drawing many se-
quences y(1), . . .y(M) IID from (27) and assigning
y(m) a relative weight of w(m) def

= p(y(m)|x)
q(y(m)|x) . This

ensemble of weighted particles yields a distribution

p̂(y)
def
=

∑M
m=1 w

(m)I(y=y(m))∑M
m=1 w

(m)
≈ p(y | x) (28)

that can be used as discussed in §1.3. To com-
pute w(m) in practice, we replace the numerator
p(y(m) | x) by the unnormalized version expGT ,
which gives the same p̂. Recall that each GT is a
sum

∑T
t=1 gθ(· · · ).

Sequential importance sampling is an equivalent
implementation that makes t the outer loop and m
the inner loop. It computes a prefix ensemble

Yt
def
= {(y(1)

:t , w
(1)
t ), . . . , (y

(M)
:t , w

(M)
t )} (29)

for each 0 ≤ t ≤ T in sequence. Initially,
(y

(m)
:0 , w

(m)
0 ) = (ε, expC0) for all m. Then for

0 < t ≤ T , we extend these particles in parallel:

y
(m)
:t = y

(m)
:t−1y

(m)
t (concatenation) (30)

w
(m)
t = w

(m)
t−1

exp (gθ(st−1,xt,yt)+Ct−Ct−1)
q(yt|x,y:t−1)

(31)

where each y(m)
t is drawn from (26). Each Yt yields

a distribution p̂t over prefixes y:t, which estimates
the distribution pt(y:t)

def∝ exp (Gt+Ct). We return

p̂
def
= p̂T ≈ pT = p. This gives the same p̂ as in

(28): the final y(m)
T are the same, with the same

final weights w(m)
T = expGT

q(y(m)|x) , whereGT was now

summed up as C0 +
∑T

t=1 gθ(· · · ) + Ct − Ct−1.
That is our basic particle smoothing strategy. If

we use the naive approximation Ct = 0 everywhere,
it reduces to particle filtering. In either case, various
well-studied improvements become available, such
as various resampling schemes (Douc and Cappé,
2005) and the particle cascade (Paige et al., 2014).8

An easy improvement is multinomial resampling.
After computing each p̂t, this replaces Yt with a set
of M new draws from p̂t (≈ pt), each of weight
1—which tends to drop low-weight particles and
duplicate high-weight ones.9 For this to usefully
focus the ensemble on good prefixes y:t, pt should
be a good approximation to the true marginal
p(y:t | x) ∝ exp (Gt+Ht) from (10). That is why
we arranged for pt(y:t) ∝ exp (Gt + Ct). Without
Ct, we would have only pt(y:t) ∝ expGt—which
is fine for the traditional particle filtering setting,
but in our setting it ignores future information in xt:
(which we have assumed is available) and also fa-
vors sequences y that happen to accumulate most of
their global score GT early rather than late (which
is possible when the globally normalized model
(1)–(2) is not factored in the generative form (4)).

5 Training the Sampler Heuristic

We now consider training the parameters φ of our
sampler. These parameters determine the updates f̄φ
in (6) and the compatibility function cφ in (25). As
a result, they determine the proposal distribution q
used in equations (27) and (31), and thus determine
the stochastic choice of p̂ that is returned by the
sampler on a given input x.

In this paper, we simply try to tune φ to yield
good proposals. Specifically, we try to ensure that
qφ(y | x) in equation (27) is close to p(y | x) from
equation (1). While this may not be necessary for
the sampler to perform well downstream,10 it does

8The particle cascade would benefit from an estimate of Ĥt,
as it (like A∗ search) compares particles of different lengths.

9While resampling mitigates the degeneracy problem, it
could also reduce the diversity of particles. In our experiments
in this paper, we only do multinomial resampling when the ef-
fective sample size of p̂t is lower than M

2
. Doucet and Johansen

(2009) give a more thorough discussion on when to resample.
10In principle, one could attempt to train φ “end-to-end”

on some downstream objective by using reinforcement learn-
ing or the Gumbel-softmax trick (Jang et al., 2017; Maddison
et al., 2017). For example, we might try to ensure that p̂ closely
matches the model’s distribution p (equation (28))—the “na-
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guarantee it (assuming that the model p is correct).
Specifically, we seek to minimize

(1−λ)KL(p||qφ) +λKL(qφ||p) (with λ ∈ [0, 1])
(32)

averaged over examples x drawn from a training
set.11 (The training set need not provide true y’s.)

The inclusive KL divergence KL (p||qφ) is an ex-
pectation under p. We estimate it by replacing pwith
a sample p̂, which in practice we can obtain with our
sampler under the current φ. (The danger, then, is
that p̂ will be biased when φ is not yet well-trained;
this can be mitigated by increasing the sample size
M when drawing p̂ for training purposes.)

Intuitively, this term tries to encourage qφ in fu-
ture to re-propose those y values that turned out to
be “good” and survived into p̂ with high weights.

The exclusive KL divergence KL(qφ||p) is an
expectation under qφ. Since we can sample from
qφ exactly, we can get an unbiased estimate of
∇φKL(qφ||p) with the likelihood ratio trick (Glynn,
1990).12 (The danger is that such “REINFORCE”
methods tend to suffer from very high variance.)

This term is a popular objective for variational
approximation. Here, it tries to discourage qφ from
re-proposing “bad” y values that turned out to have
low expGT relative to their proposal probability.

Our experiments balance “recall” (inclusive) and
“precision” (exclusive) by taking λ = 1

2 (which Ap-
pendix F compares to λ ∈ {0, 1}). Alas, because
of our approximation to the inclusive term, neither
term’s gradient will “find” and directly encourage
good y values that have never been proposed. Ap-
pendix B gives further discussion and formulas.

6 Models for the Experiments

To evaluate our methods, we needed pre-trained
models pθ. We experimented on several models. In
each case, we trained a generative model pθ(x,y),
so that we could try sampling from its posterior dis-
tribution pθ(y | x). This is a very common setting
where particle smoothing should be able to help.
Details for replication are given in Appendix C.
tural” goal of sampling. This objective can tolerate inaccurate
local proposal distributions in cases where the algorithm could
recover from them through resampling. Looking even farther
downstream, we might merely want p̂—which is typically used
to compute expectations—to provide accurate guidance to some
decision or training process (see Appendix E). This might not
require fully matching the model, and might even make it desir-
able to deviate from an inaccurate model.

11Training a single approximation qφ for all x is known as
amortized inference.

12The normalizing constant of p from (1) can be ignored
because the gradient of a constant is 0.

6.1 Tagging models

We can regard a tagged sentence (x,y) as a string
over the “pair alphabet” X × Y . We train an RNN
language model over this “pair alphabet”—this is a
neuralized OOHMM as suggested in §3.2:

log pθ(x,y) =

T∑

t=1

log pθ(xt, yt | st−1) (33)

This model is locally normalized, so that
log pθ(x,y) (as well as its gradient) is straightfor-
ward to compute for a given training pair (x,y).
Joint sampling from it would also be easy (§3.2).

However, p(y | x) is globally renormalized (by
an unknown partition function that depends on x,
namely expH0). Conditional sampling of y is there-
fore potentially hard. Choosing yt optimally re-
quires knowledge of Ht, which depends on the fu-
ture xt:.

As we noted in §1, many NLP tasks can be seen as
tagging problems. In this paper we experiment with
two such tasks: English stressed syllable tagging,
where the stress of a syllable often depends on the
number of remaining syllables,13 providing good
reason to use the lookahead provided by particle
smoothing; and Chinese NER, which is a familiar
textbook application and reminds the reader that our
formal setup (tagging) provides enough machinery
to treat other tasks (chunking).

English stressed syllable tagging This task tags
a sequence of phonemes x, which form a word,
with their stress markings y. Our training examples
are the stressed words in the CMU pronunciation
dictionary (Weide, 1998). We test the sampler on
held-out unstressed words.

Chinese social media NER This task does
named entity recognition in Chinese, by tagging
the characters of a Chinese sentence in a way that
marks the named entities. We use the dataset from
Peng and Dredze (2015), whose tagging scheme is
a variant of the BIO scheme mentioned in §1. We
test the sampler on held-out sentences.

6.2 String source separation

This is an artificial task that provides a discrete ana-
logue of speech source separation (Zibulevsky and
Pearlmutter, 2001). The generative model is that J
strings (possibly of different lengths) are generated

13English, like many other languages, assigns stress from
right to left (Hayes, 1995).
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IID from an RNN language model, and are then
combined into a single string x according to a ran-
dom interleaving string y.14 The posterior p(y | x)
predicts the interleaving string, which suffices to re-
construct the original strings. The interleaving string
is selected from the uniform distribution over all pos-
sible interleavings (given the J strings’ lengths). For
example, with J = 2, a possible generative story is
that we first sample two strings Foo and Bar from an
RNN language model. We then draw an interleav-
ing string 112122 from the aforementioned uniform
distribution, and interleave the J strings determinis-
tically to get FoBoar.
p(x,y) is proportional to the product of the prob-

abilities of the J strings. The only parameters of
pθ, then, are the parameters of the RNN language
model, which we train on clean (non-interleaved)
samples from a corpus. We test the sampler on ran-
dom interleavings of held-out samples.

The state s (which is provided as an input to cθ
in (25)) is the concatenation of the J states of the
language model as it independently generates the J
strings, and gθ(st−1, xt, yt) is the log-probability of
generating xt as the next character of the ytth string,
given that string’s language model state within st−1.
As a special case, xT = EOS (see footnote 1), and
gθ(sT−1, EOS, EOS) is the total log-probability of
termination in all J language model states.

String source separation has good reason for
lookahead: appending character “o” to a recon-
structed string “ gh” is only advisable if “s” and
“t” are coming up soon to make “ghost.” It also il-
lustrates a powerful application setting—posterior
inference under a generative model. This task conve-
niently allowed us to construct the generative model
from a pre-trained language model. Our constructed
generative model illustrates that the state s and tran-
sition function f can reflect interesting problem-
specific structure.

CMU Pronunciation dictionary The CMU pro-
nunciation dictionary (already used above) provides
sequences of phonemes. Here we use words no
longer than 5 phonemes. We interleave the (un-
stressed) phonemes of J = 5 words.

Penn Treebank The PTB corpus (Marcus et al.,
1993) provides English sentences, from which we
use only the sentences of length ≤ 8. We interleave
the words of J = 2 sentences.

14We formally describe the generative process in Ap-
pendix G.

7 Experiments

In our experiments, we are given a pre-trained scor-
ing model pθ, and we train the parameters φ of a
particle smoothing algorithm.15

We now show that our proposed neural particle
smoothing sampler does better than the particle filter-
ing sampler. To define “better,” we evaluate samplers
on the offset KL divergence from the true posterior.

7.1 Evaluation metrics
Given x, the “natural” goal of conditional sampling
is for the sample distribution p̂(y) to approximate
the true distribution pθ(y | x) = expGT / expH0

from (1). We will therefore report—averaged over
all held-out test examples x—the KL divergence

KL(p̂||p) = Ey∼p̂ [log p̂(y)] (34)

− (Ey∼p̂ [log p̃(y | x)]− logZ(x)),

where p̃(y | x) denotes the unnormalized distribu-
tion given by expGT in (2), and Z(x) denotes its
normalizing constant, expH0 =

∑
y p̃(y | x).

As we are unable to compute logZ(x) in practice,
we replace it with an estimate z(x) to obtain an
offset KL divergence. This change of constant does
not change the measured difference between two
samplers, KL(p̂1||p)−KL(p̂2||p). Nonetheless, we
try to use a reasonable estimate so that the reported
KL divergence is interpretable in an absolute sense.
Specifically, we take z(x) = log

∑
y∈Y p̃(y | x) ≤

logZ, where Y is the full set of distinct particles
y that we ever drew for input x, including samples
from the beam search models, while constructing
the experimental results graph.16 Thus, the offset
KL divergence is a “best effort” lower bound on the
true exclusive KL divergence KL(p̂||p).

7.2 Results
In all experiments we compute the offset KL diver-
gence for both the particle filtering samplers and the
particle smoothing samplers, for varying ensemble
sizes M . We also compare against a beam search
baseline that keeps the highest-scoring M particles
at each step (scored by expGt with no lookahead).
The results are in Figures 2a–2d.

15For the details of the training procedures and the specific
neural architectures in our models, see Appendices C and D.

16Thus, Y was collected across all samplings, iterations,and
ensemble sizes M , in an attempt to make the summation over
Y as complete as possible. For good measure, we added some
extra particles: whenever we drew M particles via particle
smoothing, we drew an additional 2M particles by particle
filtering and added them to Y .
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Figure 2: Offset KL divergences for the tasks in §§ 6.1 and 6.2. The logarithmic x-axis is the size of particles M (8 ≤M ≤ 128).
The y-axis is the offset KL divergence described in §7.1 (in bits per sequence). The smoothing samplers offer considerable speedup:
for example, in Figure 2a, the non-resampled smoothing sampler achieves comparable offset KL divergences with only 1/4 as many
particles as its filtering counterparts. Abbreviations in the legend: PF=particle filtering. PS=particle smoothing. BEAM=beam
search. ‘:R’ suffixes indicate resampled variants. For readability, beam search results are omitted from Figure 2d, but appear in
Figure 3 of the appendices.

Given a fixed ensemble size, we see the smooth-
ing sampler consistently performs better than the
filtering counterpart. It often achieves comparable
performance at a fraction of the ensemble size.

Beam search on the other hand falls behind on
three tasks: stress prediction and the two source
separation tasks. It does perform better than the
stochastic methods on the Chinese NER task, but
only at small beam sizes. Varying the beam size
barely affects performance at all, across all tasks.
This suggests that beam search is unable to explore
the hypothesis space well.

We experiment with resampling for both the parti-
cle filtering sampler and our smoothing sampler. In
source separation and stressed syllable prediction,
where the right context contains critical information
about how viable a particle is, resampling helps par-
ticle filtering almost catch up to particle smoothing.
Particle smoothing itself is not further improved by
resampling, presumably because its effective sam-
ple size is high. The goal of resampling is to kill
off low-weight particles (which were overproposed)
and reallocate their resources to higher-weight ones.
But with particle smoothing, there are fewer low-
weight particles, so the benefit of resampling may be
outweighted by its cost (namely, increased variance).

8 Related Work

Much previous work has employed sequential im-
portance sampling for approximate inference of in-
tractable distributions (e.g., Thrun, 2000; Andrews
et al., 2017). Some of this work learns adaptive
proposal distributions in this setting (e.g. Gu et al.,
2015; Paige and Wood, 2016). The key difference
in our work is that we consider future inputs, which
is impossible in online decision settings such as
robotics. Klaas et al. (2006) did do particle smooth-
ing, like us, but they did not learn adaptive proposal
distributions.

Just as we use a right-to-left RNN to guide pos-
terior sampling of a left-to-right generative model,
Krishnan et al. (2017) employed a right-to-left RNN
to guide posterior marginal inference in the same
sort of model. Serdyuk et al. (2018) used a right-to-
left RNN to regularize training of such a model.

9 Conclusion

We have described neural particle smoothing, a se-
quential Monte Carlo method for approximate sam-
pling from the posterior of incremental neural scor-
ing models. Sequential importance sampling has
arguably been underused in the natural language pro-
cessing community. It is quite a plausible strategy
for dealing with rich, globally normalized probabil-
ity models such as neural models—particularly if a
good sequential proposal distribution can be found.
Our contribution is a neural proposal distribution,
which goes beyond particle filtering in that it uses a
right-to-left recurrent neural network to “look ahead”
to future symbols of x when proposing each symbol
yt. The form of our distribution is well-motivated.

There are many possible extensions to the work in
this paper. For example, we can learn the generative
model and proposal distribution jointly; we can also
infuse them with hand-crafted structure, or use more
deeply stacked architectures; and we can try training
the proposal distribution end-to-end (footnote 10).
Another possible extension would be to allow each
step of q to propose a sequence of actions, effectively
making the tagset size∞. This extension relaxes our
|y| = |x| restriction from §1 and would allow us to
do general sequence-to-sequence transduction.
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A The logprob-to-go for HMMs

As noted in §2.1, the logprob-to-go Ht can be com-
puted by the backward algorithm. By the definition
of Ht in equation (10),

expHt =
∑

yt:

exp (GT −Gt) (35)

=
∑

yt:

exp
T∑

j=t+1

gθ(sj−1, xj , yj) (36)

=
∑

yt:

T∏

j=t+1

pθ(yj | yj−1) · pθ(xj | yj)

= (βt)yt (backward prob of yt at time t)

where the vectorβt is defined by base case (βT )y =
1 and for 0 ≤ t < T by the recurrence

(βt)y
def
=
∑

yt:

pθ(xt:,yt: | yt = y) (37)

=
∑

y′
pθ(y

′ | y) · pθ(xt+1 | y′) · (βt+1)y′

The backward algorithm (20) for OOHMMs in
§2.2 is a variant of this.

B Gradients for Training the Proposal
Distribution

For a given x, both forms of KL divergence achieve
their minimum of 0 when (∀y) qφ(y | x) = p(y |
x). However, we are unlikely to be able to find such
a φ; the two metrics penalize qφ differently for mis-
matches. We simplify the notation below by writing
qφ(y) and p(y), suppressing the conditioning on x.

Inclusive KL Divergence The inclusive KL di-
vergence has that name because it is finite only when
support(qφ) ⊇ support(p), i.e., when qφ is capable
of proposing any string y that has positive proba-
bility under p. This is required for qφ to be a valid
proposal distribution for importance sampling.

KL (p||qφ) (38)

= Ey∼p [log p (y)− log qφ(y)]

= Ey∼p [log p (y)]

− Ey∼p [log qφ (y)]

The first term Ey∼p [log p (y)] is a constant with
regard to φ. As a result, the gradient of the above is
just the gradient of the second term:

∇φKL(p||qφ) = ∇φ Ey∼p [− log qφ (y)]︸ ︷︷ ︸
the cross-entropy H(p,qφ)

We cannot directly sample from p. However, our
weighted mixture p̂ from equation (28) (obtained by
sequential importance sampling) could be a good
approximation:

∇φKL(p||qφ) ≈ ∇φEy∼p̂ [− log qφ (y)] (39)

=
T∑

t=1

Ep̂ [−∇φ log qφ(yt | y:t−1,x)]

Following this approximate gradient downhill has an
intuitive interpretation: if a particular yt value ends
up with high relative weight in the final ensemble p̂,
then we will try to adjust qφ so that it would have
had a high probability of proposing that yt value at
step t in the first place.

Exclusive KL Divergence The exclusive diver-
gence has that name because it is finite only when
support(qφ) ⊆ support(p). It is defined by

KL(qφ||p) = Ey∼qφ [log qφ(y)− log p(y)] (40)

= Ey∼qφ [log qφ(y)− log p̃(y)] + logZ

=
∑

y

qφ(y) [log qφ(y)− log p̃(y)]︸ ︷︷ ︸
call this dφ(y)

+ logZ

where p(y) = 1
Z p̃(y) for p̃(y) = expGT and Z =∑

y p̃(y). With some rearrangement, we can write
its gradient as an expectation that can be estimated
by sampling from qφ.17 Observing thatZ is constant
with respect to φ, first write

∇φKL(qφ||p) (41)

=
∑

y

∇φ (qφ(y) dφ(y)) (42)

=
∑

y

(∇φqφ(y)) dφ(y)

+
∑

y

qφ(y)∇φ log qφ(y)︸ ︷︷ ︸
=∇φqφ(y)

=
∑

y

(∇φqφ(y)) dφ(y)

where the last step uses the fact that∑
y∇φqφ(y) = ∇φ

∑
y qφ(y) = ∇φ1 = 0.

We can turn this into an expectation with a
second use of Glynn (1990)’s observation that

17This is an extension of the REINFORCE trick (Williams,
1992), which estimates the gradient of Ey∼qφ [reward(y)]
when the reward is independent of φ. In our case, the expecta-
tion is over a quantity that does depend on φ.
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∇φqφ(y) = qφ(y)∇φ log qφ(y) (the “likelihood
ratio trick”):

∇φKL(qφ||p)
=
∑

y

qφ(y)dφ(y)∇φ log qφ(y)

= Ey∼qφ [dφ(y)∇φ log qφ(y)] (43)

which can, if desired, be further rewritten as

= Ey∼qφ [dφ(y)∇φ dφ(y)]

= Ey∼qφ
[
∇φ
(
1
2dφ(y)2

)]
(44)

If we regard dφ(y) as a signed error (in the log do-
main) in trying to fit qφ to p̃, then the above gradient
of KL can be interpreted as the gradient of the mean
squared error (divided by 2).18

We would get the same gradient for any rescaled
version of the unnormalized distribution p̃, but the
formula for obtaining that gradient would be dif-
ferent. In particular, if we rewrite the above deriva-
tion but add a constant b to both log p̃(y) and logZ
throughout (equivalent to adding b to GT ), we will
get the slightly generalized expectation formulas

Ey∼qφ [(dφ(y)− b)∇φ log qφ(y)] (45)

Ey∼qφ
[
∇φ
(
1
2 (dφ(y)− b)2

)]
(46)

in place of equations (43) and (44). By choosing an
appropriate “baseline” b, we can reduce the variance
of the sampling-based estimate of these expectations.
This is similar to the use of a baseline in the REIN-
FORCE algorithm (Williams, 1992). In this work
we choose b using an exponential moving average
of past E [dφ(y)] values: at the end of each training
minibatch, we update b← 0.1 · b+ 0.9 · d̄, where
d̄ is the mean of the estimated Ey∼qφ(·|x) [dφ(y)]
values for all examples x in the minibatch.

C Implementation Details

We implement all RNNs in this paper as GRU net-
works (Cho et al., 2014) with d = 32 hidden units
(state space R32). Each of our models (§6) always
specifies the logprob-so-far in equations (2) and (3)
using a 1-layer left-to-right GRU,19 while the corre-
sponding proposal distribution (§3.3) always spec-
ifies the state st in (6) using a 2-layer right-to-left

18We thank Hongyuan Mei, Tim Vieira, and Sanjeev Khu-
danpur for insightful discussions on this derivation.

19For the tagging task described in §6.1, gθ(st−1, xt, yt)
def
=

log pθ(xt, yt | st−1), where the GRU state st−1 is used to
define a softmax distribution over possible (xt, yt) pairs in the
same manner as an RNN language model (Mikolov et al., 2010).
Likewise, for the source separation task (§6.2), the source lan-
guage models described in Appendix G are GRU-based RNN
language models.
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Figure 3: Offset KL divergence for the source separation task
on phoneme sequences.

GRU, and specifies the compatibility function Ct in
(23) using a 4-layer feedforward ReLU network.20

For the Chinese social media NER task (§6.1), we
use the Chinese character embeddings provided by
Peng and Dredze (2015), while for the source separa-
tion tasks (§6.2), we use the 50-dimensional GloVe
word embeddings (Pennington et al., 2014). In other
cases, we train embeddings along with the rest of
the network. We optimize with the Adam optimizer
using the default parameters (Kingma and Ba, 2015)
and L2 regularization coefficient of 10−5.

D Training Procedures

In all our experiments, we train the incremental scor-
ing models (the tagging and source separation mod-
els described in §6.1 and §6.2, respectively) on the
training dataset T . We do early stopping, using per-
plexity on a held-out development set D1 to choose
the number of epochs to train (maximum of 3).

Having obtained these model parameters θ, we
train our proposal distributions qθ,φ on T , keeping
θ fixed and only tuning φ. Again we use early stop-
ping, using the KL divergence from §7.1 on a sep-
arate development set D2 to choose the number of
epochs to train (maximum of 20 for the two tag-
ging tasks and source separation on the PTB dataset,
and maximum of 50 for source separation on the
phoneme sequence dataset). We then evaluate qθ∗,φ∗
on the test dataset E.

[Appendices E–G appear in the supplementary
material file.]

20As input to Ct, we actually provide not only st, s̄t but also
the states fθ(st−1, xt, y) (including st) that could have been
reached for each possible value y of yt. We have to compute
these anyway while constructing the proposal distribution, and
we find that it helps performance to include them.
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Abstract

We present neural syntactic generative mod-
els with exact marginalization that support
both dependency parsing and language mod-
eling. Exact marginalization is made tractable
through dynamic programming over shift-
reduce parsing and minimal RNN-based fea-
ture sets. Our algorithms complement previ-
ous approaches by supporting batched train-
ing and enabling online computation of next
word probabilities. For supervised depen-
dency parsing, our model achieves a state-
of-the-art result among generative approaches.
We also report empirical results on unsuper-
vised syntactic models and their role in lan-
guage modeling. We find that our model for-
mulation of latent dependencies with exact
marginalization do not lead to better intrinsic
language modeling performance than vanilla
RNNs, and that parsing accuracy is not cor-
related with language modeling perplexity in
stack-based models.

1 Introduction

We investigate the feasibility of neural syntactic
generative models with structured latent variables
in which exact inference is tractable. Recent mod-
els have added structure to recurrent neural net-
works at the cost of giving up exact inference, or
through using soft structure instead of latent vari-
ables (Dyer et al., 2016; Yogatama et al., 2016;
Grefenstette et al., 2015). We propose genera-
tive models in which syntactic structure is mod-
elled with a discrete stack which can be marginal-
ized as a latent variable through dynamic program-
ming. This enables us to investigate the trade-off
between model expressivity and exact marginal-
ization in probabilistic models based on recurrent
neural networks (RNNs).

While Long Short-term Memory (Hochreiter
and Schmidhuber, 1997) (LSTM) RNNs have

driven strong improvements in intrinsic language
modelling performance, they fail at capturing cer-
tain long-distance dependencies, such as those
required for modelling subject-verb agreement
(Linzen et al., 2016) or performing synthetic trans-
duction tasks based on context-free grammars
(Grefenstette et al., 2015). We propose genera-
tive models, based on transition-based dependency
parsing (Nivre, 2008), a widely used framework
for incremental syntactic parsing, that are able to
capture desirable dependencies.

Our generative approach to dependency parsing
encodes sentences with an RNN and estimate tran-
sition and next word probability distributions by
conditioning on a small number of features repre-
sented by RNN encoder vectors. In contrast to pre-
vious syntactic language models such as RNNG
(Dyer et al., 2016), marginal word probabilities
can be computed both online and exactly. A GPU
implementation which exploits parallelization en-
ables unsupervised learning and fast training and
decoding. The price of exact inference is that our
models are less expressive than RNNG, as the re-
currence is not syntax-dependent.

Our generative models are based on the arc-
eager and arc-hybrid transition systems, with
O(n3) dynamic programs based on Kuhlmann
et al. (2011). Previous work on dynamic pro-
gramming for transition-based parsing either re-
quired approximate inference due to a too high
polynomial order run-time complexity (Huang and
Sagae, 2010), or had too restrictive feature spaces
to be used as accurate models (Kuhlmann et al.,
2011; Cohen et al., 2011). Recent work showed
that bidirectional RNNs enable accurate graph-
based and transition-based dependency parsing
using minimal feature spaces (Kiperwasser and
Goldberg, 2016; Cross and Huang, 2016; Dozat
and Manning, 2017). Shi et al. (2017) further
showed that under this approach exact decoding
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ROOT The girls from school play football

det

nsubj

case

nmod

root

obj

Figure 1: A dependency tree (arcs above words) to-
gether with dependencies captured by the generative
model for word prediction (arcs below words).

and globally-normalized discriminative training is
tractable with dynamic programming.

While discriminative neural network-based
models obtain state-of-the-art parsing accura-
cies (Dozat and Manning, 2017), generative mod-
els for structured prediction have a number of ad-
vantages: They do not suffer from label bias or
explaining away effects (Yu et al., 2017), have
lower sample complexity (Yogatama et al., 2017),
are amenable to unsupervised learning and can
model uncertainty and incorporate prior knowl-
edge through latent variables.

As a supervised parser our model obtains state
of the art performance in transition-based gener-
ative dependency parsing. While its intrinsic lan-
guage modelling performance is worse than that of
a well-tuned vanilla RNN, we see that the formu-
lation of the generative model has a large impact
on both the informedness of the syntactic structure
and the parsing accuracy of the model. Further-
more, there is a discrepancy between the model
structure most suitable for parsing and for lan-
guage modeling. Our analysis shows that there ex-
ist informative syntactically-motivated dependen-
cies which LSTMs are not capturing, even though
our syntactic models are not able to predict them
accurately enough during online processing to im-
prove language modelling performance. Our im-
plementation is available at https://github.
com/janmbuys/ndp-parser.

2 Generative shift-reduce parsing

We start by defining a shift-reduce transition sys-
tem which does not predict dependency arcs, but
simply processes the words in a sentence left to
right through shifting words onto a stack and re-
ducing (popping) them from the stack. We define

Stack σ Index β − 1 Prediction

ROOT ROOT sh(The)
ROOT, The The la(det)
ROOT The sh(girls)
ROOT, girls girls sh(from)
ROOT, girls, from from la(case)
ROOT, girls from sh(school)
ROOT, girls, school school ra(nmod)
ROOT, girls school la(nsubj)
ROOT school sh(play)
ROOT, play play sh(football)
ROOT, play, football football ra(obj)
ROOT, play football ra(root)
ROOT football re

Table 1: Arc-hybrid transition system derivation for the
sentence “The girls from school play football.” The
transitions are shift (sh), reduce (re), left-arc (la) and
right-arc (ra).

a generative model for this transition system and
a dynamic program to perform inference over all
possible shift-reduce transitions to process a given
sentence. An example dependency tree is given in
Figure 1, along with the dependencies our genera-
tive model is capturing when making word predic-
tions. The arc-hybrid transition sequence for the
example is given in Table 1.

Let sentence w0:n be a sequence of words,
where w0 is always the designated root symbol
ROOT and wn the end-of-sentence symbol EOS.
The state variables of the transition system are the
stack σ, consisting of word indexes, and a current
word index β, also referred to as the buffer. The
first and second elements on the stack are referred
to as σ0 and σ1, respectively. We use the nota-
tion σ|j to indicate that j is on top of the stack.
The initial state (σ, β) is ([0], 1) and the final state
is ([], n). There are two transition actions, shift
and reduce. Shift updates the transition state from
(σ, j) to (σ|j, j + 1). Reduce changes the state
from (σ|i, j) to (σ, j).

2.1 Generative model
The generative model for this transition system is
defined by a probability distribution over w,

p(w) =
∑

t

p(w0:n, t0:2n), (1)

where t0:2n is a transition sequence that processes
the sentence. Shift actions predict (assign proba-
bility to) the next word in the sentence. The end-
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of-sentence symbol is generated implicitly when
ROOT is reduced from the stack.

The sentence is encoded left-to-right by an
LSTM RNN taking the word embedding of the last
predicted word as input at each time step, indepen-
dent of t. The RNN hidden states h0:n represent
each sentence position in its linear context. The
probability of a shift action and the word that it
predicts is

ptr(sh|hσ0 , hβ−1)pgen(w|hσ0 , hβ−1).

Reduce is predicted with probability
ptr(re|hσ0 , hβ−1) = 1− ptr(sh|hσ0 , hβ−1).

The transition and word probability distribu-
tions are estimated by non-linear output layers that
take the context-depending RNN representations
of positions in the transition system as input,

ptr = sigmoid(rT relu(Wtshσ0 +Wtbhβ−1))
(2)

pgen = softmax(RT tanh(Wgshσ0 +Wtbhβ−1)),
(3)

where R and the W ’s are neural network parame-
ter matrices and r is a parameter vector.

The model has two ways of representing con-
text: The RNN encoding, which has a recency
bias, and the stack, which can represent long range
dependencies and has a syntactic distance bias.
The choice of RNN states (corresponding to stack
elements) to condition on is restricted by our goal
of making the dynamic programming tractable.

We propose two formulations of the generative
model: In the first, referred to as stack-next, shift
generates the word pushed on the stack, which is
currently at position β, as in the equations above.
In the second formulation, referred to as buffer-
next, shift generates the word at position β+1, i.e.,
the next word on the buffer. The first formulation
has a more intuitive generative story as the genera-
tion of a word is conditioned on the top of the stack
when it is generated (see Table 1), but the sec-
ond formulation has the advantage that transition
predictions are conditioned on the current word at
position β, which is more informative for parsing
predictions. Models are defined using stack-next
unless stated otherwise.

2.2 Dynamic program

We now define a dynamic program for this model,
based on the algorithms proposed by Kuhlmann

et al. (2011) and their application to generative de-
pendency parsing (Cohen et al., 2011).

The key to the dynamic program is the decom-
position of the transition sequence into push com-
putations. Each push computation is a sequence
of transitions which results in a single node hav-
ing been pushed to the stack. The simplest push
computation is a single shift operation. Push com-
putations can be composed recursively: combin-
ing two consecutive push computations followed
by a reduce transition yields a new push opera-
tion. Therefore the derivation of a sentence under
the transition system can be seen as a composition
of push computations.

Items in the deduction system (Shieber et al.,
1995) of the dynamic program have the form [i, j],
which has the interpretation that there exists a push
computation between actions ak and al such that
β = i at time step k and σ0 = i and β = j at
time step l. In the deduction system [0, 1] is an
axiom, [0, n] is the goal and the deduction rules
corresponding to the transitions are

[i, j − 1]→ [j − 1, j] (shift)

[i, k][k, j]→ [i, j] (reduce).

The marginal probability distribution is com-
puted by defining the inside score I(i, j) =
p(wi:j−1) for every deduction system item. Com-
puting the sentence probability corresponds to
computing the inside score of the goal, I(0, n) =
p(w0:n−1), followed by computing the final re-
duce probability.

Reduce probabilities are computed conditioned
on positions k and j, which are accessible through
the dynamic program deduction rule. However the
shift probabilities cannot be computed at the shift
rule for deducing [j − 1, j], as it does not have
access there to the top of the stack. One solution
is to extend the deduction system to a three-tuple
that can track the value of an additional position,
leading to a O(n4) dynamic program. Instead Shi
et al. (2017) showed that the computation can be
performed in the O(n3) algorithm by computing
the shift probability of word k during the reduce
deduction, as it was generated when i was on top
of the stack. The inside algorithm is given in Al-
gorithm 1.

To train the model without supervised transition
sequences, we can optimize the negative log like-
lihood of p(w0:n) directly with gradient-based op-
timization using automatic differentiation, which
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Algorithm 1 Inside algorithm for the shift-reduce
transition-based generative model.
1: I(0, 1)← 1
2: for j = 2, . . . , n do
3: I(j−1, j)← 1
4: for i = j − 2, . . . , 0 do
5: for k = i+ 1, . . . , j − 1 do
6: T (k)← ptr(sh|hi, hk−1)pgen(wk|hi, hk−1)
7: end for
8: I(i, j)←∑j−1

k=i+1 I(i, k)I(k, j)ptr(re|hk, hj−1)T (k)

9: end for
10: end for
11: return I(0, n) + ptr(re|h0, hn−1)

is equivalent to computing the gradients with the
outside algorithm (Eisner, 2016). For decoding we
perform Viterbi search over the dynamic program
by maximizing rather than summing over different
split positions (values of k when reducing).

The buffer-next generative formulation, where
shift generates the next word β, can also be com-
puted with the dynamic program. Here w1 is pre-
dicted at the initial state in I(0, 1), while the end-
of-sentence token is generated explicitly when a
shift action results in buffer being set to position
n, regardless of the state of the stack.

3 Transition-based dependency parsing

The arc-eager (Nivre, 2008) and arc-
hybrid (Kuhlmann et al., 2011) transition
systems for projective dependency parsing use the
same shift-reduce operations but predict left- and
right-arcs at different time steps. We propose gen-
erative models for these transition systems based
on the dynamic program for shift-reduce parsing
proposed above, again following Kuhlmann et al.
(2011). For supervised training we optimize the
joint probability distribution p(w, t), where an
oracle is used to derive transition sequence t
from the training examples. In cases of spurious
ambiguity arcs are added as soon as possible.

3.1 Arc-hybrid parser

The arc-hybrid transition system has three actions:
Shift, left-arc and right-arc (see Table 2 for def-
initions). Left-arc and right-arc are both reduce
actions, but they add arcs between different word
pairs. Arc label predictions are conditioned on the
same context as transition predictions. Right-arc
adds a dependency of which σ1 is the head, but
the dynamic program does not allow conditioning
on it when making transition decisions. However,
we found that this does not actually decrease per-
formance.

The dynamic program for the arc-hybrid parser
has the same structure as the shift-reduce model.
The marginal probability is independent of arc di-
rectionality, as it does not influence future deci-
sions. Consequently unsupervised training based
on this model cannot learn to predict arc direc-
tions. Exact decoding is performed with the
Viterbi algorithm: At every item [i, j] the highest
scoring arc direction is recorded. After the most
likely transition sequence is extracted, arc labels
are predicted greedily.

3.2 Arc-eager parser

The arc-eager parser has four transitions, as de-
fined in Table 2. Shift and right-arc are shift ac-
tions, while left-arc and reduce are reduce actions.
However the two reduce actions, reduce and left-
arc, are always mutually exclusive; the former is
only valid if the stack top has already been as-
signed a head (through a previous right-arc) and
the latter only if the stack top is not headed. To
keep track of which actions are valid, the state
configuration and the dynamic program are aug-
mented to record whether elements on the stack
are headed. As with arc-hybrid, we decompose the
transition probability into deciding between shift-
ing and reducing, and then predicting direction-
ality. In this case, the shift decision decomposes
into shift and right-arc transitions, where shift is
implicitly deciding that the shifted word will be
reduced through a left-arc. Consequently the only
real difference between the arc-hybrid and arc-
eager transition systems under dynamic program-
ming is the information conditioned on when arc
directionality is predicted.

A different deduction system is defined for arc-
eager, although it follows the same structure as
the shift-reduce one. Items have the form [ic, j],
where c is a binary variable indicating whether
node i is headed. The axiom and goal are [00, n]
and [00, 1], respectively. The deduction rules are

[ic, j]→ [j0, j + 1] (shift)

[ic, j]→ [j1, j + 1] (right-arc)

[ic, k][k0, j]→ [ic, j] (left-arc)

[ic, k][k1, j]→ [ic, j] (reduce)

The inside algorithm for arc-eager parsing is
given in Algorithm 2. The algorithm is structured
such that the inner loop computations (lines 8−22)
can be vectorized, which is crucial for efficient

945



Action State before State after Arc added Probability

Shift (σ|i, j) (σ|i|j, j + 1) - ptr(sh|hi, hj−1)pgen(wj |hi, hj−1)
Left-arc (σ|i, j) (σ, j) j → i ptr(re|hi, hj−1)pdir(la|hi, hj−1)
Right-arc (σ|l|i, j) (σ|l, j) l→ i ptr(re|hi, hj−1)pdir(ra|hi, hj−1)
Shift (σ|ib, j) (σ|ib|j0, j + 1) - ptr(sh|hi, hj−1)pdir(la|hi, hj−1)pgen(wj |hi, hj−1)
Right-arc (σ|ib, j) (σ|ib|j1, j + 1) i→ j ptr(sh|hi, hj−1)pdir(ra|hi, hj−1)pgen(wj |hi, hj−1)
Left-arc (σ|i0, j) (σ, j) j → i ptr(re|hi, hj−1)
Reduce (σ|i1, j) (σ, j) - ptr(re|hi, hj−1)

Table 2: The arc-hybrid (above) and arc-eager (below) transition systems. States represent (stack, current index).

Algorithm 2 Inside algorithm for arc-eager parser.
1: for j = 0, . . . , n− 1 do
2: I(j0, j+1)← 1
3: I(j1, j+1)← 1
4: end for
5: for gap = 2, . . . , n do
6: for i = 0, . . . , n− gap do
7: j = i+ gap
8: for c = 0, 1 do
9: for k = i+ 1, . . . , j − 1 do
10: if j > 0 then
11: W (k)← ptr(sh|hi, hk−1)

12: ·pdir(ra|hi, hk−1)pgen(wk|hi, hk−1)

13: T (k)← I(k1, j)ptr(re|hk, hj−1)W (k)

14: end if
15: if j < n then
16: V (k)← ptr(sh|hi, hk−1)

17: ·pdir(la|hi, hk−1)pgen(wk|hi, hk−1)

18: T (k) ← T (k) +
I(k0, j)ptr(re|hk, hj−1))V (k)

19: end if
20: end for
21: I(ic, j)←∑j−1

k=i+1 I(i
c, k)T (k)

22: end for
23: end for
24: end for
25: return I(0, n) + ptr(re|h0, hn−1)

GPU implementation. At β = n, the dynamic pro-
gram is restricted to allow only reduce transitions,
requiring the remaining stack elements (apart from
ROOT) to be headed. The Viterbi algorithm again
follows the same structure as the inside algorithm:
For every item [ic, j] the highest scoring splitting
item kb is recorded, where k is the splitting point
and b indicates whether word k is headed or not,
which corresponds to whether a reduce or left-arc
is performed.

4 Experiments

We follow the standard setup for English depen-
dency parsing, training on sections 2-21 of the
Penn Treebank (PTB) Wall Street Journal cor-
pus, using section 22 for development and sec-
tion 23 for testing. Dependency trees follow the
Stanford dependency (SD) representation (version
3.3.0) used in recent parsing research (Chen and
Manning, 2014; Dyer et al., 2015). We also re-
port some results using the older representation

of Yamada and Matsumoto (2003) (YM). We fol-
low Buys and Blunsom (2015b) and Dyer et al.
(2016) in replacing training singletons and un-
known words in the test set with unknown word
class tokens based to their surface forms, follow-
ing the rules implemented in the Berkeley parser.1

Our models are implemented in PyTorch, which
constructs computation graphs dynamically.2 Dur-
ing training, sentences are shuffled at each epoch,
and minibatches are constructed of sentences of
the same length. We base the hyperparameters of
our models primarily on the language models of
Zaremba et al. (2014). Models are based on two-
layer LSTMs with embedding and hidden state
size 650 with dropout of 0.5 on the RNN inputs
and outputs. For all models weights are initial-
ized randomly from the uniform distribution over
[−0.05, 0.05]. Gradient norms are clipped to 5.0.
The supervised parsers are trained with batch size
16, with an initial learning rate 1.0, which is de-
creased by a factor of 1.7 for every epoch after
6 initial epochs. The sequential LSTM baseline
is trained with the same parameters, except that
the learning rate decay is 1.4. The unsupervised
models are trained with an initial learning rate 0.1,
which is decreased by a factor of 2.0 for every
epoch, with batch size 8.

We train and execute our models on a GPU,
obtaining significant speed improvements over
CPUs. For supervised training we also perform
batch processing: After the sentences are encoded
with an RNN, we extract the inputs to the transi-
tion, word and relation prediction models across
the batch, and then perform the neural network
computations in parallel. The supervised models’
training speed is about 3 minutes per epoch.

1http://github.com/slavpetrov/
berkeleyparser

2http://pytorch.org/
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Model Greedy Exact

Arc-Hybrid uniRNN 84.12/81.54 84.21/81.61
Arc-Eager uniRNN 79.90/77.67 81.37/79.08
Arc-Hybrid biRNN 92.85/90.42 92.89/90.47
Arc-Eager biRNN 92.82/90.63 92.90/90.68

Arc-Hybrid Gen stack-next 56.98/52.22 82.77/78.01
Arc-Hybrid Gen buffer-next 85.25/82.83 91.19/88.66
Arc-Eager Gen buffer-next 80.79/78.56 87.34/84.84

Table 3: PTB development set parsing results (SD
dependencies), reporting unlabelled and labelled at-
tachment scores (UAS/LAS). Discriminative models
(above the line) use either unidirectional or bidirec-
tional RNNs.

Model SD YM

Buys and Blunsom (2015b) 90.10/87.74 90.16/88.83
Titov and Henderson (2007) 91.43/89.02 90.75/89.29

Arc-eager 88.20/85.91 87.61/86.36
Arc-hybrid 91.01/88.54 90.71/88.68

Table 4: PTB test set parsing results with supervised
generative models, on the Stanford (SD) and Yamada
and Matsumoto (2003) (YM) dependencies. The mod-
els from Buys and Blunsom (2015b) and Titov and
Henderson (2007) were retrained to make results di-
rectly comparable.

4.1 Parsing
In order to benchmark parsing performance, we
train discriminative baselines using the same fea-
ture space as the generative models. Unidirec-
tional or bidirectional RNNs can be used; we see
that the bidirectional encoder is crucial for accu-
racy (Table 3). The performance of our implemen-
tation is on par with than that of the arc-hybrid
transition-based parser of Kiperwasser and Gold-
berg (2016), which obtains 93.2/91.2 UAS/LAS
on the test set against 93.29/90.83 for our arc-
hybrid model. State of the art parsing perfor-
mance is 95.7%/94.1 UAS/LAS (Dozat and Man-
ning, 2017).

Exact decoding is only marginally more ac-
curate than greedy decoding, giving further evi-
dence of the label bias problem. Andor et al.
(2016) similarly showed that a locally normalised
model without lookahead features cannot ob-
tain good performance even with beam-search
(81.35% UAS), while their globally normalised
model can reach close to optimal performance
without look-ahead. Shi et al. (2017) showed that
globally normalised training improves the accu-
racy of these discriminative models.

Exact decoding is crucial to the performance of

ROOT Another $ 20 billion would be raised through treasury bonds

Figure 2: Sentence with dependencies induced by the
unsupervised model.

the generative models (Table 3). They are much
more accurate than the unidirectional discrimina-
tive models, which shows that the word prediction
model benefits parsing accuracy. The arc-hybrid
model is more accurate than arc-eager, as was the
case for the unidirectional discriminative models.
This can be explained by arc-eager making attach-
ment decisions earlier in the transition sequence
than arc-hybrid, which means that it has access to
less context to condition these predictions on.

Our best generative model outperforms a pre-
vious incremental generative dependency parser
based on feed-forward neural networks and ap-
proximate inference (Buys and Blunsom, 2015b)
(Table 4). It is competitive with a previous RNN-
based generative parser with a much more com-
plex architecture than our model, including recur-
rent connections based on parsing decision (Titov
and Henderson, 2007). Our exact decoding algo-
rithm is also actually faster than the beam-search
approaches for previous models, as it is imple-
mented on GPU. Our arc-hybrid model parses 7.4
sentences per second, against 4 sentences per sec-
ond for Buys and Blunsom (2015b) and approxi-
mately 1 sentence per second for Titov and Hen-
derson (2007).

We also train the model as an unsupervised
parser by directly optimizing the marginal sen-
tence probability. The limitation of our approach
is that our models cannot learn arc directional-
ity without supervision, so we interpret shift as
adding a (right-arc) dependency between top of
the stack and the word being generated. In our
experiments the model did not succeed in learning
informative, non-trivial tree structures – in most
cases it learns to attach words either to the im-
mediate previous word or to the root. However,
unsupervised dependency parsers usually require
elaborate initialization schemes or biases to pro-
duce non-trivial trees (Klein and Manning, 2004;
Spitkovsky et al., 2010; Bisk and Hockenmaier,
2015). An example dependency tree predicted by
the unsupervised model is given in Figure 2.
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Model Perplexity

Interpolated Kneser-Ney 5-gram 170.09
Sequential LSTM (unbatched) 118.69
Sequential LSTM (batched) 100.67

Buys and Blunsom (2015b) 138.62
RNNG (Kuncoro et al., 2017) 101.2

Supervised (SD) shift-reduce buffer-next 111.53
Supervised (SD) shift-reduce stack-next 107.61
Unsupervised shift-reduce stack-next 125.20

Table 5: Language modelling perplexity results on the
PTB parsing test set.

4.2 Language modelling

We apply our model to language modelling
with both supervised and unsupervised training.
The supervised models are trained as arc-hybrid
parsers; the performance of arc-eager is almost
identical as arc labels and directionality are not
predicted. The unsupervised model is trained with
only shift and reduce transitions as latent.

We evaluate language models with a sentence
i.i.d. assumption. In contrast, the standard evalu-
ation setup for RNN language models treats the
entire corpus as single sequence. To evaluate
the consequence of the sentence independence as-
sumption, we trained a model on the most widely
used PTB language modelling setup (Chelba and
Jelinek, 2000; Mikolov et al., 2011), which uses
a different training/testing split and preprocessing
which limits the vocabulary to 10k. Our baseline
LSTM obtains 92.71 test perplexity on this setup,
against 78.4 of Zaremba et al. (2014), which uses
the same hyperparameters without a sentence i.i.d.
assumption. The syntactic neural language model
of Emami and Jelinek (2005) obtained 131.3.

Results are reported in Table 5. Perplexity is
obtained by exponentiating the negative log likeli-
hood per token; end of sentence symbols are pre-
dicted but excluded from the token counts. As
baselines without syntactic structure we use the in-
terpolated Kneser-Ney n-gram model (Kneser and
Ney, 1995) and vanilla LSTMs, trained with or
without batching.

The LSTM baselines already outperform the
syntactic feed-forward neural model of Buys and
Blunsom (2015b). We see that there is a sig-
nificant difference between training with or with-
out mini-batching for the baseline; similarly our
model’s perplexities also improve when trained

with batching. The batched baseline performs
slightly better than Recurrent Neural Network
Grammars (RNNG) (Dyer et al., 2016; Kuncoro
et al., 2017), a constituency syntax-based RNN
language model trained without batching.3

The results show that our syntactic language
models perform slightly worse than the LSTM
baseline. We experimented with different de-
pendency representations on the development set,
including SD, YM and Universal Dependen-
cies (Nivre et al., 2016). We found little difference
in language modelling performance between the
dependency representations. Unsupervised train-
ing does not lead to better perplexity than the su-
pervised models; however, due to much longer
training times we did less hyperparameter tuning
for the unsupervised model.

4.3 Analysis

We further analyze the probability distribution
that our model is learning by calculating some
perplexity-related quantities. We compare the per-
plexity of the marginal distribution p(w) to the
perplexity based only on the most likely transition
sequence a = argmax p(w,a), based on either the
joint distribution p(w,a) or the conditional distri-
bution p(w|a). Note that while the former is a
bound on the marginal perplexity, the latter is not a
true perplexity but simply helps us to quantify the
contribution of the syntactic structure to reducing
the uncertainty in the prediction.

The results (Table 6) show that the difference
between the joint and marginal perplexities are rel-
atively small for the supervised models, indicat-
ing that the distribution is very peaked around the
most likely parse trees. However the conditional
quantity shows that the syntactic structure encoded
by the stack-next model is much more informa-
tive than that of the buffer-next model, although
the only difference between them is the choice of
elements to condition on when predicting the next
word. Although the stack-next model has a better
marginal perplexity, the disadvantage is that it has
more uncertainty in the syntactic structure it is pre-
dicting (as can be seen by lower parsing accuracy)
even though that structure is more informative.

The strength of RNNG over our approach is
that it computes a compositional representation of

3Our experimental setup is the same as Dyer et al. (2016),
except for a minor implementation difference in unknown
word clustering; Dyer et al. (2016) reports 169.31 perplex-
ity on the same IKN model.
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Model Argmax parse Argmax parse
Marginal ppl joint ppl conditional ppl

RNNG (Dyer et al., 2016) 104.10 107.58 41.60

Supervised (SD) shift-reduce buffer-next 111.53 120.09 102.28
Supervised (SD) shift-reduce stack-next 107.61 119.20 71.27
Unsupervised shift-reduce stack-next 125.20 350.01 169.87

Table 6: Language modelling perplexity analysis on the PTB test set.

the stack and the partially constructed parse tree,
while our model can only make use of the position
on top of the stack and otherwise has to rely on the
sequentially computed RNN representations. The
disadvantage of RNNG is that inference can only
be performed over entire sentences, as the pro-
posal distribution for their importance sampling
method is a discriminative parser. Exact inference
allows our models to estimate next word probabil-
ities from partially observed sequences.

5 Related work

5.1 Syntactic generative models

Chelba and Jelinek (2000) and Emami and Je-
linek (2005) proposed incremental syntactic lan-
guage models that predict binarized constituency
trees with a shift-reduce model, parameterized by
interpolated n-gram smoothing and feed-forward
neural networks, respectively. Language mod-
elling probabilities were approximated incremen-
tally using beam-search. Rastrow et al. (2012) ap-
plied a transition-based dependency n-gram lan-
guage model to speech recognition. These models
obtained perplexity improvements primarily when
interpolated with standard n-gram models, and
were not employed as parsers.

Henderson (2004) proposed an incremental
constituency parser based on recurrent neural net-
works that have additional connections to previous
recurrent states based on the parser configuration
at each time step. The generative version of this
model was more accurate than the discriminative
one. Titov and Henderson (2007) applied a similar
approach to dependency parsing. Buys and Blun-
som (2015a) and Buys and Blunsom (2015b) pro-
posed generative syntactic models that are applied
to both dependency parsing and language mod-
elling, using Bayesian and feed-forward neural
networks, respectively. Recurrent Neural Network
Grammar (RNNG) (Dyer et al., 2016) is a genera-

tive transition-based constituency parser based on
stack LSTMs (Dyer et al., 2015), that was also ap-
plied as a language model.

Recently, Shen et al. (2017) proposed an RNN-
based language model that uses a soft gating
mechanism to learn structure that can be inter-
preted as constituency trees, reporting strong lan-
guage modelling performance. There has also
been work on non-incremental syntactic language
modelling: Mirowski and Vlachos (2015) pro-
posed a dependency neural language model where
each word is conditioned on its ancestors in the
dependency tree, and showed that this model
achieves strong performance on a sentence com-
pletion task.

5.2 Neural models with latent structure

There have been a number of recent proposals for
neural abstract machines that augment RNNs with
external memory, including stacks and other data
structures that are operated on with differentiable
operations to enable end-to-end learning. Neural
Turing machines (Graves et al., 2014) have read-
write memory that is updated at each timestep.
Grefenstette et al. (2015) proposed a neural stack
that is operated on with differentiable push and
pop computations.

Another strand of recent work which our mod-
els are related to has proposed neural models
with structured latent variables: Rastogi et al.
(2016) incorporated neural context into weighted
finite-state transducers with a bidirectional RNN,
while Tran et al. (2016) proposed a neural hidden
Markov model for Part-of-Speech (POS) induc-
tion. Yu et al. (2016) proposed a neural transduc-
tion model with polynomial-time inference where
the alignment is a latent variable. Kim et al.
(2017) proposed structured attention mechanisms
that compute features by taking expectations over
latent structure. They define a tree-structured
model with a latent variable for head selection,
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along with projectivity constraints. The soft head
selection learned by the model is used as features
in an attention-based decoder.

Reinforcement learning has been proposed to
learn compositional tree-based representations in
the context of an end task (Andreas et al., 2016;
Yogatama et al., 2016), but this approach has high
variance and provide no guarantees of finding op-
timal trees.

6 Conclusion

We proposed a new framework for generative
models of syntactic structure based on recurrent
neural networks. We presented efficient algo-
rithms for training these models with or without
supervision, and to apply them to make online
predictions for language modelling through exact
marginalization. Results show that the model ob-
tains state-of-the-art performance on supervised
generative dependency parsing, but does not ob-
tain better intrinsic language modelling perfor-
mance than a standard RNN.
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Abstract
User-generated text tends to be noisy with
many lexical and orthographic inconsistencies,
making natural language processing (NLP)
tasks more challenging. The challenging na-
ture of noisy text processing is exacerbated for
dialectal content, where in addition to spelling
and lexical differences, dialectal text is char-
acterized with morpho-syntactic and phonetic
variations. These issues increase sparsity in
NLP models and reduce accuracy. We present
a neural morphological tagging and disam-
biguation model for Egyptian Arabic, with
various extensions to handle noisy and incon-
sistent content. Our models achieve about
5% relative error reduction (1.1% absolute im-
provement) for full morphological analysis,
and around 22% relative error reduction (1.8%
absolute improvement) for part-of-speech tag-
ging, over a state-of-the-art baseline.

1 Introduction

There has been a growing interest in noise-robust
NLP tools recently, motivated by the sheer mag-
nitude of user-generated content in social media
platforms. The noisy nature of user-generated
content makes its processing very challenging for
NLP tools. Noisy content is non-canonical in na-
ture, with lexical, orthographic, and phonetic vari-
ations that increase the perplexity and sparsity of
NLP models. Several contributions show consid-
erable drop in performance for a number of tasks,
where simply retraining existing models with so-
cial media data does not provide substantial im-
provement (Gimpel et al., 2011; Ritter et al., 2011;
Habash et al., 2013a).

Morphological disambiguation for noisy con-
tent is further complicated for dialectal content,
with additional morpho-syntactic variations. Mor-
phological disambiguation is also more challeng-
ing for morphologically rich and ambiguous lan-
guages, like Arabic and Dialectal Arabic (DA).

Arabic is morphologically rich, having more
fully inflected words (types) than morphologically
poorer languages. It is also ambiguous, with short
vowels (diacritic marks) often dropped and disam-
biguated in context. These issues result in more
morpho-syntactic variations for DA in written text
compared to other dialectal content, and increase
the number of potential analyses.

We present several morphological disambigua-
tion models for Egyptian Arabic (EGY), based on
previous models for EGY and Modern Standard
Arabic (MSA). We use a bidirectional long short
term memory (Bi-LSTM) architecture and vari-
ous noise reduction techniques, including char-
acter embedding and embedding space mapping.
We also experiment with the width of the embed-
ding window in the pre-trained embeddings. Char-
acter embeddings allow access to subword units,
while the embedding space mapping normalizes
non-canonical forms to canonical neighbors. The
narrow/wide embedding window in the pre-trained
embeddings allows for more of syntactic/semantic
modeling, respectively.

The goal of the various models is to achieve
noise-robust analysis, rather than explicit noise
normalization. We therefore use the normaliza-
tion techniques on the vector-level only, instead
of replacing the raw forms, which allows for less
aggressive lexical normalization. The separation
of raw forms and vector normalization also allows
for independent word and character level normal-
ization, eliminating any propagation of error.

Our system achieves a 5% relative error reduc-
tion (1.1% absolute accuracy boost) over a state-
of-the-art baseline, using a strict metric. Our
noise-robust system also matches the performance
of a version of the system trained and tested on
a manually orthography-normalized copy of the
data. This indicates that the system performs as
well as could be expected without orthographic in-
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consistency. We also present an error analysis of
the system and identify areas of improvement.

The rest of the paper is structured as follows.
We present common challenges to DA processing
in Section 2. This is followed by background and
related work in Section 3. We introduce the ap-
proach and various models in Section 4, and dis-
cuss the experimental setup and results in Section
5. We conclude and provide some directions for
future work in Section 6.

2 Linguistic Issues

Dialectal Arabic, including EGY among other di-
alects, is the primarily spoken language used by
native Arabic speakers in daily exchanges. The
outbreak of social media platforms expanded the
use of DA as a written language. The lack of a
standard orthography (Habash et al., 2012a), com-
bined with the fact that user-generated content in
social media is prone to noise, increase sparsity
and reduce performance.

EGY, similar to MSA, is also a morphologi-
cally complex language, having a number of mor-
phological features, e.g., gender, number, per-
son, mood, and attachable clitics. Moreover,
the diacritization-optional orthography for Arabic
(both DA and MSA) results in orthographic am-
biguity, leading to several interpretations of the
same surface forms. Richness of form increases
model sparsity, and ambiguity makes disambigua-
tion harder. One approach to model complexity,
richness, and ambiguity uses morphological an-
alyzers, also known as morphological dictionar-
ies. Morphological analyzers are usually used to
encode all potential word inflections in the lan-
guage. A good morphological dictionary should
return all the possible analyses of a surface word
(ambiguity), and cover all the inflected forms of
a word lemma (richness), covering all related fea-
tures. The best analysis is then chosen through
morphological disambiguation.

The set of morphological features that we model
for EGY morphological disambiguation includes:

• Lexicalized features: lemma, diacritization.

• Non-lexicalized features: aspect, case, gen-
der, person, part-of-speech (POS), number,
mood, state, voice.

• Clitics: enclitics, like pronominal enclitics,
negative particle enclitics; proclitics, like ar-
ticle proclitic, preposition proclitics, con-
junction proclitics, question proclitics.

Despite the similarities, EGY and MSA have
many differences that prevent MSA tools from be-
ing effectively utilized for EGY text. These in-
clude lexical, phonological, and morphological in-
consistencies. Lexical differences can be numer-
ous, beyond simple cognates, like the word ø
 @ 	P@
AzAy1 ‘how’ in EGY corresponds to the word 	­J
»
kyf in MSA. There are also many morphological
differences, for example the MSA future proclitic
/sa/+ (spelled +� s+) appears in EGY as either
/ha/+ (+ë) or /Ha/+ (+k). There are also many
phonological variations between EGY and MSA
that have direct implications on orthography as
well. These include the consonant �H /θ/ in MSA,
which can be mapped to either �H /t/ or � /s/ in
EGY. These variations make the written EGY con-
tent more susceptible to noise and inconsistency.
Table 1 shows an EGY sentence example, along
with the set of potential analyses for a given word.

3 Background and Related Work

Explicit handling of noisy content in NLP has re-
cently gained momentum with the increasing use
of social media outlets. Notable contributions for
POS tagging include the ARK tagger (Owoputi
et al., 2013), which is targeted for online conver-
sational text. ARK tagger uses conditional ran-
dom fields with word clusters as features, obtained
via Brown clustering (Brown et al., 1992), along
with various lexical features. Gimpel et al. (2011)
also use conditional random fields for POS tag-
ging, trained on annotated Twitter content. Der-
czynski et al. (2013) use manually curated lists to
map low frequency and out of vocabulary terms to
more frequent terms. Noisy content has also been
addressed for named entity recognition (Liu et al.,
2011; Ritter et al., 2011; Aguilar et al., 2017), and
syntactic parsing (Foster et al., 2011; Petrov and
McDonald, 2012).

Most relevant to our work is the paper by
van der Goot et al. (2017), where they use
Word2vec (Mikolov et al., 2013) to find potential
normalization candidates for non-canonical words
on the lexical level, and rank them using a clas-
sifier. They experiment with various normaliza-
tion and embedding settings, and they find that
both normalization and pre-trained embeddings
are helpful for the task of POS tagging.

1 Arabic transliterations are in the Habash-Soudi-
Buckwalter transliteration scheme (Habash et al., 2007).

954



AntA fyn? fy AlmHl brdk ? ? ¼XQK. ÉjÖÏ@ ú

	̄ ? 	á�
 	̄ A�J 	K @

Where are you? Are you at the shop still?
diacritization lemma gloss pos prc3 prc2 prc1 prc0 per asp vox mod gen num stt cas enc0
bi+rad∼+ak rad∼ response noun 0 0 bi_prep 0 na na na na m s c u 2ms:poss
barDak barDak still adv 0 0 0 0 na i na na m s i u 0
bi+rad∼+ik rad∼ response noun 0 0 bi_prep 0 na na na na m s c u 2fs:poss
b+Aarud∼+ak rad∼ return verb 0 0 0 bi_prog 1 i a i m s na na 2ms:dobj
bard+ak bard cold noun 0 0 0 0 na na na na m s c u 2ms:poss

Table 1: An example highlighting the effect of non-standard and ambiguous orthography, along with rich mor-
phology, on EGY morphological disambiguation. The word ½ 	�QK. barDak ‘still’ is provided in the example with
the non-standard (non-CODA compliant) orthography ¼XQK. bardak, which can lead to different morphological
analyses than the one intended in context.

The issue of noisy text processing is exacer-
bated for dialectal content. Most contributions fo-
cus on spelling/lexical variations, whereas dialec-
tal content is further characterized with morpho-
syntactic and phonetic variations that make au-
tomatic processing more challenging (Jørgensen
et al., 2015). In addition to the issues of morpho-
logical complexity, ambiguity, and lack of stan-
dard orthography for MSA and DA. There has
been several contributions covering various NLP
tasks including morphological analysis, disam-
biguation, POS tagging, tokenization, lemmatiza-
tion and diacritization, addressing both MSA and
DA (Al-Sabbagh and Girju, 2010; Mohamed et al.,
2012; Habash et al., 2012b, 2013a; Abdelali et al.,
2016; Khalifa et al., 2016b). Notable contributions
for both MSA and EGY include MADAMIRA
(Pasha et al., 2014), a morphological disambigua-
tion tool that uses morphological analyzers to han-
dle complexity and ambiguity. MADAMIRA can
automatically correct common spelling errors as
a side effect of disambiguation, but does not in-
clude explicit processing steps for noisy content.
A neural version of MADAMIRA for MSA is pre-
sented by Zalmout and Habash (2017), who use
Bi-LSTMs and morphological tag embeddings.
Their system shows significant improvement over
MADAMIRA, but does not use any explicit char-
acter embeddings nor noise reduction techniques.

To address the lack of standardized orthography
for DA, Habash et al. (2012a) proposed CODA,
a Conventional Orthography for Dialectal Ara-
bic. CODA presents a detailed description of or-
thographic guidelines, mainly for the purpose of
developing DA computational models, applied to
EGY, and later extended to several other Arabic
dialects (Zribi et al., 2014; Saadane and Habash,
2015; Turki et al., 2016; Khalifa et al., 2016a;
Jarrar et al., 2016; Habash et al., 2018). CODA-

treated DA content should be less sparse and less
noisy. Eskander et al. (2013) presented a tool to
normalize raw texts into a CODA compliant ver-
sion using the K-nearest neighbor algorithm. Scal-
ing this tool to other dialects, however, is challeng-
ing due to the lack of training data.

Our morphological tagging architecture is sim-
ilar to the work of Inoue et al. (2017) and Zal-
mout and Habash (2017), but we further experi-
ment with CNN-based character embeddings, and
pre-train the word embeddings. The architec-
ture is also similar to the work of Heigold et al.
(2017) and Plank et al. (2016) in terms of the char-
acter embeddings, both LSTM and CNN-based
systems. Our architecture, however, uses neural
language models for modeling lemmas and dia-
critized forms, and utilizes the word-level embed-
dings in various configurations to combat noise, as
explained throughout the rest of the paper.

4 Approach

We present a morphological disambiguation
model for EGY. We use an LSTM-based archi-
tecture for morphological tagging and language
modeling for the various morphological features
in EGY. We also experiment with several embed-
ding models for words and characters, and present
several approaches for noise-robust modeling on
the raw form and vector levels.

We present the overall tagging and disambigua-
tion architecture, in addition to the character em-
bedding model, in 4.1. We then present the noise
handling approaches in 4.2 and 4.3.

4.1 Morphological Tagging and
Disambiguation Architecture

We use a similar disambiguation approach as in
previous contributions for MSA and EGY (Habash
and Rambow, 2005; Habash et al., 2009, 2013b).
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The morphological disambiguation task is in-
tended to choose the correct morphological anal-
ysis from the set of potential analyses, obtained
from the morphological analyzer. The analyzer
provides a set of morphological features for each
given word. These features can be grouped into
non-lexical features, where a tagger is used to
predict the relevant morphological tag, handled
through morphological feature tagging, and lex-
ical features that need a language model (Roth
et al., 2008), handled through lexicalized feature
language models. The inflectional, clitic, and part-
of-speech features are handled with a tagger, while
the lexical features are handled with a language
model.

4.1.1 Morphological Feature Tagging
Overall Architecture We use Bi-LSTM-based
taggers for the morphological feature tagging
tasks. Given a sentence of length L words
{w1, w2, ..., wL}, every word wi is converted into
vector vi:

vi = [vwi ; vci ; vti ]

composed of the word embedding vector vwi ,
word-level characters embedding vector vci , and
the candidate morphological tag embedding vec-
tor vti . This separation of word and character em-
bedding vectors enables further noise handling on
the word embedding level alone, with the charac-
ter embeddings learnt from the raw forms without
any modification. We pre-train the word embed-
dings using Word2vec (Mikolov et al., 2013).

We use two LSTM layers to model the rele-
vant context for both directions of the target word,
where the input is represented by the vi vectors
mentioned above:

−→̂
h i = g(vi,

−→
h i−1)

←−̂
h i = g(vi,

←−
h i+1)

where hi is the context vector from the LSTM
for each direction. We join both sides, apply a
non-linearity function, and softmax to get a proba-
bility distribution. Figure 1 shows the architecture.

Character Embedding We use convolutional
neural networks (CNN) and LSTM-based archi-
tectures for the character embedding vectors vci ,
both applied to the character sequence within each
word separately. LSTM-based architectures have
been shown to outperform CNN-based character
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Figure 1: The overall tagging architecture, with the in-
put vector as the concatenation of the word, characters,
and candidate tag embeddings.

embedding in POS tagging (Heigold et al., 2017),
but we experiment with both architectures to re-
port their performance in noisy EGY content. We
use various filter widths and max pooling for the
CNN system, with the output fed to a dense con-
nection layer. The resulting vector is used as the
character embedding vector for the given word.
For the LSTM-based architecture we use the last
state vector as the embedding representation of the
word’s characters. Both architectures are outlined
at figure 2.

LSTMLSTM
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Figure 2: CNN-based (left) and LSTM-based (right) ar-
chitectures for word-level character embedding. Simi-
lar to the architecture by Heigold et al. (2017).

Morphological Tag Embedding The morpho-
logical features vector vti embeds the candidate
tags for each feature. The tags include the collec-
tion of morphological features. We use the mor-
phological analyzer to obtain all possible tag val-
ues of the word to be analyzed. We use a lookup
table to map the tags to their trainable vector rep-
resentation, then sum all the resulting vectors to
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get vti , since these tags are alternatives and do not
constitute a sequence of any sort. Figure 3 outlines
the tag embedding model.

Candidate Tag Lookup Table
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Figure 3: Candidate tag embedding, through summing
the vectors of the individual tags.

Embedding the morphological tags using the
analyzer does not constitute a hard constraint in
the system, and the vti vector can be discarded or
substituted with less resource-demanding options
for other languages or dialects.

4.1.2 Lexicalized Feature Language Models
We use LSTM-based neural language models
(Enarvi and Kurimo, 2016) for the lexical fea-
tures (lemma and diacritization). Lemmas and di-
acritized forms are lexical and cannot be modeled
directly using a classifier (Habash and Rambow,
2007), since the target space is big (around 13K
for lemmas, and 33K for the diacritized forms,
in Train). We therefore use a language model
to choose among the candidate lemmas and dia-
critized forms obtained from the analyzer. We en-
code the runtime dataset in the HTK Standard Lat-
tice Format (SLF), with a word mesh representa-
tion for the various options of each word.

4.2 Embedding Window Width
Several contributions show that the window size
(i.e. amount of context) in word embeddings af-
fects the type of linguistic information that gets
modeled. Goldberg (2016) and Trask et al. (2015)
explain that larger windows tend to create more se-
mantic and topical embeddings, whereas smaller
windows capture syntactic similarities. Tu et al.
(2017) also find that a window of one (one word
before the target word and one word after) is opti-
mal for syntactic tasks.

We experiment with both wide and narrow win-
dow embeddings, and evaluate their effects on
tagging accuracy. These experiments show the
role of topical or semantic vs syntactic embed-
dings in the morphological disambiguation model.

We then experiment with embedding vector ex-
tension, by combining both wide and narrow em-
beddings through concatenation. This technique
is expected to handle noisy and unstandardized
spellings, since spelling variants are not just se-
mantically related, but must share the same syn-
tactic valency.

Figure 4 shows the updated architecture, with
the narrow window embedding vnarrowwi

concate-
nated to the vi vector, along with the existing wide
window embedding vwidewi

.

4.3 Embedding Space Mapping
The embedding space mapping approach is based
on the hypothesis that non-standard words are
likely to have similar contexts as their canonical
equivalents. We define the canonical equivalent
here as the most frequent semantically and syn-
tactically equivalent word to the target word. We
use this definition since the operation is unsuper-
vised, and for the lack of a standard canonical
forms. Variants of this approach have been used
in several spelling error correction tasks (Sridhar,
2015). Dasigi and Diab (2011) also use a simi-
lar approach to identify variants in DA. We use
the Word2vec framework (Mikolov et al., 2013) in
the Gensim implementation (Řehůřek and Sojka,
2010) to generate the embedding spaces. We use
these embeddings to learn and score normalization
candidates based on their cosine distance as a se-
mantic score, and edit distance as a lexical score.
In this scope, we first learn a weighted distance
function for the individual insertion, deletion, and
substitution operations, then use these weights to
score the candidates.

Edit Distance Weights The spelling variants are
first identified based on narrow window and wide
window embeddings, to capture both semantic and
syntactic based relationships. For each word in
each embedding space we get the nearest N neigh-
bors, and intersect them with the N nearest neigh-
bors of the word in the other embedding space. We
get these neighbors to obtain the weights first, and
then use them again for the actual normalization
in the next step. We discard candidates that have
an edit distance above two, and obtain the individ-
ual edit operation weights through their normal-
ized frequencies in the remaining candidates.

Word Mapping We use the learnt edit dis-
tance weights to score the normalization candi-
dates mentioned above from the wide and nar-
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Figure 4: The tagging architecture with the extended (wide and narrow) window embeddings.

row window embedding spaces, and further prune
them based on their weighted edit distance. We
select the candidate with the highest frequency in
the text as the canonical equivalent.

Low Frequency Words Word2vec has a mini-
mum count threshold for the words to be embed-
ded. This value is tunable based on the used cor-
pus. For the words below this threshold Word2vec
does not guarantee a good vector representation,
and discards them in the embedding model, so
we can not use this normalization approach in this
case. Instead, we use the weighted edit distances
to score and map these words to more frequent
cognates, on the character level only.2

Normalized Embeddings The pipeline so far
results in a more consistent version of the text,
which we use to learn the final embeddings upon.
These embeddings are used as the pre-trained em-
beddings in the tagging architecture. This results
in normalization at the embedding space level
only, where the raw forms are still unmodified.
The raw forms can be used for character-level
noise reduction later in the tagging pipeline.

5 Experiments

5.1 Data
We use the "ARZ" (Maamouri et al., 2012) manu-
ally annotated EGY Arabic corpus, from the Lin-
guistic Data Consortium (LDC), parts 1, 2, 3, 4
and 5. The corpus is based on the POS guidelines

2 Instead of searching through the entire word space for
each word to be normalized, which is computationally ex-
pensive, we pruned the search space by only looking at words
sharing at least two consonants (in the same order) with it.

used by the LDC for Egyptian Arabic, and con-
sists of about 160K words (excluding numbers and
punctuations, 175K overall). The set of analyses
for a given raw word includes the correct CODA
orthography, in addition to the full morphological
and POS annotations.

We use the splits suggested by Diab et al.
(2013), comprised of a training set (Train) of about
134K words, a development set (Dev) of 20K
words, and a blind testing set (Blind Test) of 21K
words. The Dev set is used during the system de-
velopment to assess design choices. The Blind
Test set is used at the end to present the results.

The morphological analyzer we use in this pa-
per is similar to the one used by Habash et al.
(2013b). It is based on the SAMA (Graff et al.,
2009), CALIMA (Habash et al., 2012b), and
ADAM (Salloum and Habash, 2014) databases.
EGY content, as in DA in general, contains many
MSA cognates. The decision therefore to use all
three analyzers was to maximize the recall of the
overall analyzer.

We also use an in-house EGY monolingual cor-
pus of about 410 million words, collected from on-
line commentaries of blogs and social media plat-
forms, to pre-train the word embeddings.

To better assess the notions of noise and am-
biguity in the EGY dataset, we compare it to
the Penn Arabic Treebank (PATB parts 1, 2 and
3) (Maamouri et al., 2004), which is commonly
used for morphological disambiguation systems in
MSA. MSA is also morphologically rich with high
ambiguity levels, so it should provide a suitable
reference for EGY. We sample an MSA data of
size similar to the EGY dataset size, to be able to
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draw comparable comparison. Table 2 provides
some statistics regarding both datasets. The aver-
age number of unique types per lemma (different
types mapped to the same lemma encountered in
the corpus) is relatively higher for the raw EGY
content compared to MSA, at 2.7 vs 2.4. The av-
erage for the CODA-based EGY, however, is sim-
ilar to MSA. This indicates that the normalized
version of EGY has a similar sparsity as that for
MSA, which is inherently less noisy. The differ-
ence in the ratio between raw and CODA EGY is
a good indicator of the noise and inconsistency in
the EGY dataset.

EGY Raw EGY CODA MSA
Tokens 133,751 133,751 133,763

Inflected types 32,927 30,272 22,022
Lemmas 13,242 13,242 9,522

Avg types/lemma 2.7 2.4 2.4

Table 2: Dataset statistics showing tokens, types, and
lemmas count in EGY and an MSA subset. Both from
the Train set. The average inflections per lemma is cal-
culated by counting the average unique types that map
to the same lemma.

Regarding ambiguity, we calculated the aver-
age number of different analyses from the mor-
phological analyzer for a given word in EGY at
about 24 analyses per word (about 15 MSA, 6.5
DA, and 2.5 "no-analysis" analyses3), whereas for
MSA it is around 12. This reflects the severe am-
biguity of the EGY dataset compared with MSA
in this context. Both noise and ambiguity issues
make morphological tagging and disambiguation
systems for EGY a very challenging task.

5.2 Experimental Setup
For the Bi-LSTM tagging architecture we use two
hidden layers of size 800. Each layer is com-
posed of two LSTM layers for each direction, and
a dropout wrapper with keep probability of 0.8,
and peephole connections. We use Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 0.002, and cross-entropy cost function. We use
Tensorflow as the development environment.

The LSTM character embedding architecture
uses two LSTM layers of size 100, and embedding
size 50. The CNN architecture also uses embed-
ding size 50, with filter widths ranging from one
to six and max pooling strides of 50.

3 The morphological analyzer has a backoff mode of "no-
analysis" that provides a "proper noun" analysis to all word.
The "proper noun" analysis can sometimes be cliticized, so
some words might have multiple backoff analyses.

As for the neural language models for lemmati-
zation and diacritization, we use two hidden layers
of size 400 for lemmatization, and 600 for diacriti-
zation. We also use an input layer of size 300.
We use Adam optimizer (Kingma and Ba, 2014)
as the optimization algorithm, with learning rate
of 0.002. We use TheanoLM (Enarvi and Kurimo,
2016) to develop the models.

The pre-trained word embeddings are of size
250, for both narrow and wide window embed-
dings. The wide window is set to five, whereas
the narrow window is set to two (we experimented
with a window of one but it performed slightly
lower than a window of two). The number of near-
est neighbors in the embedding space mapping ex-
periment is 10 neighbors.

Metrics We use the following evaluation met-
rics for all systems:

• POS Accuracy (POS): The accuracy over the
POS tag set comprised of 36 tags (Habash
et al., 2013b).

• Morph Tags Accuracy (Morph Tags): The
analysis and disambiguation accuracy over
the 14 morphological features we work with,
excluding lemmas and diacritized forms.

• Lemmatization Accuracy (Lemma): The ac-
curacy of the lemma form of the words.

• Diacritization Accuracy (Diac): The accu-
racy of the diacritized form of the words.

• Full Analysis Accuracy (Full): The evalua-
tion accuracy over the entire analysis, includ-
ing the morphological features, lemma, and
diacritized form.

5.3 Results

Table 3 shows the results of all systems for Dev,
and Table 4 shows the results for the Blind Test set.
We use the MADAMIRA results as the baseline.

Narrow embeddings seem to consistently out-
perform wide embeddings across all experiments.
Regarding character embeddings, using both CNN
and LSTM-based character embeddings improve
the overall performance for both wide and nar-
row word embeddings, but LSTMs show consis-
tent improvement over CNNs, which is in line with
the conclusions of Heigold et al. (2017).

Embedding extension, through combining the
wide and narrow window word embeddings, with
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Model Lemma Diac POS Morph Tags Full
MADAMIRA EGY (Baseline) 86.4 82.4 91.7 86.7 76.2
Bi-LSTM wide window embeddings 87.3 82.6 92.2 88.0 76.5

+ CNN character embeddings 87.3 82.5 92.6 88.2 76.6
+ LSTM character embeddings 87.4 82.5 92.6 88.3 76.7

+ Embedding space mapping 87.5 82.8 92.6 88.6 76.9
Bi-LSTM narrow window embeddings 87.5 82.9 92.3 88.0 76.7

+ CNN character embeddings 87.5 82.9 92.6 88.6 76.9
+ LSTM character embeddings 87.6 82.9 92.9 88.8 77.0

+ Embedding space mapping 87.4 82.8 92.7 88.7 76.9
Bi-LSTM wide+narrow embeddings and LSTM character embeddings 87.6 83.0 92.8 88.8 77.1

+ Embedding space mapping (Best System) 87.7 83.2 92.9 88.9 77.4
Relative error reduction of best result compared to baseline 9.6% 4.5% 14.5% 16.5 % 5.0%

Table 3: Results of the various systems over the Dev dataset, with MADAMIRA EGY (Pasha et al., 2014) as a
state-of-the-art baseline.

Model Lemma Diac POS Morph Tags Full
MADAMIRA EGY (Baseline) 87.3 83.3 91.8 86.9 77.3
Bi-LSTM wide window embeddings 87.5 83.1 92.6 87.9 77.4

+ CNN character embeddings 87.7 83.3 92.9 88.1 77.5
+ LSTM character embeddings 87.8 83.3 93.1 88.2 77.6

+ Embedding space mapping 87.8 83.5 93.4 88.9 78.0
Bi-LSTM narrow window embeddings 87.6 83.4 92.7 88.2 77.6

+ CNN character embeddings 87.8 83.6 93.3 88.8 78.0
+ LSTM character embeddings 88.0 83.6 93.5 89.1 78.2

+ Embedding space mapping 87.8 83.6 93.2 88.8 78.1
Bi-LSTM wide+narrow embeddings and LSTM character embeddings 87.9 83.5 93.1 88.6 78.0

+ Embedding space mapping (Best System) 88.1 83.8 93.6 89.2 78.4
Relative error reduction of best result compared to baseline 6.3% 3.0% 21.9% 17.6 % 4.9%

Table 4: Results of the various systems over the Blind Test dataset.

the LSTM-based character embeddings, signifi-
cantly enhances the performance beyond the char-
acter embeddings alone for the wide embeddings.
This is not the case though for narrow window
embeddings. This highlights the significance of
narrow embeddings for syntactic and morphologi-
cal modeling, since the extension approach merely
adds narrow window embedding capability to the
wide window embeddings.

We observe the same pattern for the embed-
ding space mapping approach for noise reduction
against the narrow window embeddings. How-
ever, combining the extension with the embedding
space mapping methods, along with the LSTM-
based character embeddings, results in the best
performing system. Both approaches seem to
complement each other, as the accuracy exceeds
any of the methods alone.

The result of the narrow window embeddings is
particularly interesting, as it shows that to achieve
a relatively good noise-robust morphological dis-
ambiguation accuracy, using narrow window em-
beddings should go a long way. Using more so-
phisticated, and computationally expensive, noise

handling approaches, like embedding extension
with embedding space mapping, should achieve
even better results.

5.4 System Analysis

Oracle Conventional Orthography Experiment
The availability of the manually annotated CODA
equivalent of the EGY dataset allows for a deeper
analysis of the noise effects on morphological dis-
ambiguation. We trained and tested the system
using the CODA version of the data, as an ora-
cle experiment of noise-reduced content. CODA-
based content is not guaranteed to be noise-free,
or be optimal for such syntactic and morphologi-
cal tasks, but it should provide a good reference in
terms of orthography-normalized content.

We train the model on the CODA-EGY train-
ing, and test it with the CODA-EGY Dev set. We
use the same word pre-training dataset as before.
We use LSTM-based character embeddings, and
experiment with both wide and narrow embedding
window. Table 5 shows the results for the CODA
based modeling for Dev. The results are very sim-
ilar to the best performing model in our earlier ex-

960



Model Lemma Diac POS Morph Tags Full
Bi-LSTM wide window embeddings 87.4 82.5 92.6 88.3 76.7
Bi-LSTM narrow window embeddings 87.6 82.9 92.9 88.8 77.0
Bi-LSTM wide+narrow window embeddings+embeddings space mapping 87.7 83.2 92.9 88.9 77.4
(Oracle Experiment) CODA narrow window embeddings 87.9 83.3 93.0 89.1 77.4
(Oracle Experiment) CODA wide window embeddings 87.7 83.1 92.8 88.8 77.2

Table 5: Results of training and testing the system using the CODA-based Dev data, compared to the results of our
system (taken from Table 3). All systems use LSTM-based character embeddings.

periments. These results indicate that our model is
very close to the upper performance limit in terms
of noise and inconsistency, and achieves noise-
robust tagging and disambiguation.

The results for wide and narrow window con-
texts are also consistent with our earlier experi-
ments, with narrow windowed contexts perform-
ing better across all evaluation metrics.

Manual Error Analysis

POS analysis We first analyze the overall error
distribution in the POS tagging results. The most
common POS error type is mistagging a nominal
tag (Noun, Adjective, etc) with a different nominal
tag, at 74% of the errors. Nominals include many
very frequent tags, such as nouns and adjectives.
The next most common error category is mistag-
ging particles with other particles, at around 15%.
Mistagging nominals with verbs is at around 4%.
Several other low frequency errors cover the re-
maining 7%. To better understand the nature of
the errors we manually checked a sample of 100
POS tagging errors. Almost 48% of them are gold
errors, out of which our system gets 74% correct.

Lemma analysis We also manually checked a
sample of 100 lemmatization errors. We observe
that 30% of them are gold errors, 23% are the re-
sult of a wrong POS tag, 15% are acceptable MSA
lemmas, 12% are due to minor and normally ac-
ceptable spelling issues, mainly the Hamza letter
(glottal stops), and 6% are due to inconsistent dia-
critization. The MSA-related errors are due to the
many MSA cognates in DA content. So provid-
ing an MSA-based analysis instead of an equiva-
lent DA analysis can be acceptable for the purpose
of this analysis. Hamza spelling variations, espe-
cially at the beginning of the word, are common in
both DA and MSA written content.

Diacritization analysis We checked a sample of
100 diacritization errors. We observed more er-
rors attributed to error propagation, as wrong POS

tags and lemmas lead to many diacritization er-
rors. The percentage of gold errors is only 17%,
whereas MSA-cognate related errors are about
32%, POS related errors cover 13%, Hamza er-
rors 11%, lemmatization errors include 7%, and
the rest are mostly due to wrong case, gender, per-
son tags, and other unidentified issues.

6 Conclusion and Future Work

We presented several neural morphological disam-
biguation models for EGY, and used several ap-
proaches for noise-robust processing. Our system
outperforms a state-of-the-art system for EGY. We
observed that character embeddings, combined
with pre-trained word embeddings, provide a sig-
nificant performance boost over the baseline. We
showed that LSTM-based character embeddings
outperform CNN-based models for EGY. We also
showed that narrow window embeddings signifi-
cantly outperform wide window embeddings for
tagging. We also experimented with a normal-
ization model on the word-level vectors, map-
ping non-canonical words to canonical neighbors
through embedding space mapping. The results
showed an additional improvement over the nar-
row window embeddings.

Future directions include exploring additional
deep learning architectures for morphological
modeling and disambiguation, especially joint and
multitasking architectures. We also plan to ex-
plore knowledge transfer and adaptation models
for more dialects with limited resources.
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Abstract

We study the problem of analyzing tweets
with Universal Dependencies (UD; Nivre
et al., 2016). We extend the UD guide-
lines to cover special constructions in
tweets that affect tokenization, part-of-
speech tagging, and labeled dependen-
cies. Using the extended guidelines, we
create a new tweet treebank for English
(TWEEBANK V2) that is four times larger
than the (unlabeled) TWEEBANK V1 intro-
duced by Kong et al. (2014). We char-
acterize the disagreements between our
annotators and show that it is challeng-
ing to deliver consistent annotation due
to ambiguity in understanding and ex-
plaining tweets. Nonetheless, using the
new treebank, we build a pipeline sys-
tem to parse raw tweets into UD. To over-
come annotation noise without sacrific-
ing computational efficiency, we propose
a new method to distill an ensemble of 20
transition-based parsers into a single one.
Our parser achieves an improvement of 2.2
in LAS over the un-ensembled baseline
and outperforms parsers that are state-of-
the-art on other treebanks in both accuracy
and speed.

1 Introduction

NLP for social media messages is challenging, re-
quiring domain adaptation and annotated datasets
(e.g., treebanks) for training and evaluation. Pi-
oneering work by Foster et al. (2011) annotated
7,630 tokens’ worth of tweets according to the
phrase-structure conventions of the Penn Treebank
(PTB; Marcus et al., 1993), enabling conversion to
Stanford Dependencies. Kong et al. (2014) further
studied the challenges in annotating tweets and

presented a tweet treebank (TWEEBANK), consist-
ing of 12,149 tokens and largely following con-
ventions suggested by Schneider et al. (2013),
fairly close to Yamada and Matsumoto (2003) de-
pendencies (without labels). Both annotation ef-
forts were highly influenced by the PTB, whose
guidelines have good grammatical coverage on
newswire. However, when it comes to informal,
unedited, user-generated text, the guidelines may
leave many annotation decisions unspecified.

Universal Dependencies (Nivre et al., 2016,
UD) were introduced to enable consistent anno-
tation across different languages. To allow such
consistency, UD was designed to be adaptable to
different genres (Wang et al., 2017) and languages
(Guo et al., 2015; Ammar et al., 2016). We pro-
pose that analyzing the syntax of tweets can bene-
fit from such adaptability. In this paper, we intro-
duce a new English tweet treebank of 55,607 to-
kens that follows the UD guidelines, but also con-
tends with social media-specific challenges that
were not covered by UD guidelines.1 Our anno-
tation includes tokenization, part-of-speech (POS)
tags, and (labeled) Universal Dependencies. We
characterize the disagreements among our annota-
tors and find that consistent annotation is still chal-
lenging to deliver even with the extended guide-
lines.

Based on these annotations, we nonetheless de-
signed a pipeline to parse raw tweets into Uni-
versal Dependencies. Our pipeline includes: a
bidirectional LSTM (bi-LSTM) tokenizer, a word
cluster–enhanced POS tagger (following Owoputi
et al., 2013), and a stack LSTM parser with
character-based word representations (Ballesteros
et al., 2015), which we refer to as our “baseline”
parser. To overcome the noise in our annotated

1We developed our treebank independently of a similar
effort for Italian tweets (Sanguinetti et al., 2017). See §2.5
for a comparison.
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data and achieve better performance without sac-
rificing computational efficiency, we distill a 20-
parser ensemble into a single greedy parser (Hin-
ton et al., 2015). We show further that learn-
ing directly from the exploration of the ensemble
parser is more beneficial than learning from the
gold standard “oracle” transition sequence. Exper-
imental results show that an improvement of more
than 2.2 points in LAS over the baseline parser
can be achieved with our distillation method. It
outperforms other state-of-the-art parsers in both
accuracy and speed.

The contributions of this paper include:

• We study the challenges of annotating tweets
in UD (§2) and create a new tweet treebank
(TWEEBANK V2), which includes tokeniza-
tion, part-of-speech tagging, and labeled Uni-
versal Dependencies. We also characterize
the difficulties of creating such annotation.

• We introduce and evaluate a pipeline system
to parse the raw tweet text into Universal De-
pendencies (§3). Experimental results show
that it performs better than a pipeline of the
state-of-the-art alternatives.

• We propose a new distillation method for
training a greedy parser, leading to better per-
formance than existing methods and without
efficiency sacrifices.

Our dataset and system are publicly available
at https://github.com/Oneplus/Tweebank and
https://github.com/Oneplus/twpipe.

2 Annotation

We first review TWEEBANK V1 of Kong et al.
(2014), the previous largest Twitter dependency
annotation effort (§2.1). Then we introduce the
differences in our tokenization (§2.2) and part-of-
speech (§2.3) (re)annotation with O’Connor et al.
(2010) and Gimpel et al. (2011), respectively, on
which TWEEBANK V1 was built. We describe our
effort of adapting the UD conventions to cover
tweet-specific constructions (§2.4). Finally, we
present our process of creating a new tweet tree-
bank, TWEEBANK V2, and characterize the diffi-
culties in reaching consistent annotations (§2.6).

2.1 Background: TWEEBANK

The annotation effort we describe stands in con-
trast to the previous work by Kong et al. (2014).

Their aim was the rapid development of a de-
pendency parser for tweets, and to that end they
contributed a new annotated corpus, TWEEBANK,
consisting of 12,149 tokens. Their annotations
added unlabeled dependencies to a portion of the
data annotated with POS tags by Gimpel et al.
(2011) and Owoputi et al. (2013) after rule-based
tokenization (O’Connor et al., 2010). Kong et
al. also contributed a system for parsing; we de-
fer the discussion of their parser to §3.

Kong et al.’s rapid, small-scale annotation ef-
fort was heavily constrained. It was carried out by
annotators with only cursory training, no clear an-
notation guidelines, and no effort to achieve con-
sensus on controversial cases. Annotators were
allowed to underspecify their analyses. Most of
the work was done in a very short amount of time
(a day). Driven both by the style of the text they
sought to annotate and by exigency, some of their
annotation conventions included:

• Allowing an annotator to exclude tokens
from the dependency tree. A clear criterion
for exclusion was not given, but many tokens
were excluded because they were deemed
“non-syntactic.”

• Allowing an annotator to merge a multiword
expression into a single node in the depen-
dency tree, with no internal structure. Anno-
tators were allowed to take the same step with
noun phrases.

• Allowing multiple roots, since a single tweet
might contain more than one sentence.

These conventions were justified on the grounds of
making the annotation easier for non-experts, but
they must be revisited in our effort to apply UD to
tweets.

2.2 Tokenization

Our tokenization strategy lies between the strategy
of O’Connor et al. (2010) and that of UD. There is
a tradeoff between preservation of original tweet
content and respecting the UD guidelines.

The regex-based tokenizer of O’Connor et al.
(2010)—which was originally designed for an ex-
ploratory search interface called TweetMotif, not
for NLP—preserves most whitespace-delimited
tokens, including hashtags, at-mentions, emoti-
cons, and unicode glyphs. They also treat contrac-
tions and acronyms as whole tokens and do not
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split them. UD tokenization,2 in order to better
serve dependency annotation, treats each syntactic
word as a token. They therefore more aggressively
split clitics from contractions (e.g., gonna is tok-
enized as gon and na; its is tokenized as it and s
when s is a copula). But acronyms are not touched
in the UD tokenization guidelines. Thus, we fol-
low the UD tokenization for contractions and leave
acronyms like idc (“I don’t care”) as a single to-
ken.

In the different direction of splitting tokens,
UD guidelines also suggest to merge multi-token
words (e.g., 20 000) into one single token in some
special cases. We witnessed a small number of
tweets that contain multi-token words (e.g., Y O,
and R E T W E E T) but didn’t combine them for
simplicity. Such tokens only account for 0.07%
and we use the UD goeswith relation to resolve
these cases in the dependency annotations.

2.3 Part-of-Speech Annotation

Before turning to UD annotations, we
(re)annotated the data with POS tags, for
consistency with other UD efforts, which adopt
the universal POS tagset.3 In some cases, non-
corresponding tag conflicts arose between the
UD English Web Treebank treebank conventions
(UD_English-EWT; de Marneffe et al., 2014)4

and the conventions of Gimpel et al. (2011).
In these cases, we always conformed to UD,
enabling consistency (e.g., when we exploit the
existing UD_English-EWT treebank in our parser
for tweets, §3). For example, the nominal URL in
Figure 2 is tagged as other (X) and + is tagged as
symbol (SYM) rather than conjunction (CCONJ).

Tokens that do not have a syntactic function (see
Figure 1, discussed at greater length in the next
section) were usually annotated as other (X), ex-
cept for emoticons, which are tagged as symbol
(SYM), following UD_English-EWT.

Tokens that abbreviate multiple words (such as
idc) are resolved to the POS of the syntactic head
of the expression, following UD conventions (in
this example, the head care is a verb, so idc is
tagged as a verb). When the token is not phrasal,
we use the POS of the left-most sub-phrase. For

2http://universaldependencies.org/u/overview/
tokenization.html

3A revised and extended version of Petrov et al. (2012)
with 17 tags.

4https://github.com/UniversalDependencies/UD_

English-EWT

example, mfw (“my face when”) is tagged as a
noun (for face).

Compared to the effort of Gimpel et al. (2011),
our approach simplifies some matters. For exam-
ple, if a token is not considered syntactic by UD
conventions, it gets an other (X) tag (Gimpel et
al. had more extensive conventions). Other phe-
nomena, like abbreviations, are more complicated
for us, as discussed above; Gimpel et al. used a
single part of speech for such expressions.

Another important difference follows from the
difference in tokenization. As discussed in §2.2,
UD calls for more aggressive tokenization than
that of O’Connor et al. (2010) which opted out of
splitting contractions and possessives. As a con-
sequence of adopting O’Connor et al.’s (2010) to-
kenization, Gimpel et al. introduced new parts of
speech for these cases instead.5 For us, these to-
kens must be split, but universal parts of speech
can be applied.

2.4 Universal Dependencies Applied to
Tweets

We adopt UD version 2 guidelines to annotate
the syntax of tweets. In applying UD annotation
conventions to tweets, the choices of Kong et al.
(2014) must be revisited. We consider the key
questions that arose in our annotation effort, and
how we resolved them.

Acronym abbreviations. We follow Kong et al.
(2014) and annotate the syntax of an acronym as a
single word without normalization. Their syntac-
tic functions are decided according to their con-
text. Eisenstein (2013) studied the necessity of
normalization in social media text and argued that
such normalization is problematic. Our solution to
the syntax of abbreviations follows the spirit of his
argument. Because abbreviations which clearly
carry syntactic functions only constitute 0.06% of
the tokens in our dataset, we believe that normal-
ization for acronyms is an unnecessarily compli-
cated step.

Non-syntactic tokens. The major characteristic
that distinguishes tweets from standard texts is that
a large proportion of tokens don’t carry any syn-
tactic function. In our annotation, there are five
types of non-syntactic tokens commonly seen in
tweets: sentiment emoticons, retweet markers and

5These tags only account for 2.7% of tokens, leading to
concerns about data sparseness in tagging and all downstream
analyses.
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Perfect ♥ RT @coldplay : Fix You from the back #ColdplayMinneapolis http://bit.ly/2dj2WCl Nice p ...
ADJ SYM X X PUNCT VERB NOUN ADP DET NOUN X X ADJ X PUNCT

root

discourse

root

discourse

discourse
punct

obj

obl

case
det

discourse
list

root

discourse
punct

Figure 1: An example to illustrate non-syntactic tokens: sentiment emoticon, retweet marker and its following
at-mention, topical hashtag, referential URL, and truncated word. This is a concatenation of three real tweets.

@username its #awesome u gonna ♥ it Chk out our cooool project on http://project_link + RT it
PROPN PRON ADJ PRON VERB VERB PRON VERB ADP PRON ADJ NOUN ADP X SYM VERB PRON

root

vocative
nsubj

parataxis
nsubj xcomp obj

parataxis

compound:prt

obj
nmod:poss

amod

obl

case

conj

cc obj

Figure 2: An example to illustrate informal but syntactic tokens. This is a contrived example inspired by several
tweets.

syntactic (%) non-syntactic (%)
emoticons 0.25 0.95
RT 0.14 2.49
hashtag 1.02 1.24
URL 0.67 2.38
truncated words 0.00 0.49
total 2.08 7.55

Table 1: Proportions of non-syntactic tokens in our
annotation. These statistics are obtained on 140
character–limited tweets.

their following at-mentions, topical hashtags, ref-
erential URLs, and truncated words.6 Figure 1 il-
lustrates examples of these non-syntactic tokens.
As discussed above, these are generally tagged
with the other (X) part of speech, except emoti-
cons, which are tagged as symbol (SYM). In our an-
notation, 7.55% of all tokens are belong to one of
the five types; detailed statistics can be found in
Table 1.

It is important to note that these types may, in
some contexts, have syntactic functions. For ex-
ample, besides being a discourse marker, RT can
abbreviate the verb retweet; emoticons and hash-
tags may be used as content words within a sen-
tence; and at-mentions can be normal vocative
proper nouns: see Figure 2. Therefore, the cri-

6The tweets we analyze have at most 140 characters. Al-
though Twitter has doubled the tweet length limit to 280 char-
acters since our analysis, we believe this type of token will
still remain.

teria for annotating a token as non-syntactic must
be context-dependent.

Inspired by the way UD deals with punctuation
(which is canonically non-syntactic), we adopt the
following conventions:

• If a non-syntactic token is within a sentence
that has a clear predicate, it will be attached
to this predicate. The retweet construction is
a special case and we will discuss its treat-
ment in the following paragraph.

• If the whole sentence is a sequence of non-
syntactic tokens, we attach all these tokens to
the first one.

• Non-syntactic tokens are mostly labeled as
discourse, but URLs are always labeled as
list, following the UD_English-EWT dataset.

Kong et al. (2014) proposed an additional pre-
processing step, token selection, in their annota-
tion process. They required the annotators to first
select the non-syntactic tokens and exclude them
from the final dependency annotation. In order to
keep our annotation conventions in line with UD
norms and preserve the original tweets as much
as possible, we include non-syntactic tokens in
our annotation following the conventions above.
Compared with Kong et al. (2014), we also gave
a clear definition of non-syntactic tokens, which
helped us avoid confusion during annotation.
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Retweet construction. Figure 1 shows an exam-
ple of the retweet construction (RT @coldplay :).
This might be treated as a verb phrase, with RT as
a verb and the at-mention as an argument. This
solution would lead to an uninformative root word
and, since this expression is idiomatic to Twit-
ter, might create unnecessary confusion for down-
stream applications aiming to identify the main
predicate(s) of a tweet. We therefore treat the
whole expression as non-syntactic, including as-
signing the other (X) part of speech to both RT and
@coldplay, attaching the at-mention to RT with
the discourse label and the colon to RT with the
punct(uation) label, and attaching RT to the predi-
cate of the following sentence.

Constructions handled by UD. A number of
constructions that are especially common in
tweets are handled by UD conventions: ellipsis,
irregular word orders, and paratactic phrases and
sentences not explicitly delineated by punctuation.

Vocative at-mentions. Another idiomatic con-
struction on Twitter is a vocative at-mention
(sometimes a signal that a tweet is a reply to a
tweet by the mentioned user). We treat these at-
mentions as vocative expressions, labeling them
with POS tag proper noun (PROPN) and attaching
them to the main predicate of the sentence it is
within with the label vocative as in UD guidelines
(see Figure 2 for an example).

2.5 Comparison to PoSTWITA-UD

The first Twitter treebank annotated with Uni-
versal Dependencies was the PosTWITA-UD cor-
pus for Italian (Sanguinetti et al., 2017), which
consists of 6,738 tweets (119,726 tokens). In
their convention, tokenization tends to preserve
the original tweet content but two special cases,
articulated prepositions (e.g., nella as in la) and
clitic clusters (e.g. guardandosi as guardando si),
are tokenized. Their lemmas include spelling nor-
malization, whereas our lemmas only normalize
casing and inflectional morphology. The current
UD guidelines on lemmas are flexible, so variation
between treebanks is expected.7

With respect to tweet-specific constructions,
Sanguinetti et al.’s (2017) and our interpretations
of headedness are the same, but we differ in the
relation label. For topical hashtags, we use dis-

7http://universaldependencies.org/u/overview/
morphology.html#lemmas

course while they used parataxis. In referen-
tial URLs, we use list (following the precedent
of UD_English-EWT) while they used dep. Our
choice of discourse for sentiment emoticons is in-
spired by the observation that emoticons are an-
notated as discourse by UD_English-EWT; San-
guinetti et al. (2017) used the same relation for the
emoticons. Retweet constructions and truncated
words were not explicitly touched by Sanguinetti
et al. (2017). Judging from the released tree-
bank8, the RT marker, at-mention, and colon in the
retweet construction are all attached to the pred-
icate of the following sentence with dep, voca-
tive:mention and punct. We expect that the official
UD guidelines will eventually adopt standards for
these constructions so the treebanks can be harmo-
nized.

2.6 TWEEBANK V2

Following the guidelines presented above, we cre-
ate a new Twitter dependency treebank, which we
call TWEEBANK V2.

2.6.1 Data Collection
TWEEBANK V2 is built on the original data of
TWEEBANK V1 (840 unique tweets, 639/201 for
training/test), along with an additional 210 tweets
sampled from the POS-tagged dataset of Gimpel
et al. (2011) and 2,500 tweets sampled from the
Twitter stream from February 2016 to July 2016.9

The latter data source consists of 147.4M English
tweets after being filtered by the lang attribute in
the tweet JSON and langid.py.10 As done by Kong
et al. (2014), the annotation unit is always the
tweet in its entirety—which may consist of mul-
tiple sentences—not the sentence alone. Before
annotation, we use a simple regular expression to
anonymize usernames and URLs.

2.6.2 Annotation Process
Our annotation process was conducted in two
stages. In the first stage, 18 researchers worked
on the TWEEBANK V1 portion and the additional
210 tweets and created the initial annotations in
one day. Before annotating, they were given a tu-
torial overview of the general UD annotation con-
ventions and our guidelines specifically for anno-
tating tweets. Both the guidelines and annotations

8https://github.com/UniversalDependencies/UD_

Italian-PoSTWITA
9Data downloaded from https://archive.org/.

10https://github.com/saffsd/langid.py
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TWEEBANK V1 TWEEBANK V2
split tweets tokens tweets tokens
train 639 9,310 1,639 24,753
dev. – – 710 11,742
test 201 2,839 1,201 19,112

total 840 12,149 3,550 55,607

Table 2: Statistics of TWEEBANK V2 and comparison
with TWEEBANK V1.

Olympic gold medallist whipped by John Fisher

root

amod
compound acl

obl
case flat

root

nsubj

Figure 3: An example of disagreement; one annotator’s
parse is shown above, disagreeing arcs from the other
annotator are shown below. This is a real example in
our annotation.

were further refined by the authors of this paper to
increase the coverage of our guidelines and solve
inconsistencies between different annotators dur-
ing this exercise. In the second stage, a tokenizer,
a POS tagger, and a parser were trained on the an-
notated data from the first stage (1,050 tweets in
total), and used to automatically analyze the sam-
pled 2,500 tweets. Authors of this paper manu-
ally corrected the parsed data and finally achieved
3,550 labeled tweets.11 Newly created annotations
are split into train, development, and test sets and
appended to the original splits of TWEEBANK V1.
Statistics of our annotations and data splits are
shown in Table 2.

We report the inter-annotator agreement be-
tween the annotators in the second stage. There
is very little disagreement on the tokenization an-
notation. The agreement rate is 96.6% on POS,
88.8% on unlabeled dependencies, and 84.3% on
labeled dependencies. Further analysis shows the
major disagreements on POS involve entity names
(30.6%) and topical hashtags (18.1%). Taking the
example in Figure 1, “Fix you” can be understood
as a verbal phrase but also as the name of the Cold-
play’s single and tagged as proper noun. An exam-

11Manual annotation was done with Arborator (Gerdes,
2013), a web platform for drawing dependency trees.

t s g o n n a b e$ $

0 1 1 0 0 1 0 1 0$ $

… …i

1

Char
Embed.

Figure 4: The bi-LSTM tokenizer that segments ‘its
gonna be’ into ‘it s gon na be’.

ple of a disagreement on dependencies is shown
in Figure 3. Depending on whether this is an ex-
ample of a zero copula construction, or a clause-
modified noun, either annotation is plausible.

3 Parsing Pipeline

We present a pipeline system to parse tweets into
Universal Dependencies. We evaluate each com-
ponent individually, and the system as a whole.

3.1 Tokenizer
Tokenization, as the initial step of many NLP
tasks, is non-trivial for informal tweets, which
include hashtags, at-mentions, and emoticons
(O’Connor et al., 2010). Context is often required
for tokenization decisions; for example, the aster-
isk in 4*3 is a separate token signifying multipli-
cation, but the asterisk in sh*t works as a mask to
evoke censorship and should not be segmented.

We introduce a new character-level bidirec-
tional LSTM (bi-LSTM) sequence-labeling model
(Huang et al., 2015; Ma and Hovy, 2016) for tok-
enization. Our model takes the raw sentence and
tags each character in this sentence as whether it is
the beginning of a word (1 as the beginning and 0
otherwise). Figure 4 shows the architecture of our
tokenization model. Space is treated as an input
but deterministically assigned a special tag $.

Experimental results. Our preliminary results
showed that our model trained on the combination
of UD_English-EWT and TWEEBANK V2 outper-
formed the one trained only on the UD_English-
EWT or TWEEBANK V2, consistent with previ-
ous work on dialect treebank parsing (Wang et al.,
2017). So we trained our tokenizer on the train-
ing portion of TWEEBANK V2 combined with the
UD_English-EWT training set and tested on the
TWEEBANK V2 test set. We report F1 scores,
combining precision and recall for token identi-
fication. Table 3 shows the tokenization results,
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System F1

Stanford CoreNLP 97.3
Twokenizer 94.6

UDPipe v1.2 97.4
our bi-LSTM tokenizer 98.3

Table 3: Tokenizer comparison on the TWEEBANK V2
test set.

compared to other available tokenizers. Stan-
ford CoreNLP (Manning et al., 2014) and Two-
kenizer (O’Connor et al., 2010)12 are rule-based
systems and were not adapted to the UD tok-
enization scheme. The UDPipe v1.2 (Straka and
Straková, 2017) model was re-trained on the same
data as our system. Compared with UDPipe, we
use an LSTM instead of a GRU in our model
and we also use a larger size for hidden units (64
vs. 20), which has stronger representational power.
Our bi-LSTM tokenizer achieves the best accuracy
among all these tokenizers. These results speak to
the value of statistical modeling in tokenization for
informal texts.

3.2 Part-of-Speech Tagger

Part-of-speech tagging for tweets has been exten-
sively studied (Ritter et al., 2011; Gimpel et al.,
2011; Derczynski et al., 2013; Owoputi et al.,
2013; Gui et al., 2017). We therefore consider
existing POS taggers for tweets instead of devel-
oping our own. On the annotation scheme de-
signed in §2.3, based on UD and adapted for Twit-
ter, we compared several existing systems: the
Stanford CoreNLP tagger, Owoputi et al.’s (2013)
word cluster–enhanced tagger (both greedy and
CRF variants), and Ma and Hovy’s (2016) neu-
ral network tagger which achieves the state-of-the-
art performance on PTB. Gui et al. (2017) pre-
sented a state-of-the-art neural tagger for Twit-
ter, but their implementation works only with the
PTB tagset, so we exclude it. All compared sys-
tems were re-trained on the combination of the
UD_English-EWT and TWEEBANK V2 training
sets. We use Twitter-specific GloVe embeddings
released by Pennington et al. (2014) in all neural
taggers and parsers.13

12We use the updated version of Twokenizer from Owoputi
et al. (2013).

13http://nlp.stanford.edu/data/glove.twitter.
27B.zip

System Accuracy
Stanford CoreNLP 90.6

Owoputi et al., 2013 (greedy) 93.7
Owoputi et al., 2013 (CRF) 94.6

Ma and Hovy, 2016 92.5

Table 4: POS tagger comparison on gold-standard to-
kens in the TWEEBANK V2 test set.

Tokenization System F1

Stanford CoreNLP 92.3
our bi-LSTM tokenizer (§3.1) 93.3

Table 5: Owoputi et al. (2013) POS tagging perfor-
mance with automatic tokenization on the TWEEBANK
V2 test set.

Experimental results. We tested the POS tag-
gers on the TWEEBANK V2 test set. Results
with gold-standard tokenization are shown in Ta-
ble 4. Careful feature engineering and Brown
et al. (1992) clusters help Owoputi et al.’s (2013)
feature-based POS taggers to outperform Ma and
Hovy’s (2016) neural network model.

Results of the Owoputi et al. (2013) tagger with
non-greedy inference on automatically tokenized
data are shown in Table 5. We see that errors in to-
kenization do propagate, but tagging performance
is above 93% with our tokenizer.

3.3 Parser

Social media applications typically require pro-
cessing large volumes of data, making speed an
important consideration. We therefore begin with
the neural greedy stack LSTM parser introduced
by Ballesteros et al. (2015), which can parse a sen-
tence in linear time and harnesses character repre-
sentations to construct word vectors, which should
help mitigate the challenge of spelling variation.
We encourage the reader to refer their paper for
more details about the model.

In our initial experiments, we train our parser on
the combination of UD_English-EWT and TWEE-
BANK V2 training sets. Gold-standard tokeniza-
tion and automatic POS tags are used. Automatic
POS tags are assigned with 5-fold jackknifing.
Hyperparameters are tuned on the TWEEBANK V2
development set. Unlabeled attachment score and
labeled attachment score (including punctuation)
are reported. All the experiments were run on a
Xeon E5-2670 2.6 GHz machine.

Reimers and Gurevych (2017) and others have
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System UAS LAS Kt/s
Kong et al. (2014) 81.4 76.9 0.3
Dozat et al. (2017) 81.8 77.7 1.7

Ballesteros et al. (2015) 80.2 75.7 2.3
Ensemble (20) 83.4 79.4 0.2

Distillation (α = 1.0) 81.8 77.6 2.3
Distillation (α = 0.9) 82.0 77.8 2.3

Distillation w/ exploration 82.1 77.9 2.3

Table 6: Dependency parser comparison on TWEE-
BANK V2 test set, with automatic POS tags. We use
Ballesteros et al. (2015) as our baseline and build the
ensemble and distilling model over it. The “Kt/s” col-
umn shows the parsing speed evaluated by thousands
of tokens the model processed per second.

pointed out that neural network training is nonde-
terministic and depends on the seed for the random
number generator. Our preliminary experiments
confirm this finding, with a gap of 1.4 LAS on de-
velopment data between the best (76.2) and worst
(74.8) runs. To control for this effect, we report the
average of five differently-seeded runs, for each of
our models and the compared ones.

Initial results. The first section of Table 6 com-
pares the stack LSTM with TWEEBOPARSER (the
system of Kong et al., 2014) and the state-of-the-
art parser in the CoNLL 2017 evaluations, due to
Dozat et al. (2017). Kong et al.’s (2014) parser
is a graph-based parser with lexical features and
word cluster and it uses dual decomposition for
decoding. The parser in Dozat et al. (2017) is also
a graph-based parser but includes character-based
word representations and uses a biaffine classifier
to predict whether an attachment exists between
two words. Both of the compared systems require
superlinear runtime due to graph-based parsing.
They are re-trained on the same data as our sys-
tem. Our baseline lags behind by nearly two LAS
points but runs faster than both of them.

Ensemble. Due to ambiguity in the training
data—which most loss functions are not robust to
(Frénay and Verleysen, 2014), including the log
loss we use, following Ballesteros et al. (2015)—
and due to the instability of neural network train-
ing, we follow Dietterich (2000) and consider an
ensemble of twenty parsers trained using differ-
ent random initialization. To parse at test time,
the transition probabilities of the twenty mem-
bers of the ensemble are averaged. The result
achieves LAS of 79.4, outperforming all three sys-

tems above (Table 6).

Distillation. The shortcoming of the 20-parser
ensemble is, of course, that it requires twenty
times the runtime of a single greedy parser, mak-
ing it the slowest system in our comparison. Kun-
coro et al. (2016) proposed the distillation of 20
greedy transition-based parser into a single graph-
based parser; they transformed the votes of the en-
semble into a structured loss function. However,
as Kuncoro et al. pointed out, it is not straightfor-
ward to use a structured loss in a transition-based
parsing algorithm. Because fast runtime is so im-
portant for NLP on social media, we introduce a
new way to distill our greedy ensemble into a sin-
gle transition-based parser (the first such attempt,
to our knowledge).

Our approach applies techniques from Hinton
et al. (2015) and Kim and Rush (2016) to parsing.
Note that training a transition-based parser typi-
cally involves the transformation of the training
data into a sequence of “oracle” state-action pairs.
Let q(a | s) denote the distilled model’s probabil-
ity of an action a given parser state s; let p(a | s)
be the probability under the ensemble (i.e., the av-
erage of the 20 separately-trained ensemble mem-
bers). To train the distilled model, we minimize
the interpolation between their distillation loss and
the conventional log loss:

argminq α
∑

i

∑

a

−p(a | si) · log q(a | si)
︸ ︷︷ ︸

distillation loss
(1)

+ (1− α)
∑

i

− log q(ai | si)︸ ︷︷ ︸
log loss

Distilling from this parser leads to a single
greedy transition-based parser with 77.8 LAS—
better than past systems but worse than our more
expensive ensemble. The effect of α is illustrated
in Figure 5; generally paying closer attention to
the ensemble, rather than the conventional log loss
objective, leads to better performance.

Learning from exploration. When we set α =
1, we eliminate the oracle from the estimation pro-
cedure (for the distilled model). This presents
an opportunity to learn with exploration, by ran-
domly sampling transitions from the ensemble,
found useful in recent methods for training greedy
models that use dynamic oracles (Goldberg and
Nivre, 2012, 2013; Kiperwasser and Goldberg,
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Figure 5: The effect of α on distillation.

Pipeline stage Score Ours SOTA
Tokenization F1 98.3 97.3
POS tagging F1 93.3 92.2
UD parsing LAS F1 74.0 71.4

Table 7: Evaluating our pipeline against a state-of-the-
art pipeline.

2016; Ballesteros et al., 2016). We find that this
approach outperforms the conventional distillation
model, coming in 1.5 points behind the ensemble
(last line of Table 6).

Pipeline evaluation. Finally, we report our full
pipeline’s performance in Table 7. We also com-
pare our model with a pipeline of the state-of-the-
art systems (labeled “SOTA”): Stanford CoreNLP
tokenizer,14 Owoputi et al.’s (2013) tagger, and
Dozat et al.’s (2017) parser. Our system differs
from the state-of-the-art pipeline in the tokeniza-
tion and parser components. From Table 7, our
pipeline outperforms the state of the art when eval-
uated in pipeline manner. The results also em-
phasize the importance of tokenization: without
gold tokenization UD parsing performance drops
by about four points.

4 Conclusion

We study the problem of parsing tweets into Uni-
versal Dependencies. We adapt the UD guidelines
to cover special constructions in tweets and create
the TWEEBANK V2, which has 55,607 tokens. We
characterize the disagreements among our annota-
tors and argue that inherent ambiguity in this genre
makes consistent annotation a challenge. Using
this new treebank, we build a pipeline system to
parse tweets into UD. We also propose a new
method to distill an ensemble of 20 greedy parsers
into a single one to overcome annotation noise

14We choose the Stanford CoreNLP tokenizer in the spirit
of comparing rule-based and statistical methods.

without sacrificing efficiency. Our parser achieves
an improvement of 2.2 in LAS over a strong base-
line and outperforms other state-of-the-art parsers
in both accuracy and speed.
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Abstract

Adversarial training (AT)1 is a powerful reg-
ularization method for neural networks, aim-
ing to achieve robustness to input perturba-
tions. Yet, the specific effects of the robust-
ness obtained from AT are still unclear in the
context of natural language processing. In
this paper, we propose and analyze a neural
POS tagging model that exploits AT. In our ex-
periments on the Penn Treebank WSJ corpus
and the Universal Dependencies (UD) dataset
(27 languages), we find that AT not only im-
proves the overall tagging accuracy, but also
1) prevents over-fitting well in low resource
languages and 2) boosts tagging accuracy for
rare / unseen words. We also demonstrate that
3) the improved tagging performance by AT
contributes to the downstream task of depen-
dency parsing, and that 4) AT helps the model
to learn cleaner word representations. 5) The
proposed AT model is generally effective in
different sequence labeling tasks. These posi-
tive results motivate further use of AT for nat-
ural language tasks.

1 Introduction
Recently, neural network-based approaches have
become popular in many natural language pro-
cessing (NLP) tasks including tagging, parsing,
and translation (Chen and Manning, 2014; Bah-
danau et al., 2015; Ma and Hovy, 2016). How-
ever, it has been shown that neural networks tend
to be locally unstable and even tiny perturba-
tions to the original inputs can mislead the models
(Szegedy et al., 2014). Such maliciously perturbed
inputs are called adversarial examples. Adversar-
ial training (Goodfellow et al., 2015) aims to im-
prove the robustness of a model to input perturba-
tions by training on both unmodified examples and
adversarial examples. Previous work (Goodfellow

1We distinguish AT from Generative Adversarial Net-
works (GANs).

Figure 1: Illustration of our architecture for adversar-
ial POS tagging. Given a sentence, we input the nor-
malized word embeddings (w1,w2,w3) and character
embeddings (showing c1, c2, c3 for w1). Each word is
represented by concatenating its word embedding and
its character-level BiLSTM output. They are fed into
the main BiLSTM-CRF network for POS tagging. In
adversarial training, we compute and add the worst-
case perturbation η to all the input embeddings for reg-
ularization.

et al., 2015; Shaham et al., 2015) on image recog-
nition has demonstrated the enhanced robustness
of their models to unseen images via adversarial
training and has provided theoretical explanations
of the regularization effects.

Despite its potential as a powerful regularizer,
adversarial training (AT) has yet to be explored ex-
tensively in natural language tasks. Recently, Miy-
ato et al. (2017) applied AT on text classification,
achieving state-of-the-art accuracy. Yet, the spe-
cific effects of the robustness obtained from AT are
still unclear in the context of NLP. For example,
research studies have yet to answer questions such
as 1) how can we interpret perturbations or robust-
ness on natural language inputs? 2) how are they
related to linguistic factors like vocabulary statis-
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tics? 3) are the effects of AT language-dependent?
Answering such questions is crucial to understand
and motivate the application of adversarial train-
ing on natural language tasks.

In this paper, spotlighting a well-studied core
problem of NLP, we propose and carefully ana-
lyze a neural part-of-speech (POS) tagging model
that exploits adversarial training. With a BiLSTM-
CRF model (Huang et al., 2015; Ma and Hovy,
2016) as our baseline POS tagger, we apply ad-
versarial training by considering perturbations to
input word/character embeddings. In order to de-
mystify the effects of adversarial training in the
context of NLP, we conduct POS tagging experi-
ments on multiple languages using the Penn Tree-
bank WSJ corpus (Englsih) and the Universal De-
pendencies dataset (27 languages), with thorough
analyses of the following points:

• Effects on different target languages
• Vocabulary statistics and tagging accuracy
• Influence on downstream tasks
• Representation learning of words

In our experiments, we find that our adversarial
training model consistently outperforms the base-
line POS tagger, and even achieves state-of-the-art
results on 22 languages. Furthermore, our anal-
yses reveal the following insights into adversarial
training in the context of NLP:

• The regularization effects of adversarial train-
ing (AT) are general across different languages.
AT can prevent overfitting especially well when
training examples are scarce, providing an ef-
fective tool to process low resource languages.

• AT can boost the tagging performance for rare/
unseen words and increase the sentence-level
accuracy. This positively affects the perfor-
mance of down-stream tasks such as depen-
dency parsing, where low sentence-level POS
accuracy can be a bottleneck (Manning, 2011).

• AT helps the network learn cleaner word em-
beddings, showing stronger correlations with
their POS tags.

We argue that the effects of AT can be interpreted
from the perspective of natural language. Finally,
we demonstrate that the proposed AT model is
generally effective across different sequence label-
ing tasks. This work therefore provides a strong
motivation and basis for utilizing adversarial train-
ing in NLP tasks.

2 Related Work

2.1 POS Tagging

Part-of-speech (POS) tagging is a fundamental
NLP task that facilitates downstream tasks such
as syntactic parsing. While current state-of-the-
art POS taggers (Ling et al., 2015; Ma and Hovy,
2016) yield accuracy over 97.5% on PTB-WSJ,
there still remain issues. The per token accuracy
metric is easy since taggers can easily assign cor-
rect POS tags to highly unambiguous tokens, such
as punctuation (Manning, 2011). Sentence-level
accuracy serves as a more realistic metric for POS
taggers but it still remains low. Another prob-
lem with current POS taggers is that their accuracy
deteriorates drastically on low resource languages
and rare words (Plank et al., 2016). In this work,
we demonstrate that adversarial training (AT) can
mitigate these issues.

It is empirically shown that POS tagging perfor-
mance can greatly affect downstream tasks such as
dependency parsing (Dozat et al., 2017). In this
work, we also demonstrate that the improvements
obtained from our AT POS tagger actually con-
tribute to dependency parsing. Nonetheless, pars-
ing with gold POS tags still yields better results,
bolstering the view that POS tagging is an essen-
tial task in NLP that needs further development.

2.2 Adversarial Training

The concept of adversarial training (Szegedy et al.,
2014; Goodfellow et al., 2015) was originally in-
troduced in the context of image classification to
improve the robustness of a model by training on
input images with malicious perturbations. Previ-
ous work (Goodfellow et al., 2015; Shaham et al.,
2015; Wang et al., 2017) has provided a theoreti-
cal framework to understand adversarial examples
and the regularization effects of adversarial train-
ing (AT) in image recognition.

Recently, Miyato et al. (2017) applied AT to a
natural language task (text classification) by ex-
tending the concept of adversarial perturbations to
word embeddings. Wu et al. (2017) further ex-
plored the possibility of AT in relation extraction.
Both report improved performance on their tasks
via AT, but the specific effects of AT have yet to be
analyzed. In our work, we aim to address this is-
sue by providing detailed analyses on the effects of
AT from the perspective of NLP, such as different
languages, vocabulary statistics, word embedding
distribution, and aim to motivate future research
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that exploits AT in NLP tasks.
AT is related to other regularization methods

that add noise to data such as dropout (Srivastava
et al., 2014) and its variant for NLP tasks, word
dropout (Iyyer et al., 2015). Xie et al. (2017) dis-
cuss various data noising techniques for language
modeling. While these methods produce random
noise, AT generates perturbations that the current
model is particularly vulnerable to, and thus is
claimed to be effective (Goodfellow et al., 2015).

It should be noted that while related in name,
adversarial training (AT) differs from Generative
Adversarial Networks (GANs) (Goodfellow et al.,
2014). GANs have already been applied to NLP
tasks such as dialogue generation (Li et al., 2017)
and transfer learning (Kim et al., 2017; Gui et al.,
2017). Adversarial training also differs from ad-
versarial evaluation, recently proposed for reading
comprehension tasks (Jia and Liang, 2017).

3 Method

In this section, we introduce our baseline POS tag-
ging model and explain how we implement adver-
sarial training on top.

3.1 Baseline POS Tagging Model

Following the recent top-performing models for
sequence labeling tasks (Plank et al., 2016; Lam-
ple et al., 2016; Ma and Hovy, 2016), we employ a
Bi-directional LSTM-CRF model as our baseline
(see Figure 1 for an illustration).

Character-level BiLSTM. Prior work has
shown that incorporating character-level represen-
tations of words can boost POS tagging accuracy
by capturing morphological information present
in each language. Major neural character-level
models include the character-level CNN (Ma and
Hovy, 2016) and (Bi)LSTM (Dozat et al., 2017).
A Bi-directional LSTM (BiLSTM) (Hochreiter
and Schmidhuber, 1997; Schuster and Paliwal,
1997) processes each sequence both forward and
backward to capture sequential information, while
preventing the vanishing / exploding gradient
problem. We observed that the character-level
BiLSTM outperformed the CNN by 0.1% on the
PTB-WSJ development set, and hence in all of our
experiments we use the character-level BiLSTM.
Specifically, we generate a character-level repre-
sentation for each word by feeding its character
embeddings into the BiLSTM and obtaining the
concatenated final states.

Word-level BiLSTM. Each word in a sentence
is represented by concatenating its word embed-
ding and its character-level representation. They
are fed into another level of BiLSTM (word-level
BiLSTM) to process the entire sentence.

CRF. In sequence labeling tasks it is beneficial
to consider the correlations between neighboring
labels and jointly decode the best chain of labels
for a given sentence. With this motivation, we
apply a conditional random field (CRF) (Lafferty
et al., 2001) on top of the word-level BiLSTM to
perform POS tag inference with global normaliza-
tion, addressing the “label bias” problem. Specif-
ically, given an input sentence, we pass the out-
put sequence of the word-level BiLSTM to a first-
order chain CRF to compute the conditional prob-
ability of the target label sequence:

p(y | s;θ)
where θ represents all of the model parameters (in
the BiLSTMs and CRF), s and y denote the in-
put embeddings and the target POS tag sequence,
respectively, for the given sentence.

For training, we minimize the negative log-
likelihood (loss function)

L(θ; s,y) = − log p(y | s;θ) (1)

with respect to the model parameters. Decoding
searches for the POS tag sequence y∗ with the
highest conditional probability using the Viterbi
algorithm. For more detail about the BiLSTM-
CRF formulation, refer to Ma and Hovy (2016).

3.2 Adversarial Training

Adversarial training (Goodfellow et al., 2015) is
a powerful regularization method, primarily ex-
plored in image recognition to improve the robust-
ness of classifiers to input perturbations. Given a
classifier, we first generate input examples that are
very close to original inputs (so should yield the
same labels) yet are likely to be misclassified by
the current model. Specifically, these adversarial
examples are generated by adding small perturba-
tions to the inputs in the direction that significantly
increases the loss function of the classifier (worst-
case perturbations). Then, the classifier is trained
on the mixture of clean examples and adversarial
examples to improve the stability to input pertur-
bations. In this work, we incorporate adversarial
training into our baseline POS tagger, aiming to
achieve better regularization effects and to provide
their interpretations in the context of NLP.
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Generating adversarial examples. Adversarial
training (AT) considers continuous perturbations
to inputs, so we define perturbations at the level
of dense word / character embeddings rather than
one-hot vector representations, similarly to Miy-
ato et al. (2017). Specifically, given an input sen-
tence, we consider the concatenation of all the
word / character embeddings in the sentence: s =
[w1,w2, . . . , c1, c2, . . . ]. To prepare an adversar-
ial example, we aim to generate the worst-case
perturbation of a small bounded norm ε that max-
imizes the loss function L of the current model:

η = argmax
η′: ‖η′‖2≤ ε

L(θ̂; s+η′,y)

where θ̂ is the current value of the model param-
eters, treated as a constant, and y denotes the tar-
get labels. Since the exact computation of such η
is intractable in complex neural networks, we em-
ploy the Fast Gradient Method (Liu et al., 2017;
Miyato et al., 2017) i.e. first order approximation
to obtain an approximate worst-case perturbation
of norm ε, by a single gradient computation:

η = ε g/‖g‖2, where g = ∇sL(θ̂; s,y) (2)

ε is a hyperparameter to be determined in the de-
velopment dataset. Note that the perturbation η
is generated in the direction that significantly in-
creases the loss L. We find such η against the cur-
rent model parameterized by θ̂, at each training
step, and construct an adversarial example by

sadv = s+ η

However, if we do not restrict the norm of word
/ character embeddings, the model could trivially
learn embeddings of large norms to make the per-
turbations insignificant. To prevent this issue, we
normalize word/character embeddings so that they
have mean 0 and variance 1 for every entry, as in
Miyato et al. (2017). The normalization is per-
formed every time we feed input embeddings into
the LSTMs and generate adversarial examples. To
ensure a fair comparison, we also normalize input
embeddings in our baseline model.

While Miyato et al. (2017) set the norm of a
perturbation ε (Eq 2) to be a fixed value for all in-
put sentences, to generate adversarial examples for
an entire sentence of a variable length and to in-
clude character embeddings besides word embed-
dings, we make the perturbation size ε adaptive to
the dimension of the concatenated input embed-
ding s ∈ RD. We set ε to be α

√
D (i.e., propor-

tional to
√
D), as the expected squared norm of s

after the embedding normalization is D. The scal-
ing factor α is selected from {0.001, 0.005, 0.01,
0.05, 0.1} based on the development performance
in each treebank. We used 0.01 for PTB-WSJ and
UD-Spanish, and 0.05 for the rest. Note that α=0
would generate no noise (identical to the baseline);
if α = 1, the generated adversarial perturbation
would have a norm comparable to the original em-
bedding, which could change the semantics of the
input sentence (Wu et al., 2017). Hence, the opti-
mal perturbation scale α should lie in between and
be small enough to preserve the semantics of the
original input.

Adversarial training. At each training step, we
generate adversarial examples against the current
model, and train on the mixture of clean examples
and adversarial examples to achieve robustness to
input perturbations. To this end, we define the loss
function for adversarial training as:

L̃ = γL(θ; s,y) + (1− γ)L(θ; sadv,y)
where L(θ; s,y), L(θ; sadv,y) represent the loss
from a clean example and the loss from its adver-
sarial example, respectively, and γ determines the
weighting between them. We used γ = 0.5 in all
our experiments. This objective function can be
optimized with respect to the model parameters θ,
in the same manner as the baseline model.

4 Experiments
To fully analyze the effects of adversarial training,
we train and evaluate our baseline/adversarial POS
tagging models on both a standard English dataset
and a multilingual dataset.

4.1 Datasets

As a standard English dataset, we use the Wall
Street Journal (WSJ) portion of the Penn Treebank
(PTB) (Marcus et al., 1993), containing 45 differ-
ent POS tags. We adopt the standard split: sec-
tions 0-18 for training, 19-21 for development and
22-24 for testing (Collins, 2002; Manning, 2011).

For multilingual POS tagging experiments, to
compare with prior work, we use treebanks from
Universal Dependencies (UD) v1.2 (Nivre et al.,
2015) (17 POS) with the given data splits. We ex-
periment on languages for which pre-trained Poly-
glot word embeddings (Al-Rfou et al., 2013) are
available, resulting in 27 languages listed in Table
2. We regard languages with less than 60k tokens
of training data as low-resource (Table 2, bottom),
as in Plank et al. (2016).
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Model Accuracy
Toutanova et al. (2003) 97.27
Manning (2011) 97.28
Collobert et al. (2011) 97.29
Søgaard (2011) 97.50
Ling et al. (2015) 97.78
Ma and Hovy (2016) 97.55
Yang et al. (2017) 97.55
Hashimoto et al. (2017) 97.55
Ours – Baseline (BiLSTM-CRF) 97.54
Ours – Adversarial 97.58

Table 1: POS tagging accuracy on the PTB-WSJ test
set, with other top-performing systems.

4.2 Training & Evaluation Details

Model settings. We initialize word embeddings
with 100-dimensional GloVe (Pennington et al.,
2014) for English, and with 64-dimensional Poly-
glot (Al-Rfou et al., 2013) for other languages. We
use 30-dimensional character embeddings, and set
the state sizes of character/word-level BiLSTM to
be 50, 200 for English, 50, 100 for low resource
languages, and 50, 150 for other languages. The
model parameters and character embeddings are
randomly initialized, as in Ma and Hovy (2016).
We apply dropout (Srivastava et al., 2014) to input
embeddings and BiLSTM outputs for both base-
line and adversarial training, with dropout rate 0.5.

Optimization. We train the model parameters
and word/character embeddings by the mini-batch
stochastic gradient descent (SGD) with batch size
10, momentum 0.9, initial learning rate 0.01 and
decay rate 0.05. We also use a gradient clipping of
5.0 (Pascanu et al., 2012). The models are trained
with early stopping (Caruana et al., 2001) based
on the development performance.

Evaluation. We evaluate per token tagging ac-
curacy on test sets. We repeat the experiment three
times and report the statistical significance.

4.3 Results

PTB-WSJ dataset. Table 1 shows the POS tag-
ging results. As expected, our baseline (BiLSTM-
CRF) model (accuracy 97.54%) performs on par
with other state-of-the-art systems. Built upon
this baseline, our adversarial training (AT) model
reaches accuracy 97.58% thanks to its regulariza-
tion power, outperforming recent POS taggers ex-
cept Ling et al. (2015). The improvement over the
baseline is statistically significant, with p-value <
0.05 on the t-test. We provide additional analysis
on this result in later sections.

Our Models Plank et al. (2016) Berend Nguyen et
Baseline Adversarial BiLSTM TNT CRF (2017) al. (2017)

bg 98.34 98.53 97.97 96.84 96.36 95.63 97.4
cs 98.70 98.81 98.24 96.82 96.56 95.83 –
da 96.63 96.74 96.35 94.29 93.83 93.32 95.8
de• 94.29 94.35 93.38 92.64 91.38 90.73 92.7
en 95.72 95.82 95.16 94.55 93.35 93.47 94.7
es 96.26 96.44 95.74 94.55 94.23 94.69 95.9
eu• 94.55 94.71 95.51 93.35 91.63 90.63 93.7
fa 97.38 97.51 97.49 95.98 95.65 96.11 96.8
fi• 94.54 95.40 95.85 93.59 90.32 89.19 94.6
fr 96.48 96.63 96.11 94.51 95.14 94.96 96.0
he 97.34 97.43 96.96 93.71 93.63 95.28 –
hi 97.12 97.21 97.10 94.53 96.00 96.09 96.4
hr• 96.12 96.32 96.82 94.06 93.16 93.53 –
id 93.95 94.03 93.41 93.16 92.96 92.02 93.1
it 98.04 98.08 97.95 96.16 96.43 96.28 97.5
nl 92.64 93.09 93.30 88.54 90.03 85.10 91.4
no 97.88 98.08 98.03 96.31 96.21 95.67 97.4
pl• 97.34 97.57 97.62 95.57 93.96 93.95 96.3
pt 97.94 98.07 97.90 96.27 96.32 95.50 97.5
sl• 97.81 98.11 96.84 94.92 94.77 92.70 97.1
sv 96.39 96.70 96.69 95.19 94.45 94.62 –

Avg 96.45 96.65 96.40 94.55 94.11 93.59 95.55

el 98.18 98.24 – – – 97.12 –
et• 90.79 91.32 – – – 86.30 –
ga 90.66 91.11 – – – 88.82 –
hu• 93.39 94.02 – – – 89.47 –
ro 91.24 91.46 – – – 88.99 –
ta 82.91 83.16 – – – 81.80 –

Avg 91.20 91.55 – – – 88.41 –

Table 1: POS tagging accuracy (test) for 27 UD
v1.2 treebanks. The first column shows languages
and the rest show tagging accuracy of different
models. For Plank et al. (2016), we include the
traditional baselines TNT and CRF, and their state-
of-the-art model that employs a multi-task BiL-
STM. Berend (2017) and Nguyen et al. (2017) are
two recent works reporting POS tagging perfor-
mance on UD v1.2. Languages with • are mor-
phologically rich, and those at the bottom (‘el’ to
‘ta’) are low-resourced, containing less than 60k
tokens in their training sets.
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Gábor Berend. 2017. Sparse coding of neural word em-

beddings for multilingual sequence labeling. TACL
.

Dat Quoc Nguyen, Mark Dras, and Mark Johnson.
2017. A Novel Neural Network Model for Joint
POS Tagging and Graph-based Dependency Parsing.
In Proceedings of the CoNLL 2017 Shared Task:
Multilingual Parsing from Raw Text to Universal
Dependencies.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with
bidirectional long short-term memory models and
auxiliary loss. In The 54th Annual Meeting of
the Association for Computational Linguistics. page
412.

Table 2: POS tagging accuracy (test) for 27 UD v1.2
treebanks, with other recent works, Plank et al. (2016),
Berend (2017) and Nguyen et al. (2017). For Plank
et al. (2016), we include the traditional baselines TNT
and CRF, and their state-of-the-art model that employs
a multi-task BiLSTM. Languages with • are morpho-
logically rich, and those at the bottom (‘el’ to ‘ta’) are
low-resource, containing less than 60k tokens in their
training sets.

Multilingual dataset (UD). Experimental re-
sults are summarized in Table 2. Our AT model
shows clear advantages over the baseline in all of
the 27 languages (average improvement ∼0.25%;
see the two shaded columns). Considering that
our baseline (BiLSTM-CRF) is already a top per-
forming model for POS tagging, these improve-
ments made by AT are substantial. The improve-
ments are also statistically significant for all the
languages, with p-value < 0.05 on the t-test, sug-
gesting that the regularization by AT is generally
effective across different languages. Moreover,
our AT model achieves state-of-the-art on nearly
all of the languages, except the five where Plank
et al. (2016)’s multi-task BiLSTM yielded better
results. Among the five, most languages are mor-
phologically rich (•).2 We suspect that their joint
training of word rarity may be of particular help in
processing morphologically complex words.

2We followed the criteria of morphological richness used
in Nguyen et al. (2017).
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Figure 2: Learning curves for three representative languages (Romanian is low-resource). We show the transition
of loss (defined in Eq 1) on the development sets.

English (WSJ)

Word Frequency 0 1-10 10-100 100- Total

# Tokens 3240 7687 20908 97819 129654
Baseline 92.25 95.36 96.03 98.19 97.53

Adversarial 92.01 95.52 96.10 98.23 97.57

French (UD)
Word Frequency 0 1-10 10-100 100- Total

# Tokens 356 839 1492 *4523* *7210*
Baseline 87.64 94.05 94.03 98.43 96.48

Adversarial 87.92 94.88 94.03 98.50 96.63

Table 3: POS tagging accuracy (test) on different sub-
sets of words, categorized by their frequency of occur-
rence in training. The second row shows the number
of tokens in the test set that are in each category. The
third and fourth rows show the performance of our two
models. Better scores are underlined. The biggest im-
provement is in bold.

Additionally, we see that our AT model achieves
notably large improvements over the baseline in
resource-poor languages (the bottom of Table 2),
with average improvement 0.35%, as compared to
that for resource-rich languages, 0.20%. To fur-
ther visualize the regularization effects, we present
the learning curves for three representative lan-
guages, English (WSJ), French (UD-fr) and Ro-
manian (UD-ro, low-resource), based on the de-
velopment loss (see Figure 2). For all the three
languages, we can observe that the AT model (red
solid line) prevents overfitting better than the base-
line (black dotted line), and this advantage is more
significant in low resource languages. For exam-
ple, in Romanian, the baseline model starts to in-
crease development loss after 1,000 iterations even
with dropout, whereas the AT model keeps im-
proving until 2,500 iterations, achieving notably
lower development loss (0.4 down). These results
illustrate that AT can prevent overfitting especially
well on small datasets and can augment the regu-
larization power beyond dropout. AT can also be
viewed as an effective means of data augmenta-
tion, where we generate and train with new exam-
ples the current model is particularly vulnerable to
at every time step, enhancing the robustness of the

English (WSJ)

Word Frequency 0 1-10 10-100 100- Total

# Tokens 6480 15374 41815 195637 259306
Baseline 97.76 97.71 97.80 97.45 97.53

Adversarial 98.06 97.71 97.89 97.47 97.57

French (UD)
Word Frequency 0 1-10 10-100 100- Total

# Tokens 712 *1678* 2983 *9045* *14418*
Baseline 95.08 97.08 97.58 96.11 96.48

Adversarial 95.37 97.26 97.79 96.23 96.63

Table 4: POS tagging accuracy (test) on neighboring
words. We cluster all words in the test set in the same
way as Table 3 and consider the tagging performance
on the neighbors (left and right) of these words in the
test text.

model. AT can therefore be a promising tool to
process low resource languages.

5 Analysis
In the previous sections, we demonstrated the reg-
ularization power of adversarial training (AT) on
different languages, based on the overall POS tag-
ging performance and learning curves. In this sec-
tion, we conduct further analyses on the robust-
ness of AT from NLP specific aspects such as word
statistics, sequence modeling, downstream tasks,
and word representation learning.

We find that AT can boost tagging accuracy on
rare words and neighbors of unseen words (§5.1).
Furthermore, this robustness against rare / unseen
words leads to better sentence-level accuracy and
downstream dependency parsing (§5.2). We il-
lustrate these findings using two major languages,
English (WSJ) and French (UD), which have sub-
stantially large training and testing data to dis-
cuss vocabulary statistics and sentence-level per-
formance. Finally, we study the effects of AT on
word representation learning (§5.3), and the appli-
cability of AT to different sequential tasks (§5.4).

5.1 Word-level Analysis

Poor tagging accuracy on rare/unseen words is one
of the bottlenecks in current POS taggers (Man-
ning, 2011; Plank et al., 2016). Aiming to reveal
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English (WSJ)

Sentence- Stanford Parser Parsey McParseface
level Acc. UAS LAS UAS LAS

Baseline 59.08 91.53 89.30 91.68 87.92
Adversarial 59.61 91.57 89.35 91.73 87.97
(w/ gold tags) – (92.07) (90.63) (91.98) (88.60)

French (UD)
Sentence- Parsey Universal
level Acc. UAS LAS

Baseline 52.35 84.85 80.36
Adversarial 53.36 85.01 80.55
(w/ gold tags) – (85.05) (80.75)

Table 5: Sentence-level accuracy and downstream de-
pendency parsing performance by our baseline / adver-
sarial POS taggers.

the effects of AT on rare / unseen words, we ana-
lyze tagging performance at the word level, con-
sidering vocabulary statistics.

Word frequency. To define rare /unseen words,
we consider each word’s frequency of occurrence
in the training set. We categorize all words in the
test set based on this frequency and study the test
tagging accuracy for each group (see Table 3).3 In
both languages, the AT model achieves large im-
provements over the baseline on rare words (e.g.,
frequency 1-10 in training), as opposed to more
frequent words. This result again corroborates the
data augmentation power of AT under small train-
ing examples. On the other hand, we did not ob-
serve meaningful improvements on unseen words
(frequency 0 in training). A possible explanation
is that AT can facilitate the learning of words with
at least a few occurrences in training (rare words),
but is not particularly effective in inferring the
POS tags of words for which no training examples
are given (unseen words).

Neighboring words. One important character-
istic of natural language tasks is the sequential
nature of inputs (i.e., sequence of words), where
each word influences the function of its neighbor-
ing words. Since our model uses BiLSTM-CRF
for that reason, we also study the tagging perfor-
mance on the neighbors of rare/unseen words, and
analyze the effects of AT with the sequence model
in mind. In Table 4, we cluster all words in the test
set based on their frequency in training again, and
consider the tagging accuracy on the neighbors
(left and right) of these words in the test text. We
observe that AT tends to achieve large improve-

3To conduct the analysis, we picked the median result
from the three repeated experiments.

ments over the baseline on the neighbors of unseen
words (training frequency 0), while the improve-
ments on the neighbors of more frequent words re-
main moderate. Our AT model thus exhibits strong
stability to uncertain neighbors, as compared to
the baseline. We suspect that because we gener-
ate adversarial examples against entire input sen-
tences, training with adversarial examples makes
the model more robust not only to perturbations in
each word but also to perturbations in its neighbor-
ing words, leading to greater stability to uncertain
neighbors.

5.2 Sentence-level & Downstream Analysis

In the word-level analysis, we showed that AT
can boost tagging accuracy on rare words and the
neighbors of unseen words, enhancing overall ro-
bustness on rare/unseen words. In this section, we
discuss the benefit of our improved POS tagger in
a major downstream task, dependency parsing.

Most of the recent state-of-the-art dependency
parsers take predicted POS tags as input (e.g.
Chen and Manning (2014); Andor et al. (2016);
Dozat and Manning (2017)). Dozat et al. (2017)
empirically show that their dependency parser
gains significant improvements by using POS tags
predicted by a Bi-LSTM POS tagger, while POS
tags predicted by the UDPipe tagger (Straka et al.,
2016) do not contribute to parsing performance as
much. This observation illustrates that POS tag-
ging performance has a great influence on depen-
dency parsing, motivating the hypothesis that the
POS tagging improvements gained from our ad-
versarial training help dependency parsing.

To test the hypothesis, we consider three
settings in dependency parsing of English and
French: using POS tags predicted by the baseline
model, using POS tags predicted by the AT model,
and using gold POS tags. For English (PTB-WSJ),
we first convert the treebank into Stanford Depen-
dencies (SD) using Stanford CoreNLP (ver 3.8.0)
(Manning et al., 2014), and then apply two well-
known dependency parsers: Stanford Parser (ver
3.5.0) (Chen and Manning, 2014) and Parsey Mc-
Parseface (SyntaxNet) (Andor et al., 2016). For
French (UD), we use Parsey Universal from Syn-
taxNet. The three parsers are all publicly available
and pre-trained on corresponding treebanks.

Table 5 shows the results of the experiments.
We can observe improvements in both languages
by using the POS tags predicted by our AT POS
tagger. As Manning (2011) points out, when pre-
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English (WSJ)

POS Cluster NN VB JJ RB Avg.

1) Initial (GloVe) 0.243 0.426 0.220 0.549 0.359
2) Baseline 0.280 0.431 0.309 0.667 0.422
3) Adversarial 0.281 0.436 0.306 0.675 0.424

French (UD)

POS Cluster NOUN VERB ADJ ADV Avg.

1) Initial (polyglot) 0.215 0.233 0.210 0.540 0.299
2) Baseline 0.258 0.271 0.262 0.701 0.373
3) Adversarial 0.263 0.272 0.263 0.720 0.379

Table 6: Cluster tightness evaluation for word embed-
dings, based on the cosine similarity measure. Higher
scores indicate better clustering (cleaner word vector
distribution). Each row corresponds to word vectors 1)
at the beginning, 2) after baseline training, and 3) after
adversarial training.

English (WSJ)

Perturbation scale α 0 0.001 0.01 0.05 0.1 0.5

Avg. cluster tightness 0.422 0.423 0.424 0.429 0.436 0.429

Table 7: Average cluster tightness for word embed-
dings trained with varied perturbation scale α (0 indi-
cates baseline training).

dicted POS tags are used for downstream depen-
dency parsing, a single bad mistake in a sentence
can greatly damage the usefulness of the POS tag-
ger. The robustness of our AT POS tagger against
rare/unseen words helps to mitigate such an issue.
This advantage can also be observed from the AT
POS tagger’s notably higher sentence-level accu-
racy than the baseline (see Table 5 left). Nonethe-
less, gold POS tags still yield better parsing results
as compared to the baseline/AT POS taggers, sup-
porting the claim that POS tagging needs further
improvement for downstream tasks.

5.3 Effects on Representation Learning

Next, we perform an analysis on representation
learning of words (word embeddings) for the En-
glish (PTB-WSJ) and French (UD) experiments.
We hypothesize that adversarial training (AT)
helps to learn better word embeddings so that the
POS tag prediction of a word cannot be influenced
by a small perturbation in the input embedding.

To verify this hypothesis, we cluster all words
in the test set based on their correct POS tags4 and
evaluate the tightness of the word vector distribu-
tion within each cluster. We compare this cluster-
ing quality among the three settings: 1) beginning
(initialized with GloVe or Polyglot), 2) after base-

4We excluded words with multiple tags in the test text.

line training (50 epochs), and 3) after adversarial
training (50 epochs), to study the effects of AT on
word representation learning.

For evaluating the tightness of word vector dis-
tribution, we employ the cosine similarity metric,
which is widely used as a measure of the closeness
between two word vectors (e.g., Mikolov et al.
(2013); Pennington et al. (2014)). To measure the
tightness of each cluster, we compute the cosine
similarity for every pair of words within, and then
take the average. We also report the average tight-
ness across all the clusters.

The evaluation results are summarized in Ta-
ble 6. We report the tightness scores for the four
major clusters: noun, verb, adjective, and adverb
(from left to right). As can be seen from the table,
for both languages, adversarial training (AT) re-
sults in cleaner word embedding distributions than
the baseline, with a higher cosine similarity within
each POS cluster, and with a clear advantage in the
average tightness across all the clusters. In other
words, the learned word vectors show stronger
correlations with their POS tags. This result con-
firms that training with adversarial examples can
help to learn cleaner word embeddings so that the
meaning / grammatical function of a word cannot
be altered by a small perturbation in its embed-
ding. This analysis provides a means to interpret
the robustness to input perturbations, from the per-
spective of NLP.

Relation with perturbation size ε. We also
study how the size of added perturbations influ-
ences word representation learning in adversarial
training. Recall that we set the norm of a pertur-
bation ε to be α

√
D, where D is the dimension of

the concatenated input embeddings (see §3.2). For
instance, α = 0 would produce no noise; α = 1
would generate a perturbation of a norm equiv-
alent to the original word embeddings. We hy-
pothesize that AT facilitates word representation
learning when α is small enough to preserve the
semantics of input words, but can hinder the learn-
ing when α is too large. To test the hypothesis,
we repeat the clustering evaluation for word em-
beddings trained with varied perturbation scale α:
0, 0.001, 0.01, 0.05, 0.1, 0.5 (see Table 7). We
observe that the quality of learned word embed-
ding distribution keeps improving as α goes up
from 0 to 0.1, but starts to drop around α = 0.5.
We also find that this optimal α in word embed-
ding learning (i.e., 0.1) is larger than the α which
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Model F1
Tsuruoka et al. (2011) 93.81
Collobert et al. (2011) 94.32
Yang et al. (2017) 94.66
Suzuki and Isozaki (2008) 95.15
Søgaard and Goldberg (2016) 95.56
Hashimoto et al. (2017) 95.77
Peters et al. (2017) 96.37
Ours – Baseline (BiLSTM-CRF) 95.18
Ours – Adversarial 95.25

Table 8: Chunking F1 scores on the CoNLL-2000 task,
with other top performing models.

Model F1
Collobert et al. (2011) 89.59
Huang et al. (2015) 90.10
Chiu and Nichols (2016) 90.91
Lample et al. (2016) 90.94
Luo et al. (2015) 91.20
Ma and Hovy (2016) 91.21
Peters et al. (2017) 91.93
Ours – Baseline (BiLSTM-CRF) 91.22
Ours – Adversarial 91.56

Table 9: NER F1 scores on the CoNLL-2003 (English)
task, with other top performing models.

yielded the best tagging performance on develop-
ment sets (i.e., 0.01 or 0.05). A possible expla-
nation is that while word embeddings can adapt
to relatively large α (e.g., 0.1) during training, as
adversarial perturbations are generated at the em-
bedding level, such α could change the semantics
of the input from the current tagging model’s per-
spective and hinder the training of tagging.

5.4 Other Sequence Labeling Tasks

Finally, to further confirm the applicability of AT,
we experiment with our BiLSTM-CRF AT model
in different sequence labeling tasks: chunking and
named entity recognition (NER).
Chunking can be performed as a sequence label-
ing task that assigns a chunking tag (B-NP, I-VP,
etc.) to each word. We conduct experiments on the
CoNLL 2000 shared task with the standard data
split: PTB-WSJ Sections 15-18 for training and
20 for testing. We use Section 19 as the develop-
ment set and employ the IOBES tagging scheme,
following Hashimoto et al. (2017).
NER aims to assign an entity type to each word,
such as person, location, organization, and misc.
We conduct experiments on the CoNLL-2003 (En-
glish) shared task (Tjong Kim Sang and De Meul-
der, 2003), adopting the IOBES tagging scheme as
in (Lample et al., 2016; Ma and Hovy, 2016).

The results are summarized in Table 8 and 9.

AT enhanced F1 score from the baseline BiLSTM-
CRF model’s 95.18 to 95.25 for chunking, and
from 91.22 to 91.56 for NER, also significantly
outperforming Ma and Hovy (2016). These im-
provements made by AT are bigger than that for
English POS tagging, most likely due to the larger
room for improvement in chunking and NER. The
improvements are again statistically significant,
with p-value < 0.05 on the t-test. The experimen-
tal results suggest that the proposed adversarial
training scheme is generally effective across dif-
ferent sequence labeling tasks.

Our BiLSTM-CRF AT model did not reach the
performance by Hashimoto et al. (2017)’s multi-
task model and Peters et al. (2017)’s state-of-the-
art system that incorporates pretrained language
models. It would be interesting future work to
combine the strengths of these joint models (e.g.,
syntactic and semantic aids) and adversarial train-
ing (e.g., robustness).

6 Conclusion
We proposed and carefully analyzed a POS tag-
ging model that exploits adversarial training (AT).
In our multilingual experiments, we find that AT
achieves substantial improvements on all the lan-
guages tested, especially on low resource ones. AT
also enhances the robustness to rare/unseen words
and sentence-level accuracy, alleviating the ma-
jor issues of current POS taggers, and contribut-
ing to the downstream task, dependency parsing.
Furthermore, our analyses on different languages,
word / neighbor statistics and word representation
learning reveal the effects of AT from the perspec-
tive of NLP. The proposed AT model is applica-
ble to general sequence labeling tasks. This work
therefore provides a strong basis and motivation
for utilizing AT in natural language tasks.
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Abstract
Code-switching is a phenomenon of mixing
grammatical structures of two or more lan-
guages under varied social constraints. The
code-switching data differ so radically from
the benchmark corpora used in NLP com-
munity that the application of standard tech-
nologies to these data degrades their perfor-
mance sharply. Unlike standard corpora, these
data often need to go through additional pro-
cesses such as language identification, nor-
malization and/or back-transliteration for their
efficient processing. In this paper, we in-
vestigate these indispensable processes and
other problems associated with syntactic pars-
ing of code-switching data and propose meth-
ods to mitigate their effects. In particular, we
study dependency parsing of code-switching
data of Hindi and English multilingual speak-
ers from Twitter. We present a treebank
of Hindi-English code-switching tweets under
Universal Dependencies scheme and propose
a neural stacking model for parsing that effi-
ciently leverages part-of-speech tag and syn-
tactic tree annotations in the code-switching
treebank and the preexisting Hindi and En-
glish treebanks. We also present normaliza-
tion and back-transliteration models with a
decoding process tailored for code-switching
data. Results show that our neural stacking
parser is 1.5% LAS points better than the aug-
mented parsing model and our decoding pro-
cess improves results by 3.8% LAS points
over the first-best normalization and/or back-
transliteration.

1 Introduction

Code-switching1 (henceforth CS) is the juxtaposi-
tion, within the same speech utterance, of gram-
matical units such as words, phrases, and clauses

1Code-mixing is another term in the linguistics literature
used interchangeably with code-switching. Both terms are of-
ten used to refer to the same or similar phenomenon of mixed
language use.

belonging to two or more different languages
(Gumperz, 1982). The phenomenon is prevalent in
multilingual societies where speakers share more
than one language and is often prompted by mul-
tiple social factors (Myers-Scotton, 1995). More-
over, code-switching is mostly prominent in col-
loquial language use in daily conversations, both
online and offline.

Most of the benchmark corpora used in NLP for
training and evaluation are based on edited mono-
lingual texts which strictly adhere to the norms of
a language related, for example, to orthography,
morphology, and syntax. Social media data in gen-
eral and CS data, in particular, deviate from these
norms implicitly set forth by the choice of corpora
used in the community. This is the reason why the
current technologies often perform miserably on
social media data, be it monolingual or mixed lan-
guage data (Solorio and Liu, 2008b; Vyas et al.,
2014; Çetinoğlu et al., 2016; Gimpel et al., 2011;
Owoputi et al., 2013; Kong et al., 2014). CS data
offers additional challenges over the monolingual
social media data as the phenomenon of code-
switching transforms the data in many ways, for
example, by creating new lexical forms and syn-
tactic structures by mixing morphology and syn-
tax of two languages making it much more diverse
than any monolingual corpora (Çetinoğlu et al.,
2016). As the current computational models fail
to cater to the complexities of CS data, there is of-
ten a need for dedicated techniques tailored to its
specific characteristics.

Given the peculiar nature of CS data, it has been
widely studied in linguistics literature (Poplack,
1980; Gumperz, 1982; Myers-Scotton, 1995), and
more recently, there has been a surge in studies
concerning CS data in NLP as well (Solorio and
Liu, 2008a,a; Vyas et al., 2014; Sharma et al.,
2016; Rudra et al., 2016; Joshi et al., 2016; Bhat
et al., 2017; Chandu et al., 2017; Rijhwani et al.,
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2017; Guzmán et al., 2017, and others). Be-
sides the individual computational works, a series
of shared-tasks and workshops on preprocessing
and shallow syntactic analysis of CS data have
also been conducted at multiple venues such as
Empirical Methods in NLP (EMNLP 2014 and
2016), International Conference on NLP (ICON
2015 and 2016) and Forum for Information Re-
trieval Evaluation (FIRE 2015 and 2016). Most
of these works have attempted to address pre-
liminary tasks such as language identification,
normalization and/or back-transliteration as these
data often need to go through these additional
processes for their efficient processing. In this
paper, we investigate these indispensable pro-
cesses and other problems associated with syn-
tactic parsing of code-switching data and pro-
pose methods to mitigate their effects. In par-
ticular, we study dependency parsing of Hindi-
English code-switching data of multilingual In-
dian speakers from Twitter. Hindi-English code-
switching presents an interesting scenario for the
parsing community. Mixing among typologically
diverse languages will intensify structural varia-
tions which will make parsing more challenging.
For example, there will be many sentences con-
taining: (1) both SOV and SVO word orders2,
(2) both head-initial and head-final genitives, (3)
both prepositional and postpositional phrases, etc.
More importantly, none among the Hindi and En-
glish treebanks would provide any training in-
stance for these mixed structures within individual
sentences. In this paper, we present the first code-
switching treebank that provides syntactic anno-
tations required for parsing mixed-grammar syn-
tactic structures. Moreover, we present a parsing
pipeline designed explicitly for Hindi-English CS
data. The pipeline comprises of several modules
such as a language identification system, a back-
transliteration system, and a dependency parser.
The gist of these modules and our overall research
contributions are listed as follows:

• back-transliteration and normalization mod-
els based on encoder-decoder frameworks
with sentence decoding tailored for code-
switching data;

• a dependency treebank of Hindi-English
code-switching tweets under Universal De-
pendencies scheme; and

2Order of Subject, Object and Verb in transitive sentences.

• a neural parsing model which learns POS tag-
ging and parsing jointly and also incorporates
knowledge from the monolingual treebanks
using neural stacking.

2 Preliminary Tasks

As preliminary steps before parsing of CS data, we
need to identify the language of tokens and nor-
malize and/or back-transliterate them to enhance
the parsing performance. These steps are indis-
pensable for processing CS data and without them
the performance drops drastically as we will see
in Results Section. We need normalization of
non-standard word forms and back-transliteration
of Romanized Hindi words for addressing out-of-
vocabulary problem, and lexical and syntactic am-
biguity introduced due to contracted word forms.
As we will train separate normalization and back-
transliteration models for Hindi and English, we
need language identification for selecting which
model to use for inference for each word form sep-
arately. Moreover, we also need language infor-
mation for decoding best word sequences.

2.1 Language Identification

For language identification task, we train a mul-
tilayer perceptron (MLP) stacked on top of a re-
current bidirectional LSTM (Bi-LSTM) network
as shown in Figure 1.
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Figure 1: Language identification network
We represent each token by a concatenated vec-
tor of its English embedding, back-transliterated
Hindi embedding, character Bi-LSTM embedding
and flag embedding (English dictionary flag and
word length flag with length bins of 0-3, 4-6, 7-10,
and 10-all). These concatenated vectors are passed
to a Bi-LSTM network to generate a sequence of
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hidden representations which encode the contex-
tual information spread across the sentence. Fi-
nally, output layer uses the feed-forward neural
network with a softmax function for a probabil-
ity distribution over the language tags. We train
the network on our CS training set concatenated
with the data set provided in ICON 20153 shared
task (728 Facebook comments) on language iden-
tification and evaluate it on the datasets from Bhat
et al. (2017). We achieved the state-of-the-art per-
formance on both development and test sets (Bhat
et al., 2017). The results are shown in Table 1.

Label Precision Recall F1-Score count
hi 97.76 98.09 97.92 1465
en 96.87 98.83 97.84 1283
ne 94.33 79.17 86.08 168

acro 92.00 76.67 83.64 30
univ 99.71 1.00 99.86 349

average 97.39 97.42 97.36 3295
(Bhat et al., 2017) - 96.10 - -

Table 1: Language Identification results on CS test set.

2.2 Normalization and Back-transliteration

We learn two separate but similar character-level
models for normalization-cum-transliteration of
noisy Romanized Hindi words and normaliza-
tion of noisy English words. We treat both nor-
malization and back-transliteration problems as
a general sequence to sequence learning prob-
lem. In general, our goal is to learn a mapping
for non-standard English and Romanized Hindi
word forms to standard forms in their respective
scripts. In case of Hindi, we address the problem
of normalization and back-transliteration of Ro-
manized Hindi words using a single model. We
use the attention-based encoder-decoder model
of Luong (Luong et al., 2015) with global at-
tention for learning. For Hindi, we train the
model on the transliteration pairs (87,520) from
the Libindic transliteration project4 and Brahmi-
Net (Kunchukuttan et al., 2015) which are fur-
ther augmented with noisy transliteration pairs
(1,75,668) for normalization. Similarly, for nor-
malization of noisy English words, we train the
model on noisy word forms (4,29,715) syntheti-
cally generated from the English vocabulary. We
use simple rules such as dropping non-initial vow-
els and replacing consonants based on their phono-
logical proximity to generate synthetic data for

3http://ltrc.iiit.ac.in/icon2015/
4https://github.com/libindic/indic-trans

normalization. Figure 2 shows some of the noisy
forms generated from standard word forms using
simple and finite rules which include vowel elision
(please → pls), interchanging similar conso-
nants and vowels (cousin→ couzin), replac-
ing consonant or vowel clusters with a single let-
ter (Twitter → Twiter), etc. From here on-
wards, we will refer to both normalization and
back-transliteration as normalization.

pls1

blk10

agresive21

agrsv21

ppl5

nd7

plz1

becauze17

bcz17abt4

r2

b3

srry8

sry8

sereis6

tel24
rockin19

blak11

twiter23

twtr23

boyz15

tuk9

couzin16

czn16

desert20

dezert20

dzrt20

riting21

ritin14

rong14

kiking12

kikin11

smac13

rkn19

rokin19

mesages18

msgs18

busines22

thier10

nvr7
hv7

msgz18

please1

are2

be3

about4

people5

series6

and7

sorry8

took9

their10

black11

kicking12

smack13

wrong14

boys15

cousin16

because17

messages18

rocking19

dessert20

aggressive21

business22

twitter23

tell24

   1    2   1

   3

Figure 2: Synthetic normalization pairs generated
for a sample of English words using hand crafted
rules.

At inference time, our normalization models
will predict the most likely word form for each in-
put word. However, the single-best output from
the model may not always be the best option con-
sidering an overall sentential context. Contracted
word forms in social media content are quite of-
ten ambiguous and can represent different stan-
dard word forms. For example, noisy form ‘pt’
can expand to different standard word forms such
as ‘put’, ‘pit’, ‘pat’, ‘pot’ and ‘pet’. The
choice of word selection will solely depend on
the sentential context. To select contextually rel-
evant forms, we use exact search over n-best nor-
malizations from the respective models extracted
using beam-search decoding. The best word se-
quence is selected using the Viterbi decoding over
bn word sequences scored by a trigram language
model. b is the size of beam-width and n is the
sentence length. The language models are trained
on the monolingual data of Hindi and English us-
ing KenLM toolkit (Heafield et al., 2013). For
each word, we extract five best normalizations
(b=5). Decoding the best word sequence is a non-
trivial problem for CS data due to lack of normal-
ized and back-transliterated CS data for training a
language model. One obvious solution is to apply
decoding on individual language fragments in a
CS sentence (Dutta et al., 2015). One major prob-
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Figure 3: The figure shows a 3-step decoding process for the sentence “Yar cn anyone tel me k twitr account bnd
ksy krty hn plz” (Friend can anyone tell me how to close twitter account please).

lem with this approach is that the language models
used for scoring are trained on complete sentences
but are applied on sentence fragments. Scoring in-
dividual CS fragments might often lead to wrong
word selection due to incomplete context, particu-
larly at fragment peripheries. We solve this prob-
lem by using a 3-step decoding process that works
on two separate versions of a CS sentence, one
in Hindi, and one in English. In the first step,
we replace first-best back-transliterated forms of
Hindi words by their translation equivalents us-
ing a Hindi-English bilingual lexicon.5 An exact
search is used over the top ‘5’ normalizations of
English words, the translation equivalents of Hindi
words and the actual word itself. In the second
step, we decode best word sequence over Hindi
version of the sentence by replacing best English
word forms decoded from the first step by their
translation equivalents. An exact search is used
over the top ‘5’ normalizations of Hindi words, the
dictionary equivalents of decoded English words
and the original words. In the final step, English
and Hindi words are selected from their respective
decoded sequences using the predicted language
tags from the language identification system. Note
that the bilingual mappings are only used to aid
the decoding process by making the CS sentences
lexically monolingual so that the monolingual lan-
guage models could be used for scoring. They are
not used in the final decoded output. The overall
decoding process is shown in Figure 3.

Both of our normalization and back-
transliteration systems are evaluated on the

5An off-the-shelf MT system would have been appropri-
ate for this task, however, we would first need to adapt it to
CS data which in itself is a non-trivial task.

evaluation set of Bhat et al. (2017). Results
of our systems are reported in Table 3 with a
comparison of accuracies based on the nature
of decoding used. The results clearly show the
significance of our 3-step decoding over first-best
and fragment-wise decoding.

Data-set
Hindi English

Tokens FB FW 3-step Tokens FB FW 3-step
Dev 1549 82.82 87.28 90.01 34 82.35 88.23 88.23
Test 1465 83.54 88.19 90.64 28 71.42 75.21 81.71

Table 2: Normalization accuracy based on the number
of noisy tokens in the evaluation set. FB = First Best,
and FW = Fragment Wise

3 Universal Dependencies for
Hindi-English

Recently Bhat et al. (2017) provided a CS dataset
for the evaluation of their parsing models which
they trained on the Hindi and English Univer-
sal Dependency (UD) treebanks. We extend this
dataset by annotating 1,448 more sentences. Fol-
lowing Bhat et al. (2017) we first sampled CS
data from a large set of tweets of Indian lan-
guage users that we crawled from Twitter using
Tweepy6–a Twitter API wrapper. We then used
a language identification system trained on ICON
dataset (see Section 2) to filter Hindi-English CS
tweets from the crawled Twitter data. Only those
tweets were selected that satisfied a minimum ra-
tio of 30:70(%) code-switching. From this dataset,
we manually selected 1,448 tweets for annotation.
The selected tweets are thoroughly checked for
code-switching ratio. For POS tagging and depen-
dency annotation, we used Version 2 of Universal
dependency guidelines (De Marneffe et al., 2014),

6http://www.tweepy.org/
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while language tags are assigned based on the tag
set defined in (Solorio et al., 2014; Jamatia et al.,
2015). The dataset was annotated by two expert
annotators who have been associated with anno-
tation projects involving syntactic annotations for
around 10 years. Nonetheless, we also ensured the
quality of the manual annotations by carrying an
inter-annotator agreement analysis. We randomly
selected a dataset of 150 tweets which were anno-
tated by both annotators for both POS tagging and
dependency structures. The inter-annotator agree-
ment has a 96.20% accuracy for POS tagging and
a 95.94% UAS and a 92.65% LAS for dependency
parsing.

We use our dataset for training while the devel-
opment and evaluation sets from Bhat et al. (2017)
are used for tuning and evaluation of our models.
Since the annotations in these datasets follow ver-
sion 1.4 of the UD guidelines, we converted them
to version 2 by using carefully designed rules. The
statistics about the data are given in Table 3.

Data-set Sentences Tokens Hi En Ne Univ Acro
Train 1,448 20,203 8,363 8,270 698 2,730 142
Dev 225 3,411 1,549 1,300 151 379 32
Test 225 3,295 1,465 1,283 168 349 30

Table 3: Data Statistics. Dev set is used for tuning
model parameters, while Test set is used for evaluation.

4 Dependency Parsing

We adapt Kiperwasser and Goldberg (2016)
transition-based parser as our base model and in-
corporate POS tag and monolingual parse tree in-
formation into the model using neural stacking, as
shown in Figures 4 and 6.

4.1 Parsing Algorithm
Our parsing models are based on an arc-eager
transition system (Nivre, 2003). The arc-eager
system defines a set of configurations for a sen-
tence w1,...,wn, where each configuration C =

(S, B, A) consists of a stack S, a buffer B, and
a set of dependency arcs A. For each sentence, the
parser starts with an initial configuration where S

= [ROOT], B = [w1,...,wn] and A = ∅ and ter-
minates with a configuration C if the buffer is
empty and the stack contains the ROOT. The parse
trees derived from transition sequences are given
by A. To derive the parse tree, the arc-eager sys-
tem defines four types of transitions (t): Shift,
Left-Arc, Right-Arc, and Reduce.

We use the training by exploration method of
Goldberg and Nivre (2012) for decoding a tran-

sition sequence which helps in mitigating error
propagation at evaluation time. We also use
pseudo-projective transformations of Nivre and
Nilsson (2005) to handle a higher percentage of
non-projective arcs in the CS data (∼2%). We use
the most informative scheme of head+path to
store the transformation information.

Input
layerx2x1

…
xn

…

…

ℎ1
1

ℎ1
1

ℎ1
2

ℎ1
2

ℎ1
�

ℎ1
�

…

…

ℎ2
1

ℎ2
1

ℎ2
2

ℎ2
2

ℎ2
�

ℎ2
�

Hidden Hidden Hidden

t1 t2 tn 
… 

Hidden Hidden Hidden

ℎ1
1

ℎ1
1

ℎ1
2

ℎ1
2

ℎ1
�

ℎ1
�

…

…

ℎ3
1

ℎ3
1

ℎ3
2

ℎ3
2

ℎ3
�

h3
�

Feature Template (s0, b0)

           (ScoreLeftArc, ScoreRightArc, ScoreShift, ScoreReduce)

POS
feature 
layer

Parser
feature 
layer

Hidden Hidden Hidden

Softmax

…

…

…

…
…

POS
output 
layer

Parser
input 
layer

Parser
output 
layer

Softmax

Linear Linear Linear…

Linear Linear Linear…

Figure 4: POS tagging and parsing network based
on stack-propagation model proposed in (Zhang and
Weiss, 2016).

4.2 Base Models
Our base model is a stack of a tagger network and
a parser network inspired by stack-propagation
model of Zhang and Weiss (2016). The param-
eters of the tagger network are shared and act
as a regularization on the parsing model. The
model is trained by minimizing a joint negative
log-likelihood loss for both tasks. Unlike Zhang
and Weiss (2016), we compute the gradients of the
log-loss function simultaneously for each train-
ing instance. While the parser network is updated
given the parsing loss only, the tagger network is
updated with respect to both tagging and parsing
losses. Both tagger and parser networks comprise
of an input layer, a feature layer, and an output
layer as shown in Figure 4. Following Zhang and
Weiss (2016), we refer to this model as stack-prop.
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Tagger network: The input layer of the tagger
encodes each input word in a sentence by concate-
nating a pre-trained word embedding with its char-
acter embedding given by a character Bi-LSTM.
In the feature layer, the concatenated word and
character representations are passed through two
stacked Bi-LSTMs to generate a sequence of hid-
den representations which encode the contextual
information spread across the sentence. The first
Bi-LSTM is shared with the parser network while
the other is specific to the tagger. Finally, output
layer uses the feed-forward neural network with
a softmax function for a probability distribution
over the Universal POS tags. We only use the for-
ward and backward hidden representations of the
focus word for classification.

Parser Network: Similar to the tagger network,
the input layer encodes the input sentence using
word and character embeddings which are then
passed to the shared Bi-LSTM. The hidden rep-
resentations from the shared Bi-LSTM are then
concatenated with the dense representations from
the feed-forward network of the tagger and passed
through the Bi-LSTM specific to the parser. This
ensures that the tagging network is penalized for
the parsing error caused by error propagation by
back-propagating the gradients to the shared tag-
ger parameters (Zhang and Weiss, 2016). Finally,
we use a non-linear feed-forward network to pre-
dict the labeled transitions for the parser config-
urations. From each parser configuration, we ex-
tract the top node in the stack and the first node
in the buffer and use their hidden representations
from the parser specific Bi-LSTM for classifica-
tion.

dis rat ki barish alwayz scares me .
This night of rain always scares me .

Mixed grammar Mixed grammar

Hindi grammar English grammar

Figure 5: Code-switching tweet showing grammatical
fragments from Hindi and English.

4.3 Stacking Models
It seems reasonable that limited CS data would
complement large monolingual data in parsing CS
data and a parsing model which leverages both
data would significantly improve parsing perfor-
mance. While a parsing model trained on our
limited CS data might not be enough to accu-
rately parse the individual grammatical fragments
of Hindi and English, the preexisting Hindi and

English treebanks are large enough to provide suf-
ficient annotations to capture their structure. Sim-
ilarly, parsing model(s) trained on the Hindi and
English data may not be able to properly connect
the divergent fragments of the two languages as
the model lacks evidence for such mixed struc-
tures in the monolingual data. This will happen
quite often as Hindi and English are typologicalls
very diverse (see Figure 5).
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Figure 6: Neural Stacking-based parsing architecture
for incorporating monolingual syntactic knowledge.

As we discussed above, we adapted feature-
level neural stacking (Zhang and Weiss, 2016;
Chen et al., 2016) for joint learning of POS tag-
ging and parsing. Similarly, we also adapt this
stacking approach for incorporating the monolin-
gual syntactic knowledge into the base CS model.
Recently, Wang et al. (2017) used neural stacking
for injecting syntactic knowledge of English into a
graph-based Singlish parser which lead to signif-
icant improvements in parsing performance. Un-
like Wang et al. (2017), our base stacked models
will allow us to transfer the POS tagging knowl-
edge as well along the parse tree knowledge.

As shown in Figure 6, we transfer both POS
tagging and parsing information from the source
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model trained on augmented Hindi and English
data. For tagging, we augment the input layer of
the CS tagger with the MLP layer of the source
tagger. For transferring parsing knowledge, hid-
den representations from the parser specific Bi-
LSTM of the source parser are augmented with
the input layer of the CS parser which already in-
cludes the hidden layer of the CS tagger, word and
character embeddings. In addition, we also add the
MLP layer of the source parser to the MLP layer
of the CS parser. The MLP layers of the source
parser are generated using raw features from CS
parser configurations. Apart from the addition
of these learned representations from the source
model, the overall CS model remains similar to the
base model shown in Figure 4. The tagging and
parsing losses are back-propagated by traversing
back the forward paths to all trainable parameters
in the entire network for training and the whole
network is used collectively for inference.

5 Experiments

We train all of our POS tagging and parsing mod-
els on training sets of the Hindi and English UD-
v2 treebanks and our Hindi-English CS treebank.
For tuning and evaluation, we use the develop-
ment and evaluation sets from Bhat et al. (2017).
We conduct multiple experiments in gold and pre-
dicted settings to measure the effectiveness of the
sub-modules of our parsing pipeline. In predicted
settings, we use the POS taggers separately trained
on the Hindi, English and CS training sets. All
of our models use word embeddings from trans-
formed Hindi and English embedding spaces to
address the problem of lexical differences preva-
lent in CS sentences.

5.1 Hyperparameters

Word Representations For language identifica-
tion, POS tagging and parsing models, we include
the lexical features in the input layer of our neu-
ral networks using 64-dimension pre-trained word
embeddings, while we use randomly initialized
embeddings within a range of [−0.1, +0.1] for
non-lexical units such as POS tags and dictionary
flags. We use 32-dimensional character embed-
dings for all the three models and 32-dimensional
POS tag embeddings for pipelined parsing mod-
els. The distributed representation of Hindi and
English vocabulary are learned separately from
the Hindi and English monolingual corpora. The

English monolingual data contains around 280M
sentences, while the Hindi data is comparatively
smaller and contains around 40M sentences. The
word representations are learned using Skip-gram
model with negative sampling which is imple-
mented in word2vec toolkit (Mikolov et al.,
2013). We use the projection algorithm of Artetxe
et al. (2016) to transform the Hindi and En-
glish monolingual embeddings into same semantic
space using a bilingual lexicon (∼63,000 entries).
The bilingual lexicon is extracted from ILCI and
Bojar Hindi-English parallel corpora (Jha, 2010;
Bojar et al., 2014). For normalization models,
we use 32-dimensional character embeddings uni-
formly initialized within a range of [−0.1,+0.1].

Hidden dimensions The POS tagger specific
Bi-LSTMs have 128 cells while the parser spe-
cific Bi-LSTMs have 256 cells. The Bi-LSTM
in the language identification model has 64 cells.
The character Bi-LSTMs have 32 cells for all three
models. The hidden layer of MLP has 64 nodes for
the language identification network, 128 nodes for
the POS tagger and 256 nodes for the parser. We
use hyperbolic tangent as an activation function in
all tasks. In the normalization models, we use sin-
gle layered Bi-LSTMs with 512 cells for both en-
coding and decoding of character sequences.

Learning For language identification, POS tag-
ging and parsing networks, we use momentum
SGD for learning with a minibatch size of 1. The
LSTM weights are initialized with random or-
thonormal matrices as described in (Saxe et al.,
2013). We set the dropout rate to 30% for POS tag-
ger and parser Bi-LSTM and MLP hidden states
while for language identification network we set
the dropout to 50%. All three models are trained
for up to 100 epochs, with early stopping based on
the development set.

In case of normalization, we train our encoder-
decoder models for 25 epochs using vanilla SGD.
We start with a learning rate of 1.0 and after 8
epochs reduce it to half for every epoch. We use a
mini-batch size of 128, and the normalized gradi-
ent is rescaled whenever its norm exceeds 5. We
use a dropout rate of 30% for the Bi-LSTM.

Language identification, POS tagging and
parsing code is implemented in DyNet (Neubig
et al., 2017) and for normalization without
decoding, we use Open-NMT toolkit for neural
machine translation (Klein et al., 2017). All
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the code is available at https://github.
com/irshadbhat/nsdp-cs and the data
is available at https://github.com/
CodeMixedUniversalDependencies/
UD_Hindi_English.

6 Results

In Table 4, we present the results of our main
model that uses neural stacking for learning POS
tagging and parsing and also for knowledge trans-
fer from the Bilingual model. Transferring POS
tagging and syntactic knowledge using neural
stacking gives 1.5% LAS7 improvement over a
naive approach of data augmentation. The Bilin-
gual model which is trained on the union of Hindi
and English data sets is least accurate of all our
parsing models. However, it achieves better or
near state-of-the-art results on the Hindi and En-
glish evaluation sets (see Table 5). As compared
to the best system in CoNLL 2017 Shared Task
on Universal Dependencies (Zeman et al., 2017;
Dozat et al., 2017), our results for English are
around 3% better in LAS, while for Hindi only
0.5% LAS points worse. The CS model trained
only on the CS training data is slightly more accu-
rate than the Bilingual model. Augmenting the CS
data to Hindi-English data complements their syn-
tactic structures relevant for parsing mixed gram-
mar structures which are otherwise missing in the
individual datasets. The average improvements of
around ∼5% LAS clearly show their complemen-
tary nature.

Model
Gold (LID+TRN) Auto (LID+TRN)
UAS LAS UAS LAS

Bilingual 75.26 65.41 73.29 63.18
CS 76.69 66.90 75.84 64.94

Augmented 80.39 71.27 78.95 69.51
Neural Stacking 81.50 72.44 80.23 71.03

(Bhat et al., 2017) 74.16 64.11 66.18 54.40

Table 4: Accuracy of different parsing models on the
evaluation set. POS tags are jointly predicted with
parsing. LID = Language tag, TRN = Translitera-
tion/normalization.

Table 6 summarizes the POS tagging results on
the CS evaluation set. The tagger trained on the CS
training data is 2.5% better than the Bilingual tag-
ger. Adding CS training data to Hindi and English
train sets further improves the accuracy by 1%.
However, our stack-prop tagger achieves the high-

7The improvements discussed in the running text are for
the models that are evaluated in auto settings.

est accuracy of 90.53% by leveraging POS infor-
mation from Bilingual tagger using neural stack-
ing.

Pipeline
Stack-prop

Data-set Gold POS Auto POS
UAS LAS POS UAS LAS POS UAS LAS

Hindi 95.66 93.08 97.52 94.08 90.69 97.65 94.36 91.02
English 89.95 87.96 95.75 87.71 84.59 95.80 88.30 85.30

Table 5: POS and parsing results for Hindi and En-
glish monolingual test sets using pipeline and stack-
prop models.

Model
Gold (LID+TRN) Auto (LID+TRN)
Pipeline SP Pipeline SP

Bilingual 88.36 88.12 86.71 86.27
CS 90.32 90.38 89.12 89.19

Augmented 91.20 91.50 90.02 90.20
Neural Stacking 91.76 91.90 90.36 90.53

(Bhat et al., 2017) 86.00 85.30

Table 6: POS tagging accuracies of different models on
CS evaluation set. SP = stack-prop.

Pipeline vs Stack-prop Table 7 summarizes the
parsing results of our pipeline models which use
predicted POS tags as input features. As compared
to our stack-prop models (Table 4), pipeline mod-
els are less accurate (average 1% LAS improve-
ment across models) which clearly emphasizes the
significance of back-propagating the parsing loss
to tagging parameters as well.

Model
Gold (LID+TRN+POS) Auto (LID+TRN+POS)
UAS LAS UAS LAS

Bilingual 82.29 73.79 72.09 61.18
CS 82.73 73.38 75.20 64.64

Augmented 85.66 77.75 77.98 69.16
Neural Stacking 86.87 78.57 78.90 69.45

Table 7: Accuracy of different parsing mod-
els on the test set using predicted language tags,
normalized/back-transliterated words and predicted
POS tags. POS tags are predicted separately be-
fore parsing. In Neural Stacking model, only parsing
knowledge from the Bilingual model is transferred.

Significance of normalization We also con-
ducted experiments to evaluate the impact of nor-
malization on both POS tagging and parsing. The
results are shown in Table 8. As expected, tagging
and parsing models that use normalization with-
out decoding achieve an average of 1% improve-
ment over the models that do not use normaliza-
tion at all. However, our 3-step decoding leads to
higher gains in tagging as well as parsing accura-
cies. We achieved around 2.8% improvements in
tagging and around 4.6% in parsing over the mod-
els that use first-best word forms from the normal-
ization models. More importantly, there is a mod-
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erate drop in accuracy (1.4% LAS points) caused
due to normalization errors (see results in Table 4
for gold vs auto normalization).

System POS UAS LAS
No Normalization 86.98 76.25 66.02

First Best 87.74 78.26 67.22
3-step Decoding 90.53 80.23 71.03

Table 8: Impact of normalization and back-
transliteration on POS tagging and parsing models.

Monolingual vs Cross-lingual Embeddings
We also conducted experiments with monolingual
and cross-lingual embeddings to evaluate the need
for transforming the monolingual embeddings into
a same semantic space for processing of CS data.
Results are shown in Table 9. Cross-lingual em-
beddings have brought around ∼0.5% improve-
ments in both tagging and parsing. Cross-lingual
embeddings are essential for removing lexical dif-
ferences which is one of the problems encountered
in CS data. Addressing the lexical differences will
help in better learning by exposing syntactic simi-
larities between languages.

Embedding POS UAS LAS
Monolingual 90.07 79.46 70.53
Crosslingual 90.53 80.23 71.03

Table 9: Impact of monolingual and cross-lingual em-
beddings on stacking model performance.

7 Conclusion

In this paper, we have presented a dependency
parser designed explicitly for Hindi-English CS
data. The parser uses neural stacking architecture
of Zhang and Weiss (2016) and Chen et al. (2016)
for learning POS tagging and parsing and for
knowledge transfer from Bilingual models trained
on Hindi and English UD treebanks. We have also
presented normalization and back-transliteration
models with a decoding process tailored for CS
data. Our neural stacking parser is 1.5% LAS
points better than the augmented parsing model
and 3.8% LAS points better than the one which
uses first-best normalizations.
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Uresova, Jenna Kanerva, Stina Ojala, Anna Mis-
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A Supplemental Material

A.1 Example Annotations from our CS
Treebank

i thought mosam different hoga bas fog hy

ROOT

nsubj nsubj

ccomp

cop advmod

advcl

cop

Thand bhi odd even formula follow Kr rhi h ;-)

ROOT
nsubj

advmod

amod

compound

obj

compound aux

aux

discourse

Tum kitne fake account banaogy

ROOTnsubj

det

amod obj

Ram Kapoor reminds me of boondi ke laddu

ROOT

nsubj

flat obj

case

nmod

case

obl

Has someone told Gabbar cal kya hai ?

ROOT

aux

nsubj iobj nmod

ccomp

cop

punct

Enjoying Dilli ki sardi after a long time .

ROOT

nmod

case

obj case

det

amod

obl

punct

Biggboss dekhne wali awaam can unfollow me .

ROOT

obj

amod

mark

nsubj

aux iobj

punct

Kaafi depressing situation hai yar

ROOT

advmod amod cop

vocative

Some people are double standards ki dukaan

ROOT

det

nsubj

cop

amod

nmod

case

There is no seperate emoji for khushi ke aansu .

ROOT

expl

cop

advmod

amod

case

nmod

case

obl

punct
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Abstract

A number of differences have emerged be-
tween modern and classic approaches to con-
stituency parsing in recent years, with struc-
tural components like grammars and feature-
rich lexicons becoming less central while re-
current neural network representations rise in
popularity. The goal of this work is to ana-
lyze the extent to which information provided
directly by the model structure in classical sys-
tems is still being captured by neural methods.
To this end, we propose a high-performance
neural model (92.08 F1 on PTB) that is rep-
resentative of recent work and perform a se-
ries of investigative experiments. We find that
our model implicitly learns to encode much of
the same information that was explicitly pro-
vided by grammars and lexicons in the past,
indicating that this scaffolding can largely be
subsumed by powerful general-purpose neural
machinery.

1 Introduction

In the past several years, many aspects of con-
stituency parsing and natural language processing
in general have changed. Grammars, which were
once the central component of many parsers, have
played a continually decreasing role. Rich lexi-
cons and handcrafted lexical features have become
less common as well. On the other hand, recurrent
neural networks have gained traction as a power-
ful and general purpose tool for representation. So
far, not much has been shown about how neural
networks are able to compensate for the removal
of the structures used in past models. To gain in-
sight, we introduce a parser that is representative
of recent trends and analyze its learned represen-
tations to determine what information it captures
and what is important for its strong performance.

Our parser is a natural extension of recent work
in constituency parsing. We combine a common

span representation based on recurrent neural net-
works with a novel, simplified scoring model. In
addition, we replace the externally predicted part-
of-speech tags used in some recent systems with
character-level word representations. Our parser
achieves a test F1 score of 92.08 on section 23 of
the Penn Treebank, exceeding the performance of
many other state-of-the-art models evaluated un-
der comparable conditions. Section 2 describes
our model in detail.

The remainder of the paper is focused on anal-
ysis. In Section 3, we look at the decline of
grammars and output correlations. Past work in
constituency parsing used context-free grammars
with production rules governing adjacent labels
(or more generally production-factored scores) to
propagate information and capture correlations be-
tween output decisions (Collins, 1997; Charniak
and Johnson, 2005; Petrov and Klein, 2007; Hall
et al., 2014). Many recent parsers no longer have
explicit grammar production rules, but still use in-
formation about other predictions, allowing them
to capture output correlations (Dyer et al., 2016;
Choe and Charniak, 2016). Beyond this, there
are some parsers that use no context for bracket
scoring and only include mild output correlations
in the form of tree constraints (Cross and Huang,
2016b; Stern et al., 2017). In our experiments, we
find that we can accurately predict parents from
the representation given to a child. Since a simple
classifier can predict the information provided by
parent-child relations, this explains why the infor-
mation no longer needs to be specified explicitly.
We also show that we can completely remove out-
put correlations from our model with a variant of
our parser that makes independent span label deci-
sions without any tree constraints while maintain-
ing high F1 scores and mostly producing trees.

In Section 4, we look at lexical representa-
tions. In the past, parsers used a variety of cus-
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tom lexical representations, such as word shape
features, prefixes, suffixes, and special tokens
for categories like numerals (Klein and Manning,
2003; Petrov and Klein, 2007; Finkel et al., 2008).
Character-level models have shown promise in
parsing and other NLP tasks as a way to remove
the complexity of these lexical features (Balles-
teros et al., 2015; Ling et al., 2015b; Kim et al.,
2016; Coavoux and Crabbé, 2017; Liu and Zhang,
2017). We compare the performance of character-
level representations and externally predicted part-
of-speech tags and show that these two sources of
information seem to fill a similar role. We also
perform experiments showing that the representa-
tions learned with character-level models contain
information that was hand-specified in some other
models.

Finally, in Section 5 we look at the surface con-
text captured by recurrent neural networks. Many
recent parsers use LSTMs, a popular type of re-
current neural network, to combine and summa-
rize context for making decisions (Choe and Char-
niak, 2016; Cross and Huang, 2016a; Dyer et al.,
2016; Stern et al., 2017). Before LSTMs became
common in parsing, systems that included surface
features used a fixed-size window around the fen-
ceposts at each end of a span (Charniak and John-
son, 2005; Finkel et al., 2008; Hall et al., 2014;
Durrett and Klein, 2015), and the inference proce-
dure handled most of the propagation of informa-
tion from the rest of the sentence. We perform ex-
periments showing that LSTMs capture far-away
surface context and that this information is impor-
tant for our parser’s performance. We also pro-
vide evidence that word order of the far-away con-
text is important and that the amount of context
alone does not account for all of the gains seen
with LSTMs.

Overall, we find that the same sources of in-
formation that were effective for grammar-driven
parsers are also captured by parsers based on re-
current neural networks.

2 Parsing Model

In this section, we propose a span-based parsing
model that combines components from several re-
cent neural architectures for constituency parsing
and other natural language tasks. While this sys-
tem is primarily introduced for the purpose of our
analysis, it also performs well as a parser in its
own right, exhibiting some gains over comparable

work. Our model is in many respects similar to
the chart parser of Stern et al. (2017), but features
a number of simplifications and improvements.

2.1 Overview
Abstractly, our model consists of a single scoring
function s(i, j, `) that assigns a real-valued score
to every label ` for each span (i, j) in an input sen-
tence. We take the set of available labels to be the
collection of all nonterminals and unary chains ob-
served in the training data, treating the latter as
atomic units. The score of a tree T is defined as a
sum over internal nodes of labeled span scores:

s(T ) =
∑

(i,j,`)∈T
s(i, j, `).

We note that, in contrast with many other chart
parsers, our model can directly score n-ary trees
without the need for binarization or other tree
transformations. Under this setup, the parsing
problem is to find the tree with the highest score:

T̂ = argmax
T

s(T ).

Our concrete implementation of s(i, j, `) can be
broken down into three pieces: word representa-
tion, span representation, and label scoring. We
discuss each of these in turn.

2.2 Word Representation
One popular way to represent words is the use of
word embeddings. We have a separate embed-
ding for each word type in the training vocabu-
lary and map all unknown words at test time to a
single <UNK> token. In addition to word embed-
dings, character-level representations have also
been gaining traction in recent years, with com-
mon choices including recurrent, convolutional,
or bag-of-n-gram representations. These allevi-
ate the unknown word problem by working with
smaller, more frequent units, and readily capture
morphological information not directly accessi-
ble through word embeddings. Character LSTMs
in particular have proved useful in constituency
parsing (Coavoux and Crabbé, 2017), dependency
parsing (Ballesteros et al., 2015), part-of-speech
tagging (Ling et al., 2015a), named entity recogni-
tion (Lample et al., 2016), and machine translation
(Ling et al., 2015b), making them a natural choice
for our system. We obtain a character-level repre-
sentation for a word by running it through a bidi-
rectional character LSTM and concatenating the
final forward and backward outputs.
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The complete representation of a given word is
the concatenation of its word embedding and its
character LSTM representation. While past work
has also used sparse indicator features (Finkel
et al., 2008) or part-of-speech tags predicted by
an external system (Cross and Huang, 2016b) for
additional word-level information, we find these
to be unnecessary in the presence of a robust
character-level representation.

2.3 Span Representation

To build up to spans, we first run a bidirectional
LSTM over the sequence of word representations
for an input sentence to obtain context-sensitive
forward and backward representations fi and bi
for each fencepost i. We then follow past work in
dependency parsing (Wang and Chang, 2016) and
constituency parsing (Cross and Huang, 2016b;
Stern et al., 2017) in representing the span (i, j)
by the concatenation of the corresponding forward
and backward span differences:

rij = [fj − fi,bi − bj ].

See Figure 1 for an illustration.

2.4 Label Scoring

Finally, we implement the label scoring function
by feeding the span representation through a one-
layer feedforward network whose output dimen-
sionality equals the number of possible labels. The
score of a specific label ` is the corresponding
component of the output vector:

s(i, j, `) = [W2 g(W1rij + z1) + z2]` ,

where g is an elementwise ReLU nonlinearity.

2.5 Inference

Even though our model operates on n-ary trees,
we can still employ a CKY-style algorithm for ef-
ficient globally optimal inference by introducing
an auxiliary empty label ∅ with s(i, j,∅) = 0 for
all (i, j) to handle spans that are not constituents.
Under this scheme, every binarization of a tree
with empty labels at intermediate dummy nodes
will have the same score, so an arbitrary binariza-
tion can be selected at training time with no ef-
fect on learning. We contrast this with the chart
parser of Stern et al. (2017), which assigns dif-
ferent scores to different binarizations of the same
underlying tree and in theory may exhibit varying

performance depending on the method chosen for
conversion.

With this change in place, let sbest(i, j) denote
the score of the best subtree spanning (i, j). For
spans of length one, we need only consider the
choice of label:

sbest(i, i+ 1) = max
`
s(i, i+ 1, `).

For general spans (i, j), we have the following re-
cursion:

sbest(i, j) = max
`
s(i, j, `)

+ max
k

[sbest(i, k) + sbest(k, j)] .

That is, we can independently select the best label
for the current span and the best split point, where
the score of a split is the sum of the best scores for
the corresponding subtrees.

To parse the full sentence, we compute
sbest(0, n) using a bottom-up chart decoder, then
traverse backpointers to recover the tree achiev-
ing that score. Nodes assigned the empty label
are omitted during the reconstruction process to
obtain the full n-ary tree. The overall complex-
ity of this approach is O(n3 + Ln2), where n is
the number of words and L is the total number
of labels. We note that because our system does
not use a grammar, there is no constant for the
number of grammar rules multiplying the O(n3)
term as in traditional CKY parsing. In practice,
the O(n2) evaluations of the span scoring func-
tion corresponding to the O(Ln2) term dominate
runtime.

2.6 Training
As is common for structured prediction problems
(Taskar et al., 2005), we use margin-based training
to learn a model that satisfies the constraints

s(T ∗) ≥ s(T ) + ∆(T, T ∗)

for each training example, where T ∗ denotes the
gold output, T ranges over all valid trees, and ∆ is
the Hamming loss on labeled spans. Our training
objective is the hinge loss:

max

(
0, max

T
[s(T ) + ∆(T, T ∗)]− s(T ∗)

)
.

This is equal to 0 when all constraints are satisfied,
or the magnitude of the largest margin violation
otherwise.
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Figure 1: Span representations are computed by running a bidirectional LSTM over the input sentence and taking
differences of the output vectors at the two endpoints. Here we illustrate the process for the span (1, 4) correspond-
ing to “played soccer in” in the example sentence.

Since ∆ decomposes over spans, the inner loss-
augmented decode maxT [s(T ) + ∆(T, T ∗)] can
be performed efficiently using a slight modifica-
tion of the dynamic program used for inference.
In particular, we replace s(i, j, `) with s(i, j, `) +
1[` 6= `∗ij ], where `∗ij is the label of span (i, j) in
the gold tree T ∗.

2.7 Results

We use the Penn Treebank (Marcus et al., 1993)
for our experiments with the standard splits of sec-
tions 2-21 for training, section 22 for develop-
ment, and section 23 for testing. Details about
our model hyperparameters and training prodecure
can be found in Appendix A.

Across 10 trials, our model achieves an average
development F1 score of 92.22 on section 22 of the
Penn Treebank. We use this as our primary point
of comparison in all subsequent analysis. The
model with the best score on the development set
achieves a test F1 score of 92.08 on section 23 of
the Penn Treebank, exceeding the performance of
other recent state-of-the-art discriminative models
which do not use external data or ensembling.1

3 Output Correlations

Output correlations are information about compat-
ibility between outputs in a structured prediction
model. Since outputs are all a function of the in-
put, output correlations are not necessary for pre-
diction when a model has access to the entire in-
put. In practice, however, many models through-
out NLP have found them useful (Collins, 1997;
Lafferty et al., 2001; Koo and Collins, 2010), and

1Code for our parser is available at https://github.
com/dgaddy/parser-analysis.

Liang et al. (2008) provides theoretical results sug-
gesting they may be useful for learning efficiently.
In constituency parsing, there are two primary
forms of output correlation typically captured by
models. The first is correlations between label de-
cisions, which often are captured by either produc-
tion scores or the history in an incremental tree-
creation procedure. The second, more subtle cor-
relation comes from the enforcement of tree con-
straints, since the inclusion of one bracket can af-
fect whether or not another bracket can be present.
We explore these two classes of output correla-
tions in Sections 3.1 and 3.2 below.

3.1 Parent Classification

The base parser introduced in Section 2 scores la-
beled brackets independently then uses a dynamic
program to select a set of brackets that forms the
highest-scoring tree. This independent labeling
is an interesting departure from classical parsing
work where correlations between predicted labels
played a central role. It is natural to wonder why
modeling label correlations isn’t as important as
it once was. Is there something about the neural
representation that allows us to function without
it? One possible explanation is that the neural ma-
chinery, in particular the LSTM, is handling much
of the reconciliation between labels that was previ-
ously handled by an inference procedure. In other
words, instead of using local information to sug-
gest several brackets and letting the grammar han-
dle interactions between them, the LSTM may be
making decisions about brackets already in its la-
tent state, allowing it to use the result of these de-
cisions to inform other bracketings.

One way to explore this hypothesis would be
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to evaluate whether the parser’s learned represen-
tations could be used to predict parent labels of
nodes in the tree. If the label of a node’s parent can
be predicted with high accuracy from the repre-
sentation of its span, then little of the information
about parent-child relations provided explicitly by
a grammar has been lost. For this experiment, we
freeze the input and LSTM parameters of our base
model and train a new label scoring network to
predict the label of a span’s parent rather than the
label of the span itself. We only predict parent la-
bels for spans that have a bracket in the gold tree,
so that all but the top level spans will have non-
empty labels. The new network is trained with a
margin loss.

After training on the standard training sections
of the treebank, the network was able to correctly
predict 92.3% of parent labels on the development
set. This is fairly accurate, which supports the hy-
pothesis that the representation knows a substan-
tial amount about surrounding context in the out-
put tree. For comparison, given only a span’s la-
bel, the best you can do for predicting the parent is
43.3% with the majority class conditioned on the
current label.

3.2 Independent Span Decisions

Like other recent parsers that do not capture cor-
relations between output labels (Cross and Huang,
2016b; Stern et al., 2017), our base parser still
does have some output correlations captured by
the enforcement of tree constraints. In this section,
we set out to determine the importance of these
output correlations by making a version of the
parser where they are removed. Although parsers
are typically designed to form trees, the bracketing
F1 measure used to evaluate parsers is still defined
on non-tree outputs. To remove all output cor-
relations from our parser, we can simply remove
the tree constraint and independently make deci-
sions about whether to include a bracketed span.
The architecture is identical to the one described
in Section 2, producing a vector of label scores for
each span. We choose the label with the maximum
score as the label for a span. As before, we fix the
score of the empty label at zero, so if all other la-
bel scores are negative, the span will be left out of
the set of predicted brackets. We train with inde-
pendent margin losses for each span.

Ignoring tree well-formedness, the development
F1 score of this independent span selection parser

is 92.20, effectively matching the performance of
the tree-constrained parser. In addition, we find
that 94.5% of predicted bracketings for develop-
ment set examples form valid trees, even though
we did not explicitly encourage this. This high
performance shows that our parser can function
well even without modeling any output correla-
tions.

4 Lexical Representation

In this section, we investigate several common
choices for lexical representations of words and
their role in neural parsing.

4.1 Alternate Word Representations

We compare the performance of our base model,
which uses word embeddings and a character
LSTM, with otherwise identical parsers that use
other combinations of lexical representations. The
results of these experiments are summarized in Ta-
ble 1. First, we remove the character-level repre-
sentations from our model, leaving only the word
embeddings. We find that development perfor-
mance drops from 92.22 F1 to 91.44 F1, showing
that word embeddings alone do not capture suffi-
cient information for state-of-the-art performance.
Then, we replace the character-level representa-
tions with embeddings of part-of-speech tags pre-
dicted by the Stanford tagger (Toutanova et al.,
2003). This model achieves a comparable devel-
opment F1 score of 92.09, but unlike our base
model relies on outputs from an external system.
Next, we train a model which includes all three
lexical representations: word embeddings, char-
acter LSTM representations, and part-of-speech
tag embeddings. We find that development per-
formance is nearly identical to the base model
at 92.24 F1, suggesting that character represen-
tations and predicted part-of-speech tags provide
much of the same information. Finally, we re-
move word embeddings and rely completely on
character-level embeddings. After retuning the
character LSTM size, we find that a slightly larger
character LSTM can make up for the loss in word-
level embeddings, giving a development F1 of
92.24.

4.2 Predicting Word Features

Past work in constituency parsing has demon-
strated that indicator features on word shapes, suf-
fixes, and similar attributes provide useful infor-
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Word and Character LSTM 92.22
Word Only 91.44
Word and Tag 92.09
Word, Tag, and Character LSTM 92.24
Character Only 92.24

Table 1: Development F1 scores on section 22 of the
Penn Treebank for different lexical representations.

mation beyond the identity of a word itself, espe-
cially for rare and unknown tokens (Finkel et al.,
2008; Hall et al., 2014). We hypothesize that the
character-level LSTM in our model learns similar
information without the need for manual supervi-
sion. To test this, we take the word representa-
tions induced by the character LSTM in our parser
as fixed word encodings, and train a small feed-
forward network to predict binary word features
defined in the Berkeley Parser (Petrov and Klein,
2007). We randomly split the vocabulary of the
Penn Treebank into two subsets, using 80% of the
word types for training and 20% for testing.

We find that the character LSTM representa-
tions allow for previously handcrafted indicator
features to be predicted with accuracies of 99.7%
or higher in all cases. The fact that this simple
classifier performs so well indicates that the infor-
mation contained in these features is readily avail-
able from our model’s character-level encodings.
A detailed breakdown of accuracy by feature can
be found in Appendix B.

5 Context in the Sentence LSTM

In this section, we analyze where the information
in the sentence-level LSTM hidden vectors comes
from. Since the LSTM representations we use to
make parsing decisions come from the fenceposts
on each side of a span, we would like to under-
stand whether they only capture information from
the immediate vicinity of the fenceposts or if they
also contain more distant information. Although
an LSTM is theoretically capable of incorporating
an arbitrarily large amount of context, it is unclear
how much context it actually captures and whether
this context is important for parsing accuracy.

5.1 Derivative Analysis

First, we would like to know if the LSTM features
capture distant information. For this experiment,
we use derivatives as a measure of sensitivity to
changes in an input. If the derivative of a value
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Figure 2: Average derivative of the LSTM output with
respect to its input as a function of distance. The output
is most sensitive to the closest words, but the tail of
the distribution is fairly heavy, indicating that far-away
words also have substantial impact.

with respect to a particular input is high, then that
input has a large impact on the final value. For
a particular component of an LSTM output vec-
tor, we compute its gradient with respect to each
LSTM input vector, calculate the `2-norms of the
gradients, and bucket the results according to dis-
tance from the output position. This process is re-
peated for every output position of each sentence
in the development set, and the results are aver-
aged within each bucket. Due to the scale of the
required computation, we only use a subset of the
output vector components to compute the average,
sampling one at random per output vector.

Figure 2 illustrates how the average gradient
norm is affected by the distance between the
LSTM input and output. As would be expected,
the closest input vectors have the largest effect on
the hidden state. However, the tail of values is
fairly heavy, with substantial gradient norms even
for inputs 40 words away. This shows that far-
away inputs do have an effect on the LSTM repre-
sentation.

5.2 Truncation Analysis
Next, we investigate whether information in the
LSTM representation about far-away inputs is ac-
tually important for parsing performance. To do
so, we remove distant context information from
our span encoding, representing spans by features
obtained from LSTMs that are run on fixed-sized
windows of size k around each fencepost. Figure 3
illustrates this truncated representation. Since the
truncated representation also removes information
about the size and position of the span in addi-
tion to the context words, we learn a position-
dependent cell state initialization for each of the

1004



<START> She
0

played
1

soccer
2

in
3

the
4

(f4,b4)

park
5

.
6

<STOP>
7

<START> She

0

played

1

(f1,b1)

soccer

2

in

3

the

4

park

5

.

6

<STOP>

7

[f4 − f1,b1 − b4]

Figure 3: An example of creating a truncated span representation for the span “played soccer in” with context size
k = 2. This representation is used to investigate the importance of information far away from the fenceposts of a
span.

two LSTM directions to give a more fair compari-
son to the full LSTM. The use of a fixed-sized con-
text window is reminiscent of prior work by Hall
et al. (2014) and Durrett and Klein (2015), but here
we use an LSTM instead of sparse features. We
train parsers with different values of k and observe
how their performance varies. All other architec-
ture details and hyperparameters are the same as
for the original model.

The blue points in Figure 4 show how the con-
text size k affects parser performance for k ∈
{2, 3, 5, 10, 20, 30}. As with the derivative anal-
ysis, although most of the weight is carried by the
nearby inputs, a nontrivial fraction of performance
is due to context more than 10 words away.

5.3 Word Order

Now that we have established that long-distance
information is important for parsing performance,
we would like to know whether the order of the
far-away words is important. Is the LSTM captur-
ing far-away structure, or is the information more
like a bag-of-words representation summarizing
the words that appear?

To test the importance of order, we train a parser
where information about the order of far-away
words is destroyed. As illustrated in Figure 5,
we run a separate LSTM over the entire sentence
for each fencepost, shuffling the input depending
on the particular fencepost being represented. We
randomly shuffle words outside a context window
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Figure 4: Development F1 as the amount of context
given to the sentence-level LSTM varies. The blue
points represent parser performance when the LSTM is
truncated to a window around the fenceposts, showing
that far-away context is important. The orange points
represent performance when the full context is avail-
able but words outside a window around the fenceposts
are shuffled, showing that the order of far-away context
is also important.

of size k around the fencepost of interest, keep-
ing words on the left and the right separate so that
directional information is preserved but exact po-
sitions are lost.

The orange points in Figure 4 show the per-
formance of this experiment with different con-
text sizes k. We observe that including shuffled
distant words is substantially better than truncat-
ing them completely. On the other hand, shuf-
fling does cause performance to degrade relative
to the base parser even when the unshuffled win-
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Figure 5: An example of creating a shuffled span representation for the span “played soccer in” with context size
k = 2. The light blue words are outside the context window and are shuffled randomly. Shuffled representations
are used to explore whether the order of far-away words is important.

dow is moderately large, indicating that the LSTM
is propagating information that depends on the or-
der of words in far-away positions.

5.4 LSTMs vs. Feedforward

Finally, we investigate whether the LSTM archi-
tecture itself is important for reasons other than
just the amount of context it can capture. Like
any architecture, the LSTM introduces particular
inductive biases that affect what gets learned, and
these could be important for parser performance.
We run a version of the truncation experiment
from Section 5.2 where we use a feedforward net-
work in place of a sentence-level LSTM to process
the surrounding context of each fencepost. The in-
put to the network is the concatenation of the word
representations that would be used as inputs for
the truncated LSTM, and the output is a vector of
the same size as the LSTM-based representation.
As in Section 5.2, we wish to give our representa-
tion information about span size and position, so
we also include a learned fencepost position em-
bedding in the concatenated inputs to the network.
We focus on context window size k = 3 for this
experiment. We search among networks with one,
two, or three hidden layers that are one, two, or
four times the size of the LSTM hidden state.

Of all the feedforward networks tried, the max-
imum development performance was 83.39 F1,
compared to 89.92 F1 for the LSTM-based trun-
cation. This suggests that some property of the

LSTM makes it better suited for the task of sum-
marizing context than a flat feedforward network.

6 Related Analysis Work

Here we review other works that have performed
similar analyses to ours in parsing and other areas
of NLP. See Section 2 for a description of how our
parser is related to other parsers.

Similar to our independent span prediction in
Section 3.2, several works have found that their
models still produce valid outputs for the major-
ity of inputs even after relaxing well-formedness
constraints. In dependency parsing, Zhang et al.
(2017) and Chorowski et al. (2016) found that se-
lecting dependency heads independently often re-
sulted in valid trees for their parsers (95% and
99.5% of outputs form trees, respectively). In
constituency parsing, the parser of Vinyals et al.
(2015), which produced linearized parses token by
token, was able to output valid constituency trees
for the majority of sentences (98.5%) even though
it was not constrained to do so.

Several other works have investigated what in-
formation is being captured within LSTM repre-
sentations. Chawla et al. (2017) performed analy-
sis of bidirectional LSTM representations in the
context of named entity recognition. Although
they were primarily interested in finding specific
word types that were important for making deci-
sions, they also analyzed how distance affected a
word’s impact. Shi et al. (2016) and Linzen et al.
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(2016) perform analysis of LSTM representations
in machine translation and language modeling re-
spectively to determine whether syntactic infor-
mation is present. Some of their techniques in-
volve classification of features from LSTM hid-
den states, similar to our analysis in Sections 3.1
and 4.2.

In Section 5.4, we found that replacing an
LSTM with a feedforward network hurt perfor-
mance. Previously, Chelba et al. (2017) had sim-
ilar findings in language modeling, where us-
ing LSTMs truncated to a particular distance im-
proved performance over feedforward networks
that were given the same context.

7 Conclusion

In this paper, we investigated the extent to which
information provided directly by model structure
in classical constituency parsers is still being cap-
tured by neural methods. Because neural models
function in a substantially different way than clas-
sical systems, it could be that they rely on differ-
ent information when making their decisions. Our
findings suggest that, to the contrary, the neural
systems are learning to capture many of the same
knowledge sources that were previously provided,
including the parent-child relations encoded in
grammars and the word features induced by lex-
icons.
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A Model Hyperparameters and Training Details

Component Dimensions Layers
Word Embeddings 100

Character Embeddings 50
Character LSTM 100 1
Sentence LSTM 250 2

Label Feedforward Network 250 1

Table 2: The sizes of the components used in our model.

Our model hyperparameters are summarized in Table 2. We train using the Adam optimizer (Kingma
and Ba, 2014) with its default hyperparameters for 40 epochs. We evaluate on the development set
4 times per epoch, selecting the model with the highest overall development performance as our final
model. When performing a word embedding lookup during training, we randomly replace words by
the <UNK> token with probability 1/(1 + freq(w)), where freq(w) is the frequency of a word w in the
training set. We apply dropout with probability 0.4 before and inside each layer of each LSTM. Our
system is implemented in Python using DyNet (Neubig et al., 2017).

B Character LSTM Word Feature Classification

Majority Char-LSTM
Binary Feature Class Classifier

all-letters 77.22% 99.77%
has-letter 89.18% 99.97%

all-lowercase 56.95% 99.95%
has-lowercase 85.85% 99.90%
all-uppercase 96.68% 99.90%
has-uppercase 67.77% 99.97%

all-digits 98.38% 99.99%
has-digit 87.90% 99.91%

all-punctuation 99.93% 99.98%
has-punctuation 79.04% 99.75%

has-dash 88.89% 99.95%
has-period 92.55% 99.95%
has-comma 98.02% 99.97%

Majority Char-LSTM
Binary Feature Class Classifier

suffix = “s” 82.65% 99.99%
suffix = “ed” 92.52% 99.98%
suffix = “ing” 93.26% 99.95%
suffix = “ion” 97.75% 99.93%
suffix = “er” 96.42% 99.97%
suffix = “est” 99.63% 99.98%
suffix = “ly” 97.56% 99.99%
suffix = “ity” 99.30% 99.94%
suffix = “y” 92.97% 99.93%
suffix = “al” 98.48% 99.92%

suffix = “ble” 99.30% 99.90%
suffix = “e” 89.57% 99.99%

Table 3: Classification accuracy for various binary word features using the character LSTM representations for
words induced by a pre-trained parser. Performance substantially exceeds that of a majority class classifier in all
cases, reaching 99.7% or higher for all features. The majority class is True for the first four features in the left
column and False for the rest.

1010



Proceedings of NAACL-HLT 2018, pages 1011–1023
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Deep Generative Model for Joint Alignment and Word Representation

Miguel Rios Wilker Aziz Khalil Sima’an
Institute for Logic, Language, and Computation

University of Amsterdam
{m.riosgaona, w.aziz, k.simaan}@uva.nl

Abstract
This work exploits translation data as a source
of semantically relevant learning signal for
models of word representation. In particular,
we exploit equivalence through translation as a
form of distributional context and jointly learn
how to embed and align with a deep gener-
ative model. Our EMBEDALIGN model em-
beds words in their complete observed context
and learns by marginalisation of latent lexical
alignments. Besides, it embeds words as pos-
terior probability densities, rather than point
estimates, which allows us to compare words
in context using a measure of overlap between
distributions (e.g. KL divergence). We inves-
tigate our model’s performance on a range of
lexical semantics tasks achieving competitive
results on several standard benchmarks includ-
ing natural language inference, paraphrasing,
and text similarity.

1 Introduction

Natural language processing applications often
count on the availability of word representations
trained on large textual data as a means to alleviate
problems such as data sparsity and lack of linguis-
tic resources (Collobert et al., 2011; Socher et al.,
2011; Tu et al., 2017; Bowman et al., 2015).

Traditional approaches to inducing word repre-
sentations circumvent the need for explicit seman-
tic annotation by capitalising on some form of in-
direct semantic supervision. A typical example is
to fit a binary classifier to detect whether or not a
target word is likely to co-occur with neighbour-
ing words (Mikolov et al., 2013). If the binary
classifier represents a word as a continuous vector,
that vector will be trained to be discriminative of
the contexts it co-occurs with, and thus words in
similar contexts will have similar representations.

Code available from https://github.com/
uva-slpl/embedalign

MR and WA contributed equally.

The underlying assumption is that context (e.g.
neighbouring words) stands for the meaning of the
target word (Harris, 1954; Firth, 1957). The suc-
cess of this distributional hypothesis hinges on the
definition of context and different models are based
on different definitions. Importantly, the nature
of the context determines the range of linguistic
properties the representations may capture (Levy
and Goldberg, 2014b). For example, Levy and
Goldberg (2014a) propose to use syntactic context
derived from dependency parses. They show that
their representations are much more discriminative
of syntactic function than models based on imme-
diate neighbourhood (Mikolov et al., 2013).

In this work, we take lexical translation as indi-
rect semantic supervision (Diab and Resnik, 2002).
Effectively we make two assumptions. First, that
every word has a foreign equivalent that stands for
its meaning. Second, that we can find this equiva-
lent in translation data through lexical alignments.1

For that we induce both a latent mapping between
words in a bilingual sentence pair and distributions
over latent word representations.

To summarise our contributions:

• we model a joint distribution over sentence
pairs that generates data from latent word rep-
resentations and latent lexical alignments;

• we embed words in context mining positive
correlations from translation data;

• we find that foreign observations are necessary
for generative training, but test time predic-
tions can be made monolingually;

• we apply our model to a range of semantic
natural language processing tasks showing its
usefulness.

1These assumptions are not new to the community, but in
this work they lead to a novel model which reaches more appli-
cations. §4 expands on the relation to other uses of bilingual
data for word representation.
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Figure 1: A sequence xm1 is generated conditioned
on a sequence of random embeddings zm1 ; generating
the foreign sequence yn1 further requires latent lexical
alignments an1 .

2 EMBEDALIGN

In a nutshell, we model a distribution over pairs of
sentences expressed in two languages, namely, a
language of interest L1, and an auxiliary language
L2 which our model uses to mine some learning
signal. Our model, EMBEDALIGN, is governed by
a simple generative story:

1. sample a length m for a sentence in L1 and a
length n for a sentence in L2;

2. generate a sequence z1, . . . , zm of d-
dimensional random embeddings by sampling
independently from a standard Gaussian prior;

3. generate a word observation xi in the vocabu-
lary of L1 conditioned on the random embed-
ding zi;

4. generate a sequence ai, . . . , an of n random
alignments—each maps from a position aj in
xm1 to a position j in the L2 sentence;

5. finally, generate an observation yj in the vo-
cabulary of L2 conditioned on the random
embedding zaj that stands for xaj .

The model is parameterised by neural networks
and parameters are estimated to maximise a lower-
bound on log-likelihood of joint observations. In
the following, we present the model formally
(§2.1), discuss efficient training (§2.2), and con-
crete architectures (§2.3).

2.1 Probabilistic model

Notation We use block capitals (e.g. X) for ran-
dom variables, lowercase letters (e.g. x) for as-
signments, and the shorthand Xm

1 for a sequence
X1, . . . , Xm. Boldface letters are reserved for de-
terministic vectors (e.g. v) and matrices (e.g. W).

Finally, E[f(Z);α] denotes the expected value of
f(z) under a density q(z|α).

We model a joint distribution over bilingual par-
allel data, i.e., L1–L2 sentence pairs. An obser-
vation is a pair of random sequences 〈Xm

1 , Y
n
1 〉,

where a random variable X (Y ) takes on values in
the vocabulary of L1 (L2). For ease of exposition,
the length m (n) of each sequence is assumed ob-
served throughout. The L1 sentence is generated
one word at a time from a random sequence of la-
tent embeddings Zm1 , each Z taking on values in
Rd. The L2 sentence is generated one word at a
time given a random sequence of latent alignments
An1 , where Aj ∈ {1, . . . ,m} is the position in the
L1 sentence to which yj aligns.2

For i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} the
generative story is

Zi ∼ N (0, I) (1a)

Xi|zi ∼ Cat(f(zi; θ)) (1b)

Aj |m ∼ U(1/m) (1c)

Yj |zm1 , aj ∼ Cat(g(zaj ; θ)) (1d)

and Figure 1 is a graphical depiction of our model.
We map from latent embeddings to categorical dis-
tributions over either vocabulary using a neural
network whose parameters are deterministic and
collectively denote by θ (the generative parame-
ters). The marginal likelihood of a sentence pair is
shown in Equation (2).

Pθ(x
m
1 , y

n
1 |m,n) =

∫
p(zm1 )

m∏

i=1

Pθ(xi|zi)

×
n∏

j=1

m∑

aj=1

P (aj |m)Pθ(yj |zaj )dzm1
(2)

Due to the conditional independences of our
model, it is trivial to marginalise lexical alignments
for any given latent embeddings zm1 , but marginalis-
ing the embeddings themselves is intractable. Thus,
we employ amortised mean field variational infer-
ence using the inference model

qφ(z
m
1 |xm1 ) ,

m∏

i=1

N (zi|ui, diag(si � si)) (3)

where each factor is a diagonal Gaussian. We map
from xm1 to a sequence um1 of independent posterior

2We pad L1 sentences with NULL to account for untrans-
latable L2 words (Brown et al., 1993). Instead, Schulz et al.
(2016) generate untranslatable words from L2 context—an
alternative we leave for future work.
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mean (or location) vectors, where ui , µ(hi;φ),
as well as a sequence sm1 of independent standard
deviation (or scale) vectors, where si , σ(hi;φ),
and hm1 = enc(xm1 ;φ) is a deterministic encod-
ing of the L1 sequence (we discuss concrete ar-
chitectures in §2.3). All mappings are realised by
neural networks whose parameters are collectively
denoted by φ (the variational parameters). Note
that we choose to approximate the posterior with-
out conditioning on yn1 . This allows us to use the
inference model for monolingual prediction in ab-
sence of L2 data.

Variational φ and generative θ parameters are
jointly point-estimated to attain a local optimum of
the evidence lowerbound (Jordan et al., 1999):

logPθ(x
m
1 , y

n
1 |m,n) ≥

m∑

i=1

E [logPθ(xi|Zi);ui, si]

+

n∑

j=1

E


log

m∑

aj=1

P (aj |m)Pθ(yj |Zaj );um1 , sm1




−
m∑

i=1

KL [N (ui,diag(si � si))||N (0, I)] .

(4)
The variational family is location-scale, thus we
can rely on stochastic optimisation (Robbins and
Monro, 1951) and automatic differentiation (Bay-
din et al., 2015) with reparameterised gradient esti-
mates (Kingma and Welling, 2014; Rezende et al.,
2014; Titsias and Lázaro-Gredilla, 2014). More-
over, because the Gaussian density is an exponen-
tial family, the KL terms in (4) are available in
closed-form (Kingma and Welling, 2014, Appendix
B).

2.2 Efficient training
The likelihood terms in the ELBO (4) require eval-
uating two softmax layers over rather large vo-
cabularies. This makes training prohibitively slow
and calls for efficient approximation. We employ
an approximation proposed by Botev et al. (2017)
termed complementary sum sampling (CSS), which
we review in this section.

Consider the likelihood term logP (X = x|z)
that scores an observation x given a sampled em-
bedding z—we use serif font x to distinguish a par-
ticular observation from an arbitrary event x ∈ X
in the support. The exact class probability

P (X = x|z) = exp(u(z, x))∑
x∈X exp(u(z, x))

(5)

requires a normalisation over the complete support.
CSS works by splitting the support into two sets,
a set C that is explicitly summed over and must
include the positive class x, and another set N that
is a subset of the complement set X \C. We obtain
an estimate for the normaliser
∑

x∈C
exp(u(z, x)) +

∑

x∈N
κ(x) exp(u(z, x)) (6)

by importance- or Bernoulli-sampling from the sup-
port using a proposal distribution Q(X), where
κ(x) corrects for bias asN tends to the entire com-
plement set. In this paper, we design C and N
per training mini-batch: we take C to consist of all
unique words in a mini-batch of training samples
and N to consist of 103 negative classes uniformly
sampled from the complement set X \ C, in which
case κ(x) = 10−3|X \ C|.3

CSS makes it particularly easy to approximate
likelihood terms such as those with respect to L2
in Equation (4). Because those terms depend on
a marginalisation over alignments, an approxima-
tion must give support to all words in the sequence
yn1 . With CSS this is extremely simple, we just
need to make sure all unique words in yn1 are in the
set C—which our mini-batch procedure does guar-
antee. Botev et al. (2017) show that CSS is rather
stable and superior to the most popular softmax ap-
proximations. Besides being simple to implement,
CSS also addresses a few problems with other ap-
proximations. To name a few: unlike importance
sampling approximations, CSS converges to the
exact softmax with bounded computation (it takes
as many samples as there are classes). Unlike hier-
archical softmax, CSS only affects training, that is,
at test time we simply use the entire support instead
of the approximation.

Without a softmax approximation, inference
for our model would take time proportional to
O(m× vx +m× vy +m× n) where vx (vy) cor-
responds to the size of the vocabulary of L1 (L2).
The first term (m× vx) corresponds to projecting
from m latent embeddings to m categorical dis-
tributions over the vocabulary of L1. The second
term (m× vy) corresponds to projecting the same
m latent embeddings to m categorical distributions
over the vocabulary of L2. Finally, the third term
(m × n) is due to marginalisation of alignments.

3We sample uniformly from the complement set until we
have 103 unique classes. We realise this operation outside
the computation graph providing C and N as inputs to each
training iteration, but a GPU-based solution is also possible.
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Note, however, that with the CSS approximation
we drop the dependency on vocabulary sizes (as
the combined sizes of C and N is an independent
constant). Moreover, if inference is performed on
GPU, the squared term (m×n ≈ m2) is amortised
due to parallelism. Thus, while training our model
is somewhat slower than monolingual models of
word representation, which typically run in O(m),
it is not at all impracticably slower.

2.3 Architectures
Here we present the neural network architectures
that parameterise the different generative and vari-
ational components of §2.1. Refer to Appendix B
for an illustration.

Generative model We have two generative com-
ponents, namely, a categorical distribution over the
vocabulary of L1 and another over the vocabulary
of L2. We predict the parameter (event probabili-
ties) of each distribution with an affine transforma-
tion of a latent embedding followed by the softmax
nonlinearity to ensure normalisation:

f(zi; θ) = softmax (W1zi + b1) (7a)

g(zaj ; θ) = softmax
(
W2zaj + b2

)
(7b)

where W1 ∈ Rvx×d, b1 ∈ Rvx , W2 ∈ Rvy×d,
b2 ∈ Rvy , and vx (vy) is the size of the vocab-
ulary of L1 (L2). With the approximation of
§2.2, we replace the L1 softmax layer (7a) by
exp
(
z>i cx + bx

)
normalised by the CSS estimate

(6) at training, and similarly for the L2 softmax
layer (7b). In that case, we have parameters for
cx, cy ∈ Rd—deterministic embeddings for x and
y, respectively—as well as bias terms bx, by ∈ R.

Inference model We predict approximate poste-
rior parameters using two independent transforma-
tions

ui = M1hi + d1 (8a)

si = softplus(M2hi + d2) (8b)

of a shared representation hi ∈ Rdx of the ith word
in the L1 sequence xm1 —where M1,M2 ∈ Rd×dx
are projection matrices, d1,d2 ∈ Rd are bias vec-
tors, and the softplus nonlinearity ensures that stan-
dard deviations are non-negative. To obtain the
deterministic encoding hm1 , we employ two dif-
ferent architectures: (1) a bag-of-words (BOW)
encoder, where hi is a deterministic projection of
xi onto Rdx ; and (2) a bidirectional (BIRNN) en-
coder, where hi is the element-wise sum of two

LSTM hidden states (ith step) that process the se-
quence in opposite directions. We use 128 units
for deterministic embeddings, and 100 units for
LSTMs (Hochreiter and Schmidhuber, 1997) and
latent representations (i.e. d = 100).

3 Experiments

We start the section describing the data used to
estimate our model’s parameters as well as details
about the optimiser. The remainder of the section
presents results on various benchmarks.

Training data We train our model on bilingual
parallel data. In particular, we use parliament
proceedings (Europarl-v7) (Koehn, 2005) from
two language pairs: English-French and English-
German.4 We employed very minimal preprocess-
ing, namely, tokenisation and lowercasing using
scripts from MOSES (Koehn et al., 2007), and have
discarded sentences longer than 50 tokens. Table 1
lists more information about the training data, in-
cluding the English-French Giga web corpus (Bojar
et al., 2014) which we use in §3.4.5

Corpus Sentence pairs Tokens

Europarl EN-FR 1.7 42.5
Europarl EN-DE 1.7 43.5
Giga EN-FR 18.3 419.6

Table 1: Training data size (in millions).

Optimiser For all architectures, we use the
Adam optimiser (Kingma and Ba, 2014) with a
learning rate of 10−3. Except where explicitly in-
dicated, we

• train our models for 30 epochs using mini
batches of 100 sentence pairs;

• use validation alignment error rate for model
selection;

• train every model 10 times with random Glo-
rot initialisation (Glorot and Bengio, 2010)
and report mean and standard deviation;

• anneal the KL terms using the following
schedule: we use a scalar α from 0 to 1 with
additive steps of size 10−3 every 500 updates.

4The proposed model is not limited to these language pairs.
5As we investigate various configurations and train every

model 10 times to inspect variance in results, we conduct most
of the experiments on the more manageable Europarl.
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This means that at the beginning of the train-
ing, we allow the model to overfit to the like-
lihood terms, but towards the end we are opti-
mising the true ELBO (Bowman et al., 2016).

It is also important to highlight that we do not
employ regularisation techniques (such as batch
normalisation, dropout, or L2 penalty) for they did
not seem to yield consistent results.

3.1 Word alignment

Since our model leverages learning signal from
parallel data by marginalising latent lexical align-
ments, we use alignment error rate to double check
whether the model learns sensible word correspon-
dences. Intrinsic assessment of word alignment
quality requires manual annotation. For English-
French, we use the NAACL English-French hand-
aligned data (37 sentence pairs for validation and
447 for test) (Mihalcea and Pedersen, 2003). For
English-German, we use the data by Padó and La-
pata (2006) (98 sentence pairs for validation and
987 for test). Alignment quality is then measured
in terms of alignment error rate (AER) (Och and
Ney, 2000)—an F-measure over predicted align-
ment links. For prediction we condition on the
posterior means E[Zm1 ] which is just the predicted
variational means um1 and select the L1 position
for which P (yj , aj |um1 ) is maximum (a form of
approximate Viterbi alignment).

Model L1 accuracy L2 accuracy ↓AER

BOW 95.59± 2.22 5.69± 2.07 35.41± 1.16
BOWα 99.87± 0.22 6.16± 0.39 30.94± 2.49
BIRNN 95.72± 1.28 7.31± 0.64 34.32± 1.08
BIRNNα 99.97± 0.09 7.25± 0.62 29.18± 1.91

Table 2: English-French validation ↑accuracy and ↓
AER results.

Model L1 accuracy L2 accuracy ↓AER

BOW 93.51± 0.56 10.09± 0.20 53.66± 0.36
BOWα 97.72± 2.28 9.71± 0.63 52.81± 1.47
BIRNN 99.78± 0.18 8.63± 0.35 55.55± 0.67
BIRNNα 99.96± 0.05 8.32± 0.29 52.32± 1.77

Table 3: English-German validation ↑accuracy and
↓AER results.

We start by analysing validation results and se-
lecting amongst a few variants of EMBEDALIGN.
We investigate the use of annealing and the use of a

bidirectional encoder in the variational approxima-
tion. Table 2 (3) lists ↓AER for EN-FR (EN-DE)
as well as accuracy of word prediction. It is clear
that both annealing (systems decorated with sub-
script α) and bidirectional representations improve
the results across the board. In the rest of the pa-
per we still investigate whether or not recurrent
encoders help, but we always report results based
on annealing.

In order to establish baselines for our mod-
els we report IBM models 1 and 2 (Brown
et al., 1993). In a nutshell, IBM models 1 and
2 both estimate the conditional P (yj |xm1 ) =∑m

aj=1 P (aj |m)P (yj |xaj ) by marginalisation of
latent lexical alignments. The only difference be-
tween the two models is the prior over alignments,
which is uniform for IBM1 and categorical for
IBM2. An important difference between IBM mod-
els and EMBEDALIGN concerns the lexical distri-
bution. IBM models are parameterised with inde-
pendent categorical parameters, while our model
instead is parameterised by a neural network. IBM
models condition on a single categorical event xaj ,
namely, the word aligned to. Our model instead
conditions on the latent embedding zaj that stands
for the word aligned to.

In order to establish even stronger conditional
alignment models, we embed the conditioning
words and replace IBM1’s independent parame-
ters by a neural network (single hidden layer MLP).
We call this model a neural IBM1 (or NIBM for
short). Note that in an IBM model, the sequence
xm1 is never modelled, therefore we can condition
on it without restrictions. For that reason, we also
experiment with a bidirectional LSTM encoder and
condition lexical distributions on its hidden states.

Model En-Fr En-De

IBM1 32.45 46.71
IBM2 22.61 40.11
NIBMBoW 27.35± 0.19 46.22± 0.07
NIBMBiRNN 25.57± 0.40 43.37± 0.11
EMBALIGNBoW 30.97± 2.53 49.46± 1.72
EMBALIGNBiRNN 29.43± 1.84 48.09± 2.12

Table 4: Test ↓AER.

Table 4 shows AER for test predictions. First ob-
serve that neural models outperform classic IBM1
by far, some of them even approach IBM2’s perfor-
mance. Next, observe that bidirectional encodings
make NIBM much stronger at inducing good word-
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to-word correspondences. EMBEDALIGN cannot
catch up with NIBM, but that is not necessarily
surprising. Note that NIBM is a conditional model,
thus it can use all of its capacity to better explain L2
data. EMBEDALIGN, on the other hand, has to find
a compromise between generating both streams of
the data. To make that point a bit more obvious,
Table 5 (6) lists accuracy of word prediction for
EN-FR (EN-DE). Note that, without sacrificing L2
accuracy, and sometimes even improving it, EMBE-
DALIGN achieves very high L1 accuracy. This still
does not imply that induced representations have
captured aspects of lexical semantics such as word
senses. All this means is that we have induced fea-
tures that are jointly good at reconstructing both
streams of the data one word at time. Of course it
is tempting to conclude that our models must be
capturing some useful generalisations. For that, the
next sections will investigate a range of semantic
NLP tasks.

Model L1 accuracy L2 accuracy

NIBMBoW - 7.21± 0.16
NIBMBiRNN - 6.47± 0.45
EMBALIGNBoW 98.90± 0.41 7.08± 0.34
EMBALIGNBiRNN 99.21± 0.18 7.44± 0.61

Table 5: English-French ↑accuracy in test set

Model L1 accuracy L2 accuracy

NIBMBoW - 7.94± 0.03
NIBMBiRNN - 8.38± 0.10
EMBALIGNBoW 96.86± 2.89 8.72± 0.39
EMBALIGNBiRNN 99.32± 0.34 8.00± 0.12

Table 6: English-German ↑accuracy in test set

3.2 Lexical substitution task

The English lexical substitution task (LST) consists
in selecting a substitute word for a target word in
context (McCarthy and Navigli, 2009). In the most
traditional variant of the task, systems are presented
with a list of potential candidates and this list must
be sorted by relatedness.

Dataset The LST dataset includes 201 target
words present in 10 sentences/contexts each, along
with a manually annotated list of potential replace-
ments. The data are split in 300 instances for vali-
dation and 1, 710 for test. Systems are evaluated by

Model cos KL

RANDOM 30.0 -
SKIPGRAM 44.9 -
BSG - 46.1

ENBoW 29.75± 0.55 27.93± 0.25
ENBiRNN 21.31± 1.05 27.64± 0.40

EN-FRBoW 42.72± 0.36 41.90± 0.35
EN-FRBiRNN 42.19± 0.57 41.61± 0.55
EN-DEBoW 41.90± 0.58 40.63± 0.55
EN-DEBiRNN 42.07± 0.47 40.93± 0.59

Table 7: English ↑GAP on LST test data.

comparing the predicted ranking to the manual one
in terms of generalised average precision (GAP)
(Melamud et al., 2015).

Prediction We use EMBEDALIGN to encode
each candidate (in context) as a posterior Gaus-
sian density. Note that this task dispenses with
inferences about L2. Each candidate is compared
to the target word in context through a measure of
overlap between their inferred densities—we take
KL divergence. We then rank candidates using this
measure.

Table 7 lists GAP scores for variants of EM-
BEDALIN (bottom section) as well as some base-
lines and other established methods (top section).
For comparison, we also compute GAP by sorting
candidates in terms of cosine similarity, in which
case we take the Gaussian mean as a summary
of the density. The top section of the table con-
tains systems reported by Melamud et al. (2015)
(RANDOM and SKIPGRAM) and by Brazinskas
et al. (2017) (BSG). Note that both SKIPGRAM

(Mikolov et al., 2013) and BSG were trained on
the very large ukWaC English corpus (Ferraresi
et al., 2008). SKIPGRAM is known to perform
remarkably well regardless of its apparent insen-
sitivity to context (in terms of design). BSG is a
close relative of our model which gives SKIPGRAM

a Bayesian treatment (also by means of amortised
variational inference) and is by design sensitive to
context in a manner similar to EMBEDALIGN, that
is, through its inferred posteriors.

Our first observation is that cosine seems to out-
perform KL slightly. Others have shown that KL
can be used to predict directional entailment (Vil-
nis and McCallum, 2014; Brazinskas et al., 2017),
since LST is closer to paraphrasing than to entail-
ment directionality may be a distractor, but we
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Model MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E SST14

W2VEC 77.7 79.8 90.9 88.3 79.7 83.6 72.5/81.4 0.80 78.7 0.65/0.64
NMT 64.7 70.1 84.9 81.5 - 82.8 -/- - - 0.43/0.42
EN 57.6 66.2 70.9 71.8 58.0 62.9 70.3/80.1 0.62 73.7 0.54/0.55
EN-FR 63.5 71.5 78.9 82.3 65.1 62.1 71.4/80.5 0.69 75.9 0.69/0.59
EN-DE 64.0 68.9 77.9 81.8 65.1 59.5 71.2/80.5 0.69 74.8 0.62/0.61
COMBO 66.7 73.1 82.4 84.8 69.2 67.7 71.8/80.7 0.73 77.4 0.62/0.61

Table 8: English sentence evaluation results: the last four rows correspond to the mean of 10 runs with EMBE-
DALIGN models. All models, but W2VEC, employ bidirectional encoders.

leave it as a rather speculative point. One addi-
tional point worth highlighting: the middle section
of Table 7. ENBoW and ENBiRNN show what hap-
pens when we do not give EMBEDALIGN L2 su-
pervision at training. That is, imagine the model
of Figure 1 without the bottom plate. In that case,
the model representations overfit for L1 word-by-
word prediction. Without the need to predict any
notion of context (monolingual or otherwise), the
representations drift away from semantic-driven
generalisations and fail at lexical substitution.

3.3 Sentence Evaluation
Conneau et al. (2017) developed a framework to
evaluate unsupervised sentence level representa-
tions trained on large amounts of data on a range of
supervised NLP tasks. We assess our induced repre-
sentations using their framework on the following
benchmarks evaluated on classification ↑accuracy
(MRPC is further evaluated on ↑F1)

MR classification of positive or negative movie
reviews;

SST fined-grained labelling of movie reviews from
the Stanford sentiment treebank (SST);

TREC classification of questions into k-classes;

CR classification of positive or negative product
reviews;

SUBJ classification of a sentence into subjective
or objective;

MPQA classification of opinion polarity;

SICK-E textual entailment classification;

MRPC paraphrase identification in the Microsoft
paraphrase corpus;

as well as the following benchmarks evaluated on
the indicated correlation metric(s)

SICK-R semantic relatedness between two sen-
tences (↑Pearson);

SST-14 semantic textual similarity
(↑Pearson/Spearman).

Prediction We use EMBEDALIGN to annotate
every word in the training set of the benchmarks
above with the posterior mean embedding in con-
text. We then average embeddings in a sentence
and give that as features to a logistic regression
classifier trained with 5-fold cross validation.6

For comparison, we report a SKIPGRAM model
(here indicated as W2VEC) as well as a model that
uses the encoder of a neural machine translation
system (NMT) trained on English-French Europarl
data. In both cases, we report results by Conneau
et al. (2017). Table 8 shows the results for all bench-
marks.7 We report EMBEDALIGN trained on either
EN-FR or EN-DE. The last line (COMBO) shows
what happens if we train logistic regression on the
concatenation of embeddings inferred by both EM-
BEDALIGN models, that is, EN-FR and EN-DE.
Note that these two systems perform sometimes
better sometimes worse depending on the bench-
mark. There is no clear pattern, but differences may
well come from some qualitative difference in the
induced latent space. It is a known fact that differ-
ent languages realise lexical ambiguities differently,
thus representations induced towards different lan-
guages are likely to capture different generalisa-
tions.8 As COMBO results show, the representa-
tions induced from different corpora are somewhat
complementary. That same observation has guided
paraphrasing models based on pivoting (Bannard
and Callison-Burch, 2005). Once more we report a
monolingual variant of EMBEDALIGN (indicated
by EN) in an attempt to illustrate how crucial the

6http://scikit-learn.org/stable/
7In Appendix A we provide bar plots marked with error

bars (2 standard deviations).
8We also acknowledge that our treatment of German is

likely suboptimal due to the lack of subword features, as it
can also be seen in AER results.
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translation signal is.

3.4 Word similarity

Word similarity benchmarks are composed of word
pairs which are manually ranked out of context. For
completeness, we also tried evaluating our embed-
dings in such benchmarks despite our work being
focussed on applications where context matters.

Prediction To assign an embedding for a word
type, we infer Gaussian posteriors for all training
instances of that type in context and aggregate the
posterior means through an average (effectively
collapsing all instances).

To cover the vocabulary of the typical bench-
mark, we have to use a much larger bilingual col-
lection than Europarl. Based on the results of §3.1,
we decided to proceed with English-French only—
recall that models based on that pair performed
better in terms of AER. Results in this section are
based on EMBEDALIGN (with bidirectional vari-
ational encoder) trained on the Giga web corpus
(see Table 1 for statistics). Due to the scale of the
experiment, we report on a single run.

We trained on Giga with the same hyperparam-
eters that we trained on Europarl, however, for 3
epochs instead of 30 (with this dataset an epoch
amounts to 183, 000 updates). Again, we per-
formed model selection on AER. Table 9 shows
the results for several datasets using the framework
of Faruqui and Dyer (2014a). Note that EMBE-
DALIGN was designed to make use of context in-
formation, thus this evaluation setup is a bit un-
natural for our model. Still, it outperforms SKIP-
GRAM on 5 out of 13 benchmarks, in particular, on
SIMLEX-999, whose relevance has been argued by
Upadhyay et al. (2016). We also remark that this
model achieves 0.25 test AER and 45.16 test GAP
on lexical substitution—a considerable improve-
ment compared to models trained on Europarl and
reported in Tables 4 (AER) and 7 (GAP).

4 Related work

Our model is inspired by lexical alignment mod-
els such as IBM1 (Brown et al., 1993), however,
we generate words yn1 from a latent vector repre-
sentation zm1 of xm1 , rather than directly from the
observation xm1 . IBM1 takes L1 sequences as con-
ditioning context and does not model their distribu-
tion. Instead, we propose a joint model, where L1
sentences are generated from latent embeddings.

Dataset SKIPGRAM EMBEDALIGN

MTurk-771 0.5679 0.5229
SIMLEX-999 0.3131 0.3887
WS-353-ALL 0.6392 0.3968
YP-130 0.3992 0.4784
VERB-143 0.2728 0.4593
MEN-TR-3k 0.6462 0.4191
SimVerb-3500 0.2172 0.3539
RG-65 0.5384 0.6389
WS-353-SIM 0.6962 0.4509
RW-STANFORD 0.3878 0.3278
WS-353-REL 0.6094 0.3494
MC-30 0.6258 0.5559
MTurk-287 0.6698 0.3965

Table 9: Evaluation of English word embeddings out of
context in terms of Spearman’s rank correlation coeffi-
cient (↑). The first column is from (Faruqui and Dyer,
2014a).

There is a vast literature on exploiting multilin-
gual context to strengthen the notion of synonymy
captured by monolingual models. Roughly, the lit-
erature splits into two groups, namely, approaches
that derive additional features and/or training objec-
tives based on pre-trained alignments (Klementiev
et al., 2012; Faruqui and Dyer, 2014b; Luong et al.,
2015; Šuster et al., 2016), and approaches that pro-
mote a joint embedding space by working with
sentence level representations that dispense with
explicit alignments (Hermann and Blunsom, 2014;
AP et al., 2014; Gouws et al., 2015; Hill et al.,
2014).

The work of Kočiský et al. (2014) is closer
to ours in that they also learn embeddings by
marginalising alignments, however, their model
is conditional—much like IBM models—and their
embeddings are not part of the probabilistic model,
but rather part of the architecture design. The joint
formulation allows our latent embeddings to har-
vest learning signal from L2while still being driven
by the learning signal from L1—in a conditional
model the representations can become specific to
alignment deviating from the purpose of well rep-
resenting the original language. In §3 we show
substantial evidence that our model performs better
when using both learning signals.

Vilnis and McCallum (2014) first propose to map
words into Gaussian densities instead of point esti-
mates for better word representation. For example,
a distribution can capture asymmetric relations that
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a point estimate cannot. Brazinskas et al. (2017)
recast the skip-gram model as a conditional varia-
tional auto-encoder. They induce a Gaussian den-
sity for each occurrence of a word in context, and
for that their model is the closest to ours. Addi-
tionally, they estimate a Gaussian prior per word
type thus representing both types and occurrences.
Unlike our model, the Bayesian skip-gram is not
trained generatively by reconstructing the data, but
rather discriminatively by prediction of overlapping
sets of neighbouring words.

5 Discussion

We have presented a generative model of word
representation that learns from positive correlations
implicitly expressed in translation data. In order
to make these correlations surface, we induce and
marginalise latent lexical alignments.

Embedding models such as CBOW and skip-
gram (Mikolov et al., 2013) are essentially speak-
ing supervised classifiers. This means they depend
on somewhat artificial strategies to derive labelled
data from monolingual corpora—words far from
the central word still have co-occurred with it even
though they are taken as negative evidence. Train-
ing our proposed model does not require a heuris-
tic notion of negative training data. However, the
model is also based on a somewhat artificial as-
sumption: L1 words do not necessarily need to
have an L2 equivalent and, even when they do, this
equivalent need not be realised as a single word.

We have shown with extensive experiments that
our model can induce representations useful to sev-
eral tasks including but not limited to alignment
(the task it most obviously relates to). We observed
interesting results on semantic natural language
processing benchmarks such as natural language
inference, lexical substitution, paraphrasing, and
sentiment classification.

We are currently expanding the notion of dis-
tributional context to multiple auxiliary foreign
languages at once. This seems to only require
minor changes to the generative story and could
increase the model’s disambiguation power dra-
matically. Another direction worth exploring is
to extend the model’s hierarchy with respect to
how parallel sentences are generated. For exam-
ple, modelling sentence level latent variables may
capture global constraints and expose additional
correlations to the model.
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A Multiple runs sentence evaluation

Figure 2 shows multiple runs of our proposed
model on sentence evaluation. The first figure re-
ports the mean and two standard deviations (error
bars) for benchmarks based on accuracy (ACC), the
second figure reports benchmarks based on F1, and
finally the third figure reports benchmarks based
on correlation metrics Spearman (S) and Pearson
(P).

Figure 2: Mean and two standard deviations (error
bars) for 10 runs of EMBEDALIGN on the sentence eval-
uation benchmarks.

B Architecture

Figure 3 shows the architecture for the inference
and generative models in EMBEDALIGN, with
BiRNN encoder (h).
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Figure 3: Architecture for EmbedAlign.
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Abstract

Word embedding is a key component in many
downstream applications in processing natu-
ral languages. Existing approaches often as-
sume the existence of a large collection of
text for learning effective word embedding.
However, such a corpus may not be avail-
able for some low-resource languages. In
this paper, we study how to effectively learn
a word embedding model on a corpus with
only a few million tokens. In such a situa-
tion, the co-occurrence matrix is sparse as the
co-occurrences of many word pairs are unob-
served. In contrast to existing approaches of-
ten only sample a few unobserved word pairs
as negative samples, we argue that the zero
entries in the co-occurrence matrix also pro-
vide valuable information. We then design
a Positive-Unlabeled Learning (PU-Learning)
approach to factorize the co-occurrence matrix
and validate the proposed approaches in four
different languages.

1 Introduction

Learning word representations has become a
fundamental problem in processing natural lan-
guages. These semantic representations, which
map a word into a point in a linear space, have
been widely applied in downstream applications,
including named entity recognition (Guo et al.,
2014), document ranking (Nalisnick et al., 2016),
sentiment analysis (Irsoy and Cardie, 2014), ques-
tion answering (Antol et al., 2015), and image cap-
tioning (Karpathy and Fei-Fei, 2015).

Over the past few years, various approaches
have been proposed to learn word vectors (e.g.,
(Pennington et al., 2014; Mikolov et al., 2013a;
Levy and Goldberg, 2014b; Ji et al., 2015)) based
on co-occurrence information between words ob-
served on the training corpus. The intuition behind
this is to represent words with similar vectors if

they have similar contexts. To learn a good word
embedding, most approaches assume a large col-
lection of text is freely available, such that the es-
timation of word co-occurrences is accurate. For
example, the Google Word2Vec model (Mikolov
et al., 2013a) is trained on the Google News
dataset, which contains around 100 billion to-
kens, and the GloVe embedding (Pennington et al.,
2014) is trained on a crawled corpus that contains
840 billion tokens in total. However, such an as-
sumption may not hold for low-resource languages
such as Inuit or Sindhi, which are not spoken by
many people or have not been put into a digital
format. For those languages, usually, only a lim-
ited size corpus is available. Training word vectors
under such a setting is a challenging problem.

One key restriction of the existing approaches
is that they often mainly rely on the word pairs
that are observed to co-occur on the training data.
When the size of the text corpus is small, most
word pairs are unobserved, resulting in an ex-
tremely sparse co-occurrence matrix (i.e., most en-
tries are zero)1. For example, the text82 corpus
has about 17,000,000 tokens and 71,000 distinct
words. The corresponding co-occurrence matrix
has more than five billion entries, but only about
45,000,000 are non-zeros (observed on the train-
ing corpus). Most existing approaches, such as
Glove and Skip-gram, cannot handle a vast num-
ber of zero terms in the co-occurrence matrix;
therefore, they only sub-sample a small subset of
zero entries during the training.

In contrast, we argue that the unobserved word
pairs can provide valuable information for train-
ing a word embedding model, especially when
the co-occurrence matrix is very sparse. Inspired

1Note that the zero term can mean either the pairs of
words cannot co-occur or the co-occurrence is not observed
in the training corpus.

2http://mattmahoney.net/dc/text8.zip
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by the success of Positive-Unlabeled Learning
(PU-Learning) in collaborative filtering applica-
tions (Pan et al., 2008; Hu et al., 2008; Pan and
Scholz, 2009; Qin et al., 2010; Paquet and Koenig-
stein, 2013; Hsieh et al., 2015), we design an algo-
rithm to effectively learn word embeddings from
both positive (observed terms) and unlabeled (un-
observed/zero terms) examples. Essentially, by
using the square loss to model the unobserved
terms and designing an efficient update rule based
on linear algebra operations, the proposed PU-
Learning framework can be trained efficiently and
effectively.

We evaluate the performance of the proposed
approach in English3 and other three resource-
scarce languages. We collected unlabeled lan-
guage corpora from Wikipedia and compared the
proposed approach with popular approaches, the
Glove and the Skip-gram models, for training
word embeddings. The experimental results show
that our approach significantly outperforms the
baseline models, especially when the size of the
training corpus is small.

Our key contributions are summarized below.

• We propose a PU-Learning framework for
learning word embedding.

• We tailor the coordinate descent algo-
rithm (Yu et al., 2017b) for solving the cor-
responding optimization problem.

• Our experimental results show that PU-
Learning improves the word embedding
training in the low-resource setting.

2 Related work

Learning word vectors. The idea of learning
word representations can be traced back to La-
tent Semantic Analysis (LSA) (Deerwester et al.,
1990) and Hyperspace Analogue to Language
(HAL) (Lund and Burgess, 1996), where word
vectors are generated by factorizing a word-
document and word-word co-occurrence matrix,
respectively. Similar approaches can also be ex-
tended to learn other types of relations between
words (Yih et al., 2012; Chang et al., 2013) or enti-
ties (Chang et al., 2014). However, due to the lim-
itation of the use of principal component analysis,

3Although English is not a resource-scarce language, we
simulate the low-resource setting in an English corpus. In this
way, we leverage the existing evaluation methods to evaluate
the proposed approach.

these approaches are often less flexible. Besides,
directly factorizing the co-occurrence matrix may
cause the frequent words dominating the training
objective.

In the past decade, various approaches have
been proposed to improve the training of word em-
beddings. For example, instead of factorizing the
co-occurrence count matrix, Bullinaria and Levy
(2007); Levy and Goldberg (2014b) proposed to
factorize point-wise mutual information (PMI) and
positive PMI (PPMI) matrices as these metrics
scale the co-occurrence counts (Bullinaria and
Levy, 2007; Levy and Goldberg, 2014b). Skip-
gram model with negative-sampling (SGNS) and
Continuous Bag-of-Words models (Mikolov et al.,
2013b) were proposed for training word vectors on
a large scale without consuming a large amount of
memory. GloVe (Pennington et al., 2014) is pro-
posed as an alternative to decompose a weighted
log co-occurrence matrix with a bias term added
to each word. Very recently, WordRank model
(Ji et al., 2015) has been proposed to minimize
a ranking loss which naturally fits the tasks re-
quiring ranking based evaluation metrics. Stratos
et al. (2015) also proposed CCA (canonical cor-
relation analysis)-based word embedding which
shows competitive performance. All these ap-
proaches focus on the situations where a large text
corpus is available.

Positive and Unlabeled (PU) Learning: Pos-
itive and Unlabeled (PU) learning (Li and Liu,
2005) is proposed for training a model when the
positive instances are partially labeled and the un-
labeled instances are mostly negative. Recently,
PU learning has been used in many classification
and collaborative filtering applications due to the
nature of “implicit feedback” in many recommen-
dation systems—users usually only provide posi-
tive feedback (e.g., purchases, clicks) and it is very
hard to collect negative feedback.

To resolve this problem, a series of PU matrix
completion algorithms have been proposed (Pan
et al., 2008; Hu et al., 2008; Pan and Scholz, 2009;
Qin et al., 2010; Paquet and Koenigstein, 2013;
Hsieh et al., 2015; Yu et al., 2017b). The main
idea is to assign a small uniform weight to all
the missing or zero entries and factorize the corre-
sponding matrix. Among them, Yu et al. (2017b)
proposed an efficient algorithm for matrix factor-
ization with PU-learning, such that the weighted
matrix is constructed implicitly. In this paper, we
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W, C vocabulary of central and context words
m,n vocabulary sizes
k dimension of word vectors
W,H m× k and n× k latent matrices
Cij weight for the (i, j) entry
Aij value of the PPMI matrix
Qij value of the co-occurrence matrix
wi,hj i-th row of W and j-th row of H
b, b̂ bias term
λi, λj regularization parameters
| · | the size of a set
Ω Set of possible word-context pairs
Ω+ Set of observed word-context pairs
Ω− Set of unobserved word-context pairs

Table 1: Notations.

design a new approach for training word vectors
by leveraging the PU-Learning framework and ex-
isting word embedding techniques. To the best of
our knowledge, this is the first work to train word
embedding models using the PU-learning frame-
work.

3 PU-Learning for Word Embedding

Similar to GloVe and other word embedding learn-
ing algorithms, the proposed approach consists of
three steps. The first step is to construct a co-
occurrence matrix. Follow the literature (Levy and
Goldberg, 2014a), we use the PPMI metric to mea-
sure the co-occurrence between words. Then, in
the second step, a PU-Learning approach is ap-
plied to factorize the co-occurrence matrix and
generate word vectors and context vectors. Fi-
nally, a post-processing step generates the final
embedding vector for each word by combining the
word vector and the context vector.

We summarize the notations used in this paper
in Table 1 and describe the details of each step in
the remainder of this section.

3.1 Building the Co-Occurrence Matrix

Various metrics can be used for estimating the
co-occurrence between words in a corpus. PPMI
metric stems from point-wise mutual information
(PMI) which has been widely used as a mea-
sure of word association in NLP for various tasks
(Church and Hanks, 1990). In our case, each entry
PMI(w, c) represents the relevant measure be-
tween a word w and a context word c by calcu-
lating the ratio between their joint probability (the

chance they appear together in a local context win-
dow) and their marginal probabilities (the chance
they appear independently) (Levy and Goldberg,
2014b). More specifically, each entry of PMI ma-
trix can be defined by

PMI(w, c) = log
P̂ (w, c)

P̂ (w) · P̂ (c)
, (1)

where P̂ (w), P̂ (c) and P̂ (w, c) are the the fre-
quency of word w, word c, and word pairs (w, c),
respectively. The PMI matrix can be computed
based on the co-occurrence counts of word pairs,
and it is an information-theoretic association mea-
sure which effectively eliminates the big differ-
ences in magnitude among entries in the co-
occurrence matrix.

Extending from the PMI metric, the PPMI met-
ric replaces all the negative entries in PMI matrix
by 0:

PPMI(w, c) = max(PMI(w, c), 0). (2)

The intuition behind this is that people usually
perceive positive associations between words (e.g.
“ice” and “snow”). In contrast, the negative as-
sociation is hard to define (Levy and Goldberg,
2014b). Therefore, it is reasonable to replace the
negative entries in the PMI matrix by 0, such that
the negative association is treated as “uninforma-
tive”. Empirically, several existing works (Levy
et al., 2015; Bullinaria and Levy, 2007) showed
that the PPMI metric achieves good performance
on various semantic similarity tasks.

In practice, we follow the pipeline described in
Levy et al. (2015) to build the PPMI matrix and
apply several useful tricks to improve its quality.
First, we apply a context distribution smoothing
mechanism to enlarge the probability of sampling
a rare context. In particular, all context counts are
scaled to the power of α.4:

PPMIα(w, c) = max

(
log

P̂ (w, c)

P̂ (w)P̂α(c)
, 0

)

P̂α(c) =
#(c)α∑
c̄ #(c̄)α

,

where #(w) denotes the number of times word w
appears. This smoothing mechanism effectively

4Empirically, α = 0.75 works well (Mikolov et al.,
2013b).
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alleviates PPMI’s bias towards rare words (Levy
et al., 2015).

Next, previous studies show that words that oc-
cur too frequent often dominate the training ob-
jective (Levy et al., 2015) and degrade the per-
formance of word embedding. To avoid this is-
sue, we follow Levy et al. (2015) to sub-sample
words with frequency more than a threshold twith
a probability p defined as:

p = 1−
√

t

P̂ (w)
.

3.2 PU-Learning for Matrix Factorization

We proposed a matrix factorization based word
embedding model which aims to minimize the re-
construction error on the PPMI matrix. The low-
rank embeddings are obtained by solving the fol-
lowing optimization problem:

min
W,H

∑

i,j∈Ω

Cij(Aij −wT
i hj − bi − b̂j)2

+
∑

i

λi‖wi‖2 +
∑

j

λj‖hj‖2, (3)

where W and H are m× k and n× k latent ma-
trices, representing words and context words, re-
spectively. The first term in Eq. (3) aims for min-
imizing reconstruction error, and the second and
third terms are regularization terms. λi and λj are
weights of regularization term. They are hyper-
parameters that need to be tuned.

The zero entries in co-occurrence matrix denote
that two words never appear together in the cur-
rent corpus, which also refers to unobserved terms.
The unobserved term can be either real zero (two
words shouldn’t be co-occurred even when we use
very large corpus) or just missing in the small cor-
pus. In contrast to SGNS sub-sampling a small set
of zero entries as negative samples, our model will
try to use the information from all zeros.

The set Ω includes all the |W| × |C| entries—
both positive and zero entries:

Ω = Ω+ ∪ Ω−. (4)

Note that we define the positive samples Ω+ to be
all the (w, c) pairs that appear at least one time
in the corpus, and negative samples Ω− are word
pairs that never appear in the corpus.

Weighting function. Eq (3) is very similar to
the one used in previous matrix factorization ap-
proaches such as GloVe, but we propose a new
way to set the weights Cij . If we set equal
weights for all the entries, then Cij = constant,
and the model is very similar to conducting SVD
for the PPMI matrix. Previous work has shown
that this approach often suffers from poor per-
formance (Pennington et al., 2014). More ad-
vanced methods, such as GloVe, set non-uniform
weights for observed entries to reflect their con-
fidence. However, the time complexity of their
algorithm is proportional to number of nonzero
weights (|(i, j) | Cij 6= 0|), thus they have to
set zero weights for all the unobserved entries
(Cij = 0 for Ω−), or try to incorporate a small
set of unobserved entries by negative sampling.

We propose to set the weights for Ω+ and Ω−

differently using the following scheme:

Cij =




(Qij/xmax)α, if Qij ≤ xmax, and (i, j) ∈ Ω+

1, if Qij > xmax, and (i, j) ∈ Ω+

ρ, (i, j) ∈ Ω−

(5)

Here xmax and α are re-weighting parameters, and
ρ is the unified weight for unobserved terms. We
will discuss them later.

For entries in Ω+, we set the non-uniform
weights as in GloVe (Pennington et al., 2014),
which assigns larger weights to context word that
appears more often with the given word, but also
avoids overwhelming the other terms. For entries
in Ω−, instead of setting their weights to be 0, we
assign a small constant weight ρ. The main idea is
from the literature of PU-learning (Hu et al., 2008;
Hsieh et al., 2015): although missing entries are
highly uncertain, they are still likely to be true 0,
so we should incorporate them in the learning pro-
cess but multiplying with a smaller weight accord-
ing to the uncertainty. Therefore, ρ in (5) reflects
how confident we are to the zero entries.

In our experiments, we set xmax = 10, α =
3/4 according to (Pennington et al., 2014), and let
ρ be a parameter to tune. Experiments show that
adding weighting function obviously improves the
performance especially on analogy tasks.

Bias term. Unlike previous work on PU matrix
completion (Yu et al., 2017b; Hsieh et al., 2015),
we add the bias terms for word and context word
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vectors. Instead of directly using w>i hj to approx-
imate Aij , we use

Aij ≈ w>i hj + bi + b̂j .

Yu et al. (2017b) design an efficient column-
wise coordinate descent algorithm for solving the
PU matrix factorization problem; however, they
do not consider the bias term in their implementa-
tions. To incorporate the bias term in (3), we pro-
pose the following training algorithm based on the
coordinate descent approach. Our algorithm does
not introduce much overhead compared to that in
(Yu et al., 2017b).

We augment each wi,hj ∈ Rk into the follow-
ing (k + 2) dimensional vectors:

w′i =




wi1
...
wik
1
bi




h′j =




hj1
...
hjk
b̂j
1




Therefore, for each word and context vector, we
have the following equality

〈w′i,h′j〉 = 〈wi,hj〉+ bi + b̂j ,

which means the loss function in (3) can be written
as

∑

i,j∈Ω

Cij(Aij −w′>i h′j)
2.

Also, we denote W ′ = [w′1,w
′
2, . . . ,w

′
n]> and

H ′ = [h′1,h
′
2, . . . ,h

′
n]>. In the column-wise co-

ordinate descent method, at each iteration we pick
a t ∈ {1, . . . , (k+2)}, and update the t-th column
of W ′ and H ′. The updates can be derived for the
following two cases:

a. When t ≤ k, the elements in the t-th col-
umn is w1t, . . . , wnt and we can directly use
the update rule derived in Yu et al. (2017b) to
update them.

b. When t = k + 1, we do not update the cor-
responding column of W ′ since the elements
are all 1, and we use the similar coordinate
descent update to update the k+ 1-th column
of H ′ (corresponding to b̂1, . . . , b̂n). When
t = k+2, we do not update the corresponding
column of H ′ (they are all 1) and we update
the k+ 2-th column of W ′ (corresponding to
b1, . . . , bn) using coordinate descent.

With some further derivations, we can show that
the algorithm only requires O(nnz(A) + nk) time
to update each column,5 so the overall complexity
is O(nnz(A)k + nk2) time per epoch, which is
only proportional to number of nonzero terms in
A. Therefore, with the same time complexity as
GloVe, we can utilize the information from all the
zero entries in A instead of only sub-sampling a
small set of zero entries.

3.3 Interpretation of Parameters

In the PU-Learning formulation, ρ represents the
unified weight that assigned to the unobserved
terms. Intuitively, ρ reflects the confidence on un-
observed entries—larger ρmeans that we are quite
certain about the zeroes, while small ρ indicates
the many of unobserved pairs are not truly zero.
When ρ = 0, the PU-Learning approach reduces
to a model similar to GloVe, which discards all the
unobserved terms. In practice, ρ is an important
parameter to tune, and we find that ρ = 0.0625
achieves the best results in general. Regarding
the other parameter, λ is the regularization term
for preventing the embedding model from over-
fitting. In practice, we found the performance is
not very sensitive to λ as long as it is resonably
small. More discussion about the parameter set-
ting can be found in Section 5.

Post-processing of Word/Context Vectors The
PU-Learning framework factorizes the PPMI ma-
trix and generates two vectors for each word i,
wi ∈ Rk and hi ∈ Rk. The former represents
the word when it is the central word and the lat-
ter represents the word when it is in context. Levy
et al. (2015) shows that averaging these two vec-
tors (uavg

i = wi + hi) leads to consistently better
performance. The same trick of constructing word
vectors is also used in GloVe. Therefore, in the
experiments, we evaluate all models with uavg.

4 Experimental Setup

Our goal in this paper is to train word embedding
models for low-resource languages. In this sec-
tion, we describe the experimental designs to eval-
uate the proposed PU-learning approach. We first
describe the data sets and the evaluation metrics.
Then, we provide details of parameter tuning.

5Here we assume m = n for the sake of simplicity. And,
nnz(A) denotes the number of nonzero terms in the matrix A.
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Similarity task Analogy task
Word embedding WS353 Similarity Relatedness M. Turk MEN 3CosAdd 3CosMul

GloVe 48.7 50.9 53.7 54.1 17.6 32.1 28.5
SGNS 67.2 70.3 67.9 59.9∗ 25.1∗ 30.4 27.8

PU-learning 68.3∗ 71.8∗ 68.2∗ 57.0 22.7 32.6∗ 32.3∗

Table 2: Performance of the best SGNS, GloVe, PU-Learning models, trained on the text8 corpus. Results
show that our proposed model is better than SGNS and GloVe. Star indicates it is significantly better
than the second best algorithm in the same column according to Wilcoxon signed-rank test. (p < 0.05)

Similarity task Analogy task
Language WS353 Similarity Relatedness M. Turk MEN Google

English (en) 353 203 252 287 3,000 19,544
Czech (cs) 337 193 241 268 2,810 18,650
Danish (da) 346 198 247 283 2,951 18,340
Dutch (nl) 346 200 247 279 2,852 17,684

Table 3: The size of the test sets. The data sets in English are the original test sets. To evaluate other
languages, we translate the data sets from English.

4.1 Evaluation tasks

We consider two widely used tasks for evaluating
word embeddings, the word similarity task and the
word analogy task. In the word similarity task,
each question contains a word pairs and an an-
notated similarity score. The goal is to predict
the similarity score between two words based on
the inner product between the corresponding word
vectors. The performance is then measured by
the Spearmans rank correlation coefficient, which
estimates the correlation between the model pre-
dictions and human annotations. Following the
settings in literature, the experiments are con-
ducted on five data sets, WordSim353 (Finkelstein
et al., 2001), WordSim Similarity (Zesch et al.,
2008), WordSim Relatedness (Agirre et al., 2009),
Mechanical Turk (Radinsky et al., 2011) and
MEN (Bruni et al., 2012).

In the word analogy task, we aim at solving
analogy puzzles like “man is to woman as king
is to ?”, where the expected answer is “queen.”
We consider two approaches for generating an-
swers to the puzzles, namely 3CosAdd and 3Cos-
Mul (see (Levy and Goldberg, 2014a) for details).
We evaluate the performances on Google anal-
ogy dataset (Mikolov et al., 2013a) which con-
tains 8,860 semantic and 10,675 syntactic ques-
tions. For the analogy task, only the answer that
exactly matches the annotated answer is counted
as correct. As a result, the analogy task is more
difficult than the similarity task because the evalu-

ation metric is stricter and it requires algorithms to
differentiate words with similar meaning and find
the right answer.

To evaluate the performances of models in the
low-resource setting, we train word embedding
models on Dutch, Danish, Czech and, English
data sets collected from Wikipedia. The original
Wikipedia corpora in Dutch, Danish, Czech and
English contain 216 million, 47 million, 92 mil-
lion, and 1.8 billion tokens, respectively. To sim-
ulate the low-resource setting, we sub-sample the
Wikipedia corpora and create a subset of 64 mil-
lion tokens for Dutch and Czech and a subset of 32
million tokens for English. We will demonstrate
how the size of the corpus affects the performance
of embedding models in the experiments.

To evaluate the performance of word embed-
dings in Czech, Danish, and Dutch, we translate
the English similarity and analogy test sets to the
other languages by using Google Cloud Trans-
lation API6. However, an English word may be
translated to multiple words in another language
(e.g., compound nouns). We discard questions
containing such words (see Table 3 for details).
Because all approaches are compared on the same
test set for each language, the comparisons are fair.

4.2 Implementation and Parameter Setting

We compare the proposed approach with two
baseline methods, GloVe and SGNS. The imple-

6https://cloud.google.com/translate
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Dutch (nl) Similarity task Analogy task
Word embedding WS353 Similarity Relatedness M. Turk MEN 3CosAdd 3CosMul

GloVe 35.4 35.0 41.7 44.3 11 21.2 20.2
SGNS 51.9 52.9 53.5 49.8∗ 15.4 22.1 23.6

PU-learning 53.7∗ 53.4∗ 55.1∗ 46.7 16.4∗ 23.5∗ 24.7∗

Danish (da) Similarity task Analogy task
Word embedding WS353 Similarity Relatedness M. Turk MEN 3CosAdd 3CosMul

GloVe 25.7 18.4 40.3 49.0 16.4 25.8∗ 24.3∗

SGNS 49.7 47.1 52.1 51.5 22.4 22.0 21.2
PU-learning 53.5∗ 49.5∗ 59.3∗ 51.7∗ 22.7∗ 22.6 22.8
Czech (cs) Similarity task Analogy task

Word embedding WS353 Similarity Relatedness M. Turk MEN 3CosAdd 3CosMul
GloVe 34.3 23.2 48.9 36.5 16.2 8.9 8.6
SGNS 51.4 42.7 61.1 44.2 21.3 10.4∗ 9.8

PU-learning 54.0∗ 45.4∗ 65.3∗ 46.2∗ 21.7∗ 9.9 10.1∗

English (en) Similarity task Analogy task
Word embedding WS353 Similarity Relatedness M. Turk MEN 3CosAdd 3CosMul

GloVe 47.9 52.1 49.5 58.8 19.1 34.3 32.6
SGNS 65.7 67.1∗ 66.5 62.8∗ 26.1∗ 31.2 27.4

PU-learning 67.0∗ 66.7 69.6∗ 59.4 22.4 39.2∗ 38.8∗

Table 4: Performance of SGNS, GloVe, and the proposed PU-Learning model in four different languages.
Results show that the proposed PU-Learning model outperforms SGNS and GloVe in most cases when
the size of corpus is relatively small (around 50 million tokens). Star indicates it is significant better than
the second best algorithm in the same column according to Wilcoxon signed-rank test. (p < 0.05).

mentations of Glove7 and SGNS8 and provided
by the original authors, and we apply the default
settings when appropriate. The proposed PU-
Learning framework is implemented based on Yu
et al. (2017a). With the implementation of effi-
cient update rules, our model requires less than
500 seconds to perform one iteration over the en-
tire text8 corpus, which consists of 17 million to-
kens 9. All the models are implemented in C++.

We follow Levy et al. (2015)10 to set windows
size as 15, minimal count as 5, and dimension of
word vectors as 300 in the experiments. Training
word embedding models involves selecting sev-
eral hyper-parameters. However, as the word em-
beddings are usually evaluated in an unsupervised
setting (i.e., the evaluation data sets are not seen
during the training), the parameters should not be
tuned on each dataset. To conduct a fair com-
parison, we tune hyper-parameters on the text8
dataset. For GloVe model, we tune the discount
parameters xmax and find that xmax = 10 per-

7https://nlp.stanford.edu/projects/glove
8https://code.google.com/archive/p/word2vec/
9http://mattmahoney.net/dc/text8.zip

10https://bitbucket.org/omerlevy/hyperwords

forms the best. SGNS has a natural parameter k
which denotes the number of negative samples.
Same as Levy et al. (2015), we found that set-
ting k to 5 leads to the best performance. For
the PU-learning model, ρ and λ are two important
parameters that denote the unified weight of zero
entries and the weight of regularization terms, re-
spectively. We tune ρ in a range from 2−1 to 2−14

and λ in a range from 20 to 2−10. We analyze the
sensitivity of the model to these hyper-parameters
in the experimental result section. The best perfor-
mance of each model on the text8 dataset is shown
in the Table 2. It shows that PU-learning model
outperforms two baseline models.

5 Experimental Results

We compared the proposed PU-Learning frame-
work with two popular word embedding models
– SGNS (Mikolov et al., 2013b) and Glove (Pen-
nington et al., 2014) on English and three other
languages. The experimental results are reported
in Table 4. The results show that the proposed PU-
Learning framework outperforms the two baseline
approaches significantly in most datasets. This re-
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Figure 1: Performance change as the corpus size growing (a) on the Google word analogy task (on the
left-hand side) and (b) on the WS353 word similarity task (on the right-hand side). We demonstrate
the performance on four languages, Dutch, Danish, Czech and English datasets. Results show that PU-
Learning model consistently outperforms SGNS and GloVe when the size of corpus is small.

1031



Figure 2: Impact of ρ and λ in the PU-Learning framework.

sults confirm that the unobserved word pairs carry
important information and the PU-Learning model
leverages such information and achieves better
performance. To better understand the model, we
conduct detailed analysis as follows.

Performance v.s. Corpus size We investigate
the performance of our algorithm with respect to
different corpus size, and plot the results in Fig-
ure 1. The results in analogy task are obtained by
3CosMul method (Levy and Goldberg, 2014a). As
the corpus size grows, the performance of all mod-
els improves, and the PU-learning model consis-
tently outperforms other methods in all the tasks.
However, with the size of the corpus increases, the
difference becomes smaller. This is reasonable as
when the corpus size increases the number of non-
zero terms becomes smaller and the PU-learning
approach is resemblance to Glove.

Impacts of ρ and λ We investigate how sensi-
tive the model is to the hyper-parameters, ρ and λ.
Figure 2 shows the performance along with vari-
ous values of λ and ρ when training on the text8
corpus, respectively. Note that the x-axis is in log
scale. When ρ is fixed, a big λ degrades the perfor-
mance of the model significantly. This is because
when λ is too big the model suffers from under-
fitting. The model is less sensitive when λ is small
and in general, λ = 2−11 achieves consistently
good performance.

When λ is fixed, we observe that large ρ (e.g.,
ρ ≈ 2−4) leads to better performance. As ρ repre-
sents the weight assigned to the unobserved term,
this result confirms that the model benefits from
using the zero terms in the co-occurrences matrix.

6 Conclusion

In this paper, we presented a PU-Learning frame-
work for learning word embeddings of low-
resource languages. We evaluated the proposed
approach on English and other three languages and
showed that the proposed approach outperforms
other baselines by effectively leveraging the infor-
mation from unobserved word pairs.

In the future, we would like to conduct experi-
ments on other languages where available text cor-
pora are relatively hard to obtain. We are also in-
terested in applying the proposed approach to do-
mains, such as legal documents and clinical notes,
where the amount of accessible data is small. Be-
sides, we plan to study how to leverage other in-
formation to facilitate the training of word embed-
dings under the low-resource setting.
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Abstract

Public debate forums provide a common plat-
form for exchanging opinions on a topic of
interest. While recent studies in natural lan-
guage processing (NLP) have provided em-
pirical evidence that the language of the de-
baters and their patterns of interaction play
a key role in changing the mind of a reader,
research in psychology has shown that prior
beliefs can affect our interpretation of an ar-
gument and could therefore constitute a com-
peting alternative explanation for resistance to
changing one’s stance. To study the actual ef-
fect of language use vs. prior beliefs on persua-
sion, we provide a new dataset and propose a
controlled setting that takes into consideration
two reader-level factors: political and religious
ideology. We find that prior beliefs affected by
these reader-level factors play a more impor-
tant role than language use effects and argue
that it is important to account for them in NLP
studies of persuasion.

1 Introduction

Public debate forums provide to participants a
common platform for expressing their point of
view on a topic; they also present to participants
the different sides of an argument. The latter can
be particularly important: awareness of divergent
points of view allows one, in theory, to make a fair
and informed decision about an issue; and expo-
sure to new points of view can furthermore possi-
bly persuade a reader to change his overall stance
on a topic.

Research in natural language processing (NLP)
has begun to study persuasive writing and the role
of language in persuasion. Tan et al. (2016) and
Zhang et al. (2016), for example, have shown that
the language of opinion holders or debaters and
their patterns of interaction play a key role in
changing the mind of a reader. At the same time,

research in psychology has shown that prior be-
liefs can affect our interpretation of an argument
even when the argument consists of numbers and
empirical studies that would seemingly belie mis-
interpretation (Lord et al., 1979; Vallone et al.,
1985; Chambliss and Garner, 1996).

We hypothesize that studying the actual effect
of language on persuasion will require a more
controlled experimental setting — one that takes
into account any potentially confounding user-
level (i.e., reader-level) factors1 that could cause
a person to change, or keep a person from chang-
ing, his opinion. In this paper we study one such
type of factor: the prior beliefs of the reader as
impacted by their political or religious ideology.
We adopt this focus since it has been shown that
ideologies play an important role for an individual
when they form beliefs about controversial topics,
and potentially affect how open the individual is
to being persuaded (Stout and Buddenbaum, 1996;
Goren, 2005; Croucher and Harris, 2012).

We first present a dataset of online debates that
enables us to construct the setting described above
in which we can study the effect of language on
persuasion while taking into account selected user-
level factors. In addition to the text of the debates,
the dataset contains a multitude of background in-
formation on the users of the debate platform. To
the best of our knowledge, it is the first publicly
available dataset of debates that simultaneously
provides such comprehensive information about
the debates, the debaters and those voting on the
debates.

With the dataset in hand, we then propose the
novel task of studying persuasion (1) at the level
of individual users, and (2) in a setting that can
control for selected user-level factors, in our case,
the prior beliefs associated with the political or

1Variables that affect both the dependent and independent
variables causing misleading associations.
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religious ideology of the debaters and voters. In
particular, previous studies focus on predicting
the winner of a debate based on the cumulative
change in pre-debate vs. post-debate votes for the
opposing sides (Zhang et al., 2016; Potash and
Rumshisky, 2017). In contrast, we aim to predict
which debater an individual user (i.e., reader of the
debate) perceives as more successful, given their
stated political and religious ideology.

Finally, we identify which features appear to be
most important for persuasion, considering the se-
lected user-level factors as well as the more tradi-
tional linguistic features associated with the lan-
guage of the debate itself. We hypothesize that the
effect of political and religious ideology will be
stronger when the debate topic is Politics and Re-
ligion, respectively. To test this hypothesis, we ex-
periment with debates on only Politics or only Re-
ligion vs. debates from all topics including Music,
Health, Arts, etc.

Our main finding is that prior beliefs associated
with the selected user-level factors play a larger
role than linguistic features when predicting the
successful debater in a debate. In addition, the ef-
fect of these factors varies according to the topic
of the debate topic. The best performance, how-
ever, is achieved when we rely on features ex-
tracted from user-level factors in conjunction with
linguistic features derived from the debate text.
Finally, we find that the set of linguistic features
that emerges as the most predictive changes when
we control for user-level factors (political and re-
ligious ideology) vs. when we do not, showing the
importance of accounting for these factors when
studying the effect of language on persuasion.

In the remainder of the paper, we describe the
debate dataset (Section 2) and the prediction task
(Section 3) followed by the experimental results
and analysis (Section 4), related work (Section 5)
and conclusions (Section 6).

2 Dataset

For this study, we collected 67, 315 debates from
debate.org2 from 23 different topic categories in-
cluding Politics, Religion, Health, Science and
Music.3 In addition to text of the debates, we col-
lected 198, 759 votes from the readers of these de-
bates. Votes evaluate different dimensions of the

2www.debate.org
3The dataset will be made publicly available at

http://www.cs.cornell.edu/ esindurmus/.

Figure 1: ROUND 1 for the debate claim “PRESCHOOL
IS A WASTE OF TIME”.

debate.
To study the effect of user characteristics, we

collected user information for 36, 294 different
users. Aspects of the dataset most relevant to our
task are explained in the following section in more
detail.

2.1 Debates

Debate rounds. Each debate consists of a se-
quence of ROUNDS in which two debaters from
opposing sides (one is supportive of the claim (i.e.,
PRO) and the other is against the claim (i.e., CON))
provide their arguments. Each debater has a single
chance in a ROUND to make his points. Figure 1
shows an example ROUND 1 for the debate claim
“PRESCHOOL IS A WASTE OF TIME”. The num-
ber of ROUNDS in debates ranges from 1 to 5 and
the majority of debates (61, 474 out of 67, 315)
contain 3 or more ROUNDS.

Votes. All users in the debate.org community
can vote on debates. As shown in Figure 2,
voters share their stances on the debate topic
before and after the debate and evaluate the
debaters’ conduct, their spelling and grammar,
the convincingness of their arguments and the
reliability of the sources they refer to. For each
such dimension, voters have the option to choose
one of the debaters as better or indicate a tie. This
fine-grained voting system gives a glimpse into
the reasoning behind the voters’ decisions.

2.1.1 Determining the successful debater
There are two alternate criteria for determining the
successful debater in a debate. Our experiments
consider both.

Criterion 1: Argument quality. As shown in
Figure 2, debaters get points for each dimension
of the debate. The most important dimension — in
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Figure 2: An example post-debate vote. Convincing-
ness of arguments contributes to the total points the
most.

that it contributes most to the point total — is mak-
ing convincing arguments. debate.org uses Crite-
rion 1 to determine the winner of a debate.

Criterion 2: Convinced voters. Since voters
share their stances before and after the debate, the
debater who convinces more voters to change their
stance is declared as the winner.

2.2 User information

On debate.org, each user has the option to share
demographic and private state information such as
their age, gender, ethnicity, political ideology, reli-
gious ideology, income level, education level, the
president and the political party they support. Be-
yond that, we have access to information about
their activities on the website such as their over-
all success rate of winning debates, the debates
they participated in as a debater or voter, and their
votes. An example of a user profile is shown in
Figure 3.

Opinions on the big issues. debate.org main-
tains a list of the most controversial debate topics
as determined by the editors of the website. These
are referred to as big issues.4 Each user shares his
stance on each big issue on his profile (see Figure
3): either PRO (in favor), CON (against), N/O (no
opinion), N/S (not saying) or UND (undecided).

3 Prediction task: which debater will be
declared as more successful by an
individual voter?

In this section, we first analyze which dimensions
of argument quality are the most important for de-
termining the successful debater. Then, we ana-
lyze whether there is any connection between se-
lected user-level factors and users’ opinions on the

4http://www.debate.org/big-issues/

Figure 3: An example of a (partial) user profile.
Top right: Some of the big issues on which the user
shares his opinion are included. The user is against
(CON) abortion and gay marriage and in favor of (PRO)
the death penalty.

Figure 4: The correlations among argument quality di-
mensions.

big issues to see if we can infer their opinions
from these factors. Finally, using our findings from
these analyses, we perform the task of predicting
which debater will be perceived as more success-
ful by an individual voter.

3.1 Relationships between argument quality
dimensions

Figure 4 shows the correlation between pairs
of voting dimensions (in the first 8 rows and
columns) and the correlation of each dimension
with (1) getting more points (row or column 9)
and (2) convincing more people as a debater (final
row or column). Abbreviations stand for (on the
CON side): has better conduct (CBC), makes more
convincing arguments (CCA), uses more reliable
sources (CRS), has better spelling and grammar
(CBSG), gets more total points (CMTP) and con-
vinces more voters (CCMV). For the PRO side we
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Figure 5: The representation of the BIGISSUES vector
derived by this user’s decisions on big issues. Here, the
user is CON for ABORTION and AFFIRMATIVE ACTION
issues and PRO for the WELFARE issue.

use PBC, PCA, and so on.
From Figure 4, we can see that making more

convincing arguments (CCA) correlates the most
with total points (CMTP) and convincing more vot-
ers (CCMV). This analysis motivates us to identify
the linguistic features that are indicators of more
convincing arguments.

3.2 The relationship between a user’s
opinions on the big issues and their prior
beliefs

We disentangle different aspects of a person’s
prior beliefs to understand how well each cor-
relates with their opinions on the big issues. As
noted earlier, we focus here only on prior beliefs
in the form of self-identified political and religious
ideology.

Representing the big issues. To represent the
opinions of a user on a big issue, we use a four-
dimensional one-hot encoding where the indices
of the vector correspond to PRO, CON, N/O (no
opinion), and UND (undecided), consecutively (1
if the user chooses that value for the issue, 0 oth-
erwise). Note that we do not have a representation
for N/S since we eliminate users having N/S for at
least one big issue for this study. We then concate-
nate the vector for each big issue to get a repre-
sentation for a user’s stance on all the big issues
as shown in Figure 5. We denote this vector by
BIGISSUES.

We test the correlation between the individ-
ual’s opinions on big issues and the selected user-
level factors in this study using two different ap-
proaches: clustering and classification.

Clustering the users’ decisions on big issues.
We apply PCA on the BIGISSUES vectors of users
who identified themselves as CONSERVATIVE vs.
LIBERAL (740 users). We do the same for the users
who identified themselves as ATHEIST vs. CHRIS-
TIAN (1501 users). In Figure 6, we see that there
are distinctive clusters of CONSERVATIVE vs. LIB-
ERAL users in the two-dimensional representation

.
(a) LIBERAL vs. CONSER-
VATIVE

(b) ATHEIST vs. CHRIS-
TIAN.

Figure 6: PCA representation of decisions on big is-
sues color-coded with political and religious ideology.
We see more distinctive clusters for CONSERVATIVE
vs. LIBERAL users suggesting that people’s opinions
are more correlated with their political ideology.

Prior belief type Majority BIGISSUES

Political ideology 57.70% 92.43%
Religious Ideology 52.70% 82.81%

Table 1: Accuracy using majority baseline vs. BIGIS-
SUES vectors as features.

while for ATHEIST vs. CHRISTIAN, the separation
is not as distinct. This suggests that people’s opin-
ions on the big issues identified by debate.org cor-
relate more with their political ideology than their
religious ideology.

Classification approach. We also treat this as
a classification task5 using the BIGISSUES vec-
tors for each user as features and the user’s re-
ligious and political ideology as the labels to be
predicted. So the classification task is: Given the
user’s BIGISSUES vector, predict his political and
religious ideology. Table 1 shows the accuracy for
each case. We see that using the BIGISSUES vec-
tors as features performs significantly better6 than
majority baseline7.

This analysis shows that there is a clear rela-
tionship between people’s opinions on the big is-
sues and the selected user-level factors. It raises
the question of whether it is even possible to per-
suade someone with prior beliefs relevant to a de-
bate claim to change their stance on the issue. It
may be the case that people prefer to agree with
the individuals having the same (or similar) beliefs
regardless of the quality of the arguments and the

5For all the classification tasks described in this paper, we
experiment with logistic regression, optimizing the regular-
izer (`1 or `2) and the regularization parameter C (between
10−5 and 105).

6We performed the McNemar significance test.
7The majority class baseline predicts CONSERVATIVE for

political and CHRISTIAN for religious ideology for each ex-
ample, respectively.
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particular language used. Therefore, it is important
to understand the relative effect of prior beliefs vs.
argument strength on persuasion.

3.3 Task descriptions

Some of the previous work in NLP on persuasion
focuses on predicting the winner of a debate as
determined by the change in the number of peo-
ple supporting each stance before and after the de-
bate (Zhang et al., 2016; Potash and Rumshisky,
2017). However, we believe that studies of the ef-
fect of language on persuasion should take into ac-
count other, extra-linguistic, factors that can affect
opinion change: in particular, we propose an ex-
perimental framework for studying the effect of
language on persuasion that aims to control for
the prior beliefs of the reader as denoted through
their self-identified political and religious ideolo-
gies. As a result, we study a more fine-grained pre-
diction task: for an individual voter, predict which
side/debater/argument the voter will declare as the
winner.

Task 1 : Controlling for religious ideology.
In the first task, we control for religious ideol-
ogy by selecting debates for which each of the
two debaters is from a different religious ideology
(e.g., debater 1 is ATHEIST, debater 2 is CHRIS-
TIAN). In addition, we consider only voters that (a)
self-identify with one of these religious ideologies
(e.g., the voter is either ATHEIST or CHRISTIAN)
and (b) changed their stance on the debate claim
post-debate vs. pre-debate. For each such voter,
we want to predict which of the PRO-side debater
or the CON-side debater did the convincing. Thus,
in this task, we use Criterion 2 to determine the
winner of the debate from the point of view of the
voter. Our hypothesis is that the voter will be con-
vinced by the debater that espouses the religious
ideology of the voter.

In this setting, we can study the factors that are
important for a particular voter to be convinced by
a debater. This setting also provides an opportu-
nity to understand how the voters who change their
minds perceive arguments from a debater who is
expressing the same vs. the opposing prior belief.

To study the effect of the debate topic, we
perform this study for two cases — debates be-
longing to the Religion category and then all the
categories. The Religion category contains de-
bates like “IS THE BIBLE AGAINST WOMEN’S

RIGHTS?” and “RELIGIOUS THEORIES SHOULD

NOT BE TAUGHT IN SCHOOL”. We want to see
how strongly a user’s religious ideology affects
the persuasive effect of language in such a topic
as compared to the all topics. We expect to see
stronger effects of prior beliefs for debates on Re-
ligion.

Task 2: Controlling for political ideology.
Similar to the setting described above, Task 2
controls for political ideology. In particular, we
only use debates where the two debaters are from
different political ideologies (CONSERVATIVE vs.
LIBERAL). In contrast to Task 1, we consider all
voters that self-identify with one of the two de-
bater ideologies (regardless of whether the voter’s
stance changed post-debate vs. pre-debate). This
time, we predict whether the voter gives more to-
tal points to the PRO side or the CON side argu-
ment. Thus, Task 2 uses Criterion 1 to determine
the winner of the debate from the point of view of
the voter. Our hypothesis is that the voter will as-
sign more points to the debater that has the same
political ideology as the voter.

For this task too, we perform the study for two
cases — debates from the Politics category only
and debates from all categories. And we expect to
see stronger effects of prior beliefs for debates on
Politics.

3.4 Features

The features we use in our model are shown in Ta-
ble 2. They can be divided into two groups — fea-
tures that describe the prior beliefs of the users and
linguistic features of the arguments themselves.

User features
We use the cosine similarities between the voter
and each of the debaters’ big issue vectors. These
features give a good approximation of the overall
similarity of two user’s opinions. Second, we use
indicator features to encode whether the religious
and political beliefs of the voter match those of
each of the debaters.

Linguistic features
We extract linguistic features separately for both
the PRO and CON side of the debate (combining
all the utterances of PRO across different turns
and doing the same for CON). Table 2 contains
a list of these features. It includes features that
carry information about the style of the language
(e.g., usage of modal verbs, length, punctuation),
represent different semantic aspects of the argu-
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User-based features Description
Opinion similarity. For userA and userB, the cosine similarity of

BIGISSUESuserA and BIGISSUESuserB .
Matching features. For userA and userB, 1 if userAf==userBf , 0

otherwise where f ∈ {political ideology, religious
ideology}. We denote these features as matching po-
litical ideology and matching religious ideology.

Linguistic features Description
Length. Number of tokens.
Tf-idf. Unigram, bigram and trigram features.
Referring to the opponent. Whether the debater refers to their opponent using

words or phrases like “opponent, my opponent”.
Politeness cues. Whether the text includes any signs of politeness

such as “thank” and “welcome”.
Showing evidence. Whether the text has any signs of citing any other

sources (e.g., phrases like “according to”), or quota-
tion.

Sentiment. Average sentiment polarity.
Subjectivity (Wilson et al., 2005). Number of words with negative strong, negative

weak, positive strong, and positive weak subjectiv-
ity.

Swear words. # of swear words.
Connotation score (Feng and
Hirst, 2011).

Average # of words with positive, negative and neu-
tral connotation.

Personal pronouns. Usage of first, second, and third person pronouns.
Modal verbs. Usage of modal verbs.
Argument lexicon features.
(Somasundaran et al., 2007).

# of phrases corresponding to different argumenta-
tion styles.

Spelling. # of spelling errors.
Links. # of links.
Numbers. # of numbers.
Exclamation marks. # of exclamation marks.
Questions. # of questions.

Table 2: Feature descriptions

ment (e.g., showing evidence, connotation (Feng
and Hirst, 2011), subjectivity (Wilson et al., 2005),
sentiment, swear word features) as well as fea-
tures that convey different argumentation styles
(argument lexicon features (Somasundaran and
Wiebe, 2010). Argument lexicon features include
the counts for the phrases that match with the
regular expressions of argumentation styles such
as assessment, authority, conditioning, contrast-
ing, emphasizing, generalizing, empathy, incon-
sistency, necessity, possibility, priority, rhetorical
questions, desire, and difficulty. We then concate-
nate these features to get a single feature represen-
tation for the entire debate.

4 Results and Analysis

For each of the tasks, prediction accuracy is eval-
uated using 5-fold cross validation. We pick the
model parameters for each split with 3-fold cross
validation on the training set. We do ablation for
each of user-based and linguistic features. We re-
port the results for the feature sets that perform
better than the baseline.

We perform analysis by training logistic regres-
sion models using only user-based features, only
linguistic features and finally combining user-
based and linguistic features for both the tasks.
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Accuracy
Baseline
Majority 56.10%
User-based Features
Matching religious ideology 65.37 %
Linguistic features
Personal pronouns 57.00 %
Connotation 61.26 %
All two features above 65.37 %
User-based+linguistic features
USER*+ Personal pronouns 65.37%
USER*+ Connotation 66.42%
USER*+ LANGUAGE* 64.37%

Table 3: Results for Task 1 for debates in category Re-
ligion. USER* represents the best performing combi-
nation of user-based features. LANGUAGE* represents
the best performing combination of linguistic features.
Since using linguistic features only would give the
same prediction for all voters in a debate, the maximum
accuracy that can be achieved using language features
only is 92.86%.

Task 1 for debates in category Religion. As
shown in Table 3, the majority baseline (predict-
ing the winner side of the majority of training ex-
amples out of PRO or CON) gets 56.10% accu-
racy. User features alone perform significantly bet-
ter than the majority baseline. The most important
user-based feature is matching religious ideology.
This means it is very likely that people change
their views in favor of a debater with the same re-
ligious ideology. In a linguistic-only features anal-
ysis, combination of the personal pronouns and
connotation features emerge as most important
and also perform significantly better than the ma-
jority baseline at 65.37% accuracy. When we use
both user-based and linguistic features to predict,
the accuracy improves to 66.42% with connota-
tion features. An interesting observation is that in-
cluding the user-based features along with the lin-
guistic features changes the set of important lin-
guistic features for persuasion removing the per-
sonal pronouns from the important linguistic fea-
tures set. This shows the importance of studying
potentially confounding user-level factors.

Task 1 for debates in all categories. As shown
in Table 4, for the experiments with user-based
features only, matching religious ideology and
opinion similarity features are the most important.
For this task, length is the most predictive linguis-
tic feature and can achieve significant improve-

Accuracy
Baseline
Majority 57.31%
User-based Features
Matching religious ideology 62.79 %
Matching religious ideology+
Opinion similarity 62.97%
Linguistic features
Length 8 61.01 %
User-based+linguistic features
USER* + Length 64.56 %
USER*+ Length
+ Exclamation marks 65.74%

Table 4: Results for Task 1 for debates in all categories.
The maximum accuracy that can be achieved using lan-
guage features only is 95.77%.

ment over the baseline (61.01%). When we com-
bine the language features with user-based fea-
tures, we see that with exclamation mark the ac-
curacy improves to (65.74%).

Task 2 for debates in category Politics. As
shown in Table 5, using user-based features only,
the matching political ideology feature performs
the best (80.40%). Linguistic features (refer to Ta-
ble 5 for the full list) alone, however, can still
obtain significantly better accuracy than the base-
line (59.60%). The most important linguistic fea-
tures include approval, politeness, modal verbs,
punctuation and argument lexicon features such as
rhetorical questions and emphasizing. When com-
bining this linguistic feature set with the matching
political ideology feature, we see that with the ac-
curacy improves to (81.81%). Length feature does
not give any improvement when it is combined
with the user features.

Task 2 for debates in all categories. As shown
in Table 6, when we include all categories, we see
that the best performing user-based feature is the
opinion similarity feature (73.96%). When using
language features only, length feature (56.88%) is
the most important. For this setting, the best accu-
racy is achieved when we combine user features
with length and Tf-idf features. We see that the set
of language features that improve the performance
of user-based features do not include some of that
perform significantly better than the baseline when
used alone (modal verbs and politeness features).
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Accuracy
Baseline
Majority 50.91%
User-based Features
Opinion similarity 80.00 %
Matching political ideology 80.40 %
Linguistic features
Length 57.37 %
linguistic feature set 59.60 %
User-based+linguistic features
USER*+ linguistic feature set 81.81%

Table 5: Results for Task 2 for debates in category Pol-
itics. The maximum accuracy that can be achieved us-
ing linguistic features only is 75.35%. The linguistic
feature set includes rhetorical questions, emphasizing,
approval, exclamation mark, questions, politeness, re-
ferring to opponent, showing evidence, modals, links,
and numbers as features.

5 Related Work

Below we provide an overview of related work
from the multiple disciplines that study persua-
sion.

Argumentation mining. Although most recent
work on argumentation has focused on identify-
ing the structure of arguments and extracting ar-
gument components (Persing and Ng, 2015; Palau
and Moens, 2009; Biran and Rambow, 2011;
Mochales and Moens, 2011; Feng and Hirst, 2011;
Stab and Gurevych, 2014; Lippi and Torroni,
2015; Park and Cardie, 2014; Nguyen and Litman,
2015; Peldszus and Stede, 2015; Niculae et al.,
2017; Rosenthal and McKeown, 2015), more rel-
evant is research on identifying the characteristics
of persuasive text, e.g., what distinguishes persua-
sive from non-persuasive text (Tan et al., 2016;
Zhang et al., 2016; ?; Habernal and Gurevych,
2016a,b; Fang et al., 2016; Hidey et al., 2017).
Similar to these, our work aims to understand the
characteristics of persuasive text but also consid-
ers the effect of people’s prior beliefs.

Persuasion. There has been a tremendous
amount of research effort in the social sciences
(including computational social science) to under-
stand the characteristics of persuasive text (Kel-
man, 1961; Burgoon et al., 1975; Chaiken, 1987;
Tykocinskl et al., 1994; Chambliss and Garner,
1996; Dillard and Pfau, 2002; Cialdini, 2007;
Durik et al., 2008; Tan et al., 2014; Marquart
and Naderer, 2016). Most relevant among these

Accuracy
Baseline
Majority 51.75%
User-based Features
Opinion similarity 73.96%
Linguistic features
Length 56.88%
Politeness 55.00%
Modal verbs 52.32%
Tf-idf features 52.89 %
User-based+linguistic features
USER*+ Length 74.53%
USER*+ Tf-idf 74.13%
USER*+ Length
+ Tf-idf 75.20%

Table 6: Results for Task 2 for debates in all categories.
The maximum accuracy that can be achieved using lin-
guistic features only is 74.53%.

is the research of Tan et al. (2016), Habernal and
Gurevych (2016a) and Hidey et al. (2017). Tan
et al. (2016) focused on the effect of user inter-
action dynamics and language features looking at
the ChangeMyView9 (an internet forum) commu-
nity on Reddit and found that user interaction pat-
terns as well as linguistic features are connected
to the success of persuasion. In contrast, Habernal
and Gurevych (2016a) created a crowd-sourced
corpus consisting of argument pairs and, given
a pair of arguments, asked annotators which is
more convincing. This allowed them to experi-
ment with different features and machine learning
techniques for persuasion prediction. Taking mo-
tivation from Aristotle’s definition for modes of
persuasion, Hidey et al. (2017) annotated claims
and premises extracted from the ChangeMyView
community with their semantic types to study if
certain semantic types or different combinations
of semantic types appear in persuasive but not in
non-persuasive essays. In contrast to the above,
our work focuses on persuasion in debates than
monologues and forum datasets and accounts for
the user-based features.

Persuasion in debates. Debates are another re-
source for studying the different aspects of persua-
sive arguments. Different from monologues where
the audience is exposed to only one side of the
opinions about an issue, debates allow the audi-
ence to see both sides of a particular issue via a

9https://www.reddit.com/r/changemyview/
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controlled discussion. There has been some work
on argumentation and persuasion on online de-
bates. Sridhar et al. (2015), Somasundaran and
Wiebe (2010) and Hasan and Ng (2014), for ex-
ample, studied detecting and modeling stance on
online debates. Zhang et al. (2016) found that the
side that can adapt to their opponents’ discussion
points over the course of the debate is more likely
to be the winner. None of these studies investi-
gated the role of prior beliefs in stance detection
or persuasion.

User effects in persuasion. Persuasion is not
independent from the characteristics of the peo-
ple to be persuaded. Research in psychology has
shown that people have biases in the ways they in-
terpret the arguments they are exposed to because
of their prior beliefs (Lord et al., 1979; Vallone
et al., 1985; Chambliss and Garner, 1996). Under-
standing the effect of persuasion strategies on peo-
ple, the biases people have and the effect of prior
beliefs of people on their opinion change has been
an active area of research interest (Correll et al.,
2004; Hullett, 2005; Petty et al., 1981). Eagly and
Chaiken (1975), for instance, found that the attrac-
tiveness of the communicator plays an important
role in persuasion. Work in this area could be rele-
vant for the future work on modeling shared char-
acteristics between the user and the debaters. To
the best of our knowledge, Lukin et al. (2017) is
the most relevant work to ours since they consider
features of the audience on persuasion. In partic-
ular, they studied the effect of an individual’s per-
sonality features (open, agreeable, extrovert, neu-
rotic, etc.) on the type of argument (factual vs.
emotional) they find more persuasive. Our work
differs from this work since we study debates and
in our setting the voters can see the debaters’ pro-
files as well as all the interactions between the two
sides of the debate rather than only being exposed
to a monologue. Finally, we look at different types
of user profile information such as a user’s reli-
gious and ideological beliefs and their opinions on
various topics.

6 Conclusion

In this work we provide a new dataset of debates
and a more controlled setting to study the effects
of prior belief on persuasion. The dataset we pro-
vide and the framework we propose open several
avenues for future research. One could explore
the effect different aspects of people’s background

(e.g., gender, education level, ethnicity) on persua-
sion. Furthermore, it would be interesting to study
how people’s prior beliefs affect their other activi-
ties on the website and the language they use while
interacting with people with the same and different
prior beliefs. Finally, one could also try to under-
stand in what aspects and how the language people
with different prior beliefs/backgrounds use is dif-
ferent. These different directions would help peo-
ple better understand characteristics of persuasive
arguments and the effects of prior beliefs in lan-
guage.
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Abstract

We address the detection of abusive words.
The task is to identify such words among a
set of negative polar expressions. We propose
novel features employing information from
both corpora and lexical resources. These fea-
tures are calibrated on a small manually an-
notated base lexicon which we use to produce
a large lexicon. We show that the word-level
information we learn cannot be equally de-
rived from a large dataset of annotated mi-
croposts. We demonstrate the effectiveness of
our (domain-independent) lexicon in the cross-
domain detection of abusive microposts.

1 Introduction

Abusive or offensive language is commonly de-
fined as hurtful, derogatory or obscene utterances
made by one person to another person.1 Examples
are (1)-(3). In the literature, closely related terms
include hate speech (Waseem and Hovy, 2016) or
cyber bullying (Zhong et al., 2016). While there
may be nuanced differences in meaning2, they are
all compatible with the general definition above
for abusive language.3

(1) stop editing this, you dumbass.
(2) Just want to slap the stupid out of these bimbos!!!
(3) Go lick a pig you arab muslim piece of scum.

Due to the rise of user-generated web content,
in particular on social media networks, the amount
of abusive language is also steadily growing. NLP
methods are required to focus human review ef-
forts towards the most relevant microposts.

In this paper, we address the task of detecting
abusive words (e.g. dumbass, bimbo, scum). Our

1http://thelawdictionary.org/
2For example, several research efforts just focus on utter-

ances addressed towards minorities.
3The examples in this work are included to illustrate the

severity of abusive language. They are taken from actual web
data and in no way reflect the opinion of the authors.

main assumption is that abusive words form a sub-
set of negative polar expressions. The classifi-
cation task is to filter the abusive words from
a given set of negative polar expressions. We
proceed as follows. On a base lexicon that is a
small subset of negative polar expressions where
the abusive words among them have been marked
via crowdsourcing (§3), we calibrate a super-
vised classifier by examining various novel fea-
tures (§4). A classifier trained on that base lex-
icon, which contains 551 abusive words, is then
applied to a very large list of unlabeled negative
polar expressions (from Wiktionary) to extract an
expanded lexicon of 2989 abusive words (§5).

We extrinsically evaluate our new lexicon in the
novel task of cross-domain classification of abu-
sive documents (§6) where we use it as a high-
level feature. In this work, we consider microp-
osts as documents. While for in-domain classi-
fication, supervised classifiers trained on generic
features, such as bag of words or word embed-
dings, usually score very well, on cross-domain
classification they perform poorly since they latch
on to domain-specific information. In subjectiv-
ity, polarity and emotion classification, high-level
features based on predictive domain-independent
word lists have been proposed to bridge the do-
main mismatch (Dias et al., 2009; Mohammad,
2012; Wiegand et al., 2013).

New abusive words constantly enter natural lan-
guage. For example, according to Wiktionary4

the word gimboid, which refers to an incompe-
tent person, was coined in the British television
series Red Dwarf, possibly from the word gimp
and the suffix -oid. According to Urban Dictio-
nary5, the word twunt, which is a portmanteau of
the swearwords twat and cunt, has been invented

4https://en.wiktionary.org
5www.urbandictionary.com
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by humourist Chris Morris for the Channel 4 se-
ries ‘Jam’ in 2000. One of the most recent abu-
sive words is remoaner which describes someone
who complains about or rejects the outcome of the
2016 EU referendum on the UK’s membership of
the European Union. It is a blend of moan and
remainer. Wiktionary states that this word has a
pejorative connotation.

These examples show that the task of creating
a lexicon of abusive words cannot be reduced to
a one-time manual annotation effort. Recent web
corpora and crowdsourced dictionaries (e.g. Wik-
tionary) should be ideal resources to find evidence
of such words.

Our contribution is that we present the first
work that systematically describes the automatic
construction of a lexicon of abusive words. We ex-
amine novel features derived from various textual
resources. We show that the information we learn
cannot be equally derived from a large dataset with
labeled microposts. The effectiveness of our ex-
panded lexicon is demonstrated on cross-domain
detection of abusive microposts. This is also the
first work to address this task in general. The sup-
plementary material to this paper6 includes all re-
sources newly created for our research.

We frame our task as a binary classification
problem. Each given expression is to be classified
as either abusive or not. We study this problem on
English. However, many of our features should
also be applicable to other languages.

2 Related Work

Lexical knowledge for the detection of abusive
language has only received little attention in previ-
ous work. Most approaches consider it as one fea-
ture among many. Very often existing word lists
from the web are employed (Xiang et al., 2012;
Burnap and Williams, 2015; Nobata et al., 2016).
Their limited effectiveness may be due to the fact
that they were not built for the task of abusive
language detection. Only the manually-compiled
lexicon from Razavi et al. (2010) and the lexicon
of hate verbs from Gitari et al. (2015) have been
compiled for this specific task. Since the latter lex-
icon is not publicly available we can only consider
the former in our evaluation. In both publications,
very little is said on the creation of these resources.

Previous work focused on in-domain classifica-
tion, a setting where generic features (e.g. bag of

6https://github.com/miwieg/naacl2018

words) work well and word lists are less impor-
tant. There have been investigations examining
features on various datasets (Nobata et al., 2016;
Samghabadi et al., 2017), however, these studies
always trained and tested on the same domain. We
show that a lexicon-based approach is effective in
cross-domain classification.

For a more detailed overview on previous work
on the detection of abusive language in general, we
refer the reader to Schmidt and Wiegand (2017).

3 Data

Base Lexicon. Our base lexicon exclusively com-
prises negative polar expressions. It is a small
set which we have annotated via crowdsourcing.
We consider abusive words to be a proper subset
of negative polar expressions. By just focusing on
these types of words, we are more likely to ob-
tain a significant amount of abusive words than
just considering a sample of arbitrary words. This
lexicon will be used as a gold standard for cali-
brating features of a classifier. That classifier will
be run on a large set of unlabeled negative polar
expressions to produce our expanded lexicon (§5).

We sampled 500 negative nouns, verbs and ad-
jectives each from the Subjectivity Lexicon (Wil-
son et al., 2005). We chose that lexicon since
we have extra information available for its en-
tries that we want to examine, namely polar inten-
sity (§4.1.1) and sentiment views (§4.1.2). How-
ever, since we noted that the Subjectivity Lexicon
misses some prototypical abusive words (e.g. nig-
ger, slut, cunt) we added another 10% (i.e. 150
words) which are abusive words frequently occur-
ring in the word lists mentioned in Schmidt and
Wiegand (2017).

Each of the negative polar expressions was
judged by 5 annotators from the crowdsourcing
platform ProlificAcademic.7 Each annotator had
to be a native speaker of English and possess a
task approval rate of at least 90%. For our base
lexicon (Table 1), we considered a binary word
categorization: abusive or non-abusive. A word
was only classified abusive if at least 4 out of the 5
raters judged the word to be abusive. This thresh-
old should prevent many ambiguous words from
being classified as abusive, a general problem of
existing resources (Davidson et al., 2017).

Corpora. In our experiments we employ three

7The supplementary material contains more information
regarding our annotation set-up (including guidelines).
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adj noun verb all
class freq % freq % freq % freq %
abusive 170 33.8 291 45.3 90 17.8 551 33.4
not abusive 332 66.2 352 54.7 415 82.2 1099 66.6

Table 1: The base lexicon: 1650 entries in total of
which 551 are abusive.

unlabeled corpora (Table 2). The two larger cor-
pora, the Amazon Review Corpus – AMZ (Jindal
and Liu, 2008) and the Web As Corpus – WAC
(Baroni et al., 2009), are used for inducing word
embeddings (§4.2). AMZ and the smallest corpus,
rateitall.com – RIA8, are used for computing polar
word intensity (§4.1.1) from star ratings.

4 Feature Calibration

In the following, we describe the two types of fea-
tures of our feature-based approach: novel linguis-
tic features and generic word embeddings. They
will be examined against some baselines on our
base lexicon. As a classifier we use an SVM
as implemented in SVMlight (Joachims, 1999).
We chose that classifier since it is most com-
monly used for the detection of abusive language
(Schmidt and Wiegand, 2017). For all classifiers
in this paper, the supplementary material6 con-
tains information regarding (hyper)parameter set-
tings.

4.1 Linguistic Features

4.1.1 Polar Intensity (INT)
Intuitively, abusive language should coincide with
high polar intensity. We inspect 3 different types.

Binary Intensity (INTbin ). Our first feature is a
simple binary intensity feature we obtain from the
Subjectivity Lexicon. In that resource, each en-
try is categorized as either a weak polar expression
(e.g. dirty) or a strong polar expression (e.g. filthy).
Table 3 (left half), which shows the distribution
of intensity on the intersection of our base lexicon
and the Subjectivity Lexicon, confirms that abu-
sive words are rarely weak polar expressions and
more frequently strong polar expressions.

Fine-grained Intensity (INTfine ). We also in-
vestigate a more fine-grained feature which as-
signs a real-valued intensity score to polar expres-
sions. It is computed by leveraging the star-rating
assigned to the reviews comprising the AMZ cor-
pus (Table 2), a large publicly available review

8This is a crawl from the review website www.
rateitall.com.

intensity (§4.1.1) views (§4.1.2)
class all weak strong actor speaker
abusive 26.7 14.1 32.0 9.7 32.8
not abusive 73.3 85.9 68.0 90.3 67.2
all numbers only refer to the subset of the base lexicon (Table 1) taken from

the Subjectivity Lexicon (i.e. 1500 entries)

Table 3: Percentage of abusive/not abusive instances
among (binary) intensity and views.

corpus. A review is awarded between 1 and 5 stars
where 1 is the most negative score. We infer the
polar intensity of a word by the distribution of star-
ratings associated with the reviews in which it oc-
curs. We assume negative polar expressions with
a very high polar intensity to occur significantly
more often in reviews assigned few stars (i.e. 1 or
2). Ruppenhofer et al. (2014) established that the
most effective method to derive such polar inten-
sity is by ranking words by their weighted mean
of star ratings (Rill et al., 2012). All words of our
base lexicon are ranked according to that score. As
a feature we use the rank of a word.

Intensity Directed towards Persons
(INTperson ). Not all negative polar expres-
sions with a high intensity are equally likely to
be abusive. The high intensity expressions should
also be words typically directed towards persons.
Most polar statements in AMZ, however, are
directed towards a movie, book or some elec-
tronic product. In order to extract negative polar
intensity directed towards persons, we replace the
AMZ corpus with the RIA corpus (Table 2). RIA
contains reviews on arbitrary entities rather than
just commercial products as in the case of AMZ.
Each review has a category label (e.g. computer,
person, travel) that very easily allows us to extract
from RIA just those reviews that concern persons.

Table 4 compares a typical 1-star review from
AMZ with one from RIA. We consider the RIA-
review an abusive comment. It contains many
words predictive of abusive language (e.g. self-
absorbed, loser, arrogant or loud-mouthed).

4.1.2 Sentiment Views (VIEW)
Wiegand et al. (2016b) define sentiment views as
the perspective of the opinion holder of polar ex-
pressions. They distinguish between expressions
conveying the view of the implicit speaker of the
utterance typically referred to as speaker views
(e.g. cheating in (4); ugly and stinks in (5)), and
expressions conveying the view of event partici-
pants typically referred to as actor views (e.g. dis-
appointed and horrified in (6); protested in (7)).
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corpus size properties purpose
RateItAll (RIA) 4.7M review corpus focused on persons computation of polar intensity (§4.1.1)
Amazon (AMZ) 1.2B product review corpus comp. of polar intensity (§4.1.1)/word embeddings (§4.2)
Web as Corpus (WAC) 2.3B large general web corpus computation of word embeddings (§4.2)

Table 2: Information about unlabeled corpora used (by size we mean the number of tokens).

AMZ on Halloween 5: this movie is horrible with a bad
plot a disappointment to the halloween series.

RIA on Bill Maher: Self-absorbed loser who tries to pre-
tend to be fair. He is rude, arrogant, loud-mouthed...

Table 4: 1-star reviews in different corpora.

WAC liar (19), coward (7), name (6), idiot (6), hero (5),
horse (5), saint (5), fool (5), snob (4), genius (4)

Twitter bitch (1534), hoe (432), liar (317), cunt (274),
whore (254), pussy (228), nigger (226), loser
(217), faggot (217), slut (197)

Table 5: Comparison of the 10 most frequent pattern
matches (numbers in brackets indicate frequency).

Wiegand et al. (2016b) provided sentiment-view
annotations for the entries of the Subjectivity Lex-
icon.

(4) Peter is always cheatingspeaker view . (holder: speaker)
(5) Mary is an uglyspeaker view girl that stinksspeaker view .

(holder: speaker)
(6) [Peter]holder was disappointedactor view and

horrifiedactor view at the same time.
(7) [The public]holder protestedactor view against that law.

Sentiment views have been used for improving
the extraction of opinion holders and targets (Deng
and Wiebe, 2016; Wiegand et al., 2016a). In this
paper we show that they also have relevance for
the detection of abusive words. Among actor-view
words, there is a much lower proportion of abusive
words than among speaker-view words (right half
of Table 3). This can be explained by the fact that
verbal abuse usually originates from the speaker
of an utterance rather than some other discourse
entity. We use sentiment-view information as a bi-
nary feature.

4.1.3 Emotion Categories (NRC)

We also examine whether knowledge of emotion
categories associated with words is helpful. Poten-
tially negative emotions, such as disgust or anger,
should correlate with abusive words. We use the
NRC lexicon (Mohammad and Turney, 2013) and
employ the categories associated with the words
contained in that resource as a feature.

4.1.4 Patterns (PAT)
Noun Pattern (PATnoun ). We found that the noun
pattern (8) can be used to extract abusive nouns.
Since this pattern is very sparse even on our largest
corpus (i.e. WAC), we also run our pattern as a
query on Twitter and extracted all matching tweets
coming in a time period of 14 days. (We observed
that by then we had reached a saturation point.)

(8) pattern: called {me|him|her} a(n) <noun>
(9) pattern match example: He called me a bitch.

Table 5 compares the most frequent matches for
that pattern. Our pattern matches much more fre-
quently on Twitter than on WAC. The quality of
the matches on Twitter is also much better than on
WAC, where we still find many false positives (e.g.
name or saint). We assume that tweets, in general,
are much more negative in tone than arbitrary web
documents (as represented by WAC) which could
explain the fewer false positives on Twitter. Note
that the ranking from Twitter is not restricted to
just prototypical abusive words (as Table 5 might
suggest). The entire ranking also contains many
less common words, such as weaboo, dudebro or
butterface. The frequency ranks of the nouns ex-
tracted from Twitter are used as a feature.

Adjective Pattern (PATadj ). Abusive adjec-
tives often modify an abusive noun as in brainless
idiot, smarmy liar or gormless twat. Therefore,
we mined Twitter for adjectives modifying men-
tions of our extracted nouns (PATnoun ). (We were
not able to find a construction identifying abusive
verbs, so our output from PAT includes no verbs.)

4.1.5 WordNet (WN) and Wiktionary (WK)
We compare WordNet (Miller et al., 1990) and
Wiktionary4 as two general-purpose lexical re-
sources. Unlike WordNet, Wiktionary is produced
collaboratively by volunteers rather than linguistic
experts. It contains more abusive words from our
base lexicon, i.e. 97% (WK) vs. 87% (WN).

A common way to harness a general-purpose
lexicon for induction tasks in sentiment analysis is
by using its glosses (Choi and Wiebe, 2014; Kang
et al., 2014). Assuming that the explanatory texts
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of glosses are similar among abusive words, we
treat glosses as a bag-of-words feature.

We also exploit information on word usage.
Many abusive words are marked with tags such as
pejorative, derogatory or vulgar. Both WordNet
and Wiktionary contain such information. How-
ever, in Wiktionary more than 6 times as many of
our entries include a tag compared to WordNet.

In order to incorporate a semantic representa-
tion more general than individual words, we em-
ploy supersenses. Supersenses are only contained
in WordNet. They represent a set of 45 classes
into which entries are categorized. They have been
found effective for sentiment analysis (Flekova
and Gurevych, 2016). Some categories correlate
with abusive words. For example, 76% of the
words of our base lexicon that belong to the super-
sense person (e.g. loser, idiot) are abusive words.

4.1.6 FrameNet (FN)
FrameNet (Baker et al., 1998) is a semantic re-
source which provides over 1200 semantic frames
that comprise words with similar semantic be-
haviour. We use the frame-memberships of a
word as features, expecting that abusive and non-
abusive words occur in separate frames.

4.2 Generic Features: Word Embeddings
We induce word embeddings from the two largest
corpora, i.e. AMZ and WAC (Table 2) using
Word2Vec (Mikolov et al., 2013) in default config-
uration (i.e. 200 dimensions; cbow). The best per-
formance was obtained by concatenating for each
word the vectors induced from the two corpora.9

4.3 Baselines to Feature-based Approach
In addition to a majority-class classifier we con-
sider the following baselines:

Weak Supervision (WSUP). With this baseline
we want to build a lightweight classifier that does
not require proper labeled training data. It is in-
spired by previous induction approaches for senti-
ment lexicons, such as Hatzivassiloglou and McK-
eown (1997) or Velikovich et al. (2010) which
heuristically label some seed instances and then
apply graph-based propagation to label the re-
maining words of a dataset. On the basis of word
embeddings (§4.2), we build a word-similarity
graph, where the nodes represent our negative po-
lar expressions and each edge denotes the seman-

9We also ran experiments with pretrained embeddings
from GoogleNews but they did not improve classification.

tic similarity between two arbitrary words. We
compute it by the cosine of their word-embedding
vectors. The output of PAT from Twitter (§4.1.4)
is considered as positive class seed instances. We
chose PAT since it is an effective feature that does
not depend on a lexical resource. As negative
class seeds, we use the most frequent words in the
WAC corpus (Table 2). Our rationale is that high-
frequency words are unlikely to be abusive. We
chose WAC instead of Twitter since the evidence
of PAT (Table 5) suggested less abusive language
in that corpus. This word-similarity graph is illus-
trated in Figure 1. In order to propagate the labels
to the unlabeled words from the seeds, we use the
Adsorption algorithm (Talukdar et al., 2008).

Using Labeled Microposts (MICR). With our
last baseline we examine in how far we can detect
abusive words by only using information from la-
beled microposts rather than labeled words. These
experiments are driven by the fact that labeled mi-
croposts already exist. We consider two methods
using the largest dataset comprising manually la-
beled microposts, Wulczyn (Table 8). The class
labels of the microposts and our base lexicon (§3)
are the same. Our aim is to produce a ranking of
words where the high ranks represent words more
likely to be abusive. Since we want to produce
a strong baseline, we consider the best possible
cut-off rank (see supplementary material6). Every
word higher than this rank is considered abusive
and all other words not abusive.

The first method MICR:pmi ranks the words
of our base lexicon by their Pointwise Mutual In-
formation with the class label abusive that is as-
signed to microposts. To be even more compet-
itive, we introduce a second method MICR:proj
that learns a projection of embeddings. MICR:proj
has the advantage over MICR:pmi that it does not
only rank words observed in the labeled micro-
posts but all words represented by embeddings.
Since our embeddings (§4.2) are induced on the
combination of AMZ and WAC corpora, which to-
gether are about 360 times the size of the Wulczyn
dataset, MICR:proj is likely to cover more abusive
words. Let M = [w1,. . . ,wn] denote a labeled
micropost of n words. Each column w ∈ {0, 1}v
of M represents a word in a one-hot form. Our
aim is learning a one-dimensional projection S ·E
where E ∈ Re×v represents our unsupervised em-
beddings of dimensionality e over the vocabulary
size v (§4.2) and S ∈ R1×e represents the learnt
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Figure 1: Illustration of word-similarity graph as used for weakly-supervised baseline (WSUP); seeds for abusive
words (e.g. bitch) are obtained by the output of feature PAT (§4.1.4); seeds for non-abusive words (e.g. disagree)
are high-frequency negative polar expressions.

classifier Prec Rec F1
MAJORITY 33.3 50.0 40.0
MICR:pmi 65.3 59.5 62.2†

MICR:proj 67.1 64.6 65.8∗†

WSUP 77.3 71.0 74.0∗†
SVM:embeddings 77.6 73.9 75.7∗
SVM:linguistic 81.6 73.8 77.5∗

SVM:linguistic+WSUP 82.5 76.5 79.4∗†
SVM:linguistic+embeddings 81.6 79.7 80.7∗

SVM:linguistic+embed.+WSUP 82.9 80.4 81.6†
statistical significance testing (paired t-test at p < 0.05): ∗: better than

previous line but 1; †: better than previous line

Table 6: Different classifiers on base lexicon (Table 1).

projection matrix. We compute a projected micro-
post h = S·E·M which is an n-dimensional vec-
tor. Each component represents a word from the
micropost. The value represents the predictabil-
ity of the word towards being abusive. We then
apply a bag-of-words assumption to use that pro-
jected micropost to predict the binary class label y:
p(y|M)∝ exp(h·1) where 1∈{1}n. This model
is a feed-forward network trained using Stochas-
tic Gradient Descent (Rumelhart et al., 1986). On
the basis of the projected embeddings we rank our
negative polar expressions.

4.4 Evaluation of Features on Base Lexicon

We conduct experiments on our base lexicon (Ta-
ble 1) and report macro-average precision, recall
and f-score. SVMs are evaluated on a 10-fold
crossvalidation. Table 6 displays the performance
of the different classifiers. The least effective in-
formation source are labeled microposts (MICR),
though, as expected, the projected embeddings
(MICR:proj) outperform PMI. The performance
of weak supervision (WSUP) outperforms MICR.

Among the SVM configurations, embeddings

are already effective. The linguistic features out-
perform all other methods. The best classifier is an
SVM trained on embeddings, linguistic features
and the output of WSUP as a further feature.10

Table 7 shows the performance of SVMs us-
ing different linguistic features (§4.1). Among the
three intensity types, the most effective one is the
person-based intensity (INTperson ). However, it
can be effectively combined with the remaining
types. Among the lexical sentiment resources used
(i.e. NRC, INTbin and VIEW), VIEW is most ef-
fective. Their combination also results in an im-
provement. The surface patterns (PAT) are surpris-
ingly predictive. Of the general-purpose lexical re-
sources (i.e. WN, WK and FN), WN and WK are
both very effective resources. Glosses from WN
are the strongest individual feature. Combining
WK, WN and FN results in significant improve-
ment. The best feature set combines all features.

Our results also suggest that for languages other
than English, there are some very strong features,
such as PAT, WK or embeddings, that could be
easily adopted since they do not depend on a re-
source which is only available in English.

5 Expanding the Lexicon

We produce a large feature-based lexicon of abu-
sive words by classifying all (unlabeled) nega-
tive polar expressions from Wiktionary. We chose
Wiktionary since our previous experiments indi-
cated a high coverage of abusive words on that re-
source (§4.1.5). The negative polar expressions

10We did not include MICR among the further features, as
they are trained on the labeled microposts that we also use as
test data in the extrinsic evaluation (§6).

1051



features used in SVM Prec Rec F1
MAJORITY 33.3 50.0 40.0
INTfine 62.0 57.0 59.4†
INTbin 61.7 60.4 61.0∗
INTperson 70.8 55.4 62.1∗

INTfine+INTbin+INTperson 70.8 60.7 65.3∗†
NRC 60.2 60.1 60.2
VIEW 65.6 62.8 64.2†

INTbin+NRC+VIEW 66.9 68.8 67.9∗†
PATnoun 79.9 58.4 67.4
PATnoun+PATadj 76.4 63.2 69.1
WNusage 82.6 52.6 64.3
FN 66.3 66.4 66.4
WKusage 76.7 61.0 67.9∗†

WKgloss 74.8 64.9 69.5∗†

WNsuper 78.7 64.9 71.1∗†
WNgloss 75.9 67.4 71.4∗
WNusage+WNsuper +WNgloss 76.7 68.0 72.0∗
WKusage+WKgloss 79.5 67.0 72.7∗
all WN + all WK 80.0 68.7 73.9∗
all WN + all WK + FN 80.3 69.5 74.5∗

all from above 81.6 73.8 77.5∗†
statistical significance testing (paired t-test at p < 0.05): ∗: better than

previous line but 1; †: better than previous line

Table 7: Performance of the different linguistic features
on base lexicon (Table 1).

are identified by applying to the vocabulary of
Wiktionary an SVM trained on the words from the
Subjectivity Lexicon with their respective polari-
ties. As features, we use word embeddings (§4.2).
In order to produce the feature-based lexicon of
abusive words another SVM is trained on our base
lexicon (Table 1) using the best feature set from
Table 6. With 2989 abusive words, our expanded
lexicon is 5 times as large as the base lexicon.

In order to measure the impact of our proposed
features on the quality of the resulting lexicon, we
devised an alternative expansion which just em-
ploys word embeddings. For this, we used Sent-
Prop, the most effective induction method from
the SocialSent package (Hamilton et al., 2016).11

6 Cross-domain Classification

6.1 Motivation and Set Up

We now apply our expanded lexicon (§5) to the
classification of abusive microposts, i.e. we clas-
sify entire comments rather than words out of con-
text. Table 8 shows the datasets of labeled micro-
posts that we use. The difference between these
datasets is the source from which they originate.
Consequently, different topics are represented in
the different datasets. Still, we find similar types

11Since SentProp produces a ranking rather than a classi-
fication, we consider 2989 as a cut-off value to separate the
instances into 2 classes. This corresponds to the size of abu-
sive words predicted by our feature-based lexicon (Table 9).

dataset size† abusive source
(Warner and Hirschberg, 2012) 3438 14.3% diverse
(Waseem and Hovy, 2016) 16165 35.3% Twitter
(Razavi et al., 2010) 1525 31.9% UseNet
(Wulczyn et al., 2017) 115643 11.6% Wikipedia

†: total number of microposts in the dataset

Table 8: Datasets comprising labeled microposts.

of abusive language (e.g. racism, sexism). For ex-
ample, both (10)-(11) from Waseem and (12) from
Wulczyn are sexist comments12 but (10)-(11) dis-
cuss the role of women in sports while (12) ad-
dresses women’s hygiene in Slavic countries.

(10) from Waseem dataset: maybe that’s where they should
focus? Less cunts on football.

(11) from Waseem dataset: I would rather brush my teeth
with sandpaper then watch football with a girl!!

(12) from Wulczyn dataset: slavic women don’t like to wash
... Their pussy stinks.

Since our aim is to produce the best possible
cross-domain classifier, all classifiers are trained
on one dataset and tested on another. This is a
real-life scenario. Often when a classifier for abu-
sive microposts is needed, sufficient labeled data
is only available for other text domains.

Having different topics in training and test data
makes cross-domain classification difficult. For
example, since a large proportion of sexist com-
ments in Waseem relate to sports, traditional super-
vised classifiers (using bag of words or word em-
beddings) will learn correlations between words of
that domain with the class labels. For instance, the
domain-specific word football occurs frequently in
Waseem (i.e. 90 occurrences) with a strong corre-
lation towards abusive language (precision: 95%).
Other words, such as sports and commentator, dis-
play a similar behaviour. A supervised classifier
will assign a high weight to such words. While
such domain-specific words may aid in-domain
classification and enable a correct classification of
microposts, such as (11), we will show that it has a
detrimental effect on cross-domain classification.
We claim that the predictive words that abusive
comments share across different domains are abu-
sive words, just of the sort that our expanded lexi-
con contains, e.g. cunts in (10) and pussy in (12).

Our proposed classifier for labeling microposts
is an SVM trained on features derived from our
expanded lexicon (§5). We do not use a binary
feature encoding the presence of abusive words.
Instead, we rank all abusive words of our lexicon

12(12) is also a racist comment.
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baseline lexicons newly created lexicons
lexicon entries lexicon entries
Hatebase 430 base (Table 1) 551
Derogatory 1609 expanded:SentProp (§5) 2989
Ottawa 1746 expanded:feature-based (§5) 2989

Table 9: Lexicons used in cross-domain classification
of microposts (figures denote the amount of unigrams).

classifier RazaviWarnerWaseemWulczyn
expand.:feature-b. (SVM) 75.7 64.8 63.8 78.4
FastText 83.4 71.8 76.3 85.6
RNN 74.8 70.5 78.0 86.9
Yahoo (SVM) 82.4 78.2 84.1 90.0

Table 10: In-domain classification of microposts (eval.:
F1-score).

according to the confidence score of the classifier
it produced and use their ranks as features.

As baseline classifiers we consider publicly
available word lists (Table 9). We include the re-
source from Razavi et al. (2010), henceforth re-
ferred to as Ottawa, the entries of Hatebase13,
which has been used in Nobata et al. (2016) and
Davidson et al. (2017), and the derogatory words
from Wiktionary (Derogatory)14.15 Finally, we
also include our base lexicon (Table 1) in order
to evaluate the expansion process of our two ex-
panded lexicons (§5). For all lists, we train on a
single feature indicating the frequency of abusive
words in a micropost to be classified. Ottawa also
contains weights assigned to abusive words. We
weight the observed frequency with these weights.

We further evaluate 3 classifiers representing
the state of the art of in-domain evaluations: Fast-
Text (Joulin et al., 2017), Gated Recurrent Units
Recurrent Neural Networks RNN, which have
been reported to work best on English microposts
(Pavlopoulos et al., 2017), and Yahoo, an SVM

13www.hatebase.org
14https://en.wiktionary.org/wiki/

Category:English_derogatory_terms
15There are also similar but smaller lists in Wiktionary, e.g.

offensive terms. They produced no better results.

Yahoo feature-b. lex.
test train all explicit all explicit
Warner Razavi 55.4 65.2 65.0 80.6

Waseem 58.1 55.9 64.6 79.0
Wulczyn 60.2 72.8 63.4 80.7
Average 57.9 64.6 64.3 80.1

Waseem Warner 58.5 61.2 63.3 62.0
Razavi 61.1 63.1 58.7 78.8
Wulczyn 51.2 68.2 62.9 78.5
Average 56.9 64.2 61.6 73.1

Table 12: Cross-domain classification of microposts:
all test data vs. explicit subset (eval.: F1-score).

trained on the sophisticated feature set proposed
by Nobata et al. (2016). Next to character and to-
ken n-grams, Yahoo includes word and comment
embeddings, syntactic features and some linguis-
tic diagnostics.

6.2 Results

In Table 10, we list the performance of the 3 state-
of-the-art classifiers along with our proposed clas-
sifier using our expanded lexicon on in-domain
10-fold crossvalidation. Due to space limitations,
we cannot list the other classifiers. We only pro-
vide this list to demonstrate the strength of the
state-of-the-art classifiers on in-domain evalua-
tion. On this setting, a lexicon-based approach is
not competitive since domain-specific information
is not included. However, as we show in Table 11,
for cross-domain classification, it is exactly that
property that ensures that our feature-based lexi-
con provides best performance. Compared to the
in-domain setting, FastText, RNN and Yahoo dis-
play a huge drop in performance. They all suffer
from overfitting to domain-specific knowledge.

Of all lexicons, our proposed feature-based lex-
icon performs best. We were surprised by the
poor performance of Hatebase but attribute this to
its small size and the high amount of ambiguous
(and debatable) entries, such as Charlie, pancake,
Pepsi. Although our feature-based lexicon is the
largest of all tested (i.e. 2989 words), our exper-
iments do not support the general rule that larger
lexicons always outperform smaller ones. For in-
stance, already our base lexicon with 551 abusive
words is much better than the lexicons Derogatory
or Ottawa which are about 3 times larger (Table 9).
Each word in our base lexicon was only included
if 4 out of 5 raters judged it to be abusive. This
ensured a fairly reliable annotation. In contrast,
Derogatory and Ottawa suffer from many ambigu-
ous entries (e.g. bag, Tim, yellow). The high pre-
cision of our base lexicon is what ensures that our
expanded lexicon does not include much noise.

Another shortcoming of most of the other ex-
isting lexicons is that they overwhelmingly focus
on nouns. While nouns undoubtedly represent the
most frequent abusive terms, there is, however,
a substantial number of abusive words that be-
long to other parts of speech, particularly adjec-
tives (e.g. vile, sneaky, slimy, moronic). In our
base lexicon, more than 30% of the abusive words
are of that part of speech. Our expanded lexicon,
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SVM
datasets baseline lexicons newly created lexicons

test training majority FastText RNN Yahoo Hatebase Derogat. Ottawa base SentProp feature-b.
Razavi Warner 40.50 50.59 53.76 53.40 40.50 40.50 60.95 61.08 64.20 66.13

Waseem 40.50 51.64 53.39 51.66 44.29 51.35 63.13 69.69 63.12 74.15
Wulczyn 40.50 71.74 71.59 75.10 40.50 40.50 40.50 40.50 68.50 74.83
Average 40.50 57.99 59.58 60.05 41.76 44.12 54.86 57.09 66.27 71.70

Warner Razavi 46.14 57.73 48.99 55.42 46.14 57.49 59.81 63.57 67.57 64.98
Waseem 46.14 61.45 57.63 56.54 63.52 57.49 64.67 63.57 62.75 64.64
Wulczyn 46.14 58.35 57.36 60.19 46.14 46.14 46.14 46.14 65.34 63.35
Average 46.14 59.18 54.66 57.38 51.93 53.71 56.87 57.76 65.22 64.32

Waseem Razavi 40.62 60.91 54.67 57.83 40.62 52.66 52.95 57.33 64.56 63.32
Warner 40.62 58.28 58.85 60.65 40.62 40.62 40.62 54.93 51.98 58.66
Wulczyn 40.62 56.33 54.13 51.76 40.62 40.62 40.62 40.62 50.27 62.90
Average 40.62 58.51 55.88 56.75 40.62 44.63 44.73 50.96 55.60 61.63

Wulczyn Razavi 46.88 64.65 64.43 70.70 46.88 50.97 57.70 69.56 67.69 73.71
Warner 46.88 56.21 56.13 52.73 46.88 46.88 55.93 59.55 66.38 70.06
Waseem 46.88 52.66 57.33 51.23 43.51 50.97 60.08 69.56 66.38 72.39
Average 46.88 57.84 59.30 58.22 45.76 49.61 57.90 66.22 63.52 72.05

Table 11: Different classifiers on cross-domain classification of microposts; best result in bold; (eval.: F1-score).

which roughly preserves that ratio, includes about
800 adjectives in total. Since abusive adjectives
often co-occur with abusive nouns (§4.1.4), they
may compensate for abusive nouns that are miss-
ing from the lexicon. Such unknown nouns of-
ten occur when authors of microposts try to obfus-
cate their abusive language, e.g. sneaky assh0le,
slimy b*st*rd. Interestingly, the modifying adjec-
tives are not obfuscated, probably because they are
considered slightly less offensive in tone.

Given that among the newly created lexicons
our feature-based expanded lexicon performs best,
we conclude that the expansion is effective (since
we improve over the base lexicon), and the fea-
tures are more effective than a generic induction
approach (i.e. SentProp).

6.3 Explicitly vs. Implicitly Abusive
Microposts

The results in Table 11 also show that the cross-
domain performance of our proposed feature-
based lexicon is lower on the two datasets Warner
and Waseem. We observed that while on the other
two datasets almost all abusive microposts can be
considered explicitly abusive posts, i.e. they con-
tain abusive words, a large proportion of micro-
posts labeled abusive in Warner and Waseem are
implicitly abusive (Waseem et al., 2017), i.e. the
abuse is conveyed by other means, such as sarcasm
or metaphorical language (11). We asked raters
from Prolific Academic to identify explicitly abu-
sive microposts by marking abusive words in those
posts. The annotators were not given access to
any lexicon of abusive words. We then conducted
cross-domain classification on those subsets where
the abusive instances were only those rated as ex-

plicit. The results are displayed in Table 12. The
table shows that our feature-based lexicon is much
better on this subset, while the most sophisticated
supervised classifier (Yahoo) still performs worse.
From that we conclude that only explicitly abu-
sive microposts can be reliably detected in cross-
domain classification.

7 Conclusion

We examined the task of inducing a lexicon of
abusive words. We presented novel features in-
cluding surface patterns, sentiment views, polar
intensity and general purpose lexical resources,
particularly Wiktionary. The information we thus
acquire cannot be learnt all that effectively from
labeled microposts, not even with a projection-
based classifier. While a lexicon of abusive words
can only aid the detection of explicit abuse, its
effectiveness was demonstrated on the novel task
of cross-domain detection of abusive microposts,
where our domain-independent lexicon outper-
forms previous supervised classifiers which suffer
from overfitting to domain-specific features.
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Abstract

Understanding how social power structures af-
fect the way we interact with one another is
of great interest to social scientists who want
to answer fundamental questions about hu-
man behavior, as well as to computer scien-
tists who want to build automatic methods to
infer the social contexts of interactions. In
this paper, we employ advancements in extra-
propositional semantics extraction within NLP
to study how author commitment reflects the
social context of an interactions. Specifi-
cally, we investigate whether the level of com-
mitment expressed by individuals in an orga-
nizational interaction reflects the hierarchical
power structures they are part of. We find that
subordinates use significantly more instances
of non-commitment than superiors. More im-
portantly, we also find that subordinates at-
tribute propositions to other agents more of-
ten than superiors do — an aspect that has not
been studied before. Finally, we show that en-
riching lexical features with commitment la-
bels captures important distinctions in social
meanings.

1 Introduction

Social power is a difficult concept to define, but is
often manifested in how we interact with one an-
other. Understanding these manifestations is im-
portant not only to answer fundamental questions
in social sciences about power and social inter-
actions, but also to build computational models
that can automatically infer social power struc-
tures from interactions. The availability and ac-
cess to large digital repositories of naturally occur-
ring social interactions and the advancements in
natural language processing techniques in recent
years have enabled researchers to perform large
scale studies on linguistic correlates of power,
such as words and phrases (Bramsen et al., 2011;
Gilbert, 2012), linguistic coordination (Danescu-
Niculescu-Mizil et al., 2012), agenda control (Tay-

lor et al., 2012), and dialog structure (Prabhakaran
and Rambow, 2014).

Another area of research that has recently gar-
nered interest within the NLP community is the
modeling of author commitment in text. Ini-
tial studies in this area were done in process-
ing hedges, uncertainty and lack of commit-
ment, specifically focused on scientific text (Mer-
cer et al., 2004; Di Marco et al., 2006; Farkas
et al., 2010). More recently, researchers have also
looked into capturing author commitment in non-
scientific text, e.g., levels of factuality in newswire
(Saurı́ and Pustejovsky, 2009), types of commit-
ment of beliefs in a variety of genres including
conversational text (Diab et al., 2009; Prabhakaran
et al., 2015). These approaches are motivated from
an information extraction perspective, for instance
in aiding tasks such as knowledge base popula-
tion.1 However, it has not been studied whether
such sophisticated author commitment analysis
can go beyond what is expressed in language and
reveal the underlying social contexts in which lan-
guage is exchanged.

In this paper, we bring together these two lines
of research; we study how power relations corre-
late with the levels of commitment authors express
in interactions. We use the power analysis frame-
work built by Prabhakaran and Rambow (2014) to
perform this study, and measure author commit-
ment using the committed belief tagging frame-
work introduced by (Diab et al., 2009) that distin-
guishes different types of beliefs expressed in text.
Our contributions are two-fold — statistical anal-
ysis of author commitment in relation with power,
and enrichment of lexical features with commit-
ment labels to aid in computational prediction of
power relations. In the first part, we find that au-

1The BeSt track of the 2017 TAC-KBP evaluation aimed
at detecting the “belief and sentiment of an entity to-
ward another entity, relation, or event” (http://www.cs.
columbia.edu/˜rambow/best-eval-2017/).
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thor commitment is significantly correlated with
the social power relations between their partici-
pants — subordinates use more instances of non-
commitment, a finding that is in line with sociolin-
guistics studies in this area. We also find that sub-
ordinates use significantly more reported beliefs
(i.e., attributing beliefs to other agents) than su-
periors. This is a new finding; to our knowledge,
there has not been any sociolinguistics studies in-
vestigating this aspect of interaction in relation
with power. In the second part, we present novel
ways of incorporating the author commitment in-
formation into lexical features that can capture im-
portant distinctions in word meanings conveyed
through the belief contexts in which they occur;
distinctions that are lost in a model that conflates
all occurrences of a word into one unit.

We first describe the related work in computa-
tional power analysis and computational model-
ing of cognitive states in Section 2. In Section 3,
we describe the power analysis framework we use.
Section 4 formally defines the research questions
we are investigating, and describes how we obtain
the belief information. In Section 5, we present
the statistical analysis of author commitment and
power. Section 6 presents the utility of enriching
lexical features with belief labels in the context of
automatic power prediction. Section 7 concludes
the paper and summarizes the results.

2 Related Work

The notion of belief that we use in this paper (Diab
et al., 2009; Prabhakaran et al., 2015) is closely
related to the notion of factuality that is captured
in FactBank (Saurı́ and Pustejovsky, 2009). They
capture three levels of factuality, certain (CT),
probable (PB), and possible (PS), as well as the
underspecified factuality (Uu). They also record
the corresponding polarity values, and the source
of the factuality assertions to distinguish between
factuality assertions by the author and those by the
agents/sources introduced by the author. While
FactBank offers a finer granularity, they are an-
notated on newswire text. Hence, we use the
corpus of belief annotations (Prabhakaran et al.,
2015) that is obtained on online discussion fo-
rums, which is closer to our genre.

Automatic hedge/uncertainty detection is a very
closely related task to belief detection. The be-
lief tagging framework we use aims to capture the
cognitive states of authors, whereas hedges are lin-

guistic expressions that convey one of those cog-
nitive states — non-committed beliefs. Automatic
hedge/uncertainty detection has generated active
research in recent years within the NLP commu-
nity. Early work in this area focused on detect-
ing speculative language in scientific text (Mer-
cer et al., 2004; Di Marco et al., 2006; Kilicoglu
and Bergler, 2008). The open evaluation as part
of the CoNLL shared task in 2010 to detect uncer-
tainty and hedging in biomedical and Wikipedia
text (Farkas et al., 2010) triggered further research
on this problem in the general domain (Agarwal
and Yu, 2010; Morante et al., 2010; Velldal et al.,
2012; Choi et al., 2012). Most of this work was
aimed at formal scientific text in English. More
recent work has tried to extend this work to other
genres (Wei et al., 2013; Sanchez and Vogel, 2015)
and languages (Velupillai, 2012; Vincze, 2014),
as well as building general purpose hedge lexi-
cons (Prokofieva and Hirschberg, 2014). In our
work, we use the lexicons from (Prokofieva and
Hirschberg, 2014) to capture hedges in text.

Sociolinguists have long studied the association
between level of commitment and social contexts
(Lakoff, 1973; O’Barr and Atkins, 1980; Hyland,
1998). A majority of this work studies gender
differences in the use of hedges, triggered by the
influential work by Robin Lakoff (Lakoff, 1973).
She argued that women use linguistic strategies
such as hedging and hesitations in order to adopt
an unassertive communication style, which she
terms “women’s language”. While many studies
have found evidence to support Lakoff’s theory
(e.g., (Crosby and Nyquist, 1977; Preisler, 1986;
Carli, 1990)), there have also been contradictory
findings (e.g., (O’Barr and Atkins, 1980)) that link
the difference in the use of hedges to other social
factors (e.g., power). O’Barr and Atkins (1980)
argue that the use of hedges is linked more to the
social positions rather than gender, suggesting to
rename “women’s language” to “powerless lan-
guage”. In later work, O’Barr (1982) formalized
the notion of powerless language, which formed
the basis of many sociolinguistics studies on social
power and communication. O’Barr (1982) ana-
lyzed courtroom interactions and identified hedges
and hesitations as some of the linguistic markers of
“powerless” speech. However, there has not been
any computational work which has looked into
how power relations relate to the level of commit-
ment expressed in text. In this paper, we use com-
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putational power analysis to perform a large scale
data-oriented study on how author commitment in
text reveals the underlying power relations.

There is a large body of literature in the so-
cial sciences that studies power as a social con-
struct (e.g., (French and Raven, 1959; Dahl, 1957;
Emerson, 1962; Pfeffer, 1981; Wartenberg, 1990))
and how it relates to the ways people use lan-
guage in social situations (e.g., (Bales et al., 1951;
Bales, 1970; O’Barr, 1982; Van Dijk, 1989; Bour-
dieu and Thompson, 1991; Ng and Bradac, 1993;
Fairclough, 2001; Locher, 2004)). Recent years
have seen growing interest in computationally an-
alyzing and detecting power and influence from
interactions. Early work in computational power
analysis used social network analysis based ap-
proaches (Diesner and Carley, 2005; Shetty and
Adibi, 2005; Creamer et al., 2009) or email traffic
patterns (Namata et al., 2007). Using NLP to de-
duce social relations from online communication
is a relatively new area of active research.

Bramsen et al. (2011) and Gilbert (2012) first
applied NLP based techniques to predict power re-
lations in Enron emails, approaching this task as a
text classification problem using bag of words or
ngram features. More recently, our work has used
dialog structure features derived from deeper di-
alog act analysis for the task of power prediction
in Enron emails (Prabhakaran and Rambow, 2014;
Prabhakaran et al., 2012; Prabhakaran and Ram-
bow, 2013). In this paper, We use the framework
of (Prabhakaran and Rambow, 2014), but we ana-
lyze a novel aspect of interaction that has not been
studied before — what level of commitment do the
authors express in language.

There has also been work on analyzing power
in other genres of interactions. Strzalkowski et al.
(2010) and Taylor et al. (2012) concentrate on
lower-level constructs called Language Uses such
as agenda control to predict power in Wikipedia
talk pages. Danescu-Niculescu-Mizil et al. (2012)
study how social power and linguistic coordina-
tion are correlated in Wikipedia interactions as
well as Supreme Court hearings. Bracewell et al.
(2012) and Swayamdipta and Rambow (2012) try
to identify pursuit of power in discussion forums.
Biran et al. (2012) and Rosenthal (2014) study
the problem of predicting influence in Wikipedia
talk pages, blogs, and other online forums. Prab-
hakaran et al. (2013) study manifestations of
power of confidence in presidential debates.

3 Power in Workplace Email: Data and
Analysis Framework

The focus of our study is to investigate whether
the level of commitment participants express in
their contributions in an interaction is related to
the power relations they have with other partici-
pants, and how it can help in the problem of pre-
dicting social power. In this section, we introduce
the power analysis framework as well as the data
we use in this study.

3.1 Problem
In order to model manifestations of power rela-
tions in interactions, we use our interaction anal-
ysis framework from (Prabhakaran and Rambow,
2014), where we introduced the problem of pre-
dicting organizational power relations between
pairs of participants based on single email threads.
The problem is formally defined as follows: given
an email thread t , and a related interacting partic-
ipant pair (p1 , p2 ) in the thread, predict whether
p1 is the superior or subordinate of p2 . In this
formulation, a related interacting participant pair
(RIPP) is a pair of participants of the thread such
that there is at least one message exchanged within
the thread between them (in either direction) and
that they are hierarchically related with a supe-
rior/subordinate relation.

3.2 Data
We use the same dataset we used in (Prabhakaran
and Rambow, 2014), which is a version of the En-
ron email corpus in which the thread structure of
email messages is reconstructed (Yeh and Harnly,
2006), and enriched by Agarwal et al. (2012) with
gold organizational power relations, manually de-
termined using information from Enron organiza-
tional charts. The corpus captures dominance re-
lations between 13,724 pairs of Enron employees.
As in (Prabhakaran and Rambow, 2014), we use
these dominance relation tuples to obtain gold la-
bels for the superior or subordinate relationships
between pairs of participants. We use the same
train-test-dev split as in (Prabhakaran and Ram-
bow, 2014). We summarize the number of threads
and related interacting participant pairs in each
subset of the data in Table 1.

4 Research Hypotheses

Our first objective in this paper is to perform a
large scale computational analysis of author com-
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Description Train Dev Test

Email threads 18079 8973 9144
# of RIPPs 7510 3578 3920

Table 1: Data Statistics. Row 1: number of threads in
subsets of the corpus. Row 2: number of related inter-
acting participant pairs in those subsets. RIPP: Related
interacting participant pairs

mitment and power relations. Specifically, we
want to investigate whether the commitment au-
thors express towards their contributions in orga-
nizational interactions is correlated with the power
relations they have with other participants. So-
ciolinguistics studies have found some evidence
to suggest that lack of commitment expressed
through hedges and hesitations is associated with
lower power status (O’Barr, 1982). However, in
our study, we go beyond hedge word lists, and
analyze different cognitive belief states expressed
by authors using a belief tagging framework that
takes into account the syntactic contexts within
which propositions are expressed.

4.1 Obtaining Belief Labels

We use the committed belief analysis framework
introduced by (Diab et al., 2009; Prabhakaran
et al., 2015) to model different levels of beliefs
expressed in text. Specifically, in this paper, we
use the 4-way belief distinction — COMMITTED-
BELIEF, NONCOMMITTEDBELIEF, REPORTED-
BELIEF, and NONAPPLICABLE— introduced in
(Prabhakaran et al., 2015).2 (Prabhakaran et al.,
2015) presented a corpus of online discussion
forums with over 850K words, annotating each
propositional head in text with one of the four be-
lief labels. The paper also presented an automatic
belief tagger trained on this data, which we use to
obtain belief labels in our data. We describe each
belief label and our associated hypotheses below.

Committed belief (CB): the writer strongly be-
lieves that the proposition is true, and wants the
reader/hearer to believe that. E.g.:

(1) a. John will submit the report.

b. I know that John is capable.

2We also performed analysis and experiments using an
earlier 3-way belief distinction proposed by (Diab et al.,
2009), which also yielded similar findings. We do not report
the details of those analyses in this paper.

As discussed earlier, lack of commitment in one’s
writing/speech is identified as markers of power-
less language. We thus hypothesize:

H. 1. Superiors use more instances of committed
belief in their messages than subordinates.

Non-committed belief (NCB): the writer ex-
plicitly identifies the proposition as something
which he or she could believe, but he or she hap-
pens not to have a strong belief in, for example by
using an epistemic modal auxiliary. E.g.:

(2) a. John may submit the report.
b. I guess John is capable.

This class captures a more semantic notion of
non-commitment than hedges, since the belief an-
notation attempts to model the underlying mean-
ing rather than language uses, and hence cap-
tures other linguistic means of expressing non-
committedness. Following (O’Barr, 1982), we
formulate the below hypothesis:

H. 2. Subordinates use more instances of non
committed belief in their messages than superiors.

Reported belief (ROB): the writer attributes be-
lief (either committed or non-committed) to an-
other person or group. E.g.:

(3) a. Sara says John will submit the report.
b. Sara thinks John may be capable.

Note that this label is only applied when the
writer’s own belief in the proposition is unclear.
For instance, if the first example above was
Sara knows John will submit the report on-time,
the writer is expressing commitment toward the
proposition that John will submit the report and
it will be labeled as committed belief rather than
reported belief. Reported belief captures instances
where the writer is in effect limiting his/her com-
mitment towards what is stated by attributing the
belief to someone else. So, in line with our hy-
potheses for non-committed beliefs, we formulate
the following hypothesis:

H. 3. Subordinates use more instances of reported
beliefs in their messages than superiors.

Non-belief propositions (NA): – the writer ex-
presses some other cognitive attitude toward the
proposition, such as desire or intention (4a), or ex-
pressly states that he/she has no belief about the
proposition (e.g., asking a question (4b)). E.g.:
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(4) a. I need John to submit the report.
b. Will John be capable?

As per the above definition, requests for informa-
tion (i.e., questions) and requests for actions are
cases where the author is not expressing a belief
about the proposition, but rather expressing the de-
sire that some action be done. In the study corre-
lating power with dialog act tags (Prabhakaran and
Rambow, 2014), we found that superiors issue sig-
nificantly more requests than subordinates. Hence,
we expect the superiors to have significantly more
non belief expressions in their messages, and for-
mulate the following hypothesis:

H. 4. Superiors use more instances of non beliefs
in their messages than subordinates.

4.2 Testing Belief Tagger Bias
NLP tools are imperfect and may produce errors,
which poses a problem when using any NLP tool
for sociolinguistic analysis. More than the mag-
nitude of error, we believe that whether the error
is correlated with the social variable of interest
(i.e., power) is more important; e.g., is the belief-
tagger more likely to find ROB false-positives in
subordinates text? To test whether this is the case,
we performed manual belief annotation on around
500 propositional heads in our corpus. Logistic
regression test revealed that the belief-tagger is
equally likely to make errors (both false-positives
and false-negatives, for all four belief-labels) in
sentences written by subordinates as superiors (the
null hypothesis accepted at p > 0.05 for all eight
tests).

5 Statistical Analysis

Now that we have set up the analysis framework
and research hypotheses, we present the statistical
analysis of how superiors and subordinates differ
in their relative use of expressions of commitment.

5.1 Features
For each participant of each pair of related in-
teracting participants in our corpus, we aggregate
each of the four belief tags:

• CBCount: number of propositional heads
tagged as Committed Belief (CB)

• NCBCount: number of propositional heads
tagged as Non Committed Belief (NCB)

• ROBCount: number of propositional heads
tagged as Reported Belief (ROB)

• NACount: number of propositional heads
tagged as Non Belief (NA)

5.2 Hypotheses Testing
Our general hypothesis is that power relations do
correlate with the level of commitment people ex-
press in their messages; i.e., at least one of H.1 -
H.4 is true. In this analysis, each participant of the
pair (p1 , p2 ) is a data instance. We exclude the
instances for which a feature value is undefined.3

In order to test whether superiors and subordi-
nates use different types of beliefs, we used a lin-
ear regression based analysis. For each feature,
we built a linear regression model predicting the
feature value using power (i.e., superior vs. sub-
ordinate) as the independent variable. Since ver-
bosity of a participant can be highly correlated
with each of these feature values (we found it to be
highly correlated with subordinates (Prabhakaran
and Rambow, 2014)), we added token count as a
control variable to the linear regression.

Our linear regression test revealed significant
differences in NCB (b=-.095, t(-8.09), p<.001),
ROB (b=-.083, t(-7.162), p<.001) and NA
(b=.125, t(4.351), p<.001), and no significant dif-
ference in CB (b=.007, t(0.227), p=0.821). Fig-
ure 1 pictorially demonstrates these results by
plotting the difference between the mean values of
each commitment feature (here normalized by to-
ken count) of superiors vs. subordinates, as a per-
centage of mean feature value of the correspond-
ing commitment feature for superiors. Dark bars
denote statistically significant differences.

5.3 Interpretation of Findings
The results from our statistical analysis validate
our original hypothesis that power relations do
correlate with the level of commitment people ex-
press in their messages. This finding remains sta-
tistically significant (p < 0.001) even after apply-
ing the Bonferroni correction for multiple testing.

The results on NCB confirm our hypothesis that
subordinates use more non-committedness in their
language. Subordinates’ messages contain 48%
more instances of non-committed belief than su-
periors’ messages, even after normalizing for the
length of messages. This is in line with prior soci-
olinguistics literature suggesting that people with

3These are instances corresponding to participants who
did not send any messages in the thread (some of the pairs in
the set of related interacting participant pairs only had one-
way communication) or whose messages were empty (e.g.,
forwarding messages).
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Figure 1: Relative difference (RD) between subordi-
nates and superiors in their use of different types of
commitment (counts normalized by word count of con-
tributions). Dark bars: statistical significance at p <

0.05. (RD = (Mean(Subordinates)−Mean(Superiors))∗100
Mean(Superiors) ).

less power tend to use less commitment, previ-
ously measured in terms of hedges. However, in
our work, we go beyond hedge dictionaries and
use expressions of non-committedness that takes
into account the syntactic configurations in which
the words appear.

Another important finding is in terms of re-
ported belief (ROB). Our results strongly verify
the hypothesis H.3 that subordinates use signif-
icantly more reported beliefs than superiors. In
fact, it obtained the largest magnitude of relative
difference (65.3% more) of all features we ana-
lyzed. To our knowledge, ours is the first study
that analyzed the manifestation of power in au-
thors attributing beliefs to others. Our results are
in line with the finding in (Agarwal et al., 2014)
that “if many more people get mentioned to a per-
son then that person is the boss”, because as sub-
ordinates report other people’s beliefs to superiors,
they are also likely to mention them.

The finding that superiors use more NAs con-
firms our hypothesis H.4. As discussed earlier, this
is expected since superiors issue more requests (as
found by (Prabhakaran and Rambow, 2014)), the
propositional heads of which would be tagged as
NA by the belief tagger. However, our hypothesis
H.1 is proven false. Being a superior or subordi-
nate does not affect how often their messages con-
tain CB, which suggests that power differences are
manifested only in terms of lack of commitment.

6 Commitment in Power Prediction

Our next step is to explore whether we can uti-
lize the hedge and belief labels to improve the per-
formance of an automatic power prediction sys-
tem. For this purpose, we use our POWERPRE-

DICTOR system (Prabhakaran and Rambow, 2014)
that predicts the direction of power between a
pair of related interacting participants in an email
thread. It uses a variety of linguistic and dialog
structural features consisting of verbosity features
(message count, message ratio, token count, to-
ken ratio, and tokens per message), positional fea-
tures (initiator, first message position, last mes-
sage position), thread structure features (number
of all recipients and those in the To and CC fields
of the email, reply rate, binary features denoting
the adding and removing of other participants), di-
alog act features (request for action, request for
information, providing information, and conven-
tional), and overt displays of power, and lexical
features (lemma ngrams, part-of-speech ngrams,
and mixed ngrams, a version of lemma ngrams
with open class words replaced with their part-of-
speech tags). The feature sets are summarized in
Table 2 ((Prabhakaran and Rambow, 2014) has a
detailed description of these features).

Set Description

VRB Verbosity (e.g., message count)
PST Positional (e.g., thread initiator?)
THR Thread structure (e.g., reply rate)
DIA Dialog act tagging (e.g., request count)
ODP Overt displays of power
LEX Lexical ngrams (lemma, POS, mixed ngrams)

Table 2: POWERPREDICTOR system: Features used

None of the features used in POWERPREDIC-
TOR use information from the parse trees of sen-
tences in the text However, in order to accurately
obtain the belief labels, deep dependency parse
based features are critical (Prabhakaran et al.,
2010). We use the ClearTk wrapper for the Stan-
ford CoreNLP pipeline to obtain the dependency
parses of sentences in the email text. To en-
sure an unified analysis framework, we also use
the Stanford CoreNLP for tokenization, part-of-
speech tagging, and lemmatization steps, instead
of OpenNLP. This change affects our analysis in
two ways. First, the source of part-of-speech tags
and word lemmas is different from what was pre-
sented in the original system, which might affect
the performance of the dialog act tagger and overt
display of power tagger (DIA and ODP features).
Second, we had to exclude 117 threads (0.3%)
from the corpus for which the Stanford CoreNLP
failed to parse some sentences, resulting in the re-
moval of 11 data points (0.2%), only one of which
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was in the test set. On randomly checking, we
found that they contained non-parsable text such
as dumps of large tables, system logs, or unedited
dumps of large legal documents.

In order to better interpret how the commitment
features help in power prediction, we use a lin-
ear kernel SVM in our experiments. Linear ker-
nel SVMs are significantly faster than higher or-
der SVMs, and our preliminary experiments re-
vealed the performance gain by using a higher or-
der SVM to be only marginal. We use the best per-
forming feature set from (Prabhakaran and Ram-
bow, 2014) as a strong baseline for our experi-
ments. This baseline feature set is the combina-
tion of thread structure features (THR) and lexical
features (LEX). This baseline system obtained an
accuracy of 68.8% in the development set.

6.1 Belief Label Enriched Lexical Features

Adding the belief label counts into the SVM di-
rectly as features will not yield much performance
improvements, as signal in the aggregate counts
would be minimal given the effect sizes of dif-
ferences we find in Section 5. In this section,
we investigate a more sophisticated way of in-
corporating the belief tags into the power predic-
tion framework. Lexical features are very use-
ful for the task of power prediction. However, it
is often hard to capture deeper syntactic/semantic
contexts of words and phrases using ngram fea-
tures. We hypothesize that incorporating belief
tags into the ngrams will enrich the representa-
tion and will help disambiguate different usages
of same words/phrases. For example, let us con-
sider two sentences: I need the report by tomorrow
vs. If I need the report, I will let you know. The
former is likely coming from a person who has
power, whereas the latter does not give any such
indication. Applying the belief tagger to these two
sentences will result in I need(CB) the report ...
and If I need(NA) the report .... Capturing the dif-
ference between need(CB) vs. need(NA) will help
the machine learning system to make the distinc-
tion between these two usages and in turn improve
the power prediction performance.

In building the ngram features, whenever we en-
counter a token that is assigned a belief tag, we ap-
pend the belief tag to the corresponding lemma or
part-of-speech tag in the ngram. We call it the Ap-
pend version of corresponding ngram feature. We
summarize the different versions of each type of

Feature Configuration in LEXICAL Accuracy

LN +PN +MN (BaseLine) 68.8

LNCBApnd+PN +MN 69.3
LN +PNCBApnd+MN 68.6
LN +PN +MNCBApnd 69.0

LNCBApnd+ PN + MNCBApnd 69.2

Table 3: Power prediction results using different con-
figurations of LEX features. (The full feature set also
includes THR.)

ngram features below:
• LN: the original word lemma ngram; e.g.,

i need the.
• LNCBApnd: word lemma ngram with appended

belief tags; e.g., i need(CB) the.
• PN: the original part-of-speech ngram; e.g.,

PRP VB DT.
• PNCBApnd: part-of-speech ngram with ap-

pended belief tags; e.g., PRP VB(CB) DT.
• MN: the original mixed ngram; e.g., i VB the.
• MNCBApnd: mixed ngram with appended belief

tags; e.g., i VB(CB) the.
In Table 3, we show the results obtained by in-
corporating the belief tags in this manner to the
LEXICAL features of the original baseline feature
set. The first row indicates the baseline results
and the following rows show the impact of in-
corporating belief tags using the Append method.
While the Append version of both lemma ngrams
and mixed ngrams improved the results, the Ap-
pend version of part of speech ngrams reduced
the results. The combination of best performing
version of each type of ngram obtained slightly
lower result than using the Append version of
word ngram alone, which posted the overall best
performance of 69.3%, a significant improvement
(p<0.05) over not using any belief information.
We use the approximate randomization test (Yeh,
2000) for testing statistical significance of the im-
provement.

Finally, we verified that our best performing
feature sets obtain similar improvements in the un-
seen test set. The baseline system obtained 70.2%
accuracy in the test set. The best performing con-
figuration from Table 3 significantly improved this
accuracy to 70.8%. The second best performing
configuration of using the Append version of both
word and mixed ngrams obtained only a small im-
provement upon the baseline in the test set.

1063



Figure 2: Feature weights of different belief appended versions of 25 propositional heads whose lemma unigrams
had the highest standard deviation. Y-axis denotes the propositional heads in decreasing order of standard deviation
from bottom to top. X-axis denotes the feature weights.

6.2 Word NGram Feature Analysis

We inspect the feature weights assigned to the
LNCBApnd version of lemma ngrams in our best
performing model. Each lemma ngram that con-
tains a propositional head (e.g., need) has four
possible LNCBApnd ngram versions: need(CB),
need(NCB), need(ROB), and need(NA). For each
lemma ngram, we calculate the standard deviation
of weights assigned to different LNCBApnd versions
in the learned model as a measure of variation cap-
tured by incorporating belief tags into that ngram.4

Figure 2 shows the feature weights of differ-
ent LNCBApnd versions of twenty five propositional
heads whose lemma unigrams had the highest
standard deviation. The y-axis lists propositional
heads arranged in the decreasing order of standard
deviation from bottom to top, while the x-axis de-
notes the feature weights. The markers distinguish
the different LNCBApnd versions of each proposi-
tional head — square denotes COMMITTEDBE-

4Not all lemma ngrams have all four versions; we calcu-
lated standard deviation using the versions present.

LIEF, circle denotes NONCOMMITTEDBELIEF,
triangle denotes REPORTEDBELIEF, and diamond
denotes NONAPPLICABLE. The feature versions
with negative weights are associated more with
subordinates’ messages, whereas those with pos-
itive weights are associated more with superiors’
messages. Since NCB and ROB versions are rare,
they rarely get high weights in the model.

We find that by incorporating belief labels into
lexical features, we capture important distinctions
in social meanings expressed through words that
are lost in the regular lemma ngram formulation.
For example, propositional heads such as know,
need, hold, mean and want are indicators of power
when they occur in CB contexts (e.g., i need ...),
whereas their usages in NA contexts (e.g., do you
need?, if i need..., etc.) are indicators of lack of
power. In contrast, the CB version of attend, let,
plan, could, check, discuss, and feel (e.g., i will
attend/check/plan ...) are strongly associated with
lack of power, while their NA versions (e.g., can
you attend/check/plan?) are indicators of power.
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7 Conclusion

In this paper, we made two major contributions.
First, we presented a large-scale data oriented
analysis of how social power relations between
participants of an interaction correlate with differ-
ent types of author commitment in terms of their
relative usage of hedges and different levels of
beliefs — committed belief, non-committed be-
lief, reported belief, and non-belief. We found
evidence that subordinates use significantly more
propositional hedges than superiors, and that su-
periors and subordinates use significantly differ-
ent proportions of different types of beliefs in their
messages. In particular, subordinates use signif-
icantly more non-committed beliefs than superi-
ors. They also report others’ beliefs more often
than superiors. Second, we investigated different
ways of incorporating the belief tag information
into the machine learning system that automati-
cally detects the direction of power between pairs
of participants in an interaction. We devised a so-
phisticated way of incorporating this information
into the machine learning framework by append-
ing the heads of propositions in lexical features
with corresponding belief tags, demonstrating its
utility in distinguishing social meanings expressed
through the different belief contexts.

This study is based on emails from a single cor-
poration, at the beginning of the 21st century. Our
findings on the correlation between author com-
mitment and power may be reflective of the work
culture that prevailed in that organization at the
time when the emails were exchanged. It is im-
portant to replicate this study on emails from mul-
tiple organizations in order to assess whether these
results generalize across board. It is likely that be-
havior patterns are affected by factors such as eth-
nic culture (Cox et al., 1991) of the organization,
and the kinds of conversations interactants engage
in (for instance, co-operative vs. competitive be-
havior (Hill et al., 1992)). We intend to explore
this line of inquiry in future work.
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Abstract

Text classification models are becoming in-
creasingly complex and opaque, however for
many applications it is essential that the mod-
els are interpretable. Recently, a variety of
approaches have been proposed for generat-
ing local explanations. While robust evalua-
tions are needed to drive further progress, so
far it is unclear which evaluation approaches
are suitable. This paper is a first step towards
more robust evaluations of local explanations.
We evaluate a variety of local explanation ap-
proaches using automatic measures based on
word deletion. Furthermore, we show that
an evaluation using a crowdsourcing experi-
ment correlates moderately with these auto-
matic measures and that a variety of other fac-
tors also impact the human judgements.

1 Introduction

While the impact of machine learning is increasing
rapidly in society, machine learning systems have
also become increasingly complex and opaque.
Classification models are usually evaluated based
on prediction performance alone (e.g., by measur-
ing the accuracy, recall, and precision) and the in-
terpretability of these models has generally been
undervalued. However, the importance of inter-
pretable models is increasingly being recognized
(Doshi-Velez and Kim, 2017; Freitas, 2014).

First, higher interpretability could lead to more
effective models by revealing incompleteness in
the problem formalization (Doshi-Velez and Kim,
2017), by revealing confounding factors that could
lead to biased models, and by supporting error
analyses or feature discovery (Aubakirova and
Bansal, 2016). Second, with the increasing adop-
tion of machine learning approaches for humani-
ties and social science research, there is also an in-
creasing need for systems that support exploratory
analyses and theory development.

Various approaches have been explored to in-
crease the interpretability of machine learning
models (Lipton, 2016). This paper focuses on lo-
cal explanation, which aims to explain the predic-
tion for an individual instance (e.g., Ribeiro et al.
(2016)). A study by Herlocker et al. (2000) found
that providing local explanations could help im-
prove the acceptance of movie recommendation
systems. Local explanations can come in different
forms. For example, Koh and Liang (2017) iden-
tify the most influential training documents for a
particular prediction. The most common type of
local explanation involves identifying the impor-
tant parts of the input for a prediction, such as
the most predictive words in a document for a text
classification model.

In this paper we focus on local explanations for
text classification. Below is a fragment of a movie
review. The words identified by a local explana-
tion method to explain a neural network prediction
are in bold. The review is labeled with a negative
sentiment, but the classifier incorrectly predicted a
positive sentiment. The highlighted words help us
understand why.

steve martin is one of the funniest men
alive. if you can take that as a true
statement, then your disappointment at
this film will equal mine. martin can
be hilarious, creating some of the best
laugh-out-loud experiences that have
ever taken place in movie theaters. you
won’t find any of them here. [...]

Words such as funniest and hilarious were im-
portant for the prediction. Besides providing ev-
idence for a predicted label, some local expla-
nations can also provide evidence against a pre-
dicted label. For example, in the above example,
the word disappointment was one of the highest
ranked words against the predicted label.
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Ineffective approaches could generate mislead-
ing explanations (Lipton, 2016), but evaluating lo-
cal explanations is challenging. A variety of ap-
proaches has been used, including only visual in-
spection (Ding et al., 2017; Li et al., 2016a), intrin-
sic evaluation approaches such as measuring the
impact of deleting the identified words on the clas-
sifier output (Arras et al., 2016), and user studies
(Kulesza et al., 2015).

Contributions To further progress in this area, it
is imperative to have a better understanding of how
to evaluate local explanations. This paper makes
the following contributions:

• Comparison of local explanation methods for
text classification. We present an in-depth
comparison between three local explanation
approaches (and a random baseline) using
two different automatic evaluation measures
on two text classification tasks (Section 4).

• Automatic versus human evaluation. Auto-
matic evaluations, such as those based on
word deletions, are frequently used since they
enable rapid iterations and are easy to repro-
duce. However, it is unclear to what extent
they correspond with human-based evalua-
tions. We show that the automatic measures
correlate moderately with human judgements
in a task setting and that other factors also
impact human judgement. (Section 5).

2 Related Work

Research on interpretable machine learning mod-
els has so far mainly focused on computer vision
systems (e.g., Simonyan et al. (2013)). Topic mod-
eling is one of the exceptions within NLP where
the interpretability of models has been important,
since topic models are often valued for their inter-
pretability and are integrated in various user inter-
faces (Paul, 2016). There has recently been an in-
creasing interest in improving the interpretability
of NLP models, perhaps driven by the increasing
complexity of NLP models and the rise of deep
learning (Manning, 2015).

Global approaches aim to provide a global view
of the model. One line of work involves mak-
ing the machine learning model itself more inter-
pretable, e.g., by enforcing sparsity or imposing
monotonicity constraints (Freitas, 2014). How-
ever, often there is a trade-off between accuracy
and interpretability as adding constraints to the

model could reduce the performance. An al-
ternative involves extracting a more interpretable
model, such as a decision tree, from a model
that is less interpretable, such as a neural network
(Craven, 1996). In this case, model performance
is not sacrificed but it is essential that the proxy is
faithful to the underlying model.

However, often a machine learning model is so
complex that interpretable, trustworthy global ex-
planations are difficult to attain. Local explana-
tions aim to explain the output for an individual
instance. For some models the local explanations
are relatively easy to construct, e.g., displaying the
word probabilities of a Naive Bayes model with
respect to each label (Kulesza et al., 2015) or dis-
playing the path of a decision tree (Lim et al.,
2009). However, these models may not be easily
interpretable if they make use of many features.

For many machine learning models, extracting
local explanations is even less straight-forward.
Proposed approaches so far include using the gra-
dients to visualize neural networks (Aubakirova
and Bansal, 2016; Li et al., 2016a; Simonyan
et al., 2013), measuring the effect of removing
individual words (or features) (Li et al., 2016b;
Martens and Provost, 2014), decomposition ap-
proaches (Arras et al., 2016; Ding et al., 2017),
and training an interpretable classifier (e.g., lin-
ear model) that approximates the neighborhood
around a particular instance (Ribeiro et al., 2016).

Some approaches have only been evaluated us-
ing visual inspection (Ding et al., 2017; Li et al.,
2016a). Goyal et al. (2016) identified impor-
tant words for a visual question answering sys-
tem and informally evaluated their approach by
analyzing the distribution among PoS tags (e.g.,
assuming that nouns are important). However,
quantitative evaluations are needed for more ro-
bust comparisons. Such evaluations have included
measuring the impact of the deletion of words
identified by the explanation approaches on the
classification output (Arras et al., 2016, 2017),
or testing whether the explanation was consistent
with an underlying gold model (Ribeiro et al.,
2016). These automatic evaluations are fast to
carry out but act as a simplistic proxy for expla-
nation quality. While a few user studies have been
performed to evaluate explanations (e.g., Ribeiro
et al. (2016)), we are not aware of work that ana-
lyzes how automatic evaluation measures compare
to human-based evaluation.
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3 Experimental Setup

This section describes the datasets, the classifica-
tion models and the local explanation approaches
used in our experiments.

3.1 Datasets

We experiment with two datasets (Table 1):

• Twenty newsgroups (20news). The Twenty
Newsgroups dataset has been used in sev-
eral studies on ML interpretability (Arras
et al., 2016; Kapoor et al., 2010; Ribeiro
et al., 2016). Similar to Ribeiro et al. (2016),
we only distinguish between Christianity and
Atheism. We use the 20news-bydate ver-
sion, and randomly reserve 20% of the train-
ing data for development.

• Movie reviews. Movie reviews with polar-
ity labels (positive versus negative sentiment)
from Pang and Lee (2004). We use the ver-
sion from Zaidan et al. (2007). The dataset
is randomly split into a train (60%), develop-
ment (20%) and test (20%) set.

Movie 20news

# training docs 1072 870
# development docs 358 209

# test docs 370 717
label distribution (pos. class) 50.00% 44.49%

Table 1: Dataset statistics

3.2 Text Classification Models

We experiment with two different models. Logis-
tic Regression (LR) is implemented using Scikit-
learn (Pedregosa et al., 2011) with Ridge regulari-
sation, unigrams and a TF-IDF representation, re-
sulting in a 0.797 accuracy on the movie dataset
and a 0.921 accuracy on the 20news dataset. We
experiment with a LR model, because the contri-
butions of individual features in a LR model are
known. We thus have a ground truth for feature
importance to compare against for this model. We
also use a feedforward neural network (MLP) im-
plemented using Keras (Chollet et al., 2015), with
512 hidden units, ReLU activation, dropout (0.5,
not optimized) and Adam optimization, resulting
in a 0.832 accuracy on the movie dataset and a
0.939 accuracy on the 20news dataset.

3.3 Local Explanation Methods
In this paper, we focus on local explanation ap-
proaches that identify the most influential parts of
the input for a particular prediction. In this paper
we limit our focus to individual words for explain-
ing the output of text classification models. Other
representations, e.g., explanations using phrases
or higher-level concepts are left for future work.
We experiment with explanations for the predicted
class, since in real-life settings usually no ground
truth labels are available. We experiment with the
following local explanation approaches:

• Random. A random selection of words in the
document.

• LIME (Ribeiro et al., 2016) is a model-
agnostic approach and involves training an
interpretable model (in this paper, a linear
model with Ridge regularisation) on samples
created around the specific data point by per-
turbing the data. We experiment with 500–
5000 samples and use the implementation
provided by the authors.1

• Word omission. This approach aims to es-
timate the contribution of individual words
by deleting them and measuring the effect,
e.g., by the difference in probability (Robnik-
Šikonja and Kononenko, 2008). Within NLP,
variations have been proposed by Kádár et al.
(2016), Li et al. (2016b) and Martens and
Provost (2014). It is also similar to occlusion
in the context of image classification, which
involves occluding regions of the input image
(Zeiler and Fergus, 2014). For LR, this ap-
proach corresponds to ranking words accord-
ing to the regression weights (and consider-
ing the frequency in the text) and is there-
fore optimal. For MLP, we use the differ-
ence in probability for the predicted class
(ŷ) when removing word w from input x:
p(ŷ|x) − p(ŷ|x\w). This approach supports
explanations based on interpretable features
(e.g., words) even when the underlying repre-
sentation may be less interpretable. However
note that in general, this omission approach
might not be optimal, since it estimates the
contribution of words independently. This
approach is also computationally expensive,
especially when many features are used.

1https://github.com/marcotcr/lime.
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• First derivative saliency. This approach
computes the gradient of the output with re-
spect to the input (e.g., used in Aubakirova
and Bansal (2016), Li et al. (2016a) and Si-
monyan et al. (2013)). The obtained esti-
mates are often referred to as saliency values.
Several variations exist, e.g., Li et al. (2016a)
take the absolute value. In this paper, the raw
value is taken to identify the words important
for and against a certain prediction.

4 Automatic Evaluation

In this section we explore automatic evaluation of
local explanations. Local explanations should ex-
hibit high local fidelity, i.e. they should match the
underlying model in the neighborhood of the in-
stance (Ribeiro et al., 2016). An explanation with
low local fidelity could be misleading. Because
we generate explanations for the predicted class
(rather than the ground truth), explanations with
high local fidelity do not necessarily need to match
human intuition, for example when the classifier is
weak (Samek et al., 2017). Ideally, the evaluation
metrics are model agnostic and do not require in-
formation that may not always be available such
as probability outputs. This paper focuses on local
fidelity, but other aspects might also be desired,
such as sparsity (Samek et al., 2017; Ribeiro et al.,
2016; Martens and Provost, 2014).

4.1 Evaluation Metrics

We measure local fidelity by deleting words in the
order of their estimated importance for the predic-
tion. Arras et al. (2016) generated explanations
with the correct class as target. By deleting the
identified words, accuracy increased for incorrect
predictions and decreased for correct predictions.
However, their approach assumes knowledge of
the ground-truth labels.

We take an alternative, but similar, approach.
Words are also deleted according to their esti-
mated importance, e.g. w1...wn with w1 the word
with the highest importance score, but for the pre-
dicted class instead. For each document, we mea-
sure the number of words that need to be deleted
before the prediction switches to another class (the
switching point), normalized by the number of
words in the document. For example, a value of
0.10 indicates that 10% of the words needed to
be deleted before the prediction changed. An ad-
vantage of this approach is that ground-truth labels

are not needed and that it can be applied to black-
box classifiers, we only need to know the predicted
class. Furthermore, the approach acts on the raw
input. It requires no knowledge of the underly-
ing feature representation (e.g., the actual features
might be on the character level). We also experi-
ment with the measure proposed by Samek et al.
(2017), referred to as the area over the perturbation
curve (AOPC):

AOPC =
1

K + 1
〈
K∑

k=1

f(x)− f(x\1..k
)〉p(x)

where f(x\1..k
) is the probability for the predicted

class when words 1..k are removed and 〈·〉p(x) de-
notes the average over the documents. This ap-
proach is also based on deleting words, but it is
more fine-grained since it uses probability values
rather than predicted labels. It also enables evalu-
ating negative evidence. A drawback is that AOPC
requires access to probability estimates of a clas-
sifier. In this paper, K is set to 10.

For LR, the exact contribution of individual fea-
tures to a prediction is known and the words in the
document that contributed most to the prediction
can be computed directly. For this classifier, the
optimal approach corresponds to the omission ap-
proach.

4.2 Results

Table 3 reports the results by measuring the ef-
fect of word deletions and reporting the aver-
age switching point. Lower values indicate that
the method was better capable of identifying the
words that contributed most towards the predicted
class, because on average fewer words needed to
be deleted to change a prediction. Table 2 shows
the AOPC values with a cut-off at 10. We measure
AOPC in two settings: removing positive evidence
(higher values indicate a more effective explana-
tion) and negative evidence (lower values indicate
a more effective explanation).

Comparison local explanation methods As
expected, LIME improves consistently when more
samples are used. Furthermore, when comparing
the scores of the omission approach for the LR
model (which corresponds to the ground-truth) we
observe that LIME with 5000 samples comes close
to the optimal score. We use the two-tailed paired
permutation test to test for significance between
all methods with both evaluation measures. In al-
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20news (topic) Movie (sentiment)
LR MLP LR MLP

pos. neg. pos. neg. pos. neg. pos. neg.

random 0.0116 0.0101 0.0110 0.0112 0.0073 0.0112 0.0083 0.0066
LIME-500 0.1855 -0.0301 0.1279 -0.0266 0.3168 -0.0786 0.2125 -0.0727

LIME-1000 0.2013 -0.0303 0.1350 -0.0268 0.3509 -0.0793 0.2330 -0.0738
LIME-1500 0.2067 -0.0302 0.1369 -0.0269 0.3586 -0.0794 0.2375 -0.0740
LIME-2000 0.2092 -0.0304 0.1378 -0.0269 0.3628 -0.0794 0.2394 -0.0740
LIME-5000 0.2128 -0.0303 0.1391 -0.0270 0.3693 -0.0794 0.2425 -0.0741

omission 0.2342 -0.0307 0.1422 -0.0272 0.3724 -0.0795 0.2440 -0.0741
saliency - - 0.1418 -0.0273 - - 0.2439 -0.0741

Table 2: AOPC results. For each method, AOPC is used to evaluate the words identified to be supportive of the
predicted class (positive evidence) and words identified to be supportive of the other class (negative evidence). For
LIME, results are reported for different sample sizes.

20news Movie
LR MLP LR MLP

random 0.8617 0.8880 0.6586 0.6843
LIME-500 0.4394 0.5330 0.1747 0.1973

LIME-1000 0.3098 0.4164 0.0811 0.1034
LIME-1500 0.2607 0.3566 0.0613 0.0800
LIME-2000 0.2336 0.3235 0.0547 0.0743
LIME-5000 0.1895 0.2589 0.0474 0.0664

omission 0.1595 0.2662 0.0449 0.0644
saliency - 0.2228 - 0.0639

Table 3: The % of words that needs to be deleted to
change the prediction (the switching point).

most all cases, the differences are highly signifi-
cant (p < 0.001), except the difference in average
switching point between the omission and salience
approach on the movies dataset with the MLP clas-
sifier (n.s.) and the difference in average switch-
ing point between the omission and LIME-5000
approach on 20news with the MLP classifier (n.s.).
The difference in AOPC scores for evaluating neg-
ative evidence was not significant in many cases.

Metric sensitivity First, the results suggest that
the values obtained depend strongly on the type
of task and classifier. The explanation approaches
score better on the sentiment detection task in
both Tables 2 and 3. For example, fewer words
need to be removed on average to change a
prediction in the movie dataset (Table 3). A
possible explanation is that for sentiment detec-
tion, a few words can provide strong cues for the
sentiment (e.g., terrific), while for (fine-grained)
topic detection (e.g., distinguishing between
Christianity and atheism) the evidence tends to be
distributed among more words. Better values are
also obtained for the LR classifier (a linear model)
than for MLP.

method SP AOPC

random 0.581 -0.168
LIME-500 0.932 -0.897

LIME-1000 0.884 -0.877
LIME-1500 0.863 -0.872
LIME-2000 0.850 -0.870
LIME-5000 0.826 -0.866

omission 0.814 -0.865
saliency 0.812 -0.865

Table 4: Spearman correlation between prediction con-
fidence and AOPC and the switching point (SP) for the
MLP classifier on the movie dataset.

Second, as shown in Table 2, AOPC enables as-
sessing negative evidence (i.e. the words that pro-
vide evidence for the opposite class). The obtained
absolute values are much smaller compared to the
values obtained for the words identified as positive
evidence. This is expected, since the positive evi-
dence in a document for the predicted class should
be larger than the negative evidence.

Third, we analyze the relation between the word
deletion evaluation measures and the prediction
confidence of the classifiers, based on the prob-
ability of the output class. Table 4 reports the
Spearman correlations for the MLP classifier on
the movie dataset (similar trends were observed
with the LR classifier). There is a strong corre-
lation between the prediction confidence and the
word deletion evaluation measures. The higher
the prediction confidence of a classifier, the more
words need to be deleted before a prediction
changes (e.g., see the switching points). However,
the strength of the correlations is lower for the
more robust explanation methods (LIME-5000,
omission and saliency).
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5 Human-based Evaluation

In the previous section we evaluated the local ex-
planation approaches using automatic measures.
However, the explanations are meant to be pre-
sented to humans. We therefore turn to evaluat-
ing the explanations using crowdsourcing. We an-
alyze the usefulness of the generated explanations
in a task setting and analyze to what extent the au-
tomatic measures correspond to the human-based
evaluations. The crowdsourcing experiments are
run on CrowdFlower. Only crowdworkers from
Australia, Canada, Ireland, United Kingdom and
the United States and with quality levels two or
three were accepted.

5.1 Forward Prediction Task

One way to evaluate an explanation is by ask-
ing humans to guess the output of a model based
on the explanation and the input. Doshi-Velez
and Kim (2017) refer to this as forward simula-
tion/prediction. As mentioned by Doshi-Velez and
Kim (2017), this is a simplified task. Evaluations
using more specific application-oriented tasks or
tailored towards specific user groups should be ex-
plored in future work. We have chosen the forward
prediction task as a first step since it is a general
setup that could be used to evaluate explanations
for a variety of tasks and models.

In this study, crowdworkers are shown the texts
(e.g., a movie review), in which the top words
identified by the local explanation approaches are
highlighted. Crowdworkers are then asked to
guess the output of the system (e.g., a positive or
negative sentiment). The crowdworkers are also
asked to state their confidence on a five-point Lik-
ert scale (‘I am confident in my answer’: strongly
disagree . . . strongly agree).

Note that the workers need to guess the out-
put of the model regardless of the true label (i.e.
the model may be wrong). The crowdworkers are
therefore presented with documents with differ-
ent prediction outcomes (true positive, true neg-
ative, false negative, and false positive). We sam-
ple up to 50 documents for each prediction out-
come. A screenshot is shown in Figure 1. A quiz
and test questions are used to ensure the quality of
the crowdworkers. Instructions as well as the test
questions included cases where the system made
an incorrect prediction, so that workers understood
that the task was different than standard labeling
tasks. See Appendix A for more details.

We experiment with the following parameters:
methods (random baseline, LIME with 500 and
5000 samples, word omission, saliency) and the
number of words (10, 20). We experiment with
both datasets. Due to space constraints, we only
experiment with the MLP classifier. We collected
the data in August and September 2017. Each
HIT (Human Intelligence Task) was carried out
by five crowdworkers. We paid $0.03 per judge-
ment. On the 20news dataset, we collected 7,200
judgements from 406 workers (mean nr of. judge-
ments per worker: 17.73, std.: 7.21) and on the
movie dataset we collected 8,100 judgements from
445 workers (mean nr of. judgements per worker
18.20, std: 7.24).

Figure 1: Screenshot of the task

Confidence Most workers chose confidence val-
ues of three or four. Table 6 reports the confidence
scores by method. On the movie dataset, the trends
match the intrinsic evaluations closely. The ran-
dom method leads to the lowest confidence score,
followed by LIME-500 and LIME-5000, and ex-
planations from the omission and saliency ap-
proach both lead to the highest confidence scores.
On the 20news dataset, the trends are less clear.
We observe a small, significant negative corre-
lation between confidence values and time spent
(Spearman correlation: ρ=-0.08, p <0.0001 on the
movie dataset, ρ=-0.06, p <0.0001 on 20news).

Accuracy Table 6 also reports the fraction of
correct guesses per method. Random explana-
tions lead to the lowest accuracies, followed by
LIME with 500 samples. The differences between
LIME-5000, omission and saliency are small and
not consistent across datasets. The crowd had a
higher accuracy on the movie data, except when
the explanations were randomly generated.
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TP TN FP FN
Method #w Acc Conf n Acc Conf n Acc Conf n Acc Conf n

Movies

random 10 0.652 3.42 250 0.484 3.35 250 0.581 3.26 155 0.355 3.53 155
LIME-500 10 0.848 3.65 250 0.796 3.58 250 0.787 3.41 155 0.710 3.61 155

LIME-5000 10 0.900 3.73 250 0.896 3.70 250 0.852 3.43 155 0.748 3.63 155
omission 10 0.932 3.80 250 0.916 3.67 250 0.845 3.52 155 0.781 3.54 155
saliency 10 0.940 3.87 250 0.872 3.78 250 0.819 3.50 155 0.729 3.59 155
random 20 0.628 3.48 250 0.512 3.43 250 0.471 3.24 155 0.374 3.45 155

LIME-500 20 0.864 3.65 250 0.784 3.51 250 0.742 3.54 155 0.794 3.39 155
LIME-5000 20 0.880 3.76 250 0.864 3.63 250 0.787 3.77 155 0.800 3.67 155

omission 20 0.896 3.95 250 0.884 3.72 250 0.832 3.54 155 0.761 3.58 155
saliency 20 0.860 3.70 250 0.876 3.78 250 0.819 3.63 155 0.806 3.57 155

20news

random 10 0.664 3.45 250 0.656 3.45 250 0.489 3.44 45 0.514 3.47 175
LIME-500 10 0.724 3.53 250 0.768 3.73 250 0.733 3.62 45 0.817 3.84 175

LIME-5000 10 0.740 3.52 250 0.832 3.87 250 0.556 3.29 45 0.697 3.75 175
omission 10 0.652 3.37 250 0.800 3.78 250 0.689 3.31 45 0.754 3.63 175
saliency 10 0.712 3.42 250 0.832 3.77 250 0.689 3.80 45 0.789 3.86 175
random 20 0.616 3.52 250 0.696 3.57 250 0.511 3.84 45 0.537 3.65 175

LIME-500 20 0.668 3.50 250 0.788 3.67 250 0.689 3.22 45 0.697 3.73 175
LIME-5000 20 0.720 3.52 250 0.888 3.86 250 0.667 3.36 45 0.709 3.60 175

omission 20 0.692 3.53 250 0.864 3.80 250 0.644 3.42 45 0.726 3.71 175
saliency 20 0.752 3.64 250 0.904 3.74 250 0.711 3.67 45 0.783 3.78 175

Table 5: Results forward prediction task, with the accuracy (acc), average confidence (conf) and the number of
judgements (n). The results are separated according to TP (true positive), TN (true negative), FP (false positive)
and FN (false negative) predictions, and the number of words shown (#w).

method accuracy confidence
20news movie 20news movie

random 0.616 0.522 3.520 3.402
LIME-500 0.740 0.798 3.640 3.555

LIME-5000 0.761 0.851 3.665 3.673
omission 0.744 0.868 3.615 3.694
saliency 0.790 0.851 3.691 3.701

Table 6: Confidence and accuracy results

Table 5 separates the results by the different pre-
diction outcomes. The results suggest that false
positive and false negative are the most revealing.
In these cases, crowdworkers are not able to rely
on their intuition and a strong explanation should
convince them that the system makes a mistake.
Otherwise, crowd workers might choose the la-
bel matching the document (and not necessarily
the classifier output). This is especially salient in
the 20news dataset, where the random approach
performs better than expected on the true positives
and true negatives. For example, compare the ran-
dom approach with the omission approach on true
positives with ten word explanations.

Our experiments also show that local explana-
tions in the form of the most predictive words are
sometimes not enough to simulate the output of
a system. For example, the best accuracy on true

positive instances in the 20news data is only 0.752.
The movie dataset contains difficult instances as
well. For example, the omission method identifies
the following words in a movie review to explain
a false positive prediction: ‘believes’, ‘become’,
‘hair’, ‘unhappy’, ‘quentin’, ‘directed’, ‘runs’,
‘filled’, ‘fiction’, ‘clint’. Due to the composition of
the training data, the system has associated words
like ‘quentin’ and ‘clint’ with a positive sentiment.
This may have confused the crowdworkers as most
of them guessed incorrectly. Expanding the ex-
planation with for example influential documents
(Koh and Liang, 2017) or a visualization of the
class distributions of the most influential words
could make the explanations more informative.

Correlation with automatic evaluation For
each explanation, we compute the fraction of
workers who correctly predicted the classifier out-
put (the ‘crowd accuracy’) and correlate these with
the automatic measures. We expect a negative cor-
relation with the switching points and a positive
correlation with the AOPC. The correlations are
moderate (Table 8). The correlations with AOPC
on the movie data are the biggest on the false pos-
itives and false negatives, when workers are not
able to rely on their intuition. The correlations
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TP TN FP FN
Noise AOPC Acc Conf n Acc Conf n Acc Conf n Acc Conf n

0 0.2627 0.940 3.87 250 0.872 3.78 250 0.819 3.50 155 0.729 3.59 155
0.2 0.2044 0.896 3.60 250 0.780 3.67 250 0.735 3.39 155 0.735 3.58 155
0.4 0.1485 0.824 3.62 250 0.776 3.68 250 0.723 3.37 155 0.645 3.31 155
0.6 0.0851 0.800 3.40 250 0.756 3.40 250 0.710 3.63 155 0.639 3.34 155
0.8 0.0411 0.736 3.29 250 0.640 3.35 250 0.632 3.25 155 0.523 3.25 155

Table 7: Forward prediction task with noisy explanations on the movie dataset and the saliency method

Movie 20news
SP AOPC SP AOPC

tp −0.144** 0.156*** 0.134** −0.161***
fn −0.283*** 0.367*** −0.181*** 0.343***
tn −0.195*** 0.153*** −0.203*** −0.027
fp −0.076 0.290*** −0.076 0.172

Table 8: Spearman correlation between automatic mea-
sures and crowd accuracy. Significance: ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001

Dependent variable: crowd accuracy

Switching point -0.365∗∗∗ (0.023)
Classifier confidence 0.344∗∗∗ (0.044)
Prediction outcome: fp 0.053∗∗ (0.021)
Prediction outcome: tn 0.093∗∗∗ (0.020)
Prediction outcome: tp 0.132∗∗∗ (0.019)
Constant 0.472∗∗∗ (0.037)

R2: 0.177 (Adj.: 0.174)
F Stat.: 69.255∗∗∗ (df = 5; 1614)

Table 9: OLS results with switching points on
the movie data (n = 1,620). ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01. Prediction outcome base level = fn.

measured on the true positives in 20news are oppo-
site of what we expect. The 20news data is noisy
and the classifier picks up on spurious features,
possibly confusing the workers.

An example in the 20news data is an e-
mail with the following words highlighted:
‘thank’, ‘mail’, ‘discussions’, ‘seminary’, ‘be-
fore’, ‘thanks’, ‘question’, ‘fill’, ‘affected’, ‘dur-
ing’, ‘proofs’. The classifier was confident and the
computed switchpoint was low. The e-mail comes
from the atheism newsgroup, which becomes clear
from reading the text. The highlighted words are
all more likely to occur in the christianity news-
group, but on their own they are not intuitive to
lay people. Consequently, workers guessed incor-
rectly that the predicted label was atheism. Expla-
nations that also show the negative evidence (in
this case, words such as ‘atheism’ and ‘atheists’)
and/or the word distributions across classes would
likely have led to better crowd accuracy.

Dependent variable: crowd accuracy

AOPC 0.543∗∗∗ (0.042)
Classifier confidence 0.395∗∗∗ (0.048)
Prediction outcome: fp 0.079∗∗∗ (0.021)
Prediction outcome: tn 0.119∗∗∗ (0.020)
Prediction outcome: tp 0.171∗∗∗ (0.020)
Constant 0.222∗∗∗ (0.046)

R2: 0.133 (Adj.: 0.130)
F Stat.: 49.572∗∗∗ (df = 5; 1614)

Table 10: OLS results with AOPC on the movie data
(n = 1,620). ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Prediction
outcome base level = fn.

As shown in section 4, the automatic measures
correlate strongly with the prediction confidence
of the classifier. More words need to be removed
before a prediction changes (i.e. a higher switch-
ing point) when the classifier is more confident.
However, we also find that higher classifier con-
fidence leads to higher crowd accuracies (e.g.,
ρ = 0.236, p < 0.001 on the 20news dataset).
We therefore fit an Ordinary Least Squares (OLS)
model to control for these different factors (Table
9), with crowd accuracy as the dependent variable.
A higher switching point significantly leads to a
lower accuracy. However, classifier confidence
and prediction outcome also significantly impact
the accuracy. Similar trends are observed for the
AOPC measure (Table 10). We also find that the
automatic evaluation measures significantly im-
pact crowd accuracy on the 20news dataset, but
the patterns are less strong.

Noise In our final experiment we analyze the ef-
fect of noise. We focus on explanations based on
saliency scores on the movie dataset. We experi-
ment with introducing noise to the top ten words
(Table 7) and we collect additional judgements. A
noise level of 0.2 indicates that two out of the top
ten words are randomly replaced by other words.
The results show that with increasing the noise,
as expected, both the performance and average
AOPC score decrease.
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6 Conclusion

There has been an increasing interest in improving
the interpretability of machine learning systems,
but evaluating the quality of explanations has been
challenging. This paper focused on evaluating lo-
cal explanations for text classification. Local ex-
planations were generated by identifying impor-
tant words in a document for a prediction. We
compared automatic evaluation approaches, based
on measuring the effect of word deletions, with
human-based evaluations. Explanations generated
using word omissions and first derivatives both
performed well. LIME (Ribeiro et al., 2016) per-
formed close to these methods when using enough
samples. Our analyses furthermore showed that
the evaluation numbers depend on the task/dataset
and the confidence of the classifiers.

Next, crowd workers were asked to predict the
output of the classifiers based on the generated ex-
planations. We found moderate, but significant,
correlations between the automatic measures and
crowd accuracy. In addition, the human judge-
ments were impacted by the confidence of the
classifier and the type of prediction outcome (e.g.,
a false negative versus a true positive). Our re-
sults also suggest that only highlighting words is
sometimes not enough. An explanation can high-
light the most important parts of an input and score
well on automatic measures, but if the explanation
is not intuitive (for example due to biases in the
data), humans are still not able to predict the out-
put.

For the classification tasks in this paper (topic
classification and sentiment detection) individual
words are often predictive. As a result, local expla-
nation approaches that select words independently
worked well. However, we expect that for tasks
where individual words are not predictive, the cur-
rent evaluation methods and local explanation ap-
proaches may not be sufficient. Furthermore, in
future work more fine-grained visualizations (e.g.,
Handler et al. (2016)) could be explored.
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Ákos Kádár, Grzegorz Chrupala, and Afra Alishahi.
2016. Representation of linguistic form and
function in recurrent neural networks. CoRR
abs/1602.08952.

Ashish Kapoor, Bongshin Lee, Desney Tan, and Eric
Horvitz. 2010. Interactive optimization for steering
machine classification. In Proceedings of CHI ’10.
pages 1343–1352.

1077



Pang Wei Koh and Percy Liang. 2017. Understand-
ing black-box predictions via influence functions. In
Proceedings of ICML 2017. pages 1885–1894.

Todd Kulesza, Margaret Burnett, Weng-Keen Wong,
and Simone Stumpf. 2015. Principles of explanatory
debugging to personalize interactive machine learn-
ing. In Proceedings of IUI ’15. pages 126–137.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016a. Visualizing and understanding neural mod-
els in NLP. In Proceedings of NAACL 2016. pages
681–691.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016b. Un-
derstanding neural networks through representation
erasure. arXiv preprint arXiv:1612.08220 .

Brian Y. Lim, Anind K. Dey, and Daniel Avrahami.
2009. Why and why not explanations improve the
intelligibility of context-aware intelligent systems.
In Proceedings of CHI ’09. pages 2119–2128.

Zachary C. Lipton. 2016. The mythos of model inter-
pretability. In Proceedings of the 2016 ICML Work-
shop on Human Interpretability in Machine Learn-
ing (WHI 2016). pages 96–100.

Christopher D. Manning. 2015. Computational lin-
guistics and deep learning. Computational Linguis-
tics 41(4):701–707.

David Martens and Foster Provost. 2014. Explaining
data-driven document classifications. MIS Quar-
terly 38(1):73–100.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity. In Pro-
ceedings of ACL. pages 271–278.

Paul. 2016. Interpretable machine learning: Lessons
from topic modeling. In Proceedings of the CHI
Workshop on Human-Centered Machine Learning.
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Marko Robnik-Šikonja and Igor Kononenko. 2008.
Explaining classifications for individual instances.
IEEE Transactions on Knowledge and Data Engi-
neering 20(5):589–600.

Wojciech Samek, Alexander Binder, Gregoire Mon-
tavon, Sebastian Lapuschkin, and Klaus-Robert
Müller. 2017. Evaluating the visualization of what

a deep neural network has learned. IEEE Trans-
actions on Neural Networks and Learning Systems
28(11):2660 – 2673.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2013. Deep inside convolutional networks: Vi-
sualising image classification models and saliency
maps. CoRR abs/1312.6034.

Omar Zaidan, Jason Eisner, and Christine Piatko. 2007.
Using “annotator rationales” to improve machine
learning for text categorization. In Proceedings of
NAACL 2007. pages 260–267.

Matthew D. Zeiler and Rob Fergus. 2014. Visualiz-
ing and understanding convolutional networks. In
ECCV 2014. pages 818–833.

A Appendix: Crowdsourcing

Test questions were manually selected and were
cases for which there should be no doubt about the
correct answer (e.g., a simple movie review with
only words such as ‘brilliant’, ‘terrific’, etc. high-
lighted). Thus, these are questions where work-
ers would only fail if they did not pay attention or
if they did not understand the task. Explanations
were provided for most test questions and were
shown after an answer was submitted. The test
questions contained instances with different pre-
diction outcomes (e.g. false positives and true pos-
itives) to make the task clear. To make sure that the
test questions did not overlap with the actual HITs
(which were generated to explain the predictions
of the MLP), the test questions were explanations
generated for the LR classifier.

A quiz with test questions was provided to the
crowdworkers when starting the task. If the work-
ers performed poorly on the quiz, they were not
allowed to continue with the task. Throughout the
task, test questions were entered in between the
actual HITs (one out of five presented HITs was
a test question), to monitor the quality and to flag
crowdworkers who performed poorly. We closely
monitored the responses to the test questions and
in the pilot phase we did remove a few that turned
out not be suitable. In the final task, workers per-
formed overall very well on the test questions.

The task was consistently rated positive by the
crowdworkers. The task was divided into sev-
eral batches and the overall rating was consistently
above 4.5 (out of 5). The payment rating was con-
sistently above 4. The tasks explicitly mentioned
that the results will be used for scientific research
(‘By participating you agree that these results will
be used for scientific research.’).
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Abstract

Dynamic topic modeling facilitates the iden-
tification of topical trends over time in tem-
poral collections of unstructured documents.
We introduce a novel unsupervised neural dy-
namic topic model named as Recurrent Neural
Network-Replicated Softmax Model (RNN-
RSM), where the discovered topics at each
time influence the topic discovery in the sub-
sequent time steps. We account for the tempo-
ral ordering of documents by explicitly mod-
eling a joint distribution of latent topical de-
pendencies over time, using distributional es-
timators with temporal recurrent connections.
Applying RNN-RSM to 19 years of articles
on NLP research, we demonstrate that com-
pared to state-of-the art topic models, RNN-
RSM shows better generalization, topic inter-
pretation, evolution and trends. We also intro-
duce a metric (named as SPAN) to quantify the
capability of dynamic topic model to capture
word evolution in topics over time.

1 Introduction

Topic Detection and Tracking (Allan et al., 1998)
is an important area of natural language process-
ing to find topically related ideas that evolve over
time in a sequence of text collections and exhibit
temporal relationships. The temporal aspects of
these collections can present valuable insight into
the topical structure of the collections and can be
quantified by modeling the dynamics of the under-
lying topics discovered over time.

Problem Statement: We aim to generate tem-
poral topical trends or automatic overview time-
lines of topics for a time sequence collection of
documents. This involves the following three tasks
in dynamic topic analysis: (1) Topic Structure De-
tection (TSD): Identifying main topics in the doc-
ument collection. (2) Topic Evolution Detection
(TED): Detecting the emergence of a new topic
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Semantic Representation
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Figure 1: (Left): Word Usage over time for Topic
(Word Representation) in scholarly articles. (Right):
RSM-based dynamic topic model with explicit tempo-
ral topic dependence

and recognizing how it grows or decays over time
(Allan, 2002). (3) Temporal Topic Characteriza-
tion (TTC): Identifying the characteristics for each
of the main topics in order to track the words’ us-
age (keyword trends) for a topic over time i.e. topi-
cal trend analysis for word evolution (Fig 1, Left).

Probabilistic static topic models, such as La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003)
and its variants (Wang and McCallum, 2006; Hall
et al., 2008; Gollapalli and Li, 2015) have been
investigated to examine the emergence of top-
ics from historical documents. Another vari-
ant known as Replicated Softmax (RSM) (Hinton
and Salakhutdinov, 2009) has demonstrated bet-
ter generalization in log-probability and retrieval,
compared to LDA. Prior works (Iwata et al., 2010;
Pruteanu-Malinici et al., 2010; Saha and Sind-
hwani, 2012; Schein et al., 2016) have investigated
Bayesian modeling of topics in time-stamped doc-
uments. Particularly, Blei and Lafferty (2006)
developed a LDA based dynamic topic model
(DTM) to capture the evolution of topics in a time
sequence collection of documents; however they
do not capture explicitly the topic popularity and
usage of specific terms over time. We propose a
family of probabilistic time series models with dis-
tributional estimators to explicitly model the dy-
namics of the underlying topics, introducing tem-
poral latent topic dependencies (Fig 1, Right).

To model temporal dependencies in high dimen-
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Figure 2: (Left): RSM for a document Vn of Dn=3 words (w). The bottom layer represents the softmax visible
units, that share the same set of weights connected to binary hidden units h. (Middle): Interpretation of RSM
in which Dn softmax units with identical weights are replaced by a single multinomial unit, sampled Dn times.
(Right): Graphical structure of 2-layered RNN-RSM, unfolded in time. Single and double headed arrows represent
deterministic and stochastic-symmetric connections, respectively. V̂(t) and h(t) are binary visible and hidden
layers of RSM for a document collection at time, t. u is RNN hidden layer. k: dictionary index for a word w

sional sequences, such as polyphonic music, the
temporal stack of RBMs (Smolensky, 1986; Hin-
ton, 2002) has been investigated to model com-
plex distributions. The Temporal RBM (Taylor
et al., 2007; Sutskever and Hinton, 2007), Recur-
rent Temporal RBM (RTRBM) (Sutskever et al.,
2009) and RNN-RBM (Boulanger-Lewandowski
et al., 2012) show success in modeling the tem-
poral dependencies in such symbolic sequences.
In addition, RNNs (Gupta et al., 2015a; Vu et al.,
2016a,b; Gupta et al., 2016) have been recognized
for sentence modeling in natural language tasks.
We aspire to build neural dynamic topic model
called RNN-RSM to model document collections
over time and learn temporal topic correlations.

We consider RSM for TSD and introduce the
explicit latent topical dependencies for TED and
TTC tasks. Fig 1 illustrates our motivation, where
temporal ordering in document collection V̂(t) at
each time step t, is modeled by conditioning the
latent topic h(t) on the sequence history of latent
topics h(0), ..., h(t−1), accumulated with temporal
lag. Each RSM discovers latent topics, where the
introduction of a bias term in each RSM via the
time-feedback latent topic dependencies enables
to explicitly model topic evolution and specific
topic term usage over time. The temporal connec-
tions and RSM biases allow to convey topical in-
formation and model relation among the words, in
order to deeply analyze the dynamics of the un-
derlying topics. We demonstrate the applicability
of proposed RNN-RSM by analyzing 19 years of
scientific articles from NLP research.

The contributions in this work are:
(1) Introduce an unsupervised neural dynamic
topic model based on recurrent neural network
and RSMs, named as RNN-RSM to explicitly
model discovered latent topics (evolution) and
word relations (topic characterization) over time.
(2) Demonstrate better generalization (log-
probability and time stamp prediction), topic
interpretation (coherence), evolution and charac-
terization, compared to the state-of-the-art.
(3) It is the first work in dynamic topic modeling
using undirected stochastic graphical models and
deterministic recurrent neural network to model
collections of different-sized documents over
time, within the generative and neural network
framework. The code and data are available at
https://github.com/pgcool/RNN-RSM.

2 The RNN-RSM model

RSM (Fig 2, Left) models are a family of different-
sized Restricted Boltzmann Machines (RBMs)
(Gehler et al., 2006; Xing et al., 2005; Gupta
et al., 2015b,c) that models word counts by sharing
the same parameters with multinomial distribution
over the observable i.e. it can be interpreted as a
single multinomial unit (Fig 2, Middle) sampled as
many times as the document size. This facilitates
in dealing with the documents of different lengths.

The proposed RNN-RSM model (Fig 2, Right)
is a sequence of conditional RSMs1 such that at
any time step t, the RSM’s bias parameters bv

(t)

1Notations: Û={Un}Nn=1; U:2D-Matrix; l:vector;
U/l:Upper/lower-case; Scalars in unbold
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and bh
(t) depend on the output of a determinis-

tic RNN with hidden layer u(t−1) in the previous
time step, t−1. Similar to RNN-RBM (Boulanger-
Lewandowski et al., 2012), we constrain RNN hid-
den units (u(t)) to convey temporal information,
while RSM hidden units (h(t)) to model condi-
tional distributions. Therefore, parameters (bv

(t),
bh

(t)) are time-dependent on the sequence history
at time t (via a series of conditional RSMs) de-
noted by Θ(t) ≡ {V̂(τ),u(τ)|τ < t}, that captures
temporal dependencies. The RNN-RSM is defined
by its joint probability distribution:

P (V̂,H) = P ({V̂(t),h(t)}Tt=1) =

T∏

t=1

P (V̂(t),h(t)|Θ(t))

where V̂ = [V̂(1), ...V̂(T )] and H = [h(1), ...h(T )].
Each h(t) ∈ {0, 1}F be a binary stochastic hidden
topic vector with size F and V̂(t) = {V(t)

n }N(t)

n=1

be a collection of N documents at time step t. Let
V

(t)
n be a K ×D(t)

n observed binary matrix of the
nth document in the collection where, D(t)

n is the
document size and K is the dictionary size over
all the time steps. The conditional distribution (for
each unit in hidden or visible) in each RSM at time
step, is given by softmax and logistic functions:

P (v
k,(t)
n,i = 1|h(t)

n ) =
exp(bv,i

k,(t) +
∑F
j=1 h

(t)
n,jW

k
ij)

∑K
q=1 exp(bv,i

q,(t) +
∑F
j=1 h

(t)
n,jW

q
ij)

P (h
(t)
n,j = 1|V(t)

n ) = σ(b
(t)
h,j +

D
(t)
n∑

i=1

K∑

k=1

v
k,(t)
n,i W k

ij)

where P (v
k,(t)
n,i = 1|h(t)

n ) and P (h
(t)
n,j = 1|V(t)

n ) are
conditional distributions for ith visible vn,i and jth

hidden unit hn,j for the nth document at t. W k
ij is

a symmetric interaction term between i that takes
on value k and j. v

k,(t)
n is sampled D

(t)
n times

with identical weights connected to binary hid-
den units, resulting in multinomial visibles, there-
fore the name Replicated Softmax. The condition-
als across layers are factorized as: P (V

(t)
n |h(t)

n ) =
∏D

(t)
n

i=1 P (v
(t)
n,i|h

(t)
n ); P (h

(t)
n |V(t)

n ) =
∏
j P (h

(t)
n,j |V

(t)
n ).

Since biases of RSM depend on the output of
RNN at previous time steps, that allows to propa-
gate the estimated gradient at each RSM backward
through time (BPTT). The RSM biases and RNN
hidden state u(t) at each time step t are given by-

bv
(t) = bv+Wuvu

(t−1)

bh
(t) = bh+Wuhu

(t−1)
(1)

u(t) = tanh(bu + Wuuu
(t−1) + Wvu

N(t)∑

n=1

v̂(t)
n ) (2)

Algorithm 1 Training RNN-RSM with BPTT

Input: Observed visibles, V̂ =
{V̂(0), V̂(1), ..., V̂(t), ..., V̂(T )}
RNN-RSM Parameters: θ = {Wuh, Wvh, Wuv,
Wvu, Wuu, bv, bu, bh, bv

(t), bh
(t), u(0)}

1: Propagate u(t) in RNN portion of the graph using eq 2.
2: Compute bv

(t) and bh
(t) using eq 1.

3: Generate negatives V(t)∗ using k-step Gibbs sampling.
4: Estimate the gradient of the cost C w.r.t. parameters of

RSM Wvh, bv
(t) and bh

(t) using eq 5.
5: Compute gradients (eq 6) w.r.t. RNN connections (Wuh,

Wuv,Wuu,Wvu,u
0) and biases (bv, bh, bu).

6: Goto step 1 until stopping criteria (early stopping or
maximum iterations reached)

where Wuv, Wuh and Wvu are weights con-
necting RNN and RSM portions (Figure 2). bu

is the bias of u and Wuu is the weight between
RNN hidden units. v̂

(t)
n is a vector of v̂kn (de-

notes the count for the kth word in nth document).∑N(t)

n=1 v̂
(t)
n refers to the sum of observed vectors

across documents at time step t where each docu-
ment is represented as-

v̂(t)
n = [{v̂k,(t)n }Kk=1] and v̂k,(t)n =

D
(t)
n∑

i=1

v
k,(t)
n,i (3)

where vk,(t)n,i =1 if visible unit i takes on kth value.
In each RSM, a separate RBM is created for

each document in the collection at time step t with
D

(t)
n softmax units, where D

(t)
n is the count of

words in the nth document. Consider a document
of D(t)

n words, the energy of the state {V(t)
n ,h

(t)
n }

at time step, t is given by-

E(V(t)
n ,h(t)

n ) =−
F∑

j=1

K∑

k=1

h
(t)
n,jW

k
j v̂

k,(t)
n

−
K∑

k=1

v̂k,(t)n bkv −D(t)
n

F∑

j=1

bh,jh
(t)
n,j

Observe that the bias terms on hidden units are
scaled up by document length to allow hidden
units to stabilize when dealing with different-sized
documents. The corresponding energy-probability
relation in the energy-based model is-

P (V(t)
n ) =

1

Z
(t)
n

∑

h
(t)
n

exp(−E(V(t)
n ,h(t)

n )) (4)

where Z(t)
n =

∑
V

(t)
n

∑
h
(t)
n

exp(−E(V
(t)
n ,h

(t)
n ))

is the normalization constant. The lower bound on
the log likelihood of the data takes the form:

lnP (V(t)
n ) ≥

∑

h(t)

Q(h(t)
n |V(t)

n ) lnP (V(t)
n ,h(t)

n ) +H(Q)

= lnP (V(t)
n )−KL[Q(h(t)

n |V(t)
n )||P (h(t)

n |V(t)
n )]
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Year 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Total
ACL 58 73 250 83 79 70 177 112 134 134 307 204 214 243 270 349 227 398 331 3713

EMNLP 15 24 15 36 29 21 42 29 58 28 75 132 115 164 125 149 140 206 228 1756
ACL+EMNLP 73 97 265 119 108 91 219 141 192 162 382 336 329 407 395 498 367 604 559 5469

Table 1: Number of papers from ACL and EMNLP conferences over the years

where H(·) is the entropy and Q is the approxi-
mating posterior. Similar to Deep Belief Networks
(Hinton et al., 2006), adding an extra layer im-
proves lower bound on the log probability of data,
we introduce the extra layer via RSM biases that
propagates the prior via RNN connections. The
dependence analogy follows-

E(V
(t)
n ,h

(t)
n ) ∝ 1

bv
(t) and E(V

(t)
n ,h

(t)
n ) ∝ 1

bh
(t)

lnP (V
(t)
n ) ∝ 1

E(V
(t)
n ,h

(t)
n )

; lnP (V̂
(t)
n ) ∝ lnP ({V̂τ

n}τ<t)

Observe that the prior is seen as the determin-
istic hidden representation of latent topics and in-
jected into each hidden state of RSMs, that enables
the likelihood of the data to model complex tem-
poral densities i.e. heteroscedasticity in document
collections (V̂) and temporal topics (H).

Gradient Approximations: The cost in RNN-
RSM is: C =

∑T
t=1Ct ≡

∑T
t=1− lnP (V̂(t))

Due to intractable Z, the gradient of cost at
time step t w.r.t. (with respect to) RSM parame-
ters are approximated by k-step Contrastive Diver-
gence (CD) (Hinton, 2002). The gradient of the
negative log-likelihood of a document collection
{V(t)

n }N(t)

n=1 w.r.t. RSM parameter Wvh,

1

N (t)

N(t)∑

n=1

∂(− lnP (V
(t)
n ))

∂Wvh

=
1

N (t)

N(t)∑

n=1

∂F(V
(t)
n )

∂Wvh
− ∂(− lnZ

(t)
n )

∂Wvh

= EPdata [
∂F(V

(t)
n )

∂Wvh
]

︸ ︷︷ ︸
data-dependent expectation

−EPmodel [
∂F(V

(t)
n )

∂Wvh
]

︸ ︷︷ ︸
model’s expectation

' 1

N (t)

N(t)∑

n=1

∂F(V
(t)
n )

∂Wvh
− ∂F(V

(t)∗
n )

∂Wvh

The second term is estimated by negative sam-
ples V

(t)∗
n obtained from k-step Gibbs chain

starting at V
(t)
n samples. Pdata(V̂

(t),h(t)) =

P (h(t)|V̂(t))Pdata(V̂
(t)) and Pdata(V̂

(t)) =
1

N(t)

∑N(t)

n δ(V̂(t) −V
(t)
n ) is the empirical distri-

bution on the observable. Pmodel(V
(t)∗
n ,h

(t)
n ) is

defined in eq. 4. The free energy F(V
(t)
n ) is re-

lated to normalized probability of V(t)
n as P (V

(t)
n )

≡ exp−F(V
(t)
n ) /Z

(t)
n and as follows-

F(V(t)
n ) = −

K∑

k=1

v̂k,(t)n bkv −
F∑

j=1

log(1+

exp(D(t)
n bh,j +

K∑

k=1

v̂k,(t)n W k
j ))

Gradient approximations w.r.t. RSM parameters,

∂Ct

∂bv
(t)
'

N(t)∑

n=1

v̂(t)∗
n − v̂(t)

n

∂Ct

∂bh
(t)
'

N(t)∑

n=1

σ(Wvhv̂
(t)∗
n −D(t)

n bh
(t))

−σ(Wvhv̂
(t)
n −D(t)

n bh
(t))

∂Ct
∂Wvh

'
T∑

t=1

N(t)∑

n=1

σ(Wvhv̂
(t)∗
n −D(t)

n bh
(t))

v̂(t)∗T
n − σ(Wvhv̂

(t)
n −D(t)

n bh
(t))v̂(t)T

n

(5)

The estimated gradients w.r.t. RSM biases are
back-propagated via hidden-to-bias parameters
(eq 1) to compute gradients w.r.t. RNN connec-
tions (Wuh, Wuv, Wvu and Wuu) and biases
(bh, bv and bu).

∂C

∂Wuh
=

T∑

t=1

∂Ct

∂bh
(t)

u(t−1)T

∂C

∂Wuv
=

T∑

t=1

∂Ct

∂bv
(t)

u(t−1)T

∂C

∂Wvu
=

T∑

t=1

∂Ct

∂u(t)
u(t)(1− u(t))

N(t)∑

n=1

v̂(t)T
n

∂C

∂bh
=

T∑

t=1

∂Ct

∂bh
(t)

and
∂C

∂bv
=

T∑

t=1

∂Ct

∂bv
(t)

∂C

∂bu
=

T∑

t=1

∂Ct

∂u(t)
u(t)(1− u(t))

∂C

∂Wuu
=

T∑

t=1

∂Ct

∂u(t)
u(t)(1− u(t))u(t−1)T

(6)
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Parameter Value(s) Optimal
epochs 1000 1000

CD iterations 15 15
learning rate 0.1, 0.03, 0.001 0.001
hidden size 20, 30, 50 30

Table 2: Hyperparameters for RNN-RSM model

For the single-layer RNN-RSM, the BPTT recur-
rence relation for 0 ≤ t < T is given by-

∂Ct

∂u(t)
= Wuu

∂Ct+1

∂u(t+1)
u(t+1)(1− u(t+1))

+Wuh
∂Ct+1

∂bh
(t+1)

+ Wuv
∂Ct+1

∂bv
(t+1)

where u(0) being a parameter and ∂CT
∂u(T ) = 0.

See Training RNN-RSM with BPTT in Algo 1.

3 Evaluation

3.1 Dataset and Experimental Setup
We use the processed dataset (Gollapalli and Li,
2015), consisting of EMNLP and ACL conference
papers from the year 1996 through 2014 (Table 1).
We combine papers for each year from the two
venues to prepare the document collections over
time. We use ExpandRank (Wan and Xiao, 2008)
to extract top 100 keyphrases for each paper, in-
cluding unigrams and bigrams. We split the bi-
grams to unigrams to create a dictionary of all un-
igrams and bigrams. The dictionary size (K) and
word count are 3390 and 5.19 M, respectively.

We evaluate RNN-RSM against static (RSM,
LDA) and dynamic (DTM) topics models for topic
and keyword evolution in NLP research over time.
Individual 19 different RSM and LDA models are
trained for each year, while DTM2 and RNN-
RSM are trained over the years with 19 time steps,
where paper collections for a year is input at each
time step. RNN-RSM is initialized with RSM
(Wvh, bv, bh) trained for the year 2014.

We use perplexity to choose the number of top-
ics (=30). See Table 2 for hyperparameters.

3.2 Generalization in Dynamic Topic Models
Perplexity: We compute the perplexity on unob-
served documents (V̂(t)) at each time step as

PPL(V̂(t), t) = exp
(
− 1

N (t)

∑N(t)

n=1 logP (V
(t)
n )

∑N(t)

n=1 D
(t)
n

)

2https://radimrehurek.com/gensim/models/dtmmodel.html

model
metric

SumPPL Err mean-COH median-COH TTD

DTM 10.9 8.10 0.1514 0.1379 0.084

RNN-RSM 3.8 7.58 0.1620 0.1552 0.268

Table 3: State-of-the-art Comparison: Generalization
(PPL and Err), Topic Interpretation (COH) and Evolu-
tion (TTD) in DTM and RNN-RSM models

where t is the time step. N (t) is the number of
documents in a collection (V̂(t)) at time t. Better
models have lower perplexity values, suggesting
less uncertainties about the documents. For held-
out documents, we take 10 documents from each
time step i.e. total 190 documents and compute
perplexity for 30 topics. Fig 3d shows the com-
parison of perplexity values for unobserved doc-
uments from DTM and RNN-RSM at each time
step. The SumPPL (Table 3) is the sum of PPL
values for the held-out sets of each time step.

Document Time Stamp Prediction: To fur-
ther assess the dynamic topics models, we split
the document collections at each time step into
80-20% train-test, resulting in 1067 held-out doc-
uments. We predict the time stamp (dating) of a
document by finding the most likely (with the low-
est perplexity) location over the time line. See the
mean absolute error (Err) in year for the held-out
in Table 3. Note, we do not use the time stamp as
observables during training.

3.3 TSD, TED: Topic Evolution over Time

Topic Detection: To extract topics from each
RSM, we compute posterior P (V̂(t)|hj = 1) by
activating a hidden unit and deactivating the rest
in a hidden layer. We extract the top 20 terms
for every 30 topic set from 1996-2014, resulting
in |Q|max = 19× 30× 20 possible topic terms.

Topic Popularity: To determine topic popular-
ity, we selected three popular topics (Sentiment
Analysis, Word Vector and Dependency Parsing)
in NLP research and create a set3 of key-terms
(including unigrams and bigrams) for each topic.
We compute cosine similarity of the key-terms de-
fined for each selected topic and topics discovered
by the topic models over the years. We consider
the discovered topic that is the most similar to the
key-terms in the target topic and plot the simi-
larity values in Figure 3a, 3b and 3b. Observe
that RNN-RSM shows better topic evolution for
the three emerging topics. LDA and RSM show

3topic-terms to be released with code
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(a) Topic: Sentiment Analysis
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(b) Topic: Word Vector
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(c) Topic: Dependency Parsing
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(d) Perplexity on Unobserved
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(f) COH (median) Over Time
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Figure 3: (a, b, c): Topic popularity by LDA, RSM, DTM and RNN-RSM over time (d): Perplexity on the
unobserved document collections over time (e, f): Mean and Median Topic Coherence (g, h): Topic Evolution
(i,j,k,l): Topic focus change over time. Adj- Adjacent; Sim- Similarity

topical locality in Figure 3c attributed to no corre-
lation in topic dynamics over time, while in Fig-
ure 3b, DTM does not capture evolution of topic
Word Vector.

Topic Drift (Focus Change): To compute the
topic focus change over the years, we first split
the time period 1996-2014 into five parts:{1996,
2000, 2005, 2010, 2014}. The cosine similarity
scores are computed between the topic sets dis-
covered in a particular year and the years pre-
ceding it in the above set, for example the sim-
ilarity scores between the topic-terms in (1996,
2000), (1996, 2005), (1996, 2010) and (1996,
2014), respectively. Figure 3i, 3j, 3k and 3l
demonstrate that RNN-RSM shows higher conver-
gence in topic focus over the years, compared to
LDA and RSM. In RNN-RSM, the topic similar-
ity is gradually increased over time, however not
in DTM. The higher similarities in the topic sets
indicate that new/existing topics and words do not
appear/disappear over time.

We compute topic-term drift (TTD) to show

the changing topics from initial to final year, as

TTD = 1.0− cosineSimilarity(Q(t),Q(t′))

where Q is the set of all topic-terms for time step
t. Table 3 shows that TTD (where t=1996 and
t′=2014) are 0.268 and 0.084 for RNN-RSM and
DTM, respectively. It suggests that the higher
number of new topic-terms evolved in RNN-RSM,
compared to DTM. Qualitatively, the Table 4
shows the topics observed with the highest and
lowest cosine drifts in DTM and RNN-RSM.

In Figure 3g and 3h, we also illustrate the tem-
poral evolution (drift) in the selected topics by
computing cosine similarity on their adjacent topic
vectors over time. The topic vectors are selected
similarly as in computing topic popularity. We ob-
serve better TED in RNN-RSM than DTM for the
three emerging topics in NLP research. For in-
stance, for the selected topic Word Vector, the red
line in DTM (Fig 3h) shows no drift (for x-axis
00-05, 05-10 and 10-14), suggesting the topic-
terms in the adjacent years are similar and does
not evolve.
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Drift Model (year) Topic Terms

0.20
DTM (1996)

document, retrieval, query, documents, information, search, information retrieval, queries, terms,
words, system, results, performance, method, approach

DTM (2014)
document, query, search, documents, queries, information, retrieval, method, results,

information retrieval, research, terms, other, approach, knowledge

0.53
DTM (1996)

semantic, lexical, structure, syntactic, argument, frame, example, lexicon, information, approach,
source, function, figure, verbs, semantic representation

DTM (2014)
semantic, argument, frame, sentence, syntactic, semantic parsing, structure, semantic role,

example, role labeling, language, learning, logical form, system, lexicon

0.20
RNN-RSM (1996)

reordering, statistical machine, translation model, translations, arabic, word align, translation probability, word alignment,
translation system, source word, ibm model, source sentence, english translation, target language, word segmentation

RNN-RSM (2014)
reordering, statistical machine, translation model, translations, arabic, word align, translation probability, word alignment,

translation system, source word, reordering model, bleu score, smt system, english translation, target language

0.53
RNN-RSM (1996)

input, inference, semantic representation, distributional models, logical forms, space model, clustering algorithm, space models,
similar word, frequent word, meaning representation, lexical acquisition, new algorithm, same context, multiple words

RNN-RSM (2014)
input, inference, word vector, word vectors, vector representation, semantic representation, distributional models, semantic space,

space model, semantic parser, vector representations, neural language, logical forms, cosine similarity, clustering algorithm

Table 4: Topics (top 15 words) with the highest and lowest drifts (cosine) observed in DTM and RNN-RSM

3.4 Topic Interpretability
Beyond perplexities, we also compute topic coher-
ence (Chang et al., 2009; Newman et al., 2009;
Das et al., 2015) to determine the meaningful
topics captured. We use the coherence mea-
sure proposed by Aletras and Stevenson (2013)
that retrieves co-occurrence counts for the set of
topic words using Wikipedia as a reference cor-
pus to identify context features (window=5) for
each topic word. Relatedness between topic words
and context features is measured using normalized
pointwise mutual information (NPMI), resulting
in a single vector for every topic word. The coher-
ence (COH) score is computed as the arithmetic
mean of the cosine similarities between all word
pairs. Higher scores imply more coherent topics.
We use Palmetto4 library to estimate coherence.
Quantitative: We compute mean and median co-
herence scores for each time step using the corre-
sponding topics, as shown in Fig 3e and 3f. Ta-
ble 3 shows mean-COH and median-COH scores,
computed by mean and median of scores from
Fig 3e and 3f, respectively. Observe that RNN-
RSM captures topics with higher coherence.
Qualitative: Table 5 shows topics (top-10 words)
with the highest and lowest coherence scores.

3.5 TTC: Trending Keywords over time
We demonstrate the capability of RNN-RSM to
capture word evolution (usage) in topics over
time. We define: keyword-trend and SPAN. The
keyword-trend is the appearance/disappearance of
the keyword in topic-terms detected over time,
while SPAN is the length of the longest sequence
of the keyword appearance in its keyword trend.

4github.com/earthquakesan/palmetto-py

DTM (2001) RNN-RSM (2001) DTM (2012) RNN-RSM (1997)
semantic words discourse parse

frame models relation cluster
argument grammar relations clustering
syntactic trees structure results
structure dependency parsing sentence query
lexical parsers class pos tag

example dependency trees lexical queries
information parsing argument retrieval
annotation parse trees corpus coreference

lexicon dependency parse other logical form
COH: 0.268 0.284 0.064 0.071

Table 5: Topics with the highest and lowest coherence

Let Q̂model = {Q(t)
model}Tt=1 be a set of sets5 of

topic-terms discovered by themodel (LDA, RSM,
DTM and RNN-RSM) over different time steps.
Let Q(t) ∈ Q̂model be the topic-terms at time step
t. The keyword-trend for a keyword k is a time-
ordered sequence of 0s and 1s, as

trendk(Q̂) = [find(k,Q(t))]Tt=1

where; find(k,Q(t)) =

{
1 if k ∈ Q(t)

0 otherwise
(7)

And the SPAN (Sk) for the kth keyword is-

Sk(Q̂) = length
(
longestOnesSeq(trendk(Q̂)

)

We compute keyword-trend and SPAN for each
term from the set of some popular terms. We de-
fine average-SPAN for all the topic-terms appear-
ing in the topics discovered over the years,

avg-SPAN(Q̂) =
1

||Q̂||
∑

{k|Q(t)∈Q̂∧k∈Q(t)}

Sk(Q̂)

v̂k

=
1

||Q̂||
∑

{k|Q(t)∈Q̂∧k∈Q(t)}

Sdictk (Q̂)

5a set by bold and set of sets by b̂old
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Figure 4: Keyword-trend by RNN-RSM, DTM, RSM,
LDA. Bar: Keyword presence in topics for the year

where ||Q̂|| = |{k|Q(t) ∈ Q̂ ∧ k ∈ Q(t)}|
is the count of unique topic-terms and v̂k =∑T

t=1

∑Dt
j=1 v

k
j,t denotes the count of kth keyword.

In Figure 4, the keyword-trends indicate emer-
gence (appearance/disappearance) of the selected
popular terms in topics discovered in ACL and
EMNLP papers over time. Observe that RNN-
RSM captures longer SPANs for popular key-
words and better word usage in NLP research. For
example: Word Embedding is one of the top key-
words, appeared locally (Figure 5) in the recent
years. RNN-RSM detects it in the topics from
2010 to 2014, however DTM does not. Similarly,
for Neural Language. However, Machine Trans-
lation and Language Model are globally appeared
in the input document collections over time and
captured in the topics by RNN-RSM and DTM.
We also show keywords (Rule-set and Seed Words)
that disappeared in topics over time.

Higher SPAN suggests that the model is capa-
ble in capturing trending keywords. Table 6 shows
corresponding comparison of SPANs for the 13
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Figure 5: Key-term frequency in the input over years

Term v̂k
LDA RSM DTM RNN-RSM

Sk Sdictk Sk Sdictk Sk Sdictk Sk Sdictk

Textual entailment 918 0 .000 1 .001 0 .000 11 .011
Sentiment analysis 1543 6 .004 3 .002 5 .0032 11 0.007
Lda model 392 1 .003 1 .002 0 .000 8 .020
Dependency parsing 3409 9 .003 5 .001 11 .0032 18 .005
Latent semantic 974 1 .001 2 .002 0 .000 18 .018
Relation extraction 1734 4 .002 1 .001 9 .0052 12 .007
Word embedding 534 1 .002 1 .002 0 .000 5 .009
Neural language 121 0 .000 3 .025 0 .000 5 .041
Machine translation 11741 11 .001 7 .001 19 .0016 19 .002
Language model 11768 13 .001 3 .000 19 .0016 19 .002
Graphical model 680 0 .000 1 .001 0 .000 11 .016
Rule set 589 1 .0017 4 .0068 0 .000 2 .0034
Seed words 396 1 .0025 1 .0025 0 .000 4 .0101

avg-SPAN(Q̂) .002 .007 .003 .018
||Q̂model|| 926 2274 335 731

Table 6: SPAN (Sk) for selected terms, avg-SPAN and
set ||Q̂|| by LDA, RSM, DTM and RNN-RSM

selected keywords. The SPAN Sk for each key-
word is computed from Figure 4. Observe that
||Q̂||DTM < ||Q̂||RNN−RSM suggests new topics
and words emerged over time in RNN-RSM, while
higher SPAN values in RNN-RSM suggest better
trends. Figure 6 shows how the word usage, cap-
tured by DTM and RNN-RSM for the topic Word
Vector, changes over 19 years in NLP research.
RNN-RSM captures popular terms Word Embed-
ding and Word Representation emerged in it.

4 Discussion: RNN-RSM vs DTM

Architecture: RNN-RSM treats document’s
stream as high dimensional sequences over time
and models the complex conditional probability
distribution i.e. heteroscedasticity in document
collections and topics over time by a temporal
stack of RSMs (undirected graphical model), con-
ditioned on time-feedback connections using RNN
(Rumelhart et al., 1985). It has two hidden lay-
ers: h (stochastic binary) to capture topical infor-
mation, while u (deterministic) to convey tempo-
ral information via BPTT that models the topic
dependence at a time step t on all the previous
steps τ < t. In contrast, DTM is built upon
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Figure 6: Word usage for emerging topic Word Vector
over time, captured by DTM and RNN-RSM

LDA (directed model), where Dirichlet distribu-
tion on words is not amenable to sequential mod-
eling, therefore its natural parameters (topic and
topic proportion distributions) for each topic are
chained, instead of latent topics that results in in-
tractable inference in topic detection and chaining.

Topic Dynamics: The introduction of explicit
connection in latent topics in RNN-RSM allow
new topics and words for the underlying topics to
appear or disappear over time by the dynamics of
topic correlations. As discussed, the distinction of
h and u permits the latent topic h(t) to capture new
topics, that may not be captured by h(t−1).

DTM assumes a fixed number of global topics
and models their distribution over time. However,
there is no such assumption in RNN-RSM. We
fixed the topic count in RNN-RSM at each time
step, since Wvh is fixed over time and RSM bi-
ases turn off/on terms in each topic. However,
this is fundamentally different for DTM. E.g. a
unique label be assigned to each of the 30 top-
ics at any time steps t and t′. DTM follows
the sets of topic labels: {TopicLabels(t)}30k=1 =
{TopicLabels(t′)}30k=1, due to eq (1) in Blei and
Lafferty (2006) (discussed in section 5) that limits
DTM to capture new (or local) topics or words ap-
peared over time. It corresponds to the keyword-
trends (section 3.5).

Optimization: The RNN-RSM is based on
Gibbs sampling and BPTT for inference while
DTM employs complex variational methods, since
applying Gibbs sampling is difficult due to the
nonconjugacy of the Gaussian and multinomial
distributions. Thus, easier learning in RNN-RSM.

For all models, approximations are solely used
to compute the likelihood, either using varia-
tional approaches or contrastive divergence; per-
plexity was then computed based on the approxi-
mated likelihood. More specifically, we use vari-
ational approximations to compute the likelihood

for DTM (Blei and Lafferty, 2006). For RSM and
RNN-RSM, the respective likelihoods are approx-
imated using the standard Contrastive Divergence
(CD). While there are substantial differences be-
tween variational approaches and CD, and thus in
the manner the likelihood for different models is
estimated - both approximations work well for the
respective family of models in terms of approxi-
mating the true likelihood. Consequently, perplex-
ities computed based on these approximated like-
lihoods are indeed comparable.

5 Conclusion and Future Work

We have proposed a neural temporal topic model
which we name as RNN-RSM, based on prob-
abilistic undirected graphical topic model RSM
with time-feedback connections via determinis-
tic RNN, to capture temporal relationships in his-
torical documents. The model is the first of its
kind that learns topic dynamics in collections of
different-sized documents over time, within the
generative and neural network framework. The ex-
perimental results have demonstrated that RNN-
RSM shows better generalization (perplexity and
time stamp prediction), topic interpretation (co-
herence) and evolution (popularity and drift) in
scientific articles over time. We also introduced
SPAN to illustrate topic characterization.

In future work, we forsee to investigate learning
dynamics in variable number of topics over time.
It would also be an interesting direction to inves-
tigate the effect of the skewness in the distribu-
tion of papers over all years. Further, we see a po-
tential application of the proposed model in learn-
ing the time-aware i.e. dynamic word embeddings
(Aitchison, 2001; Basile et al., 2014; Bamler and
Mandt, 2017; Rudolph and Blei, 2018; Yao et al.,
2018) in order to capture language evolution over
time, instead of document topics.
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Abstract

Multilingual topic models enable document
analysis across languages through coherent
multilingual summaries of the data. However,
there is no standard and effective metric to
evaluate the quality of multilingual topics. We
introduce a new intrinsic evaluation of multi-
lingual topic models that correlates well with
human judgments of multilingual topic coher-
ence as well as performance in downstream ap-
plications. Importantly, we also study evalua-
tion for low-resource languages. Because stan-
dard metrics fail to accurately measure topic
quality when robust external resources are un-
available, we propose an adaptation model that
improves the accuracy and reliability of these
metrics in low-resource settings.

1 Introduction

Topic models provide a high-level view of the main
themes of a document collection (Boyd-Graber
et al., 2017). Document collections, however, are
often not in a single language, driving the develop-
ment of multilingual topic models. These models
discover topics that are consistent across languages,
providing useful tools for multilingual text analy-
sis (Vulić et al., 2015), such as detecting cultural
differences (Gutiérrez et al., 2016) and bilingual
dictionary extraction (Liu et al., 2015).

Monolingual topic models can be evaluated
through likelihood (Wallach et al., 2009b) or co-
herence (Newman et al., 2010), but topic model
evaluation is not well understood in multilingual
settings. Our contributions are two-fold. We in-
troduce an improved intrinsic evaluation metric
for multilingual topic models, called Crosslingual
Normalized Pointwise Mutual Information (CNPMI,
Section 2). We explore the behaviors of CNPMI at
both the model and topic levels with six language
pairs and varying model specifications. This metric

correlates well with human judgments and crosslin-
gual classification results (Sections 5 and 6).

We also focus on evaluation in low-resource lan-
guages, which lack large parallel corpora, dictio-
naries, and other tools that are often used in learn-
ing and evaluating topic models. To adapt CNPMI

to these settings, we create a coherence estimator
(Section 3) that extrapolates statistics derived from
antiquated, specialized texts like the Bible: often
the only resource available for many languages.

2 Evaluating Multilingual Coherence

A multilingual topic contains one topic for each
language. For a multilingual topic to be meaning-
ful to humans (Figure 1), the meanings should be
consistent across the languages, in addition to co-
herent within each language (i.e., all words in a
topic are related).

This section describes our approach to evaluating
the quality of multilingual topics. After defining
the multilingual topic model, we describe topic
model evaluation extending standard monolingual
approaches to multilingual settings.

2.1 Multilingual Topic Modeling

Probabilistic topic models associate each document
in a corpus with a distribution over latent topics,
while each topic is associated with a distribution
over words in the vocabulary. The most widely
used topic model, latent Dirichlet allocation (Blei
et al., 2003, LDA), can be extended to connect lan-
guages. These extensions require additional knowl-
edge to link languages together.

One common encoding of multilingual knowl-
edge is document links (indicators that documents
are parallel or comparable), used in polylingual
topic models (Mimno et al., 2009; Ni et al., 2009).
In these models, each document d indexes a tuple of
parallel/comparable language-specific documents,

1090



d(`), and the language-specific “views” of a docu-
ment share the document-topic distribution θd. The
generative story for the document-links model is:

1 for each topic k and each language ` do
2 Draw a distribution over words φ`k ∼ Dirichlet(β);

3 for each document tuple d =
(
d(1), . . . , d(L)

)
do

4 Draw a distribution over topics θd ∼ Dirichlet(α);
5 for each language ` = 1, . . . ,L do
6 for each token t ∈ d(`) do
7 Draw a topic zn ∼ θd;
8 Draw a word wn ∼ φ`z;

Alternatively, word translations (Jagarlamudi
and Daumé III, 2010), concept links (Gutiérrez
et al., 2016; Yang et al., 2017), and multi-level
priors (Krstovski et al., 2016) can also provide mul-
tilingual knowledges. Since the polylingual topic
model is the most common approach for building
multilingual topic models (Vulić et al., 2013, 2015;
Liu et al., 2015; Krstovski and Smith, 2016), our
study will focus on this model.

2.2 Monolingual Evaluation
Most automatic topic model evaluation metrics use
co-occurrence statistics of word pairs from a refer-
ence corpus to evaluate topic coherence, assuming
that coherent topics contain words that often ap-
pear together (Newman et al., 2010). The most suc-
cessful (Lau et al., 2014) is normalized pointwise
mutual information (Bouma, 2009, NPMI). NPMI

compares the joint probability of words appearing
together Pr(wi,wj) to their probability assuming
independence Pr(wi) Pr(wj), normalized by the
joint probability:

NPMI(wi,wj) =
log

Pr(wi,wj)
Pr(wi) Pr(wj)

log Pr(wi,wj)
. (1)

The word probabilities are calculated from a ref-
erence corpus, R, typically a large corpus such
as Wikipedia that can provide meaningful co-
occurrence patterns that are independent of the
target dataset.

The quality of topic k is the average NPMI of all
word pairs (wi,wj) in the topic:

NPMIk =
−1(
C
2

)
∑

i∈W(k,C)

∑

j 6=i
NPMI(wi,wj), (2)

where W(k,C) are the C most probable words
in the topic-word distribution φk (the number of
words is the topic’s cardinality). Higher NPMIk
means the topic’s top words are more coupled.

computer
Internet
Google

web
Twitter

dator
kabel
webb
nättet

Google

tree
species
biology

sun
plants

spaghete
aur
vin

cafea
sos

star
car
cars
desk

cream

yulduz
mushuk
kabellar

stol
cream

Topic 5
EN SV EN RO EN UZ

Topic 6 Topic 7

Figure 1: Topic 5 is multilingually coherent: both
the English and Swedish topics are about technology.
Topic 6 is about biology in English but food in Roma-
nian, so it is low quality although coherent monolin-
gually. Topic 7 is monolingually incoherent, so it is a
low quality topic even if it contains word translations.

2.3 Existing Multilingual Evaluations

While automatic evaluation has been well-studied
for monolingual topic models, there are no robust
evaluations for multilingual topic models. We first
consider two straightforward metrics that could be
used for multilingual evaluation, both with limita-
tions. We then propose an extension of NPMI that
addresses these limitations.

Internal Coherence. A simple adaptation of
NPMI is to calculate the monolingual NPMI score
for each language independently and take the av-
erage. We refer this as internal NPMI (INPMI) as it
evaluates coherence within a language. However,
this metric does not consider whether the topic
is coherent across languages—that is, whether a
language-specific word distribution φ`1k is related
to the corresponding distribution in another lan-
guage, φ`2k.

Crosslingual Consistency. Another straightfor-
ward measurement is Matching Translation Accu-
racy (Boyd-Graber and Blei, 2009, MTA), which
counts the number of word translations in a topic
between two languages using a bilingual dictio-
nary. This metric can measure whether a topic is
well-aligned across languages literally, but cannot
capture non-literal more holistic similarities across
languages.

2.4 New Metric: Crosslingual NPMI

We extend NPMI to multilingual models, with a
metric we call crosslingual normalized pointwise
mutual information (CNPMI). This metric will be
the focus of our experiments.

A multilingually coherent topic means that if
wi,`1 in language `1 and wj,`2 in language `2 are
in the same topic, they should appear in similar
contexts in comparable or parallel corporaR(`1,`2).
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Figure 2: The coherence estimator takes multilingual
topics and features from them then outputs an estimated
topic coherence.

Our adaptation of NPMI is based on the same prin-
ciples as the monolingual version, but focuses on
the co-occurrences of bilingual word pairs. Given a
bilingual word pair (wi,`1 ,wj,`2) the co-occurrence
of this word pair is the event where word wi,`1 ap-
pears in a document in language `1 and the word
wj,`2 appears in a comparable or parallel document
in language `2.

The co-occurrence probability of each bilingual
word pair is:

Pr (wi,`1 ,wj,`2)

,
∣∣{d : wi,`1 ∈ d(`1),wj,`2 ∈ d(`2)

}∣∣
∣∣R(`1,`2)

∣∣ ,
(3)

where d =
(
d(`1), d(`2)

)
is a pair of paral-

lel/comparable documents in the reference corpus
R(`1,`2). When one or both words in a bilingual
pair do not appear in the reference corpus, the co-
occurrence score is zero.

Similar to monolingual settings, CNPMI for a
bilingual topic k is the average of the NPMI scores
of all C2 bilingual word pairs,

CNPMI(`1, `2, k) =

∑C
i,j NPMI (wi,`1 ,wj,`2)

C2
. (4)

It is straightforward to generalize CNPMI from a
language pair to multiple languages by averaging
CNPMI(`i, `j , k) over all language pairs (`i, `j).

3 Adapting to Low-Resource Languages

CNPMI needs a reference corpus for co-occurrence
statistics. Wikipedia, which has good coverage of
topics and vocabularies is a common choice (Lau
and Baldwin, 2016). Unfortunately, Wikipedia
is often unavailable or not large enough for low-
resource languages. It only covers 282 languages,1

and only 249 languages have more than 1,000
pages: many of pages are short or unlinked to

1
https://meta.wikimedia.org/wiki/List_of_Wikipedias

a high-resource language. Since CNPMI requires
comparable documents, the usable reference corpus
is defined by paired documents.

Another option for a parallel reference corpus is
the Bible (Resnik et al., 1999), which is available in
most world languages;2 however, it is small and ar-
chaic. It is good at evaluating topics such as family
and religion, but not “modern” topics like biology
and Internet. Without reference co-occurrence
statistics relevant to these topics, CNPMI will fail
to judge topic coherence—it must give the ambigu-
ous answer of zero. Such a score could mean a
totally incoherent topic where each word pair never
appears together (Topics 6 in Figure 1), or an un-
judgeable topic (Topic 5).

Our goal is to obtain a reliable estimation of
topic coherence for low-resource languages when
the Bible is the only reference. We propose a model
that can correct the drawbacks of a Bible-derived
CNPMI. While we assume bilingual topics paired
with English, our approach can be applied to any
high-resource/low-resource language pair.

We take Wikipedia’s CNPMI from high-resource
languages as accurate estimations. We then build a
coherence estimator on topics from high-resource
languages, with the Wikipedia CNPMI as the target
output. We use linear regression using the below
features. Given a topic in low-resource language,
the estimator produces an estimated coherence (Fig-
ure 2).

3.1 Estimator Features

The key to the estimator is to find features that
capture whether we should trust the Bible. For
generality, we focus on features independent of
the available resources other than the Bible. This
section describes the features, which we split into
four groups.

Base Features (BASE) Our base features include
information we can collect from the Bible and the
topic model: cardinality C, CNPMI and INPMI,
MTA, and topic word coverage (TWC), which
counts the percentage of topic words in a topic
that appear in a reference corpus.

Crosslingual Gap (GAP) A low CNPMI score
could indicate a topic pair where each language
has a monolingually coherent topic but that are not
about the same theme (Topic 6 in Figure 1). Thus,
we add two features to capture this information

2The Bible is available in 2,530 languages.
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CNPMI = 0.007
Cardinality = 40
TWC (EN) = 0.58
TWC (AM) = 0.5
MTA = 0.0

Word Era (mean) = 1823
Word Era (std) = 21

WS (mean) = 0.204
WS (std) = 0.208

MC(EN) = 0.691
MC (AM) = 0.757
ICC (EN, AM) = 1.095
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To
pi

c 
8

0.04
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BASE BASE+GAP BASE+GAP+ERA BASE+GAP+ERA+DRIFT
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C
oherence scores

MC(EN) = 2.371
MC (AM) = 0.462
ICC (EN, AM) = 0.195

CNPMI = 0.081
Cardinality = 5
TWC (EN) = 0.6
TWC (AM) = 1.0
MTA = 0.0

Word Era (mean) = 1923
Word Era (std) = 60

WS (mean) = 0.212
WS (std) = 0.224

Figure 3: As the estimator adds additional features, the estimated topic coherence scores (solid lines) approach to
Wikipedia CNPMI (dashed lines).

using the Bible: mismatch coefficients (MC) and
internal comparison coefficients (ICC):

MC(`1; `2, k) =
CNPMI(`1, `2, k)

INPMI(`1, k) + α
, (5)

ICC(`1, `2, k) =
INPMI(`1, k) + α

INPMI(`2, k) + α
, (6)

where α is a smoothing factor (α = 0.001 in
our experiments). MC recognizes the gap be-
tween crosslingual and monolingual coherence, so
a higher MC score indicates a gap between coher-
ence within and across languages. Similarly, ICC

compares monolingual coherence to tell if both
languages are coherent: the closer to 1 the ICC

is, the more comparable internal coherence both
languages have.

Word Era (ERA) Because the Bible’s vocabu-
lary is unable to evaluate modern topics, we must
tell the model what the modern words are. The
word era features are the earliest usage year 3 for
each word in a topic. We use both the mean and
standard deviation as features.

Meaning Drift (DRIFT). The meaning of a word
can expand and drift over time. For example, in the
Bible, “web” appears in Isaiah 59:5:

They hatch cockatrice’ eggs, and weave
the spider’s web.

3
https://oxforddictionaries.com/

The word “web” could be evaluated correctly in an
animal topic. For modern topics, however, Bible
fails to capture modern meanings of “web”, as in
Topic 5 (Figure 1).

To address this meaning drift, we use a method
similar to Hamilton et al. (2016). For each English
word, we calculate the context vector from Bible
and from Wikipedia with a window size of five
and calculate the cosine similarity between them as
word similarity. Similar context vectors mean that
the usage in the Bible is consistent with Wikipedia.
We calculate word similarities for all the English
topic words in a topic and use the average and
standard deviation as features.

3.2 Example
In Figure 3, Topic 1 is coherent while Topic 8 is
not. From left to right, we incrementally add new
feature sets, and show how the estimated topic co-
herence scores (dashed lines) approach the ideal
CNPMI (dotted lines). When only using the BASE

features, the estimator gives a higher prediction to
Topic 8 than to Topic 1. Their low MTA and TWC

prevent accurate evaluations. Adding GAP does
not help much. However, ICC(EN, AM, k = 1) is
much smaller, which might indicate a large gap of
internal coherence between the two languages.

Adding ERA makes the estimated scores flip be-
tween the two topics. Topic 1 has word era of 1823,
much older than Topic 8’s word era of 1923, in-
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Pair Training Reference
Wikipedia The Bible Wiktionary

EN-RO 1,272 8,126 1,189 29,836
EN-SV 3,378 9,067 1,189 42,953
EN-AM 421 1,581 1,189 1,091
EN-TL 542 4,166 1,189 10,970
EN-TR 874 5,524 1,189 16,853
EN-ZH 874 10,000 1,189 22,946

Table 1: Number of document pairs in the training and
reference datasets and number of dictionary entries for
each language pair.

dicating that Topic 8 includes modern words the
Bible lacks (e.g., “computer”). Using all the fea-
tures, the estimator gives more accurate topic co-
herence evaluations.

4 Experiments: Bible to Wikipedia

We experiment on six languages (Table 1) from
three corpora: Romanian (RO) and Swedish (SV)
from EuroParl as representative of well-studied and
rich-resource languages (Koehn, 2005); Amharic
(AM) and Tagalog (TL) from collected news, as low-
resource languages (Huang et al., 2002a,b); and
Chinese (ZH) and Turkish (TR) from TED Talks
2013 (Tiedemann, 2012), adding language variety
to our experiments. Each language is paired with
English as a bilingual corpus.

Typical preprocessing methods (stemming, stop
word removal, etc.) are often unavailable for low-
resource languages. For a meaningful comparison
across languages, we do not apply any stemming or
lemmatization strategies, including English, except
removing digit numbers and symbols. However,
we remove words that appear in more than 30% of
documents for each language.

Each language pair is separately trained using
the MALLET (McCallum, 2002) implementation of
the polylingual topic model. Each experiment runs
five Gibbs sampling chains with 1,000 iterations
per chain with twenty topics. The hyperparameters
are set to the default values (α = 0.1, β = 0.01),
and are optimized every 50 iterations in MALLET
using slice sampling (Wallach et al., 2009a).

4.1 Evaluating Multilingual Topics

We use Wikipedia and the Bible as reference cor-
pora for calculating co-occurrence statistics. Dif-
ferent numbers of Wikipedia articles are available
for each language pair (Table 1), while the Bible
contains a complete set of 1,189 chapters for all
of its translations (Christodoulopoulos and Steed-

rights, government, newspaper, country, justice, democratic
ፕሬስ (press), ነፃ (free), ጋዜጣ (newspaper), መብት (right), 
ጋዜጠኞች (journalists), ሕዝብ (people), ሥርዓት (system)

Are these two groups of words talking about the same thing?

Yes Somewhat No

Figure 4: The interface for topic quality judgments.
Users read the topic first, and make a judgment on
whether the words in this pair are talking about the
same thing. The translations are here for illustration;
they are not shown to the users.

Wikipedia The Bible
MTA

CNPMI INPMI CNPMI INPMI

EN-RO 0.490 0.118 −0.096 0.031 0.592
EN-SV 0.453 −0.295 0.164 −0.351 0.248
EN-AM 0.110 0.019 0.289 0.249 0.172
EN-TL 0.512 0.277 0.166 0.002 0.289
EN-TR 0.664 0.243 0.209 −0.246 0.677
EN-ZH 0.436 0.297 0.274 0.157 0.411

Table 2: Pearson correlations between human judg-
ments and CNPMI are higher than INPMI, while MTA
correlations are comparable to CNPMI.

man, 2015). We use Wiktionary as the dictionary
to calculate MTA.

4.2 Training the Estimator

In addition to experimenting on Wikipedia-based
CNPMI, we also re-evaluate the topics’ Bible coher-
ence using our estimator. In the following experi-
ments, we use an AdaBoost regressor with linear
regression as the coherence estimator (Friedman,
2002; Collins et al., 2000). The estimator takes
a topic and low-quality CNPMI score as input and
outputs (hopefully) an improved CNPMI score.

To make our testing scenario more realistic,
we treat one language as our estimator’s test lan-
guage and train on multilingual topics from the
other languages. We use three-fold cross-validation
over languages to select the best hyperparameters,
including the learning rate and loss function in
AdaBoost.R2 (Drucker, 1997).

5 Topic-Level Evaluation

We first study CNPMI at the topic level: does a
particular topic make sense? An effective evalu-
ation should be consistent with human judgment
of the topics (Chang et al., 2009). In this section,
we measure gold-standard human interpretability
of multilingual topics to establish which automatic
measures of topic interpretability work best.
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Test Bible Train
RO+SV ZH+TR RO+SV+ZH+TR

AM −0.015 0.332 0.315 0.333
TL −0.309 0.767 0.631 0.705

AM+TL ZH+TR AM+TL+ZH+TR
RO −0.269 0.736 0.681 0.713
SV 0.000 0.787 0.645 0.683

RO+SV AM+TL RO+SV+AM+TL
ZH 0.217 0.751 0.732 0.741
TR 0.113 0.680 0.642 0.666

Table 3: Correlations between the Wikipedia-based
CNPMI and the Bible-based CNPMI, before and af-
ter using the coherence estimator, at the topic level.
Strong correlations indicate that the estimator improves
CNPMI estimates.

5.1 Task Design

Following monolingual coherence evaluations (Lau
et al., 2014), we present topic pairs to bilingual
CrowdFlower users. Each task is a topic pair with
the top ten topic words (C = 10) for each language.
We ask if both languages’ top words in a multi-
lingual topic are talking about the same concept
(Figure 4), and make a judgment on a three-point
scale—coherent (2 points), somewhat coherent (1
point), and incoherent (0 points). To ensure the
users have adequate language competency, we in-
sert several topics that are easily identifiable as
incoherent as a qualification test.

We randomly select sixty topics from each lan-
guage pair (360 topics total), and each topic is
judged by five users. We take the average of the
judgment points and calculate Pearson correlations
with the proposed evaluation metrics (Table 2).
NPMI-based scores are separately calculated from
each reference corpus.

5.2 Agreement with Human Judgments

CNPMI (the extended metric) has higher corre-
lations with human judgments than INPMI (the
naive adaptation of monolingual NPMI), while MTA

(matching translation accuracy) correlations are
comparable to CNPMI.

Unsurprisingly, when using Wikipedia as the
reference, the correlations are usually higher than
when using the Bible. The Bible’s archaic content
limits its ability to estimate human judgments in
modern corpora (Section 3).

Next, we compare CNPMI to two baselines:
INPMI and MTA. As expected, CNPMI outperforms
INPMI regardless of reference corpus overall, be-
cause INPMI only considers monolingual coher-
ence. MTA has higher correlations than CNPMI

design, film, artist, image, beautiful
�� (works), �� (art), �� (film), ��� (artist), �� (visual)

Russia, Noriega, pope, court, years
Russia (Russia), pamahalaan (government),
Noriega (Noriega), pope (pope), eroplano (plane)

Topic 1 (EN-ZH) MTA= 0.08, CNPMI = 0.37, INPMI = 0.40

Topic 2 (EN-TL) MTA= 0.12, CNPMI = 0.16, INPMI = 0.20

Figure 5: MTA fails to capture semantically related
words (Topic 1) and only looks at translation pairs re-
gardless of internal coherence (Topic 2).

scores from the Bible, because the Bible fails to
give accurate estimates due to limited topic cov-
erage. MTA, on the other hand, only depends on
dictionaries, which are more comprehensive than
the Bible. It is also possible that users are judging
coherence based on translations across a topic pair,
rather than the overall coherence, which would
closely correlate with MTA.

5.3 Re-Estimating Topic-Level Coherence

The Bible—by itself—produces CNPMI values
that do not correlate well with human judgments
(Table 2). After training an estimator (Sec-
tion 4.2), we calculate Pearson’s correlation be-
tween Wikipedia’s CNPMI and the estimated topic
coherence score (Table 3). A higher correlation
with Wikipedia’s CNPMI means more accurate co-
herence.

As a baseline, the correlation of Bible-based
CNPMI without adaptation has negative and near-
zero correlations with Wikipedia;4 it does not cap-
ture coherence. After training the estimator, the
correlations become stronger, indicating the esti-
mated scores are closer to Wikipedia’s CNPMI.

5.4 When MTA Falls Short

We analyze MTA from two aspects—the inability to
capture semantically-related non-translation topic
words, and insensitivity to cardinality—to show
why MTA is not an ideal measurement, even though
it correlates well with human judgments.

Semantics We take two examples with EN-ZH

(Topic 1) and EN-TL (Topic 2) in Figure 5. Topic 1
has fewer translation pairs than Topic 2, which
leads to a lower MTA score for Topic 1. However,
all words in Topic 1 talk about art, while it is hard to
interpret Topic 2. Wikipedia CNPMI scores reveals

4Normally one would not estimate CNPMI on rich-resource
languages using low-resource languages. For completeness,
however, we also include these situations.
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Topic 1 is more coherent. Because our experiments
are on datasets with little divergence between the
themes discussed across languages, this is uncom-
mon for us but could appear in noisier datasets.

Cardinality Increasing cardinality diminishes a
topic’s coherence (Lau and Baldwin, 2016). We
vary the cardinality of topics from ten to fifty at
intervals of ten (Figure 6). As cardinality increases,
more low-probability and irrelevant words appear
the topic, which lowers CNPMI scores. However,
MTA stays stable or increases with increasing cardi-
nality. Thus, MTA fails to fulfill a critical property
of topic model evaluation.

Finally, MTA requires a comprehensive multilin-
gual dictionary, which may be unavailable for low-
resource languages. Additionally, most languages
often only have one dictionary, which makes it
problematic to use the same resource (a language’s
single multilingual dictionary) for training and eval-
uating models that use a dictionary to build multi-
lingual topics (Hu et al., 2014). Given these con-
cerns, we continue the paper’s focus on CNPMI as a
data-driven alternative to MTA. However, for many
applications MTA may suffice as a simple, adequate
evaluation metric.

6 Model-Level Evaluation

While the previous section looked at individual
topics, we also care about how well CNPMI charac-
terizes the quality of models through an average of
a model’s constituent topics.

6.1 Training Knowledge
Adding more knowledge to multilingual topic mod-
els improves topics (Hu et al., 2014), so an effec-
tive evaluation should reflect this improvement as
knowlege is added to the model. For polylingual
topic models, this knowledge takes the form of the
number of linked documents.

We start by experimenting with no multilingual
knowledge: no document pairs share a topic distri-
bution θd (but the documents are in the collection
as unlinked documents). We then increase the num-
ber of document pairs that share θd from 20% of
the corpus to 100%. Fixing the topic cardinality at
ten, CNPMI captures the improvements in models
(Figure 7) through a higher coherence score.

6.2 Agreement with Machines
Topic models are often used as a feature extrac-
tion technique for downstream machine learning

Test Bible Train
RO+SV ZH+TR RO+SV+ZH+TR

AM 0.607 0.677 0.707 0.694
TL 0.796 0.875 0.924 0.918

AM+TL ZH+TR AM+TL+ZH+TR
RO 0.631 0.912 0.919 0.931
SV 0.797 0.959 0.848 0.878

RO+SV AM+TL RO+SV+AM+TL
ZH 0.907 0.918 0.951 0.939
TR 0.911 0.862 0.898 0.887

Table 4: At the model level, the estimator improves
correlations between CNPMI and downstream classifi-
cation for all languages except for Turkish.

applications, and topic model evaluations should
reflect whether these features are useful (Ramage
et al., 2009). For each model, we apply a docu-
ment classifier trained on the model parameters to
test whether CNPMI is consistent with classification
accuracy.

Specifically, we want our classifier to transfer
information from training on one language to test-
ing on another (Smet et al., 2011; Heyman et al.,
2016). We train a classifier on one language’s
documents, where each document’s feature vec-
tor is the document-topic distribution θd. We ap-
ply this to TED Talks, where each document is
labeled with multiple categories. We choose the
most frequent seven categories across the corpus
as labels,5 and only have labeled documents in
one side of a bilingual topic model. CNPMI has
very strong correlations with classification results,
though using the Bible as the reference corpus gives
slightly lower correlation—with higher variance—
than Wikipedia (Figure 8).

6.3 Re-Estimating Model-Level Coherence

In Section 5.3, we improve Bible-based CNPMI

scores for individual topics. Here, we show the es-
timator also improves model-level coherence. We
apply the estimator on the models created in Sec-
tion 6.2 and calculate the correlation between esti-
mated scores and Wikipedia’s CNPMI (Table 4).

The coherence estimator substantially improves
scores except for Turkish: the correlation is better
before applying the estimator (0.911). We suspect
a lack of overlap between topics between Turkish
and languages other than Chinese is to blame (Fig-
ure 9); the features used by the estimator do not
generalize well to other kinds of features; training
on many languages pairs would hopefully solve this

5design, global issues, art, science, technology, business,
and culture
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Figure 6: Increasing cardinality of topic pairs makes it harder to judge the coherence. Decreasing CNPMI scores
reflect the diminished interpretability of topics, while MTA scores do not.
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Figure 7: Adding more document links to the model
produces more multilingually coherent topics. CNPMI
captures this improvement.

issue. Turkish is also morphologically rich, and our
preprocessing completely ignores morphology.

6.4 Reference Size
One challenge with low-resource languages is that
even if Wikipedia is available, it may have too few
documents to accurately calculate coherence. As
a final analysis, we examine how the reliability of
CNPMI degrades with a smaller reference corpus.

We randomly sample 20% to 100% of document
pairs from the reference corpora and evaluate the
polylingual topic model with all document links
(Figure 10), again fixing the cardinality as 10.

CNPMI is stable across different amounts of ref-
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Figure 8: Pearson correlation between classification
F1 scores and CNPMI: both CNPMI data sources pre-
dict whether a classifier using topic features will work
well, but Wikipedia has slightly higher correlation with
lower variance.

horology
theater
politics

lawpeople

journalism military

economics

biology
commerce
medicine

computing

music
education
astronomy
genetics

Tagalog (TL)

Amharic (AM)

Romanian (RO),
Swedish (SV)

Chinese (ZH),
Turkish (TR)

Figure 9: The overlap of topics and domain: only one
out of nine Turkish and Chinese topics have domain
overlap with Tagalog and Amharic topics. This hinders
the Turkish estimator from capturing model-level prop-
erties.

erence documents, as long as the number of refer-
ence documents is sufficiently large. If there are
too few reference documents (for example, 20% of
Amharic Wikipedia is only 316 documents), then
CNPMI degrades.
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Figure 10: CNPMI is stable once the number of refer-
ence documents is large enough (around five thousand
documents).

7 Related Work

Topic Coherence Many coherence metrics
based on co-occurrence statistics have been pro-
posed besides NPMI. Similar metrics—such as
asymmetrical word pair metrics (Mimno et al.,
2011) and combinations of existing measure-
ments (Lau et al., 2014; Röder et al., 2015)—
correlate well with human judgments. NPMI

has been the current gold standard for evalua-
tion and improvements of monolingual topic mod-
els (Pecina, 2010; Newman et al., 2011).

External Tasks Another approach is to use a
model for predictive tasks: the better the results
are on external tasks, the better a topic model is
assumed to be. A common task is held-out like-
lihood (Wallach et al., 2009b; Jagarlamudi and
Daumé III, 2010; Fukumasu et al., 2012), but as
Chang et al. (2009) show, this does not always re-
flect human interpretability. Other specific tasks
have also been used, such as bilingual dictionary
extraction (Liu et al., 2015; Ma and Nasukawa,
2017), cultural difference deteciton (Gutiérrez
et al., 2016), and crosslingual document cluster-
ing (Vulić et al., 2015).

Representation Learning Topic models are one
example of a broad class of techniques of learning
representations of documents (Bengio et al., 2013).
Other approaches learn respresentations at the
word (Klementiev et al., 2012; Vyas and Carpuat,
2016), paragraph (Mogadala and Rettinger, 2016),
or corpus level (Søgaard et al., 2015). However,
neural representation learning approaches are often
data hungry and not adaptable to low-resource lan-
guages. The approaches here could help improve
the evaluation of all multilingual representation
learning algorithms (Schnabel et al., 2015).

8 Conclusion

We have provided a comprehensive analysis of
topic model evaluation in multilingual settings, in-
cluding for low-resource languages. While evalua-
tion is an important area of topic model research,
no previous work has studied evaluation of multilin-
gual topic models. Our work provided two primary
contributions to this area, including a new intrin-
sic evaluation metric, CNPMI, as well as a model
for adapting this metric to low-resource languages
without large reference corpora.

As the first study on evaluation for multilingual
topic models, there is still room for improvement
and further applications. For example, human judg-
ment is more difficult to measure than in monolin-
gual settings, and it is still an open question on how
to design a reliable and accurate survey for multi-
lingual quality judgments. As a measurement of
multilingual coherence, we plan to extend CNPMI

to high-dimensional representations, e.g., multilin-
gual word embeddings, particularly in low-resource
languages (Ruder et al., 2017).
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Abstract
Clinical notes are text documents that are cre-
ated by clinicians for each patient encounter.
They are typically accompanied by medical
codes, which describe the diagnosis and treat-
ment. Annotating these codes is labor inten-
sive and error prone; furthermore, the connec-
tion between the codes and the text is not anno-
tated, obscuring the reasons and details behind
specific diagnoses and treatments. We present
an attentional convolutional network that pre-
dicts medical codes from clinical text. Our
method aggregates information across the doc-
ument using a convolutional neural network,
and uses an attention mechanism to select the
most relevant segments for each of the thou-
sands of possible codes. The method is ac-
curate, achieving precision@8 of 0.71 and a
Micro-F1 of 0.54, which are both better than
the prior state of the art. Furthermore, through
an interpretability evaluation by a physician,
we show that the attention mechanism identi-
fies meaningful explanations for each code as-
signment.

1 Introduction
Clinical notes are free text narratives generated
by clinicians during patient encounters. They are
typically accompanied by a set of metadata codes
from the International Classification of Diseases
(ICD), which present a standardized way of in-
dicating diagnoses and procedures that were per-
formed during the encounter. ICD codes have a
variety of uses, ranging from billing to predic-
tive modeling of patient state (Choi et al., 2016;
Ranganath et al., 2015; Denny et al., 2010; Avati
et al., 2017). Because manual coding is time-
consuming and error-prone, automatic coding has
been studied since at least the 1990s (de Lima et al.,
1998). The task is difficult for two main reasons.
First, the label space is very high-dimensional,
with over 15,000 codes in the ICD-9 taxonomy,

and over 140,000 codes combined in the newer
ICD-10-CM and ICD-10-PCS taxonomies (World
Health Organization, 2016). Second, clinical text
includes irrelevant information, misspellings and
non-standard abbreviations, and a large medical
vocabulary. These features combine to make the
prediction of ICD codes from clinical notes an es-
pecially difficult task, for computers and human
coders alike (Birman-Deych et al., 2005).
In this application paper, we develop convolu-

tional neural network (CNN)-based methods for
automatic ICD code assignment based on text dis-
charge summaries from intensive care unit (ICU)
stays. To better adapt to the multi-label setting,
we employ a per-label attention mechanism, which
allows our model to learn distinct document rep-
resentations for each label. We call our method
Convolutional Attention for Multi-Label classifi-
cation (CAML). Our model design is motivated
by the conjecture that important information cor-
related with a code’s presence may be contained in
short snippets of text which could be anywhere in
the document, and that these snippets likely differ
for different labels. To cope with the large label
space, we exploit the textual descriptions of each
code to guide our model towards appropriate pa-
rameters: in the absence of many labeled examples
for a given code, its parameters should be similar
to those of codes with similar textual descriptions.
We evaluate our approach on two versions of

MIMIC (Johnson et al., 2016), an open dataset
of ICU medical records. Each record includes
a variety of narrative notes describing a patient’s
stay, including diagnoses and procedures. Our ap-
proach substantially outperforms previous results
on medical code prediction on both MIMIC-II and
MIMIC-III datasets.
We consider applications of this work in a deci-

sion support setting. Interpretability is important
for any decision support system, especially in the
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934.1: “Foreign body in main bronchus”
CAML (HI) ...line placed bronchoscopy performed showing large mucus plug on the left on transfer to...
Cosine Sim ...also needed medication to help your body maintain your blood pressure after receiving iv...
CNN ...found to have a large lll lingular pneumonia on chest x ray he was...
Logistic Regression ...impression confluent consolidation involving nearly the entire left lung with either broncho-

centric or vascular...

442.84: “Aneurysm of other visceral artery”
CAML (I) ...and gelfoam embolization of right hepatic artery branch pseudoaneurysm coil embolization

of the gastroduodenal...
Cosine Sim ...coil embolization of the gastroduodenal artery history of present illness the pt is a...
CNN ...foley for hemodynamic monitoring and serial hematocrits angio was performed and his gda

was...
Logistic Regression (I) ...and gelfoam embolization of right hepatic artery branch pseudoaneurysm coil embolization

of the gastroduodenal...

428.20: “Systolic heart failure, unspecified”
CAML ...no mitral valve prolapse moderate to severemitral regurgitation is seen the tricuspid valve...
Cosine Sim ...is seen the estimated pulmonary artery systolic pressure is normal there is no pericardial...
CNN ...and suggested starting hydralazine imdur continue aspirin arg admitted at baseline cr ap-

pears patient...
Logistic Regression (HI) ...anticoagulation monitored on tele pump systolic dysfunction with ef of seen on recent echo...

Table 1: Presentation of example qualitative evaluations. In real evaluation, system names generating the 4-gram
are not given. An ‘I’ marking indicates a snippet evaluated as informative, and ‘HI’ indicates that it is highly
informative; see § 4 for more details.

medical domain. The system should be able to ex-
plain why it predicted each code; even if the codes
are manually annotated, it is desirable to explain
what parts of the text are most relevant to each
code. These considerations further motivate our
per-label attention mechanism, which assigns im-
portance values to n-grams in the input document,
and which can therefore provide explanations for
each code, in the form of extracted snippets of text
from the input document. We perform a human
evaluation of the quality of the explanations pro-
vided by the attention mechanism, asking a physi-
cian to rate the informativeness of a set of automat-
ically generated explanations.1

2 Method
We treat ICD-9 code prediction as a multilabel text
classification problem (McCallum, 1999).2 Let 
represent the set of ICD-9 codes; the labeling prob-
lem for instance i is to determine yi,l ∈ {0, 1}
for all l ∈ . We train a neural network which
passes text through a convolutional layer to com-
pute a base representation of the text of each doc-
ument (Kim, 2014), and makes || binary classifi-

1Our code, data splits, and pre-trained models are
available at github.com/jamesmullenbach/
caml-mimic.

2We focus on codes from the ICD-9 taxonomy, rather than
the more recent ICD-10, for the simple reason that this is the
version of ICD used in the MIMIC datasets.

cation decisions. Rather than aggregating across
this representation with a pooling operation, we
apply an attention mechanism to select the parts of
the document that are most relevant for each possi-
ble code. These attention weights are then applied
to the base representation, and the result is passed
through an output layer, using a sigmoid transfor-
mation to compute the likelihood of each code. We
employ a regularizer to encourage each code’s pa-
rameters to be similar to those of codes with sim-
ilar textual descriptions. We now describe each of
these elements in more detail.
2.1 Convolutional architecture
At the base layer of the model, we have de-
dimensional pre-trained embeddings for each word
in the document, which are horizontally concate-
nated into the matrix X = [x1,x2,… ,xN ], where
N is the length of the document. Adjacent word
embeddings are combined using a convolutional
filter W c ∈ ℝk×de×dc , where k is the filter width,
de the size of the input embedding, and dc the size
of the filter output. At each step n, we compute

hn = g(W c ∗ xn∶n+k−1 + bc), (1)

where ∗ denotes the convolution operator, g is an
element-wise nonlinear transformation, and bc ∈
ℝdc is the bias. We additionally pad each side of

1102



the input with zeros so that the resulting matrixH
has dimension ℝdc×N .

2.2 Attention
After convolution, the document is represented by
the matrixH ∈ ℝdc×N . It is typical to reduce this
matrix to a vector by applying pooling across the
length of document, by selecting the maximum or
average value at each row (Kim, 2014). However,
our goal is to assign multiple labels (i.e., medical
codes) for each document, and different parts of
the base representation may be relevant for differ-
ent labels. For this reason, we apply a per-label
attention mechanism. An additional benefit is that
it selects the k-grams from the text that are most
relevant to each predicted label.
Formally, for each label l, we compute the

matrix-vector product, H⊤ul, where ul ∈ ℝdc is
a vector parameter for label l. We then pass the re-
sulting vector through a softmax operator, obtain-
ing a distribution over locations in the document,

�l = SoftMax(H⊤ul), (2)

where SoftMax(x) = exp(x)∑
i exp(xi)

, and exp(x) is the
element-wise exponentiation of the vector x. The
attention vector � is then used to compute vector
representations for each label,

vl =
N∑
n=1

�l,nhn. (3)

As a baseline model, we instead use max-
pooling to compute a single vector v for all labels,

vj = max
n
ℎn,j . (4)

2.3 Classification
Given the vector document representation vl, we
compute a probability for label l using another lin-
ear layer and a sigmoid transformation:

ŷl = �(�⊤lvl + bl), (5)

where �l ∈ ℝdc is a vector of prediction weights,
and bl is a scalar offset. The overall model is illus-
trated in Figure 1.

Figure 1: CAML architecture with per-label attention
shown for one label. In a max-pooling architecture, H
is mapped directly to the vector vl by maximizing over
each dimension.

2.4 Training
The training procedure minimizes the binary
cross-entropy loss,

LBCE(X, y) = −
∑

l=1
yl log(ŷl)

+ (1 − yl) log(1 − ŷl),

(6)

plus the L2 norm of the model weights, using the
Adam optimizer (Kingma and Ba, 2015).
2.5 Embedding label descriptions
Due to the dimensionality of the label space, many
codes are rarely observed in the labeled data. To
improve performance on these codes, we use text
descriptions of each code from the World Health
Organization (2016). Examples can be found in
Table 1, next to the code numbers. We use these
descriptions to build a secondary module in our
network that learns to embed them as vectors.
These vectors are then used as the target of reg-
ularization on the model parameters �l. If code l
is rarely observed in the training data, this regular-
izer will encourage its parameters to be similar to
those of other codes with similar descriptions.
The code embedding module consists of a max-

pooling CNN architecture. Let zl be amax-pooled
vector, obtained by passing the description for
code l into the module. Let ny be the number of
true labels in a training example. We add the fol-
lowing regularizing objective to our loss L,

L(X, y) = LBCE + �
1
ny

∑
l∶yl=1

‖zl − �l‖2, (7)
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where � is a tradeoff hyperparameter that cali-
brates the performance of the two objectives. We
call this model variant Description Regularized-
CAML (DR-CAML).
3 Evaluation of code prediction
This section evaluates the accuracy of code predic-
tion, comparing our models against several com-
petitive baselines.
3.1 Datasets
MIMIC-III (Johnson et al., 2016) is an open-access
dataset of text and structured records from a hos-
pital ICU. Following previous work, we focus on
discharge summaries, which condense information
about a stay into a single document. InMIMIC-III,
some admissions have addenda to their summary,
which we concatenate to form one document.
Each admission is tagged by human coders with

a set of ICD-9 codes, describing both diagnoses
and procedureswhich occurred during the patient’s
stay. There are 8,921 unique ICD-9 codes present
in our datasets, including 6,918 diagnosis codes
and 2,003 procedure codes. Some patients have
multiple admissions and therefore multiple dis-
charge summaries; we split the data by patient ID,
so that no patient appears in both the training and
test sets.
In this full-label setting, we use a set of 47,724

discharge summaries from 36,998 patients for
training, with 1,632 summaries and 3,372 sum-
maries for validation and testing, respectively.
Secondary evaluations For comparison with
prior work, we also follow Shi et al. (2017) and
train and evaluate on a label set consisting of the 50
most frequent labels. In this setting, we filter each
dataset down to the instances that have at least one
of the top 50 most frequent codes, and subset the
training data to equal the size of the training set of
Shi et al. (2017), resulting in 8,067 summaries for
training, 1,574 for validation, and 1,730 for testing.

We also run experiments with the MIMIC-II
dataset, to compare with prior work by Baumel
et al. (2018) and Perotte et al. (2013). We use the
train/test split of Perotte et al. (2013), which con-
sists of 20,533 training examples and 2,282 testing
examples. Detailed statistics for the three settings
are summarized in Table 2.
Preprocessing We remove tokens that contain
no alphabetic characters (e.g., removing “500” but

keeping “250mg”), lowercase all tokens, and re-
place tokens that appear in fewer than three train-
ing documents with an ‘UNK’ token. We pre-
train word embeddings of size de = 100 using the
word2vec CBOW method (Mikolov et al., 2013)
on the preprocessed text from all discharge sum-
maries. All documents are truncated to a maxi-
mum length of 2500 tokens.
3.2 Systems
We compare against the following baselines:

• a single-layer one-dimensional convolutional
neural network (Kim, 2014);

• a bag-of-words logistic regression model;
• a bidirectional gated recurrent unit (Bi-
GRU).3

For the CNN andBi-GRU,we initialize the embed-
ding weights using the same pretrained word2vec
vectors that we use for the CAML models. All
neural models are implemented using PyTorch4.
The logistic regression model consists of || bi-
nary one-vs-rest classifiers acting on unigram bag-
of-words features for all labels present in the train-
ing data. If a label is not present in the training
data, the model will never predict it in the held-out
data.
Parameter tuning We tune the hyperparame-
ters of the CAML model and the neural baselines
using the Spearmint Bayesian optimization pack-
age (Snoek et al., 2012; Swersky et al., 2013).5 We
allow Spearmint to sample parameter values for
the L2 penalty on the model weights � and learn-
ing rate �, as well as filter size k, number of filters
dc , and dropout probability q for the convolutional
models, and number of hidden layers s of dimen-
sion v for the Bi-GRU, using precision@8 on the
MIMIC-III full-label validation set as the perfor-
mance measure. We use these parameters for DR-
CAML as well, and port the optimized parameters
to theMIMIC-II full-label andMIMIC-III 50-label
models, and manually fine-tune the learning rate in
these settings. We select � for DR-CAMLbased on
pilot experiments on the validation sets. Hyperpa-
rameter tuning is summarized in Table 3. Convo-
lutional models are trained with dropout after the

3Our pilot experiments found that GRU was stronger than
long short-term memory (LSTM) for this task.

4https://github.com/pytorch/pytorch
5https://github.com/HIPS/Spearmint
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MIMIC-III full MIMIC-III 50 MIMIC-II full
# training documents 47,724 8,067 20,533
Vocabulary size 51,917 51,917 30,688
Mean # tokens per document 1,485 1,530 1,138
Mean # labels per document 15.9 5.7 9.2
Total # labels 8,922 50 5,031

Table 2: Descriptive statistics for MIMIC discharge summary training sets.

Range CAML CNN Bi-GRU
dc 50-500 50 500 –
k 2-10 10 4 –
q 0.2-0.8 0.2 0.2 –
� 0, 0.001, 0.01, 0.1 0 0 0
� 0.0001, 0.0003,

0.001, 0.003
0.0001 0.003 0.003

s 1-4 – – 1
v 32-512 – – 512

Table 3: Hyperparameter ranges and optimal values for
each neural model selected by Spearmint.

embedding layer. We use a fixed batch size of 16
for all models and datasets. Models are trained
with early stopping on the validation set; training
terminates after the precision@8 does not improve
for 10 epochs, and the model at the time of the
highest precision@8 is used on the test set.
3.3 Evaluation Metrics
To facilitate comparison with both future and prior
work, we report a variety of metrics, focusing on
the micro-averaged and macro-averaged F1 and
area under the ROC curve (AUC). Micro-averaged
values are calculated by treating each (text, code)
pair as a separate prediction. Macro-averaged val-
ues, while less frequently reported in the multi-
label classification literature, are calculated by av-
eraging metrics computed per-label. For recall, the
metrics are distinguished as follows:

Micro-R =
∑||

l=1 TPl∑||
l=1 TPl + FNl

(8)

Macro-R = 1
||

||∑
l=1

TPl
TPl + FNl

, (9)

where TP denotes true positive examples and FN
denotes false negative examples. Precision is com-
puted analogously. The macro-averaged metrics
place much more emphasis on rare label predic-
tion.

We also report precision at n (denoted as
‘P@n’), which is the fraction of the n highest-
scored labels that are present in the ground truth.
This is motivated by the potential use case as a de-
cision support application, in which a user is pre-
sented with a fixed number of predicted codes to
review. In such a case, it is more suitable to select
a model with high precision than high recall. We
choose n = 5 and n = 8 to compare with prior
work (Vani et al., 2017; Prakash et al., 2017). For
the MIMIC-III full label setting, we also compute
precision@15, which roughly corresponds to the
average number of codes in MIMIC-III discharge
summaries (Table 2).

3.4 Results

Our main quantitative evaluation involves predict-
ing the full set of ICD-9 codes based on the text
of the MIMIC-III discharge summaries. These re-
sults are shown in Table 4. The CAML model
gives the strongest results on all metrics. Attention
yields substantial improvements over the “vanilla”
convolutional neural network (CNN). The recur-
rent Bi-GRU architecture is comparable to the
vanilla CNN, and the logistic regression baseline
is substantially worse than all neural architectures.
The best-performing CNN model has 9.86M tun-
able parameters, compared with 6.14M tunable pa-
rameters for CAML. This is due to the hyperpa-
rameter search preferring a larger number of fil-
ters for the CNN. Finally, we observe that the
DR-CAML performs worse on most metrics than
CAML, with a tuned regularization coefficient of
� = 0.01.
Among prior work, only Scheurwegs et al.

(2017) evaluate on the full ICD-9 code set for
MIMIC-III. Their reported results distinguished
between diagnosis codes and procedure codes.
The CAML models are stronger on both sets.
Additionally, our method does not make use of
any external information or structured data, while
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AUC F1 P@n
Model Macro Micro Macro Micro Diag Proc 8 15
Scheurwegs et. al (2017) – – – – 0.428 0.555 – –
Logistic Regression 0.561 0.937 0.011 0.272 0.242 0.398 0.542 0.411
CNN 0.806 0.969 0.042 0.419 0.402 0.491 0.581 0.443
Bi-GRU 0.822 0.971 0.038 0.417 0.393 0.514 0.585 0.445
CAML 0.895 0.986* 0.088 0.539* 0.524* 0.609* 0.709* 0.561*
DR-CAML 0.897 0.985 0.086 0.529 0.515 0.595 0.690 0.548

Table 4: Results on MIMIC-III full, 8922 labels. Here, “Diag” denotes Micro-F1 performance on diagnosis codes
only, and “Proc” denotes Micro-F1 performance on procedure codes only. Here and in all tables, (*) by the bold
(best) result indicates significantly improved results compared to the next best result, p < 0.001.

Scheurwegs et al. use structured data and various
medical ontologies in their text representation.
We feel that precision@8 is the most informa-

tive of the metrics, as it measures the ability of
the system to return a small high-confidence sub-
set of codes. Even with a space of thousands of la-
bels, our models achieve relatively high precision:
of the eight most confident predictions, on aver-
age 5.5 are correct. It is also apparent how diffi-
cult it is to achieve high Macro-F1 scores, due to
the metric’s emphasis on rare-label performance.
To put these results in context, a hypothetical sys-
tem that performs perfectly on the 500 most com-
mon labels, and ignores all others, would achieve
a Macro-F1 of 0.052 and a Micro-F1 of 0.842.
Secondary evaluations To compare with prior
published work, we also evaluate on the 50 most
common codes in MIMIC-III (Table 5), and on
MIMIC-II (Table 6). We report DR-CAML re-
sults on the 50-label setting of MIMIC-III with
� = 10, and on MIMIC-II with � = 0.1, which
were determined by grid search on a validation set.
The other hyperparameters were left at the settings
for the main MIMIC-III evaluation, as described
in Table 3. In the 50-label setting of MIMIC-
III, we see strong improvement over prior work in
all reported metrics, as well as against the base-
lines, with the exception of precision@5, on which
the CNN baseline performs best. We hypothesize
that this is because the relatively large value of
k = 10 for CAML leads to a larger network that is
more suited to larger datasets; tuning CAML’s hy-
perparameters on this dataset would be expected
to improve performance on all metrics. Baumel
et al. (2018) additionally report a micro-F1 score
of 0.407 by training on MIMIC-III, and evaluating

on MIMIC-II. Our model achieves better perfor-
mance using only the (smaller) MIMIC-II training
set, leaving this alternative training protocol for fu-
ture work.

4 Evaluation of Interpretability

We now evaluate the explanations generated by
CAML’s attention mechanism, in comparison with
three alternative heuristics. A physician was pre-
sented with explanations from four methods, us-
ing a random sample of 100 predicted codes from
the MIMIC-III full-label test set. The most im-
portant k-gram from each method was extracted,
along with a window of five words on either side
for context. We select k = 4 in this setting to em-
ulate a span of attention over words likely to be
given by a human reader. Examples can be found
in Table 1. Observe that the snippets may overlap
in multiple words. We prompted the evaluator to
select all text snippets which he felt adequately ex-
plained the presence of a given code, provided the
code and its description, with the option to distin-
guish snippets as “highly informative” should they
be found particularly informative over others.

4.1 Extracting informative text snippets
CAML The attention mechanism allows us to
extract k-grams from the text that are most influ-
ential in the prediction of each label, by taking the
argmax of the SoftMax output �l.

Max-pooling CNN We select the k-grams that
provide the maximum value selected by max-
pooling at least once and weighting by the final
layer weights. Defining an argmax vector a which
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AUC F1
Model Macro Micro Macro Micro P@5
C-MemNN (Prakash et al., 2017) 0.833 – – – 0.42
Shi et al. (2017) – 0.900 – 0.532 –
Logistic Regression 0.829 0.864 0.477 0.533 0.546
CNN 0.876 0.907 0.576* 0.625 0.620
Bi-GRU 0.828 0.868 0.484 0.549 0.591
CAML 0.875 0.909 0.532 0.614 0.609
DR-CAML 0.884* 0.916 0.576* 0.633 0.618

Table 5: Results on MIMIC-III, 50 labels.

results from the max-pooling step as
ai = argmax

j∈{1,…,m−k+1}
(H ij), (10)

we can compute the importance of position i for
label l,

�il =
dc∑

j∶aj=i
�l,j . (11)

We then select the most important k-gram for a
given label as argmaxi �il.
Logistic regression The informativeness of each
k-gramwith respect to label l is scored by the sum
of the coefficients of the weight matrix for l, over
the words in the k-gram. The top-scoring k-gram
is then returned as the explanation.
Code descriptions Finally, we calculate a word
similarity metric between each stemmed k-gram
and the stemmed ICD-9 code description. We
compute the idf-weighted cosine similarity, with
idf weights calculated on the corpus consisting of
all notes and relevant code descriptions. We then
select the argmax over k-grams in the document,
breaking ties by selecting the first occurrence. We
remove those note-label pairs for which no k-gram
has a score greater than 0, which gives an “unfair”
advantage to this baseline.
4.2 Results
The results of the interpretability evaluation are
presented in Table 7. Our model selects the great-
est number of “highly informative” explanations,
and selects more “informative” explanations than
both the CNN baseline and the logistic regression
model. While the cosine similarity metric also per-
forms well, the examples in Table 1 demonstrate

the strengths of CAML in extracting text snippets
in line with more intuitive explanations for the
presence of a code. As noted above, there exist
some cases, which we exclude, where the cosine
similarity method is unable to provide any expla-
nation, because no k-grams in a note have a non-
zero similarity for a given label description. This
occurs for about 12% of all note-label pairs in the
test set.
5 Related Work
Attentional Convolution for NLP CNNs have
been successfully applied to tasks such as sen-
timent classification (Kim, 2014) and language
modeling (Dauphin et al., 2017). Our work com-
bines convolution with attention (Bahdanau et al.,
2015; Yang et al., 2016) to select the most relevant
parts of the discharge summary. Other recent work
has combined convolution and attention (e.g., Al-
lamanis et al., 2016; Yin et al., 2016; dos Santos
et al., 2016; Yin and Schütze, 2017). Our atten-
tion mechanism is most similar to those of Yang
et al. (2016) and Allamanis et al. (2016), in that we
use context vectors to compute attention over spe-
cific locations in the text. Our work differs in that
we compute separate attention weights for each la-
bel in our label space, which is better tuned to our
goal of selecting locations in a document which are
most important for predicting specific labels.
Automatic ICD coding ICD coding is a long-
standing task in the medical informatics commu-
nity, which has been approached with machine
learning and handcrafted methods (Scheurwegs
et al., 2015). Many recent approaches, like ours,
use unstructured text data as the only source of
information (e.g., Kavuluru et al., 2015; Subotin
and Davis, 2014), though some incorporates struc-
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AUC F1
Model Macro Micro Macro Micro P@8
Flat SVM (Perotte et al., 2013) – – – 0.293 –
HA-GRU (Baumel et al., 2018) – – – 0.366 –
Logistic Regression 0.690 0.934 0.025 0.314 0.425
CNN 0.742 0.941 0.030 0.332 0.388
Bi-GRU 0.780 0.954 0.024 0.359 0.420
CAML 0.820 0.966* 0.048 0.442 0.523*
DR-CAML 0.826 0.966* 0.049 0.457* 0.515

Table 6: Results on MIMIC-II full, 5031 labels.

Highly
Method Informative informative
CAML 46 22
Code Descriptions 48 20
Logistic Regression 41 18
CNN 36 13

Table 7: Qualitative evaluation results. The columns
show the number of examples (out of 100) for which
each method was selected as “informative” or “highly
informative”.

tured data as well (e.g., Scheurwegs et al., 2017;
Wang et al., 2016). Most previous methods have
either evaluated only on a strict subset of the full
ICD label space (Wang et al., 2016), relied on
datasets that focus on a subset of medical scenar-
ios (Zhang et al., 2017), or evaluated on data that
are not publicly available, making direct compari-
son difficult (Subotin and Davis, 2016). A recent
shared task for ICD-10 coding focused on coding
of death certificates in English and French (Névéol
et al., 2017). This dataset also contains shorter
documents than those we consider, with an average
of 18 tokens per certificate in the French corpus.
We use the open-access MIMIC datasets contain-
ing de-identified, general-purpose records of inten-
sive care unit stays at a single hospital.
Perotte et al. (2013) use “flat” and “hierarchical”

SVMs; the former treats each code as an individ-
ual prediction, while the latter trains on child codes
only if the parent code is present, and predicts on
child codes only if the parent code was positively
predicted. Scheurwegs et al. (2017) use a feature
selection approach to ICD-9 and ICD-10 classifi-
cation, incorporating structured and unstructured
text information from EHRs. They evaluate over

various medical specialties and on the MIMIC-III
dataset. We compare directly to their results on the
full label set of MIMIC-III.
Other recent approaches have employed neural

network architectures. Baumel et al. (2018) ap-
ply recurrent networks with hierarchical sentence
andword attention (the HA-GRU) to classify ICD9
diagnosis codes while providing insights into the
model decision process. Similarly, Shi et al. (2017)
applied character-aware LSTMs to generate sen-
tence representations from specific subsections of
discharge summaries, and apply attention to form a
soft matching between the representations and the
top 50 codes. Prakash et al. (2017) use memory
networks that draw from discharge summaries as
well as Wikipedia, to predict top-50 and top-100
codes. Another recent neural architecture is the
Grounded Recurrent Neural Network (Vani et al.,
2017), which employs a modified GRU with di-
mensions dedicated to predicting the presence of
individual labels. We compare directly with pub-
lished results from all of these papers, except Vani
et al. (2017), who evaluate on only a 5000 code
subset of ICD-9. Empirically, the CAML archi-
tecture proposed in this paper yields stronger re-
sults across all experimental conditions. We at-
tribute these improvements to the attention mech-
anism, which focuses on the most critical features
for each code, rather than applying a uniform pool-
ing operation for all codes. We also observed
that convolution-based models are at least as ef-
fective, and significantly more computationally ef-
ficient, than recurrent neural networks such as the
Bi-GRU.
Explainable text classification A goal of this
work is that the code predictions be explainable
from features of the text. Prior work has also em-
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phasized explainability. Lei et al. (2016) model
“rationales” through a latent variable, which tags
each word as relevant to the document label. Li
et al. (2016) compute the salience of individual
words by the derivative of the label score with re-
spect to the word embedding. Ribeiro et al. (2016)
use submodular optimization to select a subset of
features that closely approximate a specific clas-
sification decision (this work is also notable for
extensive human evaluations). In comparison to
these approaches, we employ a relatively simple at-
tentional architecture; this simplicity is motivated
by the challenge of scaling to multi-label classi-
fication with thousands of possible labels. Other
prior work has emphasized the use of attention for
highlighting salient features of the text (e.g., Rush
et al., 2015; Rocktäschel et al., 2016), although
these papers did not perform human evaluations of
the interpretability of the features selected by the
attention mechanism.
6 Conclusions and Future Work
Wepresent CAML, a convolutional neural network
for multi-label document classification, which em-
ploys an attention mechanism to adaptively pool
the convolution output for each label, learning to
identify highly-predictive locations for each label.
CAML yields strong improvements over previous
metrics on several formulations of the ICD-9 code
prediction task, while providing satisfactory ex-
planations for its predictions. Although we focus
on a clinical setting, CAML is extensible without
modification to other multi-label document tag-
ging tasks, including ICD-10 coding. We see a
number of directions for future work. From the
linguistic side, we plan to integrate the document
structure of discharge summaries in MIMIC-III,
and to better handle non-standardwriting and other
sources of out-of-vocabulary tokens. From the
application perspective, we plan to build models
that leverage hierarchy of ICD codes (Choi et al.,
2016), and to attempt the more difficult task of pre-
dicting diagnosis and treatment codes for future
visits from discharge summaries.
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Abstract

This paper introduces the Multi-Genre Natu-
ral Language Inference (MultiNLI) corpus, a
dataset designed for use in the development
and evaluation of machine learning models for
sentence understanding. At 433k examples,
this resource is one of the largest corpora avail-
able for natural language inference (a.k.a. rec-
ognizing textual entailment), improving upon
available resources in both its coverage and
difficulty. MultiNLI accomplishes this by of-
fering data from ten distinct genres of written
and spoken English, making it possible to eval-
uate systems on nearly the full complexity of
the language, while supplying an explicit set-
ting for evaluating cross-genre domain adap-
tation. In addition, an evaluation using exist-
ing machine learning models designed for the
Stanford NLI corpus shows that it represents a
substantially more difficult task than does that
corpus, despite the two showing similar levels
of inter-annotator agreement.

1 Introduction

Many of the most actively studied problems in
NLP, including question answering, translation,
and dialog, depend in large part on natural lan-
guage understanding (NLU) for success. While
there has been a great deal of work that uses rep-
resentation learning techniques to pursue progress
on these applied NLU problems directly, in or-
der for a representation learning model to fully
succeed at one of these problems, it must simul-
taneously succeed both at NLU, and at one or
more additional hard machine learning problems
like structured prediction or memory access. This
makes it difficult to accurately judge the degree to

which current models extract reasonable represen-
tations of language meaning in these settings.

The task of natural language inference (NLI)
is well positioned to serve as a benchmark task
for research on NLU. In this task, also known
as recognizing textual entailment (Cooper et al.,
1996; Fyodorov et al., 2000; Condoravdi et al.,
2003; Bos and Markert, 2005; Dagan et al., 2006;
MacCartney and Manning, 2009), a model is pre-
sented with a pair of sentences—like one of those
in Figure 1—and asked to judge the relationship
between their meanings by picking a label from
a small set: typically ENTAILMENT, NEUTRAL,
and CONTRADICTION. Succeeding at NLI does
not require a system to solve any difficult machine
learning problems except, crucially, that of ex-
tracting effective and thorough representations for
the meanings of sentences (i.e., their lexical and
compositional semantics). In particular, a model
must handle phenomena like lexical entailment,
quantification, coreference, tense, belief, modal-
ity, and lexical and syntactic ambiguity.

As the only large human-annotated corpus for
NLI currently available, the Stanford NLI Cor-
pus (SNLI; Bowman et al., 2015) has enabled a
good deal of progress on NLU, serving as a ma-
jor benchmark for machine learning work on sen-
tence understanding and spurring work on core
representation learning techniques for NLU, such
as attention (Wang and Jiang, 2016; Parikh et al.,
2016), memory (Munkhdalai and Yu, 2017), and
the use of parse structure (Mou et al., 2016b; Bow-
man et al., 2016; Chen et al., 2017). However,
SNLI falls short of providing a sufficient testing
ground for machine learning models in two ways.
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Met my first girlfriend that way. FACE-TO-FACE
contradiction
C C N C

I didn’t meet my first girlfriend until later.

8 million in relief in the form of emergency housing. GOVERNMENT
neutral
N N N N

The 8 million dollars for emergency hous-
ing was still not enough to solve the prob-
lem.

Now, as children tend their gardens, they have a new ap-
preciation of their relationship to the land, their cultural
heritage, and their community.

LETTERS
neutral
N N N N

All of the children love working in their
gardens.

At 8:34, the Boston Center controller received a third
transmission from American 11

9/11
entailment
E E E E

The Boston Center controller got a third
transmission from American 11.

I am a lacto-vegetarian. SLATE
neutral
N N E N

I enjoy eating cheese too much to abstain
from dairy.

someone else noticed it and i said well i guess that’s true
and it was somewhat melodious in other words it wasn’t
just you know it was really funny

TELEPHONE
contradiction
C C C C

No one noticed and it wasn’t funny at all.

Table 1: Randomly chosen examples from the development set of our new corpus, shown with their genre labels,
their selected gold labels, and the validation labels (abbreviated E, N, C) assigned by individual annotators.

First, the sentences in SNLI are derived from only
a single text genre—image captions—and are thus
limited to descriptions of concrete visual scenes,
rendering the hypothesis sentences used to de-
scribe these scenes short and simple, and ren-
dering many important phenomena—like tempo-
ral reasoning (e.g., yesterday), belief (e.g., know),
and modality (e.g., should)—rare enough to be ir-
relevant to task performance. Second, because of
these issues, SNLI is not sufficiently demanding
to serve as an effective benchmark for NLU, with
the best current model performance falling within
a few percentage points of human accuracy and
limited room left for fine-grained comparisons be-
tween strong models.

This paper introduces a new challenge dataset,
the Multi-Genre NLI Corpus (MultiNLI), whose
chief purpose is to remedy these limitations by
making it possible to run large-scale NLI evalua-
tions that capture more of the complexity of mod-
ern English. While its size (433k pairs) and mode
of collection are modeled closely on SNLI, unlike
that corpus, MultiNLI represents both written and
spoken speech in a wide range of styles, degrees
of formality, and topics.

Our chief motivation in creating this corpus is
to provide a benchmark for ambitious machine
learning research on the core problems of NLU,
but we are additionally interested in constructing
a corpus that facilitates work on domain adapta-
tion and cross-domain transfer learning. These
techniques—which use labeled training data for a

source domain, and aim to train a model that per-
forms well on test data from a target domain with
a different distribution—have resulted in gains
across many tasks (Daume III and Marcu, 2006;
Ben-David et al., 2007), including sequence and
part-of-speech tagging (Blitzer et al., 2006; Peng
and Dredze, 2017). Moreover, in application areas
outside NLU, artificial neural network techniques
have made it possible to train general-purpose fea-
ture extractors that, with no or minimal retraining,
can extract useful features for a variety of styles of
data (Krizhevsky et al., 2012; Zeiler and Fergus,
2014; Donahue et al., 2014). However, attempts to
bring this kind of general purpose representation
learning to NLU have seen only very limited suc-
cess (see, for example, Mou et al., 2016a). Nearly
all successful applications of representation learn-
ing to NLU have involved models that are trained
on data closely resembling the target evaluation
data in both task and style. This fact limits the
usefulness of these tools for problems involving
styles of language not represented in large anno-
tated training sets.

With this in mind, we construct MultiNLI so as
to make it possible to explicitly evaluate models
both on the quality of their sentence representa-
tions within the training domain and on their abil-
ity to derive reasonable representations in unfa-
miliar domains. The corpus is derived from ten
different genres of written and spoken English,
which are collectively meant to approximate the
full diversity of ways in which modern standard
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This task will involve reading a line from a non-fiction
article and writing three sentences that relate to it. The
line will describe a situation or event. Using only this
description and what you know about the world:

• Write one sentence that is definitely correct about
the situation or event in the line.

• Write one sentence that might be correct about the
situation or event in the line.

• Write one sentence that is definitely incorrect
about the situation or event in the line.

Figure 1: The main text of a prompt (truncated) that
was presented to our annotators. This version is used
for the written non-fiction genres.

American English is used. All of the genres ap-
pear in the test and development sets, but only five
are included in the training set. Models thus can
be evaluated on both the matched test examples,
which are derived from the same sources as those
in the training set, and on the mismatched exam-
ples, which do not closely resemble any of those
seen at training time.

2 The Corpus

2.1 Data Collection
The data collection methodology for MultiNLI is
similar to that of SNLI: We create each sentence
pair by selecting a premise sentence from a preex-
isting text source and asking a human annotator to
compose a novel sentence to pair with it as a hy-
pothesis. This section discusses the sources of our
premise sentences, our collection method for hy-
potheses, and our validation (relabeling) strategy.

Premise Text Sources The MultiNLI premise
sentences are derived from ten sources of freely
available text which are meant to be maximally
diverse and roughly represent the full range of
American English. We selected nine sources from
the second release of the Open American National
Corpus (OANC; Fillmore et al., 1998; Macleod
et al., 2000; Ide and Macleod, 2001; Ide and Su-
derman, 2006, downloaded 12/20161), balancing
the volume of source text roughly evenly across
genres, and avoiding genres with content that
would be too difficult for untrained annotators.

OANC data constitutes the following nine gen-
res: transcriptions from the Charlotte Narrative

1 http://www.anc.org/

and Conversation Collection of two-sided, in-
person conversations that took place in the early
2000s (FACE-TO-FACE); reports, speeches, letters,
and press releases from public domain govern-
ment websites (GOVERNMENT); letters from the
Indiana Center for Intercultural Communication of
Philanthropic Fundraising Discourse written in the
late 1990s–early 2000s (LETTERS); the public re-
port from the National Commission on Terrorist
Attacks Upon the United States released on July
22, 20042 (9/11); five non-fiction works on the
textile industry and child development published
by the Oxford University Press (OUP); popular
culture articles from the archives of Slate Maga-
zine (SLATE) written between 1996–2000; tran-
scriptions from University of Pennsylvania’s Lin-
guistic Data Consortium Switchboard corpus of
two-sided, telephone conversations that took place
in 1990 or 1991 (TELEPHONE); travel guides pub-
lished by Berlitz Publishing in the early 2000s
(TRAVEL); and short posts about linguistics for
non-specialists from the Verbatim archives written
between 1990 and 1996 (VERBATIM).

For our tenth genre, FICTION, we compile sev-
eral freely available works of contemporary fiction
written between 1912 and 2010, spanning various
genres, including mystery (The Mysterious Affair
at Styles,3 Christie, 1921; The Secret Adversary,4

Christie, 1922; Murder in the Gun Room,5 Piper,
1953), humor (Password Incorrect,6 Name, 2008),
western (Rebel Spurs,7 Norton, 1962), science fic-
tion (Seven Swords,8 Shea, 2008; Living History,9

Essex, 2016; The Sky Is Falling,10 Del Rey, 1973;
Youth,11 Asimov, May 1952), and adventure (Cap-
tain Blood,12 Sabatini, 1922).

We construct premise sentences from these ten
source texts with minimal preprocessing; unique
the sentences within genres, exclude very short

2https://9-11commission.gov/
3gutenberg.org/files/863/863-0.txt
4gutenberg.org/files/1155/1155-0.txt
5gutenberg.org/files/17866/17866.txt
6http://manybooks.net/pages/

namenother09password_incorrect/0.html
7gutenberg.org/files/20840/20840-0.txt
8http://mikeshea.net/stories/seven_

swords.html, shared with the author’s permission.
9manybooks.net/pages/

essexbother10living_history/0.html
10gutenberg.org/cache/epub/18768/

pg18768.txt
11gutenberg.org/cache/epub/31547/

pg31547.txt
12gutenberg.org/files/1965/1965-0.txt
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sentences (under eight characters), and manu-
ally remove certain types of non-narrative writing,
such as mathematical formulae, bibliographic ref-
erences, and lists.

Although SNLI is collected in largely the same
way as MultiNLI, and is also permissively li-
censed, we do not include SNLI in the MultiNLI
corpus distribution. SNLI can be appended and
treated as an unusually large additional CAPTIONS

genre, built on image captions from the Flickr30k
corpus (Young et al., 2014).

Hypothesis Collection To collect a sentence
pair, we present a crowdworker with a sentence
from a source text and ask them to compose
three novel sentences (the hypotheses): one which
is necessarily true or appropriate whenever the
premise is true (paired with the premise and la-
beled ENTAILMENT), one which is necessarily
false or inappropriate whenever the premise is true
(CONTRADICTION), and one where neither condi-
tion applies (NEUTRAL). This method of data col-
lection ensures that the three classes will be repre-
sented equally in the raw corpus.

The prompts that surround each premise sen-
tence during hypothesis collection are slightly tai-
lored to fit the genre of that premise sentence.
We pilot these prompts prior to data collection
to ensure that the instructions are clear and that
they yield hypothesis sentences that fit the in-
tended meanings of the three classes. There are
five unique prompts in total: one for written
non-fiction genres (SLATE, OUP, GOVERNMENT,
VERBATIM, TRAVEL; Figure 1), one for spoken
genres (TELEPHONE, FACE-TO-FACE), one for
each of the less formal written genres (FICTION,
LETTERS), and a specialized one for 9/11, tai-
lored to fit its potentially emotional content. Each
prompt is accompanied by example premises and
hypothesis that are specific to each genre.

Below the instructions, we present three text
fields—one for each label—followed by a field
for reporting issues, and a link to the frequently
asked questions (FAQ) page. We provide one FAQ
page per prompt. FAQs are modeled on their SNLI
counterparts (supplied by the authors of that work)
and include additional curated examples, answers
to genre-specific questions arising from our pilot
phase, and information about logistical concerns
like payment.

For both hypothesis collection and validation,
we present prompts to annotators using Hybrid

Statistic SNLI MultiNLI

Pairs w/ unanimous gold label 58.3% 58.2%

Individual label = gold label 89.0% 88.7%
Individual label = author’s label 85.8% 85.2%

Gold label = author’s label 91.2% 92.6%
Gold label 6= author’s label 6.8% 5.6%
No gold label (no 3 labels match) 2.0% 1.8%

Table 2: Key validation statistics for SNLI (copied
from Bowman et al., 2015) and MultiNLI.

(gethybrid.io), a crowdsoucring platform
similar to the Amazon Mechanical Turk platform
used for SNLI. We used this platform to hire an
organized group of workers. 387 annotators con-
tributed through this group, and at no point was
any identifying information about them, including
demographic information, available to the authors.

Validation We perform an additional round of
annotation on test and development examples
to ensure accurate labelling. The validation
phase follows the same procedure used for SICK
(Marelli et al., 2014b) and SNLI: Workers are pre-
sented with pairs of sentences and asked to supply
a single label (ENTAILMENT, CONTRADICTION,
NEUTRAL) for the pair. Each pair is relabeled by
four workers, yielding a total of five labels per
example. Validation instructions are tailored by
genre, based on the main data collection prompt
(Figure 1); a single FAQ, modeled after the valida-
tion FAQ from SNLI, is provided for reference. In
order to encourage thoughtful labeling, we manu-
ally label one percent of the validation examples
and offer a $1 bonus each time a worker selects a
label that matches ours.

For each validated sentence pair, we assign a
gold label representing a majority vote between
the initial label assigned to the pair by the original
annotator, and the four additional labels assigned
by validation annotators. A small number of ex-
amples did not receive a three-vote consensus on
any one label. These examples are included in the
distributed corpus, but are marked with ‘-’ in the
gold label field, and should not be used in stan-
dard evaluations. Table 2 shows summary statis-
tics capturing the results of validation, alongside
corresponding figures for SNLI. These statistics
indicate that the labels included in MultiNLI are
about as reliable as those included in SNLI, de-
spite MultiNLI’s more diverse text contents.
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#Examples #Wds. ‘S’ parses Model Acc.
Genre Train Dev. Test Prem. Prem. Hyp. Agrmt. ESIM CBOW

SNLI 550,152 10,000 10,000 14.1 74% 88% 89.0% 86.7% 80.6 %

FICTION 77,348 2,000 2,000 14.4 94% 97% 89.4% 73.0% 67.5%
GOVERNMENT 77,350 2,000 2,000 24.4 90% 97% 87.4% 74.8% 67.5%
SLATE 77,306 2,000 2,000 21.4 94% 98% 87.1% 67.9% 60.6%
TELEPHONE 83,348 2,000 2,000 25.9 71% 97% 88.3% 72.2% 63.7%
TRAVEL 77,350 2,000 2,000 24.9 97% 98% 89.9% 73.7% 64.6%

9/11 0 2,000 2,000 20.6 98% 99% 90.1% 71.9% 63.2%
FACE-TO-FACE 0 2,000 2,000 18.1 91% 96% 89.5% 71.2% 66.3%
LETTERS 0 2,000 2,000 20.0 95% 98% 90.1% 74.7% 68.3%
OUP 0 2,000 2,000 25.7 96% 98% 88.1% 71.7% 62.8%
VERBATIM 0 2,000 2,000 28.3 93% 97% 87.3% 71.9% 62.7%

MultiNLI Overall 392,702 20,000 20,000 22.3 91% 98% 88.7% 72.2% 64.7%

Table 3: Key statistics for the corpus by genre. The first five genres represent the matched section of the develop-
ment and test sets, and the remaining five represent the mismatched section. The first three statistics provide the
number of examples in each genre. #Wds. Prem. is the mean token count among premise sentences. ‘S’ parses
is the percentage of sentences for which the Stanford Parser produced a parse rooted with an ‘S’ (sentence) node.
Agrmt. is the percent of individual labels that match the gold label in validated examples. Model Acc. gives the test
accuracy for ESIM and CBOW models (trained on either SNLI or MultiNLI), as described in Section 3.

2.2 The Resulting Corpus
Table 1 shows randomly chosen development set
examples from the collected corpus. Hypotheses
tend to be fluent and correctly spelled, though not
all are complete sentences. Punctuation is often
omitted. Hypotheses can rely heavily on knowl-
edge about the world, and often don’t correspond
closely with their premises in syntactic structure.

Unlabeled test data is available on Kaggle for
both matched and mismatched sets as competi-
tions that will be open indefinitely; Evaluations
on a subset of the test set have previously been
conducted with different leaderboards through the
RepEval 2017 Workshop (Nangia et al., 2017).

The corpus is available in two formats—tab sep-
arated text and JSON Lines (jsonl), following
SNLI. For each example, premise and hypothesis
strings, unique identifiers for the pair and prompt,
and the following additional fields are specified:

• gold label: label used for classification.
In examples rejected during the validation
process, the value of this field will be ‘-’.

• sentence{1,2} parse: Each sentence
as parsed by the Stanford PCFG Parser 3.5.2
(Klein and Manning, 2003).

• sentence{1,2} binary parse: parses
in unlabeled binary-branching format.

• label[1]: The label assigned during the
creation of the sentence pair. In rare cases

this may be different from gold label, if
a consensus of annotators chose a different
label during the validation phase.

• label[2...5]: The four labels assigned
during validation by individual annotators to
each development and test example. These
fields will be empty for training examples.

The current version of the
corpus is freely available at
nyu.edu/projects/bowman/multinli/
for typical machine learning uses, and may be
modified and redistributed. The majority of the
corpus is released under the OANC’s license,
which allows all content to be freely used, modi-
fied, and shared under permissive terms. The data
in the FICTION section falls under several per-
missive licenses; Seven Swords is available under
a Creative Commons Share-Alike 3.0 Unported
License, and with the explicit permission of the
author, Living History and Password Incorrect are
available under Creative Commons Attribution
3.0 Unported Licenses; the remaining works of
fiction are in the public domain in the United
States (but may be licensed differently elsewhere).

Partition The distributed corpus comes with an
explicit train/test/development split. The test and
development sets contain 2,000 randomly selected
examples each from each of the genres, resulting
in a total of 20,000 examples per set. No premise
sentence occurs in more than one set.
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MNLI
Train Model SNLI Match. Mis.

Most freq. 34.3 36.5 35.6

SNLI
CBOW 80.6 - -
BiLSTM 81.5 - -
ESIM 86.7 - -

MNLI
CBOW 51.5 64.8 64.5
BiLSTM 50.8 66.9 66.9
ESIM 60.7 72.3 72.1

MNLI+
SNLI

CBOW 74.7 65.2 64.6
BiLSTM 74.0 67.5 67.1
ESIM 79.7 72.4 71.9

Table 4: Test set accuracies (%) for all models; Match.
represents test set performance on the MultiNLI genres
that are also represented in the training set, Mis. repre-
sents test set performance on the remaining ones; Most
freq. is a trivial ‘most frequent class’ baseline.

Statistics Table 3 shows some additional statis-
tics. Premise sentences in MultiNLI tend to
be longer (max 401 words, mean 22.3 words)
than their hypotheses (max 70 words, mean
11.4 words), and much longer, on average, than
premises in SNLI (mean 14.1 words); premises
in MultiNLI also tend to be parsed as complete
sentences at a much higher rate on average (91%)
than their SNLI counterparts (74%). We observe
that the two spoken genres differ in this—with
FACE-TO-FACE showing more complete sentences
(91%) than TELEPHONE (71%)—and speculate
that the lack of visual feedback in a telephone set-
ting may result in a high incidence of interrupted
or otherwise incomplete sentences.

Hypothesis sentences in MultiNLI generally
cannot be derived from their premise sentences us-
ing only trivial editing strategies. While 2.5% of
the hypotheses in SNLI differ from their premises
by deletion, only 0.9% of those in MultiNLI (170
examples total) are constructed in this way. Sim-
ilarly, in SNLI, 1.6% of hypotheses differ from
their premises by addition, substitution, or shuf-
fling a single word, while in MultiNLI this only
happens in 1.2% of examples. The percentage of
hypothesis-premise pairs with high token overlap
(>37%) was comparable between MultiNLI (30%
of pairs) and SNLI (29%). These statistics sug-
gest that MultiNLI’s annotations are comparable
in quality to those of SNLI.

3 Baselines

To test the difficulty of the corpus, we experiment
with three neural network models. The first is a

simple continuous bag of words (CBOW) model
in which each sentence is represented as the sum
of the embedding representations of its words.
The second computes representations by averag-
ing the states of a bidirectional LSTM RNN (BiL-
STM; Hochreiter and Schmidhuber, 1997) over
words. For the third, we implement and evalu-
ate Chen et al.’s Enhanced Sequential Inference
Model (ESIM), which is roughly tied for the state
of the art on SNLI at the time of writing. We use
the base ESIM without ensembling with a TreeL-
STM (as in the ‘HIM’ runs in that work).

The first two models produce separate vec-
tor representations for each sentence and com-
pute label predictions for pairs of representations.
To do this, they concatenate the representations
for premise and hypothesis, their difference, and
their element-wise product, following Mou et al.
(2016b), and pass the result to a single tanh layer
followed by a three-way softmax classifier.

All models are initialized with 300D reference
GloVe vectors (840B token version; Pennington
et al., 2014). Out-of-vocabulary (OOV) words
are initialized randomly and word embeddings are
fine-tuned during training. The models use 300D
hidden states, as in most prior work on SNLI. We
use Dropout (Srivastava et al., 2014) for regular-
ization. For ESIM, we use a dropout rate of 0.5,
following the paper. For CBOW and BiLSTM
models, we tune Dropout on the SNLI develop-
ment set and find that a drop rate of 0.1 works
well. We use the Adam (Kingma and Ba, 2015)
optimizer with default parameters. Code is avail-
able at github.com/nyu-mll/multiNLI/.

We train models on SNLI, MultiNLI, and a mix-
ture; Table 4 shows the results. In the mixed set-
ting, we use the full MultiNLI training set and ran-
domly select 15% of the SNLI training set at each
epoch, ensuring that each available genre is seen
during training with roughly equal frequency.

We also train a separate CBOW model on each
individual genre to establish the degree to which
simple models already allow for effective transfer
across genres, using a dropout rate of 0.2. When
training on SNLI, a single random sample of 15%
of the original training set is used. For each genre
represented in the training set, the model that per-
forms best on it was trained on that genre; a
model trained only on SNLI performs worse on
every genre than comparable models trained on
any genre from MultiNLI.
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Models trained on a single genre from MultiNLI
perform well on similar genres; for example, the
model trained on TELEPHONE attains the best
accuracy (63%) on FACE-TO-FACE, which was
nearly one point better than it received on itself.
SLATE seems to be a difficult and relatively un-
usual genre and performance on it is relatively
poor in this setting; when averaging over runs
trained on SNLI and all genres in the matched
section of the training set, average performance
on SLATE was only 57.5%. Sentences in SLATE

cover a wide range of topics and phenomena, mak-
ing it hard to do well on, but also forcing models
trained on it be broadly capable; the model trained
on SLATE achieves the highest accuracy of any
model on 9/11 (55.6%) and VERBATIM (57.2%),
and relatively high accuracy on TRAVEL (57.4%)
and GOVERNMENT (58.3%). We also observe that
our models perform similarly on both the matched
and mismatched test sets of MultiNLI. We expect
genre mismatch issues to become more conspic-
uous as models are developed that can better fit
MultiNLI’s training genres.

To evaluate the contribution of sentence length
to corpus difficulty, we binned premises and hy-
potheses by length in 25-word increments for
premises and 10-word increments for hypotheses.
Using the ESIM model, our strong baseline, we
find a small effect (stronger for matched than mis-
matched) of premise length on model accuracy:
accuracy decreases slightly as premise sentences
increase in length. We find no effect of hypothesis
length on accuracy.

4 Discussion and Analysis

4.1 Data Collection

In data collection for NLI, different annotator de-
cisions about the coreference between entities and
events across the two sentences in a pair can lead
to very different assignments of pairs to labels
(de Marneffe et al., 2008; Marelli et al., 2014a;
Bowman et al., 2015). Drawing an example from
Bowman et al., the pair “a boat sank in the Pacific
Ocean” and “a boat sank in the Atlantic Ocean”
can be labeled either CONTRADICTION or NEU-
TRAL depending on (among other things) whether
the two mentions of boats are assumed to refer
to the same entity in the world. This uncertainty
can present a serious problem for inter-annotator
agreement, since it is not clear that it is possible to
define an explicit set of rules around coreference

that would be easily intelligible to an untrained an-
notator (or any non-expert).

Bowman et al. attempt to avoid this problem by
using an annotation prompt that is highly depen-
dent on the concreteness of image descriptions;
but, as we engage with the much more abstract
writing that is found in, for example, government
documents, there is no reason to assume a pri-
ori that any similar prompt and annotation strat-
egy can work. We are surprised to find that this
is not a major issue. Through a relatively straight-
forward trial-and-error piloting phase, followed by
discussion with our annotators, we manage to de-
sign prompts for abstract genres that yield high
inter-annotator agreement scores nearly identical
to those of SNLI (see Table 2). These high scores
suggest that our annotators agreed on a single task
definition, and were able to apply it consistently
across genres.

4.2 Overall Difficulty
As expected, both the increase in the diver-
sity of linguistic phenomena in MultiNLI and its
longer average sentence length conspire to make
MultiNLI dramatically more difficult than SNLI.
Our three baseline models perform better on SNLI
than MultiNLI by about 15% when trained on
the respective datasets. All three models achieve
accuracy above 80% on the SNLI test set when
trained only on SNLI. However, when trained on
MultiNLI, only ESIM surpasses 70% accuracy
on MultiNLI’s test sets. When we train mod-
els on MultiNLI and downsampled SNLI, we see
an expected significant improvement on SNLI,
but no significant change in performance on the
MultiNLI test sets, suggesting including SNLI
in training doesn’t drive substantial improvement.
These results attest to MultiNLI’s difficulty, and
with its relatively high inter-annotator agreement,
suggest that it presents a problem with substantial
headroom for future work.

4.3 Analysis by Linguistic Phenomenon
To better understand the types of language un-
derstanding skills that MultiNLI tests, we analyze
the collected corpus using a set of annotation tags
chosen to reflect linguistic phenomena which are
known to be potentially difficult. We use two
methods to assign tags to sentences. First, we
use the Penn Treebank (PTB; Marcus et al., 1993)
part-of-speech tag set (via the included Stanford
Parser parses) to automatically isolate sentences

1118



Dev. Freq. Most Frequent Label Model Acc.
Tag SNLI MultiNLI Diff. Label % CBOW BiLSTM ESIM

Entire Corpus 100 100 0 entailment ∼35 ∼65 ∼67 ∼72

Pronouns (PTB) 34 68 34 entailment 34 66 68 73
Quantifiers 33 63 30 contradiction 36 66 68 73
Modals (PTB) <1 28 28 entailment 35 65 67 72
Negation (PTB) 5 31 26 contradiction 48 67 70 75
WH terms (PTB) 5 30 25 entailment 35 64 65 72
Belief Verbs <1 19 18 entailment 34 64 67 71
Time Terms 19 36 17 neutral 35 64 66 71
Discourse Mark. <1 14 14 neutral 34 62 64 70
Presup. Triggers 8 22 14 neutral 34 65 67 73
Compr./Supr.(PTB) 3 17 14 neutral 39 61 63 69
Conditionals 4 15 11 neutral 35 65 68 73
Tense Match (PTB) 62 69 7 entailment 37 67 68 73
Interjections (PTB) <1 5 5 entailment 36 67 70 75
>20 words <1 5 5 entailment 42 65 67 76

Table 5: Dev. Freq. is the percentage of dev. set examples that include each phenomenon, ordered by greatest
difference in frequency of occurrence (Diff.) between MultiNLI and SNLI. Most Frequent Label specifies which
label is the most frequent for each tag in the MultiNLI dev. set, and % is its incidence. Model Acc. is the dev. set
accuracy (%) by annotation tag for each baseline model (trained on MultiNLI only). (PTB) marks a tag as derived
from Penn Treebank-style parser output tags (Marcus et al., 1993).

containing a range of easily-identified phenomena
like comparatives. Second, we isolate sentences
that contain hand-chosen key words indicative of
additional interesting phenomena.

The hand-chosen tag set covers the follow-
ing phenomena: QUANTIFIERS contains single
words with quantificational force (see, for exam-
ple, Heim and Kratzer, 1998; Szabolcsi, 2010,
e.g., many, all, few, some); BELIEF VERBS con-
tains sentence-embedding verbs denoting mental
states (e.g., know, believe, think), including irregu-
lar past tense forms; TIME TERMS contains single
words with abstract temporal interpretation, (e.g.,
then, today) and month names and days of the
week; DISCOURSE MARKERS contains words that
facilitate discourse coherence (e.g., yet, however,
but, thus, despite); PRESUPPOSITION TRIGGERS

contains words with lexical presuppositions (Stal-
naker, 1974; Schlenker, 2016, e.g., again, too,
anymore13); CONDITIONALS contains the word if.
Table 5 presents the frequency of the tags in SNLI
and MultiNLI, and model accuracy on MultiNLI
(trained only on MultiNLI).

The incidence of tags varies by genre; the per-
centage of sentence pairs containing a particular
annotation tag differs by a maximum over 30%
across genres. Sentence pairs containing pronouns
are predictably common for all genres, with 93%
of Government and Face-to-face pairs including at

13Because their high frequency in the corpus, extremely
common triggers like the were excluded from this tag.

least one. The Telephone genre has the highest
percentage of sentence pairs containing one oc-
currence of negation, WH-words, belief -verbs and
time terms, Verbatim has the highest percentage
of pairs containing quantifiers and conversational
pivots, and Letters has the highest percentage of
pairs that contain one or more modals. Pairs con-
taining comparatives and/or superlatives, which is
the tag that our baseline models perform worst on,
are most common in the Oxford University Press
genre. Based on this, we conclude that the genres
are sufficiently different, because they are not uni-
form with respect to the percentages of sentence
pairs that contain each of the annotation tags.

The distributions of labels within each tagged
subset of the corpus roughly mirrors the balanced
overall distribution. The most frequent class over-
all (in this case, ENTAILMENT) occurs with a fre-
quency of roughly one third (see Table 4) in most.
Only two annotation tags differ from the baseline
percentage of the most frequent class in the cor-
pus by at least 5%: sentences containing negation,
and sentences exceeding 20 words. Sentences that
contain negation are slightly more likely than av-
erage to be labeled CONTRADICTION, reflecting a
similar finding in SNLI, while long sentences are
slightly more likely to be labeled ENTAILMENT.

None of the baseline models perform substan-
tially better on any tagged set than they do on the
corpus overall, with average model accuracies on
sentences containing specific tags falling within
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about 3 points of overall averages. Using base-
line model test accuracy overall as a metric (see
Table 4), our baseline models had the most trouble
on sentences containing comparatives or superla-
tives (losing 3-4 points each). Despite the fact that
17% of sentence pairs in the corpus contained at
least one instance of comparative or superlative,
our baseline models don’t utilize the information
present in these sentences to predict the correct la-
bel for the pair, although presence of a compara-
tive or superlative is slightly more predictive of a
NEUTRAL label.

Moreover, the baseline models perform below
average on discourse markers, such as despite and
however, losing roughly 2 to 3 points each. Un-
surprisingly, the attention-based ESIM model per-
forms better than the other two on sentences with
greater than 20 words. Additionally, our baseline
models do show slight improvements in accuracy
on negation, suggesting that they may be tracking
it as a predictor of CONTRADICTION.

5 Conclusion

Natural language inference makes it easy to judge
the degree to which neural network models for
sentence understanding capture the full meanings
for natural language sentences. Existing NLI
datasets like SNLI have facilitated substantial ad-
vances in modeling, but have limited headroom
and coverage of the full diversity of meanings ex-
pressed in English. This paper presents a new
dataset that offers dramatically greater linguistic
difficulty and diversity, and also serves as a bench-
mark for cross-genre domain adaptation.

Our new corpus, MultiNLI, improves upon
SNLI in its empirical coverage—because it in-
cludes a representative sample of text and speech
from ten different genres, as opposed to just sim-
ple image captions—and its difficulty, containing
a much higher percentage of sentences tagged with
one or more elements from our tag set of thir-
teen difficult linguistic phenomena. This greater
diversity is reflected in the dramatically lower
baseline model performance on MultiNLI than
on SNLI (see Table 5) and comparable inter-
annotator agreement, suggesting that MultiNLI
has a lot of headroom remaining for future work.

The MultiNLI corpus was first released in draft
form in the first half of 2017, and in the time since
its initial release, work by others (Conneau et al.,
2017) has shown that NLI can also be an effective

source task for pre-training and transfer learning
in the context of sentence-to-vector models, with
models trained on SNLI and MultiNLI substan-
tially outperforming all prior models on a suite
of established transfer learning benchmarks. We
hope that this corpus will continue to serve for
many years as a resource for the development and
evaluation of methods for sentence understanding.
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Ankur Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable atten-
tion model for natural language inference. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Associ-
ation for Computational Linguistics, pages 2249–
2255. https://doi.org/10.18653/v1/
D16-1244.

Nanyun Peng and Mark Dredze. 2017. Multi-task do-
main adaptation for sequence tagging. In Proceed-
ings of the 2nd Workshop on Representation Learn-
ing for NLP. pages 91–100.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for Com-
putational Linguistics, pages 1532–1543. https:
//doi.org/10.3115/v1/D14-1162.

Henry Beam Piper. 1953. Murder In the Gun Room.
H.B. Piper, New York.

Rafael Sabatini. 1922. Captain Blood. Houghton Mif-
flin Company.

Philippe Schlenker. 2016. The Cambridge Hand-
book of Formal Semantics, Cambridge Univer-
sity Press, chapter The Semantics/Pragmatics Inter-
face, pages 664–727. https://doi.org/10.
1017/CBO9781139236157.023.

Michael Shea. 2008. Seven Swords. Published online.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search (JMLR) 15:1929–1958.

Robert Stalnaker. 1974. Semantics and Philosophy,
New York University Press, chapter Pragmatic Pre-
supposition, pages 329–355.

Anna Szabolcsi. 2010. Quantification. Cambridge
University Press.

Shuohang Wang and Jing Jiang. 2016. Learning
natural language inference with LSTM. In Pro-
ceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, pages
1442–1451. https://doi.org/10.18653/
v1/N16-1170.

Peter Young, Alice Lai, Micah Hodosh, and Julia
Hockenmaier. 2014. From image descriptions to
visual denotations: New similarity metrics for se-
mantic inference over event descriptions. Trans-
actions of the Association of Computational Lin-
guistics 2:67–78. http://www.aclweb.org/
anthology/Q14-1006.

Matthew D. Zeiler and Rob Fergus. 2014. Visualizing
and understanding convolutional networks. In Pro-
ceedings of the European Conference on Computer
Vision (ECCV). pages 818–833.

1122



Proceedings of NAACL-HLT 2018, pages 1123–1133
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Filling Missing Paths: Modeling Co-occurrences of Word Pairs and
Dependency Paths for Recognizing Lexical Semantic Relations

Koki Washio and Tsuneaki Kato
Department of Language and Information Sciences

Graduate School of Arts and Sciences
The University of Tokyo

3-8-1, Komaba, Meguroku, Tokyo 153-8902 Japan
{kokiwashio@g.ecc, kato@boz.c}.u-tokyo.ac.jp

Abstract

Recognizing lexical semantic relations be-
tween word pairs is an important task for many
applications of natural language processing.
One of the mainstream approaches to this task
is to exploit the lexico-syntactic paths con-
necting two target words, which reflect the
semantic relations of word pairs. However,
this method requires that the considered words
co-occur in a sentence. This requirement is
hardly satisfied because of Zipf’s law, which
states that most content words occur very
rarely. In this paper, we propose novel meth-
ods with a neural model of P (path|w1, w2)
to solve this problem. Our proposed model
of P (path|w1, w2) can be learned in an un-
supervised manner and can generalize the co-
occurrences of word pairs and dependency
paths. This model can be used to augment the
path data of word pairs that do not co-occur in
the corpus, and extract features capturing re-
lational information from word pairs. Our ex-
perimental results demonstrate that our meth-
ods improve on previous neural approaches
based on dependency paths and successfully
solve the focused problem.

1 Introduction

The semantic relations between words are impor-
tant for many natural language processing tasks,
such as recognizing textual entailment (Dagan
et al., 2010) and question answering (Yang et al.,
2017). Moreover, these relations have been also
used as features for neural methods in machine
translation (Sennrich and Haddow, 2016) and re-
lation extraction (Xu et al., 2015). This type of
information is provided by manually-created se-
mantic taxonomies, such as WordNet (Fellbaum,
1998). However, these resources are expensive to
expand manually and have limited domain cov-
erage. Thus, the automatic detection of lexico-
semantic relations has been studied for several

decades.
One of the most popular approaches is based

on patterns that encode a specific kind of relation-
ship (synonym, hypernym, etc.) between adjacent
words. This type of approach is called a path-
based method. Lexico-syntactic patterns between
two words provide information on semantic rela-
tions. For example, if we see the pattern, “animals
such as a dog” in a corpus, we can infer that ani-
mal is a hypernym of dog. On the basis of this as-
sumption, Hearst (1992) detected the hypernymy
relation of two words from a corpus based on sev-
eral handcrafted lexico-syntactic patterns, e.g., X
such as Y. Snow et al. (2004) used as features in-
dicative dependency paths, in which target word
pairs co-occurred, and trained a classifier with data
to detect hypernymy relations.

In recent studies, Shwartz et al. (2016) pro-
posed a neural path-based model that encoded
dependency paths between two words into low-
dimensional dense vectors with recurrent neural
networks (RNN) for hypernymy detection. This
method can prevent sparse feature space and gen-
eralize indicative dependency paths for detect-
ing lexico-semantic relations. Their model out-
performed the previous state-of-the-art path-based
method. Moreover, they demonstrated that these
dense path representations capture complementary
information with word embeddings that contain
individual word features. This was indicated by
the experimental result that showed the combina-
tion of path representations and word embeddings
improved classification performance. In addition,
Shwartz and Dagan (2016) showed that the neural
path-based approach, combined with word embed-
dings, is effective in recognizing multiple seman-
tic relations.

Although path-based methods can capture the
relational information between two words, these
methods can obtain clues only for word pairs that
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co-occur in a corpus. Even with a very large
corpus, it is almost impossible to observe a co-
occurrence of arbitrary word pairs. Thus, path-
based methods are still limited in terms of the
number of word pairs that are correctly classified.

To address this problem, we propose a novel
method with modeling P (path|w1, w2) in a neu-
ral unsupervised manner, where w1 and w2 are the
two target words, and path is a dependency path
that can connect the joint co-occurrence of w1 and
w2. A neural model of P (path|w1, w2) can gen-
eralize co-occurrences of word pairs and depen-
dency paths, and infer plausible dependency paths
which connect two words that do not co-occur in
a corpus. After unsupervised learning, this model
can be used in two ways:

• Path data augmentation through predicting
dependency paths that are most likely to co-
occur with a given word pair.

• Feature extraction of word pairs, capturing
the information of dependency paths as con-
texts where two words co-occur.

While previous supervised path-based methods
used only a small portion of a corpus, combining
our models makes it possible to use an entire cor-
pus for learning process.

Experimental results for four common datasets
of multiple lexico-semantic relations show that our
methods improve the classification performance of
supervised neural path-based models.

2 Background

2.1 Supervised Lexical Semantic Relation
Detection

Supervised lexical semantic relation detection rep-
resents word pairs (w1, w2) as feature vectors v
and trains a classifier with these vectors based on
training data. For word pair representations v,
we can use the distributional information of each
word and path information in which two words co-
occur.

Several methods exploit word embeddings
(Mikolov et al., 2013; Levy and Goldberg, 2014;
Pennington et al., 2014) as distributional informa-
tion. These methods use a combination of each
word’s embeddings, such as vector concatenation
(Baroni et al., 2012; Roller and Erk, 2016) or vec-
tor difference (Roller et al., 2014; Weeds et al.,
2014; Vylomova et al., 2016), as word pair repre-
sentations. While these distributional supervised

methods do not require co-occurrences of two
words in a sentence, Levy et al. (2015) notes that
these methods do not learn the relationships be-
tween two words but rather the separate property
of each word, i.e., whether or not each word tends
to have a target relation.

In contrast, supervised path-based methods can
capture relational information between two words.
These methods represent a word pair as the set of
lexico-syntactic paths, which connect two target
words in a corpus (Snow et al., 2004). However,
these methods suffer from sparse feature space, as
they cannot capture the similarity between indica-
tive lexico-syntactic paths, e.g., X is a species of Y
and X is a kind of Y.

2.2 Neural Path-based Method
A neural path-based method can avoid the sparse
feature space of the previous path-based methods
(Shwartz et al., 2016; Shwartz and Dagan, 2016).
Instead of treating an entire dependency path as a
single feature, this model encodes a sequence of
edges of a dependency path into a dense vector
using a long short-term memory network (LSTM)
(Hochreiter and Schmidhuber, 1997).

A dependency path connecting two words
can be extracted from the dependency tree of
a sentence. For example, given the sen-
tence “A dog is a mammal,” with X = dog
and Y = mammal, the dependency path con-
necting the two words is X/NOUN/nsubj/>
be/VERB/ROOT/- Y/NOUN/attr/<. Each
edge of a dependency path is composed of a
lemma, part of speech (POS), dependency label,
and dependency direction.

Shwartz et al. (2016) represents each edge as the
concatenation of its component embeddings:

e = [vl;vpos;vdep;vdir] (1)

where vl,vpos,vdep,and vdir represent the embed-
ding vectors of the lemma, POS, dependency la-
bel, and dependency direction respectively. This
edge vector e is an input of the LSTM at each time
step. Here, ht, the hidden state at time step t, is
abstractly computed as:

ht = LSTM(ht−1, et) (2)

where LSTM computes the current hidden state
given the previous hidden state ht−1 and the cur-
rent input edge vector et along with the LSTM
architecture. The final hidden state vector op is
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treated as the representation of the dependency
path p.

When classifying a word pair (w1, w2), the
word pair is represented as the average of the de-
pendency path vectors that connect two words in a
corpus:

v(w1,w2) = vpaths(w1,w2)

=

∑
p∈paths(w1,w2)

fp,(w1,w2) · op∑
p∈paths(w1,w2)

fp,(w1,w2)
(3)

where paths(w1, w2) is the set of dependency
paths that connects w1 and w2 in the corpus, and
fp,(w1,w2) is the frequency of p in paths(w1, w2).
The final output of the network is calculated as fol-
lows:

y = softmax(Wv(w1,w2) + b) (4)

where W ∈ R|c|×d is a linear transformation ma-
trix, b ∈ R|c| is a bias parameter, |c| is the number
of the output class, and d is the size of v(w1,w2).

This neural path-based model can be combined
with distributional methods. Shwartz et al. (2016)
concatenated vpaths(w1,w2) to the word embed-
dings of w1 and w2, redefining v(w1,w2) as:

v(w1,w2) = [vw1 ;vpaths(w1,w2);vw2 ] (5)

where vw1 and vw2 are word embeddings of w1

and w2, respectively. This integrated model,
named LexNET, exploits both path information
and distributional information, and has high gener-
alization performance for lexical semantic relation
detection.

2.3 Missing Path Problem
All path-based methods, including the neural ones,
suffer from data sparseness as they depend on
word pair co-occurrences in a corpus. However,
we cannot observe all co-occurrences of semanti-
cally related words even with a very large corpus
because of Zipf’s law, which states that the fre-
quency distribution of words has a long tail; in
other words, most words occur very infrequently
(Hanks, 2009). In this paper, we refer to this phe-
nomenon as the missing path problem.

This missing path problem leads to the fact that
path-based models cannot find any clues for two
words that do not co-occur. Thus, in the neural
path-based method, paths(w1, w2) for these
word pairs is padded with an empty path, like
UNK-lemma/UNK-POS/UNK-dep/UNK-dir.

However, this process makes path-based classi-
fiers unable to distinguish between semantically-
related pairs with no co-occurrences and those
that have no semantic relation.

In an attempt to solve this problem, Necsulescu
et al. (2015) proposed a method that used a graph
representation of a corpus. In this graph, words
and dependency relations were denoted as nodes
and labeled directed edges, respectively. From
this graph representation, paths linking two target
words can be extracted through bridging words,
even if the two words do not co-occur in the cor-
pus. They represent word pairs as the sets of paths
linking word pairs on the graph and train a sup-
port vector machine classifier with training data,
thereby improving recall. However, the authors
reported that this method still suffered from data
sparseness.

In this paper, we address this missing path prob-
lem, which generally restricts path-based meth-
ods, by neural modeling P (path|w1, w2).

3 Method

We present a novel method for modeling
P (path|w1, w2). The purpose of this method is
to address the missing path problem by general-
izing the co-occurrences of word pairs and de-
pendency paths. To model P (path|w1, w2), we
used the context-prediction approach (Collobert
and Weston, 2008; Mikolov et al., 2013; Levy and
Goldberg, 2014; Pennington et al., 2014), which
is a widely used method for learning word em-
beddings. In our proposed method, word pairs
and dependency paths are represented as embed-
dings that are updated with unsupervised learning
through predicting path from w1 and w2 (Section
3.1).

After the learning process, our model can be
used to (1) augment path data by predicting the
plausibility of the co-occurrence of two words and
a dependency path (Section 3.2); and to (2) ex-
tract useful features from word pairs, which reflect
the information of co-occurring dependency paths
(Section 3.3).

3.1 Unsupervised Learning

There are many possible ways to model
P (path|w1, w2). In this paper, we present a
straightforward and efficient architecture, similar
to the skip-gram with negative sampling (Mikolov
et al., 2013).
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Figure 1: An illustration of our network for modeling
P (path|w1, w2). Given a word pair (dog, animal),
our model makes h̃ of (dog, animal) similar to
vpath of the observed co-occurring dependency
path X/NOUN/nsubj/> be/VERB/ROOT/-
Y/NOUN/attr/< and dissimilar to vpath′ of the
unobserved paths, such as X/NOUN/nsubj/>
use/VERB/ROOT/- Y/NOUN/dobj/<, through
unsupervised learning.

Figure 1 depicts our network structure, which is
described below.

Data and Network Architecture
We are able to extract many triples (w1, w2, path)
from a corpus after dependency parsing. We de-
note a set of these triples as D. These triples
are the instances used for the unsupervised learn-
ing of P (path|w1, w2). Given (w1, w2, path), our
model learns through predicting path fromw1 and
w2.

We encode word pairs into dense vectors as fol-
lows:

h(w1,w2) = tanh(W1[vw1 ;vw2 ] + b1) (6)

h̃(w1,w2) = tanh(W2h(w1,w2) + b2) (7)

where [vw1 ;vw2 ] is the concatenation of the word
embeddings of w1 and w2; W1, b1, W2, and b2
are the parameter matrices and bias parameters of
the two linear transformations; and h̃(w1,w2) is the
representation of the word pair.

We associate each path with the embedding
vpath, initialized randomly. While we use a simple
way to represent dependency paths in this paper,
LSTM can be used to encode each path in the way
described in Section 2.2. If LSTM is used, learn-
ing time increases but similarities among paths
will be captured.

Objective
We used the negative sampling objective for train-
ing (Mikolov et al., 2013). Given the word pair

representations h̃(w1,w2) and the dependency path
representations vpath, our model was trained to
distinguish real (w1, w2, path) triples from incor-
rect ones. The log-likelihood objective is as fol-
lows:

L =
∑

(w1,w2,path)∈D
log σ(vpath · h̃(w1,w2))

+
∑

(w1,w2,path′)∈D′
log σ(−vpath′ · h̃(w1,w2)) (8)

where, D′ is the set of randomly generated
negative samples. We constructed n triples
(w1, w2, path

′) for each (w1, w2, path) ∈ D,
where n is a hyperparameter and each path′ is
drawn according to its unigram distribution raised
to the 3/4 power. The objective L was maximized
using the stochastic gradient descent algorithm.

3.2 Path Data Augmentation

After the unsupervised learning described above,
our model of P (path|w1, w2) can assign the
plausibility score σ(vpath · h̃(w1,w2)) to the co-
occurrences of a word pair and a dependency
path. We can then append the plausible depen-
dency paths to paths(w1, w2), the set of depen-
dency paths that connectsw1 andw2 in the corpus,
based on these scores.

We calculate the score of each dependency path
given (X = w1, Y = w2) and append the
k dependency paths with the highest scores to
paths(w1, w2), where k is a hyperparameter. We
perform the same process given (X = w2, Y =
w1) with the exception of swapping the X and Y
in the dependency paths to be appended. As a re-
sult, we add 2k dependency paths to the set of de-
pendency paths for each word pair. Through this
data augmentation, we can obtain plausible depen-
dency paths even when word pairs do not co-occur
in the corpus. Note that we retain the empty path
indicators of paths(w1, w2), as we believe that
this information contributes to classifying two un-
related words.

3.3 Feature Extractor of Word Pairs

Our model can be used as a feature extractor
of word pairs. We can exploit h̃(w1,w2) to rep-
resent the word pair (w1, w2). This represen-
tation captures the information of co-occurrence
dependency paths of (w1, w2) in a generalized
fashion. Thus, h̃(w1,w2) is used to construct the
pseudo-path representation vp−paths(w1,w2). With
our model, we represent the word pair (w1, w2) as
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datasets relations
K&H+N hypernym, meronym, co-hyponym, random
BLESS hypernym, meronym, co-hyponym, random

ROOT09 hypernym, co-hyponym, random
EVALution hypernym, meronym, attribute, synonym, antonym, holonym, substance meronym

Table 1: The relation types in each dataset.

follows:

vp−paths(w1,w2) = [h̃(w1,w2); h̃(w2,w1)] (9)

This representation can be used for word pair clas-
sification tasks, such as lexical semantic relation
detection.

4 Experiment

In this section, we examine how our method im-
proves path-based models on several datasets for
recognizing lexical semantic relations. In this pa-
per, we focus on major noun relations, such as hy-
pernymy, co-hypernymy, and meronymy.

4.1 Dataset

We relied on the datasets used in Shwartz and Da-
gan (2016); K&H+N (Necsulescu et al., 2015).
BLESS (Baroni and Lenci, 2011), EVALution
(Santus et al., 2015), and ROOT09 (Santus et al.,
2016). These datasets were constructed with
knowledge resources (e.g., WordNet, Wikipedia),
crowd-sourcing, or both. We used noun pair in-
stances of these datasets.1 Table 1 displays the
relations in each dataset used in our experiments.
Note that we removed the two relations Entails
and MemberOf with few instances from EVALu-
tion following Shwartz and Dagan (2016). For
data splitting, we used the presplitted train/val/test
sets from Shwartz and Dagan (2016) after remov-
ing all but the noun pairs from each set.

4.2 Corpus and Dependency Parsing

For path-based methods, we used the June
2017 Wikipedia dump as a corpus and extracted
(w1, w2, path) triples of noun pairs using the de-
pendency parser of spaCy2 to construct D. In this
process, w1 and w2 were lemmatized with spaCy.
We only used the dependency paths which oc-

1We focused only noun pairs to shorten the unsupervised
learning time, though this restriction is not necessary for our
methods and the unsupervised learning is still tractable.

2https://spacy.io

datasets instances
instances

with paths proportion
K&H+N 57509 8866 15.4%
BLESS 14558 8775 60.3%

ROOT09 8602 6582 76.5%
EVALution 3240 3199 98.7%

Table 2: The number and proportion of instances
whose dependency path is obtained from each dataset

curred at least five times following the implemen-
tation of Shwartz and Dagan (2016).3

Table 2 displays the number of instances and the
proportion of the instances for which at least one
dependency path was obtained.

4.3 Baseline

We conducted experiments with three neural path-
based methods. The implementation details below
follow those in Shwartz and Dagan (2016). We
implemented all models using Chainer.4

Neural Path-Based Model (NPB). We imple-
mented and trained the neural path-based model
described in Section 2.2. We used the two-layer
LSTM with 60-dimensional hidden units. An in-
put vector was composed of embedding vectors of
the lemma (50 dims), POS (4 dims), dependency
label (5 dims), and dependency direction (1 dim).
Regularization was applied by a dropout on each
of the components embeddings (Iyyer et al., 2015;
Kiperwasser and Goldberg, 2016).

LexNET. We implemented and trained the inte-
grated model LexNET as described in Section 2.2.
The LSTM details are the same as in the NPB
model.

LexNET h. This model, a variant of LexNET,
has an additional hidden layer between the out-
put layer and v(w1,w2) of Equation (5). Because
of this additional hidden layer, this model can take
into account the interaction of the path information

3https://github.com/vered1986/LexNET
4https://chainer.org
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vw1
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+Aug +Rep
Predicted path

Predicted path

Average
pooling

Figure 2: Illustration of +Aug and +Rep applied to LexNET. +Aug predicts plausible paths from two word em-
beddings, and these paths are fed into the LSTM path encoder. +Rep concatenates the pseudo-path representation
vp−paths(w1,w2) with the penultimate layer of LexNET

and distributional information of two word embed-
dings. The size of the additional hidden layer was
set to 60.

Following Shwartz and Dagan (2016), we opti-
mized each model using Adam (whose learning
rate is 0.001) while tuning the dropout rate dr
among {0.0, 0.2, 0.4} on the validation set. The
minibatch size was set to 100.

We initialized the lemma embeddings of
LSTM and concatenated the word embeddings
of LexNET with the pretrained 50-dimensional
GloVe vector.5 Training was stopped if perfor-
mance on the validation set did not improve for
seven epochs, and the best model for test evalua-
tion was selected based on the score of the valida-
tion set.

4.4 Our Method

We implemented and trained our model of
P (path|w1, w2), described in Section 3.1, as fol-
lows. We used the most frequent 30,000 paths
connecting nouns as the context paths for unsuper-
vised learning. We initialized word embeddings
with the same pretrained GloVe vector as the base-
line models. For unsupervised learning data, we

5https://nlp.stanford.edu/projects/
glove/

extracted (w1, w2, path), whose w1 and w2 are in-
cluded in the vocabulary of the GloVe vector, and
whose path is included in the context paths, from
D. The number of these triples was 217,737,765.

We set the size of h(w1,w2), h̃(w1,w2), and vpath
for context paths to 100. The negative sampling
size n was set to 5. We trained our model for five
epochs using Adam (whose learning rate is 0.001).
The minibatch size was 100. To preserve the dis-
tributional regularity of the pretrained word em-
beddings, we did not update the input word em-
beddings during the unsupervised learning.

With our trained model, we applied the two
methods described in Section 3.2 and 3.3 to the
NPB and LexNET models as follows:

+Aug. We added the most plausible 2k paths to
each paths(w1, w2) as in Section 3.2. We tuned
k ∈ {1, 3, 5} on the validation set.

+Rep. We concatenated vp−paths(w1,w2) in Equa-
tion (9) with the penultimate layer. To focus on
the pure contribution of unsupervised learning, we
did not update this component during supervised
learning.

Figure 2 illustrates +Aug and +Rep applied to
LexNET in the case where the two target words,
w1 and w2, do not co-occur in the corpus.
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Models K&H+N BLESS ROOT09 EVALution
NPB 0.495 0.773 0.731 0.463
NPB+Aug 0.897 0.842 0.778 0.489

Table 3: Classification performance of the neural path-based model (NPB) and that with the path data augmentation
(NPB+Aug).

Models K&H+N BLESS ROOT09 EVALution
LexNET 0.969 0.922 0.776 0.539
LexNET h 0.968 0.927 0.810 0.540
LexNET+Aug 0.970 0.927 0.806 0.545
LexNET+Rep 0.970 0.944 0.832 0.565
LexNET+Aug+Rep 0.969 0.942 0.820 0.567

Table 4: Classification performance of the integrated model, LexNET and LexNET h, and those with our methods,
+Aug and +Rep.

5 Result

In this section we examine how our methods im-
proved the baseline models. Following the pre-
vious research (Shwartz and Dagan, 2016), the
performance metrics were the “averaged” F1 of
scikit-learn (Pedregosa et al., 2011), which com-
putes the F1 for each relation, and reports their
average weighted by the number of true instances
for each relation.

5.1 Path-based Model and Path Data
Augmentation

We examined whether or not our path data aug-
mentation method +Aug contributes to the neural
path-based method. The results are displayed in
Table 3.

Applying our path data augmentation method
improved the classification performance on each
dataset. Especially for K&H+N, the large dataset
where the three-fourths of word pairs had no
paths, our method significantly improved the per-
formance. This result shows that our path data
augmentation effectively solves the missing path
problem. Moreover, the model with our method
outperforms the baseline on EVALution, in which
nearly all word pairs co-occurred in the corpus.
This indicates that the predicted paths provide use-
ful information and enhance the path-based classi-
fication. We examine the paths that were predicted
by our model of P (path|w1, w2) in Section 6.1.

5.2 Integrated Model and Our Methods

We investigated how our methods using modeling
P (path|w1, w2) improved the baseline integrated
model, LexNET. Table 4 displays the results.

Our proposed methods, +Aug and +Rep, im-
proved the performance of LexNET on each
dataset.6 Moreover, the best score on each dataset
was achieved by the model to which our methods
were applied. These results show that our meth-
ods are also effective with the integrated models
based on path information and distributional infor-
mation.

The table also shows that LexNET+Rep outper-
forms LexNET h, though the former has fewer pa-
rameters to be tuned during the supervised learn-
ing than the latter. This indicates that the word pair
representations of our model capture information
beyond the interaction of two word embeddings.
We investigate the properties of our word pair rep-
resentation in Section 6.2.

Finally, We found that applying both methods
did not necessarily yield the best performance. A
possible explanation for this is that applying both
methods is redundant, as both +Aug and +Rep de-
pend on the same model of P (path|w1, w2).

6 Analysis

In this section, we investigate the properties of the
predicted dependency paths and word pair repre-
sentations of our model.

6.1 Predicted Dependency Paths

We extracted the word pairs of BLESS without
co-occurring dependency paths and predicted the

6The improvement for K&H+N is smaller than those for
the others. We think this owes to most instances of this
dataset being correctly classified only by distributional in-
formation. This view is supported by Shwartz and Dagan
(2016), in which LexNET hardly outperformed a distribu-
tional method for this dataset.
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Word pair Relation Predicted paths
X/NOUN/nsubj/> be/VERB/ROOT/- shooter/NOUN/attr/<
Y/NOUN/compound/<

X = “jacket”, Y = “commodity” hypernym X/NOUN/nsubj/> be/VERB/ROOT/- Y/NOUN/attr/<
manufacture/VERB/acl/<
red/ADJ/amod/< X/NOUN/nsubj/> be/VERB/ROOT/-
Y/NOUN/attr/<
X/NOUN/nsubj/> be/VERB/ROOT/- species/NOUN/attr/<
of/ADP/prep/< Y/NOUN/pobj/< of/ADP/prep/>

X = “goose”, Y = “creature” hypernym X/NOUN/nsubj/> be/VERB/ROOT/- specie/NOUN/attr/<
of/ADP/prep/< Y/NOUN/pobj/< in/ADP/prep/>
X/NOUN/pobj/> of/ADP/ROOT/- bird/NOUN/pobj/<
Y/NOUN/conj/<

X/NOUN/ROOT/- represent/VERB/relcl/<
Y/NOUN/nsubj/<

X = “owl”, Y = “rump” meronym X/NOUN/nsubj/> have/VERB/ROOT/- Y/NOUN/dobj/<
be/VERB/relcl/>
all/DET/det/< X/NOUN/nsubj/> have/VERB/ROOT/-
Y/NOUN/dobj/<
X/NOUN/pobj/> of/ADP/ROOT/- arm/NOUN/pobj/<
Y/NOUN/conj/<

X = “mug”, Y = “plastic” meronym the/DET/det/< X/NOUN/nsubjpass/> make/VERB/ROOT/-
from/ADP/prep/< Y/NOUN/pobj/<
X/NOUN/compound/> gun/NOUN/ROOT/- Y/NOUN/appos/<

X/NOUN/compound/> leaf/NOUN/ROOT/- Y/NOUN/conj/<
X = “carrot”, Y = “beans” co-hyponym X/NOUN/compound/> specie/NOUN/ROOT/- Y/NOUN/conj/<

X/NOUN/dobj/> use/VERB/ROOT/- in/ADP/prep/<
Y/NOUN/pobj/< of/ADP/prep/>
X/NOUN/dobj/> play/VERB/ROOT/- guitar/NOUN/dobj/<
Y/NOUN/conj/<

X = “cello”, Y = “kazoo” co-hyponym X/NOUN/pobj/> for/ADP/ROOT/- piano/NOUN/pobj/<
Y/NOUN/conj<
X/NOUN/pobj/> on/ADP/ROOT/- drum/NOUN/pobj/<
Y/NOUN/conj/<

Table 5: Predicted paths with our model for a word pair of each relation in BLESS.

plausible dependency paths of those pairs with our
model of P (path|w1, w2). The examples are dis-
played in Table 5 at the top three paths. We used
the bold style for the paths that we believe to be in-
dicative or representative for a given relationship.

Our model predicted plausible and indicative
dependency paths for each relation, although the
predicted paths also contain some implausible or
unindicative ones. For hypernymy, our model pre-
dicted variants of the is-a path according to do-
mains, such as X is Y manufactured in the cloth-
ing domain and X is a species of Y in the animal
domain. For (owl, rump), which is a meronymy
pair, the top predicted path was X that Y repre-
sent. This is not plausible for (owl, rump) but
is indicative for meronymy, particularly member-
of relations. Moreover, domain-independent paths
which indicate meronymy, such as all X have
Y, were predicted. For (mug, plastic), one
of the predicted paths, X is made from Y, is
also a domain-independent indicative path for
meronymy. For co-hypernymy, our model pre-
dicted domain-specific paths, which indicate that
two nouns are of the same kind. For exam-
ples, given X leaf and Y and X specie and Y of

(carrot, beans), we can infer that both X and Y
are plants or vegetables. Likewise, given play X,
guitar, and Y of (cello, kazoo), we can infer that
both X and Y are musical instruments. These ex-
amples show that our path data augmentation is ef-
fective for the missing path problem and enhances
path-based models.

6.2 Visualizing Word Pair Representations
We visualized the word pair representations
vp−paths(w1,w2) to examine their specific proper-
ties. In BLESS, every pair was annotated with 17
domain class labels. For each domain, we reduced
the dimensionality of the representations using t-
SNE (Maaten and Hinton, 2008) and plotted the
data points of the hypernyms, co-hyponyms, and
meronyms. We compared our representations with
the concatenation of two word embeddings (pre-
trained 50-dimensional GloVe). The examples are
displayed in Figure 3.

We found that our representations (the top row
in Figure 3) grouped the word pairs according to
their semantic relation in some specific domains
based only on unsupervised learning. This prop-
erty is desirable for the lexical semantic relation
detection task. In contrast to our representations,
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Figure 3: Visualization of the our word pair representations vp−paths(w1,w2) (top row) and the concatenation of
two word embeddings (bottom row) using t-SNE in some domains. The two axes of each plot, x and y, are the
reduced dimensions using t-SNE.

the concatenation of word embeddings (the bot-
tom row in Figure 3) has little or no such tendency
in all domains. The data points of the concatena-
tion of word embeddings are scattered or jumbled.
This is because the concatenation of word embed-
dings cannot capture the relational information of
word pairs but only the distributional information
of each word (Levy et al., 2015).

This visualization further shows that our word
pair representations can be used as pseudo-path
representations to alleviate the missing path prob-
lem.

7 Conclusion

In this paper, we proposed the novel meth-
ods with modeling P (path|w1, w2) to solve the
missing path problem. Our neural model of
P (path|w1, w2) can be learned from a corpus in
an unsupervised manner, and can generalize co-
occurrences of word pairs and dependency paths.
We demonstrated that this model can be applied in
the two ways: (1) to augment path data by predict-
ing plausible paths for a given word pair, and (2)
to extract from word pairs useful features captur-
ing co-occurring path information. Finally, our ex-
periments demonstrated that our methods can im-
prove upon the previous models and successfully
solve the missing path problem.

In future work, we will explore unsupervised
learning with a neural path encoder. Our model
bears not only word pair representations but also
dependency path representations as context vec-

tors. Thus, we intend to apply these representa-
tions to various tasks, which path representations
contribute to.
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Abstract

We present LEAR (Lexical Entailment Attract-
Repel), a novel post-processing method that
transforms any input word vector space to
emphasise the asymmetric relation of lexical
entailment (LE), also known as the IS-A or
hyponymy-hypernymy relation. By injecting
external linguistic constraints (e.g., WordNet
links) into the initial vector space, the LE spe-
cialisation procedure brings true hyponymy-
hypernymy pairs closer together in the trans-
formed Euclidean space. The proposed asym-
metric distance measure adjusts the norms of
word vectors to reflect the actual WordNet-
style hierarchy of concepts. Simultaneously, a
joint objective enforces semantic similarity us-
ing the symmetric cosine distance, yielding a
vector space specialised for both lexical re-
lations at once. LEAR specialisation achieves
state-of-the-art performance in the tasks of hy-
pernymy directionality, hypernymy detection,
and graded lexical entailment, demonstrating
the effectiveness and robustness of the pro-
posed asymmetric specialisation model.

1 Introduction

Word representation learning has become a re-
search area of central importance in NLP, with
its usefulness demonstrated across application ar-
eas such as parsing (Chen and Manning, 2014),
machine translation (Zou et al., 2013), and many
others (Turian et al., 2010; Collobert et al., 2011).
Standard techniques for inducing word embeddings
rely on the distributional hypothesis (Harris, 1954),
using co-occurrence information from large textual
corpora to learn meaningful word representations
(Mikolov et al., 2013; Levy and Goldberg, 2014;
Pennington et al., 2014; Bojanowski et al., 2017).

A major drawback of the distributional hypoth-
esis is that it coalesces different relationships be-
tween words, such as synonymy and topical related-
ness, into a single vector space. A popular solution

is to go beyond stand-alone unsupervised learning
and fine-tune distributional vector spaces by using
external knowledge from human- or automatically-
constructed knowledge bases. This is often done as
a post-processing step, where distributional vectors
are gradually refined to satisfy linguistic constraints
extracted from lexical resources such as WordNet
(Faruqui et al., 2015; Mrkšić et al., 2016), the Para-
phrase Database (PPDB) (Wieting et al., 2015), or
BabelNet (Mrkšić et al., 2017; Vulić et al., 2017a).
One advantage of post-processing methods is that
they treat the input vector space as a black box,
making them applicable to any input space.

A key property of these methods is their abil-
ity to transform the vector space by specialising it
for a particular relationship between words.1 Prior
work has predominantly focused on distinguishing
between semantic similarity and conceptual relat-
edness (Faruqui et al., 2015; Mrkšić et al., 2017;
Vulić et al., 2017b). In this paper, we introduce a
novel post-processing model which specialises vec-
tor spaces for the lexical entailment (LE) relation.

Word-level lexical entailment is an asymmet-
ric semantic relation (Collins and Quillian, 1972;
Beckwith et al., 1991). It is a key principle de-
termining the organisation of semantic networks
into hierarchical structures such as semantic on-
tologies (Fellbaum, 1998). Automatic reasoning
about LE supports tasks such as taxonomy creation
(Snow et al., 2006; Navigli et al., 2011), natural lan-
guage inference (Dagan et al., 2013; Bowman et al.,
2015), text generation (Biran and McKeown, 2013),
and metaphor detection (Mohler et al., 2013).

Our novel LE specialisation model, termed LEAR

(Lexical Entailment Attract-Repel), is inspired by
ATTRACT-REPEL, a state-of-the-art general spe-

1Distinguishing between synonymy and antonymy has a
positive impact on real-world language understanding tasks
such as Dialogue State Tracking (Mrkšić et al., 2017).
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Figure 1: An illustration of LEAR specialisation.
LEAR controls the arrangement of vectors in the
transformed vector space by: 1) emphasising sym-
metric similarity of LE pairs through cosine dis-
tance (by enforcing small angles between

−−−−→
terrier

and
−→
dog or

−→
dog and

−−−−→
animal); and 2) by imposing

an LE ordering using vector norms, adjusting them
so that higher-level concepts have larger norms
(e.g., |−−−−→animal| > |−→dog| > |−−−−→terrier|).

cialisation framework (Mrkšić et al., 2017).2 The
key idea of LEAR, illustrated by Figure 1, is to
pull desirable (ATTRACT) examples described by
the constraints closer together, while at the same
time pushing undesirable (REPEL) word pairs away
from each other. Concurrently, LEAR (re-)arranges
vector norms so that norm values in the Euclidean
space reflect the hierarchical organisation of con-
cepts according to the given LE constraints: put
simply, higher-level concepts are assigned larger
norms. Therefore, LEAR simultaneously captures
the hierarchy of concepts (through vector norms)
and their similarity (through their cosine distance).
The two pivotal pieces of information are combined
into an asymmetric distance measure which quanti-
fies the LE strength in the specialised space.

After specialising four well-known input vector
spaces with LEAR, we test them in three standard
word-level LE tasks (Kiela et al., 2015b): 1) hyper-
nymy directionality; 2) hypernymy detection; and
3) combined hypernymy detection/directionality.
Our specialised vectors yield notable improve-
ments over the strongest baselines for each task,
with each input space, demonstrating the effective-
ness and robustness of LEAR specialisation.

2https://github.com/nmrksic/attract-repel

The employed asymmetric distance allows one
to make graded assertions about hierarchical re-
lationships between concepts in the specialised
space. This property is evaluated using HyperLex,
a recent graded LE dataset (Vulić et al., 2017).
The LEAR-specialised vectors push state-of-the-art
Spearman’s correlation from 0.540 to 0.686 on the
full dataset (2,616 word pairs), and from 0.512 to
0.705 on its noun subset (2,163 word pairs).

The code for the LEAR model is available from:
github.com/nmrksic/lear.

2 Methodology

2.1 The ATTRACT-REPEL Framework

Let V be the vocabulary, A the set of ATTRACT

word pairs (e.g., intelligent and brilliant), and R
the set of REPEL word pairs (e.g., vacant and oc-
cupied). The ATTRACT-REPEL procedure operates
over mini-batches of such pairs BA and BR. For
ease of notation, let each word pair (xl, xr) in
these two sets correspond to a vector pair (xl,xr),
so that a mini-batch of k1 word pairs is given by
BA = [(x1

l ,x
1
r), . . . , (x

k1
l ,x

k1
r )] (similarly for BR,

which consists of k2 example pairs).
Next, the sets of pseudo-negative examples

TA = [(t1l , t
1
r), . . . , (t

k1
l , t

k1
r )] and TR =

[(t1l , t
1
r), . . . , (t

k2
l , t

k2
r )] are defined as pairs of neg-

ative examples for each ATTRACT and REPEL ex-
ample pair in mini-batches BA and BR. These neg-
ative examples are chosen from the word vectors
present in BA or BR so that, for each ATTRACT

pair (xl,xr), the negative example pair (tl, tr) is
chosen so that tl is the vector closest (in terms of
cosine distance) to xl and tr is closest to xr. Sim-
ilarly, for each REPEL pair (xl,xr), the negative
example pair (tl, tr) is chosen from the remain-
ing in-batch vectors so that tl is the vector furthest
away from xl and tr is furthest from xr.

The negative examples are used to: a) force AT-
TRACT pairs to be closer to each other than to their
respective negative examples; and b) to force RE-
PEL pairs to be further away from each other than
from their negative examples. The first term of the
cost function pulls ATTRACT pairs together:

Att(BA, TA) =

k1∑

i=1

[
τ
(
δatt + cos(xil, t

i
l)− cos(xil,xir)

)

+τ
(
δatt + cos(xir, t

i
r)− cos(xil,xir)

) ]
(1)
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where cos denotes cosine similarity, τ(x) =
max(0, x) is the hinge loss function and δatt is the
attract margin which determines how much closer
these vectors should be to each other than to their
respective negative examples. The second part of
the cost function pushes REPEL word pairs away
from each other:

Rep(BR, TR) =

k2∑

i=1

[
τ
(
δrep + cos(xil,x

i
r)− cos(xil, til)

)

+τ
(
δrep + cos(xil,x

i
r)− cos(xir, tir)

) ]
(2)

In addition to these two terms, an additional regu-
larisation term is used to preserve the abundance
of high-quality semantic content present in the
distributional vector space, as long as this infor-
mation does not contradict the injected linguistic
constraints. If V (B) is the set of all word vectors
present in the given mini-batch, then:

Reg(BA,BR) =
∑

xi∈V (BA∪BR)

λreg ‖x̂i − xi‖2

where λreg is the L2 regularization constant and x̂i
denotes the original (distributional) word vector for
word xi. The full ATTRACT-REPEL cost function
is given by the sum of all three terms.

2.2 LEAR: Encoding Lexical Entailment

In this section, the ATTRACT-REPEL framework is
extended to model lexical entailment jointly with
(symmetric) semantic similarity. To do this, the
method uses an additional source of external lexi-
cal knowledge: let L be the set of directed lexical
entailment constraints such as (corgi, dog), (dog,
animal), or (corgi, animal), with lower-level con-
cepts on the left and higher-level ones on the right
(the source of these constraints will be discussed
in Section 3). The optimisation proceeds in the
same way as before, considering a mini-batch of
LE pairs BL consisting of k3 word pairs standing
in the (directed) lexical entailment relation.

Unlike symmetric similarity, lexical entailment
is an asymmetric relation which encodes a hier-
archical ordering between concepts. Inferring the
direction of the entailment relation between word
vectors requires the use of an asymmetric distance
function. We define three different ones, all of
which use the word vector’s norms to impose an

ordering between high- and low-level concepts:

D1(x,y) = |x| − |y| (3)

D2(x,y) =
|x| − |y|
|x|+ |y| (4)

D3(x,y) =
|x| − |y|

max(|x|, |y|) (5)

The lexical entailment term (for the j-th asym-
metric distance, j ∈ 1, 2, 3) is defined as:

LEj(BL) =

k3∑

i=1

Dj(xi,yi) (6)

The first distance serves as the baseline: it uses
the word vectors’ norms to order the concepts, that
is to decide which of the words is likely to be the
higher-level concept. In this case, the magnitude of
the difference between the two norms determines
the ‘intensity’ of the LE relation. This is potentially
problematic, as this distance does not impose a
limit on the vectors’ norms. The second and third
metric take a more sophisticated approach, using
the ratios of the differences between the two norms
and either: a) the sum of the two norms; or b) the
larger of the two norms. In doing that, these metrics
ensure that the cost function only considers the
norms’ ratios. This means that the cost function no
longer has the incentive to increase word vectors’
norms past a certain point, as the magnitudes of
norm ratios grow in size much faster than the linear
relation defined by the first distance function.

To model the semantic and the LE relations
jointly, the LEAR cost function jointly optimises
the four terms of the expanded cost function:

C(BA, TA,BR, TR,BL, TL) = Att(BS , TS) + . . .

+ Rep(BA, TA) + Reg(BA,BR,BL) + . . .

+ Att(BL, TL) + LEj(BL)

LE Pairs as ATTRACT Constraints The com-
bined cost function makes use of the batch of lexi-
cal constraints BL twice: once in the defined asym-
metric cost function LEj , and once in the symmet-
ric ATTRACT term Att(BL, TL). This means that
words standing in the lexical entailment relation
are forced to be similar both in terms of cosine
distance (via the symmetric ATTRACT term) and in
terms of the asymmetric LE distance from Eq. (6).

Decoding Lexical Entailment The defined cost
function serves to encode semantic similarity and
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LE relations in the same vector space. Whereas
the similarity can be inferred from the standard
cosine distance, the LEAR optimisation embeds lex-
ical entailment as a combination of the symmetric
ATTRACT term and the newly defined asymmetric
LEj cost function. Consequently, the metric used
to determine whether two words stand in the LE

relation must combine the two cost terms as well.
We define the LE decoding metric as:

ILE(x,y) = dcos(x,y) +Dj(x,y) (7)

where dcos(x,y) denotes the cosine distance. This
decoding function combines the symmetric and the
asymmetric cost term, in line with the combination
of the two used to perform LEAR specialisation. In
the evaluation, we show that combining the two
cost terms has a synergistic effect, with both terms
contributing to stronger performance across all LE

tasks used for evaluation.

3 Experimental Setup

Starting Distributional Vectors To test the ro-
bustness of LEAR specialisation, we experiment
with a variety of well-known, publicly available
English word vectors: 1) Skip-Gram with Negative
Sampling (SGNS) (Mikolov et al., 2013) trained
on the Polyglot Wikipedia (Al-Rfou et al., 2013)
by Levy and Goldberg (2014); 2) GLOVE Common
Crawl (Pennington et al., 2014); 3) CONTEXT2VEC

(Melamud et al., 2016), which replaces CBOW con-
texts with contexts based on bidirectional LSTMs
(Hochreiter and Schmidhuber, 1997); and 4) FAST-
TEXT (Bojanowski et al., 2017), a SGNS variant
which builds word vectors as the sum of their con-
stituent character n-gram vectors.3

Linguistic Constraints We use three groups of
linguistic constraints in the LEAR specialisation
model, covering three different relation types which
are all beneficial to the specialisation process: di-
rected 1) lexical entailment (LE) pairs; 2) syn-
onymy pairs; and 3) antonymy pairs. Synonyms
are included as symmetric ATTRACT pairs (i.e.,
the BA pairs) since they can be seen as defining
a trivial symmetric IS-A relation (Rei and Briscoe,
2014; Vulić et al., 2017). For a similar reason,

3All vectors are 300-dimensional except for the 600-
dimensional CONTEXT2VEC vectors; for further details re-
garding the architectures and training setup of the used vector
collections, we refer the reader to the original papers. We also
experimented with dependency-based SGNS vectors (Levy
and Goldberg, 2014), observing similar patterns in the results.

antonyms are clear REPEL constraints as they anti-
correlate with the LE relation.4 Synonymy and
antonymy constraints are taken from prior work
(Zhang et al., 2014; Ono et al., 2015): they are ex-
tracted from WordNet (Fellbaum, 1998) and Roget
(Kipfer, 2009). In total, we work with 1,023,082
synonymy pairs (11.7 synonyms per word on aver-
age) and 380,873 antonymy pairs (6.5 per word).5

As in prior work (Nguyen et al., 2017; Nickel
and Kiela, 2017), LE constraints are extracted from
the WordNet hierarchy, relying on the transitivity
of the LE relation. This means that we include both
direct and indirect LE pairs in our set of constraints
(e.g., (pangasius, fish), (fish, animal), and (panga-
sius, animal)). We retained only noun-noun and
verb-verb pairs, while the rest were discarded: the
final number of LE constraints is 1,545,630.6

Training Setup We adopt the original ATTRACT-
REPEL model setup without any fine-tuning. Hyper-
parameter values are set to: δatt = 0.6, δrep = 0.0,
λreg = 10−9 (Mrkšić et al., 2017). The models
are trained for 5 epochs with the AdaGrad algo-
rithm (Duchi et al., 2011), with batch sizes set to
k1 = k2 = k3 = 128 for faster convergence.

4 Results and Discussion

We test and analyse LEAR-specialised vector spaces
in two standard word-level LE tasks used in prior
work: hypernymy directionality and detection (Sec-
tion 4.1) and graded LE (Section 4.2).

4.1 LE Directionality and Detection

The first evaluation uses three classification-style
tasks with increased levels of difficulty. The tasks
are evaluated on three datasets used extensively in
the LE literature (Roller et al., 2014; Santus et al.,
2014; Weeds et al., 2014; Shwartz et al., 2017;
Nguyen et al., 2017), compiled into an integrated
evaluation set by Kiela et al. (2015b).7

4In short, the question “Is X a type of X?” (synonymy)
is trivially true, while the question “Is ¬X a type of X?”
(antonymy) is trivially false.

5https://github.com/tticoin/AntonymDetection
6We also experimented with additional 30,491 LE con-

straints from the Paraphrase Database (PPDB) 2.0 (Pavlick
et al., 2015). Adding them to the WordNet-based LE pairs
makes no significant impact on the final performance. We also
used synonymy and antonymy pairs from other sources, such
as word pairs from PPDB used previously by Wieting et al.
(2015), and BabelNet (Navigli and Ponzetto, 2012) used by
Mrkšić et al. (2017), reaching the same conclusions.

7http://www.cl.cam.ac.uk/∼dk427/generality.html
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(b) WBLESS: Detection
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(c) BIBLESS: Detect+direct

Figure 2: Summary of the results on three different word-level LE subtasks: (a) directionality; (b) detection;
(c) detection and directionality. Vertical bars denote the results obtained by different input word vector
spaces which are post-processed/specialised by our LEAR specialisation model using three variants of the
asymmetric distance (D1, D2, D3), see Section 2. Thick horizontal red lines refer to the best reported
scores on each subtask for these datasets; the baseline scores are taken from Nguyen et al. (2017).

The first task, LE directionality, is conducted on
1,337 LE pairs originating from the BLESS evalu-
ation set (Baroni and Lenci, 2011). Given a true
LE pair, the task is to predict the correct hypernym.
With LEAR-specialised vectors this is achieved by
simply comparing the vector norms of each con-
cept in a pair: the one with the larger norm is the
hypernym (see Figure 1).

The second task, LE detection, involves a binary
classification on the WBLESS dataset (Weeds et al.,
2014) which comprises 1,668 word pairs standing
in a variety of relations (LE, meronymy-holonymy,
co-hyponymy, reversed LE, no relation). The model
has to detect a true LE pair, that is, to distinguish
between the pairs where the statement X is a (type
of) Y is true from all other pairs. With LEAR vec-
tors, this classification is based on the asymmetric
distance score: if the score is above a certain thresh-
old, we classify the pair as “true LE”, otherwise as
“other”. While Kiela et al. (2015b) manually de-
fine the threshold value, we follow the approach of
Nguyen et al. (2017) and cross-validate: in each of
the 1,000 iterations, 2% of the pairs are sampled
for threshold tuning, and the remaining 98% are
used for testing. The reported numbers are there-
fore average accuracy scores.8

8We have conducted more LE directionality and detection
experiments on other datasets such as EVALution (Santus
et al., 2015), the N1 � N2 dataset of Baroni et al. (2012),
and the dataset of Lenci and Benotto (2012) with similar
performances and findings. We do not report all these results
for brevity and clarity of presentation.

The final task, LE detection and directionality,
concerns a three-way classification on BIBLESS, a
relabeled version of WBLESS. The task is now to
distinguish both LE pairs (→ 1) and reversed LE

pairs (→ −1) from other relations (→ 0), and then
additionally select the correct hypernym in each
detected LE pair. We apply the same test protocol
as in the LE detection task.

Results and Analysis The original paper of
Kiela et al. (2015b) reports the following best
scores on each task: 0.88 (BLESS), 0.75 (WBLESS),
0.57 (BIBLESS). These scores were recently sur-
passed by Nguyen et al. (2017), who, instead
of post-processing, combine WordNet-based con-
straints with an SGNS-style objective into a joint
model. They report the best scores to date: 0.92
(BLESS), 0.87 (WBLESS), and 0.81 (BIBLESS).

The performance of the four LEAR-specialised
word vector collections is shown in Figure 2 (to-
gether with the strongest baseline scores for each
of the three tasks). The comparative analysis con-
firms the increased complexity of subsequent tasks.
LEAR specialisation of each of the starting vec-
tor spaces consistently outperformed all baseline
scores across all three tasks. The extent of the im-
provements is correlated with task difficulty: it is
lowest for the easiest directionality task (0.92 →
0.96), and highest for the most difficult detection
plus directionality task (0.81→ 0.88).

The results show that the two LEAR variants
which do not rely on absolute norm values and
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Norm Norm Norm

terrier 0.87 laptop 0.60 cabriolet 0.74
dog 2.64 computer 2.96 car 3.59
mammal 8.57 machine 6.15 vehicle 7.78
vertebrate 10.96 device 12.09 transport 8.01
animal 11.91 artifact 17.71 instrumentality 14.56
organism 20.08 object 23.55 – –

Table 1: L2 norms for selected concepts from the
WordNet hierarchy. Input: FASTTEXT; LEAR: D2.

perform a normalisation step in the asymmetric
distance (D2 and D3) have an edge over the D1
variant which operates with unbounded norms. The
difference in performance between D2/D3 and D1
is even more pronounced in the graded LE task (see
Section 4.2). This shows that the use of unbounded
vector norms diminishes the importance of the sym-
metric cosine distance in the combined asymmetric
distance. Conversely, the synergistic combination
used in D2/D3 does not suffer from this issue.

The high scores achieved with each of the four
word vector collections show that LEAR is not de-
pendent on any particular word representation ar-
chitecture. Moreover, the extent of the performance
improvements in each task suggests that LEAR is
able to reconstruct the concept hierarchy coded in
the input linguistic constraints.

Moreover, we have conducted a small experi-
ment to verify that the LEAR method can generalise
beyond what is directly coded in pairwise exter-
nal constraints. A simple WordNet lookup baseline
yields accuracy scores of 0.82 and 0.80 on the di-
rectionality and detection tasks, respectively. This
baseline is outperformed by LEAR: its scores are
0.96 and 0.92 on the two tasks when relying on the
same set of WordNet constraints.

Importance of Vector Norms To verify that the
knowledge concerning the position in the semantic
hierarchy actually arises from vector norms, we
also manually inspect the norms after LEAR spe-
cialisation. A few examples are provided in Table 1.
They indicate a desirable pattern in the norm values
which imposes a hierarchical ordering on the con-
cepts. Note that the original distributional SGNS
model (Mikolov et al., 2013) does not normalise
vectors to unit length after training. However, these
norms are not at all correlated with the desired hi-
erarchical ordering, and are therefore useless for
LE-related applications: the non-specialised distri-
butional SGNS model scores 0.44, 0.48, and 0.34
on the three tasks, respectively.

4.2 Graded Lexical Entailment
Asymmetric distances in the LEAR-specialised
space quantify the degree of lexical entailment
between any two concepts. This means that they
can be used to make fine-grained assertions re-
garding the hierarchical relationships between con-
cepts. We test this property on HyperLex (Vulić
et al., 2017), a gold standard dataset for evalu-
ating how well word representation models cap-
ture graded LE, grounded in the notions of concept
(proto)typicality (Rosch, 1973; Medin et al., 1984)
and category vagueness (Kamp and Partee, 1995;
Hampton, 2007) from cognitive science. HyperLex
contains 2,616 word pairs (2,163 noun pairs and
453 verb pairs) scored by human raters in the [0, 6]
interval following the question “To what degree is
X a (type of) Y?”9

As shown by the high inter-annotator agreement
on HyperLex (0.85), humans are able to consis-
tently reason about graded LE.10 However, current
state-of-the-art representation architectures are far
from this ceiling. For instance, Vulić et al. (2017)
evaluate a plethora of architectures and report a
high-score of only 0.320 (see the summary table
in Figure 3). Two recent representation models
(Nickel and Kiela, 2017; Nguyen et al., 2017) fo-
cused on the LE relation in particular (and employ-
ing the same set of WordNet-based constraints as
LEAR) report the highest score of 0.540 (on the
entire dataset) and 0.512 (on the noun subset).

Results and Analysis We scored all HyperLex
pairs using the combined asymmetric distance de-
scribed by Equation (7), and then computed Spear-
man’s rank correlation with the ground-truth rank-
ing. Our results, together with the strongest base-
line scores, are summarised in Figure 3.

The summary table in Figure 3(c) shows the Hy-
perLex performance of several prominent LE mod-
els. We provide only a quick outline of these mod-
els here; further details can be found in the original
papers. FREQ-RATIO exploits the fact that more
general concepts tend to occur more frequently in
textual corpora. SGNS (COS) uses non-specialised

9From another perspective, one might say that graded LE
provides finer-grained human judgements on a continuous
scale rather than simplifying the judgements into binary dis-
crete decisions. For instance, the HyperLex score for the pair
(girl, person) is 5.91/6, the score for (guest, person) is 4.33,
while the score for the reversed pair (person, guest) is 1.73.

10For further details concerning HyperLex, we refer the
reader to the resource paper (Vulić et al., 2017). The
dataset is available at: http://people.ds.cam.ac.
uk/iv250/hyperlex.html
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(b) HyperLex: Nouns

All

FREQ-RATIO 0.279
SGNS (COS) 0.205
SLQS-SIM 0.228
VISUAL 0.209
WN-BEST 0.234
WORD2GAUSS 0.206
SIM-SPEC 0.320

ORDER-EMB 0.191
POINCARÉ (nouns) 0.512
HYPERVEC 0.540

Best LEAR 0.686

(c) Summary

Figure 3: Results on the graded LE task defined by HyperLex. Following Nickel and Kiela (2017), we use
Spearman’s rank correlation scores on: a) the entire dataset (2,616 noun and verb pairs); and b) its noun
subset (2,163 pairs). The summary table shows the performance of other well-known architectures on the
full HyperLex dataset, compared to the best results achieved using LEAR specialisation.

SGNS vectors and quantifies the LE strength using
the symmetric cosine distance between vectors. A
comparison of these models to the best-performing
LEAR vectors shows the extent of the improvements
achieved using the specialisation approach.

LEAR-specialised vectors also outperform SLQS-
SIM (Santus et al., 2014) and VISUAL (Kiela et al.,
2015b), two LE detection models similar in spirit
to LEAR. These models combine symmetric se-
mantic similarity (through cosine distance) with
an asymmetric measure of lexical generality ob-
tained either from text (SLQS-SIM) or visual data
(VISUAL). The results on HyperLex indicate that
the two generality-based measures are too coarse-
grained for graded LE judgements. These models
were originally constructed to tackle LE direction-
ality and detection tasks (see Section 4.1), but their
performance is surpassed by LEAR on those tasks
as well. The VISUAL model outperforms SLQS-SIM.
However, its numbers on BLESS (0.88), WBLESS

(0.75), and BIBLESS (0.57) are far from the top-
performing LEAR vectors (0.96, 0.92, 0.88).11

WN-BEST denotes the best result with asymmet-
ric similarity measures which use the WordNet
structure as their starting point (Wu and Palmer,
1994; Pedersen et al., 2004). This model can be
observed as a model that directly looks up the full
WordNet structure to reason about graded lexical
entailment. The reported results from Figure 3(c)
suggest it is more effective to quantify the LE re-

11We note that SLQS and VISUAL do not leverage any exter-
nal knowledge from WordNet, but the VISUAL model lever-
ages external visual information about concepts.

lation strength by using WordNet as the source of
constraints for specialisation models such as HY-
PERVEC or LEAR.

WORD2GAUSS (Vilnis and McCallum, 2015)
represents words as multivariate K-dimensional
Gaussians rather than points in the embedding
space: it is therefore naturally asymmetric and was
used in LE tasks before, but its performance on Hy-
perLex indicates that it cannot effectively capture
the subtleties required to model graded LE. How-
ever, note that the comparison is not strictly fair
as WORD2GAUSS does not leverage any external
knowledge. An interesting line for future research
is to embed external knowledge within this repre-
sentation framework.

Most importantly, LEAR outperforms three re-
cent (and conceptually different) architectures:
ORDER-EMB (Vendrov et al., 2016), POINCARÉ

(Nickel and Kiela, 2017), and HYPERVEC (Nguyen
et al., 2017). Like LEAR, all of these models
complement distributional knowledge with exter-
nal linguistic constraints extracted from WordNet.
Each model uses a different strategy to exploit the
hierarchical relationships encoded in these con-
straints (their approaches are discussed in Sec-
tion 5).12 However, LEAR, as the first LE-oriented
post-processor, is able to utilise the constraints
more effectively than its competitors. Another ad-
vantage of LEAR is its applicability to any input

12As discussed previously by Vulić et al. (2017), the off-
the-shelf ORDER-EMB vectors were trained for the binary
ungraded LE detection task: this limits their expressiveness in
the graded LE task.
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WBLESS BIBLESS HL-A HL-N

LEAR variant
SYM-ONLY 0.687 0.679 0.469 0.429
ASYM-ONLY 0.867 0.824 0.529 0.565
FULL 0.912 0.875 0.686 0.705

Table 2: Analysing the importance of the synergy in
the FULL LEAR model on the final performance
on WBLESS, BLESS, HyperLex-All (HL-A) and
HyperLex-Nouns (HL-N). Input: FASTTEXT. D2.

vector space.
Figures 3(a) and 3(b) indicate that the two LEAR

variants which rely on norm ratios (D2 and D3),
rather than on absolute (unbounded) norm differ-
ences (D1), achieve stronger performance on Hy-
perLex. The highest correlation scores are again
achieved by D2 with all input vector spaces.

4.3 Further Discussion

Why Symmetric + Asymmetric? In another ex-
periment, we analyse the contributions of both LE-
related terms in the LEAR combined objective func-
tion (see Section 2.2). We compare three variants
of LEAR: 1) a symmetric variant which does not ar-
range vector norms using the LEj(BL) term (SYM-
ONLY); 2) a variant which arranges norms, but does
not use LE constraints as additional symmetric AT-
TRACT constraints (ASYM-ONLY); and 3) the full
LEAR model, which uses both cost terms (FULL).
The results with one input space (similar results are
achieved with others) are shown in Table 2. This ta-
ble shows that, while the stand-alone ASYM-ONLY

term seems more beneficial than the SYM-ONLY

one, using the two terms jointly yields the strongest
performance across all LE tasks.

LE and Semantic Similarity We also test
whether the asymmetric LE term harms the (norm-
independent) cosine distances used to represent
semantic similarity. The LEAR model is compared
to the original ATTRACT-REPEL model making use
of the same set of linguistic constraints. Two true
semantic similarity datasets are used for evaluation:
SimLex-999 (Hill et al., 2015) and SimVerb-3500
(Gerz et al., 2016). There is no significant differ-
ence in performance between the two models, both
of which yield similar results on SimLex (Spear-
man’s rank correlation of ≈ 0.71) and SimVerb (≈
0.70). This proves that cosine distances remain pre-
served during the optimization of the asymmetric
objective performed by the joint LEAR model.

5 Related Work

Vector Space Specialisation A standard ap-
proach to incorporating external information into
vector spaces is to pull the representations of simi-
lar words closer together. Some models integrate
such constraints into the training procedure: they
modify the prior or the regularisation (Yu and
Dredze, 2014; Xu et al., 2014; Bian et al., 2014;
Kiela et al., 2015a), or use a variant of the SGNS-
style objective (Liu et al., 2015; Osborne et al.,
2016; Nguyen et al., 2017). Another class of mod-
els, popularly termed retrofitting, fine-tune distribu-
tional vector spaces by injecting lexical knowledge
from semantic databases such as WordNet or the
Paraphrase Database (Faruqui et al., 2015; Jauhar
et al., 2015; Wieting et al., 2015; Nguyen et al.,
2016; Mrkšić et al., 2016; Mrkšić et al., 2017).

LEAR falls into the latter category. However,
while previous post-processing methods have fo-
cused almost exclusively on specialising vector
spaces to emphasise semantic similarity (i.e., to
distinguish between similarity and relatedness by
explicitly pulling synonyms closer and pushing
antonyms further apart), this paper proposed a prin-
cipled methodology for specialising vector spaces
for asymmetric hierarchical relations (of which lex-
ical entailment is an instance). Its starting point is
the state-of-the-art similarity specialisation frame-
work of Mrkšić et al. (2017), which we extend to
support the inclusion of hierarchical asymmetric
relationships between words.

Word Vectors and Lexical Entailment Since
the hierarchical LE relation is one of the funda-
mental building blocks of semantic taxonomies
and hierarchical concept categorisations (Beckwith
et al., 1991; Fellbaum, 1998), a significant amount
of research in semantics has been invested into its
automatic detection and classification. Early work
relied on asymmetric directional measures (Weeds
et al., 2004; Clarke, 2009; Kotlerman et al., 2010;
Lenci and Benotto, 2012, i.a.) which were based
on the distributional inclusion hypothesis (Geffet
and Dagan, 2005) or the distributional informa-
tiveness or generality hypothesis (Herbelot and
Ganesalingam, 2013; Santus et al., 2014). However,
these approaches have recently been superseded by
methods based on word embeddings. These meth-
ods build dense real-valued vectors for capturing
the LE relation, either directly in the LE-focused
space (Vilnis and McCallum, 2015; Vendrov et al.,
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2016; Henderson and Popa, 2016; Nickel and Kiela,
2017; Nguyen et al., 2017) or by using the vectors
as features for supervised LE detection models
(Tuan et al., 2016; Shwartz et al., 2016; Nguyen
et al., 2017; Glavaš and Ponzetto, 2017).

Several LE models embed useful hierarchical re-
lations from external resources such as WordNet
into LE-focused vector spaces, with solutions com-
ing in different flavours. The model of Yu et al.
(2015) is a dynamic distance-margin model opti-
mised for the LE detection task using hierarchical
WordNet constraints. This model was extended by
Tuan et al. (2016) to make use of contextual senten-
tial information. A major drawback of both models
is their inability to make directionality judgements.
Further, their performance has recently been sur-
passed by the HYPERVEC model of Nguyen et al.
(2017). This model combines WordNet constraints
with the SGNS distributional objective into a joint
model. As such, the model is tied to the SGNS
objective and any change of the distributional mod-
elling paradigm implies a change of the entire HY-
PERVEC model. This makes their model less ver-
satile than the proposed LEAR framework. More-
over, the results achieved using LEAR specialisation
achieve substantially better performance across all
LE tasks used for evaluation.

Another model similar in spirit to LEAR is the
ORDER-EMB model of Vendrov et al. (2016), which
encodes hierarchical structure by imposing a par-
tial order in the embedding space: higher-level
concepts get assigned higher per-coordinate val-
ues in a d-dimensional vector space. The model
minimises the violation of the per-coordinate or-
derings during training by relying on hierarchical
WordNet constraints between word pairs. Finally,
the POINCARÉ model of Nickel and Kiela (2017)
makes use of hyperbolic spaces to learn general-
purpose LE embeddings based on n-dimensional
Poincaré balls which encode both hierarchy and
semantic similarity, again using the WordNet con-
straints. A similar model in hyperbolic spaces was
proposed by Chamberlain et al. (2017). In this pa-
per, we demonstrate that LE-specialised word em-
beddings with stronger performance can be induced
using a simpler model operating in more intuitively
interpretable Euclidean vector spaces.

6 Conclusion and Future Work

This paper proposed LEAR, a vector space speciali-
sation procedure which simultaneously injects sym-

metric and asymmetric constraints into existing
vector spaces, performing joint specialisation for
two properties: lexical entailment and semantic sim-
ilarity. Since the former is not symmetric, LEAR

uses an asymmetric cost function which encodes
the hierarchy between concepts by manipulating
the norms of word vectors, assigning higher norms
to higher-level concepts. Specialising the vector
space for both relations has a synergistic effect:
LEAR-specialised vectors attain state-of-the-art per-
formance in judging semantic similarity and set
new high scores across four different lexical entail-
ment tasks. The code for the LEAR model is avail-
able from: github.com/nmrksic/lear.

In future work, we plan to apply a simi-
lar methodology to other asymmetric relations
(e.g., meronymy), as well as to investigate fine-
grained models which can account for differing
path lengths from the WordNet hierarchy. We will
also extend the model to reason over words un-
seen in input lexical resources, similar to the recent
post-specialisation model oriented towards special-
isation of unseen words for similarity (Vulić et al.,
2018). We also plan to test the usefulness of LE-
specialised vectors in downstream natural language
understanding tasks. Porting the model to other
languages and enabling cross-lingual applications
such as cross-lingual lexical entailment (Upadhyay
et al., 2018) is another future research direction.
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Ivan Vulić, Nikola Mrkšić, and Anna Korhonen. 2017a.
Cross-lingual induction and transfer of verb classes
based on word vector space specialisation. In Pro-
ceedings of EMNLP, pages 2536–2548.

Ivan Vulić, Nikola Mrkšić, Roi Reichart, Diarmuid
Ó Séaghdha, Steve Young, and Anna Korhonen.
2017b. Morph-fitting: Fine-tuning word vector
spaces with simple language-specific rules. In Pro-
ceedings of ACL, pages 56–68.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir,
and Bill Keller. 2014. Learning to distinguish hy-
pernyms and co-hyponyms. In Proceedings of COL-
ING, pages 2249–2259.

Julie Weeds, David Weir, and Diana McCarthy. 2004.
Characterising measures of lexical distributional
similarity. In Proceedings of COLING, pages 1015–
1021.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. From paraphrase database to compo-
sitional paraphrase model and back. Transactions of
the ACL, 3:345–358.

Zhibiao Wu and Martha Palmer. 1994. Verb semantics
and lexical selection. In Proceedings of ACL, pages
133–138.

Chang Xu, Yalong Bai, Jiang Bian, Bin Gao, Gang
Wang, Xiaoguang Liu, and Tie-Yan Liu. 2014. RC-
NET: A general framework for incorporating knowl-
edge into word representations. In Proceedings of
CIKM, pages 1219–1228.

Mo Yu and Mark Dredze. 2014. Improving lexical em-
beddings with semantic knowledge. In Proceedings
of ACL, pages 545–550.

Zheng Yu, Haixun Wang, Xuemin Lin, and Min Wang.
2015. Learning term embeddings for hypernymy
identification. In Proceedings of IJCAI, pages 1390–
1397.

Jingwei Zhang, Jeremy Salwen, Michael Glass, and Al-
fio Gliozzo. 2014. Word semantic representations
using bayesian probabilistic tensor factorization. In
Proceedings of EMNLP, pages 1522–1531.

Will Y. Zou, Richard Socher, Daniel Cer, and Christo-
pher D. Manning. 2013. Bilingual word embeddings
for phrase-based machine translation. In Proceed-
ings of EMNLP, pages 1393–1398.

1145



Proceedings of NAACL-HLT 2018, pages 1146–1155
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Cross-lingual Abstract Meaning Representation Parsing

Marco Damonte Shay B. Cohen
School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh EH8 9AB, UK

m.damonte@sms.ed.ac.uk
scohen@inf.ed.ac.uk

Abstract

Abstract Meaning Representation (AMR) re-
search has mostly focused on English. We
show that it is possible to use AMR annota-
tions for English as a semantic representation
for sentences written in other languages. We
exploit an AMR parser for English and paral-
lel corpora to learn AMR parsers for Italian,
Spanish, German and Chinese. Qualitative
analysis show that the new parsers overcome
structural differences between the languages.
We further propose a method to evaluate the
parsers that does not require gold standard data
in the target languages. This method highly
correlates with the gold standard evaluation,
obtaining a (Pearson) correlation of 0.95.

1 Introduction

Abstract Meaning Representation (AMR) parsing
is the process of converting natural language sen-
tences into their corresponding AMR representa-
tions (Banarescu et al., 2013). An AMR is a graph
with nodes representing the concepts of the sen-
tence and edges representing the semantic rela-
tions between them. Most available AMR datasets
large enough to train statistical models consist of
pairs of English sentences and AMR graphs.

The cross-lingual properties of AMR across
languages has been the subject of preliminary dis-
cussions. The AMR guidelines state that AMR
is not an interlingua (Banarescu et al., 2013) and
Bojar (2014) categorizes different kinds of diver-
gences in the annotation between English AMRs
and Czech AMRs. Xue et al. (2014) show that
structurally aligning English AMRs with Czech
and Chinese AMRs is not always possible but
that refined annotation guidelines suffice to re-
solve some of these cases. We extend this line of
research by exploring whether divergences among
languages can be overcome, i.e., we investigate

This is the sovereignty of each country

sovereignty

countrythis

each

Questa è la sovranità di ogni paese

:poss:domain

:mod

Figure 1: AMR alignments for a English sentence and
its Italian translation.

whether it is possible to maintain the AMR an-
notated for English as a semantic representation
for sentences written in other languages, as in Fig-
ure 1.

We implement AMR parsers for Italian, Span-
ish, German and Chinese using annotation pro-
jection, where existing annotations are projected
from a source language (English) to a target lan-
guage through a parallel corpus (e.g., Yarowsky
et al., 2001; Hwa et al., 2005; Padó and Lapata,
2009; Evang and Bos, 2016). By evaluating the
parsers and manually analyzing their output, we
show that the parsers are able to recover the AMR
structures even when there exist structural differ-
ences between the languages, i.e., although AMR
is not an interlingua it can act as one. This method
also provides a quick way to prototype multilin-
gual AMR parsers, assuming that Part-of-speech
(POS) taggers, Named Entity Recognition (NER)
taggers and dependency parsers are available for
the target languages. We also propose an alterna-
tive approach, where Machine Translation (MT)
is used to translate the input sentences into En-
glish so that an available English AMR parser can
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be employed. This method is an even quicker so-
lution which only requires translation models be-
tween the target languages and English.

Due to the lack of gold standard in the target
languages, we exploit the English data to evalu-
ate the parsers for the target languages. Hence-
forth, we will use the term target parser to indicate
a parser for a target language. We achieve this by
first learning the target parser from the gold stan-
dard English parser, and then inverting this pro-
cess to learn a new English parser from the tar-
get parser. We then evaluate the resulting English
parser against the gold standard. We call this “full-
cycle” evaluation.

Similarly to Evang and Bos (2016), we also di-
rectly evaluate the target parser on “silver” data,
obtained by parsing the English side of a parallel
corpus.

In order to assess the reliability of these evalua-
tion methods, we collected gold standard datasets
for Italian, Spanish, German and Chinese by ac-
quiring professional translations of the AMR gold
standard data to these languages. We hypothesize
that the full-cycle score can be used as a more reli-
able proxy than the silver score for evaluating the
target parser. We provide evidence to this claim by
comparing the three evaluation procedures (silver,
full-cycle, and gold) across languages and parsers.

Our main contributions are:

• We provide evidence that AMR annotations
can be successfully shared across languages.

• We propose two ways to rapidly implement
non-English AMR parsers.

• We propose a novel method to evaluate non-
English AMR parsers when gold annotations
in the target languages are missing. This
method highly correlates with gold standard
evaluation, obtaining a Pearson correlation
coefficient of 0.95.

• We release human translations of an AMR
dataset (LDC2015E86) to Italian, Spanish,
German and Chinese.

2 Cross-lingual AMR parsing

AMR is a semantic representation heavily bi-
ased towards English, where labels for nodes and
edges are either English words or Propbank frames
(Kingsbury and Palmer, 2002). The goal of AMR
is to abstract away from the syntactic realization

of the original sentences while maintaining its un-
derlying meaning. As a consequence, different
phrasings of one sentence are expected to provide
identical AMR representations. This canonicaliza-
tion does not always hold across languages: two
sentences that express the same meaning in two
different languages are not guaranteed to produce
identical AMR structures (Bojar, 2014; Xue et al.,
2014). However, Xue et al. (2014) show that in
many cases the unlabeled AMRs are in fact shared
across languages. We are encouraged by this find-
ing and argue that it should be possible to develop
algorithms that account for some of these differ-
ences when they arise. We therefore introduce a
new problem, which we call cross-lingual AMR
parsing: given a sentence in any language, the goal
is to recover the AMR graph that was originally
devised for its English translation. This task is
harder than traditional AMR parsing as it requires
to recover English labels as well as to deal with
structural differences between languages, usually
referred as translation divergence. We propose
two initial solutions to this problem: by annota-
tion projection and by machine translation.

2.1 Method 1: Annotation Projection

AMR is not grounded in the input sentence, there-
fore there is no need to change the AMR anno-
tation when projecting to another language. We
think of English labels for the graph nodes as ones
from an independent language, which incidentally
looks similar to English. However, in order to
train state-of-the-art AMR parsers, we also need
to project the alignments between AMR nodes and
words in the sentence (henceforth called AMR
alignments). We use word alignments, similarly
to other annotation projection work, to project the
AMR alignments to the target languages.

Our approach depends on an underlying as-
sumption that we make: if a source word is word-
aligned to a target word and it is AMR aligned
with an AMR node, then the target word is also
aligned to that AMR node. More formally, let
S = s1 . . . s|s| be the source language sentence
and T = t1 . . . t|t| be the target language sentence;
As(·) be the AMR alignment mapping word to-
kens in S to the set of AMR nodes that are trig-
gered by it; At(·) be the same function for T ; v
be a node in the AMR graph; and finally, W (·) be
an alignment that maps a word in S to a subset of
words in T . Then, the AMR projection assump-
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tion is:

∀i, j, v tj ∈W (si) ∧ v ∈ As(si)⇒ v ∈ At(tj)

In the example of Figure 1, Questa is word-
aligned with This and therefore AMR-aligned with
the node this, and the same logic applies to the
other aligned words. The words is, the and of
do not generate any AMR nodes, so we ignore
their word alignments. We apply this method to
project existing AMR annotations to other lan-
guages, which are then used to train the target
parsers.

2.2 Method 2: Machine Translation

We invoke an MT system to translate the input sen-
tence into English so that we can use an available
English parser to obtain its AMR graph. Naturally,
the quality of the output graph depends on the
quality of the translations. If the automatic trans-
lation is close to the reference translation, then the
predicted AMR graph will be close to the refer-
ence AMR graph. It is therefore evident that this
method is not informative in terms of the cross-
lingual properties of AMR. However, its simplic-
ity makes it a compelling engineering solution for
parsing other languages.

2.3 Evaluation

We now turn to the problem of evaluation. Let us
assume that we trained a parser for a target lan-
guage, for example using the annotation projec-
tion method discussed in Section 2.1. In line with
rapid development of new parsers, we assume that
the only gold AMR dataset available is the one re-
leased for English.

SILVER We can generate a silver test set by
running an automatic (English) AMR parser on the
English side of a parallel corpus and use the output
AMRs as references. However, the silver test set
is affected by mistakes made by the English AMR
parser, therefore it may not be reliable.

FULL-CYCLE In order to perform the evalua-
tion on a gold test set, we propose full-cycle eval-
uation: after learning the target parser from the
English parser, we invert this process to learn a
new English parser from the target parser, in the
same way that we learned the target parser from
the English parser. The resulting English parser
is then evaluated against the (English) AMR gold
standard. We hypothesize that the score of the new

English parser can be used as a proxy to the score
of the target parser.

GOLD To show whether the evaluation methods
proposed can be used reliably, we also generated
gold test AMR datasets for four target languages
(Italian, Spanish, German and Chinese). In order
to do so, we collected professional translations for
the English sentences in the AMR test set.1 We
were then able to create pairs of human-produced
sentences with human-produced AMR graphs.

A diagram summarizing the different evaluation
stages is shown in Figure 2. In the case of MT-
based systems, the full-cycle corresponds to first
translating from English to the target language and
then back to English (back-translation), and only
then parsing the sentences with the English AMR
parser. At the end of this process, a noisy version
of the original sentence will be returned and its
parsed graph will be a noisy version of the graph
parsed from the original sentence.

3 Experiments

We run experiments on four languages: Italian,
Spanish, German and Chinese. We use Europarl
(Koehn, 2005) as the parallel corpus for Italian,
Spanish and German, containing around 1.9M
sentences for each language pair. For Chinese,
we use the first 2M sentences from the United
Nations Parallel Corpus (Ziemski et al., 2016).
For each target language we extract two paral-
lel datasets of 20,000/2,000/2,000 (train/dev/test)
sentences for the two step of the annotation pro-
jection (English → target and target → English).
These are used to train the AMR parsers. The pro-
jection approach also requires training the word
alignments, for which we use all the remaining
sentences from the parallel corpora (Europarl for
Spanish/German/Italian and UN Parallel Corpus
for Chinese). These are also the sentences we use
to train the MT models. The gold AMR dataset
is LDC2015E86, containing 16,833 training sen-
tences, 1,368 development sentences, and 1,371
testing sentences.

Word alignments were generated using
fast align (Dyer et al., 2013), while AMR align-
ments were generated with JAMR (Flanigan et al.,
2014). AMREager (Damonte et al., 2017) was
chosen as the pre-existing English AMR parser.
AMREager is an open-source AMR parser that

1These datasets are currently available upon request from
the authors.
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Figure 2: Description of SILVER, FULL-CYCLE and GOLD evaluations. e stands for English and f stands for
the target (foreign) language. Dashed lines represent the process of transferring learning across languages (e.g.
with annotation projection). SILVER uses a parsed parallel corpus as reference (“Ref”), FULL-CYCLE uses the
English gold standard (Gold e) and GOLD uses the target language gold standard we collected (Silver f ).

needs only minor modifications for re-use with
other languages.2 It requires tokenization, POS
tagging, NER tagging and dependency parsing,
which for English, German and Chinese are
provided by CoreNLP (Manning et al., 2014). We
use Freeling (Carreras et al., 2004) for Spanish, as
CoreNLP does not provide dependency parsing
for this language. Italian is not supported in
CoreNLP: we use Tint (Aprosio and Moretti,
2016), a CoreNLP-compatible NLP pipeline for
Italian.

In order to experiment with the approach of Sec-
tion 2.2, we experimented with translations from
Google Translate.3 As Google Translate has ac-
cess to a much larger training corpus, we also
trained baseline MT models using Moses (Koehn
et al., 2007) and Nematus (Sennrich et al., 2017),
with the same training data we use for the projec-
tion method and default hyper-parameters.

Smatch (Cai and Knight, 2013) is used to eval-
uate AMR parsers. It looks for the best align-
ment between the predicted AMR and the refer-
ence AMR and it then computes precision, re-
call and F1 of their edges. The original English
parser achieves 65% Smatch score on the test split
of LDC2015E86. Full-cycle and gold evaluations
use the same dataset, while silver evaluation is
performed on the split of the parallel corpora we
reserved for testing. Results are shown in Ta-
ble 1. The Google Translate system outperforms
all other systems, but is not directly comparable
to them, as it has the unfair advantage of being

2The multilingual adaptation of AMREager is avail-
able at http://www.github.com/mdtux89/
amr-eager-multilingual. A demo is available at
http://cohort.inf.ed.ac.uk/amreager.html.

3https://translate.google.com/toolkit.

System Silver Gold Cycle

IT

Projection 45 43 45
Moses 51 52 51
Nematus 49 43 41
GT 52 58 59

ES

Projection 44 42 44
Moses 53 53 51
Nematus 51 43 42
GT 56 60 60

DE

Projection 45 39 43
Moses 50 49 49
Nematus 47 38 39
GT 54 57 59

ZH

Projection 45 35 32
Moses 57 42 48
Nematus 57 39 40
GT 64 50 55

Table 1: Silver, gold and full-cycle Smatch scores for
projection-based and MT-based systems.

trained on a much larger dataset. Due to noisy
JAMR alignments and silver training data involved
in the annotation projection approach, the MT-
based systems give in general better parsing re-
sults. The BLEU scores of all translation systems
are shown in Table 2.

There are several sources of noise in the anno-
tation projection method, which affect the parsing
results: 1) the parsers are trained on silver data
obtained by an automatic parser for English; 2)
the projection uses noisy word alignments; 3) the
AMR alignments on the source side are also noisy;
4) translation divergences exist between the lan-
guages, making it sometimes difficult to project
the annotation without loss of information.
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Model Moses Nematus GT
EN-IT 23.83 21.27 61.31
IT-EN 23.74 19.77 42.20
EN-ES 29.00 26.14 78.14
ES-EN 27.66 21.63 50.78
EN-DE 15.47 15.74 63.48
DE-EN 21.50 14.96 41.78
EN-ZH 9.19 8.67 26.75
ZH-EN 10.81 10.37 22.21

Table 2: BLEU scores for Moses, Nematus and Google
Translate (GT) on the (out-of-domain) LDC2015E86
test set

4 Qualitative Analysis

Figure 3 shows examples of output parses4 for
all languages, including the AMR alignments by-
product of the parsing process, that we use to dis-
cuss the mistakes made by the parsers.

In the Italian example, the only evident error
is that Infine (Lastly) should be ignored. In the
Spanish example, the word medida (measure) is
wrongly ignored: it should be used to generate a
child of the node impact-01. Some of the :ARG
roles are also not correct. In the German exam-
ple, meines (my) should reflect the fact that the
speaker is talking about his own country. Finally,
in the Chinese example, there are several mistakes
including yet another concept identification mis-
take: intend-01 is erroneously triggered.

Most mistakes involve concept identification. In
particular, relevant words are often erroneously ig-
nored by the parser. This is directly related to
the problem of noisy word alignments in annota-
tion projection: the parser learns what words are
likely to trigger a node (or a set of nodes) in the
AMR by looking at their AMR alignments (which
are induced by the word alignments). If an im-
portant word consistently remains unaligned, the
parser will erroneously learn to discard it. More
accurate alignments are therefore crucial in order
to achieve better parsing results. We computed the
percentage of words in the training data that are
learned to be non-content-bearing in each parser
and we found that the Chinese parser, which is our
least accurate parser, is the one that most suffer
from this, with 33% non-content-bearing words.
On the other hand, in the German parser, which
is the highest scoring, only 26% of the words are

4In this section, all parsed graphs were generated with the
projection-based system of Section 2.1.

non-content-bearing, which is the lowest percent-
age amongst all parsers.

4.1 Translational Divergence

In order to investigate the hypothesis that AMR
can be shared across these languages, we now
look at translational divergence and discuss how
it affects parsing, following the classification used
in previous work (Dorr et al., 2002; Dorr, 1994),
which identifies classes of divergences for several
languages. Sulem et al. (2015) also follow the
same categorization for French.

Figure 4 shows six sentences displaying these
divergences. The aim of this analysis is to as-
sess how the parsers deal with the different kind of
translational divergences, regardless of the overall
quality of the output.

Categorical. This divergence happens when two
languages use different POS tags to express the
same meaning. For example, the English sentence
I am jealous of you is translated into Spanish as
Tengo envidia de ti (I have jealousy of you). The
English adjective jealous is translated in the Span-
ish noun envidia. In Figure 4a we note that the cat-
egorical divergence does not create problems since
the parsers correctly recognized that envidia (jeal-
ousy/envy) should be used as the predicate, regard-
less of its POS.

Conflational. This divergence happens when
verbs expressed in a language with a single word
can be expressed with more words in another lan-
guage. Two subtypes are distinguished: manner
and light verb. Manner refers to a manner verb
that is mapped to a motion verb plus a manner-
bearing word. For example, We will answer is
translated in the Italian sentence Noi daremo una
riposta (We will give an answer), where to answer
is translated as daremo una risposta (will give an
answer). Figure 4b shows that the Italian parser
generates a sensible output for this sentence by
creating a single node labeled answer-01 for the
expression dare una riposta.

In a light verb conflational divergence, a verb is
mapped to a light verb plus an additional mean-
ing unit, such as when I fear is translated as Io ho
paura (I have fear) in Italian: to fear is mapped to
the light verb ho (have) plus the noun paura (fear).
Figure 4e shows that also this divergence is dealt
properly by the Italian parser: ho paura correctly
triggers the root fear-01.
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hé
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assimilate into
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Repatriation and reintegration of Malian refugees

Figure 3: Parsed AMR graph and alignments (dashed lines) for an Italian sentence, a Spanish sentence, a German
sentences and a Chinese sentence.

1151



Structural. This divergence happens when verb
arguments result in different syntactic configura-
tions, for example, due to an additional PP attach-
ment. When translating He entered the house with
Lui è entrato nella casa (He entered in the house),
the Italian translation has an additional in prepo-
sition. Also this parsed graph, in Figure 4c, is
structurally correct. The missing node he is due
to pronoun-dropping, which is frequent in Italian.

Head swapping. This divergence occurs when
the direction of the dependency between two
words is inverted. For example, I like eating,
where like is head of eating, becomes Ich esse gern
(I eat likingly) in German, where the dependency
is inverted. Unlike all other examples, in this case,
the German parser does not cope well with this di-
vergence: it is unable to recognize like-01 as the
main concept in the sentence, as shown in Fig-
ure 4d.

Thematic. Finally, the parse of Figure 4f has
to deal with a thematic divergence, which hap-
pens when the semantic roles of a predicate are
inverted. In the sentence I like grapes, translated
to Spanish as Me gustan uvas, I is the subject in
English while Me is the object in Spanish. Even
though we note an erroneous reentrant edge be-
tween grape and I, the thematic divergence does
not create problems: the parser correctly recog-
nizes the :ARG0 relationship between like-01 and
I and the :ARG1 relationship between like-01 and
grape. In this case, the edge labels are important,
as this type of divergence is concerned with the
semantic roles.

5 Discussion

Can AMR be shared across these languages?
As mentioned in Section 2.2, the MT-based sys-
tems are not helpful in answering this question and
we instead focus on the projection-based parsers.
Qualitative analysis showed that the parsers are
able to overcome translational divergence and that
concept identification must be more accurate in
order to provide good parsing results. We there-
fore argue that the suboptimal performance of the
parsers in terms of Smatch scores is due to the
many sources of noise in the annotation projection
approach rather than instability of AMR across
languages. We provide strong evidence that cross-
lingual AMR parsing is indeed feasible and hope
that the release of the gold standard test sets will

motivate further work in this direction.

Are silver and full-cycle evaluations reliable?
We computed the Pearson correlation coefficients
for the Smatch scores of Table 1 to determine how
well silver and full-cycle correlate with gold eval-
uation. Full-cycle correlates better than silver: the
Pearson coefficient is 0.95 for full-cycle and 0.47
for silver. Figure 5 shows linear regression lines.
Unlike silver, full-cycle uses the same dataset as
gold evaluation and it does not contain parsing
mistakes, which makes it more reliable than silver.
Interestingly, if we ignore the scores obtained for
Chinese, the correlation between silver and gold
dramatically increases, perhaps indicating that Eu-
roparl is more suitable than the UN corpus for
this task: the Pearson coefficient becomes 0.97 for
full-cycle and 0.87 for silver. A good proxy for
gold evaluation should rank different systems sim-
ilarly. We hence computed the Kendall-tau score
(Kendall, 1945), a measure for similarity between
permutations, of the rankings extracted from Table
1. The results further confirm that full-cycle ap-
proximate gold better than silver does: the score is
0.40 for silver and 0.82 for full-cycle. Full cycle
introduces additional noise but it is not as expen-
sive as gold and is more reliable than silver.

6 Related Work

AMR parsing for languages other than English has
made only a few steps forward. In previous work
(Li et al., 2016; Xue et al., 2014; Bojar, 2014),
nodes of the target graph were labeled with ei-
ther English words or with words in the target lan-
guage. We instead use the AMR annotation used
for English for the target language as well, with-
out translating any word. To the best of our knowl-
edge, the only previous work that attempts to auto-
matically parse AMR graphs for non-English sen-
tences is by Vanderwende et al. (2015). Sentences
in several languages (French, German, Spanish
and Japanese) are parsed into a logical represen-
tation, which is then converted to AMR using a
small set of rules. A comparison with this work is
difficult, as the authors do not report results for the
parsers (due to the lack of an annotated corpus) or
release their code.

Besides AMR, other semantic parsing frame-
works for non-English languages have been inves-
tigated (Hoffman, 1992; Cinková et al., 2009; Ges-
mundo et al., 2009; Evang and Bos, 2016). Evang
and Bos (2016) is the most closely related to our

1152



envy

I

:domain

(a) ES: Tengo envidia de ti

(I am jealous of you)

answer-01

we

:ARG0

(b) IT: Noi daremo una risposta

(We will answer)

enter-01

home

:ARG1
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Figure 4: Parsing examples in several languages involving common translational divergence phenomena: (a) con-
tains a categorical divergence, (b) and (e) conflational divergences, (c) a structural divergence, (d) an head swapping
and (f) a thematic divergence.
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Figure 5: Linear regression lines for silver and full-
cycle.

work as it uses a projection mechanism similar to
ours for CCG. A crucial difference is that, in order
to project CCG parse trees to the target languages,
they only make use of literal translation. Previ-
ous work has also focused on assessing the stabil-

ity across languages of semantic frameworks such
as AMR (Xue et al., 2014; Bojar, 2014), UCCA
(Sulem et al., 2015) and Propbank (Van der Plas
et al., 2010).

Cross-lingual techniques can cope with the lack
of labeled data on languages when this data is
available in at least one language, usually English.
The annotation projection method, which we fol-
low in this work, is one way to address this prob-
lem. It was introduced for POS tagging, base noun
phrase bracketing, NER tagging, and inflectional
morphological analysis (Yarowsky et al., 2001)
but it has also been used for dependency parsing
(Hwa et al., 2005), role labeling (Padó and Lap-
ata, 2009; Akbik et al., 2015) and semantic parsing
(Evang and Bos, 2016). Another common thread
of cross-lingual work is model transfer, where
parameters are shared across languages (Zeman
and Resnik, 2008; Cohen and Smith, 2009; Co-
hen et al., 2011; McDonald et al., 2011; Søgaard,
2011).

7 Conclusions

We introduced the problem of parsing AMR struc-
tures, annotated for English, from sentences writ-
ten in other languages as a way to test the cross-
lingual properties of AMR. We provided evidence
that AMR can be indeed shared across the lan-
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guages tested and that it is possible to overcome
translational divergences. We further proposed
a novel way to evaluate the target parsers that
does not require manual annotations of the tar-
get language. The full-cycle procedure is not lim-
ited to AMR parsing and could be used for other
cross-lingual problems in NLP. The results of the
projection-based AMR parsers indicate that there
is a vast room for improvements, especially in
terms of generating better alignments. We encour-
age further work in this direction by releasing pro-
fessional translations of the AMR test set into four
languages.
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Abstract

Sentences with gapping, such as Paul likes cof-
fee and Mary tea, lack an overt predicate to
indicate the relation between two or more ar-
guments. Surface syntax representations of
such sentences are often produced poorly by
parsers, and even if correct, not well suited
to downstream natural language understanding
tasks such as relation extraction that are typi-
cally designed to extract information from sen-
tences with canonical clause structure. In this
paper, we present two methods for parsing to a
Universal Dependencies graph representation
that explicitly encodes the elided material with
additional nodes and edges. We find that both
methods can reconstruct elided material from
dependency trees with high accuracy when the
parser correctly predicts the existence of a gap.
We further demonstrate that one of our meth-
ods can be applied to other languages based on
a case study on Swedish.

1 Introduction

Sentences with gapping (Ross, 1970) such as Paul
likes coffee and Mary tea are characterized by hav-
ing one or more conjuncts that contain multiple
arguments or modifiers of an elided predicate. In
this example, the predicate likes is elided for the
relation Mary likes tea. While these sentences ap-
pear relatively infrequently in most written texts,
they are often used to convey a lot of factual in-
formation that is highly relevant for language un-
derstanding (NLU) tasks such as open informa-
tion extraction and semantic parsing. For example,
consider the following sentence from the WSJ por-
tion of the Penn Treebank (Marcus et al., 1993).

(1) Unemployment has reached 27.6% in
Azerbaijan, 25.7% in Tadzhikistan, 22.8%
in Uzbekistan, 18.8% in Turkmenia, 18%
in Armenia and 16.3% in Kirgizia, [...]

Paul likes coffee and Mary tea

Paul likes coffee and Mary tea Paul likes coffee and Mary tea

nsubj obj

conj>cc

conj>nsubj

conj>obj

nsubj obj cc

conj

orphan

Paul likes coffee and Mary likes′ tea

nsubj obj
cc

nsubj

conj

obj

Figure 1: Overview of our two approaches. Both
methods first parse a sentence with gapping to one of
two different dependency tree representations and then
reconstruct the elided predicate from this tree.

To extract the information about unemployment
rates in the various countries, an NLU system has
to identify that the percentages indicate unemploy-
ment rates and the locational modifiers indicate the
corresponding country. Given only this sentence,
or this sentence and a strict surface syntax repre-
sentation that does not indicate elided predicates,
this is a challenging task. However, given a depen-
dency graph that reconstructs the elided predicate
for each conjunct, the problem becomes much eas-
ier and methods developed to extract information
from dependency trees of clauses with canonical
structures are much more likely to extract the cor-
rect information from a gapped clause.

While gapping constructions receive a lot of at-
tention in the theoretical syntax literature (e.g.,
Ross 1970; Jackendoff 1971; Steedman 1990;
Coppock 2001; Osborne 2006; Johnson 2014;
Toosarvandani 2016; Kubota and Levine 2016),
they have been almost entirely neglected by the
NLP community so far. The Penn Treebank ex-
plicitly annotates gapping constructions, by co-
indexing arguments in the clause with a predicate
and the clause with the gap, but these co-indices
are not included in the standard parsing metrics
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and almost all parsers ignore them.1 Despite
the sophisticated analysis of gapping within CCG
(Steedman, 1990), sentences with gapping were
deemed too difficult to represent within the CCG-
Bank (Hockenmaier and Steedman, 2007). Simi-
larly the treebanks for the Semantic Dependencies
Shared Task (Oepen et al., 2015) exclude all sen-
tences from the Wall Street Journal that contain
gapping. Finally, while the tectogrammatical layer
of the Prague Dependency Treebank (Bejček et al.,
2013) as well as the enhanced Universal Depen-
dencies (UD) representation (Nivre et al., 2016)
provide an analysis with reconstructed nodes for
gapping constructions, there exist no methods to
automatically parse to these representations.

Here, we provide the first careful analysis of
parsing of gapping constructions, and we present
two methods for reconstructing elided predicates
in sentences with gapping within the UD frame-
work. As illustrated in Figure 1, we first parse to
a dependency tree and then reconstruct the elided
material. The methods differ in how much infor-
mation is encoded in the dependency tree. The
first method adapts an existing procedure for pars-
ing sentences with elided function words (Seeker
et al., 2012), which uses composite labels that
can be deterministically turned into dependency
graphs in most cases. The second method is a
novel procedure that relies on the parser only to
identify a gap, and then employs an unsupervised
method to reconstruct the elided predicates and
reattach the arguments to the reconstructed pred-
icate. We find that both methods can reconstruct
elided predicates with very high accuracy from
gold standard dependency trees. When applied to
the output of a parser, which often fails to iden-
tify gapping, our methods achieve a sentence-level
accuracy of 32% and 34%, significantly outper-
forming the recently proposed constituent parser
by Kummerfeld and Klein (2017).

2 Background

2.1 Gapping constructions

Gapping constructions in English come in many
forms that can be broadly classified as follows.

1 To the best of our knowledge, the parser by Kummer-
feld and Klein (2017) is the only parser that tries to output
the co-indexing of constituents in clauses with gapping but
they lack an explicit evaluation of their co-indexing predic-
tion accuracy.

(2) Single predicate gaps:
John bought books, and Mary flowers.

(3) Contiguous predicate-argument gap
(including ACCs):
Eve gave flowers to Al and Sue to Paul.
Eve gave a CD to Al and roses to Sue.

(4) Non-contiguous predicate-argument gap:
Arizona elected Goldwater Senator, and
Pennsylvania Schwelker .

(Jackendoff, 1971)

(5) Verb cluster gap:
I want to try to begin to write a novel and

... Mary a play.
... Mary to write a play.

... Mary to begin to write a play.
... Mary to try to begin to write a play.

(Ross, 1970)

The defining characteristic of gapping construc-
tions is that there is a clause that lacks a predicate
(the gap) but still contains two or more arguments
or modifiers of the elided predicate (the remnants
or orphans). In most cases, the remnants have
a corresponding argument or modifier (the corre-
spondent) in the clause with the overt predicate.

These types of gapping also make up the ma-
jority of attested constructions in other languages.
However, Wyngaerd (2007) notes that Dutch per-
mits gaps in relative clauses, and Farudi (2013)
notes that Farsi permits gaps in finite embedded
clauses even if the overt predicate is not embed-
ded.2

2.2 Target representation

We work within the UD framework, which aims to
provide cross-linguistically consistent dependency
annotations that are useful for NLP tasks. UD de-
fines two types of representation: the basic UD
representation which is a strict surface syntax de-
pendency tree and the enhanced UD representa-
tion (Schuster and Manning, 2016) which may be
a graph instead of a tree and may contain addi-
tional nodes. The analysis of gapping in the en-
hanced representation makes use of copy nodes for
elided predicates and additional edges for elided
arguments, which we both try to automatically re-
construct in this paper. In the simple case in which
only one predicate was elided, there is exactly one

2See Johnson (2014) or Schuster et al. (2017) for a more
comprehensive overview of cross-linguistically attested gap-
ping constructions.
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copy node for the elided predicate, which leads to
a structure that is identical to the structure of the
same sentence without a gap.3

John bought books and Mary bought′ flowers

nsubj obj
cc

nsubj

conj

obj

If a clause contains a more complex gap, the en-
hanced representation contains copies for all con-
tent words that are required to attach the remnants.

... and Mary wanted′ try′ begin′ write′ a play

cc
conj

xcomp xcomp xcomp det

obj

The motivation behind this analysis is that the
semantically empty markers to are not needed for
interpreting the sentence and minimizing the num-
ber of copy nodes leads to less complex graphs.

Finally, if a core argument was elided along
with the predicate, we introduce additional depen-
dencies between the copy nodes and the shared ar-
guments, as for example, the open clausal com-
plement (xcomp) dependency between the copy
node and Senator in the following example.

AZ elected G. Senator and PA elected′ S.

nsubj obj

xcomp cc

nsubj

conj

obj

xcomp

The rationale for not copying all arguments is
again to keep the graph simple, while still encod-
ing all relations between content words. Argu-
ments can be arbitrarily complex and it seems mis-
guided to copy entire subtrees of arguments which,
e.g., could contain multiple adverbial clauses.
Note that linking to existing nodes would not work
in the case of verb clusters because they do not sat-
isfy the subtree constraint.

3 Methods

3.1 Composite relations
Our first method adapts one of the procedures
by Seeker et al. (2012), which represents gaps in
dependency trees by attaching dependents of an
elided predicate with composite relations. These
relations represent the dependency path that would

3To enhance the readability of our examples, we place the
copy node in the sentence where the elided predicate would
have been pronounced. However, as linear order typically
does not matter for extracting information with dependency
patterns, our procedures only try to recover the structure of
canonical sentences but not their linear order.

have existed if nothing had been elided. For ex-
ample, in the following sentence, the verb bought,
which would have been attached to the head of
the first conjunct with a conj relation, was elided
from the second conjunct and hence all nodes that
would have depended on the elided verb, are at-
tached to the first conjunct using a composite rela-
tion consisting of conj and the type of argument.

John bought books and Mary flowers

nsubj
obj

conj>cc

conj>nsubj

conj>obj

The major advantage of this approach is that the
dependency tree contains information about the
types of arguments and so it should be straight-
forward to turn dependency trees of this form into
enhanced UD graphs. For most dependency trees,
one can obtain the enhanced UD graph by split-
ting the composite relations into its atomic parts
and inserting copy nodes at the splitting points.4

At the same time, this approach comes with the
drawback of drastically increasing the label space.
For sentences with more complex gaps as in (5),
one has to use composite relations that consist of
more than two atomic relations and theoretically,
the number of composite relations is unbounded:

... and Mary a play

det

conj>xcomp>xcomp>xcomp>obj

conj>nsubj

conj>cc

3.2 Orphan procedure

Our second method also uses a two-step approach
to resolve gaps, but compared to the previous
method, it puts less work on the parser. We first
parse sentences to the basic UD v2 representation,
which analyzes gapping constructions as follows.
One remnant is promoted to be the head of the
clause and all other remnants are attached to the
promoted phrase. For example, in this sentence,
the subject of the second clause, Mary, is the head
of the clause and the other remnant, flowers, is at-
tached to Mary with the special orphan relation:

John bought books and Mary flowers

nsubj obj cc
conj

orphan

4Note that this representation does not indicate conjunct
boundaries, and for sentences with multiple gapped con-
juncts, it is thus unclear how many copy nodes are required.
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This analysis can also be used for more complex
gaps, as in the example with a gap that consists of
a chain of non-finite embedded verbs in (5).

... and Mary a play

cc

conj

det

orphan

When parsing to this representation, the parser
only has to identify that there is a gap but does
not have to recover the elided material or deter-
mine the type of remnants. As a second step, we
use an unsupervised procedure to determine which
nodes to copy and how and where to attach the
remnants. In developing this procedure, we made
use of the fact that in the vast majority of cases,
all arguments and modifiers that are expressed in
gapped conjunct are also expressed in the full con-
junct. The problem of determining which nodes to
copy and which relations to use can thus be re-
duced to the problem of aligning arguments in the
gapped conjunct to arguments in the full conjunct.
We apply the following procedure to all sentences
that contain at least one orphan relation.

1. Create a list F of arguments of the head of
the full conjunct by considering all core ar-
gument dependents of the conjunct’s head as
well as clausal and nominal non-core depen-
dents, and adverbial modifiers.

2. Create a list G of arguments in the gapped
conjunct that contains the head of the gapped
conjunct and all its orphan dependents.

3. Find the highest-scoring monotonic align-
ment of arguments in G to arguments in F .

4. Copy the head of the full conjunct and attach
the copy node c to the head of the full con-
junct with the original relation of the head of
the gapped conjunct (usually conj).

5. For each argument g ∈ G that has been
aligned to f ∈ F , attach g to c with the same
relation as the parent relation of f , e.g., if f is
attached to the head of the full conjunct with
an nsubj relation, also attach g to c with an
nsubj relation. Attach arguments g′ ∈ G
that were not aligned to any token in F to c
using the general dep relation.

6. For each copy node c, add dependencies to
all core arguments of the original node which
do not have a corresponding remnant in the
gapped clause. For example, if the full con-
junct contains a subject, an object, and an

oblique modifier but the clause with the gap,
only a subject and an oblique modifier, add
an object dependency between the copy node
and the object in the full conjunct.

A crucial step is the third step, determining
the highest-scoring alignment. This can be done
straightforwardly with the sequence alignment al-
gorithm by Needleman and Wunsch (1970) if one
defines a similarity function sim(g, f) that returns
a similarity score between the arguments g and f .
We defined sim based on the intuitions that often,
parallel arguments are of the same syntactic cat-
egory, that they are introduced by the same func-
tion words (e.g., the same preposition), and that
they are closely related in meaning. The first in-
tuition can be captured by penalizing mismatch-
ing POS tags, and the other two by computing the
distance between argument embeddings. We com-
pute these embeddings by averaging over the 100-
dim. pretrained GloVe (Pennington et al., 2014)
embeddings for each token in the argument. Given
the POS tags tg and tf and the argument embed-
dings vg and vf , sim is defined as follows.5

sim(g, f) = −‖vg − vf‖2 + 1 [tg = tf ]

× pos_mismatch_penalty

We set pos_mismatch_penalty, a parameter
that penalizes mismatching POS tags, to −2.6

This procedure can be used for almost all sen-
tences with gapping constructions. However, if
parts of an argument were elided along with the
main predicate, it can become necessary to copy
multiple nodes. We therefore consider the align-
ment not only between complete arguments in the
full clause and the gapped clause but also between
partial arguments in the full clause and the com-
plete arguments in the gapped clause. For exam-
ple, for the sentence “Mary wants to write a play
and Sue a book” the complete arguments of the
full clause are {Mary, to write a play} and the ar-
guments of the gapped clause are {Sue, a book}.
In this case, we also consider the partial arguments
{Mary, a play} and if the arguments of the gapped

5As suggested by one of the reviewers, we also ran a post-
hoc experiment with a simpler similarity score function with-
out the embedding distance term, which only takes into ac-
count whether the POS tags match. We found that quantita-
tively, the embeddings do not lead to significant better scores
on the test set according to our metrics but qualitatively, they
lead to better results for the examples with verb cluster gaps.

6We optimized this parameter on the training set by trying
integer values from −1 to −15.
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EWT GAPPING EWT + GAPPING (COMBINED)
Train Dev Test Train Dev Test Train Dev Test

sentences 12,543 2,002 2,077 164 79 79 12,707 2,081 2,156

tokens 204,585 25,148 25,096 4,698 2,383 2,175 209,283 27,531 27,271

sentences with 21 1 1 164 79 79 185 80 80
gapping 0.15% 0.05% 0.05% 100% 100% 100% 1.46% 3.84% 3.71%

copy nodes 22 2 1 201 96 102 223 98 103

unique composite 16 6 2 41 29 31 46 29 31
relations

Table 1: Treebank statistics. The copy nodes row lists the number of copy nodes and the unique composite rela-
tions row lists the number of unique composite relations in the treebanks annotated according to the COMPOSITE
analysis. The percentages are relative to the total number of sentences.

Gap type Frequency

Single predicate 172
Contiguous predicate-argument 140
Non-contiguous predicate-argument 9
Verb cluster 24

Table 2: Distribution of gap types in our corpus. The
classification is according to the four types of gaps that
we discussed in Section 2.1.

conjunct align better to the partial arguments, we
use this alignment. However, now that the token
write is part of the dependency path between want
and play, we also have to make a copy of write to
reconstruct the UD graph of the gapped clause.

4 Experiments

Both methods rely on a dependency parser fol-
lowed by a post-processing step. We evaluated the
individual steps and the end-to-end performance.

4.1 Data

We used the UD English Web Treebank v2.1
(henceforth EWT; Silveira et al., 2014; Nivre et al.,
2017) for training and evaluating parsers. As the
treebank is relatively small and therefore only con-
tains very few sentences with gapping, we also ex-
tracted gapping constructions from the WSJ and
Brown portions of the PTB (Marcus et al., 1993)
and the GENIA corpus (Ohta et al., 2002). Fur-
ther, we copied sentences from the Wikipedia page
on gapping7 and from published papers on gap-
ping. The sentences in the EWT already contain
annotations with the orphan relation and copy
nodes for the enhanced representation, and we
manually added both of these annotations for the
remaining examples. The composite relations can

7https://en.wikipedia.org/wiki/Gapping,
accessed on Aug 24, 2017.

be automatically obtained from the enhanced rep-
resentation by removing the copy nodes and con-
catenating the dependency labels, which we did to
build the training and test corpus for the compos-
ite relation procedure. Table 1 shows properties of
the data splits of the original treebank, the addi-
tional sentences with gapping, and their combina-
tion; Table 2 shows the number of sentences in our
corpus for each of the gap types.

4.2 Parsing experiments

Parser We used the parser by Dozat and Man-
ning (2017) for parsing to the two different inter-
mediate dependency representations. This parser
is a graph-based parser (McDonald et al., 2005)
that uses a biLSTM to compute token representa-
tions and then uses a multi-layer perceptron with
biaffine attention to compute arc and label scores.

Setup We trained the parser on the COMBINED

training corpus with gold tokenization, and pre-
dicted fine-grained and universal part-of-speech
tags, for which we used the tagger by Dozat et al.
(2017). We trained the tagger on the COMBINED

training corpus. As pre-trained embeddings, we
used the word2vec (Mikolov et al., 2013) embed-
dings that were provided for the CoNLL 2017
Shared Task (Zeman et al., 2017), and we used the
same hyperparameters as Dozat et al. (2017).

Evaluation We evaluated the parseability of the
two dependency representations using labeled and
unlabeled attachment scores (LAS and UAS). Fur-
ther, to specifically evaluate how well parsers are
able to parse gapping constructions according to
the two annotation schemes, we also computed the
LAS and UAS just for the head tokens of rem-
nants (LASg and UASg). For all our metrics, we
excluded punctuation tokens. To determine sta-
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EWT GAPPING
UAS LAS UAS LAS

Dev ORPHAN 90.57 87.32 89.34 85.69**
COMPOSITE 90.46 87.37 88.86 84.21

Test ORPHAN 90.42 87.06 87.44 83.97**
COMPOSITE 90.54 87.33 86.51 81.69

Table 3: Labeled (LAS) and unlabeled attachment
score (UAS) of parsers trained and evaluated on the UD
representation (ORPHAN) and the composite relations
representation (COMPOSITE) on the development and
test sets of the EWT and the GAPPING treebank. ** in-
dicates that results differ significantly at p < 0.01.

Development Test
UASg LASg UASg LASg

ORPHAN 72.36 64.73*** 72.56* 65.79***
COMPOSITE 68.36 49.45 62.41 46.24

Table 4: Labeled (LASg) and unlabeled attach-
ment score (UASg) of head tokens of remnants for
parsers trained and evaluated on the UD representation
(ORPHAN) and the composite relations representation
(COMPOSITE) on the development and test sets of the
COMBINED treebank. Results that differ significantly
are marked with * (p < 0.05) or *** (p < 0.001).

tistical significance of pairwise comparisons, we
performed two-tailed approximate randomization
tests (Noreen, 1989; Yeh, 2000) with an adapted
version of the sigf package (Padó, 2006).

Results Table 3 shows the overall parsing re-
sults on the development and test sets of the two
treebanks. There was no significant difference be-
tween the parser that was trained on the UD rep-
resentation (ORPHAN) and the parser trained on
the composite representation (COMPOSITE) when
tested on the EWT data sets, which is not surpris-
ing considering that there is just one sentence with
gapping each in the development and the test split.
When evaluated on the GAPPING datasets, the OR-
PHAN parser performs significantly better (p <
0.01) in terms of labeled attachment score, which
suggests that the parser trained on the COMPOS-
ITE representation is indeed struggling with the
greatly increased label space. This is further con-
firmed by the attachment scores of the head tokens
of remnants (Table 4). The labeled attachment
score of remnants is significantly higher for the
ORPHAN parser than for the COMPOSITE parser.
Further, the unlabeled attachment score on the test
set is also higher for the ORPHAN parser, which
suggests that the COMPOSITE parser is sometimes
struggling with finding the right attachment for the

multiple long-distance composite dependencies.

4.3 Recovery experiments

Our second set of experiments concerns the re-
covery of the elided material and the reattachment
of the orphans. We conducted two experiments:
an oracle experiment that used gold standard de-
pendency trees and an end-to-end experiment that
used the output of the parser as input. For all ex-
periments, we used the COMBINED treebank.

Evaluation Here, we evaluated dependency
graphs and therefore used the labeled and unla-
beled precision and recall metrics. However, as
our two procedures are only changing the attach-
ment of orphans, we only computed these met-
rics for copy nodes and their dependents. Fur-
ther, we excluded punctuation and coordinating
conjunctions as their attachment is usually trivial
and including them would inflate scores. Lastly,
we computed the sentence-level accuracy for all
sentences with gapping. For this metric, we con-
sidered a sentence to be correct if all copy nodes
and their dependents of a sentence were attached
to the correct head with the correct label.

Oracle results The top part of Table 5 shows the
results for the oracle experiment. Both methods
are able to reconstruct the elided material and the
canonical clause structure from gold dependency
trees with high accuracy. This was expected for
the COMPOSITE procedure, which can make use
of the composite relations in the dependency trees,
but less so for the ORPHAN procedure which has
to recover the structure and the types of relations.
The two methods work equally well in terms of
all metrics except for the sentence-level accuracy,
which is significantly higher for the COMPOSITE

procedure. This difference is caused by a differ-
ence in the types of mistakes. All errors of the
COMPOSITE procedure are of a structural nature
and stem from copying the wrong number of nodes
while the dependency labels are always correct be-
cause they are part of the dependency tree. The
majority of errors of the ORPHAN procedure stem
from incorrect dependency labels, and these mis-
takes are scattered across more examples, which
leads to the lower sentence-level accuracy.

End-to-end results The middle part of Table 5
shows the results for the end-to-end experiment.
The performance of both methods is considerably
lower than in the oracle experiment, which is pri-
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Development Test

UP UR LP LR SAcc. UP UR LP LR SAcc.

oracle COMPOSITE 91.32 88.20 91.32 88.20 91.14** 90.71 86.81 90.71 86.81 86.08*
ORPHAN 94.08 93.79 87.54 87.27 72.15 92.02 92.02 87.12 87.12 72.15

end-to-end COMPOSITE 70.48 49.69* 65.64 46.27* 31.65 67.39 47.55 61.74 43.56 31.65
ORPHAN 71.73 42.55 65.45 38.82 30.38 78.92** 44.78 68.11 38.65 34.18

K&K 2017 - - - - 0.00 - - - - 0.00

Table 5: Labeled and unlabeled precision and recall as well as sentence-level accuracy of the two gapping recon-
structions methods and the K&K parser on the development and test set of the COMBINED treebank. Results that
differ significantly from the other result within the same section are marked with * (p < 0.05) or ** (p < 0.01).

marily driven by the much lower recall. Both
methods assume that the parser detects the exis-
tence of a gap and if the parser fails to do so,
neither method attempts to reconstruct the elided
material. In general, precision tends to be a bit
higher for the ORPHAN procedure whereas recall
tends to be a bit higher for the COMPOSITE method
but overall and in terms of sentence-level accuracy
both methods seem to perform equally well.

Error analysis For both methods, the primary
issue is low recall, which is a result of parsing
errors. When the parser correctly predicts the
orphan relation, the main sources of error for the
ORPHAN procedure are missing correspondents
for remnants (e.g., [for good] has no correspon-
dent in They had left the company, many for good)
or that the types of argument of the remnant and
its correspondent differ (e.g., in She was convicted
of selling unregistered securities in Florida and of
unlawful phone calls in Ohio, [of selling unregis-
tered securities] is an adverbial clause whereas
[of unlawful phone calls] is an oblique modifier).

Apart from the cases where the COMPOSITE

procedure leads to an incorrect structure, the re-
maining errors are all caused by the parser pre-
dicting the wrong composite relation.

4.4 Comparison to Kummerfeld and Klein

Kummerfeld and Klein (henceforth K&K; 2017)
recently proposed a one-endpoint-crossing graph
parser that is able to directly parse to PTB-style
trees with traces. They also briefly discuss gap-
ping constructions and their parser tries to out-
put the co-indexing that is used for gapping con-
structions in the PTB. The EWT and all the sen-
tences that we took from the WSJ, Brown, and
GENIA treebanks already come with constituency
tree annotations, and we manually annotated the
remaining sentences according to the PTB guide-

lines (Bies et al., 1995). This allowed us to train
the K&K parser with exactly the same set of sen-
tences that we used in our previous experiments.
As this parser outputs constituency trees, we could
not compute dependency graph metrics for this
method. For the sentence-level accuracy, we con-
sidered an example to be correct if a) each argu-
ment in the gapped conjunct was the child of a sin-
gle constituent node, which in return was the sib-
ling of the full clause/verb phrase, and b) the co-
indexing of each argument in the gapped conjunct
was correct. For example, the following bracket-
ing would be considered correct despite the incor-
rect internal structure of the first conjunct:
[S[S[NP-1 Al ] likes [NP-2 coffee ]] and [S[NP=1 Sue ][NP=2 tea ]]]

The last row of Table 5 shows the results of the
K&K parser. The parser failed to output the cor-
rect constituency structure or co-indexing for ev-
ery single example in the development and test
sets. The parser struggled in particular with out-
putting the correct co-indices: For 32.5% of the
test sentences with gapping, the bracketing of the
gapped clause was correct but one or more of the
co-indices were missing from the output.

Overall these results suggest that our depend-
ency-based approach is much more reliable at
identifying gapping constructions than the parser
by K&K, which, in their defense, was optimized
to output traces for other phenomena. Our method
is also faster and took only seconds to parse the
test set, while the K&K parser took several hours.

5 Resolving gaps in other languages

One of the appeals of the ORPHAN procedure is
that it can be easily applied to other languages
even if there exist no annotated enhanced depen-
dency graphs.8 On the one hand, this is because

8There is no theoretical reason that would prevent one
from using the COMPOSITE procedure for other languages
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our method does not make use of lexical informa-
tion, and on the other hand, this is because we de-
veloped our method on top of the UD annotation
scheme, which has already been applied to many
languages and for which many treebanks exist.

Currently, all treebanks but the English one
lack copy nodes for gapping constructions and
many of them incorrectly use the orphan rela-
tion (Droganova and Zeman, 2017) and therefore
we could not evaluate our method on a large va-
riety of languages. In order to demonstrate that
our method can be applied to other languages, we
therefore did a case study on the Swedish UD
treebank. The Swedish UD treebank is an auto-
matic conversion from a section of the Talbanken
(Einarsson, 1976) with extensive manual correc-
tions. While the treebank is overall of high qual-
ity, we noticed conversion errors that led to in-
correct uses of the orphan relation in 11 of the
29 sentences with orphan relations, which we
excluded from our evaluation. We applied our
gapping resolution procedure without any modi-
fications to the remaining 18 sentences. We used
the Swedish word2vec embeddings that were pre-
pared for the CoNLL 2017 Shared Task. Our
method correctly predicts the insertion of 29 copy
nodes and is able to predict the correct structure of
the enhanced representation in all cases, including
complex ones with elided verb clusters such as the
example in Figure 2. It also predicts the correct
dependency label for 108/110 relations, leading to
a labeled precision and labeled recall of 98.18%,
which are both higher than the English numbers
despite the fact that we optimized our procedure
for English. The main reason for the higher perfor-
mance seems to be that many of the Swedish ex-
amples come from informational texts from public
organizations, which are more likely to be written
to be clear and unambiguous. Further, the Swedish
data does not contain challenging examples from
the linguistic literature.

As Swedish is a Germanic language like En-
glish and thus shares many structural properties,
we cannot conclude that our method is applica-
ble to any language based on just this experiment.
However, given that our method does not rely on
language-specific structural patterns, we expect it
to work well for a wide range of languages.

but given that UD treebanks are annotated with orphan re-
lations, using the the COMPOSITE procedure would require
additional manual annotations in practice.

6 Related work

Gapping constructions have been little studied
in NLP, but several approaches (e.g., Dukes and
Habash 2011; Simkó and Vincze 2017) parse
to dependency trees with empty nodes. Seeker
et al. (2012) compared three ways of parsing
with empty heads: adding a transition that in-
serts empty nodes, using composite relation la-
bels for nodes that depend on an elided node,
and pre-inserting empties before parsing. These
papers all focus on recovering nodes for elided
function words such as auxiliaries; none of them
attempt to recover and resolve the content word
elisions of gapping. Ficler and Goldberg (2016)
modified PTB annotations of argument-cluster co-
ordinations (ACCs), i.e., gapping constructions
with two post-verbal orphan phrases, which make
up a subset of the gapping constructions in the
PTB. While the modified annotation style leads
to higher parsing accuracy of ACCs, it is specific
to ACCs and does not generalize to other gap-
ping constructions. Moreover, they did not recon-
struct gapped ACC clauses. Traditional grammar-
based chart parsers (Kay, 1980; Klein and Man-
ning, 2001) did handle empty nodes and so could
in principle provide a parse of gapping sentences
though additional mechanisms would be needed
for reconstruction. In practice, though, dealing
with gapping in a grammar-based framework is
not straightforward and can lead to a combinato-
rial explosion that slows down parsing in general,
as has been noted for the English Resource Gram-
mar (Flickinger, 2017, p.c.) and for an HPSG
implementation for Norwegian (Haugereid, 2017).
The grammar-based parser built with augmented
transition networks (Woods, 1970) provided an ex-
tension in the form of the SYSCONJ operation
(Woods, 1973) to parse some gapping construc-
tions, but also this approach lacked explicit recon-
struction mechanisms and provided only limited
coverage.

There also exists a long line of work on post-
processing surface-syntax constituency trees to re-
cover traces in the PTB (Johnson, 2002; Levy
and Manning, 2004; Campbell, 2004; Gabbard
et al., 2006), pre-processing sentences such that
they contain tokens for traces before parsing (Di-
enes and Dubey, 2003b), or directly parsing sen-
tences to either PTB-style trees with empty el-
ements or pre-processed trees that can be deter-
ministically converted to PTB-style trees (Collins,
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tänks Ullnaområdet öka med 9000 , tänks′ Märsta industriområde öka′ med 7000 , tänks′′ Jordbro öka′′ med 4000 , ...
is-thought Ullna-area increase with 9000 , is-thought Märsta industrial-area increase with 7000 , is-thought Jordbro increase with 4000 , ....

nsubj:pass

xcomp
obl

conj

nsubj:pass

xcomp

obl

conj

xcomp

nsubj:pass
obl

‘The Ullna area is expected to grow by 9,000 (new workplaces), the Märsta industrial area by 7,000, Jordbro by 4,000, ...’

Figure 2: Dependency graph for part of the sentence sv-ud-train-1102 as output by the ORPHAN procedure.
The system correctly predicts the copy nodes for the matrix and the embedded verb, and correctly attaches the
arguments to the copy nodes.

1997; Dienes and Dubey, 2003a; Schmid, 2006;
Cai et al., 2011; Hayashi and Nagata, 2016; Kato
and Matsubara, 2016; Kummerfeld and Klein,
2017). However, all of these works are primarily
concerned with recovering traces for phenomena
such as Wh-movement or control and raising con-
structions and, with the exception of Kummerfeld
and Klein (2017), none of these works attempt to
output the co-indexing that is used for analyzing
gapping constructions. And again, none of these
works try to reconstruct elided material.

Lastly, several methods have been proposed for
resolving other forms of ellipsis, including VP el-
lipsis (Hardt, 1997; Nielsen, 2004; Lappin, 2005;
McShane and Babkin, 2016) and sluicing (Anand
and Hardt, 2016) but none of these methods con-
sider gapping constructions.

7 Conclusion

We presented two methods to recover elided pred-
icates in sentences with gapping. Our experiments
suggest that both methods work equally well in a
realistic end-to-end setting. While in general, re-
call is still low, the oracle experiments suggest that
both methods can recover elided predicates from
correct dependency trees, which suggests that as
parsers become more and more accurate, the gap
recovery accuracy should also increase.

We also demonstrated that our method can be
used to automatically add the enhanced UD rep-
resentation to UD treebanks in other languages
than English. Apart from being useful in a pars-
ing pipeline, we therefore also expect our method
to be useful for building enhanced UD treebanks.

Reproducibility

All data, pre-trained models, system outputs as
well as a package for running the enhance-
ment procedure are available from https://
github.com/sebschu/naacl-gapping.

Acknowledgments

We thank the anonymous reviewers for their
thoughtful feedback. Also thanks to Vera Grib-
anova and Boris Harizanov for continuous feed-
back throughout this project, and to Matthew
Lamm for help with annotating the data. This
work was supported in part by gifts from Google,
Inc. and IPSoft, Inc. The first author is also sup-
ported by a Goodan Family Graduate Fellowship.

References
Pranav Anand and Daniel Hardt. 2016. Antecedent

selection for sluicing: Structure and content. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2016). pages 1234–1243. https://doi.org/
10.18653/v1/D16-1131.
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tekin, Miriam Connor, Elizabeth Davidson, Marie-
Catherine de Marneffe, Valeria de Paiva, Arantza
Diaz de Ilarraza, Peter Dirix, Kaja Dobrovoljc,
Timothy Dozat, Kira Droganova, Puneet Dwivedi,
Marhaba Eli, Ali Elkahky, Tomaž Erjavec, Richárd
Farkas, Hector Fernandez Alcalde, Jennifer Fos-
ter, Cláudia Freitas, Katarína Gajdošová, Daniel
Galbraith, Marcos Garcia, Moa Gärdenfors, Kim
Gerdes, Filip Ginter, Iakes Goenaga, Koldo Go-
jenola, Memduh Gökırmak, Yoav Goldberg, Xavier
Gómez Guinovart, Berta Gonzáles Saavedra, Ma-
tias Grioni, Normunds Grūzı̄tis, Bruno Guillaume,
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Abstract

Abstract Meaning Representation (AMR) an-
notations are often assumed to closely mir-
ror dependency syntax, but AMR explicitly
does not require this, and the assumption has
never been tested. To test it, we devise an
expressive framework to align AMR graphs
to dependency graphs, which we use to anno-
tate 200 AMRs. Our annotation explains how
97% of AMR edges are evoked by words or
syntax. Previously existing AMR alignment
frameworks did not allow for mapping AMR
onto syntax, and as a consequence they ex-
plained at most 23%. While we find that there
are indeed many cases where AMR annota-
tions closely mirror syntax, there are also per-
vasive differences. We use our annotations to
test a baseline AMR-to-syntax aligner, find-
ing that this task is more difficult than AMR-
to-string alignment; and to pinpoint errors in
an AMR parser. We make our data and code
freely available for further research on AMR
parsing and generation, and the relationship of
AMR to syntax.

1 Introduction

Abstract Meaning Representation (AMR; Ba-
narescu et al., 2013) is a popular framework for an-
notating whole sentence meaning. An AMR anno-
tation is a directed, usually acyclic graph in which
nodes represent entities and events, and edges rep-
resent relations between them, as on the right in
figure 1.1

AMR annotations include no explicit mapping
between elements of an AMR and the correspond-
ing elements of the sentence that evoke them, and
this presents a challenge to developers of machine
learning systems that parse sentences to AMR or
generate sentences from AMR, since they must

1For clarity of presentation, we have constructed the sen-
tences and AMRs shown in figures—except for figure 3, which
is a simplified version of a sentence in the corpus.

lies liel

cat catc

My ii

sun suns

the

Figure 1: “My cat lies in the sun.” An alignment be-
tween the dependency parse (left) and AMR (right).
Nodes participating in lexical alignments are marked
with boxes, but the links between them are not dis-
played. Structural alignments are colour-coded and
linked by dotted lines. Sense numbers for concepts that
are PropBank frames are omitted for brevity.

first infer this mapping in the training data (e.g.
Flanigan et al., 2014; Wang et al., 2015; Artzi et al.,
2015; Flanigan et al., 2016; Pourdamghani et al.,
2016; Misra and Artzi, 2016; Damonte et al., 2017;
Peng et al., 2017, inter alia).2

This AMR alignment problem was first for-
malized by Flanigan et al. (2014), who mapped
AMR nodes or connected subgraphs to words or
sequences of words under the assumption of a one-
to-one mapping—we call this JAMR alignment.
Pourdamghani et al. (2014) then re-formalized it so
that any AMR node or edge can map to any word
without a one-to-one assumption—we call this ISI
alignment. In ISI alignments, edges often align to
syntactic function words: for example, :location
aligns to in in figure 1. So edge alignments al-
low ISI to explain more of the AMR structure than
JAMR, but in a limited way: only 23% of AMR
edges are aligned in the ISI corpus. This may be be-

2Some recent neural AMR sytems require minimal or no
explicit alignments (Konstas et al., 2017; van Noord and Bos,
2017). But they implicitly learn them in the form of soft atten-
tion, and we believe that a clearer understanding of alignment
will benefit modeling and error analysis even in these systems.
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cause edges are often evoked by syntactic structure
rather than words: for instance, the :ARG1 edge in
figure 1 is evoked by the fact that cat is the subject
of lies and not by any particular word.

Although it seems sensible to assume that all
of the nodes and edges of an AMR are evoked by
the words and syntax of a sentence, the existing
alignment schemes do not allow for expressing that
relationship. We therefore propose a framework
expressive enough to align AMR to syntax (§2) and
use it to align a corpus of 200 AMRs to dependency
parses. We analyse our corpus and show that the
addition of syntactic alignments allows us account
for 97% of the AMR content.

Syntactic-semantic mappings are often assumed
by AMR parsing models (e.g. Wang et al., 2015;
Artzi et al., 2015; Damonte et al., 2017), which
is understandable since these mappings are well-
studied in linguistic theory. But AMR explic-
itly avoids theoretical commitment to a syntax-
semantics mapping: Banarescu et al. (2013) state
that “AMR is agnostic about how we might want
to derive meanings from strings.” If we are go-
ing to build such an assumption into our models,
we should test it empirically, which we can do by
analysing our corpus. We observe some pervasive
structural differences between AMR and depen-
dency syntax (§3), despite the fact that a majority
of AMR edges map easily onto dependency edges.

Since syntactic alignment can largely explain
AMRs, we also develop a baseline rule-based
aligner for it, and show that this new task is much
more difficult than lexical alignment (§4). We also
show how our data can be used to analyze errors
made by an AMR parser (§5). We make our anno-
tated data and aligner freely available for further
research.3

2 Aligning AMR to dependency syntax

Our syntactic representation is dependency gram-
mar, which represents the sentence as a rooted,
directed graph where nodes are words and edges
are grammatical relations between them (Kruijff,
2006). We use Universal Dependencies (UD), a
cross-lingual dependency annotation scheme, as
implemented in Stanford CoreNLP (Manning et al.,
2014). Within the UD framework, we use enhanced
dependencies (Schuster and Manning, 2016), in
which dependents can have more than one head,

3https://github.com/ida-szubert/amr_ud

resulting in dependency graphs (DGs).4

Our alignment guidelines generalize ideas
present in the existing frameworks. We want to
allow many-to-many alignments, which we mo-
tivate by the observation that some phenomena
cause an AMR graph to have one structure express-
ing the same information as multiple DG struc-
tures, and vice versa. For instance, in figure 2
the AMR subgraph representing Cruella de Vil
aligns to two subgraphs in the dependency graph
because of pronominal coreference. In the other
direction, in figure 3 the capabilities node aligns to
both capable nodes in the AMR, which is a result
of the AMR treating conjoined adjectival modifiers
as a case of ellipsis. The alignments we propose
hold between subgraphs of any size. By align-
ing subgraphs we gain expressiveness needed to
point out correspondences between semantic and
syntactic structure. If AMR and DG were very
similar in how they represent information, such
correspondences would probably hold between sub-
graphs consisting of a single edge, as in figure 1

cat
nmod:possÐÐÐÐÐ→my ∼ cat

possÐÐ→I. However, AMR by de-
sign abstracts away from syntax and it should not
be assumed that all mappings will be so clean. For

example, the same figure has lies
nmod-inÐÐÐÐ→sun

caseÐÐ→in∼ lies
locationÐÐÐÐ→sun. Moreover, AMR represents

the meaning of particular words or phrases with
elaborate structures, the result of which might
be that the same information is expressed by a
single word and a complex AMR subgraph, as
in figure 3 where AMR represents general as
person

ARG0-ofÐÐÐÐ→have-org-role
ARG2ÐÐ→general.

2.1 Overview
An alignment is a link between subgraphs in an
AMR and a DG which represent equivalent infor-
mation. Given a sentence’s DG and AMR we de-
fine an alignment as a mapping between an AMR
subgraph and a DG subgraph. Lexical alignments
(§2.2) hold between pairs of nodes, and nodes from
either graph may participate in multiple lexical
alignments. Structural alignments (§2.3) hold
between pairs of connected subgraphs where at
least one of the subgraphs contains an edge.

4We chose UD because it emphasises shallow and seman-
tically motivated annotation, by the virtue of which it can be
expected to align relatively straightforwardly to a semantic an-
notation such as AMR. Aligning AMR with different versions
of dependency grammar (e.g. Prague) or different syntactic
frameworks (e.g. CCG, TAG) would be an interesting exten-
sion of our work.
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greed greed

" " " "" "

-xsu
bj

Figure 2: “In the story, evildoer Cruella de Vil makes no attempt to conceal her glee and greed.” For legibility in
this and following figures only a subset of the structural alignments are shown.

In the following two sections we discuss the
types of alignments that our framework allows.
More detailed guidelines regarding how to align
particular linguistic constructions can be found in
appendix A.

2.2 Lexical alignments

A lexical alignment should hold between a word
and an AMR concept if the latter is judged to ex-
press the lexical meaning of the former. Node
labels usually reflect their lexically aligned word
or its lemma, including derivational morphology
(e.g. thirsty ∼ thirst-01). Thus, string similarity
is a useful heuristic for lexical alignment.5

Most AMR nodes align lexically to a single
word. Cases of one-to-many alignments include
coreference, when an entity is mentioned multiple
times in the sentence, and multiword expressions
such as a verb-particle constructions (pay off ∼
pay-off-02) and fixed grammatical expressions
(instead of ∼ instead-of-91). Occasionally an
AMR node does not lexically align to any DG node.
This is true for constants indicating sentence mood
such as imperative, implicit uses of and to group
list items, inferred concept nodes such as entity

5Exceptions include: pronouns with noun antecedents in
the sentence; the - indicating negative polarity, which lexically
aligns to no, not, and negative prefixes; modal auxiliaries,
e.g., can ∼ possible; normalized dates and values such as
February ∼ 2 in a date-entity; and amr-unknown, which
aligns to wh-words.

types, name in named entities, and -91 frames like
have-org-role-91.

Most words are lexically aligned to a single
AMR node, if they are aligned at all. A word may
align to multiple AMR nodes if it is duplicated
in the AMR due to ellipsis or distributive coordi-
nation (capabilities aligns to c2 / capable and
c3 / capable in figure 3), or if it is morpholog-
ically decomposed in the AMR (evildoer aligns
to evil and do-02 in figure 2). Many words are
not lexically aligned to any AMR node, including
punctuation tokens, articles, copulas, nonmodal
auxiliaries, expletive subjects, infinitival to, com-
plementizer that, and relative pronouns.

2.3 Structural alignments

Structural alignments primarily reflect composi-
tional grammatical constructions, be they syn-
tactic or morphological. Note that the structural
alignments build upon the lexical ones. Structural
alignments hold between two subgraphs, at least
one of which is larger than a single node. If a sub-
graph includes any edges, it automatically includes
nodes adjacent to those edges. Structural align-
ments need not be disjoint: an edge can appear in
two or more distinct alignments. Nodes and edges
in both AMR and DG may be unaligned.

2.3.1 Constraints on structural alignments
The ability to align subgraphs to subgraphs gives
considerable flexibility in how the annotation task
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Figure 3: “The general is confident in the nation’s defense and security capabilities.”

can be interpreted. We establish the following prin-
ciples to guide the specification of alignment:
Connectedness Principle. In an alignment d ∼ a,
d must be a connected subgraph of the DG, and a
must be a connected subgraph of the AMR.
Minimality Principle. If two alignments, d ∼ a
and d′ ∼ a′, have no dependency or AMR edges
in common, then their union d ∪d′ ∼ a∪a′ is re-
dundant, even if it is valid. Individual alignments
should be as small as possible; we believe compo-
sitionality is best captured by keeping structures
minimal. Therefore, in figure 1 there is no align-
ment between subgraphs spanning My, cat, lies and
i, cat, lie. Such subgraphs do express equivalent
information, but the alignment between them de-
composes neatly into smaller alignments and we
record only those.
Subsumption Principle. This principle ex-
presses the fact that our alignments are hierarchical.
Structural alignments need to be consistent with
lexical alignments: for subgraph a to be aligned to
subgraph d, all nodes lexically aligned to nodes in
a must be included in d, and vice versa. Moreover,
structural alignments need to be consistent with
other structural alignments. A structural alignment
d ∼ a is valid only if, for every connected AMR
subgraph a< ⊂ a which is aligned to a DG subgraph,
d′ ∼ a<, we also have that d′ is a subgraph of
d—and vice versa for every d< ⊂ d.

Further, if a contains a node n which is not
lexically aligned but which is part of a struc-
turally aligned subgraph a′ such that d′ ∼ a′,
it needs to be the case that a′ ⊂ a ∧ d′ ⊂ d or

a′ ⊃ a ∧ d′ ⊃ d. (And vice versa for nodes in

d.) For example, conceal
nsubj-xsubjÐÐÐÐÐ→Cruella ∼

conceal
ARG0ÐÐ→person

nameÐÐ→name
op1Ð→Cruella is not a

valid alignment, because the AMR side contains
nodes person and name, which are not lexically
aligned but which are both parts of a structural
alignment marked in blue.

Coordination Principle. If an alignment con-
tains a dependency edge between two conjuncts, or
between a conjunct and a coordinating conjunction,
then it must also include all conjuncts and the con-
junction. This preserves the integrity of coordinate
structures in alignments. For example, in figure 2

there is no alignment glee
ccÐ→and ∼ and

op1Ð→glee;
only the larger structure which includes the greed

nodes is aligned.

Named Entity Principle. Any structural
alignment containing an AMR name node
or any of the strings under it must contain
the full subgraph rooted in the name plus the
node above it specifying the entity type. This
means that for example, in figure 2 there

is no alignment conceal
nsubj-xsubjÐÐÐÐÐ→Cruella ∼

conceal
ARG0ÐÐ→person

nameÐÐ→name
op1Ð→"Cruella".

Such an alignment would also be stopped by the
Subsumption Principle provided that the blue
alignment of the whole name was present. The
Named Entity Principle is superfluous, but is
provided to explicitly describe the treatment of
such constructions.
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2.3.2 Typology of structural alignments

The smallest structure which can participate in a
structural alignment is a single node, provided that
it is aligned to a subgraph containing at least one
edge. A DG node may align to an AMR subgraph
if the word is morphologically decomposed or oth-
erwise analyzed in the AMR (e.g. in figure 2, evil-
doer ∼ person

ARG0-ofÐÐÐÐ→do-02
ARG1ÐÐ→thing

modÐ→evil).
Examples of DG structures whose meaning is
expressed in a single AMR node include light
verb constructions, phrasal verbs, and various
other multiword expressions (e.g. in figure 2,

makes
dobjÐÐ→attempt ∼ attempt-01).

Conceptually the simplest case of structural
alignment is one edge to one edge, as in the blue
and green alignments in figure 1. For such an align-
ment to be possible, two requirements must be
satisfied: nodes which are endpoints of those edges
need to be aligned one-to-one; and the AMR rela-
tion and the syntactic dependency must map cleanly
in terms of the relationship they express.

A one edge to multiple edges alignment arises
when either of those requirements is not met. To
see what happens in absence of one-to-one end-
point alignments let’s look at the relation between
confident and general in figure 3. The DG gen-
eral node is aligned to an AMR subgraph: general∼ person

ARG0-ofÐÐÐÐ→have-org-role
ARG2ÐÐ→general. All

alignments which involve the general node on the
DG side need to include its aligned subgraph on
the AMR side. It necessarily follows that the AMR
subgraphs in those alignments will contain more
edges that the DG ones; in this case the yellow sub-
graph in DG has 1 edge, and in AMR 3 edges. As
for the second requirement, it is possible for one
graph to use multiple edges to express a relation-
ship when the other graph needs only one. This is

the case for lie
nmod-inÐÐÐÐ→sun

caseÐÐ→in ∼ lie
locationÐÐÐÐ→sun

in figure 1. An example which combines both the
node- and edge-related issues is marked in red in
figure 2.

Finally, we also allow for many edges to many
edges alignments. This may seem counterintu-
itive considering the assumption that we want to
capture mappings between relations expressed in
DG and AMR, and that we want to align mini-
mal subgraphs. There are cases where an align-
ment is actually capturing a single relation, but
we need to treat a subgraph as an endpoint of the
edge both in DG and AMR. For instance, con-

sider in figure 2 the relationship that holds between
Cruella de Vil and concealing, expressed syntac-
tically as an nsubj-xsubj edge and semantically
as an ARG0 edge. One of the entities involved in
that relationship, Cruella, is represented by a 2-
edge DG subgraph and a 4-edge AMR subgraph.
Consequently, the alignment covering the DG and
AMR edges that relate Cruella to concealing must
link subgraphs consisting respectively of 3 and 5
edges. A more difficult case of many edges to
many edges alignment arises when relationships
between nodes are expressed so differently in the
DG and AMR that given an edge in one graph it is
not possible to find in the other graph a subgraph
that would convey the same information without
also including some other information. Coordina-
tion has this property: e.g. in figure 2 the conj-and
dependency between glee and greed has no counter-
part in the AMR. There is no edge between AMR
nodes aligned to those words, and the smallest
AMR subgraph which contains them also contains
and, which is itself lexically aligned. We cannot

align glee
conj-andÐÐÐÐ→greed ∼ glee

op1←Ðand
op2Ð→greed

because of the rule that all lexically aligned nodes
in one subgraph must be aligned to nodes in the
other subgraph. Therefore we need to extend the

DG side to and
cc←Ðglee

conj-andÐÐÐÐ→greed.

3 Manually aligned corpus

We annotated a corpus of 200 AMR-sentence pairs
(3813 aligned structures) using the guidelines of §2
and appendix A.6

Data selection. To create the corpus we drew a
total of 200 AMR-sentence pairs: 135 from the
training split of the AMR Annotation Release 1.0
(Knight et al., 2014), 55 from the training split of
The Little Prince Corpus v1.6,7 and 10 sentences
from the Adam part of the CHILDES Brown corpus
(Brown, 1973), for which AMRs were produced
by an experienced annotator. Seventy items were
selected to illustrate particular linguistic phenom-
ena.8 The remaining 130 were selected at random.

6We followed the precedent of previous AMR-to-sentence
alignment corpora (see §4.2) in including 200 sentences in our
gold standard, though ours was a different sample.

7https://amr.isi.edu/download/
amr-bank-struct-v1.6.txt

8Namely: relative clauses, reflexive and non-reflexive
pronominal anaphora, subject and object control, raising,
exceptional case marking, coordination, wh-questions, do-
support questions, ellipsis, expletives, modal verbs, light verbs,
comparison constructions, and quantification.
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Preprocessing. Dependency parses were ob-
tained using Stanford CoreNLP neural network
parser9 (Chen and Manning, 2014) and manually
corrected. The final parses conform to the en-
hanced UD guidelines,10 except they lack enhance-
ments for ellipsis.

Inter-annotator agreement. The corpus was cre-
ated by one annotator. To assess inter-annotator
agreement, a second annotator deeply familiar with
UD and AMR annotated a random sample of sen-
tences accounting for 10% of alignments in the
corpus. The overall inter-annotator F1-score was
88%, with 96% agreement on lexical alignments
and 80% on structural alignments. We take this
as an indication that our richly structured align-
ment framework as laid out in §2 is reasonably
well-defined for annotators.

3.1 Coverage

To assess our attempt to explain as much of the
AMR as possible, we computed the proportion of
AMR nodes and edges that participate in at least
one alignment. Overall, 99.3% of nodes and 97.2%
of edges in AMRs are aligned. We found that
81.5% of AMR graphs have full coverage, 18.5%
have at least one unaligned edge, and 7.5% have
one unaligned node (none had more than one; all
unaligned nodes express mood or discourse-related
information: interrogative, and, and say). We
conclude that nearly all information in an AMR is
evoked by lexical items or syntactic structure.

We expected coverage of DG to be lower be-
cause punctuation and many function words are
unaligned in our guidelines (§2.2). Indeed, only
71.4% of words and 65.2% of dependency edges
are aligned.

3.2 Syntactic-semantic similarity

The similarity of AMR to syntax in examples like
figure 1 invites the assumption of a close map-
ping, which often seems to be made in AMR
parsers (Wang et al., 2015; Artzi et al., 2015; Misra
and Artzi, 2016; Damonte et al., 2017) and align-
ers (Chu and Kurohashi, 2016; Chen and Palmer,

9The corpus is annotated with UD v1; a release of the
dataset converted to UD v2 is planned for the future. We
used the pretrained dependency parsing model provided in
CoreNLP with depparse.extradependencies set to MAXIMAL,
and used collapsed CCprocessed dependencies.

10http://universaldependencies.org/u/overview/
enhanced-syntax.html

simple configurations complex configurations

max # avg. max # avg.
config. sents words config. sents words

1:1 18 8.7 2:2 21 12.9
1:2 16 13.1 2:3 14 16.0
3:1 12 13.4 3:2 13 16.8
2:0 6 5.8 3:4 12 20.3
1:3 5 13.2 3:3 10 19.1

other 9 15.2 other 64 20.9

total: 66 11.6 134 18.0

Table 1: Number of sentences whose highest alignment
configurations is max config.

2017).11 Such an attitude reflects decades of work
in the syntax-semantics interface (Partee, 2014) and
the utility of dependency syntax for other forms of
semantics (e.g., Oepen et al., 2014; Reddy et al.,
2016; Stanovsky et al., 2016; White et al., 2016;
Zhang et al., 2017; Hershcovich et al., 2017). How-
ever, this assumption has not been empirically
tested, and as Bender et al. (2015) observe, it is
an assumption not guaranteed by the AMR anno-
tation style. Having aligned a corpus of AMR-DG
pairs, we are in a position to provide empirical
evidence.

Are AMRs and dependency graphs structurally
similar? We approach the question by analyzing
the sizes of subgraphs used to align the two repre-
sentations of the sentence.

We define the size of a subgraph as the number
of edges it contains. If a structure consists of a sin-
gle node, we say its size is 0. The configuration of
an alignment is then the pair of sizes for its AMR
and DG sides; for example, an alignment with 1
AMR edge and 2 DG edges has configuration 1:2.
We call an alignment configuration simple if at least
one of the subgraphs is a single edge, indicating
that there is a single relation which the alignment
captures. Complex configurations cover multiple
relations. By principle of minimality we infer that
some structural difference between the graphs pre-
vented those relations from aligning individually.

One measure of similarity between AMR and
DG graphs is the configuration of the most com-
plex subgraph alignment between them. Configura-
tion a:b is higher than c:d if a+b > c+d. However,
all configurations involving 0 are lower than those
which do not. A maximum of 1:1 means the graphs
have only node-to-node, node-to-edge, and edge-to-
edge alignments, rendering the graphs isomorphic
(ignoring edge directions and unaligned nodes). In

11In particular, Chen and Palmer (2017) align dependency
paths to AMR edges. However, their evaluation only consid-
ers node-to-node alignment, and their code and data are not
available for comparison at the time of this writing.
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named semantic quantities
entities coordination decomposition & dates other overall

2:0 112 2:2 30 1:0 32 2:1 15 0:0 1946 0:0 1946
3:1 44 3:4 14 2:0 14 3:0 5 1:1 1002 1:1 1046
4:2 7 3:3 13 2:1 11 1:0 4 1:2 220 1:2 244
1:1 6 4:3 5 4:1 6 3:2 3 1:0 42 2:0 127
5:2 4 3:2 5 3:1 6 8:2 1 2:2 42 2:2 83

other 20 other 50 other 15 other 0 other 13 other 361

total: 193 117 84 28 3385 3807

Table 2: Frequency of alignment configurations for named entities, coordination, semantically decomposed words,
quantities and dates, and other phenomena.

general, if the maximum alignment configuration is
a simple one, the graphs could be made isomorphic
by collapsing the larger side of the alignment (e.g.,
in figure 2, the AMR side of the alignment evil-
doer ∼ person

ARG0-ofÐÐÐÐ→do
ARG1ÐÐ→thing

modÐ→evil could
be collapsed into a node).

In contrast, complex configurations imply seri-
ous structural dissimilarity, as in figure 3, where
the cyan alignment has configuration 4:4.

The numbers in table 1 show that ≈33% of the
sentences are simple.

Table 2 provides a detailed breakdown of align-
ment configurations in the corpus. Phenom-
ena which often trigger complex configurations
include coordination, named entities, semanti-
cally decomposed words, attachment of negation,
and preposition-based concepts encoding location,
time, and quantity.12

We observe, comparing tables 1 and 2, that while
simple configurations are most frequent in the cor-
pus, the majority of sentences have at least one
alignment which is complex. It should not be as-
sumed that AMR and DG representations of a sen-
tence are, or could trivially be made to be, isomor-
phic. It is worth noting that our analysis suggests
that DG and AMR could be made more similar
by applying simple transformations targeting prob-
lematic constructions like coordination and named
entities.

4 Evaluation of automatic aligners

We use our annotations to measure the accuracy
of AMR aligners on specific phenomena that were
inexpressible in previous annotation schemes. Our
experiments evaluate the JAMR heuristic aligner
(Flanigan et al., 2014), the ISI statistical aligner
(Pourdamghani et al., 2014), and a heuristic rule-
based aligner that we developed specifically for

12An AMR concept evoked by a preposition usually domi-

nates the structure (after
op1ÐÐ→date-entity

decadeÐÐÐ→nineties),
which is at odds with UD’s prepositions-as-case-markers pol-
icy (nineties

caseÐÐ→after).

structural alignment.

4.1 Rule-based aligner

Our aligner operates in two passes: one for lexical
alignment and one for structural alignment.

Lexical alignment algorithm. AMR concepts
are cognate with English words, so we align them
by lexical similarity. This algorithm does not make
use of the DG. Before alignment, we remove sense
identifiers on AMR node labels, and lemmatize DG
node labels. Then for every pair of nodes a from
the AMR and d from the DG we align them if any
of the following conditions holds:

1. The Levenshtein distance of a and d is 15%
or less of the length of the longer word.13

2. The label of a is the morphological negation
of d (e.g. prudent ∼ imprudent).14

3. The label of a is – (AMR’s annotation of
negation) and the parent of a aligns to d via rule 2.

4. The label of a is – and d is one of no, none,
not, or never.

5. The label of a consists of multiple words, and
the label of d matches any one of them under rule 1.
(e.g. sit ∼ sit-down, war-torn ∼ war).15

6. Labels of a and d likely have the same mor-
phological root. We determine this by segmenting
each word with Morfessor (Grönroos et al., 2014)
trained on Wiki data and applying rule 1 to the first
morpheme of each word.

Note that if a word type is repeated in a sentence,
each repetition is aligned to the same AMR nodes
under the above rules.

Structural alignment algorithm. We align sub-
graphs using the procedure below, first from AMR
to DG, then from DG to AMR. For clarity, the
explanation refers to the first case.

13Threshold was determined empirically on a 10% sample
from the dataset.

14We use a list of morphologically negated words provided
by Ulf Hermjakob.

15This rule misaligns some AMR-specific node types, such
as government ∼ government-organization.
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dataset

aligner our ISI JAMR

our 89 85 87 88 77 82 55 81 65
ISI 71 68 70 96 85 90 47 67 55

JAMR 86 63 72 95 66 78 92 85 88

Table 3: Lexical alignment (precision, recall, F1-score).
Our lexical alignment algorithm does not use syntax.

Local phase. For every AMR edge ea whose
endpoints are lexically aligned nodes a1 (aligned
to d1) and a2 (aligned to d2), we attempt to align
minimal and connected AMR and dependency sub-
graphs, a′ and d′:

1. If there is a DG edge ed whose endpoints are
d1 and d2, then a′← ea and d′← ed .

2. Otherwise, let πd be the shortest undirected
path between d1 and d2. If all lexically aligned
nodes in πd are aligned to a1 or a2, then a′ ← ea

and d′← πd .
3. Otherwise, let a′′ be the smallest subgraph

covering all AMR nodes that are lexically aligned
to nodes in πd . If all the nodes in a′′ are aligned
only to nodes in πd , then a′← a′′ and d′← πd .

4. Otherwise, the attempt is abandoned.
5. Finally, if the top node of a′ has a parent node

labeled with an entity type concept, extend a′ to
include the parent. (This step is performed only in
the AMR-to-DG step.)

Global phase. The local phase might produce
alignments that violate the Subsumption Principle
(§2.3.1), so we filter them out heuristically. For
every pair of structural alignments, πd ∼ πa and
π ′d ∼ π ′a where πa overlaps with π ′a, or πd with
π ′d , if the region of overlap is not itself an aligned
subgraph, we prune both alignments.16

4.2 Experiments

We evaluate JAMR, ISI, and our aligner on two
distinct tasks.
Lexical alignment. Lexical alignment involves
aligning AMR nodes to words, a task all three
systems can perform. We evaluate against three
datasets: our own, the JAMR dataset (Flanigan
et al., 2014), and the ISI dataset (Pourdamghani
et al., 2014).17 Results (table 3) suggest that this
task is already well-addressed, but also that there
exist marked differences between how lexical align-
ment is defined in each dataset and that aligners are

16This could be order-dependent since the removal of one
alignment could trigger the removal of others, but our aligner
does not account for this.

17We remove span alignments in the JAMR dataset and
edge alignments in the ISI dataset.

prec., rec., F1 prec., rec., F1
lexical alignments using gold DGs using automatic DGs

gold 79 73 76 70 63 66
our aligner 68 56 61 63 48 55

ISI 65 50 57 58 44 50
JAMR 71 41 52 61 34 44

Table 4: Structural alignment (§4.1) scores, with dif-
ferent sources of input lexical alignments. Scores are
shown for gold standard and automatic UD trees.

fine-tuned to their dataset.
For our aligner, errors are due to faulty morpho-

logical analysis, duplicated words, and both acci-
dental string similarity between AMR concepts and
words and occasional lack of similarity between
concepts and words that should be aligned.
Structural alignment. An important goal of our
experiments is to establish baselines for the struc-
tural alignment task. While we cannot evaluate the
JAMR and ISI aligners directly on this task, we can
use the lexical alignments they output in place of
the first pass of our aligner. The only dataset for
this task is our own. The results (table 4) evaluate
accuracy of structural alignments only and do not
count lexical alignments.

The automatic alignments have lower coverage
of AMRs than the gold alignments do: our best
aligner leaves 13.3% of AMR nodes and 30.0%
of AMR edges unaligned, compared to 0.07% and
2.8% in the gold standard. The aligner also leaves
39.2% of DG nodes and 47.7% of DG edges un-
aligned, compared to 28.6% and 34.8% in the gold
standard. The relatively low F-score for the gold
standard lexical alignments and DGs condition sug-
gests that substantial improvements to our struc-
tural alignment algorithm are possible. The two
most common reasons for low recall were miss-
ing one of the conjuncts in a coordinate structure
and aligning structures that violate the principle of
minimality.

Our corpus gives alignments between AMRs and
gold standard dependency parses. To see how much
performance degrades when such parses are not
available we also evaluate on automatic parses.18

Both precision and recall are substantially worse
when the aligner relies on automatic syntax.

5 Improving error analysis for AMR
parsers

Our corpus of manually aligned AMRs can be used
to identify linguistic constructions which cause

18We use the CoreNLP dependency parser with settings as
described in §3.
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UD structure missed mislabeled

nsubj 103 (40%) 14 (6%)
nmod + case 74 (44%) 26 (16%)
compound 55 (41%) 7 (5%)

amod 40 (26%) 9 (6%)
dobj 40 (33%) 6 (5%)

advmod 30 (39%) 7 (9%)
cc + conj 29 (57%) 4 (8%)

nmod 21 (60%) 1 (3%)

Table 5: Error analysis of the AMR parser of Da-
monte et al. (2017). Frequency of dependency struc-
tures aligned to AMR edges which the automatic AMR
parser missed altogether or mislabeled; absolute count
(% of all such aligned structures in the corpus).

problems for an AMR parser. We parsed the sen-
tences from our corpus with the parser of Damonte
et al. (2017).19 We map the nodes of the result-
ing automatic AMRs to the gold AMRs using the
smatch evaluation tool (Cai and Knight, 2013), and
on the basis of this mapping identify those nodes
and edges of the gold AMRs which are missing or
mislabeled in the automatic AMRs.

We then measured the number and rate of erro-
neous AMR fragments associated with each UD
relation or construction (table 5). The largest pro-
portion of recall errors were for fragments associ-
ated with the subject relation, prepositional phrases,
and nominal compounds. Focusing on the subject
relation, we can further say that 69% of the miss-
ing or mislabeled edges have the gold label ARG0,
19% ARG1, and the rest are distributed amongst
domain, ARG2, purpose and mod. Inspecting the
errors we see that phenomena underlying them in-
clude pronominal coreference, sharing arguments
between conjoined predicates, auxiliary verb con-
structions, and control and raising.20

Our corpus facilitates fine-grained error analysis
of AMR parsers with respect to individual syntactic
constructions. We release the code for the above an-
alysis in order to encourage syntactically-informed
comparison and improvement of systems.

6 Conclusion

We have presented a new framework and corpus
for aligning AMRs to dependency syntax. Our
data and analysis show that the vast majority of
the semantics in AMR graphs can be mapped to
the lexical and syntactic structure of a sentence,
though current alignment systems do not fully cap-
ture this correspondence. The syntax–semantics

19The overall smatch score of the parser on this dataset was
0.65.

20The missing edge counts include gold edges for which
the parser failed to produce one or both endpoints.

correspondences are often structurally divergent
(non-isomorphic). Simple algorithms for lexical
and structural alignment establish baselines for the
new alignment task; we expect statistical models
will be brought to bear on this task in future work.
Our framework also facilitates syntactically-based
analysis of AMR parsers. We release our data and
code for the benefit of the research community.
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A Details of alignment guidelines

A.1 Lexical alignments
Names. In proper names, individual strings denot-
ing words in the name are lexically aligned, but the
entity as a whole is structurally aligned.
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Entity types. If the entity type is based on a com-
mon noun which occurs in the sentence, it is lex-
ically aligned: e.g., Jon, a clumsy man, has a cat
would involve the alignment man ∼ man. Most
often, however, an entity type is not explicitly men-
tioned in the sentence and is taken from AMR’s
ontology of entity types (http://www.isi.edu/
~ulf/amr/lib/ne-types.html), in which case it
will not be lexically aligned.

Case marking and prepositions. The possessive
marker ’s and many prepositions participate in
structural but not lexical alignments because they
are inherently relational. However, we align a
preposition if it carries sufficient lexical content
to be included as an AMR node (e.g., the AMR
for The cat is under the table would include
under

op1Ð→table).

Wh-questions. The special concept amr-unknown
aligns lexically to the wh-word whose referent is
questioned. For multiword wh-expressions like
how much, the expression is aligned structurally
(not lexically) to amr-unknown.

Sentence mood. In AMR, non-wh questions are
indicated by

modeÐÐ→interrogative, imperatives by
modeÐÐ→imperative, and exclamations/interjections
by

modeÐÐ→expressive. UD parses do not encode
sentence mood, which can be conveyed by non-
canonical word order (subject-auxiliary inversion
for questions) or argument omission (subject omis-
sion for imperatives), rather than the presence of
certain relations or words. Sometimes the sentence
includes an appropriate alignment point, e.g. com-
plementizers whether and if for interrogative,
allowing for a lexical alignment. More often the
parse has no obvious alignment point, and the con-
stant interrogative, imperative, or expressive
is left unaligned.21

A.2 Structural alignments

Copulas. In UD, copulas are treated as modifiers
of a predicate nominal or adjective, which is linked
directly to the subject of the sentence via an nsubj
dependency. We do not align copulas or the cop
edge. Thus, in figure 3, there is a structural align-

ment between general
nsubj←ÐÐconfident and the AMR

subgraph connecting the lexically aligned nodes.

21Among the UD community there has been discussion of
possibly adding sentence-level marking of mood (https://
github.com/UniversalDependencies/docs/issues/458),
which could provide a convenient alignment point.

Control. The subject of the control verb and the
controlled predicate are connected by the nsubj-
xsubj edge, which can be structurally aligned with
the corresponding AMR argument relation, as in
e.g. figure 2.

Relative clauses. In enhanced UD the noun gov-
erning a relative clause and the embedded predicate
are linked by edges in both directions: a “surface
syntax” acl-relcl edge headed by the noun, and a
“deep syntax” edge such as nsubj, dobj, iobj, or
nmod headed by the embedded predicate. Each
participates in a structural alignment with the cor-
responding AMR subgraph. The relative pronoun
is left unaligned.

Coordination. Coordination does not naturally
lend itself to analysis with dependencies, and dif-
ferent dependency grammar traditions offer differ-
ent approaches (Nivre, 2005; Mareček et al., 2013).
UD follows the Stanford style, where the first con-
junct serves as the head of the remaining conjuncts,
and the conjunction is a dependent of one of the
conjuncts.22 In AMR the conjunction heads all
the conjuncts (Prague style). In light of this mis-
match, we use a subgraph alignment to group the
conjunction with its conjuncts on each side. A
simple example is illustrated in figure 2. A quirk
of UD’s approach to coordination is that it does
not distinguish modifiers of the first conjunct from
modifiers of the coordinate structure as a whole.
The basic UD parse of her glee and greed is there-
fore ambiguous. We rely on an extra edge in the
enhanced parse between her and greed to establish
an alignment for the AMR edge greed

ARG0ÐÐ→person.
The coordination in figure 3 is more complex:

the coordinated modifier defense and security dis-
tributes over capabilities (i.e., there are two kinds
of capabilities). In the enhanced parse, defense
and security are both attached as modifiers of ca-
pabilities. This is expressed semantically via du-
plicate AMR nodes labeled capable, each receiv-
ing different modifiers corresponding to different
conjuncts. Independent of coordination, the two
capable nodes also share a common argument,
nation. The three syntactic modifiers give rise to
three subgraph alignments, and the subgraph align-
ment covering the coordinate structure (cyan in the
figure) envelops two of these. Ellipsis construc-

22In UD version 1, and therefore the examples in this pa-
per, the conjunction attaches to the first conjunct, whereas in
version 2 it attaches to the next successive conjunct (http:
//universaldependencies.org/v2/summary.html).
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tions can also trigger node duplication in AMR,
requiring similar structural alignments.
Named entities. AMR annotates each named en-
tity with a node representing the name, linked to
the strings of the name and headed by an entity
type. This full structure is aligned to the full name
in the dependency parse.
Coreferent mentions. Coreference often causes
an AMR structure to align to multiple DG sub-
graphs. For example, in figure 2, both the pronoun
her and the name align to the AMR subgraph rep-
resenting the entity. This mechanism suffices to
represent coreference between mentions in the sen-
tence.
Light verbs. Light verbs have no lexical align-
ment, but a subgraph alignment covers the light

verb construction as a unit (e.g. makes
dobjÐÐ→attempt∼ attempt-01 in figure 2). All subgraph align-

ments which involve the light verb or its comple-
ment have to involve to whole unit, as shown in the
alignment highlighted in red in figure 2.
Multiword expressions. In verb-particle con-
structions and fixed grammatical expressions the
AMR node lexically aligns to all words in the ex-
pression, and additionally to the DG subgraph span-
ning the whole expression. (e.g. pay ∼ pay-off-02,

off ∼ pay-off-02, and pay
compound-prtÐÐÐÐÐÐÐ→off ∼

pay-off-02).
Prepositional phrases. PP modifiers typically in-
volve an extra dependency edge for the preposi-

tion attachment, as with lies
nmod-inÐÐÐÐ→sun

caseÐÐ→in ∼
lie-07

locationÐÐÐÐ→sun.
Semantically decomposed words. When one
word has multiple lexical alignments because
of morphological decomposition, there also
exists a structural alignment between that
word and an AMR subgraph representing
the decomposition: e.g., in figure 2, evildoer∼ person

ARG0-ofÐÐÐÐ→do-02
ARG1ÐÐ→thing

modÐ→evil,
and in figure 3, general ∼
person

ARG0-ofÐÐÐÐ→have-org-role-91
ARG2ÐÐ→general.

AMR decomposes certain words by convention
which must always be structurally aligned, such

as ago ∼ before
op1Ð→now and government ∼

government-organization
ARG0-ofÐÐÐÐ→govern-01.

Date, time, and value expressions. These ex-
pressions are aligned similarly to named entities,
even though the normalized constants may not ex-
actly match the words in the sentence. For example,

the DG structure 9:00
nummod←ÐÐÐÐpm would be repre-

sented in the AMR as date-entity
timeÐÐ→21:00; to-

kens 9:00 and pm are treated as a multiword expres-
sion: each is lexically aligned to "21:00". More-

over, we also align 9:00
nummod←ÐÐÐÐpm ∼ 21:00 and

9:00
nummod←ÐÐÐÐpm ∼ date-entity

timeÐÐ→21:00.

1180



Proceedings of NAACL-HLT 2018, pages 1181–1194
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

End-to-end Graph-based TAG Parsing with Neural Networks

Jungo Kasai♣ Robert Frank♣ Pauli Xu♣
William Merrill♣ Owen Rambow♥
♣Department of Linguistics, Yale University

♥Elemental Cognition, LLP
{jungo.kasai,bob.frank,pauli.xu,william.merrill}@yale.edu

owenr@elementalcognition.com

Abstract
We present a graph-based Tree Adjoin-
ing Grammar (TAG) parser that uses BiL-
STMs, highway connections, and character-
level CNNs. Our best end-to-end parser,
which jointly performs supertagging, POS tag-
ging, and parsing, outperforms the previously
reported best results by more than 2.2 LAS
and UAS points. The graph-based parsing
architecture allows for global inference and
rich feature representations for TAG parsing,
alleviating the fundamental trade-off between
transition-based and graph-based parsing sys-
tems. We also demonstrate that the proposed
parser achieves state-of-the-art performance in
the downstream tasks of Parsing Evaluation
using Textual Entailments (PETE) and Un-
bounded Dependency Recovery. This provides
further support for the claim that TAG is a vi-
able formalism for problems that require rich
structural analysis of sentences.

1 Introduction

Tree Adjoining Grammar (TAG, Joshi and Sch-
abes (1997)) and Combinatory Categorial Gram-
mar (CCG, Steedman and Baldridge (2011)) are
both mildly context-sensitive grammar formalisms
that are lexicalized: every elementary structure
(elementary tree for TAG and category for CCG)
is associated with exactly one lexical item, and ev-
ery lexical item of the language is associated with
a finite set of elementary structures in the gram-
mar (Rambow and Joshi, 1994). In TAG and CCG,
the task of parsing can be decomposed into two
phases (e.g. TAG: Bangalore and Joshi (1999);
CCG: Clark and Curran (2007)): supertagging,
where elementary units or supertags are assigned
to each lexical item and parsing where these su-
pertags are combined together. The first phase of
supertagging can be considered as “almost pars-
ing” because supertags for a sentence almost al-
ways determine a unique parse (Bangalore and

Joshi, 1999). This near uniqueness of a parse
given a gold sequence of supertags has been con-
firmed empirically (TAG: Bangalore et al. (2009);
Chung et al. (2016); Kasai et al. (2017); CCG:
Lewis et al. (2016)).

We focus on TAG parsing in this work. TAG
differs from CCG in having a more varied set of
supertags. Concretely, the TAG-annotated version
of the WSJ Penn Treebank (Marcus et al., 1993)
that we use (Chen et al., 2005) includes 4727 dis-
tinct supertags (2165 occur once) while the CCG-
annotated version (Hockenmaier and Steedman,
2007) only includes 1286 distinct supertags (439
occur once). This large set of supertags in TAG
presents a severe challenge in supertagging and
causes a large discrepancy in parsing performance
with gold supertags and predicted supertags (Ban-
galore et al., 2009; Chung et al., 2016; Kasai et al.,
2017).

In this work, we present a supertagger and a
parser that substantially improve upon previously
reported results. We propose crucial modifications
to the bidirectional LSTM (BiLSTM) supertagger
in Kasai et al. (2017). First, we use character-level
Convolutional Neural Networks (CNNs) for en-
coding morphological information instead of suf-
fix embeddings. Secondly, we perform concatena-
tion after each BiLSTM layer. Lastly, we explore
the impact of adding additional BiLSTM layers
and highway connections. These techniques yield
an increase of 1.3% in accuracy. For parsing, since
the derivation tree in a lexicalized TAG is a type of
dependency tree (Rambow and Joshi, 1994), we
can directly apply dependency parsing models. In
particular, we use the biaffine graph-based parser
proposed by Dozat and Manning (2017) together
with our novel techniques for supertagging.

In addition to these architectural extensions for
supertagging and parsing, we also explore multi-
task learning approaches for TAG parsing. Specif-
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ically, we perform POS tagging, supertagging,
and parsing using the same feature representations
from the BiLSTMs. This joint modeling has the
benefit of avoiding a time-consuming and com-
plicated pipeline process, and instead produces
a full syntactic analysis, consisting of supertags
and the derivation that combines them, simultane-
ously. Moreover, this multi-task learning frame-
work further improves performance in all three
tasks. We hypothesize that our multi-task learning
yields feature representations in the LSTM layers
that are more linguistically relevant and that gener-
alize better (Caruana, 1997). We provide support
for this hypothesis by analyzing syntactic analo-
gies across induced vector representations of su-
pertags (Kasai et al., 2017; Friedman et al., 2017).
The end-to-end TAG parser substantially outper-
forms the previously reported best results.

Finally, we apply our new parsers to the down-
stream tasks of Parsing Evaluation using Tex-
tual Entailements (PETE, Yuret et al. (2010)) and
Unbounded Dependency Recovery (Rimell et al.,
2009). We demonstrate that our end-to-end parser
outperforms the best results in both tasks. These
results illustrate that TAG is a viable formalism
for tasks that benefit from the assignment of rich
structural descriptions to sentences.

2 Our Models

TAG parsing can be decomposed into supertag-
ging and parsing. Supertagging assigns to words
elementary trees (supertags) chosen from a finite
set, and parsing determines how these elementary
trees can be combined to form a derivation tree
that yield the observed sentence. The combina-
tory operations consist of substitution, which in-
serts obligatory arguments, and adjunction, which
is responsible for the introduction of modifiers,
function words, as well as the derivation of sen-
tences involving long-distance dependencies. In
this section, we present our supertagging models,
parsing models, and joint models.

2.1 Supertagging Model

Recent work has explored neural network mod-
els for supertagging in TAG (Kasai et al., 2017)
and CCG (Xu et al., 2015; Lewis et al., 2016;
Vaswani et al., 2016; Xu, 2016), and has shown
that such models substantially improve perfor-
mance beyond non-neural models. We extend pre-
viously proposed BiLSTM-based models (Lewis

et al., 2016; Kasai et al., 2017) in three ways: 1)
we add character-level Convolutional Neural Net-
works (CNNs) to the input layer, 2) we perform
concatenation of both directions of the LSTM not
only after the final layer but also after each layer,
and 3) we use a modified BiLSTM with highway
connections.

2.1.1 Input Representations
The input for each word is represented via con-
catenation of a 100-dimensional embedding of
the word, a 100-dimensional embedding of a
predicted part of speech (POS) tag, and a 30-
dimensional character-level representation from
CNNs that have been found to capture morpho-
logical information (Santos and Zadrozny, 2014;
Chiu and Nichols, 2016; Ma and Hovy, 2016).
The CNNs encode each character in a word by
a 30 dimensional vector and 30 filters produce a
30 dimensional vector for the word. We initialize
the word embeddings to be the pre-trained GloVe
vectors (Pennington et al., 2014); for words not in
GloVe, we initialize their embedding to a zero vec-
tor. The other embeddings are randomly initial-
ized. We obtain predicted POS tags from a BiL-
STM POS tagger with the same configuration as
in Ma and Hovy (2016).

2.1.2 Deep Highway BiLSTM
The core of the supertagging model is a deep
bidirectional Long Short-Term Memory network
(Graves and Schmidhuber, 2005). We use the fol-
lowing formulas to compute the activation of a sin-
gle LSTM cell at time step t:

it = σ (Wi[xt;ht−1] + bi) (1)

ft = σ (Wf [xt;ht−1] + bf ) (2)

c̃t = tanh (Wc[xt;ht−1] + bc) (3)

ot = σ (Wo[xt;ht−1] + bo) (4)

ct = f � ct−1 + it � c̃t (5)

ht = o� tanh (ct) (6)

Here a semicolon ; means concatenation, � is
element-wise multiplication, and σ is the sigmoid
function. In the first BiLSTM layer, the input xt is
the vector representation of word t. (The sequence
is reversed for the backwards pass.) In all subse-
quent layers, xt is the corresponding output from
the previous BiLSTM; the output of a BiLSTM at
timestep t is equal to [hft ;h

b
t ], the concatenation

of hidden state corresponding to input t in the for-
ward and backward pass. This concatenation af-
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ter each layer differs from Kasai et al. (2017) and
Lewis et al. (2016), where concatenation happens
only after the final BiLSTM layer. We will show in
a later section that concatenation after each layer
contributes to improvement in performance.

We also extend the models in Kasai et al. (2017)
and Lewis et al. (2016) by allowing highway con-
nections between LSTM layers. A highway con-
nection is a gating mechanism that combines the
current and previous layer outputs, which can pre-
vent the problem of vanishing/exploding gradients
(Srivastava et al., 2015). Specifically, in networks
with highway connections, we replace Eq. 6 by:

rt = σ (Wr[xt;ht−1] + br)

ht = rt � ot � tanh (ct) + (1− rt)�Whxt

Indeed, our experiments will show that highway
connections play a crucial role as we add more
BiLSTM layers.

We generally follow the hyperparameters cho-
sen in Lewis et al. (2016) and Kasai et al. (2017).
Specifically, we use BiLSTMs layers with 512
units each. Input, layer-to-layer, and recurrent
(Gal and Ghahramani, 2016) dropout rates are all
0.5. For the CNN character-level representation,
we used the hyperparameters from Ma and Hovy
(2016).

We train this network, including the embed-
dings, by optimizing the negative log-likelihood
of the observed sequences of supertags in a mini-
batch stochastic fashion with the Adam optimiza-
tion algorithm with batch size 100 and ` = 0.01
(Kingma and Ba, 2015). In order to obtain pre-
dicted POS tags and supertags of the training data
for subsequent parser input, we also perform 10-
fold jackknife training. After each training epoch,
we test the supertagger on the dev set. When clas-
sification accuracy does not improve on five con-
secutive epochs, training ends.

2.2 Parsing Model

Until recently, TAG parsers have been grammar
based, requiring as input a set of elemenetary trees
(supertags). For example, Bangalore et al. (2009)
proposes the MICA parser, an Earley parser that
exploits a TAG grammar that has been trans-
formed into a variant of a probabilistic CFG. One
advantage of such a parser is that its parses are
guaranteed to be well-formed according to the
TAG grammar provided as input.

More recent work, however, has shown that
data-driven transition-based parsing systems out-
perform such grammar-based parsers (Chung
et al., 2016; Kasai et al., 2017; Friedman et al.,
2017). Kasai et al. (2017) and Friedman
et al. (2017) achieved state-of-the-art TAG parsing
performance using an unlexicalized shift-reduce
parser with feed-forward neural networks that was
trained on a version of the Penn Treebank that
had been annotated with TAG derivations. Here,
we pursue this data-driven approach, applying a
graph-based parser with deep biaffine attention
(Dozat and Manning, 2017) that allows for global
training and inference.

2.2.1 Input Representations
The input for each word is the concatenation
of a 100-dimensional embedding of the word
and a 30-dimensional character-level representa-
tion obtained from CNNs in the same fashion
as in the supertagger.1 We also consider adding
100-dimensional embeddings for a predicted POS
tag (Dozat and Manning, 2017) and a predicted
supertag (Kasai et al., 2017; Friedman et al.,
2017). The ablation experiments in Kiperwasser
and Goldberg (2016) illustrated that adding pre-
dicted POS tags boosted performance in Stanford
Dependencies. In Universal Dependencies, Dozat
et al. (2017) empirically showed that their depen-
dency parser gains significant improvements by
using POS tags predicted by a Bi-LSTM POS tag-
ger. Indeed, Kasai et al. (2017) and Friedman
et al. (2017) demonstrated that their unlexicalized
neural network TAG parsers that only get as in-
put predicted supertags can achieve state-of-the-
art performance, with lexical inputs providing no
improvement in performance. We initialize word
embeddings to be the pre-trained GloVe vectors as
in the supertagger. The other embeddings are ran-
domly initialized.

2.2.2 Biaffine Parser
We train our parser to predict edges between lex-
ical items in an LTAG derivation tree. Edges are
labeled by the operations together with the deep
syntactic roles of substitution sites (0=underlying
subject, 1=underlying direct object, 2=underlying
indirect object, 3,4=oblique arguments, CO=co-
head for prepositional/particle verbs, and adj=all
adjuncts). Figure 1 shows our biaffine parsing ar-

1We fix the embedding of the ROOT token to be a 0-
vector.
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Figure 1: Biaffine parsing architecture. For the depen-
dency from John to sleeps in the sentence John sleeps,
the parser first predicts the head of John and then pre-
dicts the dependency label by combining the dependent
and head representations. In the joint setting, the parser
also predicts POS tags and supertags.

chitecture. Following Dozat and Manning (2017)
and Kiperwasser and Goldberg (2016), we use
BiLSTMs to obtain features for each word in a
sentence. We add highway connections in the
same fashion as our supertagging model.

We first perform unlabeled arc-factored scoring
using the final output vectors from the BiLSTMs,
and then label the resulting arcs. Specifically, sup-
pose that we score edges coming into the ith word
in a sentence i.e. assigning scores to the potential
parents of the ith word. Denote the final output
vector from the BiLSTM for the kth word by hk
and suppose that hk is d-dimensional. Then, we
produce two vectors from two separate multilayer
perceptrons (MLPs) with the ReLU activation:

h
arc-dep
k = MLP(arc-dep)(hk)

harc-head
k = MLP(arc-head)(hk)

where harc-dep
k and harc-head

k are darc-dimensional
vectors that represent the kth word as a dependent
and a head respectively. Now, suppose the kth row
of matrix H (arc-head) is harc-head

k . Then, the proba-
bility distribution si over the potential heads of the
ith word is computed by

si = softmax(H (arc-head)W (arc)h
arc-dep
i

+H (arc-head)b(arc))
(7)

where W (arc) ∈ Rdarc×darc and b(arc) ∈ Rdarc .
In training, we simply take the greedy maximum

probability to predict the parent of each word. In
the testing phase, we use the heuristics formulated
by Dozat and Manning (2017) to ensure that the
resulting parse is single-rooted and acyclic.

Given the head prediction of each word in the
sentence, we assign labeling scores using vectors
obtained from two additional MLP with ReLU.
For the kth word, we obtain:

h
rel-dep
k = MLP(rel-dep)(hk)

hrel-head
k = MLP(rel-head)(hk)

where hrel-dep
k , hrel-head

k ∈ Rdrel . Let pi be the in-
dex of the predicted head of the ith word, and r be
the number of dependency relations in the dataset.
Then, the probability distribution `i over the possi-
ble dependency relations of the arc pointing from
the pith word to the ith word is calculated by:

`i = softmax(hT (rel-head)
pi U (rel)h

(rel-dep)
i

+W (rel)(h(rel-head)
i + h(rel-head)

pi ) + b(rel))
(8)

where U (rel) ∈ Rdrel×drel×r,W (rel) ∈ Rr×drel , and
b(rel) ∈ Rr.

We generally follow the hyperparameters cho-
sen in Dozat and Manning (2017). Specifically,
we use BiLSTMs layers with 400 units each. In-
put, layer-to-layer, and recurrent dropout rates are
all 0.33. The depths of all MLPs are all 1, and
the MLPs for unlabeled attachment and those for
labeling contain 500 (darc) and 100 (drel) units re-
spectively. For character-level CNNs, we use the
hyperparameters from Ma and Hovy (2016).

We train this model with the Adam algorithm to
minimize the sum of the cross-entropy losses from
head predictions (si from Eq. 7) and label predic-
tions (`i from Eq. 8) with ` = 0.01 and batch size
100 (Kingma and Ba, 2015). After each training
epoch, we test the parser on the dev set. When la-
beled attachment score (LAS)2 does not improve
on five consecutive epochs, training ends.

2.3 Joint Modeling
The simple BiLSTM feature representations for
parsing presented above are conducive to joint
modeling of POS tagging and supertagging; rather
than using POS tags and supertags to predict a
derivation tree, we can instead use the BiLSTM
hidden vectors derived from lexical inputs alone

2We disregard pure punctuation when evaluating LAS and
UAS, following prior work (Bangalore et al., 2009; Chung
et al., 2016; Kasai et al., 2017; Friedman et al., 2017).
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to predict POS tags and supertags along with the
TAG derivation tree.

h
pos
k = MLP(pos)(hk)

h
stag
k = MLP(stag)(hk)

where hpos
k ∈ Rdpos and hstag

k ∈ Rdstag . We ob-
tain probability distribution over the POS tags and
supertags by:

softmax(W (pos)h
pos
k + b(pos)) (9)

softmax(W (stag)h
stag
k + b(stag)) (10)

where W (pos), b(pos), W (stag), and b(stag) are in
Rnpos×dpos , Rnpos , Rnstag×dstag , and Rnstag re-
spectively, with npos and nstag the numbers of
possible POS tags and supertags respectively.

We use the same hyperparameters as in the
parser. The MLPs for POS tagging and supertag-
ging both contain 500 units. We again train this
model with the Adam algorithm to minimize the
sum of the cross-entropy losses from head predic-
tions (si from Eq. 7), label predictions (`i from
Eq. 8), POS predictions (Eq. 9), and supertag pre-
dictions (Eq. 10) with ` = 0.01 and batch size
100. After each training epoch, we test the parser
on the dev set and compute the percentage of each
token that is assigned the correct parent, relation,
supertag, and POS tag. When the percentage does
not improve on five consecutive epochs, training
ends.

This joint modeling has several advantages.
First, the joint model yields a full syntactic anal-
ysis simultaneously without the need for training
separate models or performing jackknife training.
Secondly, joint modeling introduces a bias on the
hidden representations that could allow for bet-
ter generalization in each task (Caruana, 1997).
Indeed, in experiments described in a later sec-
tion, we show empirically that predicting POS tags
and supertags does indeed benefit performance on
parsing (as well as the tagging tasks).

3 Results and Discussion

We follow the protocol of Bangalore et al. (2009),
Chung et al. (2016), Kasai et al. (2017), and Fried-
man et al. (2017); we use the grammar and the
TAG-annotated WSJ Penn Tree Bank extracted by
Chen et al. (2005). Following that work, we use
Sections 01-22 as the training set, Section 00 as
the dev set, and Section 23 as the test set. The
training, dev, and test sets comprise 39832, 1921,

and 2415 sentences, respectively. We implement
all of our models in TensorFlow (Abadi et al.,
2016).3

3.1 Supertaggers

Our BiLSTM POS tagger yielded 97.37% and
97.53% tagging accuracy on the dev and test sets,
performance on par with the state-of-the-art (Ling
et al., 2015; Ma and Hovy, 2016).4 Seen in the
middle section of Table 1 is supertagging per-
formance obtained from various model configu-
rations. “Final concat” in the model name in-
dicates that vectors from forward and backward
pass are concatenated only after the final layer.
Concatenation happens after each layer otherwise.
Numbers immediately after BiLSTM indicate the
numbers of layers. CNN, HW, and POS denote
respectively character-level CNNs, highway con-
nections, and pipeline POS input from our BiL-
STM POS tagger. Firstly, the differences in per-
formance between BiLSTM2 (final concat) and
BiLSTM2 and between BiLSTM2 and BiLSTM2-
CNN suggest an advantage to performing concate-
nation after each layer and adding character-level
CNNs. Adding predicted POS to the input some-
what helps supertagging though the difference is
small. Adding a third BiLSTM layer helps only
if there are highway connections, presumably be-
cause deeper BiLSTMs are more vulnerable to
the vanishing/exploding gradient problem. Our
supertagging model (BiLSTM3-HW-CNN-POS)
that performs best on the dev set achieves an ac-
curacy of 90.81% on the test set, outperforming
the previously best result by more than 1.3%.

3.2 Parsers

Table 3 shows parsing results on the dev set. Ab-
breviations for models are as before with one
addition: Stag denotes pipeline supertag input
from our best supertagger (BiLSTM3-HW-CNN-
POS in Table 1). As with supertagging, we ob-
serve a gain from adding character-level CNNs.
Interestingly, adding predicted POS tags or su-
pertags deteriorates performance with BiLSTM3.
These results suggest that morphological informa-
tion and word information from character-level
CNNs and word embeddings overwhelm the in-

3Our code is available online for easy replication of
our results at https://github.com/jungokasai/
graph_parser.

4We cannot directly compare these results because the
data split is different in the POS tagging literature.
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Supertagger Dev Test
Bangalore et al. (2009) 88.52 86.85
Chung et al. (2016) 87.88 –
Kasai et al. (2017) 89.32 89.44
BiLSTM2 (final concat) 88.96 –
BiLSTM2 89.60 –
BiLSTM2-CNN 89.97 –
BiLSTM2-CNN-POS 90.03 –
BiLSTM2-HW-CNN-POS 90.12 –
BiLSTM3-CNN-POS 90.12 –
BiLSTM3-HW-CNN-POS 90.45 90.81
BiLSTM4-CNN-POS 89.99 –
BiLSTM4-HW-CNN-POS 90.43 –
Joint (Stag) 90.51 –
Joint (POS+Stag) 90.67 91.01

Table 1: Supertagging Results. Joint (Stag) and Joint
(POS+Stag) indicate joint parsing models that perform
supertagging, and POS tagging and supertagging re-
spectively.

POS tagger Dev Test
BiLSTM 97.37 97.53
Joint (POS+Stag) 97.54 97.73

Table 2: POS tagging results.

formation from predicted POS tags and supertags.
Again, highway connections become crucial as the
number of layers increases. We finally evaluate
the parsing model with the best dev performance
(BiLSTM4-HW-CNN) on the test set (Table 3). It
achieves 91.37 LAS points and 92.77 UAS points,
improvements of 1.8 and 1.7 points respectively
from the state-of-the-art.

3.3 Joint Models

We provide joint modeling results for supertag-
ging and parsing in Tables 2 and 3. For these
joint models, we employed the best parsing con-
figuration (4 layers of BiLSTMs, character-level
CNNs, and highway connections), with and with-
out POS tagging added as an additional task. We
can observe that our full joint model that performs

1 2 3 4 5 6 7 8 9 10 11+

80

85

90

95 Our Joint Parser
Shift-reduce Parser

Figure 2: F1 Score with Dependency Length.

Dev Test
Parser UAS LAS UAS LAS
Bangalore et al. (2009) 87.60 85.80 86.66 84.90
Chung et al. (2016) 89.96 87.86 – –
Friedman et al. (2017) 90.36 88.91 90.31 88.96
Kasai et al. (2017) 90.88 89.39 90.97 89.68
BiLSTM3 91.75 90.22 – –
BiLSTM3-CNN 92.27 90.76 – –
BiLSTM3-CNN-POS 92.07 90.53 – –
BiLSTM3-CNN-Stag 92.15 90.65 – –
BiLSTM3-HW-CNN 92.29 90.71 – –
BiLSTM4-CNN 92.11 90.66 – –
BiLSTM4-HW-CNN 92.78 91.26 92.77 91.37
BiLSTM5-CNN 92.34 90.77 – –
BiLSTM5-HW-CNN 92.64 91.11 – –
Joint (Stag) 92.97 91.48 – –
Joint (POS+Stag) 93.22 91.80 93.26 91.89
Joint (Shuffled Stag) 92.23 90.56 – –

Table 3: Parsing results on the dev and test sets.

POS tagging, supertagging, and parsing further
improves performance in all of the three tasks,
yielding the test result of 91.89 LAS and 93.26
UAS points, an improvement of more than 2.2
points each from the state-of-the-art.

Figures 2 and 3 illustrate the relative perfor-
mance of the feed-forward neural network shift-
reduce TAG parser (Kasai et al., 2017) and our
joint graph-based parser with respect to two of
the measures explored by McDonald and Nivre
(2011), namely dependency length and distance
between a dependency and the root of a parse. The
graph-based parser outperforms the shift-reduce
parser across all conditions. Most interesting is
the fact that the graph-based parser shows less of
an effect of dependency length. Since the shift-
reduce parser builds a parse sequentially with one
parsing action depending on those that come be-
fore it, we would expect to find a propogation of
errors made in establishing shorter dependencies
to the establishment of longer dependencies.

Lastly, it is worth noting our joint parsing ar-

1 2 3 4 5 6 7 8 9 10 11+

90

95

Our Joint Parser
Shift-reduce Parser

Figure 3: F1 Score with Distance to Root.
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chitecture has a substantial advantage regarding
parsing speed. Since POS tagging, supertagging,
and parsing decisions are made independently for
each word in a sentence, our system can parallelize
computation once the sentence is encoded in the
BiLSTM layers. Our current implementation pro-
cesses 225 sentences per second on a single Tesla
K80 GPU, an order of magnitude faster than the
MICA system (Bangalore et al., 2009).5

4 Joint Modeling and Network
Representations

Given the improvements we have derived from the
joint models, we analyze the nature of inductive
bias that results from multi-task training and at-
tempt to provide an explanation as to why joint
modeling improves performance.

4.1 Noise vs. Inductive Bias
One might argue that joint modeling improves per-
formance merely because it adds noise to each task
and prevents over-fitting. If the introduction of
noise were the key, we would still expect to gain
an improvement in parsing even if the target su-
pertag were corrupted, say by shuffling the order
of supertags for the entire training data (Caruana,
1997). We performed this experiment, and the
result is shown as “Joint (Shuffled Stag)” in Ta-
ble 3. Parsing performance falls behind the best
non-joint parser by 0.7 LAS points. This suggests
that inducing the parser to create representations
to predict both supertags and a parse tree is ben-
eficial for both tasks, beyond a mere introduction
of noise.

4.2 Syntactic Analogies
We next analyze the induced vector representa-
tions in the output projection matrices of our su-
pertagger and joint parsers using the syntactic
analogy framework (Kasai et al., 2017). Consider,
for instance, the analogy that an elementary tree
representing a clause headed by a transitive verb
(t27) is to a clause headed by an intransitive verb
(t81) as a subject relative clause headed by a tran-
sitive verb (t99) is to a subject relative headed by
an intransitive verb (t109). Following the ideas
in Mikolov et al. (2013) for word analogies, we
can express this structural analogy as t27 - t81 +

5While such computational resources were not available
in 2009, our parser differs from the MICA chart parser in
being able to better exploit parallel computation enabled by
modern GPUs.

t109 = t99 and test it by cosine similarity. Table
4 shows the results of the analogy test with 246
equations involving structural analogies with only
the 300 most frequent supertags in the training
data. While the embeddings (projection matrix)
from the independently trained supertagger do not
appear to reflect the syntax, those obtained from
the joint models yield linguistic structure despite
the fact that the supertag embeddings (projection
matrix) is trained without any a priori syntactic
knowledge about the elementary trees.

The best performance is obtained by the su-
pertag representations obtained from the training
of the transition-based parser Kasai et al. (2017)
and Friedman et al. (2017). For the transition-
based parser, it is beneficial to share statistics
among the input supertags that differ only by a
certain operation or property (Kasai et al., 2017)
during the training phase, yielding the success in
the analogy task. For example, a transitive verb su-
pertag whose object has been filled by substitution
should be treated by the parser in the same way as
an intransitive verb supertag. In our graph-based
parsing setting, we do not have a notion of parse
history or partial derivations that directly connect
intransitive and transitive verbs. However, syn-
tactic analogies still hold to a considerable degree
in the vector representations of supertags induced
by our joint models, with average rank of the cor-
rect answer nearly the same as that obtained in the
transition-based parser.

This analysis bolsters our hypothesis that joint
training biases representation learning toward lin-
guistically sensible structure. The supertagger
is just trained to predict linear sequences of su-
pertags. In this setting, many intervening su-
pertags can occur, for instance, between a subject
noun and its verb, and the supertagger might not
be able to systematically link the presence of the
two in the sequence. In the joint models, on the
other hand, parsing actions will explicitly guide
the network to associate the two supertags.

5 Downstream Tasks

Previous work has applied TAG parsing to the
downstream tasks of syntactically-oriented textual
entailment (Xu et al., 2017) and semantic role la-
beling (Chen and Rambow, 2003). In this work,
we apply our parsers to the textual entailment
and unbounded dependency recovery tasks and
achieve state-of-the-art performance. These re-
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Parser / Supertagger %correct Avg. rank
Transition-based 67.07 2.36
Our Supertagger 0.00 152.46
Our Joint (Stag) 29.27 2.55
Our Joint (POS+Stag) 30.08 2.57

Table 4: Syntactic analogy test results on the 300 most
frequent supertags. Avg. rank is the average position
of the correct choice in the ranked list of the closest
neighbors; the top line indicates the result of using su-
pertag embeddings that are trained jointly with a tran-
sition based parser (Friedman et al., 2017).

sults bolster the significance of the improvements
gained from our joint parser and the utility of TAG
parsing for downstream tasks.

5.1 PETE

Parser Evaluation using Textual Entailments
(PETE) is a shared task from the SemEval-2010
Exercises on Semantic Evaluation (Yuret et al.,
2010). The task was intended to evaluate syn-
tactic parsers across different formalisms, focus-
ing on entailments that could be determined en-
tirely on the basis of the syntactic representa-
tions of the sentences that are involved, with-
out recourse to lexical semantics, logical reason-
ing, or world knowledge. For example, syntactic
knowledge alone tells us that the sentence John,
who loves Mary, saw a squirrel entails John saw
a squirrel and John loves Mary but not, for in-
stance, that John knows Mary or John saw an
animal. Prior work found the best performance
was achieved with parsers using grammatical
frameworks that provided rich linguistic descrip-
tions, including CCG (Rimell and Clark, 2010;
Ng et al., 2010), Minimal Recursion Semantics
(MRS) (Lien, 2014), and TAG (Xu et al., 2017).
Xu et al. (2017) provided a set of linguistically-
motivated transformations to use TAG derivation
trees to solve the PETE task. We follow their pro-
cedures and evaluation for our new parsers.

We present test results from two configurations
in Table 5. One configuration is a pipeline ap-
proach that runs our BiLSTM POS tagger, su-
pertagger, and parser. The other one is a joint ap-
proach that only uses our full joint parser. The
joint method yields 78.1% in accuracy and 76.4%
in F1, improvements of 2.4 and 2.7 points over the
previously reported best results.

System %A %P %R F1
Rimell and Clark (2010) 72.4 79.6 62.8 70.2
Ng et al. (2010) 70.4 68.3 80.1 73.7
Lien (2014) 70.7 88.6 50.0 63.9
Xu et al. (2017) 75.7 88.1 61.5 72.5
Our Pipeline Method 77.1 86.6 66.0 74.9
Our Joint Method 78.1 86.3 68.6 76.4

Table 5: PETE test results. Precision (P), recall (R),
and F1 are calculated for “entails.”

5.2 Unbounded Dependency Recovery

The unbounded dependency corpus (Rimell et al.,
2009) specifically evaluates parsers on unbounded
dependencies, which involve a constituent moved
from its original position, where an unlimited
number of clause boundaries can intervene. The
corpus comprises 7 constructions: object extrac-
tion from a relative clause (ObRC), object extrac-
tion from a reduced relative clause (ObRed), sub-
ject extraction from a relative clause (SbRC), free
relatives (Free), object wh-questions (ObQ), right
node raising (RNR), and subject extraction from
an embedded clause (SbEm).

Because of variations across formalisms in their
representational format for unbounded depden-
dencies, past work has conducted manual evalu-
ation on this corpus (Rimell et al., 2009; Nivre
et al., 2010). We instead conduct an automatic
evaluation using a procedure that converts TAG
parses to structures directly comparable to those
specified in the unbounded dependency corpus. To
this end, we apply two types of structural trans-
formation in addition to those used for the PETE
task:6 1) a more extensive analysis of coordina-
tion, 2) resolution of differences in dependency
representations in cases involving copula verbs
and co-anchors (e.g., verbal particles). See Ap-
pendix A for details. After the transformations, we
simply check if the resulting dependency graphs
contain target labeled arcs given in the dataset.

Table 6 shows the results. Our joint parser
outperforms the other parsers, including the neu-
ral network shift-reduce TAG parser (Kasai et al.,
2017). Our data-driven parsers yield relatively low
performance in the ObQ and RNR constructions.
Performance on ObQ is low, we expect, because
of their rarity in the data on which the parser is

6One might argue that since the unbounded dependency
evaluation is recall-based, we added too many edges by the
transformations. However, it turns out that applying all the
transformations for the corpus even improves performance on
PETE (77.6 F1 score), which considers precision and recall,
verifying that our transformations are reasonable.
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System ObRC ObRed SbRC Free ObQ RNR SbEm Total Avg
C&C (CCG) 59.3 62.6 80.0 72.6 72.6 49.4 22.4 53.6 61.1
Enju (HPSG) 47.3 65.9 82.1 76.2 32.5 47.1 32.9 54.4 54.9
Stanford (PCFG) 22.0 1.1 74.7 64.3 41.2 45.4 10.6 38.1 37.0
MST (Stanford Dependencies) 34.1 47.3 78.9 65.5 41.2 45.4 37.6 49.7 50.0
MALT (Stanford Dependencies) 40.7 50.5 84.2 70.2 31.2 39.7 23.5 48.0 48.5
NN Shift-Reduce TAG Parser 60.4 75.8 68.4 79.8 53.8 45.4 44.7 59.4 61.2
Our Joint Method 72.5 78.0 81.1 85.7 56.3 47.1 49.4 64.9 67.0

Table 6: Parser accuracy on the unbounded dependency corpus. The results of the first five parsers are taken
from Rimell et al. (2009) and Nivre et al. (2010). The Total and Avg columns indicate the percentage of correctly
recovered dependencies out of all dependencies and the average of accuracy on the 7 constructions.

trained.7 For RNR, rarity may be an issue as well
as the limits of the TAG analysis of this construc-
tion. Nonetheless, we see that the rich structural
representations that a TAG parser provides enables
substantial improvements in the extraction of un-
bounded dependencies. In the future, we hope
to evaluate state-of-the-art Stanford dependency
parsers automatically.

6 Related Work

The two major classes of data-driven methods for
dependency parsing are often called transition-
based and graph-based parsing (Kübler et al.,
2009). Transition-based parsers (e.g. MALT
(Nivre, 2003)) learn to predict the next transition
given the input and the parse history. Graph-based
parsers (e.g. MST (McDonald et al., 2005)) are
trained to directly assign scores to dependency
graphs.

Empirical studies have shown that a transition-
based parser and a graph-based parser yield sim-
ilar overall performance across languages (Mc-
Donald and Nivre, 2011), but the two strands of
data-driven parsing methods manifest the funda-
mental trade-off of parsing algorithms. The for-
mer prefers rich feature representations with pars-
ing history over global training and exhaustive
search, and the latter allows for global training and
inference at the expense of limited feature repre-
sentations (Kübler et al., 2009).

Recent neural network models for transition-
based and graph-based parsing can be viewed
as remedies for the aforementioned limitations.
Andor et al. (2016) developed a transition-based
parser using feed-forward neural networks that
performs global training approximated by beam
search. The globally normalized objective ad-
dresses the label bias problem and makes global

7The substantially better performance of the C&C parser
is in fact the result of additions that were made to the training
data.

training effective in the transition-based parsing
setting. Kiperwasser and Goldberg (2016) incor-
porated a dynamic oracle (Goldberg and Nivre,
2013) in a BiLSTM transition-based parser that
remedies global error propagation. Kiperwasser
and Goldberg (2016) and Dozat and Manning
(2017) proposed graph-based parsers that have ac-
cess to rich feature representations obtained from
BiLSTMs.

Previous work integrated CCG supertagging
and parsing using belief propagation and dual de-
composition approaches (Auli and Lopez, 2011).
Nguyen et al. (2017) incorporated a graph-based
dependency parser (Kiperwasser and Goldberg,
2016) with POS tagging. Our work followed these
lines of effort and improved TAG parsing perfor-
mance.

7 Conclusion and Future Work

In this work, we presented a state-of-the-art TAG
supertagger, a parser, and a joint parser that per-
forms POS tagging, supertagging, and parsing.
The joint parser has the benefit of giving a full syn-
tactic analysis of a sentence simultaneously. Fur-
thermore, the joint parser achieved the best per-
formance, an improvement of over 2.2 LAS points
from the previous state-of-the-art. We have also
seen that the joint parser yields state-of-the-art in
textual entailment and unbounded dependency re-
covery tasks, and raised the possibility that TAG
can provide useful structural analysis of sentences
for other NLP tasks. We will explore more appli-
cations of our TAG parsers in future work.
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A Transformations for Unbounded
Dependency Recovery Corpus

For automatic evaluation on the unbounded de-
pendency recovery corpus (UDR, Rimell et al.
(2009)), we run simple conversion of dependency
labels in UDR to those in our TAG grammar (See
Table 7) with a couple of exceptions.

• Change arcs from verbs to wh-adverbs as in
“where is the city located?” to adjunction.

• Reflect causative-inchoative alternation in
the subject embedded construction. Con-
cretely, change the role of “door” in “hold the
door shut” from the subject to the object of
“shut.”

We then transform TAG dependency trees. Fi-
nally, we simply check if the resulting dependency
graphs contain target labeled arcs given in the
dataset.

Below is a full description of transformations.
This set of structural transformations is applied in
the order in which we will present it, so that the
output of previous transformations can feed sub-
sequent ones. In the following, we denote an arc
pointing from node B to node A with label C as
(A, B, C) where A and B are called the child (de-
pendent) and the parent (head) in the relation.

A.1 Transformations from PETE
We apply three types of transformation from Xu
et al. (2017) to interpret the TAG parses.

Relative Clauses When an elementary tree of a
relative clause adjoins into a noun, we add a re-
verse arc with the label reflecting the type of the
relative clause elementary tree. For a subject rela-
tive, we add a 0-labeled arc, for an object relative,
we add a 1-labeled arc, and so forth.

UDR Labels TAG Labels
nsubj, cop 0
dobj, pobj, obj2, nsubjpass 1
others (advmod etc) ADJ

Table 7: UD to TAG label conversion.

Sentential Complements Sentential comple-
mentation in TAG derivations can be analyzed via
either adjoining the higher clause into the em-
bedded clause (necessarily so in cases of long-
distance extraction from the embedded clause) or
substituting the embedded clause in the higher
clause. In order to normalize this divergence, for
an adjunction arc involving a predicative auxiliary
elementary tree (supertag), we add a reverse arc
involving the 1 relation (sentential complements).

A.2 Coordination
We roughly follow the method presented in Xu
et al. (2017) with extensions. Under the TAG
analysis, VP coordination involves a VP-recursive
auxiliary tree headed by the coordinator that in-
cludes a VP substitution node (for the second con-
junct) with label 1. In order to allow the first
clauses subject argument (as well as modal verbs
and negations) to be shared by the second verb, we
add the relevant relations to the second verb. In ad-
dition, we analyze sentential coordination cases.
Sentence coordination in our TAG grammar usu-
ally happens between two complete sentences and
no modifiers or arguments are shared, and there-
fore it can be analyzed via substituting a sentence
int the coordinator with label 1. However, when
sentential coordination happens between two rela-
tive clause modifiers, our TAG grammar analyzes
the second clause as a complete sentence, meaning
that we need to recover the extracted argument by
consulting the property of the first clause. Further-
more, the deep syntactic role of the extracted argu-
ment can be different in the two relative clauses.
For instance, in the sentence, “... the same stump
which had impaled the car of many a guest in the
past thirty years and which he refused to have re-
moved,” we need to recover an arc from removed
to stump with label 1 whereas the arc from im-
paled to stump has label 0. To resolve this issue,
when there is coordination of two relative clause
modifiers, we add an edge from the head of the
second clause to the modified noun with the same
label as the label that under which the relative pro-
noun is attached to the head.

A.3 Resolving Differences in Dependency
Representations

Small Clauses The UDR corpus has inconsis-
tency with regards to small clauses. UDR gives
an analysis that a small clause contains a sub-
ject and a complement as in (nsubj, guy, liar) in
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“the guy who I call a liar.” in the subject em-
bedded constructions. However, in the object
question and object free relative constructions, a
small clause is analyzed as two arguments of the
verb. For instance, UDR specifies (what, adopted,
dobj) in “we adopted what I would term pseudo-
capitalism.” To solve this problem we add an arc
from the head of the matrix clause to the subject
in a small clause with label 1.

Co-anchors In our TAG grammar, Co-anchor
attachment represents the substitution into a node
that is construed as a co-head of an elementary
tree. For instance, “for” is deemed as a co-anchor
to “hope” in the sentence “that is exactly what I’m
hoping for (Figure 4). In this case, UDR would
pick the relation (what, hope, pobj). Therefore,
when there is a co-anchor to a head tree, we add
all arcs that involve the head tree to the co-anchor
tree.

Wh-determiners and Wh-adverbs Our TAG
grammar analyzes a wh-determiner via adjoining
the noun into the wh-determiner (Figure 5). This is
also true for cases where a wh-adverb is followed
by an adjective and a noun as in how many bat-
tles did she win? In contrast, UDR corpus gives
an analysis that the noun is the head of the con-
stituent. In order to resolve this discrepancy, when
a word adjoins into a wh-word,8 we pick all arcs
with the wh-word as the child and add the arcs ob-
tained from such arcs by replacing the wh-word
child by the word adjoining into the wh-word.

Copulas A copula is usually treated as a depen-
dent to the predicate both in our TAG grammar
(adjunction) and UDR. However, we found two
situations where they differ from each other. First,
when wh-extraction happens on the complement,
as in “obviously there has been no agreement on
what American conservatism is, or rather, what
it should be,” the TAG grammar analyzes it via
substituting the wh-word (“what”) into the copula
(“is”). To reconcile this disagreement between the
TAG grammar and UDR, when substitution hap-
pens into a be verb, we add the substitution into

8We considered imposing a more strict condition that the
word adjoining into the wh-word is a noun, but we found
cases that this method fails to cover; for example, UDR gives
(dobj, get, much) for a sentence “opinion is mixed on how
much of a boost the overall stock market would get even if
dividend growth continues at double-digit levels.”

Figure 4: Co-anchor case from a sentence “that is ex-
actly what I’m hoping for. The UDR gives the red arc
(what, for, pobj). The blue arc (what, for, 1) is obtained
from (what, hope, 1).

Figure 5: Wh-determiner case from a sentence What
songs did he sing? The UDR gives the red arc (songs,
sing, dobj). The blue arc (song, sing, 1) is obtained
from (what, sing, 1) and (songs, what, ADJ).
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the copula.9 Second, UDR treats non-be copu-
las differently than be verbs. An example is the
UDR relation (those, stayed, nsubj) “in the other
hemisphere it is growing colder and nymphs, those
who stayed alive through the summer, are being
brought into nests for quickening and more grow-
ing” where our parser yields (those, alive, 0). For
this reason, when a lemma of a verb is a non-be
copula,10 we add arcs involving the word to the
copula adjoining into the copula.

PP attachment with multiple noun candidates
We observed that PP attachment with multiple
noun candidates is often at stake in UDR.11 For in-
stance, UDR provides (part, had, nsubj) and (sev-
eral, tried, nsubj) for the sentences “... there is
no part of the earth that has not had them” and
“there were several on the Council who tried to
live like Christians” while the TAG parser out-
puts (earth, had, nsubj) and (Council, tried, nsubj)
respectively. While we count these cases as
“wrong” since they manifest certain disambigua-
tion (though not purely unbounded dependency re-
covery), we ignore superficial (conventional) dif-
ferences in head selection. In our TAG grammar “a
lot of people” would be headed by “lot” whereas
UDR would recognize “people” as the head.
Hence, when “lot/lots/kind/kinds/none of” occurs,
we add all arcs with “lot/lots/kind/kinds/none” to
the head of the phrase that is the object of “of.”

Modals In the UDR corpus, a modal depends
on an auxiliary verb following the modal, if there
is one. For example, “Rosie reinvented this man,
who may or may not have known about his child”
is given the relation (may, have, aux). In the
TAG grammar, both “may” and “have” adjoin into
“known.” Therefore, when the head of a modal has
another child with adjunction, we add an arc from
the child to the modal.

Existential there UDR gives the “cop” relation
between an existential there and the be verb. For
example, it gives (be, legislation, cop) in “... on
how much social legislation there should be.” On
the other hand, our TAG grammar analyzes that

9We use the nltk lemmatizer (Bird et al., 2009) to identify
be verbs.

10We chose “ stay,” “become,” “seem,” and “remain.”
11This is indeed one of the problems with UDR. Perfor-

mance on UDR is not purely reflective of unbounded depen-
dency recovery.

“there” is attached to “be” with label 0.12 To re-
solve this issue, for arcs that point into an existen-
tial there with label 0, we add a reverse edge with
label 0.

Determiner modifying a sentence Finally,
when a determiner followed by an adjective modi-
fies a sentence via adjunction in our TAG as in “the
more highly placed they are – that is, the more they
know – the more concerned they have become,”
we add an edge from the verb to the adjective with
label 1.

12Usually, “there” is attached to the noun, not the be verb,
but in this case, extraction is happening on the noun, so the be
verb becomes the head. See the discussion on copulas above.
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Abstract

Recurrent neural networks (RNNs) have
achieved impressive results in a variety of lin-
guistic processing tasks, suggesting that they
can induce non-trivial properties of language.
We investigate here to what extent RNNs learn
to track abstract hierarchical syntactic struc-
ture. We test whether RNNs trained with a
generic language modeling objective in four
languages (Italian, English, Hebrew, Russian)
can predict long-distance number agreement
in various constructions. We include in our
evaluation nonsensical sentences where RNNs
cannot rely on semantic or lexical cues (“The
colorless green ideasideasideasideasideasideasideasideasideasideasideasideasideasideasideasideasideas I ate with the chair
sleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleep furiously”), and, for Italian, we com-
pare model performance to human intuitions.
Our language-model-trained RNNs make re-
liable predictions about long-distance agree-
ment, and do not lag much behind human
performance. We thus bring support to the
hypothesis that RNNs are not just shallow-
pattern extractors, but they also acquire deeper
grammatical competence.

1 Introduction

Recurrent neural networks (RNNs; Elman, 1990)
are general sequence processing devices that do
not explicitly encode the hierarchical structure
that is thought to be essential to natural language
(Everaert et al., 2015). Early work using ar-
tificial languages showed that they may never-
theless be able to approximate context-free lan-
guages (Elman, 1991). More recently, RNNs have
∗The work was conducted during the internship at Face-

book AI Research, Paris.

achieved impressive results in large-scale tasks
such as language modeling for speech recognition
and machine translation, and are by now standard
tools for sequential natural language tasks (e.g.,
Mikolov et al., 2010; Graves, 2012; Wu et al.,
2016). This suggests that RNNs may learn to track
grammatical structure even when trained on nois-
ier natural data. The conjecture is supported by the
success of RNNs as feature extractors for syntac-
tic parsing (e.g., Cross and Huang, 2016; Kiper-
wasser and Goldberg, 2016; Zhang et al., 2017).

Linzen et al. (2016) directly evaluated the ex-
tent to which RNNs can approximate hierarchi-
cal structure in corpus-extracted natural language
data. They tested whether RNNs can learn to
predict English subject-verb agreement, a task
thought to require hierarchical structure in the gen-
eral case (“the girlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirl the boys like. . . isisisisisisisisisisisisisisisisis or areareareareareareareareareareareareareareareareare?”).
Their experiments confirmed that RNNs can, in
principle, handle such constructions. However, in
their study RNNs could only succeed when pro-
vided with explicit supervision on the target task.
Linzen and colleagues argued that the unsuper-
vised language modeling objective is not sufficient
for RNNs to induce the syntactic knowledge nec-
essary to cope with long-distance agreement.

The current paper reevaluates these conclu-
sions. We strengthen the evaluation paradigm of
Linzen and colleagues in several ways. Most im-
portantly, their analysis did not rule out the pos-
sibility that RNNs might be relying on seman-
tic or collocational/frequency-based information,
rather than purely on syntactic structure. In “dogsdogsdogsdogsdogsdogsdogsdogsdogsdogsdogsdogsdogsdogsdogsdogsdogs
in the neighbourhood often barkbarkbarkbarkbarkbarkbarkbarkbarkbarkbarkbarkbarkbarkbarkbarkbark”, an RNN might
get the right agreement by encoding information
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about what typically barks (dogs, not neighbour-
hoods), without relying on more abstract structural
cues. In a follow-up study to Linzen and col-
leagues’, Bernardy and Lappin (2017) observed
that RNNs are better at long-distance agreement
when they construct rich lexical representations of
words, which suggests effects of this sort might
indeed be at play.

We introduce a method to probe the syntactic
abilities of RNNs that abstracts away from po-
tential lexical, semantic and frequency-based con-
founds. Inspired by Chomsky’s (1957) insight that
“grammaticalness cannot be identified with mean-
ingfulness” (p. 106), we test long-distance agree-
ment both in standard corpus-extracted examples
and in comparable nonce sentences that are gram-
matical but completely meaningless, e.g., (para-
phrasing Chomsky): “The colorless green ideasideasideasideasideasideasideasideasideasideasideasideasideasideasideasideasideas I
ate with the chair sleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleepsleep furiously”.

We extend the previous work in three addi-
tional ways. First, alongside English, which has
few morphological cues to agreement, we examine
Italian, Hebrew and Russian, which have richer
morphological systems. Second, we go beyond
subject-verb agreement and develop an automated
method to harvest a variety of long-distance num-
ber agreement constructions from treebanks. Fi-
nally, for Italian, we collect human judgments for
the tested sentences, providing an important com-
parison point for RNN performance.1

We focus on the more interesting unsupervised
setup, where RNNs are trained to perform generic,
large-scale language modeling (LM): they are not
given explicit evidence, at training time, that they
must focus on long-distance agreement, but they
are rather required to track a multitude of cues that
might help with word prediction in general.

Our results are encouraging. RNNs trained
with a LM objective solve the long-distance agree-
ment problem well, even on nonce sentences. The
pattern is consistent across languages, and, cru-
cially, not far from human performance in Ital-
ian. Moreover, RNN performance on language
modeling (measured in terms of perplexity) is a
good predictor of long-distance agreement accu-
racy. This suggests that the ability to capture
structural generalizations is an important aspect of
what makes the best RNN architectures so good

1The code to reproduce our experiments and the data
used for training and evaluation, including the human judg-
ments in Italian, can be found at https://github.com/
facebookresearch/colorlessgreenRNNs.

at language modeling. Since our positive results
contradict, to some extent, those of Linzen et al.
(2016), we also replicate their relevant experi-
ment using our best RNN (an LSTM). We outper-
form their models, suggesting that a careful archi-
tecture/hyperparameter search is crucial to obtain
RNNs that are not only good at language model-
ing, but able to extract syntactic generalizations.

2 Constructing a long-distance
agreement benchmark

Overview. We construct our number agreement
test sets as follows. Original sentences are auto-
matically extracted from a dependency treebank.
They are then converted into nonce sentences by
substituting all content words with random words
with the same morphology, resulting in grammat-
ical but nonsensical sequences. An LM is evalu-
ated on its predictions for the target (second) word
in the dependency, in both the original and nonce
sentences.

Long-distance agreement constructions.
Agreement relations, such as subject-verb agree-
ment in English, are an ideal test bed for the
syntactic abilities of LMs, because the form of
the second item (the target) is predictable from
the first item (the cue). Crucially, the cue and
the target are linked by a structural relation,
where linear order in the word sequence does
not matter (Everaert et al., 2015). Consider the
following subject-verb agreement examples: “the
girlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirl thinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinks. . . ”, “the girlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirl [you met] thinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinks. . . ”, “the
girlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirl [you met yesterday] thinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinks. . . ”, “the girlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirl [you
met yesterday through her friends] thinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinks. . . ”.
In all these cases, the number of the main verb
“thinks” is determined by its subject (“girl”), and
this relation depends on the syntactic structure of
the sentence, not on the linear sequence of words.
As the last sentence shows, the word directly
preceding the verb can even be a noun with the
opposite number (“friends”), but this does not
influence the structurally-determined form of the
verb.

When the cue and the target are adjacent (“the
girlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirl thinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinksthinks. . . ”), an LM can predict the target with-
out access to syntactic structure: it can simply
extract the relevant morphosyntactic features of
words (e.g., number) and record the co-occurrence
frequencies of patterns such as NPlur VPlur

(Mikolov et al., 2013). Thus, we focus here on
long-distance agreement, where an arbitrary num-
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(a)

NOUN VERB ADV VERB

the girl the boys like often goes

cue context target

acl

nsubj

advmod

(b)

ADJ NOUN NOUN

самая глубокая на тот момент отметка
most deep at that moment sign

cue context target

nmod

amod

(c)

VERB NOUN CCONJ VERB

prometteva interessi del 50% al mese sui soldi versati nella sua piramide e continuava

promised interests of 50% by month on-the money put in his pyramid and continued

cue context target

obj cc

conj

Figure 1: Example agreement constructions defined by a dependency and the separating context, in (a) En-
glish, (b) Russian and (c) Italian.

ber of words can occur between the elements of
the agreement relation. We limit ourselves to num-
ber agreement (plural or singular), as it is the only
overt agreement feature shared by all of the lan-
guages we study.

Identifying candidate constructions. We
started by collecting pairs of part-of-speech
(POS) tags connected by a dependency arc.
Independently of which element is the head of the
relation, we refer to the first item as the cue and
to the second as the target. We additionally refer
to the POS sequence characterizing the entire
pattern as a construction, and to the elements in
the middle as context.

For each candidate construction, we collected
all of the contexts in the corpus that intervene be-
tween the cue and the target (we define contexts as
the sequence of POS tags of the top-level nodes
in the dependency subtrees). For example, for
the English subject-verb agreement construction
shown in Fig. 1a, the context is defined by VERB

(head of the relative clause) and ADV (adverbial
modifier of the target verb), which together dom-
inate the sequence “the boys like often”. For the
Russian adjective-noun agreement construction in
Fig. 1b, the context is NOUN, because in the de-
pendency grammar we use the noun “moment” is
the head of the prepositional phrase “at that mo-
ment”, which modifies the adjective “deep”. The
candidate agreement pair and the context form a
construction, which is characterized by a sequence
of POS tags, e.g., NOUN VERB ADV VERB or
VERB NOUN CCONJ VERB (Fig. 1c).

Our constructions do not necessarily correspond
to standard syntactic structures. The English
subject-verb agreement construction NOUN VERB

VERB, for example, matches both object and sub-
ject relative clause contexts, e.g., “girlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirlgirl the boys
like isisisisisisisisisisisisisisisisis” and “girlsgirlsgirlsgirlsgirlsgirlsgirlsgirlsgirlsgirlsgirlsgirlsgirlsgirlsgirlsgirlsgirls who stayed at home werewerewerewerewerewerewerewerewerewerewerewerewerewerewerewerewere”.
Conversely, standard syntactic structures might be
split between different constructions, e.g., rela-
tive clause contexts occur in both NOUN VERB

VERB and NOUN VERB ADV VERB constructions
(the latter is illustrated by the English example in
Fig. 1a).

Construction contexts can contain a variable
numbers of words. Since we are interested in chal-
lenging cases, we only considered cases in which
at least three tokens intervened between the cue
and the target.

Excluding non-agreement constructions. In
the next step, we excluded constructions in which
the candidate cue and target did not agree in num-
ber in all of the instances of the construction in
the treebank (if both the cue and the target were
morphologically annotated for number). This step
retained English subject-verb constructions, for
example, but excluded verb-object constructions,
since any form of a verb can appear both with sin-
gular and plural objects. To focus on robust agree-
ment patterns, we only kept constructions with
at least 10 instances of both plural and singular
agreement.

When applied to the treebanks we used (see
Section 3), this step resulted in between two (En-
glish) and 21 (Russian) constructions per lan-
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guage. English has the poorest morphology and
consequently the lowest number of patterns with
identifiable morphological agreement. Only the
VP-conjunction construction (Fig. 1c) was identi-
fied in all four languages. Subject-verb agreement
constructions were extracted in all languages but
Russian; Russian has relatively flexible word order
and a noun dependent preceding a head verb is not
necessarily its subject. The full list of extracted
constructions in English and Italian is given in Ta-
bles 2 and 3, respectively. For the other languages,
see the Supplementary Material (SM).2

Original sentence test set. Our “original” sen-
tence test set included all sentences from each con-
struction where all words from the cue and up to
and including the target occurred in the LM vo-
cabulary (Section 3), and where the singular/plural
counterpart of the target occurred in the treebank
and in the language model vocabulary (this is re-
quired by the evaluation procedure outlined be-
low). The total counts of constructions and orig-
inal sentences in our test sets are provided in Ta-
ble 1. The average number of context words sepa-
rating the cue and the target ranged from 3.6 (He-
brew) to 4.5 (Italian).

Generating nonce sentences. We generated
nine nonce variants of each original sentence as
follows. Each content word (noun, verb, adjec-
tive, proper noun, numeral, adverb) in the sentence
was substituted by another random content word
from the treebank with matching POS and mor-
phological features. To avoid forms that are am-
biguous between several POS, which are particu-
larly frequent in English (e.g., plural noun and sin-
gular verb forms), we excluded the forms that ap-
peared with a different POS more than 10% of the
time in the treebank. Function words (determin-
ers, pronouns, adpositions, particles) and punctu-
ation were left intact. For example, we generated
the nonce (1b) from the original sentence (1a):

(1) a. It presentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresentspresents the case for marriage
equality and statesstatesstatesstatesstatesstatesstatesstatesstatesstatesstatesstatesstatesstatesstatesstatesstates. . .

b. It staysstaysstaysstaysstaysstaysstaysstaysstaysstaysstaysstaysstaysstaysstaysstaysstays the shuttle for honesty insur-
ance and findsfindsfindsfindsfindsfindsfindsfindsfindsfindsfindsfindsfindsfindsfindsfindsfinds. . .

Note that our generation procedure is based on
morphological features and does not guarantee
that argument structure constraints are respected

2The SM is available as a standalone file on the project’s
public repository.

(e.g., “it stays the shuttle” in (1b)).

Evaluation procedure. For each sentence in our
test set, we retrieved from our treebank the form
that is identical to the agreement target in all mor-
phological features except number (e.g., “finds”
instead of “find” in (1b)). Given a sentence with
prefix p up to and excluding the target, we then
compute the probabilities P (t1|p) and P (t2|p) for
the singular and plural variants of the target, t1
and t2, based on the language model. Follow-
ing Linzen et al. (2016), we say that the model
identified the correct target if it assigned a higher
probability to the form with the correct number.
In (1b), for example, the model should assign a
higher probability to “finds” than “find”.3

3 Experimental setup

Treebanks. We extracted our test sets from the
Italian, English, Hebrew and Russian Universal
Dependency treebanks (UD, v2.0, Nivre et al.,
2016). The English and Hebrew treebanks were
post-processed to obtain a richer morphological
annotation at the word level (see SM for details).

LM training data. Training data for Italian, En-
glish and Russian were extracted from the respec-
tive Wikipedias. We downloaded recent dumps,
extracted the raw text from them using WikiEx-
tractor4 and tokenized it with TreeTagger (Schmid,
1995). We also used the TreeTagger lemma anno-
tation to filter out sentences with more than 5%
unknown words. For Hebrew, we used the prepro-
cessed Wikipedia corpus made available by Yoav
Goldberg.5 We extracted 90M token subsets for
each language, shuffled them by sentence and split
them into training and validation sets (8-to-1 pro-
portion). For LM training, we included the 50K
most frequent words in each corpus in the vocab-
ulary, replacing the other tokens with the UNK
symbol. The validation set perplexity values we
report below exclude unknown tokens.

RNN language models. We experimented with
simple RNNs (sRNNs, Elman, 1990), and their
most successful variant, long-short term mem-
ory models (LSTMs, Hochreiter and Schmidhu-

3Obviously, in the nonce cases, the LMs never assigned
the highest overall probability to either of the two candidates.
Qualitatively, in such cases LMs assigned the largest absolute
probabilities to plausible frequent words.

4https://github.com/attardi/
wikiextractor

5http://u.cs.biu.ac.il/˜yogo/hebwiki/
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ber, 1997). We use the PyTorch RNN implemen-
tation.6 We trained the models with two hidden
layer dimensionalities (650 and 200 units), and a
range of batch sizes, learning rates and dropout
rates. See SM for details on hyperparameter tun-
ing. In general, a larger hidden layer size was the
best predictor of lower perplexity. Given that our
LSTMs outperformed our sRNNs, our discussion
of the results will focus on the former; we will use
the terms LSTM and RNN interchangeably.7

Baselines. We consider three baselines: first, a
unigram baseline, which picks the most frequent
form in the training corpus out of the two candi-
date target forms (singular or plural); second, a
5-gram model with Kneser-Ney smoothing (KN,
Kneser and Ney, 1995) trained using the IRSTLM
package (Federico et al., 2008) and queried us-
ing KenLM (Heafield, 2011); and third, a 5-gram
LSTM, which only had access to windows of five
tokens (Chelba et al., 2017). Compared to KN,
the 5-gram LSTM can generalize to unseen n-
grams thanks to its embedding layer and recurrent
connections. However, it cannot discover long-
distance dependency patterns that span more than
five words. See SM for details on the hyperparam-
eters of this baseline.

Human experiment in Italian. We presented
the full Italian test set (119 original and 1071
nonce sentences) to human subjects through the
Amazon Mechanical Turk interface.8 We picked
Italian because, being morphologically richer, it
features more varied long-distance constructions
than English. Subjects were requested to be native
Italian speakers. They were presented with a sen-
tence up to and excluding the target. The singular
and plural forms of the target were presented be-
low the sentence (in random order), and subjects
were asked to select the more plausible form.

To prevent long-distance agreement patterns
from being too salient, we mixed the test set with
the same number of filler sentences. We started
from original fillers, which were random treebank-
extracted sentences up to a content word in singu-
lar or plural form. We then generated nonce fillers
from the original ones using the procedure out-
lined in Section 2. A control subset of 688 fillers
was manually selected by a linguistically-trained

6https://github.com/pytorch/examples/
tree/master/word_language_model

7Detailed results for sRNNs can be found in the SM.
8https://www.mturk.com/

IT EN HE RU

#constructions 8 2 18 21
#original 119 41 373 442

Unigram
Original 54.6 65.9 67.8 60.2
Nonce 54.1 42.5 63.1 54.0

5-gram KN
Original 63.9 63.4 72.1 73.5
Nonce 52.8 43.4 61.7 56.8

Perplexity 147.8 168.9 122.0 166.6

5-gram LSTM
Original 81.8 70.2 90.9 91.5

±3.2 ±5.8 ±1.2 ±0.4

Nonce 78.0 58.2 77.5 85.7
±1.3 ±2.1 ±0.8 ±0.7

Perplexity 62.6 71.6 59.9 61.1
±0.2 ±0.3 ±0.2 ±0.4

LSTM
Original 92.1 81.0 94.7 96.1

±1.6 ±2.0 ±0.4 ±0.7

Nonce 85.5 74.1 80.8 88.8
±0.7 ±1.6 ±0.8 ±0.9

Perplexity 45.2 52.1 42.5 48.9
±0.3 ±0.3 ±0.2 ±0.6

Table 1: Experimental results for all languages av-
eraged across the five best models in terms of per-
plexity on the validation set. Original/Nonce rows
report percentage accuracy, and the numbers in
small print represent standard deviation within the
five best models.

Italian native speaker as unambiguous cases. To
make sure we were only using data from native (or
at least highly proficient) Italian speakers, we fil-
tered out the responses of subjects who chose the
wrong target in more than 20% of the fillers.

We collected on average 9.5 judgments for each
item (minimum 5 judgments). To account for the
variable number of judgments across sentences,
accuracy rates were first calculated within each
sentence and then averaged across sentences.

4 Results

The overall results are reported in Table 1. We re-
port results averaged across the five models with
the lowest validation perplexity, as well as stan-
dard deviations across these models. In summary,

1199



N V V V NP conj V

Italian Original 93.3±4.1 83.3±10.4
Nonce 92.5±2.1 78.5±1.7

English Original 89.6±3.6 67.5±5.2
Nonce 68.7±0.9 82.5±4.8

Hebrew Original 86.7±9.3 83.3±5.9
Nonce 65.7±4.1 83.1±2.8

Russian Original - 95.2±1.9
Nonce - 86.7±1.6

Table 2: LSTM accuracy in the constructions
N V V (subject-verb agreement with an interven-
ing embedded clause) and V NP conj V (agree-
ment between conjoined verbs separated by a
complement of the first verb).

the LSTM clearly outperformed the other LMs.
Rather surprisingly, its performance on nonce sen-
tences was only moderately lower than on original
ones; in Italian this gap was only 6.6%.

The KN LM performed poorly; its accuracy on
nonce sentences was comparable to that of the un-
igram baseline. This confirms that the number of
the target in nonce sentences cannot be captured
by shallow n-gram patterns. The 5-gram LSTM
model greatly improved over the KN baseline; its
accuracy dropped only modestly between the orig-
inal and nonce sentences, demonstrating its syn-
tactic generalization ability. Still, the results are
substantially below those of the LSTM with un-
limited history. This confirms that our test set
contains hard long-distance agreement dependen-
cies, and, more importantly, that the more general
LSTM model can exploit broader contexts to learn
about and track long-distance syntactic relations.

The increase in accuracy scores across the three
LMs (KN, 5-gram LSTM and unbounded-context
LSTM) correlates well with their validation per-
plexities in the language modeling task. We also
found a strong correlation between agreement ac-
curacy and validation perplexity across all the
LSTM variants we explored in the hyperparame-
ter search (68 models per language), with Pearson
correlation coefficients ranging from r = −0.55
in Hebrew to r = −0.78 in English (p < 0.001 in
all languages). This suggests that acquiring ab-
stract syntactic competence is a natural compo-
nent of the skills that improve the generic language
modeling performance of RNNs.

Differences across languages. English was by
far the hardest language. We conjecture that this is
due to its poorer morphology and higher POS am-
biguity, which might not encourage a generic lan-
guage model to track abstract syntactic configura-
tions. There is an alternative hypothesis, however.
We only extracted two constructions for English,
both of which can be argued to be linguistically
complex: subject-verb agreement with an inter-
vening embedded clause, and agreement between
two conjoined verbs with a nominal complement
intervening between the verbs. Yet the results on
these two constructions, comparable across lan-
guages (with the exception of the subject-verb
construction in Russian, which was not extracted),
confirm that English is particularly hard (Table 2).
A qualitative inspection suggests that the low ac-
curacy in the verb conjunction case (67.5%) is due
to ambiguous sentences such as “if you havehavehavehavehavehavehavehavehavehavehavehavehavehavehavehavehave any
questions or needneedneedneedneedneedneedneedneedneedneedneedneedneedneedneedneed/needsneedsneedsneedsneedsneedsneedsneedsneedsneedsneedsneedsneedsneedsneedsneedsneeds”, where the target can be
re-interpreted as a noun that is acceptable in the
relevant context.9

In languages such as Italian and Russian, which
have richer morphology and less ambiguity at
the part-of-speech level than English, the LSTMs
show much better accuracy and a smaller gap be-
tween original and nonce sentences. These re-
sults are in line with human experimental studies
that found that richer morphology correlates with
fewer agreement attraction errors (Lorimor et al.,
2008). The pattern of accuracy rates in general,
and the accuracy for the shared V NP conj V con-
struction in particular, are consistent with the find-
ing that Russian is less prone to human attraction
errors than Italian, which, in turn, shows less er-
rors than English.

The largest drop in accuracy between original
and nonce sentences occurred in Hebrew. A quali-
tative analysis of the data in this language suggests
that this might be due to the numerical prevalence
of a few constructions that can have multiple alter-
native readings, some of which can license the in-
correct number. We leave a more systematic anal-
ysis of this finding for future research.

Human results. To put our results in context
and provide a reasonable upper bound on the LM
performance, in particular for nonce sentences, we
next compare model performance to that of human

9The nonce condition has higher accuracy because our
substitution procedure in English tends to reduce POS am-
biguity.
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Construction #original Original Nonce
Subjects LSTM Subjects LSTM

DET [AdjP] NOUN 14 98.7 98.6±3.2 98.1 91.7±0.4
NOUN [RelC / PartP] clitic VERB 6 93.1 100±0.0 95.4 97.8±0.8
NOUN [RelC / PartP ] VERB 27 97.0 93.3±4.1 92.3 92.5±2.1
ADJ [conjoined ADJs] ADJ 13 98.5 100±0.0 98.0 98.1±1.1
NOUN [AdjP] relpron VERB 10 95.9 98.0±4.5 89.5 84.0±3.3
NOUN [PP] ADVERB ADJ 13 91.5 98.5±3.4 79.4 76.9±1.4
NOUN [PP] VERB (participial) 18 87.1 77.8±3.9 73.4 71.1±3.3
VERB [NP] CONJ VERB 18 94.0 83.3±10.4 86.8 78.5±1.7

(Micro) average 94.5 92.1±1.6 88.4 85.5±0.7

Table 3: Subject and LSTM accuracy on the Italian test set, by construction and averaged.

subjects in Italian.
Table 3 reports the accuracy of the LSTMs and

the human subjects, grouped by construction.10

There was a consistent gap in human accuracy be-
tween original and nonce sentences (6.1% on av-
erage). The gap in accuracy between the human
subjects and the model was quite small, and was
similar for original and nonce sentences (2.4% and
2.9%, respectively).

In some of the harder constructions, particularly
subject-verb agreement with an embedded clause,
the accuracy of the LSTMs on nonce sentences
was comparable to human accuracy (92.5±2.1
vs. 92.3%). To test whether the human subjects
and the models struggle with the same sentences,
we computed for each sentence (1) the number of
times the human subjects selected the correct form
of the target minus the number of times they se-
lected the incorrect form, and (2) the difference in
model log probability between the correct and in-
correct form. The Spearman correlation between
these quantities was significant, for both original
(p < 0.05) and nonce sentences (p < 0.001). This
indicates that humans were more likely to select
the correct form in sentences in which the models
were more confident in a correct prediction.

Moreover, some of the easiest and hardest con-
structions are the same for the human subjects and
the models. In the easy constructions DET [AdjP]

10The SM contains the results for the other languages bro-
ken down by construction. Note that Table 3 reports lin-
guistically intuitive construction labels. The corresponding
POS patterns are (in same order as table rows): DET ADJ
NOUN, NOUN VERB PRON VERB, NOUN VERB VERB, ADJ
ADJ CCONJ ADJ, NOUN ADJ PUNCT PRON VERB, NOUN
NOUN ADV ADJ, NOUN NOUN VERB, VERB NOUN CCONJ
VERB.

NOUN11 and ADJ [conjoined ADJs] ADJ, one or
more adjectives that intervene between the cue and
the target agree in number with the target, pro-
viding shorter-distance evidence about its correct
number. For example, in

(2) un
a

film
movie

inutileinutileinutileinutileinutileinutileinutileinutileinutileinutileinutileinutileinutileinutileinutileinutileinutile
useless

ma
but

almeno
at.least

festivofestivofestivofestivofestivofestivofestivofestivofestivofestivofestivofestivofestivofestivofestivofestivofestivo
festive

e
and

giovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanilegiovanile
youthful
“A useless but at least festive and youthful
movie”

the adjective “festivo” is marked for singular num-
ber, offering a nearer reference for the target num-
ber than the cue “inutile”. At the other end, NOUN

[PP] VERB (participial) and NOUN [PP] ADVERB

ADJ are difficult. Particularly in the nonce con-
dition, where semantics is unhelpful or even mis-
leading, the target could easily be interpreted as a
modifier of the noun embedded in the preceding
prepositional phrase. For example, for the nonce
case:

(3) ortoortoortoortoortoortoortoortoortoortoortoortoortoortoortoortoorto
orchard

di
of

regolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamentiregolamenti
rules

davvero
truly

pedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/ipedonale/i
pedestrian

“truly pedestrian orchard of rules”

both the subjects and the model preferred to treat
“pedestrian” as a modifier of “rules” (“orchard
of truly pedestrian rules”), resulting in the wrong
agreement given the intended syntactic structure.

Attractors. We define attractors as words with
the same POS as the cue but the opposite num-
ber, which intervene in the linear order of the sen-

11The relatively low nonce LSTM performance on this
construction is due to a few adjectives that could be re-
interpreted as nouns.
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Figure 2: Accuracy by number of attractors in Ital-
ian. Human performance is shown in red and
LSTM in blue (median model among top 5 ranked
by perplexity). Error bars show standard error.

tence between the cue and the target. Attractors
constitute an obvious challenge for agreement pro-
cessing (Bock and Miller, 1991). We show how
their presence affects human and model behavior
in Fig. 2. We limit our analysis to a maximum
of two attractors, since there were only two orig-
inal sentences in the test corpus with three attrac-
tors or more. Both model and human accuracies
degraded with the number of attractors; the drop
in accuracy was sharper in the nonce condition.
While the model performed somewhat worse than
humans, the overall pattern was comparable.

Our results suggest that the LSTM is quite ro-
bust to the presence of attractors, in contrast to
what was reported by Linzen et al. (2016). We di-
rectly compared our English LSTM LM to theirs
by predicting verb number on the Linzen et al.
(2016) test set. We extracted sentences where all
of the words between subject and verb were in our
LM vocabulary. Out of those sentences, we sam-
pled 2000 sentences with 0, 1 and 2 attractors and
kept all the sentences with 3 and 4 attractors (1329
and 347 sentences, respectively). To ensure that
our training set and Linzen’s test set do not over-
lap (both are based on Wikipedia texts), we filtered
out all of test sentences that appeared in our train-
ing data (187 sentences).

Fig. 3 compares our results to the results of
the best LM-trained model in Linzen et al. (2016)
(their “Google LM”).12 Not only did our LM
greatly outperform theirs, but it approached the
performance of their supervised model.13 This

12These subject-verb agreement results are in general
higher than for our own subject-verb agreement construction
(NOUN VERB VERB) because the latter always includes an
embedded clause, and it is therefore harder on average.

13Similarly high performance of LM-trained RNNs on
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Figure 3: Linzen’s attractor set. Our LM-trained
LSTM (blue; “median” model) compared to their
LSTM with explicit number supervision (green)
and their best LM-trained LSTM (red).

difference in results points to the importance of
careful tuning of LM-trained LSTMs, although we
must leave to a further study a more detailed un-
derstanding of which differences crucially deter-
mine our better performance.

5 Related work

Early work showed that RNNs can, to a cer-
tain degree, handle data generated by context-free
and even context-sensitive grammars (e.g., Elman,
1991, 1993; Rohde and Plaut, 1997; Christiansen
and Chater, 1999; Gers and Schmidhuber, 2001;
Cartling, 2008). These experiments were based on
small and controlled artificial languages, in which
complex hierarchical phenomena were often over-
represented compared to natural languages.

Our work, which is based on naturally oc-
curring data, is most closely related to that of
Linzen et al. (2016) and Bernardy and Lappin
(2017), which we discussed in the introduction.
Other recent work has focused on the morpholog-
ical and grammatical knowledge that RNN-based
machine-translation systems and sentence embed-
dings encode, typically by training classifiers to
decode various linguistic properties from hidden
states of the network (e.g., Adi et al., 2017; Be-
linkov et al., 2017; Shi et al., 2016), or looking at
whether the end-to-end system correctly translates
sentences with challenging constructions (Sen-
nrich, 2017).

Previous work in neurolinguistics and psy-
cholinguistics used jabberwocky, or pseudo-word,
sentences to probe how speakers process syntactic
information (Friederici et al., 2000; Moro et al.,

Linzen’s dataset was recently reported by Yogatama et al.
(2018).
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2001; Johnson and Goldberg, 2013). Such sen-
tences are obtained by substituting original words
with morphologically and phonologically accept-
able nonce forms. We are not aware of work that
used nonce sentences made of real words to evalu-
ate the syntactic abilities of models or human sub-
jects. As a proof of concept, Pereira (2000) and,
later, Mikolov (2012) computed the probability of
Chomsky’s famous “colorless green ideas” sen-
tence using a class-based bigram LM and an RNN,
respectively, and showed that it is much higher
than the probability of its shuffled ungrammatical
variants.

6 Conclusion

We ran an extensive analysis of the abilities of
RNNs trained on a generic language-modeling
task to predict long-distance number agreement.
Results were consistent across four languages and
a number of constructions. They were above
strong baselines even in the challenging case of
nonsense sentences, and not far from human per-
formance. We are not aware of other collections
of human long-distance agreement judgments on
nonsensical sentences, and we thus consider our
publicly available data set an important contribu-
tion of our work, of interest to students of human
language processing in general.

The constructions we considered are quite in-
frequent (according to a rough estimate based on
the treebanks, the language in which they are most
common is Hebrew, and even there they occur
with average 0.8% sentence frequency). More-
over, they vary in the contexts that separate the cue
and the target. So, RNNs are not simply memo-
rizing frequent morphosyntactic sequences (which
would already be impressive, for systems learning
from raw text). We tentatively conclude that LM-
trained RNNs can construct abstract grammatical
representations of their input. This, in turn, sug-
gests that the input itself contains enough informa-
tion to trigger some form of syntactic learning in a
system, such as an RNN, that does not contain an
explicit prior bias in favour of syntactic structures.

In future work, we would like to better under-
stand what kind of syntactic information RNNs
are encoding, and how. On the one hand, we
plan to adapt methods to inspect information flow
across RNN states (e.g., Hupkes et al., 2017). On
the other, we would like to expand our empirical
investigation by focusing on other long-distance

phenomena, such as overt case assignment (Blake,
2001) or parasitic gap licensing (Culicover and
Postal, 2001). While it is more challenging to ex-
tract reliable examples of such phenomena from
corpora, their study would probe more sophisti-
cated syntactic capabilities, possibly even shed-
ding light on the theoretical analysis of the un-
derlying linguistic structures. Finally, it may be
useful to complement the corpus-driven approach
used in the current paper with constructed evalua-
tion sentences that isolate particular syntactic phe-
nomena, independent of their frequency in a natu-
ral corpus, as is common in psycholinguistics (En-
guehard et al., 2017).
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Abstract

We study few-shot learning in natural lan-
guage domains. Compared to many ex-
isting works that apply either metric-based
or optimization-based meta-learning to image
domain with low inter-task variance, we con-
sider a more realistic setting, where tasks are
diverse. However, it imposes tremendous diffi-
culties to existing state-of-the-art metric-based
algorithms since a single metric is insufficient
to capture complex task variations in natu-
ral language domain. To alleviate the prob-
lem, we propose an adaptive metric learn-
ing approach that automatically determines the
best weighted combination from a set of met-
rics obtained from meta-training tasks for a
newly seen few-shot task. Extensive quantita-
tive evaluations on real-world sentiment anal-
ysis and dialog intent classification datasets
demonstrate that the proposed method per-
forms favorably against state-of-the-art few
shot learning algorithms in terms of predictive
accuracy. We make our code and data avail-
able for further study.1

1 Introduction

Few-shot learning (FSL) (Miller et al., 2000; Li
et al., 2006; Lake et al., 2015) aims to learn
classifiers from few examples per class. Re-
cently, deep learning has been successfully ex-
ploited for FSL via learning meta-models from
a large number of meta-training tasks. These
meta-models can be then used for rapid-adaptation
for the target/meta-testing tasks that only have
few training examples. Examples of such meta-
models include: (1) metric-/similarity-based mod-
els, which learn contextual, and task-specific sim-
ilarity measures (Koch, 2015; Vinyals et al., 2016;

⇤Equal contributions from the corresponding authors:
yum@us.ibm.com, xiaoxiao.guo@ibm.com,
jinfengy@us.ibm.com.

1
https://github.com/Gorov/DiverseFewShot_Amazon

Snell et al., 2017); and (2) optimization-based
models, which receive the input of gradients from
a FSL task and predict either model parameters
or parameter updates (Ravi and Larochelle, 2017;
Munkhdalai and Yu, 2017; Finn et al., 2017; Wang
et al., 2017).

In the past, FSL has mainly considered im-
age domains, where all tasks are often sampled
from one huge collection of data, such as Om-
niglot (Lake et al., 2011) and ImageNet (Vinyals
et al., 2016), making tasks come from a single do-
main thus related. Due to such a simplified set-
ting, almost all previous works employ a com-
mon meta-model (metric-/optimization-based) for
all few-shot tasks. However, this setting is far
from the realistic scenarios in many real-world ap-
plications of few-shot text classification. For ex-
ample, on an enterprise AI cloud service, many
clients submit various tasks to train text classifica-
tion models for business-specific purposes. The
tasks could be classifying customers’ comments
or opinions on different products/services, moni-
toring public reactions to different policy changes,
or determining users’ intents in different types of
personal assistant services. As most of the clients
cannot collect enough data, their submitted tasks
form a few-shot setting. Also, these tasks are sig-
nificantly diverse, thus a common metric is insuf-
ficient to handle all these tasks.

We consider a more realistic FSL setting in this
paper, where tasks are diverse. In such a sce-
nario, the optimal meta-model may vary across
tasks. Our solution is based on the metric-learning
approach (Snell et al., 2017) and the key idea is
to maintain multiple metrics for FSL. The meta-
learner selects and combines multiple metrics for
learning the target task using task clustering on
the meta-training tasks. During the meta-training,
we propose to first partition the meta-training tasks
into clusters, making the tasks in each cluster
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likely to be related. Then within each cluster, we
train a deep embedding function as the metric.
This ensures the common metric is only shared
across tasks within the same cluster. Further, dur-
ing meta-testing, each target FSL task is assigned
to a task-specific metric, which is a linear combi-
nation of the metrics defined by different clusters.
In this way, the diverse few-shot tasks can derive
different metrics from the previous learning expe-
rience.

The key of the proposed FSL framework is the
task clustering algorithm. Previous works (Kumar
and Daume III, 2012; Kang et al., 2011; Cram-
mer and Mansour, 2012; Barzilai and Crammer,
2015) mainly focused on convex objectives, and
assumed the number of classes is the same across
different tasks (e.g. binary classification is often
considered). To make task clustering (i) compat-
ible with deep networks and (ii) able to handle
tasks with a various number of labels, we propose
a matrix-completion based task clustering algo-
rithm. The algorithm utilizes task similarity mea-
sured by cross-task transfer performance, denoted
by matrix S. The (i, j)-entry of S is the estimated
accuracy by adapting the learned representations
on the i-th (source) task to the j-th (target) task.
We rely on matrix completion to deal with miss-
ing and unreliable entries in S and finally apply
spectral clustering to generate the task partitions.

To the best of our knowledge, our work is the
first one addressing the diverse few-shot learning
problem and reporting results on real-world few-
shot text classification problems. The experimen-
tal results show that the proposed algorithm pro-
vides significant gains on few-shot sentiment clas-
sification and dialog intent classification tasks. It
provides positive feedback on the idea of using
multiple meta-models (metrics) to handle diverse
FSL tasks, as well as the proposed task clustering
algorithm on automatically detecting related tasks.

2 Problem Definition

Few-Shot Learning Since we focus on diverse
metric-based FSL, the problem can be formu-
lated in two stages: (1) meta-training, where a
set of metrics M = {⇤1, · · · ,⇤K} is learned on
the meta-training tasks T . Each ⇤i maps two
input (x1, x2) to a scalar of similarity score. Here
T = {T1, T2, · · · , TN} is a collection of N tasks.
Here K is a pre-defined number (usually K ⌧
N ). Each task Ti consists of training, validation,

and testing set denoted as
�
Dtrain

i , Dvalid
i , Dtest

i

 
,

respectively. Note that the definition of T is a
generalized version of D(meta�train) in (Ravi and
Larochelle, 2017), since each task Ti can be ei-
ther few-shot (where Dvalid

i is empty) or regu-
lar2. (2) meta-testing: the trained metrics in
M is applied to meta-testing tasks denoted as
T 0 = {T01, · · · , T0N 0}, where each T0i is a few-
shot learning task consisting of both training and
testing data as

�
D0train

i , D0testi

 
. D0train

i is a small
labeled set for generating the prediction model M0i
for each T0i. Specifically, M0is are kNN-based pre-
dictors built upon the metrics in M. We will de-
tail the construction of M0i in Section 3, Eq. (6).
It is worth mentioning that the definition of T 0 is
the same as D(meta�test) in (Ravi and Larochelle,
2017). The performance of few-shot learning is
the macro-average of M0i’s accuracy on all the test-
ing set D0testi s.

Our definitions can be easily generalized
to other meta-learning approaches (Ravi and
Larochelle, 2017; Finn et al., 2017; Mishra et al.,
2017). The motivation of employing multiple met-
rics is that when the tasks are diverse, one metric
model may not be sufficient. Note that previous
metric-based FSL methods can be viewed as a spe-
cial case of our definition where M only contains
a single ⇤, as shown in the two base model exam-
ples below.

Base Model: Matching Networks In this paper
we use the metric-based model Matching Network
(MNet) (Vinyals et al., 2016) as the base metric
model. The model (Figure 1b) consists of a neural
network as the embedding function (encoder) and
an augmented memory. The encoder, f(·), maps
an input x to a d-length vector. The learned met-
ric ⇤ is thus the similarity between the encoded
vectors, ⇤(x1, x2) = f(x1)

T f(x2), i.e. the metric
⇤ is modeled by the encoder f . The augmented
memory stores a support set S = {(xi, yi)}|S|

i=1,
where xi is the supporting instance and yi is its
corresponding label in a one-hot format. The
MNet explicitly defines a classifier M conditioned
on the supporting set S. For any new data x̂, M
predicts its label via a similarity function ↵(., .)

2For example, the methods in (Triantafillou et al., 2017)
can be viewed as training meta-models from any sampled
batches from one single meta-training dataset.
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Figure 1: The Convolutional Neural Networks (CNN) used in this work: (a) A CNN classifier. The encoder com-
ponent takes the sentence as input and outputs a fixed-length sentence embedding vector; the classifier component
predicts class labels with the sentence embedding. (b) A Matching Network, which only contains an encoder like
in (a), and makes prediction via a k-Nearest-Neighbor classifier with the similarity defined by the encoder.

between the test instance x̂ and the support set S:

y = P (.|x̂, S) =

|S|X

i=1

↵(x̂, xi; ✓)yi, (1)

where we defined ↵(., .) to be a softmax
distribution given ⇤(x̂, xi), where xi is
a supporting instance, i.e., ↵(x̂, xi; ✓) =
exp(f(x̂)T f(xi))/

P|S|
j=1 exp(f(x̂)T f(xj)), where ✓

are the parameters of the encoder f . Thus, y is a
valid distribution over the supporting set’s labels
{yi}|S|

i=1. To adapt the MNet to text classification,
we choose encoder f to be a convolutional neural
network (CNN) following (Kim, 2014; Johnson
and Zhang, 2016). Figure 1 shows the MNet
with the CNN architecture. Following (Collobert
et al., 2011; Kim, 2014), the model consists of
a convolution layer and a max-pooling operation
over the entire sentence.

To train the MNets, we first sample the training
dataset D for task T from all tasks T , with no-
tation simplified as D ⇠ T . For each class in the
sampled dataset D, we sample k random instances
in that class to construct a support set S, and sam-
ple a batch of training instances B as training ex-
amples, i.e., B, S ⇠ D. The training objective
is to minimize the prediction error of the training
samples given the supporting set (with regard to
the encoder parameters ✓) as follows:

E
D⇠T

h
E

B,S⇠D

⇥ X

(x,y)2B

log(P (y|x, S; ✓))
⇤i

. (2)

Base Model: Prototypical Networks Prototyp-
ical Network (ProtoNet) (Snell et al., 2017) is a
variation of Matching Network, which also de-
pends on metric learning but builds the classifier

M different from Eq. (1):

y = P (.|x̂, S) =
LX

i=1

↵(x̂, Si; ✓)yi. (3)

L is the number of classes and Si={x|(x, y) 2 S^
y=yi} is the support set of class yi. ↵(x̂, Si; ✓) =
exp

⇣
f(x̂)T

P
x2Si

f(x)
⌘
/
PL

j=1 exp
⇣
f(x̂)T

P
x02Sj

f(x0)
⌘
.

3 Methodology

We propose a task-clustering framework to ad-
dress the diverse few-shot learning problem stated
in Section 2. We have the FSL algorithm summa-
rized in Algorithm 1. Figure 2 gives an overview
of our idea. The initial step of the algorithm is
a novel task clustering algorithm based on matrix
completion, which is described in Section 3.1. The
few-shot learning method based on task clustering
is then introduced in Section 3.2.

3.1 Robust Task Clustering by Matrix
Completion

Our task clustering algorithm is shown in Algo-
rithm 2. The algorithm first evaluates the transfer
performance by applying a single-task model i to
another task j (Section 3.1.1), which will result
in a (partially observed) cross-task transfer perfor-
mance matrix S. The matrix S is then cleaned and
completed, giving a symmetry task similarity ma-
trix Y for spectral clustering (Ng et al., 2002).

3.1.1 Estimation of Cross-Task Transfer
Performance

Using single-task models, we can compute perfor-
mance scores sij by adapting each Mi to each task
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Figure 2: Overview of the idea of our multi-metric learning approach for few-shot learning. (a) an illustration of
the sparse cross-tasks transfer-performance matrix with unobserved entries (white blocks) and unreliable values
(top-right and bottom-left corners), where red colors indicate positive transfer and blue colors indicate negative
transfer; (b) the constructed binary partially-observed matrix with low-rank constraint for matrix completion and
clustering (see Section 3.1 for the details); (c) an encoder trained with the matching network objective Eq. (2) on
a task cluster (tasks 1, 2 and 3 in the example).

Tj(j 6= i). This forms an n ⇥ n pair-wise classi-
fication performance matrix S, called the transfer-
performance matrix. Note that S is asymmetric
since usually Sij 6= Sji.

Algorithm 1: ROBUSTTC-FSL: Task Cluster-
ing for Few-Shot Learning

Input : N meta-training tasks T ={T1, T2, · · · , Tn};
number of clusters K; N 0 target few-shot
meta-testing tasks T 0

Output: Meta-model M = {C1:K (K task clusters),
F = {f1, f2, · · · , fK} (K task encoders)} .
One classifier M0i for each target task T0.

1 Robust Task Clustering: C1:K = ROBUSTTC(T ,K)
(Algorithm 2)

2 Cluster-Model Training: Train one encoder (multi-task
MNet) fi on each task cluster Ci (Section 3.2.1)

3 Few-Shot Learning on Cluster-models: Train a model
Mtrg on task Ttrg with the method in Section 3.2.2.

Ideally, the transfer performance could be esti-
mated by training a MNet on task i and directly
evaluating it on task j. However, the limited train-
ing data usually lead to generally low transfer per-
formance of single-task MNet. As a result we
adopt the following approach to estimate S:

We train a CNN classifier (Figure 1(a)) on task
i, then take only the encoder Menc

i from Mi and
freeze it to train a classifier on task j. This gives
us a new task j model, and we test this model
on Dvalid

j to get the accuracy as the transfer-
performance Sij . The score shows how the repre-
sentations learned on task i can be adapted to task
j, thus indicating the similarity between tasks.

Algorithm 2: ROBUSTTC: Robust Task Clus-
tering based on Matrix Completion

Input : A set of n tasks T = {T1, T2, · · · , Tn},
number of task clusters K

Output: K task clusters C1:K

1 Learning of Single-Task Models: train single-task
models Mi for each task Ti

2 Evaluation of Transfer-Performance Matrix: get
performance matrix S (Section 3.1.1)

3 Score Filtering: Filter the uncertain scores in S and
construct the symmetric matrix Y using Eq. (4)

4 Matrix Completion: Complete the similar matrix X
from Y using Eq. (5)

5 Task Clustering: C1:K=SpectralClustering(X, K)

Remark: Out-of-Vocabulary Problem In text
classification tasks, transferring an encoder with
fine-tuned word embeddings from one task to an-
other is difficult as there can be a significant differ-
ence between the two vocabularies. Hence, while
learning the single-task CNN classifiers, we al-
ways make the word embeddings fixed.

3.1.2 Task Clustering Method
Directly using the transfer performance for task
clustering may suffer from both efficiency and ac-
curacy issues. First, evaluation of all entries in
the matrix S involves conducting the source-target
transfer learning O(n2) times, where n is the num-
ber of meta-training tasks. For a large number
of diverse tasks where the n can be larger than
1,000, evaluation of the full matrix is unaccept-
able (over 1M entries to evaluate). Second, the
estimated cross-task performance (i.e. some Sij

or Sji scores) is often unreliable due to small data
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size or label noise. When the number of the un-
certain values is large, they can collectively mis-
lead the clustering algorithm to output an incor-
rect task-partition. To address the aforementioned
challenges, we propose a novel task clustering al-
gorithm based on the theory of matrix comple-
tion (Candès and Tao, 2010). Specifically, we deal
with the huge number of entries by randomly sam-
ple task pairs to evaluate the Sij and Sji scores.
Besides, we deal with the unreliable entries and
asymmetry issue by keeping only task pairs (i, j)
with consistent Sij and Sji scores. as will be intro-
duced in Eq. (4). Below, we describe our method
in detail.

Score Filtering First, we use only reliable task
pairs to generate a partially-observed similarity
matrix Y. Specifically, if Sij and Sji are high
enough, then it is likely that tasks {i, j} belong to
a same cluster and share significant information.
Conversely, if Sij and Sji are low enough, then
they tend to belong to different clusters. To this
end, we need to design a mechanism to determine
if a performance is high or low enough. Since dif-
ferent tasks may vary in difficulty, a fixed thresh-
old is not suitable. Hence, we define a dynamic
threshold using the mean and standard deviation of
the target task performance, i.e., µj = mean(S:j)
and �j = std(S:j), where S:j is the j-th column
of S. We then introduce two positive parameters
p1 and p2, and define high and low performance as
Sij greater than µj +p1�j or lower than µj�p2�j ,
respectively. When both Sij and Sji are high and
low enough, we set their pairwise similarity as 1
and 0, respectively. Other task pairs are treated as
uncertain task pairs and are marked as unobserved,
and don’t influence our clustering method. This
leads to a partially-observed symmetric matrix Y,
i.e.,

Yij=Yji=

8
><
>:

1 if Sij > µj + p1�j

and Sji > µi + p1�i

0 if Sij < µj � p2�j

and Sji < µi � p2�i

unobserved otherwise

(4)

Matrix Completion Given the partially ob-
served matrix Y, we then reconstruct the full sim-
ilarity matrix X 2 Rn⇥n. We first note that the
similarity matrix X should be of low-rank (proof
deferred to appendix). Additionally, since the ob-
served entries of Y are generated based on high
and low enough performance, it is safe to assume
that most observed entries are correct and only a

few may be incorrect. Therefore, we introduce a
sparse matrix E to capture the observed incorrect
entries in Y. Combining the two observations, Y
can be decomposed into the sum of two matrices X
and E, where X is a low rank matrix storing simi-
larities between task pairs, and E is a sparse matrix
that captures the errors in Y. The matrix comple-
tion problem can be cast as the following convex
optimization problem:

min
X, E

kXk⇤ + �kEk1 (5)

s.t. P⌦(X + E) = P⌦(Y),

where k � k⇤ denotes the matrix nuclear norm, the
convex surrogate of rank function. ⌦ is the set of
observed entries in Y, and P⌦ : Rn⇥n 7! Rn⇥n is
a matrix projection operator defined as

[P⌦(A)]ij =

⇢
Aij if (i, j) 2 ⌦
0 otherwise

Finally, we apply spectral clustering on the ma-
trix X to get the task clusters.

Remark: Sample Efficiency In the Appendix
A, we show a Theorem 7.1 as well as its proof,
implying that under mild conditions, the problem
(5) can perfectly recover the underlying similarity
matrix X⇤ if the number of observed correct en-
tries is at least O(n log2 n). This theoretical guar-
antee implies that for a large number n of training
tasks, only a tiny fraction of all task pairs is needed
to reliably infer similarities over all task pairs.

3.2 Few-Shot Learning with Task Clusters

3.2.1 Training Cluster Encoders
For each cluster Ck, we train a multi-task MNet
model (Figure 1(b)) with all tasks in that cluster to
encourage parameter sharing. The result, denoted
as fk is called the cluster-encoder of cluster Ck.
The k-th metric of the cluster is thus ⇤(x1, x2) =
fk(x1)

|fk(x2).

3.2.2 Adapting Multiple Metrics for
Few-Shot Learning

To build a predictor M with access to only a lim-
ited number of training samples, we make the pre-
diction probability by linearly combining predic-
tion from learned cluster-encoders:

p(y|x) =
X

k

↵kP (y|x; fk). (6)
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where fk is the learned (and frozen) encoder of
the k-th cluster, {↵k}K

k=1 are adaptable parameters
trained with few-shot training examples. And the
predictor P (y|x; fk) from each cluster is

P (y = yl|x; fk) =
exp {fk(xl)

|fk(x)}P
i exp {fk(xi)|fk(x)} (7)

xl is the corresponding training sample of label yl.

Remark: Joint Method versus Pipeline Method
End-to-end joint optimization on training data be-
comes a popular methodology for deep learning
systems, but it is not directly applicable to di-
verse FSL. One main reason is that deep networks
could easily fit any task partitions if we optimize
on training loss only, making the learned metrics
not generalize, as discussed in Section 6. As a
result, this work adopts a pipeline training ap-
proach and employing validation sets for task clus-
tering. Combining reinforcement learning with
meta-learning could be a potential solution to en-
able an end-to-end training for future work.

4 Tasks and Data Sets

We test our methods by conducting experiments
on two text classification data sets. We used NLTK
toolkit3 for tokenization. The task are divided into
meta-training tasks and meta-testing tasks (target
tasks), where the meta-training tasks are used for
clustering and cluster-encoder training. The meta-
testing tasks are few-shot tasks, which are used for
evaluating the method in Eq. (6).

4.1 Amazon Review Sentiment Classification
First, following Barzilai and Crammer (2015), we
construct multiple tasks with the multi-domain
sentiment classification (Blitzer et al., 2007) data
set. The dataset consists of Amazon product re-
views for 23 types of products (see Appendix D
for the details). For each product domain, we con-
struct three binary classification tasks with differ-
ent thresholds on the ratings: the tasks consider a
review as positive if it belongs to one of the fol-
lowing buckets = 5 stars, >= 4 stars or >= 2
stars.4 These buckets then form the basis of the
task-setup, giving us 23⇥ 3=69 tasks in total. For
each domain we distribute the reviews uniformly

3http://www.nltk.org/
4Data downloaded from http://www.cs.jhu.edu/

˜mdredze/datasets/sentiment/, in which the 3-
star samples were unavailable due to their ambiguous nature
(Blitzer et al., 2007).

to the 3 tasks. For evaluation, we select 12 (4⇥3)
tasks from 4 domains (Books, DVD, Electronics,
Kitchen) as the meta-testing (target) tasks out of
all 23 domains. For the target tasks, we create 5-
shot learning problems.

4.2 Real-World Tasks: User Intent
Classification for Dialog System

The second dataset is from an online service which
trains and serves intent classification models to
various clients. The dataset comprises recorded
conversations between human users and dialog
systems in various domains, ranging from per-
sonal assistant to complex service-ordering or
customer-service request scenarios. During clas-
sification, intent-labels5 are assigned to user utter-
ances (sentences). We use a total of 175 tasks from
different clients, and randomly sample 10 tasks
from them as our target tasks. For each meta-
training task, we randomly sample 64% data into a
training set, 16% into a validation set, and use the
rest as the test set. The number of labels for these
tasks varies a lot (from 2 to 100, see Appendix
D for details), making regular k-shot settings not
essentially limited-resource problems (e.g., 5-shot
on 100 classes will give a good amount of 500
training instances). Hence, to adapt this to a FSL
scenario, for target tasks we keep one example for
each label (one-shot), plus 20 randomly picked la-
beled examples to create the training data. We be-
lieve this is a fairly realistic estimate of labeled
examples one client could provide easily.

Remark: Evaluation of the Robustness of Al-
gorithm 2 Our matrix-completion method could
handle a large number of tasks via task-pair sam-
pling. However, the sizes of tasks in the above
two few-shot learning datasets are not too huge,
so evaluation of the whole task-similarity matrix is
still tractable. In our experiments, the incomplete
matrices mainly come from the score-filtering step
(see Eq. 4). Thus there is limited randomness in-
volved in the generation of task clusters.

To strengthen the conclusion, we evaluate our
algorithm on an additional dataset with a much
larger number of tasks. The results are reported in
the multi-task learning setting instead of the few-
shot learning setting focused in this paper. There-
fore we put the results to a non-archive version of

5In conversational dialog systems, intent-labels are used
to guide the dialog-flow.
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this paper6 for further reference.

5 Experiments

5.1 Experiment Setup

Baselines We compare our method to the fol-
lowing baselines: (1) Single-task CNN: train-
ing a CNN model for each task individually;
(2) Single-task FastText: training one FastText
model (Joulin et al., 2016) with fixed embeddings
for each individual task; (3) Fine-tuned the holis-
tic MTL-CNN: a standard transfer-learning ap-
proach, which trains one MTL-CNN model on all
the training tasks offline, then fine-tunes the clas-
sifier layer (i.e. M(cls) Figure 1(a)) on each target
task; (4) Matching Network: a metric-learning
based few-shot learning model trained on all train-
ing tasks; (5) Prototypical Network: a varia-
tion of matching network with different predic-
tion function as Eq. 3; (6) Convex combining
all single-task models: training one CNN clas-
sifier on each meta-training task individually and
taking the encoder, then for each target task train-
ing a linear combination of all the above single-
task encoders with Eq. (6). This baseline can
be viewed as a variation of our method without
task clustering. We initialize all models with pre-
trained 100-dim Glove embeddings (trained on 6B
corpus) (Pennington et al., 2014).

Hyper-Parameter Tuning In all experiments,
we set both p1 and p2 parameters in (4) to 0.5. This
strikes a balance between obtaining enough ob-
served entries in Y, and ensuring that most of the
retained similarities are consistent with the clus-
ter membership. The window/hidden-layer sizes
of CNN and the initialization of embeddings (ran-
dom or pre-trained) are tuned during the cluster-
encoder training phase, with the validation sets of
meta-training tasks. We have the CNN with win-
dow size of 5 and 200 hidden units. The single-
metric FSL baselines have 400 hidden units in
the CNN encoders. On sentiment classification,
all cluster-encoders use random initialized word
embeddings for sentiment classification, and use
Glove embeddings as initialization for intent clas-
sification, which is likely because the training sets
of the intent tasks are usually small.

Since all the sentiment classification tasks are
binary classification based on our dataset con-
struction. A CNN classifier with binary output

6https://arxiv.org/pdf/1708.07918.pdf

layer can be also trained as the cluster-encoder for
each task cluster. Therefore we compared CNN
classifier, matching network, and prototypical net-
work on Amazon review, and found that CNN
classifier performs similarly well as prototypical
network. Since some of the Amazon review data
is quite large which involves further difficulty on
the computation of supporting sets, we finally use
binary CNN classifiers as cluster-encoders in all
the sentiment classification experiments.

Selection of the learning rate and number of
training epochs for FSL settings, i.e., fitting ↵s in
Eq. (6), is more difficult since there is no valida-
tion data in few-shot problems. Thus we pre-select
a subset of meta-training tasks as meta-validation
tasks and tune the two hyper-parameters on the
meta-validation tasks.

5.2 Experimental Results

Table 1 shows the main results on (i) the 12
few-shot product sentiment classification tasks by
leveraging the learned knowledge from the 57 pre-
viously observed tasks from other product do-
mains; and (ii) the 10 few-shot dialog intent clas-
sification tasks by leveraging the 165 previously
observed tasks from other clients’ data.

Due to the limited training resources, all the
supervised-learning baselines perform poorly. The
two state-of-the-art metric-based FSL approaches,
matching network (4) and prototypical network
(5), do not perform better compared to the other
baselines, since the single metric is not sufficient
for all the diverse tasks. On intent classification
where tasks are further diverse, all the single-
metric or single-model methods (3-5) perform
worse compared to the single-task CNN baseline
(1). The convex combination of all the single
training task models is the best performing base-
line overall. However, on intent classification it
only performs on par with the single-task CNN
(1), which does not use any meta-learning or trans-
fer learning techniques, mainly for two reasons:
(i) with the growth of the number of meta-training
tasks, the model parameters grow linearly, mak-
ing the number of parameters (165 in this case) in
Eq.(6) too large for the few-shot tasks to fit; (ii) the
meta-training tasks in intent classification usually
contain less training data, making the single-task
encoders not generalize well.

In contrast, our ROBUSTTC-FSL gives consis-
tently better results compared to all the baselines.
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Model Avg Acc
Sentiment Intent

(1) Single-task CNN w/pre-trained emb 65.92 34.46
(2) Single-task FastText w/pre-trained emb 63.05 23.87
(3) Fine-tuned holistic MTL-CNN 76.56 30.36
(4) Matching Network (Vinyals et al., 2016) 65.73 30.42
(5) Prototypical Network (Snell et al., 2017) 68.15 31.51
(6) Convex combination of all single-task models 78.85 34.43
ROBUSTTC-FSL 83.12 37.59
Adaptive ROBUSTTC-FSL - 42.97

Table 1: Accuracy of FSL on sentiment classification (Sentiment) and dialog intent classification (Intent) tasks. The
target tasks of sentiment classification are 5-shot ones; and each intent target task contains one training example
per class and 20 random labeled examples.

It outperforms the baselines in previous work (1-
5) by a large margin of more than 6% on the senti-
ment classification tasks, and more than 3% on the
intent classification tasks. It is also significantly
better than our proposed baseline (6), showing the
advantages of the usage of task clustering.

Adaptive ROBUSTTC-FSL Although the RO-
BUSTTC-FSL improves over baselines on intent
classification, the margin is smaller compared to
that on sentiment classification, because the in-
tent classification tasks are more diverse in na-
ture. This is also demonstrated by the training
accuracy on the target tasks, where several tasks
fail to find any cluster that could provide a met-
ric that suits their training examples. To deal with
this problem, we propose an improved algorithm
to automatically discover whether a target task be-
longs to none of the task-clusters. If the task
doesn’t belong to any of the clusters, it cannot ben-
efit from any previous knowledge thus falls back
to single-task CNN. The target task is treated as
“out-of-clusters” when none of the clusters could
achieve higher than 20% accuracy (selected on
meta-validation tasks) on its training data. We call
this method Adaptive ROBUSTTC-FSL, which
gives more than 5% performance boost over the
best ROBUSTTC-FSL result on intent classifica-
tion. Note that the adaptive approach makes no
difference on the sentiment tasks, because they are
more closely related so re-using cluster-encoders
always achieves better results compared to single-
task CNNs.

5.3 Analysis
Effect of the number of clusters Figure 3
shows the effect of cluster numbers on the two
tasks. ROBUSTTC achieves best performance

Figure 3: Effect of clusters. ROBUSTTC-SA and RO-
BUSTTC-Intent: the performance of our ROBUSTTC
clusters on the sentiment and intent classification tasks.
ASAP-MT-LR-SA: the state-of-the-art ASAP-MT-LR
clusters on the sentiment-analysis tasks (the method is
not applicable to the intent-classification tasks).

with 5 clusters on sentiment analysis (SA) and 20
clusters on intent classification (Intent). All clus-
tering results significantly outperform the single-
metric baselines (#cluster=1 in the figure).

Effect of the clustering algorithms Compared
to previous task clustering algorithms, our RO-
BUSTTC is the only one that can cluster tasks with
varying numbers of class labels (e.g. in intent clas-
sification tasks). Moreover, we show that even
in the setting of all binary classifications tasks
(e.g. the sentiment-analysis tasks) that previous
task clustering research work on, our ROBUSTTC
is still slightly better for the diverse FSL problems.
Figure 3 compares with a state-of-the-art logistic
regression based task clustering method (ASAP-
MT-LR) (Barzilai and Crammer, 2015). Our RO-
BUSTTC clusters give slightly better FSL perfor-
mance (e.g. 83.12 vs. 82.65 when #cluster=5).
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Clus0 Clus1 Clus2 Clus3 Clus4 Clus5 Clus6 Clus7 Clus8 Clus9
automotive.t2 apparel.t2 baby.t5 automotive.t5 apparel.t5 beauty.t4 camera.t4 gourmet.t5 cell.t4 apparel.t4

camera.t2 automotive.t4 magazines.t5 baby.t4 camera.t5 beauty.t5 software.t2 magazines.t4 software.t5 toys.t2
health.t2 baby.t2 sports.t5 health.t4 grocery.t5 cell.t5 software.t4 music.t4 toys.t4

magazines.t2 cell.t2 toys.t5 health.t5 jewelry.t5 gourmet.t2 music.t5
office.t2 computer.t2 video.t5 gourmet.t4 video.t4

outdoor.t2 computer.t4 grocery.t2
sports.t2 computer.t5 grocery.t4
sports.t4 jewelry.t4 office.t4

music.t2 outdoor.t4
video.t2

dvd-t4 0.4844 0.4416 0.4625 0.7843 0.7970 0.7196 0.8952 0.3763 0.7155 0.6315
dvd-t5 0.0411 -0.2493 0.5037 0.3567 0.1686 -0.0355 0.4150 -0.2603 -0.0867 0.0547

kitchen-t4 0.6823 0.7268 0.7929 1.2660 1.1119 0.7255 1.2196 0.7065 0.6625 1.0945

Table 2: Visualization of clusters on the Amazon review domain. The top shows the training tasks assigned to the
10 clusters. Here the number N2 {2, 4, 5} refers to the threshold of stars for positive reviews. At the bottom we
show three tasks with largest improvement from ROBUSTTC-FSL. The top-3 most relevant task clusters (i.e. with
highest weights ↵s in Eq.6 ) are highlighted with blue bold font.

Visualization of Task Clusters The top rows of
Table 2 shows the ten clusters used to generate the
sentiment classification results in Figure 3. From
the results, we can see that tasks with same thresh-
olds are usually grouped together; and tasks in
similar domains also tend to appear in the same
clusters, even the thresholds are slightly different
(e.g. t2 vs t4 and t4 vs t5).

The bottom of the table shows the weights ↵s
in Eq.(6) for the target tasks with the largest im-
provement. It confirms that our ROBUSTTC-FSL
algorithm accurately adapts multiple metrics for
the target tasks.

6 Related Work

Few Shot Learning FSL (Li et al., 2006; Miller
et al., 2000) aims to learn classifiers for new
classes with only a few training examples per
class. Bayesian Program Induction (Lake et al.,
2015) represents concepts as simple programs that
best explain observed examples under a Bayesian
criterion. Siamese neural networks rank similar-
ity between inputs (Koch, 2015). Matching Net-
works (Vinyals et al., 2016) map a small labeled
support set and an unlabeled example to its la-
bel, obviating the need for fine-tuning to adapt
to new class types. These approaches essentially
learn one metric for all tasks, which is sub-optimal
when the tasks are diverse. An LSTM-based meta-
learner (Ravi and Larochelle, 2017) learns the ex-
act optimization algorithm used to train another
learner neural-network classifier for the few-shot
setting.

Previous FSL research usually adopts the k-
shot, N -way setting, where all the few-shot tasks
have the same number of N class labels, and each
label has k training instances. Moreover, these
few-shot tasks are usually constructed by sam-
pling from one huge dataset, thus all the tasks are

guaranteed to be related to each other. However,
in real-world applications, the few-shot learning
tasks could be diverse: there are different tasks
with varying number of class labels and they are
not guaranteed to be related to each other. As a re-
sult, a single meta-model or metric-model is usu-
ally not sufficient to handle all the few-shot tasks.
Task Clustering Previous task clustering meth-
ods measure the task relationships in terms of sim-
ilarities among single-task model parameters (Ku-
mar and Daume III, 2012; Kang et al., 2011); or
jointly assign task clusters and train model pa-
rameters for each cluster to minimize the overall
training loss (Crammer and Mansour, 2012; Barzi-
lai and Crammer, 2015; Murugesan et al., 2017).
These methods usually work on convex models but
do not fit the deep networks, mainly because of
(i) the parameters of deep networks are very high-
dimensional and their similarities are not neces-
sarily related to the functional similarities; and (ii)
deep networks have flexible representation power
so they may overfit to arbitrary cluster assignment
if we consider training loss alone. Moreover, these
methods require identical class label sets across
different tasks, which does not hold in most of the
realistic settings.

7 Conclusion

We propose a few-shot learning approach for di-
verse tasks based on task clustering. The pro-
posed method can use multiple metrics, and per-
forms significantly better compared to previous
single-metric based methods when the few-shot
tasks come from diverse domains. Future work in-
cludes generalizing our method to non-NLP prob-
lems, as well as applying the task-clustering idea
to other few-shot learning frameworks (Ravi and
Larochelle, 2017; Finn et al., 2017; Mishra et al.,
2017; Cheng et al., 2017).

1214



References
Aviad Barzilai and Koby Crammer. 2015. Convex

multi-task learning by clustering. In AISTATS.

John Blitzer, Mark Dredze, and Fernando Pereira.
2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classi-
fication. In ACL, volume 7, pages 440–447.

Emmanuel J Candès and Terence Tao. 2010. The
power of convex relaxation: Near-optimal matrix
completion. IEEE Transactions on Information The-
ory, 56(5):2053–2080.

Venkat Chandrasekaran, Sujay Sanghavi, Pablo A Par-
rilo, and Alan S Willsky. 2011. Rank-sparsity inco-
herence for matrix decomposition. SIAM Journal on
Optimization, 21(2):572–596.

Yu Cheng, Mo Yu, Xiaoxiao Guo, and Bowen Zhou.
2017. Few-shot learning with meta metric learners.
In NIPS 2017 Workshop on Meta-Learning.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Abstract

This paper proposes a novel document repre-
sentation, called Multi-Resolution Represen-
tation (MulR), to improve the early detection
of risks in social media sources. The goal
is to effectively identify the potential risk us-
ing as little evidence as possible and with
as much anticipation as possible. MulR al-
lows us to generate multiple “views” of the
text. These views capture different semantic
meanings for words and documents at differ-
ent levels of granularity, which is very use-
ful in early scenarios to model the variable
amounts of evidence. The experimental eval-
uation shows that MulR using low resolution
is better suited for modeling short documents
(very early stages), whereas large documents
(medium/late stages) are better modeled with
higher resolutions. We evaluate the proposed
ideas in two different tasks where anticipation
is critical: sexual predator detection and de-
pression detection. The experimental evalua-
tion for these early tasks revealed that the pro-
posed approach outperforms previous method-
ologies by a considerable margin.

1 Introduction

Everyday there is a huge amount of people in-
teracting in many social media sites. Unfortu-
nately this immense cyber-world has been misused
by cyber-criminals, who hide in the depths of the
web. For this reason, the social media informa-
tion has been increasingly studied in the context
of applications related to security, forensics and
e-commerce. Recently the early prediction sce-
narios have attracted the attention of the scientific
community (Losada et al., 2017), which aims to
prevent major threats in a number of practical situ-
ations by analyzing the text as evidence (e.g., sex-
ual harassment, cyberbullying, etc).

In Natural Language Processing this emerging
field is called early text classification and the goal

is to identify risky-target categories by using as
few text as possible and with as much anticipa-
tion as possible. In real scenarios the amount
of evidence available from users under analysis
is continuously growing. Consider for instance
chat rooms, or posts and comments in social net-
works, these text sources comprise cumulative evi-
dence for early prediction that can be used to better
capture the phenomenon under study (Escalante
et al., 2017; Losada et al., 2017). This scenario
has challenging particularities. For example, in
early stages where 10% or 20% of the informa-
tion is available it is necessary to model very short
length documents, which tend to produce sparse
and low discriminative representations. On the
other hand late stages require to exploit as much
evidence as possible to make accurate predictions.
This dynamism between the document length and
classification stages makes necessary an adequate
representation, that naturally copes with the dy-
namic amount of evidence in short and long texts
generated by users at each stage. Traditional tex-
tual representations, such as Bag-of-Words (BoW)
(Joachims, 1998), have problems dealing with so-
cial media short texts since they cause the repre-
sentation to be high dimensional and very sparse.
Moreover, in the particular case of early risk pre-
diction, class unbalance and noisy text also repre-
sent a challenge.

In this paper we propose a representation that
deals with these challenges by taking advantage of
word vectors into a novel methodology for repre-
senting documents. This representation generates
high-level features, that we called meta-words,
which capture concepts at different resolution lev-
els. A meta-word is a primitive construction rep-
resented by a vector that summarizes the informa-
tion of semantically related words. Our methodol-
ogy associates words with similar semantic mean-
ing to the same meta-words. These meta-words
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are obtained by applying clustering techniques to
word representations, where the resultant “cen-
troids” comprise the meta-words. Documents are
then represented by a Bag-of-Centroids (BoC),
that is, a histogram accounting for the occurrence
of coarse thematic/semantic primitives, i.e., the
meta-words. This part of the work is inspired
by the Bag-of-Visual-Words (BoVW), which is
widely used in computer vision to represent im-
ages (Sivic and Zisserman, 2004; Lazebnik et al.,
2006).

The key aspect for early scenarios is that the
number and size of meta-words, allow us to ma-
nipulate the level of granularity or the resolution
of the representation. This property is very use-
ful to capture discriminative information along
the growing amount of available evidence at each
early stage. We thus propose a multi-resolution
approach, in which primitives at different reso-
lutions are combined to capture feature concepts
at multiple levels of detail. The contributions of
this paper are twofold: (i) a new Multi-Resolution
(MulR) document representation, a generaliza-
tion to represent documents by exploiting word-
vectors at different levels of resolutions; (ii) an
empirical validation of the usefulness of multiple
resolution levels for early risk detection on social
media documents. Our experimental results show
that this approach is a promising alternative for
early text classification scenarios, where there is a
need to make predictions as soon as possible, with
little evidence, while at the same time, being ro-
bust to incorporate more evidence as it becomes
available. We recorded experimental results of an
extensive evaluation of our proposed techniques
over two benchmarks for early scenarios: sexual
predator detection and depression detection. Re-
sults showed that in all cases our methodology out-
performs state-of-the-art methodologies.

Interestingly, document representations based
on partitioning the word-embedding space, like
ours, are somewhat similar to topic modeling
based representations. In the experimental section
we also compare the performance of our method
to different topic-based representations like La-
tent Semantic Analysis (LSA) (Deerwester et al.,
1990) and Latent Dirichlet Allocation (LDA) (Blei
et al., 2003). Experimental results showed that our
method outperformed the reference techniques.
We elaborate on the benefits and limitations of our
proposed techniques later in this paper.

2 Related Work

The Early Text Categorization problem is an
emerging research topic with scant work (Dulac-
Arnold et al., 2011; Escalante et al., 2016, 2017).
Recently, the relevance of the problem has moti-
vated specialized forums such as eRisk-CLEF17
(Losada et al., 2017). One of the first attempts is
based on processing documents in a sentence-level
basis (Dulac-Arnold et al., 2011). At every time t,
the method reads a sentence and attempts to deter-
mine the class of the document. The key aspect
of the work is a Markov Decision Process (MDP),
where each sentence is modeled in a TFIDF vec-
tor. More recently, (Escalante et al., 2016) pro-
posed a straightforward solution for early detec-
tion scenarios by using the naı̈ve Bayes classifier.
The idea consists in training with full documents,
but when partial information has to be classified,
the maximum a posteriori probability was esti-
mated over the available text. Using this simple
yet effective approach, the authors obtained com-
petitive performance with the method in (Dulac-
Arnold et al., 2011). Furthermore, results reported
in (Escalante et al., 2016) were the first evaluation
on early sexual predator detection.

In (Escalante et al., 2017) the authors propose
methods to exploit Profile Based Representations
(PBR’s) for words (López-Monroy et al., 2015).
PBRs are Distributional Term Representations of
terms in the vocabulary. Similar to word embed-
dings these representations build a vector for each
word, which aim to extract/learn concepts from
simple occurrence statistics of terms in the tar-
get classes. PBRs capture discriminative infor-
mation in a very low dimensional and non-sparse
space suitable for early text classification prob-
lems. In other work, (Errecalde et al., 2017) suc-
cessfully adapted a version of PBR’s for the prob-
lem of early depression detection in the context
of the eRisk-CLEF17 shared task. The evidence
about PBRs suggests that this representation can
naturally cope with missing information and ob-
tain discriminative representations for incomplete
documents. Nevertheless, just as the vast ma-
jority of word embeddings in the literature for
standard text classification, there is no consensus
about how to exploit these term vectors to repre-
sent entire phrases or documents (e.g., the most
common strategy is to average the term vectors in
documents).

The proposed method is based on creating meta-
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words to represent documents. Clustering words
into meaningful groups based on some measure of
similarity to represent text is not a new concept.
One of the classic approaches is term clustering in
an unsupervised manner that was first investigated
by (Lewis, 1992). He called his method recipro-
cal nearest neighbor clustering. His method con-
sists of joining words that are similar according
to a measure of similarity. In other work, Brown
et al. (1992) explored the idea of discovering sim-
ilarities between words to obtain clusters at dif-
ferent levels. One key difference with our pro-
posal is that in (Brown et al., 1992), terms are
deterministically/probabilistically associated with
a discrete class, where terms that are in the same
class are similar in some aspect. However in our
proposed strategy, we exploit word vectors instead
of a discrete random deterministic variable (e.g.,
soft/hard partitions of word sets). This makes pos-
sible to discover different clusters and meta-words
if we change the word representation. Thus, the
proposed strategy is highly adaptable to other do-
mains, where the specialization would be achieved
by changing the word representation for the prob-
lem. In other work, Li and Jain (1998) found that
term grouping helps to reduce the feature dimen-
sionality, and at the same time, overcomes the gen-
eralization problem of feature selection. The evi-
dence has showed that the performance of the clas-
sifier is, at least maintained (Li and Jain, 1998;
Slonim and Tishby, 2001). Finally, other authors
have also studied the problem of term clustering
under a supervised scheme. For example, Baker
and McCallum (1998) used a supervised scheme
to cluster similar words. They carried out exper-
iments using a Naive Bayes classifier and found
results improvement by using a single word repre-
sentation.

The methods proposed in this research work
follow a line of thinking focused on the docu-
ment representation rather than term representa-
tion. Hence, the proposed method takes advan-
tage of specialized vector representation of words
(e.g., PBR), but several extensions can be envi-
sioned using other word embeddings in the liter-
ature. The benefits of our approach are that it is
model independent, easy to implement, and com-
putes lower dimensional and less-sparse represen-
tations than traditional BoW. More important, our
method improves over state of the art methods,
outperforming the methods in (Errecalde et al.,

2017; Escalante et al., 2017) that in turn, outper-
form that in (Dulac-Arnold et al., 2011; Escalante
et al., 2016).

3 Multi-Resolution Document
Representation

We propose a multi resolution representation that
allows to generate multiple “views” of the ana-
lyzed document. The intuition behind the pro-
posal of a multi-resolution representation is that
words will activate differently each view accord-
ing to the amount of available text. We assume
that having different resolution levels will allow to
effectively represent the content of short and large
texts as needed along different early stages. The
proposed multi-resolution framework is depicted
in Figure 1. The idea consists in associating words
with similar meaning to the same meta-words in
each resolution space. Documents are then repre-
sented by multiple Bag-of-Centroids (BoC), that
is, multiple histograms accounting for the occur-
rence of coarse concepts. Hence, this representa-
tion can be seen as multiple BoW representations
that incorporate multiple semantic resolutions. In
Section 3.1 we describe the process to build a Bag-
of-Centroids at a single resolution, then in Section
3.2 we formally present the Multi-Resolution vari-
ant.

3.1 Single Resolution: Bag of Centroids

Let D = {(d1, y1), . . . , (dh, yh)} be a training set
of h-pairs of documents di and class labels yi.
Also let V = {w1, . . . , wr} denote the vocabulary
of terms (in our case words). In order to create
the Bag of Centroids (BoC) representation of each
document, we first compute the vector representa-
tion vi of each word wi in the vocabulary of the
collection. Note that our framework is agnostic to
the underlying process for learning word represen-
tations and therefore any word vector representa-
tion can be used, for example word embeddings
(Mikolov et al., 2013) or distributional term repre-
sentations (Lavelli et al., 2004).

The proposed framework is based on the idea of
clustering words using the semantic “distance” in
the word embedding space. Thus, the first step of
the algorithm consists of clustering the word em-
bedding vectors vi and finding the cluster centers
to create the proposed meta-words. The represen-
tation of the vocabulary collection in the word em-
bedding space W is the input for the clustering
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Figure 1: Algorithm to represent documents as meta-words using three hypothetical resolutions. The document is
represented using the “meta-words” defined by the clustering of the vector representations of the vocabulary.

algorithm. For this purpose a variety of cluster-
ing approaches can be used. In our experimen-
tal evaluation, we explored different algorithms
and found out that k-means offers a good trade-
off between performance and speed. We applied
k-means to the W representation to find the cen-
ter of the clusters C = {c1, c2, . . . , ck}, with k
being the number of selected centroids. Then,
based on these cluster centers and using l1-norm,
we found a one-to-one association of each word to
the closest cluster center in the word embedding
space. In other words, for each word vi, we can
find an associated cluster center or meta-word cu
with u ∈ {1, 2, . . . , k}. We denote this mapping
by cu = closest(vi, C), where closest returns the
centroid inC with the minimum distance to vi. Fi-
nally, the BoCk representation for each document
dj corresponds to BoCk(dj) = {(c`, n`)}`=1...k

where c` corresponds to each of the k centroids
and n` = |{vi|∀vi ∈ dj , c` = closest(vi, C)}|.
In other words, BoCk(dj) corresponds to a his-
togram of centroid frequencies, where each pair
(c`, n`) represents a centroid (meta-word) and its
corresponding frequency in the document.

The BoC algorithm depends on one parameter:
the number of clusters used to represent each doc-
ument. This parameter is associated with the level
of semantic coarseness used in the representation.
In this regard, coarseness refers to the level of
meta-word inclusivity: the more words associated
with a single meta-word, the coarser the represen-
tation. Conversely, with fewer words, the repre-
sentation becomes more granular. Note that this
representation has well known parallels in the ex-
treme cases. When each word becomes a cen-
troid, the resulting representation is equivalent to
the typical BoW representation, whereas a coarser
representation, with only one meta word, will be

equivalent to having the average meta-word of the
entire collection.

3.2 Multi-Resolution BoC

The above proposed framework is particularly
suitable for incorporating multi-resolution pro-
cessing, given that the main parameter is related to
the granularity or coarseness of the representation.
As we will show in our analysis, this property is
useful for early scenarios, since few/coarse meta-
words allow to better encode documents with little
text, whereas many/granular meta-words are use-
ful when more text become available. We propose
to exploit this multi-resolution version of the BoC
representation. In this extension of the basic al-
gorithm, we use a partition of the word embed-
ding space at multiple levels and concatenate them
into a new representation. Combining the different
granularities into a single representation results in
a more robust document model that can help to
capture different amounts of text as needed. Intu-
itively, the coarser levels sufficiently classify doc-
uments in early stages, while the more granular
levels exploit the additional evidence from longer
documents on late stages. We present quantita-
tive and qualitative experiments that support this
claim in two datasets: Sexual Predator Detection
and Depression Detection.

We call this variation of the BoC represen-
tation Multi-Resolution-BoC (MulR). Formally:
MulR(dj) = {BoCk1(dj) ∪ BoCk2(dj) ∪ . . . ∪
BoCkn(dj)}, where {k1, k2, . . . kn} correspond to
a set of granular levels. Figure 1 shows the
general framework, graphically depicting the pro-
cess involved in transforming a document into
a representation based on meta-words. The fig-
ure also includes the process of multi-resolution
modification described above. In the figure, the
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meta-words depicted with ’blue’ represent the
more granular clusters, and those depicted with
’green’ represent the less granular clusters. The
multi-resolution BoC variation improves the per-
formance by combining the information present at
various levels of granularity. Moreover, when doc-
uments are closely related, more fine grained fea-
tures allow to capture finer details and therefore
produces better text classification results. This
multi-resolution approach combines the advan-
tages of both approaches to create an overall more
effective classification method.

4 Data collections

For experiments we considered the two data sets
described in Table 2. The tasks are Sexual Preda-
tor Detection (SPD) and Depression Detection,
where clearly early detection is crucial. For the
former we used the only publicly available data set
for sexual predator detection (Inches and Crestani,
2012). This data set was released in the context
of the sexual predator identification task at PAN-
CLEF’12 and comprises a large number of chat
conversations that include real sexual predators.
Thus, the task approached is that of identifying
those conversations that potentially include a sex-
ual predator, as in (Villatoro-Tello et al., 2012;
Escalante et al., 2013, 2016). For the depres-
sion detection task we use the dataset presented in
(Losada et al., 2017). In this dataset, each instance
has the post history for a user, and depressed users
were self-identified as having been diagnosed with
depression.

5 Evaluation Framework

For our experiments, we lower case the text in doc-
uments and use words and punctuation marks as
terms1. The representation obtained for each doc-
ument is then processed by a Support Vector Ma-
chine (SVM) with a linear kernel.

For the evaluation of the earliness performance,
we report the performance of the different meth-
ods when using increasing amounts of textual ev-
idence (chunk by chunk evaluation). This eval-
uation allows to quantify prediction performance
when using partial information in documents, and
it is a strategy that has been used to evaluate
early classification (Escalante et al., 2016; Er-
recalde et al., 2017; Losada et al., 2017). For

1We used terms with frequency higher than 10 in the train-
ing datasets.

the evaluation of performance we used the f1 =
2×precision×recall
precision+recall measure. This decision was

made in agreement with previous work that reports
this metric for the positive class (Errecalde et al.,
2017). Please note that, contrary to other mea-
sures, such as accuracy, f1 measure accounts for
the class imbalance problem when only the posi-
tive class is analyzed. This is desirable for the data
sets we consider as they are highly unbalanced.

Word-vector representations: As previously
mentioned, the proposed MulR representation
generalizes word-vector representations and thus
can extend any representation that models each
term in the vocabulary using a vector. For this
purpose a wide variety of word embeddings or
distributional term representations could be used.
Both of them exploit the distributional hypothesis
to build word vectors, nonetheless they differ in
the strategy to capture the relevant information. In
this work we use the widely used word2vec, but
also other representations that have been used in
recent works for these collections. In Table 1 we
describe each of the word vector representations
considered for this work2.

Baselines: The main baselines in this work
are methods based on the idea of topic modeling
for text classification. Topic-based representations
group words into topics defined by a set of related
words3. Given the strong relation to our method
we compare our proposal against Latent Seman-
tic Analysis (LSA) and Latent Dirichlet Alloca-
tion (LDA). Furthermore, we also compare with
Bag-of-Words using Term Frequency Inverse Doc-
ument Frequency, since it is a traditional baseline
in text categorization tasks.

6 Experimental Results

In this section we report the experimental results
for the MulR representation and the selected ap-
proaches from the state-of-the-art. In all the exper-
iments we trained the reference classifier (SVM)
using full-length documents in the training dataset.
In the testing phase, each approach uses all the
available information in each of the ten chunks
(each chunk increases the available text in 10%).
More specifically, we generate document repre-
sentations starting with the first chunk, and then
incrementally adding one chunk at a time. The

2For distributional representations we used the framework
at https://github.com/lopez-monroy/FeatureSpaceTree

3We empirically set to 200 the size of the concept space.
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Word Representation Description
W2V (Mikolov et al., 2013) Word2Vec uses the Skip-ngram model to find word representations that are use-

ful to predict the surrounding words of a sentence or a document. The method
is efficient for learning high-quality vector representations of words from large
amounts of text data. We empirically set to 200 the vector dimension.

DOR (Lavelli et al., 2004) Document Occurrence Representation (DOR) captures the semantics of a word
by observing occurrence distribution over documents in the corpus. DOR rep-
resents each word vi as a vector ti = 〈ti,1, . . . , ti,|D|〉, where |D| is the number
of documents in the training collection, and ti,k indicates the relevance of the
document Dk to characterize vi.

TCOR(Lavelli et al., 2004) In Term Co-occurrence Representation (TCOR) the semantics of a word is cap-
tured by observing its co-occurrences with other words across documents in the
corpus. Thus, each word vi is associated to a vector ti = 〈ti,1, . . . , ti,|V|〉,
where |V| indicates the vocabulary size, and ti,k denotes the contribution of the
word vk to the semantic description of vi.

PBR (López-Monroy et al., 2015) Profile Based Representation exploits occurrence-statistics of words over a set
of documents in target categories. PBR represents each word vi ∈ V with a
vector ti = 〈ti,1, . . . , ti,q〉, where the ti,k is the degree of association between
word vi and category Ck. The target categories can be taken from the task or
artificially created by means of clustering such as in (Escalante et al., 2017).

TVT (Errecalde et al., 2017) Temporal Variation Terms (TVT) is an adapted version of PBR for early scenar-
ios. TVT builds new artificial target classes/labels in the training set simulating
a text stream to generate enriched representations of ti. The idea is to exploit the
positive category to create a set of new artificial categories using text-fragments.

Table 1: Word vector representations for early experimentation.

Task Data set Training Test
Sexual predator det. PAN’12 6588 15329

Depression det. eRisk’17 486 401

Table 2: Data sets considered for early experimenta-
tion. There are only two classes in each dataset.

models will then make predictions incrementally
as well. We report f1 performance when using
different amounts of text from test documents. For
the proposed MulR representation, we build 5 dif-
ferent resolutions: 10, 50, 100, 500, and 1000. The
goal was to generate meta-words at different levels
of granularity, and we plan to further explore the
impact of these resolutions in our future research.

In the following experiments, we used the word
representations in Table 1 to build our proposed
MulR document representation. For comparison
purposes we also generate an alternative document
representation by averaging (Avg) term-vectors of
words in each document, which is a popular strat-
egy to build document representations. Finally, we
also compare against several traditional baselines
such as the Bag-of-Words, LSA, and specialized
methods in each collection (Escalante et al., 2017;
Errecalde et al., 2017). We evaluate the useful-
ness of all these different representations in the
two early classification tasks mentioned earlier.

6.1 Sexual Predators Detection
In this section we evaluate the performance of
the proposed MulR and other reference method-

ologies for the SPD early detection task (Figure
2). We also show results for MulR and differ-
ent word representations in Table 3, where sev-
eral findings can be outlined. First of all, results
obtained in early stages (chunk 1 to 4) using the
proposed MulR are clearly superior to those ob-
tained averaging word vectors. This is an interest-
ing outcome, since the MulR representation seems
to be useful for early scenarios independently of
the word vector representation. In the particu-
lar case of MulR(TVT), the representation obtains
an outstanding performance when having little in-
formation (e.g., performance between ≈71% and
≈90% before reading 50% of the text). More im-
portant, performance improves as more evidence
is available (i.e., see the steady improvement up to
≈97%). These results show that MulR is a robust
representation, even in the presence of different
amounts of textual evidence, with a clear advan-
tage for early classification stages.

In Figure 2 we can also observe that MulR
representation outperformed, by a large margin,
the proposed baselines; BoW-TFIDF, LSA, LDA.
Furthermore, MulR representation obtains better
performance than the work in (Escalante et al.,
2017), which consists in averaging the PBRs
(same that Avg-PBR) and is the state-of-the-art
in early SPD. Note that different than (Escalante
et al., 2017), the proposed MulR significantly im-
proves even after reading 40% of the information.
The experimental results in Table 3 also show the
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Figure 2: F1 scores for the chunk by chunk evaluation of the reference methodologies in Sexual Predator Detection.

Method ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9 ch10

BoW-TFIDF 27.40 46.51 59.62 68.33 71.84 75.11 76.49 80.19 81.51 83.63
LSA 35.22 38.93 48.25 55.27 61.21 68.24 70.12 72.54 74.49 77.91
LDA 32.22 36.98 45.27 51.27 58.70 63.87 67.94 70.81 72.41 72.98
Avg(W2V) 55.74 63.87 70.11 82.53 87.24 88.97 88.01 87.45 84.71 83.12
MulR(W2V) 58.97 65.78 71.97 83.09 85.49 87.21 88.46 89.00 89.15 89.49
Avg(DOR) 66.71 76.54 81.01 91.14 92.23 93.91 95.19 95.87 96.47 96.59
MulR(DOR) 68.24 78.77 87.14 92.07 94.18 94.04 94.84 95.24 95.46 95.97
Avg(TCOR) 60.17 67.97 74.41 78.51 81.24 82.71 83.97 82.51 82.90 82.27
MulR(TCOR) 61.51 69.12 75.43 78.89 80.26 79.97 81.01 81.59 82.14 83.01
Avg(PBR) 67.10 76.97 81.69 85.00 86.03 87.21 88.14 89.16 90.25 91.21
MulR(PBR) 69.16 77.41 83.01 87.05 88.07 89.27 90.14 91.51 92.01 92.41
Avg(TVT) 65.74 80.24 86.19 90.25 92.02 93.13 94.39 95.23 95.89 96.58
MulR(TVT) 71.15 84.00 88.56 91.66 94.11 94.92 95.31 96.50 97.16 97.43
(Escalante et al., 2017) 67.10 76.97 81.69 85.00 86.03 87.21 88.14 89.16 90.25 91.21

Table 3: F1 results for the chunk by chunk evaluation of different approaches in Sexual Predator Detection. The
proposed MulR is evaluated using different word vector representations in the literature.

following interesting findings:

1. The most useful word vector representation is
TVT (Errecalde et al., 2017). This is not sur-
prising, since TVT is a specialized distribu-
tion term representation for early prediction
scenarios.

2. Word2Vec 4 representations obtained moder-
ate performance in all experiments. We infer
that much more data of these specific social
media domains are needed in order to build
suitable models.

4Embeddings were trained in each dataset. We tested pre-
trained word embeddings for wikipedia/twitter, but the per-
formance was worse.

3. MulR representation is an effective solution
for all early chunks, but as more text is avail-
able, the other methodologies significantly
increase their discriminative power, as seen
in results for later chunks. In fact, some
representations such as Avg(DOR) can out-
perform MulR(DOR) representation in late
stages. However, even under these conditions
MulR(TVT) and MulR(DOR) outperform all
reference methodologies.

6.2 Depression Detection
In Table 4 we show the experimental results for
early depression detection. In Figure 3 we high-
light the performance of the proposal and the refer-
ence methodologies. From these results we point

1222



Figure 3: F1 scores for the chunk by chunk evaluation of the reference methodologies in Depression Detection.

Method ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9 ch10

BoW-TFIDF 37.97 40.60 41.56 43.59 49.12 54.55 54.90 52.00 54.55 55.10
LSA 33.12 33.94 41.22 42.11 49.52 53.57 47.86 49.52 48.98 51.61
LDA 32.68 32.73 40.83 40.06 43.11 45.33 49.17 50.47 51.94 52.06
Avg(W2V) 35.86 41.03 47.06 48.25 44.93 51.80 54.38 56.14 55.28 55.14
MulR(W2V) 41.34 43.79 47.20 48.44 47.67 52.00 53.91 54.18 54.29 54.39
Avg(DOR) 46.06 47.23 48.02 50.54 54.26 58.27 57.81 58.73 59.84 66.12
MulR(DOR) 47.55 48.12 48.38 51.83 55.56 58.49 52.43 53.06 57.73 54.35
Avg(TCOR) 37.42 44.44 44.60 48.64 49.64 53.33 52.94 53.44 52.46 58.32
MulR(TCOR) 44.76 47.95 46.81 48.32 51.47 52.11 54.01 54.55 56.30 57.06
Avg(PBR) 36.70 45.71 44.00 47.83 46.67 51.61 51.69 52.27 49.41 51.76
MulR(PBR) 40.98 46.15 44.83 48.70 50.00 53.10 57.39 54.55 54.55 55.86
Avg(TVT) 39.18 44.21 45.83 46.94 48.42 51.02 48.94 46.15 48.35 51.11
MulR(TVT) 48.57 48.53 49.59 51.90 51.83 52.55 52.55 53.09 53.03 55.38
(Errecalde et al., 2017) 44.44 44.64 45.45 48.00 50.00 53.44 53.77 53.23 53.55 53.66

Table 4: F1 results for the chunk by chunk evaluation of different approaches in Depression Detection. The
proposed MulR is evaluated using different word vector representations in the literature.

out several interesting findings. The first one is
that for this collection, results obtained by the pro-
posal are clearly superior to others in early stages.
In general, we can observe the following:

1. The most useful representation in early stages
was MulR(TVT), which have considerable
improvements between ≈5% and ≈2% in
chunks 1 to 4.

2. Word Embeddings and DOR showed a simi-
lar behavior than in SPD. But in late stages,
the best representation was Avg(DOR).

3. Depression Detection problem is a much
harder problem than SPD. The F1 measure
is under ≈60% in most of the results. This

could be due to the highly unbalanced dataset
in two ways: i) the number of instances in
each class, and ii) the amount of text con-
tained in documents.

6.3 The Relevance of Individual Resolutions
In this section we aim to study the role of the dif-
ferent resolutions in early scenarios.5 The purpose
of the first analysis is to observe the performance
of each individual resolution in MulR. In Table 5
we show the results of MulR(TVT) under each of
the five resolutions (R1 = 10, R2 = 50, R3 =
100, R4 = 500, R5 = 1000) and each chunk.

5The number and size of resolutions, could improve the
performance, but it is a future research path to enhance the
characterization of specific data sets.
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Sexual Predator Detection
Method ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9 ch10

MulR(TVT)-R1 59.88 74.71 82.17 85.82 89.19 90.19 91.51 92.61 92.42 92.51
MulR(TVT)-R2 70.03 83.03 88.04 90.49 93.00 94.01 94.85 94.70 94.90 95.02
MulR(TVT)-R3 67.87 82.41 87.23 90.17 92.07 92.88 93.91 94.89 95.49 96.20
MulR(TVT)-R4 66.10 80.33 85.89 88.76 90.48 91.86 93.14 93.85 94.73 95.38
MulR(TVT)-R5 62.34 77.73 83.05 86.72 88.64 90.32 92.16 93.04 93.00 93.76
MulR(TVT) 71.15 84.00 88.56 91.66 94.11 94.92 95.31 96.50 97.16 97.43

Table 5: F1 results for the chunk by chunk evaluation of different approaches in Sexual Predator Detection. The
best MulR(TVT) is separately evaluated under each resolution.

For early SPD the evidence is clear; as the resolu-
tion increases the performance in early stages de-
crease.6 Also note that the higher the resolution,
the more chunks needed to outperform the result
of the previous resolution. For example, resolu-
tionR3 outperformsR2 in chunk 8. Also note that
R4 and R5 needed more chunks to obtain compa-
rable performance than R2. Our experimental re-
sults excluding one resolution at the time showed
worse performance, therefore all of them are es-
sential in the overall classification. Clearly, this
evidence shows that the MulR representation is in
fact very useful.

Sexual Predator Detection
Test set R1 R2 R3 R4 R5

chunk-1 4 3 2 1 0
chunk-2 3 2 3 2 0
chunk-3 3 2 2 2 1
chunk-4 3 2 3 1 1
chunk-5 3 2 3 1 1
chunk-6 3 1 4 1 1
chunk-7 3 1 3 2 1
chunk-8 2 2 1 2 3
chunk-9 3 1 1 2 3
chunk-10 3 0 2 2 3

Table 6: Post-analysis in test dataset. Distribution of
the top ten meta-words according to each resolution Ri
at different chunks. We used Information Gain (Hall
et al., 2009) to rank meta-words in MulR(TVT).

In Table 6 we provide further evidence about the
role of different resolutions. In this complemen-
tary analysis we study each chunk at test data. For
this we use the MulR learned in training to repre-
sent test documents, then we compute the Infor-
mation Gain using Weka (Hall et al., 2009) at each
test chunk. In Table 6 we show the number of fea-
tures in each resolution Ri that are present in the
top ten meta-words of the MulR(TVT). The anal-
ysis complements the evidence, lower resolutions
have higher IG at early chunks, whereas higher

6The only exception to this is R1, which has the lowest
overall performance. This is somewhat expected since this
space only has 10 features to represent documents.

resolutions are more necessary in late chunks.

7 Conclusions

In this paper we proposed a multi resolution repre-
sentation that allows to generate multiple “views”
of the document. Intuitively these views expose
different semantic meanings for words and doc-
uments along different resolutions. The differ-
ent resolutions allow to effectively represent the
content of short and large texts at different early
stages. The MulR obtained the best results re-
ported so far on the early Sexual Predator Detec-
tion task dataset (Inches and Crestani, 2012). For
Depression Detection the chunk by chunk evalu-
ation shows promising results for MulR in early
stages. What is more, it was shown that the
MulR further improves the early recognition per-
formance in the two tasks using different word
representations. The relevance of the resolutions
in these results is a key factor to understand the
proposed MulR and future extensions. These re-
sults provide solid evidence to further research on
this topic and encourage researchers to apply and
evaluate the usefulness of multi-resolution fea-
tures for other related early tasks.
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Abstract

Many text classification tasks are known to be
highly domain-dependent. Unfortunately, the
availability of training data can vary drasti-
cally across domains. Worse still, for some
domains there may not be any annotated data
at all. In this work, we propose a multino-
mial adversarial network1 (MAN) to tackle this
real-world problem of multi-domain text clas-
sification (MDTC) in which labeled data may
exist for multiple domains, but in insufficient
amounts to train effective classifiers for one
or more of the domains. We provide theo-
retical justifications for the MAN framework,
proving that different instances of MANs are
essentially minimizers of various f-divergence
metrics (Ali and Silvey, 1966) among multi-
ple probability distributions. MANs are thus
a theoretically sound generalization of tradi-
tional adversarial networks that discriminate
over two distributions. More specifically, for
the MDTC task, MAN learns features that are
invariant across multiple domains by resort-
ing to its ability to reduce the divergence
among the feature distributions of each do-
main. We present experimental results show-
ing that MANs significantly outperform the
prior art on the MDTC task. We also show that
MANs achieve state-of-the-art performance for
domains with no labeled data.

1 Introduction

Text classification is one of the most fundamen-
tal tasks in Natural Language Processing, and has
found its way into a wide spectrum of NLP ap-
plications, ranging from email spam detection and
social media analytics to sentiment analysis and
data mining. Over the past couple of decades,
supervised statistical learning methods have be-
come the dominant approach for text classification

1The source code of MAN is available at https://
github.com/ccsasuke/man.

(e.g. McCallum et al. (1998); Kim (2014); Iyyer
et al. (2015)). Unfortunately, many text classifica-
tion tasks are highly domain-dependent in that a
text classifier trained using labeled data from one
domain is likely to perform poorly on another. In
the task of sentiment classification, for example,
the phrase “runs fast” is usually associated with
positive sentiment in the sports domain; not so
when a user is reviewing the battery of an elec-
tronic device. In real applications, therefore, an
adequate amount of training data from each do-
main of interest is typically required, and this is
expensive to obtain.

Two major lines of work attempt to tackle
this challenge: domain adaptation (Blitzer
et al., 2007) and multi-domain text classification
(MDTC) (Li and Zong, 2008). In domain adap-
tation, the assumption is that there is some do-
main with abundant training data (the source do-
main), and the goal is to utilize knowledge learned
from the source domain to help perform classifica-
tions on another lower-resourced target domain.2

The focus of this work, MDTC, instead simulates
an arguably more realistic scenario, where labeled
data may exist for multiple domains, but in insuffi-
cient amounts to train an effective classifier for one
or more of the domains. Worse still, some domains
may have no labeled data at all. The objective of
MDTC is to leverage all the available resources in
order to improve the system performance over all
domains simultaneously.

One state-of-the-art system for MDTC, the
CMSC system of Wu and Huang (2015), com-
bines a classifier that is shared across all do-
mains (for learning domain-invariant knowledge)
with a set of classifiers, one per domain, each of
which captures domain-specific text classification
knowledge. This paradigm is sometimes known

2See §6 for other variants of domain adaptation.
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as the Shared-Private model (Bousmalis et al.,
2016). CMSC, however, lacks an explicit mech-
anism to ensure that the shared classifier captures
only domain-independent knowledge: the shared
classifier may well also acquire some domain-
specific features that are useful for a subset of the
domains. We hypothesize that better performance
can be obtained if this constraint were explicitly
enforced.

In this paper, we thus propose Multinomial Ad-
versarial Networks (henceforth, MANs) for the task
of multi-domain text classification. In contrast to
standard adversarial networks (Goodfellow et al.,
2014), which serve as a tool for minimizing the
divergence between two distributions (Nowozin
et al., 2016), MANs represent a family of theoret-
ically sound adversarial networks that, in contrast,
leverage a multinomial discriminator to directly
minimize the divergence among multiple proba-
bility distributions. And just as binomial adversar-
ial networks have been applied to numerous tasks
(e.g. image generation (Goodfellow et al., 2014),
domain adaptation (Ganin et al., 2016), cross-
lingual text classification (Chen et al., 2016)), we
anticipate that MANs will make a versatile machine
learning framework with applications beyond the
MDTC task studied in this work.

We introduce the MAN architecture in §2 and
prove in §3 that it directly minimizes the (gener-
alized) f-divergence among multiple distributions
so that they are indistinguishable upon successful
training. Specifically for MDTC, MAN is used to
overcome the aforementioned limitation in prior
art where domain-specific features may sneak into
the shared model. This is accomplished by rely-
ing on MAN’s power of minimizing the divergence
among the feature distributions of each domain.
The high-level idea is that MAN will make the ex-
tracted feature distributions of each domain indis-
tinguishable from one another, thus learning gen-
eral features that are invariant across domains.

We then validate the effectiveness of MAN in
experiments on two MDTC data sets. We find
first that MAN significantly outperforms the state-
of-the-art CMSC method (Wu and Huang, 2015)
on the widely used multi-domain Amazon review
dataset, and does so without relying on external re-
sources such as sentiment lexica (§4.1). When ap-
plied to the second dataset, FDU-MTL (§4.3), we
obtain similar results: MAN achieves substantially
higher accuracy than the previous top-performing

method, ASP-MTL (Liu et al., 2017). ASP-MTL
is the first empirical attempt to use a multinomial
adversarial network for multi-task learning, but is
more restricted and can be viewed as a special case
of MAN. In addition, we provide the first theoretical
guarantees for multinomial adversarial networks
(§3). Finally, while many MDTC methods such as
CMSC require labeled data for each domain, MANs
can be applied in cases where no labeled data ex-
ists for a subset of domains. To evaluate MAN in
this semi-supervised setting, we compare MAN to a
method that can accommodate unlabeled data for
(only) one domain (Zhao et al., 2017), and show
that MAN achieves performance comparable to the
state of the art (§4.2).

2 Model

In this paper, we strive to tackle the text classifi-
cation problem in the real-world setting in which
texts come from a variety of domains, each with a
varying amount of labeled data. Specifically, as-
sume we have a total of N domains, N1 labeled
domains (denoted as ∆L) for which there is some
labeled data, and N2 unlabeled domains (∆U ) for
which no annotated training instances are avail-
able. Denote ∆ = ∆L ∪ ∆U as the collection
of all domains, with N = N1 + N2. The goal of
this work, and of MDTC in general, is to improve
the overall classification performance across all N
domains, measured in this paper as the average3

classification accuracy across theN domains in ∆.

2.1 Model Architecture

As shown in Figure 1, the Multinomial Adver-
sarial Network (MAN) adopts the Shared-Private
paradigm of Bousmalis et al. (2016) and consists
of four components: a shared feature extractor Fs,
a domain feature extractor Fdi for each labeled
domain di ∈ ∆L, a text classifier C, and a domain
discriminator D. The main idea of MAN is to ex-
plicitly model the domain-invariant features that
are beneficial to the main classification task across
all domains (i.e. the shared features, extracted by
Fs), as well as the domain-specific features that
mainly contribute to the classification in its own
domain (the domain features, extracted by Fd).
Here, the adversarial domain discriminator D has
a multinomial output that takes a shared feature

3In this work, we use macro-average over domains, but
MAN can be readily adapted for micro-average or other
(weighted) averaging schemes.

1227



Forward and backward passes when updating the parameters of Fs, Fd and C
Forward and backward passes when updating the parameters of D

Shared 
Feature Extractor 

Domain 
Feature Extractor 

Mini-batch of documents from domain di ∈ Δ

Text Classifier 
C

Domain 
Discriminator 

D

Class LabelDomain Label

�JD
Fs

JD JC(if di 2 �L)

FdiFs

Figure 1: MAN for MDTC. The figure demonstrates the
training on a mini-batch of data from one domain. One
training iteration consists of one such mini-batch train-
ing from each domain. The parameters ofFs,Fd, C are
updated together, and the training flows are illustrated
by the green arrows. The parameters of D are updated
separately, shown in red arrows. Solid lines indicate
forward passes while dotted lines are backward passes.
JDFs

is the domain loss for Fs, which is anticorrelated
with JD (e.g. JDFs

= −JD). (See §2,§3)

vector and predicts the likelihood of that sample
coming from each domain. As seen in Figure 1,
during the training of Fs (green arrows denote the
training flow), Fs aims to confuse D by minimiz-
ing JDFs

, which is anticorrelated to JD (detailed in
§2.2), so that D cannot predict the domain of a
sample given its shared features. The intuition is
that if even a strong discriminatorD cannot tell the
domain of a sample from the extracted features,
those features Fs learned are essentially domain
invariant. By enforcing domain-invariant features
to be learned by Fs, when trained jointly via back-
propagation, the set of domain feature extractors
Fd will each learn domain-specific features bene-
ficial within its own domain.

The architecture of each component is relatively
flexible, and can be decided by the practitioners
to suit their particular classification tasks. For in-
stance, the feature extractors can adopt the form
of Convolutional Neural Nets (CNN), Recurrent
Neural Nets (RNN), or a Multi-Layer Perceptron
(MLP), depending on the input data (see §4). The
input of MAN will also be dependent on the feature

Algorithm 1 MAN Training
Require: labeled corpus X; unlabeled corpus U; Hyperpa-

mameter λ > 0, k ∈ N
1: repeat
2: . D iterations
3: for diter = 1 to k do
4: lD = 0
5: for all d ∈ ∆ do . For all N domains
6: Sample a mini-batch x ∼ Ud

7: fs = Fs(x) . Shared feature vector
8: lD += JD(D(fs); d) . Accumulate D loss
9: Update D parameters using∇lD

10: . Main iteration
11: loss = 0
12: for all d ∈ ∆L do . For all labeled domains
13: Sample a mini-batch (x,y) ∼ Xd

14: fs = Fs(x)
15: fd = Fd(x) . Domain feature vector
16: loss += JC(C(fs,fd);y) . Compute C loss
17: for all d ∈ ∆ do . For all N domains
18: Sample a mini-batch x ∼ Ud

19: fs = Fs(x)
20: loss += λ · JDFs

(D(fs); d) . Domain loss of Fs

21: Update Fs, Fd, C parameters using∇loss
22: until convergence

extractor choice. The output of a (shared/domain)
feature extractor is a fixed-length vector, which is
considered the (shared/domain) hidden features of
some given input text. On the other hand, the out-
puts of C and D are label probabilities for class
and domain prediction, respectively. For example,
both C andD can be MLPs with a softmax layer on
top. In §3, we provide alternative architectures for
D and their mathematical implications. We now
present a detailed description of the MAN training
in §2.2 as well as the theoretical grounds in §3.

2.2 Training

Denote the annotated corpus in a labeled domain
di ∈ ∆L as Xi; and (x, y) ∼ Xi is a sample drawn
from the labeled data in domain di, where x is the
input and y is the task label. On the other hand, for
any domain di′ ∈ ∆, denote the unlabeled corpus
as Ui′ . Note for the choice of unlabeled data of a
labeled domain, one can use a separate unlabeled
corpus or simply use the labeled data (or use both).

In Figure 1, the arrows illustrate the training
flows of various components. Due to the adver-
sarial nature of the domain discriminator D, it
is trained with a separate optimizer (red arrows),
while the rest of the networks are updated with the
main optimizer (green arrows). C is only trained
on the annotated data from labeled domains, and it
takes as input the concatenation of the shared and
domain feature vectors. At test time, for data from
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unlabeled domains with no Fd, the domain fea-
tures are set to the 0 vector for C’s input. On the
contrary,D only takes the shared features as input,
for both labeled and unlabeled domains. The MAN
training procedure is described in Algorithm 1.

In Algorithm 1, LC and LD are the loss func-
tions of the text classifier C and the domain dis-
criminator D, respectively. As mentioned in §2.1,
C has a softmax layer on top for classifica-
tion. We hence adopt the canonical negative log-
likelihood (NLL) loss:

LC(ŷ, y) = − logP (ŷ = y) (1)

where y is the true label and ŷ is the softmax
predictions. For D, we consider two variants of
MAN. The first one is to use the NLL loss same
as C which suits the classification task; while an-
other option is to use the Least-Square (L2) loss
that was shown to be able to alleviate the gradient
vanishing problem when using the NLL loss in the
adversarial setting (Mao et al., 2017):

LNLLD (d̂, d) = − logP (d̂ = d) (2)

LL2D (d̂, d) =

N∑

i=1

(d̂i − 1{d=i})2 (3)

where d is the domain index of some sample and
d̂ is the prediction. Without loss of generality, we
normalize d̂ so that

∑N
i=1 d̂i = 1 and ∀i : d̂i ≥ 0.

Therefore, the objectives of C andD that we are
minimizing are:

JC =
N∑

i=1

E
(x,y)∼Xi

[LC(C(Fs(x),Fd(x)); y)] (4)

JD =
N∑

i=1

E
x∼Ui

[LD(D(Fs(x)); d)] (5)

For the feature extractors, the training of do-
main feature extractors is straightforward, as their
sole objective is to help C perform better within
their own domain. Hence, JFd

= JC for any do-
main d. Finally, the shared feature extractor Fs
has two objectives: to help C achieve higher accu-
racy, and to make the feature distribution invariant
across all domains. It thus leads to the following
bipartite loss:

JFs = JCFs
+ λ · JDFs

where λ is a hyperparameter balancing the two
parts. JDFs

is the domain loss of Fs anticorrelated

to JD:

(NLL)JDFs
= −JD (6)

(L2)JDFs
=

N∑

i=1

E
x∼Ui




N∑

j=1

(Dj(Fs(x))− 1

N
)2




(7)

If D adopts the NLL loss (6), the domain loss is
simply −JD. For the L2 loss (7), JDFs

intuitively
translates to pushing D to make random predic-
tions. See §3 for theoretical justifications.

3 Theories of Multinomial Adversarial
Networks

Binomial adversarial nets are known to have
theoretical connections to the minimization of
various f-divergences4 between two distribu-
tions (Nowozin et al., 2016). However, for ad-
versarial training among multiple distributions, no
theoretical justifications have been provided to our
best knowledge, despite that this idea has recently
been explored empirically (Liu et al., 2017).

In this section, we present a theoretical analy-
sis showing the validity of MAN. In particular, we
show that MAN’s objective is equivalent to mini-
mizing the total f-divergence between each of the
shared feature distributions of the N domains, and
the centroid of the N distributions. The choice
of loss function will determine which specific f-
divergence is minimized. Furthermore, with ade-
quate model capacity, MAN achieves its optimum
for either loss function if and only if all N shared
feature distributions are identical, hence learning
an invariant feature space across all domains.

First, consider the distribution of the shared fea-
tures f for instances in each domain di ∈ ∆:

Pi(f) , P (f = Fs(x)|x ∈ di) (8)

Combining (5) with the two loss functions (2),
(3), the objective of D can be written as:

JNLLD = −
N∑

i=1

E
f∼Pi

[logDi(f)] (9)

JL2D =
N∑

i=1

E
f∼Pi




N∑

j=1

(Dj(f)− 1{i=j})2



(10)

4An f-divergence (Ali and Silvey, 1966) is a function that
measures the distance between two probability distributions,
e.g. the KL or Jensen-Shannon divergence.
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where Di(f) is the i-th dimension of D’s (nor-
malized) output vector, which conceptually corre-
sponds to the probability of D predicting that f is
from domain di

We first derive the optimal D for any fixed Fs.
Lemma 1. For any fixed Fs, with either NLL or
L2 loss, the optimum domain discriminator D∗ is:

D∗i (f) =
Pi(f)∑N
j=1 Pj(f)

(11)

The proof involves an application of the La-
grangian Multiplier to solve the minimum value
of JD, and the details can be found in the Ap-
pendix. We then have the following main theo-
rems for the domain loss for Fs:
Theorem 1. Let P =

∑N
i=1 Pi

N . When D is trained
to its optimality, if D adopts the NLL loss:

JDFs
= −min

θD
JD = −JD∗

= −N logN +N · JSD(P1, P2, . . . , PN )

= −N logN +
N∑

i=1

KL(Pi‖P )

where JSD(·) is the generalized Jensen-Shannon
Divergence (Lin, 1991) among multiple distribu-
tions, defined as the average Kullback-Leibler di-
vergence of each Pi to the centroid P (Aslam and
Pavlu, 2007).

Theorem 2. If D uses the L2 loss:

JDFs
=

N∑

i=1

E
f∼Pi




N∑

j=1

(D∗j (f)−
1

N
)2




=
1

N

N∑

i=1

χ2
Neyman(Pi‖P )

where χ2
Neyman(·‖·) is the Neyman χ2 diver-

gence (Nielsen and Nock, 2014). The proof of
both theorems can be found in the Appendix.

Consequently, by the non-negativity and joint
convexity of the f-divergence (Csiszar and Korner,
1982), we have:

Corollary 1. The optimum of JDFs
is −N logN

when using NLL loss, and 0 for the L2 loss. The
optimum value above is achieved if and only if
P1 = P2 = · · · = PN = P for either loss.

Therefore, the loss of Fs can be interpreted as
simultaneously minimizing the classification loss

Book DVD Elec. Kit. Avg.
Domain-Specific Models Only

LS 77.80 77.88 81.63 84.33 80.41
SVM 78.56 78.66 83.03 84.74 81.25
LR 79.73 80.14 84.54 86.10 82.63

MLP 81.70 81.65 85.45 85.95 83.69
Shared Model Only

LS 78.40 79.76 84.67 85.73 82.14
SVM 79.16 80.97 85.15 86.06 82.83
LR 80.05 81.88 85.19 86.56 83.42

MLP 82.40 82.15 85.90 88.20 84.66
MAN-L2-MLP 82.05 83.45 86.45 88.85 85.20
MAN-NLL-MLP 81.85 83.10 85.75 89.10 84.95

Shared-Private Models
RMTL1 81.33 82.18 85.49 87.02 84.01

MTLGraph2 79.66 81.84 83.69 87.06 83.06
CMSC-LS3 82.10 82.40 86.12 87.56 84.55

CMSC-SVM3 82.26 83.48 86.76 88.20 85.18
CMSC-LR3 81.81 83.73 86.67 88.23 85.11
SP-MLP 82.00 84.05 86.85 87.30 85.05

MAN-L2-SP-MLP 82.46
(±0.25)

83.98
(±0.17)

87.22*
(±0.04)

88.53
(±0.19)

85.55*
(±0.07)

MAN-NLL-SP-MLP 82.98*
(±0.28)

84.03
(±0.16)

87.06
(±0.23)

88.57*
(±0.15)

85.66*
(±0.14)

1 Evgeniou and Pontil (2004)
2 Zhou et al. (2011)
3 Wu and Huang (2015)

Table 1: MDTC results on the Amazon dataset. Mod-
els in bold are ours while the performance of the rest is
taken from Wu and Huang (2015). Numbers in paren-
theses indicate standard errors, calculated based on 5
runs. Bold numbers indicate the highest performance
in each domain, and ∗ shows statistical significance
(p < 0.05) over CMSC under a one-sample T-Test.

JC as well as the divergence among feature distri-
butions of all domains. It can thus learn a shared
feature mapping that is invariant across domains
upon successful training while being beneficial to
the main classification task.

4 Experiments

4.1 Multi-Domain Text Classification

In this experiment, we compare MAN to state-of-
the-art MDTC systems on the multi-domain Ama-
zon review dataset (Blitzer et al., 2007), which is
one of the most widely used MDTC datasets. Note
that this dataset was already preprocessed into a
bag of features (unigrams and bigrams), losing all
word order information. This prohibits the use of
CNNs or RNNs as feature extractors, limiting the
potential performance of the system. Nonetheless,
we adopt the same dataset for fair comparison and
employ a MLP as our feature extractor. In par-
ticular, we take the 5000 most frequent features
and represent each review as a 5000d feature vec-
tor, where feature values are raw counts of the fea-
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tures. Our MLP feature extractor would then have
an input size of 5000 in order to process the re-
views.

The Amazon dataset contains 2000 samples for
each of the four domains: book, DVD, electron-
ics, and kitchen, with binary labels (positive, neg-
ative). Following Wu and Huang (2015), we con-
duct 5-way cross validation. Three out of the five
folds are treated as the training set, one serves as
the validation set, while the remaining is the test
set. The 5-fold average test accuracy is reported.

Table 1 shows the main results. Three types of
models are shown: Domain-Specific Models Only,
where only in-domain models are trained5; Shared
Model Only, where a single model is trained with
all data; and Shared-Private Models, a combina-
tion of the previous two. Within each category,
various architectures are examined, such as Least
Square (LS), SVM, and Logistic Regression (LR).
As explained before, we use MLP as our feature
extractors for all our models (bold ones). Among
our models, the ones with the MAN prefix use ad-
versarial training, and MAN-L2 and MAN-NLL in-
dicate MAN with the L2 loss and the NLL loss, re-
spectively.

From Table 1, we can see that by adopting mod-
ern deep neural networks, our methods achieve su-
perior performance within the first two model cat-
egories even without adversarial training. This is
corroborated by the fact that our SP-MLP model
performs comparably to CMSC, while the latter
relies on external resources such as sentiment lex-
ica. Moreover, when our multinomial adversar-
ial nets are introduced, further improvement is
observed. With both loss functions, MAN out-
performs all Shared-Private baseline systems on
each domain, and achieves statistically signifi-
cantly higher overall performance. For our MAN-
SP models, we provide the mean accuracy as well
as the standard errors over five runs, to illustrate
the performance variance and conduct significance
tests. It can be seen that MAN’s performance
is relatively stable, and consistently outperforms
CMSC.

4.2 Experiments for Unlabeled Domains

As CMSC requires labeled data for each domain,
their experiments were naturally designed this
way. In reality, however, many domains may not

5For our models, it means Fs is disabled. Similarly, for
Shared Model Only, no Fd is used.

Target Domain Book DVD Elec. Kit. Avg.
MLP 76.55 75.88 84.60 85.45 80.46

mSDA1 76.98 78.61 81.98 84.26 80.46
DANN2 77.89 78.86 84.91 86.39 82.01

MDAN (H-MAX)3 78.45 77.97 84.83 85.80 81.76
MDAN (S-MAX)3 78.63 80.65 85.34 86.26 82.72
MAN-L2-SP-MLP 78.45 81.57 83.37 85.57 82.24
MAN-NLL-SP-MLP 77.78 82.74 83.75 86.41 82.67

1 Chen et al. (2012)
2 Ganin et al. (2016)
3 Zhao et al. (2017)

Table 2: Results on unlabeled domains. Models in bold
are our models while the rest is taken from Zhao et al.
(2017). Highest domain performance is shown in bold.

have any annotated corpora available. It is there-
fore also important to look at the performance
in these unlabeled domains for a MDTC system.
Fortunately, as depicted before, MAN’s adversarial
training only utilizes unlabeled data from each do-
main to learn the domain-invariant features, and
can thus be used on unlabeled domains as well.
During testing, only the shared feature vector is
fed into C, while the domain feature vector is set
to 0.

In order to validate MAN’s effectiveness, we
compare to state-of-the-art multi-source domain
adaptation (MS-DA) methods (see §6). Compared
to standard domain adaptation methods with one
source and one target domain, MS-DA allows the
adaptation from multiple source domains to a sin-
gle target domain. Analogically, MDTC can be
viewed as multi-source multi-target domain adap-
tation, which is superior when multiple target do-
mains exist. With multiple target domains, MS-
DA will need to treat each one as an independent
task, which is more expensive and cannot utilize
the unlabeled data in other target domains.

In this work, we compare MAN with one re-
cent MS-DA method, MDAN (Zhao et al., 2017).
Their experiments only have one target domain
to suit their approach, and we follow this setting
for fair comparison. However, it is worth not-
ing that MAN is designed for the MDTC setting,
and can deal with multiple target domains at the
same time, which can potentially improve the per-
formance by taking advantage of more unlabeled
data from multiple target domains during adver-
sarial training. We adopt the same setting as Zhao
et al. (2017), which is based on the same multi-
domain Amazon review dataset. Each of the four
domains in the dataset is treated as the target do-
main in four separate experiments, while the re-
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books elec. dvd kitchen apparel camera health music toys video baby magaz. softw. sports IMDb MR Avg.
Domain-Specific Models Only

BiLSTM 81.0 78.5 80.5 81.2 86.0 86.0 78.7 77.2 84.7 83.7 83.5 91.5 85.7 84.0 85.0 74.7 82.6
CNN 85.3 87.8 76.3 84.5 86.3 89.0 87.5 81.5 87.0 82.3 82.5 86.8 87.5 85.3 83.3 75.5 84.3

Shared Model Only
FS-MTL 82.5 85.7 83.5 86.0 84.5 86.5 88.0 81.2 84.5 83.7 88.0 92.5 86.2 85.5 82.5 74.7 84.7

MAN-L2-CNN 88.3 88.3 87.8 88.5 85.3 90.5 90.8 85.3 89.5 89.0 89.5 91.3 88.3 89.5 88.5 73.8 87.7
MAN-NLL-CNN 88.0 87.8 87.3 88.5 86.3 90.8 89.8 84.8 89.3 89.3 87.8 91.8 90.0 90.3 87.3 73.5 87.6

Shared-Private Models
ASP-MTL 84.0 86.8 85.5 86.2 87.0 89.2 88.2 82.5 88.0 84.5 88.2 92.2 87.2 85.7 85.5 76.7 86.1

MAN-L2-SP-CNN 87.6* 87.4 88.1* 89.8* 87.6 91.4* 89.8* 85.9* 90.0* 89.5* 90.0 92.5 90.4* 89.0* 86.6 76.1 88.2*
(0.2) (1.0) (0.4) (0.4) (0.7) (0.4) (0.3) (0.1) (0.1) (0.2) (0.6) (0.5) (0.4) (0.4) (0.5) (0.5) (0.1)

MAN-NLL-SP-CNN 86.8* 88.8 88.6* 89.9* 87.6 90.7 89.4 85.5* 90.4* 89.6* 90.2 92.9 90.9* 89.0* 87.0* 76.7 88.4*
(0.4) (0.6) (0.4) (0.4) (0.4) (0.4) (0.3) (0.1) (0.2) (0.3) (0.6) (0.4) (0.7) (0.2) (0.1) (0.8) (0.1)

Table 3: Results on the FDU-MTL dataset. Bolded models are ours, while the rest is from Liu et al. (2017). High-
est performance is each domain is highlighted. For our full MAN models, standard errors are shown in parenthese
and statistical significance (p < 0.01) over ASP-MTL is indicated by *.

maining three are used as source domains.
In Table 2, the target domain is shown on top,

and the test set accuracy is reported for various
systems. It shows that MAN outperforms several
baseline systems, such as a MLP trained on the
source-domains, as well as single-source domain
adaptation methods such as mSDA (Chen et al.,
2012) and DANN (Ganin et al., 2016), where the
training data in the multiple source domains are
combined and viewed as a single domain. Finally,
when compared to MDAN, MAN and MDAN each
achieves higher accuracy on two out of the four
target domains, and the average accuracy of MAN
is similar to MDAN. Therefore, MAN achieves
competitive performance for the domains without
annotated corpus. Nevertheless, unlike MS-DA
methods, MAN can handle multiple target domains
at one time.

4.3 Experiments on the MTL Dataset

To make fair comparisons, the previous experi-
ments follow the standard settings in the literature,
where the widely adopted Amazon review dataset
is used. However, this dataset has a few limita-
tions. First, it has only four domains. In addition,
the reviews are already tokenized and converted to
a bag of features consisting of unigrams and bi-
grams. Raw review texts are hence not available
in this dataset, making it impossible to use certain
modern neural architectures such as CNNs and
RNNs. To provide more insights on how well MAN
works with other feature extractor architectures,
we provide a third set of experiments on the FDU-
MTL dataset (Liu et al., 2017). This dataset is cre-
ated as a multi-task learning dataset with 16 tasks,
where each task is essentially a different domain of
reviews. It has 14 Amazon domains: books, elec-

tronics, DVD, kitchen, apparel, camera, health,
music, toys, video, baby, magazine, software, and
sports, in addition to two movie review domains
from the IMDb and the MR datasets. Each domain
has a development set of 200 samples, and a test
set of 400 samples. The amount of training and un-
labeled data vary across domains but are roughly
1400 and 2000, respectively.

We compare MAN with ASP-MTL (Liu et al.,
2017) on this FDU-MTL dataset. ASP-MTL also
adopts adversarial training for learning a shared
feature space, and can be viewed as a special
case of MAN that adopts the NLL loss (MAN-NLL)
and chooses LSTM as their feature extractor. In
contrast, we found a CNN-based feature extrac-
tor (Kim, 2014) achieves much better accuracy
while being∼ 10 times faster. Indeed, as shown in
Table 3, with or without adversarial training, our
CNN models outperform LSTM ones by a large
margin. When used in our MAN framework, we at-
tain the state-of-the-art performance on every do-
main with a 88.4% overall accuracy, surpassing
ASP-MTL by a significant margin of 2.3%.

We hypothesize the reason a LSTM performs
much worse than a CNN is its lack of an atten-
tion mechanism. In ASP-MTL, only the last hid-
den unit is taken as the extracted features. While
LSTMs are effective for representing the context
for each token, it might not be powerful enough
for directly encoding the entire document (Bah-
danau et al., 2015). Therefore, various atten-
tion mechanisms have been introduced on top
of the vanilla LSTM to select words (and con-
texts) most relevant for making the predictions.
In our preliminary experiments, we find that a
Bi-directional LSTM with the dot-product atten-
tion (Luong et al., 2015) yields better performance
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than the vanilla LSTM in ASP-MTL. However, it
still does not outperform CNN and is much slower.
As a result, we conclude that, for text classifica-
tion tasks, CNN is both effective and efficient in
extracting local and higher-level features for mak-
ing a single categorization.

Finally, we observe that MAN-NLL achieves
slightly higher overall performance compared to
MAN-L2, providing evidence for the claim in a re-
cent study (Lucic et al., 2017) that the original
GAN loss (NLL) may not be inherently inferior
to the L2 loss. Moreover, the two variants excel
in different domains, suggesting the possibility of
further performance gain when using ensemble.

5 Implementation Details

For all three of our experiments, we use λ = 0.05
and k = 5 (See Algorithm 1). For both optimiz-
ers, Adam (Kingma and Ba, 2015) is used with
learning rate 0.0001. The size of the shared fea-
ture vector is set to 128 while that of the domain
feature vector is 64. Dropout of p = 0.4 is used
in all components. C and D each has one hidden
layer of the same size as their input (128 + 64 for
C and 128 for D). ReLU is used as the activation
function. Batch normalization (Ioffe and Szegedy,
2015) is used in both C and D but not F . We use
a batch size of 8.

For our first two experiments on the Amazon
review dataset, the MLP feature extractor is used.
As described in §4.1, it has an input size of 5000.
Two hidden layers are used, with size 1000 and
500, respectively.

For the CNN feature extractor used in the FDU-
MTL experiment, a single convolution layer is
used. The kernel sizes are 3, 4, and 5, and the num-
ber of kernels are 200. The convolution layers take
as input the 100d word embeddings of each word
in the input sequence. We use word2vec word em-
beddings (Mikolov et al., 2013) trained on a bunch
of unlabeled raw Amazon reviews (Blitzer et al.,
2007). After convolution, the outputs go through
a ReLU layer before fed into a max pooling layer.
The pooled output is then fed into a single fully
connected layer to be converted into a feature vec-
tor of size either 128 or 64. More details of us-
ing CNN for text classification can be found in the
original paper (Kim, 2014). MAN is implemented
using PyTorch (Paszke et al., 2017).

6 Related Work

Multi-Domain Text Classification The MDTC
task was first examined by Li and Zong (2008),
who proposed to fuse the training data from multi-
ple domains either at the feature level or the classi-
fier level. The prior art of MDTC (Wu and Huang,
2015) decomposes the text classifier into a gen-
eral one and a set of domain-specific ones. How-
ever, the general classifier is learned by param-
eter sharing and domain-specific knowledge may
sneak into it. They also require external resources
to help improve accuracy and compute domain
similarities.

Domain Adaptation Domain Adaptation at-
tempts to transfer the knowledge from a source
domain to a target one, and the traditional form
is the single-source, single-target (SS,ST) adapta-
tion (Blitzer et al., 2006). Another variant is the
SS,MT adaptation (Yang and Eisenstein, 2015),
which tries to simultaneously transfer the knowl-
edge to multiple target domains from a single
source. However, it cannot fully take advantage
the training data if it comes from multiple source
domains. MS,ST adaptation (Mansour et al.,
2009; Zhao et al., 2017) can deal with multiple
source domains but only transfers to a single target
domain. Therefore, when multiple target domains
exist, they need to treat them as independent prob-
lems, which is more expensive and cannot utilize
the additional unlabeled data in these domains. Fi-
nally, MDTC can be viewed as MS,MT adapta-
tion, which is arguably more general and realistic.

Adversarial Networks The idea of adversar-
ial networks was proposed by Goodfellow et al.
(2014) for image generation, and has been applied
to various NLP tasks as well (Chen et al., 2016; Yu
et al., 2017). Ganin et al. (2016) first used it for
the SS,ST domain adaptation followed by many
others. Bousmalis et al. (2016) utilized adversar-
ial training in a shared-private model for domain
adaptation to learn domain-invariant features, but
still focused on the SS,ST setting. Finally, the idea
of using adversarial nets to discriminate over mul-
tiple distributions was empirically explored by a
very recent work (Liu et al., 2017) under the multi-
task learning setting, and can be considered as a
special case of our MAN framework with the NLL
domain loss. We propose MAN as a more gen-
eral framework with alternative architectures for
the adversarial component, and for the first time
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provide theoretical justifications the multinomial
adversarial nets. Moreover, Liu et al. (2017) used
a LSTM without attention as their feature extrac-
tor, which we found to perform sub-optimal in
the experiments. We instead chose Convolutional
Neural Nets as our feature extractor that achieves
higher accuracy while running an order of magni-
tude faster (see §4.3).

7 Conclusion

In this work, we propose a family of Multinomial
Adversarial Networks (MANs) that generalize the
traditional binomial adversarial nets in the sense
that MAN can simultaneously minimize the differ-
ence among multiple probability distributions in-
stead of just two. We provide theoretical justifi-
cations for two instances of MAN, MAN-NLL and
MAN-L2, showing they are minimizers of two dif-
ferent f-divergence metrics among multiple distri-
butions, respectively. This indicates MAN can be
used to make multiple distributions indistinguish-
able from one another. It can hence be applied to
a variety of tasks, similar to the versatile binomial
adversarial nets, which have been used in many
areas for making two distributions alike.

In this paper, we design a MAN model for
the MDTC task, following the shared-private
paradigm that has a shared feature extractor to
learn domain-invariant features and domain fea-
ture extractors to learn domain-specific ones. MAN
is used to enforce the shared feature extractor to
learn only domain-invariant knowledge, by resort-
ing to MAN’s power of making indistinguishable
the shared feature distributions of samples from
each domain. We conduct extensive experiments,
demonstrating our MAN model outperforms the
prior art systems in MDTC, and achieves state-of-
the-art performance on domains without labeled
data when compared to multi-source domain adap-
tation methods.
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Appendix A Proofs

A.1 Proofs for MAN-NLL
Assume we have N domains, consider the distribution of the shared features Fs for instances in each
domain di:

Pi(f) , P (f = Fs(x)|x ∈ di)
The objective that D attempts to minimize is:

JD = −
N∑

i=1

E
f∼Pi

[logDi(f)] (12)

where Di(f) is the i-th dimension of D’s output vector, which conceptually corresponds to the softmax
probability of D predicting that f is from domain di. We therefore have property that for any f :

N∑

i=1

Di(f) = 1 (13)

Lemma 1. For any fixed Fs, the optimum domain discriminator D∗ is:

D∗i (f) =
Pi(f)∑N
j=1 Pj(f)

(14)

Proof. For a fixed Fs, the optimum

D∗ = arg min
D

JD = arg min
D

−
N∑

i=1

E
f∼Pi

[logDi(f)]

= arg max
D

N∑

i=1

∫

f
Pi(f) logDi(f)df

= arg max
D

∫

f

N∑

i=1

Pi(f) logDi(f)df

We employ the Lagrangian Multiplier to derive arg maxD
∑N

i=1 Pi(f) logDi(f) under the constraint of
(13). Let

L(D1, . . . ,DN , λ) =
N∑

i=1

Pi logDi − λ(
N∑

i=1

Di − 1)

Let∇L = 0:
{
∇Di

∑N
j=1 Pj logDj = λ∇Di(

∑N
j=1Dj − 1) (∀i)∑N

i=1Di − 1 = 0

Solving the two equations, we have:

D∗i (f) =
Pi(f)∑N
j=1 Pj(f)

On the other hand, the loss function of the shared feature extractor Fs consists of two additive com-
ponents, the loss from the text classifier C, and the loss from the domain discriminator D:

JFs = JCFs
+ λJDFs

, JC − λJD (15)

We have the following theorem for the domain loss for Fs:
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Theorem 1. When D is trained to its optimality:

JDFs
= −JD∗ = −N logN +N · JSD(P1, P2, . . . , PN ) (16)

where JSD(·) is the generalized Jensen-Shannon Divergence (Lin, 1991) among multiple distribu-
tions.

Proof. Let P =
∑N

i=1 Pi

N .
There are two equivalent definitions of the generalized Jensen-Shannon divergence: the original def-

inition based on Shannon entropy (Lin, 1991), and a reshaped one expressed as the average Kullback-
Leibler divergence of each Pi to the centroid P (Aslam and Pavlu, 2007). We adopt the latter one here:

JSD(P1, P2, . . . , PN ) , 1

N

N∑

i=1

KL(Pi‖P ) =
1

N

N∑

i=1

E
f∼Pi

[
log

Pi(f)

P (f)

]
(17)

Now substituting D∗ into JDFs
:

JDFs
= −JD∗ =

N∑

i=1

E
f∼Pi

[logD∗i (f)]

=
N∑

i=1

E
f∼Pi

[
log

Pi(f)∑N
j=1 Pj(f)

]

= −N logN +

N∑

i=1

E
f∼Pi

[
log

Pi(f)∑N
j=1 Pj(f)

+ logN

]

= −N logN +

N∑

i=1

E
f∼Pi


log

Pi(f)
∑N

j=1 Pj(f)

N




= −N logN +
N∑

i=1

E
f∼Pi

[
log

Pi(f)

P

]

= −N logN +
N∑

i=1

KL(Pi‖P )

= −N logN +N · JSD(P1, P2, . . . , PN )

Consequently, by the non-negativity of JSD (Lin, 1991), we have the following corollary:

Corollary 1. The optimum of JDFs
is−N logN , and is achieved if and only if P1 = P2 = · · · = PN = P .

A.2 Proofs for MAN-L2
The proof is similar for MAN with the L2 loss. The loss function used by D is, for a sample from domain
di with shared feature vector f :

LD(D(f), i) =

N∑

j=1

(Dj(f)− 1{i=j})2 (18)

So the objective that D minimizes is:

JD =

N∑

i=1

E
f∼Pi




N∑

j=1

(Dj(f)− 1{i=j})2

 (19)
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For simplicity, we further constrain D’s outputs to be on a simplex:

N∑

i=1

Di(f) = 1 (∀f) (20)

Lemma 2. For any fixed Fs, the optimum domain discriminator D∗ is:

D∗i (f) =
Pi(f)∑N
j=1 Pj(f)

(21)

Proof. For a fixed Fs, the optimum

D∗ = arg min
D

JD = arg min
D

N∑

i=1

E
f∼Pi

[LD(D(f), i)]

= arg min
D

N∑

i=1

∫

f
Pi(f)LD(D(f), i)df

= arg min
D

∫

f

N∑

i=1

Pi(f)

N∑

j=1

(Dj(f)− 1{i=j})2df

Similar to MAN-NLL, we employ the Lagrangian Multiplier to derive
arg maxD

∑N
i=1 Pi(f)

∑N
j=1(Dj(f)− 1{i=j})2 under the constraint of (20). Let∇L = 0:

{
2((
∑N

j=1 Pj)Di − Pi) = λ (∀i)∑N
i=1Di − 1 = 0

Solving the two equations, we have λ = 0 and:

D∗i (f) =
Pi(f)∑N
j=1 Pj(f)

For the domain loss of Fs:

Theorem 2. Let P =
∑N

i=1 Pi

N . When D is trained to its optimality:

JDFs
=

N∑

i=1

E
f∼Pi




N∑

j=1

(Dj(f)−
1

N
)2




=
1

N

N∑

i=1

χ2
Neyman(Pi‖P ) (22)

where χ2
Neyman(·‖·) is the Neyman χ2 divergence (Nielsen and Nock, 2014).
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Proof. Substituting D∗ into LDFs
:

JDFs
=

N∑

i=1

E
f∼Pi




N∑

j=1

(D∗j (f)−
1

N
)2




=
N∑

i=1

∫

f
Pi

N∑

j=1

(
Pj

NP
− 1

N
)2df

=

∫

f

N∑

i=1

N∑

j=1

Pi(
Pj

NP
− 1

N
)2df

=
1

N2

N∑

j=1

∫

f

N∑

i=1

Pi(
Pj

P
− 1)2df

=
1

N2

N∑

j=1

∫

f
NP (

Pj

P
− 1)2df

=
1

N

N∑

j=1

∫

f

(Pj − P )2

P
df

=
1

N

N∑

i=1

χ2
Neyman(Pi‖P )

Finally, by the joint convexity of f-divergence, we have the following corollary:

Corollary 2.

LDFs
=

1

N

N∑

i=1

χ2
Neyman(Pi‖P )

≥ χ2
Neyman(

1

N

N∑

i=1

Pi‖
1

N

N∑

i=1

P )

= χ2
Neyman(P‖P ) = 0

and the equality is attained if and only if P1 = P2 = · · · = PN = P .
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Abstract

Representation learning with pivot-based
methods and with Neural Networks (NNs)
have lead to significant progress in domain
adaptation for Natural Language Processing.
However, most previous work that follows
these approaches does not explicitly exploit
the structure of the input text, and its output
is most often a single representation vector
for the entire text. In this paper we present
the Pivot Based Language Model (PBLM),
a representation learning model that marries
together pivot-based and NN modeling in
a structure aware manner. Particularly, our
model processes the information in the text
with a sequential NN (LSTM) and its output
consists of a context-dependent representation
vector for every input word. Unlike most
previous representation learning models in
domain adaptation, PBLM can naturally
feed structure aware text classifiers such as
LSTM and CNN. We experiment with the
task of cross-domain sentiment classification
on 20 domain pairs and show substantial
improvements over strong baselines.1

1 Introduction

Domain adaptation (DA, (Daumé III, 2007; Ben-
David et al., 2010)) is a fundamental challenge in
NLP, due to the reliance of many algorithms on
costly labeled data which is scarce in many do-
mains. To save annotation efforts, DA aims to im-
port algorithms trained with labeled data from one
or several domains to new ones. While DA algo-
rithms have long been developed for many tasks
and domains (e.g. (Jiang and Zhai, 2007; Mc-
Closky et al., 2010; Titov, 2011; Bollegala et al.,
2011; Rush et al., 2012; Schnabel and Schütze,

1Our code is publicly available at: https://github.
com/yftah89/PBLM-Domain-Adaptation.

2014)), the unprecedented growth of heteroge-
neous online content calls for more progress.

DA through Representation Learning (DReL),
where the DA method induces shared representa-
tions for the examples in the source and the tar-
get domains, has become prominent in the Neural
Network (NN) era. A seminal (non-NN) DReL
work is structural correspondence learning (SCL)
(Blitzer et al., 2006, 2007) which models the con-
nections between pivot features – features that are
frequent in the source and the target domains and
are highly correlated with the task label in the
source domain – and the other, non-pivot, fea-
tures. While this approach explicitly models the
correspondence between the source and the target
domains, it has been outperformed by NN-based
models, particularly those based on autoencoders
(AEs, (Glorot et al., 2011; Chen et al., 2012))
which employ compress-based noise reduction to
extract features that empirically support domain
adaptation. Recently, Ziser and Reichart (2017)
(ZR17) proposed to marry these approaches. They
have presented the autoencoder-SCL models and
demonstrated their superiority over a large num-
ber of previous approaches, particularly those that
employ pivot-based ideas only or NNs only.

Current DReL methods, however, suffer from
a fundamental limitation: they ignore the struc-
ture of their input text (usually sentence or docu-
ment). This is reflected both in the way they repre-
sent their input text, typically with a single vector
whose coordinates correspond to word counts or
indicators across the text, and in their output which
typically consists of a single vector representa-
tion. This structure-indifferent approach stands
in a sharp contrast to numerous NLP algorithms
where text structure plays a key role.

Moreover, learning a single feature vector per
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input example, these methods can feed only task
classifiers such as SVM and feed-forward NNs
that take a single vector as input, but cannot feed
sequential (e.g. RNNs and LSTMs (Hochreiter
and Schmidhuber, 1997)) or convolution (CNNs
(LeCun et al., 1998)) networks that require an in-
put vector per word or sentence in their input. This
may be a serious limitation given the excellent per-
formance of structure aware models in a large va-
riety of NLP tasks, including sentiment analysis
and text classification (e.g.(Kim, 2014; Yogatama
et al., 2017)) - prominent DA evaluation tasks.

Fig. 1 demonstrates the limitation of structure-
indifferent modeling in DA for sentiment analysis.
While the example review contains more positive
pivot features (see definition in Sec. 2), the senti-
ment expressed in the review is negative. A rep-
resentation learning method should encode the re-
view structure (e.g. the role of the terms at first
and However) in order to uncover the sentiment.2

In this paper we overcome these limitations.
We present (Section 3) the Pivot Based Language
Model (PBLM) - a domain adaptation model that
(a) is aware of the structure of its input text; and
(b) outputs a representation vector for every in-
put word. Particularly, the model is a sequential
NN (LSTM) that operates very similarly to LSTM
language models (LSTM-LMs). The fundamen-
tal difference is that while for every input word
LSTM-LMs output a hidden vector and a predic-
tion of the next word, the output of PBLM is a hid-
den vector and a prediction of the next word if that
word is a pivot feature or else, a generic NONE
tag. Hence, PBLM not only exploits the sequential
nature of its input text, but its output states can nat-
urally feed LSTM and CNN task classifiers. No-
tice that PBLM is very flexible: instead of pivot
based unigram prediction it can be defined to pre-
dict pivots of arbitrary length (e.g. the next bigram
or trigram), or, alternatively, it can be defined over
sentences or other textual units instead of words.

Following a large body of DA work, we ex-
periment (Section 5) with the task of binary sen-
timent classification. We consider adaptation be-
tween each domain pair in the four product review
domains of Blitzer et al. (2007) (12 domain pairs)
as well as between these domains and an airline
review domain (Nguyen, 2015) and vice versa (8
domain pairs). The latter 8 setups are particularly

2Pivots are defined with respect to a (source, target) do-
main pair. The pivots highlighted in the figure are the pivots
for this review in all the setups we explored.

I was at first
::::
very

:::::::
excited with my new Zyliss

salad spinner - it is easy to spin and looks
:::::
great

... . However, ... it doesn’t get your greens very
dry. I’ve been surprised and disappointed by
the amount of water left on lettuce after spin-
ning, and spinning, and spinning.

Figure 1: Example review from the kitchen appliances
domain of Blitzer et al. (2007). Positive pivot features
are underlined with a wavy line. Negative pivot fea-
tures are underlined with a straight line. Although there
are more positive pivots than negative ones, the review
is negative.

challenging as the airline reviews tend to be more
negative than the product reviews (see Section 4).

We implement PBLM with two task classi-
fiers, LSTM and CNN, and compare them to
strong previous models, among which are: SCL
(pivot based, no NN), the marginalized stacked de-
noising autoencoder model (MSDA, (Chen et al.,
2012) - AE based, no pivots), the MSDA-DAN
model ((Ganin et al., 2016) - AE with a Do-
main Adversarial Network (DAN) enhancement)
and AE-SCL-SR (the best performing model of
ZR17, combining AEs, pivot information and pre-
trained word vectors). PBLM-LSTM and PBLM-
CNN perform very similarly to each other and
strongly outperform previous models. For exam-
ple, PBLM-CNN achieves averaged accuracies of
80.4%, 84% and 76.2% in the 12 product domain
setups, 4 product to airline setups and 4 airline to
product setups, respectively, while AE-SCL-SR,
the best baseline, achieves averaged accuracies of
78.1%, 78.7% and 68.1%, respectively.

2 Background and Previous Work

DA is an established challenge in machine learn-
ing in general and in NLP in particular (e.g.
(Roark and Bacchiani, 2003; Chelba and Acero,
2004; Daumé III and Marcu, 2006)). While DA
has several setups, the focus of this work is on un-
supervised DA. In this setup we have access to un-
labeled data from the the source and the target do-
mains, but labeled data is available in the source
domain only. We believe that in the current web
era with the abundance of text from numerous do-
mains, this is the most realistic setup.

Several approaches to DA have been proposed,
for example: instance reweighting (Huang et al.,
2007; Mansour et al., 2009), sub-sampling from
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both domains (Chen et al., 2011) and learning joint
target and source feature representations (DReL),
the approach we take here. The rest of this section
hence discusses DReL work that is relevant to our
ideas, but first we describe our problem setup.

Unsupervised Domain Adaptation with DReL
The pipeline of this setup typically consists of two
steps: representation learning and classification.
In the first step, a representation model is trained
on the unlabeled data from the source and target
domains. In the second step, a classifier for the
supervised task is trained on the source domain la-
beled data. To facilitate domain adaptation, ev-
ery example that is fed to the task classifier (sec-
ond step) is first represented by the representation
model of the first step. This is true both when the
task classifier is trained and at test time when it is
applied to the target domain.

An exception of this pipeline are end-to-end
models that jointly learn to represent the data and
to perform the classification task, exploiting the
unlabeled and labeled data together. A representa-
tive member of this class of models (MSDA-DAN,
(Ganin et al., 2016)) is one of our baselines.

Pivot Based Domain Adaptation This ap-
proach was proposed by Blitzer et al. (2006,
2007), through their SCL method. Its main idea
is to divide the shared feature space of the source
and the target domains to a set of pivot features
that are frequent in both domains and have a strong
impact on the source domain task classifier, and a
complementary set of non-pivot features.

In SCL, after the original feature set is divided
into the pivot and non-pivot subsets, this divi-
sion is utilized in order to map the original fea-
ture space of both domains into a shared, low-
dimensional, real-valued feature space. To do so,
a binary classifier is defined for each of the pivot
features. This classifier takes the non-pivot fea-
tures of an input example as its representation,
and is trained on the unlabeled data from both the
source and the target domains, to predict whether
its associated pivot feature appears in the example
or not. Note that no human annotation is required
for the training of these classifiers, the supervision
signal is in the unlabeled data. The matrix whose
columns are the weight vectors of the classifiers is
post-processed with singular value decomposition
(SVD) and the derived matrix maps feature vectors
from the original space to the new.

Since the presentation of SCL, pivot-based DA
has been researched extensively (e.g. (Pan et al.,
2010; Gouws et al., 2012; Bollegala et al., 2015;
Yu and Jiang, 2016; Ziser and Reichart, 2017)).
PBLM is a pivot-based method but, in contrast to
previous models, it relies on sequential NNs to ex-
ploit the structure of the input text. Even models
such as (Bollegala et al., 2015), that embed pivots
and non-pivots so that the former can predict if the
latter appear in their neighborhood, learn a single
representation for all the occurrences of a word in
the input corpus. That is, Bollegala et al. (2015),
as well as other methods that learn cross-domain
word embeddings (Yang et al., 2017), learn word-
type representations, rather than context specific
representations. In Sec. 3 we show how PBLM’s
context specific outputs naturally feed structure
aware task classifiers such as LSTM and CNN.

AE Based Domain Adaptation The basic ele-
ments of an autoencoder are an encoder function
e and a decoder function d, and its output is a re-
construction of its input x: r(x) = d(e(x)). The
parameters of the model are trained to minimize a
loss between x and r(x), such as their Kullback-
Leibler (KL) divergence or their cross entropy.

Variants of AEs are prominent in recent DA
literature. Examples include Stacked Denoising
Autoencoders (SDA, (Vincent et al., 2008; Glo-
rot et al., 2011) and marginalized SDA (MSDA,
(Chen et al., 2012)) that is more computationally
efficient and scalable to high-dimensional feature
spaces than SDA, and has been extended in var-
ious manners (e.g. (Yang and Eisenstein, 2014;
Clinchant et al., 2016)). Finally, models based
on variational autoencoders (Kingma and Welling,
2014; Rezende et al., 2014) have recently been
applied in DA (e.g. variational fair autoencoder
(Louizos et al., 2016)), but in our experiments they
were still not competitive with MSDA.

While AE based models have set a new state-
of-the-art for DA in NLP, they are mostly based
on noise reduction in the representation and do
not exploit task specific and linguistic information.
This paved the way for ZR17 that integrated pivot-
based ideas into domain adaptation with AEs.

Combining Pivots and AEs in Domain Adapta-
tion ZR17 combined AEs and pivot-based mod-
eling for DA. Their basic model (AE-SCL) is a
three layer feed-forward network where the non-
pivot features are fed to the input layer, encoded
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into a hidden representation and this hidden rep-
resentation is then decoded into the pivot features
of the input example. Their advanced model (AE-
SCL-SR) has the same architecture but the decod-
ing matrix consists of pre-trained embeddings of
the pivot features, which encourages input docu-
ments with similar pivots to have similar hidden
representations. These embeddings are induced by
word2vec (Mikolov et al., 2013) trained with unla-
beled data from the source and the target domains.

ZR17 have demonstrated the superiority of
their models (especially, AE-SCL-SR) over SCL
(pivot-based, no AE), MSDA (AE-based, no piv-
ots) and MSDA-DAN (AE-based with adversar-
ial enhancement, no pivots) in 16 cross-domain
sentiment classification setups, including the 12
legacy setups of Blitzer et al. (2007). However,
as in previous pivot based methods, AE-SCL and
AE-SCL-SR learn a single, structure-indifferent,
feature representation of the input text. Our core
idea is to implement a pivot-based sequential neu-
ral model that exploits the structure of its input text
and that its output representations can be smoothly
integrated with structure aware classifiers such as
LSTM and CNN. Our second goal is motivated by
the strong performance of LSTM and CNN in text
classification tasks (Yogatama et al., 2017).

3 Domain Adaptation with PBLMs

We now introduce our PBLM model that learns
representations for DA. As PBLM is inspired by
language modeling, we assume the original fea-
ture set of the NLP task classifier consists of word
unigrams and bigrams. This choice of features
also allows us to directly compare our work to the
rich literature on DA for sentiment classification
where this is the standard feature set. PBLM, how-
ever, is not limited to word n-gram features.

We start with a brief description of LSTM based
language modeling (LSTM-LM, (Mikolov et al.,
2010)) and then describe how PBLM modifies that
model in order to learn pivot-based representations
that are aware of the structure of the input text. We
then show how to employ these representations in
structure aware text classification (with LSTM or
CNN) and how to train such PBLM-LSTM and
PBLM-CNN classification pipelines.

LSTM Language Modeling LSTMs address
the vanishing gradient problem commonly found
in RNNs (Elman, 1990) by incorporating gating
functions into their state dynamics (Hochreiter and

Schmidhuber, 1997). At each time step, an LSTM
maintains a hidden vector, ht, computed in a se-
quence of non-linear transformations of the input
xt and the previous hidden states h1, . . . , ht−1.

Given an input word, an LSTM-LM should pre-
dict the next word in the sequence. For a lexicon
V , the probability of the j-th word is:

p(yt = j) =
eht·Wj

∑|V |
k=1 e

ht·Wk

Here, Wi is a parameter vector learned by the net-
work for each of the words in the vocabulary. The
loss function we consider in this paper is the cross-
entropy loss over these probabilities.

very witty great story not bad overall

NONE
not 

bad
NONENONENONEgreat NONE

(a)

very witty great story not bad overall

Sentiment 

class

(b)

very witty great story not bad overall

Text matrix 

Filters 

Max-Pooling  

Sentiment 
class

FCClassification

(c)

Figure 2: (a) Second order PBLM for representa-
tion learning. (b+c) PBLM based models for DA:
PBLM-LSTM (b) and PBLM-CNN (c).

Representation Learning with PBLM Fig-
ure 2a provides an illustration of the PBLM model.
The first (bottom) layer is an embedding layer,
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where a 1-hot word vector input is multiplied by
a (randomly initialized) parameter matrix before
being passed to the next layer. The second layer is
an LSTM that predicts the next bigram or unigram
if one of these is a pivot (if both are, it predicts the
bigram). Otherwise its prediction is NONE.

PBLM operates similarly to LSTM-LM. The
basic difference between the models is the predic-
tion they make for a given input word (xt). While
an LSTM-LM aims to predict the next input word,
PBLM predicts the next word unigram or bigram
if one of these is a pivot, and NONE otherwise.

PBLM is very flexible. It can be of any order:
a k-order PBLM predicts the longest prefix of the
sequence consisting of the next k words, as long
as that prefix forms a pivot. If none of the pre-
fixes forms a pivot then PBLM predicts NONE.3

Moreover, while PBLM is defined here over word
sequences, it can be defined over other sequences,
e.g., the sentence sequence of a document.

Intuitively, in the example of fig. 2a a second or-
der model is more informative for sentiment clas-
sification than a first-order model (that predicts
only the next word unigram in case that word is
a pivot) would be. Indeed, ”not bad” conveys
the relevant sentiment-related information, while
”bad” is misleading with respect to that same sen-
timent. Notice that after the prefix ”very witty”
the model predicts ”great” and not ”great story”
because in this example ”great” is a pivot while
”great story” is not, as ”great story” is unlikely to
be frequent outside the book review domain.

Figures 2a and 1 also demonstrate a major ad-
vantage of PBLM over models that learn a single
text representation. From the book review exam-
ple in fig. 2a, PBLM learns the connection be-
tween witty - an adjective that is often used to
describe books, but not kitchen appliances - and
great - a common positive adjective in both do-
mains, and hence a pivot feature. Likewise, from
the example of fig. 1 PBLM learns the connection
between easy - an adjective that is often used to
describe kitchen appliances, but not books - and
great. That is, PBLM is able to learn the connec-
tion between witty and easy which will facilitate
adaptation between the books and kitchen appli-
ances domains. Previous work that learns a single
text representation, in contrast, would learn from
fig. 1 a connection between easy and the three piv-
ots: very excited, great and disappointed. From

3A word sequence is one of its own prefixes.

fig. 2a such a method would learn the connection
between witty and great and not bad. The connec-
tion between witty and easy will be much weaker.

Structure Aware Classification with PBLM
Representations PBLM not only exploits the
sequential nature of its input text, but its output
vectors can feed LSTM (PBLM-LSTM, fig. 2b)
and CNN (PBLM-CNN, fig. 2c) classifiers.

PBLM-LSTM is a three-layer model. The bot-
tom two layers are the PBLM model of fig. 2a.
When PBLM is combined with a classifier, its
softmax layer (top layer of fig. 2a) is cut and only
its output vectors (ht) are passed to the next LSTM
layer (third layer of fig. 2b). The final hidden vec-
tor of that layer feeds the task classifier.

Note that since we cut the PBLM softmax layer
when it is combined with the task classifier, PBLM
should be trained before this combination is per-
formed. Below we describe how we exploit this
modularity to facilitate domain adaptation.

In PBLM-CNN, the combination between the
PBLM and the CNN is similar to fig. 2b: the
PBLM’s softmax layer is cut and a matrix whose
columns are the ht vectors of the PBLM is passed
to the CNN. We employ K different filters of size
|ht|×d, each going over the input matrix in a slid-
ing window of d consecutive hidden vectors, and
generating a 1×(n−d+1) size vector, where n is
the input text length. A max pooling is performed
for each of the k vectors to generate a single 1×K
vector that is fed into the task classifier.

PBLM can feed structure aware classifiers other
than LSTM and CNN. Moreover, PBLM can also
generate a single text representation as in most
previous work. This can be done, e.g., by aver-
aging the PBLM’s hidden vectors and feeding the
averaged vector into a linear non-structured clas-
sifier (e.g. logistic regression) or a feed-forward
NN. In Sec. 5 we demonstrate that PBLM’s ability
to feed structure aware classifiers such as LSTM
and CNN provides substantial accuracy gains. To
the best of our knowledge, PBLM is unique in
its structure aware representation: previous work
generated one representation per input example.

Domain Adaptation with PBLM Representa-
tions We focus on unsupervised DA where the
input consists of a source domain labeled set and
a plentiful of unlabeled examples form the source
and the target domains. Our goal is to use the un-
labeled data as a bridge between the domains.
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Our fundamental idea is to decouple the PBLM
training which requires only unlabeled text, from
the NLP classification task which is supervised
and for which the required labeled example set is
available only for the source domain. We hence
employ a two step training procedure. First PBLM
(figure 2a) is trained with unlabeled data from
both the source and the target domains. Then the
trained PBLM is combined with the classifier lay-
ers (top layer of fig. 2b, CNN layers of fig. 2c) and
the final model is trained with the source domain
labeled data to perform the classification task. As
noted above, in the second step we cut the PBLM’s
softmax layer, only its ht vectors are passed to the
classifier. Moreover, during this step the parame-
ters of the pre-trained PBLM are held fixed, only
the parameters of the classifier layers are trained.

4 Experimental Setup
4Task and Domains Following a large body of
DA work, we experiment with the task of cross-
domain sentiment classification. To facilitate com-
parison with previous work we experiment with
the product review domains of (Blitzer et al.,
2007) – Books (B), DVDs (D), Electronic items
(E) and Kitchen appliances (K) (12 ordered do-
main pairs) – replicating the experimental setup
of ZR17 (including baselines, design, and hyper-
parameter details). For each domain there are
2000 labeled reviews, 1000 positive and 1000 neg-
ative, and unlabeled reviews: 6000 (B), 34741 (D),
13153 (E) and 16785 (K).

To consider a more challenging setup we ex-
periment with a domain consisting of user reviews
on services rather than products. We downloaded
an airline review dataset, consisting of reviews la-
beled by their authors (Nguyen, 2015). We ran-
domly sampled 1000 positive and 1000 negative
reviews for our labeled set, the remaining 39396
reviews form our unlabeled set. We hence have 4
product to airline and 4 airline to product setups.

Interestingly, in the product domains unlabeled
reviews tend to be much more positive than in the
airline domain. Particularly, in the B domain there
are 6.43 positive reviews on every negative review;
in D the ratio is 7.39 to 1; in E it is 3.65 to 1; and
in K it is 4.61 to 1. In the airline domain there are
only 1.15 positive reviews for every negative re-
view. We hence expect DA from product to airline

4The URLs of the datasets and the code (previous models
and standard packages) we used, are in Appendix A.

reviews and vice versa to be more challenging than
DA from one product review domain to another.5

Baselines We consider the following baselines:
(a) AE-SCL-SR (ZR17). We also experimented
with the more basic AE-SCL but, like in ZR17,
we got lower results in most cases; (b) SCL with
pivot features selected using the mutual informa-
tion criterion (SCL-MI, (Blitzer et al., 2007)). For
this method we used the implementation of ZR17;
(c) MSDA (Chen et al., 2012), with code taken
from the authors’ web page; (d) The MSDA-DAN
model (Ganin et al., 2016) which employs a do-
main adversarial network (DAN) with the MSDA
vectors as input. The DAN code is taken from
the authors’ repository; (e) The no domain adapta-
tion case where the sentiment classifier is trained
in the source domain and applied to the target do-
main without adaptation. For this case we consider
three classifiers: logistic regression (denoted NoSt
as it is not aware of its input’s structure), as well as
LSTM and CNN which provide a control for the
importance of the structure aware task classifiers
in PBLM models. To further control for this effect
we compare to the PBLM-NoSt model where the
PBLM output vectors (ht vectors generated after
each input word) are averaged and the averaged
vector feeds the logistic regression classifier.6

In all the participating methods, the input fea-
tures consist of word unigrams and bigrams. The
division of the feature set into pivots and non-
pivots is based on the the method of ZR17 that
followed the work of Blitzer et al. (2007) (de-
tails are in Appendix C). The sentiment classi-
fier employed with the SCL-MI, MSDA and AE-
SCL-SR representations is the same logistic re-
gression classifier as in the NoSt condition men-
tioned above. For these methods we concatenate
the representation learned by the model with the
original representation and this representation is
fed to the classifier. MSDA-DAN jointly learns
the feature representation and performs the senti-
ment classification task. It is hence fed by a con-
catenation of the original and the MSDA-induced
representations.

5While we have the labels for our unlabeled data, we did
not use them in our research except in this analysis.

6We considered several additional baselines: (1) Vari-
ational fair autoencoder (Louizos et al., 2016) which per-
formed substantially worse than the DA baselines ((a)-(d));
(2) We tried to compare to (Bollegala et al., 2015) but, sim-
ilarly to ZR17, failed to replicate their results; and (3) We
replaced PBLM with an LSTM-LM, but the results substan-
tially degraded. We do not report results for these models.
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Five Fold CV We employ a 5-fold cross-
validation protocol as in (Blitzer et al., 2007; Ziser
and Reichart, 2017). In all five folds 1600 source
domain examples are randomly selected for train-
ing data and 400 for development, such that both
the training and the development sets are balanced
and have the same number of positive and negative
reviews. The results we report are the averaged
performance of each model across these 5 folds.

Hyperparameter Tuning For all previous
models, we follow the tuning process described
in ZR17 (paper and appendices). Hyperparameter
tuning for the PBLM models and the non-adapted
CNN and LSTM is described in Appendix B.

5 Results

Overall Results Table 1 presents our results.
PBLM models with structure aware classifiers
(PBLM-LSTM and PBLM-CNN, henceforth de-
noted together as S-PBLM) outperform all other
alternatives in all 20 setups and three averaged
evaluations (All columns in the tables). The gaps
are quite substantial – the average accuracy of
PBLM-LSTM and PBLM-CNN compared to the
best baseline, AE-SCL-SR, are: 79.6% and 80.4%
vs. 78.1% for the product review setups, 85% and
84% vs. 78.7% for the product to airline (service)
review setups, and 76.1% and 76.2% vs. 68.1%
for the airline to product review setups.

S-PBLM performance in the more challenging
product to airline and airline to product setups are
particularly impressive. The challenging nature
of these setups stems from the presumably larger
differences between product and service reviews
and from the different distribution of positive and
negative reviews in the unlabeled data of both do-
mains (Sec. 4). These differences are reflected
by the lower performance of the non-adapted clas-
sifiers: an averaged accuracy of 70.6%-73.1%
across product domain pairs (three lower lines of
the All column of the top table), compared to an
average of 67.3%-69.9% across product to airline
setups and an average of 61.3%-62.4% across air-
line to product setups. Moreover, while the best
previous method (AE-SCL-SR) achieves an av-
eraged accuracy of 78.1% for product domains
and an averaged accuracy of 78.7% when adapt-
ing from product to airline reviews, when adapt-
ing from airline to product reviews its averaged
accuracy drops to 68.1%. The S-PBLM models
do consistently better in all three setups, with an
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Figure 3: PBLM loss (solid, red line) vs. sentiment
accuracy (dashed, blue line) of PBLM-CNN (top) and
PBLM-LSTM (bottom) in four representative setups.
Patterns in other setups are very similar.

averaged accuracy of 80.4%, 85% and 76.2% of
the best S-PBLM model, respectively.

Analysis of S-PBLM Strength The results shed
light on the sources of the S-PBLM models suc-
cess. The accuracy of these models, PBLM-
LSTM and PBLM-CNN, is quite similar across
setups: their accuracy gap is up to 3.1% in all
20 setups and up to 1% in the three averages (All
columns). However, the S-PBLM models sub-
stantially outperform PBLM-NoSt that employs a
structure-indifferent classifier. The averaged gaps
are 5.6% (80.4% vs. 74.8%) in the product to
product setups, 11.1% in the product to airline se-
tups (85% vs. 73.9%) and 10.9% in the airline
to product setups (76.2% vs. 65.3%). Hence, we
can safely conclude that while the integration of
PBLM with a structured task classifier has a dra-
matic impact on cross-domain accuracy, it is less
important if that classifier is an LSTM or a CNN.

Comparison with non-adapted models reveals
that structure aware modeling, as provided by
LSTM and CNN, is not sufficient for high perfor-
mance. Indeed, non-adapted LSTM and CNN do
substantially worse than S-PBLM in all setups. Fi-
nally, comparison with AE-SCL-SR demonstrates
that while the integration of pivot based learning
with NNs leads to stronger results than in any
other previous work, the structure awareness of the
S-PBLM models substantially improves accuracy.

1247



Product Review Domains (Blitzer et al., 2007)
Source-Target D-B E-B K-B B-D E-D K-D B-E D-E K-E B-K D-K E-K All

PBLM Models
PBLM-LSTM 80.5 70.8 73.5 82.6 77.6 78.6 74.5 80.4 85.4 80.9 83.3 87.1 79.6
PBLM-CNN 82.5 71.4 74.2 84.2 75 79.8 77.6 79.6 87.1 82.5 83.2 87.8 80.4
PBLM-NoSt 74 68.6 67.4 78.3 73.2 73.3 71.3 74.2 82.1 75.5 76.9 83.2 74.8

Previous Work Models
AE-SCL-SR 77.3 71.1 73 81.1 74.5 76.3 76.8 78.1 84 80.1 80.3 84.6 78.1
MSDA 76.1 71.9 70 78.3 71 71.4 74.6 75 82.4 78.8 77.4 84.5 75.9
MSDA-DAN 75 71 71.2 79.7 73.1 73.8 74.7 74.5 82.1 75.4 77.6 85 76.1
SCL-MI 73.2 68.5 69.3 78.8 70.4 72.2 71.9 71.5 82.2 77.2 74 82.9 74.3

No Domain Adaptation
NoSt 73.6 67.9 67.6 76 69.1 70.2 70 70.9 81.6 74 73.2 82.4 73.1
LSTM 69.2 67.9 67.5 72.8 68.1 66.2 65.9 68.3 78.2 72.1 70.5 80.6 70.6
CNN 71.2 65.6 66.5 73.6 67.1 70.8 69.6 69.7 79.9 72.7 72.6 80.6 71.6

Product and Airline Review Domains (Blitzer et al., 2007; Nguyen, 2015)
Source-Target B-A D-A E-A K-A All (P-Air) A-B A-D A-E A-K All (Air-P)

PBLM Models
PBLM-LSTM 83.7 81 87.7 87.4 85 70.3 71.1 80.5 82.6 76.1
PBLM-CNN 83.8 78.3 86.5 86.1 84 70.6 71.3 81.1 81.8 76.2
PBLM-NoSt 74.2 74.9 72.4 73.9 73.9 62.5 62 69.6 67.3 65.3

Previous Work Models
AE-SCL-SR 79.1 76.1 82.6 76.9 78.7 60.5 66 74.4 71.7 68.1
MSDA 72.2 73.3 75.1 76.8 74.3 58.5 61 70.6 69 64.8
MSDA-DAN 73.5 73.9 76.3 76.6 75 59.5 60.7 71 71.7 65.7
SCL 70.9 69 80.2 72.3 73 61.7 62.1 72.3 69.7 66.4

No Domain Adaptation
NoSt 68.5 67.6 74 69.6 69.9 57.5 59.7 67.2 65.2 62.4
LSTM 68.3 65 72.1 68.6 67.3 56.7 57.3 66.2 65 61.3
CNN 67.6 66.7 72 70 69.1 56.3 59 66 66.6 62

Table 1: Accuracy of adaption between product review domains (top table). and between product review
domains and the airline (A) review domain (bottom table). All the differences between PBLM-CNN and
AE-SCL-SR and between PBLM-LSTM and AE-SCL-SR are statistically significant (except from E-B
in the former comparison and E-B and K-B in the latter). Statistical significance is computed with the
McNemar paired test for labeling disagreements ((Gillick and Cox, 1989; Blitzer et al., 2006), p < 0.05).

Figure 3 further demonstrates the adequacy of
the PBLM architecture for domain adaptation.
The graphs demonstrate, for both S-PBLM mod-
els, a strong correlation between the PBLM cross-
entropy loss values and the sentiment accuracy
of the resulting PBLM-LSTM and PBLM-CNN
models. We show these patterns for two product
domain setups and two setups that involve a prod-
uct domain and the airline domain – the patterns
for the other setups of table 1 are very similar.

This analysis highlights our major contribution.
We have demonstrated that it is the combination
of four components that makes DA for sentiment
classification very effective: (a) Neural network
modeling; (b) Pivot based modeling; (c) Structure
awareness of the pivot-based model; and (d) Struc-
ture awareness of the task classifier.

6 Conclusions

We addressed the task of DA in NLP and presented
PBLM: a representation learning model that com-
bines pivot-based ideas and NN modeling, in a
structure aware manner. Unlike previous work,
PBLM exploits the structure of its input, and its
output consists of a vector per input word. PBLM-
LSTM and PBLM-CNN substantially outperform
strong previous models in traditional and newly
presented sentiment classification DA setups.

In future we intend to extend PBLM so that it
could deal with NLP tasks that require the predic-
tion of a linguistic structure. For example, we be-
lieve that PBLM can be smoothly integrated with
recent LSTM-based parsers (e.g. (Dyer et al.,
2015; Kiperwasser and Goldberg, 2016; Dozat and
Manning, 2017)). We also intend to extend the
reach of our approach to cross-lingual setups.
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A URLs of Code and Data

As mentioned in section 4 of the paper, we provide
here a list of URLs for the code and data we use
in the paper. We do that in order to avoid a large
number of footnotes in the main paper:

• Blitzer et al. (2007) product review
data: http://www.cs.jhu.edu/

˜mdredze/datasets/sentiment/
index2.html.

• The airline review data is (Nguyen, 2015).

• Code for the AE-SCL and AE-SCL-SR
models of ZR17 (Ziser and Reichart, 2017):
https://github.com/yftah89/
Neural-SCLDomain-Adaptation.

• Code for the SCL-MI method of Blitzer et al.
(2007): see footnote 7 (the URL does not fit
into the line width).

7https://github.com/yftah89/
structural-correspondence-learning-SCL
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• Code for MSDA (Chen et al., 2012): http:
//www.cse.wustl.edu/˜mchen.

• Code for the domain adversarial network
used as part of the MSDA-DAN baseline
(Ganin et al., 2016): https://github.
com/GRAAL-Research/domain_
adversarial_neural_network.

• Logistic regression code: http:
//scikit-learn.org/stable/.

B Hyperparameter Tuning and
Experimental Details

Hyperparameter Tuning As discussed in sec-
tion 4 of the paper, for all previous work models,
we follow the experimental setup of ZR17 (pa-
per and appendices) including their hyperparam-
eter estimation protocol. The hyperparameters of
the PBLM models and the non-adapted CNN and
LSTM are provided here. For PBLM we consid-
ered the following hyperparameteres:

• Input word embedding size:
(32, 64, 128, 256).

• Number of pivot features:
(100, 200, 300, 400, 500).

• |ht| : (128, 256, 512).
• PBLM model order: second order.

For the LSTM in PBLM-LSTM as well as the
baseline non-adapted LSTM we considered the
same |ht| and input word embedding size values
as for PBLM. For PBLM-CNN and for the base-
line, non-adapted, CNN we only experimented
with K = 250 filters and with a kernel of size
d = 3.

All the algorithms in the paper that involve a
CNN or a LSTM (including the PBLM itself) are
trained with the ADAM algorithm (Kingma and
Ba, 2015). For this algorithm we used the param-
eters described in the original ADAM article:

• Learning rate: lr = 0.001.

• Exponential decay rate for the 1st moment es-
timates: β1 = 0.9.

• Exponential decay rate for the 2nd moment
estimates: β2 = 0.999.

• Fuzz factor: ε = 1e− 08.

• Learning rate decay over each update:
decay = 0.0.

Experimental Details All sequential models
considered in our experiments are fed with one re-
view example at a time. For all models in the pa-
per, punctuation is first removed from the text be-
fore it is processed by the model (sentence bound-
aries are still encoded). This is the only pre-
precessing step we employ in the paper.

We considered several alternative implementa-
tions of the PBLM-NoSt baseline. In the vari-
ant we selected the PBLM output vectors (ht vec-
tors generated after each word of the input review)
are averaged and the averaged vector feeds a non-
structured logistic regression classifier. We also
tried to take only the final ht vector of PBLM as
an input to the classifier or to sum the ht vectors
instead of taking their average. These alternatives
gave worse results.

C Pivot Feature Selection

As mentioned in the main paper, the division of
the feature set into pivots and non-pivots is based
on the unlabeled data from both the source and the
target domains, using the method of ZR17 (which
is in turn based on (Blitzer et al., 2007)). Here we
provide the details of the pivot selection criterion.

Pivot features are frequent in the unlabeled data
of both the source and the target domains, appear-
ing at least 10 times in each, and among those fea-
tures are the ones with the highest mutual informa-
tion with the task (sentiment) label in the source
domain labeled data. For non-pivot features we
consider unigrams and bigrams that appear at least
10 times in their domain.
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Abstract

Co-training is a popular semi-supervised
learning framework to utilize a large amount
of unlabeled data in addition to a small la-
beled set. Co-training methods exploit pre-
dicted labels on the unlabeled data and se-
lect samples based on prediction confidence
to augment the training. However, the selec-
tion of samples in existing co-training methods
is based on a predetermined policy, which ig-
nores the sampling bias between the unlabeled
and the labeled subsets, and fails to explore
the data space. In this paper, we propose a
novel method, Reinforced Co-Training, to se-
lect high-quality unlabeled samples to better
co-train on. More specifically, our approach
uses Q-learning to learn a data selection policy
with a small labeled dataset, and then exploits
this policy to train the co-training classifiers
automatically. Experimental results on click-
bait detection and generic text classification
tasks demonstrate that our proposed method
can obtain more accurate text classification re-
sults.

1 Introduction

Large labeled datasets are often required to obtain
satisfactory performance for natural language pro-
cessing tasks. However, it is time-consuming to la-
bel text corpus manually. In the meanwhile, there
are abundant unlabeled text corpora available on
the web. Semi-supervised methods permit learn-
ing improved supervised models by jointly train
on a small labeled dataset and a large unlabeled
dataset (Zhu, 2006; Chapelle et al., 2009).

Co-training is one of the widely used semi-
supervised methods, where two complementary
classifiers utilize large amounts of unlabeled ex-
amples to bootstrap the performance of each other
iteratively (Blum and Mitchell, 1998; Nigam and
Ghani, 2000). Co-training can be readily applied
to NLP tasks since data in these tasks naturally

Data Space

Labeled Set

Unlabeled Set

Figure 1: Illustration of sample-selection issues in co-
training methods. (1) Randomly sampled unlabeled ex-
amples (2) will result in high sampling bias, which
will cause bias shift towards the unlabeled dataset (←).
(2) High-confidence examples (3) will contribute little
during the model training, especially for discriminat-
ing the boundary examples (4), resulting in myopic
trained models.

have two or more views, such as multi-lingual
data (Wan, 2009) and document data (headline
and content) (Ghani, 2000; Denis et al., 2003).
In the co-training framework, each classifier is
trained on one of the two views (aka a subset of
features) of both labeled and unlabeled data, un-
der the assumption that either view is sufficient
to classify. In each iteration, the co-training al-
gorithm selects high confidence samples scored
by each of the classifiers to form an auto-labeled
dataset, and the other classifier is then updated
with both labeled data and additional auto-labeled
set. However, as shown in Figure 1, most of exist-
ing co-training methods have some disadvantages.
Firstly, the sample selection step ignores distribu-
tional bias between the labeled and unlabeled sets.
It is common in practice to use unlabeled datasets
collected differently from the labeled set, result-
ing in a significant difference in their sample dis-
tribution. After iterative co-training, the sampling
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bias may shift towards the unlabeled set, which re-
sults in poor performance of the trained model at
the testing time. To remedy such bias, an ideal al-
gorithm should select those samples according to
the target (potentially unknown) testing distribu-
tion. Secondly, the existing sample selection and
training can be myopic. Conventional co-training
methods select unlabeled examples with high con-
fidence predicted by trained models. This strategy
often causes only those unlabeled examples that
match well to the current model being picked dur-
ing iteration and the model might fail to generalize
to complete sample space (Zhang and Rudnicky,
2006). It relates to the well-known exploration-
exploitation trade-off in machine learning tasks.
An ideal co-training algorithm should explore the
space thoroughly to achieve globally better perfor-
mance. These intuitions inspire our work on learn-
ing a data selection policy for the unlabeled dataset
in co-training.

The iterate data selection steps in co-training
can be viewed as a sequential decision-making
problem. To resolve both issues discussed above,
we propose Reinforced Co-Training, a rein-
forcement learning (RL)-based framework for co-
training. Concretely, we introduce a joint formu-
lation of a Q-learning agent and two co-training
classifiers. In contrast to previous predetermined
data sampling methods of co-training, we design
a Q-agent to automatically learn a data selection
policy to select high-quality unlabeled examples.
To better guide the policy learning of the Q-agent,
we design a state representation to delivery the sta-
tus of classifiers and utilize the validation set to
compute the performance-driven rewards. Empir-
ically, we indicate that our method outperforms
previous related methods on clickbait detection
and generic text classification problems. In sum-
mary, our main contributions are three-fold:

• We are first to propose a joint formulation of
RL and co-training methods;

• Our learning algorithm can learn a good data
selection policy to select high-quality unla-
beled examples for better co-training;

• We show that our method can apply to large-
scale document data and outperform base-
lines in semi-supervised text classification.

In Section 2, we outline related work in semi-
supervised learning and co-training. We then de-
scribe our proposed method in Section 3. We show

experimental results in Section 4. Finally, we con-
clude in Section 5.

2 Related Work

Semi-supervised learning algorithms have been
widely used in NLP (Liang, 2005). As for text
classification, Dai and Le (2015) introduce a se-
quence autoencoder to pre-train the parameters for
the later supervised learning process. Johnson and
Zhang (2015, 2016) propose a method to learn
embeddings of small text regions from unlabeled
data for integration into a supervised convolutional
neural network (CNN) or long short-term mem-
ory network (LSTM). Miyato et al. (2016) further
apply perturbations to the word embeddings and
pre-train the supervised models through adversar-
ial training. However, these methods mainly focus
on learning the local word-level information and
pre-trained parameters from unlabeled data, which
fails to capture the overall text-level information
and potential label information.

Co-training can capture the text-level informa-
tion of unlabeled data and generate pseudo labels
during the training, which is especially useful on
unlabeled data with two distinct views (Blum and
Mitchell, 1998). However, the confidence-based
data selection strategies (Goldman and Zhou,
2000; Zhou and Li, 2005; Zhang and Zhou, 2011)
often focus on some special regions of the input
space and fail to generate an accurate estimation
of data space. Zhang and Rudnicky (2006) pro-
poses a performance-driven data selection strategy
based on pseudo-accuracy and energy regulariza-
tion. Meanwhile, Chawla and Karakoulas (2005)
argues that the random data sampling method of-
ten causes sampling bias shift of the trained model
towards the unlabeled set.

Comparing to previous related methods, our
Reinforced Co-Training model can learn a
performance-driven data selection policy to select
high-quality unlabeled data. Furthermore, the per-
formance estimation is more accurate due to the
validation dataset and the data selection strategy is
automatically learned instead of human designed.
Lastly, the selected high-quality unlabeled data
can not only help explore the data space but also
reduce the sampling bias shift.

Our work is also related to recent studies in
“learning to learn” (Maclaurin et al., 2015; Zoph
and Le, 2016; Chen et al., 2017; Wichrowska
et al., 2017; Yeung et al., 2017). Learning to learn
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Figure 2: The Reinforced Co-Training framework.

is one of the meta-learning methods (Schmidhu-
ber, 1987; Bengio et al., 1991), where one model
is trained to learn how to optimize the parame-
ters of another certain algorithm. While previous
studies focus more on neural network optimiza-
tion (Chen et al., 2017; Wichrowska et al., 2017)
and few-shot learning (Vinyals et al., 2016; Ravi
and Larochelle, 2016; Finn et al., 2017), we are
first to explore how to learn a high-quality data se-
lection policy in semi-supervised methods, in our
case, the co-training algorithm.

3 Method

In this section, we describe our RL-based frame-
work for co-training in detail. The conventional
co-training methods follow the framework:

1. Initialize two classifiers by training on the la-
beled set;

2. Iteratively select a subset of unlabeled data
based on a predetermined policy;

3. Iteratively update two classifiers with the se-
lected subset of unlabeled data in addition to
the labeled one.

Step 2 is the core of different co-training variants.
The original co-training algorithm is equipped
with a policy of selecting high-confidence samples
by two classifiers. Our main idea is to improve the
policy by reinforcement learning.

We formulate the data selection process as a se-
quential decision-making problem and the deci-
sion (action) at at each iteration (time step) t is
to select a portion of unlabeled examples. This
problem can be solved with an RL-agent by learn-
ing a policy. We first describe how we organize
the large unlabeled dataset to improve the compu-
tational efficiency. Then we briefly introduce the
classifier models used in co-training. After that,
we describe the Q-agent, the RL-agent used in our
framework and the environment in RL. The two
co-training classifiers are integrated into the envi-
ronment and the Q-agent can learn a good data se-
lection policy by interacting with the environment.
Finally, we describe how to train the Q-agent in
our unified framework.

3.1 Partition Unlabeled Data

Considering that the number of unlabeled samples
is enormous, it is not efficient for the RL-agent to
select only one example at each time step t. Thus,
first we want to partition documents from the unla-
beled dataset into different subsets based on their
similarity. At each time step t, the RL-agent ap-
plies a policy to select one subset instead of one
sample and then update the two co-training classi-
fiers, which can significantly improve the compu-
tational efficiency.

Suppose each example in the unlabeled dataset
as document D, where D is the concatenation of
the headline and paragraph. V is the vocabulary of
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these documents. These documents are partitioned
into different subsets based on Jaccard similarity,
which is defined as:

sim(D1, D2) =
|D1 ∩D2|
|D1 ∪D2|

, (1)

where D1, D2 ∈ R|V | are the one-hot vectors of
each document example.

Based on Jaccard similarity, the unlabeled ex-
amples can be split into different subsets using
the following three steps, which have been widely
used in large-scale web search (Rajaraman and
Ullman, 2010): 1) Shingling, 2) Min-Hashing, and
3) Locality-Sensitive Hashing (LSH).

After partition, the unlabeled set U can be con-
verted into K different subset {U1, U2, ..., UK}.
Meanwhile, for each subsetUi, the first added doc-
ument example Si is recorded as the representative
example of the subset Ui. Choosing representative
samples will help evaluate the classifiers on dif-
ferent subsets and obtain the state representations,
which will be discussed in 3.3.1.

3.2 Classifier Models

As mentioned before, much linguistic data natu-
rally has two or more views, such as multi-lingual
data (Wan, 2009) and document data (headline
+ paragraph) (Ghani, 2000; Denis et al., 2003).
Based on the two views of data, we can construct
two classifiers respectively. At the beginning of a
training episode, the two classifiers are first seeded
with a small set of labeled (seeding) training data
L. At each time step t, the RL-agent makes a se-
lection action at, and then the unlabeled subset
Uat is selected to train the two co-training clas-
sifiers. Following the standard co-training process
(Blum and Mitchell, 1998), at each time step t,
the classifier C1 annotate the unlabeled subset Uat
and the pseudo-labeled Uat and the small labeled
set L are then used to update the classifier C2, vice
versa. In this way, we can boost the performance
of C1 and C2 simultaneously.

3.3 Q-Learning Agent

Q-learning is a widely used method to find an op-
timal action-selection policy (Watkins and Dayan,
1992). The core of our model is a Q-learning
agent, which is trained to learn a good policy to se-
lect high-quality unlabeled subsets for co-training.
At each time step t, the agent observes the current
state st, and selects an action at from a discrete

set of actions A = {1, 2, ...,K}. Based on the ac-
tion at, the two co-training classifiers C1 and C2

then can be updated with the unlabeled subset Uat
as described in Section 3.2. After that, the agent
receives a performance-driven reward rt and the
next state observation st+1. The goal of our Q-
agent at each time step t is to choose the action
that can maximize the future discount reward

Rt =
T∑

t′=t

γt
′−trt′ , (2)

where a training episode terminates at time T and
γ is the discount factor.

3.3.1 State Representation

The state representation, in our framework, is de-
signed to deliver the status of two co-training clas-
sifiers to the Q-agent. Zhang and Rudnicky (2006)
have proved that training with high-confidence ex-
amples will consequently be a process that rein-
forces what the current model already encodes in-
stead of learning an accurate distribution of data
space. Thus, one insight in formulating the state
representation is to add some unlabeled examples
with uncertainty and diversity during the train-
ing iteration. However, too much uncertainty will
make two classifiers unstable, while too much di-
versity will cause the sampling bias shift towards
the unlabeled dataset (Yeung et al., 2017). In or-
der to automatically capture this insight and select
high-quality subsects during the iteration, the Q-
agent needs to fully understand the distribution of
the unlabeled data.

Based on the above intuition, we formulate the
agents state using the two classifiers’ probability
distribution on the representative example Si of
each unlabeled subset Ui. Suppose aN -class clas-
sification problem, at each time step t, we evaluate
the probability distribution of two classifiers on Si
separately. The state representation then can be
defined as:

st = {P 1
1 ||P 2

1 , P
1
2 ||P 2

2 , ..., P
1
K ||P 2

K}t, (3)

where P 1
i and P 2

i are the probability distribution
of C1 and C2 on Si separately, and || denotes
the concatenation operation. P 1

i , P
2
i ∈ RN and

P 1
i ||P 2

i ∈ R2N . Note that the state representation
is re-computed at each time step t.

1255



……

Q-network (multi-layer perceptron)

……

Q-values

#1 #2 #K

dimension: K

……

… …
N-class probability 
distribution on SK of 
UK based on C1

N-class probability 
distribution on SK of 
UK based on C2

F

Figure 3: The structure of Q-network. It chooses a un-
labeled subset from {U1, U2, ..., UK} at each time step.
The state representation is computed according to the
two classifiers’ N -class probability distribution on the
representative example Si of each subset Ui.

3.3.2 Q-Network
The agent takes an action at at time step t using a
policy

at = max
a

Q(st, a), (4)

where st is the state representation mentioned
above. The Q-value Q(st, a) is determined by a
neural network as illustrated in Figure 3. Con-
cretely,

za = φ({F (P 1
1 ||P 2

1 ), ..., F (P
1
K ||P 2

K)}; θ), (5)

where the function F maps state representation
P 1
i ||P 2

i ∈ R2N into a common embedding space
of y dimensions, and φ(·) is a multi-layer percep-
tion.

We then use

Q(s, a) = softmax(za) (6)

to obtain the next action.

3.3.3 Reward Function
The agent is trained to select the high-quality un-
labeled subsets to improve the performance of the
two classifier C1 and C2. We capture this intuition
by a performance-driven reward function. At time
step t, the reward of each classifier is defined as
the change in the classifiers accuracy after updat-
ing the unlabeled subset Ut:

r1t = Acc1t (L
′)− Acc1t−1(L

′), (7)

where Acc1t (L
′) is the model accuracy of C1 at

time step t computed on the labeled validation set

L′. Then the r2t is defined following the similar
formulation. The final reward rt is defined as:

rt =

{
r1t × r2t if r1t > 0 and r2t > 0,

0 otherwise.

Note that this reward is only available during train-
ing process.

3.4 Training and Testing
The agent is trained with the Q-learning (Watkins
and Dayan, 1992), a standard reinforcement learn-
ing algorithm that can be used to learn policies for
an agent interacting with an environment. In our
Reinforced Co-Training framework, the environ-
ment is the classifier C1 and C2.

The Q-network parameters θ are learned by op-
timizing:

Li(θi) = Es,a[(V (θi−1)−Q(s, a; θi))
2], (8)

where i is an iteration of optimization and

V (θi−1) = Es′ [r + γmax
a′

Q(s′, a′; θi−1)|s, a].
(9)

.
We optimize it using stochastic gradient de-

scent. The detail of the training process is shown
in Algorithm 1.

At test time, the agent and the two co-training
classifiers are again run simultaneously, but with-
out access to the labeled validation dataset. The
agent selects the unlabeled subset using the
learned greedy policy:

at = maxaQ(st, a). (10)

After obtaining two classifiers from co-training,
based on the weighted voting, the final ensemble
classifier C is defined as:

C = βC1 + (1− β)C2. (11)

β is the weighted parameter, which can be learned
by maximizing the classification accuracy on the
validation set.

4 Experiments

We evaluate our proposed Reinforced Co-training
method in two settings: (1) Clickbait detection,
where obtaining the labeled data is very time-
consuming and labor-intensive in this real-world
problem; (2) Generic text classification, where
we randomly set some of the labeled data as unla-
beled and train our model in a controlled setting.
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Algorithm 1: The algorithm of our Reinforced
Co-Training method.

1 Given a set L of labeled seeding training data;
2 Given a set L′ of labeled validation data;
3 Given K subsets {U1, U2, ..., UK} of

unlabeled data;
4 for episode← 1 to M do
5 Train C1 & C2 with L
6 for time step t← 1 to T do
7 Choose the action at = maxaQ(st, a)
8 Use C1 to label the subset Uat
9 Update C2 with pseudo-labeled Uat , L

10 Use C2 to label the subset Uat
11 Update C1 with pseudo-labeled Uat , L
12 Compute the reward rt based on L′

13 Compute the state representation st+1

14 Update θ using g ∝
∇θEs,a[(V (θi−1)−Q(s, a; θi))

2]

4.1 Baselines
We compare our model with multiple baselines:

• Standard Co-Training: Co-Training with
randomly choosing unlabeled examples
(Blum and Mitchell, 1998).
• Performance-driven Co-Training: The un-

labeled examples are selected based on
pseudo-accuracy and energy regularization
(Zhang and Rudnicky, 2006).
• CoTrade Co-Training: The confidence of

either classifiers prediction on unlabeled ex-
amples is estimated based on specific data
editing techniques, and then high-confidence
examples are used to update the classifiers
(Zhang and Zhou, 2011).
• Semi-supervised Sequence Learning

(Sequence-SSL): The model uses an LSTM
sequence autoencoder to pre-train the pa-
rameters for the later supervised learning
process.(Dai and Le, 2015).
• Semi-supervised CNN with Region Em-

bedding (Region-SSL): The model learns
embeddings of small text regions from un-
labeled data for integration into a supervised
CNN (Johnson and Zhang, 2015).
• Adversarial Semi-supervised Learning

(Adversarial-SSL): The model apply pertur-
bations to word embeddings into an LSTM
and pre-train the supervised models through
adversarial training (Miyato et al., 2016).

Dataset #Tweets #Clickbait #Non-Clickbait
Training 2,495 762 1,697
Validation 9,768 2,380 7,388
Test 9,770 2,381 7,389
Unlabeled 80,012 N/A N/A

Table 1: Statistics of Clickbait Dataset.

4.2 Clickbait Detection

Clickbait is a pejorative term for web content
whose headlines typically aim to make read-
ers curious, but the documents usually have
less relevance with the corresponding headlines
(Chakraborty et al., 2016; Potthast et al., 2017;
Wei and Wan, 2017). Clickbait not only wastes the
readers’ time but also damages the publishers’ rep-
utation, which makes detecting clickbait become
an important real-world problem.

However, most of the attempts focus on news
headlines, while the relevance between headlines
and context is usually ignored (Chen et al., 2015;
Biyani et al., 2016; Chakraborty et al., 2016).
Meanwhile, the labeled data is quite limited in this
problem, but the unlabeled data is easily obtained
from the web (Potthast et al., 2017). Considering
these two challenges, we utilize our Reinforced
Co-training framework to tackle this problem and
evaluate our method.

4.2.1 Datasets
We evaluate our model on a large-size clickbait
dataset, Clickbait Challenge 2017 (Potthast et al.,
2017). The data is collected from twitter posts in-
cluding tweet headlines and paragraphs, and the
training and test sets are judged on a four-point
scale [0, 0.3, 0.66, 1] by at least five annotators.
Each sample is categorized into one class based on
its average scores. The clickbait detection then can
be defined as a two-class classification problem,
including CLICKBAIT and NON-CLICKBAIT.
There also exists an unlabeled set containing large
amounts of collected samples without annotation.
We then split the original test set into the valida-
tion set and final test set by 50%/50%. The statis-
tics of this dataset are listed in Table 1.

4.2.2 Setup
For each document example in the clickbait
dataset, naturally, we have two views, the head-
line and the paragraph. Thus, we construct the two
classifiers in co-training based on these two views.

Headline Classifier The previous state-of-the-
art model (Zhou, 2017) for clickbait detection uses
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a self-attentive bi-directional gated recurrent unit
RNN (biGRU) to model the headlines of the docu-
ment and train a classifier. Following the same set-
ting, we choose self-attentive biGRU as the head-
line classifier in co-training.

Paragraph Classifier The paragraphs usually
have much longer sequences than the headlines.
Thus, we utilize the CNN-non-static structure in
Kim (2014) as the paragraph classifier to capture
the paragraph information.

Note that the other three co-training baselines
also use the same classifier settings.

In our Reinforce Co-Training model, we set the
number of unlabeled subsets k as 80. Consider-
ing the clickbait detection as a 2-class classifica-
tion problem (N = 2), the Q-network maps 4-d
input P 1

i ||P 2
i in the state representation to a 3-d

common embedding space (y = 3), with a further
hidden layer of 128 units on top. The dimension k
of the softmax layer is also 80.

As for the other semi-supervised baselines,
Sequence-SSL, Region-SSL and Adversarial-
SSL, we concatenate the headline and the para-
graph as the document and train these models di-
rectly on the document data. To better analyze the
experimental results, we also implement another
baseline denoted as CNN (Document), which uses
the CNN structure (Kim, 2014) to model the doc-
ument with supervised learning. The CNN (Doc-
ument) model is trained on the (seeding) training
set and the validation set.

Following the previous researches (Chakraborty
et al., 2016; Potthast et al., 2017), we use Pre-
cision, Recall and F1 Score to evaluate different
models.

4.2.3 Results
The results of clickbait detection are shown in Ta-
ble 2. From the results, we observe that: (1)
Our Reinforced Co-Training model can outper-
form all the baselines, which indicates the capa-
bility of our methods in utilizing the unlabeled
data. (2) The standard co-training is unstable
due to the random data selection strategy, and
the performance-driven and high-confidence data
selection strategies both can improve the perfor-
mance of co-training. Meanwhile, the significant
improvement compared with previous co-training
methods shows that the Q-agent in our model can
learn a good policy to select high-quality subsets.
(3) The three pre-trained based semi-supervised
learning methods also show good results. We

Methods Prec. Recall F1 Score
Self-attentive biGRU 0.683 0.649 0.665
CNN (Document) 0.537 0.474 0.503
Standard Co-Training 0.418 0.433 0.425
Performance Co-Training 0.581 0.629 0.604
CoTrade Co-Training 0.609 0.637 0.623
Sequence-SSL 0.595 0.589 0.592
Region-SSL 0.674 0.652 0.663
Adversarial-SSL 0.698 0.691 0.694
Reinforced Co-Training 0.709 0.684 0.696

Table 2: The experimental results on clickbait dataset.
Prec.: precision.

Best Worst Average STDDEV
F1 Score 0.708 0.685 0.692 0.0068

Table 3: The robustness analysis on clickbait dataset.

think these pre-trained based methods learn lo-
cal embeddings during the unsupervised training,
which may help them to recognize some impor-
tant patterns in clickbait detection. (4) The self-
attentive biGRU trained only on headlines of the
labeled set actually show surprisingly good perfor-
mance on clickbait detection, which demonstrates
that most clickbait documents have obvious pat-
terns in the headline field. The reason why CNN
(Document) fails to capture these patterns may be
that the concatenation of headlines and paragraphs
dilutes these features. But for those cases with-
out obvious patterns in the headline, our results
demonstrate that the paragraph information is still
a good supplement to detection.

4.2.4 Algorithm Robustness
Previous studies (Morimoto and Doya, 2001; Hen-
derson et al., 2017) show that reinforcement
learning-based methods usually lack robustness
and are sensitive to the seeding sets and pre-
trained steps. Thus, we design an experiment
to detect whether our learned data section policy
is sensitive to the (seeding) training set. First,
based on our original data partition, we train our
reinforcement learning framework to learn a Q-
agent. During the test time, instead of using the
same seeding set when doing comparative experi-
ments, we randomly sample other 10 seeding sets
from the labeled dataset and learn 10 classifiers
based without re-training the Q-agent (data selec-
tion policy). Note that the validation set is not
available during the co-training period of the test
time. Finally, we evaluate these 10 classifiers us-
ing the same metric. The results are shown in Ta-
ble 3.
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Dataset AG’s News DBpedia
#Classes 4 14
#Training 12,000 56,000
#Validation 12,000 56,000
#Test 7,600 70,000
#Unlabeled 96,000 448,000

Table 4: Statistics of the Text Classification Datasets.

The results demonstrate that our learning algo-
rithm is robust to different (seeding) training sets,
which indicates that the Q-agent in our model can
learn a good and robust data selection policy to
select high-quality unlabeled subsets to help the
co-training process.

4.3 Generic Text Classification
Generic text classification is a classic problem
for natural language processing, where one needs
to categorized documents into pre-defined classes
(Kim, 2014; Zhang et al., 2015; Johnson and
Zhang, 2015, 2016; Xiao and Cho, 2016; Miyato
et al., 2016). We evaluate our model on generic
text classification problem to study our method in
a controlled setting.

4.3.1 Datasets
Following the settings in Zhang et al. (2015), we
use large-scale datasets to train and test our model.
To maintain the two-view setting of the co-training
method, we choose the following two datasets.
The original annotated training set is then split
into three sets, 10% labeled training set, 10% la-
beled validation set and 80% unlabeled set. The
original proportion of different classes remains the
same after the partition. The statistics of these two
datasets are listed in Table 4.

AG’s news corpus. The AGs corpus of news
articles is obtained from the web and each sample
has the title and description fields.

DBpedia ontology dataset. This dataset is con-
structed by picking 14 non-overlapping classes
from DBpedia 2014. Each sample contains the ti-
tle and abstract of a Wikipedia article.

4.3.2 Setup
For each document example in the above two
datasets, naturally we have two views, the headline
and the paragraph. Similar to clickbait detection,
we also construct the two classifiers in co-training
based on these two views. Following the (Kim,
2014), we set both the headline classifier and the
paragraph classifier as the CNN-non-static model.
Owing to that fact that the original datasets are

Methods AG’s News DBpedia
CNN (Training+Validation) 28.32% 9.53%
CNN (All) 8.69% 0.91%
Standard Co-Training 26.52% 7.66%
Performance Co-Training 21.73% 5.84%
CoTrade Co-Training 19.06% 5.12%
Sequence-SSL 19.54% 4.64%
Region-SSL 18.27% 3.76%
Adversarial-SSL 8.45%∗ 0.89%∗

Reinforced Co-Training 16.64% 2.45%

Table 5: The experimental results on generic text clas-
sification datasets. * Adversarial-SSL is trained on full
labeled data after pre-training.

fully labeled, we implement two other baselines:
(1) CNN (Training+Validation), which is super-
vised trained on the partitioned training and val-
idation sets; (2) CNN (All) which is supervised
trained on the original (100%) dataset.

For AG’s News dataset, we set the number of
unlabeled subsets k as 96. The number of classes
N = 4, and thus the Q-network maps 8-d input
P 1
i ||P 2

i in the state representation to a 5-d com-
mon embedding space (y = 5), with a further hid-
den layer of 128 units on top. The dimension k
of the softmax layer is also 96. As for DBpedia
dataset, k = 224, N = 14, and y = 10,.

Following the previous researches (Kim, 2014),
we use test error rate (%) to evaluate different
models.

4.3.3 Results
The results of generic text classification are shown
in Table 5. From the results, we can observe
that: (1) Our Reinforced Co-Training model out-
performs all the real semi-supervised baselines on
two generic text classification datasets, which in-
dicates that our method is consistent in differ-
ent tasks. (2) The CNN (All) and Adversarial-
SSL trained on all the original labeled data per-
form best, which indicates there is still an obvious
gap between semi-supervised methods and full-
supervised methods.

4.3.4 Algorithm Robustness
Similar to Section 4.2.4, we evaluate whether
our learned data section policy is sensitive to
the different partitions and (seeding) training
sets. First, based on our original data parti-
tion (10%/10%/80%), we train our reinforcement
learning framework. During the test time, we
randomly sample other 10 data partitions instead
of the one used in comparative experiments, and
learn 10 ensemble classifiers based on the learned
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Datasets Best Worst Average STDDEV
AG’s News 14.78 17.96 16.62 1.36
DBPedia 2.18 4.06 2.75 0.94

Table 6: The robustness analysis on generic text classi-
fication. Metric: test error rate (%).

Q-agent. Note that after sample different data par-
titions, we will also reprocess the unlabeled sets as
described in Section 3.1. We then evaluate these
10 classifiers using the same metric. The results
are shown in Table 6.

The results demonstrate that our learning algo-
rithm is robust to different (seeding) training sets
and partitions of the unlabeled set, which again in-
dicates that the Q-agent in our model is able to
learn a good and robust data selection policy to
select high-quality unlabeled subsets to help the
co-training process.

4.4 Discussion about Stability

Previous studies (Zhang et al., 2014; Reimers and
Gurevych, 2017) show that neural networks can
be unstable even with the same training parame-
ters on the same training data. As for our cases,
when the two classifiers are initialized with differ-
ent labeled seeding sets, they can be very unstable.
However, after enough iterations with the properly
selected unlabeled data, the performance would be
stable generally.

Usually, the more substantial labeled training
datasets will lead to more stable models. How-
ever, the problem is that the AGs News and DB-
pedia have 4 and 14 classes separately, while the
Clickbait dataset only has 2 classes. That means
the numbers of each class in AGs News, DBPedia
and Clickbait actually are the same order of mag-
nitude. Meanwhile, in our co-training setting, the
prediction error is easy to accumulate because the
two classifiers bootstrap the performance of each
other. The classification could be harder with the
increase of classes. Based on these reasons, the
stability does not show a very strong correlation
with the size of datasets in our experiments of Sec-
tion 4.2.4 and 4.3.4.

5 Conclusion and Future Work

In this paper, we propose a novel method, Rein-
forced Co-Training, for training classifiers by uti-
lizing both the labeled and unlabeled data. The
Q-agent in our model can learn a good data selec-
tion policy to select high-quality unlabeled data

for co-training. We evaluate our models on two
tasks, clickbait detection and generic text classifi-
cation. Experimental results show that our model
can outperform other semi-supervised baselines,
especially those conventional co-training methods.
We also test the Q-agent and prove that the learned
data selection policy is robust to different seeding
sets and data partitions.

For future studies, we will investigate the data
selection policies of other semi-supervised meth-
ods and try to learn these policies automatically.
We also plan to extend our method to multi-
source classification cases and utilize the multi-
agent communication environment to boost the
classification performance.
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Abstract

We present a new approach to the design of
deep networks for natural language processing
(NLP), based on the general technique of Ten-
sor Product Representations (TPRs) for encod-
ing and processing symbol structures in dis-
tributed neural networks. A network architec-
ture — the Tensor Product Generation Net-
work (TPGN) — is proposed which is ca-
pable in principle of carrying out TPR com-
putation, but which uses unconstrained deep
learning to design its internal representations.
Instantiated in a model for image-caption
generation, TPGN outperforms LSTM base-
lines when evaluated on the COCO dataset.
The TPR-capable structure enables interpreta-
tion of internal representations and operations,
which prove to contain considerable gram-
matical content. Our caption-generation model
can be interpreted as generating sequences of
grammatical categories and retrieving words
by their categories from a plan encoded as a
distributed representation.

1 Introduction

In this paper we introduce a new architecture for
natural language processing (NLP). On what type
of principles can a computational architecture be
founded? It would seem a sound principle to re-
quire that the hypothesis space for learning which
an architecture provides include network hypothe-
ses that are independently known to be suitable
for performing the target task. Our proposed ar-
chitecture makes available to deep learning net-
work configurations that perform natural language
generation by use of Tensor Product Represen-
tations (TPRs) (Smolensky and Legendre, 2006).
Whether learning will create TPRs is unknown in
advance, but what we can say with certainty is that
the hypothesis space being searched during learn-

∗LD is currently at Citadel.

ing includes TPRs as one appropriate solution to
the problem.

TPRs are a general method for generating
vector-space embeddings of complex symbol
structures. Prior work has proved that TPRs en-
able powerful symbol processing to be carried
out using neural network computation (Smolen-
sky, 2012). This includes generating parse trees
that conform to a grammar (Cho et al., 2017), al-
though incorporating such capabilities into deep
learning networks such as those developed here re-
mains for future work. The architecture presented
here relies on simpler use of TPRs to generate sen-
tences; grammars are not explicitly encoded here.

We test the proposed architecture by applying
it to image-caption generation (on the MS-COCO
dataset, (COCO, 2017)). The results improve upon
a baseline deploying a state-of-the-art LSTM ar-
chitecture (Vinyals et al., 2015), and the TPR
foundations of the architecture provide greater in-
terpretability.

Section 2 of the paper reviews TPR. Section 3
presents the proposed architecture, the Tensor
Product Generation Network (TPGN). Section 4
describes the particular model we study for im-
age captioning, and Section 5 presents the exper-
imental results. Importantly, what the model has
learned is interpreted in Section 5.3. Section 6 dis-
cusses the relation of the new model to previous
work and Section 7 concludes.

2 Review of tensor product
representation

The central idea of TPRs (Smolensky, 1990) can
be appreciated by contrasting the TPR for a word
string with a bag-of-words (BoW) vector-space
embedding. In a BoW embedding, the vector that
encodes Jay saw Kay is the same as the one
that encodes Kay saw Jay: J + K + s where
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J,K, s are respectively the vector embeddings of
the words Jay, Kay, saw.

A TPR embedding that avoids this confusion
starts by analyzing Jay saw Kay as the set
{Jay/SUBJ, Kay/OBJ, saw/VERB}. (Other anal-
yses are possible: see Section 3.) Next we choose
an embedding in a vector space VF for Jay, Kay,
saw as in the BoW case: J,K, s. Then comes the
step unique to TPRs: we choose an embedding in
a vector space VR for the roles SUBJ, OBJ, VERB:
rSUBJ, rOBJ, rVERB. Crucially, rSUBJ 6= rOBJ. Finally,
the TPR for Jay saw Kay is the following vec-
tor in VF ⊗ VR:

vJay saw Kay = J⊗ rSUBJ +K⊗ rOBJ + s⊗ rVERB

(1)
Each word is tagged with the role it fills in the sen-
tence; Jay and Kay fill different roles.

This TPR avoids the BoW confusion:
vJay saw Kay 6= vKay saw Jay because
J⊗ rSUBJ + K⊗ rOBJ 6= J ⊗ rOBJ + K⊗ rSUBJ.
In the terminology of TPRs, in Jay saw Kay,
Jay is the filler of the role SUBJ, and J ⊗ rSUBJ

is the vector embedding of the filler/role binding
Jay/SUBJ. In the vector space embedding, the
binding operation is the tensor — or generalized
outer — product ⊗; i.e., J⊗ rSUBJ is a tensor with
2 indices defined by: [J⊗ rSUBJ]ϕρ ≡ [J]ϕ[rSUBJ]ρ.

The tensor product can be used recursively,
which is essential for the TPR embedding of recur-
sive structures such as trees and for the computa-
tion of recursive functions over TPRs. However, in
the present context, recursion will not be required,
in which case the tensor product can be regarded
as simply the matrix outer product (which cannot
be used recursively); we can regard J⊗rSUBJ as the
matrix product Jr>SUBJ. Then Equation 1 becomes

vJay saw Kay = Jr>SUBJ + Kr>OBJ + sr>VERB (2)

Note that the set of matrices (or the set of ten-
sors with any fixed number of indices) is a vec-
tor space; thus Jay saw Kay 7→ vJay saw Kay

is a vector-space embedding of the symbol struc-
tures constituting sentences. Whether we regard
vJay saw Kay as a 2-index tensor or as a matrix,
we can call it simply a ‘vector’ since it is an el-
ement of a vector space: in the context of TPRs,
‘vector’ is used in a general sense and should not
be taken to imply a single-indexed array.

Crucial to the computational power of TPRs and
to the architecture we propose here is the notion of
unbinding. Just as an outer product — the tensor

product — can be used to bind the vector embed-
ding a filler Jay to the vector embedding a role
SUBJ, J⊗ rSUBJ or Jr>SUBJ, so an inner product can
be used to take the vector embedding a structure
and unbind a role contained within that structure,
yielding the symbol that fills the role.

In the simplest case of orthonormal role vec-
tors ri, to unbind role SUBJ in Jay saw
Kay we can compute the matrix-vector product:
vJay saw KayrSUBJ = J (because r>i rj = δij
when the role vectors are orthonormal). A simi-
lar situation obtains when the role vectors are not
orthonormal, provided they are not linearly depen-
dent: for each role such as SUBJ there is an un-
binding vector uSUBJ such that r>i uj = δij so we
get: vJay saw KayuSUBJ = J. A role vector such
as rSUBJ and its unbinding vector uSUBJ are said
to be duals of each other. (If R is the matrix in
which each column is a role vector rj , thenR is in-
vertible when the role vectors are linearly indepen-
dent; then the unbinding vectors ui are the rows of
R−1. When the rj are orthonormal, ui = ri. Re-
placing the matrix inverse with the pseudo-inverse
allows approximate unbinding if the role vectors
are linearly dependent.)

We can now see how TPRs can be used to gener-
ate a sentence one word at a time. We start with the
TPR for the sentence, e.g., vJay saw Kay. From
this vector we unbind the role of the first word,
which is SUBJ: the embedding of the first word
is thus vJay saw KayuSUBJ = J, the embedding
of Jay. Next we take the TPR for the sentence
and unbind the role of the second word, which is
VERB: the embedding of the second word is then
vJay saw KayuVERB = s, the embedding of saw.
And so on.

To accomplish this, we need two representa-
tions to generate the tth word: (i) the TPR of the
sentence, S (or of the string of not-yet-produced
words, St) and (ii) the unbinding vector for the tth

word, ut. The architecture we propose will there-
fore be a recurrent network containing two subnet-
works: (i) a subnet S hosting the representation St,
and a (ii) a subnet U hosting the unbinding vector
ut. This is shown in Fig. 1.

3 A TPR-capable generation
architecture

As Fig. 1 shows, the proposed Tensor Product
Generation Network architecture (the dashed box
labeled N ) is designed to support the technique
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Figure 1: Architecture of TPGN, a TPR-capable generation network. “2×” denotes the matrix-vector product.

for generation just described: the architecture is
TPR-capable. There is a sentence-encoding sub-
network S which could host a TPR of the sen-
tence to be generated, and an unbinding subnet-
work U which could output a sequence of unbind-
ing vectors ut; at time t, the embedding ft of the
word produced, xt, could then be extracted from
St via the matrix-vector product (shown in the fig-
ure by “2×”): ft = Stut. The lexical-decoding sub-
network L converts the embedding vector ft to the
1-hot vector xt corresponding to the word xt.

Unlike some other work (Palangi et al., 2017),
TPGN is not constrained to literally learn TPRs.
The representations that will actually be housed in
S and U are determined by end-to-end deep learn-
ing on a task: the bubbles in Fig. 1 show what
would be the meanings of St,ut and ft if an ac-
tual TPR scheme were instantiated in the archi-
tecture. The learned representations St will not be
proven to literally be TPRs, but by analyzing the
unbinding vectors ut the network learns, we will
gain insight into the process by which the learned
matrices St give rise to the generated sentence.

The task studied here is image captioning; Fig.
1 shows that the input to this TPGN model is an
image, preprocessed by a CNN which produces
the initial representation in S, S0. This vector
S0 drives the entire caption-generation process:
it contains all the image-specific information for
producing the caption. (We will call a caption a
“sentence” even though it may in fact be just a
noun phrase.)

The two subnets S and U are mutually-
connected LSTMs (Hochreiter and Schmidhuber,
1997): see Fig. 2. The internal hidden state of U ,
pt, is sent as input to S; U also produces output,
the unbinding vector ut. The internal hidden state

of S, St, is sent as input to U , and also produced
as output. As stated above, these two outputs are
multiplied together to produce the embedding vec-
tor ft = Stut of the output word xt. Furthermore,
the 1-hot encoding xt of xt is fed back at the next
time step to serve as input to both S and U .

What type of roles might the unbinding vec-
tors be unbinding? A TPR for a caption could
in principle be built upon positional roles, syn-
tactic/semantic roles, or some combination of the
two. In the caption a man standing in a
room with a suitcase, the initial a and
man might respectively occupy the positional
roles of POS(ITION)1 and POS2; standing
might occupy the syntactic role of VERB; in the
role of SPATIAL-P(REPOSITION); while a room
with a suitcase might fill a 5-role schema
DET(ERMINER)1 N(OUN)1 P DET2 N2. In fact
we will provide evidence in Sec. 5.3.2 that our net-
work learns just this kind of hybrid role decompo-
sition; further evidence for these particular roles is
presented elsewhere.

What form of information does the sentence-
encoding subnetwork S need to encode in S? Con-
tinuing with the example of the previous para-
graph, S needs to be some approximation to the
TPR summing several filler/role binding matrices.
In one of these bindings, a filler vector fa — which
the lexical subnetwork L will map to the article a
— is bound (via the outer product) to a role vec-
tor rPOS1 which is the dual of the first unbinding
vector produced by the unbinding subnetwork U :
uPOS1 . In the first iteration of generation the model
computes S1uPOS1 = fa, which L then maps to a.
Analogously, another binding approximately con-
tained in S2 is fmanr

>
POS2

. There are correspond-
ing approximate bindings for the remaining words
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of the caption; these employ syntactic/semantic
roles. One example is fstandingr

>
V . At iteration

3, U decides the next word should be a verb, so
it generates the unbinding vector uV which when
multiplied by the current output of S , the matrix
S3, yields a filler vector fstanding which L maps
to the output standing. S decided the caption
should deploy standing as a verb and included
in S an approximation to the binding fstandingr

>
V .

It similarly decided the caption should deploy in
as a spatial preposition, approximately including
in S the binding finr

>
SPATIAL-P; and so on for the

other words in their respective roles in the caption.

4 System Description

As stated above, the unbinding subnetwork U and
the sentence-encoding subnetwork S of Fig. 1
are each implemented as (1-layer, 1-directional)
LSTMs (see Fig. 2); the lexical subnetwork L is
implemented as a linear transformation followed
by a softmax operation.

In the equations below, the LSTM variables in-
ternal to the S subnet are indexed by 1 (e.g., the
forget-, input-, and output-gates are respectively
f̂1, î1, ô1) while those of the unbinding subnet U
are indexed by 2.

Thus the state updating equations for S are, for
t = 1, · · · , T = caption length:

f̂1,t = σg(W1,fpt−1 −D1,fWext−1 +U1,f Ŝt−1) (3)

î1,t = σg(W1,ipt−1 −D1,iWext−1 +U1,iŜt−1) (4)

ô1,t = σg(W1,opt−1 −D1,oWext−1 +U1,oŜt−1) (5)

g1,t = σh(W1,cpt−1 −D1,cWext−1 +U1,cŜt−1) (6)

c1,t = f̂1,t � c1,t−1 + î1,t � g1,t (7)

Ŝt = ô1,t � σh(c1,t) (8)

Here f̂1,t, î1,t, ô1,t, g1,t, c1,t, Ŝt ∈ Rd×d, pt ∈ Rd;
σg(·) is the (element-wise) logistic sigmoid func-
tion; σh(·) is the hyperbolic tangent function; the
operator � denotes the Hadamard (element-wise)
product; W1,f ,W1,i,W1,o,W1,c ∈ R(d×d)×d,
D1,f , D1,i, D1,o, D1,c ∈ R(d×d)×d, U1,f , U1,i,
U1,o, U1,c ∈ R(d×d)×(d×d). For clarity, biases
— included throughout the model — are omitted
from all equations in this paper. The initial state
Ŝ0 is initialized by:

Ŝ0 = Cs(v − v̄) (9)

where v ∈ R2048 is the vector of visual features
extracted from the current image by ResNet (Gan
et al., 2017) and v̄ is the mean of all such vectors;
Cs ∈ R(d×d)×2048. On the output side, xt ∈ RV is

a 1-hot vector with dimension equal to the size of
the caption vocabulary, V , and We ∈ Rd×V is a
word embedding matrix, the i-th column of which
is the embedding vector of the i-th word in the vo-
cabulary; it is obtained by the Stanford GLoVe al-
gorithm with zero mean (Pennington et al., 2017).
x0 is initialized as the one-hot vector correspond-
ing to a “start-of-sentence” symbol.

For U in Fig. 1, the state updating equations are:

f̂2,t = σg(Ŝt−1w2,f −D2,fWext−1 +U2,fpt−1) (10)

î2,t = σg(Ŝt−1w2,i −D2,iWext−1 +U2,ipt−1) (11)

ô2,t = σg(Ŝt−1w2,o −D2,oWext−1 +U2,opt−1) (12)

g2,t = σh(Ŝt−1w2,c −D2,cWext−1 +U2,cpt−1) (13)

c2,t = f̂2,t � c2,t−1 + î2,t � g2,t (14)
pt = ô2,t � σh(c2,t) (15)

Here w2,f ,w2,i,w2,o,w2,c ∈ Rd, D2,f , D2,i,
D2,o, D2,c ∈ Rd×d, and U2,f , U2,i, U2,o, U2,c

∈ Rd×d. The initial state p0 is the zero vector.
The dimensionality of the crucial vectors shown

in Fig. 1, ut and ft, is increased from d×1 to d2×1
as follows. A block-diagonal d2 × d2 matrix St is
created by placing d copies of the d× d matrix Ŝt
as blocks along the principal diagonal. This matrix
is the output of the sentence-encoding subnetwork
S . Now the ‘filler vector’ ft ∈ Rd2 — ‘unbound’
from the sentence representation St with the ‘un-
binding vector’ ut — is obtained by Eq. (16).

ft = Stut (16)

Here ut ∈ Rd2 , the output of the unbinding sub-
network U , is computed as in Eq. (17), where
Wu ∈ Rd2×d is U’s output weight matrix.

ut = σh(Wupt) (17)

Finally, the lexical subnetworkL produces a de-
coded word xt ∈ RV by

xt = σs(Wxft) (18)

where σs(·) is the softmax function and Wx ∈
RV×d2 is the overall output weight matrix. Since
Wx plays the role of a word de-embedding matrix,
we can set

Wx = (We)
> (19)

where We is the word-embedding matrix. Since
We is pre-defined, we directly set Wx by Eq. (19)
without training L through Eq. (18). Note that S
and U are learned jointly through end-to-end train-
ing as shown in Algorithm 1.
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Figure 2: The sentence-encoding subnet S and the unbinding subnet U are inter-connected LSTMs; v encodes the
visual input while the xt encode the words of the output caption.

Algorithm 1 End-to-end training of S and U
Input: Image feature vector v(i) and corresponding caption
X(i) = [x

(i)
1 , · · · , x(i)

T ] (i = 1 , · · · , N ), where N is the
total number of samples.
Output: W1,f ,W1,i,W1,o,W1,c,Cs,D1,f ,D1,i,D1,o,
D1,c,U1,f ,U1,i,U1,o,U1,c,w2,f ,w2,i,w2,o,w2,c,D2,f ,
D2,i,D2,o,D2,c,U2,f ,U2,i,U2,o,U2,c,Wu,Wx.

1: Initialize S0 by (9);
2: Initialize x0 as the one-hot vector corresponding to the

start-of-sentence symbol;
3: Initialize p0 as the zero vector;
4: Randomly initialize weights W1,f ,W1,i,W1,o,

W1,c,Cs,D1,f ,D1,i,D1,o,D1,c,U1,f ,U1,i,U1,o,
U1,c,w2,f ,w2,i,w2,o,w2,c,D2,f ,D2,i,D2,o,
D2,c,U2,f ,U2,i,U2,o,U2,c,Wu,Wx;

5: for n from 1 to N do
6: for t from 1 to T do
7: Calculate (3) – (8) to obtain St;
8: Calculate (10) – (15) to obtain pt;
9: Calculate (17) to obtain ut;

10: Calculate (16) to obtain ft;
11: Calculate (18) to obtain xt;
12: Update weights W1,f ,W1,i,W1,o,W1,c,Cs,

D1,f ,D1,i,D1,o,D1,c,U1,f ,U1,i,U1,o,U1,c,
w2,f ,w2,i,w2,o,w2,c,D2,f ,D2,i,D2,o,D2,c,
U2,f ,U2,i,U2,o,U2,c,Wu

by the back-propagation algorithm;
13: end for
14: end for

5 Experimental results

5.1 Dataset

To evaluate the performance of our proposed
model, we use the COCO dataset (COCO, 2017).
The COCO dataset contains 123,287 images, each
of which is annotated with at least 5 captions. We
use the same pre-defined splits as in (Karpathy
and Fei-Fei, 2015; Gan et al., 2017): 113,287 im-
ages for training, 5,000 images for validation, and
5,000 images for testing. We use the same vocabu-

lary as that employed in (Gan et al., 2017), which
consists of 8,791 words.

5.2 Evaluation
For the CNN of Fig. 1, we used ResNet-152 (He
et al., 2016), pretrained on the ImageNet dataset.
The feature vector v has 2048 dimensions. Word
embedding vectors in We are downloaded from
the web (Pennington et al., 2017). The model is
implemented in TensorFlow (Abadi et al., 2015)
with the default settings for random initialization
and optimization by backpropagation.

In our experiments, we choose d = 25 (where d
is the dimension of vector pt). The dimension of
St is 625 × 625 (while Ŝt is 25 × 25); the vocab-
ulary size V = 8, 791; the dimension of ut and ft
is d2 = 625.

The main evaluation results on the MS COCO
dataset are reported in Table 5.2. The widely-
used BLEU (Papineni et al., 2002), METEOR
(Banerjee and Lavie, 2005), and CIDEr (Vedan-
tam et al., 2015) metrics are reported in our quan-
titative evaluation of the performance of the pro-
posed model. In evaluation, our baseline is the
widely used CNN-LSTM captioning method orig-
inally proposed in (Vinyals et al., 2015). For com-
parison, we include results in that paper in the
first line of Table 5.2. We also re-implemented the
model using the latest ResNet features and report
the results in the second line of Table 5.2. Our
re-implementation of the CNN-LSTM method
matches the performance reported in (Gan et al.,
2017), showing that the baseline is a state-of-the-
art implementation. For TPGN, we use parameter
settings in a similar range to those in (Gan et al.,
2017). TPGN has comparable, although slightly
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Methods METEOR BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr
NIC (Vinyals et al., 2015) 0.237 0.666 0.461 0.329 0.246 0.855
CNN-LSTM 0.238 0.698 0.525 0.390 0.292 0.889
TPGN 0.243 0.709 0.539 0.406 0.305 0.909

Table 1: Performance of the proposed TPGN model on the COCO dataset.

more, parameters than the CNN-LSTM. The train-
ing time of TPGN is roughly 50% more than the
CNN-LSTM model. The weights in TPGN are
updated at every mini-batch; in the experiments,
we use a batch size of 64 images. As shown
in Table 5.2, compared to the CNN-LSTM base-
line, the proposed TPGN appreciably outperforms
the benchmark schemes in all metrics across the
board. The improvement in BLEU-n is greater for
greater n; TPGN particularly improves generation
of longer subsequences. The results attest to the
effectiveness of the TPGN architecture.

It is worth mentioning that this paper is aimed
at developing a Tensor Product Representation
(TPR) inspired network to replace the core lay-
ers in an LSTM; therefore, it is directly compa-
rable to an LSTM baseline. So in the experiments,
we focus on comparison to a strong CNN-LSTM
baseline. We acknowledge that more recent papers
(Xu et al., 2017; Rennie et al., 2017; Yao et al.,
2017; Lu et al., 2017; Gan et al., 2017) reported
better performance on the task of image caption-
ing. Performance improvements in these more re-
cent models are mainly due to using better image
features such as those obtained by Region-based
Convolutional Neural Networks (R-CNN), or us-
ing reinforcement learning (RL) to directly opti-
mize metrics such as CIDEr, or using more com-
plex attention mechanisms (Gan et al., 2017) to
provide a better context vector for caption gener-
ation, or using an ensemble of multiple LSTMs,
among others. However, the LSTM is still play-
ing a core role in these works and we believe im-
provement over the core LSTM, in both perfor-
mance and interpretability, is still very valuable;
that is why we compare the proposed TPGN with
a state-of-the-art native LSTM (the second line of
Table 5.2).

5.3 Interpretation of learned unbinding
vectors

To get a sense of how the sentence encodings St
learned by TPGN approximate TPRs, we now in-
vestigate the meaning of the role-unbinding vec-

tor ut the model uses to unbind from St — via
Eq. (16) — the filler vector ft that produces — via
Eq. (18) — the one-hot vector xt of the tth gener-
ated caption word. The meaning of an unbinding
vector is the meaning of the role it unbinds. Inter-
preting the unbinding vectors reveals the meaning
of the roles in a TPR that S approximates.

Figure 3: Unbinding vectors of 1000 words; different
POS tags of words are represented by different colors.

5.3.1 Visualization of ut
We run the TPGN model with 5,000 test images
as input, and obtain the unbinding vector ut used
to generate each word xt in the caption of a test
image. We plot 1,000 unbinding vectors ut, which
correspond to the first 1,000 words in the result-
ing captions of these 5,000 test images. There are
17 parts of speech (POS) in these 1,000 words.
The POS tags are obtained by the Stanford Parser
(Manning, 2017).

We use the Embedding Projector in Tensor-
Board (Google, 2017) to plot 1,000 unbinding vec-
tors ut with a custom linear projection in Tensor-
Board to reduce 625 dimensions of ut to 2 dimen-
sions shown in Fig. 3 through Fig. 7.

Fig. 3 shows the unbinding vectors of 1000
words; different POS tags of words are represented
by different colors. In fact, we can partition the
625-dim space of ut into 17 regions, each of which
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contains 76.3% words of the same type of POS on
average; i.e., each region is dominated by words
of one POS type. This clearly indicates that each
unbinding vector contains important grammatical
information about the word it generates. As exam-
ples, Fig. 4 to Fig. 7 show the distribution of the
unbinding vectors of nouns, verbs, adjectives, and
prepositions, respectively. Furthermore, we show
that the subject and the object of a sentence can be
distinguished based on ut in (Huang et al., 2018).

Figure 4: Unbinding vectors of 360 nouns in red and
640 words of other types of POS in grey.

Figure 5: Unbinding vectors of 81 verbs in red and 919
words of other types of POS in grey.

5.3.2 Clustering of ut
Since the previous section indicates that there is a
clustering structure for ut, in this section we parti-
tion ut into Nu clusters and examine the grammar
roles played by ut.

First, we run the trained TPGN model on
the 113,287 training images, obtaining the role-

Figure 6: Unbinding vectors of 55 adjectives in red and
945 words of other types of POS in grey.

Figure 7: Unbinding vectors of 169 prepositions in red
and 831 words of other types of POS in grey.

unbinding vector ut used to generate each word xt
in the caption sentence. There are approximately
1.2 million ut vectors over all the training im-
ages. We apply the K-means clustering algorithm
to these vectors to obtain Nu clusters and the cen-
troid µi of each cluster i (i = 0, · · · , Nu − 1).

Then, we run the TPGN model with 5,000 test
images as input, and obtain the role vector ut of
each word xt in the caption sentence of a test im-
age. Using the nearest neighbor rule, we obtain the
index i of the cluster that each ut is assigned to.

The partitioning of the unbinding vectors ut
into Nu = 2 clusters exposes the most funda-
mental distinction made by the roles. We find that
the vectors assigned to Cluster 1 generate words
which are nouns, pronouns, indefinite and definite
articles, and adjectives, while the vectors assigned
to Cluster 0 generate verbs, prepositions, conjunc-
tions, and adverbs. Thus Cluster 1 contains the
noun-related words, Cluster 0 the verb-like words

1269



Category Nw Nr Pc

Nouns 16683 16115 0.969
Pronouns 462 442 0.957
Indefinite articles 7248 7107 0.981
Definite articles 797 762 0.956
Adjectives 2543 2237 0.880
Verbs 3558 3409 0.958
Prepositions & conjunctions 8184 7859 0.960
Adverbs 13 8 0.615

Table 2: Conformity to N/V generalization (Nu = 2).

ID Interpretation (proportion)
2 Position 1 (1.00)
3 Position 2 (1.00)
1 Noun (0.54), Determiner (0.43)
5 Determiner (0.50), Noun (0.19), Preposition (0.15)
7 Noun (0.88), Adjective (0.09)
9 Determiner (0.90), Noun (0.10)
0 Preposition (0.64), . (0.16), V (0.14)
4 Preposition: spatial (0.72) non-spatial (0.19)
6 Preposition (0.59), . (0.14)
8 Verb (0.37), Preposition (0.36), . (0.20)

Table 3: Interpretation of unbinding clusters (Nu = 10)

(verbs, prepositions and conjunctions are all po-
tentially followed by noun-phrase complements,
for example). Cross-cutting this distinction is an-
other dimension, however: the initial word in a
caption (always a determiner) is sometimes gen-
erated with a Cluster 1 unbinding vector, some-
times with a Cluster 0 vector. Outside the caption-
initial position, exceptions to the nominal/verbal
∼ Cluster 1/0 generalization are rare, as attested
by the high rates of conformity to the generaliza-
tion shown in Table 5.3.1.

Table 5.3.1 shows the likelihood of correctness
of this ‘N/V’ generalization for the words in 5,000
sentences captioned for the 5,000 test images; Nw

is the number of words in the category, Nr is the
number of words conforming to the generaliza-
tion, and Pc = Nr/Nw is the proportion conform-
ing. We use the Natural Language Toolkit (NLTK,
2017) to identify the part of speech of each word
in the captions.

A similar analysis with Nu = 10 clusters re-
veals the results shown in Table 5.3.1; these re-
sults concern the first 100 captions, which were
inspected manually to identify interpretable pat-
terns. (More comprehensive results will be dis-
cussed elsewhere.)

The clusters can be interpreted as falling into
3 groups (see Table 5.3.1). Clusters 2 and 3 are
clearly positional roles: every initial word is gen-
erated by a role-unbinding vector from Cluster 2,

and such vectors are not used elsewhere in the
string. The same holds for Cluster 3 and the sec-
ond caption word.

For caption words after the second word, po-
sition is replaced by syntactic/semantic proper-
ties for interpretation purposes. The vector clus-
ters aside from 2 and 3 generate words with a
dominant grammatical category: for example, un-
binding vectors assigned to the cluster 4 gener-
ate words that are 91% likely to be prepositions,
and 72% likely to be spatial prepositions. Cluster
7 generates 88% nouns and 9% adjectives, with the
remaining 3% scattered across other categories.
As Table 5.3.1 shows, clusters 1, 5, 7, 9 are pri-
marily nominal, and 0, 4, 6, and 8 primarily verbal.
(Only cluster 5 spans the N/V divide.)

6 Related work

This work follows a great deal of recent caption-
generation literature in exploiting end-to-end deep
learning with a CNN image-analysis front end
producing a distributed representation that is then
used to drive a natural-language generation pro-
cess, typically using RNNs (Mao et al., 2015;
Vinyals et al., 2015; Devlin et al., 2015; Chen
and Zitnick, 2015; Donahue et al., 2015; Karpa-
thy and Fei-Fei, 2015; Kiros et al., 2014a,b; Xu
et al., 2017; Rennie et al., 2017; Yao et al., 2017;
Lu et al., 2017). Our grammatical interpretation of
the structural roles of words in sentences makes
contact with other work that incorporates deep
learning into grammatically-structured networks
(Tai et al., 2015; Kumar et al., 2016; Kong et al.,
2017; Andreas et al., 2015; Yogatama et al., 2016;
Maillard et al., 2017; Socher et al., 2010; Pollack,
1990). Here, the network is not itself structured
to match the grammatical structure of sentences
being processed; the structure is fixed, but is de-
signed to support the learning of distributed repre-
sentations that incorporate structure internal to the
representations themselves — filler/role structure.

TPRs are also used in NLP in (Palangi et al.,
2017) but there the representation of each individ-
ual input word is constrained to be a literal TPR
filler/role binding. (The idea of using the outer
product to construct internal representations was
also explored in (Fukui et al., 2016).) Here, by
contrast, the learned representations are not them-
selves constrained, but the global structure of the
network is designed to display the somewhat ab-
stract property of being TPR-capable: the archi-
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tecture uses the TPR unbinding operation of the
matrix-vector product to extract individual words
for sequential output.

7 Conclusion

Tensor Product Representation (TPR) (Smolen-
sky, 1990) is a general technique for construct-
ing vector embeddings of complex symbol struc-
tures in such a way that powerful symbolic func-
tions can be computed using hand-designed neu-
ral network computation. Integrating TPR with
deep learning is a largely open problem for which
the work presented here proposes a general ap-
proach: design deep architectures that are TPR-
capable — TPR computation is within the scope
of the capabilities of the architecture in princi-
ple. For natural language generation, we proposed
such an architecture, the Tensor Product Genera-
tion Network (TPGN): it embodies the TPR op-
eration of unbinding which is used to extract par-
ticular symbols (e.g., words) from complex struc-
tures (e.g., sentences). The architecture can be in-
terpreted as containing a part that encodes a sen-
tence and a part that selects one structural role at
a time to extract from the sentence. We applied
the approach to image-caption generation, devel-
oping a TPGN model that was evaluated on the
COCO dataset, on which it outperformed LSTM
baselines on a range of standard metrics. Unlike
standard LSTMs, however, the TPGN model ad-
mits a level of interpretability: we can see which
roles are being unbound by the unbinding vec-
tors generated internally within the model. We find
such roles contain considerable grammatical infor-
mation, enabling POS tag prediction for the words
they generate and displaying clustering by POS.
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Abstract

Contextual sequence mapping is one of the
fundamental problems in Natural Language
Processing. Instead of relying solely on the
information presented in a text, the learning
agents have access to a strong external signal
given to assist the learning process. In this pa-
per, we propose a novel family of Recurrent
Neural Network unit: the Context-dependent
Additive Recurrent Neural Network (CARNN)
that is designed specifically to leverage this ex-
ternal signal. The experimental results on pub-
lic datasets in the dialog problem (Babi dialog
Task 6 and Frame), contextual language model
(Switchboard and Penn Discourse Tree Bank)
and question answering (TrecQA) show that
our novel CARNN-based architectures outper-
form previous methods.

1 Introduction

Sequence mapping is one of the most prominent
class of problems in Natural Language Processing
(NLP). This is due to the fact that written language
is sequential in nature. In English, a word is a se-
quence of characters, a sentence is a sequence of
words, a paragraph is a sequence of sentences, and
so on. However, understanding a piece of text may
require far more than just extracting the informa-
tion from that piece itself. If the piece of text is
a paragraph of a document, the reader may have
to consider it together with other paragraphs in the
document and the topic of the document. To un-
derstand an utterance in a conversation, the utter-
ance has to be put into the context of the conver-
sation, which includes the goals of the participants
and the dialog history. Hence the notion of context
is an intrinsic component of language understand-
ing.

Inspired by recent works in dialog systems (Seo
et al., 2017; Liu and Perez, 2017), we formal-
ize the contextual sequence mapping problem as

a sequence mapping problem with a strong con-
trolling contextual element that regulates the flow
of information. The system has two sources of
signals: (i) the main text input, for example, the
history utterance sequence in dialog systems or
the sequence of words in language modelling; and
(ii) the context signal, e.g., the previous utterance
in a dialog system, the discourse information in
contextual language modelling or the question in
question answering.

Our contribution in this work is two-fold.
First, we propose a new family of recurrent unit,
the Context-dependent Additive Recurrent Neural
Network (CARNN), specifically constructed for
contextual sequence mapping. Second, we de-
sign novel neural network architectures based on
CARNN for dialog systems and contextual lan-
guage modelling, and enhance the state of the
art architecture (IWAN (Shen et al., 2017)) on
question answering. Our novel building block,
the CARNN, draws inspiration from the Recur-
rent Additive Network (Lee et al., 2017), which
showed that most of the non-linearity in the suc-
cessful Long Short Term Memory (LSTM) net-
work (Hochreiter and Schmidhuber, 1997) is not
necessary. In the same spirit, our CARNN unit
minimizes the use of non-linearity in the model to
facilitate the ease of gradient flow. We also seek
to keep the number of parameters to a minimum
to improve trainability.

We experiment with our models on a broad
range of problems: dialog systems, contextual lan-
guage modelling and question answering. Our
systems outperform previous methods on sev-
eral public datasets, which include the Babi Task
6 (Bordes and Weston, 2017) and the Frame
dataset (Asri et al., 2017) for dialog, the Switch-
board (Jurafsky et al., 1997) and Penn Dis-
course Tree Bank (Miltsakaki et al., 2004) for
contextual language modelling, and the TrecQA

1274



dataset (Wang et al., 2007) for question answer-
ing. We propose a different architecture for each
task, but all models share the basic building block,
the CARNN.

2 Background and Notation

Notation. As our paper describes several architec-
tures with vastly different setups and input types,
we introduce the following notation to maintain
consistency and improve readability. First, the m-
th input to the recurrent unit will be denoted em.
In language modelling, em is the embedding of the
m-th word; while in dialog, it is the embedding
of the m-th utterance (which is a combination of
the embedding of the words inside the utterance,
xm1 . . . xmMm

). All the gates are denoted by g, all
the hidden vectors (outputs of the RNN) are de-
noted by h. Ws and bs are the RNN’s parameters,
σ denotes the sigmoid activation function, and �
denotes the element-wise product.

LSTM. The Long Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) is
arguably one of the most popular building blocks
for RNN. The main components of the LSTM are
three gates: an input gate gim to regulate the in-
formation flow from the input to the memory cell
cm, a forget gate gfm to regulate the information
flow from the previous time step’s memory cell
cm−1, and an output gate gom that regulates how
the model produces the outputs (hidden state hm)
from the memory cell ct. The computations of
LSTM are as follows:

c̃m = tanh(Wc
hhm−1 + Wc

xem + bc)

gim = σ(Wi
hhm−1 + Wi

xem + bi)

gfm = σ(Wf
hhm−1 + Wf

xem + bf )

gom = σ(Wo
hhm−1 + Wo

xem + bo)

cm = gim � c̃m + gfm � cm−1

hm = gom � tanh(cm)

(1)

RAN. The Recurrent Additive Neural Network
(RAN) (Lee et al., 2017) is an improvement over
the traditional LSTM. However, there are three
major differences between the two. First, RAN
simplifies the output computations by removing
the output gate. Second, RAN simplifies the mem-
ory cell computations by removing the direct de-
pendency between the candidate update memory
cell c̃m and the previous hidden vector hm−1. Fi-
nally, RAN removes the non-linearity from the

transition dynamic of RNN by removing the tanh
non-linearity from the c̃m. The equations for RAN
are as follows:

c̃m = Wc
xem

gim = σ(Wi
hhm−1 + Wi

xem + bi)

gfm = σ(Wf
hhm−1 + Wf

xem + bf )

cm = gim � c̃m + gfm � cm−1

hm = s(cm)

(2)

where s can be an identity function (identity RAN)
or the tanh activation function (tanh RAN).

As shown in (Lee et al., 2017), RAN’s mem-
ory cells cm can be decomposed into a weighted
sum of the inputs. Their experimental results show
that RAN performs as well as LSTM for language
modelling, while having significantly fewer pa-
rameters.

3 The Context-dependent Additive
Recurrent Neural Net (CARNN)

In this section, we describe our novel recurrent
units for the context-dependent sequence mapping
problem.

Our RNN units use a different gate arrangement
than that used by RAN. However, if we consider
a broader definition of identity RAN, i.e., an RNN
where hidden unit outputs can be decomposed into
a weighted sum of inputs, where the weights are
functions of the gates, then our first CARNN unit
(nCARNN) can be viewed as an extension of iden-
tity RAN with additional controlling context.

The next two CARNN units (iCARNN and
sCARNN) further simplify the nCARNN unit to
improve trainability.

3.1 Non-independent gate CARNN
(nCARNN)

The main components of our recurrent units are
the two gates (an update gate gu and a reset gate
gf ), which jointly regulate the information from
the input. The input vector, after being pushed
through an affine transformation, is added into the
previous hidden vector hm−1. The computations
of the unit are as follows:

gum = σ(Wc
uc + Wh

uhm−1 + We
uem + bu)

gfm = σ(Wc
fc + Wh

fhm−1 + We
fem + bf )

ēm = Wēem + bē
hm = gum � (gfm � ēm) + (1− gum)� hm−1

(3)
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Figure 1: Context Dependent Additive Recurrent Neu-
ral Network. Note that only nCARNN has the previous
hidden state hm−1 in its gate computation, iCARNN
and sCARNN do not.

where c is the representation of the global context.
Apart from the non-linearity in the gates, our

model is a linear function of the inputs. Hence,
the final hidden layer of our RNN, denoted as hM ,
is a weighted sum of the inputs and a bias term Bi
(Equation 4), where the weights are functions of
the gates and Wē is a dimension reduction matrix.

hM = guM � gfM � ēM + (1− guM )� hM−1

=
M∑

i=1

(gui � gfi �
M∏

j=i+1

(1− guj ))� ēi

=

M∑

i=1

[(gui � gfi �
M∏

j=i+1

(1− guj ))�Wēei + Bi]

(4)

From the decomposition in Equation 4, it seems
that the outputs of an RNN with the nCARNN unit
can be efficiently computed in parallel. That is, we
can compute the weight for each input in parallel,
and take their weighted sum to produce any de-
sired hidden vector output. However, there is one
obstacle: since the gates are functions of the pre-
vious hidden states, they still need to be computed
sequentially. But if we assume that the external
controlling context c is strong enough to regulate
the flow of information, we can remove the pre-
vious hidden state (local context hm−1) from the
gate computations, and make the RNN computa-
tions parallel. The next two variants of CARNN
implement this idea by removing the local context
from gate computations.

3.2 Independent gate CARNN (iCARNN)
The Gated Recurrent Unit (GRU) (Chung et al.,
2014) and LSTM networks use a local context (the
previous hidden state hm−1) and the current input
to regulate the flow of information. In contrast,
our model, relies on the global controlling context
c at every step, and thus, might not need the local
context hm−1 at all. Removing the local context
can reduce the computational complexity of the
model, but it may result in a loss of local sequen-
tial information. To test the effectiveness of this
trade-off, we propose another variant of our unit,
the independent gate CARNN (iCARNN), where
the gate computations are simplified, and the gates
are functions of the controlling context and the in-
puts. This formulation of CARNN is formally de-
fined as follows.

gum = σ(Wc
uc + We

uem + bu)

gfm = σ(Wc
fc + We

fem + bf )

ēm = Wēem + bē
hm = gum � (gfm � ēm) + (1− gum)� hm−1

(5)

Compared to the traditional RNN, iCARNN’s
gates computations do not take into account the
sequence context, i.e., the previous hidden vector
computations, and the gates at all time steps can be
computed in parallel. However, iCARNN, unlike
memory network models (Sukhbaatar et al., 2015;
Liu and Perez, 2017), still retains the sequential
nature of RNN. This is because even though the
gates at different time steps do not depend on each
other, the hidden vector output at the m-th time
step hm depends on the previous gate (gum−1), and
hence on the previous input.

3.3 Simplified candidate CARNN (sCARNN)
The standard GRU and the LSTM employ a linear
transformation on the input representation before
it is incorporated into the hidden representation.
We have followed this convention with the previ-
ous variants of our unit. Although this transfor-
mation improves dimensional flexibility of the in-
put/output vector, and adds representational power
to the model with additional parameters, it also in-
creases computational complexity. Fixing the out-
put dimension to be the same as the input dimen-
sion makes it possible to reduce the computational
complexity of the model. This leads us to propose
another variant of the CARNN where the candi-
date update ēm is the original embedding of the
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current input (Equation 6). We call this variation
the simplified candidate CARNN (sCARNN). The
combination of lower gate computational com-
plexity and the parallel-ability allow the paralleled
sCARNN version to be 30% faster (30% lower
training time for each epoch) than nCARNN in the
question answering and dialog experiments, and
15% faster in the language model experiment. The
sCARNN is formally defined as follows.

gum = σ(Wc
uc + We

uem + bu)

gfm = σ(Wc
fc + We

fem + bf )

hm = gum � (gfm � em) + (1− gum)� hm−1

(6)

sCARNN can still be decomposed into a
weighted sum of the sequence of input elements,
and retains the parallel computation capability of
the iCARNN.

hM = guM � gfM � em + (1− guM )� hM−1

=
M∑

i=1

(gui � gfi �
M∏

j=i+1

(1− guj ))� ei

(7)

4 CARNN-based models for NLP
problems

In this section, we explain the details of our
CARNN-based architectures for end-to-end dia-
log, language modelling and question answering.
In each of these applications, one of the main de-
sign concerns is the choice of contextual informa-
tion. As we will demonstrate in this section, the
controlling context c can be derived from various
sources: a sequence of words (dialog and question
answering), a class variable (language modelling).
Virtually any sources of strong information that
can be encoded into vectors can be used as con-
trolling context.

4.1 End-to-end dialog

To produce a response, we first encode the whole
dialog history into a real vector representation
hhis. To this effect, we perform two steps: first, we
encode each utterance (sequence of words) into a
real vector, and next, we encode this sequence of
real vector representations into hhis. We employ
the Position Encoder (Bordes and Weston, 2017)
for the first step, and CARNNs for the second step.

Summarizing individual utterances. Let’s de-
note the sequence of word-embeddings in the m-
th utterance xm1 , . . . xmNm

. These word embeddings
are jointly trained with the model. Following
previous work in end-to-end dialog systems, we
opt to use the Position Encoder (Liu and Perez,
2017; Bordes and Weston, 2017) for encoding ut-
terances.

The Position Encoder is an improvement over
the average embedding of bag of words, as it
takes into account the position of the words in
a sequence. This encoder has been empirically
shown to perform well on the Babi dialog task (Liu
and Perez, 2017; Bordes and Weston, 2017);
more details about the Position Encoder can be
found in (Sukhbaatar et al., 2015). Let’s denote
the the embeddings of a sequence of utterances
e1, . . . eM−1.

Summarizing the dialog history. The CARNN
models take the embeddings of the sequence of ut-
terances and produce the final representation hhis.
We further enhance the output of the CARNN by
adding the residual connection to the input (He
et al., 2016; Tran et al., 2017), and the attention
mechanism (Bahdanau et al., 2015) over the his-
tory.

h1, ..hM−1 = CARNN(e1, ..eM−1, c)

∀m ∈ [1..M − 1] : h̃m = hm + em

α1..αM−1 = softmax(h̃T1 c, .., h̃TM−1c)

hhis =
M−1∑

m=1

αmh̃m

(8)

where α are the attention weights, hm is the m-th
output of the base CARNN, em is the embedding
of the m-th input utterance, and c = eM is the
context embedding.

Our model chooses the response from a set of
pre-determined system answers (a task setup fol-
lowing Bordes and Weston (2017); Liu and Perez
(2017); Seo et al. (2017)). However, in the dia-
log case, the answers themselves are sequences of
words, and treating them as distinct classes may
not be the best approach. In fact, previous work
in memory networks (Liu and Perez, 2017; Bor-
des and Weston, 2017) employs a feature function
Φ to extract features from the candidate responses.
In our work, we do not use any feature extraction,
and simply use the Position Encoder to encode the
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Figure 2: CARNN for dialog.

responses as shown in Figure 2, which depicts our
architecture of CARNN for dialog.

∀l ∈ [1..L] : el = Position Encoder(ycl ) (9)

We then put a distribution over the candidate
responses conditioned on the summarized dialog
history hhis (Equation 10).

P(y) = softmax(hThise
y
1, ...,h

T
hise

y
L) (10)

4.2 Contextual language model
Typically, language models operate at the sentence
level, i.e., the sentences are treated independently.
Several researchers have explored inter-sentence
and inter-document level contextual information
for language modelling (Ji et al., 2016a,b; Tran
et al., 2016; Lau et al., 2017).

Following Ji et al. (2016a,b), we investigate two
types of contextual information: (i) the previous
sentence context; and (ii) a latent variable captur-
ing the connection information between sentences,
such as discourse relation in the Penn Discourse
Tree Bank dataset or Dialog Acts in the Switch-
board dataset.

Previous sentence context. The previous sen-
tence (time-step t − 1) contextual information is
encoded by a simplified version of the nCARNN,
where the global context is absent. The final hid-
den vector of this sequence is then fed into the
current recurrent computation (time-step t) as the
context for that sequence. Equation 11 shows this
procedure.

ct−1 ←−nCARNN(et−1
1 , ..et−1

Mt−1)

ht1, ..h
t
Mt−1 = CARNN(et1, ..e

t
Mt , ct−1)

wtm+1 ∼ softmax(W(l)htm + b(l))

(11)

Latent variable context. Ji et al. (2016b) pro-
posed to embed the predicted latent variables us-
ing an embedding matrix, and use this real vector
as the contextual information. In our work, we de-
sign a multi-task learning scenario where the pre-
vious sentence context encoder has additional su-
pervised information obtained from the annotated
latent variable (Lt−1). This additional information
from the latent variable is only used to train the
previous sentence encoder, and enhance the con-
text ct−1 (Equation 12). During test time, the lan-
guage model uses the same computation steps as
the previous sentence context version.

P(Lt−1) = softmax(W(c)ct−1 + b(c))

Lt−1
l ∼ P(Lt−1)

(12)

During training, the total loss function (Ltl,w)
is the linear combination of the average log-loss
from the current sentence’s words (Ltw) and the
log-loss from the previous latent variable (Lt−1

l ).

Ltl,w = αLtw + (1− α)Lt−1
l (13)

where α is a linear mixing parameter. In our ex-
periments, tuning α does not yield significant im-
provements, hence we set α = 0.5.

4.3 Question answering

Answer selection is an important component of a
typical question answering system. This task can
be briefly described as follows: Given a question q
and a candidate set of sentences c1, c2, . . . cn, the
goal is to identify positive sentences that contain
the answer. Many researchers have investigated
employing neural networks for this task (Rao
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Figure 3: CARNN for context-dependent language model.

et al., 2016; Wang et al., 2017; Bian et al., 2017;
Shen et al., 2017; Tay et al., 2017; He et al., 2015).
Below is an example from the answer selection
TrecQA corpus:

Question: Who established the Nobel prize
awards?
Positive answer: The Nobel Prize was estab-
lished in the will of Alfred Nobel, a Swede who
invented dynamite and died in 1896.
Negative answer: The awards aren’t given in
specific categories.

The IWAN model proposed in (Shen et al.,
2017) achieves state-of-the-art performance on the
Clean version TrecQA dataset (Wang et al., 2007)
for answer selection. In general, given two sen-
tences, the model aims to calculate a score to mea-
sure their similarity. For each sentence, the model
first uses a bidirectional LSTM to obtain a context-
aware representation for each position in the sen-
tence. The representations will later be utilized by
the model to compute similarity score of the two
sentences according to the degree of their align-
ment (Shen et al., 2017).

The original IWAN model employed LSTM to
encode the sentence pair into sequences of real
vector representations. However, these sequences
are independent, and do not take into account
the information from the other sentence. In or-
der to overcome this limitation, we enhance the
IWAN model with a “cross context CARNN-based
sentence encoder” that replaces the bidirectional
LSTM. When the cross context CARNN sentence
encoder processes a sentence, it takes the encod-
ing of the other sentence, encoded by a Position
Encoder, as the controlling context (Figure 4).

5 Experiments

5.1 End-to-end dialog

Datasets. For the dialog experiments, we fo-
cus on two popular datasets for dialog: the Babi
dataset (Bordes and Weston, 2017) and the Mal-
luba Frame dataset (Asri et al., 2017).1

In our main set of experiments for dialog, we
use the original Babi task 6 dataset, and test on the
end-to-end dialog setting (the same setting used by
Seo et al. (2017); Bordes and Weston (2017); Liu
and Perez (2017)). That is, the systems have to
produce complete responses and learn the dialog
behaviour solely from the ground truth responses
without help from manual features, rules or tem-
plates. Apart from this main set of experiments,
we apply our end-to-end systems as dialog man-
agers and test on a slightly different setting in the
next two sets of experiments.

In the second set of experiments, we use our
end-to-end systems as “dialog managers”. The
only difference compared to the end-to-end dialog
setting is that the systems produce templatized re-
sponses instead of complete responses. Our moti-
vation for this dialog manager setting is that in our
preliminary experiments with the Babi dataset, we
found out that many of the classification errors are
due to very closely related responses, all of which
fit the corresponding context. We argue that if we
treat the systems as dialog managers, then we can
delexicalize and group similar responses. Thus
following Williams et al. (2017), we construct a
templatized set of responses. For example, all the

1Among the Babi tasks, we focus mainly on task 6, which
is based on real human-machine interactions. The other five
Babi datasets comprise synthetically generated data.
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Figure 4: CARNN for Question Answering.

responses similar to “india house is in the west
part of town” will be grouped into “ name is in
the loc part of town”. The set of responses is re-
duced to 75 templatized responses. We call this
new dataset “Babi reduced”.2

The third set of experiments is conducted on the
Frame dataset. The general theme in this dataset
is similar to that of the Babi task 6, but the re-
sponses in the Frame dataset are generally in free
form, rather than being sourced from a limited set.
Thus, we define a dialog task on the Frame data set
similar to the Babi reduced dialog task by simpli-
fying and grouping the responses.3 The final set of
responses consists of 129 response classes. For the
experiments on the Frame dataset, we randomly
choose 80% of the conversations as the training
set, and 10% each for testing and development.

Baselines. In the dialog experiments, we focus
on the existing published results with end-to-end
settings, namely the Memory Network (MN) (Bor-
des and Weston, 2017), the Gated Memory Net-
work (GMN) (Liu and Perez, 2017) and the Query
Reduction Network (QRN) (Seo et al., 2017).4 For
the Frame and Babi reduced datasets, we use the
publicly available implementation of the QRN,5

and our implementation of the GMN with hyper
parameters similar to those reported by Liu and

2We do not have access to Williams et al. (2017)’s tem-
plate set, thus the results in Babi reduced are not comparable
to those obtained by Williams et al. (2017).

3We use only one of the annotated “Dialog acts” and its
first slot key as a template for the response.

4Williams et al. (2017) and Liu and Lane (2017) reported
very strong performances (55.6% and 52.8% respectively) for
the Babi dataset. However, these systems do not learn dia-
log behaviour solely from Babi’s ground truth responses, and
thus do not have end-to-end dialog setups. As stated in their
papers, Williams et al.use hand-coded rules and task-specific
templates, while Liu et al.employ the external users’ goal an-
notations that are outside the Babi dataset.

5https://github.com/uwnlp/qrn

Model Babi Babi reduced Frame
nCARNN 51.3%* 55.8%* 27.4%*
iCARNN 52.0%* 55.2%* 28.5%*
sCARNN 50.9%* 55.9%* 25.7%*
CARNN voting 53.2%* 56.9%* 29.1%*
QRN (2017) 46.8% 54.7% 24.0%
GMN (2017) 47.4% 54.1% 23.6%
MN (2017) 41.1% – –

Table 1: Dialog accuracy on Babi and Frame among
end-to-end systems. * indicates statistical significance
with p < 0.1 compared to QRN.

Perez (2017); Seo et al. (2017). Note that the orig-
inal results presented by Seo et al. (2017), take into
account partial matches (matching only a portion
of the ground truth response), and hence cannot be
directly translated into the standard response accu-
racy reported by other researchers (we have con-
firmed this with Seo et al.). For a direct compari-
son with the QRN, we use the evaluation settings
employed in other papers (Liu and Perez, 2017;
Sukhbaatar et al., 2015).

Results and discussion. Table 1 shows the re-
sults of the end-to-end models for the dialog task.
All the CARNN-based systems are implemented
in Tensorflow (Abadi et al., 2015) with a hidden
vector size of 1024. As seen in Table 1, our mod-
els achieve the best results, and within the vari-
ants of our models, the iCARNN either performs
the best, or very close to the best on all datasets.
Majority voting provides a significant boost to the
performance of the CARNN models. Upon com-
parison with the baseline systems, CARNN mod-
els tend to perform better on instances which re-
quire the system to remember specific information
through a long dialog history. In Figure 5, the
user already mentioned that he/she wants to find a
“cheap” restaurant, but the GMN and QRN seem
to “forget” this information. We speculate that due
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U: im looking for a cheap restaurant
S: ... What type of food do you want??
...5 dialog turns...
S: Could you please repeat that?
U: vietnamese food

CARNN action: api call vietnamese R location cheap
QRN action: api call vietnamese R location R price
GMN action: api call vietnamese R location R price

Figure 5: Sample dialog from our system compared to
the baselines. Only CARNN’s predicted action takes
into account the original cheap restaurant request and
matches the ground truth action (in the systems’ api
calls, “R price” denotes “any price”).

to the ease of training, CARNN models summa-
rize the dialog history better, and allow for longer
information dependency.

The CARNN units are originally designed in
the dialog context. During model calibration, we
also tested in the dialog experiments two other
CARNN versions with both higher and lower
complexity. The lower complexity CARNN ver-
sion resembles sCARNN without the forget gate,
and the higher complexity CARNN version resem-
bles the LSTM unit with all three gates (forget,
update and output), with the gates being modified
from the original LSTM gates to be functions of
the external contextual information. Both of these
versions do not perform as well as the three main
CARNN versions (48.7% and 48.6% for the high-
and low-complexity versions respectively in the
Babi task).

5.2 Contextual language model

Datasets. We employ two datasets for the exper-
iments with the contextual language model: the
Switchboard Dialog Act corpus and the Penn Dis-
course Tree Bank corpus. There are 1155 tele-
phone conversations in the Switchboard corpus,
where each conversation has an average of 176 ut-
terances. There were originally 226 Dialog Act
(DA) labels in the corpus, but they are usually
clustered into 42 labels. The Penn Tree Bank
corpus provides discourse relation annotation be-
tween the spans of text. We used the preprocessed
data by Ji et al. (2016b), where the explicit dis-
course relations are mapped into a dummy rela-
tion. Our data splits are the same as those de-
scribed in the baselines (Ji et al., 2016a,b).

Baselines. We compare our system with the Re-
current Neural Net (RNNLM) with LSTM unit (Ji
et al., 2016a), the Document Contextual Lan-

Model Penn Discourse Switchboard
Tree Bank

nCARNN (w/o latent) 96.95 30.17
iCARNN (w/o latent) 94.72 32.49
sCARNN (w/o latent) 87.39 31.50
nCARNN (with latent) 96.64 29.72
iCARNN (with latent) 94.16 32.16
sCARNN (with latent) 86.68 31.49
RNNLM (2016b) 117.8 56.0
DCLM (2016a) 112.2 45.3
DRLM (2016b) 108.3 39.6

Table 2: Perplexity on Switchboard and Penn Dis-
course Tree Bank.

Model MAP MRR
IWAN (our implementation) + nCARNN* 0.827 0.889
IWAN (our implementation) + iCARNN* 0.826 0.907
IWAN (our implementation) + sCARNN* 0.829 0.875
IWAN (our implementation) 0.794 0.879
IWAN (2017) 0.822 0.889
Compare-Aggregate (2017) 0.821 0.899
BiMPM (2017) 0.802 0.875
NCE-CNN (2016) 0.801 0.877
HyperQA (2017) 0.784 0.865

Table 3: MAP and MRR for question answering. *
indicates statistical significance with α < 0.05 in t-test
compared to IWAN (our implementation).

guage Model (DCLM) (Ji et al., 2016a) and the
Discourse Relation Language Model (DRLM) (Ji
et al., 2016b). The RNNLM’s architecture is the
same as that described in (Mikolov et al., 2013)
with sigmoid non-linearity replaced by LSTM.
The DCLM exploits the inter-sentences context
by concatenating the representation of the pre-
vious sentence with the input vector (context-to-
context) or the hidden vector (context-to-output).
The DRLM introduces the latent variable contex-
tual models using a generative architecture that
treats Dialog Acts or discourse relations as latent
variables.

Results and discussion. Table 2 shows the test
set perplexities across the systems for the Penn
Tree Bank and Switchboard datasets. Interest-
ingly, in these experiments, the system with the
least computational complexity, the sCARNN,
performs best on Penn Discourse Tree Bank, and
second best on Switchboard. Generally, we found
out that adding the Dialog Act/Discourse super-
vised signal in a multi-task learning scheme pro-
vides a boost to performance, but this improve-
ment is small.
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5.3 Question answering

Datasets. The TrecQA dataset (Wang et al.,
2007) is a widely-used benchmark for answer
selection. There are two versions of TrecQA:
original and clean. The original TrecQA con-
sists of 1,229 training questions, 82 development
questions, and 100 test questions. Recently, re-
searchers (Rao et al., 2016; Shen et al., 2017)
developed a clean version, where they removed
questions in the development and test sets with no
answers or only positive/negative answers. This
reduced the development and test set’s sizes to 65
and 68 questions respectively.

Baselines. We compare the performance of our
models with that of the state-of-the-art models on
the clean version of the TREC-QA dataset (Shen
et al., 2017; Bian et al., 2017; Wang et al., 2017;
Rao et al., 2016; Tay et al., 2017). We do not have
access to the original implementation of IWAN,
hence we use our implementation of the IWAN
model as the basis for our models.

Results and discussion. Table 3 shows the
MAP (Mean Average Precision) and MRR (Mean
Reciprocal Rank) of our systems and the base-
lines. To the best of our knowledge, our systems
outperform all previous systems on this dataset.
Enhancing IWAN with cross-context CARNN
statistically significantly improves performance.
Among the variants, the iCARNN is the most con-
sistent in both MAP and MRR. During our error
analysis, we noted that the top answer returned
by IWAN models with either LSTM or CARNNs
are usually good. However, in many cases, lower
ranked answers returned by the LSTM model are
not as good as those produced by the CARNN
models. We show an example of this in Table 4.

6 Conclusion and future work

In this paper, we propose a novel family of
RNN units which are particularly useful for
the contextual sequence mapping problem: the
CARNNs. Together with our neural net archi-
tectures, CARNN-based systems outperform pre-
vious methods on several public datasets for di-
alog (Frame and Babi Task 6), question answer-
ing (TrecQA) and contextual language modelling
(Switchboard and Penn Discourse Tree Bank). In
the future, we plan to investigate the effective-
ness of CARNN units in other sequence modelling
tasks.

Question: During what war did Nimitz serve?
IWAN-LSTM IWAN-iCARNN

Since the museum opened
in 1983, Fredericksburg
has become a haven for
retired military service-
men who come to trace
Nimitz’s career and the
events of World War II.

Since the museum opened
in 1983, Fredericksburg
has become a haven for
retired military service-
men who come to trace
Nimitz’s career and the
events of World War II.

Bill McCain, who grad-
uated from West Point,
chased Pancho Villa with
Gen. Blackjack Pershing,
served as an artillery of-
ficer during World War I
and attained the rank of
brigadier general.

Indeed, the ancestors of
Chester W. Nimitz, the
U.S. naval commander in
chief of the Pacific in
World War II, were among
the first German pioneers
to settle the area.

There was his grandfather,
Admiral John “Slew” Mc-
Cain, Class of 1906, a
grizzled old sea dog who
commanded aircraft carri-
ers in the Pacific during
World War II.

Slew McCain’s peers
at the Naval Academy
were Chester Nimitz and
William “Bull” Halsey,
who would become major
commanders during World
War II.

Table 4: Top three answers produced by CARNN and
LSTM. Blue colored answers are correct and red ones
are incorrect.
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Abstract

Natural language sentences, being hierarchi-
cal, can be represented at different levels of
granularity, like words, subwords, or charac-
ters. But most neural machine translation sys-
tems require the sentence to be represented as
a sequence at a single level of granularity. It
can be difficult to determine which granularity
is better for a particular translation task. In this
paper, we improve the model by incorporating
multiple levels of granularity. Specifically, we
propose (1) an encoder with character atten-
tion which augments the (sub)word-level rep-
resentation with character-level information;
(2) a decoder with multiple attentions that en-
able the representations from different levels
of granularity to control the translation cooper-
atively. Experiments on three translation tasks
demonstrate that our proposed models out-
perform the standard word-based model, the
subword-based model and a strong character-
based model.

1 Introduction

Neural machine translation (NMT) models (Britz
et al., 2017) learn to map from source lan-
guage sentences to target language sentences
via continuous-space intermediate representa-
tions. Since word is usually thought of as the ba-
sic unit of language communication (Jackendoff,
1992), early NMT systems built these represen-
tations starting from the word level (Sutskever
et al., 2014; Bahdanau et al., 2015; Cho et al.,
2014; Weng et al., 2017). Later systems tried us-
ing smaller units such as subwords to address the
problem of out-of-vocabulary (OOV) words (Sen-
nrich et al., 2016; Wu et al., 2016).

Although they obtain reasonable results, these
word or sub-word methods still have some poten-
tial weaknesses. First, the learned representations

∗ Corresponding author.

of (sub)words are based purely on their contexts,
but the potentially rich information inside the unit
itself is seldom explored. Taking the Chinese word
被打伤 (bei-da-shang) as an example, the three
characters in this word are a passive voice marker,
“hit” and “wound”, respectively. The meaning of
the whole word, “to be wounded”, is fairly com-
positional. But this compositionality is ignored if
the whole word is treated as a single unit.

Secondly, obtaining the word or sub-word
boundaries can be non-trivial. For languages like
Chinese and Japanese, a word segmentation step
is needed, which must usually be trained on la-
beled data. For languages like English and Ger-
man, word boundaries are easy to detect, but sub-
word boundaries need to be learned by methods
like BPE. In both cases, the segmentation model
is trained only in monolingual data, which may re-
sult in units that are not suitable for translation.

On the other hand, there have been multiple
efforts to build models operating purely at the
character level (Ling et al., 2015a; Yang et al.,
2016; Lee et al., 2017). But splitting this finely
can increase potential ambiguities. For example,
the Chinese word 红茶 (hong-cha) means “black
tea,” but the two characters means “red” and “tea,”
respectively. It shows that modeling the charac-
ter sequence alone may not be able to fully uti-
lize the information at the word or sub-word level,
which may also lead to an inaccurate representa-
tion. A further problem is that character sequences
are longer, making them more costly to process
with a recurrent neural network model (RNN).

While both word-level and character-level in-
formation can be helpful for generating better rep-
resentations, current research which tries to ex-
ploit both word-level and character-level informa-
tion only composed the word-level representation
by character embeddings with the word boundary
information (Ling et al., 2015b; Costa-jussà and
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Fonollosa, 2016) or replaces the word represen-
tation with its inside characters when encounter-
ing the out-of-vocabulary words (Luong and Man-
ning, 2016; Wu et al., 2016). In this paper, we pro-
pose a novel encoder-decoder model that makes
use of both character and word information. More
specifically, we augment the standard encoder to
attend to individual characters to generate better
source word representations (§3.1). We also aug-
ment the decoder with a second attention that at-
tends to the source-side characters to generate bet-
ter translations (§3.2).

To demonstrate the effectiveness of the pro-
posed model, we carry out experiments on
three translation tasks: Chinese-English, English-
Chinese and English-German. Our experiments
show that: (1) the encoder with character atten-
tion achieves significant improvements over the
standard word-based attention-based NMT system
and a strong character-based NMT system; (2) in-
corporating source character information into the
decoder by our multi-scale attention mechanism
yields a further improvement, and (3) our mod-
ifications also improve a subword-based NMT
model. To the best of our knowledge, this is the
first work that uses the source-side character in-
formation for all the (sub)words in the sentence to
enhance a (sub)word-based NMT model in both
the encoder and decoder.

2 Neural Machine Translation

Most NMT systems follow the encoder-decoder
framework with attention mechanism proposed by
Bahdanau et al. (2015). Given a source sentence
x = x1 · · · xl · · · xL and a target sentence y =

y1 · · · y j · · · yJ , we aim to directly model the trans-
lation probability:

P(y | x; θ) =

J∏

1

P(y j | y< j, x; θ),

where θ is a set of parameters and y< j is the
sequence of previously generated target words.
Here, we briefly describe the underlying frame-
work of the encoder-decoder NMT system.

2.1 Encoder

Following Bahdanau et al. (2015), we use a
bidirectional RNN with gated recurrent units
(GRUs) (Cho et al., 2014) to encode the source

sentence:
−→
hl = GRU(

−−→
hl−1, sl;

−→
θ )

←−
hl = GRU(

←−−
hl−1, sl;

←−
θ )

(1)

where sl is the l-th source word’s embedding,
GRU is a gated recurrent unit,

−→
θ and

←−
θ are the pa-

rameters of forward and backward GRU, respec-
tively; see Cho et al. (2014) for a definition.

The annotation of each source word xl is ob-
tained by concatenating the forward and backward
hidden states:

←→
hl =


−→
hl←−
hl

 .

The whole sequence of these annotations is used
by the decoder.

2.2 Decoder
The decoder is a forward RNN with GRUs pre-
dicting the translation y word by word. The prob-
ability of generating the j-th word y j is:

P(y j | y< j, x; θ) = softmax(


t j−1
d j

c j

)

where t j−1 is the word embedding of the ( j − 1)-th
target word, d j is the decoder’s hidden state of
time j, and c j is the context vector at time j. The
state d j is computed as

d j = GRU
(
d j−1,

[
t j−1
c j

]
; θd

)
.

The attention mechanism computes the context
vector ci as a weighted sum of the source annota-
tions,

c j =

I∑

i=1

α j,l
←→
hl (2)

where the attention weight α ji is

α ji =
exp (e ji)∑I

i′=1 exp (e ji′)
(3)

and

e jl = vT
a tanh (Wad j−1 + Ua

←→
hl ) (4)

where va, Wa and Ua are the weight matrices of
the attention model, and e jl is an attention model

that scores how well d j−1 and
←→
hl match.

With this strategy, the decoder can attend to the
source annotations that are most relevant at a given
time.
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Figure 1: Forward encoder with character attention at
time step l. The encoder alternates between reading
word embeddings and character context vectors. cl

I and
cl

O denotes the inside and outside character-level con-
text vectors of the l-th word, respectively.

3 Character Enhanced Neural Machine
Translation

In this section, we present models which make use
of both character-level and word-level information
in the encoder-decoder framework.

3.1 Encoder with Character Attention
The encoder maps the source sentence to a se-
quence of representations, which is then used by
the attention mechanism. The standard encoder
operates purely on (sub)words or characters. How-
ever, we want to encode both, since both levels can
be linguistically significant (Xiong et al., 2017).

To incorporate multiple levels of granularity, we
extend the encoder with two character-level at-
tentions. For each source word, the characters of
the whole sentence can be divided into two parts,
those inside the word and those outside the word.
The inside characters contain information about
the internal structure of the word. The outside
characters may provide information about patterns
that cross word boundaries. In order to distinguish
the influence of the two, we use two separate atten-
tions, one for inside characters and one for outside
characters.

Note that we compute attention directly from
the character embedding sequence instead of using
an additional RNN layer. This helps to avoid the
vanishing gradient problem that would arise from
increasing the sequence length, and also keeps the
computation cost at a low level.

Figure 1 illustrates the forward encoder with
character attentions. We write the character em-
beddings as o = o1 · · · ok · · · oK . Let pl and ql be

the starting and ending character position, respec-
tively, of word xl. Then opl · · · oql are the inside
characters of word xl; o1 · · · opl−1 and oql+1 · · · oK

are the outside characters of word xl.
The encoder is an RNN that alternates between

reading (sub)word embeddings and character-
level information. At each time step, we first read
the word embedding:

−→
hl
′ = GRU(

−−→
hl−1, sl;

−→
θ′) (5)

Then we use the attention mechanisms to com-
pute character context vectors for the inside char-
acters:

cI
l =

ql∑

m=pl

αI
lmom

αI
lm =

exp (elm)
∑ql

m′=pl
exp (elm′)

elm = vI · tanh (W I−→hl
′ + U Iom).

The outside character context vector cl
O is calcu-

lated in a similar way, using a different set of pa-
rameters, i.e. WO,UO, vO instead of W I ,U I , vI .

The inside and outside character context vectors
are combined by a feed-forward layer and fed into
the encoder RNN, forming the character-enhanced
word representation

−→
hl:

cC
l = tanh(W IcI

l + WOcl
O)

−→
hl = GRU(

−→
hl
′, cC

l ;
−→
θ )

Note that this GRU does not share parameters with
the GRU in (5).

The backward hidden states are calculated in a
similar manner.

3.2 Decoder with Multi-Scale Attention
In order to fully exploit the character-level infor-
mation, we also make extensions to the decoder, so
that the character-level information can be taken
into account while generating the translation.

We propose a multi-scale attention mechanism
to get the relative information of current decod-
ing step from both word-level and character-level
representations. This attention mechanism is build
from the high-level to the low-level representa-
tion, in order to enhance high-level representation
with fine-grained internal structure and context.
The multi-scale attention mechanism is built (as
shown in Figure 2) from word-level to character-
level.
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Figure 2: Illustration of the decoder with our multi-
scale attention mechanism.

First, we get the word-level information. The
context vector cw

j is calculated following the stan-
dard attention model (Eq. 2–4). And the hidden
state d̃ j is updated.

d̃ j = GRU
(
d j−1,

[
t j−1
cw

j

]
; θ̃d

)
, (6)

Then we attend to the character-level represen-
tation, which provides more information about the
word’s internal structure. The context vector cc

j
is calculated based on the updated hidden state
above,

cc
j =

K∑

k=1

αc
jkok

αc
jk =

exp (e jk)
∑K

k′=1 exp (e jk′)

e j,k = vc · tanh (Wcd̃ j + Ucok).

Finally, the word-level context vector cw
j and

character-level context vector cc
j are concatenated:

c j =


cw

j
cc

j

 .

And the final context vector c j is used to help pre-
dict the next target word.

P(y j | y< j, x; θ) = softmax(


t j−1
d j

c j

)

where d j is

d j = GRU(d̃ j, cc
j; θd),

With this mechanism, both the (sub)word-level
and character-level representations could be used

to predict the next translation, which helps to en-
sure a more robust and reasonable choice. It may
also help to alleviate the under-translation prob-
lem because the character information could be a
complement to the word.

4 Experiments

We conduct experiments on three translation
tasks: Chinese-English (Zh-En), English-Chinese
(En-Zh) and English-German (En-De). We write
Zh↔En to refer to the Zh-En and En-Zh tasks to-
gether.

4.1 Datasets
For Zh↔En, the parallel training data consists
of 1.6M sentence pairs extracted from LDC cor-
pora, with 46.6M Chinese words and 52.5M En-
glish words, respectively.1 We use the NIST MT02
evaluation data as development data, and MT03,
MT04, MT05, and MT06 as test data. The Chinese
side of the corpora is word segmented using ICT-
CLAS.2 The English side of the corpora is lower-
cased and tokenized.

For En-De, we conduct our experiments on the
WMT17 corpus. We use the pre-processed par-
allel training data for the shared news transla-
tion task provided by the task organizers.3 The
dataset consitst of 5.6M sentence pairs. We use
newstest2016 as the development set and eval-
uate the models on newstest2017.

4.2 Baselines
We compare our proposed models with several
types of NMT systems:

• NMT: the standard attentional NMT model
with words as its input (Bahdanau et al.,
2015).

• RNN-Char: the standard attentional NMT
model with characters as its input.

• CNN-Char: a character-based NMT model,
which implements the convolutional neural
network (CNN) based encoder (Costa-jussà
and Fonollosa, 2016).

• Hybrid: the mixed word/character model
proposed by Wu et al. (2016).

1LDC2002E18, LDC2003E14, the Hansards portion of
LDC2004T08, and LDC2005T06.

2http://ictclas.nlpir.org
3http://data.statmt.org/wmt17/

translation-task/preprocessed/de-en/
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System MT02 MT03 MT04 MT05 MT06 Mean ∆

NMT 33.76 31.88 33.15 30.55 27.47 30.76
Word-att 34.28 32.26 33.82 31.02 27.93 31.26 +0.50
Char-att 34.85 33.71 34.91 32.08 28.66 32.34 +1.58

Table 1: Performance of the encoder with character attention and the encoder with word attention. Char-att and
Word-att denotes the encoder with character attention and the encoder with word attention, respectively.

• BPE: a subword level NMT model, which
processes the source side sentence by Byte
Pair Encoding (BPE) (Sennrich et al., 2016).

We used the dl4mt implementation of the atten-
tional model,4 reimplementing the above models.

4.3 Details

Training For Zh↔En, we filter out the sentence
pairs whose source or target side contain more
than 50 words. We use a shortlist of the 30,000
most frequent words in each language to train our
models, covering approximately 98.2% and 99.5%
of the Chinese and English tokens, respectively.
The word embedding dimension is 512. The hid-
den layer sizes of both forward and backward se-
quential encoder are 1024. For fair comparison,
we also set the character embedding size to 512,
except for the CNN-Char system. For CNN-Char,
we follow the standard setting of the original pa-
per (Costa-jussà and Fonollosa, 2016).

For En-De, we build the baseline system using
joint BPE segmentation (Sennrich et al., 2017).
The number of joint BPE operations is 90,000. We
use the total BPE vocabulary for each side.

We use Adadelta (Zeiler, 2012) for optimization
with a mini-batch size of 32 for Zh↔En and 50 for
En-De.

Decoding and evaluation We use beam search
with length-normalization to approximately find
the most likely translation. We set beam width to
5 for Zh↔En and 12 for En-De. The translations
are evaluated by BLEU (Papineni et al., 2002). We
use the multi-bleu script for Zh↔En,5 and the
multi-bleu-detok script for En-De.6

4https://github.com/nyu-dl/dl4mt-tutorial
5https://github.com/moses-smt/mosesdecoder/

blob/master/scripts/generic/multi-bleu.perl
6https://github.com/EdinburghNLP/nematus/

blob/master/data/multi-bleu-detok.perl

4.4 Results: Encoder with character
attention

This set of experiments evaluates the effectiveness
of our proposed character enhanced encoder. In
Table 1, we first compare the encoder with char-
acter attention (Char-att) with the baseline word-
based model. The result shows that our extension
of the encoder can obtain significantly better per-
formance (+1.58 BLEU).

Then, in order to investigate whether the im-
provement comes from the extra parameters in the
character layer, we compare our model to a word
embedding enhanced encoder. When the word em-
bedding enhanced encoder encodes a word, it at-
tends to the word’s embedding and other word
embedding in the sentence instead of attending
to the word’s inside and outside character em-
beddings. The results show that the word embed-
ding enhanced encoder (Word-att) only gets a 0.5
BLEU improvement than the baseline, while our
model is significantly better (+1.58 BLEU). This
shows that the benefit comes from the augmented
character-level information which help the word-
based encoder to learn a better source-side repre-
sentation.

Finally, we compare our character enhanced
model with several types of systems includ-
ing a strong character-based model proposed
by Costa-jussà and Fonollosa (2016) and a mixed
word/character model proposed by Wu et al.
(2016). In Table 2, rows 2 and 2′ confirm the find-
ing of Yang et al. (2016) that the traditional RNN
model performs less well when the input is a se-
quence of characters. Rows 4 and 4′ indicate that
Wu et al. (2016)’s scheme to combine of words
and characters is effective for machine translation.
Our model (row 5) outperforms other models on
the Zh-En task, but only outperforms the word-
based model on En-Zh. The results may suggest
that the CNN and RNN methods is also strong in
building the source representation.
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Task # System MT02 MT03 MT04 MT05 MT06 Mean ∆

Zh-En

1 NMT 33.76 31.88 33.15 30.55 27.47 30.76
2 RNN-Char 32.22 31.05 31.41 28.85 25.99 29.32 −1.44
3 CNN-Char 33.69 32.06 33.10 30.40 27.67 30.81 +0.05
4 Hybrid 34.33 33.10 33.41 30.96 28.00 31.37 +0.60
5 Char-att 34.85 33.71 34.91 32.08 28.66 32.34 +1.58
6 Multi-att 34.61 33.26 34.42 31.06 28.24 31.75 +0.98
7 5+6 35.42 33.9 35.23 32.62 29.36 32.68 +2.02

En-Zh

1′ NMT 31.58 22.20 23.47 22.50 21.47 22.41
2′ RNN-Char 28.78 21.03 21.70 19.81 20.98 20.88 −1.53
3′ CNN-Char 31.36 23.60 24.71 22.75 23.05 23.53 +1.12
4′ Hybrid 31.31 24.45 24.65 23.10 23.62 23.96 +1.55
5′ Char-att 30.93 23.63 24.42 21.92 23.6 23.39 +0.98
6′ Multi-att 30.17 22.09 24.09 22.29 23.8 23.07 +0.66
7′ 5′+6′ 32.91 25.02 25.69 24.03 25.20 24.99 +2.58

Table 2: Performance of different systems on the Chinese-English and English-Chinese translation tasks. Our
encoder with character attention (Char-att) improves over all other models on Zh-En and over the word-based
baseline on En-Zh. Adding our decoder with multi-scale attention (Multi-att) outperforms all other models.

Task # System MT02 MT03 MT04 MT05 MT06 Mean ∆

Zh-En
8 BPE 34.66 33.65 34.69 30.80 27.66 31.70 +0.94
9 Char-att 35.20 34.93 35.39 31.62 28.56 32.63 +1.86
10 9+Multi-att 36.68 35.39 35.93 32.08 29.74 33.29 +2.52

En-Zh
8′ BPE 30.17 22.09 24.09 22.29 23.80 23.07 +0.66
9′ Char-att 30.95 23.07 25.19 22.74 24.27 23.82 +1.41
10′ 9′+Multi-att 32.36 24.91 25.79 23.42 24.88 24.75 +2.34

Table 3: Comparison of our models on top of the BPE-based NMT model and the original BPE-based model on
the Chinese-English and English-Chinese translation tasks. Our models improve over the BPE baselines.

4.5 Results: Multi-scale attention

Rows 6 and 6′ in Table 2 verify that our multi-
scale attention mechanism can obtain better re-
sults than baseline systems. Rows 7 and 7′ in Ta-
ble 2 show that our proposed multi-scale attention
mechanism further improves the performance of
our encoder with character attention, yielding a
significant improvement over the standard word-
based model on both Zh-En (+2.02 vs. row 1) task
and En-Zh translation task (+2.58 vs. row 1′).

Compared to the CNN-Char model, our model
still gets +1.97 and +1.46 BLEU improvement
on Zh-En and En-Zh, respectively. Compared to
the mixed word/character model proposed by (Wu
et al., 2016), we find that our best model gives a
better result, demonstrating the benefits of exploit-
ing the character level information during decod-
ing.

System Dev Test ∆

BPE 28.41 23.05
Char-att 29.80 23.87 +0.82

+Multi-att 30.52 24.48 +1.43

Table 4: Case-sensitive BLEU on the English-German
translation tasks. Our systems improve over a baseline
BPE system.

4.6 Results: Subword-based models

Currently, subword-level NMT models are widely
used for achieving open-vocabulary translation.
Sennrich et al. (2016) introduced a subword-level
NMT model using subword-level segmentation
based on the byte pair encoding (BPE) algorithm.
In this section, we investigate the effectiveness of
our character enhanced model on top of the BPE
model. Table 3 shows the results on the Zh-En task
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(a) OOV words

Source 互联网业务仍将是中国通通通信信信业业业增长速度最快的业务 [...]

Reference
internet will remain the business with the fastest growth in china ’s telecommu-
nication industry [...]

NMT internet business will remain the fastest growing business in china . [...]

Hybrid
the internet will remain the fastest of china ’s communications growth speed
[...]

Ours
internet business will continue to be the fastest growing business of china ’s
telecommunications industry [...]

(b) Frequent words

Source [...]不是目前在巴勒斯坦被被被占占占领领领土土土所发生的事件的根源 [...]

Reference
[...] not the source of what happened on the palestinian territory occupied by
israel [...]

NMT
[...] such actions were not the source of the incidents of the current palestinian
occupation [...]

CNN-Char
[...] not the only source of events that took place in the palestinian occupation
[...]

Ours
[...] not the root of the current incidents that took place in the palestinian occu-
pied territories [...]

Source [...]将东东东西西西方方方冷冷冷战战战的象征柏林墙的三块墙体赠送到了联合国

Reference
[...] presented the united nations with three pieces of the berlin wall , a symbol
of the cold war between the east and the west .

NMT [...] sent the three pieces of UNK UNK to the un to the un

CNN-Char
[...] sent three pieces of UNK to the united nations, which was the cold war in
eastern china .

Ours
[...] presented the un on the 4th of the three wall UNK of the eastern and west-
ern cold war .

Table 5: Sample translations. For each example, we show the source, the reference and the translation from our
best model. “Ours” means our model with both Char-att and Multi-att.

and En-Zh translation task. Rows 8 and 8′ con-
firm that BPE slightly improves the performance
of the word-based model. But both our charac-
ter enhanced encoder and the multi-scale attention
yield better results. Our best model leads to im-
provements of up to 1.58 BLEU and 1.68 BLEU
on the Zh-En task and En-Zh translation task, re-
spectively.

We also conduct experiments on the En-De
translation task (as shown in Table 4). The result
is consistent with Zh-En task and En-Zh transla-
tion tasks. Our best model obtains 1.43 BLEU im-
provement over the BPE model.

System with OOV ∆ no OOV ∆

NMT 28.47 38.21
Hybrid 29.83 +1.36 37.79 −0.43
Ours 30.80 +2.33 39.39 +1.18

Table 6: Translation performance on source sentences
with and without OOV words. “Ours” means our model
with both Char-att and Multi-att.

4.7 Analysis

We have argued that the character information is
important not only for OOV words but also fre-
quent words. To test this claim, we divided the
MT03 test set into two parts according to whether
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the sentence contains OOV words, and evaluated
several systems on the two parts. Table 6 lists
the results. Although the hybrid model achieves
a better result on the sentences which contain
OOV words, it actually gives a worse result on the
sentences without OOV words. By contrast, our
model yields the best results on both parts of the
data. This shows that frequent words also benefit
from fine-grained character-level information.

Table 5 shows three translation examples. Ta-
ble 5(a) shows the translation of an OOV word
通信业 (tong-xin-ye, telecommunication indus-
try). The baseline NMT system can’t translate the
whole word because it is not in the word vocab-
ulary. The hybrid model translates the word to
“communication,” which is a valid translation of
the first two characters 通信. This mistranslation
also appears to affect other parts of the sentence
adversely. Our model translates the OOV word
correctly.

Table 5(b) shows two translation samples in-
volving frequent words. For the compound word
被占领土 (beizhanlingtu, occupied territory), the
baseline NMT system only partly translates the
word as “occupation” and ignores the main part
领土 (lingtu, territory). The CNN-Char model,
which builds up the word-level representation
from characters, also cannot capture领土 (lingtu).
However, our model correctly translates the word
as “occupied territories.” (The phrase “by Israel”
in the reference was inserted by the translator.)
The word东西方 (dongxifang, east and west) and
冷战 (lengzhan, cold war) are deleted by the base-
line model, and even the CNN-Char model trans-
lates 东西方 (dongxifang) incorrectly. By con-
trast, our model can make use of both words and
characters to translate the word 东西方 (dongxi-
fang) reasonably well as “eastern and western.”

5 Related Work

Many recent studies have focused on using
character-level information in neural machine
translation systems. These efforts could be roughly
divided into the following two categories.

The first line of research attempted to build neu-
ral machine translation models purely on char-
acters without explicit segmentation. Lee et al.
(2017) proposed to directly learn the segmentation
from characters by using convolution and pooling
layers. Yang et al. (2016) composed the high-level
representation by the character embedding and its

surrounding character-level context with a bidirec-
tional and concatenated row convolution network.
Different from their models, our model aims to use
characters to enhance words representation instead
of depending on characters solely; our model is
also much simpler.

The other line of research attempted to com-
bine character-level information with word-level
information in neural machine translation models,
which is more similar with our work. Ling et al.
(2015a) employed a bidirectional LSTM to com-
pose character embeddings to form the word-level
information with the help of word boundary in-
formation. Costa-jussà and Fonollosa (2016) re-
placed the word-lookup table with a convolutional
network followed by a highway network (Srivas-
tava et al., 2015), which learned the word-level
representation by its constituent characters. Zhao
and Zhang (2016) designed a decimator for their
encoder, which effectively uses a RNN to com-
pute a word representation from the characters of
the word. These approaches only consider word
boundary information and ignore the word-level
meaning information itself. In contrast, our model
can make use of both character-level and word-
level information.

Luong and Manning (2016) proposed a hybrid
scheme that consults character-level information
whenever the model encounters an OOV word.
Wu et al. (2016) converted the OOV words in
the word-based model into the sequence of its
constituent characters. These methods only focus
on dealing with OOV words by augmenting the
character-level information. In our work, we aug-
ment the character information to all the words.

6 Conclusion

In this paper, we have investigated the potential
of using character-level information in word-based
and subword-based NMT models by proposing
a novel character-aware encoder-decoder frame-
work. First, we extended the encoder with a
character attention mechanism for learning bet-
ter source-side representations. Then, we incor-
porated information about source-side characters
into the decoder with a multi-scale attention, so
that the character-level information can cooper-
ate with the word-level information to better con-
trol the translation. The experiments have demon-
strated the effectiveness of our models. Our anal-
ysis showed that both OOV words and frequent
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words benefit from the character-level informa-
tion.

Our current work only uses the character-level
information in the source-side. For future work, it
will be interesting to make use of finer-grained in-
formation on the target side as well.
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Abstract

Recently, neural machine translation has
achieved remarkable progress by intro-
ducing well-designed deep neural net-
works into its encoder-decoder frame-
work. From the optimization perspective,
residual connections are adopted to im-
prove learning performance for both en-
coder and decoder in most of these deep
architectures, and advanced attention con-
nections are applied as well. Inspired
by the success of the DenseNet model
in computer vision problems, in this pa-
per, we propose a densely connected NMT
architecture (DenseNMT) that is able to
train more efficiently for NMT. The pro-
posed DenseNMT not only allows dense
connection in creating new features for
both encoder and decoder, but also uses
the dense attention structure to improve at-
tention quality. Our experiments on mul-
tiple datasets show that DenseNMT struc-
ture is more competitive and efficient.

1 Introduction

Neural machine translation (NMT) is a challeng-
ing task that attracts lots of attention in recent
years. Starting from the encoder-decoder frame-
work (Cho et al., 2014), NMT starts to show
promising results in many language pairs. The
evolving structures of NMT models in recent
years have made them achieve higher scores and
become more favorable. The attention mecha-
nism (Bahdanau et al., 2015) added on top of
encoder-decoder framework is shown to be very
useful to automatically find alignment structure,
and single-layer RNN-based structure has evolved
into deeper models with more efficient transfor-
mation functions (Gehring et al., 2017; Kaiser

et al., 2017; Vaswani et al., 2017).

One major challenge of NMT is that its models
are hard to train in general due to the complex-
ity of both the deep models and languages. From
the optimization perspective, deeper models are
hard to efficiently back-propagate the gradients,
and this phenomenon as well as its solution is bet-
ter explored in the computer vision society. Resid-
ual networks (ResNet) (He et al., 2016) achieve
great performance in a wide range of tasks, in-
cluding image classification and image segmen-
tation. Residual connections allow features from
previous layers to be accumulated to the next layer
easily, and make the optimization of the model ef-
ficiently focus on refining upper layer features.

NMT is considered as a challenging problem
due to its sequence-to-sequence generation frame-
work, and the goal of comprehension and reor-
ganizing from one language to the other. Apart
from the encoder block that works as a feature
generator, the decoder network combining with
the attention mechanism bring new challenges to
the optimization of the models. While nowadays
best-performing NMT systems use residual con-
nections, we question whether this is the most ef-
ficient way to propagate information through deep
models. In this paper, inspired by the idea of us-
ing dense connections for training computer vi-
sion tasks (Huang et al., 2016), we propose a
densely connected NMT framework (DenseNMT)
that efficiently propagates information from the
encoder to the decoder through the attention com-
ponent. Taking the CNN-based deep architec-
ture as an example, we verify the efficiency of
DenseNMT. Our contributions in this work in-
clude: (i) by comparing the loss curve, we show
that DenseNMT allows the model to pass informa-
tion more efficiently, and speeds up training; (ii)
we show through ablation study that dense con-
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nections in all three blocks altogether help im-
prove the performance, while not increasing the
number of parameters; (iii) DenseNMT allows
the models to achieve similar performance with
much smaller embedding size; (iv) DenseNMT on
IWSLT14 German-English and Turkish-English
translation tasks achieves new benchmark BLEU
scores, and the result on WMT14 English-German
task is more competitive than the residual connec-
tions based baseline model.

2 Related Work

ResNet and DenseNet. ResNet (He et al., 2016)
proposes residual connections, which directly add
representation from the previous layer to the next
layer. Originally proposed for image classification
tasks, the residual structure have proved its effi-
ciency in model training across a wide range of
tasks, and are widely adopted in recent advanced
NMT models (Wu et al., 2016; Vaswani et al.,
2017; Gehring et al., 2017). Following the idea
of ResNet, DenseNet (Huang et al., 2016) fur-
ther improves the structure and achieves state-of-
the-art results. It allows the transformations (e.g.,
CNN) to be directly calculated over all previous
layers. The benefit of DenseNet is to encourage
upper layers to create new representations instead
of refining the previous ones. On other tasks such
as segmentation, dense connections also achieve
high performance (Jégou et al., 2017). Very re-
cently, (Godin et al., 2017) shows that dense con-
nections help improve language modeling as well.
Our work is the first to explore dense connections
for NMT tasks.

Attention mechanisms in NMT. The attention
block is proven to help improve inference quality
due to existence of alignment information (Bah-
danau et al., 2015). Traditional sequence-to-
sequence architectures (Kalchbrenner and Blun-
som, 2013; Cho et al., 2014) pass the last hid-
den state from the encoder to the decoder; hence
source sentences of different length are encoded
into a fixed-size vector (i.e., the last hidden state),
and the decoder should catch all the information
from the vector. Later, early attention-based NMT
architectures, including (Bahdanau et al., 2015),
pass all the hidden states (instead of the last state)
of the last encoder layer to the decoder. The de-
coder then uses an attention mechanism to selec-
tively focus on those hidden states while generat-
ing each word in the target sentence. Latest ar-

chitecture (Gehring et al., 2017) uses multi-step
attention, which allows each decoder layer to ac-
quire separate attention representations, in order
to maintain different levels of semantic meaning.
They also enhance the performance by using em-
beddings of input sentences. In this work, we fur-
ther allow every encoder layer to directly pass the
information to the decoder side.

Encoder/decoder networks. RNNs such as
long short term memory (LSTM) are widely used
in NMT due to their ability of modeling long-
term dependencies. Recently, other more efficient
structures have been proposed in substitution for
RNN-based structures, which includes convolu-
tion (Gehring et al., 2017; Kaiser et al., 2017)
and self-attention (Vaswani et al., 2017). More
specifically, ConvS2S (Gehring et al., 2017) uses
convolution filter with a gated linear unit, Trans-
former (Vaswani et al., 2017) uses self-attention
function before a two-layer position-wise feed-
forward networks, and SliceNet (Kaiser et al.,
2017) uses a combination of ReLU, depthwise
separable convolution, and layer normalization.
The advantage of these non-sequential transfor-
mations is the significant parallel speedup as well
as more advanced performances, which is the rea-
son we select CNN-based models for our experi-
ments.

3 DenseNMT

In this section, we introduce our DenseNMT ar-
chitecture. In general, compared with residual
connected NMT models, DenseNMT allows each
layer to provide its information to all subsequent
layers directly. Figure 1-3 show the design of our
model structure by parts.

We start with the formulation of a regular
NMT model. Given a set of sentence pairs S =
{(xi, yi)|i=1,· · · ,N}, an NMT model learns pa-
rameter θ by maximizing the log-likelihood func-
tion:

N∑

i=1

logP(yi|xi; θ). (1)

For every sentence pair (x, y) ∈ S, P(y|x; θ) is
calculated based on the decomposition:

P(y|x; θ) =
m∏

j=1

P(yj |y<j , x; θ), (2)

where m is the length of sentence y. Typically,
NMT models use the encoder-attention-decoder
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Figure 1: Comparison of dense-connected encoder and
residual-connected encoder. Left: regular residual-connected
encoder. Right: dense-connected encoder. Information is di-
rectly passed from blue blocks to the green block.

framework (Bahdanau et al., 2015), and poten-
tially use multi-layer structure for both encoder
and decoder. Given a source sentence x with
length n, the encoder calculates hidden represen-
tations by layer. We denote the representation in
the l-th layer as hl, with dimension n× dl, where
dl is the dimension of features in layer l. The hid-
den representation at each position hlj is either cal-
culated by:

hlj = Hrec(hl−1j , hlj−1) (3)

for recurrent transformation Hrec(·) such as
LSTM and GRU, or by:

hlj = Hpar(hl−1) (4)

for parallel transformation Hpar(·). On the other
hand, the decoder layers {zl} follow similar struc-
ture, while getting extra representations from the
encoder side. These extra representations are also
called attention, and are especially useful for cap-
turing alignment information.

In our experiments, we use convolution based
transformation for Hpar(·) due to both its effi-
ciency and high performance, more formally,

hlj = GLU([hl−1j−r, · · · , hl−1j+r]W
l + bl) , H(hl−1).

(5)
GLU is the gated linear unit proposed in (Dauphin
et al., 2017) and the kernel size is 2r + 1.
DenseNMT is agnostic to the transformation func-
tion, and we expect it to also work well combining
with other transformations, such as LSTM, self-
attention and depthwise separable convolution.

3.1 Dense encoder and decoder
Different from residual connections, later layers
in the dense encoder are able to use features from
all previous layers by concatenating them:

hl+1 = H([hl, hl−1, · · · , h0]). (6)

K
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K
V

K
V

K
V

Q Q

QQ Conv+GLU Concat

Add

Add
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Conv+GLU

Conv+GLU

Conv+GLU

d0
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d0

d0+2d

d0+4d

Figure 2: Comparison of dense-connected decoder and
residual-connected decoder. Left: regular residual-connected
decoder. Right: dense-connected decoder. Ellipsoid stands
for attention block. Information is directly passed from blue
blocks to the green block.

Here,H(·) is defined in Eq. (5), [·] represents con-
catenation operation. Although this brings extra
connections to the network, with smaller number
of features per layer, the architecture encourages
feature reuse, and can be more compact and ex-
pressive. As shown in Figure 1, when designing
the model, the hidden size in each layer is much
smaller than the hidden size of the corresponding
layer in the residual-connected model.

While each encoder layer perceives informa-
tion from its previous layers, each decoder layer
zl+1 has two information sources: previous layers
zi, i ≤ l, and attention values ai, i ≤ l. There-
fore, in order to allow dense information flow, we
redefine the generation of (l+1)-th layer as a non-
linear function over all its previous decoder layers
and previous attentions. This can be written as:

zl+1 = H([zl, al, zl−1, al−1, · · · , z1, a1, z0]),
(7)

where ai is the attention value using i-th decoder
layer and information from encoder side, which
will be specified later. Figure 2 shows the com-
parison of a dense decoder with a regular residual
decoder. The dimensions of both attention values
and hidden layers are chosen with smaller values,
yet the perceived information for each layer con-
sists of a higher dimension vector with more rep-
resentation power. The output of the decoder is
a linear transformation of the concatenation of all
layers by default. To compromise to the increment
of dimensions, we use summary layers, which will
be introduced in Section 3.3. With summary lay-
ers, the output of the decoder is only a linear trans-
formation of the concatenation of the upper few
layers.
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Figure 3: Illustration of DenseAtt mechanisms. For clarity, We only plot the attention block for a single decoder layer. (a):
multi-step attention (Gehring et al., 2017), (b): DenseAtt-1, (c): DenseAtt-2. L(·) is the linear projection function. The
ellipsoid stands for the core attention operation as shown in Eq. (8).

3.2 Dense attention
Prior works show a trend of designing more ex-
pressive attention mechanisms (as discussed in
Section 2). However, most of them only use the
last encoder layer. In order to pass more abundant
information from the encoder side to the decoder
side, the attention block needs to be more expres-
sive. Following the recent development of design-
ing attention architectures, we propose DenseAtt
as the dense attention block, which serves for the
dense connection between the encoder and the de-
coder side. More specifically, two options are
proposed accordingly. For each decoding step in
the corresponding decoder layer, the two options
both calculate attention using multiple encoder
layers. The first option is more compressed, while
the second option is more expressive and flexi-
ble. We name them as DenseAtt-1 and DenseAtt-
2 respectively. Figure 3 shows the architecture of
(a) multi-step attention (Gehring et al., 2017), (b)
DenseAtt-1, and (c) DenseAtt-2 in order. In gen-
eral, a popular multiplicative attention module can
be written as:

F (Q,K, V ) = Softmax (Q×K)× V, (8)

whereQ,K, V represent query, key, value respec-
tively. We will use this functionF in the following
descriptions.

DenseAtt-1 In the decoding phase, we use a
layer-wise attention mechanism, such that each
decoder layer absorbs different attention informa-
tion to adjust its output. Instead of treating the last
hidden layer as the encoder’s output, we treat the
concatenation of all hidden layers from encoder
side as the output. The decoder layer multiplies
with the encoder output to obtain the attention
weights, which is then multiplied by a linear com-
bination of the encoder output and the sentence
embedding. The attention output of each layer al

can be formally written as:

al = F
(
L(zl),L

(
[{hi}]

)
,L
(
[{hi}]

)
+L(h0)

)
,

(9)
where F(·, ·, ·) is the multiplicative attention
function, [·] is a concatenation operation that com-
bines all features, and L(·) is a linear transforma-
tion function that maps each variable to a fixed di-
mension in order to calculate the attention value.
Notice that we explicitly write the L(h0) term in
(9) to keep consistent with the multi-step attention
mechanism, as pictorially shown in Figure 3(a).

DenseAtt-2 Notice that the transformation
L([{hi}]) in DenseAtt-1 forces the encoder layers
to be mixed before doing attention. Since we
use multiple hidden layers from the encoder side
to get an attention value, we can alternatively
calculate multiple attention values before con-
catenating them. In another word, the decoder
layer can get different attention values from
different encoder layers. This can be formally
expressed as:

al =

L∑

i=1

F
(
L(zl),L(hi),L([hi, h0])

)
, (10)

where the only difference from Eq. (9) is that the
concatenation operation is substituted by a sum-
mation operation, and is put after the attention
function F . This method further increases the
representation power in the attention block, while
maintaining the same number of parameters in the
model.

3.3 Summary layers
Since the number of features fed into nonlinear
operation is accumulated along the path, the pa-
rameter size increases accordingly. For example,
for the L-th encoder layer, the input dimension of
features is (L − 1)d + d0 , where d is the feature
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dimension in previous layers, d0 is the embedding
size. In order to avoid the calculation bottleneck
for later layers due to large L, we introduce the
summary layer for deeper models. It summarizes
the features for all previous layers and projects
back to the embedding size, so that later layers
of both the encoder and the decoder side do not
need to look back further. The summary layers
can be considered as contextualized word vectors
in a given sentence (McCann et al., 2017). We add
one summary layer after every (sumlen− 1) lay-
ers, where sumlen is the hyperparameter we in-
troduce. Accordingly, the input dimension of fea-
tures is at most (sumlen− 1) · d+ d0 for the last
layer of the encoder. Moreover, combined with
the summary layer setting, our DenseAtt mech-
anism allows each decoder layer to calculate the
attention value focusing on the last few encoder
layers, which consists of the last contextual em-
bedding layer and several dense connected layers
with low dimension. In practice, we set sumlen
as 5 or 6.

3.4 Analysis of information flow

Figure 1 and Figure 2 show the difference of infor-
mation flow compared with a residual-based en-
coder/decoder. For residual-based models, each
layer can absorb a single high-dimensional vec-
tor from its previous layer as the only informa-
tion, while for DenseNMT, each layer can utilize
several low-dimensional vectors from its previous
layers and a high-dimensional vector from the first
layer (embedding layer) as its information. In
DenseNMT, each layer directly provides informa-
tion to its later layers. Therefore, the structure
allows feature reuse, and encourages upper lay-
ers to focus on creating new features. Further-
more, the attention block allows the embedding
vectors (as well as other hidden layers) to guide
the decoder’s generation more directly; therefore,
during back-propagation, the gradient information
can be passed directly to all encoder layers simul-
taneously.

4 Experimental Setup

4.1 Datasets

We use three datasets for our experiments:
IWSLT14 German-English, Turkish-English, and
WMT14 English-German.

We preprocess the IWSLT14 German-English
dataset following byte-pair-encoding (BPE)

method (Sennrich et al., 2015b)1. We learn 25k
BPE codes using the joint corpus of source and
target languages. We randomly select 7k from
IWSLT14 German-English as the development
set , and the test set is a concatenation of dev2010,
tst2010, tst2011 and tst2012, which is widely used
in prior works (Ranzato et al., 2015; Bahdanau
et al., 2017; Huang et al., 2017).

For the Turkish-English translation task, we use
the data provided by IWSLT14 (Cettolo et al.,
2014) and the SETimes corpus (Cettolo et al.,
2014) following (Sennrich et al., 2015a). After
removing sentence pairs with length ratio over 9,
we obtain 360k sentence pairs. Since there is little
commonality between the two languages, we learn
30k size BPE codes separately for Turkish and En-
glish. In addition to this, we give another prepro-
cessing for Turkish sentences and use word-level
English corpus. For Turkish sentences, follow-
ing (Gulcehre et al., 2015; Sennrich et al., 2015a),
we use the morphology tool Zemberek with dis-
ambiguation by the morphological analysis (Sak
et al., 2007) and removal of non-surface tokens2.
Following (Sennrich et al., 2015a), we concate-
nate tst2011, tst2012, tst2013, tst2014 as our test
set. We concatenate dev2010 and tst2010 as the
development set.

We preprocess the WMT14 English-German3

dataset using a BPE code size of 40k. We use the
concatenation of newstest2013 and newstest2012
as the development set.

4.2 Model and architect design
As the baseline model (BASE-4L) for IWSLT14
German-English and Turkish-English, we use
a 4-layer encoder, 4-layer decoder, residual-
connected model4, with embedding and hidden
size set as 256 by default. As a comparison,
we design a densely connected model with same
number of layers, but the hidden size is set as
128 in order to keep the model size consistent.
The models adopting DenseAtt-1, DenseAtt-2 are
named as DenseNMT-4L-1 and DenseNMT-4L-2
respectively. In order to check the effect of dense
connections on deeper models, we also construct a
series of 8-layer models. We set the hidden num-
ber to be 192, such that both 4-layer models and 8-
layer models have similar number of parameters.

1https://github.com/rsennrich/subword-nmt
2github.com/orhanf/zemberekMorphTR
3https://nlp.stanford.edu/projects/nmt/
4https://github.com/facebookresearch/fairseq
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Figure 4: Training curve (T) and validation curve (V) com-
parison. Left: IWSLT14 German-English (De-En). Middle:
Turkish-English, BPE encoding (Tr-En). Right: Turkish-
English, morphology encoding (Tr-En-morph).

For dense structured models, we set the dimension
of hidden states to be 96.

Since NMT model usually allocates a large
proportion of its parameters to the source/target
sentence embedding and softmax matrix, we ex-
plore in our experiments to what extent decreas-
ing the dimensions of the three parts would harm
the BLEU score. We change the dimensions
of the source embedding, the target embedding
as well as the softmax matrix simultaneously to
smaller values, and then project each word back to
the original embedding dimension through a lin-
ear transformation. This significantly reduces the
number of total parameters, while not influencing
the upper layer structure of the model.

We also introduce three additional models we
use for ablation study, all using 4-layer structure.
Based on the residual connected BASE-4L model,
(1) DenseENC-4L only makes encoder side dense,
(2) DenseDEC-4L only makes decoder side dense,
and (3) DenseAtt-4L only makes the attention
dense using DenseAtt-2. There is no summary
layer in the models, and both DenseENC-4L and
DenseDEC-4L use hidden size 128. Again, by re-
ducing the hidden size, we ensure that different
4-layer models have similar model sizes.

Our design for the WMT14 English-German
model follows the best performance model pro-
vided in (Gehring et al., 2017). The construc-
tion of our model is straightforward: our 15-layer
model DenseNMT-En-De-15 uses dense connec-
tion with DenseAtt-2, sumlen = 6. The hidden
number in each layer is 1/4 that of the original
model, while the kernel size maintains the same.

Figure 5: Training curve and test curve comparison on
WMT14 English-German translation task.

4.3 Training setting
We use Nesterov Accelerated Gradient
(NAG) (Nesterov, 1983) as our optimizer, and the
initial learning rate is set to 0.25. For German-
English and Turkish-English experiments, the
learning rate will shrink by 10 every time the
validation loss increases. For the English-German
dataset, in consistent with (Gehring et al., 2017),
the learning rate will shrink by 10 every epoch
since the first increment of validation loss. The
system stops training until the learning rate is
less than 10−4. All models are trained end-to-end
without any warmstart techniques. We set our
batch size for the WMT14 English-German
dataset to be 48, and additionally tune the length
penalty parameter, in consistent with (Gehring
et al., 2017). For other datasets, we set batch size
to be 32. During inference, we use a beam size of
5.

5 Results

5.1 Training curve
We first show that DenseNMT helps information
flow more efficiently by presenting the training
loss curve. All hyperparameters are fixed in each
plot, only the models are different. In Figure 4,
the loss curves for both training and dev sets (be-
fore entering the finetuning period) are provided
for De-En, Tr-En and Tr-En-morph. For clarity,
we compare DenseNMT-4L-2 with BASE-4L. We
observe that DenseNMT models are consistently
better than residual-connected models, since their
loss curves are always below those of the base-
line models. The effect is more obvious on the
WMT14 English-German dataset. We rerun the
best model provided by (Gehring et al., 2017)
and compare with our model. In Figure 5, where
train/test loss curve are provided, DenseNMT-En-
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De-En Tr-En Tr-En-morph

Embed size 64 128 256 64 128 256 64 128 256
Model size (M) 8± 1 11± 1 17± 1 11± 1 17± 1 28± 1 13± 1 21± 1 36± 1

4L
BASE-4L 28.97 29.99 30.43 19.80 20.26 20.99 18.90 18.81 20.08
DenseNMT-4L-1 30.11 30.80 31.26 19.21 20.08 21.36 18.83 20.16 21.43
DenseNMT-4L-2 29.77 30.01 31.40 19.59 20.86 21.48 19.04 20.19 21.57

8L
BASE-8L 30.15 30.91 31.51 20.40 21.60 21.92 20.21 20.76 22.62
DenseNMT-8L-1 30.91 31.54 32.08 21.82 22.20 23.20 21.20 21.73 22.60
DenseNMT-8L-2 30.70 31.17 32.26 21.93 21.98 23.25 21.73 22.44 23.45

Table 1: BLEU score on IWSLT German-English and Turkish-English translation tasks. We compare models using different
embedding sizes, and keep the model size consistent within each column.

De-15 reaches the same level of loss and starts
finetuning (validation loss starts to increase) at
epoch 13, which is 35% faster than the baseline.

Adding dense connections changes the archi-
tecture, and would slightly influence training
speed. For the WMT14 En-De experiments,
the computing time for both DenseNMT and
the baseline (with similar number of parame-
ters and same batch size) tested on single M40
GPU card are 1571 and 1710 word/s, respec-
tively. While adding dense connections influ-
ences the per-iteration training slightly (8.1% re-
duction of speed), it uses many fewer epochs, and
achieves a better BLEU score. In terms of train-
ing time, DenseNMT uses 29.3%(before finetun-
ing)/22.9%(total) less time than the baseline.

5.2 DenseNMT improves accuracy with
similar architectures and model sizes

De-En Tr-En Tr-En-morph

BASE 30.43 20.99 20.08
DenseENC-4L 30.72 21.32 21.24
DenseDEC-4L 31.23 21.04 21.06
DenseAtt-4L 31.05 21.35 21.08
DenseNMT-4L-1 31.26 21.36 21.43
DenseNMT-4L-2 31.40 21.48 21.57

Table 2: Ablation study for encoder block, decoder block,
and attention block in DenseNMT.

Table 1 shows the results for De-En, Tr-En, Tr-
En-morph datasets, where the best accuracy for
models with the same depth and of similar sizes
are marked in boldface. In almost all genres,
DenseNMT models are significantly better than
the baselines. With embedding size 256, where all
models achieve their best scores, DenseNMT out-
performs baselines by 0.7-1.0 BLEU on De-En,
0.5-1.3 BLEU on Tr-En, 0.8-1.5 BLEU on Tr-En-
morph. We observe significant gain using other
embedding sizes as well.

Furthermore, in Table 2, we investigate
DenseNMT models through ablation study. In
order to make the comparison fair, six models
listed have roughly the same number of param-
eters. On De-En, Tr-En and Tr-En-morph, we
see improvement by making the encoder dense,
making the decoder dense, and making the at-
tention dense. Fully dense-connected model
DenseNMT-4L-1 further improves the translation
accuracy. By allowing more flexibility in dense
attention, DenseNMT-4L-2 provides the highest
BLEU scores for all three experiments.

From the experiments, we have seen that en-
larging the information flow in the attention
block benefits the models. The dense attention
block provides multi-layer information transmis-
sion from the encoder to the decoder, and to the
output as well. Meanwhile, as shown by the
ablation study, the dense-connected encoder and
decoder both give more powerful representations
than the residual-connected counterparts. As a re-
sult, the integration of the three parts improve the
accuracy significantly.

5.3 DenseNMT with smaller embedding size

From Table 1, we also observe that DenseNMT
performs better with small embedding sizes com-
pared to residual-connected models with regular
embedding size. For example, on Tr-En model,
the 8-layer DenseNMT-8L-2 model with embed-
ding size 64 matches the BLEU score of the
8-layer BASE model with embedding size 256,
while the number of parameter of the former one
is only 40% of the later one. In all genres,
DenseNMT model with embedding size 128 is
comparable or even better than the baseline model
with embedding size 256.

While overlarge embedding sizes hurt accuracy
because of overfitting issues, smaller sizes are not
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Test Set
tst2011 tst2012 tst2013 tst2014 total

RNN (Gulcehre et al., 2015) 18.40 18.77 19.86 18.64 /

BASE 21.66 22.45 23.76 22.59 22.62
DenseNMT-8L-2 22.52 23.81 23.91 23.68 23.45
DenseNMT-8L-2(embed 256, hid 128) 23.33 24.65 24.92 24.54 24.36

Table 3: Accuracy on Turkish-English translation task in terms of BLEU score.

preferable because of insufficient representation
power. However, our dense models show that with
better model design, the embedding information
can be well concentrated on fewer dimensions,
e.g., 64. This is extremely helpful when build-
ing models on mobile and small devices where
the model size is critical. While there are other
works that stress the efficiency issue by using
techniques such as separable convolution (Kaiser
et al., 2017), and shared embedding (Vaswani
et al., 2017), our DenseNMT framework is orthog-
onal to those approaches. We believe that other
techniques would produce more efficient models
through combining with our DenseNMT frame-
work.

Greedy Beam

MIXER (Ranzato et al., 2015) 20.73 21.83
AC (Bahdanau et al., 2017) 27.49 28.53
NPMT (Huang et al., 2017) 27.83 28.96
NPMT+LM (Huang et al., 2017) / 29.16

DenseNMT-8L-2 (word) 29.11 30.33
DenseNMT-8L-1 (BPE) 30.50 32.08
DenseNMT-8L-2 (BPE) 30.80 32.26

Table 4: Accuracy on IWSLT14 German-English translation
task in terms of BLEU score.

5.4 DenseNMT compares with
state-of-the-art results

For the IWSLT14 German-English dataset, we
compare with the best results reported from lit-
eratures. To be consistent with prior works, we
also provide results using our model directly on
the dataset without BPE preprocessing. As shown
in Table 4, DenseNMT outperforms the phrase-
structure based network NPMT (Huang et al.,
2017) (with beam size 10) by 1.2 BLEU, using
a smaller beam size, and outperforms the actor-
critic method based algorithm (Bahdanau et al.,
2017) by 2.8 BLEU. For reference, our model
trained on the BPE preprocessed dataset achieves
32.26 BLEU, which is 1.93 BLEU higher than
our word-based model. For Turkish-English task,

we compare with (Gulcehre et al., 2015) which
uses the same morphology preprocessing as our
Tr-En-morph. As shown in Table 3, our baseline
is higher than the previous result, and we further
achieve new benchmark result with 24.36 BLEU
average score. For WMT14 English-German,
from Table 5, we can see that DenseNMT outper-
forms ConvS2S model by 0.36 BLEU score using
35% fewer training iterations and 20% fewer pa-
rameters. We also compare with another convo-
lution based NMT model: SliceNet (Kaiser et al.,
2017), which explores depthwise separable con-
volution architectures. SliceNet-Full matches our
result, and SliceNet-Super outperforms by 0.58
BLEU score. However, both models have 2.2x
more parameters than our model. We expect
DenseNMT structure could help improve their
performance as well.

BLEU score

GNMT (Wu et al., 2016) 24.61
ConvS2S (Gehring et al., 2017) 25.16
SliceNet-Full (Kaiser et al., 2017) 25.5
SliceNet-Super (Kaiser et al., 2017) 26.1

DenseNMT-En-De-15 25.52

Table 5: Accuracy on WMT14 English-German translation
task in terms of BLEU score.

6 Conclusion

In this work, we have proposed DenseNMT as a
dense-connection framework for translation tasks,
which uses the information from embeddings
more efficiently, and passes abundant information
from the encoder side to the decoder side. Our ex-
periments have shown that DenseNMT is able to
speed up the information flow and improve trans-
lation accuracy. For the future work, we will com-
bine dense connections with other deep architec-
tures, such as RNNs (Wu et al., 2016) and self-
attention networks (Vaswani et al., 2017).
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Bentivogli, and Marcello Federico. 2014. Report
on the 11th IWSLT Evaluation Campaign, IWSLT
2014. In Proceedings of the International Workshop
on Spoken Language Translation, Hanoi, Vietnam.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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Abstract
For machine translation to tackle discourse
phenomena, models must have access to extra-
sentential linguistic context. There has been
recent interest in modelling context in neural
machine translation (NMT), but models have
been principally evaluated with standard au-
tomatic metrics, poorly adapted to evaluat-
ing discourse phenomena. In this article, we
present hand-crafted, discourse test sets, de-
signed to test the models’ ability to exploit
previous source and target sentences. We in-
vestigate the performance of recently proposed
multi-encoder NMT models trained on subti-
tles for English to French. We also explore a
novel way of exploiting context from the pre-
vious sentence. Despite gains using BLEU,
multi-encoder models give limited improve-
ment in the handling of discourse phenomena:
50% accuracy on our coreference test set and
53.5% for coherence/cohesion (compared to a
non-contextual baseline of 50%). A simple
strategy of decoding the concatenation of the
previous and current sentence leads to good
performance, and our novel strategy of multi-
encoding and decoding of two sentences leads
to the best performance (72.5% for corefer-
ence and 57% for coherence/cohesion), high-
lighting the importance of target-side context.

1 Introduction

Machine translation (MT) systems typically trans-
late sentences independently of each other. How-
ever, certain textual elements cannot be correctly
translated without linguistic context, which may
appear outside the current sentence. The most
obvious examples of context-dependent phenom-
ena problematic for MT are coreference (Guillou,
2016), lexical cohesion (Carpuat, 2009) and lex-
ical disambiguation (Rios Gonzales et al., 2017),
an example for each of which is given in (1-3). In

each case, the English element in italic is ambigu-
ous in terms of its French translation. The correct
translation choice (in bold) is determined by lin-
guistic context (underlined), which can be outside
the current sentence. This disambiguating context
can be source or target-side; the correct translation
of anaphoric pronouns it and they depends on the
gender of the translated antecedent (1). In lexical
cohesion, a translation may depend on target fac-
tors, but may also be triggered by source effects
and linguistic mechanisms such as repetition or
alignment (2). In lexical disambiguation, source
or target information may provide the appropriate
context (3).

(1) The bee is busy. // It is making honey.
L’abeille[f] est occupée. // Elle[f]/#il[m] fait du miel.

(2) Do you fancy some soup? // Some soup?
Tu veux de la soupe? // De la soupe/#du potage?

(3) And the code? // Still some bugs...
Et le code ? // Encore quelques bugs/#insectes...

Recent work on multi-encoder neural machine
translation (NMT) appears promising for the in-
tegration of linguistic context (Zoph and Knight,
2016; Libovický and Helcl, 2017; Jean et al.,
2017a; Wang et al., 2017). However models have
almost only been evaluated using standard auto-
matic metrics, which are poorly adapted to evalu-
ating discourse phenomena. Targeted evaluation,
in particular of coreference in MT, has proved to
be time-consuming and laborious (Guillou, 2016).

In this article, we address the evaluation of dis-
course phenomena for MT and propose a novel
contextual model. We present two hand-crafted,
discourse test sets designed to test models’ capac-
ity to exploit linguistic context for coreference and
coherence/cohesion for English to French transla-
tion. Using these sets, we review contextual NMT
strategies trained on subtitles in a high-resource
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setting. Our new combination of strategies outper-
forms previous methods according to our targeted
evaluation and the standard metric BLEU.

2 Evaluating contextual phenomena

Traditional automatic metrics are notoriously
problematic for the evaluation of discourse in MT
(Hardmeier, 2014); discursive phenomena may
have an impact on relatively few word forms with
respect to their importance, meaning that improve-
ments are overlooked, and a correct translation
may depend on target-side coherence rather than
similarity to a reference translation.

Coreference has been a major focus of discourse
translation, spurred on by shared tasks on cross-
lingual pronoun prediction (Guillou et al., 2016;
Loáiciga et al., 2017). Participants were pro-
vided with lemmatised versions of reference trans-
lations,1 in which pronoun forms were to be pre-
dicted. Evaluation in this setting (with the use
of reference translations) was possible with tradi-
tional metrics, because the antecedents were fixed
in advance. However there are at least two dis-
advantages to the approach: (i) models must be
trained on lemmatised data and cannot be used in
a real translation setting, and (ii) many of the pro-
nouns did not need extra-sentential context; eas-
ier gains were seen for the pronouns with intra-
sentential antecedents and therefore the leader-
board was dominated by sentence-level systems.

Guillou and Hardmeier’s (2016) pronoun trans-
lation test suite succeeds in overcoming some of
these problems by creating an automatic evalua-
tion method, with a back-off manual evaluation.
Manual evaluation has always been an essential
part of evaluating MT quality, and targeted transla-
tion allows us to isolate a model’s performance on
specific linguistic phenomena; recent work using
in-depth, qualitative manual evaluation (Isabelle
et al., 2017; Scarton and Specia, 2015) is very in-
formative. Isabelle et al. (2017) focus on specially
constructed challenging examples in order to anal-
yse differences between systems. They cover a
wide range of linguistic phenomena, but since
manual evaluation is costly and time-consuming,
only a few examples per phenomenon are anal-
ysed, and it is difficult to obtain quick, quantitative
feedback.

1This was to avoid pronoun forms being trivial to predict
from the morphological inflections of other forms within the
sentence, an unrealistic setting for MT output.

An alternative method, which overcomes the
problem of costly, one-off analysis, is to evalu-
ate models’ capacity to correctly rank contrastive
pairs of pre-existing translations, of which one
is correct and the other incorrect. This method
was used by Sennrich (2017) to assess the gram-
maticality of character-level NMT and again by
Rios Gonzales et al. (2017) in a large-scale setting
for lexical disambiguation for English-German.
The method allows automatic quantitative evalu-
ation of specific phenomena at large scale, at the
cost of only testing for very specific translation er-
rors. It is also the strategy that we will use here to
evaluate translation of discourse phenomena.

2.1 Our contrastive discursive test sets

We created two contrastive test sets to help com-
pare how well different contextual MT mod-
els handle (i) anaphoric pronoun translation and
(ii) coherence and cohesion.2 For each test set,
models are assessed on their ability to rank the cor-
rect translation of an ambiguous sentence higher
than the incorrect translation, using the disam-
biguating context provided in the previous source
and/or target sentence.3 All examples in the test
sets are hand-crafted but inspired by real examples
from OpenSubtitles2016 (Lison and Tiedemann,
2016) to ensure that they are credible and that vo-
cabulary and syntactic structures are varied. The
method can be used to evaluate any NMT model,
by making it produce a score for a given source
sentence and reference translation.

Our test sets differ from previous ones in that
examples necessarily need the previous context
(source and/or target-side) for the translations to
be correctly ranked. Unlike the shared task test
sets, the ambiguous pronouns’ antecedents are
guaranteed not to appear within the current sen-
tence, meaning that, for MT systems to score
highly, they must use discourse-level context.
Compared to other test sets suites, ours differs in
that evaluation is performed completely automati-
cally and concentrates specifically on the model’s
ability to use context. Each of the test sets contains

2The test sets are freely available at https://diamt.
limsi.fr/eval.html.

3We acknowledge that in reality, the disambiguating con-
text is not guaranteed to be in the previous sentence (cf. Guil-
lou (2016, p. 161), for the distribution of intra- and inter-
sentential anaphoric pronouns). However it is important to
first judge in a controlled way whether or not models are ac-
tually capable of using extra-sentential linguistic context at
all, before investigating longer distance context.
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200 contrastive pairs and is designed such that
a non-contexual baseline system would achieve
50% accuracy.

context:          Oh, I hate flies. Look, there's another one!
current sent.:  Don’t worry, I'll kill it for you.

context:            Ô je déteste les mouches. Regarde, il y en a une autre !
correct:             T'inquiète, je la tuerai pour toi.
incorrect:          T'inquiète, je le tuerai pour toi.

context:            Ô je déteste les moucherons. Regarde, il y en a un autre !
correct:             T'inquiète, je le tuerai pour toi.
incorrect:          T'inquiète, je la tuerai pour toi.

context:             Ô je déteste les papillons. Regarde, il y en a un autre !
semi-correct:     T'inquiète, je le tuerai pour toi.
incorrect:           T'inquiète, je la tuerai pour toi.

context:            Ô je déteste les araignées. Regarde, il y en a une autre !
semi-correct:    T'inquiète, je la tuerai pour toi.
incorrect:          T'inquiète, je le tuerai pour toi.

Source:

Target:
1

2

3

4

Figure 1: Example block from the coreference set.

Coreference test set This set contains 50 exam-
ple blocks, each containing four contrastive trans-
lation pairs (see the four examples in Fig. 1).
The test set’s aim is to test the integration of
target-side linguistic context. Each block is de-
fined by a source sentence containing an occur-
rence of the anaphoric pronoun it or they and its
preceding context, containing the pronoun’s nom-
inal antecedent.4 Four contrastive translation pairs
of the previous and current source sentence are
given, each with a different translation of the nom-
inal antecedent, of which two are feminine and
two are masculine per block. Each pair contains
a correct translation of the current sentence, in
which the pronoun’s gender is coherent with the
antecedent’s translation, and a contrastive (incor-
rect) translation, in which the pronoun’s gender
is inversed (along with agreement linked to the
pronoun choice). Two of the pairs contain what
we refer to as a “semi-correct” translation of the
current sentence instead of a “correct” one, for
which the antecedent in the previous sentence is
strangely or wrongly translated (e.g. flies trans-
lated as araignées “spiders” and papillons “butter-
flies” in Fig. 1). In the “semi-correct” translation,

4The choice to use only nominal antecedents and only two
anaphoric pronouns it and they is intentional in order to pro-
vide a controlled environment in which there are two con-
trasting alternatives for each example. This ensures that a
non-contextual baseline necessarily gives a score of 50%, and
also enables us to explore this simpler case before expanding
the study to explore more difficult anaphoric phenomena.

the pronoun, whose translation is wholly depen-
dent on the translated antecedent, is coherent with
this translation choice. These semi-correct exam-
ples assess the use of target-side context, taking
into account previous translation choices.

Target pronouns are evenly distributed accord-
ing to number and gender with 50 examples (25
correct and 25 semi-correct) for each of the pro-
noun types (m.sg, f.sg, m.pl and f.pl). Since there
are only two possible translations of the current
sentence per example block, an MT system can
only score all examples within a block correctly
if it correctly disambiguates, and a non-contextual
baseline system is guaranteed to score 50%.

context:          What's crazy about me?
current sent.:  Is this crazy?

Source:

context:          Qu'est-ce qu'il y a de dingue chez moi ?
correct:           Est-ce que ça c'est dingue ?
incorrect:        Est-ce que ça c'est fou ?

Target:

context:          What's crazy about me?
current sent.:  Is this crazy?

Source:

context:          Qu'est-ce qu'il y a de fou chez moi ?
correct:           Est-ce que ça c'est fou ?
incorrect:        Est-ce que ça c'est dingue ?

Target:

Figure 2: Example block from the coher-
ence/cohesion test: alignment.

context:          So what do you say to £50?
current sent.:  It's a little steeper than I was expecting.

Source:

context:          Qu'est-ce que vous en pensez de 50£ ?
correct:           C'est un peu plus cher que ce que je pensais.
incorrect:        C'est un peu plus raide que ce que je pensais.

Target:

context:          How are your feet holding up?
current sent.:  It's a little steeper than I was expecting.

Source:

context:          Comment vont tes pieds ?
correct:           C'est un peu plus raide que ce que je pensais. 
incorrect:        C'est un peu plus cher que ce que je pensais.

Target:

Figure 3: Example block from the coher-
ence/cohesion test: lexical disambiguation.
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Coherence and cohesion test set Coherence
and cohesion concern the interpretation of a text
in the context of discourse (i.e. beyond sentence
level). De Beaugrande and Dressler (1981) define
the dichotomous pair as representing two separate
aspects: coherence relating to the consistency of
the text to concepts and world knowledge, and co-
hesion relating to the surface formulation of the
text, as expressed through linguistic mechanisms.

This set contains 100 example blocks, each con-
taining two contrastive pairs (see Figs. 2 and 3).
Each of the blocks is constructed such that there is
a single ambiguous source sentence, with two pos-
sible translations provided. The use of one trans-
lation over the other is determined by disambigua-
tion context found in the previous sentence. The
context may be found on the source side, the target
side or both. In each contrastive pair, the incorrect
translation of the current sentence corresponds to
the correct translation of the other pair, such that
the block can only be entirely correct if the disam-
biguating context is correctly used.

All test set examples have in common that the
current English sentence is ambiguous and that
its correct translation into French relies on con-
text in the previous sentence. In some cases, the
correct translation is determined more by cohe-
sion, for example the necessity to respect align-
ment or repetition (Fig. 2). This means that despite
two translations of an English source word being
synonyms (e.g. dingue and fou, “crazy”), they are
not interchangeable in a discourse context, given
that the chosen formulation (alignment) requires
repetition of the word of the previous sentence.
In other cases, lexical choice is determined more
by cohesion, for example by a general semantic
context provided by the previous sentence, in a
more classic disambiguation setting as in Fig. 3,
where the English steeper is ambiguous between
French cher “more expensive” and raide “sharply
sloped”. However, these types are not mutually
exclusive and the distinction is not always so clear.

3 Contextual NMT Models

In order to correctly translate the type of phenom-
ena mentioned in Sec. 1, translation models need
to look beyond the sentence. Much of the previ-
ous work, mainly in statistical machine transla-
tion (SMT), focused on post-edition, particularly
for anaphoric pronoun translation (Guillou et al.,
2016; Loáiciga et al., 2017). However, corefer-

ence resolution is not yet sufficient for high quality
post- or pre-edition (Bawden, 2016), and for other
discourse phenomena such as lexical cohesion and
lexical disambiguation, detecting the disambiguat-
ing context is far from trivial.

Recent work in NMT has explored multi-input
models, which integrate the previous sentence as
an auxiliary input. A simple strategy of concate-
nating the previous sentence to the current sen-
tence and using a basic NMT architecture was
explored by Tiedemann and Scherrer (2017), but
with mixed results. A variety of multi-encoder
strategies have also been tested, including using a
representation of the previous sentence to initialise
the main encoder and/or decoder (Wang et al.,
2017) and using multiple attention mechanisms,
with different strategies to combine the resulting
context vectors, such as concatenation (Zoph and
Knight, 2016), hierarchical attention (Libovický
and Helcl, 2017) and gating (Jean et al., 2017a).

Although some of the models were evaluated
in a contextual setting, for example on the cross-
lingal pronoun prediction task at DiscoMT17
(Jean et al., 2017b), certain strategies only appear
to give gains in a low-resource setting (Jean et al.,
2017a), and, more importantly, there has yet to be
an in-depth study into which strategies work best
specifically for context-dependent discursive phe-
nomena. Here we provide such a study, using the
targeted test sets described in Sec. 2 to isolate and
evaluate the different contextual models’ capacity
to exploit extra-sentential context. We test several
contextual variants, using both a single encoder
(Sec. 3.1) and multiple encoders (Sec. 3.2).

NMT notation All models presented are based
on the widely used encoder-decoder NMT frame-
work with attention (Bahdanau et al., 2015). At
each decoder step i, the context (or summary) vec-
tor ci of the input sequence is a weighted aver-
age of the recurrent encoder states at each input
position depending on the attention weights. We
refer to the recurrent state of the decoder as zi.
When multiple inputs are concerned, inputs are
noted x(k)j , where k is the input number and j the
input position. Likewise, when multiple encoders
are used, c(k)i refers to the kth context vector where
k is the encoder number. In the following section,
all W s, Us and bs are learned parameters.
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x1 x2 x3

s1 s2 s3

CURRENT SENT.

h1 h2 h3

z1 z2 z3

u1 u2 u3

y1 y2 y3

ATT ci

(a) S2S with attention
(BASELINE).

x1,1 x1,2 <CONCAT > x2,1 x2,2 x2,3

PREVIOUS SENT. CURRENT SENT.

s1 s2 s3 s4 s5 s6

h1 h2 h3 h4 h5 h6

z1 z2 z3 z4 z5 z6

u1 u2 u3 u4 u5 u6

y1 y2 y3 y4 y5 y6

ATT ci

(b) Concatenate input (2-TO-2, 2-TO-1).

x1,1 x1,2 x2,1 x2,2 x2,3

PREVIOUS SENT. CURRENT SENT.

s1 s2 s1 s2 s3

h1 h2 h1 h2 h3

z1 z2 z3

u1 u2 u3

y1 y2 y3

ATT ATT

c(1)i c(2)i

ci

Combination

(c) Multi-source S2S with attention. The
three combination methods tested are CON-
CAT, HIER and GATE.

Figure 4: The baseline model and the two contextual strategies tested (single and multi-encoder).

3.1 Single-encoder models
We train three single-source models: a baseline
model and two contextual models. The baseline
model translates sentences independently of each
other (Fig. 4a). The two contextual models, de-
scribed in (Tiedemann and Scherrer, 2017), are
designed to incorporate the preceding sentence by
prepending it to the current one, separated by a
<CONCAT> token (Fig. 4b). The first method,
which we refer to as 2-TO-2, is trained on con-
catenated source and target sentences, such that
the previous and current sentence are translated
together. The translation of the current sentence
is obtained by extracting the tokens following the
translated concatenation token and discarding pre-
ceding tokens.5 The second method, 2-TO-1, fol-
lows the same principle, except that only source
(and not target) sentences undergo concatenation;
the model directly produces the translation of the
current sentence. The comparison of these two
methods allows us to assess the impact of the de-
coder in producing contextual translations.

3.2 Multi-encoder models
Inspired by work on multi-modal translation
(Caglayan et al., 2016; Huang et al., 2016), multi-
encoder translation models have recently been
used to incorporate extra-sentential linguistic con-

5Although the non-translation of the concatenation sym-
bol is possible, in practice this was rare (<0.02%). If this
occurs, the whole translation is kept.

text in purely textual NMT (Zoph and Knight,
2016; Libovický and Helcl, 2017; Wang et al.,
2017). Unlike multi-modal translation, which typ-
ically uses two complementary representations of
the main input, for example a textual description
and an image, linguistically contextual NMT has
focused on exploiting the previous linguistic con-
text as auxiliary input alongside the current sen-
tence to be translated. Within this framework, we
encode the previous sentence using a separate en-
coder (with separate parameters) to produce a con-
text vector of the auxiliary input in a parallel fash-
ion to the current source sentence. The two re-
sulting context vectors c(1)i and c(2)i are then com-
bined to form a single context vector ci to be used
for decoding (see Fig. 4c). We study three combi-
nation strategies here: concatenation, an attention
gate and hierarchical attention. We also tested us-
ing the auxiliary context to initialise the decoder,
similar to Wang et al. (2017), which was ineffec-
tive in our experiments and which we therefore do
not report in this paper.

Attention concatenation The two context vec-
tors c(1)i and c(2)i are concatenated and the result-
ing vector undergoes a linear transformation in or-
der to return it to its original dimension to produce
ci (similar to work by Zoph and Knight (2016)).

ci =Wc[c
(1)
i ; c

(2)
i ] + bc (1)
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Attention gate A gate ri is learnt between the
two vectors in order to give differing importance
to the elements of each context vector, similar to
the strategy of Wang et al. (2017).

ri = tanh
(
Wrc

(1)
i +Wsc

(2)
i

)
+ br (2)

ci = ri �
(
Wtc

(1)
i

)
+ (1− ri)�

(
Wuc

(2)
i

)
(3)

Hierarchical attention An additional (hier-
archical) attention mechanism (Libovický and
Helcl, 2017) is introduced to assign a weight to
each encoder’s context vector (designed for an ar-
bitrary number of encoders).

e
(k)
i = v>b tanh

(
Wbz(i−1) + U

(k)
b c

(k)
i

)
+ be

(4)

β
(k)
i =

exp
(
e
(k)
i

)

∑K
k′=1 exp

(
e
(k′)
i

) (5)

ci =
∑K

k=1 β
(k)
i U

(k)
c c

(k)
i (6)

3.3 Novel strategy of hierarchical attention
and context decoding

We also test a novel strategy of combining mul-
tiple encoders and decoding of both the previous
and current sentence. We use separate, multiple
encoders to encode the previous and current sen-
tence and combine the context vectors using hier-
archical attention. We train the model to produce
the concatenation of the previous and current tar-
get sentences, of which the second part is kept, as
in the contextual single encoder models.

4 Experiments

Each of the multi-encoder strategies is tested using
the previous source and target sentences as an ad-
ditional input (prefixed as S- and T- respectively)
in order to test which is the most useful disam-
biguating context. Two additional models tested
are triple-encoder models, which use both the pre-
vious source and target (prefixed as S-T-).

4.1 Data

Models are trained and tested on fan-produced
parallel subtitles from OpenSubtitles20166 (Lison
and Tiedemann, 2016). The data is first corrected
using heuristics (e.g. minor corrections of OCR

6http://www.opensubtitles.org

and encoding errors). It is then tokenised, fur-
ther cleaned (keeping subtitles ≤80 tokens) and
truecased using the Moses toolkit (Koehn et al.,
2007) and finally split into subword units using
BPE (Sennrich et al., 2016).7 We run all exper-
iments in a high-resource setting, with a training
set of ≈29M parallel sentences, with vocabulary
sizes of ≈55k for English and ≈60k for French.

4.2 Experimental setup
All models are sequence-to-sequence models with
attention (Bahdanau et al., 2015), implemented in
Nematus (Sennrich et al., 2017). Training is per-
formed using the Adam optimiser with a learning
rate of 0.0001 until convergence. We use embed-
ding layers of dimension 512 and hidden layers
of dimension 1024. For training, the maximum
sentence length is 50.8 We use batch sizes of 80,
tied decoder embeddings and layer normalisation.
The hyper-parameters are the same for all models
and are the same as those used for the University
of Edinburgh submissions to the news translation
shared task at WMT16 and WMT17. Final models
are ensembled using the last three checkpointed
models.

Models that use the previous target sentence are
trained using the previous reference translation.
During translation, baseline translations are used.
For the targeted evaluation, the problem does not
apply since the translations that are being scored
are given.

5 Results and Analysis

Overall translation quality is evaluated using
the traditional automatic metric BLEU (Papineni
et al., 2002) (Tab. 1) to ensure that the models do
not degrade overall performance. We test the mod-
els’ ability to handle discursive phenomena using
the test sets described in Sec. 2 (Tab. 2). The mod-
els are described in the first half of Table 1: #In is
the number of input sentences, the type of aux-
iliary input of which (previous source or target)
is indicated by Aux., #Out is the number of sen-
tences translated, and #Enc is the number of en-
coders used to encode the input sentences. When
there is a single encoder and more than one input,
the input sentences are concatenated to form a sin-
gle input to the encoder.

790,000 merge operations with a minimum theshold of 50.
876 when source sentences are concatenated to the previ-

ous sentence in order to keep the same percentage of training
sentences as for other models.
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System Description BLEU ↑
Aux. #In #Out #Enc. Comedy Crime Fantasy Horror

Single-encoder, non-contexual model
BASELINE 7 1 1 1 19.52 22.07 26.30 33.05

Single-encoder with concatenated input
2-TO-2 src 2 2 1 20.09 22.93 26.60 33.59
2-TO-1 src 2 1 1 19.51 21.81 26.78 34.37

Multi-encoder models (+previous target sentence)
T-CONCAT trg 2 1 2 18.33 20.90 24.36 32.90
T-HIER trg 2 1 2 17.89 20.77 25.42 31.93
T-GATE trg 2 1 2 18.25 20.76 25.55 32.64

Multi-encoder models (+previous source sentence)
S-CONCAT src 2 1 2 19.35 22.41 26.50 33.67
S-HIER src 2 1 2 20.22 21.90 26.81 34.04
S-GATE src 2 1 2 19.89 22.80 26.87 33.81
S-T-HIER src, trg 3 1 3 19.53 22.53 26.87 33.24

Multi-encoder with concatenated output
S-HIER-TO-2 src 2 2 2 20.85 22.81 27.17 34.62
S-T-HIER-TO-2 src, trg 3 2 3 18.80 21.18 27.68 33.33

Table 1: Results (de-tokenised, cased BLEU) of the ensembled models on four different test sets, each
containing three films from each film genre. The best, second- and third-best results are highlighted by
decreasingly dark shades of green.

5.1 Overall performance
Results using the automatic metric BLEU are
given in Tab. 1. The models are tested on four
different genres of film: comedy, crime, fantasy
and horror.9 Scores vary dramatically depending
on the genre and the best model is not always the
same for each of the genres.

Contrary to intuition, using the previous target
sentence as an auxiliary input (prefix T-) degrades
the overall performance considerably. Testing at
decoding time with the reference translations did
not significantly improve this result, suggesting
that it is unlikely to be a case of overfitting dur-
ing training. The highest performing model is our
novel S-HIER-TO-2 model with more than +1 over
the baseline BLEU on almost all test sets. There
is no clear second best model, since performance
depends strongly on the test set used.

5.2 Targeted evaluation
Tab. 2 shows the results on the discourse test sets.

Coreference The multi-encoder models do not
perform well on the coreference test set; all multi-
encoder models giving at best random accuracy, as
with the baseline. This set is designed to test the

9Each of the test sets contains three films from that genre,
with varying sizes and difficulty. The number of sentences
in each test set is as follows: comedy: 4,490, crime: 4,227,
fantasy: 2,790 and horror: 2,158.

model’s capacity to exploit previous target con-
text. It is therefore unsurprising that multi-encoder
models using just the previous source sentence
perform poorly. It is possible that certain pronouns
could be correctly predicted from the source an-
tecedents, if the antecedent only has one possi-
ble translation. However, this non-robust way of
translating pronouns is not tested by the test set.
More surprisingly, the multi-encoder models using
the previous target sentence also perform poorly
on the test set. An explanation could be that the
target sentence is not being encoded sufficiently
well in this framework, resulting in poor learning.
This hypothesis is supported by the low overall
translation performance shown in Tab. 1.

Two models perform well on the test set: 2-
TO-2 and our S-HIER-TO-2. The high scores, par-
ticularly on the less common feminine pronouns,
which can only be achieved through using contex-
tual linguistic information, show that these mod-
els are capable of using previous linguistic con-
text to disambiguate pronouns. The progressively
high performance of these models can be seen in
Fig. 5, which illustrates the training progress of
these models. The S-T-HIER-TO-2 model (which
uses the previous target sentence as a third auxil-
iary input) performs much worse than S-HIER-TO-
2, showing that the addition of the previous target
sentence is detrimental to performance. Whilst the

1310



Coreference (%) Coherence/cohesion (%)
ALL M.SG. F.SG. M.PL. F.PL CORR. SEMI ALL

BASELINE 50.0 80.0 20.0 80.0 20.0 53.0 47.0 50.0

2-TO-2 63.5 92.0 50.0 84.0 28.0 68.0 59.0 52.0
2-TO-1 52.0 72.0 28.0 84.0 24.0 54.0 50.0 53.0

T-CONCAT 49.0 88.0 8.0 96.0 4.0 50.0 48.0 51.5
T-HIER 47.0 78.0 10.0 90.0 10.0 47.0 47.0 50.5
T-GATE 47.0 80.0 6.0 82.0 20.0 45.0 49.0 49.0

S-CONCAT 50.0 68.0 32.0 88.0 12.0 55.0 45.0 53.5
S-HIER 50.0 64.0 36.0 80.0 20.0 55.0 45.0 53.0
S-GATE 50.0 68.0 32.0 84.0 16.0 55.0 45.0 51.5
S-T-HIER 49.5 94.0 4.0 88.0 12.0 53.0 46.0 53.0

S-HIER-TO-2 72.5 100.0 40.0 90.0 36.0 77.0 68.0 57.0
S-T-HIER-TO-2 56.5 84.0 36.0 86.0 20.0 55.0 58.0 51.5

Table 2: Results on the discourse test sets (% correct). Results on the coreference set are also given
for each pronoun class. CORR. and SEMI correspond respectively to the “correct” and “semi-correct”
examples. The best, second- and third-best results are highlighted by decreasingly dark shades of green.

results for the “correct” examples (CORR.) are al-
most always higher than the “semi-correct” exam-
ples (SEMI), for which the antecedent is strangely
translated, the TO-2 models also give improved re-
sults on these examples, showing that the target
context is necessarily being exploited during de-
coding.

These results show that the translation of the
previous sentence is the most important factor in
the efficient use of linguistic context. Combining
the S-HIER model with decoding of the previous
target sentence (S-HIER-TO-2) produces some of
the best results across all pronoun types, and the 2-
TO-2 model performs almost always second best.

Coherence and cohesion Much less variation
in scores can be seen here, suggesting that these
examples are more challenging and that there is
room for improvement. Unlike the coreference ex-
amples, the multi-encoder strategies exploiting the
previous source sentences perform better than the
baseline (up to 53.5% for S-CONCAT). Yet again,
using the previous target sentence achieves near
random accuracy. 2-TO-2 and 2-TO-1 achieve
similarly low scores (52% and 53%), suggesting
that if concatenated input is used, decoding the
previous sentence does not add more information.

However, combining multi-encoding with the
decoding of the previous and the current sentences
(S-HIER-TO-2) greatly improves the handling of
the ambiguous translations, improving the accu-
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Figure 5: Progression of % correctly ranked exam-
ples (from the coreference test set) during training.

racy to 57%. Extending this same model to also
exploit the previous target sentence (S-T-HIER-
TO-2) degrades this result, giving very similar
scores to T-HIER and is therefore not illustrated
in FIgure 5. This provides further support for the
idea that the target sentence is not encoded effi-
ciently as an auxiliary input and adds noise to the
model, whereas exploiting the target context as a
bias in the recurrent decoder is more effective.
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5.3 How much is the context being used?
Looking at the attention weights can sometimes
offer insights into which input elements are being
attended to at each step. For coreference resolu-
tion, we would expect the decoder to attend to the
pronoun’s antecedent. The effect is most expected
when the previous target sentence is used, but it
could also apply for the previous source sentence
when the antecedent has only one possible trans-
lation. Unlike Tiedemann and Scherrer (2017),
we do not observe increased attention between
a translated pronoun and its source antecedent.
Given the discourse test set results, which can only
give high scores when target-side context is used,
the contextual information of the type studied in
this paper seems to be best exploited when chan-
nelled through the recurrent decoder node rather
than when encoded through the input. This could
explain why coreference is not easily seen via at-
tention weights; the crucial information is encoded
on the decoder-side rather than in the encoder.

6 Conclusion

We have presented an evaluation of discourse-
level NMT models through the use of two dis-
course test sets targeted at coreference and lexical
coherence/cohesion. We have shown that multi-
encoder architectures alone have a limited capac-
ity to exploit discourse-level context; poor results
are found for coreference and more promising
results for coherence/cohesion, although there is
room for improvement. Our novel combination
of contextual strategies greatly outperfoms exist-
ing models. This strategy uses the previous source
sentence as an auxiliary input and decodes both
the current and previous sentence. The observa-
tion that the decoding strategy is very effective
for the handling of previous context suggests that
techniques such as stream decoding, keeping a
constant flow of contextual information in the re-
current node of the decoder, could be very promis-
ing for future research.
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Abstract

The end-to-end nature of neural machine
translation (NMT) removes many ways of
manually guiding the translation process that
were available in older paradigms. Recent
work, however, has introduced a new capa-
bility: lexically constrained or guided de-
coding, a modification to beam search that
forces the inclusion of pre-specified words and
phrases in the output. However, while theoret-
ically sound, existing approaches have com-
putational complexities that are either linear
(Hokamp and Liu, 2017) or exponential (An-
derson et al., 2017) in the number of con-
straints. We present an algorithm for lexi-
cally constrained decoding with a complex-
ity of O(1) in the number of constraints. We
demonstrate the algorithm’s remarkable abil-
ity to properly place these constraints, and use
it to explore the shaky relationship between
model and BLEU scores. Our implementation
is available as part of SOCKEYE.

1 Introduction

One appeal of the phrase-based statistical ap-
proach to machine translation (Koehn et al., 2003)
was that it provided control over system output.
For example, it was relatively easy to incorporate
domain-specific dictionaries, or to force a transla-
tion choice for certain words. These kinds of in-
terventions were useful in a range of settings, in-
cluding interactive machine translation or domain
adaptation. In the new paradigm of neural ma-
chine translation (NMT), these kinds of manual
interventions are much more difficult, and a lot of
time has been spent investigating how to restore
them (cf. Arthur et al. (2016)).

At the same time, NMT has also provided new
capabilities. One interesting recent innovation is
lexically constrained decoding, a modification to
beam search that allows the user to specify words

No one has the intention of building a wall.

“errichten”

Niemand hat die Absicht, eine Mauer zu bauen.  
“No one has the intention, a wall to build.”

Niemand hat die Absicht, eine Mauer zu errichten. 
“No one has the intention, a wall to construct.”

“Keiner”

“Keiner” 
"errichten”

Keiner hat die Absicht, eine Mauer zu bauen.  
“No one has the intention, a wall to build.”

Keiner hat die Absicht, eine Mauer zu errichten. 
“No one has the intention, a wall to construct.”

Figure 1: An example translating from English to Ger-
man. The first translation is unconstrained, whereas
the remaining ones have one or two constraints im-
posed. A word-for-word translation of the German
output has been provided for the convenience of non-
German speaking readers.

and phrases that must appear in the system output
(Figure 1). Two algorithms have been proposed
for this: grid beam search (Hokamp and Liu,
2017, GBS) and constrained beam search (Ander-
son et al., 2017, CBS). These papers showed that
these algorithms do a good job automatically plac-
ing constraints and improving results in tasks such
as simulated post-editing, domain adaptation, and
caption generation.

A downside to these algorithms is their runtime
complexity: linear (GBS) or exponential (CBS) in
the number of constraints. Neither paper reported
decoding speeds, but the complexities alone sug-
gest a large penalty in runtime. Beyond this, other
factors of these approaches (a variable sized beam,
finite-state machinery) change the decoding pro-
cedure such that it is difficult to integrate with
other operations known to increase throughput,
like batch decoding.

We propose and evaluate a new algorithm, dy-
namic beam allocation (DBA), that is constant in
the number of provided constraints (Table 1). Our
algorithm works by grouping together hypotheses
that have met the same number of constraints into
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work complexity
Anderson et al. (2017) O(Nk2C)
Hokamp and Liu (2017) O(NkC)
This work O(Nk)

Table 1: Complexity of decoding (sentence length N ,
beam size k, and constraint count C) with target-side
constraints under various approaches.

banks (similar in spirit to the grouping of hypothe-
ses into stacks for phrase-based decoding (Koehn
et al., 2003)) and dynamically dividing a fixed-size
beam across these banks at each time step. As a re-
sult, the algorithm scales easily to large constraint
sets that can be created when words and phrases
are expanded, for example, by sub-word process-
ing such as BPE (Sennrich et al., 2016). We com-
pare it to GBS and demonstrate empirically that it
is significantly faster, making constrained decod-
ing with an arbitrary number of constraints feasi-
ble with GPU-based inference. We also use the al-
gorithm to study beam search interactions between
model and metric scores, beam size, and pruning.

2 Beam Search and Grid Beam Search

Inference in statistical machine translation seeks
to find the output sequence, ŷ, that maximizes
the probability of a function parameterized by a
model, θ, and an input sequence, x:

ŷ = argmaxy∈Y pθ(y | x)

The space of possible translations, Y , is the set of
all sequences of words in the target language vo-
cabulary, VT . It is impossible to explore this en-
tire space. Models decompose this problem into a
sequence of time steps, t. At each time step, the
model produces a distribution over VT . The sim-
plest approach to translation is therefore to run the
steps of the decoder, choosing the most-probable
token at each step, until either the end-of-sentence
token, 〈/s〉, is generated, or some maximum out-
put length is reached. An alternative, which ex-
plores a slightly larger portion of the search space,
is beam search.

In beam search (Lowerre, 1976; Sutskever et al.,
2014), the decoder maintains a beam of size k con-
taining a set of active hypotheses (Algorithm 1).
At each time step t, the decoder model is used to
produce a distribution over the target-language vo-
cabulary, VT , for each of these hypotheses. This
produces a large matrix of dimensions k × |VT |,

Algorithm 1 Beam search. Inputs: max output
length N , beam size k. Output: highest-scoring
hypothesis.

1: function BEAM-SEARCH(N, k)
2: beam← DECODER-INIT(k)
3: for time step t in 1..N do
4: scores = DECODER-STEP(beam)
5: beam← KBEST(scores)
6: return beam[0]
7: function KBEST(scores)
8: beam = ARGMAX K(k, scores)
9: return beam

that can be computed quickly with modern GPU
hardware. Conceptually, a (row, column) entry
(i, j) in this matrix contains the state obtained
from starting from the ith state in the beam and
generating the target word corresponding to the
jth word of VT . The beam for the next time step
is filled by taking the states corresponding to the
k-best items from this entire matrix and sorting
them.

A principal difference between beam search for
phrase-based and neural MT is that in NMT, there
is no recombination: each hypothesis represents
a complete history, back to the first word gener-
ated. This makes it easy to record properties of
the history of each hypothesis that were not possi-
ble with dynamic programming. Hokamp and Liu
(2017) introduced an algorithm for forcing certain
words to appear in the output called grid beam
search (GBS). This algorithm takes a set of con-
straints, which are words that must appear in the
output, and ensures that hypotheses have met all
these constraints before they can be considered to
be completed. For C constraints, this is accom-
plished by maintaining C + 1 separate beams or
banks, B0, B1, . . . , BC , where Bi groups together
hypotheses that have generated (or met) i of the
constraints. Decoding proceeds as with standard
beam decoding, but with the addition of bookkeep-
ing that tracks the number of constraints met by
each hypothesis, and ensures that new candidates
are generated, such that each bank is filled at each
time step. When beam search is complete, the
hypothesis returned is the highest-scoring one in
bank BC . Conceptually, this can be thought of as
adding an additional dimension to the beam, since
we multiply out some base beam size b by (one
plus) the number of constraints.
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We note two problems with GBS:

• Decoding complexity is linear in the num-
ber of constraints: The effective beam size,
k · (C + 1), varies with the number of con-
straints.

• It is impractical. The beam size changes
for every sentence, whereas most decoders
specify the beam size at model load time in
order to optimize computation graphs, spe-
cially when running on GPUs. It also compli-
cates beam search optimizations that increase
throughput, such as batching.

Our extension, fast lexically-constrained decoding
via dynamic beam allocation (DBA), addresses
both of these issues. Instead of maintaining C +1
beams, we maintain a single beam of size k, as
with unconstrained decoding. We then dynami-
cally allocate the slots of this beam across the con-
straint banks at each time step. There is still book-
keeping overhead, but this cost is constant in the
number of constraints, instead of linear. The result
is a practical algorithm for incorporating arbitrary
target-side constraints that fits within the standard
beam-decoding paradigm.

3 Dynamic Beam Allocation (DBA)

Our algorithm (Algorithm 2) is based on a small
but important alteration to GBS. Instead of multi-
plying the beam by the number of constraints, we
divide. A fixed beam size is therefore provided
to the decoder, just as in standard beam search.
As different sentences are processed with differing
numbers of constraints, the beam is dynamically
allocated to these different banks. In fact, the allo-
cation varies not just by sentence, but across time
steps in processing each individual sentence.

We need to introduce some terminology. A
word constraint provided to the decoder is a sin-
gle token in the target language vocabulary. A
phrasal constraint is a sequence of two or more
contiguous tokens. Phrasal constraints come into
play when the user specifies a multi-word phrase
directly (e.g., high-ranking member), or when a
word gets broken up by subword splitting (e.g.,
thou@@ ghtful). The total number of constraints
is the sum of the number of tokens across all word
and phrasal constraints. It is easier for the decoder
to place multiple sequential tokens in a phrasal
constraint (where the permutation is fixed) com-
pared to placing separate, independent constraints

(see discussion at the end of §5), but the algorithm
does not distinguish them when counting.

DBA fits nicely within standard beam decod-
ing; we simply replace the kbest implementation
from Algorithm 1 with one that involves a bit more
bookkeeping. Instead of selecting the top-k items
from the k × VT scores matrix, the new algorithm
must consider two important matters.

1. Generating a list of candidates (§3.1).
Whereas the baseline beam search simply
takes the top-k items from the scores matrix
(a fast operation on a GPU), we now need to
ensure that candidates progress through the
set of provided constraints.

2. Allocating the beam across the constraint
banks (§3.2). With a fixed-sized beam and
an arbitrary number of constraints, we need
to find an allocation strategy for dividing the
beam across the constraint banks.

3.1 Generating the candidate set
We refer to Figure 2 for discussion of the algo-
rithm. The set of candidates for the beam at time
step t + 1 is generated from the hypotheses in the
current beam at step t, which are sorted in de-
creasing order, with the highest-scoring hypoth-
esis at position 1. The DECODER-STEP function
of beam search generates a matrix, scores , where
each row r corresponds to a probability distribu-
tion over all target words, expanding the hypoth-
esis in position r in the beam. We build a set of
candidates from the following items:

1. The best k tokens across all rows of scores
(i.e., normal top-k);

2. for each hypothesis in the beam, all unmet
constraints (to ensure progress through the
constraints); and

3. for each hypothesis in the beam, the
single-best token (to ensure consideration of
partially-completed hypotheses).

Each of these candidates is denoted by its coordi-
nates in scores. The result is a set of candidates
which can be grouped into banks according to how
many constraints they have met, and then sorted
within those banks. The new beam for timestep
t + 1 is then built from this list according to an
allocation policy (next section).
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for b in [0.9, 0.88, 0.85, 0.81, 0.79]:

    t = [random.random() for x in range(10)];

    t = [b + x / sum(t) for x in t];

    print('\t'.join(['{:.2f}'.format(x) for x in t]))


Figure 2: A single step of the constrained decoder. Along the left is the beam (k = 5) at time step t. The shapes
in this beam represent constraints, both met (filled) and unmet (outlined). The blue square represents a phrasal
constraint of length 2, which must be completed in order (left half, then right half). A step of the decoder produces
a k × VT matrix of scores. Each constraint corresponds to a single token in the vocabulary, and is marked along
the bottom. Gray squares denote the set of candidates that are produced (§3.1) from the k best items (F), from
extending each hypothesis with all unfilled constraints (→), and from its single-best next token (3). Items that
violate a phrasal constraint ( 	) require the phrasal constraint from that hypotheses to be unwound (set to unmet).
From these fifteen candidates, the beam at time step t+1 is filled, according to the bank allocation strategy, which
here assigns one slot in the beam to each bank. The final beam includes coordinates indicating the provenance of
chosen items (which are also indicated in bold in the grid).

For hypotheses partially through a phrasal con-
straint, special care must be taken. If a phrasal
constraint has been begun, but not finished, and a
token is chosen that does not match the next word
of the constraint, we must reset or “unwind” those
tokens in this constraint that are marked as having
been met. This permits the decoder to abort the
generation of a phrasal constraint, which is impor-
tant in situations where a partial prefix of a phrasal
constraint appears in the decoded sentence earlier
than the entire phrase.

3.2 Allocating the beam

The task is to allocate a size-k beam across C + 1
constraint banks, where C may be greater than k.
We use the term bank to denote the portion of the
beam reserved for items having met the same num-
ber of constraints (including one bank for hypothe-
ses with zero constraints met). We use a simple
allocation strategy, setting each bin size to bk/Cc,
irrespective of the timestep. Any remaining slots
are assigned to the “topmost” or maximally con-
strained bank, C.

This may at first appear wasteful. For exam-
ple, space allocated at timestep 1 to a bank rep-
resenting candidates having met more than one
constraint cannot be used, and similarly, for later

timesteps, it seems wasteful to allocate space to
bank 1. Additionally, if the number of candidates
in a bank is smaller than the allocation for that
bank, the beam is in danger of being underfilled.
These problems are mitigated by bank adjustment
(Figure 3). We provide here only a sketch of this
procedure. An overfilled bank is one that has been
allocated more slots than it has candidates to fill.
Each such overfilled bank, in turn, gives its extra
allotments to banks that have more candidates than
slots, looking first to its immediate neighbors, and
moving outward until it has distributed all of its
extra slots. In this way, the beam is filled, up to
the minimum of the beam size or the number of
candidates.

3.3 Finishing

Hypotheses are not allowed to generate the end-
of-sentence token, 〈/s〉, unless they have met all
of their constraints. When beam search is finished,
the highest-scoring completed item is returned.

4 Experimental Setup

Our experiments were done using SOCKEYE

(Hieber et al., 2017). We used an English–German
model trained on the complete WMT’17 train-
ing corpora (Bojar et al., 2017), which we pre-
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Algorithm 2 k-best extraction with DBA. Inputs: A k × |VT | matrix of model states.

1: function KBEST-DBA(beam, scores)
2: constraints← [hyp.constraint for hyp in beam]
3: candidates← [(i, j, constraints[i].add(j)] for i, j in ARGMAX K(k, scores) . Top overall k
4: for 1 ≤ h ≤ k do . Go over current beam
5: for all w ∈ VT that are unmet constraints for beam[h] do . Expand new constraints
6: candidates.append( (h,w, constraints[h].add(w) ) )
7: w = ARGMAX(scores[h, :])
8: candidates.append( (h,w, constraints[h].add(w)) ) . Best single word
9: selected← ALLOCATE(candidates, k)

10: newBeam← [candidates[i] for i in selected]
11: return newBeam

0

1

2

3

4

0

0

1

1

1

candidates allocation reallocation

Figure 3: Beam reallocation for k = 5 with 4 con-
straints at timestep t. There are eight candidates, each
having met only 0 or 1 constraint. The allocation pol-
icy gives one slot of the beam to each bank. However,
there are no candidates for banks 2–4 (greyed), so their
slots are redistributed to banks 0 and 1.

processed with the Moses tokenizer (preserving
case) and with a joint byte-pair-encoded vocabu-
lary with 32k merge operations (Sennrich et al.,
2016). The model was a 4 layer RNN with atten-
tion. We trained using the Adam optimizer with
a batch size of 80 until cross-entropy on the de-
velopment data (newstest2016) stopped increasing
for 10 consecutive iterations.

For decoding, we normalize completed hy-
potheses (those that have generated 〈/s〉), divid-
ing the cumulative sentence score by the num-
ber of words. Unless otherwise noted, we apply
threshold pruning to the beam, removing hypothe-
ses whose log probability is not within 20 com-
pared to the best completed hypothesis. This prun-
ing is applied to all hypotheses, whether they are

complete or not. (We explore the importance of
this pruning in §6.3). Decoding stops when either
all hypotheses still on the beam are completed or
the maximum length, N , is reached. All experi-
ments were run on a single a Volta P100 GPU. No
ensembling or batching were used.

For experiments, we used the newstest2014
English–German test set (the developer version,
with 2,737 sentences). All BLEU scores are com-
puted on detokenized output using SACREBLEU
(Post, 2018),1 and are thus directly comparable to
scores reported in the WMT evaluations.

5 Validation Experiment

We center our exploration of DBA by experiment-
ing with constraints randomly selected from the
references. We extract five sets of constraints:
from one to four randomly selected words from
the reference (rand1 to rand4), and a randomly
selected four-word phrase (phr4). We then apply
BPE to these sets, which often yields a much larger
number of token constraints. Statistics about these
extracted phrases can be found in Table 2.

We simulate the GBS baseline within our
framework. After applying BPE, We group to-
gether translations with the same number of con-
straints, C, and then translate them as a group,
with the beam set for that group set to b(C + 1),
where b is the “base beam” parameter. We use
b = 10 as reported in Hokamp et al., but also try
smaller values of b = 5 and 1. Finally, we disable
beam adjustment (§3.2), so that the space allocated
to each constraint bank does not change.

Table 4 compares speeds and BLEU scores (in
the legend) as a function of the number of post-

1The signature is BLEU+case.mixed+lang.en-
de+numrefs.1+smooth.exp+test.wmt14+tok.13a+v.1.2.6
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num rand1 rand2 rand3 rand4 phr4
1 2,182 0 0 0 0
2 548 3,430 0 0 0
3 516 1,488 4,074 0 0
4 272 1,128 2,316 4,492 4,388
5 150 765 1,860 3,275 2,890
6 30 306 1,218 2,520 2,646
7 42 133 805 1,736 1,967
8 0 112 488 1,096 1,280
9 0 36 171 702 720
10 0 10 140 400 430
11+ 0 22 189 417 575
total 3,726 7,477 11,205 14,885 14,926
mean 1.36 2.73 4.09 5.43 5.45

Table 2: Histogram of the number of token constraints
for some constraint sets after applying BPE (model
trained with 32k merge operations). mean denotes the
mean number of constraints per sentence in the 2,737-
sentence test set.

BPE constraints for the rand3 dataset. We plot
all points for which there were at least 10 sen-
tences. The times are decoding only, and exclude
model loading and other setup. The linear trend
in C is clear for GBS, as is the constant trend
for DBA. In terms of absolute runtimes, DBA im-
proves considerably over GBS, whose beam sizes
quickly become quite large with a non-unit base
beam size. On the Tesla V100 GPU, DBA (k =
10) takes about 0.6 seconds/sentence, regardless
of the number of constraints.2 This is about 3x
slower than unconstrained decoding.

It is difficult to compare these algorithms ex-
actly because of GBS’s variable beam size. An
important comparison is that between DBA (k =
10) and GBS/1 (base beam of 1). A beam of
k = 10 is a common setting for decoding in gen-
eral, and GBS/1 has a beam size of k ≥ 10 for
C ≥ 9. At this setting, DBA finds better transla-
tions (BLEU 26.7 vs. 25.6) with the same runtime
and with a fixed, instead of variable-sized, beam.

We note that the bank adjustment correction
of the DBA algorithm allows it to work when
C >= k. The DBA (k = 5) plot demonstrates
this, while still finding a way to increase the BLEU
score over GBS (23.5 vs. 22.3). However, while
possible, low k relative to C reduces the observed
improvement considerably. Looking at Figure 5
across different constraint sets, we can get a better
feel for this relationship. DBA is still always able
to meet the constraints even with a beam size of 5,

2On a K80, it is about 1.4 seconds / sentence

Volta decoding rand3 
beam size = 10 (DBA), 5(C+1) (GBS)

GBS/10 (BLEU 
27.8, k=(C+1)×10)

GBS/5 (BLEU 27.5, 
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GBS/1 (BLEU 25.6, 
k=(C+1)×1)

DBA (BLEU 27.2, 
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DBA (BLEU 26.7, 
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4 2.1669 1.2887 0.4923 1.1083 0.7240 0.5139 0.2133 579

5 2.5580 1.4420 0.5556 1.1052 0.6874 0.4012 0.2133 372

6 2.8908 1.6499 0.5844 1.0443 0.6858 0.4204 0.2133 203

7 3.4037 1.9266 0.7074 1.1524 0.7445 0.4466 0.2133 115

8 3.8006 2.0444 0.7642 1.1847 0.8012 0.4802 0.2133 61

9 3.9575 2.1997 0.8096 1.1856 0.8057 0.4603 0.2133 19

10 4.3779 2.4897 0.9564 1.1785 0.6904 0.5947 0.2133 14
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12 4.8664 2.9615 1.2622 1.5562 1.0878 0.8452 0.2133 5
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15 4.4652 2.7549 1.3539 1.4413 1.0156 0.9548 0.2133 1

se
co

nd
s /

 se
nt

en
ce

0

1

2

3

4

5

number of constraints, C (after BPE)

3 4 5 6 7 8 9 10

GBS/10 (BLEU 27.8, k=(C+1)×10)
GBS/5 (BLEU 27.5, k=(C+1)×5)
GBS/1 (BLEU 25.6, k=(C+1)×1)
DBA (BLEU 27.2, k=20)
DBA (BLEU 26.7, k=10)
DBA (BLEU 23.5, k=5)
unconstrained (k=10)

Volta decoding 
beam size = 10 (DBA), 5(C+1) (GBS)-1

# constraints phr2 phr3 phr4 rand1 rand2 rand3
0

1 0.6303
2 0.6407 0.6862 0.6560
3 0.6534 0.6404 0.6865 0.6584 0.6817
4 0.6493 0.6799 0.6439 0.7503 0.7267 0.7240
5 0.6441 0.6165 0.6141 0.7177 0.6706 0.6874
6 0.7285 0.7219 0.6195 0.7096 0.6858
7 0.7426 0.6765 0.6883 0.7445
8 0.7091 0.6819 0.8012
9 0.8327
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1 0.6303
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6 0.7285 0.7219 0.6195 0.8798 0.7096 0.6858
7 0.7426 0.6765 0.6883 0.8994 0.7814 0.7445
8 1.1061 0.7091 0.6819 1.2610 0.8012
9 1.4579 0.8107 0.8327 0.8215 0.8057

10 0.7694 0.5532 1.0103 0.6904
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12 0.6904 1.0627 1.0878
13 0.7613 1.2263 0.8781
14 0.9635 0.7614 1.0156
15 0.7341
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Figure 4: Running time (seconds / sentence, lower is
better) as a function of the number of constraints, C
(after applying BPE) on the rand3 dataset. The un-
constrained baselines have BLEU scores of 22.3, 22.3,
and 22.1 for k = 5, 10, and 20, respectively.

but the quality suffers. This should not be too sur-
prising; correctly placing independent constraints
is at least as hard as finding their correct permuta-
tion, which is exponential in the number of inde-
pendent constraints. But it is remarkable that the
only failure to beat the baseline in terms of BLEU
is when the algorithm is tasked with placing four
random constraints (before BPE) with a beam size
of 5. In contrast, DBA never has any trouble plac-
ing phrasal constraints (dashed lines).

6 Analysis

6.1 Placement
It’s possible that the BLEU gains result from a
boost in n-gram counts due to the mere presence of
the reference constraints in the output, as opposed
to their correct placement. This appears not to be
the case. Experience examining the outputs shows
its uncanny ability to sensibly place constrained
words and phrases. Figure 6 contains some exam-
ples from translating a German sentence into En-
glish, manually identifying interesting phrases in
the target, choosing paraphrases of those words,
and then decoding with them as constraints. Note
that the word weak, which doesn’t fit in the seman-
tics of the reference, is placed haphazardly.

We also confirm this correct placement quanti-
tatively by comparing the location of the first word
of each constraint in (a) the reference and (b) the
output of the constrained decoder, represented as a
percentage of the respective sentence lengths (Fig-
ure 7). We would not expect these numbers to
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Volta decoding rand3  
beam size = 10 (DBA), 5(C+1) (GBS)

5 10 20 30

phr4 31.34 35.68 36.29 36.45

phr3 29.03 31.33 32.00 32.04

rand4 20.70 26.91 28.43 28.76

phr2 26.72 27.66 28.13 28.06

rand3 23.51 26.73 27.23 27.64

rand2 24.64 25.64 26.13 26.22

rand1 24.38 24.60 24.71 24.70

unconstrained 22.33 22.33 22.15 21.86

B
LE

U

15

20

25

30

35

40

beam size

5 10 20 30

phr4 phr3
rand4 phr2
rand3 rand2
rand1 unconstrained

B
LE

U

15

20

25

30

35

40

beam size

5 10 20 30

phr4 phr3
rand4 phr2
rand3 rand2
rand1 unconstrained

�1

Figure 5: BLEU score as a function of beam size un-
der DBA. All constraint sets improve as the beam gets
larger (recall that the actual number of constraints in-
creases after BPE and varies by sentence). rand4 per-
forms under the unconstrained baseline if the beam is
too low.

be perfectly matched, but the strong correlation is
pretty apparent (Pearson’s r = 0.82). Together,
Figures 6 and 7 provide confidence that DBA is
intelligently placing the constraints.

6.2 Reference Aversion
The inference procedure in SOCKEYE maximizes
the length-normalized version of the sentence’s
log probability. While there is no explicit training
towards the metric, BLEU, modeling in machine
translation assumes that better model scores cor-
relate with better BLEU scores. However, a gen-
eral repeated observation from the NMT literature
is the disconnect between model score and BLEU
score. For example, work has shown that open-
ing up the beam to let the decoder find better hy-
potheses results in lower BLEU score (Koehn and
Knowles, 2017), even as the model score rises.
The phenomenon is not well understood, but it
seems that NMT models have learned to travel a
path straight towards their goal; as soon as they
get off this path, they get lost, and can no longer
function (Ott et al., 2018).

Another way to look at this problem is to ask
what the neural model thinks of the references.
Scoring against complete references is easy with
NMT (Sennrich, 2017), but lexically-constrained
decoding allows us to investigate this in finer-
grained detail by including just portions of the
references. We observe that forcing the decoder
to include even a single word from the reference
imposes a cost in model score that is inversely

0 3 5 10 20 30
none 24.4 24.5 24.5 24.4 24.5 24.4
rand1 25.2 25.1 25.2 25.6 25.5 25.3
rand2 26.0 25.3 25.6 26.1 26.7 26.4
rand3 26.5 24.7 24.9 25.7 26.9 27.2
rand4 26.2 23.7 23.9 24.6 26.0 26.9
phr4 35.1 33.5 33.5 34.0 35.0 35.9

Table 3: BLEU scores decoding with a beam size of 10.
Runtimes for unpruned systems (column 0) are nearly
twice those of the other columns. But it is only at large
thresholds that BLEU scores are higher than the un-
pruned setting.

correlated with BLEU score, and that this grows
with the number of constraints that are added (Fig-
ure 8). The NMT system seems quite averse to the
references, even in small pieces, and even while
it improves the BLEU score. At the same time,
the hypotheses it finds in this reduced space are
still good, and become better as the beam is en-
largened (Figure 5). This provides a complemen-
tary finding to that of Koehn and Knowles (2017):
in that setting, higher model scores found by a
larger beam produce lower BLEU scores; here,
lower model scores are associated with signifi-
cantly higher BLEU scores.

6.3 Effects of Pruning

In the results reported above, we used a prun-
ing threshold of 20, meaning that any hypothe-
sis whose log probability is not within 20 of the
best completed hypothesis is removed from the
beam. This pruning threshold is far greater than
those explored in other papers; for example, Wu
et al. (2016) use 3. However, we observed two
things: first, without pruning, running time for
constrained decoding is nearly doubled. This in-
creased runtime applies to both DBA and GBS
in Figure 4. Second, low pruning thresholds are
harmful to BLEU scores (Table 3). It is only once
the thresholds reach 20 that the algorithm is able
to find better BLEU scores compared to the un-
pruned baseline (column 0).

6.4 Garbage Generation

Why is the algorithm so slow without pruning?
One might suspect that the outputs are longer,
but mean output length with all constraint sets is
roughly the same. The reason turns out to be that
the the decoder never quits before the maximum
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constraint score output
source Einer soll ein hochrangiges Mitglied aus Berlin gewesen sein .
no constraints -0.217 One should have been a high-ranking member from Berlin .
is said to -0.551 One is said to have been a high-ranking member from Berlin .
of them -0.577 One of them was to be a high-ranking member from Berlin .
participant -0.766 One should have been a high-ranking participant from Berlin .
is thought to -0.792 One is thought to have been a high-ranking member from Berlin .
considered -0.967 One is considered to have been a high-ranking member from Berlin .
Hamburg -1.165 One should have been a high-ranking member from Hamburg .
powerful -1.360 One is to have been a powerful member from Berlin .
powerful, is said to -1.496 One is said to have been a powerful member from Berlin .
powerful, is said to, participant -1.988 One is said to have been a powerful participant from Berlin .
weak -1.431 One weak point was to have been a high-ranking member from Berlin .
reference One is said to have been a high-ranking member from Berlin.

Figure 6: Example demonstrating the correct placement of manually chosen constraints (beam size 10). The
unnatural placement of the constraint weak demonstrates what the model does when forced to include a word that
is not a semantic fit.
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Figure 7: Location of the first word of each constraint
from phr3 in the reference versus the constrained out-
put (Pearson’s r = 0.82). DBA correctly places its
constraints, even though no source word or alignment
information is provided.

timestep, N . SOCKEYE’s stopping criterium is
to wait until all hypotheses on the beam are fin-
ished. Without pruning, the decoder generates
a finished hypotheses, but continues on until the
maximum timestep N , populating the rest of the
beam with low-cost garbage. An example can be
found in Figure 9. This may be an example of
the well-attested phenomenon where NMT sys-
tems become unhinged from the source sentence,
switching into “language model” mode and gen-
erating high-probable output with no end. But
strangely, this doesn’t seem to affect the best hy-
potheses, but only the rest of the beam. This seems
to be more evidence of reference aversion, where

beam=10

run model BLEU

none -1039.86 22.33

rand1 -1337.54 24.60

rand2 -1724.98 25.64 test

rand3 -2236.24 26.73

rand4 -3082.17 26.91

phr2 -1766.27 27.66

phr3 -2156.17 31.33

phr4 -2681.62 35.68

ref 95.86 4396.46

0
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20

30

40

-4,000 -3,000 -2,000 -1,000 0

none

rand1
rand4

phr4
phr3

rand3 rand2

phr2

�1

Figure 8: BLEU score as a function of model score
(summed over the corpus). The reference model score
is -4,396.

the decoder, having been forced into a place it
doesn’t like, does not know how to generate good
competing hypotheses.

An alternative to pruning is early stopping,
which is to stop when the first complete hypothe-
sis is generated. In our experiments, while this did
fix the problem of increasing runtimes, the BLEU
scores were lower.

6.5 Conclusions

By setting a large pruning threshold, we produced
large speedups over GBS, and demonstrated a con-
stant overhead in the number of constraints. Com-
pared to GBS, our DBA algorithm makes lexi-
cally constrained decoding possible, requiring less
than half a second on average on a Volta GPU with
a 4-layer RNN.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . . 41
-0.51 〈s〉 Er und Kerr lieben einander noch immer , betonte die 36-Jährige . 〈/s〉
-0.52 〈s〉 Er und Kerr lieben einander noch immer , betonte der 36-Jährige . 〈/s〉
-0.56 〈s〉 Er und Kerr lieben einander noch immer , betonte die 36-jährige . 〈/s〉
-0.57 〈s〉 Er und Kerr lieben einander noch immer , betonte den 36-jährigen . 〈/s〉

-25.11 〈s〉 Er und Kerr lieben sich weiterhin einander , betonte die 36-Jährige . &#160; . . . &#160;
-27.92 〈s〉 Er und Kerr lieben sich weiterhin einander , betonte die 36-Jährige . &#160; . . . &#160;

Figure 9: The sentence He and Kerr still love each other , emphasised the 36-year-old . translated with the
constraint noch immer , betonte (BPE removed for readability). The first column is the log probability, which
is normalized only for finished hypotheses. The decoder completes a few hypotheses well before the maximum
timestep, but then fills the lower beam with garbage until forced to stop.

7 Related Work

Hokamp and Liu (2017) was novel in that it
allowed the specification of arbitrary target-side
words as hard constraints, implemented entirely as
a restructuring of beam search, and without refer-
ence to the source. A related approach was that of
Anderson et al. (2017), who extended beam search
with a finite state machine whose states marked
completed subsets of the set of constraints, at an
exponential cost in the number of constraints.

Lexically-constrained decoding also general-
izes prefix decoding (Knowles and Koehn, 2016;
Wuebker et al., 2016), since the 〈s〉 symbol can
easily be included as the first word of a constraint.

Our work here has not explored where to get
lexical constraints, but considering that question
naturally brings to mind attempts to improve NMT
by using lexicons and phrase tables (Arthur et al.,
2016; Tang et al., 2016).

Finally, another approach which shares the
hard-decision made by lexically constrained de-
coding is the placeholder approach (Crego et al.,
2016), wherein identifiable elements in the in-
put are transformed to masks during preprocess-
ing, and then replaced with their original source-
language strings during postprocessing.

8 Summary

Neural machine translation removes many of the
knobs from phrase-based MT that provided fine-
grained control over system output. Lexically-
constrained decoding restores one of these tools,
providing a powerful and interesting way to in-
fluence NMT output. It requires only the speci-
fication of the target-side constraints; without any
source word or alignment information, it correctly
places the constraints. Although we have only
tested it here with RNNs, the code works with-
out modification with other architectures generate
target-side words one-by-one, such as the Trans-

former (Vaswani et al., 2017).
This paper has introduced a fast and practical

solution. Building on previous approaches, con-
strained decoding with DBA does away with lin-
ear and exponential complexity (in the number of
constraints), imposing only a constant overhead.
On a Volta GPU, lexically-constrained decoding
with DBA is practical, requiring about 0.6 sec-
onds per sentence on average even with 10+ con-
straints, well within the realm of feasibility even
for applications with strict lattency requirements,
like post-editing tasks. We imagine that there are
further optimizations in reach that could improve
this even further.
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A Appendix: Failed Experiments

The main contribution of this paper is a fast,
practical algorithmic improvement to lexically-
constrained decoding. While we did not attempt to
corroborate the experiments in interactive transla-
tion and domain adaptation experiments reported
in (Hokamp and Liu, 2017), the gains discovered
there only become more salient with this faster al-
gorithm. We did try to apply lexical constraints in
a few other settings, but without success. In the
spirit of open scientific inquiry and reporting, we
provide here a brief report on these experiments.

A.1 Automatic Constraint Selection

Our validation experiments (§5) demonstrate the
large potential gains in BLEU score when includ-
ing random phrases from the reference. Even in-
cluding just a single random word from the ref-
erence increased BLEU score by a point; an-
other point was gained from including two ran-
dom words, and a four-word phrase yielded 10+
point gains. Only about 18% of these random un-
igrams were present in the unconstrained output
(less for longer n-grams). This raises the question
of whether we can automatically identify words
that are likely to be in the reference and include
them as constraints, in order to improve transla-
tion quality.

In order to do that, we first extracted a phrase
table using Moses and filtered it with the signifi-
cance testing approach proposed by Johnson et al.
(2007) in order to keep only high quality phrases.
We then selected the best phrase for each input
sentence according to different criteria (longest
phrase, higher significance, highest probability,
combination of those). Unfortunately, adding such
phrases as constraints when translating WMT or
IWSLT data did not help.

A.2 Name Entity Translation

One topic that has received attention in the litera-
ture is the tendency of NMT systems to do poorly
with rare words, and in particular, named entities
(e.g., Arthur et al. (2016)). BPE helps address this
by breaking down words into pieces and allowing
all words to be represented in the decoder’s vocab-
ulary. But even with BPE, many times the correct
translation does not follow any pattern, even at the
subword level. This is specially true for named
entities; e.g. “Aachen” in German is translated as
“Aquisgrán” in Spanish or “Aix-la-Chapelle” in

French, which bear little resemblance to the origi-
nal form except for the starting letter. Named en-
tities (NEs) also have the advantage that in several
languages they are not inflected; therefore a simple
lookup in a dictionary, if available, should produce
the correct translation.

To the best of our knowledge, there is no pub-
licly available parallel corpus of named entities. In
order to create one, we downloaded the OpenSub-
titles database (Lison and Tiedemann, 2016) for
German and English and applied a simple method
for extracting named entity correspondences. We
first tagged the source and target sides with the
Stanford NER system (Manning et al., 2014).
We then selected a subset of the tags that were
produced by both systems (“Person”, “Location”
and “Organization”) and selected those sentences
where they appeared only once for each language.
From those we extracted the corresponding NEs,
selecting the most frequent target side at the cor-
pus level as the translation of a given source NE.

Given such a dictionary, we can add the trans-
lation of a NE found in new sentences to translate
as decoding constraints. It didn’t help. Manual in-
spection showed that the dictionary extracted with
this simple method was still too noisy. We think
that a manual, high-quality dictionary may provide
a way to produce improvements.

1324



Proceedings of NAACL-HLT 2018, pages 1325–1335
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Guiding Neural Machine Translation with Retrieved Translation Pieces

Jingyi Zhang1,2, Masao Utiyama1, Eiichro Sumita1

Graham Neubig3,2, Satoshi Nakamura2

1National Institute of Information and Communications Technology, Japan
2Graduate School of Information Science, Nara Institute of Science and Technology, Japan

3Language Technologies Institute, Carnegie Mellon University, USA
jingyizhang/mutiyama/eiichiro.sumita@nict.go.jp

gneubig@cs.cmu.edu, s-nakamura@is.naist.jp

Abstract

One of the difficulties of neural machine trans-
lation (NMT) is the recall and appropriate
translation of low-frequency words or phrases.
In this paper, we propose a simple, fast, and
effective method for recalling previously seen
translation examples and incorporating them
into the NMT decoding process. Specifically,
for an input sentence, we use a search engine
to retrieve sentence pairs whose source sides
are similar with the input sentence, and then
collect n-grams that are both in the retrieved
target sentences and aligned with words that
match in the source sentences, which we call
“translation pieces”. We compute pseudo-
probabilities for each retrieved sentence based
on similarities between the input sentence and
the retrieved source sentences, and use these
to weight the retrieved translation pieces. Fi-
nally, an existing NMT model is used to trans-
late the input sentence, with an additional
bonus given to outputs that contain the col-
lected translation pieces. We show our method
improves NMT translation results up to 6
BLEU points on three narrow domain trans-
lation tasks where repetitiveness of the target
sentences is particularly salient. It also causes
little increase in the translation time, and com-
pares favorably to another alternative retrieval-
based method with respect to accuracy, speed,
and simplicity of implementation.

1 Introduction

Neural machine translation (NMT) (Bahdanau
et al., 2014; Sennrich et al., 2016a; Wang et al.,
2017b) is now the state-of-the-art in machine
translation, due to its ability to be trained end-to-
end on large parallel corpora and capture complex
parameterized functions that generalize across a
variety of syntactic and semantic phenomena.
However, it has also been noted that compared
to alternatives such as phrase-based translation

(Koehn et al., 2003), NMT has trouble with low-
frequency words or phrases (Arthur et al., 2016;
Kaiser et al., 2017), and also generalizing across
domains (Koehn and Knowles, 2017). A num-
ber of methods have been proposed to ameliorate
these problems, including methods that incorpo-
rate symbolic knowledge such as discrete trans-
lation lexicons (Arthur et al., 2016; He et al.,
2016; Chatterjee et al., 2017) and phrase tables
(Zhang et al., 2017; Tang et al., 2016; Dahlmann
et al., 2017), adjust model structures to be more
conducive to generalization (Nguyen and Chiang,
2017), or incorporate additional information about
domain (Wang et al., 2017a) or topic (Zhang et al.,
2016) in translation models.

In particular, one paradigm of interest is recent
work that augments NMT using retrieval-based
models, retrieving sentence pairs from the training
corpus that are most similar to the sentence that
we want to translate, and then using these to bias
the NMT model.1 These methods – reminiscent
of translation memory (Utiyama et al., 2011) or
example-based translation (Nagao, 1984; Grefen-
stette, 1999) – are effective because they augment
the parametric NMT model with a non-parametric
translation memory that allows for increased ca-
pacity to measure features of the target technical
terms or domain-specific words. Currently there
are two main approaches to doing so. Li et al.
(2016) and Farajian et al. (2017) use the retrieved
sentence pairs to fine tune the parameters of the
NMT model which is pre-trained on the whole
training corpus. Gu et al. (2017) uses the retrieved
sentence pairs as additional inputs to the NMT
model to help NMT in translating the input sen-

1Note that there are existing retrieval-based methods
for phrase-based and hierarchical phrase-based translation
(Lopez, 2007; Germann, 2015). However, these methods do
not improve translation quality but rather aim to improve the
efficiency of the translation models.
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Figure 1: A word-aligned sentence pair retrieved for an input sentence. Red words are unedited words obtained
by computing the edit distance between the input sentence and the retrieved source sentence. The blue part of the
retrieved target sentence is collected as translation pieces for the input sentence. The target word “Umschlagsan-
lagen” is split into “Um@@”, “schlags@@” and “anlagen” by byte pair encoding.

tence. While both of these paradigms have been
proven effective, they both add significant com-
plexity and computational/memory cost to the de-
coding process, and also to the training procedure.
The first requires the running of several training
iterations and rolling back of the model, which is
costly at test time, and the second requires entirely
changing the model structure which requires train-
ing the model separately, and also increases test-
time computational cost by adding additional en-
coders.

In this paper, we propose a simple and effi-
cient model for using retrieved sentence pairs to
guide an existing NMT model at test time. Specif-
ically, the model collects n-grams occurring in the
retrieved target sentences that also match words
that overlap between the input and retrieved source
sentences, which we will refer to as “translation
pieces” (e.g., in Figure 1, the blue part of the re-
trieved target sentence is collected as translation
pieces for the input sentence). The method then
calculates a pseudo-probability score for each of
the retrieved example sentence pairs and weights
the translation pieces according to this value. Fi-
nally, we up-weight NMT outputs that contain the
collected translation pieces. Unlike the previous
methods, this requires no change of the underlying
NMT model and no updating of the NMT param-
eters, making it both simple and efficient to apply
at test time.

We show our method improved NMT transla-
tion results up to 6 BLEU points on three trans-
lation tasks and caused little increase in the trans-
lation time. Further, we find that accuracies are
comparable with the model of Gu et al. (2017), de-
spite being significantly simpler to implement and
faster at test time.

2 Attentional NMT

Our baseline NMT model is similar to the atten-
tional model of Bahdanau et al. (2014), which
includes an encoder, a decoder and an atten-
tion (alignment) model. Given a source sentence
X = {x1, ..., xL}, the encoder learns an annota-

tion hi =
[
~hi;

←
hi

]
for xi using a bi-directional

recurrent neural network.
The decoder generates the target translation

from left to right. The probability of generating
next word yt is,2

PNMT

(
yt|yt−11 , X

)
= softmax (g (yt−1, zt, ct))

(1)
where zt is a decoding state for time step t, com-
puted by,

zt = f (zt−1, yt−1, ct) (2)

ct is a source representation for time t, calculated
as,

ct =
L∑

i=1

αt,i · hi (3)

where αt,i scores how well the inputs around posi-
tion i and the output at position tmatch, computed
as,

αt,i =
exp (a (zt−1, hi))
L∑
j=1

exp (a (zt−1, hj))

(4)

The standard decoding algorithm for NMT is
beam search. That is, at each time step t, we keep
n-best hypotheses. The probability of a complete

2g, f and a in Equation 1, 2 and 4 are nonlinear, poten-
tially multi-layered, functions.
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hypothesis is computed as,

logPNMT (Y |X) =

|Y |∑

t=1

logPNMT

(
yt|yt−11 , X

)

(5)
Finally, the translation score is normalized by sen-
tence length to avoid too short outputs.

logSNMT (Y |X) =
logPNMT (Y |X)

|Y | (6)

3 Guiding NMT with Translation Pieces

This section describes our approach, which mainly
consists of two parts:

1. retrieving candidate translation pieces from a
parallel corpus for the new source sentence
that we want to translate, and then

2. using the collected translation pieces to guide
an existing NMT model while translating this
new sentence.

At training time, we first prepare the parallel cor-
pus that will form our database used in the retrieval
of the translation pieces. Conceivably, it could
be possible to use a different corpus for trans-
lation piece retrieval and NMT training, for ex-
ample when using a separate corpus for domain
adaptation, but for simplicity in this work we use
the same corpus that was used in NMT training.
As pre-processing, we use an off-the-shelf word
aligner to learn word alignments for the parallel
training corpus.

3.1 Retrieving Translation Pieces
At test time we are given an input sentence X .
For this X , we first use the off-the-shelf search
engine Lucene to search the word-aligned parallel
training corpus and retrieve M source sentences
{Xm : 1 ≤ m ≤M} that are similar to X . Y m

indicates the target sentence that corresponds to
source sentence Xm and Am is word alignments
between Xm and Y m.

For each retrieved source sentence Xm, we
compute its edit distance with X as d (X,Xm)
using dynamic programming. We record the
unedited words in Xm as Wm, and also note the
words in the target sentence Y m that correspond
to source words in Wm, which we can presume
are words that will be more likely to appear in
the translated sentence for X . According to Algo-
rithm 1, we collect n-grams (up to 4-grams) from

n-grams GmX
Vorschriften für die Eignung Yes
die Eignung von Yes
von Um@@ schlags@@ anlagen No
Um@@ schlags@@ anlagen No

Table 1: Examples of the collected translation pieces.

the retrieved target sentence Y m as possible trans-
lation pieces GmX for X , using word-level align-
ments to select n-grams that are related to X and
discard n-grams that are not related to X . The fi-
nal translation piecesGX collected forX are com-
puted as,3

GX =
M⋃

m=1

GmX (7)

Table 1 shows a few n-gram examples con-
tained in the retrieved target sentence in Figure 1
and whether they are included in GmX or not. Be-
cause the retrieved source sentence in Figure 1 is
highly similar with the input sentence, the transla-
tion pieces collected from its target side are highly
likely to be correct translation pieces of the input
sentence. However, when a retrieved source sen-
tence is not very similar with the input sentence
(e.g. only one or two words match), the transla-
tion pieces collected from its target side will be
less likely to be correct translation pieces for the
input sentence.

We compute a score for each u ∈ GX to mea-
sure how likely it is a correct translation piece for
X based on sentence similarity between the re-
trieved source sentences and the input sentence as
following,

S

(
u,X,

M⋃

m=1

{(Xm, GmX)}
)

= max
1≤m≤M∧u∈Gm

X

simi (X,Xm)

(8)

where simi (X,Xm) is the sentence similarity
computed as following (Gu et al., 2017),

simi (X,Xm) = 1− d (X,Xm)

max (|X| , |Xm|) (9)

3Note that the extracted translation pieces are target
phrases, but the target words contained in one extracted trans-
lation piece may be aligned to discontiguous source words,
which is different from how phrase-based translation extracts
phrase-based translation rules.
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Algorithm 1 Collecting Translation Pieces

Require: X = xL1 , Xm = kL
′

1 , Y m = vL
′′

1 , Am,
Wm

Ensure: GmX
GmX = ∅
for i = 1 to L′′ do

for j = i to L′′ do
if j − i = 4 then

break
if ∃p : (p, j) ∈ Am ∧ p /∈ Wm then

break
add vji into GmX

𝑦1, . . . , 𝑦𝑡−1

𝑣𝑁

𝑣1

𝑣2

𝑣3

...

Output layer of NMT
Matched translation pieces

𝑦𝑡−1, 𝑣3

𝑦𝑡−2, 𝑦𝑡−1, 𝑣3

𝑣2

𝑣3

RewardPredict the next word

Target vocabulary

Figure 2: A simple demonstration of adding rewards
for matched translation pieces into the NMT output
layer.

3.2 Guiding NMT with Retrieved Translation
Pieces

In the next phase, we use our NMT system to
translate the input sentence. Inspired by Stahlberg
et al. (2017) which rewards n-grams from syn-
tactic translation lattices during NMT decoding,
we add an additional reward for n-grams that oc-
cur in the collected translation pieces. That is, as
shown in Figure 2, at each time step t, we up-
date the probabilities over the output vocabulary
and increase the probabilities of those that result
in matched n-grams according to

logSNMT updated

(
yt|yt−11 , X

)

= logPNMT

(
yt|yt−11 , X

)
+

λ
4∑

n=1

δ

(
ytt−n+1, X,

M⋃

m=1

{(Xm, GmX)}
)
,

(10)

where λ can be tuned on the development set and
δ (·) is computed as Equation 8 if ytt−n+1 ∈ GX ,
otherwise δ (·) = 0.

To implement our method, we use a dictionary

Algorithm 2 Guiding NMT by Translation Pieces

Require: Output layer logPNMT

(
yt|yt−11 , X

)
,

LX , DX
Ensure: Updated output layer

for u in LX do
logPNMT

(
u|yt−11 , X

)
+ = λDX (u)

for i = 1 to 3 do
if t− i < 1 then

break
if yt−1t−i , u /∈ DX then

break
logPNMT

(
u|yt−11 , X

)
+=λDX

(
yt−1t−i , u

)

DX to store translation piecesGX and their scores
for each input sentence X . At each time step t, we
update the output layer probabilities by checking
DX . However, it is inefficient to traverse all target
words in the vocabulary and check whether they
belong to GX or not, because the vocabulary size
is large. Instead, we only traverse target words that
belong toGX and update the corresponding output
probabilities as shown in Algorithm 2. Here, LX
is a list that stores 1-grams contained in GX .4

As we can see, our method only up-weights
NMT outputs that match the retrieved translation
pieces in the NMT output layer. In contrast, Li
et al. (2016) and Farajian et al. (2017) use the
retrieved sentence pairs to run additional train-
ing iterations and fine tune the NMT parameters
for each input sentence; Gu et al. (2017) runs the
NMT model for each retrieved sentence pair to ob-
tain the NMT encoding and decoding information
of the retrieved sentences as key-value memory to
guide NMT for translating the new input sentence.
Compared to their methods, our method adds little
computational/memory cost and is simple to im-
plement.

4 Experiment

4.1 Settings

Following Gu et al. (2017), we use version 3.0 of
the JRC-Acquis corpus for our translation experi-
ments. The JRC-Acquis corpus contains the total
body of European Union (EU) law applicable in
the EU Member States. It can be used as a narrow
domain to test the effectiveness of our proposed
method. We did translation experiments on three

4Note that our method does not introduce new states dur-
ing decoding, because the output layer probabilities are sim-
ply updated based on history words and the next word.
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en-de en-fr en-es
BLEU METEOR BLEU METEOR BLEU METEOR

dev NMT 44.08 36.69 57.26 43.51 55.76 42.53
Ours 50.81 39.50 62.60 45.83 60.51 44.58

test NMT 43.76 36.57 57.67 43.66 55.78 42.55
Ours 50.15 39.18 63.27 46.24 60.54 44.64

Table 2: Translation results.

en-de en-fr en-es
TRAIN 674K 665K 663K
DEV 1,636 1,733 1,662
TEST 1,689 1,710 1,696
Average Length 31 29 29

Table 3: Data sets. The last line is the average length
of English sentences.

directions: English-to-German (en-de), English-
to-French (en-fr) and English-to-Spanish (en-es).

We cleaned the data by removing repeated sen-
tences and used the train-truecaser.perl
script from Moses (Koehn et al., 2007) to truecase
the corpus. Then we selected 2000 sentence pairs
as development and test sets, respectively. The rest
was used as the training set. We removed sen-
tences longer than 80 and 100 from the training
and development/test sets respectively. The final
numbers of sentence pairs contained in the train-
ing, development and test sets are shown in Ta-
ble 3.5 We applied byte pair encoding (Sennrich
et al., 2016b) and set the vocabulary size to be
20K.

For translation piece collection, we use
GIZA++ (Och and Ney, 2003) and the
grow-diag-final-and heuristic (Koehn
et al., 2003) to obtain symmetric word alignments
for the training set.

We trained an attentional NMT model as our
baseline system. The settings for NMT are shown
in Table 4. We also compared our method with the
search engine guided NMT model (SGNMT, Gu
et al. (2017)) in Section 4.5.

Word embedding 512
GRU dimension 1024
Optimizer adam
Initial learning rate 0.0001
Beam size 5

Table 4: NMT settings.

5We put the datasets used in our experiments on Github
https://github.com/jingyiz/Data-sampled-preprocessed

en-de en-fr en-es
dev NMT 1.000 0.990 0.997

Ours 1.005 0.991 1.001
test NMT 0.995 0.990 0.990

Ours 1.004 0.989 0.993

Table 5: Ratio of translation length to reference length.

For each input sentence, we retrieved 100 sen-
tence pairs from the training set using Lucene as
our preliminary setting. We analyze the influence
of the retrieval size in Section 4.4. The weights of
translation pieces used in Equation 10 are tuned on
the development set for different language pairs,
resulting in weights of 1.5 for en-de and en-fr, and
a weight of 1 for en-es.

4.2 Results
Table 2 shows the main experimental results. We
can see that our method outperformed the base-
line NMT system up to 6 BLEU points. As large
BLEU gains in neural MT can also often be at-
tributed to changes in output length, we examined
the length (Table 5) and found that it did not influ-
ence the translation length significantly.

In addition, it is of interest whether how well the
retrieved sentences match the input influences the
search results. We measure the similarity between
a test sentence X and the training corpus Dtrain

by computing the sentence similarities between X
and the retrieved source sentences as

simi (X,Dtrain) = max
1≤m≤M

simi (X,Xm) .

(11)
The similarity between the test set Dtest and the
training corpus Dtrain is measured as,

simi (Dtest, Dtrain) =

∑
X∈Dtest

simi (X,Dtrain)

|Dtest|
(12)

Our analysis demonstrated that, expectedly, the
performance of our method is highly influenced by
the similarity between the test set and the training
set. We divided sentences in the test set into two

1329



whole half-H half-L
en-de 0.56 0.80 0.32
en-fr 0.57 0.81 0.33
en-es 0.57 0.81 0.32

Table 6: Similarities between the training set and the
whole/divided test sets.

whole half-H half-L
en-de NMT 43.76 60.93 32.25

Ours 50.15 73.26 34.28
en-fr NMT 57.67 72.64 47.38

Ours 63.27 82.76 49.81
en-es NMT 55.78 69.32 46.26

Ours 60.54 78.37 47.93

Table 7: Translation results (BLEU) for the
whole/divided test sets.

parts: half has higher similarities with the train-
ing corpus (half-H) and half has lower similarities
with the training corpus (half-L). Table 6 shows
the similarity between the training corpus and the
whole/divided test sets. Table 7 shows translation
results for the whole/divided test sets. As we can
see, NMT generally achieved better BLEU scores
for half-H and our method improved BLEU scores
for half-H much more significantly than for half-
L, which shows our method can be quite useful
for narrow domains where similar sentences can
be found.

We also tried our method on WMT 2017
English-to-German News translation task. How-
ever, we did not achieve significant improvements
over the baseline attentional NMT model, likely
because the test set and the training set for the
WMT task have a relatively low similarity as
shown in Table 8 and hence few useful transla-
tion pieces can be retrieved for our method. In
contrast, the JRC-Acquis corpus provides test sen-
tences that have much higher similarities with the
training set, i.e., much more and longer translation
pieces exist.

To demonstrate how the retrieved translation
pieces help NMT to generate appropriate outputs,
Figure 3 shows an input sentence with reference,
the retrieved sentence pair with the highest sen-
tence similarity and outputs by different systems
for this input sentence with detailed scores: log
NMT probabilities for each target word in T1 and
T2; scores for matched translation pieces con-
tained in T1 and T2. As we can see, NMT as-

WMT JRC-Acquis
Similarity Sent Percent Sent Percent
[0, 0.1) 0 0% 4 0.2%
[0.1, 0.2) 415 13.8% 141 8.3%
[0.2, 0.3) 1399 46.5% 238 14.0%
[0.3, 0.4) 740 24.6% 194 11.4%
[0.4, 0.5) 281 9.3% 154 9.1%
[0.5, 0.6) 113 3.7% 156 9.2%
[0.6, 0.7) 29 0.9% 157 9.2%
[0.7, 0.8) 10 0.3% 156 9.2%
[0.8, 0.9) 10 0.3% 252 14.9%
[0.9, 1) 0 0% 237 14.0%
1 7 0.2% 0 0%

Table 8: Statistics for similarities between each test
sentence and the training set as computed by Equa-
tion 11 for the WMT 2017 en-de task (3004 sentences)
and our JRC-Acquis en-de task (1689 sentences).

en-de en-fr en-es
dev NMT 44.08 57.26 55.76

Ours 50.81 62.60 60.51
1/0 reward 47.70 61.15 58.92

test NMT 43.76 57.67 55.78
Ours 50.15 63.27 60.54
1/0 reward 47.13 62.14 58.66

Table 9: Translation results (BLEU) of 1/0 reward.

signs higher probabilities to the incorrect transla-
tion T1, even though the retrieved sentence pair
whose source side is very similar with the input
sentence was used for NMT training.

However, T2 contains more and longer trans-
lation pieces with higher scores. The five trans-
lation pieces contained only in T2 are collected
from the retrieved sentence pair shown in Figure 3,
which has high sentence similarity with the input
sentence. The three translation pieces contained
only in T1 are also translation pieces collected for
the input sentence, but have lower scores, because
they are collected from sentence pairs with lower
similarities with the input sentence. This shows
that computing scores for translation pieces based
on sentence similarities is important for the perfor-
mance of our method. If we assign score 1 to all
translation pieces contained in GX , i.e., use 1/0
reward for translation pieces and non-translation
pieces, then the performance of our method de-
creased significantly as shown in Table 9, but still
outperformed the NMT baseline significantly.
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T1 (NMT)

Reference
Source

T2 (Ours)

operationalrelation theto suitabilityinrequirements of bulk carriers

relation thetoinrequirements suitability of terminals

Vorschriften die betriebliche Eignung Massen@@von gut@@ schiffenfür

Vorschriften diefür Eignung von Um@@ schlags@@ anlagen

Vorschriften
-2.71

die
-0.10

betriebliche
-0.91

Eignung
-0.13

Massen@@
-0.33

von
-0.12

gut@@
-0.12

schiffen
-0.69

für
-0.72

Anforderungen
-0.81

die
-0.02

betriebliche
-0.69

Eignung
-0.13

Massen@@
-0.33

von
-0.12

gut@@
-0.13

schiffen
-0.71

an
-0.34

</s>
-0.01

</s>
-0.02

0.70.7 0.17 0.70.210.16 0.35
0.7

0.350.35
0.21 0.35

0.35
0.35
0.35

0.35
0.35

0.350.350.35

0.35
0.35

0.7 0.7

0.7

0.70.170.70.7
0.7

0.7
0.7

0.35

0.35

0.35

0.35

Our scores
NMT scores

Our scores
NMT scores

Reference
Source

Translation

Retrieved

Green

Yellow

Figure 3: Translation examples. Red scores are log NMT probabilities. Green, yellow and blue scores are scores
of matched translation pieces contained only in T1, contained only in T2, contained in both T1 and T2, respectively.

γ 0 1 2 5 10 20 50 100
en-de NMT 5834 3193 1988 1196 717 370 157 75

Ours 5843 5433 3153 1690 933 458 193 86
Ratio (Ours/NMT) 1.00 1.70 1.58 1.41 1.30 1.23 1.22 1.14

en-fr NMT 6983 3743 2637 1563 812 493 210 118
Ours 7058 5443 3584 1919 968 581 214 134
Ratio (Ours/NMT) 1.01 1.45 1.35 1.22 1.19 1.17 1.01 1.13

en-es NMT 6500 3430 2292 1346 772 437 182 95
Ours 6516 4589 2970 1652 895 500 196 97
Ratio (Ours/NMT) 1.00 1.33 1.29 1.22 1.15 1.14 1.07 1.02

Table 10: Countγ

4.3 Infrequent n-grams

The basic idea of our method is rewarding n-
grams that occur in the training set during NMT
decoding. We found our method is especially use-
ful to help the translation for infrequent n-grams.
First, we count how many times a target n-gram u
occurs in the training set Dtrain as,

Occur (u) = |{Y : 〈X,Y 〉 ∈ Dtrain ∧ u ∈ uniq (Y )}|
(13)

where uniq (Y ) is the set of uniq n-grams (up to
4-grams) contained in Y .

Given system outputs
{
Zk : 1 ≤ k ≤ K

}
for

the test set
{
Xk : 1 ≤ k ≤ K

}
with reference{

Y k : 1 ≤ k ≤ K
}

, we count the number of cor-

rectly translated n-grams that occur γ times in the
training set as,

Countγ =
K∑

k=1

∣∣∣ψ
(
γ, Zk, Y k

)∣∣∣ (14)

where

ψ
(
γ, Zk, Y k

)
=

{
u : u ∈

(
uniq

(
Zk
)
∩ uniq

(
Y k
))
∧Occur (u) = γ

}

(15)

Table 10 shows Countγ for different system
outputs. As we can see, our method helped lit-
tle for the translation of n-grams that do not occur
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en-de en-fr en-es
Base NMT decoding 0.215 0.224 0.227
Search engine retrieval 0.016 0.017 0.016
TP collection 0.521 0.522 0.520
Our NMT decoding 0.306 0.287 0.289

Table 11: Translation time (seconds).

0

0.15

0.3

0.45

0.6

1 2 5 10 20 50 100

Figure 4: Translation piece collection time (seconds)
with different search engine retrieval sizes.

in the training set, which is reasonable because we
only reward n-grams that occur in the training set.
However, our method helped significantly for the
translation of n-grams that do occur in the train-
ing set but are infrequent (occur less than 5 times).
As the frequency of n-grams increases, the im-
provement caused by our method decreased. We
analyze that the reason why our method is espe-
cially helpful for infrequent n-grams is that NMT
is trained on the whole training corpus for max-
imum likelihood and tends to generate more fre-
quent n-grams while our method computes scores
for the collected translation pieces based on sen-
tence similarities and does not prefer more fre-
quent n-grams.

4.4 Computational Considerations

Our method only collects translation pieces to help
NMT for translating a new sentence and does not
influence the training process of NMT. Therefore,
our method does not increase the NMT training
time. Table 11 shows the average time needed for
translating one input sentence in the development
set in our experiments. The search engine retrieval
and translation piece (TP) collection time is com-
puted on a 3.47GHz Intel Xeon X5690 machine
using one CPU. The NMT decoding time is com-
puted using one GPU GeForce GTX 1080.

As we can see, the search engine retrieval time
is negligible and the increase of NMT decoding
time caused by our method is also small. However,

0.2

0.22

0.24

0.26

0.28

0.3

0 1 2 5 10 20 50 100

Figure 5: NMT decoding time (seconds) with different
search engine retrieval sizes.

61

61.5

62

62.5

63

1 2 5 10 20 50 100

Figure 6: Translation results (BLEU) with different
search engine retrieval sizes.

collecting translation pieces needed considerable
time, although our implementation was in Python
and could potentially be significantly faster in a
more efficient programming language. The trans-
lation piece collection step mainly consists of two
parts: computing the edit distances between the
input sentence and the retrieved source sentences
using dynamic programming with time complex-
ity O

(
n2
)
; collecting translation pieces using Al-

gorithm 1 with time complexity O (4n).

We changed the size of sentence pairs re-
trieved by the search engine and analyze its in-
fluence on translation performance and time. Fig-
ure 4, 5 and 6 show the translation piece collec-
tion time, the NMT decoding time and transla-
tion BLEU scores with different search engine re-
trieval sizes for the en-fr task. As we can see,
as the number of retrieved sentences decreased,
the time needed by translation piece collection de-
creased significantly, the translation performance
decreased much less significantly and the NMT
decoding time is further reduced. In our experi-
ments, 10 is a good setting for the retrieval size,
which gave significant BLEU score improvements
and caused little increase in the total translation
time compared to the NMT baseline.
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en-de en-fr en-es
dev NMTreported 44.94 58.95 50.54

SGNMTreported 49.26 64.16 57.62
NMT 45.18 59.08 50.71
Ours 50.61 65.03 57.49

test NMTreported 43.98 59.42 50.48
SGNMTreported 48.80 64.60 57.27
NMT 44.21 59.43 50.61
Ours 50.36 65.69 57.11

Table 12: Comparison with SGNMT.

4.5 Comparison with SGNMT

We compared our method with the search en-
gine guided NMT (SGNMT) model (Gu et al.,
2017). We got their preprocessed datasets and
tested our method on their datasets, in order to
fairly compare our method with their reported
BLEU scores.6 Table 12 shows the results of their
method and our method with the same settings for
the baseline NMT system. As we can see, our
method generally outperformed their method on
the three translation tasks.

Considering the computational complexity,
their method also performs search engine retrieval
for each input sentence and computes the edit dis-
tance between the input sentence and the retrieved
source sentences as our method. In addition, their
method runs the NMT model for each retrieved
sentence pair to obtain the NMT encoding and de-
coding information of the retrieved sentences as
key-value memory to guide the NMT model for
translating the real input sentence, which changes
the NMT model structure and increases both the
training-time and test-time computational cost.
Specifically, at test time, running the NMT model
for one retrieved sentence pair costs the same time
as translating the retrieved source sentence with
beam size 1. Therefore, as the number of the re-
trieved sentence pairs increases to the beam size
of the baseline NMT model, their method doubles
the translation time.

5 Conclusion

This paper presents a simple and effective method
that retrieves translation pieces to guide NMT for
narrow domains. We first exploit a search engine
to retrieve sentence pairs whose source sides are
similar with the input sentence, from which we

6Only BLEU scores are reported in their paper.

collect and weight translation pieces for the in-
put sentence based on word-level alignments and
sentence similarities. Then we use an existing
NMT model to translate this input sentence and
give an additional bonus to outputs that contain
the collected translation pieces. We show our
method improved NMT translation results up to
6 BLEU points on three narrow domain transla-
tion tasks, caused little increase in the translation
time, and compared favorably to another alterna-
tive retrieval-based method with respect to accu-
racy, speed, and simplicity of implementation.
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Abstract

Homographs, words with different meanings
but the same surface form, have long caused
difficulty for machine translation systems, as
it is difficult to select the correct translation
based on the context. However, with the ad-
vent of neural machine translation (NMT) sys-
tems, which can theoretically take into ac-
count global sentential context, one may hy-
pothesize that this problem has been allevi-
ated. In this paper, we first provide empir-
ical evidence that existing NMT systems in
fact still have significant problems in properly
translating ambiguous words. We then pro-
ceed to describe methods, inspired by the word
sense disambiguation literature, that model the
context of the input word with context-aware
word embeddings that help to differentiate
the word sense before feeding it into the en-
coder. Experiments on three language pairs
demonstrate that such models improve the per-
formance of NMT systems both in terms of
BLEU score and in the accuracy of translating
homographs.1

1 Introduction

Neural machine translation (NMT; Sutskever et al.
(2014); Bahdanau et al. (2015), §2), a method
for MT that performs translation in an end-to-
end fashion using neural networks, is quickly be-
coming the de-facto standard in MT applications
due to its impressive empirical results. One of
the drivers behind these results is the ability of
NMT to capture long-distance context using re-
current neural networks in both the encoder, which
takes the input and turns it into a continuous-space
representation, and the decoder, which tracks the

∗∗Equal contribution.
††Now at Snap Inc.
‡‡Now at Google

1Code for our translation models is available at
https://goo.gl/oaiqoT

Source Charges against four other men were found not proven .
(accuse)Reference

(fee)Baseline

Source The couch takes up a lot of room .
Reference Le canapé prend beaucoup de place . (space)
Baseline Le canapé lit beaucoup de chambre . (bedroom)

(accuse)

Le canapé prend beaucoup de place . (space)Our Model

Our Model

Figure 1: Homographs where the baseline system
makes mistakes (red words) but our proposed system
incorporating a more direct representation of context
achieves the correct translation (blue words). Defini-
tions of corresponding blue and red words are in paren-
thesis.

target-sentence state, deciding which word to out-
put next. As a result of this ability to capture
long-distance dependencies, NMT has achieved
great improvements in a number of areas that
have bedeviled traditional methods such as phrase-
based MT (PBMT; Koehn et al. (2003)), including
agreement and long-distance syntactic dependen-
cies (Neubig et al., 2015; Bentivogli et al., 2016).

One other phenomenon that was poorly handled
by PBMT was homographs – words that have the
same surface form but multiple senses. As a result,
PBMT systems required specific separate mod-
ules to incorporate long-term context, performing
word-sense (Carpuat and Wu, 2007b; Pu et al.,
2017) or phrase-sense (Carpuat and Wu, 2007a)
disambiguation to improve their handling of these
phenomena. Thus, we may wonder: do NMT sys-
tems suffer from the same problems when trans-
lating homographs? Or are the recurrent nets ap-
plied in the encoding step, and the strong language
model in the decoding step enough to alleviate all
problems of word sense ambiguity?

In §3 we first attempt to answer this question
quantitatively by examining the word translation
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accuracy of a baseline NMT system as a func-
tion of the number of senses that each word has.
Results demonstrate that standard NMT systems
make a significant number of errors on homo-
graphs, a few of which are shown in Fig. 1.

With this result in hand, we propose a method
for more directly capturing contextual information
that may help disambiguate difficult-to-translate
homographs. Specifically, we learn from neu-
ral models for word sense disambiguation (Kalch-
brenner et al., 2014; Iyyer et al., 2015; Kågebäck
and Salomonsson, 2016; Yuan et al., 2016; Šuster
et al., 2016), examining three methods inspired by
this literature (§4). In order to incorporate this in-
formation into NMT, we examine two methods:
gating the word-embeddings in the model (simi-
larly to Choi et al. (2017)), and concatenating the
context-aware representation to the word embed-
ding (§5).

To evaluate the effectiveness of our method, we
compare our context-aware models with a strong
baseline (Luong et al., 2015) on the English-
German, English-French, and English-Chinese
WMT dataset. We show that our proposed model
outperforms the baseline in the overall BLEU
score across three different language pairs. Quan-
titative analysis demonstrates that our model per-
forms better on translating homographs. Lastly,
we show sample translations of the baseline sys-
tem and our proposed model.

2 Neural Machine Translation

We follow the global-general-attention NMT ar-
chitecture with input-feeding proposed by Lu-
ong et al. (2015), which we will briefly sum-
marize here. The neural network models the
conditional distribution over translations Y =
(y1, y2, . . . , ym) given a sentence in source lan-
guage X = (x1, x2, . . . xn) as P (Y |X). A NMT
system consists of an encoder that summarizes
the source sentence X as a vector representation
h, and a decoder that generates a target word at
each time step conditioned on both h and previous
words. The conditional distribution is optimized
with cross-entropy loss at each decoder output.

The encoder is usually a uni-directional or bi-
directional RNN that reads the input sentence
word by word. In the more standard bi-directional
case, before being read by the RNN unit, each
word in X is mapped to an embedding in continu-

ous vector space by a function fe.

fe(xt) = Me
> · 1(xt) (1)

Me ∈ R|Vs|×d is a matrix that maps a one-hot rep-
resentation of xt, 1(xt) to a d-dimensional vector
space, and Vs is the source vocabulary. We call the
word embedding computed this way Lookup em-
bedding. The word embeddings are then read by a
bi-directional RNN

−→
h t =

−−→
RNNe(

−→
h t−1, fe(xt)) (2)

←−
h t =

←−−
RNNe(

←−
h t+1, fe(xt)) (3)

After being read by both RNNs we can compute
the actual hidden state at step t, ht = [

−→
h t;
←−
h t],

and the encoder summarized representation h =

hn. The recurrent units
−−→
RNNe and

←−−
RNNe are usu-

ally either LSTMs (Hochreiter and Schmidhuber,
1997) or GRUs (Chung et al., 2014).

The decoder is a uni-directional RNN that de-
codes the tth target word conditioned on (1) previ-
ous decoder hidden state gt−1, (2) previous word
yt−1 , and (3) the weighted sum of encoder hidden
states at. The decoder maintains the tth hidden
state gt as follows,

gt =
−−→
RNNd(gt−1, fd(yt−1),at) (4)

Again,
−−→
RNNd is either LSTM or GRU, and fd is a

mapping function in target language space.
The general attention mechanism for comput-

ing the weighted encoder hidden states at first
computes the similarity between gt−1 and ht′ for
t′ = 1, 2, . . . , n.

score(gt−1,ht′) = gt−1W atth
>
t′ (5)

The similarities are then normalized through a
softmax layer , which results in the weights for
encoder hidden states.

αt,t′ =
exp(score(gt−1,ht′))∑n
k=1 exp(score(gt−1,hk))

(6)

We can then compute at as follows,

at =

n∑

k=1

αt,khk (7)

Finally, we compute the distribution over yt as,

ĝt = tanh(W 1[gt;at]) (8)

p(yt|y<t, X) = softmax(W 2ĝt) (9)
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Figure 2: Translation performance of words with dif-
ferent numbers of senses.

3 NMT’s Problems with Homographs

As described in Eqs. (2) and (3), NMT models en-
code the words using recurrent encoders, theoreti-
cally endowing them with the ability to handle ho-
mographs through global sentential context. How-
ever, despite the fact that they have this ability, our
qualitative observation of NMT results revealed
a significant number of ambiguous words being
translated incorrectly, casting doubt on whether
the standard NMT setup is able to appropriately
learn parameters that disambiguate these word
choices.

To demonstrate this more concretely, in Fig. 2
we show the translation accuracy of an NMT sys-
tem with respect to words of varying levels of
ambiguity. Specifically, we use the best baseline
NMT system to translate three different language
pairs from WMT test set (detailed in §6) and plot
the F1-score of word translations by the number of
senses that they have. The number of senses for a
word is acquired from the Cambridge English dic-
tionary,2 after excluding stop words.3

We evaluate the translation performance of
words in the source side by aligning them to
the target side using fast-align (Dyer et al.,
2013). The aligner outputs a set of target words
to which the source words aligns for both the ref-
erence translation and the model translations. F1
score is calculated between the two sets of words.

After acquiring the F1 score for each word, we
bucket the F1 scores by the number of senses, and
plot the average score of four consecutive buckets
as shown in Fig. 2. As we can see from the re-
sults, the F1 score for words decreases as the num-
ber of senses increases for three different language

2http://dictionary.cambridge.org/us/
dictionary/english/

3We use the stop word list from NLTK (Bird et al., 2009).

pairs. This demonstrates that the translation per-
formance of current NMT systems on words with
more senses is significantly decreased from that
for words with fewer senses. From this result, it
is evident that modern NMT architectures are not
enough to resolve the problem of homographs on
their own. The result corresponds to the findings
in prior work (Rios et al., 2017).

4 Neural Word Sense Disambiguation

Word sense disambiguation (WSD) is the task of
resolving the ambiguity of homographs (Ng and
Lee, 1996; Mihalcea and Faruque, 2004; Zhong
and Ng, 2010; Di Marco and Navigli, 2013; Chen
et al., 2014; Camacho-Collados et al., 2015), and
we hypothesize that by learning from these mod-
els we can improve the ability of the NMT model
to choose the correct translation for these ambigu-
ous words. Recent research tackles this problem
with neural models and has shown state-of-the art
results on WSD datasets (Kågebäck and Salomon-
sson, 2016; Yuan et al., 2016). In this section, we
will summarize three methods for WSD which we
will further utilize as three different context net-
works to improve NMT.

Neural bag-of-words (NBOW) Kalchbrenner
et al. (2014); Iyyer et al. (2015) have shown suc-
cess by representing full sentences with a context
vector, which is the average of the Lookup embed-
dings of the input sequence

ct =
1

n

n∑

k=1

M>
c 1(xk) (10)

This is a simple way to model sentences, but has
the potential to capture the global topic of the sen-
tence in a straightforward and coherent way. How-
ever, in this case, the context vector would be the
same for every word in the input sequence.

Bi-directional LSTM (BiLSTM) Kågebäck
and Salomonsson (2016) leveraged a bi-
directional LSTM that learns a context vector for
the target word in the input sequence and predicts
the word sense with a multi-layer perceptron.
Specifically, we can compute the context vector ct
for tth word similarly to bi-directional encoder as
follows,

−→c t =
−−→
RNNc(

−→c t−1, fc(xt)) (11)

←−c t =
←−−
RNNc(

←−c t+1, fc(xt)) (12)
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ct = [−→c t;←−c t] (13)

−−→
RNNc,

←−−
RNNc are forward and backward

LSTMs repectively, and fc(xt) = M>
c 1(xt) is a

function that maps a word to continous embedding
space.

Held-out LSTM (HoLSTM) Yuan et al. (2016)
trained a LSTM language model, which predicts
a held-out word given the surrounding context,
with a large amount of unlabeled text as training
data. Given the context vector from this language
model, they predict the word sense with a WSD
classifier. Specifically, we can compute the con-
text vector ct for tth word by first replacing tth
word with a special symbol (e.g. <$>). We then
feed the replaced sequence to a uni-directional
LSTM:

c̃i =
−−→
RNNc(c̃i−1, fc(xi)) (14)

Finally, we can get context vector for the tth word

ct = c̃n (15)

−−→
RNNc and fc are defined in BiLSTM paragraph,
and n is the length of the sequence. Despite the
fact that the context vector is always the last hid-
den state of the LSTM no matter which word we
are targeting, the input sequence read by the HoL-
STM is actually different every time.

5 Adding Context to NMT

Now that we have several methods to incorporate
global context regarding a single word, it is neces-
sary to incorporate this context with NMT. Specif-
ically, we propose two methods to either Gate or
Concatenate a context vector ct with the Lookup
embedding M>

e · 1(xt) to form a context-aware
word embedding before feeding it into the encoder
as shown in Fig. 3. The detail of these methods is
described below.

Gate Inspired by Choi et al. (2017), as our first
method for integration of context-aware word em-
beddings, we use a gating function as follows:

f ′e(xt) = fe(xt)� σ(ct) (16)

= M>
e 1(xt)� σ(ct) (17)

The symbol � represents element-wise multipli-
cation, and σ is element-wise sigmoid function.

y1y0

Context Network

x1 x2x0

c0 c1 c2

⌦

x1

⌦ ⌦

x2x0

Figure 3: Illustration of our proposed model. The con-
text network is a differentiable network that computes
context vector ct for word xt taking the whole sequence
as input. ⊗ represents the operation that combines orig-
inal word embedding xt with corresponding context
vector ct to form context-aware word embeddings.

Choi et al. (2017) use this method in concert with
averaged embeddings from words in source lan-
guage like the NBOW model above, which nat-
urally uses the same context vectors for all time
steps. In this paper, we additionally test this func-
tion with context vectors calculated using the BiL-
STM and HoLSTM .

Concatenate We also propose another way for
incorporating context: by concatenating the con-
text vector with the word embeddings. This is ex-
pressed as below:

f ′e(xt) = W 3[fe(xt); ct] (18)

= W 3[M
>
e 1(xt); ct] (19)

W 3 is used to project the concatenated vector
back to the original d-dimensional space.

For each method can compute context vector ct
with either the NBOW, BiLSTM, or HoLSTM de-
scribed in §4. We share the parameters in fe with
fc (i.e. M e = M c) since the vocabulary space is
the same for context network and encoder. As a
result, our context network only slightly increases
the number of model parameters. Details about the
number of parameters of each model we use in the
experiments are shown in Table 1.

6 Experiments

We evaluate our model on three different language
pairs: English-French (WMT’14), and English-
German (WMT’15), English-Chinese (WMT’17)
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Context Integration uni/bi #layers #params Ppl WMT14 WMT15
None - → 2 85M 7.12 20.49 22.95
None - ↔ 2 83M 7.20 21.05 23.83
None - ↔ 3 86M 7.50 20.86 23.14

NBOW Concat → 2 85M 7.23 20.44 22.83
NBOW Concat ↔ 2 83M 7.28 20.76 23.61

HoLSTM Concat → 2 87M 7.19 20.67 23.05
HoLSTM Concat ↔ 2 86M 7.04 21.15 23.53
BiLSTM Concat → 2 87M 6.88 21.80 24.52
BiLSTM Concat ↔ 2 85M 6.87 21.33 24.37
NBOW Gating → 2 85M 7.14 20.20 22.94
NBOW Gating ↔ 2 83M 6.92 21.16 23.52

BiLSTM Gating → 2 87M 7.07 20.94 23.58
BiLSTM Gating ↔ 2 85M 7.11 21.33 24.05

Table 1: WMT’14, WMT’15 English-German results - We show perplexities (Ppl) on development set and
tokenized BLEU on WMT’14 and WMT’15 test set of various NMT systems. We also show different settings
for different systems. → represents uni-directional, and ↔ represents bi-directional. We also highlight the best
baseline model and the best proposed model in bold. The best baseline model will be referred as base or baseline
and the best proposed model will referred to as best for further experiments.

with English as the source side. For German and
French, we use a combination of Europarl v7,
Common Crawl, and News Commentary as train-
ing set. For development set, newstest2013 is used
for German and newstest2012 is used for French.
For Chinese, we use a combination of News Com-
mentary v12 and the CWMT Corpus as the train-
ing set and held out 2357 sentences as the de-
velopment set. Translation performances are re-
ported in case-sensitive BLEU on newstest2014
(2737 sentences), newstest2015 (2169 sentences)
for German, newstest2013 (3000 sentences), new-
stest2014 (3003 sentences) for French, and news-
dev2017 (2002 sentences) for Chinese.4 Details
about tokenization are as follows. For German, we
use the tokenized dataset from Luong et al. (2015);
for French, we used the moses (Koehn et al., 2007)
tokenization script with the “-a” flag; for Chinese,
we split sequences of Chinese characters, but keep
sequences of non-Chinese characters as they are,
using the script from IWSLT Evaluation 2015.5

We compare our context-aware NMT systems
with strong baseline models on each dataset.

4We use the development set as testing data because the
official test set hasn’t been released.

5https://sites.google.com/site/
iwsltevaluation2015/mt-track

System BLEU
en→ de WMT’14 WMT’15
baseline 21.05 23.83

best 21.80 24.52
en→ fr WMT’13 WMT’14
baseline 28.21 31.55

best 28.77 32.39
en→ zh WMT’17
baseline 24.07

best 24.81

Table 2: Results on three different language pairs
- The best proposed models (BiLSTM+Concat+uni)
are significantly better (p-value < 0.001) than base-
line models using paired bootstrap resampling (Koehn,
2004).

6.1 Training Details

We limit our vocabularies to be the top 50K most
frequent words for both source and target lan-
guage. Words not in these shortlisted vocabularies
are converted into an 〈unk〉 token.

When training our NMT systems, following
Bahdanau et al. (2015), we filter out sentence pairs
whose lengths exceed 50 words and shuffle mini-
batches as we proceed. We train our model with
the following settings using SGD as our optimiza-
tion method. (1) We start with a learning rate of
1 and we begin to halve the learning rate every
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epoch once it overfits. 6 (2) We train until the
model converges. (i.e. the difference between the
perplexity for the current epoch and the previous
epoch is less than 0.01) (3) We batched the in-
stances with the same length and our maximum
mini-batch size is 256, and (4) the normalized gra-
dient is rescaled whenever its norm exceeds 5. (6)
Dropout is applied between vertical RNN stacks
with probability 0.3. Additionally, the context net-
work is trained jointly with the encoder-decoder
architecture. Our model is built upon OpenNMT
(Klein et al., 2017) with the default settings unless
otherwise noted.

6.2 Experimental Results

In this section, we compare our proposed context-
aware NMT models with baseline models on
English-German dataset. Our baseline models are
encoder-decoder models using global-general at-
tention and input feeding on the decoder side as
described in §2, varying the settings on the en-
coder side. Our proposed model builds upon base-
line models by concatenating or gating different
types of context vectors. We use LSTM for en-
coder, decoder, and context network. The decoder
is the same across baseline models and proposed
models, having 500 hidden units. During testing,
we use beam search with a beam size of 5. The
dimension for input word embedding d is set to
500 across encoder, decoder, and context network.
Settings for three different baselines are listed be-
low.

Baseline 1: An uni-directional LSTM with 500
hidden units and 2 layers of stacking LSTM.

Baseline 2: A bi-directional LSTM with 250 hid-
den units and 2 layers of stacking LSTM.
Each state is summarized by concatenating
the hidden states of forward and backward
encoder into 500 hidden units.

Baseline 3: A bi-directional LSTM with 250 hid-
den units and 3 layers of stacking LSTM.
This can be compared with the proposed
method, which adds an extra layer of com-
putation before the word embeddings, essen-
tially adding an extra layer.

The context network uses the below settings.

6We define overfitting to be when perplexity on the dev
set of the current epoch is worse than the previous epoch.

NBOW: Average word embedding of the input
sequence.

BiLSTM: A single-layer bi-directional LSTM
with 250 hidden units. The context vector
is represented by concatenating the hidden
states of forward and backward LSTM into
a 500 dimensional vector.

HoLSTM: A single-layer uni-directional LSTM
with 500 hidden units.

The results are shown in Table 1. The first
thing we observe is that the best context-aware
model (results in bold in the table) achieved im-
provements of around 0.7 BLEU on both WMT14
and WMT15 over the respective baseline methods
with 2 layers. This is in contrast to simply using
a 3-layer network, which actually degrades per-
formance, perhaps due to the vanishing gradients
problem it increases the difficulty in learning.

Next, comparing different methods for incor-
porating context, we can see that BiLSTM per-
forms best across all settings. HoLSTM performs
slightly better than NBOW, and NBOW obviously
suffers from having the same context vector for ev-
ery word in the input sequence failing to outper-
form the corresponding baselines. Comparing the
two integration methods that incorporate context
into word embeddings. Both methods improve
over the baseline with BiLSTM as the context net-
work. Concatenating the context vector and the
word embedding performed better than gating. Fi-
nally, in contrast to the baseline, it is not obvious
whether using uni-directional or bi-directional as
the encoder is better for our proposed models, par-
ticularly when BiLSTM is used for calculating the
context network. This is likely due to the fact that
bi-directional information is already captured by
the context network, and may not be necessary in
the encoder itself.

We further compared the two systems on two
different languages, French and Chinese. We
achieved 0.5-0.8 BLEU improvement, showing
our proposed models are stable and consistent
across different language pairs. The results are
shown in Table 2.

To show that our 3-layer models are properly
trained, we ran a 3-layer bidirectional encoder
with residual networks on En-Fr and got 27.45 for
WMT13 and 30.60 for WMT14, which is similarly
lower than the two layer result. It should be noted
that previous work such as Britz et al. (2017) have
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language System
Homograph All Words

F1 Precision Recall F1 Precision Recall

en→ de
baseline 0.401 0.422 0.382 0.547 0.569 0.526

best 0.426 (+0.025) 0.449 (+0.027) 0.405 (+0.023) 0.553 (+0.006) 0.576 (+0.007) 0.532 (+0.006)

en→ fr
baseline 0.467 0.484 0.451 0.605 0.623 0.587

best 0.480 (+0.013) 0.496 (+0.012) 0.465 (+0.014) 0.613 (+0.008) 0.630 (+0.007) 0.596 (+0.009)

en→ zh
baseline 0.578 0.587 0.570 0.573 0.605 0.544

best 0.590 (+0.012) 0.599 (+0.012) 0.581 (+0.011) 0.581 (+0.008) 0.612 (+0.007) 0.552 (+0.008)

Table 3: Translation results for homographs and all words in our NMT vocabulary. We compare scores for baseline
and our best proposed model on three different language pairs. Improvements are in italic. We performed bootstrap
resampling for 1000 times: our best model improved more on homographs than all words in terms of either f1,
precision, or recall with p < 0.05, indicating statistical significance across all measures.

also noted that the gains for encoders beyond two
layers is minimal.

6.3 Targeted Analysis

In order to examine whether our proposed model
can better translate words with multiple senses,
we evaluate our context-aware model on a list of
homographs extracted from Wikipedia7 compared
to the baseline model on three different language
pairs. For the baseline model, we choose the best-
performing model, as described in §6.2.

To do so, we first acquire the translation
of homographs in the source language using
fast-align (Dyer et al., 2013). We run
fast-align on all the parallel corpora includ-
ing training data and testing data8 because the un-
supervised nature of the algorithm requires it to
have a large amount of training data to obtain ac-
curate alignments. The settings follow the de-
fault command on fast-align github page including
heuristics combining forward and backward align-
ment. Since there might be multiple aligned words
in the target language given a word in source lan-
guage, we treat a match between the aligned trans-
lation of a targeted word of the reference and
the translation of a given model as true positives
and use F1, precision, and recall as our metrics,
and take the micro-average across all the sentence
pairs. 9 We calculated the scores for the 50000
words/characters from our source vocabulary us-
ing only English words. The results are shown in
Table 3. The table shows two interesting results:
(1) The score for the homographs is lower than the
score obtained from all the words in the vocabu-

7 https://en.wikipedia.org/wiki/List_
of_English_homographs

8Reference translation, and all the system generated trans-
lations.

9The link to the evaluation script –
https://goo.gl/oHYR8E

lary. This shows that words with more meanings
are harder to translate with Chinese as the only ex-
ception.10 (2) The improvement of our proposed
model over baseline model is larger on the ho-
mographs compared to all the words in vocabu-
lary. This shows that although our context-aware
model is better overall, the improvements are par-
ticularly focused on words with multiple senses,
which matches the intuition behind the design of
the model.

6.4 Qualitative Analysis

We show sample translations on English-Chinese
WMT’17 dataset in Table 4 with three kinds of ex-
amples. We highlighted the English homograph
in bold, correctly translated words in blue, and
wrongly translated words in red. (1) Target homo-
graphs are translated into the correct sense with
the help of context network. For the first sample
translation, “meets” is correctly translated to “会
见” by our model, and wrongly translated to “符
合” by baseline model. In fact, “会见” is closer
to the definition “come together intentionally” and
“符合” is closer to ”satisfy” in the English dic-
tionary. (2) Target homographs are translated into
different but similar senses for both models in the
forth example. Both models translate the word
“believed” to common translations “被认为” or
“相信”, but these meaning are both close to ref-
erence translation “据信”. (3) Target homograph
is translated into the wrong sense for the baseline
model, but is not translated in our model in the
fifth example.

10One potential explanation for Chinese is that because the
Chinese results are generated on the character level, the auto-
matic alignment process was less accurate.
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English-Chinese Translations
src Ugandan president meets Chinese FM , anticipates closer cooperation
ref 乌干达总统会会会见见见中国外长，期待增进合作(come together intentionally)
best 乌干达总统会会会见见见中国调频，预期更密切合作(come together intentionally)
base 乌干达总统符符符合合合 中国调频，预期更加合作(satisfy)
src Investigators are trying to establish whether Kermiche and Petitjean had accomplices in France and

whether they had links with Islamic State , which has claimed responsibility for the attack .
ref 调查人员正试图确确确定定定克尔米奇和帕迪让在法国是否有同谋，以及是否与伊斯兰国武装分子有联系，

伊斯兰国武装分子声称对此次袭击负责。(get proof of something)
best 调查人员正试图确确确定定定 Kermiche和Petitjean在法国是否有同谋，他们是否与伊斯兰国有联系，

声称对这次袭击负责。(get proof of something)
base 调查人员正在努力建建建立立立法国的同谋和他们是否与伊斯兰国有联系,该国声称对这次袭击负有责任。(to start)
src The decrease of transaction settlement fund balance in the securities market in July was smaller than that in June ,

while the net bank @-@ securities transfers stood at negative RMB 66.6 billion .
ref 7月证券市场交易结算资金余余余额额额减少额较6月大幅降低，银证转账变动净额为- 666亿元。(money left)
best 7月份证券市场交易结算资金余余余额额额的减少小于6月份，而银行证券转让净额为negative亿元。(money left)
base 七月证券市场交易结算基金平平平衡衡衡的减少比六月份小，而净银行证券转让则为负元。(equal weight or force)
src Initial reports suggest that the gunman may have shot a woman , believed to be his ex @-@ partner .
ref 据初步报告显示，开枪者可能击中一名妇女，据据据信信信是他的前搭档。(been accepted as truth)
best 初步的报道表明，枪手可能已经射杀了一个女人，被被被认认认为为为是他的前伙伴。(been known as)
base 最初的报道显示，枪手可能已经射杀了一名妇女，相相相信信信他是他的前伙伴。(accept as truth)
src When the game came to the last 3 ’ 49 ’ ’ , Nigeria closed to 79 @-@ 81 after Aminu added a layup .
ref 比赛还有3分49秒时，阿米努上篮得手后，尼日利亚将比分追追追成成成了79-81。(narrow)
best 当这场比赛到了最后三个“ 49 ”时，尼日利亚在Aminu增加了一个layup之后MISSING TRANSLATION。
base 当游戏到达最后3 “ 49 ”时，尼日利亚已经关关关闭闭闭了Aminu。(end)

Table 4: Sample translations - for each example, we show sentence in source language (src), the human translated
reference (ref), the translation generated by our best context-aware model (best), and the translation generated by
baseline model (base). We also highlight the word with multiple senses in source language in bold, the correspond-
ing correctly translated words in blue and wrongly translated words in red. The definitions of words in blue or red
are in parenthesis.

7 Related Work

Word sense disambiguation (WSD), the task of
determining the correct meaning or sense of a
word in context is a long standing task in NLP
(Yarowsky, 1995; Ng and Lee, 1996; Mihalcea
and Faruque, 2004; Navigli, 2009; Zhong and
Ng, 2010; Di Marco and Navigli, 2013; Chen
et al., 2014; Camacho-Collados et al., 2015).
Recent research on tackling WSD and captur-
ing multi-senses includes work leveraging LSTM
(Kågebäck and Salomonsson, 2016; Yuan et al.,
2016), which we extended as a context network
in our paper and predicting senses with word
embeddings that capture context. Šuster et al.
(2016); Kawakami and Dyer (2016) also showed
that bilingual data improves WSD. In contrast to
the standard WSD formulation, Vickrey et al.
(2005) reformulated the task of WSD for Statisti-
cal Machine Translation (SMT) as predicting pos-
sible target translations which directly improves
the accuracy of machine translation. Following
this reformulation, Chan et al. (2007); Carpuat
and Wu (2007a,b) integrated WSD systems into

phrase-based systems. Xiong and Zhang (2014)
breaks the process into two stages. First predicts
the sense of the ambiguous source word. The pre-
dicted word senses together with other context fea-
tures are then used to predict possible target trans-
lation. Within the framework of Neural MT, there
are works that has similar motivation to ours. Choi
et al. (2017) leverage the NBOW as context and
gate the word-embedding on both encoder and de-
coder side. However, their work does not distin-
guish context vectors for words in the same se-
quence, in contrast to the method in this paper,
and our results demonstrate that this is an impor-
tant feature of methods that handle homographs
in NMT. In addition, our quantitative analysis of
the problems that homographs pose to NMT and
evaluation of how context-aware models fix them
was not covered in this previous work. Rios et al.
(2017) tackled the problem by adding sense em-
bedding learned with additional corpus and eval-
uated the performance on the sentence level with
contrastive translation.
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8 Conclusion

Theoretically, NMT systems should be able to
handle homographs if the encoder captures the
clues to translate them correctly. In this paper, we
empirically show that this may not be the case; the
performance of word level translation degrades as
the number of senses for each word increases. We
hypothesize that this is due to the fact that each
word is mapped to a word vector despite them be-
ing in different contexts, and propose to integrate
methods from neural WSD systems into an NMT
system to alleviate this problem. We concatenated
the context vector computed from the context net-
work with the word embedding to form a context-
aware word embedding, successfully improving
the NMT system. We evaluated our model on
three different language pairs and outperformed a
strong baseline model according to BLEU score
in all of them. We further evaluated our results
targeting the translation of homographs, and our
model performed better in terms of F1 score.

While the architectures proposed in this work
do not solve the problem of homographs, our em-
pirical results in Table 3 demonstrate that they do
yield improvements (larger than those on other va-
rieties of words). We hope that this paper will
spark discussion on the topic, and future work will
propose even more focused architectures.
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Abstract

This paper proposes an approach for apply-
ing GANs to NMT. We build a condition-
al sequence generative adversarial net which
comprises of two adversarial sub models, a
generator and a discriminator. The generator
aims to generate sentences which are hard to
be discriminated from human-translated sen-
tences ( i.e., the golden target sentences); And
the discriminator makes efforts to discriminate
the machine-generated sentences from human-
translated ones. The two sub models play
a mini-max game and achieve the win-win
situation when they reach a Nash Equilibri-
um. Additionally, the static sentence-level
BLEU is utilized as the reinforced objective
for the generator, which biases the generation
towards high BLEU points. During training,
both the dynamic discriminator and the stat-
ic BLEU objective are employed to evaluate
the generated sentences and feedback the eval-
uations to guide the learning of the generator.
Experimental results show that the proposed
model consistently outperforms the traditional
RNNSearch and the newly emerged state-of-
the-art Transformer on English-German and
Chinese-English translation tasks.

1 Introduction

Neural machine translation (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2014) which directly lever-
ages a single neural network to transform the
source sentence into the target sentence, has drawn
more and more attention in both academia and in-
dustry (Shen et al., 2015; Wu et al., 2016; Johnson
et al., 2016; Gehring et al., 2017; Vaswani et al.,
2017). This end-to-end NMT typically consists of
two sub neural networks. The encoder network
reads and encodes the source sentence into the
context vector representation; and the decoder net-
work generates the target sentence word by word

based on the context vector. To dynamically gen-
erate a context vector for a target word being gen-
erated, the attention mechanism which enables the
model to focus on the relevant words in the source-
side sentence is usually deployed. Under the
encoder-decoder framework, many variants of the
model structure, such as convolutional neural net-
work (CNN) and recurrent neural network (RN-
N) are proposed (Bahdanau et al., 2014; Gehring
et al., 2017). Recently, (Gehring et al., 2017)
propose the Transformer, the first sequence trans-
duction model based entirely on attention, achiev-
ing state-of-the-art performance on the English-
German and English-French translation tasks. De-
spite its success, the Transformer, similar to tradi-
tional NMT models, is still optimized to maximize
the likelihood estimation of the ground word (M-
LE) at each time step. Such an objective poses a
hidden danger to NMT models. That is, the model
may generate the best candidate word for the cur-
rent time step yet a bad component of the whole
sentence in the long run. Minimum risk training
(MRT) (Shen et al., 2015) is proposed to alleviate
such a limitation by adopting the sequence level
objective, i.e., the sentence-level BLEU, for tra-
ditional NMT models. Yet somewhat improved,
this objective still does not guarantee the transla-
tion results to be natural and sufficient. Since the
BLEU point is computed as the geometric mean
of the modified n-gram precisions (Papineni et al.,
2002), almost all of the existing objectives es-
sentially train NMT models to generate sentences
with n-gram precisions as high as possible (MLE
can be viewed to generate sentences with high 1-
gram precisions). While n-gram precisions largely
tell the good sentence apart from the bad one, it
is widely acknowledged that higher n-gram preci-
sions do not guarantee better sentences (Callison-
Burch and Osborne, 2006; Chatterjee et al., 2007).
Additionally, the manually defined objective, i.e.,
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the n-gram precision, is unable to cover all crucial
aspects of the data distribution and NMT models
may be trained to generate suboptimal sentences
(Luc et al., 2016).

In this paper, to address the limitation men-
tioned above, we borrow the idea of generative ad-
versarial training from computer vision (Goodfel-
low et al., 2014; Denton et al., 2015) to directly
train the NMT model generating sentences which
are hard to be discriminated from human transla-
tions. The motivation behind is that while we can
not manually define the data distribution of gold-
en sentences comprehensively, we are able to uti-
lize a discriminative network to learn automatical-
ly what the golden sentences look like. Following
this motivation, we build a conditional sequence
generative adversarial net where we jointly train
two sub adversarial models: A generator gener-
ates the target-language sentence based on the in-
put source-language sentence; And a discrimina-
tor, conditioned on the source-language sentence,
predicts the probability of the target-language sen-
tence being a human-generated one. During the
training process, the generator aims to fool the
discriminator into believing that its output is a
human-generated sentence, and the discriminator
makes efforts not to be fooled by improving its
ability to distinguish the machine-generated sen-
tence from the human-generated one. This kind
of adversarial training achieves a win-win situa-
tion when the generator and discriminator reach a
Nash Equilibrium (Zhao et al., 2016; Arora et al.,
2017; Guimaraes et al., 2017). Besides generat-
ing the desired distribution, we also want to di-
rectly guide the generator with a static and spe-
cific objective, such as generating sentences with
high BLEU points. To this end, the smoothed
sentence-level BLEU (Nakov et al., 2012) is uti-
lized as the reinforced objective for the generator.
During training, we employ both the dynamic dis-
criminator and the static BLEU objective to evalu-
ate the generated sentences and feedback the eval-
uations to guide the learning of the generator. In
summary, we mainly make the following contribu-
tions:

• To the best of our knowledge, this work is a-
mong the first endeavors to introduce the gen-
erative adversarial training into NMT. We di-
rectly train the NMT model to generate sen-
tences which are hard to be discriminated
from human translations. The proposed mod-

el can be applied to any end-to-end NMT sys-
tems.

• We conduct extensive experiments on
English-German and Chinese-English trans-
lation tasks and we test two different NMT
models, the traditional RNNSearch (Bah-
danau et al., 2014) and the state-of-the-art
Transformer. Experimental results show that
the proposed approach consistently achieves
great success.

• Last but not least, we propose the smoothed
sentence-level BLEU as the static and spe-
cific objective for the generator which biases
the generation towards achieving high BLEU
points. We show that the proposed approach
is a weighted combination of the naive GAN
and MRT.

2 Background and Related Work

2.1 RNNSearch and Transformer

The RNNSearch is the traditional NMT model
which has been widely explored. We follow the
de facto standard implementation by (Bahdanau
et al., 2014). The encoder is a bidirectional gat-
ed recurrent units that encodes the input sequence
x = (x1, . . . , xm) and calculates the forward se-
quence of hidden states (

−→
h1, . . . ,

−→
hm), and a back-

ward sequence of hidden states (
←−
h1, . . . ,

←−
hm). The

final annotation vector hj is calculated by con-
catenating

−→
hj and

←−
hj . The decoder is a recurren-

t neural network that predicts a target sequence
y = (y1, . . . , yn). Each word yi is predicted on
a recurrent hidden state si, the previously predict-
ed word yi−1 and a context vector ci. The ci is
computed as a weighted sum of the encoded anno-
tations hj . The weight aij of each annotation hj
is computed by the attention mechanism, which
models the alignment between yi and xj .

The Transformer, recently proposed by
(Vaswani et al., 2017), achieves state-of-the-art
results on both WMT2014 English-German and
WMT2014 English-French translation tasks. The
encoder of Transformer is composed of a stack
of six identical layers. Each layer consists of a
multi-head self-attention and a simple position-
wise fully connected feed-forward network.
The decoder is also composed of a stack of six
identical layers. In addition to the two sub-layers
in each encoder layer, the decoder inserts a third
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sub-layer, which performs multi-head attention
over the output of the encoder stack. The Trans-
former can be trained significantly faster than
architectures based on recurrent or convolutional
layers since it allows for significantly more
parallelization.

2.2 Generative adversarial nets

Generative adversarial network, has enjoyed great
success in computer vision and has been wide-
ly applied to image generation (Zhu et al., 2017;
Radford et al., 2015). The conditional generative
adversarial nets (Gauthier, 2014) apply an exten-
sion of generative adversarial network to a con-
ditional setting, which enables the networks to
condition on some arbitrary external data. Some
recent works have begun to apply the genera-
tive adversarial training into the NLP area: (Chen
et al., 2016) apply the idea of generative adversar-
ial training to sentiment analysis and (Zhang et al.,
2017) use the idea to domain adaptation tasks. For
sequence generation problem, (Yu et al., 2016)
leverage policy gradient reinforcement learning to
back-propagate the reward from the discrimina-
tor, showing presentable results for poem gener-
ation, speech language generation and music gen-
eration. Similarly, (Zhang et al., 2016) generate
the text from random noise via adversarial train-
ing. A striking difference from the works men-
tioned above is that, our work is in the conditional
setting where the target-language sentence is gen-
erated conditioned on the source-language one. In
parallel to our work, (Li et al., 2017) propose a
similar conditional sequence generative adversar-
ial training for dialogue generation. They use a
hierarchical long-short term memory (LSTM) ar-
chitecture for the discriminator. In contrast to their
approach, we apply the CNN-based discriminator
for the machine translation task. Furthermore, we
propose to utilize the sentence-level BLEU as the
specific objective for the generator. Detailed train-
ing strategies for the proposed model and exten-
sive quantitative results are reported. We noticed
that (Wu et al., 2017) is exploring the potential of
GAN in NMT too. There are some differences
in training strategies and experimental settings be-
tween (Wu et al., 2017) and this work. And the
most significant difference is that we propose a
novel BLEU-reinforced GAN for NMT 1.

1The previous presentation of this work can be found at
https://arxiv.org/abs/1703.04887

3 The Approach

3.1 Model overview
In this section, we describe the architecture of
the proposed BLEU reinforced conditional se-
quence generative adversarial net (referred to as
BR-CSGAN) in detail. The sentence generation
process is viewed as a sequence of actions that are
taken according to a policy regulated by the gen-
erator. In this work, we take the policy gradient
training strategies following (Yu et al., 2016). The
whole architecture of the proposed model is de-
picted in figure 1. The model mainly consists of
three sub modules:

Generator Based on the source-language sen-
tences, the generator G aims to generate target-
language sentences indistinguishable from human
translations.

Discriminator The discriminator D, condi-
tioned on the source-language sentences, tries to
distinguish the machine-generated sentences from
human translations. D can be viewed as a dynam-
ic objective since it is updated synchronously with
G.

BLEU objective The sentence-level BLEU Q
serves as the reinforced objective, guiding the gen-
eration towards high BLEU points. Q is a static
function which will not be updated during train-
ing.

3.2 Generator
Resembling NMT models, the generator G defines
the policy that generates the target sentence y giv-
en the source sentence x. The generator takes
exactly the same architecture with NMT models.
Note that we do not assume the specific architec-
ture of the generator. To verify the effectiveness of
the proposed method, we take two different archi-
tectures for the generator, the RNNSearch 2 and
Transformer 3.

3.3 Discriminator
Recently, the deep discriminative models such
as the CNN and RNN have shown a high per-
formance in complicated sequence classification
tasks. Here, the discriminator is implemented
based on the CNN architecture.

Since sentences generated by the generator have
variable lengths, the CNN padding is used to trans-
form the sentences to sequences with fixed length

2https://github.com/nyu-dl/dl4mt-tutorial
3https://github.com/tensorflow/tensor2tensor
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Figure 1: The Illustration of the proposed BR-CSGAN.
Left: D is trained over the real sentence pairs translated
by the human and the generated sentence pairs by G.
Note that D is a conditional discriminator. Right: G
is trained by police gradient where the final reward is
provided by D and Q.

T , which is the maximum length set for the output
of the generator. Given the source-language se-
quence x1, . . . , xT and target-language sequence
y1, . . . , yT , we build the source matrix X1:T and
target matrix Y1:T respectively as:

X1:T = x1;x2; . . . ;xT (1)

and
Y1:T = y1; y2; . . . ; yT (2)

where xt, yt ∈ Rk is the k-dimensional word em-
bedding and the semicolon is the concatenation
operator. For the source matrix X1:T , a kernel
wj ∈ Rl×k applies a convolutional operation to
a window size of l words to produce a series of
feature maps:

cji = ρ(BN(wj ⊗Xi:i+l−1 + b)) (3)

where ⊗ operator is the summation of element-
wise production and b is a bias term. ρ is a non-
linear activation function which is implemented as
ReLu in this paper. Note that the batch normaliza-
tion (Ioffe and Szegedy, 2015) which accelerates
the training significantly, is applied to the input of
the activation function (BN in equation 3). To get
the final feature with respect to kernel wj , a max-
over-time pooling operation is leveraged over the
feature maps:

c̃j = max{cj1, . . . , cjT−l+1} (4)

We use various numbers of kernels with different
window sizes to extract different features, which
are then concatenated to form the source-language
sentence representation cx. Identically, the target-
language sentence representation cy can be ex-
tracted from the target matrix Y1:T . Finally, given
the source-language sentence, the probability that

the target-language sentence is being real can be
computed as:

p = σ(V [cx; cy]) (5)

where V is the transform matrix which transforms
the concatenation of cx and cy into a 2-dimension
embedding and σ is the logistic function.

3.4 BLEU objective
We apply the smoothed sentence-level BLEU as
the specific objective for the generator. Given
the generated sentence yg and the the ground true
sentence yd, the objective Q calculates a reward
Q(yg, yd), which measures the n-gram precisions
of the generated sentence yg. Identical to the out-
put of the discriminator, the Q(yg, yd) also ranges
from zero to one, which makes it easier to fuse Q
and D.

3.5 Policy Gradient Training
Following (Yu et al., 2016), the objective of the
generator G is defined as to generate a sequence
from the start state to maximize its expected end
reward. Formally, the objective function is com-
puted as:

J(θ) =
∑
Y1:T

Gθ(Y1:T |X) ·RGθD,Q(Y1:T−1, X, yT , Y ∗)

where θ represents the parameters in G, Y1:T =
y1, . . . , yT indicates the generated target se-
quence, X is the source-language sentence, Y ∗

represents the ground true target sentence. RGθD,Q
is the action-value function of a target-language
sentence given the source sentence X , i.e. the ex-
pected accumulative reward starting from the state
(Y1:T−1, X), taking action yT , and following the
policy Gθ. To estimate the action-value function,
we consider the estimated probability of being re-
al by the discriminator D and the output of the
BLEU objective Q as the reward:

RGθD,Q(Y1:T−1, X, yT , Y ∗) =

λ(D(X,Y1:T )− b(X,Y1:T )) + (1− λ)Q(Y1:T , Y
∗)

where b(X,Y) denotes the baseline value to reduce
the variance of the reward. Practically, we take
b(X,Y) as a constant, 0.5 for simplicity. And the
λ is a hyper-parameter. The question is that, giv-
en the source sequence, D only provides a reward
value for a finished target sequence. If Y1:T is not a
finished target sequence, the value of D(X,Y1:T )
makes no sense. Therefore, we cannot get the
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action-value for an intermediate state directly. To
evaluate the action-value for an intermediate state,
the Monte Carlo search under the policy of Gθ
is applied to sample the unknown tokens. Each
search ends until the end of sentence token is sam-
pled or the sampled sentence reaches the maxi-
mum length. To obtain more stable reward and re-
duce the variance, we represent an N-time Monte
Carlo search as:

{Y 1
1:T1

, . . . , Y N
1:TN
} = MCGθ((Y1:t, X), N)

where Ti represents the length of the sen-
tence sampled by the i’th Monte Carlo search.
(Y1:t, X) = (y1, . . . , yt, X) is the current state
and Y N

t+1:TN
is sampled based on the policy Gθ.

The discriminator provides N rewards for the
sampled N sentences respectively. The final re-
ward for the intermediate state is calculated as the
average of the N rewards. Hence, for the target
sentence with the length T , we compute the re-
ward for yt in the sentence level as:

RGθD,Q(Y1:t−1, X, yT , Y ∗) =




1
N

N∑
n=1

λ(D(X,Y n
1:Tn

)− b(X,Y n
1:Tn

)) + (1− λ)Q(Y1:Tn , Y ∗) t < T

λ(D(X,Y1:t)− b(X,Y1:t)) + (1− λ)Q(Y1:t, Y
∗) t = T

Using the discriminator as a reward function can
further improve the generator iteratively by dy-
namically updating the discriminator. Once we get
more realistic generated sequences, we re-train the
discriminator as:

min−EX,Y ∈Pdata [logD(X,Y )]− EX,Y ∈G[log(1−D(X,Y ))]

After updating the discriminator, we are ready to
re-train the generator. The gradient of the objec-
tive function J(θ) w.r.t the generator’s parameter
θ is calculated as:

∇J(θ) = 1
T

T∑
t=1

∑
yt

RGθD,Q(Y1:t−1, X, yT , Y ∗) · ∇θ(Gθ(yt|Y1:t−1, X))

= 1
T

T∑
t=1

Eyt∈Gθ [R
Gθ
D,Q(Y1:t−1, X, yT , Y ∗) · ∇θ log p(yt|Y1:t−1, X)]

3.6 Training strategies
GANs are widely criticized for its unstable train-
ing since the generator and discriminator need to
be carefully synchronized. To make this work eas-
ier to reproduce, this paper gives detailed strate-
gies for training the proposed model.

Firstly, we use the maximum likelihood estima-
tion to pre-train the generator on the parallel train-
ing set until the best translation performance is
achieved. Then, generate the machine-generated

sentences by using the generator to decode the
training data. We simply use the greedy sam-
pling method instead of the beam search method
for decoding. Next, pre-train the discriminator
on the combination of the true parallel data and
the machine-generated data until the classification
accuracy achieves at ξ. Finally, we jointly train
the generator and discriminator. The generator is
trained with the policy gradient training method.
However, in our practice, we find that updating
the generator only with the simple policy gradient
training leads to unstableness. To alleviate this is-
sue, we adopt the teacher forcing approach which
is similar to (Lamb et al., 2016; Li et al., 2017).
We directly make the discriminator to automati-
cally assign a reward of 1 to the golden target-
language sentence and the generator uses this re-
ward to update itself on the true parallel example.
We run the teacher forcing training for one time
once the generator is updated by the policy gra-
dient training. After the generator gets updated,
we use the new stronger generator to generate η
more realistic sentences, which are then used to
train the discriminator. Following (Arjovsky et al.,
2017), we clamp the weights of the discriminator
to a fixed box ( [−ε,ε] ) after each gradient update.
We perform one optimization step for the discrim-
inator for each step of the generator. In our prac-
tice, we set ξ as 0.82, η as 5000, ε as 1.0 and the
N for Monte Carlo search as 20.

4 Experiments and Results

We evaluate our BR-CSGAN on English-German
and Chinese-English translation tasks and we test
two different architectures for the generator, the
traditional RNNSearch and the newly emerged
state-of-the-art Transformer.

4.1 Data sets and preprocessing

English-German: For English-German translation,
we conduct our experiments on the publicly avail-
able corpora used extensively as benchmark for N-
MT systems, WMT’14 En-De. This data set con-
tains 4.5M sentence pairs 4. Sentences are en-
coded using byte-pair encoding (Sennrich et al.,
2015), which has a shared source-target vocabu-
lary of about 37000 tokens. We report results on
newstest2014. The newstest2013 is used as vali-
dation.

4http://nlp.stanford.edu/projects/nmt
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Model
Chinese-English English-German

NIST03 NIST04 NIST05 average newstest2014

RNNSearch (Bahdanau et al., 2014) 33.93 35.67 32.24 33.94 21.2
Transformer (Vaswani et al., 2017) 42.23 42.17 41.02 41.80 27.30
RNNSearch+BR-CSGAN(λ = 1.0) 35.21 36.51 33.45 35.05 22.1
RNNSearch+BR-CSGAN(λ = 0.7) 35.97 37.32 34.03 35.77 22.89
RNNSearch+BR-CSGAN(λ = 0) 34.57 35.93 33.07 34.52 21.75

Transformer+BR-CSGAN(λ = 1.0) 42.67 42.79 41.54 42.30 27.75
Transformer+BR-CSGAN(λ = 0.8) 43.01 42.96 41.86 42.61 27.92
Transformer+BR-CSGAN(λ = 0) 42.41 42.74 41.29 42.14 27.49

Table 1: BLEU score on Chinese-English and English-German translation tasks. The hyper-parameter λ is selected
according to the development set. For the Transformer, following (Vaswani et al., 2017), we report the result of a
single model obtained by averaging the 5 checkpoints around the best model selected on the development set.

Chinese-English: For Chinese-English transla-
tion, our training data consists of 1.6M sentence
pairs randomly extracted from LDC corpora 5.
Both the source and target sentences are encod-
ed with byte-pair encoding and the tokens in the
source and target vocabulary is about 38000 and
34000 respectively 6. We choose the NIST02 as
the development set. For testing, we use NIST03,
NIST04 and NIST05 data sets.

To speed up the training procedure, sentences of
length over 50 words are removed when we con-
duct experiments on the RNNSearch model. This
is widely used by previous works (Ranzato et al.,
2015; Shen et al., 2015; Yang et al., 2016).

4.2 Model parameters and evaluation
For the Transformer, following the base model in
(Vaswani et al., 2017), we set the dimension of
word embedding as 512, dropout rate as 0.1 and
the head number as 8. The encoder and decoder
both have a stack of 6 layers. We use beam search
with a beam size of 4 and length penalty α = 0.6.
For the RNNSearch, following (Bahdanau et al.,
2014), We set the hidden units for both encoders
and decoders as 512. The dimension of the word
embedding is also set as 512. We do not apply
dropout for training the RNNSearch. During test-
ing, we use beam search with a beam size of 10
and length penalty is not applied.

All models are implemented in TensorFlow
(Abadi et al., 2015) and trained on up to four K80
GPUs synchronously in a multi-GPU setup on a

5LDC2002L27, LDC2002T01, LDC2002E18, LD-
C2003E07, LDC2004T08, LDC2004E12, LDC2005T10

6When doing BPE for Chinese, we need to do word seg-
mentation first and the following steps are the same with BPE
for English.

single machine 7. We stop training when the mod-
el achieves no improvement for the tenth evalu-
ation on the development set. BLEU (Papineni
et al., 2002) is utilized as the evaluation metric.
We apply the script mteval-v11b.pl to evaluate the
Chinese-English translation and utilize the script
multi-belu.pl for English-German translation 8.

4.3 Main results
The model of RNNSearch is optimized with the
mini-batch of 64 examples. It takes about 30
hours to pre-train the RNNSearch on the Chinese-
English data set and 46 hours on the English-
German data set. During generative adversarial
training, it takes about 35 hours on the Chinese-
English data set and about 50 hours on the
English-German data set. For the Transformer,
each training batch contains a set of sentence
pairs containing approximately 25000 source to-
kens and 25000 target tokens. On the Chinese-
English data set, it takes about 15 hours to do pre-
training and 20 hours to do generative adversarial
training. On the English-German data set, it takes
about 35 hours for the pre-training and 40 hours
for the generative adversarial training.

Table 1 shows the BLEU score on Chinese-
English and English-German test sets. On the
RNNSearch model, the naive GAN (i.e., the line
of RNNSearch+BR-CSGAN (λ=1) in table 1)
achieves improvement up to +1.11 BLEU points
averagely on Chinese-English test sets and +0.9
BLEU points on English-German test set. Armed

7The code we used to train and evaluate our models can
be found at https://github.com/ZhenYangIACAS/NMT GAN

8https://github.com/moses-
smt/mosesdecoder/blob/617e8c8/scripts/generic/multi-
bleu.perl;mteval-v11b.pl
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with the BLEU objective, the BR-CSGAN (the
line of RNNSearch+BR-CSGAN (λ=0.7)) leads
to more significant improvements, +1.83 BLEU
points averagely on Chinese-English translation
and +1.69 BLEU points on English-German trans-
lation. We also test the translation performance
when the RNNSearch is only guided by the stat-
ic BLEU objective (the line of RNNSearch+BR-
CSGAN (λ=0)), and we only get +0.58 BLEU
points improvement on Chinese-English transla-
tion and +0.55 BLEU points improvement on
English-German. Experiments on the Transformer
show the same trends. While the Transformer has
achieved state-of-the-art translation performances,
our approach still achieves +0.81 BLEU points
improvement on Chinese-English translation and
+0.62 BLEU points improvement on English-
German.

These results indicate that the proposed BR-
CSGAN consistently outperforms the baselines
and it shows better translation performance than
the naive GAN and the model guided only by the
BLEU objective.

5 Analysis

5.1 Compared with MRT
We show that MRT (Shen et al., 2015) is an ex-
treme case of our approach. Considering a sen-
tence pair (x, y), the training objective of MRT is
calculated as

Ĵ(θ′) =
∑

ys∈S(x)
p(ys|x; θ′)∆(ys, y)

where ∆(ys, y) is a loss function (i.e., the
sentence-level BLEU used in this paper) that mea-
sures the discrepancy between a predicted trans-
lation ys and the training example y, S(x) repre-
sents the set which contains all of the predictions
given the input x, and θ′ is the parameters of the N-
MT model. Unfortunately, this objective is usually
intractable due to the exponential search space. To
alleviate this problem, a subset of the search space
is sampled to approximate this objective. In this
paper, when we set λ as zero, the objective for the
proposed BR-CSGAN comes to

J(θ)λ=0 =
∑

Y1:T

Gθ(Y1:T |X) ·Q(Y1:T , Y
∗)

where the Q(Y1:T , Y
∗) is also a loss function be-

tween the predicted translation Y1:T and the train-
ing example Y ∗. It is easy to be found that, under

this condition (i.e., λ set as zero), the proposed
BR-CSGAN optimizes almost the same objective
with MRT. The only difference is that the rein-
forcement learning procedure is utilized in BR-
CSGAN to maximize the total reward and M-
RT instead applies random sampling to approx-
imate the risk. Actually, the BR-CSGAN is a
weighted sum of the naive GAN (λ=1) and MRT
(λ=0), and it incorporates the advantages of the t-
wo approaches. Specifically, compared to naive
GAN which is trained without specific objective
guidance, BR-CSGAN utilizes the BLEU objec-
tive to guide the generator to generate sentences
with higher BLEU points. And compared to M-
RT which is trained only with the static objective,
the BR-CSGAN applies a dynamic discriminator
which updates synchronously with the generator,
to feedback the dynamic rewards for the genera-
tor. Table 2 compares the translation performance
between the MRT and BR-CSGAN on Chinese-
English and English-German translation tasks. We
only conduct experiments on the RNNSearch be-
cause we only get the open-source implementa-
tion of MRT on the RNNSearch 9. Results show
that the proposed BR-CSGAN consistently out-
performs the MRT on the Chinese-English and
English-German translations.

Model
Chinese-English English-German

average newstest2014

RNNSearch 33.94 21.2
MRT (Shen et al., 2015) 34.64 21.6
BR-CSGAN(λ = 0.7) 35.77 22.89

Table 2: BLEU score on Chinese-English and English-
German translation tasks for MRT and BR-CSGAN.

5.2 When to stop pre-training

The initial accuracy ξ of the discriminator which
is viewed as a hyper-parameter, can be set care-
fully during the process of pre-training. A nat-
ural question is that when shall we end the pre-
training. Do we need to pre-train the discriminator
with the highest accuracy? To answer this ques-
tion, we test the impact of the initial accuracy of
the discriminator. We pre-train five discriminators
which have the accuracy as 0.6, 0.7, 0.8, 0.9 and
0.95 respectively. With the five discriminators, we
train five different BR-CSGAN models (with the
generator as RNNSearch and λ set as 0.7) and test

9The open-source implementation can be found at: http-
s://github.com/EdinburghNLP/nematus
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Figure 2: BLEU score on the development set for the
BR-CSGAN where the discriminators have differen-
t initial accuracy. ”0.6-acc” means the initial accura-
cy is 0.6. We report the results on the Chinese-English
translation tasks. RNNSearch is taken as the generator.

their translation performances on the development
set at regular intervals. Figure 2 reports the results
and we can find that the initial accuracy of the dis-
criminator shows great impacts on the translation
performance of the proposed BR-CSGAN. From
figure 2, we show that the initial accuracy of the
discriminator needs to be set carefully and either
it is too high (0.9 and 0.95) or too low (0.6 and
0.7), the model performs badly 10. This suggests
that it is important for the generator and discrim-
inator to keep a balanced relationship at the be-
ginning of the generative adversarial training. If
the discriminator is too strong, the generator is al-
ways penalized for its bad predictions and gets no
idea about right predictions. Hence, the generator
is discouraged all the time and the performance
gets worse and worse. On the other hand, if the
discriminator is too weak, the discriminator is un-
able to give right guidance for the generator, i.e.
the gradient direction for updating the generator is
random. Empirically, we pre-train the discrimina-
tor until its accuracy reaches around 0.8.

5.3 Sample times for Monto Carol search
We are also curious about how the sample times
N for Monte Carlo search affects the translation
performance. Intuitively, if N is set as a smal-
l number, the intermediate reward for each word
may be incorrect since there is a large variance
for the Monto Carol search when the sample time
is too small. And if otherwise, the computation

10To make the illustration simple and clear, we only depict
the results when the RNNSearch acts as the generator.

N NIST02 NIST03 NIST04 NIST05

0 36.87 33.93 35.67 32.24
5 - - - -
10 - - - -
15 37.34 34.91 36.09 33.45
20 38.58 35.97 37.32 34.03
25 38.65 36.04 37.52 33.91
30 38.74 36.01 37.54 33.76

Table 3: The translation performance of the BR-
CSGAN with different N for Monte Carlo search. ”-”
means that the proposed model shows no improvement
than the pre-trained generator or it can not be trained
stably. With N set as 0, it is referred to as the pre-
trained generator. Similarly, we only report results on
the RNNSearch and λ is set as 0.7.

shall be very time consuming because we need
to do much more sampling. Therefore, there is
a trade-off between the accuracy and computa-
tion complexity here. We investigate this prob-
lem on the Chinese-English translation task. Table
3 presents the translation performance of the BR-
CSGAN on the test sets when the N are set from
5 to 30 with interval 5. From table 3, the proposed
model achieves no improvement than the baseline
(i.e., the pre-trained generator) when N are set
less than 15 and the BLEU scores are not reported
on the table. As a matter of fact, the translation
performance of the model gets worse and worse.
We conjecture that the approximated reward is far
from the expected reward due to the large variance
when N is set too small, and gives wrong gradi-
ent directions for model updating. Since the train-
ing for GAN is not stable, the wrong gradient di-
rection exacerbates the unstableness and results in
the BLEU getting worse and worse. With the in-
creasing of N , the translation performance of the
model gets improved. However, with N set larger
than 20, we get little improvement than the model
with N set as 20 and the training time exceeds our
expectation.

6 Conclusion and Future Work

In this work, we propose the BR-CSGAN which
leverages the BLEU reinforced generative adver-
sarial net to improve the NMT. We show that the
proposed approach is a weighted combination of
the naive GAN and MRT. To verify the effec-
tiveness of our approach, we test two differen-
t architectures for the generator, the traditional
RNNSearch and the state-of-the-art Transformer.
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Extensive experiments on Chinese-English and
English-German translation tasks show that our
approach consistently achieves significant im-
provements. In the future, we would like to
try multi-adversarial framework which consists of
multi discriminators and generators for GAN.
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Abstract

Neural machine translation requires large
amounts of parallel training text to learn a
reasonable-quality translation model. This is
particularly inconvenient for language pairs
for which enough parallel text is not available.
In this paper, we use monolingual linguistic re-
sources in the source side to address this chal-
lenging problem based on a multi-task learn-
ing approach. More specifically, we scaffold
the machine translation task on auxiliary tasks
including semantic parsing, syntactic parsing,
and named-entity recognition. This effectively
injects semantic and/or syntactic knowledge
into the translation model, which would other-
wise require a large amount of training bitext.
We empirically evaluate and show the effec-
tiveness of our multi-task learning approach
on three translation tasks: English-to-French,
English-to-Farsi, and English-to-Vietnamese.

1 Introduction

Neural Machine Translation (NMT) with atten-
tional encoder-decoder architectures (Luong et al.,
2015; Bahdanau et al., 2015) has revolutionised
machine translation, and achieved state-of-the-art
for several language pairs. However, NMT is no-
torious for its need for large amounts of bilin-
gual data (Koehn and Knowles, 2017) to achieve
reasonable translation quality. Leveraging exist-
ing monolingual resources is a potential approach
for compensating this requirement in bilingually
scarce scenarios. Ideally, semantic and syntac-
tic knowledge learned from existing linguistic re-
sources provides NMT with proper inductive bi-
ases, leading to increased generalisation and better
translation quality.

Multi-task learning (MTL) is an effective ap-
proach to inject knowledge into a task, which is
learned from other related tasks. Various recent
works have attempted to improve NMT with an

MTL approach (Peng et al., 2017; Liu et al., 2017;
Zhang and Zong, 2016); however, they either
do not make use of curated linguistic resources
(Domhan and Hieber, 2017; Zhang and Zong,
2016), or their MTL architectures are restrictive
yielding mediocre improvements (Niehues and
Cho, 2017). The current research leaves open how
to best leverage curated linguistic resources in a
suitable MTL framework to improve NMT.

In this paper, we make use of curated monolin-
gual linguistic resources in the source side to im-
prove NMT in bilingually scarce scenarios. More
specifically, we scaffold the machine translation
task on auxiliary tasks including semantic pars-
ing, syntactic parsing, and named-entity recogni-
tion. This is achieved by casting the auxiliary
tasks as sequence-to-sequence (SEQ2SEQ) trans-
duction tasks, and tie the parameters of their en-
coders and/or decoders with those of the main
translation task. Our MTL architectures makes use
of deep stacked encoders and decoders, where the
parameters of the top layers are shared across the
tasks. We further make use of adversarial training
to prevent contamination of common knowledge
with task-specific information.

We present empirical results on translating from
English into French, Vietnamese, and Farsi; three
target languages with varying degree of diver-
gence compared to English. Our extensive em-
pirical results demonstrate the effectiveness of
our MTL approach in substantially improving the
translation quality for these three translation tasks
in bilingually scarce scenarios.

2 Neural SEQ2SEQ Transduction

Our MTL is based on the attentional encoder-
decoder architecture for SEQ2SEQ transduction. It
contains an encoder to read the input sentence, and
an attentional decoder to generate the output.
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Encoder The encoder is a bi-directional RNN
whose hidden states represent tokens of the in-
put sequence. These representations capture infor-
mation not only of the corresponding token, but
also other tokens in the sequence to leverage the
context. The bi-directional RNN consists of two
RNNs running in the left-to-right and right-to-left
directions over the input sequence:

−→
hi = RNN(

−→
h i−1,EEES [xi])

←−
h i = RNN(

←−
h i+1,EEES [xi])

where EEES [xi] is the embedding of the token xi
from the embedding tableEEES of the input (source)
space, and

−→
h i and

←−
h i are the hidden states

of the forward and backward RNNs which can
be based on the LSTM (long-short term mem-
ory) (Hochreiter and Schmidhuber, 1997) or GRU
(gated-recurrent unit) (Chung et al., 2014) units.
Each source token is then represented by the con-
catenation of the corresponding bidirectional hid-
den states, hi = [

−→
h i;
←−
h i].

Decoder. The backbone of the decoder is a uni-
directional RNN which generates the token of the
output one-by-one from left to right. The genera-
tion of each token yj is conditioned on all of the
previously generated tokens y<j via the state of
the RNN decoder sj , and the input sequence via a
dynamic context vector cj (explained shortly):

yj ∼ softmax(Wy · rj + br) (1)
rj = tanh(sj +Wrc · cj +Wrj ·EEET [yj−1]) (2)
sj = tanh(Ws · sj−1 +Wsj ·EEET [yj−1] +Wsc · cj)

where EEET [yj ] is the embedding of the token yj
from the embedding table EEET of the output (tar-
get) space, and the W matrices and br vector are
the parameters.

A crucial element of the decoder is the attention
mechanism which dynamically attends to relevant
parts of the input sequence necessary for generat-
ing the next token in the output sequence. Before
generating the next token tj , the decoder computes
the attention vector αj over the input token:

αj = softmax(aaaj)

aji = v · tanh(Wae · hi + Wat · sj−1)

which intuitively is similar to the notion of align-
ment in word/phrase-based statistical MT (Brown
et al., 1993). The attention vector is then used to

compute a fixed-length dynamic representation of
the source sentence

cj =
∑

i

αjihi. (3)

which is conditioned upon in the RNN decoder
when computing the next state or generating the
output word (as mentioned above).

Training and Decoding. The model parameters
are trained end-to-end by maximising the (regu-
larised) log-likelihood of the training data

argmax
θθθ

∑

(x,y)∈D

|y|∑

j=1

logPθθθ(yj |y<j ,x)

where the above conditional probability is defined
according to eqn (1). Usually drop-out is em-
ployed to prevent over-fitting on the training data.
In the decoding time, the best output sequence for
a given input sequence is produced by

argmax
y

Pθθθ(y|x) =
∏

j

Pθθθ(yj |y<jx).

Usually greedy decoding or beam search algo-
rithms are employed to find an approximate solu-
tion, since solving the above optimisation problem
exactly is computationally hard.

3 SEQ2SEQ Multi-Task Learning

We consider an extension of the basic SEQ2SEQ

model where the encoder and decoder are
equipped with deep stacked layers. Presumably,
deeper layers capture more abstract information
about a task, hence they can be used as a mech-
anism to share useful generalisable information
among multiple tasks.

Deep Stacked Encoder. The deep encoder con-
sists of multiple layers, where the hidden states in
layer `−1 are the inputs to the hidden states at the
next layer `. That is,

−→
h `
i =
−−−→
RNN`θθθ`,enc

(
−→
h `
i−1,h

`−1
i )

←−
h `
i =
←−−−
RNN`θθθ`,enc

(
←−
h `
i−1,h

`−1
i )

where h`i = [
−→
h `
i ;
←−
h `
i ] is the hidden state of the

`’th layer RNN encoder for the i’th source sen-
tence word. The inputs to the first layer for-
ward/backward RNNs are the source word embed-
dings EEES [xi]. The representation of the source
sentence is then the concatenation of the hidden
states for all layers hi = [h1

i ; . . . ;h
L
i ] which is

then used by the decoder.
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Deep Stacked Decoder. Similar to the multi-
layer RNN encoder, the decoder RNN has multiple
layers:

s`j = RNN`θθθ`,dec(s
`
j−1, s

`−1
j )

where the inputs to the first layer RNNs are

Wsj ·EEET [yj−1] +Wsc · cj
in which cj is the dynamic source context, as de-
fined in eqn 3. The state of the decoder is then the
concatenation of the hidden states for all layers:
sj = [s1j ; . . . ; s

L
j ] which is then used in eqn 2 as

part of the “output generation module”.

Shared Layer MTL. We share the deep layer
RNNs in the encoders and/or decoders across the
tasks, as a mechanism to share abstract knowledge
and increase model generalisation.

Suppose we have a total of M + 1 tasks, con-
sisting of the main task plus M auxiliary tasks.
Let Θm

enc = {θθθm`,enc}L`=1 and Θm
dec = {θθθm`′,dec}L

′
`′=1

be the parameters of multi-layer encoder and de-
coder for the task m. Let {Θm

enc,Θ
m
dec}Mm=1 and

{Θ0
enc,Θ

0
dec} be the RNN parameters for the aux-

iliary tasks and the main task, respectively. We
share the parameters of the deep-level encoders
and decoders of the auxiliary tasks with those of
the main task. That is,
∀m ∈ [1, ..,M ] ∀` ∈ [Lm

enc, .., L] : θθθm`,enc = θθθ0`,enc

∀m ∈ [1, ..,M ] ∀`′ ∈ [L′
m
dec, .., L

′] : θθθm`′,dec = θθθ0`′,dec

where Lmenc and L′mdec specify the deep-layer
RNNs need to be shared parameters. Other pa-
rameters to share across the tasks include those of
the attention module, the source/target embedding
tables, and the output generation module. As an
extreme case, we can share all the parameters of
SEQ2SEQ architectures across the tasks.

Training Objective. Suppose we are given a
collection ofM+1 SEQ2SEQ transductions tasks,
each of which is associated with a training set
Dm := {(xi,yi)}Nm

i=1. The parameters are learned
by maximising the MTL training objective:

Lmtl(Θmtl) :=

M∑

m=0

γm
|Dm|

∑

(x,y)∈Dm

logPΘm(y|x)

(4)
where Θmtl denotes all the parameters of the MTL
architecture, |Dm| denotes the size of the training
set for the task m, and γm balances out its influ-
ence in the training objective.

Training Schedule. Variants of stochastic gra-
dient descent (SGD) can be used to optimise the
objective in order to learn the parameters. Mak-
ing the best use of tasks with different objective
geometries is challenging, e.g. due to the scale of
their gradients. One strategy for making an SGD
update is to select the tasks from which the next
data items should be chosen. In our training sched-
ule, we randomly select a training data item from
the main task, and pair it with a data item selected
from a randomly selected auxiliary task for mak-
ing the next SGD update. This ensures the pres-
ence of training signal from the main task in all
SGD updates, and avoids the training signal being
washed out by the auxiliary tasks.

4 Adversarial Training

The learned shared knowledge can be contami-
nated by task-specific information. We address
this issue by adding an adversarial objective. The
basic idea is to augment the MTL training objec-
tive with additional terms, so that the identity of
a task cannot be predicted from its data items by
the representations resulted from the shared en-
coder/decoder RNN layers.

Task Discriminator. The goal of the task dis-
criminator is to predict the identity of a task for a
data item based on the representations of the share
layers. More specifically, our task discriminator
consists of two RNNs with LSTM units, each of
which encodes the sequence of hidden states in the
shared layers of the encoder and the decoder.1 The
last hidden states of these two RNNs are then con-
catenated, giving rise to a fixed dimensional vector
summarising the representations in the shared lay-
ers. The summary vector is passed through a fully
connected layer followed by a softmax to predict
the probability distribution over the tasks:

PΘd
(task id|hd) ∼ softmax(Wdhd + bd)

hd := disLSTMs(shrRepΘmtl
(x,y))

where disLSTMs denotes the discriminator
LSTMs, shrRepΘmtl

(x,y) denotes the represen-
tations in the shared layer of deep encoders and de-
coders in the MTL architecture, and Θd includes
the disLSTMs parameters as well as {Wd, bd}.

1When multiple layers are shared, we concatenate their
hidden states at each time step, which is then input to the task
discriminator’s LSTMs.
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Adversarial Objective. Inspired by (Chen et al.,
2017), we add two additional terms to the MTL
training objective in eqn 4. The first term is
Ladv1(Θd) defined as:
M∑

m=0

∑

(x,y)∈Dm

logPΘd(m| disLSTMs(shrRepΘmtl
(x,y))).

Maximising the above objective over Θd ensures
proper training of the discriminator to predict the
identity of the task. The second term ensures that
the parameters of the shared layers are trained
so that they confuse the discriminator by max-
imising the entropy of its predicted distribution
over the task identities. That is, we add the term
Ladv2(Θmtl) to the training objective defined as:

M∑

m=0

∑

(x,y)∈Dm

H
[
PΘd(.| disLSTMs(shrRepΘmtl

(x,y)))
]

where H[.] is the entropy of a distribution. In
summary, the adversarial training leads to the fol-
lowing optimisation

argmax
Θd,Θmtl

Lmtl(Θmtl)+Ladv1(Θd)+λLadv2(Θmtl).

We maximise the above objective by SGD,
and update the parameters by alternating be-
tween optimising Lmtl(Θmtl) + λLadv2(Θmtl)
and Ladv1(Θd).

5 Experiments

5.1 Bilingual Corpora
We use three language-pairs, translating from En-
glish to French, Farsi, and Vietnamese. We have
chosen these languages to analyse the effect of
multi-task learning on languages with different
underlying linguistic structures. The sentences
are segmented using BPE (Sennrich et al., 2016)
on the union of source and target vocabularies
for English-French and English-Vietnamese. For
English-Farsi, BPE is performed using separate
vocabularies due to the disjoint alphabets. We use
a special <UNK> token to replace unknown BPE
units in the test and development sets.

Table 1 show some statistics about the bilin-
gual corpora. Further details about the corpora and
their pre-processing is as follows:

• The English-French corpus is a random sub-
set of EuroParlv7 as distributed to WMT2014.
Sentence pairs in which either the source

Train Dev Test
En→ Fr 98,846 5,357 5,357
En→ Fa 98,158 3,000 4,000
En→ vi 133,290 1,553 1,268

Table 1: The statistics of bilingual corpora.

or the target has length more than 80 (be-
fore applying BPE) have been removed. The
BPE is performed with a 30k total vocabu-
lary size. The “news-test2012” and “news-test-
2013” portions are used for validation and test
sets, respectively.

• The English-Farsi corpus is assembled from
all the parallel news text in LDC2016E93
Farsi Representative Language Pack from the
Linguistic Data Consortium, combined with
English-Farsi parallel subtitles from the TED
corpus (Tiedemann, 2012). Since the TED sub-
titles are user-contributed, this text contained
considerable variation in the encoding of its
Perso-Arabic characters. To address this issue,
we have normalized the corpus using the Hazm
toolkit2. Sentence pairs in which one of the
sentences has more than 80 (before applying
BPE) are removed, and BPE is performed with
a 30k vocabulary size. Random subsets of this
corpus (3k and 4k sentences each) are held out
as validation and test sets, respectively.

• The English-Vietnamese is from the translation
task in IWSLT 2015, and we use the prepro-
cessed version provided by (Luong and Man-
ning, 2015). The sentence pairs in which at
least one of their sentences had more than
300 units (after applying BPE) are removed.
“tst2012” and “tst2013” parts are used for val-
idation and test sets, respectively.

5.2 Auxiliary Tasks

We have chosen the following auxiliary tasks to
provide the NMT model with syntactic and/or se-
mantic knowledge, in order to enhance the quality
of translation:

Named-Entity Recognition (NER). With a
small bilingual training corpus, it would be hard
for the NMT model to learn how to translate rarely
occurring named-entities. Through the NER task,

2www.sobhe.ir/hazm
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the model hopefully learns the skill to recognize
named entities. Speculatively, it would then en-
ables leaning translation patterns by masking out
named entities. The NER data comes from the
CONLL shared task.3

Syntactic Parsing. This task enables NMT to
learn the phrase structure of the input sentence,
which would then be useful in better re-orderings.
This would be most useful for language pairs with
high syntactic divergence. The parsing data comes
from the Penn Tree Bank with the standard split
for training, development, and test (Marcus et al.,
1993). We linearise the constituency trees, in or-
der to turn syntactic parsing as a SEQ2SEQ trans-
duction (Vinyals et al., 2015).

Semantic Parsing. A good translation should
preserve the meaning. Learning from the semantic
parsing task enables the NMT model to pay atten-
tion to a meaning abstraction of the source sen-
tence, in order to convey it to the target transla-
tion. We have made use of the Abstract Mean-
ing Representation (AMR) corpus Release 2.0
(LDC2017T10), which pairs English sentences
AMR meaning graphs. We linearise the AMR
graphs, in order to convert semantic parsing as a
SEQ2SEQ transduction problem (Konstas et al.,
2017).

5.3 Models and Baselines

We have implemented the proposed multi-task
learning architecture in C++ using DyNet (Neu-
big et al., 2017), on top of Mantis (Cohn et al.,
2016) which is an implementation of the atten-
tional SEQ2SEQ NMT model in (?). In our multi-
task architecture, we do partial sharing of param-
eters, where the parameters of the top 2 stacked
layers are shared among the encoders of the tasks.
Moreover, we share the parameters of the top layer
stacked decoder among the tasks. Source and tar-
get embedding tables are shared among the tasks,
while the attention component is task-specific. 4

We compare against the following baselines:

• Baseline 1: The vanila SEQ2SEQ model with-
out any multi-tasking.

• Baseline 2: The multi-tasking architecture pro-
posed in (Niehues and Cho, 2017), which is a

3https://www.clips.uantwerpen.be/conll2003/ner
4In our experiments, models with task-specific attention

components achieved better results than those sharing them.

special case of our approach where the param-
eters of all 3 stacked layers are shared among
the tasks.5 They have not used deep stacked
layers in encoder and decoder as we do, so we
extend their work to make it comparable with
ours.

The configuration of models is as follows. The en-
coders and decoders make use of GRU units with
400 hidden dimensions, and the attention compo-
nent has 200 dimensions. For training, we used
Adam algorithm (Kingma and Ba, 2014) with the
initial learning rate of 0.003 for all of the tasks.
Learning rates are halved when the performance
on the corresponding dev set decreased. In order to
speed-up the training, we use mini-batching with
the size of 32. Dropout rates for both encoder and
decoder are set to 0.5, and models are trained for
50 epochs where the best models is selected based
on the perplexity on the dev set. λ for the adver-
sarial training is set to 0.5. Once trained, the NMT
model translates using the greedy search. We use
BLEU (Papineni et al., 2002) to measure transla-
tion quality. 6

5.4 Results

Table 2 reports the BLEU scores and perplexities
for the baseline and our proposed method on the
three aforementioned translation tasks. It can be
seen that the performance of multi-task learning
models are better than Baseline 1 (only MT task).
This confirms that adding auxiliary tasks helps to
increase the performance of the machine transla-
tion task.

As expected, the effect of different tasks are not
similar across the language pairs, possibly due to
the following reasons: (i) these translation tasks
datasets come from different domains so they have
various degree of domain relatedness to the auxil-
iary tasks, and (ii) the BLEU scores of the Base-
line 1 show that the three translation models are on
different quality levels which may entail that they
benefit from auxiliary knowledge on different lev-
els. In order to improve a model with low quality
translations due to language divergence, syntactic
knowledge can be more helpful as they help bet-
ter reorderings. In a higher-quality model, how-
ever, semantic knowledge can be more useful as

5We have used their best performing architecture and
changed the training schedule to ours.

6With “multi-bleu.perl” script from Moses (Koehn et al.,
2007).
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English→ French English→ Farsi English→ Vietnamese
Dev Test Dev Test Dev Test

PPL BLEU PPL BLEU PPL BLEU PPL BLEU PPL BLEU PPL BLEU
NMT 117.27 8.85 80.29 10.71 86.63 7.69 87.94 7.46 23.24 16.53 20.36 17.86

+ Semantic 71.7 10.58 51.2 12.72 56.32 8.3 57.88 8.32 14.86 19.96 12.79 21.82
+ NER 73.42 10.73 52.07 12.92 48.46 9.11 49.53 9.03 15.04 20.2 13.13 21.96
+ Syntactic 69.45 11.88 48.9 13.94 44.35 9.73 45.37 9.37 16.42 18.4 14.27 20.4
+ All Tasks 69.71 11.3 49.86 13.41 44.03 9.68 45.1 9.7 14.79 20.12 12.65 22.41
+ All+Adv. 68.44 11.93 48.92 14.02 45.25 9.55 45.87 9.19 14.19 21.21 12.11 23.54

Table 2: BLEU scores and perplexities of the baseline vs our MTL architecture with various auxiliary
tasks on the full bilingual datasets.

W/O Adaptation W/ Adaptation
Partial Full Partial Part.+Adv. Full

En→Fr 13.41 9.94 14.86 15.12 11.94
En→ Fa 9.7 7.89 10.31 10.08 8.6
En→ Vi 22.41 20.26 23.35 24.28 21.67

Table 3: Our method (partial parameter sharing)
against Baseline 2 (full parameter sharing).

a higher-level linguistic knowledge. This pattern
can be seen in the reported results: syntactic pars-
ing leads to more improvement on Farsi translation
which has a low BLEU score and high language
divergence to English, and semantic parsing yields
more improvement on the Vietnamese translation
task which already has a high BLEU score. The
NER task has led to a steady improvement in all
the translation tasks, as it leads to better handling
of named entities.

We have further added adversarial training to
ensure the shared representation learned by the en-
coder is not contaminated by the task-specific in-
formation. The results are in the last row of Table
2. The experiments show that adversarial training
leads to further gains in MTL translation quality,
except when translating into Farsi. We speculate
this is due to the low quality of NMT for Farsi,
where updating shared parameters with respect to
the entropy of discriminator’s predicted distribu-
tion may negatively affect the model.

Table 3 compares our multi-task learning ap-
proach to Baseline 2. As Table 3, our partial pa-
rameter sharing mechanism is more effective than
fully sharing the parameters (Baseline 2), due to
its flexibility in allowing access to private task-
specific knowledge. We also applied the adapta-
tion technique (Niehues and Cho, 2017) as fol-
lows. Upon finishing MTL training, we continue
to train only on the MT task for another 20 epochs,
and choose the best model based on perplexity on
dev set. Adaptation has led to consistent gains

in the performance of our MTL architecture and
Baseline 2.

5.5 Analysis

How many layers of encoder/decoder to share?
Figure 2 show the results of changing the number
of shared layers in encoder and decoder based on
the En→Vi translation task. The results confirm
that partial sharing of stacked layers is better than
full sharing. Intuitively, partial sharing provides
the model with an opportunity to learn task spe-
cific skills via the private layers, while leveraging
the knowledge learned from other tasks via shared
layers.

Statistics of gold n-grams in MTL translations.
Generating high order gold n-grams is hard. We
analyse the effect of syntactic and semantic knowl-
edge on generating gold n-grams in translations.

For each sentence, we first extract n-grams in
the gold translation, and then compute the number
of n-grams which are common with the generated
translations. Finally, after aggregating the results
over the entire test set, we compute the percent-
age of additional gold n-grams generated by each
MTL model compared to the ones in single-task
MT model. The results are depicted in Figure 1.
Interestingly, the MTL models generate more cor-
rect n-grams relative to the vanilla NMT model, as
n increases.

Effect of the NER task. The NMT model
has difficulty translating rarely occurring named-
entities, particularly when the bilingual parallel
data is scarce. We expect learning from the NER
task leads the MTL model to recognize named-
entities and learn underlying patterns for translat-
ing them. The top part in Table 4 shows an ex-
ample of such situation. As seen, the MTL is able
to recognize all of the named-entities in the sen-
tence and translate the while the single-task model
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Figure 1: Percentage of more correct n-grams generated by the deep MTL models compared to the
single-task model (only MT).

English this is a building in Hyderabad , India .
Reference this a building in Hyderabad is , in India .

MT only model this a building in Hyderabad is .
MT+NER model this a building in Hyderabad India is .

English we see people on our screens .
Reference we people on television screen or cinema see .

MT only model we people see we people .
MT+semantic model we people on television screen see .

English in hospitals , for new medical instruments ; in streets for traffic control .
Reference in hospitals , for instruments medical new ; in streets for control traffic

MT only model in hospitals , for tools new tools for traffic controlled* 7 .
MT+syntactic model in hospitals , for devices new , in streets for control traffic .

Table 4: Example of translations on Farsi test set. In this examples each Farsi word is replaced with its
English translation, and the order of words is reversed (Farsi is written right-to-left). The structure of
Farsi is Subject-Object-Verb (SOV), leading to different word orders in English and Reference sentences.
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Figure 2: BLEU scores for different numbers of
shared layers in (top) encoder while no layer is
shared in decoder, and (bottom) decoder while no
layer is shared in encoder

missed “India”.
For more analysis, we have applied a Farsi POS

tagger (Feely et al., 2014) to gold translations.
Then, we extracted n-grams with at least one noun
in them, and report the statistics of correct such n-
grams, similar to what reported in Figure 1. The
resulting statistics is depicted in Figure 3. As seen,
the MTL model trained on MT and NER tasks
leads to generation of more correct unigram noun
phrases relative to the vanilla NMT, as n increases.

Effect of the semantic parsing task. Semantic
parsing encourages a precise understanding of the
source text, which would then be useful for con-
veying the correct meaning to the translation. The
middle part in Table 4 is an example translation,
showing that semantic parsing has helped NMT by
understanding that “the subject sees the object via
subject’s screens”.

Effect of the syntactic parsing task. Recogniz-
ing the syntactic structure of the source sentence
helps NMT to better translate phrases. The bot-
tom part of Table 4 shows an example transla-
tion demonstrating such case. The source sen-
tence is talking about “a method for controlling the

1362



0

10

20

30

40

1-
gr

am

2-
gr

am

3-
gr

am

4-
gr

am

5-
gr

am

6-
gr

am

7-
gr

am

Figure 3: Percentage of more corrected n-grams
with at least one noun generated by MT+NER
model compared with the only MT model (only
MT).

traffic”, which is correctly translated by the MTL
model while vanilla NMT has mistakenly trans-
lated it to “controlled traffic”.

6 Related Work

Multi-task learning has attracted attention to im-
prove NMT in recent work. (Zhang and Zong,
2016) has made use of monolingual data in the
source language in a multitask learning framework
by sharing encoder in the attentional encoder-
decoder model. Their auxiliary task is to reorder
the source text to make it close to the target lan-
guage word order. (Domhan and Hieber, 2017)
proposed a two-layer stacked decoder, which the
bottom layer is trained on language modelling on
the target language text. The next word is jointly
predicted by the bottom layer language model and
the top layer attentional RNN decoder. They re-
ported only moderate improvements over the base-
line and fall short against using synthetic parallel
data. (Dalvi et al., 2017) investigated the amount
of learned morphology and how it can be injected
using MTL. Our method is related to what they
call joint data-learning, where they share all of the
SEQ2SEQ components among the tasks.

(Belinkov et al., 2017a; Shi et al., 2016; Be-
linkov et al., 2017b) investigate syntax/semantics
phenomena learned as a byproduct of SEQ2SEQ

NMT training. We, in turn, investigate the effect
of injecting syntax/semantic on learning NMT us-
ing MTL.

The closet work to ours is (Niehues and Cho,
2017), which has made use of part-of-speech
tagging and named-entity recognition tasks to
improve NMT. They have used the attentional

encoder-decoder with a shallow architecture, and
share different parts eg the encoder, decoder, and
attention. They report the best performance with
fully sharing the encoder. In contrast, our architec-
ture uses partial sharing on deep stacked encoder
and decoder components, and the results show that
it is critical for NMT improvement in MTL. Fur-
thermore, we propose adversarial training to pre-
vent contamination of shared knowledge with task
specific details.

Taking another approach to MTL, (Søgaard and
Goldberg, 2016) and (Hashimoto et al., 2017) have
proposed architectures by stacking up tasks on top
of each other according to their linguistic level,
eg from lower level tasks (POS tagging) to higher
level tasks (parsing). In this approach, each task
uses predicted annotations and hidden states of the
lower-level tasks for making a better prediction.
This is contrast to the approach taken in this paper
where models with shared parameters are trained
jointly on multiple tasks.

More broadly, deep multitask learning has been
used for various NLP problems, including graph-
based parsing (Chen and Ye, 2011) and keyphrase
boundary classification (Augenstein and Søgaard,
2017) . (Chen et al., 2017) has applied multi-task
learning for Chinese word segmentation, and (Liu
et al., 2017) applied it for text classification prob-
lem. Both of these works have used adversarial
training to make sure the shared layer extract only
common knowledge.

MTL has been used effectively to learn from
multimodal data. (Luong et al., 2016) has pro-
posed MTL architectures for neural SEQ2SEQ

transduction for tasks including MT, image cap-
tion generation, and parsing. They fully share
the encoders (many-to-one), the decoders (one-
to-many), or some of the encoders and decoders
(many-to-many). (Pasunuru and Bansal, 2017)
have made use of an MTL approach to improve
video captioning with auxiliary tasks including
video prediction and logical language entailment
based on a many-to-many architecture.

7 Conclusions and Future Work

We have presented an approach to improve NMT
in bilingually scarce scenarios, by leveraging cu-
rated linguistic resources in the source, including
semantic parsing, syntactic parsing, and named
entity recognition. This is achieved via an effec-
tive MTL architecture, based on deep stacked en-
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coders and decoders, to share common knowledge
among the MT and auxiliary tasks. Our experi-
mental results show substantial improvements in
the translation quality, when translating from En-
glish to French, Vietnamese, and Farsi in bilin-
gually scarce scenarios. For future work, we
would like to investigate architectures which allow
automatic parameter tying among the tasks (Ruder
et al., 2017).
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Nadir Durrani, Fahim Dalvi, and James Glass.
2017b. Evaluating layers of representation in neural
machine translation on part-of-speech and semantic
tagging tasks. In Proceedings of the International
Joint Conference on Natural Language Processing.
pages 1–10.

Peter F. Brown, Vincent J. Della Pietra, Stephen
A. Della Pietra, and Robert L. Mercer. 1993. The
mathematics of statistical machine translation: Pa-
rameter estimation. Computational Linguistics
19(2):263–311.

Xinchi Chen, Zhan Shi, Xipeng Qiu, and Xuanjing
Huang. 2017. Adversarial multi-criteria learning
for chinese word segmentation. In Proceedings of
the Annual Meeting of the Association for Computa-
tional Linguistics. pages 1193–1203.

Y. Chen and X. Ye. 2011. Projection Onto A Simplex .
arXiv preprint arXiv:1101.6081 .

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. NIPS Workshop on Deep Learning.

Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vy-
molova, Kaisheng Yao, Chris Dyer, and Gholam-
reza Haffari. 2016. Incorporating Structural Align-
ment Biases into an Attentional Neural Transla-
tion Model. In Proceedings of the Conference of
the North American Chapter of the Association for
Computational Linguistics–Human Language Tech-
nologies. pages 876–885.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan
Belinkov, and Stephan Vogel. 2017. Understanding
and improving morphological learning in the neu-
ral machine translation decoder. In Proceedings of
the International Joint Conference on Natural Lan-
guage Processing. pages 142–151.

Tobias Domhan and Felix Hieber. 2017. Using target-
side monolingual data for neural machine translation
through multi-task learning. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing. pages 1501–1506.

Weston Feely, Mehdi Manshadi, Robert E Frederking,
and Lori S Levin. 2014. The CMU METAL Farsi
NLP Approach. In LREC. pages 4052–4055.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A joint many-task
model: Growing a neural network for multiple NLP
tasks. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing. pages
1923–1933.

Sepp Hochreiter and Jurgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation
9(8):1735–1780.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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Abstract

Neural sequence-to-sequence networks with
attention have achieved remarkable perfor-
mance for machine translation. One of the rea-
sons for their effectiveness is their ability to
capture relevant source-side contextual infor-
mation at each time-step prediction through an
attention mechanism. However, the target-side
context is solely based on the sequence model
which, in practice, is prone to a recency bias
and lacks the ability to capture effectively non-
sequential dependencies among words. To ad-
dress this limitation, we propose a target-side-
attentive residual recurrent network for decod-
ing, where attention over previous words con-
tributes directly to the prediction of the next
word. The residual learning facilitates the flow
of information from the distant past and is able
to emphasize any of the previously translated
words, hence it gains access to a wider context.
The proposed model outperforms a neural MT
baseline as well as a memory and self-attention
network on three language pairs. The analysis
of the attention learned by the decoder con-
firms that it emphasizes a wider context, and
that it captures syntactic-like structures.

1 Introduction

Neural machine translation (NMT) has recently
become the state-of-the-art approach to machine
translation (Bojar et al., 2016). Several architec-
tures have been proposed for this task (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Cho et al., 2014; Gehring et al., 2017; Vaswani
et al., 2017), but the attention-based NMT model
designed by Bahdanau et al. (2015) is still con-
sidered the de-facto baseline. This architecture
is composed of two recurrent neural networks
(RNNs), an encoder and a decoder, and an at-
tention mechanism between them for modeling a

(a) Baseline NMT decoder (b) Self-attentive residual dec.

Figure 1: Comparison between the decoder of the base-
line NMT and the proposed decoder with self-attentive
residual connections.

soft word-alignment. First, the model encodes the
complete source sentence, and then decodes one
word at a time. The decoder has access to all the
context on the source side through the attention
mechanism. However, on the target side, the con-
textual information is represented only through a
fixed-length vector, namely the hidden state of the
decoder. As observed by Bahdanau et al. (2015),
this creates a bottleneck which hinders the ability
of the sequential model to learn longer-term infor-
mation effectively.

As pointed out by Cheng et al. (2016), sequen-
tial models present two main problems for natural
language processing. First, the memory of the en-
coder is shared across multiple words and is prone
to bias towards the recent past. Second, such mod-
els do not fully capture the structural composition
of language. To address these limitations, several
recent models have been proposed, namely mem-
ory networks (Cheng et al., 2016; Tran et al., 2016;
Wang et al., 2016) and self-attention networks
(Daniluk et al., 2016; Liu and Lapata, 2018). We
experimented with these methods, applying them
to NMT: memory RNN (Cheng et al., 2016) and
self-attentive RNN (Daniluk et al., 2016). How-
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ever, we observed no significant gains in perfor-
mance over the baseline architecture.

In this paper, we propose a self-attentive resid-
ual recurrent decoder, presented in Figure 1b,
which, if unfolded over time, represents a densely-
connected residual network. The self-attentive
residual connections focus selectively on previ-
ously translated words and propagate useful in-
formation to the output of the decoder, within
an attention-based NMT architecture. The at-
tention paid to the previously predicted words is
analogous to a read-only memory operation, and
enables the learning of syntactic-like structures
which are useful for the translation task.

Our evaluation on three language pairs shows
that the proposed model improves over several
baselines, with only a small increase in compu-
tational overhead. In contrast, other similar ap-
proaches have lower scores but a higher compu-
tational overhead. The contributions of this paper
can be summarized as follows:

• We propose and compare several options for
using self-attentive residual learning within a
standard decoder, which facilitates the flow of
contextual information on the target side.
• We demonstrate consistent improvements over

a standard baseline, and two advanced variants,
which make use of memory and self-attention
on three language pairs (English-to-Chinese,
Spanish-to-English, and English-to-German).
• We perform an ablation study and analyze the

learned attention function, providing additional
insights on its actual contributions.

2 Related Work

Several studies have been proposed to enhance
sequential models by capturing longer contexts.
Long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) is the most commonly used
recurrent neural network (RNN), because its in-
ternal memory allows to retain information from
a more distant past than a vanilla RNN. Several
studies attempt to increase the memory capacity
of LSTMs by using memory networks (Weston
et al., 2015; Sukhbaatar et al., 2015). For instance,
Cheng et al. (2016) incorporate different mem-
ory cells for each previous output representation,
which are later accessed by an attention mecha-
nism. Tran et al. (2016) include a memory block
to access recent input words in a selective manner.
Both methods show improvements on language

modeling. For NMT, Wang et al. (2016) presented
a decoder enhanced with an external shared mem-
ory. Memory networks extend the capacity of the
network and have the potential to read, write, and
forget information. Our method, which attends
over previously predicted words, can be seen as a
read-only memory, which is simpler but computa-
tionally more efficient because it does not require
additional memory space.

Other studies aim to improve the modeling
of source-side contextual information, for exam-
ple through a context-aware encoder using self-
attention (Zhang et al., 2017), or a recurrent atten-
tion NMT (Yang et al., 2017) that is aware of pre-
viously attended words on the source-side in or-
der to better predict which words will be attended
in future. Additionally, variational NMT (Zhang
et al., 2016a) introduces a latent variable to model
the underlying semantics of source sentences. In
contrast to these studies, we focus instead on the
contextual information on the target side.

The application of self-attention mechanisms to
RNNs have been previously studied, and in gen-
eral, they seem to capture syntactic dependen-
cies among distant words (Liu and Lapata, 2018;
Soltani and Jiang, 2016; Lee et al., 2017; Lin et al.,
2017). Daniluk et al. (2016) explore different ap-
proaches to self-attention for language modeling,
leading to improvements over a baseline LSTM
and over memory-augmented methods. However,
the methods do not fully utilize a longer context.
The main difference with our approach is that we
apply attention on the output embeddings rather
than the hidden states. Thus, the connections are
independent of the recurrent layer representations,
which is beneficial to NMT, as we show below.

Our model relies on residual connections,
which have been shown to improve the learning
process of deep neural networks by addressing
the vanishing gradient problem (He et al., 2016).
These connections create a direct path from pre-
vious layers, helping the transmission of informa-
tion. Recently, several architectures using resid-
ual connections with LSTMs have been proposed
for sequence prediction (Zhang et al., 2016b; Kim
et al., 2017; Zilly et al., 2017; Wang and Tian,
2016). To our knowledge, our study is the first one
to use self-attentive residual connections within
residual RNNs for NMT. In parallel to our study,
a similar method was recently proposed for senti-
ment analysis (Wang, 2017).
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3 Background: Neural Machine
Translation

Neural machine translation aims to compute the
conditional distribution of emitting a sentence in
a target language given a sentence in a source
language, denoted by pΘ(y|x), where Θ is the
set of parameters of the neural model, and y =
{y1, ..., yn} and x = {x1, ..., xm} are respectively
the representations of source and target sentences
as sequences of words. The parameters Θ are
learned by training a sequence-to-sequence neural
model on a corpus of parallel sentences. In par-
ticular, the learning objective is to maximize the
following conditional log-likelihood:

max
Θ

1

N

N∑

n=1

log(pΘ(y|x)) (1)

The models typically use gated recurrent units
(GRUs) (Cho et al., 2014) or LSTMs (Hochreiter
and Schmidhuber, 1997). Their architecture has
three main components: an encoder, a decoder,
and an attention mechanism.

The goal of the encoder is to build meaningful
representations of the source sentences. It consists
of a bidirectional RNN which includes contextual
information from past and future words into the
vector representation hi of a particular word vector
xi, formally defined as follows:

hi = [
−→
hi ,
←−
hi ] (2)

Here,
−→
hi = f(xi, hi−1) and

←−
hi = f(xi, hi+1)

are the hidden states of the forward and backward
passes of the bidirectional RNN respectively, and
f is a non-linear function.

The decoder (see Figure 1a) is in essence a re-
current language model. At each time step, it pre-
dicts a target word yt conditioned over the previ-
ous words and the information from the encoder
using the following posterior probability:

p(yt|y1, ..., yt−1, ct) ≈ g(st, yt−1, ct) (3)

where g is a non-linear multilayer function. The
hidden state of the decoder st is defined as:

st = f(st−1, yt−1, ct) (4)

and depends on a context vector ct that is com-
puted by the attention mechanism.

The attention mechanism allows the decoder to
select which parts of the source sentence are more

useful to predict the next output word. This goal is
achieved by considering a weighted sum over all
hidden states of the encoder as follows:

ct =
m∑

i=1

αtihi (5)

where αti is a weight calculated using a normalized
exponential function a, also known as alignment
function, which computes how good is the match
between the input at position i ∈ {1, ..., n} and
the output at position t:

αti = softmax(eti) (6)

eti = a(st−1, hi) (7)

Different types of alignment functions have been
used for NMT, as investigated by Luong et al.
(2015). Here, we use the one originally defined
by Bahdanau et al. (2015).

4 Self-Attentive Residual Decoder

The decoder of the attention-based NMT model
uses a skip connection from the previously pre-
dicted word to the output classifier in order to en-
hance the performance of translation. As we can
see in Eq. (3), the probability of a particular word
is calculated by a function g which takes as input
the hidden state of the recurrent layer st, the rep-
resentation of the previously predicted word yt−1,
and the context vector ct. Within g, these quanti-
ties are typically summed up after going through
simple linear transformations, hence the addition
of yt−1 is indeed a skip connection as in residual
networks (He et al., 2016). In theory, st should be
sufficient for predicting the next word given that it
is dependent on the other two local-context com-
ponents according to Eq. (4). However, the yt−1

quantity makes the model emphasize the last pre-
dicted word for generating the next word. How
can we make the model consider a broader con-
text?

To answer this question, we propose to include
into the decoder’s formula skip connections not
only from the previous time step yt−1, but from all
previous time steps from y0 to yt−1. This defines
a residual recurrent network which, unfolded over
time, can be seen as a densely connected residual
network. These connections are applied to all pre-
viously predicted words, and reinforce the mem-
ory of the recurrent layer towards what has been
translated so far. At each time step, the model

1368



decides which of the previously predicted words
should be emphasized to predict the next one. In
order to deal with the dynamic length of this new
input, we use a target-side summary vector dt that
can be interpreted as the representation of the de-
coded sentence until the time t in the word embed-
ding space. We therefore modify Eq. (3) replacing
yt−1 with dt:

p(yt|y1, ..., yt−1, ct) ≈ g(st, dt, ct) (8)

The replacement of yt−1 with dt means that the
number of parameters added to the model is de-
pendent only on the calculation of dt. Figure 1b
illustrates the change made to the decoder. We de-
fine two methods for summarizing the context into
dt, which are described in the following sections.

4.1 Mean Residual Connections
One simple way to aggregate information from
multiple word embeddings is by averaging them.
This average can be seen as the sentence represen-
tation until time t. We hypothesize that this repre-
sentation is more informative than using only the
embedding of the previous word. Formally:

davgt =
1

t− 1

t−1∑

i=1

yi (9)

4.2 Self-Attentive Residual Connections
Averaging is a simple and cheap way to aggregate
information from multiple words, but may not be
sufficient for all kinds of dependencies. Instead,
we propose a dynamic way to aggregate informa-
tion in each sentence, such that different words
have different importance according to their re-
lation with the prediction of the next word. We
propose to use a shared self-attention mechanism
to obtain a summary representation of the transla-
tion, i.e. a weighted average representation of the
words translated from y0 to yt−1. This mechanism
aims to model, in part, important non-sequential
dependencies among words, and serves as a com-
plementary memory to the recurrent layer.

dcavgt =
t−1∑

i=1

αtiyi (10)

αti = softmax(eti) (11)

The weights of the attention model are computed
by a scoring function eti that predicts how impor-
tant each previous word (y0, ..., or yt−1) is for the
current prediction yt.

We experiment with two different scoring func-
tions, as follows:

eti = vᵀtanh(Wyyi +Wsst) (content+scope) (12)

or eti = vᵀtanh(Wyyi) (content) (13)

where v ∈ Re, Wy ∈ Re×e, and Ws ∈ Re×d
are weight matrices, e and d are the dimensions
of the embeddings and hidden states respectively.
Firstly, we study the scoring function noted con-
tent+scope, as proposed by Bahdanau et al. (2015)
for NMT. Secondly, we explore a scoring func-
tion noted as content, which is calculated based
only on the previous hidden states of the decoder,
as proposed by Pappas and Popescu-Belis (2017).
In contrast to the first attention function, which
makes use of the hidden vector st, the second one
is based only on the previous word representa-
tions, therefore, it is independent of the current
prediction representation. However, the normal-
ization of this function still depends on t.

5 Other Self-Attentive Networks

To compare our approach with similar studies, we
adapted two representative self-attentive networks
for application to NMT.

5.1 Memory RNN
The Memory RNN decoder is based on the pro-
posal by Cheng et al. (2016) to modify an LSTM
layer to include a memory with different cells for
each previous output representation. Thus at each
time step, the hidden layer can select past infor-
mation dynamically from the memory. To adapt it
to our framework, we modify Eq. (4) as:

st = f(s̃t, yt−1, ct) (14)

where s̃t =
t−1∑

i=1

αtisi (15)

αti = softmax(eti) (16)

eti = a(hi, yt−1, s̃t−1) (17)

5.2 Self-Attentive RNN
The Self-Attentive RNN is the simplest one pro-
posed by Daniluk et al. (2016), and incorporates a
summary vector from past predictions calculated
with an attention mechanism. Here, the attention
is applied over previous hidden states. This de-
coder is formulated as follows:

p(yt|y1, ..., yt−1, ct) ≈ g(st, yt−1, ct, s̃t) (18)
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where s̃t =
t−1∑

i=1

αtisi (19)

αti = softmax(eti) (20)

eti = a(si, st) (21)

Additional details of the formulations in Sec-
tions 3, 4, and 5 are described in the Appendix A.

6 Experimental Settings

6.1 Datasets

To evaluate the proposed MT models in differ-
ent conditions, we select three language pairs
with increasing amounts of training data: English-
Chinese (0.5M sentence pairs), Spanish-English
(2.1M), and English-German (4.5M).

For English-to-Chinese, we use a subset of the
UN parallel corpus (Rafalovitch and Dale, 2009)1,
with 0.5M sentence pairs for training, 2K for
development, and 2K for testing. For training
Spanish-to-English MT, we use a subset of WMT
2013 (Bojar et al., 2013), corresponding to Eu-
roparl v7 and News Commentary v11 with ca.
2.1M sentence pairs. Newstest2012 and New-
stest2013 were used for development and test-
ing respectively. Finally, we use the complete
English-to-German set from WMT 2016 (Bojar
et al., 2016) with a total of ca. 4.5M sentence
pairs. The development set is Newstest2013, and
the testing set is Newstest2014. Additionally, we
include as testing sets Newstest2015 and New-
stest2016, for comparison with the state of the
art. We report translation quality using (a) BLEU
over tokenized and truecased texts, and (b) NIST
BLEU over detokenized and detruecased texts2.

6.2 Model Configuration

We use the implementation of the attention-based
NMT baseline provided in dl4mt-tutorial3

developed in Python using Theano (Theano De-
velopment Team, 2016). The system imple-
ments an attention-based NMT model, described
above, using one layer of GRUs (Cho et al.,
2014). The vocabulary size is 25K for English-
to-Chinese NMT, and 50K for Spanish-to-English
and English-German. We use the byte pair encod-
ing (BPE) strategy for out-of-vocabulary words

1http://www.uncorpora.org/
2Scrips from Moses toolkit (Koehn et al., 2007): BLEU multi-bleu,
NIST BLEU mteval-v13a.pl, tokenizer.perl, truecase.perl.

3https://github.com/nyu-dl/dl4mt-tutorial

|Θ||Θ||Θ| BLEU
Models En–Zh Es–En

SMT baseline – 21.6 25.2
NMT baseline 108.7M 22.6 25.4
+ Memory RNN 109.7M 22.5 25.5
+ Self-attentive RNN 110.2M 22.0 25.1
+ Mean residual connections 108.7M 23.6 25.7
+ Self-attentive residual connections 108.9M 24.0 26.3

Table 1: BLEU score (multi-bleu) on tokenized text.
The highest score per dataset is marked in bold. The
self-attentive residual connections make use of the con-
tent attention function. |Θ| indicates the number of pa-
rameters per model.

(Sennrich et al., 2016b). For all cases, the maxi-
mum sentence length of the training samples is 50,
the dimension of the word embeddings is 500, and
the dimension of the hidden layers is 1,024. We
use dropout with a probability of 0.5 after each
layer. The parameters of the models are initial-
ized randomly from a standard normal distribu-
tion scaled to a factor of 0.01. The loss function
is optimized using Adadelta (Zeiler, 2012) with
ε = 10−6 and ρ = 0.95 as in the original paper.
The systems were trained in 7–12 days for each
model on a Tesla K40 GPU at the speed of about
1,000 words/sec.

7 Analysis of the Results

Table 1 shows the BLEU scores and the number
of parameters used by the different NMT models.
Along with the NMT baseline, we included a sta-
tistical machine translation (SMT) model based on
Moses (Koehn et al., 2007) with the same train-
ing/tuning/test data as the NMT. The performance
of memory RNN is similar to the baseline and, as
confirmed later, its focus of attention is mainly on
the prediction at t − 1. The self-attentive RNN
method is inferior to the baseline, which can be
attributed to the overhead on the hidden vectors
that have to learn the recurrent representations and
the attention simultaneously. The proposed mod-
els outperform the baseline, and the best scores
are obtained by the NMT model with self-attentive
residual connections. Despite their simplicity, the
mean residual connections already improve the
translation, without increasing the number of pa-
rameters.

Tables 2 and 3 show further experiments with
the proposed methods on various English-German
test sets, compared to several previous systems.
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BLEU
Models NT14 NT15

NMT (unk. word repl.) (Luong et al., 2015) 20.9 –
Context-aware NMT (Zhang et al., 2017) 22.57 –
Recurrent attention NMT (Yang et al., 2017) 22.1 25.0
Variational NMT (Zhang et al., 2016a) – 25.49
NMT baseline 22.3 24.8
+ Memory RNN 22.6 24.9
+ Self-attentive RNN 22.0 24.3
+ Mean residual connections 22.9 24.9
+ Self-attentive residual connections 23.2 25.5

Table 2: BLEU score (multi-bleu) on tokenized text for
English-to-German on Newstest (NT) 2014, and 2015.
The highest score per dataset is marked in bold. The
self-attentive residual connections makes use of the
content attention function.

BLEU (NIST)
Models NT14 NT15 NT16

Winning WMT 20.1 24.4 34.2
NMT (BPE) (Sennrich et al., 2016b) – 22.8 –
Syntax NMT (Nadejde et al., 2017) – – 29.0
NMT Baseline 21.0 24.4 28.8
+ Mean residual connections* 21.4 24.7 29.6
+ Self-attentive residual connections** 21.7 25.0 29.7

Table 3: NIST BLEU scores on detokenized and de-
truecased text for English-to-German on Newstest (NT)
2014, 2015, 2016. Significance test: * p < 0.05, **
p < 0.01. The Winning WMT systems are listed in the
text below.

Table 2 shows BLEU values calculated by multi-
bleu, and includes the NMT system proposed by
Luong et al. (2015) which replaces unknown pre-
dicted words with the most strongly aligned word
on the source sentence. Also, the table includes
other systems described in Section 2. Addition-
ally, Table 3 shows values calculated by the NIST
BLEU scorer, as well as results reported by the
“Winning WMT” systems for each test set re-
spectively: UEDIN-SYNTAX (Williams et al.,
2014), UEDIN-SYNTAX (Williams et al., 2015),
and UEDIN-NMT (Sennrich et al., 2016a). Also,
we include the results reported by Sennrich et al.
(2016b) for a baseline encoder-decoder NMT with
BPE for unknown words similar to our configu-
ration, and finally the system proposed by Nade-
jde et al. (2017), an explicit syntax-aware NMT
that introduces combinatory categorial grammar
(CCG) supertags on the target side by predicting
words and tags alternately. The comparison with
this work is relevant for the analysis described

BLEU
Attention function En-Zh Es-En
Content+Scope 23.1 25.6
Content 24.0 26.3

Table 4: BLEU scores for two scoring variants of the
attention function of the proposed decoder.

later in Section 8.2. The results confirm that the
self-attentive residual connections improve signif-
icantly the translations. To evaluate the signifi-
cance of the improvements against the NMT base-
line, we performed a one-tailed paired t-test.

7.1 Impact of the Attention Function

We now examine the two scoring functions that
can be used for the self-attentive residual con-
nections model presented in Eq. (12), considering
English-to-Chinese and Spanish-to-English. The
BLEU scores are presented in Table 4: the best
option is the content matching function, which de-
pends only on the word embeddings. The con-
tent+scope function, which depends additionally
on the hidden representation of the current pre-
diction is better than the baseline but scores lower
than content. The idea that the importance of the
context depends on the current prediction is ap-
pealing, because it can be interpreted as learning
internal dependencies among words. However, the
experimental results show that it does not neces-
sarily lead to the best translation. On the contrary,
the content attention function may be extracting
representations of the whole sentence which are
easier to learn and generalize.

7.2 Performance According to Human
Evaluation

Manual evaluation on samples of 50 sentences
for each language pair helped to corroborate the
conclusions obtained from the BLEU scores, and
to provide a qualitative understanding of the im-
provements brought by our model. For each lan-
guage, we employed one evaluator who was a na-
tive speaker of the target language and had good
knowledge of the source language. The evalua-
tors ranked three translations of the same source
sentence – one from each of our models: base-
line, mean residual connections, and self-attentive
residual connections – according to their transla-
tion quality. The three translations were presented
in a random order, so that the system that had gen-
erated them could not be identified. To integrate
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Ranking (%)
System En–Zh Es–En En–De

> = < > = < > = <

Mean vs. Baseline 26 56 18 20 64 16 28 58 24
Self-attentive vs. Baseline 28 60 12 28 56 16 32 54 14
Self-attentive vs. Mean 24 62 14 28 58 14 32 56 12

Table 5: Human evaluation of sentence-level transla-
tion quality on three language pairs. We compare the
models in pairs, indicating the percentages of sentences
that were ranked higher (>), equal to (=), or lower (<)
for the first system with respect to the second one. The
values correspond to percentages (%).

Systems d Perplexity
LSTM (Daniluk et al., 2016) 300 85.2
LSTM + Attention (Daniluk et al., 2016) 296 82.0
LSTM + 4-gram (Daniluk et al., 2016) 968 75.9
LSTM + Mean residual connections 296 80.2
LSTM + Self-attentive residual connections 296 80.4

Table 6: Evaluation of the proposed methods on lan-
guage modeling. The number of parameter for all mod-
els is 47M.

the judgments, we proceed in pairs, and count the
number of times each system was ranked higher,
equal to, or lower than another competing sys-
tem. The results shown in Table 5 indicate that
the self-attentive residual connections model out-
performs the one with mean residual connections,
and both outperform the baseline, for all three lan-
guage pairs. The rankings are thus identical to
those obtained using BLEU in Tables 1 and 3.

7.3 Performance on Language Modeling
To examine whether language modeling (LM) can
benefit from the proposed method, we incorporate
the residual connections into a neural LM. We use
the same setting as Daniluk et al. (2016) for a cor-
pus of Wikipedia articles (22.5M words), and we
compare with two methods proposed in the same
paper, namely attention LSTM and 4-gram LSTM.
As shown in Table 6, the proposed models out-
perform the LSTM baseline as well as the self-
attention model, but not the 4-gram LSTM. Ex-
periments using 4-gram LSTM for NMT showed
poor performance (13.9 BLEU points for English-
Chinese) which can be attributed to the difference
between the LM and NMT tasks. Both tasks pre-
dict one word at a time conditioned over previ-
ous words, however, in NMT the previous target-
word-inputs are not given, they have to be gener-
ated by the decoder. Thus, the output could be
conditioned over previous erroneous predictions

Figure 2: Percentage of words that received maximum
attention at a given relative position, ranging from −1
to −50 (maximum length).

affecting in higher proportion the 4-gram LSTM
model. This shows that even if a model improves
language modeling, it does not necessarily im-
prove machine translation.

8 Qualitative Analysis

8.1 Distribution of Attention

Figure 2 shows a comparison of the distribution of
attention of the different self-attentive models de-
scribed in this paper, on Spanish-to-English NMT
(the other two language pairs exhibit similar distri-
butions). The values correspond to the number of
words which received maximal attention for each
relative position (x-axis). We selected, at each pre-
diction, the preceding word with maximal weight,
and counted its relative position. We normalized
the count by the number of previous words at the
time of each prediction.

We observe that the memory RNN almost al-
ways selects the immediately previous word (t−1)
and ignores the rest of the context. On the con-
trary, the other two models distribute attention
more evenly among all previous words. In partic-
ular, the self-attentive RNN uses a longer context
than the self-attentive residual connections but, as
the performance on BLEU score shows, this fact
does not necessarily mean better translation.

Figure 3 shows the attention to previous words
generated by each model for one sentence trans-
lated from Spanish to English. The matrices
present the target-side attention weights, with the
vertical axis indicating the previous words, and the
color shades at each position (cell) representing
the attention weights. The weights of the mem-
ory RNN are concentrated on the diagonal, indi-
cating that the attention is generally located on
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(a) Memory RNN (b) Self-attentive RNN (c) Self-attentive residual connections

Figure 3: Matrix of distribution of the attention weights to previous words. The vertical axis represents the previous
words. A darker shade indicates a higher attention weight.

Algorithm 1 Binary Parse Tree
Require: A matrix of attention of size N ×N
Require: s sentence as list of words of size N

1: function SPLIT(tree,A, s)
2: n← length(s)
3: i← 0
4: while max(A[:][i]) = 0 or i < n do
5: i← i+ 1
6: end while
7: tree.addChild(s[0 : i])
8: if i < n then
9: subtree← newTree()

10: SPLIT(subtree,A[i : n][i : n], s[i : n]))
11: tree.addChild(subtree)
12: end if
13: end function
14: tree← newTree(); SPLIT(tree,A, s)

the previous word, which makes the model al-
most equivalent to the baseline. The weights of
the self-attentive RNN show that attention is more
distributed towards the distant past, and they vary
for each word because the attention function de-
pends on the current prediction. This model tries
to find dependencies among words, although com-
plex relations seem difficult to learn. On the con-
trary, the proposed self-attentive residual connec-
tions model strongly focuses on particular words,
and we present a wider analysis of it in the follow-
ing section.

8.2 Structures Learned by the Model

When visualizing the matrix of attention weights
generated by our model (Figure 3c), we observed
the formation of sub-phrases which are grouped
depending on their attention to previous words.
To build the sub-phrases in a deterministic fash-
ion, we implemented Algorithm 1, which itera-
tively splits the sentence into two sub-phrases ev-
ery time the focus of attention changes to a new
word, from left-to-right. The results are binary
tree structures containing the sub-phrases, exem-

Figure 4: Examples of hypothesized syntactic struc-
tures obtained with Algorithm 1.

plified in Figure 4.
We formally evaluate the syntactic properties

of the binary tree structures by comparing them
with the results of an automatic constituent parser
(Manning et al., 2014), using the ParsEval ap-
proach (Black et al., 1991), i.e. by counting the
precision and recall of constituents, excluding sin-
gle words. Our models reaches a precision of 0.56,
which is better than the precision of 0.45 obtained
by a trivial right-branched tree model4. Note that
these structures were neither optimized for pars-
ing nor learned using part-of-speech tagging as
most parsers do. Our interpretation of the results
is that they are “syntactic-like” structures. How-
ever, given the simplicity of the model, they could

4A model constructed by dividing iteratively one word and the rest
of the sentence, from left-to-right.
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Better than baseline
S: Estudiantes y profesores se están tomando a la ligera la

fecha.
R: Students and teachers are taking the date lightly.
B: Students and teachers are being taken lightly to the

date.
O: Students and teachers are taking the date lightly.
S: No porque compartiera su ideologı́a, sino porque para

él los Derechos Humanos son indivisibles.
R: Not because he shared their world view, but because for

him, human rights are indivisible.
B: Not because I share his ideology, but because he is in-

divisible by human rights.
O: Not because he shared his ideology, but because for

him human rights are indivisible.
Worse than baseline

S: El gobierno intenta que no se construyan tantas casas
pequeñas.

R: The Government is trying not to build so many small
houses.

B: The government is trying not to build so many small
houses.

O: The government is trying to ensure that so many
small houses are not built.

S: Otras personas pueden tener niños .
R: Other people can have children.
B: Other people can have children.
O: Others may have children.

Table 7: Examples from Spanish to English.

also be viewed as more limited structures, similar
to sentence chunks.

8.3 Translation Examples
Table 7 shows examples of translations produced
with the baseline and the self-attentive residual
connections model. The first part shows examples
for which the proposed model reached a higher
BLEU score than the baseline. Here, the structure
of the sentences, or at least the word order, are im-
proved. The second part contains examples where
the baseline achieved better BLEU score than our
model. In the first example, the structure of the
sentence is different but the content and quality
are similar, while in the second one lexical choices
differ from the reference.

9 Conclusion

We presented a novel decoder which uses self-
attentive residual connections to previously trans-
lated words in order to enrich the target-side con-
textual information in NMT. To cope with the vari-
able lengths of previous predictions, we proposed
two methods for context summarization: mean
residual connections and self-attentive residual

connections. Additionally, we showed how sim-
ilar previous proposals, designed for language
modeling, can be adapted to NMT. We evaluated
the methods over three language pairs: Chinese-
to-English, Spanish-to-English, and English-to-
German. In each case, we improved the BLEU
score compared to the NMT baseline and two vari-
ants with memory-augmented decoders. A man-
ual evaluation over a small set of sentences for
each language pair confirmed the improvement.
Finally, a qualitative analysis showed that the pro-
posed model distributes weights throughout an
entire sentence, and learns structures resembling
syntactic ones.

As future work, we plan to enrich the present at-
tention mechanism with the key-value-prediction
technique (Daniluk et al., 2016; Miller et al., 2016)
which was shown to be useful for language mod-
eling. Moreover, we will incorporate relative po-
sitional information to the attention function. To
encourage further research in self-attentive resid-
ual connections for NMT an other similar tasks,
our code is made publicly available5.
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A Detailed Architecture

This appendix describes in detail the implemen-
tation of the self-attentive residual decoder for

NMT, which builds on the attention-based NMT
implementation of dl4mt-tutorial6.

The input of the model is a source sentence de-
noted as 1-of-k coded vector, where each element
of the sequence corresponds to a word:

x = (x1, x2, ..., xm), xi ∈ RV

and the output is a target sentence denoted as well
as 1-of-k coded vector:

y = (y1, y2, ..., yn), yi ∈ RV

where V is the size of the vocabulary of target and
source side, m and n are the lengths of the source
and target sentences respectively. We omit the bias
vectors for simplicity.

A.1 Encoder
Each word of the source sentence is embedded in
a e-dimensional vector space using the embedding
matrix Ē ∈ Re×V . The hidden states are 2d-
dimensional vectors modeled by a bi-directional
GRU. The forward states

−→
h = (

−→
h 1, ...,

−→
h m) are

computed as:

−→
h i = −→z i �

−→
h i−1 + (1−−→z i)�

−→
h ′i

where

−→
h ′i = tanh(

−→
WĒxi +

−→
U [−→r i �

−→
h i−1])

−→z i = σ(
−→
W zĒxi +

−→
U z
−→
h i−1)

−→r i = σ(
−→
W rĒxi +

−→
U r
−→
h i−1)

Here,
−→
W,
−→
W z,
−→
W r ∈ Rd×e and

−→
U ,
−→
U z,
−→
U r ∈

Rd×d are weight matrices. The backward states←−
h = (

←−
h 1, ...,

←−
h m) are computed in similar man-

ner. The embedding matrix Ē is shared for both
passes, and the final hidden states are formed by
the concatenation of them:

hi =

[−→
h i←−
h i

]

A.2 Attention Mechanism
The context vector at time t is calculated by:

ct =
m∑

i=1

αtihi

6https://github.com/nyu-dl/dl4mt-tutorial
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where

αti =
exp(eti)∑
j exp(e

t
j)

eti = vᵀatanh(Wdst−1 +Wehi)

Here, va ∈ Rd, Wd ∈ Rd×d and We ∈ Rd×2d are
weight matrices.

A.3 Decoder
The input of the decoder are the previous word
yt−1 and the context vector ct, the objective is
to predict yt. The hidden states of the decoder
s = (s1, ..., sn) are initialized with the mean of
the context vectors:

s0 = tanh(Winit
1

m

m∑

i=1

ci)

where Winit ∈ Rd×2d is a weight matrix, m is the
size of the source sentence. The following hidden
states are calculated with a GRU conditioned over
the context vector at tine t as follows:

st = zt � s′t + (1− zt)� s′′t
where

s′′t = tanh(Eyt−1 + U [rt � st−1] + Cct)

zi = σ(WzEyt−1 + Uzst−1 + Czct)

ri = σ(WrEyt−1 + Urst−1 + Crct)

Here, E ∈ Re×V is the embedding matrix for the
target language. W,Wz,Wr ∈ Rd×e, U,Uz, Ur ∈
Rd×d, and C,Cz, Cr ∈ Rd×2d are weight matri-
ces. The intermediate vector s′t is calculated from
a simple GRU:

s′t = GRU(yt−1, st−1)

In the attention-based NMT model, the proba-
bility of a target word yt is given by:

p(yt|st, yt−1, ct) = softmax(Wotanh(

Wstst +Wytyt−1 +Wctct))

Here, Wo ∈ RV×e, Wst ∈ Re×d, Wyt ∈ Re×e,
Wct ∈ Re×2d are weight matrices.

A.3.1 Self-Attentive Residual Connections
In our model, the probability of a target word yt is
given by:

p(yt|st, dt, ct) = softmax(Wotanh(

Wstst +Wdtdt +Wctct))

Here, Wo ∈ RV×e, Wst ∈ Re×d, Wdt,Wyt ∈
Re×e, Wct ∈ Re×2d are weight matrices. The
summary vector dt can be calculated in different
manners based on previous words y1 to yt−1. First,
a simple average:

davgt =
1

t− 1

t−1∑

i=1

yi

The second, by using an attention mechanism:

dcavgt =
t−1∑

i=1

αtiyi

αti =
exp(eti)∑t−1
j=1 exp(e

t
j)

eti = vᵀtanh(Wyyi)

where v ∈ Re, Wy ∈ Re×e are weight matrices.

A.3.2 Memory RNN
This model modifies the recurrent layer of the de-
coder as follows:

st = zt � s′t + (1− zt)� s′′t

where

s′′t = tanh(Eyt−1 + U [rt � s̃t] + Cct)

zi = σ(WzEyt−1 + Uz s̃t + Czct)

ri = σ(WrEyt−1 + Urs̃t + Crct)

Here, E ∈ Re×V is the embedding matrix for the
target language. W,Wz,Wr ∈ Rd×e, U,Uz, Ur ∈
Rd×d, and C,Cz, Cr ∈ Rd×2d are weight matri-
ces. The intermediate vector s′t is calculated from
a simple GRU:

s′t = GRU(yt−1, s̃t)

The recurrent vector s̃t is calculated as following:

s̃t =

t−1∑

i=1

αtisi

where αti =
exp(eti)∑t−1
j=1 exp(e

t
j)

eti = vᵀtanh(Wmsi +Wsst)

where v ∈ Rd, Wm ∈ Rd×d, and Ws ∈ Rd×d are
weight matrices.
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A.3.3 Self-Attentive RNN
The formulation of this decoder is as following:

p(yt|y1, ..., yt−1, ct) ≈ softmax(Wotanh(

Wstst +Wytyt−1 +Wctct +Wmts̃t))

Here, Wo ∈ RV×e, Wst ∈ Re×d, Wyt ∈ Re×e,
Wct ∈ Re×2d, and Wmt ∈ Re×d are weight matri-
ces.

s̃t =
t−1∑

i=1

αtisi

αti =
exp(eti)∑t−1
j=1 exp(e

t
j)

eti = vᵀtanh(Wmsi +Wsst)

where v ∈ Rd, Wm ∈ Rd×d, and Ws ∈ Rd×d are
weight matrices.
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Abstract

in neural machine translation, an attention
model is used to identify the aligned source
words for a target word （target foresight
word）in order to select translation con-
text, but it does not make use of any in-
formation of this target foresight word at
all. previous work proposed an approach
to improve the attention model by explic-
itly accessing this target foresight word
and demonstrated the substantial gains in
alignment task. however, this approach
is useless in machine translation task on
which the target foresight word is unavail-
able. in this paper, we propose a new
attention model enhanced by the implicit
information of target foresight word ori-
ented to both alignment and translation
tasks. empirical experiments on chinese-
to-english and japanese-to-english datasets
show that the proposed attention model
delivers significant improvements in terms
of both alignment error rate and bleu.

1 Introduction

Since neural machine translation (NMT) was
proposed (Bahdanau et al., 2014), it has
been attracted increasing interests in machine
translation community (Luong et al., 2015b;
Tu et al., 2016; Feng et al., 2016; Cohn
et al., 2016). NMT not only yields impressive
translation performance in practice, but also
has appealing model architecture in essence.
Compared with traditional statistical machine
translation (Koehn et al., 2003; Chiang, 2005),
one of advantages in NMT is that its archi-
tecture combines language model, translation
model and alignment between source and tar-
get words in a unified manner rather than a

∗Work done when X. Li interning at Tencent AI
Lab. L. Liu is the corresponding author.

fă guó shī yè rén shù zài dù huí shēng </S>
法国 失业 人数 再度 回升 </S>

French unemployment rate rises again </S>

(a) Baseline

fă guó shī yè rén shù zài dù huí shēng </S>
法国 失业 人数 再度 回升 </S>

French unemployment rises again </S>
JJ NN VBZ RB EOS

(b) TFA-NMT

French unemployment rises again </S>

(c) Reference

Figure 1: A running example to motivate the pro-
posed model. (a) The baseline obtains a transla-
tion error due to the incorrect attention. (b) With
the help of the target foresight information “VBZ”,
TFA-NMT is likely to figure out the exact transla-
tion as the reference in (c). The light font denotes
the target words to be translated in future. Both
dashed or solid arrowed lines denote the alignments
and solid one denotes the 1-best alignment.

pipeline manner, and it thereby has the poten-
tial to alleviate the issue of error propagation.

In NMT, the attention mechanism plays an
important role. It calculates the alignments of
a target word with respect to the source words
for translation context selection. Although the
source words are always available in inference,
the target word, called target foresight word, 1

1Note that the concept of foresight word in our
translation task is not exactly the same as the original
concept in alignment task (Peter et al., 2017). How-
ever, both of them share a common idea that foresight
word should be at a later time step, and thus we re-
spect the work in Peter et al. (2017) and maintain the
same concept for easier understanding.
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i.e. the first light color word in Figure 1(a), is
not known but to be translated at the next
time step. Therefore, this may lead to inade-
quate modeling for attention mechanism (Liu
et al., 2016a; Peter et al., 2017). Regarding to
this, Peter et al. (2017) explicitly feed this tar-
get word into the attention model, and demon-
strate the significant improvements in align-
ment accuracy. Unfortunately, this approach
relies on the premise that the target foresight
word is available in advance in its alignment
scenario, and thus it can not be used in the
translation scenario.

To address this issue, in this paper, we pro-
pose a target foresight based attention (TFA)
model oriented to both alignment and trans-
lation tasks. Its basic idea includes two steps:
it firstly designs an auxiliary mechanism to
predict some information for the target fore-
sight word which is helpful for alignment; and
then it feeds the predicted result into the at-
tention model for translation. For the sake
of efficiency, instead of predicting the target
foresight word with large vocabulary size, we
only predict its partial information, i.e. part-
of-speech tag, which is proved to be helpful for
word alignment (Liu et al., 2005). Figure 1(b)
shows the main idea of TFA based on NMT. In
order to remit the negative effects due to the
prediction errors, we feed the distribution of
the prediction result instead of the maximum
a posteriori result into the attention model. In
addition, since the target foresight words are
available during the training, we jointly learn
the prediction model for the target foresight
words and the translation model in a super-
vised manner.

This paper makes the following contribu-
tions:

• It proposes a novel TFA-NMT for neural
machine translation by using an auxiliary
mechanism to predict the target foresight
word which is subsequently used to en-
hance the attention model.

• It empirically shows that the proposed
TFA-NMT can lead to better align-
ment accuracy, and achieves signifi-
cant improvements on both Chinese-to-
English and Japanese-to-English transla-
tion tasks.

2 Background
Given a source sentence x = {x1, . . . , xm}
with length m and a target sentence y =
{y1, . . . , yn} with length n, neural machine
translation aims to model the conditional
probability P (y | x):

P (y | x) =

n∏

i=1

P (yi | y<i,x) , (1)

where y<i = {y1, . . . , yi−1} denotes a prefix of
y with length i− 1.

To achieve this, neural machine transla-
tion adopts recurrent neural network (RNN)
under the encoder-decoder framework (Bah-
danau et al., 2014). In encoding, an en-
coder reads the source sentence x into a se-
quence of representation vectors by a bidirec-
tional recurrent neural network. Suppose hi

denotes the representation vector for xi, and
let h = {h1, . . . , hm}. In decoding, a decoder
sequentially generates a target word according
to P (yi | y<i,x) by using another RNN.

In Eq.(1), the distribution P (yi | y<i,x) is
used to generate yi as follows:

P (yi | y<i,x) = softmax (ϕ (yi−1, si, ci)) ,
(2)

where ϕ represents a feedforward neural net-
work, ci is the context vector from h to infer
yi, and si denotes the hidden state at times-
tamp i via the decoding RNN represented by
f :

si = f (si−1, yi−1, ci) . (3)
Bahdanau et al. (2014) propose an atten-

tion model to define the context ci, inspired
by the alignment model in statistical machine
translation.

Given the last hidden state si−1 and the en-
coding vectors h, an attention model is based
on a distribution consisting of αij as follows:

αij =
exp (eij)∑m

k=1 exp (eik)
,

where eij is computed by a feedforward neural
network represented by a:

eij = a (si−1, hj) . (4)

The quantity αij denotes the possibility of tar-
get word yi aligns to the source word xj en-
coded by hj . According to αij , the context
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vector ci is defined as the weighted sum of h:

ci =

m∑

j=1

αijhj . (5)

In this way, when translating the target word
yi, the decoder will pay more attention to its
aligned source words with respect to the dis-
tribution αi = {αi1, · · · , αim}. Figure 2 shows
a slice of the entire architecture for NMT at
timestamp i.

sisi−1

ciαi

h

· · · · · ·

yiyi−1

x

Figure 2: One slice of the architecture of Neural
Machine Translation based on a generic attention.

Unfortunately, even though the entire trans-
lation y is available in training, during the in-
ference it is unknown in advance but to be
generated sequentially. Specifically, when cal-
culating αi, one can make use of the informa-
tion only from x and y<i but nothing from
yi. Therefore, it is difficult to certainly spec-
ify which source words should be aligned to
an unknown target word yi. This might lead
to the inadequacy of the attention model (Liu
et al., 2016a; Peter et al., 2017), as explained
in Figure 1(a).

3 Target Foresight Attention

In order to alleviate the issue of inadequate
modeling for attention in NMT, in this sec-
tion, we propose the target foresight attention
for NMT, which foresees some related infor-
mation of the unknown target foresight word
to improve its alignments regarding to source
words. The basic idea of the proposed atten-
tion model includes two steps as following:

• It firstly introduce a model to predict
some information of the target foresight
word. (§3.1)

• It then feeds the predicted result about
the foresight target word into the atten-
tion as an additional input. (§3.2)

Therefore, as shown in Figure 1(b), when
translating the third word, if the prediction
model shows it to be a “VBZ”, the attention
model is likely to align it to the verb words
such as “huí shēng” rather than “rén shù” in
the source side, and then the corrected word
“rises” will be translated.

3.1 Target Foresight Prediction
Ideally, it is possible to build a model to di-
rectly predict the target foresight word itself.
In practice, it will be inefficient due to its large
vocabulary size. As a result, we instead build a
model to predict the partial information of the
target foresight word, such as part-of-speech
(POS) tag or word cluster, which has limited
vocabulary size. In this paper, we use the POS
tag as the partial information of a target fore-
sight word because POS tag is helpful to word
alignment proved by Liu et al. (2005). Fur-
thermore, predicting a POS tag is easier than
a target foresight word, so the predicted re-
sult will be more reliable for the downstream
application on attention.

Suppose ui denotes a variable indicating the
POS tag of a target foresight word yi. Our aim
is to define a prediction model of ui prior to
calculate the attention probability. For sim-
plicity, this prediction model is generally rep-
resented as βi = P (ui | y<i,x). We consider
three variant prediction models in a coarse-to-
fine manner as follows.

3.1.1 Model 1
It is straightforward to define this prediction
model directly based on the hidden states of
the RNN in decoder by using a neural network.
Formally, one can use the following equation:
βi = P (ui | y<i,x) = softmax (ψ(yi−1, si−1)) ,

(6)
where ψ is implemented by a feedforward neu-
ral network. Note that Eq.(6) only depends
on the decoding RNN hidden state si−1 and it
is very simple to implementation. Figure 3(a)
shows its architecture.

3.1.2 Model 2
Unlike Eq.(6) relying on the same hidden si−1

as the decoder, we design a specialized RNN
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βisi−1

(a) model 1

titi−1

βi

· · · · · ·

yi−1

(b) model 2

titi−1

βi

c′i

· · · · · ·

yi−1

(c) model 3

Figure 3: The prediction coarse-to-fine models for target foresight information: (a) Model 1 using only
the decoding hidden state si−1. (b) Model 2 using a hidden state ti from a specialized RNN. (c) Models
using a hidden state from a specialized RNN enhanced by the representation vector c′i of x similar to
Eq.(5).

to provide a particular hidden state for pre-
diction of ui. This improved prediction model
is defined as follows:

βi = P (ui | y<i,x) = softmax (ψ(yi−1, ti)) ,
(7)

where ti is the hidden state of the special-
ized RNN defined by a GRU unit, i.e. ti =
g(ti−1, yi−1). This prediction model architec-
ture is shown in Figure 3(b).

3.1.3 Model 3
In model 2, the specialized RNN for ui only
cares about the target sentence y and ignores
the information from the source sentence x.
We define a fine-grained model by taking a
context vector c′i from x as an additional in-
put:

βi = P (ui | y<i,x) = softmax
(
ψ(yi−1, ti, c

′
i)

)
,

(8)
where c′i is a context vector extracted from x
in a way similar to ci in Eq.(5),2 and ti =
g(ti−1, yi−1, c

′
i) is the hidden state of the spe-

cialized RNN. The architecture of this model
is shown in Figure 3(c).

3.2 Feeding the Prediction Model
Suppose we have the prediction result P (ui |
y<i,x), then we consider to feed it into the at-
tention model. Firstly, it is natural to feed the
prediction into attention by using maximum a
posteriori (MAP) strategy:

eij = a(si−1, hj , zi), (9)
2In our preliminary experiments, we tried ci, but we

found c′
i performs better.

where a is the function for attention similar
to Eq.(4) but includes an additional input zi,
which is the MAP result of P (ui | y<i,x):

zi = z
(

argmax
ui

P (ui | y<i,x)
)
, (10)

where z denotes the embeddings of the POS
tags of target foresight words, and z(ui) re-
turns the embedding of a particular POS tag
ui.

Note that in Eq.(10) the accuracy of P (ui |
y<i,x) is important to the attention model.
For example, suppose at timestamp i, the
ground-truth POS tag is “NN”, but one has
P (ui = NN | y<i,x) = 0.4 and P (ui = VV |
y<i,x) = 0.41. In this case, the prediction
model selects “VV” as the POS tag of the
target foresight word and ignores the ground-
truth tag “NN”. Then the attention model
takes this error signal and may align the target
foresight word to a verb word. Subsequently,
this might lead to a translation error.

Therefore, we propose another method to
integrate the expected embedding of ui ac-
cording to P (ui | y<i,x) into attention as fol-
lows:

zi =
∑

ui

z(ui)P (ui | y<i,x) . (11)

In this way, zi can take into account all pos-
sible POS tags ui including the ground-truth
result.

Until now, we can obtain the entire archi-
tecture of the proposed target foresight at-
tention based NMT (TFA-NMT), as shown in
Figure 4. Comparing Figure 4 with Figure 2,
the only difference is the variable zi, which is
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sisi−1

ciαizi

h

· · · · · ·

yiyi−1

xz

βi

Figure 4: Neural machine translation with target
Foresight attention. βi is derived from Figure 3, zi

is from Eq.(10-11), and other nodes are similar to
ones in Figure 2.

obtained from Eq.(10-11) and the prediction
model as shown in Figure 3.

Note that the proposed TFA-NMT models
the target foresight word, which is a future
word regarding to the current time step, to
conduct attention calculation. In this sense, it
employs the idea of modeling future and thus
resembles to the work in (Zheng et al., 2017).
The main difference is that TFA-NMT models
the future from the target side whereas Zheng
et al. (2017) models the future from the source
side. In addition, Weng et al. (2017) imposes
a regularization term by using future words
during training. Unlike our approach, their
approach does not use future words during the
inference because these words are unavailable.
Anyway, it is possible to put both their ap-
proach and our approach together for further
improvements.

3.3 Learning and Inference
Suppose a set of training data is denoted by{⟨

xk,yk,uk
⟩

| k = 1, · · · ,K
}

. Here xk, yk

and uk denotes a source sentence, a target sen-
tence and a POS tag sequence of yk, respec-
tively. Then one can jointly train both the
translation model for yk and the prediction
model for uk by minimizing the loss function:

ℓ = −
∑

k

∑

i

(
logP (yk

i | yk
<i,xk)+

λ logP (uk
i | yk

<i,xk)
)
, (12)

where P (yk
i | yk

<i,xk) is the translation model
similar to Eq.(2) with target foresight atten-
tion, and P (uk

i | yk
<i,xk) is the target fore-

sight prediction model as defined in Eq.(6-8),

respectively. λ ≥ 0 is a hyper-parameter that
balances the preference between the trans-
lation model and target foresight prediction
model.

According to the training objective, the pro-
posed TFA-NMT resembles to the multi-task
learning, since it jointly learns two tasks simi-
lar to (Evgeniou and Pontil, 2004; Luong et al.,
2015a). The difference of our approach is ob-
viously: in this work the prediction result of
one model is integrated into the other model,
while in their works, two models only share
some common hidden states.

In inference, we implement two different de-
coding methods according two different ways
to integrate the foresight prediction model into
attention as described in §3.2. For the MAP
feeding style, we optimize ui according to the
loss function in Eq.(12) by beam search be-
sides optimizing yi. However, for the expec-
tation feeding style, we maintain the standard
beam search algorithm only regarding to the
translation model, i.e. by setting λ = 0.

4 Experiments

We conduct experiments on Chinese-to-
English and Japanese-to-English translation
tasks. The specific analyses are based on
Chinese-to-English task, and the generaliza-
tion ability is shown by Japanese-to-English
task. Case-insensitive 4-gram BLEU is used
to evaluate translation quality, and the multi-
bleu.perl is adopted as its implementation.

4.1 Setup
Data The training data for Chinese-to-
English task consists of 1.8M sentence pairs
from NIST2008 Open Machine Campaign,
with 40.1M Chinese words and 48.3M En-
glish words respectively. The development set
is chosen as NIST2002 (878 sentences) and
the test sets are NIST2005 (1082 sentences),
NIST2006 (1664 sentences), and NIST2008
(1357 sentences).

For Japanese-to-English translation, we
adopt the data sets from NTCIR-9 patent
translation task (Goto et al., 2013). The
training data consists of 2.0M sentence pairs
with 53.4M Japanese words and 49.3M English
words, the development and test sets respec-
tively contain 2000 sentences with a single ref-
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Model # Para. Speed Performance
Train Decode BLEU FPA

Nematus 105M 2858.8 86.6 38.65 –
+2-Layer +6M 2522.5 84.1 38.57 –
+Model1 +2M 1844.9 72.0 38.83 69.03
+Model2 +12M 1666.1 70.1 39.26 69.95
+Model3 +27M 1485.2 59.1 40.63 71.91

Table 1: Speeds and performances of the proposed models. “Speed” is measured in words/second for
both training and decoding, and performances are measured in terms of BLEU scores (“BLEU”) and
foresight prediction accuracy (“FPA”) on the development set. Higher BLEU and FPA scores denote
better performance.

erence, following (Goto et al., 2013; Liu et al.,
2016b) for further comparison.

Implementation We compare the proposed
models with two strong baselines from SMT
and NMT:

• Moses (Koehn et al., 2007): an open
source phrased based translation system
with default configuration.

• Nematus (Sennrich et al., 2017): an
generic attention based NMT.

We implement the proposed models on top of
Nematus. We use Stanford Log-linear Part-
Of-Speech Tagger (Toutanova et al., 2003)
to produce POS tags for the English side.
For both Chinese-to-English and Japanese-to-
English tasks, we limit the vocabularies to the
most frequent 30K words for both sides. All
the out-of-vocabulary words are mapped to a
spacial token “UNK”. Only the sentences of
length up to 50 words are used in training,
with 80 sentences in a batch. The dimen-
sion of word embedding is 620. The dimen-
sions of both feed forward NN and RNN hid-
den layer are 1000. The beam size for decod-
ing is 12, and the cost function is optimized
by Adadelta with hyper-parameters suggested
by Zeiler (2012). Particularly for TFA-NMT,
the foresight embedding is also 620, and the
hyper-parameter λ is 1.

4.2 Impact of Components
We conduct analyses on Chinese-to-English
translation task, to investigate the impact of
the added components and to figure out their
best configuration for further testing in the
next subsection.

4.2.1 Model Architectures
Table 1 lists the speeds and performances of
the proposed models. Clearly the proposed
approach improves the translation quality in
all cases, although there are still considerable
differences among the proposed variants.

Model Complexity The proposed models
introduce a few parameters to the NMT base-
line system Nematus, which has 105M pa-
rameters. The most complex model (i.e.,
Model3) introduces 27M new parameters,
which are small compared with the baseline
model. As seen, the proposed models signifi-
cantly slows down the training speed, which
we attribute to the new softmax operation
over the foresight tags and more gradient op-
erations associated with the new training ob-
jective, i.e., Eq.(12). For decoding, the most
complex model reduces speed by around 30%,
which is the cost of the proposed approach for
improving translation quality.

Performance We measure the performance
with BLEU and the result is shown in Ta-
ble 1. Model1 marginally improves perfor-
mance by guiding the decoder states to em-
bed information for predicting foresight tags.
Model2 achieves further improvement by in-
troducing a new specific hidden layer to ex-
plicitly separate the predict function from the
decoder states. Model3 achieves the best
performance by adopting an independent at-
tention model to attend corresponding source
parts for foresight prediction, which may not
be the same as the attended source parts for
translation. We conduct the significant test
using Kevin Gimpel’s toolkit (Clark et al.,
2011). We found that Model1 is not signif-
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Type Perc. FPA AER
Ours Base Ours

Noun 30.13% 77.49 28.97 26.50
Verb 12.39% 71.94 37.06 33.93
Adj. 9.43% 55.99 34.67 31.86

Prep. 14.66% 79.40 84.04 76.95
Dete. 10.08% 72.06 80.15 76.51

Punc. 8.01% 74.89 91.74 66.51
Others 15.30% 81.22 53.64 39.11

All 100% 74.87 49.67 42.56

Table 2: Performances on syntactic categories.
“Base” denotes “Nematus”, and Ours denotes
the proposed model.

icantly better than baseline, but Model2 is
significantly better with p<0.05 and Model3
is significantly better with p<0.01. Given that
simply introducing an additional layer (“+2-
Layer”) does not produce any improvement
on this data, we believe the gain of our model
is not only from the more introduced param-
eters. Besides, we augment the word em-
bedding by concatenating the POS tag em-
bedding, proposed by (Sennrich and Haddow,
2016), the BLEU is 38.96, which indicating the
improvement of our model is not only from
the POS tagging. In order to further validate
the improvements of variant proposed mod-
els, we evaluate the foresight prediction accu-
racy (FPA) for three proposed prediction mod-
els. We found that the fine-grained Model3
achieves the best FPA, indicating a good es-
timated foresight is very important to obtain
the gains in terms of BLEU.

4.2.2 Analysis on Syntactic Categories
In this experiment, we investigate which cat-
egory of generated words benefit most from
the proposed approach in terms of alignments
measured by alignment error rate (AER)
(Och, 2003). We carry out experiments on the
evaluation dataset from (Liu and Sun, 2015),
which contains 900 manually aligned Chinese-
English sentence pairs. Following (Luong
et al., 2015b), we force-decode both the bilin-
gual sentences including source and reference
sentences to obtain the attention matrices,
and then we extract one-to-one alignments by
picking up the source word with the high-
est alignment confidence as the hard align-

Train (λ) Decode BLEU ▽
1 Exp 40.63 –
0 Exp 39.36 -1.27
1 Map 40.34 -0.29

Table 3: Effect of foresight supervision signal in
training (i.e., λ) and foresight representations in
decoding: Exp for expectation and Map for max-
imum a posteriori.

ment. As shown in Table 2, the AER improve-
ments are modest for content words such as
Noun, Verb, and adjective (“Adj.”) words; but
there are substantial improvements for func-
tion words such as preposition words (“Prep.”)
and punctuations (“Punc.”).

The reason can be explained as follows. The
content words are easy to align with AER un-
der 38 as shown in Table 2, and thus it is
more difficult to gain over the BASE. On the
other hand, as depicted in Table 2, function
words are inherently more difficult than con-
tent words. These findings satisfy the linguis-
tic intuition: content words tend to be less in-
volved in multiple potential correspondences
than function words, and function words tend
to be attached to content words, as pointed
out by Pianta and Bentivogli (2004). Fortu-
nately, TFA-NMT can predict the POS tag
for target foresight word with high confidence
and thus it can improve the alignment qual-
ity by using of POS tags, which is useful for
alignment task (Liu et al., 2005).

It is surprising that the AER for “Prep.”,
“Det.” and “Punc.” is relatively low especially
for Base. The main reason can be explained
from the quantities yi−1, si, and ci in Eq.(2) as
follows. These highly frequent function words
are usually easy to be translated by using the
history information from yi−1 and si even if
ci is not confident enough. For example, it is
relatively easy to guess the “comma” by us-
ing the history words in language model task,
where there are no bilingual information at all.
Therefore, during the training, the model tries
to adjust the parameters for highly frequent
words from yi−1 and si while neglecting the
attention model.

4.2.3 Foresight Strategies
Table 3 shows the performances of different
foresight strategies in both training and de-
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coding. Without an explicit objective to guide
the training of foresight prediction model (i.e.,
λ = 0), the performance decreases by 1.27
BLEU points. When feeding the best fore-
sight predicted result to the attention model
(i.e., Map), the performance decreases by 0.29
BLEU points. We attribute this to the prop-
agation of prediction errors, which can be al-
leviated by using a weighted representation of
all predicted results (i.e., Exp).

In the following experiments, we use “λ = 1
and Exp” as the default setting for the final
system TFA-NMT.

4.3 Main Results
Chinese-to-English Task Table 4 shows
the translation performances for the Chinese-
to-English translation task. As seen, the pro-
posed approach significantly outperforms the
baseline system (i.e., Nematus) in all cases,
demonstrating the effectiveness and university
of our model.

Japanese-to-English Task Table 5 shows
the translation quality of the NMT baseline
and our TFA-NMT on Japanese-to-English
task. From the table, we can see that our
model still achieves a significant improvement
of 1.22 and 1.31 BLEU points on the devel-
opment and test set, respectively. This shows
that the proposed approach works well across
different language pairs.

5 Related Work

Attention model becomes a standard compo-
nent for many applications due to its ability of
dynamically selecting the informative context
from sequential representations. For example,
Xu et al. (2015) propose an attention based
neural network for image caption task and ad-
vance the state-of-the-art results; Yin et al.
(2015) put the attention structure between a
pair of convolution networks for answer se-
lection, paraphrase identification and textual
entailment tasks. In the context of machine
translation, the idea of attention based neu-
ral networks has been pioneered by Bahdanau
et al. (2014); Luong et al. (2015b) and achieved
impressive results over the traditional statis-
tical machine translation. Since then many
research works have been devoted to improve

the neural machine translation by enhancing
attention models.

Tu et al. (2016) design a coverage vector
for the translation history and then integrates
it into the attention model. Similarly, Meng
et al. (2016) maintain a tag vector to keep
track of the attention history and Sankaran
et al. (2016) memorize historical alignments
and accumulate them as temporal memory to
improve the attention model. In addition,
Zhang et al. (2017) improve the attention with
a gated operator for encoding states and a
decoding state, and and Dutil et al. (2017)
enhance attention through a planning mecha-
nism. Furthermore, Feng et al. (2016) adopt a
recurrent structure for attention to take long-
term dependencies into account, Zhou et al.
(2017) propose a look-ahead attention by addi-
tionally modeling the translation history, and
Cohn et al. (2016) incorporate structural bi-
ases into attention models. Recently Chen
et al. (2017) introduce the syntactic knowledge
into attention models. These works are essen-
tially similar to the propose approach, since
we introduce auxiliary information from a tar-
get foresight word into the attention model.
However, there is a significant difference be-
tween our approach and their approaches. Our
auxiliary information biases to the word to be
translated at next timestep while theirs biases
to the information available so far at the cur-
rent timestep, and thereby our approach is or-
thogonal to theirs.

The works mentioned above improve the at-
tention models by access auxiliary informa-
tion, and thus they modify the structure of at-
tention models in both inference and learning.
In contrast, Mi et al. (2016); Liu et al. (2016b);
Chen et al. (2016) maintain the structure of
the attention models in inference but utilize
some external signals to supervise the outputs
of attention models during the learning. They
improve the generalization abilities of atten-
tion models by use of the external aligners as
the signals, which typically yield alignment re-
sults accurate enough to guide the learning of
attention.

6 Conclusion

It has been argued that the traditional atten-
tion model in neural machine translation suf-
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System Model Dev MT05 MT06 MT08 Ave.

(Liu et al., 2016b) Moses – 35.4 33.7 25.0 31.37
NMT-J – 36.8 36.9 28.5 34.07

(Liu et al., 2016a) SA-NMT 40.0 37.8 37.6 29.9 35.10

This work Nematus 38.65 36.32 36.10 28.24 33.55
TFA-NMT 40.63 37.70 38.01 30.12 35.28

Table 4: Evaluation of translation performance on Chinese-to-English task.

System Model Dev Test

(Liu et al., 2016b)
Moses 28.6 30.2
NMT-J 33.0 34.1

This work Nematus 33.92 35.01
TFA-Nmt 35.14 36.32

Table 5: Evaluation of translation performance on
Japanese-to-English task.

fers from model inadequacy due to the lack
of information from the target foresight word
(Peter et al., 2017; Liu et al., 2016a). To ad-
dress this issue, this paper proposes a new at-
tention model, which can serve for both align-
ment and translation tasks, by implicitly mak-
ing use of the target foresight word. Em-
pirical experiments on Chinese-to-English and
Japanese-to-English tasks demonstrate that
the proposed attention based NMT delivers
substantial gains in terms of both BLEU and
AER scores.

In future work, it is promising to exploit
other target foresight information such as word
cluster besides the POS tags in this paper, and
it is also interesting to apply this idea on top
of other attention models such as the local at-
tention in Luong et al. (2015b).
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Abstract

The main motivation for developing context-
sensitive lemmatizers is to improve perfor-
mance on unseen and ambiguous words. Yet
previous systems have not carefully evaluated
whether the use of context actually helps in
these cases. We introduce Lematus, a lemma-
tizer based on a standard encoder-decoder ar-
chitecture, which incorporates character-level
sentence context. We evaluate its lemmatiza-
tion accuracy across 20 languages in both a
full data setting and a lower-resource setting
with 10k training examples in each language.
In both settings, we show that including con-
text significantly improves results against a
context-free version of the model. Context
helps more for ambiguous words than for un-
seen words, though the latter has a greater
effect on overall performance differences be-
tween languages. We also compare to three
previous context-sensitive lemmatization sys-
tems, which all use pre-extracted edit trees
as well as hand-selected features and/or addi-
tional sources of information such as tagged
training data. Without using any of these,
our context-sensitive model outperforms the
best competitor system (Lemming) in the full-
data setting, and performs on par in the lower-
resource setting.

1 Introduction

Lemmatization is the process of determining the
dictionary form of a word (e.g. swim) given one of
its inflected variants (e.g. swims, swimming, swam,
swum). Data-driven lemmatizers face two main
challenges: first, to generalize beyond the training
data in order to lemmatize unseen words; and sec-
ond, to disambiguate ambiguous wordforms from
their sentence context. In Latvian, for example, the
wordform “ceļu” is ambiguous when considered
in isolation: it could be an inflected variant of the
verb “celt” (to lift) or the nouns “celis” (knee) or
“ceļš” (road); without context, the lemmatizer can
only guess.

By definition, sentence context (or latent infor-
mation derived from it, such as the target word’s
morphosyntactic tags) is needed in order to cor-
rectly lemmatize ambiguous forms such as the
example above. Previous researchers have also
assumed that context should help in lemmatiz-
ing unseen words (Chrupała, 2006; Müller et al.,
2015)—i.e., that the context contains useful fea-
tures above and beyond those in the wordform it-
self. Nevertheless, we are not aware of any previ-
ous work that has attempted to quantify how much
(or even whether) context actually helps in both of
these cases. Several previous papers on context-
sensitive lemmatization have reported results on
unseen words (Chrupała, 2006; Chrupała et al.,
2008; Müller et al., 2015; Chakrabarty et al., 2017),
and some have compared versions of their systems
that use context in different ways (Müller et al.,
2015; Chakrabarty et al., 2017), but there are few if
any direct comparisons between context-sensitive
and context-free systems, nor have results been
reported on ambiguous forms.

This paper presents Lematus—a system that
adapts the neural machine translation framework
of Sennrich et al. (2017) to learn context sensitive
lemmatization using an encoder-decoder model.
Context is represented simply using the character
contexts of each form to be lemmatized, mean-
ing that our system requires fewer training re-
sources than previous systems: only a corpus with
its lemmatized forms, without the need for POS
tags (Chrupała et al., 2008; Müller et al., 2015) or
word embeddings trained on a much larger corpus
(Chakrabarty et al., 2017). We evaluate Lematus
on data from 20 typologically varied languages,
both using the full training data from the Universal
Dependencies project (Nivre et al., 2017), as well
as a lower-resource scenario with only 10k training
tokens per language. We compare results to three
previous systems and to a context-free version of
our own system, including results on both unseen
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and ambiguous words. We also examine the extent
to which the rate of unseen and ambiguous words in
a language can predict lemmatization performance.

On average across the 20 languages, the context-
sensitive version of Lematus achieves significantly
higher lemmatization accuracy than its context-free
counterpart in both the low-resource and full-data
settings. It also outperforms the best competitor
system (Lemming; Müller et al. 2015) in the full-
data setting, and does as well as Lemming in the
low-resource setting. Thus, even without explicitly
training on or predicting POS tags, Lematus seems
able to implicitly learn similar information from
the raw character context.

Analysis of our full-data results shows that in-
cluding context in the model improves its accuracy
more on ambiguous words (from 88.8% to 92.4%
on average) than on unseen words (from 83.6% to
84.3% on average). This suggests that, to the ex-
tent that unseen words can be correctly lemmatized
at all, the wordform itself provides much of the
information needed to do so, and Lematus effec-
tively exploits that information—indeed, Lematus
without context outperforms all previous context-
sensitive models on lemmatizing unseen words.

Finally, our cross-linguistic analysis indicates
that the proportions of unseen words and ambigu-
ous words in a language are anti-correlated. Alto-
gether, then, our results suggest that context-free
neural lemmatization is surprisingly effective, and
may be a reasonable option if the language con-
tains many unseen words but few ambiguous ones.
Context is likely to help in most languages, but the
main boost is for languages with higher ambiguity.

2 Background and Baseline Systems

Early work on context-sensitive lemmatization fo-
cused on disambiguation: given a set of analyses
produced by a hand-built morphological analyzer
(typically including both lemmas and morphosyn-
tactic tags), choose the best one in context (Oflazer
and Kuruöz, 1994; Ezeiza et al., 1998; Hakkani-Tür
et al., 2002). Here, we focus on systems learning to
generate the lemmas and tags without a pre-existing
analyzer (Erjavec and Džeroski, 2004; Chrupała,
2006). The three systems we use as baselines fol-
low Chrupała (2006) in treating the task as a classi-
fication problem, where the system learns to choose
which of a set of edit scripts or edit trees (previ-
ously induced from the aligned wordform-lemma
pairs) should be applied to transform each word-

form into the correct lemma.
Two of our baselines, Morfette1 (Chrupała et al.,

2008) and Lemming2 (Müller et al., 2015), learn
from morphologically annotated corpora to jointly
tag each word and lemmatize it by choosing an
edit script. Morfette consists of two log-linear
classifiers—one for lemmatization and one for
tagging—which are combined using beam search
to find the best sequence of lemma-tag pairs for
all words in the input sentence. Lemming (which
proves to be the strongest baseline) also consists of
two log-linear components (a classifier for lemma-
tization and a sequence model for tagging), which
are combined either using a pipeline (first tag, then
lemmatize) or through joint inference. The lemma-
tization model uses a variety of features from the
edit trees, alignments, orthography of the lemma,
and morphosyntactic tags.

In experiments on six languages, Müller et al.
(2015) showed that the joint Lemming model
worked better than the pipelined model, and that
adding morphosyntactic features helped. They
also demonstrated improvements over an earlier
context-free baseline model (Jiampojamarn et al.,
2008). However, they did not evaluate on ambigu-
ous forms, nor directly compare context-sensitive
and context-free versions of their own model.

Our third baseline, Ch-20173 (Chakrabarty et al.,
2017) uses a neural network rather than a log-linear
model, but still treats lemmatization as a classifi-
cation task to choose the correct edit tree. (Like
our model, Ch-2017 does not perform morpholog-
ical tagging.) The model composes syntactic and
semantic information using two successive bidi-
rectional GRU networks. The first bidirectional
GRU network is similar to the character to word
model by Ling et al. (2015) and learns syntactic in-
formation. The semantic information comes from
word embeddings pre-trained on much larger cor-
pora. The second GRU uses a composition of the
semantic and syntactic embeddings for the edit tree
classification task.

Rather than treating lemmatization as classifi-
cation, our own model is inspired by recent work
on morphological reinflection. As defined by two
recent Shared Tasks (Cotterell et al., 2016, 2017),
a morphological reinflection system gets as input

1https://sites.google.com/site/
morfetteweb/

2http://cistern.cis.lmu.de/lemming
3https://github.com/onkarpandit00786/

neural-lemmatizer
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some inflected wordform (and possibly its mor-
phosyntactic tags) along with a set of target tags.
The system must produce the correct inflected form
for the target tags. In the 2016 SIGMORPHON
Shared Task, various neural sequence-to-sequence
models gave the best results (Aharoni et al., 2016;
Kann and Schütze, 2016; Östling, 2016). We
base our work closely on one of these (Kann and
Schütze, 2016), which also won one of the 2017
tasks (Bergmanis et al., 2017). Our lemmatization
task can be viewed as a specific type of reinflection,
but instead of assuming that tags are given in the
input (or that the system simply has to guess the
tags from the wordform itself, as in some of the
Shared Tasks), we investigate whether the informa-
tion available from the tags can instead be inferred
from sentence context.

3 Model Description

Our model is based on the network architecture
proposed by Sennrich et al. (2017), which imple-
ments an attentional encoder-decoder architecture
similar to that of Bahdanau et al. (2015). Namely,
our model is a deep attentional encoder-decoder
with a 2-layer bidirectional encoder with a gated
recurrent unit (GRU) (Cho et al., 2014) and a 2-
layer decoder with a conditional GRU (Sennrich
et al., 2017) in the first layer followed by a GRU in
the second layer. For more architectural details see
(Sennrich et al., 2017).

A default implementation of this architecture is
available in the Nematus toolkit,4 which we used
as our starting point. However, Sennrich et al.
(2017) used their model for machine translation,
while we work on lemmatization. Since our task
is closer to the problem of morphological reinflec-
tion described above, we changed some of the de-
fault model parameters to follow those used in sys-
tems that performed well in the 2016 and 2017
SIGMORPHON Shared Tasks (Kann and Schütze,
2016; Bergmanis et al., 2017). Specifically, we
reduced the number of hidden units to 100 and the
encoder and decoder embedding size to 300.

The input sequence is a space-separated char-
acter representation of a word in its N -character
left and right sentence context. For example, with
N = 15, the Latvian word ceļu (the genitive plural

4https://github.com/EdinburghNLP/
nematus

of the noun ceļš, meaning road) could be input as:

s a k a <s> p a š v a l d ı̄ b u

<lc> c e ļ u <rc>

u n <s> i e l u <s> r e ǵ i s t r

where <s>, <lc>, <rc> stand for word boundary,
left and right context markers respectively. The
target output is a sequence of characters forming
the lemma of the word: c e ļ š

4 Datasets

We contend that the difficulty of the lemmatiza-
tion task largely depends on three factors: mor-
phological productivity, lexical ambiguity and mor-
phological regularity. One aim of our work is to
investigate the extent to which it is possible to pre-
dict lemmatization performance for a particular
language by operationalizing and measuring these
properties. Therefore in this section we provide
statistics and some analysis of the datasets used
in our experiments. We use the standard splits of
the Universal Dependency Treebank (UDT) v2.05

(Nivre et al., 2017) datasets for 20 languages: Ara-
bic, Basque, Croatian, Dutch6, Estonian, Finnish,
German, Greek, Hindi, Hungarian, Italian, Latvian,
Polish, Portuguese, Romanian, Russian, Slovak,
Slovene, Turkish and Urdu. See Figure 1 for train-
ing and development data sizes.

Because the amount of training data varies
widely between languages, we perform some of
our language analysis (and later, system evalua-
tion) on a subset of the data, where we use only the
first 10k tokens in each language for training. The
10k setting provides a clearer comparison between
languages in terms of their productivity, ambigu-
ity, and regularity, and also gives a sense of how
much training data is needed to achieve good per-
formance.

One of the main purposes of data-driven lemma-
tization is to handle unseen words at test time, yet
languages with differing morphological productiv-
ity will have very different proportions of unseen
words. Figure 2 shows the percentage of tokens
in the development sets of each language that are
not seen in training. Two conditions are given: the
full training/development sets, and train/dev sets
that are controlled in size across languages. For

5UTD v2.0 datasets are archived at http://hdl.
handle.net/11234/1-1983

6We use UDT v2.1 dataset for Dutch due to inconsistencies
in v2.0.
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Figure 1: Training and development set sizes for
each language, in thousands.

Figure 2: Percent of tokens unseen in training. Dev
(yellow): within full development sets with respect
to the full training sets. Dev 3k (green): within the
first 3k tokens of development sets with respect to
the first 10k tokens of training sets.

the languages with large data sets, the percentage
of unseen words is (unsurprisingly) higher when
training data is reduced to 10k. However, these
differences are often small compared to the differ-
ences between languages, suggesting that produc-
tivity is likely to affect lemmatization performance
as much as training data size.

Lexical ambiguity is the other major motivation
for context-sensitive lemmatization. To quantify
how frequently lemmatizers have to rely on context,
Figure 3 shows the percentage of ambiguous to-
kens in each language, in either the full or reduced
training sets. We define ambiguity empirically: am-
biguous tokens are wordforms occurring with more
than one lemma within the training set.

Overall, the level of measured ambiguity tends
to be lower than the proportion of unseen tokens.
Many of the languages with high productivity (e.g.,
Russian, Slovak, Slovene, Turkish) have low levels
of ambiguity, while others (Arabic, Urdu) trend
the opposite way. Indeed, across all 20 languages,

Figure 3: Percent of ambiguous tokens within the
first 10k tokens of training sets and full training
sets. Ambiguous tokens are word forms occurring
with more than one lemma in the training set.

the levels of productivity and ambiguity are nega-
tively correlated, with a rank correlation of -0.57
after controlling for training data size.7 This is
not surprising, since given a set of morphosyntac-
tic functions, they must either be expressed using
distinct forms (leading to higher productivity) or
non-distinct forms (leading to higher ambiguity).

The final characteristic that we would expect to
make some languages easier than others is mor-
phological regularity, but it is unclear how to mea-
sure this property directly without an in-depth un-
derstanding of the morphophonological rules of a
language. Nevertheless, the presence of many ir-
regular forms, or other phenomena such as vowel
harmony or spelling changes, complicates lemma-
tization and will likely affect accuracy.

5 Experimental Setup

Training Parameters8 We use a mini batch size
of 60 and a maximum sequence length of 75.
For training we use stochastic gradient descent,
Adadelta (Zeiler, 2012), with a gradient clipping
threshold of 1.0, recurrent Bayesian dropout proba-
bility 0.2 (Gal and Ghahramani, 2016) and weight
normalization (Salimans and Kingma, 2016). We
use early stopping with patience 10 (Prechelt,
1998). We use the first 10 epochs as a burn-in pe-
riod, after which at the end of every second epoch

7That is, the correlation is computed between the values
in Figure 2 Dev 3k (unseen words wrt the first 10k training
tokens for each language) and Figure 3 Train 10k (ambiguous
words in the first 10k training tokens for each language). The
correlation is significantly different from zero with p < 0.01.

8Training parameters were tunned/verified on the standard
splits of UDT training and development sets for Spanish and
Catalan, therefore the results on these languages are not in-
cluded in our evaluation.
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we evaluate the current model’s lemmatization ex-
act match accuracy on the development set and
keep this model if it performs better than the previ-
ous best model. When making predictions we use
beam-search decoding with a beam of size 12.

Baselines To train models we use the default set-
tings for Morfette and Lemming. Ch-2017 requires
word embeddings, for which we use fastText9 (Bo-
janowski et al., 2017). For Ch-2017 we set the num-
ber of training epochs to 100 and implement early
stopping with patience 10.10 We leave the remain-
ing model parameters as suggested by Chakrabarty
et al. (2017).

We also use a lookup-based baseline (Baseline).
For words that have been observed in training, it
outputs the most frequent lemma (or the first ob-
served lemma, if the options are equally frequent).
For unseen words it outputs the wordform itself as
the hypothesized lemma.

Context Representation We aim to use a con-
text representation that works well across multiple
languages, rather than to tune the context individu-
ally to each language. In preliminary experiments,
we explored several different context representa-
tions: words, sub-word units, and N surrounding
characters, for different values of N . These ex-
periments were carried out on only six languages.
Three of these (Latvian, Polish and Turkish) were
also used in our main experiments, while three
(Bulgarian, Hebrew, and Persian) were not, due to
problems getting all the baseline systems to run on
those languages.

For the word level context representation
(Words), we use all words in the left and the right
sentence contexts. For the character level con-
text representations (N-Ch) we experiment with
N = 0, 5, 10, 15, 20, or 25 characters of left and
right contexts. For the sub-word unit context repre-
sentation, we use byte pair encoding (BPE) (Gage,
1994), which has shown good results for neural ma-
chine translation (Sennrich et al., 2016). BPE is a
data compression algorithm that iteratively replaces
the most frequent pair of symbols (here, characters)
in a sequence with a single new symbol. BPE has

9https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.
md

10We do so because it is unclear what stopping criterion
was used by Chakrabarty et al. (2017) Their suggested default
for the number of training epochs is 6, yet the values used in
their experiments vary from 15 for Hindi to 80 for Bengali.

a single parameter—the number of merge opera-
tions. Suitable values for this parameter depend
on the application and vary from 10k in language
modeling (Vania and Lopez, 2017) to 50k in ma-
chine translation (Sennrich et al., 2016). We aim
to use BPE to extract a few salient and frequently
occurring strings, such as affixes, therefore we set
the number of BPE merge operations to 500. We
use BPE-encoded left and right sentence contexts
that amount up to 20 characters of the original text.

Since we hoped to use context to help with am-
biguous words, we looked specifically at ambigu-
ous word performance in choosing the best context
representation.11 Table 1 summarizes Lematus’
performance on ambiguous tokens using different
sentence context representations. There is no con-
text representation that works best for all six lan-
guages, but the 20-Ch system seems to work rea-
sonably well in all cases, and the best on average.
We therefore use the 20-Ch context in our main
experiments.

Note that this choice was based on a relatively
small number of experiments and it is quite possi-
ble that further tuning the BPE parameter, or the
number of BPE units or words of context (or tuning
separately for each language) could lead to better
overall results.

Evaluation To evaluate models, we use test and
development set lemmatization exact match accu-
racy. When calculating lemmatization accuracy we
ignore casing of the tokens and ommit punctuation
tokens and those tokens that contain digits or any
of the following characters: @+. /.

6 Results and Discussion

Results on Complete Datasets Development set
accuracies for all languages and systems in the full
data setting are provided in Figure 4a, with results
on unseen and ambiguous words in Figures 4b and
4c. Overall, Lematus 20-Ch outperforms the previ-
ous systems, Morfette, Lemming and Ch-2017, on
20, 15 and 20 languages respectively. In addition,
Figure 4 makes it clear that the major benefit of all
the systems over the baseline is for unseen words:
in fact, for ambiguous words, the baseline even out-
performs some of the systems in a few languages.
Comparing the two versions of Lematus, we can
see that Lematus 20-Ch does consistently better

11The percentage of ambiguous tokens in the training sets
of Bulgarian, Hebrew and Persian are 8.4%, 16.6% and 7.6%
respectively; for the other languages, see Figure 3.
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Baseline 0-Ch 5-Ch 10-Ch 15-Ch 20-Ch 25-Ch BPE Words
Bulgarian 81.1 83.0 79.7 88.9 88.2 89.2 88.5 89.2 84.2
Hebrew 95.3 95.0 82.5 84.9 86.0 86.3 85.4 84.4 75.5
Latvian 73.8 76.6 70.1 73.2 73.9 74.8 71.1 71.6 66.2
Persian 94.4 92.5 90.5 91.5 91.0 92.5 92.5 93.0 88.0
Polish 90.6 91.7 84.0 84.0 93.0 93.6 83.5 85.6 83.0
Turkish 78.6 80.9 75.9 77.9 85.5 85.9 79.3 75.9 73.8
Average 85.6 86.6 80.5 83.4 86.3 87.1 83.4 83.3 78.5

Table 1: Lemmatization exact match accuracy on ambiguous tokens of dev sets, for baseline and for
Lematus using various context representations: N characters, Byte Pair Encoding units, or words.

Dev Test 10k:Dev 10k:Test
All Unseen Ambig SeenUA All All All

Baseline 85.8 39.6 88.0 99.2∗†‡ 86.1 74.4 74.4
Morfette 92.9 75.7 91.4 98.9 93.1 86.8 86.5
Lemming 94.1 81.4 92.4† 98.8 94.1 87.5 87.3
Ch-2017 90.8 75.0 90.7 96.2 89.8 80.2 79.0
Lematus 0-Ch 94.3 83.6∗ 88.8 98.9 94.2 87.1 86.6
Lematus 20-Ch 95.0∗† 84.3∗† 92.4† 98.8 94.9∗† 88.4† 87.8†

Table 2: Lemmatization exact match accuracy, averaged across all 20 languages. In the full training
scenario (first five columns) results are given for All, Unseen, Ambiguous, and Seen Unambiguous tokens.
(Note that ambiguity is empirical: is a type seen with more than one lemma in training?) We compare
Lematus with/without context (20-Ch/0-Ch), the most frequent lemma baseline, and three previous
systems. The numerically highest score in each column is bold; ∗, †, and ‡ indicate statistically significant
improvements over Lemming, Lematus 0-Ch and 20-Ch, respectively (all p < 0.05; see text for details).

on ambiguous tokens than Lematus 0-Ch, whereas
their performance on unseen tokens (and thus, over-
all) is much more similar. In fact, on unseen words,
Lematus 0-Ch outperforms the context-sensitive
baselines Morfette, Lemming and Ch-2017 on 18,
12 and 17 languages respectively. These results sug-
gest that a good context-free model can do surpris-
ingly well on unseen words, and the added model
complexity and annotation requirements of earlier
context-sensitive models are not always justified.

As further evidence of these claims, we sum-
marize in Table 2 each system’s average perfor-
mance over all languages for both the development
and test sets. In addition to performance break-
down into unseen and ambiguous words we also
report each system’s performance on tokens that
were both seen and unambiguous in training. No
system achieves 100% accuracy on seen unam-
biguous tokens—even the lookup baseline achieves
only 99%, indicating that about 1% of tokens that
appeared unambiguous in training occur with a
previously unseen lemma in the development set.
In principle, context-based systems could outper-
form the baseline on these words, but in practice

none of them do. Indeed, switching to a dictio-
nary lookup baseline for seen unambiguous words
would slightly improve the performance of all mod-
els (though it would not change the overall ranking
of the systems).

We tested for statistically significant differences
between the results of Lemming (the numerically
best-performing competitor system) and our two
systems (Lematus 0-Ch and Lematus 20-Ch) us-
ing a Monte Carlo method: for each comparison
(say, between 0-Ch and 20-Ch on unseen words),
we generated 10000 random samples, where each
sample randomly swapped the two systems’ results
for each language with probability .5. We then ob-
tained a p-value by computing the proportion of
samples for which the difference in average results
was at least as large as the difference observed in
our experiments.

Because the results of 0-Ch and 20-Ch are highly
correlated across languages, all differences be-
tween these systems, except for results on seen
unambiguous tokens, are significant (p < 0.01 for
dev set All, p < 0.05 for Unseen, p < 0.001 for
Ambig, and p < 0.01 for test set All; p > 0.1 for
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(a) All tokens. Models were trained on full training sets.

(b) Unseen tokens. Models were trained on full training sets.

(c) Ambiguous tokens. Models were trained on full training sets.

(d) All tokens. Models were trained on the first 10K of the training sets.

Figure 4: Lemmatization exact match accuracy on development sets for each language.
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Figure 5: Lemmatization accuracy of Lematus 20-Ch on all dev set tokens vs percent of unseen tokens
(left) or percent of ambiguous tokens (middle); accuracy on unseen tokens vs training set size (right).

dev set SeenUA). Lemming does as well as Lema-
tus 20-Ch on ambiguous and SeenUA words, but
its accuracy on unseen words is lower (p < 0.001),
leading to worse performance overall (p < 0.01
on both dev and test). Interestingly, even Lema-
tus 0-Ch does better than Lemming on unseen
words (p < 0.02), and performs on par overall
(p = 0.28). So, although including context clearly
can help (compare Lematus 20-Ch vs 0-Ch), and
Lemming exploits this advantage for ambiguous
words, a good context-free model can still do very
well. Overall, our models do as well or better than
the earlier ones, without the added model complex-
ity and annotation requirements. On the other hand,
although our context-sensitive model does improve
somewhat over its context-free counterpart, there
is still some way to go, since average performance
on unseen and ambiguous words is still 84% and
92% respectively.

Results on 10k Datasets Figure 4d shows the
results on all tokens for each language in the 10k
training setting, with averages in Table 2. On aver-
age, limiting training data to the first 10k examples
resulted in an 82% reduction of training sets, and
we see an average drop in test set performance of
5.6-6.8 percentage points for all systems except
Ch-2017, which drops by about 10 percent. When
comparing the 0-Ch and 20-Ch versions of Lema-
tus we found the same pattern of significances as
in the full data setting (p < 0.01), however the
two best systems (Lematus 20-Ch and Lemming)
are statistically equivalent on the test sets, as are
Lemming and Lematus 0-Ch.

Patterns Across Languages In Section 4, we hy-
pothesized that the success of data-driven lemma-
tization depends on a language’s productivity, am-
biguity, and regularity. We now explore the extent
to which our results support this hypothesis. First,

we examine the correlation between the overall per-
formance of our best system on each language and
the percentage of unseen (Figure 5, left) or am-
biguous words (Figure 5, middle) in that language.
As expected, there is a strong negative correlation
between the percentage of unseen words and the
accuracy of Lematus 20-Ch: the rank correlation
is R = −0.73 (p < 0.001; we use rank correla-
tion because it is less sensitive to outliers than is
linear correlation, and the plot clearly shows sev-
eral outliers.) In contrast to our original prediction,
however, Lematus 20-Ch is actually more accurate
for languages with greater ambiguity (R = 0.44,
p = 0.05). The most likely explanation is that am-
biguity is negatively correlated with productivity.
Since there tend to be more unseen than ambiguous
words, and since accuracy is typically lower for
unseen than ambiguous words, higher ambiguity
(which implies fewer unseen words) can actually
lead to higher overall accuracy.

Our earlier results also suggested that the main
benefit of Lematus 20-Ch over Lematus 0-Ch is for
ambiguous words. To confirm this, we looked at the
extent to which the difference in performance be-
tween the two systems correlates with the percent-
age of unseen or ambiguous words in a language.
As expected, this analysis suggests that including
context in the model helps more for languages with
more ambiguity (R = 0.67, p < 0.001). In con-
trast, Lematus 20-Ch provides less benefit over
Lematus 0-Ch for the languages with more unseen
words (R = −0.75, p < 0.0001). Again, we as-
sume the latter result is due to the negative correla-
tion between ambiguity and productivity.

So far, our results and analysis show a clear rela-
tionship between productivity and ambiguity, and
also suggest that using context for lemmatization
may be unnecessary (or at least less beneficial) for
languages with many unseen words but low am-
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biguity. However, there are remaining differences
between languages that are more difficult to explain.
For example, one might expect that for languages
with more training data, the system would learn
better generalizations and lemmatization accuracy
on unseen words would be higher. However, Figure
5 (right), which plots accuracy on unseen words in
each language as a function of training data size,
illustrates that there is no significant correlation
between the two variables (R = 0.32, p = 0.16).
In some languages (e.g., Hungarian, in the top left)
Lematus performs very well on unseen words even
with little training data, while in others (e.g., Ara-
bic, along the bottom) it performs poorly despite
relatively large training data. We assume that reg-
ularity (and perhaps the nonconcatenative nature
of Arabic) must be playing an important role here,
but we leave for future work the question of how
to operationalize and measure regularity in order
to further test this hypothesis.

7 Conclusion

We presented Lematus, a simple sequence-to-
sequence neural model for lemmatization that uses
character-level context. On average across 20 lan-
guages, we showed that even without using context,
this model performs as well or better than three
previous systems that treated lemmatization as an
edit tree classification problem and required POS
tags (Chrupała et al., 2008; Müller et al., 2015) or
word embeddings trained on a much larger corpus
(Chakrabarty et al., 2017). We also showed that
with both larger and smaller training datasets, in-
cluding context boosts performance further by im-
proving accuracy on both unseen and (especially)
ambiguous words.

Finally, our analysis suggests that lemmatization
accuracy tends to be higher for languages with low
productivity (as measured by the proportion of un-
seen words at test time), but more surprisingly also
for languages with high ambiguity—perhaps be-
cause high ambiguity is also associated with low
productivity. We also found that the amount of
training data available for each language is not a
good predictor of performance on unseen words,
suggesting that morphological regularity or other
language-specific characteristics are playing an im-
portant role. Understanding the causes of these
differences is likely to be important for further im-
proving neural lemmatization.
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Abstract

Recognizing named entities in a document is a
key task in many NLP applications. Although
current state-of-the-art approaches to this task
reach a high performance on clean text (e.g.
newswire genres), those algorithms dramati-
cally degrade when they are moved to noisy
environments such as social media domains.
We present two systems that address the chal-
lenges of processing social media data using
character-level phonetics and phonology, word
embeddings, and Part-of-Speech tags as fea-
tures. The first model is a multitask end-to-
end Bidirectional Long Short-Term Memory
(BLSTM)-Conditional Random Field (CRF)
network whose output layer contains two CRF
classifiers. The second model uses a multi-
task BLSTM network as feature extractor that
transfers the learning to a CRF classifier for
the final prediction. Our systems outperform
the current F1 scores of the state of the art on
the Workshop on Noisy User-generated Text
2017 dataset by 2.45% and 3.69%, establish-
ing a more suitable approach for social media
environments.

1 Introduction

One of the core tasks in Natural Language
Processing (NLP) is Named Entity Recognition
(NER). NER is a sequence tagging task that con-
sists in selecting the words that describe entities
and recognizing their types (e.g., a person, lo-
cation, company, etc.). Figure 1 shows exam-
ples of sentences from different domains that con-
tain named entities. Recognizing entities in run-
ning text is typically one of the first tasks in the
pipeline of many NLP applications, including ma-
chine translation, summarization, sentiment anal-
ysis, and question answering.

Traditional machine learning systems have
proven to be effective in formal text, where gram-
matical errors are minimal and writers stick to

CoNLL 2003
[Spanish]MISC Farm Minister [Loyola de Palacio]PER

had earlier accused [Fischler]PER at an [EU]ORG

farm ministers ’ meeting of causing unjustified alarm
through ” dangerous generalisation . ”

WNUT 2017, Twitter domain
been listenin to [trey]PER alllll week ... can
u luv someone u never met ?? bcuz i think
im in luv yeeuuuuppp !!!

Figure 1: Examples from the CoNLL 2003 and the
WNUT 2017 datasets. The noise from the WNUT
dataset makes a clear difference from one text to the
other, establishing new challenges to the current state-
of-the-art systems on formal text. The words in bold
are grouped to described the entities.

the rules of the written language (Florian et al.,
2003a; Chieu and Ng, 2003a). However, those tra-
ditional systems dramatically fail on informal text,
where improper grammatical structures, spelling
inconsistencies, and slang vocabulary prevail (Rit-
ter et al., 2011). For instance, Table 1 shows a
snapshot of NER systems’ performance during the
last years, where the results drop from 96.49% to
41.86% on the F1 metric as we move from for-
mal to informal text. Although the results are not
directly comparable because they consider differ-
ent conditions and challenges, they serve as strong
evidence that the NER task in social media is far
from being solved.

Recently, researchers have approached NER us-
ing different neural network architectures. For
instance, Chiu and Nichols (2016) proposed a
neural model using Convolutional Neural Net-
works (CNN) for characters and a bidirectional
Long Short Term Memory (LSTM) for words.
Their model learned from word embeddings, cap-
italization, and lexicon features. On a slightly
different approach, Lample et al. (2016) used
a BLSTM with a CRF at the output layer, re-
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Organizer Competition Domain F1 Classes
Grishman and Sundheim (1996a) MUC-6 Newswire 96.49% 2
Tjong Kim Sang and De Meulder (2003) CoNLL Newswire 88.76% 4
Strauss et al. (2016) WNUT Twitter 52.41% 10
Derczynski et al. (2017) WNUT SM domains 41.86% 6

Table 1: Results on different NER shared tasks. The performance degrades as the systems are moved to social
media (SM) environments. The last row considers multiple SM domains, such as Twitter, YouTube, Reddit, and
StackExchange.

moving the dependencies on external resources.
Moreover, Ma and Hovy (2016) proposed an
end-to-end BLSTM-CNN-CRF network, whose
loss function is based on the maximum log-
likelihood estimation of the CRF. These architec-
tures were benchmarked on the standard CoNLL
2003 dataset (Tjong Kim Sang and De Meulder,
2003). Although most of the work has focused
on formal datasets, similar approaches have been
evaluated on SM domains (Strauss et al., 2016;
Derczynski et al., 2017). In the Workshop on
Noisy User-generated Text (WNUT) 2016, Lim-
sopatham and Collier (2016), the winners of the
NER shared task, used a BLSTM-CRF model that
induced features from an orthographic representa-
tion of the text. Later, in the WNUT 2017 shared
task, the best performing system used a multitask
network that transferred the learning to a CRF
classifier for the final prediction (Aguilar et al.,
2017).

In this work we focus on addressing the chal-
lenges of the NER task found in social media en-
vironments. We propose that what is tradition-
ally categorized as noise (i.e., misspellings, in-
consistent orthography, emerging abbreviations,
and slang) should be modeled as is since it is an
inherent characteristic of SM text. Specifically,
the proposed models attempt to address i) mis-
spellings using subword level representations, ii)
grammatical mistakes with SM-oriented Part-of-
Speech tags (Owoputi et al., 2013), iii) sound-
driven text with phonetic and phonological fea-
tures (Bharadwaj et al., 2016), and iv) the intrin-
sic skewness of NER datasets by applying class
weights. It is worth noting that our models do
not rely on capitalization or any external resources
such as gazetteers. The reasons are that capital-
ization is arbitrarily used on SM environments,
and gazetteers are expensive resources to develop
for a scenario where novel entities constantly and
rapidly emerge (Derczynski et al., 2017; Augen-
stein et al., 2017).

Based on our experiments, we have seen that a
multitask variation of the proposed networks im-
proves the results over a single-task network. Ad-
ditionally, this multitask version, paired with pho-
netic and phonological features, outperforms pre-
vious state-of-the-art results on the WNUT 2017
dataset, and the same models obtain reasonable
results with respect to the state of the art on
the CoNLL 2003 dataset (Tjong Kim Sang and
De Meulder, 2003).

The rest of the paper is organized as follows: §2
presents the proposed features, the formal descrip-
tion of the models, and the implementation details.
§3 describes the datasets and their challenges. On
§4, we show the evaluation process of our mod-
els and the results. We explain the performance of
the models on §5. §6 describes related work and,
finally, we draw conclusions on §7.

2 Methods

Our methods are based on two main strategies: i) a
representation of the input text using complemen-
tary features that are more suitable to social me-
dia environments, and ii) a fusion of these features
by using a multitask neural network model whose
main goal is to learn how entities are contextual-
ized with and without the entity type information.

2.1 Feature representation
Semantic features. Semantic features play a cru-
cial role in our pipeline as they provide contex-
tual information to the model. This information
allows the model to infer the presence of entities
as well as the entity types. We use the pretrained
word embedding model provided by Godin et al.
(2015). This model has been trained on 1 million
tweets (roughly 1% of the tweets in a year) with
the skipgram algorithm. We take advantage of this
resource as it easily adapts to other SM environ-
ments besides Twitter (Aguilar et al., 2017).
Syntactic features. Syntactic features help the
models deal with word disambiguation based on
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Sentence IPA
u hav to b KIDDDDING me /ju hæv t@ bi kIdIN mi/
you have to be kidding me /ju hæv t@ bi kIdIN mi/

Table 2: Examples of both noisy and normalized text.
In both cases, the mappings to the International Pho-
netic Alphabet (IPA) are the same.

the grammatical role that the words play on a sen-
tence. That is, a word that can be a verb or a noun
in different scenarios may conflict with the inter-
pretations of the models; however, by providing
syntactical information the models can improve
their decisions. We capture grammatical patterns
using the Part-of-Speech (POS) tagger provided
by Owoputi et al. (2013). This POS tagger has
custom labels that are suitable to SM data (i.e., the
tagger considers emojis, hashtags, URLs and oth-
ers).
Phonetic and phonological features. We also
consider the phonetic and phonological aspects of
the data at the character level. In Table 2 we show
an example of two phrases: the first sentence is
taken from SM, and the second one is its nor-
malized representation. Even though the spellings
of both phrases are significantly different, by us-
ing the phonological (articulatory) aspects of those
phrases it is possible to map them to the same pho-
netic representation. In other words, our assump-
tion is that social media writers heavily rely on the
way that words sound while they write. We use the
Epitran1 library (Bharadwaj et al., 2016), which
transliterates graphemes to phonemes with the In-
ternational Phonetic Alphabet (IPA). In addition to
the IPA phonemes, we also use the phonological
(articulatory) features generated by the PanPhon2

library (Mortensen et al., 2016). These features
provide articulatory information such as the way
the mouth and nasal areas are involved in the elab-
oration of sounds while people speak.

2.2 Models

We have experimented with two models. In the
first one, we use an end-to-end BLSTM-CRF net-
work with a multitask output layer comprised of
one CRF per task, similar to Yang et al. (2016).
In the second one, we define a stacked model that
is based on two phases: i) a multitask neural net-
work and ii) a CRF classifier. In the first phase,
the network acts as a feature extractor, and then,

1https://github.com/dmort27/epitran
2https://github.com/dmort27/panphon

for the second phase, it transfers the learning to a
CRF classifier for the final predictions (see Figure
3). In both cases, the multitask layer is defined
with the following two tasks:

• Segmentation. This task focuses on the
Begin-Inside-Outside (BIO scheme) level of
the tokens. That is, for a given NE, the model
has to predict whether a word is B, I, or O re-
gardless of the entity type. The idea is to let
the models learn how entities are treated in
general, rather than associating the types to
certain contexts. This task acts as a regular-
izer of the primary task to prevent overfitting.

• Categorization. In this case, the models
have to predict the types of the entities along
with the BIO scheme (e.g., B-person, I-
person, etc.), which represent the final labels.

We formalize the definitions of our models as
follows: let X = [x1, x2, ..., xn] be a sample sen-
tence where xi is the ith word in the sequence.
Then, let α : Vx → Rdimx be a word embed-
ding, and let x = [α(x1), . . . , α(xn)] be the word
embedding matrix for the sample sentence such
that Vx is the vocabulary and dimx is the di-
mension of the embedding space. Similarly, let
β : Vp → Rdimp be the POS tag embedding, and
let p = [β(p1), . . . , β(pn)] be the POS tag em-
bedding matrix for the sample sentence such that
Vp is the set of Part-of-Speech tags and dimp is
the dimension of the embedding space. Notice
that the POS tag embedding matrix p is learned
during training. Also, let Q = [q1, q2, ..., qm]
be the phonetic letters of a word; let γ : Vq →
R|Vq |+dimPanPhon be an embedding that maps each
phonetic character to a one-hot vector of the In-
ternational Phonetic Alphabet (Vq) concatenated
with the 21 (dimPanPhon) phonological features
of the PanPhon library (tongue position, move-
ment of lips, etc.) (Bharadwaj et al., 2016); and
let q = [γ(q1), ..., γ(qm)] be the matrix represen-
tation of the word-level phonetics and phonology.

We first apply an LSTM (Hochreiter and
Schmidhuber, 1997) to the q matrix on forward
and backward directions. Then we concatenate the
output from both directions:

−→
h = LSTM({q1,q2, ...,qm})
←−
h = LSTM({qm,qm−1, ...,q1})
h = [

−→
h ;
←−
h ]
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Figure 2: This is an end-to-end system that uses the
CRF loss function as the objective function of the net-
work. It also uses multitask learning on the output
layer.

This vector not only encodes the phonetic and
phonological features, but it also captures some
morphological patterns at the character level based
on the IPA representations. Then, we concatenate
this vector with the word and POS tag representa-
tions: a = [xt;pt;ht]. We feed this representa-
tion to another bidirectional LSTM network (Dyer
et al., 2015), similar to the BLSTM described for
the character level. The bidirectional LSTM gen-
erates a word-level representation that accounts
for the context in the sentence using semantics,
syntax, phonetics and phonological aspects. We
feed this representation to a fully-connected layer:

ri = BLSTM({a1,a2, ...an}) (1)

zi = ReLU(Wari + b) (2)

At this point, both models share the same defini-
tion. From here, we describe the multitask learn-
ing characteristics for each model separately.
End-to-end model. For the end-to-end network
(see Figure 2), we define an output layer based
on two Conditional Random Fields (Lafferty et al.,
2001), each assigned to one of the tasks. The idea
of adding a CRF to the model is to capture the re-
lation of the output probabilities of the network
with respect to the whole sequence. This means
that the CRFs will maximize the log-likelihood
of the entire sequence, which allows the model
to learn very specific constraints from the data
(e.g., a label I-location cannot be followed by I-
person). Following Ma and Hovy (2016), we for-
malize the definition of the CRF as follows: let
y = [y1, y2, ..., yn] be the labels for a sequence x,

Figure 3: This is a stacked model that uses a network
as feature extractor, and then it transfers the learning to
a CRF classifier. The network uses multitask learning
to capture the features.

where yi represents the ith label of the xi token
in the sentence. Next, we calculate the conditional
probability of seeing y given the extracted features
z from the network and the weights W associated
to the labels:

p(y|z;W) =
exp(WyΦ(z,y))∑

y′∈y exp(WyΦ(z,y′))

Where Φ is a feature function that codifies the
interactions between consecutive labels, yt and
yt+1, as well as the interactions between labels
and words, represented by zt. Then, the objective
function for one CRF is defined by the maximum
log-likelihood of this probability. However, we are
running two CRFs as the objective function:

L1(z,W) = log p(yseg|z;W)

L2(z,W) = log p(ycat|z;W)

L(z,W) = αL1(z,W) + L2(z,W)

Where L1 is the loss function of the segmen-
tation task with labels yseg. Similarly, L2 is the
loss function of the categorization task with labels
ycat. L is the loss function that accounts for both
tasks, where the segmentation task is weighted by
an α scalar.
Stacked model. For this model, we use a mul-
titask network as a feature extractor whose loss
function is defined as a categorical cross entropy
(see Figure 3). We apply a softmax activation
function to produce the probability distribution
over the labels, and then we calculate the loss as
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follows:

H1(y, z) =−
∑

zi

y log(softmax(Wsegzi + b))

H2(y, z) =−
∑

zi

y log(softmax(Wcatzi + b))

L(y, z) = αH1(z,Wseg) +H2(z,Wcat)

After training the multitask network, we take the
activation outputs from Equation 2. These vectors
are used as features to train a Conditional Random
Fields classifier. The definition of the CRF is the
same as the one described for the end-to-end net-
work.

2.3 Implementation details
We have performed a very simple preprocessing
on the data, which consists in replacing URLs,
emojis, tags, and numbers with predefined to-
kens. Additionally, the vocabulary of the pre-
trained word embeddings was not sufficient to
cover all the words in the WNUT dataset (i.e.,
training, validation, and testing sets have OOV
words). We handled this situation using the Face-
book library FastText (Bojanowski et al., 2016).
This library can produce an embedding vector
from the subword level of the word (i.e., ngrams).
The advantage of FastText over other embedding
learning algorithms is that we can still extract use-
ful embeddings for OOV words from their sub-
word embeddings. For instance, if there is a miss-
ing letter in one word, the subword-level vector
will be reasonably close to the vector of the cor-
rect spelling.

The models have been trained using weighted
classes, which forces the models to pay more at-
tention to the labels that are less frequent. This is
a very important step since the NE datasets usually
show a skewed distribution, where the NE tokens
represent approximately 10% of the entire corpus.
Although weighting classes improves the recall of
the model, we tried to be sensitive to this aspect
as the model can be forced to predict entities even
in cases where there are none. The weights were
experimentally defined, keeping the same distribu-
tion but decreasing the loss on non-entity tokens.

Additionally, we defined our models using
the following hyperparameters: the phonetic and
phonological BLSTM at the character level uses
64 units per direction, which adds up to 128 units.
Similarly, the word level BLSTM uses 100 units
per direction, which accounts for a total of 200

Corpus Dataset Classes % Unique

CoNLL 2003
Train 4 26%
Dev 4 40%
Test 4 41%

WNUT 2017
Train 6 75%
Dev 6 85%
Test 6 80%

Table 3: Percentage of unique NEs in two benchmark
datasets, the one from CoNLL 2003 and the one used
in the 2017 shared task held by the WNUT workshop.

units. The fully-connected layer has 100 neurons,
and it uses a Rectified Linear Unit (ReLU) acti-
vation function. We also use a dropout operation
before and after each BLSTM component. This
forces the networks to find different paths to pre-
dict the data, which ultimately improves the gen-
eralization capabilities (i.e., they do not rely on a
single path for certain inputs). The dropout value
is 0.5. For the stacked model we use the Adam
optimizer (Kingma and Ba, 2014) with a learning
rate of 0.001.

3 Datasets

Social media (SM) captures the fast evolving be-
havior of the language, and, as its influence in so-
ciety grows, SM platforms play an important role
in language understanding. We focus this work
on the WNUT 2017 dataset for NER (Derczynski
et al., 2017). This dataset covers multiple SM plat-
forms and suits perfectly the purpose of this work.
Table 5 shows the distribution of the dataset and its
classes. The training set uses tweets, whereas the
development set is based on YouTube comments.
The testing set combines content from Reddit and
StackExchange. The cross domain nature of the
dataset establishes an additional challenge to the
task. For instance, besides the particularities of
the domains (e.g., length of the sentences, domain-
specific expressions such as hashtags, emojis and
others), the users tend to address different topics
on each of the SM domains with different lev-
els of relaxed language and style (Ritter et al.,
2011; Strauss et al., 2016; Derczynski et al., 2017).
Moreover, the predominant factors in those SM
environments are the emerging and rare entities.
As stated by Derczynski et al. (2017), emerging
describes the entity instances that started to appear
in context recently (e.g., a movie title released a
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Statistics Train Dev Test
Posts 3,395 1,009 1,287
Tokens 62,729 15,733 23,394
NE tokens 3,160 1,250 1,589
NE tokens (%) 5.04 7.95 6.79

Table 4: General statistics of the WNUT 2017 dataset.
It is worth noting that the NE tokens account for less
than 10% on any dataset, which shows the inherent
skewness of the task.

Classes Train Dev Test
person 995 46 532
location 793 238 188
group 414 64 202
creative-work 346 107 331
product 345 586 250
corporation 267 209 86
TOTAL 3,160 1,250 1,589

Table 5: Classes and their frequency distribution on the
WNUT 2017 dataset.

year ago), whereas rare depicts the entities that ap-
pear less than certain number of times. It is worth
noting that this dataset presents a great challenge
to systems that rely on external resources due to
the rare and emerging properties.

We also consider the CoNLL 2003 dataset
(Tjong Kim Sang and De Meulder, 2003) as it
has been used as the standard dataset for NER
benchmarks. However, we emphasize that both
datasets present significantly different challenges
and, thus, some relevant aspects in CoNLL 2003
may not be that relevant in the WNUT 2017
dataset. For example, capitalization is a crucial
feature in newswire text, but it is less important
in SM data since users tend to arbitrarily alter the
character casing. Moreover, the target classes on
the WNUT 2017 dataset cover the CoNLL 2003
classes plus fine-grained classes such as creative-
work (e.g., movie titles, T.V. shows, etc.), group
(e.g., sports teams, music bands, etc.), and prod-
uct. The additional classes are more heteroge-
neous, and thus, it makes the task more difficult
to generalize. Furthermore, Table 3 shows the
percentage of unique tokens of the WNUT 2017
dataset, which certainly shows a great diversity
compared to the CoNLL 2003 dataset.

4 Experiments and results

We mainly focus our experiments on the WNUT
2017 dataset. However, we consider relevant to
compare our approach to the standard CoNLL
2003 dataset where current state-of-the-art sys-
tems are benchmarked. This section addresses the
experiments and results of both datasets.

4.1 WNUT 2017 experiments

In this section we discuss the experiments of the
proposed approaches. We compare our models
and describe the contribution of each component
of the stacked system. Additionally, we compare
our results against the state of the art in the WNUT
2017 dataset.
Stacked vs. end-to-end model. Table 6 shows
that the stacked system has a lower precision than
the end-to-end model, but its recall is the high-
est. This means that the stacked model is slightly
better at generalizing than the other models since
it can detect a more diverse set of entities. The
surface form F1 metric (Derczynski et al., 2017)
supports that intuition as well. It assigns a better
F1 score to the stacked system (43.90%) than to
the end-to-end model (42.79%) because the for-
mer finds more rare and emerging entities than the
latter. Moreover, Table 6 also shows that the pre-
cision of the end-to-end model is higher than the
rest of the systems. This tends to capture the most
frequent entities and leave behind the rare ones,
which explains the different behaviors between the
precision and recall of both models.
Stacked model. The feature extractor contains a
category task that can produce predictions of the
test set. We explored predicting the final labels
with the feature extractor and compared the re-
sults against the predictions of the CRF classifier.
We noticed that the CRF always outperformed the
network. For the best scores the feature extrac-
tor achieved 40.64% whereas the CRF reached
45.55%. This is consistent with previous research
(Lample et al., 2016; Aguilar et al., 2017) in that
the individual output probabilities of the network
do not consider the whole sequence, and thus, a
sequential algorithm such as a CRF can improve
the results by learning global constraints (i.e., the
B-person cannot be followed by I-corporation).
Ablation experiment. We explored the contribu-
tion of the features and different aspects of our
models. For instance, we tried a BLSTM network
using pretrained word embeddings only. The re-
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Classes
Precision (%) Recall (%) F1 (%)

Stacked E2E WNUT Stacked E2E WNUT Stacked E2E WNUT
corporation 33.33 30.77 31.91 19.70 12.12 22.73 24.76 17.39 26.55
creative-work 50.00 55.56 36.67 14.79 10.56 7.75 22.83 17.75 12.79
group 47.76 63.16 41.79 19.39 14.55 16.97 27.59 23.65 24.14
location 62.20 78.12 56.92 52.67 50.00 49.33 57.04 60.98 52.86
person 73.49 71.15 70.72 51.05 51.75 50.12 60.25 59.92 58.66
product 40.58 34.29 30.77 22.05 9.45 9.45 28.57 14.81 14.46
Overall 61.06 66.67 57.54 36.33 32.99 32.90 45.55 44.14 41.86

Table 6: The class-level and overall results of our systems on the WNUT 2017 dataset. WNUT represents the
winning system of the shared task (UH-RiTUAL), E2E is the end-to-end model, and Stacked shows the results of
the stacked model. Both systems considerably outperform the state-of-the-art results. Between the end-to-end and
the stacked models, the former gets better overall precision while the latter stands out on recall.

Model F1 Delta
Stacked Model 45.55

- Multitask Learning 44.76 -0.79
- Character phonetics 43.83 -0.93
- Weighted classes 41.25 -2.58
- POS tag vectors 40.15 -1.10
- FastText OOV vectors 39.78 -0.37
- Pretrained embeddings 12.72 -27.06

Table 7: We performed an ablation experiment on the
stacked model. The results in the table are the average
of the scores of three iterations.

sults of this model set our baseline on a 39.78%
F1-score (see Table 7). This score is considerably
close to the state-of-the-art performance, but im-
provements beyond that are small. For instance,
Table 7 shows an ablation experiment using the
stacked model. The ablation reveals that weight-
ing the classes is the most influential factor, which
accounts for a 2.58% of F1 score improvement.
This aligns with the fact that the data is highly
skewed, and thus, the model should pay more at-
tention to the less frequent classes. The second
most important aspect is the POS tags, which en-
hance the results by 1.10%. This improvement
suggests that POS tags are important whether the
dataset is from a noisy environment or not since
other researchers have found positive effects by
using this feature on formal text (Huang et al.,
2015). Almost equally influential are the phonetic
and phonological features that push the F1 score
by 0.93%. According to the ablation experiment,
using phonetic and phonology along with the pre-
trained word embeddings and POS tags can reach
an F1 measure of 41.81%, which is a very simi-
lar result to the state-of-the-art score, but with a

simpler and more suitable model for SM environ-
ments (i.e., without gazetteers or capitalization).

We explored the multitask learning aspect by
empirically trying multiple combinations of aux-
iliary tasks. The best combination is the standard
NER categorization along with the segmentation
task. The segmentation slightly improves the bi-
nary task proposed by Aguilar et al. (2017) by
around 0.3%. Additionally, trying the binariza-
tion, segmentation, and categorization tasks to-
gether drops the results by around 0.2% with re-
spect to the categorization paired with the binary
task. Moreover, the ablation experiment shows
that the multitask layer boosts the performance of
the stacked model with 0.79% of F1 score.

For the OOV problem, we use FastText to pro-
vide vectors to 2,333 words (around 13% of the
vocabulary). However, the ablation experiment
shows a small improvement, which suggests that
those words did not substantially contribute to the
meaning of the context. Another aspect that we
explored was adding all the letters of the dataset
to the character level of the stacked model with-
out modifying the casing. Surprisingly, the models
produced a slightly worse result (around -0.5%).
Our intuition is that the character aspects are al-
ready captured by the model with the phonetic
(IPA) representation, and the arbitrary use of cap-
italization renders this information useless. It is
also worth noting that having phonetics instead of
a language-dependent alphabet allows the adapt-
ability of this approach to other languages.
State of the art comparison. Table 6 shows that
our end-to-end and stacked models significantly
outperform the state-of-the-art score by 2.28% and
3.69% F1 points, respectively. In the case of the
stacked system, the precision and recall outper-
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No Predictions

1
Road and airport closure isolate Srinagar
as avalanche risk remains high

2

The Defence Research Development
Organisation ( DRDO ) is working on
four projects to develop new technologies
for more accurate ...

3 Her name is Scout .

Table 8: Examples of the predictions of our stacked
model in the Reddit domain of the WNUT 2017
dataset. The bold words are the gold labels, and the
underlined words are the predictions of our model. The
model matches the entity types of the labeled data.

form the winning system of the shared task (UH-
RiTUAL) across all the classes. Moreover, even
though the UH-RiTUAL system uses gazetteers,
it only outperforms the recall of the end-to-end
model on the corporation class. These results can
be explained by the entity diversity of the dataset,
where the emerging and rare properties are diffi-
cult to capture with external resources.

4.2 CoNLL 2003 evaluation

We also benchmarked our approach on a stan-
dard CoNLL 2003 dataset for the NER task. The
stacked model reached 89.01% while the end-to-
end model achieved 88.98% on the F1 metric. Al-
though the state-of-the-art performance is 91.21%
(Ma and Hovy, 2016), our approach targets SM
domains and, consequently, our models disregard
some of the important aspects on formal text while
still getting reasonable results. For instance, Ma
and Hovy (2016) input the text to their model as
is, which indirectly introduce capitalization to the
morphological analysis at the character level. This
aspect becomes relevant in this dataset because en-
tities are usually capitalized on formal text. As ex-
plained before, our models do not rely on capital-
ization because the characters are represented by
the International Phonetic Alphabet, which does
not differentiate between lower and upper cases.

5 Analysis

Table 8 shows some predictions of our stacked
model on the WNUT 2017 test set. In example
number 1, the model is able to correctly label Sri-
nagar as person, even though the model does not
rely on gazetteers or capitalization. It is also im-
portant to mention that the word was not in the

training or development set, which means that the
network had to infer the entity purely from the
context. Moreover, the second example shows that
the model has problems to determine whether the
article the belongs to an NE or not. This is an am-
biguous problem that even humans struggle with.
This example also has a variation on spelling for
the words Defence and Organisation. We suspect
that the mitigation of OOV words using the Fast-
Text library helped in this case. Also, from the
phonetic perspective, the model treated the word
Defence as if it was the word Defense because both
words map to the same IPA sequence, /dIfEns/. In
the third case, the model is not able to identify the
NE Scout, even though the context makes it fairly
easy.

6 Related work

In its former years, NER systems focused on
newswire text, where the goal was to identify
mainly three types of entities: person, corpora-
tion, and location. These entity types were orig-
inally proposed in the 6th Message Understand-
ing Conference (MUC-6) (Grishman and Sund-
heim, 1996b). In MUC-7, the majority of the sys-
tems were based on heavily hand-crafted features
and manually elaborated rules (Borthwick et al.,
1998). Some years later, many researchers in-
corporated machine learning algorithms to their
systems, but there was still a strong dependency
on external resources and domain-specific fea-
tures and rules (Tjong Kim Sang and De Meul-
der, 2003). In addition, the majority of the sys-
tems used Maximum Entropy (Bender et al., 2003;
Chieu and Ng, 2003b; Curran and Clark, 2003;
Florian et al., 2003b; Klein et al., 2003) and
Hidden Markov Models (Florian et al., 2003b;
Klein et al., 2003; Mayfield et al., 2003; Whitelaw
and Patrick, 2003). Furthermore, McCallum
and Li (2003) used a CRF combined with web-
augmented lexicons. The features were selected
by hand-crafted rules and refined based on their
relevance to the domain of the entities. Moreover,
Nothman et al. (2013) used Wikipedia resources
to take advantage of structured data and reduce
the human-annotated labels. In general, the results
of the systems were reasonable for formal text,
yet the scalability and the expensive detailed rules
were not; their systems were difficult to maintain
and adapt to other domains where different rules
were needed.
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Recently, NER has been focused on noisy data
as a result of the growth in social media users.
However, the limits of the previous systems dra-
matically affected the results on noisy domains.
For instance, Derczynski et al. (2014) evaluated
multiple NER tools in noisy environments: Stan-
ford NER (Finkel et al., 2005), ANNIE (Cunning-
ham et al., 2002), among others. They reported
that the majority of the tools were not capable of
adapting to the noisy conditions showing a drop in
performance of around 40% on a F1-score met-
ric. This motivated many researchers to solve
the problem using different techniques. In 2015,
Baldwin et al. (2015) organized a NER shared
task at the 1st Workshop on Noisy User-generated
Text (WNUT), where three of the participants used
word embedding as features to train their tradi-
tional machine learning algorithms (Godin et al.,
2015; Toh et al., 2015; Cherry et al., 2015). The
shared task introduced noisy data as well as more
difficult entity types to identify (e.g., tv show,
product, sports team, movie, music artist, etc.).
Notably, the WNUT 2016 and 2017 were predom-
inated by neural network systems (Limsopatham
and Collier, 2016; Aguilar et al., 2017).

Deep neural networks have proven to be effec-
tive for NER. The state-of-the-art and the most
competitive architectures can be characterized by
the use of recurrent neural networks (Chiu and
Nichols, 2016) combined with CRF (Lample et al.,
2016; Ma and Hovy, 2016; Peng and Dredze,
2016; Bharadwaj et al., 2016; Aguilar et al., 2017).
Our work primarily focuses on social media data
and explores more suitable variations and combi-
nations of those models. The most important dif-
ferences of our approach and previous works are i)
the use of phonetics and phonology (articulatory)
features at the character level to model SM noise,
ii) consistent BLSTMs for character and word lev-
els, iii) the segmentation and categorization tasks,
iv) a multitask neural network that transfers the
learning without using lexicons or gazetteers, and
v) weighted classes to handle the inherent skew-
ness of the datasets.

7 Conclusions

This paper proposed two models for NER on so-
cial media environments. The first one is a stacked
model that uses a multitask BLSTM network as a
feature extractor to transfer the learning to a CRF
classifier. The second one is an end-to-end multi-

task BLSTM-CRF model whose output layer has
a CRF per task. Both models improve the state-of-
the-art results on the WNUT 2017 dataset, where
the data comes from multiple SM domains (i.e.,
Twitter, YouTube, Reddit, and StackExchange).
Instead of working on normalizing text, we de-
signed representations that are robust to inherent
properties of SM data: inconsistent spellings, di-
verse vocabulary, and flexible grammar. Consid-
ering that SM is a prevalent communication chan-
nel that constantly generates massive amounts of
data, it is practical to design NLP tools to pro-
cess this domain as is. In this sense, we showed
that the phonetic and phonological features are
useful to capture sound-driven writing. This ap-
proach avoids the standard normalization process
and boosts prediction performance. Furthermore,
the use of multitask learning with segmentation
and categorization is important to improve the re-
sults of the models. Finally, the weighted classes
force the model to pay more attention on skewed
datasets. We showed that these components can
point to more suitable approaches for NER on so-
cial media data.
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Troncy, Johann Petrak, and Kalina Bontcheva. 2014.
Analysis of named entity recognition and linking for
tweets. CoRR abs/1410.7182. http://arxiv.
org/abs/1410.7182.

Leon Derczynski, Eric Nichols, Marieke van Erp,
and Nut Limsopatham. 2017. Results of the
WNUT2017 Shared Task on Novel and Emerg-
ing Entity Recognition. In Proceedings of the
3rd Workshop on Noisy, User-generated Text (W-
NUT) at EMNLP. ACL. http://aclweb.org/
anthology/W/W17/W17-4418.pdf.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependeny parsing with stack long short-term
memory. In Proceedings of the 53rd Annual Meet-
ing of the Association of Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing of the Asian Federation of
Natural Language Processing (ACL-IJCNLP 2015).
ACL.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics.
Association for Computational Linguistics, Strouds-
burg, PA, USA, ACL ’05, pages 363–370. https:
//doi.org/10.3115/1219840.1219885.

Radu Florian, Abe Ittycheriah, Hongyan Jing, and
Tong Zhang. 2003a. Named entity recognition
through classifier combination. In Proceedings
of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003 - Volume 4. Asso-
ciation for Computational Linguistics, Stroudsburg,
PA, USA, CONLL ’03, pages 168–171. https:
//doi.org/10.3115/1119176.1119201.

Radu Florian, Abe Ittycheriah, Hongyan Jing, and
Tong Zhang. 2003b. Named entity recogni-
tion through classifier combination. In Wal-
ter Daelemans and Miles Osborne, editors, Pro-
ceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003.
pages 168–171. http://www.aclweb.org/
anthology/W03-0425.pdf.
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Abstract

We propose several ways of reusing subword
embeddings and other weights in subword-
aware neural language models. The pro-
posed techniques do not benefit a competi-
tive character-aware model, but some of them
improve the performance of syllable- and
morpheme-aware models while showing sig-
nificant reductions in model sizes. We dis-
cover a simple hands-on principle: in a multi-
layer input embedding model, layers should be
tied consecutively bottom-up if reused at out-
put. Our best morpheme-aware model with
properly reused weights beats the competitive
word-level model by a large margin across
multiple languages and has 20%–87% fewer
parameters.

1 Introduction

A statistical language model (LM) is a model
which assigns a probability to a sequence of
words. It is used in speech recognition, ma-
chine translation, part-of-speech tagging, informa-
tion retrieval and other applications. Data sparsity
is a major problem in building traditional n-gram
language models, which assume that the proba-
bility of a word only depends on the previous n
words. To deal with potentially severe problems
when confronted with any n-grams that have not
explicitly been seen before, some form of smooth-
ing is necessary.

Recent progress in statistical language mod-
eling is connected with neural language models
(NLM), which tackle the data sparsity problem by
representing words as vectors. Typically this is
done twice: at input (to embed the current word
of a sequence into a vector space) and at output
(to embed candidates for the next word of a se-
quence). Especially successful are the models in
which the architecture of the neural network be-
tween input and output is recurrent (Mikolov et al.,

2010), which we refer to as recurrent neural net-
work language models (RNNLM).

Tying input and output word embeddings in
word-level RNNLM is a regularization technique,
which was introduced earlier (Bengio et al., 2001;
Mnih and Hinton, 2007) but has been widely used
relatively recently, and there is empirical evidence
(Press and Wolf, 2017) as well as theoretical justi-
fication (Inan et al., 2017) that such a simple trick
improves language modeling quality while de-
creasing the total number of trainable parameters
almost two-fold, since most of the parameters are
due to embedding matrices. Unfortunately, this
regularization technique is not directly applicable
to subword-aware neural language models as they
receive subwords at input and return words at out-
put. This raises the following questions: Is it pos-
sible to reuse embeddings and other parameters in
subword-aware neural language models? Would
it benefit language modeling quality? We exper-
imented with different subword units, embedding
models, and ways of reusing parameters, and our
answer to both questions is as follows: There are
several ways to reuse weights in subword-aware
neural language models, and none of them im-
prove a competitive character-aware model, but
some of them do benefit syllable- and morpheme-
aware models, while giving significant reductions
in model sizes. A simple morpheme-aware model
that sums morpheme embeddings of a word ben-
efits most from appropriate weight tying, showing
a significant gain over the competitive word-level
baseline across different languages and data set
sizes. Another contribution of this paper is the dis-
covery of a hands-on principle that in a multi-layer
input embedding model, layers should be tied con-
secutively bottom-up if reused at output.

The source code for the morpheme-aware
model is available at https://github.com/
zh3nis/morph-sum.
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2 Related Work

Subword-aware NLM: There has been a large
number of publications in the last 2–3 years on
subword-level and subword-aware NLMs,1 espe-
cially for the cases when subwords are charac-
ters (Ling et al., 2015; Kim et al., 2016; Verwimp
et al., 2017) or morphemes (Botha and Blunsom,
2014; Qiu et al., 2014; Cotterell and Schütze,
2015). Less work has been done on syllable-level
or syllable-aware NLMs (Mikolov et al., 2012; As-
sylbekov et al., 2017; Yu et al., 2017). For a thor-
ough and up-to-date review of the previous work
on subword-aware neural language modeling we
refer the reader to the paper by Vania and Lopez
(2017), where the authors systematically compare
different subword units (characters, character tri-
grams, BPE, morphs/morphemes) and different
representation models (CNN, Bi-LSTM, summa-
tion) on languages with various morphological ty-
pology.
Tying weights in NLM: Reusing embeddings
in word-level neural language models is a tech-
nique which was used earlier (Bengio et al., 2001;
Mnih and Hinton, 2007) and studied in more de-
tails recently (Inan et al., 2017; Press and Wolf,
2017). However, not much work has been done on
reusing parameters in subword-aware or subword-
level language models. Jozefowicz et al. (2016)
reused the CharCNN architecture of Kim et al.
(2016) to dynamically generate softmax word em-
beddings without sharing parameters with an in-
put word-embedding sub-network. They man-
aged to significantly reduce the total number of
parameters for large models trained on a huge
dataset in English (1B tokens) with a large vo-
cabulary (800K tokens) at the expense of deteri-
orated performance. Labeau and Allauzen (2017)
used similar approach to augment the output word
representations with subword-based embeddings.
They experimented with characters and morpho-
logical decompositions, and tried different compo-
sitional models (CNN, Bi-LSTM, concatenation)
on Czech dataset consisting of 4.7M tokens. They
were not tying weights between input and out-
put representations, since their preliminary exper-
iments with tied weights gave worse results.

Our approach differs in the following aspects:

1Subword-level LMs rely on subword-level inputs and
make predictions at the level of subwords; subword-aware
LMs also rely on subword-level inputs but make predictions
at the level of words.

we focus on the ways to reuse weights at output,
seek both model size reduction and performance
improvement in subword-aware language models,
try different subword units (characters, syllables,
and morphemes), and make evaluation on small
(1M–2M tokens) and medium (17M–51M tokens)
data sets across multiple languages.

3 Recurrent Neural Language Model

LetW be a finite vocabulary of words. We assume
that words have already been converted into in-
dices. Let Ein

W ∈ R|W|×dW be an input embedding
matrix for words — i.e., it is a matrix in which the
wth row (denoted as w) corresponds to an embed-
ding of the word w ∈ W .

Based on word embeddings w1:k =
w1, . . . ,wk for a sequence of words w1:k, a
typical word-level RNN language model produces
a sequence of states h1:k according to

ht = RNNCell(wt,ht−1), h0 = 0. (1)

The last state hk is assumed to contain informa-
tion on the whole sequence w1:k and is further
used for predicting the next word wk+1 of a se-
quence according to the probability distribution

Pr(wk+1|w1:k) = softmax(hkEout
W + b), (2)

where Eout
W ∈ RdLM×|W| is an output embedding

matrix, b ∈ R|W| is a bias term, and dLM is a state
size of the RNN.
Subword-based word embeddings: One of the
more recent advancements in neural language
modeling has to do with segmenting words at in-
put into subword units (such as characters, syl-
lables, morphemes, etc.) and composing each
word’s embedding from the embeddings of its sub-
words. Formally, let S be a finite vocabulary of
subwords,2 and let Ein

S ∈ R|S|×dS be an input em-
bedding matrix for subwords. Any word w ∈ W
is a sequence of its subwords (s1, s2, . . . , snw) =
σ(w), and hence can be represented as a sequence
of the corresponding subword vectors:

[s1, s2, . . . , snw ]. (3)

A subword-based word embedding model
E(·; Ein

S ,Θ
in) with parameters (Ein

S ,Θ
in) con-

structs a word vector x from the sequence of
subword vectors (3), i.e.

x = E(σ(w); Ein
S ,Θ

in), (4)

2As in the case of words, we assume that subwords have
already been converted into indices.

1414



unconstitutional conditions on

subword-based softmax

word-level
RNNLM

word vector

subword-based embedding of a word

subword
vectors

un con sti tu tional

imposes unconstitutional conditions

Figure 1: Subword-aware RNNLM with subword-
based softmax.

which is then fed into a RNNLM (1) instead of
a plain embedding w. The additional parameters
Θin correspond to the way the embedding model
constructs the word vector: for instance, in the
CharCNN model of Kim et al. (2016), Θin are the
weights of the convolutional and highway layers.
Reusing word embeddings: Another recent tech-
nique in word-level neural language modeling is
tying input and output word embeddings:

Ein
W =

(
Eout
W
)T
,

under the assumption that dW = dLM. Although
being useful for word-level language modeling
(Press and Wolf, 2017; Inan et al., 2017), this reg-
ularization technique is not directly applicable to
subword-aware language models, as they receive
subword embeddings at input and return word em-
beddings at output. In the next section we describe
a simple technique to allow reusing subword em-
beddings Ein

S as well as other parameters Θin in a
subword-aware RNNLM.

4 Reusing Weights

Let Eout
S be an output embedding matrix for sub-

words and let us modify the softmax layer (2) so
that it utilizes Eout

S instead of the word embedding
matrix Eout

W . The idea is fairly straightforward: we
reuse an embedding model (4) to construct a new

word embedding matrix:

Êout
W = [E(σ(w); Eout

S ,Θ
out) for w ∈ W], (5)

and use Êout
W instead of Eout

W in the softmax layer
(2). Such modification of the softmax layer will be
referred to as subword-based softmax. The over-
all architecture of a subword-aware RNNLM with
subword-based softmax is given in Figure 1. Such
a model allows several options for reusing embed-
dings and weights, which are discussed below.
• Reusing neither subword embeddings nor em-

bedding model weights: As was shown by Joze-
fowicz et al. (2015), this can significantly re-
duce the total number of parameters for large
models trained on huge datasets (1B tokens)
with large vocabularies (800K tokens). How-
ever, we do not expect significant reductions on
smaller data sets (1-2M tokens) with smaller vo-
cabularies (10-30K tokens), which we use in our
main experiments.
• Reusing subword embeddings (RE) can be done

by setting Eout
S = Ein

S in (5). This will give a
significant reduction in model size for models
with |Ein

S | � |Θin|,3 such as the morpheme-
aware model of Botha and Blunsom (2014).
• Reusing weights of the embedding model (RW)

can be done by setting Θout = Θin. Unlike the
previous option, this should significantly reduce
sizes of models with |Ein

S | � |Θin|, such as the
character-aware model of Kim et al. (2016).
• Reusing both subword embeddings and weights

of the embedding model (RE+RW) can be done
by setting Eout

S = Ein
S and Θout = Θin simul-

taneously in (5). This should significantly re-
duce the number of trainable parameters in any
subword-aware model. Here we use exactly the
same word representations both at input and at
output, so this option corresponds to the reusing
of plain word embeddings in pure word-level
language models.

5 Experimental Setup

Data sets: All models are trained and evaluated on
the PTB (Marcus et al., 1993) and the WikiText-
2 (Merity et al., 2017) data sets. For the PTB
we utilize the standard training (0-20), validation
(21-22), and test (23-24) splits along with pre-
processing per Mikolov et al. (2010). WikiText-2
is an alternative to PTB, which is approximately
two times as large in size and three times as large

3|A| denotes number of elements in A.
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in vocabulary (Table 1).

Data set T |W| |S| |M|
PTB 0.9M 10K 5.9K 3.4K
WikiText-2 2.1M 33K 19.5K 8.8K

Table 1: Corpus statistics. T = number of tokens in
training set; |W| = word vocabulary size; |S| = sylla-
ble vocabulary size; |M| = morph vocabulary size.

Subword-based embedding models: We experi-
ment with existing representational models which
have previously proven effective for language
modeling.
• CharCNN (Kim et al., 2016) is a character-

aware convolutional model, which performs on
par with the 2014–2015 state-of-the-art word-
level LSTM model (Zaremba et al., 2014) de-
spite having 60% fewer parameters.
• SylConcat is a simple concatenation of sylla-

ble embeddings suggested by Assylbekov et al.
(2017), which underperforms CharCNN but has
fewer parameters and is trained faster.
• MorphSum is a summation of morpheme em-

beddings, which is similar to the approach of
Botha and Blunsom (2014) with one important
difference: the embedding of the word itself is
not included into the sum. We do this since
other models do not utilize word embeddings.

In all subword-aware language models we inject
a stack of two highway layers (Srivastava et al.,
2015) right before the word-level RNNLM as done
by Kim et al. (2016), and the non-linear activa-
tion in any of these highway layers is a ReLU. The
highway layer size is denoted by dHW.
Word-level RNNLM: There is a large variety of
RNN cells to choose from in (1). To make our
results directly comparable to the previous work
of Inan et al. (2017), Press and Wolf (2017) on
reusing word embeddings we select a rather con-
ventional architecture – a stack of two LSTM cells
(Hochreiter and Schmidhuber, 1997).
Hyperparameters: We experiment with two con-
figurations for the state size dLM of the word-level
RNNLM: 200 (small models) and 650 (medium-
sized models). In what follows values outside
brackets correspond to small models, and values
within brackets correspond to medium models.
• CharCNN: We use the same hyperparameters as

in the work of Kim et al. (2016), where “large
model” stands for what we call “medium-sized
model”.

• SylConcat: dS = 50 (200), dHW = 200 (800).
These choices are guided by the work of Assyl-
bekov et al. (2017).
• MorphSum: dS = dHW = 200 (650). These

choices are guided by Kim et al. (2016).
Optimizaton method is guided by the previous
works (Zaremba et al., 2014; Gal and Ghahra-
mani, 2016) on word-level language modeling
with LSTMs. See Appendix A for details.
Syllabification and morphological segmenta-
tion: True syllabification of a word requires
its grapheme-to-phoneme conversion and then
its splitting up into syllables based on some
rules. True morphological segmentation requires
rather expensive morphological analysis and dis-
ambiguation tools. Since these are not always
available for under-resourced languages, we de-
cided to utilize Liang’s widely-used hyphenation
algorithm (Liang, 1983) and an unsupervised mor-
phological segmentation tool, Morfessor 2.0 (Vir-
pioja et al., 2013), as approximations to syllabi-
fication and morphological segmentation respec-
tively. We use the default configuration of Morfes-
sor 2.0. Syllable and morpheme vocabulary sizes
for both PTB and WikiText-2 are reported in Ta-
ble 1.

6 Results

In order to investigate the extent to which each of
our proposed options benefits the language mod-
eling task, we evaluate all four modifications (no
reusing, RE, RW, RE+RW) for each subword-
aware model against their original versions and
word-level baselines. The results of evaluation are
given in Table 2. We have both negative and posi-
tive findings which are summarized below.

Negative results:
• The ‘no reusing’ and RW options should never

be applied in subword-aware language models
as they deteriorate the performance.
• Neither of the reusing options benefits Char-

CNN when compared to the original model with
a plain softmax layer.

Positive results:
• The RE+RW option puts CharCNN’s perfor-

mance close to that of the original version, while
reducing the model size by 30–75%.
• The RE and RE+RW are the best reusing options

for SylConcat, which make it on par with the
original CharCNN model, despite having 35–
75% fewer parameters.
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PTB Wikitext-2

Model
Small Medium Small Medium

Size PPL Size PPL Size PPL Size PPL

Word 4.7M 88.1 19.8M 79.8 14M 111.9 50.1M 95.7
Word + reusing word emb’s 2.7M 86.6 13.3M 74.5 7.3M 104.1 28.4M 89.9

CharCNN (original) 4.1M 87.3 19.4M 77.1 8.7M 101.6 34.5M 88.7
CharCNN 3.3M 97.5 18.5M 89.2 3.3M 110.6 18.5M —
CharCNN + RE 3.3M 99.1 18.5M 82.9 3.3M 110.2 18.5M —
CharCNN + RW 2.2M 93.5 13.6M 103.2 2.2M 111.5 13.6M —
CharCNN + RE + RW 2.2M 91.0 13.6M 79.9 2.2M 101.8 13.6M —

SylConcat (original) 3.2M 89.0 18.7M 77.9 8.5M 105.7 36.6M 91.4
SylConcat 1.7M 96.9 17.7M 90.5 3.1M 118.1 23.2M 114.8
SylConcat + RE 1.4M 87.4 16.6M 75.7 2.1M 101.0 19.3M 94.2
SylConcat + RW 1.6M 99.9 15.2M 96.2 2.9M 118.9 19.4M 112.1
SylConcat + RE + RW 1.2M 88.4 12.7M 76.2 1.9M 101.0 15.5M 86.7

MorphSum (original) 3.5M 87.5 17.2M 78.5 9.3M 101.9 35.8M 90.1
MorphSum 2.4M 89.0 14.5M 82.4 4.5M 100.3 21.7M 86.7
MorphSum + RE 1.6M 85.5 12.3M 74.1 2.8M 97.6 15.9M 81.2
MorphSum + RW 2.2M 89.6 12.8M 81.0 4.4M 101.4 20.0M 86.6
MorphSum + RE + RW 1.5M 85.1 10.7M 72.2 2.6M 96.5 14.2M 77.5

Table 2: Results. The pure word-level models and original versions of subword-aware models (with regular soft-
max) serve as baselines. Reusing the input embedding architecture at output in CharCNN leads to prohibitively
slow models when trained on WikiText-2 (≈800 tokens/sec on NVIDIA Titan X Pascal); we therefore abandoned
evaluation of these configurations.

• The RE and RE+RW configurations benefit
MorphSum making it not only better than its
original version but also better than all other
models and significantly smaller than the word-
level model with reused embeddings.

In what follows we proceed to analyze the ob-
tained results.

6.1 CharCNN is biased towards surface form

We hypothesize that the reason CharCNN does not
benefit from tied weights is that CNN over char-
acter embeddings is an excessively flexible model
which learns to adapt to a surface form more than
to semantics. To validate this hypothesis we pick
several words4 from the English PTB vocabulary
and consider their nearest neighbors under cosine
similarity as produced by the medium-sized mod-
els (with the regular softmax layer) at input (Ta-
ble 3). As we can see from the examples, the
CharCNN model is somewhat more biased to-
wards surface forms at input than SylConcat and

4We pick the same words as Kim et al. (2016).

MorphSum.5 When CharCNN is reused to gener-
ate a softmax embedding matrix this bias is prop-
agated to output embeddings as well (Table 3).

6.2 Tying weights bottom-up

From Table 2 one can notice that tying weights
without tying subword embeddings (RW) always
results in worse performance than the tying both
weights and embeddings (RE+RW). Recall that
subword embedding lookup is done before the
weights of subword-aware embedding model are
used (see Figure 1). This leads us to the following

Conjecture. Let Ein
S = Θin

0 ,Θ
in
1 ,Θ

in
2 , . . . ,Θ

in
n

be the parameters of the consecutive layers of a
subword-aware input embedding model (4), i.e.
x = x(n) = fn

(
x(n−1); Θin

n

)
, . . . , x(1) =

f1
(
x(0); Θin

1

)
, x(0) = f0

(
σ(w); Ein

S
)

and let
Eout
S = Θout

0 ,Θout
1 ,Θout

2 , . . . ,Θout
n be the parame-

ters of the consecutive layers of a subword-aware
embedding model used to generate the output pro-
jection matrix (5). LetA be a subword-aware neu-

5A similar observation for character-aware NLMs was
made by Vania and Lopez (2017).

1417



Model In Vocabulary Out-of-Vocabulary
while his you richard trading computer-aided misinformed looooook

IN
PU

T
E

M
B

E
D

D
IN

G
S

chile hhs god graham traded computer-guided informed look
CharCNN whole its we harold tradition computerized performed looks
(original) meanwhile her your edward heading computer-driven formed looking

although this i ronald eroding black-and-white confirmed looked
although my kemp thomas printing computer-guided reinforced —

SylConcat though historic welch robert working computer-driven surprised —
(original) when your i stephen lending computerized succeeding —

mean irish shere alan recording computer succeed —
although mystery i stephen program-trading cross-border informed nato

MorphSum whenever my ghandi leonard insider-trading bank-backed injured lesko
(original) when whiskey we william relations pro-choice confined imo

1980s sour cadillac robert insurance government-owned formed swapo

I/
O

E
M

B
’S thi her we gerard trades computer-guided informed look

CharCNN when its your gerald trader large-scale performed outlook
+ RE + RW after the young william traders high-quality outperformed looks

above heir why edward trade futures-related confirmed looked

Table 3: Nearest neighbors based on cosine similarity. We underline character ngrams in words which are close
to the given word orthographically rather than semantically. The pyphen syllabifier, which is used in SylConcat,
failed to segment the word ‘looooook’ into syllables, and therefore its neighbors are not available.

ral language model in which the first (j+1) layers
of input and output embedding sub-networks have
tied weights:

∀i = 0, j : Θin
i = Θout

i ,

and let B be a model in which at least one layer
below the (j + 1)th layer has untied weights:

∃i = 0, j − 1 : Θin
i 6= Θout

i , Θin
j = Θout

j .

Then model B performs at most as well as model
A, i.e. PPLA ≤ PPLB .

To test this conjecture empirically, we conduct
the following experiments: in all three embedding
models (CharCNN, SylConcat, and MorphSum),
we reuse different combinations of layers. If an
embedding model has n layers, there are 2n ways
to reuse them, as each layer can either be tied or
untied at input and output. However, there are two
particular configurations for each of the embed-
ding models that do not interest us: (i) when nei-
ther of the layers is reused, or (ii) when only the
very first embedding layer is reused. Hence, for
each model we need to check 2n − 2 configura-
tions. For faster experimentation we evaluate only
small-sized models on PTB. The results are re-
ported in Table 4. As we can see, the experiments
in general reject our conjecture: in SylConcat leav-
ing an untied first highway layer between tied em-
bedding and second highway layers (denote this as
HW2+Emb) turned out to be slightly better than
tying all three layers (HW2+HW1+Emb). Recall,
that a highway is a weighted average between non-
linear and identity transformations of the incom-

ing vector:

x 7→ t� ReLU(xA + b) + (1− t)� x,

where t = σ(xW + c) is a transform gate, A,
W, b and c are trainable parameters, and � is
the element-wise multiplication operator. To find
out why leaving an untied highway below a tied
one is beneficial in SylConcat, we compare the
distributions of the transform gate values t from
the first highway layers of both configurations,
HW2+Emb and HW2+HW1+Emb, in SylConcat
and MorphSum (Figure 2).

We can see that SylConcat heavily relies on
nonlinearity in the first highway layer, while
MorphSum does not utilize much of it. This means
that in MorphSum, the highway is close to an iden-
tity operator (t ≈ 0), and does not transform the
sum of morpheme vectors much, either at input
or at output. Therefore, tying the first highway
layer is natural to Morh-Sum. SylConcat, on the
other hand, applies non-linear transformations to
the concatenation of syllable vectors, and hence
makes additional preparations of the word vector
for the needs of the RNNLM at input and for Soft-
max prediction at output. These needs differ from
each other (as shown in the next subsection). This
is why SylConcat benefits from an additional de-
gree of freedom when the first highway is left un-
tied.

Despite not being true in all cases, and due
to being true in many cases, we believe that the
above-mentioned conjecture is still useful. In
short it can be summarized as a practical hands-
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HW2 HW1 CNN Emb PPL
X 94.1
X X 92.8

X 94.6
X X 94.5
X X 93.1
X X X 90.1

X 94.9
X X 99.2
X X 94.1
X X X 92.5
X X 94.3
X X X 97.8
X X X 96.3
X X X X 91.0

HW2 HW1 Emb PPL
X 95.4
X X 87.4

X 99.0
X X 87.9
X X 96.2
X X X 88.4

HW2 HW1 Emb PPL
X 90.0
X X 84.7

X 89.9
X X 85.7
X X 89.4
X X X 85.1

Table 4: Reusing different combinations of layers in small CharCNN (left), small SylConcat (top right) and small
MorphSum on PTB data. “X” means that the layer is reused at output.
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Figure 2: Kernel density estimations of the transform gate values of the first highway layers in SylConcat (left) and
MorphSum. Values corresponding to ‘Input’ and ‘Output’ curves come from the HW2+Emb configurations, while
those corresponding to ‘Tied’ curves come from the HW2+HW1+Emb configurations.

on rule:

Layers should be tied consecutively bottom-up,

i.e. one should not leave untied layer(s) below a
tied one. Keep in mind that this rule does not guar-
antee a performance increase as more and more
layers are tied. It only says that leaving untied
weights below the tied ones is likely to be worse
than not doing so.

6.3 Difference between input and output
embeddings

One can notice from the results of our experi-
ments (Table 4) that having an untied second high-
way layer above the first one always leads to bet-
ter performance than when it is tied. This means
that there is a benefit in letting word embeddings
slightly differ at input and output, i.e. by spe-
cializing them for the needs of RNNLM at input
and of Softmax at output. This specialization is
quite natural, as input and output representations
of words have two different purposes: input rep-

resentations send a signal to the RNNLM about
the current word in a sequence, while output rep-
resentations are needed to predict the next word
given all the preceding words. The difference be-
tween input and output word representations is
discussed in greater detail by Garten et al. (2015)
and Press and Wolf (2017). Here we decided to
verify the difference indirectly: we test whether
intrinsic dimensionality of word embeddings sig-
nificantly differs at input and output. For this, we
apply principal component analysis to word em-
beddings produced by all models in “no reusing”
mode. The results are given in Figure 3, where we
can see that dimensionalities of input and output
embeddings differ in the word-level model, Char-
CNN, and SylConcat models, but the difference is
less significant in MorphSum model. Interestingly,
in word-level and MorphSum models the output
embeddings have more principal components than
the input ones. In CharCNN and SylConcat, how-
ever, results are to other way around. We defer the
study of this phenomenon to the future work.
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Figure 3: PCA applied to input and word embeddings produced by different models. Horizontal axis corresponds
to number of principal components, vertical axis corresponds to percentage of total variance to retain. From left to
right: word-level model, CharCNN, SylConcat, MorphSum.

6.4 CharCNN generalizes better than
MorphSum

One may expect larger units to work better than
smaller units, but smaller units to generalize better
than larger units. This certainly depends on how
one defines generalizability of a language model.
If it is an ability to model unseen text with un-
seen words, then, indeed, character-aware models
may perform better than syllable- or morpheme-
aware ones. This can be partially seen from Ta-
ble 3, where the OOV words are better handled
by CharCNN in terms of in-vocabulary nearest
neighbors. However, to fully validate the above-
mentioned expectation we conduct additional ex-
periments: we train two models, CharCNN and
MorphSum, on PTB and then we evaluate them on
the test set of Wikitext-2 (245K words, 10K word-
types). Some words in Wikitext-2 contain char-
acters or morphemes that are not present in PTB,
and therefore such words cannot be embedded by
CharCNN or MorphSum correspondingly. Such
words were replaced by the <unk> token, and we
call them new OOVs6. The results of our experi-
ments are reported in Table 5. Indeed, CharCNN

Model # new OOVs PPL

CharCNN + RE + RW 3659 306.8
MorphSum + RE + RW 4195 316.2

Table 5: Training on PTB and testing on Wikitext-2.

faces less OOVs on unseen text, and thus general-
izes better than MorphSum.

6.5 Performance on non-English Data
According to Table 2, MorphSum+RE+RW com-
fortably outperforms the strong baseline Word+RE

6These are “new” OOVs, since the original test set of
Wikitext-2 already contains “old” OOVs marked as <unk>.

Model FR ES DE CS RU

S Word+RE 218 205 305 514 364

D
-SMorphSum+RE+RW 188 171 246 371 237

M

Word+RE 205 193 277 488 351
MorphSum+RE+RW 172 157 222 338 210

S Word+RE 167 149 285 520 267

D
-MMorphSum+RE+RW 159 143 242 463 229

Table 6: Evaluation on non-English data.
MorphSum+RE+RW has significantly less pa-
rameters than Word+RE (Appendix B). S — small
model, M — medium model, D-S — small data, D-M
— medium data; FR — French, ES — Spanish, DE —
German, CS — Czech, RU — Russian.

(Inan et al., 2017). It is interesting to see whether
this advantage extends to non-English languages
which have richer morphology. For this purpose
we conduct evaluation of both models on small
(1M tokens) and medium (17M–51M tokens) data
in five languages (see corpora statistics in Ap-
pendix B). Due to hardware constraints we only
train the small models on medium-sized data. We
used the same architectures for all languages and
did not perform any language-specific tuning of
hyperparameters, which are specified in Appendix
A. The results are provided in Table 6. As one can
see, the advantage of the morpheme-aware model
over the word-level one is even more pronounced
for non-English data. Also, we can notice that the
gain is larger for small data sets. We hypothesize
that the advantage of MorphSum+RE+RW over
Word+RE diminishes with the decrease of type-
token ratio (TTR). A scatterplot of PPL change
versus TTR (Figure 4) supports this hypothesis.
Moreover, there is a strong correlation between
these two quantities: ρ̂(∆PPL,TTR) = 0.84, i.e.
one can predict the mean decrease in PPL from the
TTR of a text with a simple linear regression:

∆PPL ≈ 2, 109× TTR.
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Model PTB WT-2 CS DE ES FR RU

AWD-LSTM-Word w/o emb. dropout 61.38 68.50 410 241 145 151 232
AWD-LSTM-MorphSum + RE + RW 61.17 66 .92 253 177 126 140 162

Table 7: Replacing LSTM with AWD-LSTM.
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Figure 4: PPL improvement vs TTR. ∆PPL =
PPLWord+RE − PPLMorphSum+RE+RW.

6.6 Replacing LSTM with AWD-LSTM

The empirical perplexities in Table 2 are way
above the current state-of-the-art on the same
datasets (Melis et al., 2018). However, the ap-
proach of Melis et al. (2018) requires thousands
of evaluations and is feasible for researchers who
have access to hundreds of GPUs. Unfortunately,
we do not have such access. Also, the authors
do not disclose the optimal hyperparameters they
found, and thus we could not reproduce their mod-
els. There is another state-of-the-art language
model, AWD-LSTM (Merity et al., 2018), which
has open-source code. We replaced this model’s
word embedding layer with the MorphSum sub-
network and fully reused morpheme embed-
dings and other weights of MorphSum at out-
put. We refer to such modification as AWD-LSTM-
MorphSum + RE + RW. We trained both models
without fine-tuning (due to time constraints) and
we did not use embedding dropout (section 4.3
of Merity et al. (2018)) in either model, as it is
not obvious how embeddings should be dropped
in the case of AWD-LSTM-MorphSum. The results
of evaluation on the PTB, Wikitext-2, and non-
English datasets are given in Table 7.

Although AWD-LSTM-MorphSum is on par
with AWD-LSTM-Word on PTB and is slightly
better on Wikitext-2, replacing plain word em-
beddings with the subword-aware model with ap-
propriately reused parameters is crucial for non-

English data. Notice that AWD-LSTM under-
performs LSTM (used by us) on Czech dataset
(cf. Table 6). We think that the hyperparame-
ters of AWD-LSTM in Merity et al. (2018) are
thoroughly tuned for PTB and Wikitext-2 and may
poorly generalize to other datasets.

7 Conclusion

There is no single best way to reuse parameters
in all subword-aware neural language models: the
reusing method should be tailored to each type of
subword unit and embedding model. However, in-
stead of testing an exponential (w.r.t. sub-network
depth) number of configurations, it is sufficient to
check only those where weights are tied consecu-
tively bottom-up.

Despite being similar, input and output embed-
dings solve different tasks. Thus, fully tying input
and output embedding sub-networks in subword-
aware neural language models is worse than let-
ting them be slightly different. This raises the
question whether the same is true for pure word-
level models, and we defer its study to our future
work.

One of our best configurations, a simple
morpheme-aware model which sums morpheme
embeddings and fully reuses the embedding sub-
network, outperforms the competitive word-level
language model while significantly reducing the
number of trainable parameters. However, the
performance gain diminishes with the increase of
training set size.
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Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-
Son Le, Stefan Kombrink, and Jan Cernocky.
2012. Subword language modeling with neu-
ral networks. preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf) .

Andriy Mnih and Geoffrey Hinton. 2007. Three new
graphical models for statistical language modelling.
In Proc. of ICML.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In Proc. of
EACL.

Siyu Qiu, Qing Cui, Jiang Bian, Bin Gao, and Tie-Yan
Liu. 2014. Co-learning of word representations and
morpheme representations. In Proc. of COLING.

Rupesh K Srivastava, Klaus Greff, and Jürgen Schmid-
huber. 2015. Training very deep networks. In Proc.
of NIPS.

Clara Vania and Adam Lopez. 2017. From characters
to words to in between: Do we capture morphology?
In Proc. of ACL.

Lyan Verwimp, Joris Pelemans, Patrick Wambacq,
et al. 2017. Character-word lstm language models.
In Proc. of EACL.

Sami Virpioja, Peter Smit, Stig-Arne Grönroos, Mikko
Kurimo, et al. 2013. Morfessor 2.0: Python imple-
mentation and extensions for morfessor baseline .

Paul J Werbos. 1990. Backpropagation through time:
what it does and how to do it. Proc. of the IEEE
78(10):1550–1560.

1422



Seunghak Yu, Nilesh Kulkarni, Haejun Lee, and Ji-
hie Kim. 2017. Syllable-level neural language
model for agglutinative language. In Proc. of
SCLeM@EMNLP.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329 .

A Optimization

Training the models involves minimizing the neg-
ative log-likelihood over the corpus w1:K :

−∑T
k=1 log Pr(wk|w1:k−1) −→ min,

by truncated BPTT (Werbos, 1990). We backprop-
agate for 35 time steps using stochastic gradient
descent where the learning rate is initially set to

• 1.0 in small word-level models,
• 0.5 in small and medium CharCNN, medium

SylConcat (SS, SS+RW) models,
• 0.7 in all other models,

and start decaying it with a constant rate after a
certain epoch. This is 5 and 10 for the small
word-level and all other networks respectively ex-
cept CharCNN, for which it is 12. The decay rate
is 0.9. The initial values for learning rates were
tuned as follows: for each model we start with
1.0 and decrease it by 0.1 until there is conver-
gence at the very first epoch. We use a batch size
of 20. We train for 70 epochs. Parameters of
the models are randomly initialized uniformly in
[−0.1, 0.1] and in [−0.05, 0.05] for the small and
medium networks, except the forget bias of the
word-level LSTM, which is initialized to 1, and
the transform bias of the highway layer, which is
initialized to values around −2. For regulariza-
tion we use a variant of variational dropout (Gal
and Ghahramani, 2016) proposed by Inan et al.
(2017). For PTB, the dropout rates are 0.3 and 0.5
for the small and medium models. For Wikitext-2,
the dropout rates are 0.2 and 0.4 for the small and
medium models. We clip the norm of the gradients
(normalized by minibatch size) at 5.

For non-English small-sized data sets (Data-S)
we use the same hyperparameters as for PTB. To
speed up training on non-English medium-sized
data (Data-M) we use a batch size of 100 and sam-
pled softmax (Jean et al., 2015) with the number of
samples equal to 20% of the vocabulary size (Chen
et al., 2016).

Data set T |W| |M|

Sm
al

l

French (FR) 1M 25K 6K
Spanish (ES) 1M 27K 7K
German (DE) 1M 37K 8K
Czech (CS) 1M 46K 10K
Russian (RU) 1M 62K 12K

M
ed

iu
m

French (FR) 57M 137K 26K
Spanish (ES) 56M 152K 26K
German (DE) 51M 339K 39K
Czech (CS) 17M 206K 34K
Russian (RU) 25M 497K 56K

Table 8: Non-English corpora statistics. T = number
of tokens in training set; |W| = word vocabulary size;
|M| = morph vocabulary size.

Model FR ES DE CS RU

Sm
al

l Word + RE 5.6 6.1 8.0 10.0 13.4

D
at

a-
S

MorphSum 2.1 2.3 2.5 2.8 3.2+ RE + RW

M
ed

iu
m Word + RE 23.0 24.3 30.6 36.9 48.0

MorphSum 12.6 13.2 13.8 15.0 16.1+ RE + RW
Sm

al
l Word + RE 28.2 31.2 68.8 42.0 100.6

D
at

a-
M

MorphSum 6.2 6.1 8.9 7.7 12.6+ RE + RW

Table 9: Model sizes in millions of trainable parame-
ters.

B Non-English corpora statistics and
model sizes

The non-English small and medium data comes
from the 2013 ACL Workshop on Machine Trans-
lation7 with pre-processing per Botha and Blun-
som (2014). Corpora statistics is provided in Ta-
ble 8.

Model sizes for Word+RE and
MorphSum+RE+RW, which were evaluated
on non-English data sets, are given in Table 9.
MorphSum+RE+RW requires 45%–87% less
parameters than Word+RE.

7http://www.statmt.org/wmt13/
translation-task.html
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Abstract

We propose generative models for three types
of extra-grammatical word formation phenom-
ena abounding in English slang: Blends, Clip-
pings, and Reduplicatives. Adopting a data-
driven approach coupled with linguistic knowl-
edge, we propose simple models with state of
the art performance on human annotated gold
standard datasets. Overall, our models reveal
insights into the generative processes of word
formation in slang – insights which are increas-
ingly relevant in the context of the rising preva-
lence of slang and non-standard varieties on
the Internet.

1 Introduction

Linguistic analysis of slang has traditionally re-
ceived little attention with some arguing that re-
search on slang be assigned to an “extra-linguistic
darkness” (Labov, 1972). However, Eble (2012)
argues that the emergence of social media has pre-
dominantly increased the usage of slang and non
standard forms and “slang is now worldwide the vo-
cabulary of choice of young people”1. This increas-
ing pervasiveness has recently motivated research
on slang and the linguistic phenomena it manifests.
Most notable are the works of (Mattiello, 2005,
2008, 2013), who argues that slang exhibits extra-
grammatical properties that distinguish it from the
standard form.

Specifically, linguistic phenomena like alpha-
betisms, blending, clippings, and reduplicatives
abound in slang (see Table 1)2. Note the rich
and varied word formation patterns ranging from
simple abbreviations like dink to more com-
plex combinations like lambortini, a blend of
lamborghini and martini. Note further, that

1While the definition of slang is a controversial issue, we
adopt a broad definition including non-standard expressions.

2While such phenomena are likely present in several lan-
guages, in this work we restrict ourselves to slang in English.

Word Derived From Type

dink double income no kids alphabetism
lambortini lamborghini + martini blend
diamat dialectical + materialism blend
tude attitude clipping (fore)
brill brilliant clipping (back)
yik-yak yik reduplicative

Table 1: Sample words depicting word formation in
slang. Note the rich variation across different types.

even within a particular class like BLENDS there
are variations in what portions of the components
are retained.

These word formation mechanisms are not only
attractive from a linguistic standpoint in deepening
our understanding of slang but also have applica-
tions spanning the development of rich conversa-
tional agents and tools like brand name generators
(Özbal and Strapparava, 2012). While such phe-
nomena have been qualitatively studied by Mat-
tiello (2008, 2013), computational models for their
generation have not been proposed.

In this paper, we propose the first simple mod-
els for generating blends, clippings, and reduplica-
tives3. Our models incorporate linguistic insights
coupled with data-driven analysis to model the
above phenomena. In line with “Occam’s razor”,
we strive for simplicity. The simplicity of our mod-
els not only implies better generalization, more ro-
bust estimation of parameters in the wake of small
dataset sizes, and better interpret-ability but also
yields state of the art performance.

Specifically, we show that by exploiting struc-
tural constraints, blend formation can be modeled
as a simple sequence labeling problem as opposed
to prior work which models it as a general sequence
to sequence problem. This view enables the use of

3While there has been some prior work on computation-
ally modeling blends, generative models for clippings and
reduplicatives have not been outlined.
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a simple LSTM model to yield competitive perfor-
mance. Similarly, we propose the first probabilistic
generative models for clippings and reduplicatives
effectively incorporating phonetic constraints. In a
nutshell, our contributions are:

1. Generative models. We propose simple mod-
els for generating blends, clippings and, redu-
plicatives with state of the art performance.

2. Linguistic Insights. We reveal linguistic in-
sights into these phenomena which we incor-
porate into the generative models.

3. Resources. We release all our models and the
compiled datasets to aid further research 4.

2 Datasets and Definitions

Here, we define the extra-grammatical morphologi-
cal phenomena modeled and describe the datasets
used for our experiments and analysis. Mattiello
(2013) argues that slang exhibits extra-grammatical
morphological properties that distinguish them
from the standard variety and identified four broad
word formation phenomena5 described below:

1. Alphabetisms are shortenings of a multi-
word sequence. Examples include lol
from laugh out loud or YOLO from
you only live once. They can be fur-
ther sub-categorized into two types based on
their pronunciation although the distinction
may not always be clear: (a) Acronyms are
pronounced using the regular reading rules
(for example. YOLO) (b) Initialisms are pro-
nounced letter by letter (for example. BBC).

2. Blends or portmanteaus, are formed by merg-
ing parts of existing words. For example,
edutainment is a blend of education
and entertainment. Prior work notes
that blend formation does not exhibit rigid
rules but only demonstrates affinities towards
certain patterns of formation (Mattiello, 2013)
suggesting learning based approaches to mod-
eling blends (Deri and Knight, 2015; Gangal
et al., 2017).

4Code and data with reproducible results is available at
https://github.com/viveksck/simplicity

5These categories are not exhaustive and several slang
words and non-standard expressions do not fall into any of the
above categories.

3. Clippings are constructed by shortening
words (lexemes). For example, berg is
a clipping of iceberg, gym is a clipping
of gymnasium and ammo is a clipping of
ammunition. Based on the portion that is
being clipped, clippings are sub-categorized
into three types: (a) BACK clipping where the
beginning of the word (lexeme) is retained
(like brill from brilliant) (b) a FORE

clipping, where the end of a word is retained
(like choke from artichoke) and (c) A
COMPOUND clipping (adman), a clipping of
a compound word (advertisment man).

4. Reduplicatives are word pairs constructed
by either repeating a word (boo boo)
or by alternating certain vowels or
consonants so that they are phonologi-
cally similar (clickety-clackety,
teenie-weenie, itsy-bitsy).

In our work, we propose generative models using
a data-driven approach towards generating blends,
clippings ,and reduplicatives. We do not consider
generative models for alphabetisms since a major-
ity of them can be trivially generated by picking
the first letter of each word making up the acronym
(for example. laugh out loud→ lol). We
now outline the datasets considered:

1. Blends. We consider a gold standard dataset
Dknight of 400 blends constructed by (Deri
and Knight, 2015) from Wikipedia as well
as a larger list of 1624 blends manually com-
piled by (Gangal et al., 2017) called Dlarge,
a superset of Dknight. We define Dblind =
Dlarge −Dknight.

2. Clippings. We consider a list of 576 human
curated clippings constructed by Mattiello
(2013) for our analysis of clippings. These
were manually collected from a variety of
sources including prior work and dictionar-
ies like the Oxford English Dictionary and the
Merriam-Webster online dictionary.

3. Reduplicatives. We consider a dataset of a to-
tal of 337 reduplicatives manually constructed
by Mattiello (2013) also collected from prior
work and online dictionaries6.

6We note that the dataset released by (Mattiello, 2013) is
the largest human curated dataset of slang word formation we
are aware of. Furthermore, large crowd sourced data-sets like
Urban Dictionary are a poor fit for such modeling since they
do not explicitly contain annotations by linguistic experts.
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3 Models and Methods

We now describe our proposed models to generate
blends, clippings, and reduplicatives. We precisely
formulate the problem, specify our models and
comprehensively outline our evaluation.

3.1 Blends

Problem Formulation Given a string C =
C1#C2, consisting of components C1 and C2, we
seek to combine them to yield the blend B. For ex-
ample, given C1 = brad and C2 = angelina
such that C = brad#angelina, we seek to gen-
erate the blend brangelina.

Existing Models (Deri and Knight, 2015) pro-
posed a model to generate blends using multi-tape
finite state transducers. Most recently, (Gangal
et al., 2017) (the current state of the art) model this
as a general sequence to sequence learning problem
and propose a neural encoder-decoder architecture
with attention to outperform the model by (Deri
and Knight, 2015). However, this model fails to
effectively exploit the inherent structure and lin-
guistic constraints of blending. One implication
is an exploration of an overly complex hypothesis
space with a small amount of training data making
it harder to generalize. A second implication is
that the decoding phase uses exhaustive generation.
In fact, the best model exhaustively generates all
candidate strings, where the first part is a prefix of
C1 and the second part is a suffix of C2 and scores
them to pick the best candidate while using a back-
ward model learned to generate the components
given the blend. In contrast, we propose a more
straightforward model that explicitly incorporates
inherent linguistic constraints entirely obviating
the need for decoding using exhaustive candidate
generation yet yielding competitive performance.

3.1.1 Linguistic Insights into Blend
Formation

While one can model the problem of learning to
blend as a variable length sequence to sequence
learning problem (akin to machine translation),
we argue that incorporating structural constraints
yields a different view of modeling the problem
that can enable better generalization given the small
amount of training data. We motivate this by ob-
serving the following constraints:

1. Blend length and vocabulary constraints.
First, we observe that a majority of blends

Figure 1: Our simple LSTM sequence labeling model
for blends. Our model is considerably simpler both in
complexity of the parameter space and in terms of im-
plementation compared to the encoder-decoder model
proposed by (Gangal et al., 2017) which modeled the
problem as a machine translation problem.

(99.0% in Dknight and 92.4% in Dblind) are
formed by using only characters present in the
original components. Second, the length of
the blends in these cases is at-most the length
of the components.

2. Fixed length input output representation.
The blend B can thus be encoded as a string
of the exact same length as C by noting that
B only contains characters copied from C or
deleted from C. Specifically, we represent
B by E(B) denoting the sequence of copy
(C) and delete (D) operations needed to trans-
form C to B. E(B) can easily be computed
by the edit distance function between C and
B. For example, brangelina is encoded
as CCCDDDCCCCCCC. Since E(B) has the
same length of C, we can now model this as a
fixed length sequence labeling problem rather
than a variable length sequence to sequence
learning problem completely obviating the
need for the “encoder-decoder” architecture
for this large class of blends.

Equivalent Problem Definition Given a string
C = C1#C2, consisting of components C1 and
C2, learn E(B), a labeling of each character in C
from the label set {C,D}.

3.1.2 Proposed model: COPYCAT

Model Architecture Inline with work on neu-
ral sequence labeling (Wang et al., 2015; Plank
et al., 2016), our model uses a single layer long
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short term memory (LSTM) (Graves et al., 2012)
and an embedding layer as depicted in Figure 1.
Since the size of the training set is relatively small,
we reduce the number of learn-able parameters by
using pre-trained character embeddings frozen dur-
ing training. In particular, we use 50 dimensional
character embeddings from (Gangal et al., 2017)
obtained by training an LSTM language model on
an English Dictionary. The implementation of the
LSTM layer is described by (Graves et al., 2012;
Wang et al., 2015) and therefore omitted here. The
output layer is a soft-max over the label set {C, D}.

Candidate Generation Our model outputs prob-
ability scores over the label set for each element in
the sequence. As in previous works (Gangal et al.,
2017), we use the output to generate an ordered
candidate set T . To construct T , we use a simple
top-K decoder which selects the k most probable
label sequences. Finding the k most probable tag
sequences from the soft-max outputs can be cast as
finding the top k shortest simple paths in a directed
acyclic graph which can be efficiently solved using
(Yen, 1971; Eppstein, 1998). Note that the greedy
decoder which just picks the most likely label at
each position is a special case with k = 1. While
the number of candidates generated by (Gangal
et al., 2017) depends on the size of C, our model
generates a constant number of candidates (k = 5)
regardless of the input C.

Candidate Ranking and Selection While the
list of candidates in T , can be used to make a pre-
diction we note that re-ranking these candidates
can result in better performance and thus consider
multiple ranking strategies:

1. LSTM. We consider only the scores as ob-
tained by the LSTM with no re-ranking.

2. LSTM + LM. We augment the score of each
candidate to include both the score of the
LSTM as well as its score according to a
character level language model where the lan-
guage model is trained on a large amount of
unsupervised text 7.

3. LSTM + LM + LEN. Figure 2 shows a
least squares fit to the length of the blends
versus the length of its component, suggest-
ing a strong correlation between these two
variables. We capture this notion through a

7We use words from the CMU pronouncing dictionary.

probabilistic model. Specifically, we model
Pr(Blendlen|Componentlen) by fitting a
Bayesian Ridge Regression model to the train-
ing data and score each candidate on this
model as well. Finally, we combine the scores
obtained for the LSTM, the language model
and the length model uniformly to yield the
final score for each candidate.

In each of the above cases, we pick the topmost
candidate as our prediction.

10 12 14 16 18 20
|Components|

5
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7

8

9

10

11
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|B
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|

Figure 2: Best fit between blend length and the length
of the input string, implying that one can infer the
length of the blend from the length of the components
using a regression model.

Table 2 illustrates the effects of each of these
ranking strategies on an exemplary set of strings.
While ranking using the raw scores of the LSTM
yields blends which are close, observe that the
LSTM alone does not capture ease of pronunci-
ation effectively. For example, the top ranking
candidate brngelina is relatively unlikely under
both a character language model and a phoneme
language model. Incorporating scores from the lan-
guage model results in much more natural blends
like brangelina. To observe the effect of the
length model, note that for kentucky#indiana
the blends obtained by LSTM and LSTM + LM are
too short (keiana and keana). Incorporating the
length model boosts scores for candidates closer
to the target length yielding keniana which is
closer to the target kentuckiana.

3.1.3 Evaluation

We compare our model to previous methods namely
(Deri and Knight, 2015) and (Gangal et al., 2017).
Inline with (Gangal et al., 2017), we evaluate our
model on Dknight and Dblind (consisting of 1078
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Input LSTM LSTM + LM LSTM + LM +
LEN

Gold standard

brad#angelina brngelina brangelina brangelina brangelina
animated#matrix animtrix animatrix animatrix animatrix
merkel#sarkozy merkrkozy merkkozy merkkozy merkozy
dramatic#drastic draastic drastic dramastic dramastic
kentucky#indiana keiana keana keniana kentuckiana
employability#agility emplglity emplgility employgility employagility

Table 2: Set of examples demonstrating the effect of incorporating the language model and length model when
ranking candidates revealing insights into blend formation. Incorporating the language model generally improves
the fluency of the blend while the length model helps generate blends with lengths close to the target.
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Figure 3: Distribution of the number of syllables in clip-
pings. Most clippings have at-most 2 syllables but it is
a challenge to infer whether a given word has a one or
two syllable clipping.

instances)8. For evaluating on Dknight, we use 10-
fold cross-validation. For evaluating on Dblind we
train our model on Dknight and report the mean
score on the test-set obtained using 10 random
splits of the training data. As in previous work, our
metric is the edit distance between the predicted
blend and the true blend.

3.2 Clippings

Problem Formulation Given a word w, learn a
model that can generate its clipping c. For example,
given the word administrationwe would like
the model to output the clipping admin.

Proposed Models We motivate our models by
presenting two insights into linguistic properties
of clippings first noted by (Mattiello, 2013). First,
most clippings are back clippings while fore clip-
pings are relatively rare. Second, most clippings
tend to have at most two syllables (see Figure 3).
The first insight guides our model in determining
whether to retain a prefix or a suffix of the origi-
nal word. The second insight guides our model in

8We discard relatively rare instances with insertions.

determining how much to retain (or clip). In partic-
ular, we can capture this in two ways: (a) Working
in the phoneme space and (b) Learn a function to
predict the length of the clipping (which encodes
the number of syllables implicitly).

3.2.1 CLIPPHONE

CLIPPHONE operates by mapping the word w to
a sequence of phonemes, explicitly clipping in
the phoneme space and mapping the phoneme se-
quence back to the grapheme space. In particular,
the model can be described as follows: (1) Let
θ and π represent multinomial distributions over
clipping types and the number of syllables respec-
tively. (2) Represent the word w as a sequence of
phonemes P and identify each syllable. (3) Draw
a sample l from π to represent the number of syl-
lables in the clipping and the type t by drawing a
sample from θ. (4) If t ∈ {BACK, FORE}, clip P
to have exactly l syllables by selecting the appro-
priate length prefix or suffix depending on clipping
type t to make exactly l syllables represented by
Pclip. If t is a COMPOUND, clip each word recur-
sively and concatenate the outputs. (5) Map Pclip
back to grapheme space to yield the clipping. (6)
The parameters of θ and π, both multinomial dis-
tributions can be estimated from observed data via
maximum likelihood estimators.

Phoneme-based representation Given w, we
obtain its phoneme representation using the pre-
trained state-of-art neural model G2PSEQ2SEQ

(Yao and Zweig, 2015)9. For example, the word
captain is mapped to the following sequence of
phonemes P given by K AE P T AH N.

Clipping in the phoneme space We identify the
syllable boundaries in P by looking for vowel
phonemes and clip P until it contains the desired
number of syllables. For example, a one sylla-
ble clipping of K AE P T AH N is K AE P T

9G2PSeq2Seq has a PER of 5.45% on CMUDict.
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since AH is the beginning of the second syllable
(Pclip = K AE P T).

Mapping clipping back to graphemes Finally,
given the clipped phoneme sequence Pclip, we map
it back to the grapheme space by learning a se-
quence to sequence model to map a phoneme se-
quence to its grapheme sequence. We follow the
same model architecture as used in G2PSEQ2SEQ

(Yao and Zweig, 2015) but just flip the input and
output sequences, thus learning a model to map
phonemes back to graphemes. Finally, we quan-
tify the effectiveness of this model explicitly in our
evaluation by establishing an upper-bound on the
expected performance using this model.

3.2.2 CLIPGRAPH

As we will demonstrate empirically, CLIPPHONE

poses the following challenges: Since a given
phoneme sequence can map to multiple grapheme
sequences, explicitly mapping to phoneme space
and back introduces errors and loss of fidelity 10.
This is compounded by noting that whether w’s
clipping should have one or two syllables is hard
to predict (since both occur in almost equal propor-
tions empirically, see Figure 3). Furthermore, de-
ciding whether the clipping should end in a vowel
or a consonant and determining the length is yet
another challenge. As an alternative, we propose
CLIPGRAPH where we seek to directly learn a
model to predict the length of the clipping directly
given w, obviating the need to work in phoneme
space. CLIPGRAPH works as follows: (1) Let θ
represent multinomial distributions over clipping
types and let π be a model that predicts the length
l of the clipping wclip given w. (2) Draw a sample
from θ to get the type of clipping t. (3) Retain the
appropriate l-length prefix or suffix of w based on
the type t handling compound words recursively.
(4) We use Ridge regression to learn π from the
training data and estimate θ using its maximum
likelihood estimator.

Evaluation To evaluate our models, we consider
a naive baseline NAIVE which clips w to one of its
prefixes or suffixes randomly. For CLIPPHONE,
we also consider one (CLIPPHONE-1SYL) and
two (CLIPPHONE-2SYL) syllable clippings. Since
(Jamet, 2009) notes that determining whether a
word has a one or two syllable clipping is extremely
challenging, we also consider a model with an ora-

10K AE P T can be mapped to capped or capt.

cle (CLIPPHONE(O)) on the number of syllables in
the clipping to quantify this. Finally, we establish
an upper bound (G2P-GOLD) on the performance
of any method using our learned P2G model. G2P-
GOLD maps the gold standard G to phoneme space
and maps the resulting phoneme sequence back to
yield Ĝ as the predicted clipping. We use the edit
distance between the predicted clipping and the
gold standard as the evaluation metric.

3.3 Reduplicatives

Problem Formulation Given a word v, we seek
to generate a word w such that v.w is a reduplica-
tive. For example, given the word flip, we would
like to generate flop or flap to yield the redu-
plicatives flip-flop or flip-flap.

Proposed Model We motivate our model from a
linguistic standpoint by referring to observations
by (Mattiello, 2013) that a large fraction of redu-
plicatives can be formed by either (a) Duplicating
the word DUPLICATE (boo-boo) (b) Exchang-
ing the initial vowel VOWELEX (bing-bong)
and (c) Exchanging the initial consonant CONEX

(teenie-weenie). Other patterns include
adding a consonant (artsy-fartsy) or adding
schm/shm (moodle-schmoodle). In our
work, we propose a generative model for the three
dominant forms of reduplication mentioned above.
Broadly, our model captures the notion that vowels
and consonants display strong replacement pref-
erences. For example, the vowel i is much more
likely to be replaced with a than u (instances like
clip-clap, wishy-washy). Similarly the
consonant t is much more likely to be replaced by
w (as in teenie-weenie, tinky-winky).
We incorporate these insights into our generative
model as follows: (1) Let θ be a distribution over
the three different types of reduplicatives. Let
φv, ψc be distributions over letters that replace
vowel v and consonant c respectively. (2) Sam-
ple the type of reduplicative t generated from θ.
(3) If t is DUPLICATE, set w to v and return w as
the reduplicative component. (4) If t is VOWELEX,
find the first vowel x with non-zero replacement
probability. Sample the replacement z from φx
and replace x with z. If t is CONEX, find the first
consonant c with non-zero replacement probability
and sample the replacement z from ψc. Replace c
with z. (5) Return the edited string as the second
component of the reduplicative. (6) The parame-
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ters of multinomial distributions θ, φv, and ψc are
estimated via MLE estimates from the data.

Evaluation We consider two baseline models (a)
LET Uniformly replace a letter with another let-
ter in v to return w. (b) LET(COND) Uniformly
replace a letter (vowel or consonant) with a letter
from its class. Since reduplicatives are character-
ized by phonologically similar sounds, merely us-
ing edit distance as a metric for evaluation would
be ineffective. For example, even the ill-rhyming
flip-flsp has the same edit distance as the cor-
rect reduplicative flip-flop. Thus, we use a
distance measure (MIR) defined over the phoneme
space (Hixon et al., 2011) which effectively cap-
tures the similarity of two phonetic sequences by
modeling the affinities between pairs of phonemes
using a point access mutation matrix and is superior
over metrics like PER (phoneme error rate).

4 Experiments

Having described our models and evaluation met-
rics in the previous section, we proceed to evaluate
our models empirically and describe our results.

Blends We train our model on Dknight and eval-
uate on the Dblind dataset as in (Gangal et al.,
2017) comparing against previous methods (Deri
and Knight, 2015; Gangal et al., 2017). We set
the number of hidden units to 50 with a dropout
probability of 0.511. We use ADAM (Kingma and
Ba, 2014) optimizer with an initial learning rate of
0.001 to train the model for 500 epochs with early
stopping over a validation set.

Tables 3 and 4 show the mean edit distance of
our predictions from the target blend. First, the
evaluation on the Dknight dataset compares the per-
formance of our models against previous baselines.
Note that just using our basic model COPYCAT -
(LSTM + LM) outperforms the baseline proposed
by (Deri and Knight, 2015) (1.59 vs 1.49). Further-
more, observe that even our vanilla model (LSTM)
significantly outperforms the equivalent “FOR-
WARD” models by (Gangal et al., 2017)12 that
use greedy and beam-search decoding (1.90 and
2.37 vs 1.75). Moreover, observe that our model
even achieves almost equivalent performance to
the “FORWARD” state-of-art model which uses

11All hyper-parameters were chosen using a validation set.
12We obtain the numbers for these baselines

from the latest released data and predictions at
https://github.com/vgtomahawk/Charmanteau-CamReady.

exhaustive decoding (1.37 vs 1.33). Furthermore,
our model achieves competitive performance with
the more complex models proposed by GANGAL-
BACKWARD which use exhaustive decoding. We
emphasize that we can achieve competitive perfor-
mance using a simpler model without using ex-
haustive decoding. Similar observations can also
be made for the evaluation of the Dblind data set
(our best model yields a score of 1.91 vs 1.77).
Altogether these observations suggest that even
simple models with effective modeling of linguis-
tic structure can perform competitively and even
outperform overly complex models (see Table 6 for
a few example predictions).

Model Distance
KNIGHT 1.59
GANGAL-FORWARD (GREEDY) 1.90
GANGAL-FORWARD (BEAM) 2.37
GANGAL-FORWARD (SOTA)† 1.33
GANGAL-BACKWARD (SOTA)† 1.12
COPYCAT-(LSTM) 1.75
COPYCAT-(LSTM + LM) 1.49
COPYCAT-(LSTM + LM + LEN) 1.40
COPYCAT-(LSTM + LM + LEN)† 1.37

Table 3: 10-fold cross validation performance of our
blending model COPYCAT in terms of edit distance
(lower is better) on Dknight dataset. † indicates ensem-
ble approach using sub-samples of training data con-
sistent with previous work. Our simpler model yields
competitive performance (especially compared to the
state of art forward model) without the need for ex-
haustive decoding (which the state of art uses), uses a
smaller learn-able parameter set while effectively using
linguistic insights into the blending process.

Clippings We consider the dataset of clippings
introduced by (Mattiello, 2013) and report the
mean edit distance (µ) on a set of 173 clippings
in Figure 4 (see Table 5 as well). First, both CLIP-
PHONE (µ = 3.39) and CLIPGRAPH (µ = 2.65)
outperform the naive baseline (µ = 4.6). Second,
based on the empirical distribution, it is almost
impossible to predict whether a word has a one
or two syllables (0.49 vs 0.46 significant only at
α > 0.2) clipping and incorrect guesses critically
affect the downstream performance. In the absence
of such information, just clipping to one syllable
yields better performance. However, when this
information is exactly known (CLIPPHONE(O)),
we note an improvement as expected (µ = 2.79).
Finally, CLIPGRAPH shows a small but not signif-
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Model Distance
KNIGHT 2.10
GANGAL-FORWARD (SOTA)† 1.76
GANGAL-BACKWARD (SOTA)† 1.77
COPYCAT-(LSTM) 2.27
COPYCAT-(LSTM + LM) 2.13
COPYCAT-(LSTM + LM + LEN) 1.98
COPYCAT-(LSTM + LM + LEN)† 1.91

Table 4: Performance of our blending model COPY-
CAT in terms of edit distance (lower is better) on
Dblind dataset. † indicates ensemble approach using
sub-samples of training data consistent with previous
work. Our simpler model yields competitive perfor-
mance without the need for exhaustive decoding, uses
a smaller learn-able parameter set while effectively us-
ing linguistic insights into the blending process. To en-
sure fair comparison, numbers for the baselines were
obtained by filtering the released predictions for these
models to the same set of words our models were eval-
uated on.

icant advantage over methods working explicitly
in the phoneme space which are prone to errors
by imperfect conversion. Finally, the upper bound
on the performance is substantially better than our
models (µ = 0.79) suggesting scope for future
improvements.

Input Our models Gold
CLIPPHONE CLIPGRAPH Clipping

cocaine coke coca coke
juvenile juve juve juvey
amelia umm amel mel
alfred fred fred fred
kid video kidvid kivid kidvid

Table 5: Exemplary predictions from clippings models.
We can generate one/two syllable clippings, as well as
compound clippings. Note the effect of incorrect P2G
conversion for amelia as umm which is pronounced
similar to ame. The current G2P model does not in-
corporate stress. It is possible that incorporating stress
into the model can address this scenario.

Reduplicatives We evaluate our model on a
held-out test set of 50 reduplicatives obtained us-
ing the manually compiled dataset by (Mattiello,
2013). We evaluate two flavors of our model: (a)
OUR(NODUP) where we disallow generating du-
plicates (which are trivial to generate) and (b) OUR,
the full-fledged model where duplicate reduplica-
tives are allowed. We report the mean MIR for each
model over 10 independent runs in Figure 5. Our
model consistently outperforms the baselines (LET,
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Figure 4: Evaluation of clipping models (lower is
better). The NAIVE model is the performance lower
bound. Both CLIPPHONE and CLIPGRAPH substan-
tially outperform the baseline. Estimating whether a
given word has one or two syllable clipping is a ma-
jor challenge hindering CLIPPHONE since both cases
are equally likely from empirical estimation. Using
an oracle on the number of syllables (CLIPPHONE(O))
improves performance. CLIPGRAPH which operates
purely in grapheme space performs as well as CLIP-
PHONE(O). G2PGOLD denotes a upper bound when
using our P2G model.

Input Prediction Gold Dist
jizz#disney jizzney jizzney 0
scum#fuzz scuzz scuzz 0
phone#neck phoneck phoneck 0
woman#romance womance womance 0
piss#mishap pisshap pisshap 0
pass#asshole passhole passhole 0
spike#angel spangel spangel 0
man#amazon mamazon manazon 1
awkward#sauce awkwauce awksauce 1
bed#orgasm bergasm bedgasm 1

Table 6: Exemplary predictions from our simple blends
model which suggests our model effectively captures
blending phenomena by incorporating linguistic con-
straints.

and LET(COND)) by at-least 8 percentage points
suggesting it adeptly captures patterns in reduplica-
tive formation. Finally, we examine the inferred
probability distributions to gain insights into the
linguistic phenomena in reduplicative formation
few of which we outline: (a) The most common
reduplicative types are DUPLICATE, VOWELEX

followed by CONEX. (b) Vowel i is more likely
to be replaced by a and o and (c) Consonant t is
much more likely to be replaced by w and l (like
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in teenie-weenie). We leave a comprehensive
analysis of these patterns to future work.

Let Let(Cond) Our(NoDup) Our
0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

M
IR

Figure 5: Performance of our reduplicative models
based on the MIR metric (higher is better). Our models
OUR(NODUP) and OUR consistently outperform base-
lines by at-least 8 percentage points (0.86 vs. 0.78).

5 Related Work

Blends, clippings and reduplicatives have been
studied from a linguistic standpoint (Thun, 1963;
Murata, 1990; Merlini Barbaresi, 2008; Hladky,
1998; Hamans, 1997; Fandrych, 2008; Moehkardi,
2016; Ungerer, 2007; Beal, 1991; Algeo, 1977;
Smith et al., 2014; Shaw et al., 2014; Beliaeva,
2014; Broad et al., 2016; Renner et al., 2013; Gries,
2004a,b). Most relevant is the work of (Mattiello,
2005, 2008, 2013) who argues that slang is perva-
sive on the Internet, suggests its extra-grammatical
nature and outlines some phonological and morpho-
logical properties. Specifically, these phenomena
are discussed followed by a qualitative analysis
on a manually compiled dataset of 1580 words
from various sources. Recently (Deri and Knight,
2015) and (Gangal et al., 2017) study the problem
of learning to blend and derive data-driven com-
putational models for the task. (Deri and Knight,
2015) propose a model based on finite state trans-
ducers. (Gangal et al., 2017) outperform (Deri
and Knight, 2015) by modeling the problem of
generating blends as a variable length sequence to
sequence learning problem and propose a neural
encoder-decoder based model. We differ from all
of these works in several ways. In contrast to the
blending model proposed by Gangal et al. (2017),
our model is simpler with lesser parameters, does
not require using an encoder-decoder framework,
or exhaustive decoding and yet yields competitive
performance on a large class of blends. We also pro-
pose the first computational generative data-driven

models for clippings and reduplicatives while cap-
turing phonetic similarity as well and evaluate our
models quantitatively.

6 Conclusion

We proposed generative models for blends, clip-
pings, and reduplicatives, three dominant word-
formation phenomena in slang. Our models are
distinguished by their simplicity, adept use of lin-
guistic and structural constraints, easy to imple-
ment and yield state of the art performance.

Our work suggests several directions for future
research. First, our blending model can be extended
to handle relatively rare insertions, incorporate the
language model and the length model in a unified
reinforcement learning framework optimizing a
joint reward. Second, we do not investigate the
complementary problem of de-blending. Moreover,
we note that our evaluation of blends is based on an
assumed gold standard. It would be useful to also
characterize our blending model based on a human
evaluation. Third, the gap between the performance
of our clipping model and the upper bound (by the
oracle) opens up the question of developing more
nuanced models for clipping perhaps using deeper
linguistic cues like stress patterns. Fourth, our
models do not incorporate relatively rare types of
reduplicative formation (like schm reduplicatives)
suggesting yet another direction for research. Yet
another open question is whether a global model
can effectively model all the above phenomena. Fi-
nally, in our work, we focus on only developing
models for word formation in English slang. How-
ever, such word formation patterns are also evident
in other languages (Štekauer et al., 2012) and it
is an open question as to whether similar models
generalize to other languages as well.

Finally, our work potentially enables the devel-
opment of several applications some of which in-
clude brand name generators, and rich conversa-
tional agents that are not only passive agents but
can actively contribute to the evolution of language
varieties.

Altogether our work has implications for the
broader fields of Internet Linguistics and natural
language understanding especially in the context
of slang formation.
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Abstract

Languages with productive morphology pose
problems for language models that generate
words from a fixed vocabulary. Although
character-based models allow any possible
word type to be generated, they are linguis-
tically naïve: they must discover that words
exist and are delimited by spaces—basic lin-
guistic facts that are built in to the structure
of word-based models. We introduce an open-
vocabulary language model that incorporates
more sophisticated linguistic knowledge by
predicting words using a mixture of three gen-
erative processes: (1) by generating words as a
sequence of characters, (2) by directly gener-
ating full word forms, and (3) by generating
words as a sequence of morphemes that are
combined using a hand-written morphological
analyzer. Experiments on Finnish, Turkish,
and Russian show that our model outperforms
character sequence models and other strong
baselines on intrinsic and extrinsic measures.
Furthermore, we show that our model learns
to exploit morphological knowledge encoded
in the analyzer, and, as a byproduct, it can
perform effective unsupervised morphological
disambiguation.

1 Introduction

Language modelling of morphologically rich lan-
guages is particularly challenging due to the vast
set of potential word forms and the sparsity with
which they appear in corpora. Traditional closed
vocabulary models are unable to produce word
forms unseen in training data and unable to gen-
eralize sub-word patterns found in data.

The most straightforward solution is to treat
language as a sequence of characters (Sutskever
et al., 2011). However, models that operate at
two levels—a character level and a word level—
have better performance (Chung et al., 2016). An-
other solution is to use morphological information,

which has shown benefits in non-neural models
(Chahuneau et al., 2013). In this paper, we present
a model that combines these approaches in a fully
neural framework.

Our model incorporates explicit morphological
knowledge (e.g. from a finite-state morphological
analyzer/generator) into a neural language model,
combining it with existing word- and character-
level modelling techniques, in order to create a
model capable of successfully modelling morpho-
logically complex languages. In particular, our
model achieves three desirable properties.

First, it conditions on all available (intra-
sentential) context, allowing it, in principle, to
capture long-range dependencies, such as that the
verb agreement between “students” and “are” in
the sentence “The students who studied the hardest
are getting the highest grades”. While traditional
n-gram based language models lack this property,
RNN-based language models fulfill it.

Second, it explicitly captures morphological
variation, allowing sharing of information be-
tween variants of the same word. This allows
faster, smoother training as well as improved pre-
dictive generalization. For example, if the model
sees the phrase “gorped the ball” in data, it is able
to infer that “gorping the ball” is also likely to
be valid. Similarly, the model is capable of un-
derstanding that morphological consistency within
noun phrases is important. For example in Rus-
sian, one might say malen’kaya chërniya koshka
("small black cat", nominative), or malen’kuyu
chërniyu koshku (accusative), but malen’kiy chër-
nuyu koshke (mixing nominative, accusative and
dative) would have much lower probability.

Third, the language model seamlessly handles
out of vocabulary items and their morphological
variants. For example, even if the word Obama
was never seen in a Russian corpus, we expect
Ya dal eto prezidentu Obame (“I gave it to presi-
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dent Obama”) to have higher probability using the
dative Obame than Ya dal eto prezidentu Obama,
which uses the nominative. The model can also
learn to decline proper nouns, including OOVs.
Here it can recognize that dal (“gave”) requires a
dative, and that nouns ending with “a” generally
do not meet that requirement.

In order to capture these properties, our model
combines two pieces: an alternative embedding
module that uses sub-word information such as
character and morpheme-level information, and a
generation module that allows us to output words
at the word, morpheme, or character-level. The
embedding module allows for the model to share
information between morphological variants of
surface forms, and produce sensible word embed-
dings for tokens never seen during training. The
generation model allows us to emit tokens never
seen during training, either by combining a lemma
and a sequence of affixes to create a novel sur-
face form, or by directly spelling out the desired
word character by character. We then demonstrate
the effectiveness both intrinsically, showing re-
duced perplexity on several morphologically rich
languages, and extrinsically on machine transla-
tion and morphological disambiguation tasks.

2 Multi-level RNNLMs

Recurrent neural network language models are
composed of three parts: (a) an encoder, which
turns a context word into a vector, (b) a recur-
rent backbone that turns a sequence of word vec-
tors that represent the ordered sequence of con-
text vectors into a single vector, and (c) a genera-
tor, which assigns a probability to each word that
could follow the given context. RNNLMs often
use the same process for (a) and (c), but there is
no reason why these processes cannot be decou-
pled. For example, Kim et al. (2016) and Ling
et al. (2015) compose character-level representa-
tions for their word encoder, but generate words
using a softmax whose probabilities rely on inner
products between the current context vector and
type-specific word embeddings.

In our model both the word generator (§2.1) and
the word encoder (§2.2) compute representations
that leverage three different views of words: fre-
quent words have their own parameters, words that
can be analyzed/generated by an analyzer are rep-
resented in terms of sequences of abstract mor-
phemes, and all words are represented as a se-

quence of characters.

2.1 Word generation mixture model
In typical RNNLMs the probability of the ith word
in a sentence, wi given the preceding words is
computed by using an RNN to encode the context
followed by a softmax:

p(wi | w<i) = p(wi | hi = ϕRNN(w1, . . . , wi−1))

= softmax(Whi + b)

where ϕRNN is an RNN that reads a sequence of
words and returns a fixed sized vector encoding,
W is a weight matrix, and b is a bias.

In this work, we will use a mixture model over
M different models for generating words in place
of the single softmax over words (Miyamoto and
Cho, 2016; Neubig and Dyer, 2016):

p(wi | hi) =
M∑

mi=1

p(wi,mi | hi)

=
M∑

mi=1

p(mi | hi)p(wi | hi,mi),

where mi ∈ [1,M ] indicates the model used to
generate word wi. To ensure tractability for train-
ing and inference, we assume thatmi is condition-
ally independent of all m<i, given the sequence of
word forms w<i.

We use three (M = 3) component models:
(1) directly sampling a word from a finite vocabu-
lary (mi = WORD), (2) generating a word as a se-
quence of characters (mi = CHARS), and (3) gen-
erating as a sequence of (abstract) morphemes
which are then stitched together using a hand-
written morphological transducer that maps from
abstract morpheme sequences to surface forms
(mi = MORPHS). Figure 1 illustrates the model
components, and we describe in more detail here:

Word generator. Select a word by directly sam-
pling from a multinomial distribution over surface
form words. Here the vocabulary is the |Vw| most
common full-form words seen during training. All
less frequent words are assigned zero probability
by this model, and must be generated by one of
the remaining models.

Character sequence generator. Generate a
word as a sequence of characters. Each character
is predicted conditioned on the LM hidden state
hi and the partial word generated so far, encoded
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with an RNN. The product of these probabilities is
the total probability assigned to a full word form.

Morpheme sequence generator. Similarly to
the character sequence generator, we can gener-
ate a word as a sequence of morphemes. We first
generate a root r, followed by a sequence of affixes
a1, a2, . . . . For example the word “devours” might
be generated as devour+3P+SG+EOW. Since mul-
tiple sequences of abstract morphemes may in
general give rise to a single output form,1 we
marginalize these, i.e.,

p(wi | hi,mi = MORPHS) =
∑

ai∈{a|GEN(a)=wi}
pmorphs(ai | hi).

where GEN(a) gives the surface word form pro-
duced from the morpheme sequence a.

Due to the model’s ability to produce output at
the character level, it is able to produce any out-
put sequence at all within the language’s alpha-
bet. This is critical as it allows the model to gen-
erate unknown words, such as novel names or de-
clensions thereof. Furthermore, the morphologi-
cal level facilitates the model’s generation of word
forms whose lemmas may be known, but whose
surface form was nevertheless unattested in the
training data. Finally the word-level generation
model handles generating words that the model
has seen many times during training.

2.2 Morphologically aware context vectors
Word vectors are typically learned with a single,
independent vector for each word type. This inde-
pendence means, for example, that the vectors for
the word “apple” and the word “apples” are com-
pletely unrelated. Seeing the word “apple” gives
no information at all about the word “apples”.

Ideally we would like to share information be-
tween such related words. Nevertheless, some-
times words have idiomatic usage, so we’d like not
to tie them together too tightly.

We accomplish this by again using three differ-
ent types of word vectors for each word in the vo-
cabulary. The first is a standard per-type word vec-
tor. The second is the output of a character-level

1In general analyzers encode many-to-many relations, but
our model assumes that any sequence of morphs in the under-
lying language generates a single surface form. This is gen-
erally true, although free spelling variants of a morph (e.g.,
American -ize vs. British -ise as well as alternative realiza-
tions like shined/shone and learned/learnt) violate this as-
sumption.

d o g s

dog

dogs

+ᴘʟ

p(mi | hi)

p(wi | hi, mi)

hi
</w>

</w>

dog +3ᴘ +sɢ </w>

sum]
Figure 1: We allow the model to generate an output
word at the word, morpheme, or character level,
and marginalize over these three options to find
the total probability of a word.

RNN using Long Short-Term Memory (LSTM)
units (Hochreiter and Schmidhuber, 1997). The
third is the output of a morphology-level LSTM
over a lemma and a sequence of affixes, as output
by a morphological analyzer.

Typically language models first generate a word
wi given some (initially empty) prior context ci−1,
and then that word is combined with the context
to generate a new context ci that includes the new
word. Since we have just used one or more of our
three modes to generate each word, intuitively we
would like to use the same mode(s) to generate the
embedding used to progress the context.

Unfortunately, doing so introduces dependen-
cies among the latent variables p(mode | ci) in
our model, making exact inference intractable. As
such, we instead drop the dependency on how
a word was generated and instead represent the
word at all three levels, regardless of the mode(s)
actually used to generate it, and combine them by
concatenating the three representations. A visual
representation of the embedding process is shown
in Figure 2.

Additionally, should a morphological analyzer
produce more than one valid analysis for a surface
form, we independently produce embeddings for
each candidate analysis, and combine them using
a per-dimension maximum operation. Mathemati-
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</w>

dog +3ᴘ +sɢ

max

</w>

Figure 2: We concatenate word- morpheme- and
character-level vectors to build a better input vec-
tor for our RNNLM.

cally, the ith dimension of the morphological em-
bedding em is given by

emi = max
j
eaj i

where eaj is the embedding of the jth possi-
ble analysis, as computed by the LSTM over the
lemma and its sequence of affixes.

The intuition behind the use of all analyses plus
a pooling operation can be seen by observing the
case of the word “does”, which could be do+3-
person+singular or doe+plural. If this word ap-
pears after the word “he”, what we care about
more is whether “does” could feasibly be a third
person singular verb, thus agreeing with the sub-
ject. The max-pooling operation captures this in-
tuition by ensuring that if a feature is active for
one of these two analyses, it will also be active in
the pooled representation. This procedure affords
us the capability to efficiently marginalize over all
three possible values of the latent variable at each
step, and compute the full marginal of the word wi
given the context ci−1 during generation.

This formulation allows words with the same
stem to share vector information through the char-
acter or morphological embeddings, but still af-
fords each word the ability to capture idiomatic us-
ages of individual words through the word embed-
dings. Furthermore, it allows a language model to
explicitly capture morphological information, for
example that third person singular subjects should
co-occur with third person singular verbs. Finally,

the character-level segment of the embedding al-
lows the model to at least attempt to build sensible
embeddings for completely unknown words. For
example in Russian where names can decline with
case this formulation allows the model to know
that Obame is probably dative, even if it’s an OOV
at the word level, and even if the morphological
analyzer is unable to produce any valid analyses.

We combine our three-layer input vectors, our
factored output model, and a standard LSTM
backbone to create a morphologically-enabled
RNNLM that, as we will see in the next section,
performs well on morphologically complex lan-
guages.

3 Intrinsic Evaluation

We demonstrate the effectiveness of our model by
experimenting on three languages: Finnish, Turk-
ish, and Russian. For Finnish we use version 8 of
the Europarl corpus, for Turkish we use the SE-
TIMES2 corpus, and for Russian we use version
12 of the News Commentary corpus. Statistics of
our experimental corpora can be found in Table 1.

Each data set was pre-processed by UNKing all
but the top≈20k words and lemmas by frequency.
No characters or affixes were UNKed. This step is
not strictly required—our model is, after all, ca-
pable of producing arbitrary words— but it speeds
up training immensely by reducing the size of the
word and lemma softmaxes. Since the morphol-
ogy and/or character-level embeddings can still
capture information about the original forms of
these words, the degradation in modelling perfor-
mance is minimal.

For morphological analysis we use Omorfi2 for
Finnish, the analyzer of Oflazer (1994) for Turk-
ish, and PyMorphy3 for Russian.

3.1 Baseline Models

Since models are not accurately comparable un-
less they share output vocabularies, our baselines
must also allow for the generation of arbitrary
word forms, including out-of-vocabulary items.
We compare to three such models: an improved
Kneser-Ney (Kneser and Ney, 1995) 4-gram base-
line, with an additional character-level backoff
model for OOVs, an RNNLM with character-level
backoff, and a pure character-based RNN lan-
guage model (Sutskever et al., 2011).

2https://github.com/flammie/omorfi
3https://github.com/kmike/pymorphy
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Finnish: “Russian President Vladimir Putin has an ace up his sleeve in the Ukrainian relationship.”

Figure 3: An example of the priors (left) and posteriors (right) over modes used to generate each word in
a sample sentences. Probability given to the word-, morpheme-, and character-level models are shown in
red, blue, and gold respectively. More examples can be found in the appendix.

Since Kneser-Ney language models (and other
count-based models) are typically word-level and
do not model out-of-vocabulary items, we employ
a two-level approach with separate Kneser-Ney
models at the word and character levels. We train
the word-level model after UNKing low frequency
words, and we train the character-level model on
the same list of low frequency words. Now when
we want to predict a word wi given some con-
text c we can use the word-level model to directly
predict p(wi|c) unless wi is an out-of-vocabulary
item. In that case we model p(wi | c) as

p(wi | c) = p(UNK | c) · p(wi | UNK)

where the first factor is the probability of the word-
level model emitting UNK, and the second is the
probability of the actual out-of-vocabulary word
form under the character-level model.

Secondly we compare to a similar hybrid RNN
model that first predicts the word-level proba-
bility for each word, and if it predicted UNK

then also predicts a sequence of characters us-
ing a separate network. This model uses 256-
dimensional character and word embeddings, and
a 1024-dimensional recurrent hidden layer.

Finally we also compare to a standard RNN lan-
guage model trained purely on the character level.
For this baseline we also use 256-dimensional
character embeddings and a 1024-dimensional re-
current hidden layer.

3.2 Multi-factored Models
For our model we use 128-dimensional word and
root embeddings, 64-dimensional affix and char-
acter embeddings, 128-dimensional word-internal

recurrent hidden layers for characters and mor-
phemes, and a 256-dimensional recurrent hidden
layer for the main inter-word LSTM.

The network is trained to stochastically opti-
mize the log likelihood of the training data using
Adam (Kingma and Ba, 2014). After each 10k
training examples (Finnish, Turkish) or 100k train-
ing examples (Russian) we evaluate the model on
a development set.4 If the perplexity on the de-
velopment set represents a new best, we save the
current model to disk, thereby mitigating overfit-
ting via early stopping. No other regularization is
used.

For each language we run four variants of our
model. In order to preserve the ability to model
and emit any word in the modelled language, it
is essential that we keep the character-level part
of our model intact. The morpheme- and word-
level models, however, may be removed without
compromising the generality of the model. As
such, we present our model using only character-
level input and outputs (C), using character- and
morpheme-level inputs and outputs (CM), using
character- and word-level inputs, but no morphol-
ogy (CW), and using all three levels as per the full
model (CMW).

3.3 Results and Analysis

Our experimental results (Table 2) show that our
multi-modal model significantly outperforms all
three baselines: a naïve n-gram model, a purely
character-level RNNLM, and a hybrid RNNLM

4We evaluate less frequently on Russian since the dev set
is much larger.
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Finnish Russian Turkish
Train Sents 2.1M 1.1M 188K

Train Words 38M 26M 3.9M
Dev Sents 1K 38K 1K

Dev Words 16K 705K 16K
Test Sents 500 91K 3K

Test Words 7.6K 1.6M 51K
Word Vocab 20K 21K 42K

Lemma Vocab 20K 20K 13K
Affix Vocab 140 34 180
Char Vocab 229 150 80

Table 1: Details of our data sets. Each cell indi-
cates the number of sentences and the number of
words in each set.

for open-vocabulary language models. Further-
more, they confirm that morphological analyz-
ers can improve performance of such language
models on particularly morphologically rich lan-
guages. We observe that across all three lan-
guages the space-aware character-level model out-
performs the purely character-based model that
treats spaces just as any other character. Further-
more we see that the Kneser-Ney language model
performs admirably well on this task, underscor-
ing the difference in setting between the familiar,
traditional closed-vocabulary LMs, and the open-
vocabulary language modelling task. Additionally
we find that the relative success of the n-gram
model and the hybrid model over the character
only models underscores the importance of access
to word-level information, even when using a less
sophisticated model.

Table 3 shows some examples of sentences on
which our model heavily outperforms the RNN
baseline and vice-versa. We find that the sentences
on which our model peforms well contain much
less frequent word forms. For each sentence we
examine the frequency with which each token ap-
pears in our training corpus. The sentences on
which our model performs best have a median to-
ken frequency of 305 times, while the sentences
where the RNN performs better has an average to-
ken frequency of 3031 times. Overall our model
has better log-likelihood than the RNN baseline on
88.1% of sentences.

Our methods outperform the n-gram model in
all languages with either set of just two mod-
els, CM or CW. The same models outperform
the hybrid baseline in Turkish and Russian, and
achieves comparable results in Finnish. Finally, in

the agglutinative languages, using all three modes
performs best, while in Russian, a fusional lan-
guage, characters and words alone edge out the
model with morphology. We hypothesize that
our morphology model is better able to model the
long strings of morphemes found in Turkish and
Finnish, but gains little from the more idiosyn-
cratic fusional morphemes of Russian.

Some examples of the priors and posteriors of
the modes used to generate some randomly se-
lected sentences from the held out test set can be
seen in Figure 3 and the appendix (Figure 4). The
figures show that all of the models tend a priori
to prefer to generate words directly when possi-
ble, but that context can certainly influence its pri-
ors. In Finnish, after seeing the word Vladmir, the
model suddenly assigns significantly more weight
to the character-level model to generate the fol-
lowing word, which is likely to be a surname.
In Russian, after the preposition o, the following
noun is required to be in a rare case. As such,
the model suddenly assigns more probability mass
to the following word being generated using the
morpheme-level model.

The posteriors tell a similarly encouraging
story. In Finnish we see that the word presiden-
tillä is overwhelmingly likely to be produced by
the morphology model due to its peculiar adessive
(“at”) case marking. Vladmir is common enough
in the data that it can be generated wholly, but the
last name Putin is again inflected into the adessive
case, forming Putinilla. Unfortunately the mor-
phological analyzer is unfamiliar with the stem
Putin, forcing the word to be generated by the
character-level model. In our Turkish example, all
of the short words are generated at the word level,
while the primary nouns internetten (“internet”)
and ders (“lecture”) are possible to generate ei-
ther as words or as a sequence of morphemes. The
verb, which has much more complex morphology
(progressive past tense with a third person singular
agent), is generated via the morphological model.

4 Extrinsic Evaluation

In addition to evaluating our model intrinsically
using perplexity, we evaluate it on two down-
stream tasks. The first is machine translation be-
tween English and Turkish. The second is Turkish
morphological analysis disambiguation.
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(a) Finnish

Model Dev Test
KN4+OOV 2.04 1.94
RNN+OOV 2.03 1.92

PureC 2.69 2.63
C 2.40 2.32

CM 1.95 1.85
CW 2.03 1.94

CWM 1.91 1.81

(b) Turkish

Model Dev Test
KN4+OOV 2.01 2.06
RNN+OOV 1.99 2.05

PureC 2.21 2.30
C 2.05 2.16

CM 1.88 1.99
CW 1.78 1.85

CWM 1.74 1.82

(c) Russian

Model Dev Test
KN4+OOV 1.68 1.70
RNN+OOV 1.62 1.66

PureC 1.91 2.05
C 1.85 1.87

CM 1.47 1.50
CW 1.44 1.47

CWM 1.49 1.52

Table 2: Intrinsic evaluation of language models for three morphologically rich languages. Entropy for
each test set is given in bits per character on the tokenized data. Lower is better, with 0.0 being perfect.

Komünizm peşinde koşan Arnavut pek yok
Parlaklığını kaybeden mücevher: Kirlilik Karadeniz’i esir alıyor
Olayların baskısıyla karşılaşan rejim tutumunu yavaşça yumuşattı, 1991 yılında çok partili

→ seçimleri düzenledi ve sonunda da ertesi yıl tümden iktidarı bıraktı.
Southeast European Times için Belgrad’dan Dusan Kosanoviç’in haberi - 24/06/04
23 Temmuz’dan bu yana Balkanlar’la ilgili iş ve ekonomi haberlerine genel bakış:
AB’nin Genişlemeden Sorumlu Komisyon Üyesi Olli Rehn (solda) Arnavutluk Başbakanı Sali

→ Berişa ile 15 Mart Perşembe günü Tiran’da bir araya geldi.

Table 3: Some examples of Turkish sentence on which our morphological model heavily outperforms
the baseline RNNLM (top) and some examples of the opposite (bottom). The sentences that our model
performs well on have many particularly rare words, whereas the sentences the RNNLM performs well
on were seen hundreds or thousands of times in the training corpus. Words in bold were seen fewer than
25 times in the training corpus. Arrows indicate line wrapping.

4.1 Machine Translation

As an extrinsic evaluation we test whether our
language model improves machine translation be-
tween Turkish and English. While we could trans-
form our model into a source-conditioned trans-
lation model, we choose here to focus on testing
our model as an external unconditional language
model, leaving the conditional version for future
work. Since neural machine translation systems
struggle with low-resource languages (Koehn and
Knowles, 2017), we choose to introduce the score
of our LM as an additional feature to a cdec (Dyer
et al., 2010) hierarchical MT system. We train on
the WMT 2016 Turkish–English data set, and per-
form n-best reranking after re-tuning weights with
the new feature.

The results, shown in Table 4 demonstrate small
but significant gains in both directions, particu-
larly into Turkish, where modelling productive
morphology should be more important.

4.2 Morphological Disambiguation

Our model is a joint model over words and the
latent processes giving rise to those words (i.e.,
which generation process was selected and, for the

Lang. Pair System BLEU
TR-EN Baseline 15.0

Morph. Input 15.2
EN-TR Baseline 10.1

Morph. Output 10.5

Table 4: Machine Translation Results

morpheme process, which morpheme sequence
was generated). While our model is not directly
trained to perform morphological disambiguation,
it still performs this task quite admirably. Given
a trained morphological language model, a sen-
tence s, and a set of morphological analyses
z, we can query the model to find p(s, z) =
p(w1, w2, . . . , wN ) for a given sentence. Most no-
tably, each wi may have a set of possible mor-
phological analyses {a1, a2, . . . aMi} from which
we would like to choose the most likely a pos-
teriori. To perform this task, we simply query
the model Mi times, each time hiding all but
the jth possible analysis from the model. We
can then re-normalize the resulting probabilities to
find p(aj |s) for each j ∈ 1 . . .Mi.

To make training and inference with our model
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Model Supervised? Ambiguous Words All words
Random Chance no 34.08% 52.66%
Unidirectional no 55.15% 80.28%
Bidirectional no 63.85% 84.11%
Shen et. al yes 91.03% 96.43%

Table 5: Morphological disambiguation accuracy results for Turkish.

tractable, we have assumed independence between
previous adjacent events and the next word gen-
eration given the previous surface word forms
(§2.1). Thus, the posterior probability over the
analysis is only determined by the left context—
subsequent decisions are independent of the pro-
cess used to generate a word at time t. However,
since disambiguating information may be present
in either direction, we introduce a model variant
that conditions on information in both directions.
Bidirectional dependencies mean that we can no
longer use the chain rule to factor the probability
distribution from left-to-right. Rather we have to
switch to a globally normalized, undirected model
(i.e., a Markov random field) to define the prob-
abilities of selecting the mode of generation and
generation probability (conditional on the mode).
The factors used to parameterize the model are de-
fined in terms of two LSTMs, one encoding from
left-to-right the prefix of the ith word (hi, defined
exactly as above), and a second encoding from
right-to-left its suffix (h′i). These two vector rep-
resentations are used to compute a score using a
locally normalized mixture model for each word.
Intuitively, the morphological analysis generated
at each time step should be compatible with both
the preceding words and the following words.

Optimizing this model with the same MLE cri-
terion we used in the direct model is, unfortu-
nately, intractable since a normalizer would need
to be computed. Instead, we use a pseudo-
likelihood objective (Besag, 1975).

LPL =
∏

i

p(wi | w−i)

=
∏

i

∑

m

p(mi = m | w−i)p(wi | m,w−i)

We note that although this model has a very differ-
ent semantics from the directed one, the PL train-
ing objective is identical to the directed model’s,
the only difference is that features are based both
on the past and future, rather than only the past.

Similarly to training, evaluating sentence like-
lihoods using this model is intractable, but poste-

rior inference over mi and ai is feasible since the
normalization factors cancel and therefore do not
need to be computed.

For our experiments we use the data set of
Yuret and Türe (2006) who manually disam-
biguated from among the possible forms identified
by an FST. We significantly out-perform the sim-
ple baseline of randomly guessing, and our results
are competitive with Yatbaz and Yuret (2009), al-
though they evaluated on a different dataset so
they are not directly comparable. Furthermore, we
also compare to a supervised model (Shen et al.,
2016). While unsupervised techniques can’t hope
to exceed supervised accuracies, this comparison
provides insight into the difficulty of the problem.
See Table 5 for results.

5 Related Work

Purely Character-based or Subword-based
LMs have a rich history going all the way
back to Markov (1906)’s work modelling Russian
character-by-character with his namesake models.
More recently Sutskever et al. (2011) were the first
to apply RNNs to character-level language mod-
elling, leveraging their ability to handle the long-
range dependencies required to model language at
the character level. It is also possible to alleviate
the closed vocabulary problem by training models
on automatically acquired subword units (Mikolov
et al., 2012; Sennrich et al., 2015). While these ap-
proaches allow for an open vocabulary (or nearly
open, in the case of subwords) they discard a
large amount of higher-level information, inhibit-
ing learning.

Character-aware language models, which
combine character- and word-level information
have shown promise (Kang et al., 2011; Ling
et al., 2015; Kim et al., 2016). Unsupervised
morphology has also been shown to improve the
representations used by a log-bilinear LM (Botha
and Blunsom, 2014). Jozefowicz et al. (2016)
explore many interesting such architectures,
and compare with fully character-based models.
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While these models allow for the elegant encoding
of novel word forms they lack an open vocabulary.

Open-vocabulary hybrid models alleviate this
problem, extending the benefits of character-level
representations to the generation. Such hybrid
models with open vocabularies have been around
since Brown et al. (1992). More recently, Chung
et al. (2016) and Hwang and Sung (2016) describe
methods of modelling sentences at both the word
and character levels, using mechanisms to allow
both a word-internal model that captures short-
range dependencies and a word-external model to
capture longer-range dependencies. These mod-
els have been successfully applied to machine
translation by Luong and Manning (2016), who
use a character-level model to predict translations
of out of vocabulary words. Our work falls in
this category—we combine multiple representa-
tion levels while maintaining the ability to gener-
ate any character sequence. In contrast to these
previous works, we demonstrate the utility of in-
corporating morphological information in these
open-vocabulary models.

Mixture model language generation where the
mixture coefficients are predicted by a neural net
are becoming quite common. Neubig and Dyer
(2016) use this strategy to combine a count-based
model and a neural language model. Ling et al.
(2016) interpolate between character- and word-
based models to translate between natural lan-
guage text and computer code. Merity et al. (2016)
also use multiple output models, allowing a word
to either be generated by a standard softmax or by
copying a word from earlier in the input sentence.

6 Conclusion

We have demonstrated a technique for language
modelling that works particularly well on mor-
phologically rich languages where having an open
vocabulary is desirable. We achieve this by us-
ing a multi-modal architecture that allows words
to be input and output at the word, morpheme,
or character levels. We show that knowledge of
the existence of word boundaries is of critical im-
portance for language modelling tasks, even when
otherwise operating entirely at the character level,
resulting in a surprisingly large reduction in per-
character entropy across all languages studied.

Furthermore, we demonstrate that if we have ac-
cess to a morphological analyzer we can leverage

it to further improve our LM, reinforcing the no-
tion that the explicit inclusion of linguistic infor-
mation can indeed aid learning of neural models.

Acknowledgements

We would like to thank Sebastian Mielke for his
insightful discussion and feedback on this work.

This work is sponsored by Defense Advanced
Research Projects Agency Information Innovation
Office (I2O). Program: Low Resource Languages
for Emergent Incidents (LORELEI). Issued by
DARPA/I2O under Contract No. HR0011-15-
C0114. The views and conclusions contained in
this document are those of the authors and should
not be interpreted as representing the official poli-
cies, either expressed or implied, of the U.S. Gov-
ernment. The U.S. Government is authorized to
reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation
here on.

References
Julian Besag. 1975. Statistical analysis of non-lattice

data. The statistician pages 179–195.

Jan A Botha and Phil Blunsom. 2014. Compositional
morphology for word representations and language
modelling. In ICML. pages 1899–1907.

Peter F Brown, Vincent J Della Pietra, Robert L Mer-
cer, Stephen A Della Pietra, and Jennifer C Lai.
1992. An estimate of an upper bound for the entropy
of english. Computational Linguistics 18(1):31–40.

Victor Chahuneau, Noah A Smith, and Chris Dyer.
2013. Knowledge-rich morphological priors for
bayesian language models. Association for Com-
putational Linguistics.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio.
2016. Hierarchical multiscale recurrent neural net-
works. arXiv preprint arXiv:1609.01704 .

Chris Dyer, Jonathan Weese, Hendra Setiawan, Adam
Lopez, Ferhan Ture, Vladimir Eidelman, Juri Gan-
itkevitch, Phil Blunsom, and Philip Resnik. 2010.
cdec: A decoder, alignment, and learning framework
for finite-state and context-free translation models.
In Proceedings of the ACL 2010 System Demon-
strations. Association for Computational Linguis-
tics, pages 7–12.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Kyuyeon Hwang and Wonyong Sung. 2016. Character-
level language modeling with hierarchical recurrent
neural networks. arXiv preprint arXiv:1609.03777 .

1443



Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410 .

Moonyoung Kang, Tim Ng, and Long Nguyen. 2011.
Mandarin word-character hybrid-input neural net-
work language model. In INTERSPEECH. pages
625–628.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural lan-
guage models. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-
17, 2016, Phoenix, Arizona, USA.. pages 2741–
2749.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Reinhard Kneser and Hermann Ney. 1995. Im-
proved backing-off for m-gram language model-
ing. In Acoustics, Speech, and Signal Processing,
1995. ICASSP-95., 1995 International Conference
on. IEEE, volume 1, pages 181–184.

Philipp Koehn and Rebecca Knowles. 2017. Six
challenges for neural machine translation. arXiv
preprint arXiv:1706.03872 .

Wang Ling, Edward Grefenstette, Karl Moritz Her-
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Finnish: “Russian President Vladimir Putin has an ace up his sleeve in the Ukrainian relationship.”
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Turkish: “He gave only two lectures on the internet this year.”
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Russian: “The investigation does not theorize about the attacker’s motives.”

Figure 4: Some examples of the priors (left) and posteriors (right) over modes used to generate each word
in some sample sentences. Probability given to the word-, morpheme-, and character-level models are
shown in red, blue, and gold respectively. The Finnish example is a reprint of Figure 3.
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Abstract

Entity mentions embedded in longer entity
mentions are referred to as nested entities.
Most named entity recognition (NER) sys-
tems deal only with the flat entities and ignore
the inner nested ones, which fails to capture
finer-grained semantic information in underly-
ing texts. To address this issue, we propose
a novel neural model to identify nested enti-
ties by dynamically stacking flat NER layers.
Each flat NER layer is based on the state-of-
the-art flat NER model that captures sequen-
tial context representation with bidirectional
long short-term memory (LSTM) layer and
feeds it to the cascaded CRF layer. Our model
merges the output of the LSTM layer in the
current flat NER layer to build new represen-
tation for detected entities and subsequently
feeds them into the next flat NER layer. This
allows our model to extract outer entities by
taking full advantage of information encoded
in their corresponding inner entities, in an
inside-to-outside way. Our model dynamically
stacks the flat NER layers until no outer enti-
ties are extracted. Extensive evaluation shows
that our dynamic model outperforms state-of-
the-art feature-based systems on nested NER,
achieving 74.7% and 72.2% on GENIA and
ACE2005 datasets, respectively, in terms of F-
score.1

1 Introduction

The task of named entity recognition (NER) in-
volves the extraction from text of names of en-
tities pertaining to semantic types such as per-
son (PER), location (LOC) and geo-political en-
tity (GPE). NER has drawn the attention of many
researchers as the first step towards NLP applica-
tions such as entity linking (Gupta et al., 2017), re-
lation extraction (Miwa and Bansal, 2016), event

1Code is available at https://github.com/
meizhiju/layered-bilstm-crf

LOC

PER

GPE

GPE

The premier of the western Canadian province of British Columbia ...

LOC

PER

GPE

GPE

The premier of the western Canadian province of British Columbia ...

Figure 1: A sentence from ACE2005 (Walker et al.,
2006) containing the nested 4 entities nested 3 levels
deep.

extraction (Feng et al., 2016) and co-reference res-
olution (Fragkou, 2017; Stone and Arora, 2017).

Due to the properties of natural language, many
named entities contain nested entities: embedded
names which are included in other entities, illus-
trated in Figure 1. This phenomenon is quite com-
mon in many domains (Alex et al., 2007; Byrne,
2007; Wang, 2009; Màrquez et al., 2007). How-
ever, much of the work on NER copes only with
non-nested entities which are also called flat enti-
ties and neglects nested entities. This leads to loss
of potentially important information, with nega-
tive impacts on subsequent tasks.

Traditional approaches to NER mainly in-
volve two types of approaches: supervised
learning (Ling and Weld, 2012; Marcińczuk,
2015; Leaman and Lu, 2016) and hybrid ap-
proaches (Bhasuran et al., 2016; Rocktäschel
et al., 2012; Leaman et al., 2015) that combine su-
pervised learning with rules. Such approaches re-
quire either domain knowledge or heavy feature-
engineering. Recent advances in neural networks
enable NER without depending on external knowl-
edge resources through automated learning high-
level and abstract features from text (Lample et al.,
2016; Ma and Hovy, 2016; Pahuja et al., 2017;
Strubell et al., 2017).

In this paper, we propose a novel dynamic neu-
ral model for nested entity recognition, without re-
lying on any external knowledge resources or lin-
guistics features. Our model enables sequentially
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Figure 2: Overview of our layered model architecture. “interleukin-2” and “interleukin-2 receptor alpha gene” are
nested entities.

stacking flat NER layers from bottom to up and
identifying entities in an end-to-end manner. The
number of stacked layers depends on the level of
entity nesting and dynamically adjusts to the input
sequences as the nested level varies from different
sequences.

Given a sequence of words, our model first
represents each word using a low-dimensional
vector concatenated from its corresponding word
and character sequence embeddings. Taking
the sequence of the word representation as in-
put, our flat NER layer enables capturing con-
text representation by a long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
layer. The context representation is then fed to
a CRF layer for label prediction. Subsequently,
the context representation from the LSTM layer is
merged to build representation for each detected
entity, which is used as the input for the next flat
NER layer. Our model stops detecting entities if
no entities are predicted by the current flat NER
layer. Through stacking flat NER layers in order,
we are able to extract entities from inside to out-
side with sharing parameters among the different
LSTM layers and CRF layers.

We gain 3.9 and 9.1 percentage point improve-
ments regarding F-score over the state-of-the-art
feature-based model on two nested entity corpora:
GENIA (Kim et al., 2003) and ACE2005 (Walker
et al., 2006), and analyze contributions of inner en-
tities to outer entity detection, drawing several key
conclusions.

In addition, experiments are conducted on a
flatly annotated corpora JNLPBA (Kim et al.,

2004). Our model can be a complete NER model
as well for flat entities, on the condition that it
is trained on annotations that do not account for
nested entities. We obtain 75.55% in terms of F-
score that is comparable to the state-of-the-art per-
formance.

2 Neural Layered Model

Our nested NER model is designed based on a
sequential stack of flat NER layers that detects
nested entities in an end-to-end manner. Fig-
ure 2 provides the overview of our model. Our
flat NER layers are inspired by the state-of-the-
art model proposed in Lample et al. (2016). The
layer utilizes one single bidirectional LSTM layer
to represent word sequences and predict flat enti-
ties by putting one single CRF layer on top of the
LSTM layer. Therefore, we refer to our model as
Layered-BiLSTM-CRF model. If any entities are
predicted, a new flat NER layer is introduced and
the word sequence representation of each detected
entity by the current flat NER layer is merged to
compose a representation for the entity, which is
then passed on to the new flat NER layer as its in-
put. Otherwise, the model terminates stacking and
hence finishes entity detection.

In this section, we provide a brief description
of the model architecture: the flat NER layers and
their stacking, the embedding layer and their train-
ing.

2.1 Flat NER layer

A flat NER layer consists of an LSTM layer and
a CRF layer. The LSTM layer captures the bidi-
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rectional context representation of sequences and
subsequently feeds it to the CRF layer to globally
decode label sequences.

LSTM is a variant of recurrent neural networks
(RNNs) (Goller and Kuchler, 1996) that incor-
porates a memory cell to remember the past in-
formation for a long period of time. This en-
ables capturing long dependencies, thus reducing
the gradient vanishing/explosion problem existing
in RNNs. We employ bidirectional LSTM with
no peephole connection. We refer the readers to
Hochreiter and Schmidhuber (1997) for more de-
tails of LSTM used in our work.

CRFs are used to globally predict label se-
quences for any given sequences. Given an input
sequence X = (x1, x2, . . . , xn) which is the out-
put from the LSTM layer, we maximize the log-
probability during training. In decoding, we set
transition costs between illegal transitions, e.g.,
transition from O to I-PER, as infinite to restrict
illegal labels. The expected label sequence y =
(y1, y2, . . . , yn) is predicted based on maximum
scores in decoding.

2.2 Stacking flat NER layers
We stack a flat NER layer on the top of the cur-
rent flat NER layer, aiming to extract outer en-
tities. Concretely, we merge and average current
context representation of the regions composed in
the detected entities, as described in the following
equation:

mi =
1

end− start+ 1

end∑

i=start

zi, (1)

where zi denotes the representation of the i-th
word from the flat NER layer, and mi is the
merged representation for an entity. The region
starts from a position start and ends at a position
end of the sequence. This merged representation
of detected entities allows us to treat each detected
entity as a single token, and hence we are able to
make the most of inner entity information to en-
courage outer entity recognition. If the region is
detected as a non-entity, we keep the representa-
tion without any processing. The processed con-
text representation of the flat NER layer is used as
the input for the next flat NER layer.

2.3 Embedding layer
The input for the first NER layer is different from
the remaining flat NER layers since the first layer

g e e genen

Characters Word

LSTM LSTMLSTM LSTM

Word representation

Figure 3: Word representation of a word ‘gene’. We
concatenate the outputs of character embedding from
LSTM and word embedding to obtain its final word
representation.

has no previous layers. We thus represent each
word by concatenating character sequence embed-
dings and word embeddings for the first flat NER
layer. Figure 3 describes the architecture of the
embedding layer to produce word representation.

Following the successes of Ma and Hovy (2016)
and Lample et al. (2016) in utilizing character em-
beddings on the flat NER task, we also represent
each word with its character sequence to capture
the orthographic and morphological features of the
word. Each character is mapped to a randomly ini-
tialized vector through a character lookup table.
We feed the character vectors comprising a word
to a bidirectional LSTM layer and concatenate the
forward and backward representation to obtain the
word-level embedding.

Differently from the character sequence embed-
dings, the pretrained word embeddings are used
to initialize word embeddings. When evaluating
or applying the model, words that are outside of
the pretrained embeddings and training dataset are
mapped to an unknown (UNK) embedding, which
is randomly initialized during training. To train
the UNK embedding, we replace words whose fre-
quency is 1 in the training dataset with the UNK
embedding with a probability 0.5.

2.4 Training

We prepare the gold labels based on the conven-
tional BIO (Beginning, Inside, Out of entities) tag-
ging scheme to represent a label attached to each
word.
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As our model detects entities from inside to out-
side, we keep the same order in preparing the gold
labels for each word sequence. We call it the de-
tection order rule. Meantime, we define that each
entity region in the sequence can only be tagged
once with the same entity type, referred to as the
non-duplicate rule. For instance, in Figure 2,
“interleukin-2” is tagged first while “interleukin-
2 receptor alpha gene” is subsequently tagged fol-
lowing the above two rules. When assigning the
label O to non-entity regions, we only follow the
detection order rule. As a result, two gold label
sequences {O, B-Protein, O, O, O, O} and {O,
B-DNA, I-DNA, I-DNA, I-DNA, O} are assigned
to the given word sequence “Mouse interleukin-2
receptor alpha gene expression” as shown in Fig-
ure 2. With these rules, the number of labels for
each word equals the nested level of entities in the
given word sequence.

We employ mini-batch training and update the
model parameters using back-propagation through
time (BPTT) (Werbos, 1990) with Adam (Kingma
and Ba, 2014). The model parameters include
weights, bias, transition costs, and embeddings
of characters. We disable updating the word em-
beddings.2 During training, early stopping, L2-
regularization and dropout (Hinton et al., 2012)
are used to prevent overfitting. Dropout is em-
ployed to the input of each flat NER layer. Hyper-
parameters including batch size, number of hid-
den units in LSTM, character dimensions, dropout
rate, Adam learning rate, gradient clipping and
weight decay (L2) are all tuned with Bayesian op-
timization (Snoek et al., 2012).

3 Evaluation Settings

We employed three datasets for evaluation: GE-
NIA3 (Kim et al., 2003), ACE20054 (Walker et al.,
2006) and JNLPBA5 (Kim et al., 2004). We briefly
explain the data and task settings and then intro-
duce model and experimental settings.

3.1 Data and Task Settings
We performed nested entity extraction experi-
ments on GENIA and ACE2005 while we con-

2We tried updating and disabling updating word embed-
dings. The former trial did not work.

3http://www.geniaproject.org/
genia-corpus/term-corpus

4https://catalog.ldc.upenn.edu/
ldc2006t06

5http://www.nactem.ac.uk/tsujii/GENIA/
ERtask/report.html

ducted flat entity extraction on the JNLPBA
dataset. For the details of data statistics and pre-
processing, please refer to the supplementary ma-
terials.

GENIA involves 36 fine-grained entity cate-
gories among total 2,000 MEDLINE abstracts.
Following the same task settings as in Finkel and
Manning (2009) and Lu and Roth (2015), we col-
lapsed all DNA subcategories as DNA. The same
setting was applied to RNA, protein, cell line and
cell type categories. We used same test portion as
Finkel and Manning (2009), Lu and Roth (2015)
and Muis and Lu (2017) for the direct comparison.

ACE2005 contains 7 fine-grained entity cate-
gories. We made same modifications described in
Lu and Roth (2015) and Muis and Lu (2017) by
keeping files from bn, bw, nw and wl and spit-
ting them into training, development and testing
datasets at random following same ratio 8:1:1, re-
spectively.

JNLPBA defines both training and testing
datasets. These two datasets are composed of
2,000 and 404 MEDLINE abstracts, respectively.
JNLPBA is originally from the GENIA cor-
pus. However, only flat and topmost entities in
JNLPBA are kept while nested and discontinuous
entities are removed. Like our preprocessing on
the GENIA corpus, subcategories are collapsed
and only 5 entity types are finally reserved. We
randomly chose the 90% sentences of the original
training dataset as our training dataset and the re-
maining as our development dataset.

Precision (P), recall (R) and F-score (F) were
used for the evaluation metrics in our tasks. We
define that if the numbers of gold entities and pre-
dictions are all zeros, the evaluation metrics all
equal one hundred percent.

3.2 Model and Experimental Settings

Our model was implemented with Chainer6 (Tokui
et al., 2015). We initialized word embeddings
in GENIA and JNLPBA with the pretrained em-
beddings trained on MEDLINE abstracts (Chiu
et al., 2016). For ACE2005, we initialized each
word with the pretrained embeddings which are
trained by Miwa and Bansal (2016). Except for
the word embeddings, parameters of word embed-
dings were initialized with a normal distribution.
For LSTM, we initialized hidden states, cell state
and all the bias terms as 0 except for the forget gate

6https://chainer.org/
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bias that was set as 1. For other hyper-parameters,
we chose the best hyper-parameters via Bayesian
optimization. We refer the readers to the sup-
plemental material for the settings of the hyper-
parameters of the models and Bayesian optimiza-
tion.

For ablation tests, we compared with our
layered-BiLSTM-CRF model with two models
that produce the input for next flat NER layer in
different ways. The first model is called layered-
BiLSTM-CRF w/o layered out-of-entities which
uses the input of the current flat NER layer for
out-of-entity words. We name the second model
as layered-BiLSTM-CRF w/o layered LSTM as it
skips all intermediate LSTM layers and only uses
output of embedding layer to build the input for
the next flat NER layer. Please refer to supple-
mental material for the introduced two models.7

To investigate the effectiveness of our model on
different nested levels of entities, we evaluated the
model performance on each flat NER layer on GE-
NIA and ACE2005 test datasets.8 When calcu-
lating precision and recall measurements, we col-
lected the predictions and gold entities from the
corresponding flat NER layer. Since predicted en-
tities on a specific flat NER layer might be from
other flat NER layers, we defined extended preci-
sion (EP), extended recall (ER) and extended F-
score (EF) to measure the performance. We cal-
culated EP by comparing the predicted entities in
a specific flat NER layer with all the gold entities,
and ER by comparing the gold entities in a specific
flat NER layer with all the predicted entities. EF
was calculated in the same way with F.

In addition to experiments on nested GENIA
and ACE2005 datasets, flat entity recognition was
conducted on the JNLPBA dataset. We trained our
flat model that only kept the first flat NER layer
and removed the following stacking layers. We
follow the hyper-parameters settings by Lample
et al. (2016) for this evaluation.

7We examined the contributions of predicted labels of the
current flat NER layer to the next flat NER layer. For this, we
introduced label embeddings into each test by combining the
embedding with context representation. Experiments show
that appending label embedding hurts the performance of our
model while gain slight improvements in the rest 2 models on
development datasets.

8We removed entities which were predicted in previous
flat NER layers during evaluation.

4 Results and Analysis

4.1 Nested NER
Table 1 presents the comparisons of our model
with related work including the state-of-the-art
feature-based model by Muis and Lu (2017).
Our model outperforms the state-of-the-art mod-
els with 74.7% and 72.2% in terms of F-score,
achieving the new state-of-the-art in the nested
NER tasks. For GENIA, our model gained more
improvement in terms of recall with enabling ex-
tract more nested entities without reducing pre-
cision. On ACE2005, we improved recall with
12.2 percentage points and obtained 5.1% rela-
tive error reductions. Compared with GENIA, our
model gained more improvements in ACE2005 in
terms of F-score. Two possible reasons account
for it. One reason is that ACE2005 contains more
deeper nested entities (maximum nested level is 5)
than GENIA (maximum nested level is 3) on the
test dataset. This allows our model to capture the
potentially ‘nested’ relations among nested enti-
ties. The other reason is that ACE2005 has more
nested entities (37.45%) compared with GENIA
(21.56%).

Table 2 shows the results of models on the de-
velopment datasets of GENIA and ACE2005, re-
spectively. From this table, we can see that our
model, which only utilizes context representation
for preparation of input for the next flat NER layer,
performs better than the rest two models. This
demonstrates that introducing input of the current
flat NER layer such as skipping either representa-
tion for any non-entity or words or all intermedi-
ate LSTM layers hurts performance. Compared
with the layered-BiLSTM-CRF model, the drop
of the performance in the layered-BiLSTM-CRF
w/o layered out-of-entities model reflects the skip
of representation for out-of-entity words leads to
the decline in performance. This is because the
representation of non-entity words didn’t incorpo-
rate the current context representation as we used
the input rather than the output to represent them.
By analogy, the layered BiLSTM-CRF w/o layer
LSTM model skips representation for both entities
and non-entity words, resulting in worse perfor-
mance. This is because, when skipping all inter-
mediate LSTM layers, input of the first flat NER
layer, i.e., word embeddings, is passed to the re-
maining flat NER layers. Since word embeddings
do not contain context representation, we fail to in-
corporate the context representation when we use
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Settings GENIA ACE2005
P (%) R (%) F (%) P (%) R (%) F (%)

Finkel and Manning (2009) 75.4 65.9 70.3 - - -
Lu and Roth (2015) 72.5 65.2 68.7 66.3 59.2 62.5
Muis and Lu (2017) 75.4 66.8 70.8 69.1 58.1 63.1
Our model 78.5 71.3 74.7 74.2 70.3 72.2

Table 1: Comparisons of our model with the state-of-the-art models on nested NER.

Settings GENIA ACE2005
P (%) R (%) F (%) P (%) R (%) F (%)

Layered-BiLSTM-CRF 78.27 75.97 77.10 75.37 69.41 72.27
Layered-BiLSTM-CRF w/o
layered non-entities

76.55 77.01 76.78 72.90 65.54 69.02

Layered-BiLSTM-CRF w/o
layered LSTM

75.76 74.60 75.18 69.94 61.94 65.70

Table 2: Performances of ablation tests on development datasets.

Entity type P (%) R (%) F (%)
DNA 74.43 69.68 71.98
RNA 90.29 79.48 84.54
Protein 80.48 73.20 76.67
Cell Line 77.83 65.65 71.22
Cell Type 76.36 68.07 71.97
Overall 78.59 71.33 74.79

Table 3: Results of all entities for each type in GENIA
test dataset.

Entity type P (%) R (%) F (%)
PER 78.82 77.37 78.09
LOC 54.54 43.47 48.38
ORG 63.25 54.20 58.38
GPE 76.92 78.98 77.94
VEH 61.53 48.48 54.23
WEA 66.66 53.73 59.50
FAC 49.19 35.26 41.07
Overall 74.27 70.34 72.25

Table 4: Results of all entities for each type in
ACE2005 test dataset.

the word embeddings as the input for the flat NER
layers. Therefore, we have no chance to take ad-
vantage of the context representation and instead
we only manage to use the word embeddings as
the input for flat NER layers in this case.

Table 3 and Table 4 describe the performance
for each entity type in GENIA and ACE2005 test
datasets, respectively. In GENIA, our model per-
formed best in recognizing entities with type RNA.

This is because most of the entities pertaining
to RNA mainly end up either with “mRNA” or
RNA. These two words are informative indicators
of RNA entities. For entities in rest entity types,
their performances are close to the overall perfor-
mance. One possible reason is that there are many
instances to model them. This also accounts for
the high performances of entity types such as PER,
GPE in ACE2005. The small amounts of instances
of entity types like FAC in ACE2005 is one rea-
son for their under overall performances. We refer
readers to supplemental material for statistics de-
tails.

When evaluating our model on top level which
contains only outermost entities, the precision,
recall and F-score were 78.19%, 75.17% and
76.65% on GENIA test dataset. For ACE2005, the
corresponding precision, recall and F-score were
68.37%, 68.57% and 68.47%. Compared with the
overall performance listed in Table 1, we obtained
higher top level performance on GENIA but lower
performance in ACE2005. We discuss details of
this phenomena in the following tables.

Table 5 shows the performances of each flat
NER layer in GENIA test dataset. Among all
the stacking flat NER layers, our model resulted
in the best performance regarding standard eval-
uation metrics on the first flat NER layer which
contains the predictions for the gold innermost
entities. When the model went to deeper flat
NER layers, the performance dropped gradually
as the number of gold entities decreased. How-
ever, the performance for predictions on each flat
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Layer P (%) R (%) F (%) EP (%) ER (%) EF (%) #Predictions #Gold Entities
Layer 1 72.86 69.82 71.31 78.46 71.06 74.57 4,783 4,991
Layer 2 56.88 27.59 37.15 81.15 73.98 77.39 276 569
Layer 3 0.00 0.00 0.00 0.00 60.00 0.00 1 15

Table 5: Results of layer evaluation on GENIA test dataset.

Layer P (%) R (%) F (%) EP (%) ER (%) EF (%) #Predictions #Gold Entities
Layer 1 74.46 73.39 73.92 75.84 73.77 74.79 2,894 2,936
Layer 2 60.28 50.49 54.95 66.19 58.41 62.05 423 505
Layer 3 51.02 24.51 33.11 51.02 37.25 43.06 49 102
Layer 4 0.00 0.00 0.00 0.00 10.00 0.00 0 10
Layer 5 0.00 0.00 0.00 0.00 0.00 0.00 0 1

Table 6: Results of layer evaluation on ACE2005 test dataset.

NER layer was different in terms of extended eval-
uation metrics. For the first two flat NER layers,
performance of extended evaluation is better than
the performance of standard evaluation. It indi-
cates that gold entities correspond to some of the
predictions on the specific flat NER layer are from
other flat NER layers. This may lead to the zero
performances for the last flat NER layer. In ad-
dition, performance on the second flat NER layer
was higher than it was on the first flat NER layer in
terms of extended F-score. This demonstrates that
our model is able to obtain higher performance on
top level of entities than innermost entities.

Table 6 lists the results of each flat NER layer on
ACE2005 test dataset. Similar to GENIA, the first
flat NER layer achieved better performance than
the rest flat NER layers. Performances decreased
in a bottom-to-up manner regarding model archi-
tecture. This phenomena was the same with the
extended evaluation performances, which reflects
that some of the predictions in a specific flat NER
layer were detected in other flat NER layers. Un-
like rising tendency (except last flat NER layer)
regarding extend F-score in GENIA, performance
in ACE2005 was in downtrend. This accounts for
the fact that F-score on top level was lower than it
on the fist flat NER layer. Even though the decline
trend in extended F-score, the first flat NER layer
contained the largest proportion of predictions for
the gold entities, the overall performance on all
nested entities showed in Table 1 was still high.
Unlike GENIA, our model in ACE2005 stopped
before reaching the maximum nested level of enti-
ties. It indicates our model failed to model the ap-
propriate nested levels. This is one of the reasons
that account for the zero predictions on the last

flat NER layer. One reason is that our model The
sparse instances on the high nested levels could
be another reason that resulted in the zero perfor-
mances on the last flat NER layer.

4.2 Flat NER

Compared with the state-of-the-art work on
JNLPBA (Gridach, 2017) which achieved 75.87%
in terms of F-score, our model obtained 75.55% in
F-score. Since both the model by Gridach (2017)
and our flat model are based on Lample et al.
(2016), so it is reasonable that both models were
able to get comparable performance.

4.3 Error analysis

We showed the error types and their statistics both
for all nested entities and each flat NER layer
on GENIA and ACE2005 test datasets. From
ACE2005 test dataset, 28% of predictions were in-
correct in 200 sentences which were selected at
random. Among these errors, 39% of them were
because their text spans were assigned with other
entity types. We call this type of errors type error.
The main reason is that most of them are pronouns
and co-refer to other entities which are absent in
the sentence. Taking this sentence “whether that
is true now, we can not say” as an example, “we”
is annotated as ORG while our model labeled it
as PER. Lack of context information such as the
absence of co-referent entities leads our model to
make the wrong decisions. In addition, 30% of
the errors were caused by that incorrect predic-
tions were predicted as only parts of gold entities
with correct entity types. This error type is re-
ferred to as partial prediction error. This might be
due to these gold entities tend to clauses or inde-
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pendent sentences, thus possibly containing many
modifiers. For example, in this sentence “A man
who has been to Baghdad many times and can tell
us with great knowledge exactly what it’s going to
be like to fight on those avenues in that sprawl-
ing city of Baghdad - Judy .”, “A man who has
been to Baghdad many times and can tell us with
great knowledge exactly what it’s going to be like
to fight on those avenues in that sprawling city of
Baghdad” is annotated as PER while our model
could only extract “A man who has been to Bagh-
dad many times” and predicted it as PER.

Errors on the first flat NER layer, we got 41% in
type error and 11% of partial prediction error, re-
spectively. Apart from this, our model recognized
predictions from other flat NER layers, leading to
5% errors. We define this error type as layer error.
Unlike the first flat NER layer, 26% of errors were
caused by layer error. Additionally, 17% of the er-
rors belong to type error. In particular, 22% errors
were due to the type error. As for the last flat NER
layer, 40% errors were caused by partial prediction
error. The rest errors were different from the men-
tioned error types. One possible reason is that we
have less gold entities to train this flat NER layer
compared with previous flat NER layers. Another
reason might be the error propagation.

Similarly, 200 sentences were randomly se-
lected from GENIA test dataset. We got 20% er-
rors of predictions in the subset. Among these er-
rors, 17% and 24% of errors were separately due
to type error and partial prediction error. In addi-
tion, 24% of the predictions on the first flat NER
layer were incorrect. Among them, the top error
types were layer error, partial prediction error and
type error, accounting for 21%, 18% and 13%, re-
spectively. Errors on the second flat NER layer
were mainly caused by type error and the and par-
tial prediction error.

5 Related Work

The success of neural networks has boosted the
performance of flat named NER in different do-
mains (Lample et al., 2016; Ma and Hovy, 2016;
Gridach, 2017; Strubell et al., 2017). Such mod-
els achieved the state of the art without any hand-
crafted features and external knowledge resources.

Contrary to flat NER, much fewer attempts have
emphasized the nested entity recognition. Exist-
ing approaches to nested NER (Shen et al., 2003;
Alex et al., 2007; Finkel and Manning, 2009; Lu

and Roth, 2015; Xu and Jiang, 2016; Muis and Lu,
2017) mainly rely on hand-crafted features. They
also failed to take advantage of the dependencies
among nested entities. Our model enables cap-
turing dependencies and automatic learning high-
level abstract features from texts.

Early work regarding nested NER involve
mainly hybrid systems that combined rules with
supervised learning algorithms. For example,
Shen et al. (2003), Zhou et al. (2004) and Zhang
et al. (2004) employed a Hidden Markov Model
to GENIA to extract inner entities and then used
rule-based methods to obtain the outer entities.
Furthermore, Gu (2006) extracted nested entities
based on SVM which were trained separately on
both inner entities and outermost entities without
putting the hidden relations between nested enti-
ties into consideration. All these methods failed
to capture the dependencies between nested en-
tities. One trial work is that Alex et al. (2007)
separately built a inside-out and outside-in layered
CRFs which were able to use the current guesses
as the input for next layer. They also cascaded
separate CRFs of each entity type by using output
from previous CRFs as features of current CRFs,
yielding best performance in their work. One of
the main drawbacks in the cascading approach was
that it failed to handle nested entities sharing the
same entity type, which were quite common in
natural languages.

Finkel and Manning (2009) proposed a discrim-
inative constituency tree to represent each sen-
tence where the root node was used for connec-
tion. All entities were treated as phrases and repre-
sented as subtrees following the whole tree struc-
ture. Unlike our linguistic features independent
model, Finkel and Manning (2009) used a CRF-
based approach driven by entity-level features to
detect nested entities

Later on, Lu and Roth (2015) built hyper-graphs
that allow edges to connect multiple nodes to
represent both the nested entities and their refer-
ences (a.k.a. mentions). One issue in their ap-
proach is the spurious structures of hyper-graphs
as they enumerate combinations of nodes, types
and boundaries to represent entities. In addition,
they fail to encode the dependencies among em-
bedded entities using hyper-graphs. In contrast,
our model enables nested entity representation by
merging representation of multiple tokens com-
posed in the entity and considers it as the longer
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entity representation. This allows us to represent
outer entities based on inner entity representation,
thus managing to capture the relations between in-
ner and outer entities, and hence overcoming the
spurious entity structure problem.

As an improvement in overcoming spurious
structure issue in Lu and Roth (2015), Muis and
Lu (2017) further incorporated mention separators
along with features to yield better performance on
nested entities. Both Lu and Roth (2015) and Muis
and Lu (2017) rely on hand-crafted features to ex-
tract nested entities without incorporating hidden
dependencies in nested entities. In contrast, we
make the most of dependencies of nested entities
in our model to encourage outer entity recognition
by automatic learning of high-level and abstract
features from sequences.

Shared tasks dealing with nested entities like
SemEval-2007 Task 99 and GermEval-201410

were held in order to advance the state-of-the-
art on this issue. Additionally, as subtasks in
KBP 201511 and KBP 201612, one of the aims
in tri-lingual Entity Discovery and Linking Track
(EDL) track was extracting nested entities from
textual documents varying from English, Chinese
and Spanish. Following this task, Xu and Jiang
(2016) firstly developed a new tagging scheme
which is based on fixed-size ordinally-forgetting
encoding (FOFE) method for text fragment rep-
resentation. All the entities along their contexts
were represented using this novel tagging scheme.
Different from the extensively used LSTM-RNNs
in sequence labeling task, a feed-forward neural
network was used to predict labels on entity level
for each fragment in any of given sequences. Ad-
ditionally, Li et al. (2017) used the model pro-
posed in Lample et al. (2016) to the extract both
flat entities and components composed in nested
and discontinuous entities. Another BiLSTM was
applied to combine the components to get nested
and discontinuous entities. However, these meth-
ods failed to capture and utilize the inner entity
representation to facilitate outer entity detection.

9http://nlp.cs.swarthmore.edu/semeval/
tasks/index.php

10https://sites.google.com/site/
germeval2014ner/

11https://tac.nist.gov//2015/KBP/
12https://tac.nist.gov//2016/KBP/

6 Conclusion

This paper presented a dynamic layered model
which takes full advantage of inner entity infor-
mation to encourage outer entity recognition in
an end-to-end manner. Our model is based on a
flat NER layer consisting of LSTM and CRF, so
our model is able to capture context representa-
tion of input sequences and globally decode pre-
dicted labels at a flat NER layer without relying
on feature-engineering. Our model automatically
stacks the flat NER layers with sharing the param-
eters of LSTM and CRF in the layers. The stack-
ing continues until the current flat NER layer pre-
dicts sequences as all outside of entities, which en-
ables stopping dynamically stacked flat NER lay-
ers. Each flat NER layer receives the merged con-
text representation as input for outer entity recog-
nition, based on the predicted entities from the
previous flat NER layer. With this dynamic end-
to-end model, our model is able to outperform
existing models, achieving the-state-of-art on two
nested NER tasks. In addition, the model can be
flexibly simplified as a flat NER model by remov-
ing components cascaded after the first NER layer.

Extensive evaluation shows that utilization of
inner entities significantly encourages outer en-
tities detection with improvements of 3.9 and
9.1 percentage points in F-score on GENIA and
ACE2005, respectively. Additionally, utilization
of only current context representation contributes
to the performance improvement than use of con-
text representation from multi-layers.
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Tim Rocktäschel, Michael Weidlich, and Ulf Leser.
2012. ChemSpot: a hybrid system for chem-
ical named entity recognition. Bioinformatics
28(12):1633–1640.

Dan Shen, Jie Zhang, Guodong Zhou, Jian Su, and
Chew-Lim Tan. 2003. Effective adaptation of a hid-
den markov model-based named entity recognizer
for biomedical domain. In Proceedings of the ACL
2003 workshop on Natural language processing in
biomedicine-Volume 13. Association for Computa-
tional Linguistics, Association for Computational
Linguistics, Sapporo, Japan, pages 49–56. https:
//doi.org/10.3115/1118958.1118965.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
2012. Practical bayesian optimization of ma-
chine learning algorithms. In Advances in
neural information processing systems. Cur-
ran Associates Inc., USA, pages 2951–2959.
http://dl.acm.org/citation.cfm?id=
2999325.2999464.

M. Stone and R. Arora. 2017. Identifying nominals
with no head match co-references using deep learn-
ing. CoRR abs/1710.00936. https://arxiv.
org/abs/1710.00936.

Emma Strubell, Patrick Verga, David Belanger, and
Andrew McCallum. 2017. Fast and accurate en-
tity recognition with iterated dilated convolutions.
In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing.
Association for Computational Linguistics, Copen-
hagen, Denmark, pages 2670–2680. https://
www.aclweb.org/anthology/D17-1283.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin
Clayton. 2015. Chainer: a next-generation open
source framework for deep learning. In Proceedings
of workshop on machine learning systems (Learn-
ingSys) in the twenty-ninth annual conference on
neural information processing systems (NIPS). vol-
ume 5.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. ACE 2005 multilin-
gual training corpus. Linguistic Data Consortium,
Philadelphia 57.

1456



Yefeng Wang. 2009. Annotating and recognising
named entities in clinical notes. In Proceedings
of the ACL-IJCNLP 2009 Student Research Work-
shop. Association for Computational Linguistics,
Stroudsburg, PA, USA, ACLstudent ’09, pages 18–
26. http://dl.acm.org/citation.cfm?
id=1667884.1667888.

Paul J Werbos. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the
IEEE 78(10):1550–1560. https://doi.org/
10.1109/5.58337.

Mingbin Xu and Hui Jiang. 2016. A FOFE-based
local detection approach for named entity recog-
nition and mention detection. arXiv preprint
arXiv:1611.00801 https://arxiv.org/abs/
1611.00801.

Jie Zhang, Dan Shen, Guodong Zhou, Jian Su,
and Chew-Lim Tan. 2004. Enhancing HMM-
based biomedical named entity recognition
by studying special phenomena. Journal
of biomedical informatics 37(6):411–422.
https://doi.org/https://doi.org/
10.1016/j.jbi.2004.08.005.

Guodong Zhou, Jie Zhang, Jian Su, Dan Shen, and
Chewlim Tan. 2004. Recognizing names in biomed-
ical texts: a machine learning approach. Bioinfor-
matics 20(7):1178–1190. https://doi.org/
10.1093/bioinformatics/bth060.

A Data Statistics and Preprocessing

Statistics of GENIA, ACE2005 and JNLPBA are
described in Tables 7, 8 and 9, respectively.

We used NERSuite (Cho et al., 2010) for
GENIA to perform tokenization while Stanford
CoreNLP (Manning et al., 2014) was used for
ACE2005. The JNLPBA dataset has already been
went through tokenization and sentence splitting,
so we did not apply any preprocessing.

For GENIA, we had to manually revolve the fol-
lowing two issues, in addition to the above prepro-
cessing.

One of the issues we had in this corpus is the re-
moval of discontinuous entities during parsing. In
provided GENIA XML file, each flat entity is an-
notated with ‘lex’ (lexical) and ‘sem’ (semantics)
attributes while discontinuous and nested entities
may have none, one or two attributes when these
entities embed with each other, making it diffi-
cult to extract the strictly nested ones. Taken the
text “recombinant human nm23-H1, -H2, mouse
nm23-M1, and -M2 proteins” as an example,
there are six discontinuous entities, “recombinant
human nm23-H1 protein”, “recombinant human

Item Train Dev. Test
Documents 1,599 189 212
Sentences 15,022 1,669 1,855
Split percentage 81% 9% 10%
DNA 7,921 1061 1,283
RNA 730 140 117
Protein 29,032 2,338 3,098
Cell Line 3,149 340 460
Cell Type 6,021 563 617
Outermost entity 42,462 4,020 4,942
Nested level 4 3 3
Entities in level 1 42,846 4,060 4,991
Entities in level 2 3,910 381 569
Entities in level 3 91 1 15
Entities in level 4 1 0 0
Entity avg. length 2.87 3.13 2.93
Multi-token entity 33951 3554 4203
Overall entities 46,853 4,442 5,575

Table 7: Statistics of GENIA.

Item Train Dev. Test
Documents 370 43 51
Sentences 9,849 1,221 1,478
FAC 924 83 173
GPE 4,725 486 671
LOC 763 81 69
ORG 3,702 479 559
PER 13,050 1,668 1,949
VEH 624 81 66
WEA 652 94 67
Outermost entity 18,455 2,285 2,724
Nested level 6 4 5
Entities in level 1 19,676 2,429 2,936
Entities in level 2 3,934 448 505
Entities in level 3 731 85 102
Entities in level 4 90 10 10
Entities in level 5 7 0 1
Entities in level 6 2 0 0
Entity avg. length 2.28 2.33 2.28
Multi-token entity 10,577 1,323 1,486
Overall entities 24,440 2,972 3,554

Table 8: Statistics of ACE2005.

H2 protein”, “recombinant mouse nm23-M1 pro-
tein”, “recombinant mouse nm23-M2 protein”,
“mouse nm23-M2” and “human nm23-H2”, and
two nested entities, “mouse nm23-M1” and “hu-
man nm23-H1”. We extract these nested entities
based on symbol * appeared ‘lex’ attribute which
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Item Train Dev. Test
Sentences 16,691 1,855 3,856
Split percentage 90% 10% -
DNA 8,649 884 1,056
RNA 863 88 118
Protein 27,263 3,006 5,067
Cell Line 3,459 371 500
Cell Type 6,045 673 1,921
Overall entities 46,279 5,022 8,662

Table 9: Statistics of JNLPBA.

Hyper params Range Best
Batch size [16 – 256] 67
No. of hidden units 200, 250, 300 200
Dim. of char. emb. [15 – 50] 35
Dropout rate [0.1 – 0.5] 0.2144
Learning rate [0.001 – 0.02] 0.00754
Gradient clipping [5 – 50] 27
Weight decay (L2) [10-8 – 10-3] 4.54-5

Table 10: Value range and best value of tuned hyper
parameters in GENIA.

Hyper params Range Best
Batch size [16 – 256] 91
No. of hidden units 200, 250, 300 200
Dim. of char. emb. [15 – 50] 28
Dropout rate [0.1 – 0.5] 0.1708
Learning rate [0.001 – 0.02] 0.00426
Gradient clipping [5 – 50] 11
Weight decay (L2) [10-8 – 10-3] 9.43-5

Table 11: Value range and best value of tuned hyper
parameters in ACE2005.

Hyper Parameters Initialized Value
Acquisition Function gp hedge
n-calls 10
n random state None
n random starts 10
Acquisition Optimizer lbfgs
n restarts optimizer 100
noise gaussian
n points 50000
xi 0.1
n jobs 1

Table 12: Hyper parameters used of Bayesian Opti-
mization.

is an connection indicator of the separated texts
in discontinuous entities. Meanwhile, each of the

separated texts has no ‘sem’ attribute unless itself
is an innermost entity. Unfortunately, there are
some inconsistent cases such as “c-fos and c-jun
transcripts” where symbol * should be in the ‘lex’
attribute as the discontinuous entity “c-fos tran-
script” is connected by “c-fos” and “transcript”
while “c-jun transcript” is connected by “c-jun”
and “transcript”. These two entities share the same
text “transcript”. However, each of them is anno-
tated with two attributes: ‘lex’ and ‘sem’, follow-
ing the same annotation for flat entities. Although
it is possible to ignore the latter entity based on
‘lex’ attribute and its belonging sentence, this rule
fails to deal with entity “c-jun gene” in the exam-
ple of “c-fos and c-jun genes” as the ‘lex’ of “c-jun
gene” is mistaken as “c-jun genes”. Therefore, in
this case, we ignored “c-fos transcript” and instead
kept the “c-jun transcripts” as a flat entity.

Another issue is the incomplete tokenization.
The label assignment to one word was conducted
on the word-level instead of character level, but
there are entities that correspond to parts of words.
An example is “NF-YA subunit”, which contains
two protein entities: “NF-Y” and “A subunit”. To
cope with this problem, we treat both two entities
as false negative entities in training dataset as there
are only 13 such entities in the training data set.

B Bayesian Optimization Setting

The hyper-parameters which were tuned for our
model are listed in Table 10 and Table 11. These
hyper-parameters are tuned by Bayesian optimiza-
tion with the hyper parameters listed in Table 12.

C Model Structure

Figure 4 shows the model architecture when we
skip all intermediate LSTM layers and only word
embeddings are used to produce the input for the
next flat NER layer.

Figure 5 describes the model architecture when
we skip the representation of non-entity words to
prepare the input for the next flat NER layer. Con-
cretely, we merge and average representation fol-
lowing Equation 1. For the predicted non-entity
words, however, we skip the LSTM layer and di-
rectly use their corresponding representation from
the input rather than the output context represen-
tation.
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Figure 4: Overview of the model architecture with skipping representation for non-entity words. “interleukin-2”
and “interleukin-2 receptor alpha gene” are nested entities.
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Abstract

We present a novel deep learning archi-
tecture to address the natural language in-
ference (NLI) task. Existing approaches
mostly rely on simple reading mecha-
nisms for independent encoding of the
premise and hypothesis. Instead, we pro-
pose a novel dependent reading bidirec-
tional LSTM network (DR-BiLSTM) to
efficiently model the relationship between
a premise and a hypothesis during encod-
ing and inference. We also introduce a
sophisticated ensemble strategy to com-
bine our proposed models, which notice-
ably improves final predictions. Finally,
we demonstrate how the results can be
improved further with an additional pre-
processing step. Our evaluation shows
that DR-BiLSTM obtains the best single
model and ensemble model results achiev-
ing the new state-of-the-art scores on the
Stanford NLI dataset.

1 Introduction

Natural Language Inference (NLI; a.k.a. Recog-
nizing Textual Entailment, or RTE) is an important
and challenging task for natural language under-
standing (MacCartney and Manning, 2008). The
goal of NLI is to identify the logical relationship
(entailment, neutral, or contradiction) between a
premise and a corresponding hypothesis. Table 1
shows few example relationships from the Stan-
ford Natural Language Inference (SNLI) dataset
(Bowman et al., 2015).

Recently, NLI has received a lot of attention
from the researchers, especially due to the avail-

∗ ArXiv version of this work can be found here
(arxiv.org/pdf/1802.05577.pdf).

† This work was conducted as part of an internship pro-
gram at Philips Research.

Pa
A senior is waiting at the

Relationshipwindow of a restaurant
that serves sandwiches.

Hb

A person waits to be Entailmentserved his food.
A man is looking to order Neutrala grilled cheese sandwich.
A man is waiting in line Contradictionfor the bus.

aP, Premise.
bH, Hypothesis.

Table 1: Examples from the SNLI dataset.

ability of large annotated datasets like SNLI (Bow-
man et al., 2015). Various deep learning models
have been proposed that achieve successful results
for this task (Gong et al., 2017; Wang et al., 2017;
Chen et al., 2017; Yu and Munkhdalai, 2017a;
Parikh et al., 2016; Zhao et al., 2016; Sha et al.,
2016). Most of these existing NLI models use at-
tention mechanism to jointly interpret and align
the premise and hypothesis. Such models use sim-
ple reading mechanisms to encode the premise and
hypothesis independently. However, such a com-
plex task require explicit modeling of dependency
relationships between the premise and the hypoth-
esis during the encoding and inference processes
to prevent the network from the loss of relevant,
contextual information. In this paper, we refer to
such strategies as dependent reading.

There are some alternative reading mecha-
nisms available in the literature (Sha et al., 2016;
Rocktäschel et al., 2015) that consider dependency
aspects of the premise-hypothesis relationships.
However, these mechanisms have two major limi-
tations:

• So far, they have only explored dependency
aspects during the encoding stage, while ig-
noring its benefit during inference.

• Such models only consider encoding a hy-
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pothesis depending on the premise, disre-
garding the dependency aspects in the oppo-
site direction.

We propose a dependent reading bidirectional
LSTM (DR-BiLSTM) model to address these lim-
itations. Given a premise u and a hypothesis v, our
model first encodes them considering dependency
on each other (u|v and v|u). Next, the model em-
ploys a soft attention mechanism to extract rele-
vant information from these encodings. The aug-
mented sentence representations are then passed
to the inference stage, which uses a similar depen-
dent reading strategy in both directions, i.e. u→ v
and v → u. Finally, a decision is made through a
multi-layer perceptron (MLP) based on the aggre-
gated information.

Our experiments on the SNLI dataset show that
DR-BiLSTM achieves the best single model and
ensemble model performance obtaining improve-
ments of a considerable margin of 0.4% and 0.3%
over the previous state-of-the-art single and en-
semble models, respectively.

Furthermore, we demonstrate the importance
of a simple preprocessing step performed on the
SNLI dataset. Evaluation results show that such
preprocessing allows our single model to achieve
the same accuracy as the state-of-the-art ensemble
model and improves our ensemble model to out-
perform the state-of-the-art ensemble model by a
remarkable margin of 0.7%. Finally, we perform
an extensive analysis to clarify the strengths and
weaknesses of our models.

2 Related Work

Early studies use small datasets while leverag-
ing lexical and syntactic features for NLI (Mac-
Cartney and Manning, 2008). The recent avail-
ability of large-scale annotated datasets (Bowman
et al., 2015; Williams et al., 2017) has enabled re-
searchers to develop various deep learning-based
architectures for NLI.

Parikh et al. (2016) propose an attention-based
model (Bahdanau et al., 2014) that decomposes
the NLI task into sub-problems to solve them in
parallel. They further show the benefit of adding
intra-sentence attention to input representations.
Chen et al. (2017) explore sequential inference
models based on chain LSTMs with attentional in-
put encoding and demonstrate the effectiveness of
syntactic information. We also use similar atten-
tion mechanisms. However, our model is distinct

from these models as they do not benefit from de-
pendent reading strategies.

Rocktäschel et al. (2015) use a word-by-word
neural attention mechanism while Sha et al. (2016)
propose re-read LSTM units by considering the
dependency of a hypothesis on the information
of its premise (v|u) to achieve promising results.
However, these models suffer from weak inferenc-
ing methods by disregarding the dependency as-
pects from the opposite direction (u|v). Intuitively,
when a human judges a premise-hypothesis rela-
tionship, s/he might consider back-and-forth read-
ing of both sentences before coming to a con-
clusion. Therefore, it is essential to encode
the premise-hypothesis dependency relations from
both directions to optimize the understanding of
their relationship.

Wang et al. (2017) propose a bilateral multi-
perspective matching (BiMPM) model, which re-
sembles the concept of matching a premise and
hypothesis from both directions. Their match-
ing strategy is essentially similar to our attention
mechanism that utilizes relevant information from
the other sentence for each word sequence. They
use similar methods as Chen et al. (2017) for en-
coding and inference, without any dependent read-
ing mechanism.

Although NLI is well studied in the literature,
the potential of dependent reading and interaction
between a premise and hypothesis is not rigor-
ously explored. In this paper, we address this gap
by proposing a novel deep learning model (DR-
BiLSTM). Experimental results demonstrate the
effectiveness of our model.

3 Model

Our proposed model (DR-BiLSTM) is composed
of the following major components: input encod-
ing, attention, inference, and classification. Fig-
ure 1 demonstrates a high-level view of our pro-
posed NLI framework.

Let u = [u1, · · · , un] and v = [v1, · · · , vm]
be the given premise with length n and hypothesis
with length m respectively, where ui, vj ∈ Rr is
an word embedding of r-dimensional vector. The
task is to predict a label y that indicates the logical
relationship between premise u and hypothesis v.

3.1 Input Encoding

RNNs are the natural solution for variable length
sequence modeling, consequently, we utilize a
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Figure 1: A high-level view of DR-BiLSTM. The
data (premise u and hypothesis v, depicted with
cyan and red tensors respectively) flows from bot-
tom to top. Relevant tensors are shown with the
same color and elements with the same colors
share parameters.

bidirectional LSTM (BiLSTM) (Hochreiter and
Schmidhuber, 1997) for encoding the given sen-
tences. For ease of presentation, we only describe
how we encode u depending on v. The same pro-
cedure is utilized for the reverse direction (v|u).

To dependently encode u, we first process v us-
ing the BiLSTM. Then we read u through the BiL-
STM that is initialized with previous reading final
states (memory cell and hidden state). Here we
represent a word (e.g. ui) and its context depend-
ing on the other sentence (e.g. v). Equations 1 and
2 formally represent this component.

v̄, sv = BiLSTM(v, 0)

û,− = BiLSTM(u, sv)
(1)

ū, su = BiLSTM(u, 0)

v̂,− = BiLSTM(v, su)
(2)

where {ū ∈ Rn×2d, û ∈ Rn×2d, su} and {v̄ ∈
Rm×2d, v̂ ∈ Rm×2d, sv} are the independent read-
ing sequences, dependent reading sequences, and
BiLSTM final state of independent reading of u
and v respectively. Note that, “−” in these equa-
tions means that we do not care about the associ-
ated variable and its value. BiLSTM inputs are the
word embedding sequences and initial state vec-
tors. û and v̂ are passed to the next layer as the
output of the input encoding component.

The proposed encoding mechanism yields a
richer representation for both premise and hypoth-
esis by taking the history of each other into ac-
count. Using a max or average pooling over the
independent and dependent readings does not fur-
ther improve our model. This was expected since
dependent reading produces more promising and
relevant encodings.

3.2 Attention
We employ a soft alignment method to associate
the relevant sub-components between the given
premise and hypothesis. In deep learning models,
such purpose is often achieved with a soft atten-
tion mechanism. Here we compute the unnormal-
ized attention weights as the similarity of hidden
states of the premise and hypothesis with Equa-
tion 3 (energy function).

eij = ûiv̂
T
j , i ∈ [1, n], j ∈ [1,m] (3)

where ûi and v̂j are the dependent reading hidden
representations of u and v respectively which are
computed earlier in Equations 1 and 2. Next, for
each word in either premise or hypothesis, the rel-
evant semantics in the other sentence is extracted
and composed according to eij . Equations 4 and
5 provide formal and specific details of this proce-
dure.

ũi =
m∑

j=1

exp(eij)∑m
k=1 exp(eik)

v̂j , i ∈ [1, n] (4)

ṽj =

n∑

i=1

exp(eij)∑n
k=1 exp(ekj)

ûi, j ∈ [1,m] (5)

where ũi represents the extracted relevant infor-
mation of v̂ by attending to ûi while ṽj represents
the extracted relevant information of û by attend-
ing to v̂j .
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To further enrich the collected attentional infor-
mation, a trivial next step would be to pass the con-
catenation of the tuples (ûi, ũi) or (v̂j , ṽj) which
provides a linear relationship between them. How-
ever, the model would suffer from the absence of
similarity and closeness measures. Therefore, we
calculate the difference and element-wise product
for the tuples (ûi, ũi) and (v̂j , ṽj) that represent
the similarity and closeness information respec-
tively (Chen et al., 2017; Kumar et al., 2016).

The difference and element-wise product are
then concatenated with the computed vectors,
(ûi, ũi) or (v̂j , ṽj), respectively. Finally, a feed-
forward neural layer with ReLU activation func-
tion projects the concatenated vectors from 8d-
dimensional vector space into a d-dimensional
vector space (Equations 6 and 7). This helps the
model to capture deeper dependencies between the
sentences besides lowering the complexity of vec-
tor representations.

ai = [ûi, ũi, ûi − ũi, ûi � ũi]
pi = ReLU(Wpai + bp)

(6)

bj = [v̂j , ṽj , v̂j − ṽj , v̂j � ṽj ]
qj = ReLU(Wpbj + bp)

(7)

Here � stands for element-wise product while
Wp ∈ R8d×d and bp ∈ Rd are the trainable
weights and biases of the projector layer respec-
tively.

3.3 Inference

During this phase, we use another BiLSTM to ag-
gregate the two sequences of computed matching
vectors, p and q from the attention stage (Sec-
tion 3.2). This aggregation is performed in a se-
quential manner to avoid losing effect of latent
variables that might rely on the sequence of match-
ing vectors.

Instead of aggregating the sequences of match-
ing vectors individually, we propose a similar de-
pendent reading approach for the inference stage.
We employ a BiLSTM reading process (Equa-
tions 8 and 9) similar to the input encoding step
discussed in Section 3.1. But rather than passing
just the dependent reading information to the next
step, we feed both independent reading (p̄ and q̄)
and dependent reading (p̂ and q̂) to a max pool-
ing layer, which selects maximum values from

each sequence of independent and dependent read-
ings (p̄i and p̂i) as shown in Equations 10 and 11.
The main intuition behind this architecture is to
maximize the inferencing ability of the model by
considering both independent and dependent read-
ings.

q̄, sq = BiLSTM(q, 0)

p̂,− = BiLSTM(p, sq)
(8)

p̄, sp = BiLSTM(p, 0)

q̂,− = BiLSTM(q, sp)
(9)

p̃ = MaxPooling(p̄, p̂) (10)

q̃ = MaxPooling(q̄, q̂) (11)

Here {p̄ ∈ Rn×2d, p̂ ∈ Rn×2d, sp} and {q̄ ∈
Rm×2d, q̂ ∈ Rm×2d, sq} are the independent read-
ing sequences, dependent reading sequences, and
BiLSTM final state of independent reading of p
and q respectively. BiLSTM inputs are the word
embedding sequences and initial state vectors.

Finally, we convert p̃ ∈ Rn×2d and q̃ ∈ Rm×2d
to fixed-length vectors with pooling, U ∈ R4d and
V ∈ R4d. As shown in Equations 12 and 13,
we employ both max and average pooling and de-
scribe the overall inference relationship with con-
catenation of their outputs.

U = [MaxPooling(p̃),AvgPooling(p̃)] (12)

V = [MaxPooling(q̃),AvgPooling(q̃)] (13)

3.4 Classification

Here, we feed the concatenation of U and V
([U, V ]) into a multilayer perceptron (MLP) clas-
sifier that includes a hidden layer with tanh activa-
tion and softmax output layer. The model is trained
in an end-to-end manner.

Output = MLP([U, V ]) (14)
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4 Experiments and Evaluation

4.1 Dataset
The Stanford Natural Language Inference (SNLI)
dataset contains 570K human annotated sen-
tence pairs. The premises are drawn from the
Flickr30k (Plummer et al., 2015) corpus, and then
the hypotheses are manually composed for each
relationship class (entailment, neutral, contradic-
tion, and -). The “-” class indicates that there
is no consensus decision among the annotators,
consequently, we remove them during the train-
ing and evaluation following the literature. We
use the same data split as provided in Bowman
et al. (2015) to report comparable results with
other models.

4.2 Experimental Setup
We use pre-trained 300-D Glove 840B vectors
(Pennington et al., 2014) to initialize our word em-
bedding vectors. All hidden states of BiLSTMs
during input encoding and inference have 450 di-
mensions (r = 300 and d = 450). The weights are
learned by minimizing the log-loss on the train-
ing data via the Adam optimizer (Kingma and Ba,
2014). The initial learning rate is 0.0004. To
avoid overfitting, we use dropout (Srivastava et al.,
2014) with the rate of 0.4 for regularization, which
is applied to all feedforward connections. During
training, the word embeddings are updated to learn
effective representations for the NLI task. We use
a fairly small batch size of 32 to provide more ex-
ploration power to the model. Our observation in-
dicates that using larger batch sizes hurts the per-
formance of our model.

4.3 Ensemble Strategy
Ensemble methods use multiple models to obtain
better predictive performance. Previous works
typically utilize trivial ensemble strategies by ei-
ther using majority votes or averaging the proba-
bility distributions over the same model with dif-
ferent initialization seeds (Wang et al., 2017; Gong
et al., 2017).

By contrast, we use weighted averaging of the
probability distributions where the weight of each
model is learned through its performance on the
SNLI development set. Furthermore, the differ-
ences between our models in the ensemble origi-
nate from: 1) variations in the number of depen-
dent readings (i.e. 1 and 3 rounds of dependent
reading), 2) projection layer activation (tanh and
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Figure 2: Performance of n ensemble models re-
ported for training (red, top), development (blue,
middle), and test (green, bottom) sets of SNLI.
For n number of models, the best performance on
the development set is used as the criteria to de-
termine the final ensemble. The best performance
on development set (89.22%) is observed using 6
models and is henceforth considered as our final
DR-BiLSTM (Ensemble) model.

ReLU in Equations 6 and 7), and 3) different ini-
tialization seeds.

The main intuition behind this design is that
the effectiveness of a model may depend on the
complexity of a premise-hypothesis instance. For
a simple instance, a simple model could perform
better than a complex one, while a complex in-
stance may need further consideration toward dis-
ambiguation. Consequently, using models with
different rounds of dependent readings in the en-
coding stage should be beneficial.

Figure 2 demonstrates the observed perfor-
mance of our ensemble method with different
number of models. The performance of the mod-
els are reported based on the best obtained accu-
racy on the development set. We also study the
effectiveness of other ensemble strategies e.g. ma-
jority voting, and averaging the probability distri-
butions. But, our ensemble strategy performs the
best among them (see Section 1 in the supplemen-
tary material for additional details).

4.4 Preprocessing

We perform a trivial preprocessing step on SNLI
to recover some out-of-vocabulary words found in
the development set and test set. Note that our
vocabulary contains all words that are seen in the
training set, so there is no out-of-vocabulary word
in it. The SNLI dataset is not immune to human
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errors, specifically, misspelled words. We noticed
that misspelling is the main reason for some of the
observed out-of-vocabulary words. Consequently,
we simply fix the unseen misspelled words us-
ing Microsoft spell-checker (other approaches like
edit distance can also be used). Moreover, while
dealing with an unseen word during evaluation, we
try to: 1) replace it with its lower case, or 2) split
the word when it contains a “-” (e.g. “marsh-like”)
or starts with “un” (e.g. “unloading”). If we still
could not find the word in our vocabulary, we con-
sider it as an unknown word. In the next subsec-
tion, we demonstrate the importance and impact
of such trivial preprocessing (see Section 2 in the
supplementary material for additional details).

4.5 Results

Table 2 shows the accuracy of the models on train-
ing and test sets of SNLI. The first row repre-
sents a baseline classifier presented by Bowman
et al. (2015) that utilizes handcrafted features. All
other listed models are deep-learning based. The
gap between the traditional model and deep learn-
ing models demonstrates the effectiveness of deep
learning methods for this task. We also report
the estimated human performance on the SNLI
dataset, which is the average accuracy of five an-
notators in comparison to the gold labels (Gong
et al., 2017). It is noteworthy that recent deep
learning models surpass the human performance
in the NLI task.

As shown in Table 2, previous deep learning
models (rows 2-19) can be divided into three cat-
egories: 1) sentence encoding based models (rows
2-7), 2) single inter-sentence attention-based mod-
els (rows 8-16), and 3) ensemble inter-sentence
attention-based models (rows 17-19). We can
see that inter-sentence attention-based models per-
form better than sentence encoding based mod-
els, which supports our intuition. Natural lan-
guage inference requires a deep interaction be-
tween the premise and hypothesis. Inter-sentence
attention-based approaches can provide such inter-
action while sentence encoding based models fail
to do so.

To further enhance the modeling of interaction
between the premise and hypothesis for efficient
disambiguation of their relationship, we introduce
the dependent reading strategy in our proposed
DR-BiLSTM model. The results demonstrate the
effectiveness of our model. DR-BiLSTM (Single)

Model Accuracy
Train Test

(Bowman et al., 2015) (Feature) 99.7% 78.2%
(Bowman et al., 2015) 83.9% 80.6%
(Vendrov et al., 2015) 98.8% 81.4%
(Mou et al., 2016) 83.3% 82.1%
(Bowman et al., 2016) 89.2% 83.2%
(Liu et al., 2016b) 84.5% 84.2%
(Yu and Munkhdalai, 2017a) 86.2% 84.6%
(Rocktäschel et al., 2015) 85.3% 83.5%
(Wang and Jiang, 2016) 92.0% 86.1%
(Liu et al., 2016a) 88.5% 86.3%
(Parikh et al., 2016) 90.5% 86.8%
(Yu and Munkhdalai, 2017b) 88.5% 87.3%
(Sha et al., 2016) 90.7% 87.5%
(Wang et al., 2017) (Single) 90.9% 87.5%
(Chen et al., 2017) (Single) 92.6% 88.0%
(Gong et al., 2017) (Single) 91.2% 88.0%
(Chen et al., 2017) (Ensemble) 93.5% 88.6%
(Wang et al., 2017) (Ensemble) 93.2% 88.8%
(Gong et al., 2017) (Ensemble) 92.3% 88.9%
Human Performance (Estimated) 97.2% 87.7%
DR-BiLSTM (Single) 94.1% 88.5%
DR-BiLSTM (Single)+Process 94.1% 88.9%
DR-BiLSTM (Ensemble) 94.8% 89.3%
DR-BiLSTM (Ensem.)+Process 94.8% 89.6%

Table 2: Accuracies of the models on the training
set and test set of SNLI. DR-BiLSTM (Ensemble)
achieves the accuracy of 89.3%, the best result ob-
served on SNLI, while DR-BiLSTM (Single) ob-
tains the accuracy of 88.5%, which considerably
outperforms the previous non-ensemble models.
Also, utilizing a trivial preprocessing step yields to
further improvements of 0.4% and 0.3% for single
and ensemble DR-BiLSTM models respectively.

achieves 88.5% accuracy on the test set which is
noticeably the best reported result among the ex-
isting single models for this task. Note that the
difference between DR-BiLSTM and Chen et al.
(2017) is statistically significant with a p-value of
< 0.001 over the Chi-square test1.

To further improve the performance of NLI
systems, researchers have built ensemble models.
Previously, ensemble systems obtained the best
performance on SNLI with a huge margin. Table 2
shows that our proposed single model achieves
competitive results compared to these reported en-
semble models. Our ensemble model considerably
outperforms the current state-of-the-art by obtain-
ing 89.3% accuracy.

Up until this point, we discussed the perfor-
mance of our models where we have not con-

1Chi-square test (χ2 test) is used to determine if there is a
significant difference between two categorical variables (i.e.
models’ outputs).
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sidered preprocessing for recovering the out-of-
vocabulary words. In Table 2, “DR-BiLSTM (Sin-
gle) + Process”, and “DR-BiLSTM (Ensem.) +
Process” represent the performance of our mod-
els on the preprocessed dataset. We can see that
our preprocessing mechanism leads to further im-
provements of 0.4% and 0.3% on the SNLI test
set for our single and ensemble models respec-
tively. In fact, our single model (“DR-BiLSTM
(Single) + Process”) obtains the state-of-the-art
performance over both reported single and ensem-
ble models by performing a simple preprocessing
step. Furthermore, “DR-BiLSTM (Ensem.) +
Process” outperforms the existing state-of-the-art
remarkably (0.7% improvement). For more com-
parison and analyses, we use “DR-BiLSTM (Sin-
gle)” and “DR-BiLSTM (Ensemble)” as our single
and ensemble models in the rest of the paper.

4.6 Ablation and Configuration Study

We conducted an ablation study on our model to
examine the importance and effect of each major
component. Then, we study the impact of BiL-
STM dimensionality on the performance of the
development set and training set of SNLI. We in-
vestigate all settings on the development set of the
SNLI dataset.

Model Dev Acca p-value
DR-BiLSTM 88.69% -
DR-BiLSTM - hidden MLP 88.45% <0.001
DR-BiLSTM - average pooling 88.50% <0.001
DR-BiLSTM - max pooling 88.39% <0.001
DR-BiLSTM - elem. prdb 88.51% <0.001
DR-BiLSTM - difference 88.24% <0.001
DR-BiLSTM - diffc & elem. prd 87.96% <0.001
DR-BiLSTM - inference pooling 88.46% <0.001
DR-BiLSTM - dep. inferd 88.43% <0.001
DR-BiLSTM - dep. ence 88.26% <0.001
DR-BiLSTM - dep. enc & infer 88.20% <0.001
aDev Acc, Development Accuracy.
belem. prd, element-wise product.
cdiff, difference.
ddep. infer, dependent reading inference.
edep. enc, dependent reading encoding.

Table 3: Ablation study results. Performance of
different configurations of the proposed model on
the development set of SNLI along with their p-
values in comparison to DR-BiLSTM (Single).

Table 3 shows the ablation study results on the
development set of SNLI along with the statisti-
cal significance test results in comparison to the
proposed model, DR-BiLSTM. We can see that all
modifications lead to a new model and their differ-

ences are statistically significant with a p-value of
< 0.001 over Chi square test.

Table 3 shows that removing any part from our
model hurts the development set accuracy which
indicates the effectiveness of these components.
Among all components, three of them have no-
ticeable influences: max pooling, difference in the
attention stage, and dependent reading.

Most importantly, the last four study cases in
Table 3 (rows 8-11) verify the main intuitions
behind our proposed model. They illustrate the
importance of our proposed dependent reading
strategy which leads to significant improvement,
specifically in the encoding stage. We are con-
vinced that the importance of dependent reading in
the encoding stage originates from its ability to fo-
cus on more important and relevant aspects of the
sentences due to its prior knowledge of the other
sentence during the encoding procedure.
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Figure 3: Impact of BiLSTM dimensionality in the
proposed model on the training set (red, top) and
development set (blue, bottom) accuracies of the
SNLI dataset.

Figure 3 shows the behavior of the proposed
model accuracy on the training set and develop-
ment set of SNLI. Since the models are selected
based on the best observed development set accu-
racy during the training procedure, the training ac-
curacy curve (red, top) is not strictly increasing.
Figure 3 demonstrates that we achieve the best
performance with 450-dimensional BiLSTMs. In
other words, using BiLSTMs with lower dimen-
sionality causes the model to suffer from the lack
of space for capturing proper information and de-
pendencies. On the other hand, using higher di-
mensionality leads to overfitting which hurts the
performance on the development set. Hence, we
use 450-dimensional BiLSTM in our proposed
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model.

4.7 Analysis
We first investigate the performance of our models
categorically. Then, we show a visualization of the
energy function in the attention stage (Equation 3)
for an instance from the SNLI test set.

To qualitatively evaluate the performance of our
models, we design a set of annotation tags that can
be extracted automatically. This design is inspired
by the reported annotation tags in Williams et al.
(2017). The specifications of our annotation tags
are as follows:

• High Overlap: premise and hypothesis sen-
tences share more than 70% tokens.

• Regular Overlap: sentences share between
30% and 70% tokens.

• Low Overlap: sentences share less than 30%
tokens.

• Long Sentence: either sentence is longer
than 20 tokens.

• Regular Sentence: premise or hypothesis
length is between 5 and 20 tokens.

• Short Sentence: either sentence is shorter
than 5 tokens.

• Negation: negation is present in a sentence.

• Quantifier: either of the sentences con-
tains one of the following quantifiers: much,
enough, more, most, less, least, no, none,
some, any, many, few, several, almost, nearly.

• Belief: either of the sentences contains one
of the following belief verbs: know, believe,
understand, doubt, think, suppose, recognize,
forget, remember, imagine, mean, agree, dis-
agree, deny, promise.

Table 4 shows the frequency of aforementioned
annotation tags in the SNLI test set along with
the performance (accuracy) of ESIM (Chen et al.,
2017), DR-BiLSTM (Single), and DR-BiLSTM
(Ensemble). Table 4 can be divided into four ma-
jor categories: 1) gold label data, 2) word overlap,
3) sentence length, and 4) occurrence of special
words. We can see that DR-BiLSTM (Ensemble)
performs the best in all categories which matches
our expectation. Moreover, DR-BiLSTM (Single)

Annotation Tag Freqa ESIM DR(S)b DR(E)c

Entailment 34.3% 90.0% 89.8% 90.9%
Neutral 32.8% 83.7% 85.1% 85.6%
Contradiction 32.9% 90.0% 90.5% 91.4%
High Overlap 24.3% 91.2% 90.7% 92.1%
Reg. Overlap 33.7% 87.1% 87.9% 88.8%
Low Overlap 45.4% 87.0% 87.8% 88.4%
Long Sentence 6.4% 92.2% 91.3% 91.9%
Reg. Sentence 74.9% 87.8% 88.4% 89.2%
Short Sentence 19.9% 87.6% 88.1% 89.3%
Negation 2.1% 82.2% 85.7% 87.1%
Quantifier 8.7% 85.5% 87.4% 87.6%
Belief 0.2% 78.6% 78.6% 78.6%
aFreq, Frequency.
bDR(S), DR-BiLSTM (Single).
cDR(E), DR-BiLSTM (Ensemble).

Table 4: Categorical performance analyses (accu-
racy) of ESIM (Chen et al., 2017), DR-BiLSTM
(DR(S)) and Ensemble DR-BiLSTM (DR(E)) on
the SNLI test set.

performs noticeably better than ESIM in most of
the categories except “Entailment”, “High Over-
lap”, and “Long Sentence”, for which our model
is not far behind (gaps of 0.2%, 0.5%, and 0.9%,
respectively). It is noteworthy that DR-BiLSTM
(Single) performs better than ESIM in more fre-
quent categories. Specifically, the performance of
our model in “Neutral”, “Negation”, and “Quan-
tifier” categories (improvements of 1.4%, 3.5%,
and 1.9%, respectively) indicates the superiority
of our model in understanding and disambiguat-
ing complex samples. Our investigations indicate
that ESIM generates somewhat uniform attention
for most of the word pairs while our model could
effectively attend to specific parts of the given sen-
tences and provide more meaningful attention. In
other words, the dependent reading strategy en-
ables our model to achieve meaningful represen-
tations, which leads to better attention to obtain
further gains on such categories like Negation and
Quantifier sentences (see Section 3 in the supple-
mentary material for additional details).

Finally, we show a visualization of the nor-
malized attention weights (energy function, Equa-
tion 3) of our model in Figure 4. We show a
sentence pair, where the premise is “Male in a
blue jacket decides to lay the grass.”, and the hy-
pothesis is “The guy in yellow is rolling on the
grass.”, and its logical relationship is contradic-
tion. Figure 4 indicates the model’s ability in
attending to critical pairs of words like <Male,
guy>, <decides, rolling>, and <lay, rolling>.
Finally, high attention between {decides, lay} and
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Figure 4: Normalized attention weights for a sam-
ple from the SNLI test set. Darker color illustrates
higher attention.

{rolling}, and {Male} and {guy} leads the model
to correctly classify the sentence pair as contra-
diction (for more samples with attention visual-
izations, see Section 4 in the supplementary ma-
terial).

5 Conclusion

We propose a novel natural language inference
model (DR-BiLSTM) that benefits from a depen-
dent reading strategy and achieves the state-of-the-
art results on the SNLI dataset. We also introduce
a sophisticated ensemble strategy and illustrate its
effectiveness through experimentation. Moreover,
we demonstrate the importance of a simple pre-
processing step on the performance of our pro-
posed models. Evaluation results show that the
preprocessing step allows our DR-BiLSTM (sin-
gle) model to outperform all previous single and
ensemble methods. Similar superior performance
is also observed for our DR-BiLSTM (ensemble)
model. We show that our ensemble model outper-
forms the existing state-of-the-art by a consider-
able margin of 0.7%. Finally, we perform an ex-
tensive analysis to demonstrate the strength and
weakness of the proposed model, which would
pave the way for further improvements in this do-
main.
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Abstract

We introduce KBGAN, an adversarial learning
framework to improve the performances of a
wide range of existing knowledge graph em-
bedding models. Because knowledge graphs
typically only contain positive facts, sampling
useful negative training examples is a non-
trivial task. Replacing the head or tail entity
of a fact with a uniformly randomly selected
entity is a conventional method for generat-
ing negative facts, but the majority of the gen-
erated negative facts can be easily discrimi-
nated from positive facts, and will contribute
little towards the training. Inspired by genera-
tive adversarial networks (GANs), we use one
knowledge graph embedding model as a neg-
ative sample generator to assist the training
of our desired model, which acts as the dis-
criminator in GANs. This framework is inde-
pendent of the concrete form of generator and
discriminator, and therefore can utilize a wide
variety of knowledge graph embedding mod-
els as its building blocks. In experiments, we
adversarially train two translation-based mod-
els, TRANSE and TRANSD, each with assis-
tance from one of the two probability-based
models, DISTMULT and COMPLEX. We eval-
uate the performances of KBGAN on the link
prediction task, using three knowledge base
completion datasets: FB15k-237, WN18 and
WN18RR. Experimental results show that ad-
versarial training substantially improves the
performances of target embedding models un-
der various settings.

1 Introduction

Knowledge graph (Dong et al., 2014) is a pow-
erful graph structure that can provide direct ac-
cess of knowledge to users via various applica-
tions such as structured search, question answer-
ing, and intelligent virtual assistant. A common
representation of knowledge graph beliefs is in the

form of a discrete relational triple such as Locate-
dIn(NewOrleans,Louisiana).

A main challenge for using discrete represen-
tation of knowledge graph is the lack of capa-
bility of accessing the similarities among differ-
ent entities and relations. Knowledge graph em-
bedding (KGE) techniques (e.g., RESCAL (Nickel
et al., 2011), TRANSE (Bordes et al., 2013), DIST-
MULT (Yang et al., 2015), and COMPLEX (Trouil-
lon et al., 2016)) have been proposed in recent
years to deal with the issue. The main idea is
to represent the entities and relations in a vec-
tor space, and one can use machine learning tech-
nique to learn the continuous representation of the
knowledge graph in the latent space.

However, even steady progress has been made
in developing novel algorithms for knowledge
graph embedding, there is still a common chal-
lenge in this line of research. For space effi-
ciency, common knowledge graphs such as Free-
base (Bollacker et al., 2008), Yago (Suchanek
et al., 2007), and NELL (Mitchell et al., 2015) by
default only stores beliefs, rather than disbeliefs.
Therefore, when training the embedding models,
there is only the natural presence of the positive
examples. To use negative examples, a common
method is to remove the correct tail entity, and ran-
domly sample from a uniform distribution (Bordes
et al., 2013). Unfortunately, this approach is not
ideal, because the sampled entity could be com-
pletely unrelated to the head and the target re-
lation, and thus the quality of randomly gener-
ated negative examples is often poor (e.g, Locate-
dIn(NewOrleans,BarackObama)). Other approach
might leverage external ontological constraints
such as entity types (Krompaß et al., 2015) to gen-
erate negative examples, but such resource does
not always exist or accessible.

In this work, we provide a generic solution to
improve the training of a wide range of knowl-
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Model Score function f(h, r, t) Number of parameters
TRANSE ||h + r− t||1/2 k|E|+ k|R|
TRANSD ||(I + rphp

T )h + r− (I + rptp
T )t||1/2 2k|E|+ 2k|R|

DISTMULT < h, r, t > (=
∑k
i=1 hiriti) k|E|+ k|R|

COMPLEX < h, r, t̄ > (h, r, t ∈ Ck) 2k|E|+ 2k|R|
TRANSH ||(I− rprp

T )h + r− (I + rprp
T )t||1/2 k|E|+ 2k|R|

TRANSR ||Wrh + r−Wrt||1/2 k|E|+ (k2 + k)|R|
MANIFOLDE (hyperplane) |(h + rhead)T (t + rtail)−Dr| k|E|+ (2k + 1)|R|
RESCAL hTWrt k|E|+ k2|R|
HOLE rT (h ? t) (? is circular correlation) k|E|+ k|R|
CONVE f(vec(f([h̄; r̄] ∗ ω))W)t k|E|+ k|R|+ kcmn

Table 1: Some selected knowledge graph embedding models. The four models above the double line are
considered in this paper. Except for COMPLEX, all boldface lower case letters represent vectors in Rk,
and boldface upper case letters represent matrices in Rk×k. I is the identity matrix.

edge graph embedding models. Inspired by the
recent advances of generative adversarial deep
models (Goodfellow et al., 2014), we propose
a novel adversarial learning framework, namely,
KBGAN, for generating better negative exam-
ples to train knowledge graph embedding mod-
els. More specifically, we consider probability-
based, log-loss embedding models as the gener-
ator to supply better quality negative examples,
and use distance-based, margin-loss embedding
models as the discriminator to generate the final
knowledge graph embeddings. Since the genera-
tor has a discrete generation step, we cannot di-
rectly use the gradient-based approach to back-
propagate the errors. We then consider a one-
step reinforcement learning setting, and use a
variance-reduction REINFORCE method to achieve
this goal. Empirically, we perform experiments on
three common KGE datasets (FB15K-237, WN18
and WN18RR), and verify the adversarial learning
approach with a set of KGE models. Our exper-
iments show that across various settings, this ad-
versarial learning mechanism can significantly im-
prove the performance of some of the most com-
monly used translation based KGE methods. Our
contributions are three-fold:

• We are the first to consider adversarial learn-
ing to generate useful negative training exam-
ples to improve knowledge graph embedding.

• This adversarial learning framework applies
to a wide range of KGE models, without the
need of external ontologies constraints.

• Our method shows consistent performance
gains on three commonly used KGE datasets.

2 Related Work

2.1 Knowledge Graph Embeddings

A large number of knowledge graph embedding
models, which represent entities and relations in a
knowledge graph with vectors or matrices, have
been proposed in recent years. RESCAL (Nickel
et al., 2011) is one of the earliest studies on ma-
trix factorization based knowledge graph embed-
ding models, using a bilinear form as score func-
tion. TRANSE (Bordes et al., 2013) is the first
model to introduce translation-based embedding.
Later variants, such as TRANSH (Wang et al.,
2014), TRANSR (Lin et al., 2015) and TRANSD
(Ji et al., 2015), extend TRANSE by projecting the
embedding vectors of entities into various spaces.
DISTMULT (Yang et al., 2015) simplifies RESCAL

by only using a diagonal matrix, and COMPLEX

(Trouillon et al., 2016) extends DISTMULT into
the complex number field. (Nickel et al., 2015) is
a comprehensive survey on these models.

Some of the more recent models achieve strong
performances. MANIFOLDE (Xiao et al., 2016)
embeds a triple as a manifold rather than a point.
HOLE (Nickel et al., 2016) employs circular cor-
relation to combine the two entities in a triple.
CONVE (Dettmers et al., 2017) uses a convolu-
tional neural network as the score function. How-
ever, most of these studies use uniform sampling
to generate negative training examples (Bordes
et al., 2013). Because our framework is indepen-
dent of the concrete form of models, all these mod-
els can be potentially incorporated into our frame-
work, regardless of the complexity. As a proof of
principle, our work focuses on simpler models. Ta-
ble 1 summarizes the score functions and dimen-
sions of all models mentioned above.
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2.2 Generative Adversarial Networks and its
Variants

Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014) was originally proposed for
generating samples in a continuous space such as
images. A GAN consists of two parts, the genera-
tor and the discriminator. The generator accepts a
noise input and outputs an image. The discrimina-
tor is a classifier which classifies images as “true”
(from the ground truth set) or “fake” (generated by
the generator). When training a GAN, the genera-
tor and the discriminator play a minimax game, in
which the generator tries to generate “real” images
to deceive the discriminator, and the discriminator
tries to tell them apart from ground truth images.
GANs are also capable of generating samples sat-
isfying certain requirements, such as conditional
GAN (Mirza and Osindero, 2014).

It is not possible to use GANs in its original form
for generating discrete samples like natural lan-
guage sentences or knowledge graph triples, be-
cause the discrete sampling step prevents gradi-
ents from propagating back to the generator. SE-
QGAN (Yu et al., 2017) is one of the first success-
ful solutions to this problem by using reinforce-
ment learning—It trains the generator using pol-
icy gradient and other tricks. IRGAN (Wang et al.,
2017) is a recent work which combines two cate-
gories of information retrieval models into a dis-
crete GAN framework. Likewise, our framework
relies on policy gradient to train the generator
which provides discrete negative triples.

The discriminator in a GAN is not necessarily
a classifier. Wasserstein GAN or WGAN (Arjovsky
et al., 2017) uses a regressor with clipped param-
eters as its discriminator, based on solid analysis
about the mathematical nature of GANs. GOGAN

(Juefei-Xu et al., 2017) further replaces the loss
function in WGAN with marginal loss. Although
originating from very different fields, the form of
loss function in our framework turns out to be
more closely related to the one in GOGAN.

3 Our Approaches

In this section, we first define two types of training
objectives in knowledge graph embedding mod-
els to show how KBGAN can be applied. Then,
we demonstrate a long overlooked problem about
negative sampling which motivates us to propose
KBGAN to address the problem. Finally, we dive
into the mathematical, and algorithmic details of

KBGAN.

3.1 Types of Training Objectives
For a given knowledge graph, let E be the set of
entities, R be the set of relations, and T be the
set of ground truth triples. In general, a knowledge
graph embedding (KGE) model can be formulated
as a score function f(h, r, t), h, t ∈ E , r ∈ R
which assigns a score to every possible triple in
the knowledge graph. The estimated likelihood of
a triple to be true depends only on its score given
by the score function.

Different models formulate their score function
based on different designs, and therefore interpret
scores differently, which further lead to various
training objectives. Two common forms of train-
ing objectives are particularly of our interest:
Marginal loss function is commonly used by
a large group of models called translation-based
models, whose score function models distance
between points or vectors, such as TRANSE,
TRANSH, TRANSR, TRANSD and so on. In these
models, smaller distance indicates a higher likeli-
hood of truth, but only qualitatively. The marginal
loss function takes the following form:

Lm =
∑

(h,r,t)∈T
[f(h, r, t)− f(h′, r, t′) + γ]+ (1)

where γ is the margin, [·]+ = max(0, ·) is the
hinge function, and (h′, r, t′) is a negative triple.
The negative triple is generated by replacing the
head entity or the tail entity of a positive triple
with a random entity in the knowledge graph,
or formally (h′, r, t′) ∈ {(h′, r, t)|h′ ∈ E} ∪
{(h, r, t′)|t′ ∈ E}.
Log-softmax loss function is commonly used by
models whose score function has probabilistic in-
terpretation. Some notable examples are RESCAL,
DISTMULT, COMPLEX. Applying the softmax
function on scores of a given set of triples gives
the probability of a triple to be the best one among
them: p(h, r, t) = exp f(h,r,t)∑

(h′,r,t′) exp f(h
′,r,t′) . The loss

function is the negative log-likelihood of this prob-
abilistic model:

Ll =
∑

(h,r,t)∈T
− log

exp f(h, r, t)∑
exp f(h′, r, t′)

(h′, r, t′) ∈ {(h, r, t)} ∪Neg(h, r, t) (2)

where Neg(h, r, t) ⊂ {(h′, r, t)|h′ ∈ E} ∪
{(h, r, t′)|t′ ∈ E} is a set of sampled corrupted
triples.
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Figure 1: An overview of the KBGAN framework. The generator (G) calculates a probability distribution
over a set of candidate negative triples, then sample one triples from the distribution as the output. The
discriminator (D) receives the generated negative triple as well as the ground truth triple (in the hexag-
onal box), and calculates their scores. G minimizes the score of the generated negative triple by policy
gradient, and D minimizes the marginal loss between positive and negative triples by gradient descent.

Other forms of loss functions exist, for exam-
ple CONVE uses a triple-wise logistic function to
model how likely the triple is true, but by far the
two described above are the most common. Also,
softmax function gives an probabilistic distribu-
tion over a set of triples, which is necessary for
a generator to sample from them.

3.2 Weakness of Uniform Negative Sampling
Most previous KGE models use uniform negative
sampling for generating negative triples, that is, re-
placing the head or tail entity of a positive triple
with any of the entities in E , all with equal prob-
ability. Most of the negative triples generated in
this way contribute little to learning an effective
embedding, because they are too obviously false.

To demonstrate this issue, let us consider the
following example. Suppose we have a ground
truth triple LocatedIn(NewOrleans,Louisiana),
and corrupt it by replacing its tail entity.
First, we remove the tail entity, leaving Lo-
catedIn(NewOrleans,?). Because the relation Lo-
catedIn constraints types of its entities, “?”
must be a geographical region. If we fill “?”
with a random entity e ∈ E , the prob-
ability of e having a wrong type is very
high, resulting in ridiculous triples like Lo-
catedIn(NewOrleans,BarackObama) or Locate-
dIn(NewOrleans,StarTrek). Such triples are con-
sidered “too easy”, because they can be elim-
inated solely by types. In contrast, Locate-
dIn(NewOrleans,Florida) is a very useful negative
triple, because it satisfies type constraints, but it
cannot be proved wrong without detailed knowl-

edge of American geography. If a KGE model is
fed with mostly “too easy” negative examples, it
would probably only learn to represent types, not
the underlying semantics.

The problem is less severe to models using log-
softmax loss function, because they typically sam-
ples tens or hundreds of negative triples for one
positive triple in each iteration, and it is likely to
have a few useful negatives among them. For in-
stance, (Trouillon et al., 2016) found that a 100:1
negative-to-positive ratio results in the best per-
formance for COMPLEX. However, for marginal
loss function, whose negative-to-positive ratio is
always 1:1, the low quality of uniformly sampled
negatives can seriously damage their performance.

3.3 Generative Adversarial Training for
Knowledge Graph Embedding Models
Inspired by GANs, we propose an adversarial
training framework named KBGAN which uses a
KGE model with softmax probabilities to pro-
vide high-quality negative samples for the train-
ing of a KGE model whose training objective is
marginal loss function. This framework is inde-
pendent of the score functions of these two mod-
els, and therefore possesses some extent of univer-
sality. Figure 1 illustrates the overall structure of
KBGAN.

In parallel to terminologies used in GAN liter-
ature, we will simply call these two models gen-
erator and discriminator respectively in the rest
of this paper. We use softmax probabilistic mod-
els as the generator because they can adequately
model the “sampling from a probability distribu-
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Algorithm 1: The KBGAN algorithm
Data: training set of positive fact triples T = {(h, r, t)}
Input: Pre-trained generator G with parameters θG and score function fG(h, r, t), and pre-trained discriminator D with

parameters θD and score function fD(h, r, t)
Output: Adversarially trained discriminator

1 b←− 0; // baseline for policy gradient
2 repeat
3 Sample a mini-batch of data Tbatch from T ;
4 GG ←− 0, GD ←− 0; // gradients of parameters of G and D
5 rsum ←− 0; // for calculating the baseline
6 for (h, r, t) ∈ Tbatch do
7 Uniformly randomly sample Ns negative triples Neg(h, r, t) = {(h′i, r, t′i)}i=1...Ns ;

8 Obtain their probability of being generated: pi =
exp fG(h′

i,r,t
′
i)∑Ns

j=1 exp fG(h′
j ,r,t

′
j)

;

9 Sample one negative triple (h′s, r, t
′
s) from Neg(h, r, t) according to {pi}i=1...Ns . Assume its probability to be

ps;
10 GD ←− GD +∇θD [fD(h, r, t)− fD(h′s, r, t

′
s) + γ]+; // accumulate gradients for D

11 r ←− −fD(h′s, r, t
′
s), rsum ←− rsum + r; // r is the reward

12 GG ←− GG + (r − b)∇θG log ps; // accumulate gradients for G
13 end
14 θG ←− θG + ηGGG, θD ←− θD − ηDGD; // update parameters
15 b← rsum/|Tbatch|; // update baseline
16 until convergence;

tion” process of discrete GANs, and we aim at
improving discriminators based on marginal loss
because they can benefit more from high-quality
negative samples. Note that a major difference be-
tween GAN and our work is that, the ultimate goal
of our framework is to produce a good discrimi-
nator, whereas GANS are aimed at training a good
generator. In addition, the discriminator here is not
a classifier as it would be in most GANs.

Intuitively, the discriminator should assign a rel-
atively small distance to a high-quality negative
sample. In order to encourage the generator to gen-
erate useful negative samples, the objective of the
generator is to minimize the distance given by dis-
criminator for its generated triples. And just like
the ordinary training process, the objective of the
discriminator is to minimize the marginal loss be-
tween the positive triple and the generated nega-
tive triple. In an adversarial training setting, the
generator and the discriminator are alternatively
trained towards their respective objectives.

Suppose that the generator produces a
probability distribution on negative triples
pG(h′, r, t′|h, r, t) given a positive triple (h, r, t),
and generates negative triples (h′, r, t′) by sam-
pling from this distribution. Let fD(h, r, t) be
the score function of the discriminator. The ob-
jective of the discriminator can be formulated as

minimizing the following marginal loss function:

LD =
∑

(h,r,t)∈T
[fD(h, r, t)− fD(h′, r, t′) + γ]+

(h′, r, t′) ∼ pG(h′, r, t′|h, r, t) (3)

The only difference between this loss function and
Equation 1 is that it uses negative samples from the
generator.

The objective of the generator can be formu-
lated as maximizing the following expectation of
negative distances:

RG =
∑

(h,r,t)∈T
E[−fD(h′, r, t′)]

(h′, r, t′) ∼ pG(h′, r, t′|h, r, t) (4)

RG involves a discrete sampling step, so we
cannot find its gradient with simple differentiation.
We use a simple special case of Policy Gradient
Theorem1 (Sutton et al., 2000) to obtain the gradi-
ent of RG with respect to parameters of the gener-
ator:

∇GRG =
∑

(h,r,t)∈T
E(h′,r,t′)∼pG(h′,r,t′|h,r,t)

[−fD(h′, r, t′)∇G log pG(h′, r, t′|h, r, t)]

'
∑

(h,r,t)∈T

1

N

∑

(h′i,r,t
′
i)∼pG(h′,r,t′|h,r,t),i=1...N

[−fD(h′, r, t′)∇G log pG(h′, r, t′|h, r, t)] (5)
1A proof can be found in the supplementary material
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Model Hyperparameters Constraints or Regularizations
TRANSE L1 distance, k = 50, γ = 3 ||e||2 ≤ 1, ||r||2 ≤ 1

TRANSD L1 distance, k = 50, γ = 3 ||e||2 ≤ 1, ||r||2 ≤ 1, ||ep||2 ≤ 1, ||rp||2 ≤ 1

DISTMULT k = 50, λ = 1/0.1 L2 regularization: Lreg = L+ λ||Θ||22
COMPLEX 2k = 50, λ = 1/0.1 L2 regularization: Lreg = L+ λ||Θ||22

Table 2: Hyperparameter settings of the 4 models we used. For DISTMULT and COMPLEX, λ = 1 is
used for FB15k-237 and λ = 0.1 is used for WN18 and WN18RR. All other hyperparameters are shared
among all datasets. L is the global loss defined in Equation (2). Θ represents all parameters in the model.

Dataset #r #ent. #train #val #test
FB15k-237 237 14,541 272,115 17,535 20,466
WN18 18 40,943 141,442 5,000 5,000
WN18RR 11 40,943 86,835 3,034 3,134

Table 3: Statistics of datasets we used in the exper-
iments. “r”: relations.

where the second approximate equality means
we approximate the expectation with sampling in
practice. Now we can calculate the gradient of RG
and optimize it with gradient-based algorithms.

Policy Gradient Theorem arises from reinforce-
ment learning (RL), so we would like to draw an
analogy between our model and an RL model. The
generator can be viewed as an agent which inter-
acts with the environment by performing actions
and improves itself by maximizing the reward re-
turned from the environment in response of its ac-
tions. Correspondingly, the discriminator can be
viewed as the environment. Using RL terminolo-
gies, (h, r, t) is the state (which determines what
actions the actor can take), pG(h′, r, t′|h, r, t) is
the policy (how the actor choose actions), (h′, r, t′)
is the action, and −fD(h′, r, t′) is the reward.
The method of optimizing RG described above
is called REINFORCE (Williams, 1992) algorithm
in RL. Our model is a simple special case of
RL, called one-step RL. In a typical RL setting,
each action performed by the agent will change
its state, and the agent will perform a series of
actions (called an epoch) until it reaches certain
states or the number of actions reaches a certain
limit. However, in the analogy above, actions does
not affect the state, and after each action we restart
with another unrelated state, so each epoch con-
sists of only one action.

To reduce the variance of REINFORCE al-
gorithm, it is common to subtract a base-
line from the reward, which is an arbitrary
number that only depends on the state, with-

out affecting the expectation of gradients.2

In our case, we replace −fD(h′, r, t′) with
−fD(h′, r, t′) − b(h, r, t) in the equation above
to introduce the baseline. To avoid introducing
new parameters, we simply let b be a constant,
the average reward of the whole training set: b =∑

(h,r,t)∈T E(h′,r,t′)∼pG(h′,r,t′|h,r,t)[−fD(h′, r, t′)].
In practice, b is approximated by the mean of
rewards of recently generated negative triples.

Let the generator’s score function to be
fG(h, r, t), given a set of candidate negative triples
Neg(h, r, t) ⊂ {(h′, r, t)|h′ ∈ E}∪{(h, r, t′)|t′ ∈
E}, the probability distribution pG is modeled as:

pG(h′, r, t′|h, r, t) =
exp fG(h′, r, t′)∑
exp fG(h∗, r, t∗)

(h∗, r, t∗) ∈ Neg(h, r, t) (6)

Ideally, Neg(h, r, t) should contain all possible
negatives. However, knowledge graphs are usu-
ally highly incomplete, so the ”hardest” negative
triples are very likely to be false negatives (true
facts). To address this issue, we instead generate
Neg(h, r, t) by uniformly sampling of Ns entities
(a small number compared to the number of all
possible negatives) from E to replace h or t. Be-
cause in real-world knowledge graphs, true neg-
atives are usually far more than false negatives,
such set would be unlikely to contain any false
negative, and the negative selected by the gener-
ator would likely be a true negative. Using a small
Neg(h, r, t) can also significantly reduce compu-
tational complexity.

Besides, we adopt the “bern” sampling tech-
nique (Wang et al., 2014) which replaces the
“1” side in “1-to-N” and “N-to-1” relations with
higher probability to further reduce false nega-
tives.

Algorithm 1 summarizes the whole adversarial
training process. Both the generator and the dis-

2A proof of such fact can also be found in the supplemen-
tary material
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criminator require pre-training, which is the same
as conventionally training a single KBE model
with uniform negative sampling. Formally speak-
ing, one can pre-train the generator by minimiz-
ing the loss function defined in Equation (1), and
pre-train the discriminator by minimizing the loss
function defined in Equation (2). Line 14 in the
algorithm assumes that we are using the vanilla
gradient descent as the optimization method, but
obviously one can substitute it with any gradient-
based optimization algorithm.

4 Experiments

To evaluate our proposed framework, we test its
performance for the link prediction task with dif-
ferent generators and discriminators. For the gen-
erator, we choose two classical probability-based
KGE model, DISTMULT and COMPLEX, and
for the discriminator, we also choose two classi-
cal translation-based KGE model, TRANSE and
TRANSD, resulting in four possible combinations
of generator and discriminator in total. See Table
1 for a brief summary of these models.

4.1 Experimental Settings

4.1.1 Datasets
We use three common knowledge base com-
pletion datasets for our experiment: FB15k-237,
WN18 and WN18RR. FB15k-237 is a subset
of FB15k introduced by (Toutanova and Chen,
2015), which removed redundant relations in
FB15k and greatly reduced the number of rela-
tions. Likewise, WN18RR is a subset of WN18 in-
troduced by (Dettmers et al., 2017) which removes
reversing relations and dramatically increases the
difficulty of reasoning. Both FB15k and WN18
are first introduced by (Bordes et al., 2013) and
have been commonly used in knowledge graph re-
searches. Statistics of datasets we used are shown
in Table 3.

4.1.2 Evaluation Protocols
Following previous works like (Yang et al., 2015)
and (Trouillon et al., 2016), for each run, we re-
port two common metrics, mean reciprocal rank-
ing (MRR) and hits at 10 (H@10). We only re-
port scores under the filtered setting (Bordes et al.,
2013), which removes all triples appeared in train-
ing, validating, and testing sets from candidate
triples before obtaining the rank of the ground
truth triple.

4.1.3 Implementation Details
3 In the pre-training stage, we train every model
to convergence for 1000 epochs, and divide ev-
ery epoch into 100 mini-batches. To avoid overfit-
ting, we adopt early stopping by evaluating MRR
on the validation set every 50 epochs. We tried
γ = 0.5, 1, 2, 3, 4, 5 and L1, L2 distances for
TRANSE and TRANSD, and λ = 0.01, 0.1, 1, 10
for DISTMULT and COMPLEX, and determined
the best hyperparameters listed on table 2, based
on their performances on the validation set af-
ter pre-training. Due to limited computation re-
sources, we deliberately limit the dimensions of
embeddings to k = 50, similar to the one used
in earlier works, to save time. We also apply cer-
tain constraints or regularizations to these models,
which are mostly the same as those described in
their original publications, and also listed on table
2.

In the adversarial training stage, we keep all
the hyperparamters determined in the pre-training
stage unchanged. The number of candidate neg-
ative triples, Ns, is set to 20 in all cases, which
is proven to be optimal among the candidate set
of {5, 10, 20, 30, 50}. We train for 5000 epochs,
with 100 mini-batches for each epoch. We also use
early stopping in adversarial training by evaluating
MRR on the validation set every 100 epochs.

We use the self-adaptive optimization method
Adam (Kingma and Ba, 2015) for all trainings,
and always use the recommended default setting
α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8.

4.2 Results

Results of our experiments as well as baselines
are shown in Table 4. All settings of adversarial
training bring a pronounced improvement to the
model, which indicates that our method is con-
sistently effective in various cases. TRANSE per-
forms slightly worse than TRANSD on FB15k-237
and WN18, but better on WN18RR. Using DIST-
MULT or COMPLEX as the generator does not af-
fect performance greatly.

TRANSE and TRANSD enhanced by KBGAN

can significantly beat their corresponding baseline
implementations, and outperform stronger base-
lines in some cases. As a prototypical and proof-
of-principle experiment, we have never expected
state-of-the-art results. Being simple models pro-

3The KBGAN source code is available at https://
github.com/cai-lw/KBGAN
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FB15k-237 WN18 WN18RR
Method MRR H@10 MRR H@10 MRR H@10
TRANSE - 42.8† - 89.2 - 43.2†

TRANSD - 45.3† - 92.2 - 42.8†

DISTMULT 24.1‡ 41.9‡ 82.2 93.6 42.5‡ 49.1‡

COMPLEX 24.0‡ 41.9‡ 94.1 94.7 44.4‡ 50.7‡

TRANSE (pre-trained) 24.2 42.2 43.3 91.5 18.6 45.9
KBGAN (TRANSE + DISTMULT) 27.4 45.0 71.0 94.9 21.3 48.1
KBGAN (TRANSE + COMPLEX) 27.8 45.3 70.5 94.9 21.0 47.9
TRANSD (pre-trained) 24.5 42.7 49.4 92.8 19.2 46.5
KBGAN (TRANSD + DISTMULT) 27.8 45.8 77.2 94.8 21.4 47.2
KBGAN (TRANSD + COMPLEX) 27.7 45.8 77.9 94.8 21.5 46.9

Table 4: Experimental results. Results of KBGAN are results of its discriminator (on the left of the “+”
sign). Underlined results are the best ones among our implementations. Results marked with † are pro-
duced by running Fast-TransX (Lin et al., 2015) with its default parameters. Results marked with ‡ are
copied from (Dettmers et al., 2017). All other baseline results are copied from their original papers.

Figure 2: Learning curves of KBGAN. All metrics improve steadily as training proceeds.

posed several years ago, TRANSE and TRANSD
has their limitations in expressiveness that are un-
likely to be fully compensated by better training
technique. In future researches, people may try
employing more advanced models into KBGAN,
and we believe it has the potential to become state-
of-the-art.

To illustrate our training progress, we plot per-
formances of the discriminator on validation set
over epochs, which are displayed in Figure 2. As
all these graphs show, our performances are al-
ways in increasing trends, converging to its max-

imum as training proceeds, which indicates that
KBGAN is a robust GAN that can converge to good
results in various settings, although GANs are well-
known for difficulty in convergence. Fluctuations
in these graphs may seem more prominent than
other KGE models, but is considered normal for
an adversially trained model. Note that in some
cases the curve still tends to rise after 5000 epochs.
We do not have sufficient computation resource to
train for more epochs, but we believe that they will
also eventually converge.
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Positive fact Uniform random sample Trained generator
(condensation NN 2,
derivationally related form,
distill VB 4)

family arcidae NN 1
repast NN 1
beater NN 2
coverall NN 1
cash advance NN 1

revivification NN 1
mouthpiece NN 3
liquid body substance NN 1
stiffen VB 2
hot up VB 1

(colorado river NN 2,
instance hypernym,
river NN 1)

lunar calendar NN 1
umbellularia californica NN 1
tonality NN 1
creepy-crawly NN 1
moor VB 3

idaho NN 1
sayan mountains NN 1
lower saxony NN 1
order ciconiiformes NN 1
jab NN 3

(meeting NN 2,
hypernym,
social gathering NN 1)

cellular JJ 1
commercial activity NN 1
giant cane NN 1
streptomyces NN 1
tranquillize VB 1

attach VB 1
bond NN 6
heavy spar NN 1
satellite NN 1
peep VB 3

Table 5: Examples of negative samples in WN18 dataset. The first column is the positive fact, and the
term in bold is the one to be replaced by an entity in the next two columns. The second column consists
of random entities drawn from the whole dataset. The third column contains negative samples generated
by the generator in the last 5 epochs of training. Entities in italic are considered to have semantic relation
to the positive one

4.3 Case study

To demonstrate that our approach does generate
better negative samples, we list some examples of
them in Table 5, using the KBGAN (TRANSE +
DISTMULT) model and the WN18 dataset. All hy-
perparameters are the same as those described in
Section 4.1.3.

Compared to uniform random negatives which
are almost always totally unrelated, the genera-
tor generates more semantically related negative
samples, which is different from type relatedness
we used as example in Section 3.2, but also helps
training. In the first example, two of the five terms
are physically related to the process of distilling
liquids. In the second example, three of the five
entities are geographical objects. In the third ex-
ample, two of the five entities express the concept
of “gather”.

Because we deliberately limited the strength of
generated negatives by using a small Ns as de-
scribed in Section 3.3, the semantic relation is
pretty weak, and there are still many unrelated en-
tities. However, empirical results (when selecting
the optimal Ns) shows that such situation is more
beneficial for training the discriminator than gen-
erating even stronger negatives.

5 Conclusions

We propose a novel adversarial learning method
for improving a wide range of knowledge graph
embedding models—We designed a generator-
discriminator framework with dual KGE compo-
nents. Unlike random uniform sampling, the gen-
erator model generates higher quality negative ex-
amples, which allow the discriminator model to
learn better. To enable backpropagation of error,
we introduced a one-step REINFORCE method to
seamlessly integrate the two modules. Experimen-
tally, we tested the proposed ideas with four com-
monly used KGE models on three datasets, and the
results showed that the adversarial learning frame-
work brought consistent improvements to various
KGE models under different settings.
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Abstract

An essential step in FrameNet Semantic Role
Labeling is the Frame Identification (FrameId)
task, which aims at disambiguating a situation
around a predicate. Whilst current FrameId
methods rely on textual representations only,
we hypothesize that FrameId can profit from
a richer understanding of the situational con-
text. Such contextual information can be ob-
tained from common sense knowledge, which
is more present in images than in text. In this
paper, we extend a state-of-the-art FrameId
system in order to effectively leverage multi-
modal representations. We conduct a compre-
hensive evaluation on the English FrameNet
and its German counterpart SALSA. Our anal-
ysis shows that for the German data, tex-
tual representations are still competitive with
multimodal ones. However on the English
data, our multimodal FrameId approach out-
performs its unimodal counterpart, setting a
new state of the art. Its benefits are particularly
apparent in dealing with ambiguous and rare
instances, the main source of errors of current
systems. For research purposes, we release (a)
the implementation of our system, (b) our eval-
uation splits for SALSA 2.0, and (c) the em-
beddings for synsets and IMAGINED words.1

1 Introduction

FrameNet Semantic Role Labeling analyzes sen-
tences with respect to frame-semantic structures
based on FrameNet (Fillmore et al., 2003). Typ-
ically, this involves two steps: First, Frame Iden-
tification (FrameId), capturing the context around
a predicate (frame evoking element) and assigning
a frame, basically a word sense label for a pro-
totypical situation, to it. Second, Role Labeling,
i.e. identifying the participants (fillers) of the pred-
icate and connecting them with predefined frame-

∗named alphabetically
1https://github.com/UKPLab/

naacl18-multimodal-frame-identification

specific role labels. FrameId is crucial to the suc-
cess of Semantic Role Labeling as FrameId errors
account for most wrong predictions in current sys-
tems (Hartmann et al., 2017). Consequently, im-
proving FrameId is of major interest.

The main challenge and source of prediction er-
rors of FrameId systems are ambiguous predicates,
which can evoke several frames, e.g., the verb
sit evokes the frame Change posture in a context
like ‘a person is sitting back on a bench’, while
it evokes Being located when ‘a company is sit-
ting in a city’. Understanding the predicate con-
text, and thereby the context of the situation (here,
‘Who / what is sitting where?’), is crucial to iden-
tifying the correct frame for ambiguous cases.

State-of-the-art FrameId systems model the sit-
uational context using pretrained distributed word
embeddings (see Hermann et al., 2014). Hence,
it is assumed that the context of the situation
is explicitly expressed in words. However, lan-
guage understanding involves implicit knowledge,
which is not mentioned but still seems obvious
to humans, e.g., ‘people can sit back on a bench,
but companies cannot’, ‘companies are in cities’.
Such implicit common sense knowledge is obvi-
ous enough to be rarely expressed in sentences,
but is more likely to be present in images. Fig-
ure 1 takes the ambiguous predicate sit to illustrate

Figure 1: Example sentences demonstrating the poten-
tial benefit of images for ambiguous predicates.
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how images can provide access to implicit com-
mon sense knowledge crucial to FrameId.

When looking at the semantics of events,
FrameId has commonalities with event prediction
tasks. These aim at linking events and their partic-
ipants to script knowledge and at predicting events
in narrative chains. Ahrendt and Demberg (2016)
argue that knowing about the participants helps to
identify the event, which suggests the need for im-
plicit context knowledge also for FrameId. This
specifically applies to images, which can reflect
properties of the participants of a situation in a in-
herently different way, see Fig. 1.

We analyze whether multimodal representa-
tions grounded in images can encode common
sense knowledge to improve FrameId. To that
end, we extend SimpleFrameId (Hartmann et al.,
2017), a recent FrameId model based on dis-
tributed word embeddings, to the multimodal case
and evaluate for English and German. Note that
there is a general lack of evaluation of FrameId
systems for languages other than English. This
is problematic as they yield different challenges;
German, for example, due to long distance depen-
dencies. Also, word embeddings trained on differ-
ent languages have different strengths in ambigu-
ous words. We elaborate on insights from using
different datasets by language.

Contributions. (1) We propose a pipeline and
architecture of a FrameId system, extending state-
of-the-art methods with the option of using im-
plicit multimodal knowledge. It is flexible toward
modality and language, reaches state-of-the-art ac-
curacy on English FrameId data, clearly outper-
forming several baselines, and sets a new state of
the art on German FrameId data. (2) We discuss
properties of language and meaning with respect
to implicit knowledge, as well as the potential of
multimodal representations for FrameId. (3) We
perform a detailed analysis of FrameId systems.
First, we develop a new strong baseline. Second,
we suggest novel evaluation metrics that are es-
sential for assessing ambiguous and rare frame in-
stances. We show our system’s advantage over the
strong baseline in this regard and by this improve
upon the main source of errors. Third, we analyze
gold annotated datasets for English and German
showing their different strengths. Finally, we re-
lease the implementation of our system, our eval-
uation splits for SALSA 2.0, and the embeddings
for synsets and IMAGINED words.

2 Related Work

2.1 Frame identification
State-of-the-art FrameId systems rely on pre-
trained word embeddings as input (Hermann et al.,
2014). This proved to be helpful: those sys-
tems consistently outperform the previously lead-
ing FrameId system SEMAFOR (Das et al., 2014),
which is based on a handcrafted set of features.
The open source neural network-based FrameId
system SimpleFrameId (Hartmann et al., 2017) is
conceptually simple, yet yields competitive accu-
racy. Its input representation is a concatenation of
the predicate’s pretrained embedding and an em-
bedding of the predicate context. The dimension-
wise mean of the pretrained embeddings of all
words in the sentence is taken as the context. In
this work, we first aim at improving the represen-
tation of the predicate context using multimodal
embeddings, and second at assessing the applica-
bility to another language, namely German.

Common sense knowledge for language under-
standing. Situational background knowledge
can be described in terms of frames (Fillmore,
1985) and scripts (Schank and Abelson, 2013).
Ahrendt and Demberg (2016) report that know-
ing about a script’s participants aids in predict-
ing events linked to script knowledge. Transfer-
ring this insight to FrameId, we assume that a rich
context representation helps to identify the sense
of ambiguous predicates. Addressing ambiguous
predicates where participants have different prop-
erties depending on the context, Feizabadi and
Padó (2012) give some examples where the loca-
tion plays a discriminating role as participant: mo-
tion verbs that have both a concrete motion sense
and a more abstract sense in the cognitive domain,
e.g., struggle, lean, follow.

Frame identification in German. Shalmaneser
(Erk and Pado, 2006) is a toolbox for semantic role
assignment on FrameNet schemata of English and
German (integrated into the SALSA project for
German). Shalmaneser uses a Naive Bayes clas-
sifier to identify frames, together with features for
a bag-of-word context with a window over sen-
tences, bigrams, and trigrams of the target word
and dependency annotations. They report an F1
of 75.1 % on FrameNet 1.2 and 60 % on SALSA
1.0. These scores are difficult to compare against
more recent work as the evaluation uses older ver-
sions of datasets and custom splits. Shalmaneser
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requires software dependencies that are not avail-
able anymore, hindering application to new data.
To the best of our knowledge, there is no FrameId
system evaluated on SALSA 2.0.

Johannsen et al. (2015) present a simple,
but weak translation baseline for cross-lingual
FrameId. A SEMAFOR-based system is trained
on English FrameNet and tested on German
Wikipedia sentences, translated word-by-word to
English. This translation baseline reaches an F1
score of 8.5 % on the German sentences when
translated to English. The performance of this
weak translation baseline is worse than that of
another simple baseline: a ‘most frequent sense
baseline’ – computing majority votes for German
(and many other languages) – reaches an F1 score
of 53.0 % on the German sentences. This shows
that pure translation does not help with FrameId
and, furthermore, indicates a large room for im-
provement for FrameId in languages other than
English.

2.2 Multimodal representation learning

There is a growing interest in Natural Language
Processing for enriching traditional approaches
with knowledge from the visual domain, as images
capture qualitatively different information com-
pared to text. Regarding FrameId, to the best
of our knowledge, multimodal approaches have
not yet been investigated. For other tasks, mul-
timodal approaches based on pretrained embed-
dings are reported to be superior to unimodal
approaches. Textual embeddings have been en-
riched with information from the visual domain,
e.g., for Metaphor Identification (Shutova et al.,
2016), Question Answering (Wu et al., 2017), and
Word Pair Similarity (Collell et al., 2017). The
latter presents a simple, but effective way of ex-
tending textual embeddings with so-called multi-
modal IMAGINED embeddings by a learned map-
ping from language to vision. We apply the IMAG-
INED method to our problem.

In this work, we aim to uncover whether rep-
resentations that are grounded in images can help
to improve the accuracy of FrameId. Our appli-
cation case of FrameId is more complex than a
comparison on the word-pair level as it considers a
whole sentence in order to identify the predicate’s
frame. However, we see a potential for multimodal
IMAGINED embeddings to help: their mapping
from text to multimodal representations is learned

from images for nouns. Such nouns, in turn, are
candidates for role fillers of predicates. In order to
identify the correct sense of an ambiguous predi-
cate, it could help to enrich the representation of
the context situation with multimodal embeddings
for the entities that are linked by the predicate.

3 Our Multimodal FrameId Model

Our system builds upon the SimpleFrameId (Hart-
mann et al., 2017) system for English FrameId
based on textual word embeddings. We extend
it to multimodal and multilingual use cases; see
Fig. 2 for a sketch of the system pipeline. Same as
SimpleFrameId, our system is based on pretrained
embeddings to build the input representation out
of the predicate context and the predicate itself.

However, different to SimpleFrameId, our rep-
resentation of the predicate context is multimodal:
beyond textual embeddings we also use IMAG-
INED and visual embeddings. More precisely, we
concatenate all unimodal representations of the
predicate context, which in turn are the unimodal
mean embeddings of all words in the sentence. We
use concatenation for fusing the different embed-
dings as it is the simplest yet successful fusion
approach (Bruni et al., 2014; Kiela and Bottou,
2014). The input representation is processed by
a two-layer Multilayer Perceptron (MLP, Rosen-
blatt, 1958), where we adapt the number of hid-
den nodes to the increased input size and apply
dropout to all hidden layers to prevent overfitting
(Srivastava et al., 2014). Each node in the output
layer corresponds to one frame-label class. We use
rectified linear units (Nair and Hinton, 2010) as ac-
tivation function for the hidden layers, and a soft-

Figure 2: Sketch of the pipeline. (1) Data: sentence
with predicate. (2) Mapping: words to embeddings.
(3) Representation: concatenation of modality-specific
means. (4) Classifier: neural network predicting frame.
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max for the output layer yielding a multinomial
distribution over frames. We take its argmax as
the final prediction at test time. Optionally, filter-
ing based on the lexicon can be performed on the
predicted probabilities for each frame label. The
development set was used to determine the archi-
tecture and hyperparameters, see Sec. 6.

Majority baselines. We propose a new strong
baseline based on a combination of two existing
ones. These are: first, the most-frequent-sense
baseline using the data majority (Data Baseline)
to determine the most frequent frame for a predi-
cate; second, the baseline introduced by Hartmann
et al. (2017) using a lexicon (Lexicon Baseline)
to consider the data counts of the Data Baseline
only for those frames available for a predicate.
We propose to combine them into a Data-Lexicon
Baseline, which uses the lexicon for unambiguous
predicates and for ambiguous ones it uses the data
majority. This way, we trust the lexicon for un-
ambiguous predicates but not for ambiguous ones,
there we rather consider the data majority. Com-
paring a system to these baselines helps to see
whether it just memorizes the data majority or the
lexicon, or actually captures more.

All majority baselines strongly outperform the
weak translation baseline of Johannsen et al.
(2015) when training the system on English data
and evaluating it on German data.

4 Preparation of Input Embeddings

Textual embeddings for words. We use the
300-dimensional GloVe embeddings (Pennington
et al., 2014) for English, and the 100-dimensional
embeddings of Reimers et al. (2014) for Ger-
man. GloVe and Reimers have been trained on the
Wikipedia of their targeted language and on addi-
tional newswire text to cover more domains, re-
sulting in similarly low out-of-vocabulary scores.

Visual embeddings for synsets. We obtain vi-
sual embeddings for WordNet synsets (Fellbaum,
1998; , Ed.): we apply the pretrained VGG-m-
128 Convolutional Neural Network model (Chat-
field et al., 2014) to images for synsets from Im-
ageNet (Deng et al., 2009), we extract the 128-
dimensional activation of the last layer (before the
softmax) and then we L2-normalize it. We use
the images of the WN9-IMG dataset (Xie et al.,
2017), which links WordNet synsets to a collec-
tion of ten ImageNet images. We average the em-

beddings of all images corresponding to a synset,
leading to a vocabulary size of 6555 synsets. All
synsets in WN9-IMG are part of triples of the form
entity-relation-entity, i.e. synset-relation-synset.
Such synset entities that are participants of rela-
tions with other synset entities are candidates for
incorporating the role fillers for predicates and,
therefore, may help to find the correct frame for
a predicate (see Sec. 5 for details about sense-
disambiguation.)

Linguistic embeddings for synsets. We obtain
300-dimensional linguistic synset embeddings:
we apply the AutoExtend approach (Rothe and
Schütze, 2015) to GloVe embeddings and pro-
duce synset embeddings for all synsets having at
least one synset lemma in the GloVe embeddings.
This leads to a synset vocabulary size of 79 141.
Linguistic synset embeddings are based on tex-
tual word embeddings and the synset information
known by the knowledge base WordNet, thus they
complement the visual synset embeddings.

IMAGINED embeddings for words. We use the
IMAGINED method (Collell et al., 2017) for learn-
ing a mapping function: it maps from the word
embedding space to the visual embedding space
given those words that occur in both pretrained
embedding spaces (7220 for English and 7739 for
German). To obtain the English synset lemmas,
we extract all lemmas of a synset and keep those
that are nouns. We automatically translate En-
glish nouns to German nouns using the Google
Translate API to obtain the corresponding German
synset lemmas. The IMAGINED method is promis-
ing for cases where one embedding space (here,
the textual one) has many instances without cor-
respondence in the other embeddings space (here,
the visual one), but the user still aims at obtain-
ing instances of the first in the second space. We
aim to obtain visual correspondences for the tex-
tual embeddings in order to incorporate regulari-
ties from images into our system. The mapping is
a nonlinear transformation using a simple neural
network. The objective is to minimize the cosine
distance between each mapped representation of a
word and the corresponding visual representation.
Finally, a multimodal representation for any word
can be obtained by applying this mapping to the
word embedding.
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5 Data and Preparation of Splits

English FrameId: Berkeley FrameNet. The
Berkeley FrameNet (Baker et al., 1998; Ruppen-
hofer et al., 2016) is an ongoing project for build-
ing a large lexical resource for English with ex-
pert annotations based on frame semantics (Fill-
more, 1976). It consists of two parts, a manually
created lexicon that maps predicates to the frames
they can evoke, and fully annotated texts (fulltext).
The mapping can be used to facilitate the frame
identification for a predicate in a sentence, e.g., a
sentence in the fulltext corpus. Table 1 contains
the lexicon statistics, Table 2 (top left) the dataset
statistics. In this work, we use FrameNet 1.5 to
ensure comparability with the previous state of the
art, with the common evaluation split for FrameId
systems introduced by Das and Smith (2011) (with
the development split of Hermann et al., 2014).
Due to having a single annotation as consent of
experts, it is hard to estimate a performance bound
of a single human for the fulltext annotation.

German FrameId: SALSA. The SALSA
project (Burchardt et al., 2006; Rehbein et al.,
2012) is a completed annotation project, which
serves as the German counterpart to FrameNet.
Its annotations are based on FrameNet up to ver-
sion 1.2. SALSA adds proto-frames to properly
annotate senses that are not covered by the En-
glish FrameNet. For a more detailed description
of differences between FrameNet and SALSA, see
Ellsworth et al. (2004); Burchardt et al. (2009).
SALSA also provides a lexicon (see Table 1 for
statistics) and fully annotated texts. There are
two releases of SALSA: 1.0 (Burchardt et al.,
2006) used for Shalmaneser (Erk and Pado, 2006)
(cf. Sec. 2.1), and the final release 2.0 (Rehbein
et al., 2012), which contains more annotations and
adds nouns as predicates. We use the final release.

SALSA has no standard evaluation split; Erk
and Pado (2006) used an undocumented random

lexicon frames LUs avg(fr/pred) %amb.pred.

FrameNet 1020 11 942 1.26 17.32
SALSA 1023 1827 2.82 57.56

Table 1: Lexicon statistics for FrameNet 1.5 and for
SALSA 2.0: the total number of distinct frames and
lexical units LUs (distinct predicate-frame combina-
tions), the number of frames a predicate can evoke on
average avg, and the % of ambiguous predicates.

split. Also, it is not possible to follow the split-
ting method of Das and Smith (2011), as SALSA
project distributions do not map to documents. We
suggest splitting based on sentences, i.e. all anno-
tations of a sentence are in the same set to avoid
mixing training and test sets. We assign sentences
to 100 buckets based on their IDs and create a
70/15/15 split for training, development, and test
sets based on the bucket order. This procedure al-
lows future work to be evaluated on the same data.
Table 2 (bottom left) shows the dataset statistics.

Synsets in FrameNet and SALSA. To prepare
the datasets for working with the synset embed-
dings, we sense-disambiguate all sentences using
the API of BabelNet (Navigli and Ponzetto, 2010),
which returns multilingual synsets. We thus de-
pend on the state-of-the-art accuracy of BabelNet
(Navigli and Ponzetto, 2012) when using synset
embeddings on sense-disambiguated sentences.
However, this dependence does not hold when ap-
plying IMAGINED embeddings to sentences, as the
mapping from words to IMAGINED embeddings
does not need any synsets labeled in the sentences.
After sense-disambiguation some sentences do not
contain any synset available in our synset embed-
dings. The statistics of those sentences that have
at least one synset embedding (visual or linguistic
AutoExtend) is given in Table 2 (right).

6 Experimental Setup

We contrast our system’s performance for context
representations based on unimodal (textual) ver-
sus multimodal (textual and visual) embeddings.
Also, we compare English against German data.
We run the prediction ten times to reduce noise in

sentences frames reduced sentences
syns-Vis syns-AutoExt

Fr
am

eN train 2819 15 406 1310 2714
dev 707 4593 320 701
test 2420 4546 913 2318

SA
L

SA train 16 852 26 081 4707 16 736
dev 3561 5533 1063 3540
test 3605 5660 1032 3570

Table 2: Dataset statistics for FrameNet 1.5 fulltext
with Das split and for SALSA 2.0 with our split: num-
ber of sentences and frames (as used in our experi-
ments). Right half (only used in further investigations):
number of sentences when reduced to only those hav-
ing synsets in the visual and in the linguistic AutoEx-
tend embeddings.
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the evaluation (cf. Reimers and Gurevych, 2017)
and report the mean for each metric.

Use of lexicon. We evaluate our system in two
settings: with and without lexicon, as suggested
by Hartmann et al. (2017). In the with-lexicon set-
ting, the lexicon is used to reduce the choice of
frames for a predicate to only those listed in the
lexicon. If the predicate is not in the lexicon, it
corresponds to the without-lexicon setting, where
the choice has to be done amongst all frames.

Evaluation metrics. FrameId systems are usu-
ally compared in terms of accuracy, which we
adopt for comparability. As a multiclass clas-
sification problem, FrameId has to cope with a
strong variation in the annotation frequency of
frame classes. Minority classes are frames that oc-
cur only rarely; majority classes occur frequently.
Note that the accuracy is biased toward majority
classes, explaining the success of majority base-
lines on imbalanced datasets such as FrameNet.

Alternatively, the F1 score is sometimes re-
ported as it takes a complementary perspective.
The F-measure is the harmonic mean of precision
and recall, measuring exactness and completeness
of a model, respectively. In previous work, micro-
averaging is used to compute F1 scores. Yet, sim-
ilar to the accuracy, micro-averaging introduces
a bias toward majority classes. We compute F1-
macro instead, for which precision and recall are
computed for each class and averaged afterwards,
giving equal weight to all classes.

Taken together, this yields scores that underesti-
mate (F1-macro) and overestimate (average accu-
racy) on imbalanced datasets. Previous work just
used the overestimate such that a comparison is
possible in terms of accuracy in the with-lexicon
setting. We suggest to use F1-macro additionally
to analyze rare, but interesting classes. Thus, a
comparison within our work is possible for both
aspects, giving a more detailed picture. Note that
previous work reports one score whilst we report
the mean score of ten runs.

Hyperparameters. We identified the best hy-
perparameters for the English and German data
based on the respective development sets.2 The
Multilayer Perceptron architecture performed con-

2Differences in hyperparameters to SimpleFrameId:
‘nadam’ as optimizer instead of ‘adagrad’, dropout on hid-
den layers and early stopping to regularize training. Different
number of hidden units, optimized by grid search.

sistently better than a more complex Gated Re-
current Unit model (Cho et al., 2014). We found
that more than two hidden layers did not bring
any improvement over two layers; using dropout
on the hidden layers helped to increase the accu-
racy. Among the various input representations,
a concatenation of the representations of context
and predicate was the best amongst others, includ-
ing dependencies, lexicon indicators, and part-of-
speech tags. Training is done using Nesterov-
accelerated Adam (Nadam, Dozat, 2016) with de-
fault parameters. A batch size of 128 is used.
Learning stops if the development accuracy has
not improved for four epochs, and the learning rate
is reduced by factor of two if there has not been
any improvement for two epochs.

7 Results

First, we report our results on English data (see Ta-
ble 3, top) and then, we compare against German
data (see Table 3, bottom).

7.1 English FrameNet data

Baseline. Our new strong Data-Lexicon Base-
line reaches a considerable accuracy of 86.32 %,
which is hard to beat by trained models. Even
the most recent state of the art only beats it by
about two points: 88.41 % (Hermann et al., 2014).
However, the accuracy of the baseline drops for
ambiguous predicates (69.73 %) and the F1-macro
score reveals its weakness toward minority classes
(drop from 64.54 % to 37.42 %).

Unimodal. Our unimodal system trained and
evaluated on English data slightly exceeds the ac-
curacy of the previous state of the art (88.66 % on
average versus 88.41 % for Hermann et al., 2014);
our best run’s accuracy is 89.35 %. Especially on
ambiguous predicates, i.e. the difficult and there-
fore interesting cases, our average accuracy sur-
passes that of previous work by more than one
point (the best run by almost three points). Con-
sidering the proposed F1-macro score for an as-
sessment of the performance on minority classes
and ambiguous predicates reveals our main im-
provement: Our system substantially outperforms
the strong Data-Lexicon Baseline, demonstrating
that our system differs from memorizing majori-
ties and actually improves minority cases.

Multimodal. From a range of multimodal con-
text representations as extensions to our system,
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with lexicon without lexicon

model acc acc amb F1-m F1-m amb acc acc amb F1-m F1-m amb
Fr

am
eN

et

Data Baseline 79.06 69.73 33.00 37.42 79.06 69.73 33.00 37.42
Lexicon Baseline 79.89 55.52 65.61 30.95 – – – –
Data-Lexicon Baseline 86.32 69.73 64.54 37.42 – – – –

Hermann et al. (2014) 88.41 73.10 – – – – – –
Hartmann et al. (2017) 87.63 73.80 – – 77.49 – – –

our uni 88.66 74.92 76.65 53.86 79.96 71.70 57.07 47.40
our mm (im, synsV) 88.82 75.28 76.77 54.80 81.21 72.51 57.81 49.38

SA
L

SA

Data Baseline 77.00 70.51 37.40 28.87 77.00 70.51 37.40 28.87
Lexicon Baseline 61.57 52.5 19.36 15.68 – – – –
Data-Lexicon Baseline 77.16 70.51 38.48 28.87 – – – –

our uni 80.76 75.59 48.42 41.38 80.59 75.52 47.64 41.17
our mm (im) 80.71 75.58 48.29 41.19 80.51 75.51 47.36 40.93

Table 3: FrameId results (in %) on English (upper) and German (lower) with and without using the lexicon.
Reported are accuracy and F1-macro, both also for ambiguous predicates (mean scores over ten runs). Models:
(a) Data, Lexicon, and Data-Lexicon Baselines. (b) Previous models for English. (c) Ours: unimodal our-uni,
multimodal on top of our-uni – our-mm – with IMAGINED embeddings (and synset visual embeddings for English).
Best results highlighted in bold. The best run’s results for English were:
our uni: acc: 89.35 ; acc amb: 76.45 ; F1-m: 76.95 ; F1-m amb: 54.02 (with lexicon)
our mm (im, synsV): acc: 89.09 ; acc amb: 75.86 ; F1-m: 78.17 ; F1-m amb: 57.48 (with lexicon)

the most helpful one is the concatenation of IMAG-
INED embeddings and visual synset embeddings:
it outperforms the unimodal approach slightly in
all measurements. We observe that the improve-
ments are more pronounced for difficult cases,
such as for rare and ambiguous cases (one point
improvement in F1-macro), as well as in the ab-
sence of a lexicon (up to two points improvement).

Significance tests. We conduct a single sample
t-test to judge the difference between previous
state-of-the-art accuracy (Hermann et al., 2014)
and our unimodal approach. The null hypothe-
sis (expected value of our sample of ten accuracy
scores equals previous state-of-the-art accuracy)
is rejected at a significance level of α = 0.05
(p = 0.0318). In conclusion, even our unimodal
approach outperforms prior state of the art in terms
of accuracy.

To judge the difference between our unimodal
and our multimodal approach, we conduct a t-test
for the means of the two independent samples.
The null hypothesis states identical expected val-
ues for our two samples of ten accuracy scores.
Regarding the setting with lexicon, the null hy-
pothesis cannot be rejected at a significance level
of α = 0.05 (p = 0.2181). However, concern-
ing accuracy scores without using the lexicon, the
null hypothesis is rejected at a significance level
of α = 0.05 (p < 0.0001). In conclusion, the
multimodal approach has a slight overall advan-

tage and, interestingly, has a considerable advan-
tage over the unimodal one when confronted with
a more difficult setting of not using the lexicon.

7.2 German SALSA versus English data

German results. Our system evaluated on Ger-
man data sets a new state of the art on this corpus
with 80.76 % accuracy, outperforming the base-
lines (77.16 %; no other system evaluated on this
dataset). The difference in F1-macro between the
majority baselines and our system is smaller than
for the English FrameNet. This indicates that the
majorities learned from data are more powerful in
the German case with SALSA than in the English
case, when comparing against our system. Multi-
modal context representations cannot show an im-
provement for SALSA with this general dataset.

Lexicon. We report results achieved without the
lexicon to evaluate independently of its quality
(Hartmann et al., 2017). On English data, our sys-
tems outperforms Hartmann et al. (2017) by more
than two points in accuracy and we achieve a large
improvement over the Data Baseline. Comparing
the F1-macro with and without lexicon, it can be
seen that the additional information stored in the
lexicon strongly increases the score by about 20
points for English data. For German data, the in-
crease of F1-macro with lexicon versus without is
small (one point).
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8 Discussion

8.1 English data

Insights from the baseline. Many indicators
point to our approach not just learning the data
majority: our trained models have better F1-macro
and especially much higher ambiguous F1-macro
scores with lexicon. This clearly suggests that our
system is capable of acquiring more expressive-
ness than the baselines do by counting majorities.

Impact of multimodal representations. Mul-
timodal context representations improve results
compared to unimodal ones. It helps to incorpo-
rate visual common sense knowledge about the sit-
uation’s participants. Referring back to our exam-
ple of the ambiguous predicate sit, the multimodal
approach is able to transfer the knowledge to the
test sentence ‘Al-Anbar in general, and Ramadi in
particular, are sat with the Americans in Jordan.’
by correctly identifying the frame Being located
whilst the unimodal approach fails with predict-
ing Change posture. The increase in performance
when adding information from visual synset em-
beddings is not simply due to higher dimensional-
ity of the embedding space. To verify, we further
investigate extending the unimodal system with
random word embeddings. This leads to a drop
in performance compared to using just the uni-
modal representations or using these in combina-
tion with the proposed multimodal embeddings,
especially in the setting without lexicon. Interest-
ingly, replacing visual synset embeddings with lin-
guistic synset embeddings (AutoExtend by Rothe
and Schütze (2015), see Sec. 4) in further investi-
gations also showed that visual embeddings yield
better performance. This points out the potential
for incorporating even more image evidence to ex-
tend our approach.

8.2 German versus English data

Difficulties for German data. The impact of
multimodal context representations is more dif-

ficult to interpret for the German dataset. The
fact that they have not helped here may be due to
mismatches when translating the English nouns of
a synset to German in order to train the IMAG-
INED embeddings. Here, we see room for future
work to improve on simple translation by sense-
based translations. In SALSA, a smaller portion
of sentences has at least one synset embedding,
see Table 2. For further investigations, we re-
duced the dataset to only sentences actually con-
taining a synset embedding. Then, minor improve-
ments of the multimodal approach were visible for
SALSA. This points out that a dataset containing
more words linking to implicit knowledge in im-
ages (visual synset embeddings) can profit more
from visual and IMAGINED embeddings.

Impact of lexicon: English versus German.
Even if both lexica approximately define the same
number of frames (see Table 1), the number of de-
fined lexical units (distinct predicate-frame combi-
nations) in SALSA is smaller. This leads to a lexi-
con that is a magnitude smaller than the FrameNet
lexicon. Thus, the initial situation for the Ger-
man case is more difficult. The impact of the lexi-
con for SALSA is smaller than for FrameNet (best
visible in the increase of F1-macro with using
the lexicon compared to without), which can be
explained by the larger percentage of ambiguous
predicates (especially evoking proto-frames) and
the smaller size of the lexicon. The evaluation on
two different languages highlights the impact of an
elaborate, manually created lexicon: it boosts the
performance on frame classes that are less present
in the training data. English FrameId benefits from
the large high-quality lexicon, whereas German
FrameId currently lacks a high-quality lexicon that
is large enough to benefit the FrameId task.

Dataset properties: English versus German.
To better understand the influence of the dataset on
the prediction errors, we further analyze the errors
of our approach (see Table 4) following Palmer

with lexicon without lexicon

model correct e uns e unsLab e n correct e uns e unsLab e n

Fr
am

eN our uni 89.35 0.40 3.04 7.22 80.36 1.32 7.68 10.65
our mm (im, synsV) 89.79 0.58 3.55 6.08 80.63 1.91 8.50 8.96

SA
L

SA our uni 80.99 0.49 0.97 17.54 80.80 0.49 1.10 17.61
our mm (im) 81.24 1.94 1.88 14.94 80.96 1.94 2.05 15.05

Table 4: Error analysis of best uni- and multimodal systems. correct, errors: unseen, unseen label and normal.
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and Sporleder (2010). A wrong prediction can ei-
ther be a normal classification error, or it can be
the result of an instance that was unseen at train-
ing time, which means that the error is due to the
training set. The instance can either be completely
unseen or unseen with the target label. We observe
that FrameNet has larger issues with unseen data
compared to SALSA, especially data that was un-
seen with one specific label but seen with another
label. This is due to the uneven split of the docu-
ments in FrameNet, leading to data from different
source documents and domains in the training and
test split. SALSA does not suffer from this prob-
lem as much since the split was performed dif-
ferently. It would be worth considering the same
splitting method for FrameNet.

8.3 Future work

As stated previously, FrameId has commonalities
with event prediction. Since identifying frames is
only one way of capturing events, our approach is
transferable to other schemes of event prediction
and visual knowledge about participants of situ-
ations should be beneficial there, too. It would
be interesting to evaluate the multimodal archi-
tecture on other predicate-argument frameworks,
e.g., script knowledge or VerbNet style Semantic
Role Labeling. In particular the exploration our
findings on visual contributions to FrameId in the
context of further event prediction tasks forms an
interesting next step.

More precisely, future work should consider us-
ing implicit knowledge not only from images of
the participants of the situation, but also from
the entire scene in order to directly capture rela-
tions between the participants. This could pro-
vide access to a more holistic understanding of the
scene. The following visual tasks with accompa-
nying datasets could serve as a starting point: (a)
visual Verb Sense Disambiguation with the VerSe
dataset (Gella et al., 2016) and (b) visual SRL with
several datasets, e.g., imSitu (Yatskar et al., 2016)
(linked to FrameNet), V-COCO (Gupta and Ma-
lik, 2015) (verbs linked to COCO), VVN (Ronchi
and Perona, 2015) (visual VerbNet) or even SRL
grounded in video clips for the cooking-domain
(Yang et al., 2016) and visual Situation Recogni-
tion (Mallya and Lazebnik, 2017). Such datasets
could be used for extracting visual embeddings
for verbs or even complex situations in order to
improve the visual component in the embeddings

for our FrameId system. Vice versa: visual tasks
could profit from multimodal approaches (Bal-
trušaitis et al., 2017) in a similar sense as our
textual task, FrameId, profits from additional in-
formation encoded in further modalities. More-
over, visual SRL might profit from our multi-
modal FrameId system to a similar extend as any
FrameNet SRL task profits from correctly identi-
fied frames (Hartmann et al., 2017).

Regarding the combination of embeddings from
different modalities, we suggest to experiment
with different fusion strategies complementing the
middle fusion (concatenation) and the mapping
(IMAGINED method). This could be a late fusion
at decision level operating like an ensemble.

9 Conclusion

In this work, we investigated multimodal repre-
sentations for Frame Identification (FrameId) by
incorporating implicit knowledge, which is bet-
ter reflected in the visual domain. We presented
a flexible FrameId system that is independent of
modality and language in its architecture. With
this flexibility it is possible to include textual and
visual knowledge and to evaluate on gold data in
different languages. We created multimodal rep-
resentations from textual and visual domains and
showed that for English FrameNet data, enriching
the textual representations with multimodal ones
improves the accuracy toward a new state of the
art. For German SALSA data, we set a new state
of the art with textual representations only and dis-
cuss why incorporating multimodal information is
more difficult. For both datasets, our system is
particularly strong with respect to ambiguous and
rare classes, considerably outperforming our new
Data-Lexicon Baseline and thus addressing a key
challenge in FrameId.
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Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-
Philippe Morency. 2017. Multimodal machine
learning: A survey and taxonomy. arXiv preprint
arXiv:1705.09406.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of Ar-
tificial Intelligence Research, 49(2014):1–47.

Aljoscha Burchardt, Katrin Erk, Anette Frank, An-
drea Kowalski, Sebastian Padó, and Manfred Pinkal.
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Sebastian Padó. 2004. PropBank, SALSA, and
FrameNet: How design determines product. In Pro-
ceedings of the LREC 2004 Workshop on Build-
ing Lexical Resources from Semantically Annotated
Corpora, Lisbon, Portugal.

Katrin Erk and Sebastian Pado. 2006. Shalmaneser -
A flexible toolbox for semantic role assignment. In
Proceedings of LREC, Genoa, Italy.

Parvin Sadat Feizabadi and Sebastian Padó. 2012. Au-
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Abstract
We present a new approach to learning se-
mantic parsers from multiple datasets, even
when the target semantic formalisms are dras-
tically different, and the underlying corpora do
not overlap. We handle such “disjoint” data
by treating annotations for unobserved for-
malisms as latent structured variables. Build-
ing on state-of-the-art baselines, we show im-
provements both in frame-semantic parsing
and semantic dependency parsing by model-
ing them jointly. Our code is open-source
and available at https://github.com/
Noahs-ARK/NeurboParser.

1 Introduction

Semantic parsing aims to automatically predict
formal representations of meaning underlying nat-
ural language, and has been useful in question an-
swering (Shen and Lapata, 2007), text-to-scene
generation (Coyne et al., 2012), dialog systems
(Chen et al., 2013) and social-network extraction
(Agarwal et al., 2014), among others. Various for-
mal meaning representations have been developed
corresponding to different semantic theories (Fill-
more, 1982; Palmer et al., 2005; Flickinger et al.,
2012; Banarescu et al., 2013). The distributed
nature of these efforts results in a set of anno-
tated resources that are similar in spirit, but not
strictly compatible. A major axis of structural di-
vergence in semantic formalisms is whether based
on spans (Baker et al., 1998; Palmer et al., 2005)
or dependencies (Surdeanu et al., 2008; Oepen
et al., 2014; Banarescu et al., 2013; Copestake
et al., 2005, inter alia). Depending on applica-
tion requirements, either might be most useful in a
given situation.

Learning from a union of these resources seems
promising, since more data almost always trans-
lates into better performance. This is indeed the
case for two prior techniques—parameter sharing

Only a few books fell in the reading

arg1

room .
arg1

mwe
arg1 arg1

arg2

BV

compound

top

in.prep

Locative 
RelationFigure Ground

fall.v
Motion

DirectionalTheme Place
a few.art  

Quantity Individuals

Figure 1: An example sentence from the FrameNet
1.5 corpus, shown with an author-annotated DM
semantic dependency graph (above) and frame-
semantic annotation (below). Two more gold
frames (and their arguments) have been omitted
for space.

(FitzGerald et al., 2015; Kshirsagar et al., 2015),
and joint decoding across multiple formalisms us-
ing cross-task factors that score combinations of
substructures from each (Peng et al., 2017). Pa-
rameter sharing can be used in a wide range of
multitask scenarios, when there is no data overlap
or even any similarity between the tasks (Collobert
and Weston, 2008; Søgaard and Goldberg, 2016).
But techniques involving joint decoding have so
far only been shown to work for parallel annota-
tions of dependency-based formalisms, which are
structurally very similar to each other (Lluı́s et al.,
2013; Peng et al., 2017). Of particular interest is
the approach of Peng et al., where three kinds of
semantic graphs are jointly learned on the same in-
put, using parallel annotations. However, as new
annotation efforts cannot be expected to use the
same original texts as earlier efforts, the utility of
this approach is limited.

We propose an extension to Peng et al.’s formu-
lation which addresses this limitation by consid-
ering disjoint resources, each containing only a
single kind of annotation. Moreover, we consider
structurally divergent formalisms, one dealing
with semantic spans and the other with semantic
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dependencies. We experiment on frame-semantic
parsing (Gildea and Jurafsky, 2002; Das et al.,
2010), a span-based semantic role labeling (SRL)
task (§2.1), and on a dependency-based minimum
recursion semantic parsing (DELPH-IN MRS, or
DM; Flickinger et al., 2012) task (§2.2). See Fig-
ure 1 for an example sentence with gold FrameNet
annotations, and author-annotated DM representa-
tions.

Our joint inference formulation handles missing
annotations by treating the structures that are not
present in a given training example as latent vari-
ables (§3).1 Specifically, semantic dependencies
are treated as a collection of latent variables when
training on FrameNet examples.

Using this latent variable formulation, we
present an approach for relating spans and depen-
dencies, by explicitly scoring affinities between
pairs of potential spans and dependencies. Be-
cause there are a huge number of such pairs, we
limit our consideration to only certain pairs—our
design is inspired by the head rules of Surdeanu
et al. (2008). Further possible span-dependency
pairs are pruned using an `1-penalty technique
adapted from sparse structure learning (§5). Neu-
ral network architectures are used to score frame-
semantic structures, semantic dependencies, as
well as cross-task structures (§4).

To summarize, our contributions include:
• using a latent variable formulation to ex-

tend cross-task scoring techniques to scenar-
ios where datasets do not overlap;
• learning cross-task parts across structurally

divergent formalisms; and
• using an `1-penalty technique to prune the

space of cross task parts.
Our approach results in a new state-of-the-art
in frame-semantic parsing, improving prior
work by 0.8% absolute F1 points (§6), and
achieves competitive performance on semantic
dependency parsing. Our code is available
at https://github.com/Noahs-ARK/
NeurboParser.

2 Tasks and Related Work

We describe the two tasks addressed in this
work—frame-semantic parsing (§2.1) and seman-
tic dependency parsing (§2.2)—and discuss how

1Following past work on support vector machines with
latent variables (Yu and Joachims, 2009), we use the term
“latent variable,” even though the model is not probabilistic.

their structures relate to each other (§2.3).

2.1 Frame-Semantic Parsing

Frame-semantic parsing is a span-based task, un-
der which certain words or phrases in a sentence
evoke semantic frames. A frame is a group of
events, situations, or relationships that all share the
same set of participant and attribute types, called
frame elements or roles. Gold supervision for
frame-semantic parses comes from the FrameNet
lexicon and corpus (Baker et al., 1998).

Concretely, for a given sentence, x, a frame-
semantic parse y consists of:

• a set of targets, each being a short span (usu-
ally a single token2) that evokes a frame;
• for each target t, the frame f that it evokes;

and
• for each frame f , a set of non-overlapping ar-

gument spans in the sentence, each argument
a = (i, j, r) having a start token index i, end
token index j and role label r.

The lemma and part-of-speech tag of a target
comprise a lexical unit (or LU). The FrameNet
ontology provides a mapping from an LU ` to
the set of possible frames it could evoke, F`.
Every frame f ∈ F` is also associated with
a set of roles, Rf under this ontology. For
example, in Figure 1, the LU “fall.v” evokes
the frame MOTION DIRECTIONAL. The roles
THEME and PLACE (which are specific to MO-
TION DIRECTIONAL), are filled by the spans
“Only a few books” and “in the reading room” re-
spectively. LOCATIVE RELATION has other roles
(PROFILED REGION, ACCESSIBILITY, DEIXIS,
etc.) which are not realized in this sentence.

In this work, we assume gold targets and LUs
are given, and parse each target independently,
following the literature (Johansson and Nugues,
2007; FitzGerald et al., 2015; Yang and Mitchell,
2017; Swayamdipta et al., 2017, inter alia). More-
over, following Yang and Mitchell (2017), we per-
form frame and argument identification jointly.
Most prior work has enforced the constraint that
a role may be filled by at most one argument span,
but following Swayamdipta et al. (2017) we do not
impose this constraint, requiring only that argu-
ments for the same target do not overlap.

296.5% of targets in the training data are single tokens.
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2.2 Semantic Dependency Parsing

Broad-coverage semantic dependency parsing
(SDP; Oepen et al., 2014, 2015, 2016) represents
sentential semantics with labeled bilexical depen-
dencies. The SDP task mainly focuses on three
semantic formalisms, which have been converted
to dependency graphs from their original annota-
tions. In this work we focus on only the DELPH-
IN MRS (DM) formalism.

Each semantic dependency corresponds to a la-
beled, directed edge between two words. A sin-
gle token is also designated as the top of the
parse, usually indicating the main predicate in the
sentence. For example in Figure 1, the left-most
arc has head “Only”, dependent “few”, and label
arg1. In semantic dependencies, the head of an
arc is analogous to the target in frame semantics,
the destination corresponds to the argument, and
the label corresponds to the role. The same set of
labels are available for all arcs, in contrast to the
frame-specific roles in FrameNet.

2.3 Spans vs. Dependencies

Early semantic role labeling was span-based
(Gildea and Jurafsky, 2002; Toutanova et al.,
2008, inter alia), with spans corresponding to syn-
tactic constituents. But, as in syntactic parsing,
there are sometimes theoretical or practical rea-
sons to prefer dependency graphs. To this end,
Surdeanu et al. (2008) devised heuristics based on
syntactic head rules (Collins, 2003) to transform
PropBank (Palmer et al., 2005) annotations into
dependencies. Hence, for PropBank at least, there
is a very direct connection (through syntax) be-
tween spans and dependencies.

For many other semantic representations, such
a direct relationship might not be present. Some
semantic representations are designed as graphs
from the start (Hajič et al., 2012; Banarescu et al.,
2013), and have no gold alignment to spans. Con-
versely, some span-based formalisms are not an-
notated with syntax (Baker et al., 1998; He et al.,
2015),3 and so head rules would require using
(noisy and potentially expensive) predicted syn-
tax.

Inspired by the head rules of Surdeanu et al.
(2008), we design cross-task parts, without relying

3 In FrameNet, phrase types of arguments and their gram-
matical function in relation to their target have been anno-
tated. But in order to apply head rules, the internal structure
of arguments (or at least their semantic heads) would also re-
quire syntactic annotations.

on gold or predicted syntax (which may be either
unavailable or error-prone) or on heuristics.

3 Model

Given an input sentence x, and target t with
its LU `, denote the set of valid frame-semantic
parses (§2.1) as Y(x, t, `), and valid semantic de-
pendency parses as Z(x).4 We learn a parameter-
ized function S that scores candidate parses. Our
goal is to jointly predict a frame-semantic parse
and a semantic dependency graph by selecting the
highest scoring candidates:

(ŷ, ẑ) = arg max
(y,z)∈Y(x,t,`)×Z(x)

S(y, z,x, t, `). (1)

The overall score S can be decomposed into the
sum of frame SRL score Sf, semantic dependency
score Sd, and a cross-task score Sc:

S(y, z,x, t, `) = Sf(y,x, t, `) + Sd(z,x)

+Sc(y, z,x, t,`).
(2)

Sf and Sc require access to the target and LU, in
addition to x, but Sd does not. For clarity, we omit
the dependence on the input sentence, target, and
lexical unit, whenever the context is clear. Below
we describe how each of the scores is computed
based on the individual parts that make up the
candidate parses.
Frame SRL score. The score of a frame-
semantic parse consists of
• the score for a predicate part, sf (p) where

each predicate is defined as a combination of
a target t, the associated LU, `, and the frame
evoked by the LU, f ∈ F`;
• the score for argument parts, sf (a), each as-

sociated with a token span and semantic role
fromRf .

Together, this results in a set of frame-semantic
parts of size O(n2 |F`| |Rf |).5 The score for a
frame semantic structure y is the sum of local
scores of parts in y:

Sf(y) =
∑

yi∈y
sf(yi). (3)

The computation of sf is described in §4.2.

4For simplicity, we consider only a single target here; han-
dling of multiple targets is discussed in §6.

5With pruning (described in §6) we reduce this to a num-
ber of parts linear in n. Also, |F`| is usually small (averaging
1.9), as is |Rf | (averaging 9.5).
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includes
include.v
Inclusion

Evidence to support this argument
Total

…

Figure 2: An example of cross-task parts from the
FrameNet 1.5 development set. We enumerate
all unlabeled semantic dependencies from the first
word of the target (includes) to any token inside
the span. The red bolded arc indicates the predic-
tion of our model.

Semantic dependency score. Following Mar-
tins and Almeida (2014), we consider three types
of parts in a semantic dependency graph: seman-
tic heads, unlabeled semantic arcs, and labeled se-
mantic arcs. Analogous to Equation 3, the score
for a dependency graph z is the sum of local
scores:

Sd(z) =
∑

zj∈z
sd(zj), (4)

The computation of sd is described in §4.3.
Cross task score. In addition to task-specific
parts, we introduce a set C of cross-task parts.
Each cross-task part relates an argument part from
y to an unlabeled dependency arc from z. Based
on the head-rules described in §2.3, we consider
unlabeled arcs from the target to any token inside
the span.6 Intuitively, an argument in FrameNet
would be converted into a dependency from its tar-
get to the semantic head of its span. Since we do
not know the semantic head of the span, we con-
sider all tokens in the span as potential modifiers
of the target. Figure 2 shows examples of cross-
task parts. The cross-task score is given by

Sc(y, z) =
∑

(yi,zj)∈(y×z)∩C
sc(yi, zj). (5)

The computation of sc is described in §4.4.
In contrast to previous work (Lluı́s et al., 2013;

Peng et al., 2017), where there are parallel annota-
tions for all formalisms, our input sentences con-
tain only one of the two—either the span-based
frame SRL annotations, or semantic dependency
graphs from DM. To handle missing annotations,
we treat semantic dependencies z as latent when

6Most targets are single-words (§2.1). For multi-token
targets, we consider only the first token, which is usually
content-bearing.

decoding frame-semantic structures.7 Because the
DM dataset we use does not have target anno-
tations, we do not use latent variables for frame
semantic structures when predicting semantic de-
pendency graphs. The parsing problem here re-
duces to

ẑ = arg max
z∈Z

Sd(z), (6)

in contrast with Equation 1 .

4 Parameterizations of Scores

This section describes the parametrization of the
scoring functions from §3. At a very high level:
we learn contextualized token and span vectors
using a bidirectional LSTM (biLSTM; Graves,
2012) and multilayer perceptrons (MLPs) (§4.1);
we learn lookup embeddings for LUs, frames,
roles, and arc labels; and to score a part, we
combine the relevant representations into a single
scalar score using a (learned) low-rank multilin-
ear mapping. Scoring frames and arguments is
detailed in §4.2, that of dependency structures in
§4.3, and §4.4 shows how to capture interactions
between arguments and dependencies. All param-
eters are learned jointly, through the optimization
of a multitask objective (§5).

Tensor notation. The order of a tensor is the
number of its dimensions—an order-2 tensor is a
matrix and an order-1 tensor is a vector. Let ⊗
denote tensor product; the tensor product of two
order-2 tensors A and B yields an order-4 tensor
where (A ⊗B)i,j,k,l = Ai,jBk,l. We use 〈·, ·〉 to
denote inner products.

4.1 Token and Span Representations

The representations of tokens and spans are
formed using biLSTMs followed by MLPs.

Contextualized token representations. Each
token in the input sentence x is mapped to an
embedding vector. Two LSTMs (Hochreiter and
Schmidhuber, 1997) are run in opposite directions
over the input vector sequence. We use the con-
catenation of the two hidden representations at
each position i as a contextualized word embed-
ding for each token:

hi =
[−→
h i;
←−
h i

]
. (7)

7Semantic dependency parses over a sentence are not con-
strained to be identical for different frame-semantic targets.
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Span representations. Following Lee et al.
(2017), span representations are computed based
on boundary word representations and discrete
length and distance features. Concretely, given a
target t and its associated argument a = (i, j, r)
with boundary indices i and j, we compute three
features φt(a) based on the length of a, and the
distances from i and j to the start of t. We con-
catenate the token representations at a’s boundary
with the discrete features φt(a). We then use a
two-layer tanh-MLP to compute the span repre-
sentation:

gspan(i, j) = MLPspan ([hi;hj ;φt(a)]
)
. (8)

The target representation gtgt(t) is similarly com-
puted using a separate MLPtgt, with a length fea-
ture but no distance features.

4.2 Frame and Argument Scoring
As defined in §3, the representation for a predi-
cate part incorporates representations of a target
span, the associated LU and the frame evoked by
the LU. The score for a predicate part is given by
a multilinear mapping:

gpred(f) = gfr(f)⊗ gtgt(t)⊗ glu(`) (9a)

sf(p) =
〈
W,gpred(f)

〉
, (9b)

where W is a low-rank order-3 tensor of learned
parameters, and gfr(f) and glu(`) are learned
lookup embeddings for the frame and LU.

A candidate argument consists of a span and its
role label, which in turn depends on the frame, tar-
get and LU. Hence the score for argument part,
a = (i, j, r) is given by extending definitions from
Equation 9:

garg(a) = gspan(i, j)⊗ grole(r), (10a)

sf(a) =
〈
W⊗U,gpred(f)⊗ garg(a)

〉
, (10b)

where U is a low-rank order-2 tensor of learned
parameters and grole(r) is a learned lookup em-
bedding of the role label.

4.3 Dependency Scoring
Local scores for dependencies are implemented
with two-layer tanh-MLPs, followed by a final
linear layer reducing the represenation to a single
scalar score. For example, let u = i→j denote
an unlabeled arc (ua). Its score is:

gua(u) = MLPua([hi;hj ]
)

(11a)

sd(u) = wua · gua(u), (11b)

where wua is a vector of learned weights. The
scores for other types of parts are computed simi-
larly, but with separate MLPs and weights.

4.4 Cross-Task Part Scoring

As shown in Figure 2, each cross-task part c con-
sists of two first-order parts: a frame argument part
a, and an unlabeled dependency part, u. The score
for a cross-task part incorporates both:

sc (c) =
〈
W⊗U⊗V,gpred(f)⊗ garg(a)

⊗ wua ⊗ gua(u)
〉
,

(12)

where V is a low-rank order-2 tensor of parame-
ters. Following previous work (Lei et al., 2014;
Peng et al., 2017), we construct the parameter ten-
sors W, U, and V so as to upper-bound their ranks.

5 Training and Inference

All parameters from the previous sections are
trained using a max-margin training objective
(§5.1). For inference, we use a linear program-
ming procedure, and a sparsity-promoting penalty
term for speeding it up (§5.2).

5.1 Max-Margin Training

Let y∗ denote the gold frame-semantic parse, and
let δ (y,y∗) denote the cost of predicting y with
respect to y∗. We optimize the latent structured
hinge loss (Yu and Joachims, 2009), which gives a
subdifferentiable upper-bound on δ:

L (y∗) = max
(y,z)∈Y×Z

{S (y, z) + δ (y,y∗)}

−max
z∈Z
{S (y∗, z)} .

(13)

Following Martins and Almeida (2014), we use a
weighted Hamming distance as the cost function,
where, to encourage recall, we use costs 0.6 for
false negative predictions and 0.4 for false posi-
tives. Equation 13 can be evaluated by applying
the same max-decoding algorithm twice—once
with cost-augmented inference (Crammer et al.,
2006), and once more keeping y∗ fixed. Train-
ing then aims to minimize the average loss over
all training instances.8

Another potential approach to training a model
on disjoint data would be to marginalize out the

8We do not use latent frame structures when decoding se-
mantic dependency graphs (§3). Hence, the loss reduces to
structured hinge (Tsochantaridis et al., 2004) when training
on semantic dependencies.
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latent structures and optimize the conditional log-
likelihood (Naradowsky et al., 2012). Although
max-decoding and computing marginals are both
NP-hard in general graphical models, there are
more efficient off-the-shelf implementations for
approximate max-decoding, hence, we adopt a
max-margin formulation.

5.2 Inference

We formulate the maximizations in Equation 13
as 0–1 integer linear programs and use AD3 to
solve them (Martins et al., 2011). We only
enforce a non-overlapping constraint when de-
coding FrameNet structures, so that the argu-
ment identification subproblem can be efficiently
solved by a dynamic program (Kong et al., 2016;
Swayamdipta et al., 2017). When decoding se-
mantic dependency graphs, we enforce the deter-
minism constraint (Flanigan et al., 2014), where
certain labels may appear on at most one arc out-
going from the same token.
Inference speedup by promoting sparsity. As
discussed in §3, even after pruning, the number of
within-task parts is linear in the length of the in-
put sentence, so the number of cross-task parts is
quadratic. This leads to potentially very slow in-
ference. We address this problem by imposing an
`1 penalty on the cross-task part scores:

L
(
y∗
)
+ λ

∑

(yi,zj)∈C

∣∣sc(yi, zj)
∣∣, (14)

where λ is a hyperparameter, set to 0.01 as a prac-
tical tradeoff between efficiency and development
set performance. Whenever the score for a cross-
task part is driven to zero, that part’s score no
longer needs to be considered during inference.
It is important to note that by promoting sparsity
this way, we do not prune out any candidate solu-
tions. We are instead encouraging fewer terms in
the scoring function, which leads to smaller, faster
inference problems even though the space of fea-
sible parses is unchanged.

The above technique is closely related to a line
of work in estimating the structure of sparse graph-
ical models (Yuan and Lin, 2007; Friedman et al.,
2008), where an `1 penalty is applied to the inverse
covariance matrix in order to induce a smaller
number of conditional dependencies between vari-
ables. To the best of our knowledge, we are the
first to apply this technique to the output of neural
scoring functions. Here, we are interested in learn-

Train Exemplars Dev. Test

FN 1.5 17,143 153,952 2,333 4,457
FN 1.7 19,875 192,460 2,308 6,722

DM id 33,961 - 1,692 1,410
DM ood - - - 1,849

Table 1: Number of instances in datasets.

ing sparse graphical models only because they re-
sult in faster inference, not because we have any a
priori belief about sparsity. This results in roughly
a 14× speedup in our experiments, without any
significant drop in performance.

6 Experiments

Datasets. Our model is evaluated on two differ-
ent releases of FrameNet: FN 1.5 and FN 1.7,9

using splits from Swayamdipta et al. (2017). Fol-
lowing Swayamdipta et al. (2017) and Yang and
Mitchell (2017), each target annotation is treated
as a separate training instance. We also include
as training data the exemplar sentences, each an-
notated for a single target, as they have been re-
ported to improve performance (Kshirsagar et al.,
2015; Yang and Mitchell, 2017). For semantic de-
pendencies, we use the English DM dataset from
the SemEval 2015 Task 18 closed track (Oepen
et al., 2015).10 DM contains instances from the
WSJ corpus for training and both in-domain (id)
and out-of-domain (ood) test sets, the latter from
the Brown corpus.11 Table 1 summarizes the sizes
of the datasets.
Baselines. We compare FN performance of our
joint learning model (FULL) to two baselines:
BASIC: A single-task frame SRL model, trained

using a structured hinge objective.
NOCTP: A joint model without cross-task parts.

It demonstrates the effect of sharing parame-
ters in word embeddings and LSTMs (like in
FULL). It does not use latent semantic depen-
dency structures, and aims to minimize the
sum of training losses from both tasks.

We also compare semantic dependency parsing
performance against the single task model by Peng

9https://FN.icsi.berkeley.edu/
fndrupal/

10http://sdp.delph-in.net/. The closed track
does not have access to any syntactic analyses. The impact of
syntactic features on SDP performance is extensively studied
in Ribeyre et al. (2015).

11Our FN training data does not overlap with the DM test
set. We remove the 3 training sentences from DM which ap-
pear in FN test data.
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Model Prec. Rec. F 1

Roth 72.2 68.0 70.0
Täckström 75.4 65.8 70.3
FitzGerald 74.8 65.5 69.9
FitzGerald (10×) 75.0 67.3 70.9
open-SESAME 71.0 67.8 69.4
open-SESAME (5×) 71.2 70.5 70.9
Yang and Mitchell (REL) 77.1 68.7 72.7
†∗Yang and Mitchell (ALL) 78.8 74.5 76.6
†This work (FULL) 80.4 73.5 76.8
†This work (FULL, 2×) 80.4 74.7 77.4
†This work (BASIC) 79.2 71.7 75.3
†This work (NOCTP) 76.9 74.8 75.8

Table 2: FN 1.5 full structure extraction test per-
formance. † denotes the models jointly predicting
frames and arguments, and other systems imple-
ment two-stage pipelines and use the algorithm by
Hermann et al. (2014) to predict frames. K× de-
notes a product-of-experts ensemble of K mod-
els. ∗Ensembles a sequential tagging CRF and a
relational model. Bold font indicates best perfor-
mance among all systems.

et al. (2017), denoted as NeurboParser (BASIC).
To ensure fair comparison with our FULL model,
we made several modifications to their implemen-
tation (§6.3). We observed performance improve-
ments from our reimplementation, which can be
seen in Table 5.
Pruning strategies. For frame SRL, we
discard argument spans longer than 20 to-
kens (Swayamdipta et al., 2017). We further
pretrain an unlabeled model and prune spans with
posteriors lower than 1/n2, with n being the input
sentence length. For semantic dependencies, we
generally follow Martins and Almeida (2014),
replacing their feature-rich pruner with neural net-
works. We observe that O(n) spans/arcs remain
after pruning, with around 96% FN development
recall, and more than 99% for DM.12

6.1 Empirical Results
FN parsing results. Table 2 compares our full
frame-semantic parsing results to previous sys-
tems. Among them, Täckström et al. (2015) and
Roth (2016) implement a two-stage pipeline and
use the method from Hermann et al. (2014) to
predict frames. FitzGerald et al. (2015) uses the

12On average, around 0.8n argument spans, and 5.7n un-
labeled dependency arcs remain after pruning.

Model All Ambiguous

Hartmann 87.6 -
Yang and Mitchell 88.2 -

Hermann 88.4 73.1
†This work (BASIC) 89.2 76.3
†This work (NOCTP) 89.2 76.4
†This work (FULL) 89.9 77.7
†This work (FULL, 2×) 90.0 78.0

Table 3: Frame identification accuracy on the FN
1.5 test set. Ambiguous evaluates only on lexical
units having more than one possible frames. † de-
notes joint frame and argument identification, and
bold font indicates best performance.13

same pipeline formulation, but improves the frame
identification of Hermann et al. (2014) with better
syntactic features. open-SESAME (Swayamdipta
et al., 2017) uses predicted frames from FitzGer-
ald et al. (2015), and improves argument identi-
fication using a softmax-margin segmental RNN.
They observe further improvements from product
of experts ensembles (Hinton, 2002).

The best published FN 1.5 results are due
to Yang and Mitchell (2017). Their relational
model (REL) formulates argument identification
as a sequence of local classifications. They ad-
ditionally introduce an ensemble method (denoted
as ALL) to integrate the predictions of a sequen-
tial CRF. They use a linear program to jointly pre-
dict frames and arguments at test time. As shown
in Table 2, our single-model performance outper-
forms their REL model, and is on par with their
ALL model. For a fair comparison, we build an
ensemble (FULL, 2×) by separately training two
models, differing only in random seeds, and aver-
aging their part scores. Our ensembled model out-
performs previous best results by 0.8% absolute.

Table 3 compares our frame identification re-
sults with previous approaches. Hermann et al.
(2014) and Hartmann et al. (2017) use distributed
word representations and syntax features. We fol-
low the FULL LEXICON setting (Hermann et al.,
2014) and extract candidate frames from the offi-

13Our comparison to Hermann et al. (2014) is based
on their updated version: http://www.aclweb.org/
anthology/P/P14/P14-1136v2.pdf. Ambiguous
frame identification results by Yang and Mitchell (2017) and
Hartmann et al. (2017) are 75.7 and 73.8. Their ambiguous
lexical unit sets are different from the one extracted from the
official frame directory, and thus the results are not compara-
ble to those in Table 3.
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Full Structure Frame Id.

Model Prec. Rec. F 1 All Amb.

BASIC 78.0 72.1 75.0 88.6 76.6
NOCTP 79.8 72.4 75.9 88.5 76.3
FULL 80.2 72.9 76.4 89.1 77.5

Table 4: FN 1.7 full structure extraction and frame
identification test results. Bold font indicates best
performance. FN 1.7 test set is an extension of FN
1.5 test, hence the results here are not comparable
to those reported in Table 2.

Model id F 1 ood F 1

NeurboParser (BASIC) 89.4 84.5
NeurboParser (FREDA3) 90.4 85.3

NeurboParser (BASIC, reimpl.) 90.0 84.6

This work (NOCTP) 89.9 85.2
This work (FULL) 90.5 85.9
This work (FULL, 2×) 91.2 86.6

Table 5: Labeled parsing performance in F1 score
for DM semantic dependencies. id denotes in-
domain WSJ test data, and ood denotes out-of-
domain brown corpus test data. Bold font indi-
cates best performance.

cial directories. The Ambiguous setting compares
lexical units with more than one possible frames.
Our approach improves over all previous models
under both settings, demonstrating a clear benefit
from joint learning.

We observe similar trends on FN 1.7 for both
full structure extraction and for frame identifica-
tion only (Table 4). FN 1.7 extends FN 1.5 with
more consistent annotations. Its test set is different
from that of FN 1.5, so the results are not directly
comparable to Table 2. We are the first to report
frame-semantic parsing results on FN 1.7, and we
encourage future efforts to do so as well.

Semantic dependency parsing results. Table 5
compares our semantic dependency parsing per-
formance on DM with the baselines. Our reim-
plementation of the BASIC model slightly im-
proves performance on in-domain test data. The
NOCTP model ties parameters from word embed-
dings and LSTMs when training on FrameNet and
DM, but does not use cross-task parts or joint pre-
diction. NOCTP achieves similar in-domain test
performance, and improves over BASIC on out-
of-domain data. By jointly predicting FrameNet

Rel. Err. (%)

Operation Description BASIC FULL

Frame error Frame misprediction. 11.3 11.1

Role error Matching span with incorrect
role.

12.6
(5.2)

13.4
(5.9)

Span error Matching role with incorrect
span. 11.4 12.3

Arg. error Predicted argument does not
overlap with any gold span. 18.6 22.4

Missing arg. Gold argument does not overlap
with any predicted span. 43.5 38.0

Table 6: Percentage of errors made by BASIC

and FULL models on the FN 1.5 development
set. Parenthesized numbers show the percentage
of role errors when frame predictions are correct.

structures and semantic dependency graphs, the
FULL model outperforms the baselines by more
than 0.6% absolute F1 scores under both settings.

Previous state-of-the-art results on DM are
due to the joint learning model of Peng et al.
(2017), denoted as NeurboParser (FREDA3). They
adopted a multitask learning approach, jointly pre-
dicting three different parallel semantic depen-
dency annotations. Our FULL model’s in-domain
test performance is on par with FREDA3, and im-
proves over it by 0.6% absolute F1 on out-of-
domain test data. Our ensemble of two FULL

models achieves a new state-of-the-art in both in-
domain and out-of-domain test performance.

6.2 Analysis
Error type breakdown. Similarly to He et al.
(2017), we categorize prediction errors made by
the BASIC and FULL models in Table 6. Entirely
missing an argument accounts for most of the er-
rors for both models, but we observe fewer er-
rors by FULL compared to BASIC in this category.
FULL tends to predict more arguments in general,
including more incorrect arguments.

Since candidate roles are determined by frames,
frame and role errors are highly correlated. There-
fore, we also show the role errors when frames
are correctly predicted (parenthesized numbers in
the second row). When a predicted argument span
matches a gold span, predicting the semantic role
is less challenging. Role errors account for only
around 13% of all errors, and half of them are due
to mispredictions of frames.
Performance by argument length. Figure 3
plots dev. precision and recall of both BASIC and
FULL against binned argument lengths. We ob-
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Figure 3: FN 1.5 development precision and re-
call of BASIC and FULL by different argument
lengths. Length ` is binned to blog1.6 `c, and
precision/recall values are smoothed with loess,
with a smoothing parameter of 0.1.

serve two trends: (a) FULL tends to predict longer
arguments (averaging 3.2) compared to BASIC

(averaging 2.9), while keeping similar precision;14

(b) recall improvement in FULL mainly comes
from arguments longer than 4.

6.3 Implementation Details

Our implementation is based on DyNet (Neubig
et al., 2017).15 We use predicted part-of-speech
tags and lemmas using NLTK (Bird et al., 2009).16

Parameters are optimized with stochastic sub-
gradient descent for up to 30 epochs, with `2
norms of gradients clipped to 1. We use 0.33 as
initial learning rate, and anneal it at a rate of 0.5
every 10 epochs. Early stopping is applied based
on FN development F1. We apply logarithm with
base 2 to all discrete features, e.g., log2(d+1) for
distance feature valuing d. To speed up training,
we randomly sample a 35% subset from the FN
exemplar instances each epoch.
Hyperparameters. Each input token is repre-
sented as the concatenation a word embedding
vector, a learned lemma vector, and a learned vec-
tor for part-of speech, all updated during train-
ing. We use 100-dimensional GloVe (Pennington
et al., 2014) to initialize word embeddings. We ap-
ply word dropout (Iyyer et al., 2015) and randomly
replace a word w with a special UNK symbol with
probability α

1+#(w) , with #(w) being the count of
w in the training set. We follow the default param-
eters initialization procedure by DyNet, and an `2

14Average gold span length is 3.4 after discarding those
longer than 20.

15https://github.com/clab/dynet
16http://www.nltk.org/

Hyperparameter Value

Word embedding dimension 100 (32)
Lemma embedding dimension 50 (16)
POS tag embedding dimension 50 (16)
MLP dimension 100 (32)
Tensor rank r 100 (32)
BiLSTM layers 2 (1)
BiLSTM dimensions 200 (64)
α for word dropout 1.0 (1.0)

Table 7: Hyperparameters used in the experiments.
Parenthesized numbers indicate those used by the
pretrained pruners.

penalty of 10−6 is applied to all weights. See Ta-
ble 7 for other hyperparameters.
Modifications to Peng et al. (2017). To ensure
fair comparisons, we note two implementation
modifications to Peng et al.’s basic model. We use
a more recent version (2.0) of the DyNet toolkit,
and we use 50-dimensional lemma embeddings in-
stead of their 25-dimensional randomly-initialized
learned word embeddings.

7 Conclusion

We presented a novel multitask approach to learn-
ing semantic parsers from disjoint corpora with
structurally divergent formalisms. We showed
how joint learning and prediction can be done
with scoring functions that explicitly relate spans
and dependencies, even when they are never ob-
served together in the data. We handled the re-
sulting inference challenges with a novel adapta-
tion of graphical model structure learning to the
deep learning setting. We raised the state-of-
the-art on DM and FrameNet parsing by learn-
ing from both, despite their structural differ-
ences and non-overlapping data. While our
selection of factors is specific to spans and
dependencies, our general techniques could be
adapted to work with more combinations of struc-
tured prediction tasks. We have released our
implementation at https://github.com/
Noahs-ARK/NeurboParser.
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2012. Announcing Prague Czech-English depen-
dency treebank 2.0. In Proc. of LREC.

Silvana Hartmann, Ilia Kuznetsov, Teresa Martin, and
Iryna Gurevych. 2017. Out-of-domain FrameNet
semantic role labeling. In Proc. of EACL.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep semantic role labeling: What
works and whats next. In Proc. of ACL.

Luheng He, Mike Lewis, and Luke S. Zettlemoyer.
2015. Question-answer driven semantic role label-
ing: Using natural language to annotate natural lan-
guage. In Proc. of EMNLP.

Karl Moritz Hermann, Dipanjan Das, Jason Weston,
and Kuzman Ganchev. 2014. Semantic frame iden-
tification with distributed word representations. In
Proc. of ACL.

Geoffrey E. Hinton. 2002. Training products of experts
by minimizing contrastive divergence. Neural Com-
putation 14(8):1771–1800.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation
9(8):1735–1780.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proc. of ACL.

Richard Johansson and Pierre Nugues. 2007. LTH: Se-
mantic structure extraction using nonprojective de-
pendency trees. In Proc. of SemEval.

Lingpeng Kong, Chris Dyer, and Noah A. Smith. 2016.
Segmental recurrent neural networks. In Proc. of
ICLR.

Meghana Kshirsagar, Sam Thomson, Nathan Schnei-
der, Jaime Carbonell, Noah A. Smith, and Chris
Dyer. 2015. Frame-semantic role labeling with het-
erogeneous annotations. In Proc. ACL.

1501



Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference resolu-
tion. In Proc. of EMNLP.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and
Tommi Jaakkola. 2014. Low-rank tensors for scor-
ing dependency structures. In Proc. ACL.

Xavier Lluı́s, Xavier Carreras, and Lluı́s Màrquez.
2013. Joint arc-factored parsing of syntactic and se-
mantic dependencies. TACL 1:219–230.
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Abstract
Recognizing that even correct translations are
not always semantically equivalent, we auto-
matically detect meaning divergences in par-
allel sentence pairs with a deep neural model
of bilingual semantic similarity which can be
trained for any parallel corpus without any
manual annotation. We show that our seman-
tic model detects divergences more accurately
than models based on surface features derived
from word alignments, and that these diver-
gences matter for neural machine translation.

1 Introduction

Parallel sentence pairs are sentences that are trans-
lations of each other, and are therefore often
assumed to convey the same meaning in the
source and target language. Occasional mis-
matches between source and target have been pri-
marily viewed as alignment noise (Goutte et al.,
2012) due to imperfect sentence alignment tools
in parallel corpora drawn from translated texts
(Tiedemann, 2011; Xu and Yvon, 2016), or the
noisy process of extracting parallel segments from
non-parallel corpora (Fung and Cheung, 2004;
Munteanu and Marcu, 2005).

In contrast, we view translation as a process that
inherently introduces meaning mismatches, so that
even correctly aligned sentence pairs are not nec-
essarily semantically equivalent. This can hap-
pen for many reasons: translation lexical choice
often involves selecting between near synonyms
that introduce language-specific nuances (Hirst,
1995), typological divergences lead to structural
mismatches (Dorr, 1994), differences in discourse
organization can make it impossible to find one-
to-one sentence alignments (Li et al., 2014).
Cross-linguistic variations in other discourse phe-
nomena such as coreference, discourse relation
and modality (Lapshinova-Koltunski, 2015) com-
pounded with translation effects that distinguish

“translationese” from original text (Koppel and
Ordan, 2011) might also lead to meaning mis-
matches between source and target.

In this paper, we aim to provide empirical ev-
idence that semantic divergences exist in paral-
lel corpora and matter for downstream applica-
tions. This requires an automatic method to distin-
guish semantically equivalent sentence pairs from
semantically divergent pairs, so that parallel cor-
pora can be used more judiciously in downstream
cross-lingual NLP applications. We propose a
semantic model to automatically detect whether
a sentence pair is semantically divergent (Sec-
tion 3). While prior work relied on surface cues
to detect mis-aligments, our approach focuses on
comparing the meaning of words and overlapping
text spans using bilingual word embeddings (Lu-
ong et al., 2015) and a deep convolutional neural
network (He and Lin, 2016). Crucially, training
this model requires no manual annotation. Noisy
supervision is obtained automatically borrowing
techniques developed for parallel sentence extrac-
tion (Munteanu and Marcu, 2005). Our model
can thus easily be trained to detect semantic di-
vergences in any parallel corpus.

We extensively evaluate our semantically-
motivated models on intrinsic and extrinsic tasks:
detection of divergent examples in two paral-
lel English-French data sets (Section 5), and
data selection for English-French and Vietnamese-
English machine translation (MT) (Section 6).The
semantic models significantly outperform other
methods on the intrinsic task, and help select data
to train neural machine translation faster with no
loss in translation quality. Taken together, these
results provide empirical evidence that sentence-
alignment does not necessarily imply semantic
equivalence, and that this distinction matters in
practice for a downstream NLP application.
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2 Background

Translation Divergences We use the term se-
mantic divergences to refer to bilingual sentence
pairs, including translations, that do not have the
same meaning. These differ from typological
divergences, which have been defined as struc-
tural differences between sentences that convey
the same meaning (Dorr, 1994; Habash and Dorr,
2002), and reflect the fact that languages do not
encode the same information in the same way.

Non-Parallel Corpora Mismatches in bilingual
sentence pairs have previously been studied to ex-
tract parallel segments from non-parallel corpora,
and augment MT training data (Fung and Cheung,
2004; Munteanu and Marcu, 2005, 2006; AbduI-
Rauf and Schwenk, 2009; Smith et al., 2010; Riesa
and Marcu, 2012, inter alia). Methods for parallel
sentence extraction rely primarily on surface fea-
tures based on translation lexicons and word align-
ment patterns (Munteanu and Marcu, 2005, 2006).
Similar features have proved to be useful for the
related task of translation quality estimation (Spe-
cia et al., 2010, 2016), which aims to detect diver-
gences introduced by MT errors, rather than hu-
man translation. Recently, sentence embeddings
have also been used to detect parallelism (España-
Bonet et al., 2017; Schwenk and Douze, 2017).
Although embeddings capture semantic general-
izations, these models are trained with neural MT
objectives, which do not distinguish semantically
equivalent segments from divergent parallel seg-
ments.

Cross-Lingual Sentence Semantics Cross-
lingual semantic textual similarity (Agirre et al.,
2016) and cross-lingual textual entailment (Negri
and Mehdad, 2010; Negri et al., 2012, 2013)
seek to characterize semantic relations between
sentences in two different languages beyond
translation equivalence, and are therefore directly
relevant to our goal. While the human judgments
obtained for each task differ, they all take inputs
of the same form (two segments in different
languages) and output a prediction that can be in-
terpreted as indicating whether they are equivalent
in meaning or not. Models share core intuitions,
relying either on MT to transfer the cross-lingual
task into its monolingual equivalent (Jimenez
et al., 2012; Zhao et al., 2013), or on features
derived from MT components such as translation
dictionaries and word alignments (Turchi and

Negri, 2013; Lo et al., 2016). Training requires
manually annotated examples, either bilingual,
or monolingual when using MT for language
transfer.

Impact of mismatched sentence pairs on MT
Prior MT work has focused on noise in sentence
alignment rather than semantic divergence. Goutte
et al. (2012) show that phrase-based systems are
remarkably robust to noise in parallel segments.
When introducing noise by permuting the target
side of parallel pairs, as many as 30% of training
examples had to be permuted to degrade BLEU
significantly. While such artificial noise does
not necessarily capture naturally occurring diver-
gences, there is evidence that data cleaning to re-
move real noise can benefit MT in low-resource
settings (Matthews et al., 2014).

Neural MT quality appears to be more sensi-
tive to the nature of training examples than phrase-
based systems. Chen et al. (2016) suggest that
neural MT systems are sensitive to sentence pair
permutations in domain adaptation settings. Be-
linkov and Bisk (2018) demonstrate the brittle-
ness of character-level neural MT when exposed
to synthetic noise (random permutations of words
and characters) as well as natural human errors.
Concurrently with our work, Hassan et al. (2018)
claim that even small amounts of noise can have
adverse effects on neural MT models, as they tend
to assign high probabilities to rare events. They
filter out noise and select relevant in-domain ex-
amples jointly, using similarities between sentence
embeddings obtained from the encoder of a bidi-
rectional neural MT system trained on clean in-
domain data. In contrast, we detect semantic di-
vergence with dedicated models that require only
5000 parallel examples (see Section 5).

This work builds on our initial study of seman-
tic divergences (Carpuat et al., 2017), where we
provide a framework for evaluating the impact of
meaning mismatches in parallel segments on MT
via data selection: we show that filtering out the
most divergent segments in a training corpus im-
proves translation quality. However, we previ-
ously detect mismatches using a cross-lingual en-
tailment classifier, which is based on surface fea-
tures only, and requires manually annotated train-
ing examples (Negri et al., 2012, 2013). In this
paper, we detect divergences using a semantically-
motivated model that can be trained given any ex-
isting parallel corpus without manual intervention.
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3 Approach

We introduce our approach to detecting divergence
in parallel sentences, with the goal of (1) detecting
differences ranging from large mismatches to sub-
tle nuances, (2) without manual annotation.

Cross-Lingual Semantic Similarity Model We
address the first requirement using a neural model
that compares the meaning of sentences using a
range of granularities. We repurpose the Very
Deep Pairwise Interaction (VDPWI) model, which
has been previously been used to detect semantic
textual similarity (STS) between English sentence
pairs (He and Lin, 2016). It achieved competitive
performance on data from the STS 2014 shared
task (Agirre et al., 2014), and outperformed pre-
vious approaches on sentence classification tasks
(He et al., 2015; Tai et al., 2015), with fewer pa-
rameters, faster training, and without requiring ex-
pensive external resources such as WordNet.

The VDPWI model was designed for compar-
ing the meaning of sentences in the same lan-
guage, based not only on word-to-word similar-
ity comparisons, but also on comparisons between
overlapping spans of the two sentences, as learned
by a deep convolutional neural network. We adapt
the model to our cross-lingual task by initializing
it with bilingual embeddings. To the best of our
knowledge, this is the first time this model has
been used for cross-lingual tasks in such a way.
We give a brief overview of the resulting model
here and refer the reader to the original paper for
details. Given sentences e and f , VDPWI mod-
els the semantic similarity between them using a
pipeline consisting of five components:

1. Bilingual word embeddings: Each word in
e and f is represented as a vector using pre-
trained, bilingual embeddings.

2. BiLSTM for contextualizing words: Con-
textualized representations for words in e and
f are obtained by choosing the output vectors
at each time step obtained by running a bidi-
rectional LSTM (Schuster and Paliwal, 1997)
on each sentence.

3. Word similarity cube: The contextualized
representations are used to calculate various
similarity scores between each word in e with
each word in f. Each score thus forms a ma-
trix and all such matrices are stacked to form
a similarity cube tensor.

4. Similarity focus layer: The similarity cube
is fed to a similarity focus layer that re-
weights the similarities in the cube to focus
on highly similar word pairs, by decreasing
the weights of pairs which are less similar.
This output is called the focus cube.

5. Deep convolutional network: The focus
cube is treated as an “image” and passed to
a deep neural network, the likes of which
have been used to detect patterns in images.
The network consists of repeating convolu-
tion and pooling layers. Each repetition con-
sists of a spatial convolutional layer, a Rec-
tified Linear Unit (Nair and Hinton, 2010),
and a max pooling layer, followed by fully
connected layers, and a softmax to obtain the
final output.

The entire architecture is trained end-to-end to
minimize the Kullback-Leibler divergence (Kull-
back, 1959) between the output similarity score
and gold similarity score.

Noisy Synthetic Supervision How can we ob-
tain gold similarity scores as supervision for our
task? We automatically construct examples of se-
mantically divergent and equivalent sentences as
follows. Since a large number of parallel sentence
pairs are semantically equivalent, we use parallel
sentences as positive examples. Synthetic negative
examples are generated following the protocol in-
troduced by Munteanu and Marcu (2005) to distin-
guish parallel from non-parallel segments. Specif-
ically, candidate negative examples are generated
starting from the positive examples {(ei, fi) ∀i}
and taking the Cartesian product of the two sides
of the positive examples{(ei, fj)∀i, j s.t. i 6= j}.
This candidate set is filtered to ensure that nega-
tive examples are not too easy to identify: we only
retain pairs that are close to each other in length
(a length ratio of at most 1:2), and have enough
words (at least half) which have a translation in the
other sentence according to a bilingual dictionary
derived from automatic word alignments.

This process yields positive and negative exam-
ples that are a noisy source of supervision for our
task, as some of the positive examples might not
be fully equivalent in meaning. However, exper-
iments will show that, in aggregate, they provide
a useful signal for the VDPWI model to learn to
detect semantic distinctions (Section 5).
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Equivalent with High Agreement (n = 5)

subs en the epidemic took my wife, my stepson.
fr l’épidémie a touché ma femme, mon beau-fils.
gl the epidemic touched my wife, my stepson.

Equivalent with Low Agreement (n = 3)

cc en cancellation policy: if cancelled up to 28 days before date of arrival, no fee will be charged.
fr conditions d’annulation : en cas d’annulation jusqu’à 28 jours avant la date d’arrivée, l’hôtel ne prélève pas de

frais sur la carte de crédit fournie.
gl cancellation conditions: in case of cancellation up to 28 days before arrival date, the hotel does not charge fees

from the credit card given.

Divergent with Low Agreement (n = 3)

cc en what does it mean when food is “low in ash” or “low in magnesium”?
fr quels sont les avantages dune nourriture “réduite en cendres” et “faible en magnésium” ?
gl what are the advantages of a food “low in ash” or “low in magnesium”?

Divergent with High Agreement (n = 5)

subs en rabbit? if i told you it was a chicken, you wouldn’t know the difference.
fr vous croirez manger du poulet.
gl you think eat chicken

Table 1: Randomly selected sentence pairs (English (en), French (fr) and gloss of French (gl)) annotated as diver-
gent or equivalent, with high and low degrees of agreement between the 5 annotators. Examples are taken either
from the OpenSubtitles (subs) or Common Crawl (cc) corpus.

4 Crowdsourcing Divergence Judgments

We crowdsource annotations of English-French
sentence pairs to construct test beds for evaluat-
ing our models, and also to assess how frequent
semantic divergences are in parallel corpora.

Data Selection We draw examples for annota-
tion randomly from two English-French corpora,
using a resource-rich and well-studied language
pair, and for which bilingual annotators can eas-
ily be found. The OpenSubtitles corpus con-
tains 33M sentence pairs based on translations of
movie subtitles. The sentence pairs are expected
to not be completely parallel given the many con-
straints imposed on translations that should fit on
a screen and be synchronized with a movie (Tiede-
mann, 2007; Lison and Tiedemann, 2016), and
the use of more informal registers which might
require frequent non-literal translations of figu-
rative language. The Common Crawl corpus
contains sentence-aligned parallel documents au-
tomatically mined from the Internet. Parallel doc-
uments are discovered using e.g., URL contain-
ing language code patterns, and sentences are
automatically aligned after structural cleaning of
HTML. The resulting corpus of 3M sentence pairs
is noisy, yet extremely useful to improve transla-
tion quality for multiple language pairs and do-
mains (Smith et al., 2013).

Annotation Protocol Divergence annotations
are obtained via Crowdflower.1 Since this task
requires good command of both French and En-
glish, we rely on a combination of strategies to
obtain good quality annotations, including Crowd-
flower’s internal worker proficiency ratings, geo-
restriction, reference annotations by a bilingual
speaker in our lab, and instructions that alternate
between the two languages (Agirre et al., 2016).

Annotators are shown an English-French sen-
tence pair, and asked whether they agree or dis-
agree with the statement “the French and English
text convey the same information.” We do not use
the term “divergent”, and let the annotators’ intu-
itions about what constitutes the same take prece-
dence. We set up two distinct annotation tasks, one
for each corpus, so that workers only see examples
sampled from a given corpus in a given job. Each
example is shown to five distinct annotators.

Annotation Analysis Forcing an assignment of
divergent or equivalent labels by majority vote
yields 43.6% divergent examples in OpenSubti-
tles, and 38.4% in Common Crawl. Fleiss’ Kappa
indicates moderate agreement between annotators
(0.41 for OpenSubtitles and 0.49 for Common
Crawl). This suggests that the annotation pro-
tocol can be improved, perhaps by using graded
judgments as in Semantic Textual Similarity tasks
(Agirre et al., 2016), or for sentence alignment

1http://crowdflower.com
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confidence evaluation (Xu and Yvon, 2016). Cur-
rent annotations are nevertheless useful, and dif-
ferent degrees of agreement reveal nuances in the
nature of divergences (Table 1). Examples labeled
as divergent with high confidence (lowest block
of the table) are either unrelated or one language
misses significant information that is present in
the other. Examples labeled divergent with lower
confidence contain more subtle differences (e.g.,
“what does it mean” in English vs. “what are the
advantages” in French).

5 Divergence Detection Evaluation

Using the two test sets obtained above, we can
evaluate the accuracy of our cross-lingual seman-
tic divergence detector, and compare it against a
diverse set of baselines in controlled settings. We
test our hypothesis that semantic divergences are
more than alignment mismatches by comparing
the semantic divergence detector with models that
capture mis-alignment (Section 5.2) or translation
(Section 5.3). Then, we compare the deep con-
volutional architecture of the semantic divergence
model, with a much simpler model that directly
compares bilingual sentence embeddings (Section
5.4). Finally, we compare our model trained on
synthetic examples with a supervised classifier
used in prior work to predict finer-grained textual
entailment categories based on manually created
training examples (Section 5.5). Except for the en-
tailment classifier which uses external resources,
all models are trained on the exact same paral-
lel corpora (OpenSubtitles or CommonCrawl for
evaluating on the corresponding test bed.)

5.1 Neural Semantic Divergence Detection

Model and Training Settings We use the pub-
licly available implementation of the VDPWI
model.2 We initialize with 200 dimensional BiVec
French-English word embeddings (Luong et al.,
2015), trained on the parallel corpus from which
our test set is drawn. We use the default setting
for all other VDPWI parameters. The model is
trained for 25 epochs and the model that achieves
the best Pearson correlation coefficient on the val-
idation set is chosen. At test time, VDPWI outputs
a score ∈ [0, 1], where a higher value indicates less
divergence. We tune a threshold on development

2https://github.com/castorini/
VDPWI-NN-Torch

data to convert the real-valued score to binary pre-
dictions.

Synthetic Data Generation The synthetic train-
ing data is constructed using a random sample of
5000 sentences from the training parallel corpus
as positive examples. We generate negative exam-
ples automatically as described in Section 3, and
sample a subset to maintain a 1:5 ratio of positive
to negative examples.3

5.2 Parallel vs. Non-parallel Classifier
Are divergences observed in parallel corpora more
than alignment errors? To answer this question,
we reimplement the model proposed by Munteanu
and Marcu (2005). It discriminates parallel pairs
from non-parallel pairs in comparable corpora us-
ing a supervised linear classifier with the follow-
ing features for each sentence pair (e, f):

• Length features: |f |, |e|, |f ||e| , and |e||f |
• Alignment features (for each of e and f ):4

– Count and ratio of unaligned words
– Top three largest fertilities
– Longest contiguous unaligned and

aligned sequence lengths
• Dictionary features:5 fraction of words in e

that have a translation in f and vice-versa.

Training uses the exact same synthetic exam-
ples as the semantic divergence model (Section 3).

5.3 Neural MT
If divergent examples are nothing more than bad
translations, a neural MT system should assign
lower scores to divergent segments pairs than to
those that are equivalent in meaning. We test this
empirically using neural MT systems trained for
a single epoch, and use the system to score each
of the sentence pairs in the test sets. We tune a
threshold on the development set to convert scores
to binary predictions. The system architecture
and training settings are described in details in the
later MT section (Section 6.2). Preliminary ex-
periments showed that training for more than one
epoch does not help divergence detection.

3We experimented with other ratios and found that the re-
sults only slightly degraded while using a more balanced ratio
(1:1, 1:2), but severely degraded with a skewed ratio (1:9).

4Alignments are obtained using IBM Model 2 trained in
each direction, combined with union, intersection,
and grow-diag-final-and heuristics.

5The bilingual dictionary used to extract features is con-
structed using word alignments from a random sample of a
million sentences from the training parallel corpus.
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5.4 Bilingual Sentence Embeddings
Our semantic divergence model introduces a large
number of parameters to combine the pairwise
word comparisons into a single sentence-level pre-
diction. This baseline tests whether a simpler
model would suffice. We detect semantic diver-
gence by computing the cosine similarity between
sentence embeddings in a bilingual space. The
sentence embeddings are bag-of-word representa-
tions, build by taking the mean of bilingual word
embeddings for each word in the sentence. This
approach has been shown to be effective, despite
ignoring fundamental linguistic information such
as word order and syntax (Mitchell and Lapata,
2010). We use the same 200 dimensional BiVec
word embeddings (Luong et al., 2015), trained on
OpenSubtitles and CommonCrawl respectively.

5.5 Textual Entailment Classifier
Our final baseline replicates our previous system
(Carpuat et al., 2017) where we repurposed anno-
tations and models designed for the task of Cross-
Lingual Textual Entailment (CLTE) to detect se-
mantic divergences. This baseline also helps us
understand how the synthetic training data com-
pares to training examples generated manually, for
a related cross-lingual task. Using CLTE datasets
from SemEval (Negri et al., 2012, 2013), we train
a supervised linear classifier that can distinguish
sentence pairs that entail each other, from pairs
where entailment does not hold in at least one di-
rection. The features of the classifier are based on
word alignments and sentence lengths.6

5.6 Intrinsic Evaluation Results
Table 2 shows that the semantic similarity model is
most successful at distinguishing equivalent from
divergent examples. The break down per class
shows that both equivalent and divergent examples
are better detected. The improvement is larger for
divergent examples with gains of about 10 points
for F-score for the divergent class, when compared
to the next-best scores.

Among the baseline methods, the non-
entailment model is the weakest. While it uses
manually constructed training examples, these
examples are drawn from distant domains, and the
categories annotated do not exactly match the task

6As in the prior work, alignments are trained on 2M sen-
tence pairs from Europarl (Koehn, 2005) using the Berkeley
aligner (Liang et al., 2006). The classifier is the linear SVM
from Scikit-Learn.

at hand. In contrast, the other models benefit from
training on examples drawn from the same corpus
as each test set.

Next, the machine translation based model and
the sentence embedding model, both of which are
unsupervised, are significantly weaker than the
two supervised models trained on synthetic data,
highlighting the benefits of the automatically con-
structed divergence examples. The strength of the
semantic similarity model compared to the sen-
tence embeddings model highlights the benefits
of the fine-grained representation of bilingual sen-
tence pairs as a similarity cube, as opposed to the
bag-of-words sentence embedding representation.

Finally, despite training on the same noisy syn-
thetic data as the parallel v/s non-parallel system,
the semantic similarity model is better able to de-
tect meaning divergences. This highlights the ben-
efits of (1) meaning comparison between words
in a shared embedding space, over the discrete
translation dictionary used by the baseline, and of
(2) the deep convolutional neural network which
enables the semantic comparison of overlapping
spans in sentence pairs, as opposed to more local
word alignment features.

5.7 Analysis

We manually examine the 13-15% of examples in
each test set that are correctly detected as diver-
gent by semantic similarity and mis-classified by
the non-parallel detector.

On OpenSubtitles, most of these examples are
true divergences rather than noisy alignments (i.e.
sentences that are not translation of each other.)
The non-parallel detector weighs length features
highly, and is fooled by sentence pairs of sim-
ilar length that share little content and therefore
have very sparse word alignments. The remaining
sentence pairs are plausible translations in some
context that still contain inherent divergences,
such as details missing or added in one language.
The non-parallel detector views these pairs as
non-divergent since most words can be aligned.
The semantic similarity model can identify subtle
meaning differences, and correctly classify them
as divergent. As a result, the non-parallel detec-
tor has a higher false positive rate (22%) than the
semantic similarity classifier (14%), while having
similar false negative rates (11% v/s 12%).

On the CommonCrawl test set, the examples
with disagreement are more diverse, ranging from
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Divergence Detection OpenSubtitles Common Crawl
Approach +P +R +F -P -R -F Overall F +P +R +F -P -R -F Overall F

Sentence Embeddings 65 60 62 56 61 58 60 78 58 66 52 74 61 64
MT Scores (1 epoch) 67 53 59 54 68 60 60 54 65 59 17 11 14 42
Non-entailment 58 78 66 53 30 38 54 73 49 58 48 72 57 58
Non-parallel 70 83 76 61 42 50 66 70 83 76 61 42 49 67
Semantic Dissimilarity 76 80 78 75 70 72 77 82 88 85 78 69 73 80

Table 2: Intrinsic evaluation on crowdsourced semantic equivalence vs. divergence testsets. We report overall F-
score, as well as precision (P), recall (R) and F-score (F) for the equivalent (+) and divergent (-) classes separately.
Semantic similarity yields better results across the board, with larger improvements on the divergent class.

noisy segments that should not be aligned to sen-
tences with subtle divergences.

6 Machine Translation Evaluation

Having established the effectiveness of the seman-
tic divergence detector, we now measure the im-
pact of divergences on a downstream task, ma-
chine translation. As in our prior work (Carpuat
et al., 2017), we take a data selection approach,
selecting the least divergent examples in a paral-
lel corpus based on a range of divergence detec-
tors, and comparing the translation quality of the
resulting neural MT systems.

6.1 Translation Tasks
English-French We evaluate on 4867 sentences
from the Microsoft Spoken Language Translation
dataset (Federmann and Lewis, 2016) as well as
on 1300 sentences from TED talks (Cettolo et al.,
2012), as in past work (Carpuat et al., 2017).
Training examples are drawn from OpenSubtitles,
which contains ~28M examples after deduplica-
tion. We discard 50% examples for data selection.

Vietnamese-English Since the SEMANTIC

SIMILARITY model was designed to be easily
portable to new language pairs, we also test
its impact on the IWSLT Vietnamese-English
TED task, which comes with ~120,000 and 1268
in-domain sentences for training and testing
respectively (Farajian et al., 2016). This is a more
challenging translation task as Vietnamese and
English are more distant languages, there is little
training data, and the sentence pairs are expected
to be cleaner and more parallel than those from
OpenSubtitles. In these lower resource settings,
we discard 10% of examples for data selection.

6.2 Neural MT System
We use the attentional encoder-decoder model
(Bahdanau et al., 2015) implemented in the Sock-
Eye toolkit (Hieber et al., 2017). Encoders and

decoders are single-layer GRUs (Cho et al., 2014)
with 1000 hidden units. Source and target word
embeddings have size 512. Using byte-pair en-
coding (Sennrich et al., 2016), the vocabulary size
is 50000. Maximum sequence length is set to 50.

We optimize the standard cross-entropy loss us-
ing Adam (Kingma and Ba, 2014), until validation
perplexity does not decrease for 8 checkpoints.
The learning rate is set to 0.0003 and is halved
when the validation perplexity does not decrease
for 3 checkpoints. The batch size is set to 80. At
decoding time, we construct a new model by av-
eraging the parameters for the 8 checkpoints with
best validation perplexity, and decode with a beam
of 5. All experiments are run thrice with distinct
random seeds.

Note that the baseline in this work is much
stronger than in our prior work ( >5 BLEU). This
is due to multiple factors that have been recom-
mended as best practices for neural MT and have
been incorporated in the present baseline – dedu-
plication of the training data, ensemble decoding
using multiple random runs, use of Adam as the
optimizer instead of AdaDelta (Bahar et al., 2017;
Denkowski and Neubig, 2017), and checkpoint av-
eraging (Bahar et al., 2017) – as well as a more
recent neural modeling toolkit.

6.3 English-French Results
We train English-French neural MT systems by se-
lecting the least divergent half of the training cor-
pus with the following criteria:

• SEMANTIC SIMILARITY (Section 3)
• PARALLEL: the non-parallel sentence detec-

tor (Section 5.2)
• ENTAILMENT: the entailment classifier (Sec-

tion 5.5), as in Carpuat et al. (2017)
• RANDOM: Randomly downsampling the

training corpus

Learning curves (Figure 1) show that data se-
lected using SEMANTIC SIMILARITY yields better
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Figure 1: Learning curves on the validation set for English-French models (mean of 3 runs/model). The SEMANTIC
SIMILARITY model outperforms other models throughout training, including the one trained on all data.

Model MSLT BLEU TED BLEU
Avg. Ensemble Avg. Ensemble

RANDOM 43.49 45.64 36.05 38.20
PARALLEL 40.65 42.12 35.99 37.86
ENTAILMENT 39.64 41.86 33.30 35.40
SEMANTIC SIM. 45.53 47.23* 36.98 38.87

ALL 44.64 46.26 36.98 38.59

Table 3: English-French decoding results. BLEU
scores are either averaged across 3 runs (“Avg.”) or ob-
tained via ensemble decoding (“Ensemble”). SEMAN-
TIC SIMILARITY reaches BLEU scores on par with
ALL with only half of the training data. SEMANTIC
SIMILARITY scores marked with * are significanly bet-
ter (p < 0.05) than the corresponding ALL scores.

validation BLEU throughout training compared to
all other models. SEMANTIC SIMILARITY se-
lects more useful examples for MT than PAR-
ALLEL, even though both selection models are
trained on the same synthetic examples. This high-
lights the benefits of semantic modeling over sur-
face mis-alignment features. Furthermore, SE-
MANTIC SIMILARITY achieves the final validation
BLEU of the model that uses ALL data with only
30% of the updates. This suggests that semanti-
cally divergent examples are pervasive in the train-
ing corpus, confirming the findings from manual
annotation (Section 4), and that the presence of
such examples slows down neural MT training.

Decoding results on the blind test sets (Table 3)
show that SEMANTIC SIMILARITY outperforms
all other data selection criteria (with differences
being statistically significant (p < 0.05) (Koehn,
2004)), and performs as well or better than the
ALL model which has access to twice as many
training examples.

Model Avg. Test Set BLEU

RANDOM (90%) 22.71
SEMANTIC SIM. (90%) 23.38

ALL 23.30

Table 4: Vietnamese-English decoding results: drop-
ping 10% of the data based on SEMANTIC SIMILAR-
ITY does not hurt BLEU, and performs significantly (p
< 0.05) better than RANDOM selection.

The SEMANTIC SIMILARITY model also
achieves significantly better translation quality
than the ENTAILMENT model used in our prior
work. Surprisingly, the ENTAILMENT model per-
forms worse than the ALL baseline, unlike in our
prior work. We attribute this different behavior
to several factors: the strength of the new base-
line (Section 6.2), the use of Adam instead of
AdaDelta, which results in stronger BLEU scores
at the beginning of the learning curves for all mod-
els, and finally the deduplication of the training
data. In our prior systems, the training corpus
was not deduplicated. Data selection had a side-
effect of reducing the ratio of duplicated examples.
When the ENTAILMENT model was used, longer
sentence pairs with more balanced length were se-
lected, yielding longer translations with a better
BLEU brevity penalty than the baseline. With the
new systems, these advantages vanish. We further
analyze output lengths in Section 6.5.

6.4 Vietnamese-English Results

Trends from English-French carry over to Viet-
namese English, as the SEMANTIC SIMILARITY

model compares favorably to ALL while reducing
the number of training updates by 10%. SEMAN-
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TIC SIMILARITY also yields better BLEU than
RANDOM with the differences being statistically
significant. While differences in score here are
smaller, these result are encouraging since they
demonstrate that our semantic divergence models
port to more distant low-resource language pairs.

6.5 Analysis

We break down the results seen in Figure 1 and
Table 3, with a focus on the behavior of the EN-
TAILMENT and ALL models. We start by analyz-
ing the BLEU brevity penalty trends observed on
the validation set during training (Figure 2).

Figure 2: Brevity penalties on the validation set for
English-French models (single run).

We observe that both the ENTAILMENT and SE-
MANTIC SIMILARITY based models have simi-
lar brevity penalties despite having performances
that are at opposite ends of the spectrum in terms
of BLEU. This implies that translations gener-
ated by the SEMANTIC SIMILARITY model have
better n-gram overlap with the reference, but are
much shorter. Manual examination of the transla-
tions suggests that the ENTAILMENT model often
fails by under-translating sentences, either drop-
ping segments from the beginning or the end of
source sentences (Table 5).

The PARALLEL model consistently produces
translations that are longer than the reference. 7

This is partially due to the model’s propensity to
generate a sequence of garbage tokens in the be-
ginning of a sentence, especially while translating
shorter sentences. In our test set, almost 12% of
the translated sentences were found to begin with
the garbage text shown in Table 5. Only a small
fraction (< 0.02%) of the French sentences in our
training data begin with these tokens, but the ten-
dency of PARALLEL to promote divergent exam-
ples above non-divergent ones, seems to exagger-
ate the generation of this sequence.

7The brevity penalty does not penalize translations that
are longer than the reference.

ENTAILMENT is inadequate due to under-translation

Source he’s a very impressive man and still goes
out to do digs.

Reference c’est un homme très impressionnant et il
fait encore des fouilles.

ENTAILMENT c’est un homme très impressionnant.

Source when the Heat first won.
Reference lorsque les Heat ont gagné pour la

première fois.
ENTAILMENT quand le Heat a gagné.

PARALLEL produces garbage tokens

Source alright.
Reference d’accord.
ENTAILMENT { \ pos (192,210)} d’accord.

Table 5: Selected translation examples from the ensem-
ble systems of the various models.

7 Conclusion

We conducted an extensive empirical study of
semantic divergences in parallel corpora. Our
crowdsourced annotations confirms that correctly
aligned sentences are not necessarily meaning
equivalent. We introduced an approach based on
neural semantic similarity that detects such di-
vergences much more accurately than shallower
translation or alignment based models. Impor-
tantly, our model does not require manual an-
notation, and can be trained for any language
pair and domain with a parallel corpus. Finally,
we show that filtering out divergent examples
helps speed up the convergence of neural ma-
chine translation training without loss in transla-
tion quality, for two language pairs and data condi-
tions. New datasets and models introduced in this
work are available at http://github.com/
yogarshi/SemDiverge.

These findings open several avenues for future
work: How can we improve divergence detec-
tion further? Can we characterize the nature of
the divergences beyond binary predictions? How
do divergent examples impact other applications,
including cross-lingual NLP applications and se-
mantic models induced from parallel corpora, as
well as tools for human translators and second lan-
guage learners?

Acknowledgments

We thank the CLIP lab at the University of Maryland and the

anonymous reviewers from NAACL 2018 and WMT 2017

for their constructive feedback. This work was supported in

part by research awards from Amazon, Google, and the Clare

Boothe Luce Foundation.

1511



References
Sadaf AbduI-Rauf and Holger Schwenk. 2009. On the

Use of Comparable Corpora to Improve SMT Per-
formance. In Proceedings of the 12th Conference of
the European Chapter of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, Athens, Greece, EACL ’09, pages 16–
23.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilingual
semantic textual similarity. In Proceedings of the
8th International Workshop on Semantic Evalua-
tion (SemEval 2014). Association for Computational
Linguistics Dublin, Ireland, pages 81–91.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona
Diab, Aitor Gonzalez-Agirre, Rada Mihalcea, Ger-
man Rigau, and Janyce Wiebe. 2016. SemEval-
2016 Task 1: Semantic Textual Similarity, Mono-
lingual and Cross-Lingual Evaluation. In Proceed-
ings of the 10th International Workshop on Semantic
Evaluation (SemEval-2016). Association for Com-
putational Linguistics, San Diego, California, pages
497–511.

Parnia Bahar, Tamer Alkhouli, Jan-Thorsten Peter,
Christopher Jan-Steffen Brix, and Hermann Ney.
2017. Empirical investigation of optimization algo-
rithms in neural machine translation. The Prague
Bulletin of Mathematical Linguistics 108(1):13–25.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In International
Conference on Learning Representations (ICLR).

Yonatan Belinkov and Yonatan Bisk. 2018. Synthetic
and natural noise both break neural machine transla-
tion. In Proceedings of the 6th International Con-
ference on Learning Representations. Vancouver,
Canada.

Marine Carpuat, Yogarshi Vyas, and Xing Niu. 2017.
Detecting cross-lingual semantic divergence for
neural machine translation. In Proceedings of the
First Workshop on Neural Machine Translation.
Association for Computational Linguistics, pages
69–79. http://aclweb.org/anthology/
W17-3209.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. Wit3: Web inventory of transcribed and
translated talks. In Proceedings of the 16th Con-
ference of the European Association for Machine
Translation (EAMT). volume 261, page 268.

Boxing Chen, Roland Kuhn, George Foster, Colin
Cherry, and Fei Huang. 2016. Bilingual Methods
for Adaptive Training Data Selection for Machine
Translation. Proceedings of the 12th Conference
of the Association for Machine Translation in the
Americas (AMTA) page 93.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. In
Proceedings of EMNLP 2014. ArXiv: 1406.1078.
http://arxiv.org/abs/1406.1078.

Michael Denkowski and Graham Neubig. 2017.
Stronger baselines for trustable results in neu-
ral machine translation. In Proceedings of the
First Workshop on Neural Machine Translation.
Association for Computational Linguistics, pages
18–27. http://aclweb.org/anthology/
W17-3203.

Bonnie J. Dorr. 1994. Machine Translation Diver-
gences: A Formal Description and Proposed Solu-
tion. Computional Linguistics 20(4):597–633.

Cristina España-Bonet, Ádám Csaba Varga, Alberto
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Abstract

A core step in statistical data-to-text gen-
eration concerns learning correspondences
between structured data representations
(e.g., facts in a database) and associated
texts. In this paper we aim to bootstrap
generators from large scale datasets where
the data (e.g., DBPedia facts) and related
texts (e.g., Wikipedia abstracts) are loosely
aligned. We tackle this challenging task by in-
troducing a special-purpose content selection
mechanism.1 We use multi-instance learning
to automatically discover correspondences
between data and text pairs and show how
these can be used to enhance the content signal
while training an encoder-decoder architec-
ture. Experimental results demonstrate that
models trained with content-specific objec-
tives improve upon a vanilla encoder-decoder
which solely relies on soft attention.

1 Introduction

A core step in statistical data-to-text genera-
tion concerns learning correspondences between
structured data representations (e.g., facts in a
database) and paired texts (Barzilay and Lapata,
2005; Kim and Mooney, 2010; Liang et al., 2009).
These correspondences describe how data repre-
sentations are expressed in natural language (con-
tent realisation) but also indicate which subset of
the data is verbalised in the text (content selec-
tion).

Although content selection is traditionally per-
formed by domain experts, recent advances in
generation using neural networks (Bahdanau et al.,
2015; Ranzato et al., 2016) have led to the use
of large scale datasets containing loosely related
data and text pairs. A prime example are on-
line data sources like DBPedia (Auer et al., 2007)
and Wikipedia and their associated texts which

1Our code and data are available at
https://github.com/EdinburghNLP/wikigen.

are often independently edited. Another example
are sports databases and related textual resources.
Wiseman et al. (2017) recently define a generation
task relating statistics of basketball games with
commentaries and a blog written by fans.

In this paper, we focus on short text generation
from such loosely aligned data-text resources. We
work with the biographical subset of the DBPe-
dia and Wikipedia resources where the data cor-
responds to DBPedia facts and texts are Wikipedia
abstracts about people. Figure 1 shows an example
for the film-maker Robert Flaherty, the Wikipedia
infobox, and the corresponding abstract. We wish
to bootstrap a data-to-text generator that learns to
verbalise properties about an entity from a loosely
related example text. Given the set of properties
in Figure (1a) and the related text in Figure (1b),
we want to learn verbalisations for those proper-
ties that are mentioned in the text and produce a
short description like the one in Figure (1c).

In common with previous work (Mei et al.,
2016; Lebret et al., 2016; Wiseman et al., 2017)
our model draws on insights from neural
machine translation (Bahdanau et al., 2015;
Sutskever et al., 2014) using an encoder-decoder
architecture as its backbone. Lebret et al. (2016)
introduce the task of generating biographies from
Wikipedia data, however they focus on single
sentence generation. We generalize the task to
multi-sentence text, and highlight the limitations
of the standard attention mechanism which is
often used as a proxy for content selection. When
exposed to sub-sequences that do not correspond
to any facts in the input, the soft attention
mechanism will still try to justify the sequence
and somehow distribute the attention weights
over the input representation (Ghader and Monz,
2017). The decoder will still memorise high
frequency sub-sequences in spite of these not
being supported by any facts in the input.

We propose to alleviate these shortcom-
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(a) (b) Robert Joseph Flaherty, (February 16, 1884 July 23, 1951) was an American film-maker who directed and

produced the first commercially successful feature-length documentary film, Nanook of the North (1922). The film

made his reputation and nothing in his later life fully equalled its success, although he continued the development of

this new genre of narrative documentary, e.g., with Moana (1926), set in the South Seas, and Man of Aran (1934),

filmed in Ireland’s Aran Islands. He is considered the “father” of both the documentary and the ethnographic film.

Flaherty was married to writer Frances H. Flaherty from 1914 until his death in 1951. Frances worked on several of

her husband’s films, and received an Academy Award nomination for Best Original Story for Louisiana Story (1948).

(c) Robert Joseph Flaherty, (February 16, 1884 July 23, 1951) was an American film-maker. Flaherty was married to

Frances H. Flaherty until his death in 1951.

Figure 1: Property-value pairs (a), related biographic abstract (b) for the Wikipedia entity Robert Flaherty, and
model verbalisation in italics (c).

ings via a specific content selection mecha-
nism based on multi-instance learning (MIL;
Keeler and Rumelhart, 1992) which automatically
discovers correspondences, namely alignments,
between data and text pairs. These alignments are
then used to modify the generation function dur-
ing training. We experiment with two frameworks
that allow to incorporate alignment information,
namely multi-task learning (MTL; Caruana, 1993)
and reinforcement learning (RL; Williams, 1992).
In both cases we define novel objective functions
using the learnt alignments. Experimental results
using automatic and human-based evaluation show
that models trained with content-specific objec-
tives improve upon vanilla encoder-decoder archi-
tectures which rely solely on soft attention.

The remainder of this paper is organised as fol-
lows. We discuss related work in Section 2 and de-
scribe the MIL-based content selection approach
in Section 3. We explain how the generator is
trained in Section 4 and present evaluation experi-
ments in Section 5. Section 7 concludes the paper.

2 Related Work

Previous attempts to exploit loosely aligned data
and text corpora have mostly focused on extract-
ing verbalisation spans for data units. Most
approaches work in two stages: initially, data
units are aligned with sentences from related cor-
pora using some heuristics and subsequently ex-
tra content is discarded in order to retain only
text spans verbalising the data. Belz and Kow
(2010) obtain verbalisation spans using a measure
of strength of association between data units and
words, Walter et al. (2013) extract textual patterns
from paths in dependency trees while Mrabet et al.
(2016) rely on crowd-sourcing. Perez-Beltrachini
and Gardent (2016) learn shared representations
for data units and sentences reduced to subject-

predicate-object triples with the aim of extracting
verbalisations for knowledge base properties. Our
work takes a step further, we not only induce data-
to-text alignments but also learn generators that
produce short texts verbalising a set of facts.

Our work is closest to recent neural network
models which learn generators from indepen-
dently edited data and text resources. Most pre-
vious work (Lebret et al., 2016; Chisholm et al.,
2017; Sha et al., 2017; Liu et al., 2017) targets
the generation of single sentence biographies
from Wikipedia infoboxes, while Wiseman et al.
(2017) generate game summary documents from
a database of basketball games where the input
is always the same set of table fields. In contrast,
in our scenario, the input data varies from one
entity (e.g., athlete) to another (e.g., scientist)
and properties might be present or not due to
data incompleteness. Moreover, our generator
is enhanced with a content selection mechanism
based on multi-instance learning. MIL-based
techniques have been previously applied to a
variety of problems including image retrieval
(Maron and Ratan, 1998; Zhang et al., 2002), ob-
ject detection (Carbonetto et al., 2008; Cour et al.,
2011), text classification (Andrews and Hofmann,
2004), image captioning (Wu et al., 2015;
Karpathy and Fei-Fei, 2015), paraphrase detec-
tion (Xu et al., 2014), and information extraction
(Hoffmann et al., 2011). The application of MIL
to content selection is novel to our knowledge.

We show how to incorporate content selec-
tion into encoder-decoder architectures follow-
ing training regimes based on multi-task learn-
ing and reinforcement learning. Multi-task learn-
ing aims to improve a main task by incorporat-
ing joint learning of one or more related aux-
iliary tasks. It has been applied with success
to a variety of sequence-prediction tasks focus-
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ing mostly on morphosyntax. Examples in-
clude chunking, tagging (Collobert et al., 2011;
Søgaard and Goldberg, 2016; Bjerva et al., 2016;
Plank, 2016), name error detection (Cheng et al.,
2015), and machine translation (Luong et al.,
2016). Reinforcement learning (Williams, 1992)
has also seen popularity as a means of train-
ing neural networks to directly optimize a task-
specific metric (Ranzato et al., 2016) or to in-
ject task-specific knowledge (Zhang and Lapata,
2017). We are not aware of any work that com-
pares the two training methods directly. Further-
more, our reinforcement learning-based algorithm
differs from previous text generation approaches
(Ranzato et al., 2016; Zhang and Lapata, 2017) in
that it is applied to documents rather than individ-
ual sentences.

3 Bidirectional Content Selection

We consider loosely coupled data and text pairs
where the data component is a set P of property-
values {p1 : v1, · · · , p|P | : v|P |} and the related
text T is a sequence of sentences (s1, · · · ,s|T |).
We define a mention span τ as a (possibly dis-
continuous) subsequence of T containing one
or several words that verbalise one or more
property-value from P . For instance, in Figure 1,
the mention span “married to Frances H. Fla-
herty” verbalises the property-value {Spouse(s) :
Frances Johnson Hubbard}.

In traditional supervised data to text generation
tasks, data units (e.g., pi : vi in our particular set-
ting) are either covered by some mention span τ j
or do not have any mention span at all in T . The
latter is a case of content selection where the gen-
erator will learn which properties to ignore when
generating text from such data. In this work, we
consider text components which are independently
edited, and will unavoidably contain unaligned
spans, i.e., text segments which do not correspond
to any property-value in P . The phrase “from
1914” in the text in Figure (1b) is such an example.
Similarly, the last sentence, talks about Frances’
awards and nominations and this information is
not supported by the properties either.

Our model checks content in both directions;
it identifies which properties have a correspond-
ing text span (data selection) and also foregrounds
(un)aligned text spans (text selection). This knowl-
edge is then used to discourage the generator from
producing text not supported by facts in the prop-

married spouse : FrancesJohnsonFlaherty
to spouse : FrancesJohnsonFlaherty
Frances spouse : FrancesJohnsonFlaherty
Flaherty spouse : FrancesJohnsonFlaherty
death died : july23,1951
in died : july23,1951
1951 died : july23,1951

Table 1: Example of word-property alignments for the
Wikipedia abstract and facts in Figure 1.

erty set P . We view a property set P and its loosely
coupled text T as a coarse level, imperfect align-
ment. From this alignment signal, we want to dis-
cover a set of finer grained alignments indicating
which mention spans in T align to which proper-
ties in P . For each pair (P ,T ), we learn an align-
ment set A(P ,T ) which contains property-value
word pairs. For example, for the properties spouse
and died in Figure 1, we would like to derive the
alignments in Table 1.

We formulate the task of discovering finer-
grained word alignments as a multi-instance learn-
ing problem (Keeler and Rumelhart, 1992). We
assume that words from the text are positive la-
bels for some property-values but we do not know
which ones. For each data-text pair (P ,T ), we
derive |T | pairs of the form (P ,s) where |T | is
the number of sentences in T . We encode prop-
erty sets P and sentences s into a common multi-
modal h-dimensional embedding space. While do-
ing this, we discover finer grained alignments be-
tween words and property-values. The intuition is
that by learning a high similarity score for a prop-
erty set P and sentence pair s, we will also learn
the contribution of individual elements (i.e., words
and property-values) to the overall similarity score.
We will then use this individual contribution as
a measure of word and property-value alignment.
More concretely, we assume the pair is aligned
(or unaligned) if this individual score is above (or
below) a given threshold. Across examples like
the one shown in Figure (1a-b), we expect the
model to learn an alignment between the text span

“married to Frances H. Flaherty” and the property-
value {spouse : Frances Johnson Hubbard}.

In what follows we describe how we encode
(P ,s) pairs and define the similarity function.

Property Set Encoder As there is no fixed order
among the property-value pairs p : v in P , we in-
dividually encode each one of them. Furthermore,
both properties p and values v may consist of short
phrases. For instance, the property cause o f death
and value cerebral thrombosis in Figure 1. We
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therefore consider property-value pairs as concate-
nated sequences pv and use a bidirectional Long
Short-Term Memory Network (LSTM; Hochreiter
and Schmidhuber, 1997) network for their encod-
ing. Note that the same network is used for all
pairs. Each property-value pair is encoded into a
vector representation:

pi = biLSTMdenc(pvi) (1)

which is the output of the recurrent network at the
final time step. We use addition to combine the for-
ward and backward outputs and generate encoding
{p1, · · · ,p|P |} for P .

Sentence Encoder We also use a biLSTM to
obtain a representation for the sentence s =
w1, · · · ,w|s|. Each word wt is represented by the
output of the forward and backward networks at
time step t. A word at position t is represented
by the concatenation of the forward and backward
outputs of the networks at time step t :

wt = biLSTMsenc(wt) (2)

and each sentence is encoded as a sequence of vec-
tors (w1, · · · ,w|s|).

Alignment Objective Our learning objec-
tive seeks to maximise the similarity score
between property set P and a sentence s
(Karpathy and Fei-Fei, 2015). This similarity
score is in turn defined on top of the similarity
scores among property-values in P and words in s.
Equation (3) defines this similarity function using
the dot product. The function seeks to align each
word to the best scoring property-value:

SP s =
|s|
∑
t=1

maxi∈{1,...,|P |} pi • wt (3)

Equation (4) defines our objective which encour-
ages related properties P and sentences s to have
higher similarity than other P ′ 6= P and s′ 6= s:

LCA = max(0,SP s − SP s ′ + 1)

+max(0,SP s − SP ′s + 1)
(4)

4 Generator Training

In this section we describe the base generation
architecture and explain two alternative ways of
using the alignments to guide the training of the
model. One approach follows multi-task training
where the generator learns to output a sequence
of words but also to predict alignment labels for

each word. The second approach relies on rein-
forcement learning for adjusting the probability
distribution of word sequences learnt by a standard
word prediction training algorithm.

4.1 Encoder-Decoder Base Generator
We follow a standard attention based encoder-
decoder architecture for our generator
(Bahdanau et al., 2015; Luong et al., 2015).
Given a set of properties X as input, the model
learns to predict an output word sequence Y
which is a verbalisation of (part of) the input.
More precisely, the generation of sequence Y is
conditioned on input X :

P(Y |X) =
|Y |
∏
t=1

P(yt |y1:t−1,X) (5)

The encoder module constitutes an intermediate
representation of the input. For this, we use the
property-set encoder described in Section 3 which
outputs vector representations {p1, · · · ,p|X |} for
a set of property-value pairs. The decoder
uses an LSTM and a soft attention mechanism
(Luong et al., 2015) to generate one word yt at a
time conditioned on the previous output words and
a context vector ct dynamically created:

P(yt+1|y1:t ,X) = so f tmax(g(ht ,ct)) (6)

where g(·) is a neural network with one hidden
layer parametrised by Wo ∈ R|V |×d , |V | is the out-
put vocabulary size and d the hidden unit dimen-
sion, over ht and ct composed as follows:

g(ht ,ct) = Wo tanh(Wc[ct ;ht ]) (7)

where Wc ∈ Rd×2d . ht is the hidden state of the
LSTM decoder which summarises y1:t :

ht = LSTM(yt ,ht−1) (8)

The dynamic context vector ct is the weighted sum
of the hidden states of the input property set (Equa-
tion (9)); and the weights αti are determined by a
dot product attention mechanism:

ct =
|X |
∑
i=1

αti pi (9)

αti =
exp(ht • pi)

∑i ′ exp(ht • pi ′)
(10)

We initialise the decoder with the aver-
aged sum of the encoded input representations
(Vinyals et al., 2016). The model is trained to op-
timize negative log likelihood:

LwNLL = −
|Y |
∑
t=1

logP(yt |y1:t−1,X) (11)
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We extend this architecture to multi-sentence
texts in a way similar to Wiseman et al. (2017).
We view the abstract as a single sequence, i.e., all
sentences are concatenated. When training, we
cut the abstracts in blocks of equal size and per-
form forward backward iterations for each block
(this includes the back-propagation through the en-
coder). From one block iteration to the next, we
initialise the decoder with the last state of the pre-
vious block. The block size is a hyperparameter
tuned experimentally on the development set.

4.2 Predicting Alignment Labels
The generation of the output sequence is condi-
tioned on the previous words and the input. How-
ever, when certain sequences are very common,
the language modelling conditional probability
will prevail over the input conditioning. For in-
stance, the phrase from 1914 in our running ex-
ample is very common in contexts that talk about
periods of marriage or club membership, and as a
result, the language model will output this phrase
often, even in cases where there are no supporting
facts in the input. The intuition behind multi-task
training (Caruana, 1993) is that it will smooth the
probabilities of frequent sequences when trying to
simultaneously predict alignment labels.

Using the set of alignments obtained by our con-
tent selection model, we associate each word in
the training data with a binary label at indicating
whether it aligns with some property in the input
set. Our auxiliary task is to predict at given the
sequence of previously predicted words and input
X :

P(at+1|y1:t ,X) = sigmoid(g′(ht ,ct)) (12)

g′(ht ,ct) = va • tanh(Wc[ct ;ht ]) (13)

where va ∈ Rd and the other operands are as de-
fined in Equation (7). We optimise the following
auxiliary objective function:

Laln = −
|Y |
∑
t=1

logP(at |y1:t−1,X) (14)

and the combined multi-task objective is the
weighted sum of both word prediction and align-
ment prediction losses:

LMT L = λLwNLL +(1− λ)Laln (15)

where λ controls how much model training will fo-
cus on each task. As we will explain in Section 5,
we can anneal this value during training in favour
of one objective or the other.

4.3 Reinforcement Learning Training

Although the multi-task approach aims to smooth
the target distribution, the training process is still
driven by the imperfect target text. In other words,
at each time step t the algorithm feeds the previ-
ous word wt−1 of the target text and evaluates the
prediction against the target wt .

Alternatively, we propose a training approach
based on reinforcement learning (Williams 1992)
which allows us to define an objective function
that does not fully rely on the target text but rather
on a revised version of it. In our case, the set
of alignments obtained by our content selection
model provides a revision for the target text. The
advantages of reinforcement learning are twofold:
(a) it allows to exploit additional task-specific
knowledge (Zhang and Lapata, 2017) during train-
ing, and (b) enables the exploration of other word
sequences through sampling. Our setting differs
from previous applications of RL (Ranzato et al.,
2016; Zhang and Lapata, 2017) in that the reward
function is not computed on the target text but
rather on its alignments with the input.

The encoder-decoder model is viewed as an
agent whose action space is defined by the set of
words in the target vocabulary. At each time step,
the encoder-decoder takes action ŷt with policy
Pπ(ŷt |ŷ1:t−1,X) defined by the probability in Equa-
tion (6). The agent terminates when it emits the
End Of Sequence (EOS) token, at which point the
sequence of all actions taken yields the output se-
quence Ŷ = (ŷ1, · · · , ŷ|Ŷ |). This sequence in our
task is a short text describing the properties of a
given entity. After producing the sequence of ac-
tions Ŷ , the agent receives a reward r(Ŷ ) and the
policy is updated according to this reward.

Reward Function We define the reward func-
tion r(Ŷ ) on the alignment set A(X ,Y ). If the out-
put action sequence Ŷ is precise with respect to
the set of alignments A(X ,Y ), the agent will re-
ceive a high reward. Concretely, we define r(Ŷ ) as
follows:

r(Ŷ ) = γpr rpr(Ŷ ) (16)

where γpr adjusts the reward value rpr which is the
unigram precision of the predicted sequence Ŷ and
the set of words in A(X ,Y ).

Training Algorithm We use the REINFORCE
algorithm (Williams, 1992) to learn an agent that
maximises the reward function. As this is a gradi-
ent descent method, the training loss of a sequence
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is defined as the negative expected reward:

LRL = −E(ŷ1,··· ,ŷ|Ŷ |) ∼ Pπ(·|X)[r(ŷ1, · · · , ŷ|Ŷ |)]

where Pπ is the agent’s policy, i.e., the word dis-
tribution produced by the encoder-decoder model
(Equation (6)) and r(·) is the reward function as
defined in Equation (16). The gradient of LRL is
given by:

∇LRL ≈
|Ŷ |
∑
t=1

∇ logPπ(ŷt |ŷ1:t−1,X)[r(ŷ1:|Ŷ |)− bt ]

where bt is a baseline linear regression model used
to reduce the variance of the gradients during train-
ing. bt predicts the future reward and is trained
by minimizing mean squared error. The input to
this predictor is the agent hidden state ht , however
we do not back-propagate the error to ht . We re-
fer the interested reader to Williams (1992) and
Ranzato et al. (2016) for more details.

Document Level Curriculum Learning Rather
than starting from a state given by a random policy,
we initialise the agent with a policy learnt by pre-
training with the negative log-likelihood objective
(Ranzato et al., 2016; Zhang and Lapata, 2017).
The reinforcement learning objective is applied
gradually in combination with the log-likelihood
objective on each target block subsequence. Re-
call from Section 4.1 that our document is seg-
mented into blocks of equal size during training
which we denote as MAXBLOCK. When training
begins, only the last ℧ tokens are predicted by
the agent while for the first (MAXBLOCK − ℧) we
still use the negative log-likelihood objective. The
number of tokens ℧ predicted by the agent is incre-
mented by ℧ units every 2 epochs. We set ℧ = 3
and the training ends when (MAXBLOCK −℧) = 0.
Since we evaluate the model’s predictions at the
block level, the reward function is also evaluated
at the block level.

5 Experimental Setup

Data We evaluated our model on a dataset col-
lated from WIKIBIO (Lebret et al., 2016), a cor-
pus of 728,321 biography articles (their first para-
graph) and their infoboxes sampled from the En-
glish Wikipedia. We adapted the original dataset
in three ways. Firstly, we make use of the entire
abstract rather than first sentence. Secondly, we
reduced the dataset to examples with a rich set
of properties and multi-sentential text. We elimi-
nated examples with less than six property-value

pairs and abstracts consisting of one sentence. We
also placed a minimum restriction of 23 words in
the length of the abstract. We considered abstracts
up to a maximum of 12 sentences and property
sets with a maximum of 50 property-value pairs.
Finally, we associated each abstract with the set
of DBPedia properties p : v corresponding to the
abstract’s main entity. As entity classification is
available in DBPedia for most entities, we concate-
nate class information c (whenever available) with
the property value, i.e., p : vc. In Figure 1, the
property value spouse : FrancesH.Flaherty is ex-
tended with class information from the DBPedia
ontology to spouse : FrancesH.FlahertyPerson.

Pre-processing Numeric date formats were con-
verted to a surface form with month names.
Numerical expressions were delexicalised us-
ing different tokens created with the property
name and position of the delexicalised token on
the value sequence. For instance, given the
property-value for birth date in Figure (1a),
the first sentence in the abstract (Figure (1b))
becomes “ Robert Joseph Flaherty, (February
DLX birth date 2, DLX birth date 4 – July . . . ”.
Years and numbers in the text not found in the val-
ues of the property set were replaced with tokens
YEAR and NUMERIC.2 In a second phase, when
creating the input and output vocabularies, V I and
V O respectively, we delexicalised words w which
were absent from the output vocabulary but were
attested in the input vocabulary. Again, we cre-
ated tokens based on the property name and the
position of the word in the value sequence. Words
not in V O or V I were replaced with the symbol
UNK. Vocabulary sizes were limited to |V I | =
50k and |V O| = 50k for the alignment model and
|V O| = 20k for the generator. We discarded ex-
amples where the text contained more than three
UNKs (for the content aligner) and five UNKs
(for the generator); or more than two UNKs in the
property-value (for generation). Finally, we added
the empty relation to the property sets.

Table 2 summarises the dataset statistics for the
generator. We report the number of abstracts in
the dataset (size), the average number of sentences
and tokens in the abstracts, and the average num-
ber of properties and sentence length in tokens

2We exploit these tokens to further adjust the score of the
reward function given by Equation (16). Each time the pre-
dicted output contains some of these symbols we decrease the
reward score by κ which we empirically set to 0.025 .
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generation train dev test
size 165,324 25,399 23,162
sentences 3.51±1.99 3.46±1.94 3.22±1.72
tokens 74.13±43.72 72.85±42.54 66.81±38.16
properties 14.97±8.82 14.96±8.85 21.6±9.97
sent.len 21.06±8.87 21.03±8.85 20.77±8.74

Table 2: Dataset statistics.

(sent.len). For the content aligner (cf. Section 3),
each sentence constitutes a training instance, and
as a result the sizes of the train and development
sets are 796,446 and 153,096, respectively.

Training Configuration We adjusted all mod-
els’ hyperparameters according to their perfor-
mance on the development set. The encoders
for both content selection and generation mod-
els were initialised with GloVe (Pennington et al.,
2014) pre-trained vectors. The input and hidden
unit dimension was set to 200 for content selec-
tion and 100 for generation. In all models, we
used encoder biLSTMs and decoder LSTM (reg-
ularised with a dropout rate of 0.3 (Zaremba et al.,
2014)) with one layer. Content selection and gen-
eration models (base encoder-decoder and MTL)
were trained for 20 epochs with the ADAM opti-
miser (Kingma and Ba, 2014) using a learning rate
of 0.001. The reinforcement learning model was
initialised with the base encoder-decoder model
and trained for 35 additional epochs with stochas-
tic gradient descent and a fixed learning rate
of 0.001. Block sizes were set to 40 (base), 60
(MTL) and 50 (RL). Weights for the MTL objec-
tive were also tuned experimentally; we set λ =
0.1 for the first four epochs (training focuses on
alignment prediction) and switched to λ = 0.9 for
the remaining epochs.

Content Alignment We optimized content
alignment on the development set against man-
ual alignments. Specifically, two annotators
aligned 132 sentences to their infoboxes. We
used the Yawat annotation tool (Germann, 2008)
and followed the alignment guidelines (and eval-
uation metrics) used in Cohn et al. (2008). The
inter-annotator agreement using macro-averaged
f-score was 0.72 (we treated one annotator as the
reference and the other one as hypothetical system
output).

Alignment sets were extracted from the model’s
output (cf. Section 3) by optimizing the thresh-
old avg(sim) + a ∗ std(sim) where sim denotes
the similarity between the set of property values
and words, and a is empirically set to 0.75; avg

and std are the mean and standard deviation of
sim scores across the development set. Each word
was aligned to a property-value if their similarity
exceeded a threshold of 0.22. Our best content
alignment model (Content-Aligner) obtained an f-
score of 0.36 on the development set.

We also compared our Content-Aligner against
a baseline based on pre-trained word embeddings
(EmbeddingsBL). For each pair (P ,s) we com-
puted the dot product between words in s and prop-
erties in P (properties were represented by the
the averaged sum of their words’ vectors). Words
were aligned to property-values if their similarity
exceeded a threshold of 0.4. EmbeddingsBL ob-
tained an f-score of 0.057 against the manual align-
ments. Finally, we compared the performance of
the Content-Aligner at the level of property set P
and sentence s similarity by comparing the aver-
age ranking position of correct pairs among 14 dis-
tractors, namely rank@15. The Content-Aligner
obtained a rank of 1.31, while the EmbeddingsBL
model had a rank of 7.99 (lower is better).

6 Results

We compared the performance of an encoder-
decoder model trained with the standard nega-
tive log-likelihood method (ED), against a model
trained with multi-task learning (EDMTL) and re-
inforcement learning (EDRL). We also included
a template baseline system (Templ) in our evalua-
tion experiments.

The template generator used hand-written rules
to realise property-value pairs. As an approxima-
tion for content selection, we obtained the 50 more
frequent property names from the training set
and manually defined content ordering rules with
the following criteria. We ordered personal life
properties (e.g., birth date or occupation) based
on their most common order of mention in the
Wikipedia abstracts. Profession dependent prop-
erties (e.g., position or genre), were assigned an
equal ordering but posterior to the personal prop-
erties. We manually lexicalised properties into sin-
gle sentence templates to be concatenated to pro-
duce the final text. The template for the prop-
erty position and example verbalisation for the
property-value position : de f ender of the entity
zanetti are “[NAME] played as [POSITION].” and
“ Zanetti played as defender.” respectively.

Automatic Evaluation Table 3 shows the re-
sults of automatic evaluation using BLEU-4
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Model Abstract RevAbs
Templ 5.47 6.43
ED 13.46 35.89
EDMTL 13.57 37.18
EDRL 12.97 35.74

Table 3: BLEU-4 results using the original Wikipedia
abstract (Abstract) as reference and crowd-sourced re-
vised abstracts (RevAbs) for template baseline (Templ),
standard encoder-decoder model (ED), and our content-
based models trained with multi-task learning (EDMTL)
and reinforcement learning (EDRL).

(Papineni et al., 2002) against the noisy Wikipedia
abstracts. Considering these as a gold standard
is, however, not entirely satisfactory for two rea-
sons. Firstly, our models generate considerably
shorter text and will be penalized for not gener-
ating text they were not supposed to generate in
the first place. Secondly, the model might try to re-
produce what is in the imperfect reference but not
supported by the input properties and as a result
will be rewarded when it should not. To alleviate
this, we crowd-sourced using AMT a revised ver-
sion of 200 randomly selected abstracts from the
test set.

Crowdworkers were shown a Wikipedia in-
fobox with the accompanying abstract and were
asked to adjust the text to the content present in
the infobox. Annotators were instructed to delete
spans which did not have supporting facts and
rewrite the remaining parts into a well-formed
text. We collected three revised versions for each
abstract. Inter-annotator agreement was 81.64
measured as the mean pairwise BLEU-4 amongst
AMT workers.

Automatic evaluation results against the re-
vised abstracts are also shown in Table 3. As
can be seen, all encoder-decoder based models
have a significant advantage over Templ when
evaluating against both types of abstracts. The
model enabled with the multi-task learning con-
tent selection mechanism brings an improvement
of 1.29 BLEU-4 over a vanilla encoder-decoder
model. Performance of the RL trained model is
inferior and close to the ED model. We discuss
the reasons for this discrepancy shortly.

To provide a rough comparison with the results
reported in Lebret et al. (2016), we also computed
BLEU-4 on the first sentence of the text generated
by our system.3 Recall that their model generates
the first sentence of the abstract, whereas we out-

3We post-processed system output with Stanford
CoreNLP (Manning et al., 2014) to extract the first sentence.

System 1st 2nd 3rd 4th 5th Rank
Templ 12.17 14.33 10.17 15.50 47.83 3.72
ED 12.83 24.17 24.67 25.17 13.17 3.02
EDMTL 14.83 26.17 26.17 19.17 13.67 2.90
EDRL 14.67 25.00 25.50 24.00 10.83 2.91
RevAbs 47.00 14.00 12.67 16.17 9.17 2.27

Table 4: Rankings shown as proportions and mean
ranks given to systems by human subjects.

put multi-sentence text. Using the first sentence in
the Wikipedia abstract as reference, we obtained
a score of 37.29% (ED), 38.42% (EDMTL) and
38.1% (EDRL) which compare favourably with
their best performing model (34.7%±0.36).

Human-Based Evaluation We further exam-
ined differences among systems in a human-based
evaluation study. Using AMT, we elicited 3 judge-
ments for the same 200 infobox-abstract pairs we
used in the abstract revision study. We compared
the output of the templates, the three neural gen-
erators and also included one of the human edited
abstracts as a gold standard (reference). For each
test case, we showed crowdworkers the Wikipedia
infobox and five short texts in random order. The
annotators were asked to rank each of the texts ac-
cording to the following criteria: (1) Is the text
faithful to the content of the table? and (2) Is the
text overall comprehensible and fluent? Ties were
allowed only when texts were identical strings. Ta-
ble 5 presents examples of the texts (and proper-
ties) crowdworkers saw.

Table 4 shows, proportionally, how often crowd-
workers ranked each system, first, second, and
so on. Unsurprisingly, the human authored gold
text is considered best (and ranked first 47% of
the time). EDMTL is mostly ranked second and
third best, followed closely by EDRL. The vanilla
encoder-decoder system ED is mostly forth and
Templ is fifth. As shown in the last column of
the table (Rank), the ranking of EDMTL is over-
all slightly better than EDRL. We further con-
verted the ranks to ratings on a scale of 1 to 5
(assigning ratings 5. . .1 to rank placements 1. . .5).
This allowed us to perform Analysis of Variance
(ANOVA) which revealed a reliable effect of sys-
tem type. Post-hoc Tukey tests showed that all
systems were significantly worse than RevAbs and
significantly better than Templ (p < 0.05). EDMTL
is not significantly better than EDRL but is signifi-
cantly (p < 0.05) different from ED.

Discussion The texts generated by EDRL are
shorter compared to the other two neural systems
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property-
set

name= dorsey burnette, date= may 2012, bot= blevintron bot, background= solo singer, birth= december 28 , 1932, birth place= memphis, tennessee,
death place= {los angeles; canoga park, california}, death= august 19 , 1979, associated acts= the rock and roll trio, hometown= memphis, tennessee,
genre= {rock and roll; rockabilly; country music}, occupation= {composer; singer}, instruments= {rockabilly bass; vocals; acoustic guitar}, record
labels= {era records; coral records; smash records; imperial records; capitol records; dot records; reprise records}

RevAbs Dorsey Burnette (December 28 , 1932 – August 19 , 1979) was an american early Rockabilly singer. He was a member of the Rock and Roll Trio.
Templ Dorsey Burnette (DB) was born in December 28 , 1932. DB was born in Memphis, Tennessee. DB died in August 19 , 1979. DB died in August 19 , 1979.

DB died in Canoga Park, California. DB died in los angeles. DB was a composer. DB was a singer. DB ’s genre was Rock and Roll. The background
of DB was solo singer. DB ’s genre was Rockabilly. DB worked with the Rock and Roll Trio. DB ’s genre was Country music. DB worked with the Rock
and Roll Trio.

ED Dorsey Burnette (December 28 , 1932 – August 19 , 1979) was an american singer and songwriter. He was a member of the Rock band the band from
YEAR to YEAR.

EDMTL Dorothy Burnette (December 28 , 1932 – August 19 , 1979) was an american country music singer and songwriter. He was a member of the Rock band
Roll.

EDRL Burnette Burnette (December 28 , 1932 – August 19 , 1979) was an american singer and songwriter. He was born in memphis , Tennessee.

property-
set

name= indrani bose, doctoral advisor= chanchal kumar majumdar, alma mater= university of calcutta, birth= 1951-0-0, birth place= kolkata, field=
theoretical physics, work institution= bose institute, birth= august 15 , 1951, honours= fna sc, nationality= india, known for= first recipient of stree
sakthi science samman award

RevAbs Indrani Bose (born 1951) is an indian physicist at the Bose institute. Professor Bose obtained her ph.d. from University of Calcutta
Templ Indrani Bose (IB) was born in year-0-0. IB was born in August 15 , 1951. IB was born in kolkata. IB was a india. IB studied at University of Calcutta.

IB was known for First recipient of Stree Sakthi Science Samman Award.
ED Indrani UNK (born 15 August 1951) is an indian Theoretical physicist and Theoretical physicist. She is the founder and ceo of UNK UNK.
EDMTL Indrani Bose (born 15 August 1951) is an indian Theoretical physicist. She is a member of the UNK Institute of Science and technology.
EDRL Indrani UNK (born 15 August 1951) is an indian Theoretical physicist. She is a member of the Institute of technology ( UNK ).

property-
set

name= aaron moores, coach= sarah paton, club= trowbridge asc, birth= may 16 , 1994, birth place= trowbridge, sport= swimming, paralympics=
2012

RevAbs Aaron Moores (born 16 May 1994) is a british ParalyMpic swiMMer coMpeting in the s14 category , Mainly in the backstroke and breaststroke and
after qualifying for the 2012 SuMMer ParalyMpics he won a Silver Medal in the 100 M backstroke.

Templ Aaron Moores (AM) was born in May 16 , 1994. AM was born in May 16 , 1994. AM was born in Trowbridge.
ED Donald Moores (born 16 May 1994) is a Paralympic swimmer from the United states. He has competed in the Paralympic Games.
EDMTL Donald Moores (born 16 May 1994) is an english swimmer. He competed at the 2012 Summer Paralympics.
EDRL Donald Moores (born 16 May 1994) is a Paralympic swimmer from the United states. He competed at the dlx updated 3 Summer Paralympics.

property-
set

name= kirill moryganov, height= 183.0, birth= february 7 , 1991, position= defender, height= 1.83, goals= {0; 1}, clubs= fc torpedo moscow,
pcupdate= may 28 , 2016, years= {2013; 2012; 2015; 2016; 2010; 2014; 2008; 2009}, team= {fc neftekhimik nizhnekamsk; fc znamya truda
orekhovo- zuyevo; fc irtysh omsk; fc vologda; fc torpedo-zil moscow; fc tekstilshchik ivanovo; fc khimki; fc oktan perm, fc ryazan, fc amkar perm},
matches= {16; 10; 3; 4; 9; 0; 30; 7; 15}

RevAbs Kirill Andreyevich Moryganov (; born 7 February 1991) is a russian professional football player. He plays for fc Irtysh Omsk. He is a Central defender.
Templ Kirill Moryganov (KM) was born in February 7 , 1991. KM was born in February 7 , 1991. The years of KM was 2013. The years of KM was 2013.

KM played for fc Neftekhimik Nizhnekamsk. KM played for fc Znamya Truda Orekhovo- zuyevo. KM scored 1 goals. The years of KM was 2013. KM
played for fc Irtysh Omsk. The years of KM was 2013. KM played as Defender. KM played for fc Vologda. KM played for fc Torpedo-zil Moscow. KM
played for fc Tekstilshchik Ivanovo. KM scored 1 goals. KM ’s Club was fc Torpedo Moscow. KM played for fc Khimki. The years of KM was 2013. The
years of KM was 2013. The years of KM was 2013. KM played for fc Amkar Perm. The years of KM was 2013. KM played for fc Ryazan. KM played
for fc Oktan Perm.

ED Kirill mikhailovich Moryganov (; born February 7 , 1991) is a russian professional football player. He last played for fc Torpedo armavir.
EDMTL Kirill Moryganov (; born 7 February 1991) is an english professional footballer who plays as a Defender. He plays for fc Neftekhimik Nizhnekamsk.
EDRL Kirill viktorovich Moryganov (; born February 7 , 1991) is a russian professional football player. He last played for fc Tekstilshchik Ivanovo.

Table 5: Examples of system output.

which might affect BLEU-4 scores and also the
ratings provided by the annotators. As shown in
Table 5 (entity dorsey burnette), EDRL drops in-
formation pertaining to dates or chooses to just
verbalise birth place information. In some cases,
this is preferable to hallucinating incorrect facts;
however, in other cases outputs with more infor-
mation are rated more favourably. Overall, EDMTL
seems to be more detail oriented and faithful to the
facts included in the infobox (see dorsey burnette,
aaron moores, or kirill moryganov). The template
system manages in some specific configurations
to verbalise appropriate facts (indrani bose), how-
ever, it often fails to verbalise infrequent proper-
ties (aaron moores) or focuses on properties which
are very frequent in the knowledge base but are
rarely found in the abstracts (kirill moryganov).

7 Conclusions

In this paper we focused on the task of bootstrap-
ping generators from large-scale datasets consist-
ing of DBPedia facts and related Wikipedia biog-

raphy abstracts. We proposed to equip standard
encoder-decoder models with an additional con-
tent selection mechanism based on multi-instance
learning and developed two training regimes, one
based on multi-task learning and the other on re-
inforcement learning. Overall, we find that the
proposed content selection mechanism improves
the accuracy and fluency of the generated texts.
In the future, it would be interesting to investi-
gate a more sophisticated representation of the
input (Vinyals et al., 2016). It would also make
sense for the model to decode hierarchically, tak-
ing sequences of words and sentences into account
(Zhang and Lapata, 2014; Lebret et al., 2015).
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Abstract

Supervised training of abstractive language
generation models results in learning condi-
tional probabilities over language sequences
based on the supervised training signal. When
the training signal contains a variety of writ-
ing styles, such models may end up learn-
ing an ’average’ style that is directly influ-
enced by the training data make-up and can-
not be controlled by the needs of an applica-
tion. We describe a family of model archi-
tectures capable of capturing both generic lan-
guage characteristics via shared model param-
eters, as well as particular style characteristics
via private model parameters. Such models
are able to generate language according to a
specific learned style, while still taking advan-
tage of their power to model generic language
phenomena. Furthermore, we describe an ex-
tension that uses a mixture of output distribu-
tions from all learned styles to perform on-the-
fly style adaptation based on the textual input
alone. Experimentally, we find that the pro-
posed models consistently outperform models
that encapsulate single-style or average-style
language generation capabilities.

1 Introduction

Encoder-decoder models have recently pushed
forward the state-of-the-art performance on a va-
riety of language generation tasks, including ma-
chine translation (Bahdanau et al., 2015; Wu et al.,
2016; Vaswani et al., 2017), text summariza-
tion (Rush et al., 2015; Nallapati et al., 2016; See
et al., 2017), dialog systems (Li et al., 2016; As-
ghar et al., 2017), and image captioning (Xu et al.,
2015; Ranzato et al., 2015; Liu et al., 2017). This
framework consists of an encoder that reads the
input data and encodes it as a sequence of vectors,
which is in turn used by a decoder to generate an-

∗Work done as an intern at Google AI.

other sequence of vectors used to produce output
symbols step by step.

The prevalent approach to training such a model
is to update all the model parameters using all
the examples in the training data (over multiple
epochs). This is a reasonable approach, under the
assumption that we are modeling a single underly-
ing distribution in the data. However, in many ap-
plications and for many natural language datasets,
there exist multiple underlying distributions, char-
acterizing a variety of language styles. For in-
stance, the widely-used Gigaword dataset (Graff
and Cieri, 2003) consists of a collection of arti-
cles written by various publishers (The New York
Times, Agence France Presse, Xinhua News, etc.),
each with its own style characteristics. Training a
model’s parameters on all the training examples
results in an averaging effect across style charac-
teristics, which may lower the quality of the out-
puts; additionally, this averaging effect may be
completely undesirable for applications that re-
quire a level of control over the output style. At
the opposite end of the spectrum, one can choose
to train one independent model per each underly-
ing distribution (assuming we have the appropri-
ate signals for identifying them at training time).
This approach misses the opportunity to exploit
common properties shared by these distributions
(e.g., generic characteristics of a language, such as
noun-adjective position), and leads to models that
are under-trained due to limited data availability
per distribution.

In order to address these issues, we propose a
novel neural architecture called SHAPED (shared-
private encoder-decoder). This architecture has
both shared encoder/decoder parameters that are
updated based on all the training examples, as well
as private encoder/decoder parameters that are up-
dated using only examples from their correspond-
ing underlying training distributions. In addition
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to learning different parametrization between the
shared model and the private models, we jointly
learn a classifier to estimate the probability of each
example belonging to each of the underlying train-
ing distributions. In such a setting, the shared
parameters (’shared model’) are expected to learn
characteristics shared by the entire set of training
examples (i.e., language generic), whereas each
private parameter set (’private model’) learns par-
ticular characteristics (i.e., style specific) of their
corresponding training distribution. At the same
time, the classifier is expected to learn a probabil-
ity distribution over the labels used to identify the
underlying distributions present in the input data.
At test time, there are two possible scenarios. In
the first one, the input signal explicitly contains in-
formation about the underlying distribution (e.g.,
the publisher’s identity). In this case, we feed
the data into the shared model and also the cor-
responding private model, and perform sequence
generation based on a concatenation of their vec-
tor outputs; we refer to this model as the SHAPED
model. In a second scenario, the information about
the underlying distribution is either not available,
or it refers to a distribution that was not seen dur-
ing training. In this case, we feed the data into
the shared model and all the private models; the
output distribution of the symbols of the decoding
sequence is estimated using a mixture of distribu-
tions from all the decoders, weighted according to
the classifier’s estimates for that particular exam-
ple; we refer to this model as the Mix-SHAPED
model.

We test our models on the headline-generation
task based on the aforementioned Gigaword
dataset. When the publisher’s identity is presented
as part of the input, we show that the SHAPED
model significantly surpasses the performance of
the shared encoder-decoder baseline, as well as
the performance of private models (where one in-
dividual, per-publisher model is trained for each
in-domain style). When the publisher’s identity
is not presented as part of the input (i.e., not pre-
sented at run-time but revealed at evaluation-time
for measurement purposes), we show that the Mix-
SHAPED model exhibits a high level of classifi-
cation accuracy based on textual inputs alone (ac-
curacy percentage in the 80s overall, varying by
individual publisher), while its generation accu-
racy still surpasses the performance of the base-
line models. Finally, when the publisher’s identity

is unknown to the model (i.e., a publisher that was
not part of the training dataset), we show that the
Mix-SHAPED model performance far surpasses
the shared model performance, due to the ability
of the Mix-SHAPED model to perform on-the-fly
adaptation of output style. This feat comes from
our model’s ability to perform two distinct tasks:
match the incoming, previously-unseen input style
to existing styles learned at training time, and use
the correlations learned at training time between
input and output style characteristics to generate
style-appropriate token sequences.

2 Related Work

Encoder-Decoder Models for Structured
Output Prediction

Encoder-decoder architectures have been success-
fully applied to a variety of structure prediction
tasks recently. Tasks for which such architec-
tures have achieved state-of-the-art results include
machine translation (Bahdanau et al., 2015; Wu
et al., 2016; Vaswani et al., 2017), automatic text
summarization (Rush et al., 2015; Chopra et al.,
2016; Nallapati et al., 2016; Paulus et al., 2017;
Nema et al., 2017), sentence simplification (Filip-
pova et al., 2015; Zhang and Lapata, 2017), dia-
log systems (Li et al., 2016, 2017; Asghar et al.,
2017), image captioning (Vinyals et al., 2015; Xu
et al., 2015; Ranzato et al., 2015; Liu et al., 2017),
etc. By far the most used implementation of such
architectures is based on the original sequence-
to-sequence model (Sutskever et al., 2014), aug-
mented with its attention-based extension (Bah-
danau et al., 2015). Although our SHAPED and
Mix-SHAPED model formulations do not depend
on a particular architecture implementation, we do
make use of the (Bahdanau et al., 2015) model to
instantiate our models.

Domain Adaptation for Neural Network
Models

One general approach to domain adaptation for
natural language tasks is to perform data/feature
augmentation that represents inputs as both gen-
eral and domain-dependent data, as originally pro-
posed in (Daumé III, 2009), and ported to neural
models in (Kim et al., 2016). For computer vision
tasks, a line of work related to our approach has
been proposed by Bousmalis et al. (2016) using
what they call domain separation networks. As a
tool for studying unsupervised domain adaptation
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for image recognition tasks, their proposal uses
CNNs for encoding an image into a feature rep-
resentation, and also for reconstructing the input
sample. It also makes use of a private encoder
for each domain, and a shared encoder for both
the source and the target domain. The approach
we take in this paper shares this idea of model
parametrization according to the domain/style, but
goes further with the Mix-SHAPED model, per-
forming on-the-fly adaptation of the model out-
puts. Other CNN-based domain adaptation meth-
ods for object recognition tasks are presented
in (Long et al., 2016; Chopra et al., 2013; Tzeng
et al., 2015; Sener et al., 2016).

For NLP tasks, Peng and Dredze (2017) take a
multi-task approach to domain adaptation and se-
quence tagging. They use a shared encoder to rep-
resent instances from all of the domains, and use a
domain projection layer to project the shared layer
into a domain-specific space. They only consider
the supervised domain-adaptation case, in which
labeled training data exists for the target domain.
Glorot et al. (2011) use auto-encoders for learn-
ing a high-level feature extraction across domains
for sentiment analysis, while Zhou et al. (2016)
employ auto-encoders to directly transfer the ex-
amples across different domains also for the same
sentiment analysis task. Hua and Wang (2017)
perform an experimental analysis on domain adap-
tation for neural abstractive summarization.

An important requirement of all the methods in
the related work described above is that they re-
quire access to the (unlabeled) target domain data,
in order to learn a domain-invariant representa-
tion across source and target domains. In contrast,
our Mix-SHAPED model does not need access to
a target domain or style at training time, and in-
stead performs the adaptation on-the-fly, accord-
ing to the specifics of the input data and the corre-
lations learned at training time between available
input and output style characteristics. As such, it
is a more general approach, which allows adapta-
tion for a much larger set of target styles, under the
weaker assumption that there exists one or more
styles present in the training data that can act as
representative underlying distributions.

3 Model Architecture

Generally speaking, a standard encoder-decoder
model has two components: an encoder that
takes as input a sequence of symbols x =

(x1, x2, ..., xTx) and encodes them into a set of
vectors H = (h1, h2, ..., hTx),

H = fenc(x), (1)

where fenc is the computation unit in the encoder;
and, a decoder that generates output symbols at
each time stamp t, conditioned on H as well as
the decoder inputs y1:t−1,

st = fdec(y1:t−1,H), (2)

where fdec is the computation unit in the de-
coder. Instantiations of this framework in-
clude the widely-used attention-based sequence-
to-sequence model (Bahdanau et al., 2015), in
which fenc and fdec are implemented by an RNN
architecture using LSTM (Hochreiter and Schmid-
huber, 1997) or GRU (Chung et al., 2014) units. A
more recent instantiation of this architecture is the
Transformer model (Vaswani et al., 2017), built
using self-attention layers.

3.1 SHAPED: Shared-private
encoder-decoder

The abstract encoder-decoder model described
above is usually trained over all examples in the
training data. We call such a model a shared
encoder-decoder model, because the model pa-
rameters are shared across all training and test
instances. Formally, the shared encoder-decoder
consists of the computation units fsenc and fsdec.
Given an instance x, it generates a sequence of
vectors Ss = (ss1, ...s

s
T ) by:

Hs = fsenc(x), s
s
t = fsdec(y1:t−1,Hs). (3)

The drawback of the shared encoder-decoder is
that it fails to account for particular properties of
each style that may be present in the data. In
order to capture such particular style characteris-
tics, a straightforward solution is to train a pri-
vate model for each style. Assuming a style set
D = {D1, D2..., D|D|}, such a solution implies
that each style has its own private encoder com-
putation unit and decoder computation unit. At
both training and testing time, each private en-
coder and decoder only process instances that be-
long to their own style. Given an instance along
with its style (x, z) where z ∈ {1, . . . , |D|}, the
private encoder-decoder generates a sequence of
vectors Sz = (sz1, ...s

z
T ) by:

Hz = fzenc(x), s
z
t = fzdec(y1:t−1,Hz). (4)
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 D1

  D2

Figure 1: Illustration of the SHAPED model using
two stylesD1 andD2. D1 articles pass through the
private encoder f1enc and decoder f1dec. D2 articles
pass through the private encoder f2enc and decoder
f2dec. Both of them also go through the shared en-
coder fsdec and decoder fsdec.

Although the private encoder/decoder models do
preserve style characteristics, they fail to take
into account the common language features shared
across styles. Furthermore, since each style is rep-
resented by a subset of the entire training set, such
private models may end up as under-trained, due
to limited number of available data examples.

In order to efficiently capture both common and
unique features of data with different styles, we
propose the SHAPED model. In the SHAPED
model, each data-point goes through both the
shared encoder-decoder and its corresponding pri-
vate encoder-decoder. At each step of the decoder,
the output from private and shared ones are con-
catenated to form a new vector:

srzt = [szt , s
s
t ], (5)

that contains both private features for style z and
shared features induced from other styles, as il-
lustrated in Fig 1. The output symbol distribution
over tokens ot ∈ V (where V is the output vocab-
ulary) at step t is given by:

p(ot|x, y1:t−1, z) = Softmax(g(srzt )), (6)

where g is a multi-layer feed-forward
network that maps srzt to a vector of
size |V |. Given N training examples
(x(1),y(1), z(1)), . . . , (x(N),y(N), z(N)), the
conditional probability of the output y(i) given

article x(i) and its style z(i) ∈ {1, . . . , |D|} is:

p(y(i)|x(i), z(i)) =
∏

t

p(ot = y
(i)
t |x(i),y

(i)
1:t−1, z

(i)).

(7)
At inference time, given an article x with style z,
we feed x into f senc, f

s
dec, f

z
enc, f

z
dec (Eq. 3-4) and

obtain symbol distributions at each step t using
Eq. 6. We sample from the distribution and obtain
a symbol ot which will be used as the estimated yt
and fed to the next steps.

3.2 The Mix-SHAPED Model
One limitation of the above model is that it can
only handle test data containing an explicit style
label from D = {D1, D2..., D|D|}. However, there
is frequently the case that, at test time, the style
label is not present as part of the input, or that the
input style is not part of the modeled set D.

We treat both of these cases similarly, as a case
of modeling an unknown style. We first describe
our treatment of such a case at run-time. We use
a latent random variable z ∈ {1, . . . , |D|} to de-
note the underlying style of a given input. When
generating a token at step t, the output token dis-
tribution takes the form of a mixture of SHAPED
(Mix-SHAPED) model outputs:

p(ot|x,y1:t−1) =
|D|∑

d=1

p(ot|x,y1:t−1, z = d)p(z = d|x),
(8)

where p(ot|x,y1:t−1, z = d) is the output symbol
distribution of SHAPED decoder d, evaluated as
in Eq. 6. Fig. 2 contains an illustration of such
a model. In this formulation, p(z|x) denotes the
style conditional probability distribution from a
trainable style classifier.

The joint data likelihood of target sequence y
and target domain label z for input sequence x is:

p(y, z|x) = p(y|z,x) · p(z|x) (9)

Training the Mix-SHAPED model involves mini-
mizing a loss function that combines the negative
log-likelihood of the style labels and the negative
log-likelihood of the symbol sequences (see the
model in Fig 3):

LossMix-SHAPED = −
N∑

i=1

log p(z(i)|x(i))

−
N∑

i=1

log p(y(i)|x(i), z(i)).

(10)
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Figure 2: Decoding data with unknown style using
a Mix-SHAPED model. The data is run through
all encoders and decoders. The output of private
encoders is fed into a classifier that estimates style
distribution. The output symbol distribution is a
mixture over all decoder outputs.

At run-time, if the style d of the input is available
and d ∈ D, we decode the sequence using Eq. 6.
This also corresponds to the case p(z = d|x) = 1
and 0 for all other styles, and reduces Eq. 8 to
Eq. 6. If the style of the input is unknown (or
known, but with d′ 6∈ D), we decode the se-
quence using Eq. 8, in which case the mixture over
SHAPED models given by p(z|x) is approximat-
ing the desired output style.

4 Model Instantiation

As an implementation of the encoder-decoder
model, we use the attention-based sequence-
to-sequence model from (Bahdanau et al.,
2015), with an RNN architecture using GRU
units (Chung et al., 2014). The input token
sequences are first projected into an embedding
space via an embedding matrix E, resulting in a
sequence of vectors as input representations.

The private and shared RNN cells generate a
sequence of hidden state vectors Hz = {hzj},
z ∈ {1, ..., |D|} and Hs = {hsj}, for j ∈
{1, ..., Tx}. At each step in the encoder, hzj and
hsj are concatenated to form a new output vector
hrzj = [hzj , h

s
j ]. The final state of each encoder

is used as the initial state of the corresponding de-
coder. At time step t in the decoder, the private and
shared RNN cell first generate hidden state vec-
tors {szt }, z ∈ {1, ..., |D|} and sst , then sst is con-
catenated with each szt to form new vectors {srzt }
(z ∈ {1, ..., |D|}).

We apply the attention mechanism on srzt , using

 

   Style 
Classifier

CAT SOFTMAX

 D1

  D2

D1

     Style 
Classifier

Figure 3: Training a Mix-SHAPED model. (a)
Each example is fed to all private encoders
f1enc, f

2
enc, whose outputs are concatenated and fed

to a style classifier. (b) The D1 examples only
use f1enc, f

1
dec, f

s
enc, f

s
dec to decode texts. Private

encoder-decoders of other styles are not used.

attention weights calculated as:

qrztj = vatanh(Wah
rz
j + Uas

rz
t ), (11)

which are normalized to a probability distribution:

αrztj =
exp(qrztj )∑Tx
i=1 exp(qrzti )

(12)

Context vectors are computed using normalized
attention weights:

crzt =

Tx∑

j=1

αrztj h
rz
j (13)

Given the context vector and the hidden state vec-
tors, the symbol distribution at step t is:

p(ot|x,y1:t, z) = softmax(g([crzt , s
rz
t ])) (14)

The attention weights in Wa, Ua, and va, as well
as the embedding matrix E and vocabulary V are
shared by all encoders and decoders. We use
Eq. 14 to calculate the symbol loss in Eq. 10.
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5 Quantitative Experiments

We perform a battery of quantitative experiments,
designed to answer several main questions: 1) Do
the proposed model improve generation perfor-
mance over alternative approaches? 2) Can a style
classifier built using an auxiliary loss provide a re-
liable estimate on text style? 3) In the case of un-
known style, does the Mix-SHAPED model im-
prove generation performance over alternative ap-
proaches? 4) To what extent do our models cap-
ture style characteristics as opposed to, say, con-
tent characteristics?

We perform our experiments using text sum-
marization as the main task. More precisely, we
train and evaluate headline generation models us-
ing the publicly-available Gigaword dataset (Graff
and Cieri, 2003; Napoles et al., 2012).

5.1 Headline-generation Setup
The Gigaword dataset contains news articles from
seven publishers: Agence France-Presse (AFP),
Associated Press Worldstream (APW), Central
News Agency of Taiwan (CNA), Los Ange-
les Times/Washington Post Newswire Service
(LTW), New York Times (NYT), Xinhua News
Agency (XIN), and Washington Post/Bloomberg
Newswire Service (WPB). We pre-process this
dataset in the same way as in (Rush et al., 2015),
which results in articles with average length 31.4
words, and headlines with average length 8.5
words.

We consider the publisher identity as a proxy
for style, and choose to model as in-domain styles
the set D = {AFP, APW, NYT, XIN}, while hold-
ing out CNA and LTW for out-of-domain style
testing. This results in a training set contain-
ing the following number of (article, headline) in-
stances: 993,584 AFP, 1,493,758 APW, 578,259
NYT, and 946,322 XIN. For the test set, we sam-
ple a total number of 10,000 in-domain examples
from the original Gigawords test dataset, which
include 2,886 AFP, 2,832 APW, 1,610 NYT, and
2,012 XIN. For out-of-domain testing, we ran-
domly sample 10,000 LTW and 10,000 CNA test
data examples. We remove the WPB articles due
to their small number of instances.

5.1.1 Experimental Setup
We compare the following models:

• A Shared encoder-decoder model (S) trained
on all styles in D;

• A suite of Private encoder-decoder models
(P), each one trained on a particular style
from D = {AFP, APW, NYT, XIN};1

• A SHAPED model (SP) trained on all styles
in D; at test time, the style of test data is
provided to the model; the article is only
run through its style-specific private network
and shared network (style classifier is not
needed);

• A Mix-SHAPED model (M-SP) trained on
all styles in D; at test time, the style of arti-
cle is not provided to the model; the output is
computed using the mixture model, with the
estimated style probabilities from the style
classifier used as weights.

When testing on the out-of-domain styles
CNA/LTW, we only compare the Shared (S)
model with the Mix-SHAPED (M-SP) model, as
the others cannot properly handle this scenario.

As hyper-parameters for the model instantia-
tion, we used 500-dimension word embeddings,
and a three-layer, 500-dimension GRU-cell RNN
architecture; the encoder was instantiated as a bi-
directional RNN. The lengths of the input and out-
put sequences were truncated to 40 and 20 tokens,
respectively. All the models were optimized using
Adagrad (Duchi et al., 2011), with an initial learn-
ing rate of 0.01. The training procedure was done
over mini-batches of size 128, and the updates
were done asynchronously across 40 workers for
5M steps. The encoder/decoder word embedding
and the output projection matrices were tied to
minimize the number of parameters. To avoid the
slowness from the softmax operator over large vo-
cabulary sizes, and also mitigate the impact of out-
of-vocabulary tokens, we applied a subtokeniza-
tion method (Wu et al., 2016), which invertibly
transforms a native token into a sequence of subto-
kens from a limited vocabulary (here set to 32K).

Comparison with Previous Work In the next
section, we report our main results using the in-
domain and out-of-domain (w.r.t. the selected
publisher styles) test sets described above, since
these test sets have a balanced publisher style fre-
quency that allows us to measure the impact of our
style-adaptation models. However, we also report

1We also tried to warm-start a private model using the best
checkpoint of the shared model, but found that it cannot im-
prove over the shared model.
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AFP/APW/XIN/NYT Test
Rouge-1 Rouge-2 Rouge-L

P 39.14±0.47 19.74±0.48 36.42±0.46
S 39.32±0.26 19.63±0.24 36.51±0.26

SP 40.34±0.26 20.38±0.25 37.52±0.25
M-SP 40.10±0.25 20.21±0.26 37.30±0.26

Table 1: ROUGE F1 scores on the combined
AFP/APW/XIN/NYT in-domain test set.

here the performance of our Shared (S) baseline
model (with the above hyper-parameters) on the
original 2K test set used in (Rush et al., 2015).
On that test set, our S model obtains 30.13 F1
ROUGE-L score, compared to 28.34 ROUGE-L
obtained by the ABS+ model (Rush et al., 2015),
and 30.64 ROUGE-L obtained by the words-lvt2k-
1sent model (Nallapati et al., 2016). This compar-
ison indicates that our S model is a competitive
baseline, making the comparisons against the SP
and M-SP models meaningful when using our in-
domain and out-of-domain test sets.

5.1.2 Main Results
The Rouge scores for the in-domain testing data
are reported in Table 1 (over the combined
AFP/APW/XIN/NYT testset) and Fig. 4a (over
individual-style test sets). The numbers indicate
that the SP and M-SP models consistently outper-
form the S and P model, supporting the conclusion
that the S model loses important characteristics
due to averaging effects, while the P models miss
the opportunity to efficiently exploit the training
data. Additionally, the performance of SP is con-
sistently better than M-SP in this setting, which in-
dicates that the style label is helpful. As shown in
Fig. 4b, the style classifier achieves around 80%
accuracy overall in predicting the style under the
M-SP model, with some styles (e.g., XIN) being
easier to predict than others. The performance of
the classifier is directly reflected in the quantita-
tive difference between the SP and M-SP models
on individual-style test sets (see Fig. 4a, where the
XIN style has the smallest difference between the
two models).

The evaluation results for the out-of-domain
scenario are reported in Table 2. The numbers in-
dicate that the M-SP model significantly outper-
forms the S model, supporting the conclusion that
the M-SP model is capable of performing on-the-
fly adaptation of output style. This conclusion is
further strengthened by the style probability dis-
tributions shown in Fig 5: they indicate that, for
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(a) Rouge-L scores on headline generation, shown sepa-
rately on four in-domain styles.
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(b) Average estimated probability distribution by the M-
SP model over the four styles, for each in-domain target
style in the test set.

Figure 4: Experimental results on the headline gen-
eration task, for in-domain styles.

the out-of-domain CNA style, the output mixture
is heavily weighted towards the XIN style (0.6 of
the probability mass), while for the LTW style,
the output mixture weights heavily the NYT style
(0.72 of the probability mass). This result is likely
to reflect true style characteristics shared by these
publishers, since both CNA and XIN are produced
by Chinese news agencies (from Taiwan and main-
land China, respectively), while both LTW and
NYT are U.S. news agencies owned by the same
media corporation.

5.1.3 Experiment Variants

Model capacity In order to remove the possibil-
ity that the improved performance of the SP model
is due simply to an increased model size com-
pared to the S model, we perform an experiment
in which we triple the size of the GRU cell dimen-
sions for the S model. However, we find no sig-
nificant performance difference compared to the
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CNA Test LTW Test
Rouge-1 Rouge-2 Rouge-L Rouge-1 Rouge-2 Rouge-L

S 40.73±0.21 17.75±0.18 37.70±0.20 27.08±0.19 8.97±0.15 25.01±0.17

M-SP 42.00±0.20 19.48±0.21 39.24±0.22 27.79±0.19 9.31±0.18 25.60±0.17

Table 2: ROUGE F1 scores on out-of-domain style test sets CNA and LTW.
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Figure 5: Estimated style probabilities over the
four in-domain styles AFP/APW/XIN/NYT, for
out-of-domain styles CNA and LTW.

original dimensions (the ROUGE-L score of the
triple-size S model is 36.61, compared to 36.51
obtained of the original S model).

Style embedding A competitive approach to
modeling different styles is to directly encode
the style information into the embedding space.
In (Johnson et al., 2016), the style label is con-
verted into a one-hot vector and is concatenated
with the word embedding at each time step in
the S model. The outputs of this model are at
36.68 ROUGE-L, slightly higher than the baseline
S model, but significantly lower than the SP model
performance (37.52 ROUGE-L).

Another style embedding approach is to aug-
ment the S model with continuous trainable style
embeddings for each predefined style label, sim-
ilar to (Ammar et al., 2016). The resulting out-
puts achieve 37.2 ROUGE-L, which is better than
the S model with one-hot style embedding, but
still worse than the SP method (statistically signif-
icant at p-value=0.025 using paired t-test). How-
ever, neither of these approaches apply to the cases
when the style is out-of-domain or unknown dur-
ing testing. In contrast, such cases are handled nat-
urally by the proposed M-SP model.

Ensemble model Another question is whether
the SP model simply benefits from ensembling

multiple models rather than style adaptation. To
answer this question, we apply a uniform mix-
ture over the private model output along with
the shared model output, rather than using the
learnt probability distribution from the style classi-
fier. The ROUGE-1/2/L scores are 39.9/19.7/37.0.
They are higher than the S model but significantly
lower than the SP model and the M-SP model (p-
value 0.016). This result confirms that the infor-
mation that the style classifier encodes is benefi-
ciary, and leads to improved performance.

Style vs. Content Previous experiments indi-
cate that the SP and M-SP models have superior
generation accuracy, but it is unclear to what ex-
tent the difference comes from improved modeling
of style versus modeling of content. To clarify this
issue, we performed an experiment in which we
replace the named entities appearing in both arti-
cle and headline with corresponding entity tags, in
effect suppressing almost completely any content
signal. For instance, given an input such as “China
called Thursday on the parties involved in talks on
North Korea’s nuclear program to show flexibil-
ity as a deadline for implementing the first steps
of a breakthrough deal approached.”, paired with
goldtruth output “China urges flexibility as NKo-
rea deadline approaches”, we replaced the named
entities with their types, and obtained: “LOC 0
called Thursday on the ORG 0 involved in NON 2
on LOC 1 ’s NON 3 to show NON 0 as a NON 1
for implementing the first NON 4 of a NON 5 ap-
proached .”, paired with “LOC 0 urges NON 0 as
LOC 1 NON 1 approaches.”

Under this experimental conditions, both the
SP and M-SP models still achieve significantly
better performance compared to the S baseline.
On the combined AFP/APW/XIN/NYT in-domain
test set, the SP model achieves 61.70 ROUGE-L
and M-SP achieves 61.52 ROUGE-L, compared to
60.20 ROUGE-L obtained by the S model. On the
CNA/LTW out-of-domain test set, M-SP achieves
60.75 ROUGE-L, compared to 59.47 ROUGE-L
by the S model.

In Table 3, we show an example which indi-
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article the org 2 is to forge non 1 with the org 3 located in loc 2 , loc 1 , the per 0 of
the loc 0 org 4 said tuesday .

title loc 0 org 0 to forge non 0 with loc 1 org 1
output by S org 0 to org 1 in non 0

output by M-SP loc 0 org 0 to forge non 0 with loc 1 org 1
article loc 0 - born per 0 per 0 will pay non 1 here next month to per 1 , the org 2

( org 1 ) per 1 who per 1 perished in an non 2 in february , the org 3 said
thursday .

title per 0 to pay non 0 to late org 1 org 0
output by S per 0 to visit org 0 in non 0

output by M-SP per 0 to pay non 0 to org 1 org 0

Table 3: Examples of input article (and groundtruth title) and output generated by S and M-SP. Named
entities in the training instances (both article and title) are replaced the entity type.

cates the ability of style adaptation benifiting sum-
marization. For instance, we find that both CNA
and XIN make more frequent use of the style pat-
tern “xxx will/to [verb] yyy . . ., zzz said ???day”
(about 15% of CNA articles contain this pattern,
while only 2% of LTW articles have it). From
Table 3, we can see that the S model sometimes
misses or misuses the verb in its output, while the
M-SP model does a much better job at capturing
both the verb/action as well as other relations (via
prepositions, etc.)

Fig. 6 shows the estimated style probabili-
ties over the four styles AFP/APW/XIN/NYT for
CNA and LTW, under this experiment condition.
We observe that, in this version as well, CNA is
closely matching the style of XIN, while LTW is
matching that of NYT. The distribution is similar
to the one in Fig. 5, albeit a bit flatter as a result
of content removal. As such, it supports the con-
clusion that the classifier indeed learns style (in
addition to content) characteristics.

6 Conclusion

In this paper, we describe two new style-
adaptation model architectures for text sequence
generation tasks, SHAPED and Mix-SHAPED.
Both versions are shown to significantly outper-
form models that are either trained in a manner
that ignores style characteristics (and hence ex-
hibit a style-averaging effect in their outputs), or
models that are trained single-style.

The latter is a particularly interesting result, as
a model that is trained (with enough data) on a
single-style and evaluated on the same style would
be expected to exhibit the highest performance.
Our results show that, even for single-style models

NYT AFP APW XIN
0.0

0.1

0.2

0.3

0.4

0.5

CNA

NYT AFP APW XIN
0.0

0.1

0.2

0.3

0.4

0.5

LTW

Figure 6: Estimated style probabilities over the
four in-domain styles AFP/APW/XIN/NYT, for
out-of-domain styles CNA and LTW, after named
entities in the article and summary are replaced
with entity tags.

trained on over 1M examples, their performance is
inferior to the performance of SHAPED models on
that particular style.

Our conclusion is that the proposed architec-
tures are both efficient and effective in modeling
both generic language phenomena, as well as par-
ticular style characteristics, and are capable of pro-
ducing higher-quality abstractive outputs that take
into account style characteristics.
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Abstract

In this work, we focus on the task of generat-
ing natural language descriptions from a struc-
tured table of facts containing fields (such as
nationality, occupation, etc) and values (such
as Indian, {actor, director}, etc). One sim-
ple choice is to treat the table as a sequence
of fields and values and then use a standard
seq2seq model for this task. However, such a
model is too generic and does not exploit task-
specific characteristics. For example, while
generating descriptions from a table, a hu-
man would attend to information at two levels:
(i) the fields (macro level) and (ii) the values
within the field (micro level). Further, a human
would continue attending to a field for a few
timesteps till all the information from that field
has been rendered and then never return back
to this field (because there is nothing left to say
about it). To capture this behavior we use (i)
a fused bifocal attention mechanism which ex-
ploits and combines this micro and macro level
information and (ii) a gated orthogonalization
mechanism which tries to ensure that a field
is remembered for a few time steps and then
forgotten. We experiment with a recently re-
leased dataset which contains fact tables about
people and their corresponding one line bi-
ographical descriptions in English. In addi-
tion, we also introduce two similar datasets for
French and German. Our experiments show
that the proposed model gives 21% relative im-
provement over a recently proposed state of
the art method and 10% relative improvement
over basic seq2seq models. The code and the
datasets developed as a part of this work are
publicly available. 1

∗* The first three authors have contributed equally to this
work.

1https://github.com/PrekshaNema25/
StructuredData_To_Descriptions

1 Introduction

Rendering natural language descriptions from
structured data is required in a wide variety of
commercial applications such as generating de-
scriptions of products, hotels, furniture, etc., from
a corresponding table of facts about the entity.
Such a table typically contains {field, value} pairs
where the field is a property of the entity (e.g.,
color) and the value is a set of possible assign-
ments to this property (e.g., color = red). Another
example of this is the recently introduced task of
generating one line biography descriptions from
a given Wikipedia infobox (Lebret et al., 2016).
The Wikipedia infobox serves as a table of facts
about a person and the first sentence from the cor-
responding article serves as a one line descrip-
tion of the person. Figure 1 illustrates an exam-
ple input infobox which contains fields such as
Born, Residence, Nationality, Fields, Institutions
and Alma Mater. Each field further contains some
words (e.g., particle physics, many-body theory,
etc.). The corresponding description is coherent
with the information contained in the infobox.

Note that the number of fields in the infobox
and the ordering of the fields within the infobox
varies from person to person. Given the large size
(700K examples) and heterogeneous nature of the
dataset which contains biographies of people from
different backgrounds (sports, politics, arts, etc.),
it is hard to come up with simple rule-based tem-
plates for generating natural language descriptions
from infoboxes, thereby making a case for data-
driven models. Based on the recent success of
data-driven neural models for various other NLG
tasks (Bahdanau et al., 2014; Rush et al., 2015;
Yao et al., 2015; Chopra et al., 2016; Nema et al.,
2017), one simple choice is to treat the infobox as
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Figure 1: Sample Infobox with description : V.
Balakrishnan (born 1943 as Venkataraman Bal-
akrishnan) is an Indian theoretical physicist who
has worked in a number of fields of areas, includ-
ing particle physics, many-body theory, the me-
chanical behavior of solids, dynamical systems,
stochastic processes, and quantum dynamics.

a sequence of {field, value} pairs and use a stan-
dard seq2seq model for this task. However, such a
model is too generic and does not exploit the spe-
cific characteristics of this task as explained below.

First, note that while generating such descrip-
tions from structured data, a human keeps track of
information at two levels. Specifically, at a macro
level, she would first decide which field to men-
tion next and then at a micro level decide which of
the values in the field needs to be mentioned next.
For example, she first decides that at the current
step, the field occupation needs attention and then
decides which is the next appropriate occupation
to attend to from the set of occupations (actor, di-
rector, producer, etc.). To enable this, we use a
bifocal attention mechanism which computes an
attention over fields at a macro level and over val-
ues at a micro level. We then fuse these atten-
tion weights such that the attention weight for a
field also influences the attention over the values
within it. Finally, we feed a fused context vector
to the decoder which contains both field level and
word level information. Note that such two-level
attention mechanisms (Nallapati et al., 2016; Yang
et al., 2016; Serban et al., 2016) have been used
in the context of unstructured data (as opposed to
structured data in our case), where at a macro level
one needs to pay attention to sentences and at a
micro level to words in the sentences.

Next, we observe that while rendering the out-
put, once the model pays attention to a field (say,
occupation) it needs to stay on this field for a few
timesteps (till all the occupations are produced in

the output). We refer to this as the stay on be-
havior. Further, we note that once the tokens of a
field are referred to, they are usually not referred to
later. For example, once all the occupations have
been listed in the output we will never visit the oc-
cupation field again because there is nothing left to
say about it. We refer to this as the never look back
behavior. To model the stay on behaviour, we in-
troduce a forget (or remember) gate which acts as
a signal to decide when to forget the current field
(or equivalently to decide till when to remember
the current field). To model the never look back
behaviour we introduce a gated orthogonalization
mechanism which ensures that once a field is for-
gotten, subsequent field context vectors fed to the
decoder are orthogonal to (or different from) the
previous field context vectors.

We experiment with the WIKIBIO dataset (Le-
bret et al., 2016) which contains around 700K
{infobox, description} pairs and has a vocabu-
lary of around 400K words. We show that the
proposed model gives a relative improvement of
21% and 20% as compared to current state of the
art models (Lebret et al., 2016; Mei et al., 2016)
on this dataset. The proposed model also gives a
relative improvement of 10% as compared to the
basic seq2seq model. Further, we introduce new
datasets for French and German on the same lines
as the English WIKIBIO dataset. Even on these
two datasets, our model outperforms the state of
the art methods mentioned above.

2 Related work

Natural Language Generation has always been of
interest to the research community and has re-
ceived a lot of attention in the past. The ap-
proaches for NLG range from (i) rule based ap-
proaches (e.g., (Dale et al., 2003; Reiter et al.,
2005; Green, 2006; Galanis and Androutsopou-
los, 2007; Turner et al., 2010)) (ii) modular sta-
tistical approaches which divide the process into
three phases (planning, selection and surface real-
ization) and use data driven approaches for one or
more of these phases (Barzilay and Lapata, 2005;
Belz, 2008; Angeli et al., 2010; Kim and Mooney,
2010; Konstas and Lapata, 2013) (iii) hybrid ap-
proaches which rely on a combination of hand-
crafted rules and corpus statistics (Langkilde and
Knight, 1998; Soricut and Marcu, 2006; Mairesse
and Walker, 2011) and (iv) the more recent neural
network based models (Bahdanau et al., 2014).
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Neural models for NLG have been proposed in
the context of various tasks such as machine trans-
lation (Bahdanau et al., 2014), document summa-
rization (Rush et al., 2015; Chopra et al., 2016),
paraphrase generation (Prakash et al., 2016), im-
age captioning (Xu et al., 2015), video summa-
rization (Venugopalan et al., 2014), query based
document summarization (Nema et al., 2017) and
so on. Most of these models are data hungry and
are trained on large amounts of data. On the other
hand, NLG from structured data has largely been
studied in the context of small datasets such as
WEATHERGOV (Liang et al., 2009), ROBOCUP

(Chen and Mooney, 2008), NFL RECAPS (Barzi-
lay and Lapata, 2005), PRODIGY-METEO (Belz
and Kow, 2009) and TUNA Challenge (Gatt and
Belz, 2010). Recently Mei et al. (2016) pro-
posed RNN/LSTM based neural encoder-decoder
models with attention for WEATHERGOV and
ROBOCUP datasets.

Unlike the datasets mentioned above, the biog-
raphy dataset introduced by Lebret et al. (2016)
is larger (700K {table, descriptions} pairs) and
has a much larger vocabulary (400K words as op-
posed to around 350 or fewer words in the above
datasets). Further, unlike the feed-forward neural
network based model proposed by (Lebret et al.,
2016) we use a sequence to sequence model and
introduce components to address the peculiar char-
acteristics of the task. Specifically, we introduce
neural components to address the need for atten-
tion at two levels and to address the stay on and
never look back behaviour required by the de-
coder. Kiddon et al. (2016) have explored the
use of checklists to track previously visited in-
gredients while generating recipes from ingredi-
ents. Note that two-level attention mechanisms
have also been used in the context of summariza-
tion (Nallapati et al., 2016), document classifica-
tion (Yang et al., 2016), dialog systems (Serban
et al., 2016), etc. However, these works deal with
unstructured data (sentences at the higher level and
words at a lower level) as opposed to structured
data in our case.

3 Proposed model

As input we are given an infobox I =
{(gi, ki)}Mi=1, which is a set of pairs (gi, ki) where
gi corresponds to field names and ki is the se-
quence of corresponding values and M is the to-
tal number of fields in I. For example, (g =

occupation, k = actor, writer, director) could be
one such pair in this set. Given such an in-
put, the task is to generate a description y =
y1, y2, . . . , ym containing m words. A simple so-
lution is to treat the infobox as a sequence of fields
followed by the values corresponding to the field
in the order of their appearance in the infobox. For
example, the infobox could be flattened to produce
the following input sequence (the words in bold
are field names which act as delimiters)

[Name] John Doe [Birth Date] 19 March 1981
[Nationality] Indian .....

The problem can then be cast as a seq2seq gen-
eration problem and can be modeled using a stan-
dard neural architecture comprising of three com-
ponents (i) an input encoder (using GRU/LSTM
cells), (ii) an attention mechanism to attend to im-
portant values in the input sequence at each time
step and (iii) a decoder to decode the output one
word at a time (again, using GRU/LSTM cells).
However, this standard model is too generic and
does not exploit the specific characteristics of this
task. We propose additional components, viz., (i)
a fused bifocal attention mechanism which oper-
ates on fields (macro) and values (micro) and (ii) a
gated orthogonalization mechanism to model stay
on and never look back behavior.

3.1 Fused Bifocal Attention Mechanism

Intuitively, when a human writes a description
from a table she keeps track of information at two
levels. At the macro level, it is important to decide
which is the appropriate field to attend to next and
at a micro level (i.e., within a field) it is important
to know which values to attend to next. To capture
this behavior, we use a bifocal attention mecha-
nism as described below.
Macro Attention: Consider the i-th field gi which
has values ki = (w1, w2, ..., wp). Let hgi be the
representation of this field in the infobox. This
representation can either be (i) the word embed-
ding of the field name or (ii) some function f of
the values in the field or (iii) a concatenation of
(i) and (ii). The function f could simply be the
sum or average of the embeddings of the values
in the field. Alternately, this function could be a
GRU (or LSTM) which treats these values within
a field as a sequence and computes the field rep-
resentation as the final representation of this se-
quence (i.e., the representation of the last time-
step). We found that bidirectional GRU is a bet-
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Figure 2: Proposed model

ter choice for f and concatenating the embedding
of the field name with this GRU representation
works best. Further, using a bidirectional GRU
cell to take contextual information from neighbor-
ing fields also helps (these are the orange colored
cells in the top-left block in Figure 2 with macro
attention). Given these representations {hgi }Mi=1

for all the M fields we compute an attention over
the fields (macro level).

bgt,i = vTg tanh(Ugst−1 + Vgh
g
i )

βt,i =
exp(bgt,i)∑M
l=1 exp(bgt,l)

cgt =
M∑

i=1

βt,ih
g
i (1)

where st−1 is the state of the decoder at time
step t− 1. Ug, Vg and vg are parameters, M is the
total number of fields in the input, cgt is the macro
(field level) context vector at the t-th time step of
the decoder.
Micro Attention: Let hwj be the representation of
the j-th value in a given field. This representa-
tion could again either be (i) simply the embed-
ding of this value (ii) or a contextual representa-
tion computed using a function f which also con-
siders the other values in the field. For example, if
(w1, w2, ..., wp) are the values in a field then these
values can be treated as a sequence and the rep-
resentation of the j-th value can be computed us-
ing a bidirectional GRU over this sequence. Once
again, we found that using a bi-GRU works bet-
ter then simply using the embedding of the value.
Once we have such a representation computed for
all values across all the fields, we compute the at-
tention over these values (micro level) as shown

below :

awt,j = vTw tanh(Uwst−1 + Vwh
w
j ) (2)

αwt,j =
exp(awt,j)∑W
l=1 exp(awt,l)

(3)

where st−1 is the state of the decoder at time step
t − 1. Uw, Vw and vw are parameters, W is the
total number of values across all the fields.
Fused Attention: Intuitively, the attention
weights assigned to a field should have an influ-
ence on all the values belonging to the particu-
lar field. To ensure this, we reweigh the micro
level attention weights based on the correspond-
ing macro level attention weights. In other words,
we fuse the attention weights at the two levels as:

α
′
t,j =

αt,jβt,F (j)∑W
l=1 αt,lβt,F (l)

(4)

cwt =
W∑

j=1

α
′
t,jh

w
j (5)

where F (j) is the field corresponding to the j-th
value, cwt is the macro level context vector.

3.2 Gated Orthogonalization for Modeling
Stay-On and Never Look Back behaviour

We now describe a series of choices made to
model stay-on and never look back behavior. We
first begin with the stay-on property which essen-
tially implies that if we have paid attention to the
field i at timestep t then we are likely to pay atten-
tion to the same field for a few more time steps.
For example, if we are focusing on the occupation
field at this timestep then we are likely to focus on
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it for the next few timesteps till all relevant values
in this field have been included in the generated
description. In other words, we want to remem-
ber the field context vector cgt for a few timesteps.
One way of ensuring this is to use a remember (or
forget) gate as given below which remembers the
previous context vector when required and forgets
it when it is time to move on from that field.

ft = σ(W f
t c

g
t−1 +W f

g ct−1 + bf ) (6)

ct = (1− ft)� cgt + ft � ct−1 (7)

where Wt
f ,Wg

f , bf are parameters to be
learned. The job of the forget gate is to ensure that
ct is similar to ct−1 when required (i.e., by learn-
ing ft → 1 when we want to continue focusing
on the same field) and different when it is time to
move on (by learning that ft → 0).

Next, the never look back property implies that
once we have moved away from a field we are un-
likely to pay attention to it again. For example,
once we have rendered all the occupations in the
generated description there is no need to return
back to the occupation field. In other words, once
we have moved on (ft → 0), we want the suc-
cessive field context vectors cgt to be very different
from the previous field vectors ct−1. One way of
ensuring this is to orthogonalize successive field
vectors using

cgt = cgt − γt �
< ct−1, c

g
t >

< ct−1, ct−1 >
ct−1 (8)

where < a, b > is the dot product between vec-
tors a and b. The above equation essentially sub-
tracts the component of cgt along ct−1. γt is a
learned parameter which controls the degree of or-
thogonalization thereby allowing a soft orthogo-
nalization (i.e., the entire component along ct−1 is
not subtracted but only a fraction of it). The above
equation only ensures that cgt is soft-orthogonal
to ct−1. Alternately, we could pass the sequence
of context vectors, c1, c2, ..., ct generated so far
through a GRU cell. The state of this GRU cell
at each time step would thus be aware of the his-
tory of the field vectors till that timestep. Now
instead of orthogonalizing cgt to ct−1 we could or-
thogonalize cgt to the hidden state of this GRU at
time-step t− 1. In practice, we found this to work
better as it accounts for all the field vectors in the
history instead of only the previous field vector.

In summary, Equation 7 provides a mechanism
for remembering the current field vector when ap-
propriate (thus capturing stay-on behavior) using

a remember gate. On the other hand, Equation
8 explicitly ensures that the field vector is very
different (soft-orthogonal) from the previous field
vectors once it is time to move on (thus capturing
never look back behavior). The value of cgt com-
puted in Equation 8 is then used in Equation 7.
The ct (macro) thus obtained is then concatenated
with cwt (micro) and fed to the decoder (see Fig. 2)

4 Experimental setup

We now describe our experimental setup:

4.1 Datasets

We use the WIKIBIO dataset introduced by Lebret
et al. (2016). It consists of 728, 321 biography ar-
ticles from English Wikipedia. A biography arti-
cle corresponds to a person (sportsman, politician,
historical figure, actor, etc.). Each Wikipedia ar-
ticle has an accompanying infobox which serves
as the structured input and the task is to generate
the first sentence of the article (which typically is
a one-line description of the person). We used the
same train, valid and test sets which were made
publicly available by Lebret et al. (2016).

We also introduce two new biography datasets,
one in French and one in German. These datasets
were created and pre-processed using the same
procedure as outlined in Lebret et al. (2016).
Specifically, we extracted the infoboxes and the
first sentence from the corresponding Wikipedia
article. As with the English dataset, we split the
French and German datasets randomly into train
(80%), test (10%) and valid (10%). The French
and German datasets extracted by us has been
made publicly available.2 The number of exam-
ples was 170K and 50K and the vocabulary size
was 297K and 143K for French and German re-
spectively. Although in this work we focus only on
generating descriptions in one language, we hope
that this dataset will also be useful for develop-
ing models which jointly learn to generate descrip-
tions from structured data in multiple languages.

4.2 Models compared

We compare with the following models:
1. (Lebret et al., 2016): This is a conditional
language model which uses a feed-forward neu-
ral network to predict the next word in the de-
scription conditioned on local characteristics (i.e.,

2https://github.com/PrekshaNema25/
StructuredData_To_Descriptions

1543



Model BLEU-4 NIST-4 ROUGE-4
(Lebret et al., 2016) 34.70 7.98 25.80
(Mei et al., 2016) 35.10 7.27 30.90
Basic Seq2Seq 38.20 8.47 34.28
+Fused bifocal attention 41.22 8.96 38.71
+Gated orthogonalization 42.03 9.17 39.11

Table 1: Comparison of different models on the
English WIKIBIO dataset

words within a field) and global characteristics
(i.e., overall structure of the infobox).
2. (Mei et al., 2016): This model was pro-
posed in the context of the WEATHERGOV and
ROBOCUP datasets which have a much smaller
vocabulary. They use an improved attention model
with additional regularizer terms which influence
the weights assigned to the fields.
3. Basic Seq2Seq: This is the vanilla encode-
attend-decode model (Bahdanau et al., 2014). Fur-
ther, to deal with the large vocabulary (∼400K
words) we use a copying mechanism as a post-
processing step. Specifically, we identify the time
steps at which the decoder produces unknown
words (denoted by the special symbol UNK). For
each such time step, we look at the attention
weights on the input words and replace the UNK
word by that input word which has received max-
imum attention at this timestep. This process
is similar to the one described in (Luong et al.,
2015). Even Lebret et al. (2016) have a copying
mechanism tightly integrated with their model.

4.3 Hyperparameter tuning

We tuned the hyperparameters of all the models
using a validation set. As mentioned earlier, we
used a bidirectional GRU cell as the function f for
computing the representation of the fields and the
values (see Section 3.1). For all the models, we ex-
perimented with GRU state sizes of 128, 256 and
512. The total number of unique words in the cor-
pus is around 400K (this includes the words in the
infobox and the descriptions). Of these, we re-
tained only the top 20K words in our vocabulary
(same as (Lebret et al., 2016)). We initialized the
embeddings of these words with 300 dimensional
Glove embeddings (Pennington et al., 2014). We
used Adam (Kingma and Ba, 2014) with a learn-
ing rate of 0.0004, β1 = 0.9 and β2 = 0.999.
We trained the model for a maximum of 20 epochs
and used early stopping with the patience set to 5
epochs.

5 Results and Discussions

We now discuss the results of our experiments.

5.1 Comparison of different models

Following Lebret et al. (2016), we used BLEU-
4, NIST-4 and ROUGE-4 as the evaluation met-
rics. We first make a few observations based on
the results on the English dataset (Table 1). The
basic seq2seq model, as well as the model pro-
posed by Mei et al. (2016), perform better than the
model proposed by Lebret et al. (2016). Our fi-
nal model with bifocal attention and gated orthog-
onalization gives the best performance and does
10% (relative) better than the closest baseline (ba-
sic seq2seq) and 21% (relative) better than the cur-
rent state of the art method (Lebret et al., 2016). In
Table 2, we show some qualitative examples of the
output generated by different models.

5.2 Human Evaluations

To make a qualitative assessment of the generated
sentences, we conducted a human study on a sam-
ple of 500 Infoboxes which were sampled from
English dataset. The annotators for this task were
undergraduate and graduate students. For each
of these infoboxes, we generated summaries us-
ing the basic seq2seq model and our final model
with bifocal attention and gated orthogonalization.
For each description and for each model, we asked
three annotators to rank the output of the systems
based on i) adequacy (i.e. does it capture relevant
information from the infobox), (ii) fluency (i.e.
grammar) and (iii) relative preference (i.e., which
of the two outputs would be preferred). Overall
the average fluency/adequacy (on a scale of 5) for
basic seq2seq model was 4.04/3.6 and 4.19/3.9
for our model respectively.

The results from Table 3 suggest that in gen-
eral gated orthogonalization model performs bet-
ter than the basic seq2seq model. Additionally, an-
notators were asked to verify if the generated sum-
maries look natural (i.e, as if they were generated
by humans). In 423 out of 500 cases, the annota-
tors said “Yes” suggesting that gated orthogonal-
ization model indeed produces good descriptions.

5.3 Performance on different languages

The results on the French and German datasets are
summarized in Tables 4 and 5 respectively. Note
that the code of (Lebret et al., 2016) is not pub-
licly available, hence we could not report numbers
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Reference: Samuel Smiles (23 December 1812 - 16 April 1904), was a Scottish author and government reformer who
campaigned on a Chartist platform.
Basic Seq2Seq: samuel smiles (23 december 1812 – 16 april 1904) was an english books and author.
+Bifocal attention: samuel smiles (23 december 1812 - 16 april 1904) was a british books and books.
+Gated Orthogonalization: samuel smiles (23 december 1812 - 16 april 1904) was a british biographies and author.
Reference: Thomas Tenison (29 September 1636 - 14 December 1715) was an English church leader, Archbishop of
Canterbury from 1694 until his death.
Basic Seq2Seq: thomas tenison (14 december 1715 - 29 september 1636) was an english roman catholic archbishop.
+Bifocal attention: thomas tenison (29 september 1636 - 14 december 1715) was an english clergyman of the roman
catholic church.
+Gated Orthogonalization: thomas tenison (29 september 1636 - 14 december 1715) was archbishop of canterbury from
1695 to 1715.
Reference: Guy F. Cordon (April 24, 1890 - June 8, 1969) was a U.S. politician and lawyer from the state of Oregon.
Basic Seq2Seq: charles l. mcnary (april 24 , 1890 8 , 1969) was a united states senator from oregon.
+Bifocal attention:guy cordon (april 24 , 1890 – june 8 , 1969) was an american attorney and politician.
+Gated Orthogonalization: guy cordon (april 24 , 1890 – june 8 , 1969) was an american attorney and politician from
the state of oregon.
Reference: Dr. Harrison B. Wilson Jr. (born April 21, 1925) is an American educator and college basketball coach who
served as the second president of Norfolk State University from 1975-1997.
Basic Seq2Seq: lyman beecher brooks (born april 21 , 1925) is an american educator and educator.
+Bifocal attention: harrison b. wilson , jr. (born april 21 , 1925) is an american educator and academic administrator.
+Gated Orthogonalization: harrison b. wilson , jr. (born april 21 , 1925) is an american educator , academic administrator
, and former president of norfolk state university.

Table 2: Examples of generated descriptions from different models. For the last two examples, name
generated by Basic Seq2Seq model is incorrect because it attended to preceded by field.

Metric A <B A == B A >B
Adequacy 186 208 106
Fluency 244 108 148

Preference 207 207 86

Table 3: Qualitative Comparison of Model A
(Seq2Seq) and Model B (our model)

for French and German using their model. We ob-
serve that our final model gives the best perfor-
mance - though the bifocal attention model per-
forms poorly as compared to the basic seq2seq
model on French. However, the overall perfor-
mance for French and German are much smaller
than those for English. There could be multiple
reasons for this. First, the amount of training data
in these two languages is smaller than that in En-
glish. Specifically, the amount of training data
available in French (German) is only 24.2 (7.5)%
of that available for English. Second, on average
the descriptions in French and German are longer
than that in English (EN: 26.0 words, FR: 36.5
words and DE: 32.3 words). Finally, a manual in-
spection across the three languages suggests that
the English descriptions have a more consistent
structure than the French descriptions. For exam-
ple, most English descriptions start with name fol-
lowed by date of birth but this is not the case in
French. However, this is only a qualitative obser-
vation and it is hard to quantify this characteristic

Model BLEU-4 NIST-4 ROUGE-4
(Mei et al., 2016) 10.40 2.51 7.81
Basic Seq2Seq 14.50 3.02 12.22
+Fused bifocal attention 13.80 2.86 12.37
+Gated orthogonalization 15.52 3.30 12.80

Table 4: Comparison of different models on the
French WIKIBIO dataset

Model BLEU-4 NIST-4 ROUGE-4
(Mei et al., 2016) 9.30 2.23 5.85
Basic Seq2Seq 17.05 3.09 12.16
+Fused bifocal attention 20.38 3.43 14.89
+Gated orthogonalization 23.33 4.24 16.40

Table 5: Comparison of different models on the
German WIKIBIO dataset

of the French and German datasets.

5.4 Visualizing Attention Weights

If the proposed model indeed works well then we
should see attention weights that are consistent
with the stay on and never look back behavior.
To verify this, we plotted the attention weights in
cases where the model with gated orthogonaliza-
tion does better than the model with only bifocal
attention. Figure 3 shows the attention weights
corresponding to infobox in Figure 4. Notice that
the model without gated orthogonalization has at-
tention on both name field and article title while
rendering the name. The model with gated orthog-
onalization, on the other hand, stays on the name
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(a) Fused Bifocal Attention (b) Fused Bifocal Attention + Gated Orthogonalization

Figure 3: Comparison of the attention weights and descriptions produced for Infobox in Figure 4

Figure 4: Wikipedia Infobox for Samuel Smiles

Figure 5: Wikipedia Infobox for Mark Tobey

field for as long as it is required but then moves
and never returns to it (as expected).

Due to lack of space, we do not show similar
plots for French and German but we would like to
mention that, in general, the differences between
the attention weights learned by the model with
and without gated orthogonalization were more
pronounced for the French/German dataset than
the English dataset. This is in agreement with the
results reported in Table 4 and 5 where the im-
provements given by gated orthogonalization are
more for French/German than for English.

Training data Target (test) data
Arts Sports

Entire dataset 33.6 52.4
Without target domain data 24.5 29.3
+5k target domain data 31.2 41.8
+10k target domain data 32.2 43.3

Table 6: Out of domain results(BLEU-4)

5.5 Out of domain results

What if the model sees a different type of per-
son at test time? For example, what if the train-
ing data does not contain any sportspersons but at
test time we encounter the infobox of a sportsper-
son. This is the same as seeing out-of-domain data
at test time. Such a situation is quite expected in
the products domain where new products with new
features (fields) get frequently added to the cata-
log. We were interested in three questions here.
First, we wanted to see if testing the model on out-
of-domain data indeed leads to a drop in the per-
formance. For this, we compared the performance
of our best model in two scenarios (i) trained on
data from all domains (including the target do-
main) and tested on the target domain (sports, arts)
and (ii) trained on data from all domains except
the target domain and tested on the target domain.
Comparing rows 1 and 2 of Table 6 we observed a
significant drop in the performance. Note that the
numbers for sports domain in row 1 are much bet-
ter than the Arts domain because roughly 40% of
the WIKIBIO training data contains sportspersons.

Next, we wanted to see if we can use a small
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(a) Without fine tuning. (b) With fine tuning with 5K in-domain data.

Figure 6: Comparison of the attention weights and descriptions (see highlighted boxes) produced by an
out-of-domain model with and without fine tuning for the Infobox in Figure 5

amount of data from the target domain to fine tune
a model trained on the out of domain data. We ob-
serve that even with very small amounts of target
domain data the performance starts improving sig-
nificantly (see rows 3 and 4 of Table 6). Note that
if we train a model from scratch with only lim-
ited data from the target domain instead of fine-
tuning a model trained on a different source do-
main then the performance is very poor. In par-
ticular, training a model from scratch with 10K
training instances we get a BLEU score of 16.2
and 28.4 for arts and sports respectively. Finally,
even though the actual words used for describing a
sportsperson (footballer, cricketer, etc.) would be
very different from the words used to describe an
artist (actor, musician, etc.) they might share many
fields (for example, date of birth, occupation, etc.).
As seen in Figure 6 (attention weights correspond-
ing to the infobox in Figure 5), the model predicts
the attention weights correctly for common fields
(such as occupation) but it is unable to use the
right vocabulary to describe the occupation (since
it has not seen such words frequently in the train-
ing data). However, once we fine tune the model
with limited data from the target domain we see
that it picks up the new vocabulary and produces a
correct description of the occupation.

6 Conclusion

We present a model for generating natural lan-
guage descriptions from structured data. To ad-

dress specific characteristics of the problem we
propose neural components for fused bifocal at-
tention and gated orthogonalization to address stay
on and never look back behavior while decoding.
Our final model outperforms an existing state of
the art model on a large scale WIKIBIO dataset
by 21%. We also introduce datasets for French
and German and demonstrate that our model gives
state of the art results on these datasets. Finally,
we perform experiments with an out-of-domain
model and show that if such a model is fine-tuned
with small amounts of in domain data then it can
give an improved performance on the target do-
main.

Given the multilingual nature of the new
datasets, as future work, we would like to build
models which can jointly learn to generate natu-
ral language descriptions from structured data in
multiple languages. One idea is to replace the con-
cepts in the input infobox by Wikidata concept ids
which are language agnostic. A large amount of
input vocabulary could thus be shared across lan-
guages thereby facilitating joint learning.
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Rémi Lebret, David Grangier, and Michael Auli.
2016. Neural text generation from structured data
with application to the biography domain. In
Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing. As-
sociation for Computational Linguistics, Austin,
Texas, pages 1203–1213. https://aclweb.
org/anthology/D16-1128.

Percy Liang, Michael I. Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less su-
pervision. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and

1548



the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 1 -
Volume 1. Association for Computational Linguis-
tics, Stroudsburg, PA, USA, ACL ’09, pages 91–
99. http://dl.acm.org/citation.cfm?
id=1687878.1687893.

Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol
Vinyals, and Wojciech Zaremba. 2015. Addressing
the rare word problem in neural machine translation.
In ACL.

Franois Mairesse and Marilyn A. Walker. 2011. Con-
trolling user perceptions of linguistic style: Train-
able generation of personality traits. Computational
Linguistics 37(3):455–488. https://doi.org/
10.1162/COLI_a_00063.

Hongyuan Mei, Mohit Bansal, and Matthew R. Walter.
2016. What to talk about and how? selective gener-
ation using lstms with coarse-to-fine alignment. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies. Association for Computational Linguistics,
San Diego, California, pages 720–730. http://
www.aclweb.org/anthology/N16-1086.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre,
Bing Xiang, et al. 2016. Abstractive text summa-
rization using sequence-to-sequence rnns and be-
yond. arXiv preprint arXiv:1602.06023 .

Preksha Nema, Mitesh Khapra, Anirban Laha, and
Balaraman Ravindran. 2017. Diversity driven atten-
tion model for query-based abstractive summariza-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics. As-
sociation for Computational Linguistics, Vancouver,
Canada.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vec-
tors for word representation. In Empirical Meth-
ods in Natural Language Processing (EMNLP).
pages 1532–1543. http://www.aclweb.org/
anthology/D14-1162.

Aaditya Prakash, Sadid A. Hasan, Kathy Lee, Vivek
Datla, Ashequl Qadir, Joey Liu, and Oladimeji
Farri. 2016. Neural paraphrase generation with
stacked residual lstm networks. In Proceedings of
COLING 2016, the 26th International Conference
on Computational Linguistics: Technical Papers.
The COLING 2016 Organizing Committee, Os-
aka, Japan, pages 2923–2934. http://aclweb.
org/anthology/C16-1275.

Ehud Reiter, Somayajulu Sripada, Jim Hunter,
Jin Yu, and Ian Davy. 2005. Choosing
words in computer-generated weather fore-
casts. Artif. Intell. 167(1-2):137–169. http:
//dblp.uni-trier.de/db/journals/
ai/ai167.html#ReiterSHYD05.

Alexander M. Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-
stractive sentence summarization. In Proceed-
ings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Associa-
tion for Computational Linguistics, Lisbon, Por-
tugal, pages 379–389. http://aclweb.org/
anthology/D15-1044.

Iulian V. Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron Courville, and Joelle Pineau. 2016.
Building end-to-end dialogue systems using gen-
erative hierarchical neural network models. In
Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence. AAAI Press, AAAI’16,
pages 3776–3783. http://dl.acm.org/
citation.cfm?id=3016387.3016435.

Radu Soricut and Daniel Marcu. 2006. Stochas-
tic language generation using widl-expressions and
its application in machine translation and summa-
rization. In Proceedings of the 21st International
Conference on Computational Linguistics and the
44th Annual Meeting of the Association for Com-
putational Linguistics. Association for Computa-
tional Linguistics, Stroudsburg, PA, USA, ACL-
44, pages 1105–1112. https://doi.org/10.
3115/1220175.1220314.

Ross Turner, Somayajulu Sripada, and Ehud Reiter.
2010. Generating approximate geographic de-
scriptions. In Emiel Krahmer and Marit The-
une, editors, Empirical Methods in Natural Lan-
guage Generation. Springer, volume 5790 of Lec-
ture Notes in Computer Science, pages 121–
140. http://dblp.uni-trier.de/db/
conf/eacl/enlg2010.html#TurnerSR10.

Subhashini Venugopalan, Huijuan Xu, Jeff Don-
ahue, Marcus Rohrbach, Raymond J. Mooney, and
Kate Saenko. 2014. Translating videos to natu-
ral language using deep recurrent neural networks.
CoRR abs/1412.4729. http://arxiv.org/
abs/1412.4729.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual atten-
tion. In David Blei and Francis Bach, editors,
Proceedings of the 32nd International Conference
on Machine Learning (ICML-15). JMLR Work-
shop and Conference Proceedings, pages 2048–
2057. http://jmlr.org/proceedings/
papers/v37/xuc15.pdf.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, San
Diego, California, pages 1480–1489. http://
www.aclweb.org/anthology/N16-1174.

1549



Kaisheng Yao, Geoffrey Zweig, and Baolin Peng.
2015. Attention with intention for a neural net-
work conversation model. CoRR abs/1510.08565.
http://arxiv.org/abs/1510.08565.

1550



Proceedings of NAACL-HLT 2018, pages 1551–1563
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

CliCR: A Dataset of Clinical Case Reports for Machine
Reading Comprehension∗
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Abstract

We present a new dataset for machine
comprehension in the medical domain.
Our dataset uses clinical case reports with
around 100,000 gap-filling queries about
these cases. We apply several baselines and
state-of-the-art neural readers to the dataset,
and observe a considerable gap in perfor-
mance (20% F1) between the best human
and machine readers. We analyze the skills
required for successful answering and show
how reader performance varies depending
on the applicable skills. We find that infer-
ences using domain knowledge and object
tracking are the most frequently required
skills, and that recognizing omitted infor-
mation and spatio-temporal reasoning are
the most difficult for the machines.

1 Introduction

Machine comprehension is a task in which a sys-
tem reads a text passage and then answers questions
about it. The progress in machine comprehension
heavily depends on the introduction of new datasets
(Burges, 2013), which encourages the development
of new algorithms and deepens our understanding
of the (linguistic) challenges that can or can not
be tackled well by these algorithms. Recently, a
number of reading comprehension datasets have
been proposed (§ 2), differing in various aspects
such as mode of construction, answer-query for-
mulation and required understanding skills. Most
are open-domain datasets built from news, fiction
and Wikipedia texts. For specialized domains,
however, large machine comprehension datasets
are extremely scarce (Welbl et al., 2017a), and

∗We provide the information about accessing the dataset,
as well as the code for the experiments, at http://github.
com/clips/clicr.

passage:
[. . . ] A gradual improvement in clinical and laboratory
status was achieved within 20 days of antituberculous treat-
ment . The patient was then subjected to a thoracic CT
scan that also showed significant radiological improvement
. Thereafter , tapering of corticosteroids was initiated with
no clinical relapse . The patient was discharged after be-
ing treated for a total of 30 days and continued receiving
antituberculous therapy with no reported problems for a
total of 6 months under the supervision of his hometown
physicians . [. . . ]
query:
If steroids are used , great caution should be exercised on
their gradual tapering to avoid .
answer:
relapse (sem type=problem, cui=C0035020)

Figure 1: An example from the dataset, with the pas-
sage sentence relevant for answering italicized. The
passage has been shortened for clarity.

the required comprehension skills poorly under-
stood. With our work we hope to narrow this gap
by proposing a new resource for reading compre-
hension in the clinical domain, and by analyzing
the different types of comprehension skills that are
triggered while answering (Sugawara et al., 2017;
Lai et al., 2017).

Machine comprehension for healthcare and
medicine has received little attention so far, al-
though it offers great potential for practical use.
A typical application would be clinical decision
support, where given a massive amount of text, a
clinician asks questions about either external, med-
ical knowledge (reading literature) or about par-
ticular patients (reading electronic health records).
Currently, patient-specific questions are tackled
by manually browsing or searching those records.
This task can be facilitated by summarization and
QA systems (Demner-Fushman and Lin, 2007;
Demner-Fushman et al., 2009), and we believe, by
fine-grained machine reading. Reading comprehen-
sion systems that perform on a finer level could play
an important role especially when combined with
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document retrieval to perform machine reading at
scale, such as in the models of Chen et al. (2017)
and Watanabe et al. (2017) for the general domain.

For our dataset, we construct queries, answers
and supporting passages from BMJ Case Reports,
the largest online repository of such documents. A
case report is a detailed description of a clinical
case that focuses on rare diseases, unusual presen-
tation of common conditions and novel treatment
methods. Each report contains a Learning points
section, summarizing the key pieces of information
from that report. The learning points are typically
paraphrased portions of passage text and do not
match passage sentences exactly. We use these
learning points to create queries by blanking out a
medical entity. To counteract potential errors and
inconsistencies due to automated dataset creation,
we perform several checks to improve the quality
of the dataset (§ 3). Our dataset contains around
100,000 queries on 12,000 case reports, has long
support passages (around 1,500 tokens on average)
and includes answers which are single- or multi-
word medical entities. We show an example from
the dataset in Figure 1.

We examine the performance on the dataset in
two ways. First, we report machine performance
for several baselines and neural readers. To en-
able a more flexible answer evaluation, we expand
the answers with their respective synonyms from a
medical knowledge base, and additionally supple-
ment the standard evaluation metrics with BLEU
and embedding-based methods. We investigate dif-
ferent ways of representing medical entities in the
text and how this affects the neural readers. We ob-
tain the best results with a recurrent neural network
(RNN) with gated attention (Dhingra et al., 2017a),
but a simple approach based on embedding similar-
ity proves to be a strong baseline as well. Second,
we look at how well humans perform on this task,
by asking both a medical expert and a novice to
answer a portion of the validation set. When catego-
rizing the skills necessary to find the right answer,
we observe that a large number of comprehension
skills get activated and that prior knowledge in the
form of the ability to perform lexico-grammatical
inferences matters the most. This suggests that
for our dataset and possibly for domain-specific
datasets more generally, more background knowl-
edge should be incorporated in machine compre-
hension models. The current gap between the best
machine and the best human performance is nearly

Dataset Question origin Domain Size

CliCR
(this work)

Learning
points

Medical 105K

Quasar-S
(Dhingra et al., 2017b)

Definitions Software 37K

SciQ
(Welbl et al., 2017a)

Crowdsourced Science 14K

MedHop
(Welbl et al., 2017b)

KB Drugs 2.5K

Biology
(Berant et al., 2014)

Domain
expert

Biology 585

Algebra
(Kushman et al., 2014)

Crowdsourced Algebra 514

QA4MRE
(Sutcliffe et al., 2013)

Annotator Various 240

Table 1: Survey of closed-domain reading comprehen-
sion datasets. Size: number of questions. We did not
include remotely related datasets which concern a dif-
ferent task (e.g. information retrieval) (Roberts et al.,
2015; Voorhees and Tice, 2000).

20% F1, which leaves ample space for further study
of machine readers on our dataset. In brief, the con-
tributions of our paper are:
• We propose a large dataset for reading

comprehension in the medical domain, using
clinical case descriptions.
• We carry out an empirical analysis of

a) system and human performance on reading
comprehension, and b) comprehension skills
that are required for answering the queries cor-
rectly and that allow us to position the dataset
according to its difficulty on each of the skills.

2 Related datasets

Numerous general-domain datasets have been re-
cently created to allow machine comprehension
using data-intensive methods. These datasets were
collected from Wikipedia (Hewlett et al., 2016;
Joshi et al., 2017; Rajpurkar et al., 2016), web
search queries (Nguyen et al., 2016), news articles
(Hermann et al., 2015; Onishi et al., 2016; Trischler
et al., 2017), books (Bajgar et al., 2016; Hill et al.,
2016; Paperno et al., 2016) and English exams (Lai
et al., 2017). In Table 1, we compare our dataset
to several domain-specific datasets for machine
comprehension. In Quasar-S, the queries are con-
structed from definitions of software entity tags in
a community QA website, while in our case the
queries are more varied and explicitly relate to the
supporting passages. SciQ is a dataset of science
exam questions, in which question-answer pairs are
used to retrieve the text passages. For each ques-
tion, four candidate answers are available. In our
dataset, the number of candidate answer is much
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higher as the candidate answers come from the rel-
atively long passages. Other datasets mentioned in
the table are smaller, so they could not be used as
training sets for statistical NLP models.

Cloze datasets require the reader to fill in gaps
by relying on accompanying text. Representa-
tive datasets are Children’s Book Test (Hill et al.,
2016) and Book Test (Bajgar et al., 2016), in which
queries are created by removing a word or a named
entity from the running text in a book; and Her-
mann et al. (2015), who similarly to us blank out
entities in abstractive CNN and Daily Mail sum-
maries, but who are only concerned with short
proper nouns and short passages. Who-did-what
(Onishi et al., 2016) requires the reader to select the
person name from a short candidate list that best
answers the query about a news event. They do not
use summaries for query formation but remove a
named entity from the initial sentence in a news
article, and then perform information retrieval to
find independent passages relevant to the query.
Another cloze dataset for language understanding
is ROCStories (Mostafazadeh et al., 2016), but it is
targeted more towards script knowledge evaluation,
and only contains five-sentence stories. Another
related task is predicting rare entities only, with a
focus on improving a reading comprehension sys-
tem with external knowledge sources (Long et al.,
2017).

Another popular way of creating datasets for
reading comprehension is crowdsourcing (Ra-
jpurkar et al., 2016; Richardson et al., 2013;
Nguyen et al., 2016; Trischler et al., 2017). These
datasets exist primarily for the general domain;
for specialized domains where background knowl-
edge is crucial, crowdsourcing is intuitively less
suitable (Welbl et al., 2017b), although some pos-
itive precedent exists for example in crowdsourc-
ing annotations of radiology reports (Cocos et al.,
2015). Compared to automated dataset construc-
tion, crowdsourcing is more likely to provide high-
quality queries and answers. On the other hand,
human question generation may also lead to less
varied datasets as questions would tend to be of
wh- type; for cloze datasets, the questions may be
more varied and might require readers to possess a
different set of skills.1

1Support for this is given in Sugawara et al. (2017), who
show that Who-did-what dataset, for example, requires on
average a larger number of reading skills than SQuAD (Ra-
jpurkar et al., 2016) and MCTest (Richardson et al., 2013).

3 Dataset design

We collected the articles from BMJ Case Reports2.
The data span the years 2005–2016 and amount
to almost 12 thousand reports. We removed the
HTML boilerplate from the crawled reports us-
ing jusText3, segmented and tokenized the texts
with cTakes (Savova et al., 2010), and annotated
the medical entities using Clamp (Soysal et al.,
2017). We apply two simple heuristics to refine the
recognized entities and to decrease their sparsity.
Namely, we move the function words (determin-
ers and pronouns) from the beginning of the entity
outside of it, and we adjust the entity boundary so
that it does not include a parenthetical at the end
of the entity. Clamp assigns entities following the
i2b2-2010 shared task specifications (Uzuner et al.,
2011). For each entity, a concept unique identi-
fier (CUI) is also available, which links it to the
UMLS R© Metathesaurus R© (Lindberg et al., 1993).
To check the quality of the recognized entities, we
carried out a small manual analysis on 250 enti-
ties. We found that in 89% of cases, the boundaries
were correct and defined a true entity. Wrongly rec-
ognized cases occurred mostly when two entities
were coordinated and recognized as one; when a
verb was wrongly included in the entity; or when a
pre-modifier was left out.

3.1 Query construction
We create a query by replacing a medical entity in
one learning point with a blank. For example, in
a report describing comorbid disorders of ADHD,
we could obtain the following query:

(1) “Patients with ADHD have higher inci-
dence of .”

The missing entity “enuresis” is taken as the correct
answer. Even though one query corresponds to at
most one learning point, there can be more than one
query built from a learning point. Occasionally, a
learning point contains an exact repetition from the
passage. These instances would be trivial to answer,
so we remove them. We count as an exact match
every instance whose longer side to left/right of the
query blank coincides with a part in the passage
text. This curation step reduces the dataset size
by 5%. More commonly, the learning points are
paraphrases of crucial parts of the passage. Some-
times, the entity answering the query is expressed

2http://casereports.bmj.com/
3https://pypi.python.org/pypi/jusText
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differently in the passage. For example, in place of
“enuresis”, the passage might include its synonym
“bedwetting”. We manage these cases in two ways,
by extending the set of answers for a certain query
(§ 3.2), and adding a semantic relatedness metric
to the standard evaluation (§ 6).

3.2 Answer set
We account for lexical variation of the ground-truth
answers (compared to mentions in the passages) by
extending each original ground-truth answer a to a
set of ground-truth answers A using a knowledge
base. Since our entity recognizer already provides
the CUI labels, we can use them to obtain the list
of alternative word and phrase forms (synonyms,
abbreviations and acronyms) from UMLS R©.

Similarly to previous work (Choi et al., 2016;
Hewlett et al., 2016), for certain queries none of
the answers in A occurs verbatim in the passage.
We have found upon manual inspection that this is
mostly due to lexical variation that is not captured
by answer extension, and to a lesser degree, due to
the introduction of entirely new information in the
learning point and the entity recognition errors. In
the empirical part, we use for training only the in-
stances for which at least one answer occurs in the
passage, but we evaluate on all instances in the val-
idation and test sets, including those for which A∩
E = ∅, where E is the set of all entities in the pas-
sage. This mimics a likely real-life scenario where
the set of ground-truth answers is a priori unknown.

3.3 Task formulation
The reading comprehension problem in our case
can be represented as a tuple (q, p, A), where q is
the query, built from a learning point; the passage
p is the entire report excluding the Learning points
section; and A is the set of ground-truth entities
answering q. In defining the task, it is important to
consider how to take into account entity annotation
and how to define the answer output space. We
look at these more closely in the rest of this section.

Whenever the entities are marked in the passage,
the system can learn to exploit this cue to find the
answers more easily (Wang et al., 2017). Although
this simplifies the task, it also makes it less realistic
as the entities may not be recognized at test time.
Realizing that the presence of entities makes
the task easier for the machines, Hermann et al.
(2015) anonymize the entities, also with a goal
of discouraging language model solutions to the

N of cases 11,846
N of queries in train/dev/test 91,344/6,391/7,184
N of tokens in passages 16,544,217
N of word types in passages 112,673
N of entity types in passages 591,960
N of distinct answers 56,093
N of distinct answers (incl. extended) 288,211
% answers verbatim in passage 59

Table 2: Data statistics based on the lowercased dataset.
For N of tokens in passages, we count each passage ex-
actly once, although several queries are normally asso-
ciated with a passage.
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Figure 2: Distribution of (a) passage and (b) answer
length. Curve (a) is bimodal due to shorter lengths of
articles published prior to 2008.

queries. In our case, it is not clear how relevant the
anonymization is since we deal with medical en-
tities, which have different properties than proper
name entities (Kim et al., 2003; Niu et al., 2003).
We explore different entity-annotation choices in
the empirical part, where we refer to them as Ent
(entities marked) and Anonym (entities marked
but anonymized). We further examine a more
challenging setup in which the reader can not rely
on entity markers as they are not present in the
passage (NoEnt). In all cases, the reader chooses
an answer among the candidates E collected from
all entities in the passage.4 Multi-word entities,
which are common in our dataset, are treated as
a single token by Ent and Anonym.

4The candidate answers could in principle be obtained also
in some other way, so we do not list them in our dataset.
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Type % Example

problem 67 tuberculosis, abdominal pain,
acute myocardial infarction

treatment 22 chemotherapy, surgical inter-
vention, vitamin D suppl.

test 11 MRI, histopathological exam.

Table 3: Answer type statistics.
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Figure 3: The 15 most common medical specialties rep-
resented in the dataset.

4 Dataset analysis

We now describe the dataset in more detail, starting
with the general statistics summarized in Table 2.
It is worth pointing out that the support passages
are rather long, which stems from the data origin
(journal articles). We show the passage length dis-
tribution in Figure 2a, which has the average length
of 1,466 tokens. Furthermore, passages are rich
with medical entities. There is little repetition of
answers—the total of around 100,000 queries are
answered by 50,000 distinct entities. Upon extend-
ing the answer set with UMLS R© we introduce on
average four alternative answers for each original
one. In 59% of instances, the answer entity is found
verbatim in the relevant passage. The answers can
belong to any of the problem, treatment or test
categories (Table 3), and usually consist of multi-
ple words (Figure 2b). The diversity of medical
specialties represented in the articles is shown in
Figure 3.

4.1 Analysis of comprehension skills
We estimate the types of skills required in answer-
ing by following the categorization of Sugawara
et al. (2017). We include the skill definitions with
examples from our dataset in Appendix B. We an-
notated 100 instances in the validation set (with
ground-truth answers provided), which yielded on
average 2.85 skills per query. The distribution of
the required skills is shown in Figure 4. In com-
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Figure 4: Percentage of times a skill is required in a
given dataset. The percentages for the datasets other
than ours are from Sugawara et al. (2017).

parison to the general-domain datasets (SQuAD,
Who-did-what), our dataset and QA4MRE (which
is also a domain-specific dataset, but with human-
generated questions) require more bridging infer-
ences (inferences using background knowledge
about the domain), spatio-temporal reasoning and
coreference resolution. In our dataset, meta knowl-
edge and object tracking are required more often
than in any other dataset. This can be explained by
the data origin and the nature of queries. In the case
reports, a prominent topic can be discussed which
the author refers to in the query, but the query itself
is never answered in the passage (meta knowledge).
Furthermore, the authors often enumerate medical
entities in the query, which leads to the frequent
use of object tracking. The queries which were
unanswerable are marked as “none”. The fraction
of these cases was around 16%.

In our experience, the annotation of skills proved
quite challenging due to certain confusables. For
example, object tracking and coreference both need
to maintain the link between objects; object track-
ing, which includes establishing set relations and
membership, may be overlaid with the schematic
clause relation skill (subordination); and bridging
inference can overlap with coreference resolution.
Nevertheless, we adhered to this classification of
skills to increase comparability to other datasets
included in Figure 4.

5 Methods

5.1 Baselines

Our simplest baselines that we apply on the test
set include choosing a random entity (rand-entity)
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and selecting the most frequent passage entity
(maxfreq-entity) as the answer. We also include a
distance-based method that uses word embeddings
(sim-entity). Here, we vectorize the passage and
the query, and then choose that entity from the pas-
sage whose representation has the highest cosine
similarity to the query representation:

sim-entity = argmax
i∈E

cos
( ∑

j∈Ci

cj ,
∑

k∈Q
qk
)
, (1)

where c, q ∈ Rd. The multiset Ci contains the
words {xi−n, . . . , xi−1, xi+1, . . . , xi+n} surround-
ing the passage entity i ∈ E. We define Q, the
context words of the query, likewise. To find out
how well the queries can be answered without read-
ing the passage, we also predict the most likely
continuation with a language model (lang-model).
We trained a 4-gram Kneser-Ney model on CliCR
training data (with multi-word entities represented
as a single token) using SRILM (Stolcke, 2002).

5.2 Neural readers
We apply two types of bidirectional RNNs to our
data. Following Wang et al. (2017), we distinguish
between aggregation readers and explicit reference
readers, which differ in their formulation of the
attention mechanism and how it is being used for
answer prediction.

Stanford Attentive (SA) Reader The model
proposed by Chen et al. (2016) is an aggregation
reader based on the Attentive Reader (Hermann
et al., 2015). It predicts the answer using:

â = argmax
i∈E

eo(i)
T o, (2)

where eo(i) is the answer’s output embedding and
o is the passage representation obtained by weight-
ing every token representation in the passage with
attention: o =

∑
t αtht. The attention mechanism

is used here to measure the compatibility between
token (ht) and query (q) representations with a bi-
linear form, αt = softmaxthTt Wαq. At prediction
time, attention should highlight that position t in
the passage where the answer occurs. Note that the
prediction relies on the aggregate representation o,
hence the name of the reader category. As we see in
(2), the prediction score does not allow accounting
for multi-word entities, unless they are treated as
a single token. Returning to our different set-ups
based on entity annotation (§ 3.3), this means that

we can apply SA reader with Ent and Anonym set-
ups, but not with NoEnt, where multi-word answers
should be allowed.

Gated-Attention (GA) Reader Dhingra et al.
(2017a) investigate neural readers with a fine-
grained attention mechanism that learns token rep-
resentations for the passage that are also condi-
tional on the query, but are in addition refined
through multiple hops of the network. The model
predicts the answer using attention weights with ex-
plicit reference to answer positions in the passage:

â = argmax
i∈E

∑

t∈R(i,p)

αt, (3)

where R is the set of indices in passage p at which a
token from the candidate i occurs. This operation is
also called the pointer sum attention (Kadlec et al.,
2016). Since the model marks the references for
each token in the answer separately, it allows us to
investigate also the NoEnt set-up.5

We train each reader with the best hyper-
parameters found on the validation set using ran-
dom search (Bergstra and Bengio, 2012), and eval-
uate it on the test part of the dataset. We provide
more details about parameter optimization in Ap-
pendix A. The models use word embeddings pre-
trained on biomedical texts.

5.3 Embedding data and pre-training
We induce the word embeddings on a combination
of the CliCR training corpus and PubMed abstracts
with open-access PMC articles available until 2015
(segmented and tokenized), amounting to over 9
billion tokens (Hakala et al., 2016). Considering
the large effect of hyper-parameter selection on the
quality of word embeddings (Levy et al., 2015),
we optimize the embedding hyper-parameters also
using random search.

6 Evaluation

A model f takes as input a passage–query pair and
outputs an answer â.6 We carry out the evaluation

5We assume the candidate entities are known in advance.
6In our case, the answer is a word or a word phrase rep-

resenting a medical entity. Alternatively, one could also take
the UMLS R© CUI identifier as the answering unit. However,
in that case, it would mean that sometimes the original word
phrase is lost. This is because entity linking with CUIs can
be noisy, and only a part of a word phrase may be linked to
the ontology. In the current setup, we are able to keep both
the original word phrase as well as the extended answers. The
CUI information is still an integral part of the answer field in
our dataset, so it can be used by other researchers if preferred.
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with different metrics described below. The final
score m for a metric v is obtained by averaging
over the test set:

mv(f) =
1

|Dtest|
∑

(p,q,A)∈Dtest

max
a∈A

v(f(p, q), a).

(4)
Since there are multiple correct answersA, we take
the highest scoring answer â at each instance, as
done in Rajpurkar et al. (2016). Note that in the
dataset we do not supply the candidate answers; in
the experiments, we constrain the candidates to the
set of entities in the passage.

The two standardly used metrics for machine
comprehension evaluation are the exact match
(EM) and the F1 score. For EM, the predicted and
the ground truth answers must match precisely, safe
for articles, punctuation and case distinction (same
for other metrics). F1 metric is applied per instance
and measures the overlap between the prediction â
and the ground truth a, which are treated as bags of
words.7 While these two metrics are arguably suffi-
cient in news-style machine comprehension where
the entities are proper nouns which allow for little
variation and synonymy, in our case the medical
entities are often mostly common nouns modified
by specifiers and qualifiers. To take into account
potentially large lexical and word-order variation,
we use two additional metrics. First, we measure
BLEU (Papineni et al., 2002) for n-grams of length
2 (shortly, B2) and 4 (B4) using the package by
Chen et al. (2015), with which we aim to capture
contiguity of tokens in longer answers. Second,
it may occur that answers contain no word over-
lap yet still be good candidates because of their
semantical relatedness, as in “renal failure”–“kid-
ney breakdown”. We take this into account by
using an embedding metric (Emb), in which we
construct mean vectors for both ground-truth and
system answer sequences, and then compare them
with the cosine similarity. This and other embed-
ding metrics for evaluation were previously studied
in dialog-system research (Liu et al., 2016).

7 Results and analysis

We show the results in Table 4. We see that answer
prediction based on contextual representation of
queries and passages (sim-entity) achieves a strong
base performance that is only outperformed by GA

7In precision, the number of correct words is divided by
the number of all predicted words. In recall, the former is
divided by the number of words in the ground-truth answer.

Method EM F1 B2 B4 Emb

rand-entity 1.4 5.1 .03 .01 .23
maxfreq-ent. 8.5 12.6 .10 .05 .31
sim-entity 20.8 29.4 .22 .15 .45
lang-model 2.1 3.5 .00 .00 .30

SA-Anonym 19.6 27.2 .22 .16 .43
SA-Ent 6.1 11.4 .07 .05 .31

GA-Anonym 24.5 33.2 .28 .20 .48
GA-Ent 22.2 30.2 .25 .18 .46
GA-NoEnt 14.9 33.9 .21 .11 .51

human-expert 35 53.7 .46 .23 .67
human-novice 31 45.1 .43 .24 .62

Table 4: Answering results on the test set. EM and F1
scores are percentages. The human scores (in italics)
are based on the validation set.

reader. The language model performs poorly on
EM and F1, but the embedding-metric score is
higher, likely reflecting the fact that the predicted
answers—though mostly incorrect—are related to
the ground-truth answers. The poor performance
means that based on queries alone (without reading
the passage), it is difficult to provide accurate an-
swers. The GA reader performs well across all en-
tity set-ups, even when the entities are not marked
in the passage. Interestingly, the exact match and
BLEU scores in this case are much lower compared
to other entity set-ups. Upon inspecting the pre-
dicted answers more closely, we have observed that
GA-NoEnt tends to predict longer answers than
GA-Ent/Anonym. For example, the average pre-
dicted answer length for GA-NoEnt was as high as
3.7 tokens, whereas for the other two set-ups and
the ground-truth answers the numbers range be-
tween 2.3 and 2.5. A plausible explanation for this
lies in how GA reaches its prediction (3), which is
by accumulating the attention weights without nor-
malizing. This would then drive the model to prefer
longer answers. For example, for the ground-truth
entity “chest CT”, GA-NoEnt predicts “interval CT
scans of the chest”. Although all neural models use
pre-trained word embeddings, for Ent and Anonym
the multi-word entities do not have pre-trained em-
beddings since our embeddings are induced on the
word level. This may partly explain the competitive
performance of NoEnt compared to Ent. We leave
the integration of entity embeddings for the future
work.

The results for SA reader are far below the per-
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formance of GA reader. We also see that it per-
forms much better on anonymized entities than on
non-anonymized ones. This is in line with Wang
et al. (2017) who find that SA reader suffers a
drop of 19 points in exact match on Who-did-what
dataset when anonymization is not done. A possi-
ble explanation is that anonymization reduces the
output space to only several hundred entity candi-
dates for which the output embedding needs to be
trained. When we do not use anonymization, the
set of output entities increases to the set of all entity
types found in all passages, which is several orders
of magnitude more. While this effect also occurs
for GA reader, it is less pronounced because GA
reader scores words in the passage and does not
need to learn separate answer word embeddings.

7.1 Human performance

To measure the accuracy of human answering, we
have used the same sample of data instances as
used for the analysis of skills.8 The queries were
answered separately by a novice reader (linguistics
background, little-to-none medical knowledge) and
by an expert reader (both linguistics and medical
background). The annotators needed around 15
minutes on average to read the passage and answer
the query. The results are shown at the bottom of
Table 4. The expert scores higher across all evalua-
tion metrics, with as much as a 7-point advantage
in % F1. This advantage is largely coming from the
better performance on those instances where bridg-
ing inferences are required (the average F1 score
was 10 points higher on these queries), which sug-
gests that domain knowledge is beneficial in the
comprehension task. For a novice in a specialized
domain, it is harder to build a good situation model
that would lead to successful comprehension since
it requires more effort—active, strategic processing
and establishing ontological relationships in that
specific domain. For an expert reader this process
is more automatized (Kintsch and Rawson, 2008).

We can see from the table that the best human
performance is well below its theoretical upper
bound of 100% F1. An important part of explana-
tion for this lies in the automated dataset construc-
tion, which leaves certain queries unanswerable,
especially when the authors do not refer to a part
in the article but introduce completely new infor-
mation. Another reason is the problem of “answer
openness”: Typically more than one correct an-

8Human answers were collected before the skill analysis.
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Figure 5: Performance per required skill for the human
expert and GA-NoEnt reader.

swer is possible and the answers can be correct to
various degrees, which we aimed to capture with
the use of the embedding metric in the evaluation.
Nevertheless, the gap between the best human and
machine F1 score is large (around 20 points), leav-
ing considerable space for future applications of
machine readers on our dataset.9

7.2 Breakdown of results by skill

To see how the answering performance relates to
the skill requirements, we have analyzed the part
of the validation set annotated with the skills by
averaging F1 values for all instances with a partic-
ular skill. In this way, we are able to break down
both human and machine performance skill-wise,
as shown in Figure 5. Because of the small sample
size, the results should only be taken as a general
indication. The most difficult cases for the GA
reader are those annotated with “none” (unanswer-
able) and “ellipsis” (recognizing implicit and omit-
ted information), ignoring “analogy” for which we
only have a single annotated case. Furthermore,
spatio-temporal reasoning, elaboration (inferences
using general knowledge) and bridging—which is
also the most commonly required skill—are the
next most difficult ones. The human scores are
mostly much higher, which is especially apparent
for spatio-temporal reasoning, logical skills and
the skill involving punctuation. Our findings align
with those of Chu et al. (2017) on the Lambada
dataset (Paperno et al., 2016): Although they used
a different categorization of comprehension skills,
they also find that GA reader has most difficulties
with elaboration (which they refer to as “external

9For comparison, the gap for SQuAD was 12.2 and for
NewsQA 19.8 (Trischler et al., 2017).
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knowledge”), followed by coreference resolution.

8 Conclusion and future work

We have introduced a new dataset for domain-
specific reading comprehension in which we have
constructed around 100,000 cloze queries from clin-
ical case reports. We analyzed the dataset in terms
of the skills required for successful comprehension,
and applied various baseline methods and state-
of-the-art neural readers. We showed that a large
gap still exists between the best machine reader
and the expert human reader. One direction for
future research is improving the reading models on
the queries that are currently the most challenging,
i.e. those requiring world and background domain
knowledge. Better representing background knowl-
edge by inducing embeddings for entities or oth-
erwise integrating ontological knowledge is in our
opinion a promising avenue for future research.
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A Training details and hyper-parameter
optimization

We train the word embeddings using word2vec
(Mikolov et al., 2013), and optimize the window
size, the model type (CBOW, skip-gram), the di-
mensionality and the number of negative samples
using random search. For the embedding base-
line sim-entity, the evaluation was carried out 20
times on the validation part of our dataset, and we
chose the parameter configuration that led to the
highest-performing embedding model as measured
by F1. We find that higher embedding dimensional-
ity works better, that CBOW obtains somewhat bet-
ter scores than Skipgram, and that medium-sized
word windows work best. The best configuration:
’win size’: 5, ’min freq’: 200, ’model’: ’cbow’,
’dimension’: 750, ’neg samples’: 5. The difference
between the lowest and the highest scoring model
was 3.4 F1. At prediction time (equation (1)) we
set the window size to 3, which worked best on the
validation set.

For inclusion in the neural readers, it would be
impractical to use the high embedding dimension-
ality found in the hyper-parameter search from the
previous paragraph, so we fix the input embedding
dimensionality to 200, as done in Chen et al. (2016)
to keep the training time practical. We optimize
the remaining embedding hyper-parameters just
like above. The best parameters were: ’win size’:
4, ’min freq’: 200, ’model’: ’cbow’, ’dimension’:
200, ’neg samples’: 9.

For SA reader, we optimized the hidden state
size and the dropout rate using 20 different random
configurations. The best values were 70 and 0.57,
respectively. We explore the same parameters for
the GA reader, but add to the search space the
feature that indicates the presence of a passage
token in the query, which was found useful in the
NoEnt set-up. The best hidden state number and
dropout rate were 64 and 0.5, respectively. We
used the default values for all the remaining hyper-
parameters.

B List of skills with selected examples

In annotating the skills, we followed the categoriza-
tion by Sugawara et al. (2017):

1. Object tracking: tracking or grasping multiple
objects; it is a version of list/enumeration skill
used in previous skill classifications

2. Mathematical reasoning: whenever a mathe-
matical operation is involved in finding the
answer

3. Coreference resolution: direct reference to
an object, includes anaphoras. These include
inferential processes based on background
knowledge or context.

4. Logical reasoning: conditionals, quantifiers,
negation, transitivity

5. Analogy: metaphors, metonymy

6. Causal relation: explicit expression such as
”why”, ”the reason of”

7. Spatio-temporal relations

8. Ellipsis: recognizing implicit or omitted infor-
mation

9. Bridging: inference through grammatical and
lexical knowledge (synonymy, idioms etc).
This link however is not automatic or stereo-
typical, as in the category of elaboration.

10. Elaboration: inference through commonsense
reasoning. Note that unlike in the previous
category, there is no direct way in which
grammatical, lexical or ontological knowl-
edge could help.

11. Meta-knowledge: knowing about the text
genre and the main topic being discussed as-
sists in comprehending. In our dataset, know-
ing the way the queries are constructed (Learn-
ing points) is sometimes beneficial.

12. Schematic clause relation: complex sentences
that include coordination or subordination

13. Punctuation: understanding parentheses,
dashes, quotations, colons etc.

In the following examples, we mark the medical
entities in blue, and italicize the parts in the pas-
sage that are crucial for answering. Whenever we
shorten a part of the passage, we use [...].

B.1 Bridging inference
passage
We report a case of a 72 - year - old Caucasian
woman with pl-7 positive antisynthetase syndrome
. Clinical presentation included interstitial lung dis-
ease , myositis , mechanic ’s hands and dysphagia
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. As lung injury was the main concern , treatment
consisted of prednisolone and cyclophosphamide
. Complete remission with reversal of pulmonary
damage was achieved , as reported by CT scan ,
pulmonary function tests and functional status . [...]
query
Therefore , in severe cases an aggressive treatment
, combining and glucocorticoids as
used in systemic vasculitis , is suggested .
answer
cyclophoshamide
explanation The reader needs to have the back-
ground knowledge that prednisolone is a glucocor-
ticoid, then it becomes obvious that the answer is
cyclophoshamide.

B.2 Object tracking
passage
[...] The patient was managed with supportive mea-
sures and the National Poisons Information Service
was contacted . A toxicology consultant was in-
volved in view of the unusual mode of administra-
tion . Although there was no precedent on how to
treat a significant rectal overdose of amitriptyline
, it was advised that the patient be administered
a phosphate enema and if failed to adequately re-
move the tablets then the patient should be given
whole bowel irrigation with 2 litre of Klean - Prep
via a nasogastric tube . It was also advised that
we admit the patient to a high dependency unit and
manage him according to the usual protocol for
a tricyclic overdose if complications arose . [...]
query
It seems reasonable to attempt careful removal of
the drug from the rectum and if that fails to con-
sider and whole bowel irrigation .
answer
phosphate enemas
explanation The query mentions removal (A), then

(B) and whole bowel irrigation (C).
In the passage, one needs to track those elements
and choose the right one. This skill should be con-
sidered whenever the gap is part of an enumeration
or is mentioned as a part of another entity.

B.3 Meta knowledge
query
bedaquiline , a new agent with bactericidal and
sterilising activity against mycobacterium tubercu-
losis , is effective against when given
together with a background regimen , and is well
tolerated and safe if there is awareness of drug inter-

actions and precautions are taken to avoid potential
qt prolongation .
answer
tuberculosis
explanation The right answer can be inferred from
several parts in the passage (not shown), or even
from the title or the query. The query, though, is
nowhere in the document explicitly answered.

1563



Proceedings of NAACL-HLT 2018, pages 1564–1574
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Learning to Collaborate for Question Answering and Asking

Duyu Tang‡, Nan Duan‡, Zhao Yan†, Zhirui Zhang[, Yibo Sun§,
Shujie Liu‡, Yuanhua Lv\, Ming Zhou‡
‡Microsoft Research Asia, Beijing, China

\Microsoft AI and Research, Sunnyvale CA, USA
†Beihang University, Beijing, China

[University of Science and Technology of China, Anhui, China
§Harbin Institute of Technology, Harbin, China

{dutang,nanduan,v-zhaoya,v-zhirzhi,v-yibsu,shujliu,yuanhual,mingzhou}@microsoft.com

Abstract

Question answering (QA) and question gener-
ation (QG) are closely related tasks that could
improve each other; however, the connection
of these two tasks is not well explored in lit-
erature. In this paper, we give a systemat-
ic study that seeks to leverage the connection
to improve both QA and QG. We present a
training algorithm that generalizes both Gen-
erative Adversarial Network (GAN) and Gen-
erative Domain-Adaptive Nets (GDAN) under
the question answering scenario. The two key
ideas are improving the QG model with QA
through incorporating additional QA-specific
signal as the loss function, and improving the
QA model with QG through adding artificially
generated training instances. We conduct ex-
periments on both document based and knowl-
edge based question answering tasks. We have
two main findings. Firstly, the performance
of a QG model (e.g in terms of BLEU score)
could be easily improved by a QA model vi-
a policy gradient. Secondly, directly applying
GAN that regards all the generated questions
as negative instances could not improve the ac-
curacy of the QA model. Learning when to re-
gard generated questions as positive instances
could bring performance boost.

1 Introduction

In this work, we consider the task of joint learn-
ing of question answering and question genera-
tion. Question answering (QA) and question gen-
eration (QG) are closely related natural language
processing tasks. The goal of QA is to obtain an
answer given a question. The goal of QG is almost
reverse which is to generate a question from the
answer. In this work, we consider answer selec-
tion (Yang et al., 2015; Balakrishnan et al., 2015)
as the QA task, which assigns a numeric score to
each candidate answer, and selects the top ranked
one as the answer. We consider QG as a generation

problem and exploit sequence-to-sequence learn-
ing (Seq2Seq) (Du et al., 2017; Zhou et al., 2017)
as the backbone of the QG model.

The key idea of this work is that QA and QG are
two closely tasks and we seek to leverage the con-
nection between these two tasks to improve both
QA and QG. Our primary motivations are twofold-
s. On one hand, the Seq2Seq based QG model
is trained by maximizing the literal similarity be-
tween the generated sentence and the ground truth
sentence with maximum-likelihood estimation ob-
jective function (Du et al., 2017). However, there
is no signal indicating whether or not the gener-
ated sentence could be correctly answered by the
input. This problem could be precisely mitigated
through incorporating QA-specific signal into the
QG loss function. On the other hand, the capac-
ity of a statistical model depends on the quality
and the amount of the training data (Sun et al.,
2017). In our scenario, the capacity of the QA
model depends on the difference between the pos-
itive and negative patterns embodied in the train-
ing examples. A desirable training dataset should
contain the question-answer pairs that are literal-
ly similar yet have different category labels, i.e.
some question-answer pairs are correct and some
are wrong. However, this kind of dataset is hard
to obtain in most situations because of the lack of
manual annotation efforts. From this perspective,
the QA model could exactly benefit from the QG
model through incorporating additional question-
answer pairs whose questions are automatically
generated by the QG model1.

To achieve this goal, we present a training al-
gorithm that improves the QA model and the

1An alternative way is to automatically generate answers
for each question. Solving the problem in this condition re-
quires an answer generation model (He et al., 2017), which
is out of the focus of this work. Our algorithm could also be
adapted to this scenario.
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QG model in a loop. The QA model improves
QG through introducing an additional QA-specific
loss function, the objective of which is to max-
imize the expectation of the QA scores of the
generated question-answer pairs. Policy gradi-
ent method (Williams, 1992; Yu et al., 2017) is
used to update the QG model. In turn, the QG
model improves QA through incorporating ad-
ditional training instances. Here the key prob-
lem is how to label the generated question-answer
pair. The application of Generative Adversarial
Network (GAN) (Goodfellow et al., 2014; Wang
et al., 2017) in this scenario regards every generat-
ed question-answer pair as a negative instance. On
the contrary, Generative Domain-Adaptive Nets
(GDAN) (Yang et al., 2017) regards every gener-
ated question-answer pair appended with special
domain tag as a positive instance. However, it is
non-trivial to label the generated question-answer
pairs because some of which are good paraphras-
es of the ground truth yet some might be nega-
tive instances with similar utterances. To address
this, we bring in a collaboration detector, which
takes two question-answer pairs as the input and
determines their relation as collaborative or com-
petitive. The output of the collaboration detector
is regarded as the label of the generated question-
answer pair.

We conduct experiments on both documen-
t based (Yang et al., 2015) and knowledge (e.g.
web table) based question answering tasks (Bal-
akrishnan et al., 2015). Results show that the per-
formance of a QG model (e.g in terms of BLEU
score) could be consistently improved by a QA
model via policy gradient. However, regarding
all the generated questions as negative instances
(competitive) could not improve the accuracy of
the QA model. Learning when to regard generat-
ed questions as positive instances (collaborative)
could improve the accuracy of the QA model.

2 Related Work

Our work connects to existing works on question
answering (QA), question generation (QG), and
the use of generative adversarial nets in question
answering and text generation.

We consider two kinds of answer selection tasks
in this work, one is table as the answer (Balakr-
ishnan et al., 2015) and another is sentence as
the answer (Yang et al., 2015). In natural lan-
guage processing community, there are also other

types of QA tasks including knowledge based QA
(Berant et al., 2013), community based QA (Qi-
u and Huang, 2015) and reading comprehension
(Rajpurkar et al., 2016). We believe that our algo-
rithm is generic and could also be applied to these
tasks with dedicated QA and QG model architec-
tures. Despite the use of sophisticated features
could learn a more accurate QA model, in this
work we implement a simple yet effective neural
network based QA model, which could be conven-
tionally jointly learned with the QG model through
back propagation.

Question generation draws a lot of attentions re-
cently, which is partly influenced by the remark-
able success of neural networks in natural lan-
guage generation. There are several works on gen-
erating questions from different resources, includ-
ing a sentence(Heilman, 2011), a topic (Chali and
Hasan, 2015), a fact from knowledge base (Serban
et al., 2016), etc. In computer vision community,
there are also recent studies on generating ques-
tions from an image (Mostafazadeh et al., 2016).
Our QG model belongs to sentence-based question
generation.

GAN has been successfully applied in comput-
er vision tasks (Goodfellow et al., 2014). There
are also some recent trials that adapt GAN to tex-
t generation (Yu et al., 2017), question answer-
ing (Wang et al., 2017), dialogue generation (Li
et al., 2016), etc. The relationship of the dis-
criminator and the generator in GAN are competi-
tive. The key finding of this work is that, directly
applying the idea of “competitive” in GAN does
not improve the accuracy of a QA model. We
contribute a generative collaborative network that
learns when to collaborate and yields empirical
improvements on two QA tasks.

This work relates to recent studies which at-
tempt to improve the performance of a discrimi-
native QA model with generative models (Wang
et al., 2017; Yang et al., 2017; Dong et al., 2017;
Duan et al., 2017). These works regard QA as the
primary task and use auxiliary task, such as ques-
tion generation and question paraphrasing, to im-
prove the primary task. This is one part of our goal
and our another goal is to improve the QG mod-
el with the QA system and further to increasingly
improve both tasks in a loop.

In terms of assigning category label to the gen-
erated question, Generative Adversarial Network
(GAN) (Goodfellow et al., 2014; Wang et al.,
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2017) and Generative Domain-Adaptive Nets (G-
DAN) (Yang et al., 2017) could be viewed as spe-
cial cases of our algorithm. Our algorithm learns
when to assign positive or negative labels, while
GAN always assigns negative labels and GDAN
always assigns positive labels. Besides, our work
differs from (Wang et al., 2017) in that our ques-
tion generation model is a generative model while
theirs is actually a discriminative matching mod-
el. The approach of (Dong et al., 2017) learns to
generate question from question via paraphrasing,
and use the generated questions in the inference
process. In this work, the QA model and the QG
model are applied separately in the inference pro-
cess. This inspires us to jointly conduct QA and
QG in the inference process, which we leave as a
future work.

3 Generative Collaborative Network

In this section, we first formulate the task of QA
and QG, and then present our algorithm that joint-
ly trains the QA and QG models.

3.1 Task Formulation

This work involves two tasks: question answering
(QA) and question generation (QG).

There are different kinds of QA tasks in the nat-
ural language processing area. To verify the scal-
ability of our algorithm, we consider two types of
answer selection tasks, both of which are funda-
mental QA tasks in research community and of
great importance in industrial applications includ-
ing web search and chatbot. Both tasks take a
question q and a list of candidate answers A =
{a1, a2, ..., an} as input, and outputs an answer
ai which has the largest probability to correctly
answer the question. The only difference is that
the answer in the task of answer sentence selec-
tion (Yang et al., 2015) is a natural language sen-
tence, while the answer in table search (Balakr-
ishnan et al., 2015) is a structured table consisting
of caption, attributes and cells. Our QA model is
abbreviated as Pqa(a, q; θqa), whose output is the
probability that q and a being a correct question-
answer pair, and the parameter is denoted as θqa.

The task of QG takes an answer a which is a
natural language sentence or a structured table,
and outputs a natural language question q which
could be answered by a. Inspired by the remark-
able progress of sequence-to-sequence (Seq2Seq)
learning in natural language generation, we deal

with QG in an end-to-end fashion and develop a
generative model based on Seq2Seq learning. Our
QG model is abbreviated as Pqg(q|a; θqg), whose
output is the probability of generating q from a
and the parameter is denoted as θqg.

3.2 Algorithm Description

We describe the joint learning algorithm in this
part. The end goal is to leverage the connection of
QA and QG to improve the performances on both
QA and QG tasks. A brief illustration of the train-
ing progress is given in Figure 1 , which includes
a QA model, a QG model and a collaboration de-
tector (CD). A formal description of the algorith-
m is given in Algorithm 1. We can see that the
QA model and the QG model both have two train-
ing objectives. One part is the standard supervised
learning objective based on task-specific supervi-
sions. Another part of the objective is obtained by
leveraging auxiliary tasks.

QG

answer

(a) QG improves QA (b) QA improves QG

samplesCD

QA

QG

answer

samplesQA

QG

Figure 1: An brief illustrating of the joint training pro-
cess. The red dashed line stands for the model being
updated. QA, QG and CD stand for question answer-
ing, question generation and collaboration detection,
respectively.

The supervised objective of the QA model is
to maximize the probability of the correct catego-
ry label, and the supervised objective of the QG
model is to maximize the probability of the cor-
rect question sequence. Since the goal of QA is to
predict whether a question-answer pair is correc-
t or not, training the QA model requires negative
QA pairs whose labels are zero. But these negative
QA pairs are not used for training the QG model as
the goal of QG is to generate the correct question.

The main contribution of this work is to explore
effective learning objectives that leverage auxil-
iary tasks. In order to improve the QA model,
we generate additional training instances, each of
which is composed of a question, an answer and
a category label. In this work, we clamp the an-
swer part and feed the answer to the QG model to
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Algorithm 1 Generative Collaborative Network for QA and QG
1: Input: training data D; the batch size for QG training m; the beam size for QG inference k; hyper parameters λqg and
λqg; hyper parameters bqa and bqg; pretrained collaboration detector Pcd(q, q

′)
2: Output: QA model Pqa(a, q) parameterized by θqa; QG model Pqg(q|a) parameterized by θqg

3: pretrain Pqa(a, q) and Pqg(q|a) separately on D
4: repeat
5: get a minibatch of positive QA pairs PD = {qpi , api } ∈ D, 1 ≤ i ≤ m, in which api is the answer of qpi
6: get a minibatch of negative QA pairs ND = {qni , ani } ∈ D, 1 ≤ i ≤ m, in which ani is not the answer of qni
7: apply Pqg(q|a) on PD to generate in a list of question-answer beams GD = {qgij , agi }, 1 ≤ i ≤ m, 1 ≤ j ≤ k
8: apply Pqa(a, q) on GD to assign a QA-specific score to each generated instance
9: choose the top ranked result from each beam in GD, and then apply Pcd(q, q

′) on the selected instance
10: update θqa by maximizing the following objective

m∑

i=1

(
logPqa(a

p
i , q

p
i ) + log

(
1− Pqa(a

n
i , q

n
i )
))

+ λqa

m∑
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m∑

i=1

((
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log
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g
i0)
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(1)

11: update θqg by maximizing the following objective
m∑

i=1

logPqa(q
p
i |api ) + λqg

m∑

i=1

k∑

j=1

Pqa(a
p
i , q

g
ij)logPqg(q

g
ij |api ) (2)

12: until models converge

generate the question. We use beam search and s-
elect the top ranked result as the question.2 Here
the issue is how to infer the label of the generated
instance. We believe that heuristically assigning
the label as 0 or 1 is problematic. For instance,
let us suppose the answer sentence is “Microsoft
was founded by Paul Allen and Bill Gates on April
4, 1975.”, and the ground truth question is “who
founded Microsoft”. In this case, the generated
question “who is the founder of Microsoft” is a
good one yet “who is the founder of Google” and
“how old is Bill Gates” are both bad cases. To
address this, we introduce an additional collabo-
ration detector (CD) to infer the label of the gen-
erated instance. Intuitively, the CD acts as a dis-
criminative paraphrase model, which measures the
semantic similarity between the ground truth ques-
tion and generated question. In equation (1), the
Ibqa(x) is an indicator function whose value is 1 if
the value of x is larger than a threshold bqa, such
as 0.5 or 0.3. The hyper parameter λqa controls the
weight of the auxiliary objective to the QA model.

In turn, the QA model is used to assign a QA-
specific score Pqa(a, q′) to each generated ques-
tion q′. We follow the recent reinforcement learn-
ing based approach for dialogue prediction (Li
et al., 2016), and define simple heuristic reward-

2We also implemented using all the beam search results
or sampling one result from the beam. However, these tricks
do not bring performance boost.

s that characterize good questions. The goodness
of the generated question is measured by the pre-
diction of the QA model. Similar to the strat-
egy adopted by (Zaremba and Sutskever, 2015),
we use a baseline strategy bqg (e.g. 0.5) to de-
crease the learning variance. The expected reward
(Williams, 1992; Yu et al., 2017) for a generated
question is given in Equation (2). In this way, the
parameters of the QG model could be convention-
ally updated with stochastic gradient descent.

We pretrain the QA model and the QG model
before the joint learning process. The main reason
is that a randomized QA model will provide unre-
liable rewards to the QG model, and a randomized
QG model will generate bad questions.

4 The Neural Architecture of Each
Module

Our algorithm includes a question answer (QA)
model, a question generation (QG) model and a
collaboration detector (CD) model. We implement
these models with dedicated neural networks.

As we have mentioned before, our training algo-
rithm is applied to both document-based and we-
b table based question answer tasks. In this sec-
tion, we take table based QA and QG tasks to de-
scribe the neural architecture of each module. A
question/query q is a natural language expression
consisting of a list of words. A table t has fixed
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schema including one or more headers, one or
more cells, and a caption. A header indicates the
property of a column, and a cell is a unit where a
row and a column intersects. The caption is typi-
cally an explanatory text about the table.

4.1 The Question Answer (QA) Model

We develop a neural network to match a natural
language question/query to a structured table. S-
ince a table has multiple aspects including head-
ers, cells and the caption, the model is developed
to capture the semantic relevance between a query
and a table at different levels.

As the meaning of a query is sensitive to the
word order, i.e. the intentions of “list of flights lon-
don to berlin” and “list of flights berlin to london”
are totally different, we represent a query with a
sequential model. In this work, recurrent neural
network (RNN) is used to map a query of vari-
able length to a fixed-length vector. We use gated
recurrent unit (GRU) (Cho et al., 2014) as the ba-
sic computation unit, which adaptively forgets the
history and remembers the input.

zi = σ(Wze
q
i + Uzhi−1) (3)

ri = σ(Wre
q
i + Urhi−1) (4)

h̃i = tanh(Whe
q
i + Uh(ri � hi−1)) (5)

hi = zi � h̃i + (1− zi)� hi−1 (6)

where zi and ri are update and reset gates of GRU.
We use bi-directional RNN to get the meaning of
a query from forward and backward directions,
and concatenate two last hidden states as the query
vector.

An important property of a table is that ex-
changing two rows or two columns does not
change its meaning. To satisfy this condition,
we develop an attention based approach, in which
the header and cells are regarded as the exter-
nal memory. Each header/cell is represented as
a vector. Given a query vector, the model cal-
culates the weight of each memory unit and then
output a query-specific header/cell representation
through weighted average (Bahdanau et al., 2015;
Sukhbaatar et al., 2015). This process could be
repeated executed for several times, so that more
abstractive evidences could be retrieved and com-
posed to support the final decision. Similar tech-
niques have been successfully applied in table-
based question answering (Yin et al., 2015b; Nee-
lakantan et al., 2015).

We represent the table caption with RNN, the
same strategy we have adopted to represent the
query. Element-wised multiplication is used to
compose the query vector and the caption vec-
tor. Furthermore, since the number of co-occurred
words directly reflect the relatedness between the
question and the answer, we incorporate the em-
bedding of co-occurred word count as addition-
al features. Finally, we feed the concatenation
of all the vectors to a softmax layer whose out-
put length is 2. We have implemented a ranking
based loss function lqa = max(0, 1− Pqa(a, q) +
Pqa(a

′, q)) and a negative log-likelihood (NLL)
base loss function lqa = − log(Pqa(a, q)). We
find that NLL works better and use it in the fol-
lowing experiments.

4.2 The Question Generation (QG) Model

Inspired by the notable progress that sequence-
to-sequence learning (Seq2Seq) (Sutskever et al.,
2014) has made in natural language generation, we
implement a table-to-sequence (Table2Seq) ap-
proach that generates natural language question
from a structured table.

Table2Seq is composed of an encoder and a de-
coder. The encoder maps the caption, headers, and
cells into continuous vectors, which will be fed to
the decoder to generate a question in a sequential
way. Similar with the way we have adopted in the
QA model, we represent the caption with bidirec-
tional GRU based RNN. The vector of each word
in the caption is the concatenation of hidden states
from both directions. The vectors of headers and
cells are regarded as additional hidden states of the
encoder. The representation of each cell is also
mixed with the corresponding header representa-
tion. The initial vector of the decoder is the av-
erage of the caption vector, header vector, and the
cell vector.

The backbone of the decoder is an attention
based GRU RNN, which generates a word at each
time step and repeats the process until generating
the end-of-sentence symbol. We made two modifi-
cations to adapt the decoder to the table structure.
The first modification is that the attention model
is calculated over the headers, cells and the cap-
tion of a table. Ideally, the decoder should learn
to focus on a region of the table when generat-
ing a word. The second modification is a table
based copying mechanism. It has been proven that
the copying mechanism (Gulcehre et al., 2016; Gu
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et al., 2016) is an effective way to replicate low-
frequent words from the source to the target se-
quence in sequence-to-sequence learning. In the
decoding process, a word is generated either from
the target vocabulary via standard softmax or
from a table via the copy mechanism. A neu-
ral gate gt is used to trade-off between generat-
ing from the target vocabulary and copying from
the table. The probability of generating a word y
calculated as follows, where αt(y) is the attention
probability of the word y from the table at time
step t and βt(y) is the probability of predicting the
word y from the softmax at time step t.

pt(y) = gt � αt(y) + (1− gt)� βt(y) (7)

Since every component of the Table2Seq is d-
ifferentiable, the parameters could be optimized
in an end-to-end fashion with back-propagation.
Given a question-answer pair (x, y), the super-
vised training objective is to maximize the prob-
ability of question word at each time step. In the
inference process, beam search is used to generate
top-k confident results, where k is the beam size.

4.3 The Collaboration Detector (CD)

The goal of a collaboration detector is to deter-
mine the label of the instance generated by the QG
model. The positive prediction, namely the pre-
dicted value is equals to 1, stands for the collabo-
rative relationship between the generated instance
and the ground truth, while the negative prediction
stands for the competitive relationship.

We consider this task as predicting the catego-
ry of the given two question-answer pairs, one of
which is the ground truth, and another is the gener-
ated question-answer pair. Since the answer part is
the same, we simplify the problem as classifying
two questions as related or not, which is a binary
classification problem.

The neural architecture of the collaboration de-
tector (CD) is exactly the same as the caption com-
ponent in the QA model. We represent two ques-
tions with bidirectional RNN, and use element-
wise multiplication to do the composition. The
result is further concatenated with a co-occurred
word count embedding, followed by a softmax
layer. The model is trained by minimizing the neg-
ative log-likelihood label, which is provided in the
training data.

The training data of the CD model includes two

parts. The first part is from Quora dataset3, which
is built for detecting if pairs of question text are
semantically equivalent. The Quora dataset has
345,989 positive question pairs and 255,027 nega-
tive pairs. We further obtain the second part of the
training data from the web queries, which are more
similar to the web queries in our two QA task. We
obtain the query dataset from query logs through
clustering the web queries that click the same we-
b page. In this way, we obtain 6,118,023 positive
query pairs. We use a heuristic rule to generate the
negative instances for the query dataset. For each
pair of query text, we clamp the first query and
retrieve a query that is mostly similar to the sec-
ond query. To improve the efficiency of this pro-
cess, we randomly sample 10,000 queries and de-
fine the “similarity” as the number of co-occurred
words in two questions. In this way we collec-
t another 6,118,023 negative pairs of query tex-
t. We initialize the values of word embeddings
with 300d Glove vectors4, which is learned on
Wikipedia texts. We use a held-out data consist-
ing of 20K query pairs to check the performance
of the CD model. The accuracy of the CD model
on the held-out dataset is 83%. In the joint train-
ing process, we clamp the parameters of the CD
model and use its outputs to facilitate the learning
of the QA model.

5 Experiment

We conduct experiments on table-based QA and
document-based QA tasks. We will describe ex-
perimental settings and report results on these two
tasks in this section.

5.1 Table based QA and QG
Setting We take table retrieval (Balakrishnan
et al., 2015) as the table-based QA task. Given a
query and a collection of candidate table answers,
the task aims to return a table that is most relevan-
t to the query. Figure 2 gives an example of this
task, in which a query matches to different aspects
of a table. We regard document-based QA tasks as
a special case of the table-based QA task, in which
the cells and the headers are both empty.

We conduct experiments on the web data. The
queries come from real-world user queries which
we obtain from the search log of a commercial

3https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs

4https://nlp.stanford.edu/projects/
glove/
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Figure 2: An example illustrating the table-based QA
task.

search engine. We filter them down to only those
that are directly answered by a table. In this way,
we collect 1.49M query-table pairs. An example
of the data is given in Figure 2. We randomly se-
lect 1.29M as the training set, 0.1M as the dev set
and 0.1M as the test set.

We evaluate the performance on table-based QA
with Mean Average Precision (MAP) and Preci-
sion@1 (P@1) (Manning et al., 2008). We use
the same candidate retrieval adopted in (Yan et al.,
2017), namely representing a table as bag-of-
words, to guarantee the efficiency of the approach.
Each query has 50 candidate tables on average. It
is still an open problem to automatically evaluate
the performance of a natural language generation
system (Lowe et al., 2017). In this work, we use
BLEU-4 (Papineni et al., 2002) score as the evalu-
ation metric, which measures the overlap between
the generated question and the referenced ques-
tion. The hyper parameters are tuned on the vali-
dation set and the performance is reported on the
test set.

Results and Analysis We report the results and
our analysis on table-based QA and QG respec-
tively in this part.

We first report the results of single systems on
table-based QA. We compare to four single sys-
tems implemented by (Yan et al., 2017). In BM25,
each table is represented as a flattened vector, and
the similarity between a query and a table is cal-
culated with the BM25 algorithm. WordCnt uses
the number of co-occurred words in query-caption
pair, query-header pair, and query-cell pair, re-
spectively. MT based PP is a phrase-level fea-
ture. The features come from a phrase table which
is extracted from bilingual corpus via statistical
machine translation approach (Koehn et al., 2003).

LambdaMART (Burges, 2010) is used to train the
ranker. CNN uses convolutional neural network
to measure the similarity between the query and
table caption, table headers, and table cells, re-
spectively. TQNN is the table-based QA model
implemented in this work, which is regard as the
baseline for the joint learning algorithm. Results
of single systems are given in Table 1. We can see
that BM25 is a simple yet very effective baseline
method. Our basic model performs better than all
the single models in terms of MAP.

Method MAP Acc@1
BM25 0.429 0.294
WordCnt 0.318 0.190
MT based PP 0.327 0.213
CNN 0.359 0.238
TQNN (baseline) 0.439 0.285
Seq2SeqPara 0.437 0.283
GCN (competitive) 0.436 0.282
GCN (collaborative) 0.446 0.292
GCN (final) 0.456 0.301

Table 1: The performances of single systems on table-
based question answering (p-value < 0.01 with t-test
between TQNN and GCN).

We also implement four different joint learning
settings. In these settings, the QA model and the
QG model are all pretrained, and the same way
(policy gradient) is used to improve the QG mod-
el via the QA predictions. The only difference is
how the QA model benefits from the QG mod-
el. As we use external resources to train a CD
model, we also implement Seq2SeqPara for com-
parison. We train a question generator with a Se-
q2Seq model on the CD training data, and regard
the generated questions as positive instances. Our
generative collaborative network is abbreviated as
GCN. GCN (competitive) is analogous to (Good-
fellow et al., 2014), where all the generated ques-
tions are regarded as negative instances (with label
as zero). On the contrary, GCN (collaborative) is
analogous to (Yang et al., 2017), where the gen-
erated questions are regard as positive instances.
Our main observation from Table 1 is that simply
regarding all the generated questions as negative
instances (“competitive”) could not bring perfor-
mance boost. On the contrary, regarding the gen-
erated questions as positive ones (“collaborative”)
improves the QA model. Our algorithm (GCN)
significantly improves the TQNN model. Based
on these results, we believe that the relationship
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between the QA model and the QG model should
not be always competitive. Learning when to col-
laborate through leveraging a CD model is a prac-
tical way to improve the performance on question
answering.

As described in Equation (1), the influence of
the CD model on the QA model also depends on
the value of the hyper parameter bqa. A smal-
l value of bqa stands for a preference of “collab-
orative”, while a large value of bqa represents a
preference of “competitive”. Results are given in
Figure 3. The GCN model performs better when
bqa is in the range [0.3, 0.5], in which the model
prefers “collaborative”.
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Figure 3: The performances of GCN on table-based
QA with different values of bqa. GCN falls back to
“competitive” when bqa equals to one. GCN is totally
collaborative when bqa equals to zero.

We conduct an additional experiment to test
whether our algorithm could improve an existing
system. We take BM25 as the baseline, and incor-
porate one of the five joint models as an additional
feature. LambdaMART is used to train the com-
bined ranker. Results are given in Table 2. We can
see that the baseline system could be dramatical-
ly improved by our system, despite the improve-
ments of different approaches are on par.

Method MAP Acc@1
BM25 0.429 0.294
BM25 + TQNN (baseline) 0.650 0.513
BM25 + GAN 0.654 0.519
BM25 + Seq2SeqPara 0.650 0.513
BM25 + GDAN 0.658 0.523
BM25 + GCN (this work) 0.660 0.526

Table 2: The performances of combined systems on
table-based question answering..

We have reported the results on table-based QA.

Here we show the performances of different ap-
proaches on table-based QG. Results in terms of
BLEU-4 are given in Table 3. Different from the
trends on QA, “competitive” performs better than
“collaborative” on QG. This is reasonable because
as the joint training progresses, the QA model in
“collaborative” keeps telling the QG model that
the generated instances are good enough. On the
contrary, the “competitive” model is more critical,
which tells the QG model how wrong the generat-
ed questions are. In this way, the QG model could
be increasingly improved by the QA signal. The
QG model is easier to be improved compared to
the QA model. Our GCN approach obtains a sig-
nificant improvement over the baseline model on
this task.

Method Dev Test
Table2Seq (baseline) 15.71 15.54
Seq2SeqPara 17.01 16.95
GCN (competitive) 17.28 17.34
GCN (collaborative) 16.77 16.66
GCN (final) 17.59 17.61

Table 3: The performances on table-based question
generation. Evaluation metric is BLEU-4 score.

We also report the learning curve of the GCN
model as the joint training progresses. The perfor-
mance on the dev set is given in Figure 4.

0 20000 40000 60000 80000
Number of Training Batches

0.450

0.452

0.454

0.456

0.458

0.460

0.462

0.464

0.466

QA
 p

er
fo

rm
an

ce
 (M

AP
)

16.4

16.6

16.8

17.0

17.2

17.4

17.6

QG
 p

er
fo

rm
an

ce
 (B

LE
U)

Figure 4: The learning curve of GCN on the dev data.
The evaluation metrics are MAP (for QA) and BLEU
(for QG).

5.2 Document based QA and QG
To test the scalability of the algorithm, we also ap-
ply it to document based QA and QG tasks. The
QA task is answer sentence selection (Yang et al.,
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Method MAP P@1
WordCnt 0.395 0.179
CDSSM (Shen et al., 2014) 0.442 0.228
ABCNN (Yin et al., 2015a) 0.469 0.263
DSL (Tang et al., 2017) 0.484 0.275
DQNN (baseline) 0.471 0.263
Seq2SeqPara 0.470 0.260
GCN (competitive) 0.468 0.257
GCN (collaborative) 0.476 0.272
GCN (final) 0.492 0.282

Table 4: The performance on document-based QA task
(p-value < 0.05 with t-test between DQNN and GCN).

2015). Given a question and a list of candidate
answer sentences from a document, the goal is to
find a most relevant answer sentence as the answer.
Since the WikiQA dataset (Yang et al., 2015) is
too small to learn a powerful question generator,
we use the MARCO dataset (Nguyen et al., 2016),
which is originally designed for reading compre-
hension yet also has manually annotated labels
for sentence/passage selection. A characteristic of
MARCO dataset is that the ground truth of the test
is invisible to the public. Therefore, we follow
(Tang et al., 2017) and split the original validation
set into the dev set and the test set. The results
on QA and QG are given in Table 4 and Table 5.
We can see that the results are almost consistent
with the results on table-based QA and QG tasks.
Our GCN algorithms achieves promising perfor-
mances compared to strong baseline methods.

Method BLEU-4
Seq2Seq (baseline) 8.87
DSL (Tang et al., 2017) 9.31
Seq2SeqPara 9.16
GCN (competitive) 9.22
GCN (collaborative) 9.04
GCN (final) 9.89

Table 5: The performance on document-based QG task.

6 Conclusion

We present an algorithm dubbed generative col-
laborative network for jointly training the question
answering (QA) model and the question genera-
tion (QG) model. Different from standard GAN,
the relationship between QA model (discrimina-
tor) and the QG model (generator) in our algo-
rithm is not always competitive. We show that

“collaborative” performs better than “competitive”
in terms of QA accuracy, and our algorithm that
learns when to collaborate obtains further im-
provement on both QA and QG tasks.

This work could be further improved from sev-
eral directions. Our current algorithm focuses on
the joint training of QA and QG models, while the
inferences of these two models are independent.
How to conduct joint inference is an interesting
future work. Besides, the samples are currently
generated from the QG model via beam search.
Improving the diversity of the samples requires d-
ifferent sampling mechanisms. Another potential
direction is to jointly learn the collaboration detec-
tor together with the QA and QG models.
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Abstract

In this paper, we propose a novel end-to-end
neural architecture for ranking candidate an-
swers, that adapts a hierarchical recurrent neu-
ral network and a latent topic clustering mod-
ule. With our proposed model, a text is en-
coded to a vector representation from an word-
level to a chunk-level to effectively capture the
entire meaning. In particular, by adapting the
hierarchical structure, our model shows very
small performance degradations in longer text
comprehension while other state-of-the-art re-
current neural network models suffer from it.
Additionally, the latent topic clustering mod-
ule extracts semantic information from tar-
get samples. This clustering module is use-
ful for any text related tasks by allowing each
data sample to find its nearest topic cluster,
thus helping the neural network model ana-
lyze the entire data. We evaluate our mod-
els on the Ubuntu Dialogue Corpus and con-
sumer electronic domain question answering
dataset, which is related to Samsung products.
The proposed model shows state-of-the-art re-
sults for ranking question-answer pairs.

1 Introduction

Recently neural network architectures have shown
great success in many machine learning fields such
as image classification, speech recognition, ma-
chine translation, chat-bot, question answering,
and other task-oriented areas. Among these, the
automatic question answering (QA) task has long
been considered a primary objective of artificial
intelligence.

In the commercial sphere, the QA task is usually
tackled by using pre-organized knowledge bases
and/or by using information retrieval (IR) based
methods, which are applied in popular intelligent
voice agents such as Siri, Alexa, and Google Assis-
tant (from Apple, Amazon, and Google, respec-
tively). Another type of advanced QA systems is

IBM’s Watson who builds knowledge bases from
unstructured data. These raw data are also indexed
in search clusters to support user queries (Fan
et al., 2012; Chu-Carroll et al., 2012).

In academic literature, researchers have in-
tensely studied sentence pair ranking task which
is core technique in QA system. The ranking
task selects the best answer among candidates re-
trieved from knowledge bases or IR based mod-
ules. Many neural network architectures with end-
to-end learning methods are proposed to address
this task (Yin et al., 2016; Wang and Jiang, 2016;
Wang et al., 2017). These works focus on match-
ing sentence-level text pair (Wang et al., 2007;
Yang et al., 2015; Bowman et al., 2015). There-
fore, they have limitations in understanding longer
text such as multi-turn dialogue and explanatory
document, resulting in performance degradation
on ranking as the length of the text become longer.

With the advent of the huge multi-turn dialogue
corpus (Lowe et al., 2015), researchers have pro-
posed neural network models to rank longer text
pair (Kadlec et al., 2015; Baudiš et al., 2016).
These techniques are essential for capturing con-
text information in multi-turn conversation or un-
derstanding multiple sentences in explanatory text.

In this paper, we focus on investigating a novel
neural network architecture with additional data
clustering module to improve the performance in
ranking answer candidates which are longer than a
single sentence. This work can be used not only for
the QA ranking task, but also to evaluate the rel-
evance of next utterance with given dialogue gen-
erated from the dialogue model. The key contribu-
tions of our work are as follows:

First, we introduce a Hierarchical Recurrent
Dual Encoder (HRDE) model to effectively cal-
culate the affinity among question-answer pairs
to determine the ranking. By encoding texts from
an word-level to a chunk-level with hierarchi-
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cal architecture, the HRDE prevents performance
degradations in understanding longer texts while
other state-of-the-art neural network models suf-
fer.

Second, we propose a Latent Topic Clustering
(LTC) module to extract latent information from
the target dataset, and apply these additional infor-
mation in end-to-end training. This module allows
each data sample to find its nearest topic cluster,
thus helping the neural network model analyze the
entire data. The LTC module can be combined to
any neural network as a source of additional infor-
mation. This is a novel approach using latent topic
cluster information for the QA task, especially by
applying the combined model of HRDE and LTC
to the QA pair ranking task.

Extensive experiments are conducted to inves-
tigate efficacy and properties of the proposed
model. Our proposed model outperforms previ-
ous state-of-the-art methods in the Ubuntu Dia-
logue Corpus, which is one of the largest text pair
scoring datasets. We also evaluate the model on
real world QA data crawled from crowd-QA web
pages and from Samsung’s official web pages. Our
model also shows the best results for the QA data
when compared to previous neural network based
models.

2 Related Work

Researchers have released question and answer
datasets for research purposes and have proposed
various models to solve these datasets. (Wang
et al., 2007; Yang et al., 2015; Tan et al., 2015) in-
troduced small dataset to rank sentences that have
higher probabilities of answering questions such
as WikiQA and insuranceQA. To alleviate the dif-
ficulty in aggregating datasets, that are large and
have no license restrictions, some researchers in-
troduced new datasets for sentence similarity rank-
ings (Baudiš et al., 2016; Lowe et al., 2015). As
of now, the Ubuntu Dialogue dataset is one of the
largest corpus openly available for text ranking.

To tackle the Ubuntu dataset, (Lowe et al.,
2015) adopted the “term frequency-inverse doc-
ument frequency” approach to capture important
words among context and next utterances (Ramos
et al., 2003). (Bordes et al., 2014; Yu et al.,
2014) proposed deep neural network architecture
for embedding sentences and measuring similar-
ities to select answer sentence for a given ques-
tion. (Kadlec et al., 2015) used convolution neu-

ral network (CNN) architecture to embed the sen-
tence while a final output vector was compared
to the target text to calculate the matching score.
They also tried using long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997), bi-
directional LSTM and ensemble method with all
of those neural network architectures and achieved
the best results on the Ubuntu Dialogues Cor-
pus dataset. Another type of neural architecture is
the RNN-CNN model, which encodes each token
with a recurrent neural network (RNN) and then
feeds them to the CNN (Baudiš et al., 2016). Re-
searchers also introduced an attention based model
to improve the performance (Tan et al., 2015;
Wang and Jiang, 2016; Wang et al., 2017).

Recently, the hierarchical recurrent encoder-
decoder model was proposed to embed contex-
tual information in user query prediction and di-
alogue generation tasks (Sordoni et al., 2015; Ser-
ban et al., 2016). This shows improvement in the
dialogue generation model where the context for
the utterance is important. As another type of neu-
ral network architecture, memory network was
proposed by (Sukhbaatar et al., 2015). Several re-
searchers adopted this architecture for the reading
comprehension (RC) style QA tasks, because it
can extract contextual information from each sen-
tence and use it in finding the answer (Xiong et al.,
2016; Kumar et al., 2016). However, none of this
research is applied to the QA pair ranking task di-
rectly.

3 Model

In this section, we depict a previously released
neural text ranking model, and then introduce our
proposed neural network model.

3.1 Recurrent Dual Encoder (RDE)
A subset of sequential data is fed into the recurrent
neural network (RNN) which leads to the forma-
tion of the network’s internal hidden state ht to
model the time series patterns. This internal hid-
den state is updated at each time step with the in-
put data wt and the hidden state of the previous
time step ht−1 as follows:

ht = fθ(ht−1, wt), (1)

where fθ is the RNN function with weight param-
eter θ, ht is hidden state at t-th word input, wt is
t-th word in a target question wQ = {wQ1:tq} or an
answer text wA = {wA1:ta} .
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Figure 1: Diagram of the HRDE model. The word-
lever RNN encodes words sequences of each chunk.
The the final hidden status of the word-level RNN is
fed into chunk-level RNN.

The previous RDE model uses two RNNs for
encoding question text and answer text to calcu-
late affinity among texts (Lowe et al., 2015). After
encoding each part of the data, the affinity among
the text pairs is calculated by using the final hidden
state value of each question and answer RNNs.
The matching probability between question text
wQ and answer text wA with the training objec-
tive are as follows:

p(label) = σ((hQtq)
TM hAta + b),

L = − log

N∏

n=1

p(labeln|hQn,tq , hAn,ta),
(2)

where hQtq and hAta are last hidden state of each
question and answer RNN with the dimensionality
ht ∈ Rd. The M ∈ Rd×d and bias b are learned
model parameters. The N is total number of sam-
ples used in training and σ is the sigmoid function.

3.2 Hierarchical Recurrent Dual Encoder
(HRDE)

From now we explain our proposed model. The
previous RDE model tries to encode the text in
question or in answer with RNN architecture. It
would be less effective as the length of the word
sequences in the text increases because RNN’s
natural characteristic of forgetting information
from long ranging data. To address this RNN’s
forgetting phenomenon, (Bahdanau et al., 2014)
proposed an attention mechanism, however, we
found that it still showed a limitation when we
consider very large sequential length data such as
162 steps average in the Ubuntu Dialogue Corpus
dataset (see Table 1). To overcome this limitation,
we designed the HRDE architecture. The HRDE

model divides long sequential text data into small
chunk such as sentences, and encodes the whole
text from word-level to chunk-level by using two
hierarchical level of RNN architecture.

Figure 1 shows a diagram of the HRDE model.
The word-level RNN part is responsible for en-
coding the words sequence wc = {wc,1:t} in each
chunk. The chunk can be sentences in paragraph,
paragraphs in essay, turns in dialogue or any kinds
of smaller meaningful sub-set from the text. Then
the final hidden states of each chunk will be fed
into chunk-level RNN with its original sequence
order kept. Therefore the chunk-level RNN can
deal with pre-encoded chunk data with less se-
quential steps. The hidden states of the hierarchi-
cal RNNs are as follows:

hc,t = fθ(hc,t−1, wc,t),

uc = gθ(uc−1, hc),
(3)

where fθ and gθ are the RNN function in hierar-
chical architecture with weight parameters θ, hc,t
is word-level RNN’s hidden status at t-th word in
c-th chunk. The wc,t is t-th word in c-th chunk of
target question or answer text. The uc is chunk-
level RNN’s hidden state at c-th chunk sequence,
and hc is word-level RNN’s last hidden state of
each chunk hc ∈ {h1:c,t}.

We use the same training objective as the RDE
model, and the final matching probability be-
tween question and answer text is calculated using
chunk-level RNN as follows:

p(label) = σ((uQcq)
TM uAca + b), (4)

where uQcq and uAca are chunk-level RNN’s last hid-
den state of each question and answer text with
the dimensionality uc ∈ Rdu , which involves the
M ∈ Rdu×du .

3.3 Latent Topic Clustering (LTC)
To learn how to rank QA pairs, a neural net-
work should be trained to find the proper feature
that represents the information within the data and
fits the model parameter that can approximate the
true-hypothesis. For this type of problem, we pro-
pose the LTC module for grouping the target data
to help the neural network find the true-hypothesis
with more information from the topic cluster in
end-to-end training.

The blue-dotted box on the right-side of Figure
2 shows LTC structure diagram. To assign topic
information, we build internal latent topic memory
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Figure 2: Diagram of the HRDE-LTC. Input vector is
compared to each latent topic memory mk to calculate
cluster-info contained vector. This vector will be con-
catenated to original input vector.

m ∈ Rdm×K , which is only model parameter to
be learned, where dm is vector dimension of each
latent topic andK is number of latent topic cluster.
For a given input sequence x = {x1:t}with these
K vectors, we construct LTC process as follows:

pk = softmax((x)Tmk),

xK =
K∑

k=1

pkmk,

e = concat{x,xK}.

(5)

First, the similarity between the x and each la-
tent topic vector is calculated by dot-product. Then
the resulting K values are normalized by the soft-
max function softmax(zk) = ezk/

∑
i e
zi to pro-

duce a similarity probability pk. After calculat-
ing the latent topic probability pk, xK is retrieved
from summing over mk weighted by the pk. Then
we concatenate this result with the original encod-
ing vector to generate the final encoding vector e
with the LTC information added.

Note that the input sequence of the LTC could
be any type of neural network based encoding
function x = f enc

θ (w) such as RNN, CNN and
multilayer perceptron model (MLP). In addition,
if the dimension size of x is different from that
of memory vector, additional output projection
layer should be placed after x before applying dot-
product to the memory.

3.4 Combined Model of (H)RDE and LTC
As the LTC module extracts additional topic clus-
ter information from the input data, we can com-
bine this module with any neural network in
their end-to-end training flow. In our experiments,

we combine the LTC module with the RDE and
HRDE models.

3.4.1 RDE with LTC
The RDE model encodes question and answer
texts to hQtq and hAta , respectively. Hence, the LTC
module could take these vectors as the input to
generate latent topic cluster information added
vector e. With this vector, we calculate the affinity
among question and answer texts as well as addi-
tional cluster information. The following equation
shows our RDE-LTC process:

p(label) = σ((hQtq)
TM eA + b). (6)

In this case, we applied the LTC module only for
the answer side, assuming that the answer text is
longer than the question. Thus, it needs to be clus-
tered. To train the network, we use the same train-
ing objective, to minimize cross-entropy loss, as in
equation (2).

3.4.2 HRDE with LTC
The LTC can be combined with the HRDE model,
in the same way it is applied to the RDE-LTC
model by modifying equation (6 as follows:

p(label) = σ((uQcq)
TM eu,A + b), (7)

where uQcq is the final network hidden state vec-
tor of the chunk-level RNN for a question input
sequence. The eu,A is the LTC information added
vector from equation (5), where the LTC module
takes the input x = uA from the HRDE model
equation (3). The HRDE-LTC model also use the
same training objective, minimizing cross-entropy
loss, as in equation (2). Figure 2 shows a diagram
of the combined model with the HRDE and the
LTC.

4 Experimental Setup and Dataset

4.1 The Ubuntu Dialogue Corpus
The Ubuntu Dialogue Corpus has been developed
by expanding and preprocessing the Ubuntu Chat
Logs1, which refer to a collection of logs from the
Ubuntu-related chat room for solving problem in
using the Ubuntu system by (Lowe et al., 2015).

Among the utterances in the dialogues, they
consider each utterance, starting from the third
one, as a potential {response} while the previous
utterance is considered as a {context}. The data

1These logs are available from http://irclogs.ubuntu.com
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Dataset # Samples Message (Avg.) Response (Avg.)

Train Val. Test # tokens # groups # tokens
/group # tokens # groups # tokens

/group

Ubuntu-v1 1M 35,609 35,517 162.47
±132.47

8.43
±6.32

20.14
±18.41

14.44
±13.93

1 -

Ubuntu-v2 1M 19,560 18,920 85.92
±74.71

4.95
±2.98

20.73
±20.19

17.01
±16.41

1 -

Samsung QA 163,616 10,000 10,000 12.84
±6.42

1 - 173.48
±192.12

6.09
±5.58

29.28
±31.91

Table 1: Properties of the Ubuntu and Samsung QA dataset. The message and response are {context}, {response}
in Ubuntu and {question}, {answer} in the Samsung QA dataset.

was processed extracting ({context}, {response},
flag) tuples from the dialogues.

We called this original Ubuntu dataset as
Ubuntu-v1 dataset. After releasing the Ubuntu-
v1 dataset, researchers published v2 version
of this dataset. Main updates are separating
train/valid/test dataset by time so that mimics
real life implementation, where we are training a
model on past data to predict future data, chang-
ing sampling procedure to increase average turns
in the {context}. We consider this Ubuntu dataset
is one of the best dataset in terms of its quality,
quantity and availability for evaluating the perfor-
mance of the text ranking model.

To encode the text with the HRDE and HRDE-
LTC model, a text needs to be divided into several
chunk sequences with predefined criteria. For the
Ubuntu-v1 dataset case, we divide the {context}
part by splitting with end-of-sentence delimiter
“ eos ”, and we do not split the {response} part
since it is normally short and does not contain
“ eos ” information. For the Ubuntu-v2 dataset
case, we split the {context} part in the same way
as we do in the Ubuntu-v1 dataset while only us-
ing end-of-turn delimiter “ eot ”. Table 1 shows
properties of the Ubuntu dataset.

Question
how do i set a timer of clock in applications
and development for samsung galaxy s4 mini?

Answer
1 from within the clock application, tap timer
tab. 2 tap the hours, minutes, or seconds field
and use the on-screen keypad to enter the
hour, minute, or seconds. the timer plays an
alarm at the end of the countdown. 3 tap start
to start the timer. 4 tap stop to stop the timer
or reset to reset the timer and start over. 5 tap
restart to resume the timer counter.

Table 2: Example of the Samsung QA dataset.

4.2 Consumer Product QA Corpus

To test the robustness of the proposed model,
we introduce an additional question and answer
pair dataset related to an actual user’s interaction
with the consumer electronic product domain. We
crawled data from various sources like the Sam-
sung Electronics’ official web site2 and crowd
QA web sites34 in a similar way that (Yoon
et al., 2016) did in building QA system for con-
sumer products. On the official web page, we
can retrieve data consisting of user questions and
matched answers like frequently asked questions
and troubleshooting. From the crowd QA sites,
there are many answers from various users for
each question. Among these answers, we choose
answers from company certificated users to keep
the reliability of the answers high. If there are
no such answers, we skip that question answer
pair. Table 2 shows an example of question-answer
pair crawled from the web page. In addition, we
crawl hierarchical product category information
related to QA pairs. In particular, mobile, office,
photo, tv/video, accessories, and home appliance
as top-level categories, and specific categories like
galaxy s7, tablet, led tv, and others are used.
We collected these meta-information for further
use. The total size of the Samsung QA data is
over 100,000 pairs and we split the data into ap-
proximately 80,000/10,000/10,000 samples to cre-
ate train/valid/test sets, respectively. To create the
train set, we use a QA pair sample as a ground-
truth and perform negative sampling for answers
among training sets to create false-label datasets.
In this way, we generated ({question}, {answer},
flag) triples (see Table 1). We do the same pro-
cedure to create valid and test sets by only dif-
ferentiating more negative sampling within each
dataset to generate 9 false-label samples with one

2http://www.samsung.com/us
3http://answers.yahoo.com
4http://answers.us.samsung.com
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ground-truth sample. We apply the same method
in such a way that the Ubuntu dataset is gener-
ated from the Ubuntu Dialogue Corpus to main-
tain the consistency. The Samsung QA dataset is
available via web repository. We refer the readers
to Appendix A for more examples of each dataset.

4.3 Implementation Details

4.3.1 Ubuntu dataset case

To implement the RDE model, we use two single
layer Gated Recurrent Unit (GRU) (Chung et al.,
2014) with 300 hidden units . Each GRU is used
to encode {context} and {response}, respectively.
The weight for the two GRU are shared. The hid-
den units weight matrix of the GRU are initialized
using orthogonal weights (Saxe et al., 2013), while
input embedding weight matrix is initialized using
a pre-trained embedding vector, the Glove (Pen-
nington et al., 2014), with 300 dimension. The
vocabulary size is 144,953 and 183,045 for the
Ubuntu-v1/v2 case, respectively. We use the Adam
optimizer (Kingma and Ba, 2014), with gradients
clipped with norm value 1. The maximum time
step for calculating gradient of the RNN is deter-
mined according to the input data statistics in Ta-
ble 1.

For the HRDE model, we use two single layer
GRU with 300 hidden units for word-level RNN
part, and another two single layer GRU with
300 hidden units for chunk-level RNN part. The
weight of the GRU is shared within the same hi-
erarchical part, word-level and chunk-level. The
other settings are the same with the RDE model
case. As for the combined model with the (H)RDE
and the LTC, we choose the latent topic memory
dimensions as 256 in both ubuntu-v1 and ubuntu-
v2. The number of the cluster in LTC module is de-
cided to 3 for both the RDE-LTC and the HRDE-
LTC cases. In HRDE-LTC case, we applied LTC
module to the {context} part because we think it is
longer having enough information to be clustered
with. All of these hyper-parameters are selected
from additional parameter searching experiments.

The dropout (Srivastava et al., 2014) is applied
for the purpose of regularization with the ratio of:
0.2 for the RNN in the RDE and the RDE-LTC,
0.3 for the word-level RNN part in the HRDE and
the HRDE-LTC, 0.8 for the latent topic memory in
the RDE-LTC and the HRDE-LTC.

We need to mention that our implementation
of the RDE module has the same architecture as

the LSTM model (Kadlec et al., 2015) in ubuntu-
v1/v2 experiments case. It is also the same archi-
tecture with the RNN model (Baudiš et al., 2016)
in ubuntu-v2 experiment case. We implement the
same model ourselves, because we need a base-
line model to compare with other proposed models
such as the RDE-LTC, HRDE and HRDE-LTC.

4.3.2 Samsung QA dataset case
To test the Samsung QA dataset, we use the
same implementation of the model (RDE, RDE-
LTC, HRDE and HRDE-LTC) used in testing the
Ubuntu dataset. Only the differences are, we use
100 hidden units for the RDE and the RDE-LTC,
300 hidden units for the HRDE and 200 hid-
den units for the HRDE-LTC, and the vocabulary
size of 28,848. As for the combined model with
the (H)RDE and LTC, the dimensions of the la-
tent topic memory is 64 and the number of la-
tent cluster is 4. We chose best performing hyper-
parameter of each model by additional extensive
hyper-parameter search experiments.

All of the code developed for the empirical re-
sults are available via web repository 5.

5 Empirical Results

5.1 Evaluation Metrics
We regards all the tasks as selecting the best an-
swer among text candidates for the given ques-
tion. Following the previous work (Lowe et al.,
2015), we report model performance as recall at
k (R@k) relevant texts among given 2 or 10 can-
didates (e.g., 1 in 2 R@1). Though this metric is
useful for ranking task, R@1 metric is also mean-
ingful for classifying the best relevant text.

Each model we implement is trained multiple
times (10 and 15 times for Ubuntu and the Sam-
sung QA datasets in our experiments, respectively)
with random weight initialization, which largely
influences performance of neural network model.
Hence we report model performance as mean and
standard derivation values (Mean±Std).

5.2 Performance Evaluation
5.2.1 Comparison with other methods
As Table 3 shows, our proposed HRDE and
HRDE-LTC models achieve the best performance
for the Ubuntu-v1 dataset. We also find that the
RDE-LTC model shows improvements from the
baseline model, RDE.

5http://github.com/david-yoon/QA HRDE LTC
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Model Ubuntu-v1
1 in 2

R@1
1 in 10

R@1
1 in 10

R@2
1 in 10

R@5

TF-IDF [1] 0.659 0.410 0.545 0.708
CNN [2] 0.848 0.549 0.684 0.896
LSTM [2] 0.901 0.638 0.784 0.949
CompAgg [3] 0.884 0.631 0.753 0.927
BiMPM [4] 0.897 0.665 0.786 0.938

RDE 0.898
±0.002

0.643
±0.009

0.784
±0.007

0.945
±0.002

RDE-LTC 0.903
±0.001

0.656
±0.003

0.794
±0.003

0.948
±0.001

HRDE 0.915
±0.001

0.681
±0.001

0.820
±0.001

0.959
±0.001

HRDE-LTC 0.916
±0.001

0.684
±0.001

0.822
±0.001

0.960
±0.001

Table 3: Model performance results for the Ubuntu-
v1 dataset. Models [1-4] are from (Lowe et al., 2015;
Kadlec et al., 2015; Wang and Jiang, 2016; Wang et al.,
2017), respectively.

Model Ubuntu-v2
1 in 2

R@1
1 in 10

R@1
1 in 10

R@2
1 in 10

R@5

LSTM [1] 0.869 0.552 0.721 0.924
RNN [5] 0.907

±0.002
0.664
±0.004

0.799
±0.004

0.951
±0.001

CNN [5] 0.863
±0.003

0.587
±0.004

0.721
±0.005

0.907
±0.003

RNN-CNN [5] 0.911
±0.001

0.672
±0.002

0.809
±0.002

0.956
±0.001

Attention [6]
(RNN-CNN)

0.903
±0.002

0.653
±0.005

0.788
±0.005

0.945
±0.002

CompAgg [3] 0.895 0.641 0.776 0.937
BiMPM [4] 0.877 0.611 0.747 0.921

RDE 0.894
±0.002

0.610
±0.008

0.776
±0.006

0.947
±0.002

RDE-LTC 0.899
±0.002

0.625
±0.004

0.788
±0.004

0.951
±0.001

HRDE 0.914
±0.001

0.649
±0.001

0.813
±0.001

0.964
±0.001

HRDE-LTC 0.915
±0.002

0.652
±0.003

0.815
±0.001

0.966
±0.001

Table 4: Model performance results for the Ubuntu-v2
dataset. Models [1,3-6] are from (Lowe et al., 2015;
Wang and Jiang, 2016; Wang et al., 2017; Baudiš et al.,
2016; Tan et al., 2015), respectively.

For the ubuntu-v2 dataset case, Table 4 reveals
that the HRDE-LTC model is best for three cases
(1 in 2 R@1, 1 in 10 R@2 and 1 in 10 R@5). Com-
paring the same model with our implementation
(RDE) and (Baudiš et al., 2016)’s implementation
(RNN), there is a large gap in the accuracy (0.610
and 0.664 of 1 in 10 R@1 for RDE and RNN, re-
ceptively). We think this is largely influenced by
the data preprocessing method, because the only
differences between these models is the data pre-
processing, which is (Baudiš et al., 2016)’s con-
tribution to the research. We are certain that our
model performs better with the exquisite datasets
which adapts extensive preprocessing method, be-
cause we see improvements from the RDE model
to the HRDE model and additional improvements
with the LTC module in all test cases (the Ubuntu-
v1/v2 and the Samsung QA).

Model Samsung QA
1 in 2

R@1
1 in 10

R@1
1 in 10

R@2
1 in 10

R@5

TF-IDF 0.939 0.834 0.897 0.953
RDE 0.978

±0.002
0.869
±0.009

0.966
±0.003

0.997
±0.001

RDE-LTC 0.981
±0.002

0.880
±0.009

0.970
±0.003

0.997
±0.001

HRDE 0.981
±0.002

0.885
±0.011

0.971
±0.004

0.997
±0.001

HRDE-LTC 0.983
±0.002

0.890
±0.010

0.972
±0.003

0.998
±0.001

Table 5: Model performance results for the Samsung
QA dataset.

# clusters Accuracy (1 in 10 R@1)
Ubuntu-v1 Ubuntu-v2 Samsung QA

1 0.643
±0.009

0.610
±0.008

0.869
±0.009

2 0.655
±0.005

0.616
±0.006

0.876
±0.011

3 0.656
±0.003

0.625
±0.004

0.877
±0.010

4 0.651
±0.005

0.622
±0.005

0.880
±0.009

Table 6: The RDE-LTC model results with different
numbers of latent clusters. “Cluster 1” is the baseline
model, RDE.

In the Samsung QA case, Table 5 indicates
that the proposed RDE-LTC, HRDE, and the
HRDE-LTC model show performance improve-
ments when compared to the baseline model, TF-
IDF and RDE. The average accuracy statistics are
higher in the Samsung QA case when compared
to the Ubuntu case. We think this is due to in the
smaller vocabulary size and context variety. The
Samsung QA dataset deals with narrower topics
than in the Ubuntu dataset case. We are certain
that our proposed model shows robustness in sev-
eral datasets and different vocabulary size environ-
ments.

5.2.2 Degradation Comparison for Longer
Texts

To verify the HRDE model’s ability compared to
the baseline model RDE, we split the testset of the
Ubuntu-v1/v2 datasets based on the “number of
chunks” in the {context}. Then, we measured the
top-1 recall (same case as 1 in 10 R@1 in Table 3,
and 4) for each group. Figure 3 demonstrates that
the HRDE models, in darker blue and red colors,
shows better performance than the RDE models, in
lighter colors, for every “number of chunks” eval-
uations. In particular, the HRDE models are con-
sistent when the “number-of-chunks” increased,
while the RDE models degrade as the “number-
of-chunks” increased.
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Figure 3: The HRDE and RDE model performance comparisons for the number-of-chunk in the Ubuntu dataset.
Each boxplot shows average accuracy with standard deviation. The HRDE models, in darker blue and red colors,
show consistent performances as the number-of-chunks increased. Meanwhile, the RDE models in lighter colors
show performance degradation as the number-of-chunks increased. Furthermore, 13+ indicates all data over 13-
chunks.

Figure 4: Examples of the cluster proportions for four
real categories from 20k evaluated samples. Each color
corresponds to each cluster.

5.2.3 Effects of the LTC Numbers
We analyze the RDE-LTC model for different
numbers of latent clusters. Table 6 indicates that
the model performances increase as the number of
latent clusters increase (until 3 for the Ubuntu and
4 for the Samsung QA case). This is probably a
major reason for the different number of subjects
in each dataset. The Samsung QA dataset has an
internal category related to the type of consumer
electronic products (6 top-level categories; mo-
bile, office, photo, tv/video, accessories, and home
appliance), so that the LTC module makes clus-
ters these categories. The Ubuntu dataset, how-
ever, has diverse contents related to issues in us-
ing the Ubuntu system. Thus, the LTC module has
fewer clusters with the sparse topic compared to
the Samsung QA dataset.

5.2.4 Comprehensive Analysis of LTC
We conduct quantitative and qualitative analysis
on the HRDE-LTC model for four latent topic
clusters. The Samsung QA dataset has category

Cluster Example

1 How to adjust the brightness on the
s**d300 series monitors

2 How do I reject an incoming call on my
Samsung Galaxy Note 3?

3 How should I clean and maintain the
microwave?

4 How do I connnect my surround sound to
this TV and what type of cables do I need

Table 7: Example sentences for each cluster.

information; hence, latent topic clustering results
can be compared with real categories. We ran-
domly choose 20k samples containing real cate-
gory information and evaluate each sample with
the HRDE-LTC model. The cluster with the high-
est similarity among the latent topic clusters is
considered a representative cluster of each sample.

Figure 4 shows proportion of four latent clus-
ters among these samples according to real cat-
egory information. Even though the HRDE-LTC
model is trained without any ground-truth cate-
gory labels, we observed that the latent cluster
is formed accordingly. For instance, cluster 2 is
shown mostly in “Mobile” category samples while
“clusters 2 and 4” are rarely shown in “Home Ap-
pliance” category samples.

Additionally, we explore sentences with higher
similarity score from the HRDE-LTC module for
each four cluster. As can be seen in Table 7, “clus-
ter 1” contains “screen” related sentences (e.g.,
brightness, pixel, display type) while “cluster 2”
contains sentences with exclusive information re-
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lated to the “Mobile” category (e.g., call rejection,
voice level). This qualitative analysis explains why
“cluster 2” is shown mostly in the “Mobile” cate-
gory in Figure 4. We also discover that “cluster
3” has the largest portion of samples. As “cluster
3” contains “security” and “maintenance” related
sentences (e.g., password, security, log-on, main-
tain), we assume that this is one of the frequently
asked issues across all categories in the Samsung
QA dataset. Table 7 shows example sentences with
high scores from each cluster.

6 Conclusion

In this paper, we proposed the HRDE model
and LTC module. HRDE showed higher perfor-
mances in ranking answer candidates and less per-
formance degradations when dealing with longer
texts compared to conventional models. The LTC
module provided additional performance improve-
ments when combined with both RDE and HRDE
models, as it added latent topic cluster information
according to dataset properties. With this proposed
model, we achieved state-of-the-art performances
in Ubuntu datasets. We also evaluated our model
in real world question answering dataset, Samsung
QA. This demonstrated the robustness of the pro-
posed model with the best results.
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A More examples of the dataset

A.1 Ubuntu dataset

Question
“what will happend if i unmounted the ubuntu
partition”, “it will unmount , unless it is in
use”, “srr i did n’t got it”

Answer flag
“you cannot unmount a partition if it is
currently in use”

1

“why do you not have a backup if the
data is important ?”

0

Table 8: Example of the Ubuntu-v2 dataset.

A.2 Samsung QA dataset

Question
how can i place the current call on hold at any
point during a conversation ?

Answer flag
you can place the current call on hold
at any point during a conversation . you
can also make another call while you
have a call in progress if your network
supports this service . 1 while on a call
, tap hold . this action places the
current caller on hold . 2 you can later
reactivate this call by tapping unhold .

1

please try to do a soft reset . turn of the
phone , remove and put the battery
back after 1-2 minutes . we also
recommend you to clear the data of the
samsung keyboard . 1 from the home
screen , touch application 2 select
settings 3 select application manager 4
touch the all tab 5 select samsung
keyboard 6 tap on clear data .

0

Table 9: Example of the Samsung QA dataset.
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Abstract

Although transfer learning has been shown
to be successful for tasks like object
and speech recognition, its applicability
to question answering (QA) has yet to
be well-studied. In this paper, we con-
duct extensive experiments to investigate
the transferability of knowledge learned
from a source QA dataset to a target
dataset using two QA models. The per-
formance of both models on a TOEFL lis-
tening comprehension test (Tseng et al.,
2016) and MCTest (Richardson et al.,
2013) is significantly improved via a
simple transfer learning technique from
MovieQA (Tapaswi et al., 2016). In par-
ticular, one of the models achieves the
state-of-the-art on all target datasets; for
the TOEFL listening comprehension test,
it outperforms the previous best model by
7%. Finally, we show that transfer learn-
ing is helpful even in unsupervised sce-
narios when correct answers for target QA
dataset examples are not available.

1 Introduction

1.1 Question Answering
One of the most important characteristics of an in-
telligent system is to understand stories like hu-
mans do. A story is a sequence of sentences, and
can be in the form of plain text (Trischler et al.,
2017; Rajpurkar et al., 2016; Weston et al., 2016;
Yang et al., 2015) or spoken content (Tseng et al.,
2016), where the latter usually requires the spo-
ken content to be first transcribed into text by au-
tomatic speech recognition (ASR), and the model
will subsequently process the ASR output. To
evaluate the extent of the model’s understanding
of the story, it is asked to answer questions about

the story. Such a task is referred to as question
answering (QA), and has been a long-standing yet
challenging problem in natural language process-
ing (NLP).

Several QA scenarios and datasets have been in-
troduced over the past few years. These scenarios
differ from each other in various ways, including
the length of the story, the format of the answer,
and the size of the training set. In this work, we
focus on context-aware multi-choice QA, where
the answer to each question can be obtained by re-
ferring to its accompanying story, and each ques-
tion comes with a set of answer choices with only
one correct answer. The answer choices are in the
form of open, natural language sentences. To cor-
rectly answer the question, the model is required
to understand and reason about the relationship be-
tween the sentences in the story.

1.2 Transfer Learning

Transfer learning (Pan and Yang, 2010) is a vi-
tal machine learning technique that aims to use
the knowledge learned from one task and apply
it to a different, but related, task in order to ei-
ther reduce the necessary fine-tuning data size
or improve performance. Transfer learning, also
known as domain adaptation1, has achieved suc-
cess in numerous domains such as computer vi-
sion (Sharif Razavian et al., 2014), ASR (Doulaty
et al., 2015; Huang et al., 2013), and NLP (Zhang
et al., 2017; Mou et al., 2016). In computer vision,
deep neural networks trained on a large-scale im-
age classification dataset such as ImageNet (Rus-
sakovsky et al., 2015) have proven to be excellent
feature extractors for a broad range of visual tasks
such as image captioning (Lu et al., 2017; Karpa-
thy and Fei-Fei, 2015; Fang et al., 2015) and visual

1In this paper, we do not distinguish conceptually between
transfer learning and domain adaptation. A ‘domain’ in the
sense we use throughout this paper is defined by datasets.
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question answering (Xu and Saenko, 2016; Fukui
et al., 2016; Yang et al., 2016; Antol et al., 2015),
among others. In NLP, transfer learning has also
been successfully applied to tasks like sequence
tagging (Yang et al., 2017), syntactic parsing (Mc-
Closky et al., 2010) and named entity recogni-
tion (Chiticariu et al., 2010), among others.

1.3 Transfer Learning for QA

Although transfer learning has been successfully
applied to various applications, its applicability
to QA has yet to be well-studied. In this paper,
we tackle the TOEFL listening comprehension
test (Tseng et al., 2016) and MCTest (Richard-
son et al., 2013) with transfer learning from
MovieQA (Tapaswi et al., 2016) using two ex-
isting QA models. Both models are pre-trained
on MovieQA and then fine-tuned on each target
dataset, so that their performance on the two target
datasets are significantly improved. In particular,
one of the models achieves the state-of-the-art on
all target datasets; for the TOEFL listening com-
prehension test, it outperforms the previous best
model by 7%.

Transfer learning without any labeled data from
the target domain is referred to as unsupervised
transfer learning. Motivated by the success of
unsupervised transfer learning for speaker adap-
tation (Chen et al., 2011; Wallace et al., 2009)
and spoken document summarization (Lee et al.,
2013), we further investigate whether unsuper-
vised transfer learning is feasible for QA.

Although not well studied in general, transfer
Learning for QA has been explored recently. To
the best of our knowledge, Kadlec et al. (2016)
is the first work that attempted to apply transfer
learning for machine comprehension. The authors
showed only limited transfer between two QA
tasks, but the transferred system was still signif-
icantly better than a random baseline. Wiese et al.
(2017) tackled a more specific task of biomedi-
cal QA with transfer learning from a large-scale
dataset. The work most similar to ours is by Min
et al. (2017), where the authors used a simple
transfer learning technique and achieved signif-
icantly better performance. However, none of
these works study unsupervised transfer learning,
which is especially crucial when the target dataset
is small. Golub et al. (2017) proposed a two-
stage synthesis network that can generate syn-
thetic questions and answers to augment insuffi-

cient training data without annotations. In this
work, we aim to handle the case that the questions
from the target domain are available.

2 Task Descriptions and Approaches

Among several existing QA settings, in this work
we focus on multi-choice QA (MCQA). We are
particularly interested in understanding whether
a QA model can perform better on one MCQA
dataset with knowledge transferred from another
MCQA dataset. In Section 2.1, we first formal-
ize the task of MCQA. We then describe the pro-
cedures for transfer learning from one dataset to
another in Section 2.2. We consider two kinds of
settings for transfer learning in this paper, one is
supervised and the other is unsupervised.

2.1 Multi-Choices QA

In MCQA, the inputs to the model are a story, a
question, and several answer choices. The story,
denoted by S, is a list of sentences, where each of
the sentences is a sequence of words from a vo-
cabulary set V . The question and each of the an-
swer choices, denoted by Q and C, are both single
sentences also composed of words from V . The
QA model aims to choose one correct answer from
multiple answer choices based on the information
provided in S and Q.

2.2 Transfer Learning

The procedure of transfer learning in this work
is straightforward and includes two steps. The
first step is to pre-train the model on one MCQA
dataset referred to as the source task, which usu-
ally contains abundant training data. The second
step is to fine-tune the same model on the other
MCQA dataset, which is referred to as the tar-
get task, that we actually care about, but that usu-
ally contains much less training data. The effec-
tiveness of transfer learning is evaluated by the
model’s performance on the target task.

Supervised Transfer Learning

In supervised transfer learning, both the source
and target datasets provide the correct answer to
each question during pre-training and fine-tuning,
and the QA model is guided by the correct answer
to optimize its objective function in a supervised
manner in both stages.
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Unsupervised Transfer Learning
We also consider unsupervised transfer learning
where the correct answer to each question in the
target dataset is not available. In other words, the
entire process is supervised during pre-training,
but unsupervised during fine-tuning. A self-
labeling technique inspired by Lee et al. (2013);
Chen et al. (2011); Wallace et al. (2009) is used
during fine-tuning on the target dataset. We
present the proposed algorithm for unsupervised
transfer learning in Algorithm 1.

Algorithm 1 Unsupervised QA Transfer Learning
Input: Source dataset with correct answer to each

question; Target dataset without any answer;
Number of training epochs.

Output: Optimal QA model M∗

1: Pre-train QA model M on the source dataset.
2: repeat
3: For each question in the target dataset,

use M to predict its answer.
4: For each question, assign the predicted an-

swer to the question as the correct one.
5: Fine-tune M on the target dataset as usual.
6: until Reach the number of training epochs.

3 Datasets

We used MovieQA (Tapaswi et al., 2016) as
the source MCQA dataset, and TOEFL listen-
ing comprehension test (Tseng et al., 2016) and
MCTest (Richardson et al., 2013) as two separate
target datasets. Examples of the three datasets are
shown in Table 1.

MovieQA is a dataset that aims to evaluate au-
tomatic story comprehension from both video and
text. The dataset provides multiple sources of in-
formation such as plot synopses, scripts, subtitles,
and video clips that can be used to infer answers.
We only used the plot synopses of the dataset, so
our setting is the same as pure textual MCQA. The
dataset contains 9,848/1,958 train/dev examples;
each question comes with a set of five possible an-
swer choices with only one correct answer.

TOEFL listening comprehension test is a re-
cently published, very challenging MCQA dataset
that contains 717/124/122 train/dev/test examples.
It aims to test knowledge and skills of academic
English for global English learners whose native
languages are not English. There are only four

answer choices for each question. The stories in
this dataset are in audio form. Each story comes
with two transcripts: manual and ASR transcrip-
tions, where the latter is obtained by running the
CMU Sphinx recognizer (Walker et al., 2004) on
the original audio files. We use TOEFL-manual
and TOEFL-ASR to denote the two versions, re-
spectively. We highlight that the questions in this
dataset are not easy because most of the answers
cannot be found by simply matching the question
and the choices without understanding the story.
For example, there are questions regarding the gist
of the story or the conclusion for the conversation.

MCTest is a collection of 660 elementary-level
children’s stories. Each question comes with a set
of four answer choices. There are two variants in
this dataset: MC160 and MC500. The former con-
tains 280/120/240 train/dev/test examples, while
the latter contains 1,200/200/600 train/dev/test ex-
amples and is considered more difficult.

The two chosen target datasets are challenging
because the stories and questions are complicated,
and only small training sets are available. There-
fore, it is difficult to train statistical models on only
their training sets because the small size limits the
number of parameters in the models, and prevents
learning any complex language concepts simul-
taneously with the capacity to answer questions.
We demonstrate that we can effectively overcome
these difficulties via transfer learning in Section 5.

4 QA Neural Network Models

Among numerous models proposed for multiple-
choice QA (Trischler et al., 2016; Fang et al.,
2016; Tseng et al., 2016), we adopt the End-to-
End Memory Network (MemN2N)2 (Sukhbaatar
et al., 2015) and Query-Based Attention
CNN (QACNN)3 (Liu et al., 2017), both
open-sourced, to conduct the experiments. Below
we briefly introduce the two models in Section 4.1
and Section 4.2, respectively. For the details of
the models, please refer to the original papers.

4.1 End-to-End Memory Networks
An End-to-End Memory Network (MemN2N)
first transforms Q into a vector representation with

2MemN2N was originally designed to output a single
word within a fixed vocabulary set. To apply it to MCQA,
some modification is needed. We describe the modifications
in Section 4.1.

3https://github.com/chun5212021202/
ACM-Net
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Source Dataset Target Dataset

MovieQA TOEFL MCTest

S

After entering the boathouse, the trio witness

Voldemort telling Snape that the elder Wand

cannot serve Voldemort until Snape dies ...

Before dying, Snape tells Harry to take his

memories to the Pensieve ...

I just wanted to take a few minutes to meet

with everyone to make sure your class

presentations for next week are all in order

and coming along well. And as you know,

you’re supposed to report on some areas

of recent research on genetics ...

James the Turtle was always getting in

trouble. Sometimes he’d reach into the

freezer and empty out all the food ...

Then he walked to the fast food restaurant

and ordered 15 bags of fries. He didn’t

pay, and instead headed home ...

Q What does Snape tell Harry before he dies? Why does the professor meet with the student? What did James do after he ordered the fries?

C1 To bury him in the forest
To find out if the student is interested

in taking part in a genetics project
went to the grocery store

C2 That he always respected him
To discuss the student’s experiment

on the taste perception
went home without paying

C3 To remember to him for the good deeds
To determine if the student has selected
an appropriate topic for his class project

ate them

C4 To take his memories to the Pensieve
To explain what the student should

focus on for his class presentation
made up his mind to be a better turtle

C5 To write down his memories in a book

Table 1: Example of the story-question-choices triplet from MovieQA, TOEFL listening comprehension
test, and MCTest datasets. S,Q, and Ci denote the story, question, and one of the answer choices,
respectively. For MovieQA, each question comes with five answer choices; and for TOEFL and MCTest,
each question comes with only four answer choices. The correct answer is marked in bold.

an embedding layer B. At the same time, all sen-
tences in S are also transformed into two different
sentence representations with two additional em-
bedding layers A and C. The first sentence repre-
sentation is used in conjunction with the question
representation to produce an attention-like mecha-
nism that outputs the similarity between each sen-
tence in S and Q. The similarity is then used to
weight the second sentence representation. We
then obtain the sum of the question representation
and the weighted sentence representations over S
as Q′. In the original MemN2N, Q′ is decoded to
provide the estimation of the probability of being
an answer for each word within a fixed set. The
word with the highest probability is then selected
as the answer. However, in multiple-choice QA,
C is in the form of open, natural language sen-
tences instead of a single word. Hence we modify
MemN2N by adding an embedding layer F to en-
code C as a vector representation C′ by averaging
the embeddings of words in C. We then compute
the similarity between each choice representation
C′ and Q′. The choice C with the highest proba-
bility is then selected as the answer.

4.2 Query-Based Attention CNN

A Query-Based Attention CNN (QACNN) first
uses an embedding layer E to transform S,Q,
and C into a word embedding. Then a com-
pare layer generates a story-question similarity

map SQ and a story-choice similarity map SC.
The two similarity maps are then passed into a
two-stage CNN architecture, where a question-
based attention mechanism on the basis of SQ
is applied to each of the two stages. The first
stage CNN generates a word-level attention map
for each sentence in S, which is then fed into the
second stage CNN to generate a sentence-level at-
tention map, and yield choice-answer features for
each of the choices. Finally, a classifier that con-
sists of two fully-connected layers collects the in-
formation from every choice answer feature and
outputs the most likely answer. The trainable pa-
rameters are the embedding layer E that trans-
forms S,Q, and C into word embeddings, the
two-stage CNN W

(1)
CNN and W (2)

CNN that integrate
information from the word to the sentence level,
and from the sentence to the story level, and the
two fully-connected layers W (1)

FC and W
(2)
FC that

make the final prediction. We mention the train-
able parameters here because in Section 5 we will
conduct experiments to analyze the transferabil-
ity of the QACNN by fine-tuning some parame-
ters while keeping others fixed. Since QACNN is
a newly proposed QA model has a relatively com-
plex structure, we illustrate its architecture in Fig-
ure 1, which is enough for understanding the rest
of the paper. Please refer to the original paper (Liu
et al., 2017) for more details.
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Figure 1: QACNN architecture overview.
QACNN consists of a similarity mapping layer,
a query-based attention layer, and a prediction
layer. The two-stage attention mechanism takes
place in the query-based attention layer, yielding
word-level and sentence-level attention map,
respectively. The trainable parameters, includ-
ing E,W

(1)
CNN ,W

(2)
CNN ,W

(1)
FC , and W

(2)
FC , are

colored in light blue.

5 Question Answering Experiments

5.1 Training Details

For pre-training MemN2N and QACNN on
MovieQA, we followed the exact same procedure
as in Tapaswi et al. (2016) and Liu et al. (2017),
respectively. Each model was trained on the train-
ing set of the MovieQA task and tuned on the dev
set, and the best performing models on the dev set
were later fine-tuned on the target dataset. Dur-
ing fine-tuning, the model was also trained on the
training set of target datasets and tuned on the dev
set, and the performance on the testing set of the
target datasets was reported as the final result. We
use accuracy as the performance measurement.

5.2 Supervised Transfer Learning

Experimental Results

Table 2 reports the results of our transfer learning
on TOEFL-manual, TOEFL-ASR, MC160, and
MC500, as well as the performance of the previ-
ous best models and several ablations that did not
use pre-training or fine-tuning. From Table 2, we
have the following observations.

Model Training
TOEFL MCTest

manual ASR MC160 MC500

QACNN

(a) Target Only 48.9 47.5 57.5 56.4

(b) Source Only 51.2 49.2 68.1 61.5

(c) Source + Target 52.5 49.7 72.1 64.6

(d) Fine-tuned (1) 53.4 (4.5) 51.5 (4.0) 76.4 (18.9) 68.7 (12.3)

(e) Fine-tuned (2) 56.1 (7.2) 55.3 (7.8) 73.8 (16.3) 72.3 (15.9)

(f) Fine-tuned (all) 56.0 (7.1) 55.1 (7.6) 69.3 (11.8) 67.7 (11.3)

MemN2N

(g) Target Only 45.2 44.4 57.2 53.6

(h) Source Only 43.7 41.9 56.8 52.3

(i) Source + Target 46.8 45.7 60.4 56.9

(j) Fine-tuned 48.6 (3.4) 46.6 (2.2) 66.7 (9.5) 62.8 (9.2)

Fang et al. (2016) 49.1 48.8 - -

Trischler et al. (2016) - - 74.6 71.0

Wang et al. (2015) - - 75.3 69.9

Table 2: Results of transfer learning on the target
datasets. The number in the parenthesis indicates
the accuracy increased via transfer learning (com-
pared to rows (a) and (g)). The best performance
for each target dataset is marked in bold. We also
include the results of the previous best performing
models on the target datasets in the last three rows.

Transfer learning helps. Rows (a) and (g)
show the respective results when the QACNN
and MemN2N are trained directly on the tar-
get datasets without pre-training on MovieQA.
Rows (b) and (h) show results when the models
are trained only on the MovieQA data. Rows
(c) and (i) show results when the models are
trained on both MovieQA and each of the four
target datasets, and tested on the respective tar-
get dataset. We observe that the results achieved
in (a), (b), (c), (g), (h), and (i) are worse than
their fine-tuned counterparts (d), (e), (f), and
(j). Through transfer learning, both QACNN and
MemN2N perform better on all the target datasets.
For example, QACNN only achieves 57.5% accu-
racy on MC160 without pre-training on MovieQA,
but the accuracy increases by 18.9% with pre-
training (rows (d) vs. (a)). In addition, with trans-
fer learning, QACNN outperforms the previous
best models on TOEFL-manual by 7%, TOEFL-
ASR (Fang et al., 2016) by 6.5%, MC160 (Wang
et al., 2015) by 1.1%, and MC500 (Trischler et al.,
2016) by 1.3%, and becomes the state-of-the-art
on all target datasets.

Which QACNN parameters to transfer?
For the QACNN, the training parameters
are E,W

(1)
CNN ,W

(2)
CNN ,W

(1)
FC , and W

(2)
FC (Sec-

tion 4.2). To better understand how transfer
learning affects the performance of QACNN, we
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also report the results of keeping some parameters
fixed and only fine-tuning other parameters.
We choose to fine-tune either only the last
fully-connected layer W (2)

FC while keeping other
parameters fixed (row (d) in Table 2), the last
two fully-connected layers W (1)

FC and W (2)
FC (row

(e)), and the entire QACNN (row (f)). For
TOEFL-manual, TOEFL-ASR, and MC500,
QACNN performs the best when only the last
two fully-connected layers were fine-tuned; for
MC160, it performs the best when only the
last fully-connected layer was fine-tuned. Note
that for training the QACNN, we followed the
same procedure as in Liu et al. (2017), whereby
pre-trained GloVe word vectors (Pennington et al.,
2014) were used to initialize the embedding layer,
which were not updated during training. Thus, the
embedding layer does not depend on the training
set, and the effective vocabularies are the same.

Fine-tuning the entire model is not always best.
It is interesting to see that fine-tuning the entire
QACNN doesn’t necessarily produce the best re-
sult. For MC500, the accuracy of QACNN drops
by 4.6% compared to just fine-tuning the last two
fully-connected layers (rows (f) vs. (e)). We con-
jecture that this is due to the amount of train-
ing data of the target datasets - when the train-
ing set of the target dataset is too small, fine-
tuning all the parameters of a complex model like
QACNN may result in overfitting. This discovery
aligns with other domains where transfer learning
is well-studied such as object recognition (Yosin-
ski et al., 2014).

A large quantity of mismatched training exam-
ples is better than a small training set. We ex-
pected to see that a MemN2N, when trained di-
rectly on the target dataset without pre-training
on MovieQA, would outperform a MemN2N pre-
trained on MovieQA without fine-tuning on the
target dataset (rows (g) vs. (h)), since the model
is evaluated on the target dataset. However, for the
QACNN this is surprisingly not the case - QACNN
pre-trained on MovieQA without fine-tuning on
the target dataset outperforms QACNN trained di-
rectly on the target dataset without pre-training on
MovieQA (rows (b) vs. (a)). We attribute this to
the limited size of the target dataset and the com-
plex structure of the QACNN.

Percentage of the target
dataset used for fine-tuning

TOEFL MCTest
manual ASR MC160 MC500

0 51.2 49.2 68.1 61.5

25% 53.9 (2.7) 52.3 (3.1) 70.3 (2.2) 65.6 (4.1)

50% 54.8 (0.9) 54.4 (2.1) 71.9 (1.6) 68.0 (2.4)

75% 55.3 (0.5) 54.8 (0.4) 72.5 (0.6) 71.1 (3.1)

100% 56.0 (0.7) 55.1 (0.3) 73.8 (1.3) 72.3 (1.2)

Table 3: Results of varying sizes of the target
datasets used for fine-tuning QACNN. The num-
ber in the parenthesis indicates the accuracy in-
creases from using the previous percentage for
fine-tuning to the current percentage.

Varying the fine-tuning data size
We conducted experiments to study the relation-
ship between the amount of training data from
the target dataset for fine-tuning the model and
the performance. We first pre-train the models on
MovieQA, then vary the training data size of the
target dataset used to fine-tune them. Note that
for QACNN, we only fine-tune the last two fully-
connected layers instead of the entire model, since
doing so usually produces the best performance
according to Table 2. The results are shown in
Table 34. As expected, the more training data is
used for fine-tuning, the better the model’s perfor-
mance is. We also observe that the extent of im-
provement from using 0% to 25% of target train-
ing data is consistently larger than using from 25%
to 50%, 50% to 75%, and 75% to 100%. Using the
QACNN fine-tuned on TOEFL-manual as an ex-
ample, the accuracy of the QACNN improves by
2.7% when varying the training size from 0% to
25%, but only improves by 0.9%, 0.5%, and 0.7%
when varying the training size from 25% to 50%,
50% to 75%, and 75% to 100%, respectively.

Varying the pre-training data size
We also vary the size of MovieQA for pre-training
to study how large the source dataset should be
to make transfer learning feasible. The results
are shown in Table 4. We find that even a small
amount of source data can help. For example, by
using only 25% of MovieQA for pre-training, the
accuracy increases 6.3% on MC160. This is be-
cause 25% of MovieQA training set (2,462 exam-
ples) is still much larger than the MC160 train-
ing set (280 examples). As the size of the source
dataset increases, the performance of QACNN
continues to improve.

4We only include the results of QACNN in Table 3, but
the results of MemN2N are very similar to QACNN.
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Percentage of MovieQA
used for pre-training

TOEFL MCTest
manual ASR MC160 MC500

0 48.9 47.6 57.5 56.4

25% 51.7 (2.8) 50.7 (3.1) 63.8 (6.3) 62.4 (6.0)

50% 53.5 (1.8) 52.3 (1.6) 67.3 (3.5) 66.7 (4.3)

75% 54.8 (1.3) 54.6 (2.3) 71.2 (3.9) 70.2 (3.5)

100% 56.0 (1.2) 55.1 (0.5) 73.8 (2.6) 72.3 (2.1)

Table 4: Results of varying sizes of the MovieQA
used for pre-training QACNN. The number in the
parenthesis indicates the accuracy increases from
using the previous percentage for pre-training to
the current percentage.

Analysis of the Questions Types
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Figure 2: The performance of QACNN and
MemN2N on different types of questions in
TOEFL-manual with and without pre-training on
MovieQA. ‘No’ in the parenthesis indicates the
models are not pre-trained, while ‘Yes’ indicates
the models are pre-trained on MovieQA.

We are interested in understanding what types
of questions benefit the most from transfer learn-
ing. According to the official guide to the TOEFL
test, the questions in TOEFL can be divided into 3
types. Type 1 questions are for basic comprehen-
sion of the story. Type 2 questions go beyond basic
comprehension, but test the understanding of the
functions of utterances or the attitude the speaker
expresses. Type 3 questions further require the
ability of making connections between different
parts of the story, making inferences, drawing con-
clusions, or forming generalizations. We used the
split provided by Fang et al. (2016), which con-
tains 70/18/34 Type 1/2/3 questions. We compare
the performance of the QACNN and MemN2N
on different types of questions in TOEFL-manual

with and without pre-training on MovieQA, and
show the results in Figure 2. From Figure 2 we can
observe that for both the QACNN and MemN2N,
their performance on all three types of questions
improves after pre-training, showing that the ef-
fectiveness of transfer learning is not limited to
specific types of questions.

5.3 Unsupervised Transfer Learning

(a) Results of TOEFL-manual and TOEFL-ASR

(b) Results of MC160 and MC500

Figure 3: The figures show the results of unsu-
pervised transfer learning. The x-axis is the num-
ber of training epochs, and the y-axis is the cor-
responding testing accuracy on the target dataset.
When training epoch = 0, the performance of
QACNN is equivalent to row (b) in Table 2. The
horizontal lines, where each line has the same
color to its unsupervised counterpart, are the per-
formances of QACNN with supervised transfer
learning (row (e) in Table 2), and are the upper-
bounds for unsupervised transfer learning.

So far, we have studied the property of su-
pervised transfer learning for QA, which means
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Figure 4: Visualization of the changes of the word-level attention map in the first stage CNN of QACNN
in different training epochs. The more red, the more the QACNN views the word as a key feature. The
input story-question-choices triplet is same as the one in Table 1.

that during pre-training and fine-tuning, both the
source and target datasets provide the correct an-
swer for each question. We now conduct unsu-
pervised transfer learning experiments described
in Section 2.2 (Algorithm 1), where the answers to
the questions in the target dataset are not available.
We used QACNN as the QA model and all the
parameters (E,W (1)

CNN ,W
(2)
CNN ,W

(1)
FC , andW (2)

FC)
were updated during fine-tuning in this experi-
ment. Since the range of the testing accuracy of
the TOEFL-series (TOEFL-manual and TOEFL-
ASR) is different from that of MCTest (MC160
and MC500), their results are displayed separately
in Figure 3(a) and Figure 3(b), respectively.

Experimental Results

From Figure 3(a) and Figure 3(b) we can observe
that without ground truth in the target dataset for
supervised fine-tuning, transfer learning from a
source dataset can still improve the performance
through a simple iterative self-labeling mecha-
nism. For TOEFL-manual and TOEFL-ASR,
QACNN achieves the highest testing accuracy at
Epoch 7 and 8, outperforming its counterpart with-
out fine-tuning by approximately 4% and 5%, re-
spectively. For MC160 and MC500, the QACNN
achieves the peak at Epoch 3 and 6, outperforming
its counterpart without fine-tuning by about 2%
and 6%, respectively. The results also show that
the performance of unsupervised transfer learn-
ing is still worse than supervised transfer learning,
which is not surprising, but the effectiveness of un-
supervised transfer learning when no ground truth
labels are provided is validated.

Attention Maps Visualization
To better understand the unsupervised transfer
learning process of QACNN, we visualize the
changes of the word-level attention map during
training Epoch 1, 4, 7, and 10 in Figure 4. We use
the same question from TOEFL-manual as shown
in Table 1 as an example. From Figure 4 we can
observe that as the training epochs increase, the
QACNN focuses more on the context in the story
that is related to the question and the correct an-
swer choice. For example, the correct answer is
related to “class project”. In Epoch 1 and 4, the
model does not focus on the phrase “class repre-
sentation”, but the model attends on the phrase
in Epoch 7 and 10. This demonstrates that even
without ground truth, the iterative process in Algo-
rithm 1 is still able to lead the QA model to grad-
ually focus more on the important part of the story
for answering the question.

6 Conclusion and Future Work

In this paper we demonstrate that a simple trans-
fer learning technique can be very useful for the
task of multi-choice question answering. We use
a QACNN and a MemN2N as QA models, with
MovieQA as the source task and a TOEFL lis-
tening comprehension test and MCTest as the tar-
get tasks. By pre-training on MovieQA, the per-
formance of both models on the target datasets
improves significantly. The models also require
much less training data from the target dataset to
achieve similar performance to those without pre-
training. We also conduct experiments to study
the influence of transfer learning on different types
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of questions, and show that the effectiveness of
transfer learning is not limited to specific types of
questions. Finally, we show that by a simple it-
erative self-labeling technique, transfer learning is
still useful, even when the correct answers for tar-
get QA dataset examples are not available, through
quantitative results and visual analysis.

One area of future research will be generalizing
the transfer learning results presented in this pa-
per to other QA models and datasets. In addition,
since the original data format of the TOEFL listen-
ing comprehension test is audio instead of text, it
is worth trying to initialize the embedding layer of
the QACNN with semantic or acoustic word em-
beddings learned directly from speech (Chung and
Glass, 2018, 2017; Chung et al., 2016) instead of
those learned from text (Mikolov et al., 2013; Pen-
nington et al., 2014).
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Abstract
We present a new dataset and models for com-
prehending paragraphs about processes (e.g.,
photosynthesis), an important genre of text de-
scribing a dynamic world. The new dataset,
ProPara, is the first to contain natural (rather
than machine-generated) text about a chang-
ing world along with a full annotation of
entity states (location and existence) during
those changes (81k datapoints). The end-task,
tracking the location and existence of entities
through the text, is challenging because the
causal effects of actions are often implicit and
need to be inferred. We find that previous
models that have worked well on synthetic
data achieve only mediocre performance on
ProPara, and introduce two new neural models
that exploit alternative mechanisms for state
prediction, in particular using LSTM input en-
coding and span prediction. The new models
improve accuracy by up to 19%. The dataset
and models are available to the community at
http://data.allenai.org/propara.

1 Introduction

Building a reading comprehension (RC) system
that is able to read a text document and to answer
questions accordingly has been a long-standing
goal in NLP and AI research. Impressive progress
has been made in factoid-style reading compre-
hension, e.g., (Seo et al., 2017a; Clark and Gard-
ner, 2017), enabled by well-designed datasets and
modern neural network models. However, these
models still struggle with questions that require
inference (Jia and Liang, 2017).

Consider the paragraph in Figure 1 about pho-
tosynthesis. While top systems on SQuAD (Ra-
jpurkar et al., 2016) can reliably answer lookup
questions such as:
Q1: What do the roots absorb? (A: water, minerals)
they struggle when answers are not explicit, e.g.,
Q2: Where is sugar produced? (A: in the leaf)1

∗*Bhavana Dalvi Mishra and Lifu Huang contributed
equally to this work.

1For example, the RC system BiDAF (Seo et al., 2017a)
answers “glucose” to this question.

Chloroplasts in the leaf of the plant trap light
from the sun. The roots absorb water and min-
erals from the soil. This combination of water
and minerals flows from the stem into the leaf.
Carbon dioxide enters the leaf. Light, water
and minerals, and the carbon dioxide all com-
bine into a mixture. This mixture forms sugar
(glucose) which is what the plant eats.

Q: Where is sugar produced?
A: in the leaf

Figure 1: A paragraph from ProPara about photosyn-
thesis (bold added, to highlight question and answer el-
ements). Processes are challenging because questions
(e.g., the one shown here) often require inference about
the process states.

To answer Q2, it appears that a system needs knowl-
edge of the world and the ability to reason with
state transitions in multiple sentences: If carbon
dioxide enters the leaf (stated), then it will be at
the leaf (unstated), and as it is then used to produce
sugar, the sugar production will be at the leaf too.

This challenge of modeling and reasoning with
a changing world is particularly pertinent in text
about processes, demonstrated by the paragraph in
Figure 1. Understanding what is happening in such
texts is important for many tasks, e.g., procedure
execution and validation, effect prediction. How-
ever, it is also difficult because the world state is
changing, and the causal effects of actions on that
state are often implicit.

To address this challenging style of reading com-
prehension problem, researchers have created sev-
eral datasets. The bAbI dataset (Weston et al.,
2015) includes questions about objects moved
throughout a paragraph, using machine-generated
language over a deterministic domain with a small
lexicon. The SCoNE dataset (Long et al., 2016)
contains paragraphs describing a changing world
state in three synthetic, deterministic domains, and
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Figure 2: A (simplified) annotated paragraph from
ProPara. Each filled row shows the existence and lo-
cation of participants between each step (“?” denotes
“unknown”, “-” denotes “does not exist”). For example
in state0, water is located at the soil.

assumes that a complete and correct model of the
initial state is given for each task. However, ap-
proaches developed using synthetic data often fail
to handle the inherent complexity in language when
applied to organic, real-world data (Hermann et al.,
2015; Winograd, 1972).

In this work, we create a new dataset, ProPara
(Process Paragraphs), containing 488 human-
authored paragraphs of procedural text, along with
81k annotations about the changing states (exis-
tence and location) of entities in those paragraphs,
with an end-task of predicting location and exis-
tence changes that occur. This is the first dataset
containing annotated, natural text for real-world
processes, along with a simple representation of
entity states during those processes. A simplified
example is shown in Figure 2.

When applying existing state-of-the-art systems,
such as Recurrent Entity Networks (Henaff et al.,
2016) and Query-reduction Networks (Seo et al.,
2017b), we find that they do not perform well on
ProPara and the results are only slightly better than
the majority baselines. As a step forward, we pro-
pose two new neural models that use alternative
mechanisms for state prediction and propagation,
in particular using LSTM input encoding and span
prediction. The new models improve accuracy by
up to 19%.

Our contributions in this work are twofold: (1)
we create ProPara, a new dataset for process para-
graph comprehension, containing annotated, natu-
ral language paragraphs about real-world processes,
and (2) we propose two new models that learn to
infer and propagate entity states in novel ways, and
outperform existing methods on this dataset.

2 Related Work

Datasets: Large-scale reading comprehension
datasets, e.g., SQuAD (Rajpurkar et al., 2016),
TriviaQA (Joshi et al., 2017), have successfully
driven progress in question answering, but largely
targeting explicitly stated facts. Often, the result-
ing systems can be fooled (Jia and Liang, 2017),
prompting efforts to create harder datasets where
a deeper understanding of the text appears neces-
sary (Welbl et al., 2017; Araki et al., 2016).

Procedural text is a genre that is particularly
challenging, because the worlds they describe are
largely implicit and changing. While there are
few large datasets in this genre, two exceptions are
bAbI (Weston et al., 2015) and SCoNE (Long et al.,
2016), described earlier2. bAbI has helped advance
methods for reasoning over text, such as memory
network architectures (Weston et al., 2014), but has
also been criticized for using machine-generated
text over a simulated domain. SCoNE is closer to
our goal, but has a different task (given a perfect
world model of the initial state, predict the end
state) and different motivation (handling ellipsis
and coreference in context). It also used a deter-
ministic, simulated world to generate data.
Models: For answering questions about procedural
text, early systems attempted to extract a process
structure (events, arguments, relations) from the
paragraph, e.g., ProRead (Berant et al., 2014) and
for newswire (Caselli et al., 2017). This allowed
questions about event ordering to be answered, but
not about state changes, unmodelled by these ap-
proaches.

More recently, several neural systems have been
developed to answer questions about the world state
after a process, inspired in part by the bAbI dataset.
Building on the general Memory Network archi-
tecture (Weston et al., 2014) and gated recurrent
models such as GRU (Cho et al., 2014), Recurrent
Entity Networks (EntNet) (Henaff et al., 2016) is a
state-of-the-art method for bAbI. EntNet uses a dy-
namic memory of hidden states (memory blocks) to
maintain a representation of the world state, with
a gated update at each step. Memory keys can
be preset ("tied") to particular entities in the text,
to encourage the memories to record information
about those entities. Similarly, Query Reduction
Networks (QRN) (Seo et al., 2017b) tracks state in

2The ProcessBank (Berant et al., 2014) dataset is smaller
and does not address state change, instead containing 585
questions about event ordering and event arguments.
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a paragraph, represented as a hidden vector h. QRN
performs gated propagation of h across each time-
step (corresponding to a state update), and uses h
to modify (“reduce”) the query to keep pointing to
the answer at each step (e.g., “Where is the apple?”
at step1 might be modified to “Where is Joe?” at
step2 if Joe picks up the apple). A recent proposal,
Neural Process Networks (NPN) (Bosselut et al.,
2018), also models each entity’s state as a vec-
tor (analogous to EntNet’s tied memories). NPN
computes the state change at each step from the
step’s predicted action and affected entity(s), then
updates the entity(s) vectors accordingly, but does
not model different effects on different entities by
the same action.

Both EntNet and QRN find a final answer by
decoding the final vector(s) into a vocabulary en-
try via softmax classification. In contrast, many
of the best performing factoid QA systems, e.g.,
(Seo et al., 2017a; Clark and Gardner, 2017), re-
turn an answer by finding a span of the original
paragraph using attention-based span prediction, a
method suitable when there is a large vocabulary.
We combine this span prediction approach with
state propagation in our new models.

3 The ProPara Dataset

Task: Our dataset, ProPara, focuses on a partic-
ular genre of procedural text, namely simple sci-
entific processes (e.g., photosynthesis, erosion). A
system that understands a process paragraph should
be able to answer questions such as: “What are
the inputs to the process?”, “What is converted
into what?”, and “Where does the conversion take
place?”3 Many of these questions reduce to under-
standing the basic dynamics of entities in the pro-
cess, and we use this as our task: Given a process
paragraph and an entity e mentioned in it, identify:
(1) Is e created (destroyed, moved) in the process?
(2) When (step #) is e created (destroyed, moved)?
(3) Where is e created (destroyed, moved from/to)?
If we can track the entities’ states through the pro-
cess and answer such questions, many of the higher-
level questions can be answered too. To do this, we
now describe how these states are representated in
ProPara, and how the dataset was built.
Process State Representation: The states of the
world throughout the whole process are represented
as a grid. Each column denotes a participant entity

3For example, science exams pose such questions to test
student’s understanding of the text in various ways.

(a span in the paragraph, typically a noun phrase)
that undergoes some creation, destruction, or move-
ment in the process. Each row denotes the states
of all the participants after a step. Each sentence
is a step that may change the state of one or more
participants. Therefore, a process paragraph with
m sentences and n participants will result in an
(m + 1) × n grid representation. Each cell li j in
this grid records the location of the j-th participant
after the i-th step, and l0 j stores the location of j-th
participant before the process.4 Figure 2 shows one
example of this representation.

Paragraph Authoring: To collect paragraphs,
we first generated a list of 200 process-evoking
prompts, such as “What happens during photosyn-
thesis?”, by instantiating five patterns5, with nouns
of the corresponding type from a science vocabu-
lary, followed by manual rewording. Then, crowd-
sourcing (MTurk) workers were shown one of the
prompts and asked to write a sequence of event
sentences describing the process. Each prompt was
given to five annotators to produce five (indepen-
dent) paragraphs. Short paragraphs (4 or less sen-
tences) were then removed for a final total of 488
paragraphs describing 183 processes. An example
paragraph is the one shown earlier in Figure 1.

Grid and Existence: Once the process para-
graphs were authored, we asked expert annotators6

to create the initial grids. First, for each paragraph,
they listed the participant entities that underwent a
state change during the process, thus creating the
column headers. They then marked the steps where
a participant was created or destroyed. All state
cells before a Create or after a Destroy marker were
labeled as "not exists". Each initial grid annotation
was checked by a second expert annotator.

Locations: Finally, MTurk workers were asked
to fill in all the location cells. A location can be
“unknown" if it is not specified in the text, or a span
of the original paragraph. Five grids for the same
paragraph were completed by five different Turkers,
with average pairwise inter-annotator agreement of
0.67. The end result was 81,345 annotations over
488 paragraphs about 183 processes. The dataset

4We only trace locations in this work, but the represen-
tation can be easily extended to store other properties (e.g.,
temperature) of the participants.

5The five patterns are: How are structure formed? How
does system work? How does phenomenon occur? How do
you use device? What happens during process?

6Expert annotators were from our organization, with a
college or higher degree.

1597



Figure 3: (a) ProLocal uses bidirectional attention to make local predictions about state change type and location
(left), and then (b) propagates those changes globally using a persistence rule (right, shown for a single participant
(the Light), local predictions shown in blue, propagations via persistence in green).

bAbI SCoNE ProPara
Sentences Synthetic Natural Natural
Questions templated templated templated
# domains 20 3 183
Vocab #words 119 1314 2501
# sentences 131.1k 72.9k 3.3k
# unique sents 3.2k 37.4k 3.2k
Avg words/sent 6.5 10.2 9.0

Table 1: ProPara vs. other procedural datasets.

was then split 80/10/10 into train/dev/test by pro-
cess prompt, ensuring that the test paragraphs were
all about processes unseen in train and dev. Table 1
compares our dataset with bAbI and SCoNE.

4 Models

We present two new models for this task. The
first, ProLocal, makes local state predictions and
then algorithmically propagates them through the
process. The second, ProGlobal, is an end-to-end
neural model that makes all state predictions using
global information.

4.1 ProLocal: A Local Prediction Model

The design of ProLocal consists of two main com-
ponents: local prediction and commonsense per-
sistence. The former infers all direct effects of
individual sentences and the latter algorithmically
propagates known values forwards and backwards
to fill in any remaining unknown states.

4.1.1 Local Prediction

The intuition for local prediction is to treat it as a
surface-level QA task. BiLSTMs with span predic-
tion have been effective at answering surface-level
questions, e.g., Given “Roots absorb water.” and
“Where is the water?”, they can be reliably trained
to answer “Roots” (Seo et al., 2017a). We incorpo-
rate a similar mechanism here.

Given a sentence (step) and a participant e in it,
the local prediction model makes two types of pre-
dictions: the change type of e (one of: no change,
created, destroyed, moved) and the locations of e
before and after this step. The change type predic-
tion is a multi-class classification problem, while
the location prediction is viewed as a SQuAD-style
surface-level QA task with the goal to find a lo-
cation span in the input sentence. The design of
this model is depicted in Figure 3(a), which adapts
a bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1997) recurrent neural network architecture
(biLSTM) with attention for input encoding. The
prediction tasks are handled by two different output
layers. We give the detail of these layers below.

Input Encoding: Each word wi in the input sen-
tence is encoded with a vector xi = [vw : ve : vv],
the concatenation of a pre-trained GloVe (Penning-
ton et al., 2014) word embedding vw, indicator vari-
ables ve on whether wi is the specified participant
and vv on whether wi is a verb (via a POS tagger).
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Context Encoding: A biLSTM is used to con-
textualize the word representations in a given sen-
tence. hi denotes the concatenated output of the
bidirectional LSTM for the embedded word xi, and
encodes the word’s meaning in context.
Bilinear Attention: Given the participant and
verb, the role of this layer is to identify which con-
textual word embeddings to attend to for generat-
ing the output. We first create hev by concatenating
the contextual embedding of the participant and
verb.7 We then use a bilinear similarity function
sim(hi, hev) = (hT

i ∗ B ∗ hev) + b, similar to (Chen
et al., 2016), to compute attention weights Ai over
each word wi in the sentence.

For state change type prediction, the words be-
tween the verb and participant may be important,
while for the location tagging, contextual cues
such as “from” and “to” could be more predictive.
Hence, we train two sets of attention parameters
resulting in weights A1 and A2 which are combined
with the contextual vectors hi as described below
to produce hidden states o1 and o2 that are fed to
the output layers. Here, |step| refers to number of
words in the given step or sentence.

o1 =
∑

i

A1i ∗ hi

o2 = [(A21 ∗ h1) : (A22 ∗ h2) : . . . : (A2|step| ∗ h|step|)]
Output 1: State Change Type: We apply a

feed-forward network on hidden state o1 to derive
the probabilities of the four state change type cate-
gories: Create, Destroy, Move and None.
Output 2: Location Spans: The second output
is computed by predicting BIO tags (one of five
tags: B-Before-LOC, I-Before-LOC, B-After-LOC,
I-After-LOC, O) for each word in the sentence.
We apply a feed-forward network on hidden state
o2i for wordi to derive the probabilities of these
location tags. Notice that if the change type is
predicted as “Create" (or “Destroy”) then only the
“after" (or “before”) location prediction is used.
Training: We train the state change type pre-
diction and location tag prediction models jointly,
where the loss is the sum of their negative log like-
lihood losses. We use Adadelta (Zeiler, 2012) with
learning rate 0.2 to minimize the total loss.

4.1.2 Commonsense Persistence
The local prediction model will partially fill in the
state change grid, showing the direct locational

7Multi-word entities/verbs or multiple verbs are repre-
sented by the average word vectors.

effects of actions (including “not exists” and “un-
known location”). To complete the grid, we then al-
gorithmically apply a commonsense rule of persis-
tence that propagates locations forwards and back-
wards in time where locations are otherwise miss-
ing. Figure 3(b) shows an example when applying
this rule, where ‘?’ indicates “unknown location".
This corresponds to a rule of inertia: things are by
default unchanged unless told otherwise. If there is
a clash, then the location is predicted as unknown.

4.2 ProGlobal: A Global Prediction Model

Unlike ProLocal, the design principle behind
ProGlobal is to model the persistence of state infor-
mation within the neural model itself, rather than as
a post-processing step. ProGlobal infers the states
of all participants at each step, even if they are not
mentioned in the current sentence, using: (1) the
global context (i.e., previous sentences), and (2)
the participant’s state from the previous step.

Given a sentence (step) with its context (para-
graph) and a participant e, ProGlobal predicts the
existence and location of e after this step in two
stages. It first determines the state of e as one of the
classes (“not exist”, “unknown location”, “known
location”). A follow-up location span prediction is
made if the state is classified as “known location”.

Figure 4 shows ProGlobal’s neural architecture,
where the left side is the part for state prediction at
each step, and the right side depicts the propagation
of hidden states from one step to the next. We
discuss the detail of this model below.

Input Encoding: Given a participant e, for
each stepi, we take the entire paragraph as input.
Each word w in the paragraph is represented with
three types of embeddings: the general word em-
bedding vw, a position embedding vd which indi-
cates the relative distance to the participant in the
paragraph, and a sentence indicator embedding vs

which shows the relative position (previous, cur-
rent, following) of each sentence in terms of the
current step i. Both the position embedding and the
sentence indicator embedding are of size 50 and are
randomly initialized and automatically trained by
the model. We concatenate these three types of em-
beddings to represent each word x = [vw : vd : vs].

Context Encoding: Similar to ProLocal, we use
a biLSTM to encode the whole paragraph and use
h̃ to denote the biLSTM output for each word.

State Prediction: As discussed earlier, we first
predict the location state of a participant e. Let
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H̃P
i = [h̃1

i , h̃
2
i , ..., h̃

|P|
i ] denote the hidden vectors

(contextual embeddings) for words in stepi with
respect to participant e, where ht

i denotes the t-th
word representation output by the biLSTM layer
and P is the whole paragraph. We then apply max
pooling to derive a paragraph representation: µP

i =

max(H̃P
i ). To incorporate the category prediction

of the previous step, stepi−1, we concatenate its
probability vector cP

i−1 ∈ R3 with µP
i , and apply a

feed-forward network to derive the probabilities of
the three categories:

cP
i = softmax(Wc · [µP

i : cP
i−1] + bc)

Location Span Prediction: (Figure 5). To predict
the location span, we predict the start word of the
span (by generating a probability distribution over
words) and the end word. To predict the location
start, we take two types of information as input: the
start probability distribution sP

i−1 ∈ R|P| predicted
from stepi−1, and the contextual embeddings H̃P

i of

words in the current stepi:

H̃∗i =

|P|∑

t=1

st
i−1 · H̃t

i

ϕt
i = LSTM([H̃t

i : H̃∗i ])
where H̃∗i is a sum of word vectors in the paragraph,
weighted by the start probabilities from the previ-
ous step stepi−1. ϕt

i is the encoded vector represen-
tation for the t-th word in the paragraph. We then
concatenate H̃P

i and ϕP
i , and apply a feed-forward

network to obtain the start probability distribution
for stepi: sP

i = softmax(Ws · [H̃P
i : ϕP

i ] + bs). Simi-
larly, to predict the end word of the span, we use
the start probability distribution sP

i of stepi and
H̃P

i , and apply another LSTM and feed-forward
networks to obtain the probabilities. For state0 (the
initial location before any steps), we directly feed
the sequence of the vectors from the encoding layer
to a linear transformation to predict the location
start, and apply the same architecture to predict the
location end.
Training: For each participant e of paragraph P,
the objective is to optimize the sum of the nega-
tive log likelihood of the category classification
and location span prediction8. We use Adadelta to
optimize the models with learning rate 0.5.

5 Experiments and Analysis

5.1 Tasks & Evaluation Metrics
As described in Section 3, the quality of a model
is evaluated based on its ability to answer three
categories of questions, with respect to a given
participant e:

8We compute the loss for location span prediction only
when the category is annotated as “known location”.
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Sentence Encoding Intermediate State Representn. Propagation through time Answer Decoding
EntNet positional encoding Dynamic memory blocks Gated propagation Softmax classification
QRN positional encoding Single latent vector h Gated propagation of h Softmax classification

ProLocal LSTM Explicit symbolic Algorithmic Span prediction
ProGlobal LSTM Distribution over spans LSTM Span prediction

Table 2: Design decisions in the four neural models.

(Cat-1) Is e created (destroyed, moved) in the pro-
cess?
(Cat-2) When (step#) is e created (destroyed,
moved)?
(Cat-3) Where is e created (destroyed, moved
from/to)?
These questions are answered by simple scans over
the state predictions for the whole process. (Cat-1)
is asked over all participants, while (Cat-2) and
(Cat-3) are asked over just those participants that
were created (destroyed, moved). The accuracy of
the answers is used as the evaluation metric, except
for questions that may have multiple answers (e.g.,
“When is e moved?"). In this case, we compare the
predicted and gold answers and use the F1 score as
the “accuracy" of the answer set prediction.9

For questions in category (3), an answer is con-
sidered correct if the predicted location is iden-
tical to, or a sub-phrase of, the labeled location
(typically just one or two words), after stop-word
removal and lemmatizing.

5.2 Baseline Methods

We compare our models with two top methods in-
spired by the bAbI dataset, Recurrent Entity Net-
works (EntNet) and Query Reduction Networks
(QRN), described earlier in Section 2. Both models
make different use of gated hidden states to propa-
gate state information through time, and generate
answers using softmax. The detailed comparisons
in their design are shown in Table 2.

We use the released implementations10 (with de-
fault hyper-parameter values), and retrained them
on our dataset, adapted to the standard bAbI QA
format. Specifically, we create three separate varia-
tions of data by adding three bAbI-style questions
after each step in a paragraph, respectively:

Q1. “Does e exist?” (yes/no)
Q2. “Is the location of e known?” (yes/no)
Q3. “Where is e?” (span)

The template Q1 is applied to all participants. Q2

9This approach has been adopted previously for questions
with multiple answers (e.g., (Berant et al., 2013)). For ques-
tions with only one answer, F1 is equivalent to accuracy.

10https://github.com/siddk/entity-network and
https://github.com/uwnlp/qrn

will only be present in the training data if Q1 is
“yes”, and similarly Q3 is only present if Q2 is
“yes”. These three variations of data are used to
train three different models from the same method.

At test time, we cascade the questions (e.g., ask
Q2 only if the answer to the Q1 model is “yes”),
and combine the model outputs accordingly to an-
swer the questions in our target tasks (Section 5.1).

We also compare against a rule-based base-
line and a feature-based baseline. The rule-based
method, called ProComp, uses a set of rules that
map (a SRL analysis of) each sentence to its effects
on the world state, e.g., IF X moves to Y THEN
after: at(X,Y). The rules were extracted from Verb-
Net (Schuler, 2005) and expanded. A full descrip-
tion of ProComp is available at (Clark et al., 2018).
The feature-based method uses a Logistic Regres-
sion (LR) classifier to predict the state change type
(Move, Create, etc.) for each participant + sentence
pair, then a NER-style CRF model to predict the
from/to locations as spans of the sentence. The LR
model uses bag-of-word features from the sentence,
along with a discrete feature indicating whether the
participant occurs before or after the verb in the
given sentence. The CRF model uses standard NER
features including capitalization, a verb indicator,
the previous 3 words, and the POS-tag of the cur-
rent and previous word. Similar to our ProLocal
model, we apply commonsense persistence rules
(Section 4.1.2) to complete the partial state-change
grids predicted by both these baselines.

5.3 Results

Parameter settings: Both our models use GloVe
embeddings of size 100 pretrained on Wikipedia
2014 and Gigaword 5 corpora11. The number
of hidden dimensions for the biLSTM are set to
50(ProLocal) and 100(ProGlobal). Dropout rates
(Srivastava et al., 2014) for the contextual encod-
ing layer are 0.3(ProLocal) and 0.2(ProGlobal).
ProGlobal uses word position and sentence indi-
cator embeddings each of size 50, and span pre-
diction LSTMs with a hidden dimension of 10.
The learning rates for Adadelta optimizer were

11https://nlp.stanford.edu/projects/glove
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Question type Baseline Models Our Models Human
(# questions) Majority QRN EntNet Rule-based Feature-based ProLocal ProGlobal Upper Bound
Cat-1 (750) 51.01 52.37 51.62 57.14 58.64 62.65 62.95 91.67
Cat-2 (601) - 15.51 18.83 20.33 20.82 30.50 36.39 87.66
Cat-3 (823) - 10.92 7.77 2.4 9.66 10.35 35.9 62.96
macro-avg - 26.26 26.07 26.62 29.7 34.50 45.08 80.76
micro-avg 26.49 25.96 26.24 29.64 33.96 45.37 79.69

Table 3: Model accuracy on the end task (test partition of ProPara). Questions are (Section 5.1): (Cat-1) Is ei
created (destroyed, moved)? (Cat-2) When is ei created (...)? (Cat-3) Where is ei created (...)?

0.2(ProLocal) and 0.5(ProGlobal). Our models
are trained on the train partition and the parameters
tuned on the dev partition.

Table 3 compares the performance of various
models on the ProPara test partition. For the first
category of questions, we also include a simple
majority baseline. We aggregate results over the
questions in each category, and report both macro
and micro averaged accuracy scores.

From Table 3, we can see that EntNet and QRN
perform comparably when applied to ProPara.
However, despite being the top-performing sys-
tems for the bAbI task, when predicting whether a
participant entity is created, destroyed or moved,
their predictions are only slightly better than the
majority baseline. Compared to our local model
ProLocal, EntNet and QRN are worse in predict-
ing the exact step where a participant is created,
destroyed or moved, but better in predicting the
location. The weak performance of EntNet and
QRN on ProPara is understandable: both systems
were designed with a different environment in mind,
namely a large number of examples from a few
conceptual domains (e.g., moving objects around
a house), covering a limited vocabulary. As a re-
sult, they might not scale well when applied to real
procedural text, which justifies the importance of
having a real challenge dataset like ProPara.

Although the rule-based baseline (Clark et al.,
2018) uses rules mapping SRL patterns to state
changes, its performance appears limited by the
incompleteness and approximations in the rulebase,
and by errors by the SRL parser. The feature-based
baseline performs slightly better, but its perfor-
mance is still poor compared to our neural models.
This suggests that it has not generalized as well to
unseen vocabulary (25% of the test vocabulary is
not present in the train/dev partitions of ProPara).

When comparing our two models, it is interest-
ing that ProGlobal performs substantially better
than ProLocal. One possible cause of this is cas-
cading errors in ProLocal: if a local state predic-

tion is wrong, it may still be propagated to later
time steps without any potential for correction, thus
amplifying the error. In contrast, ProGlobalmakes
a state decision for every participant entity at every
time-step, taking the global context into account,
and thus appears more robust to cascading errors.
Furthermore, ProGlobal’s gains are mainly in Cat-
2 and Cat-3 predictions, which rely more heavily
on out-of-sentence cues. For example, 30% of the
time the end-location is not explicitly stated in the
state-change sentence, meaning ProLocal cannot
predict the end-location in these cases (as no sen-
tence span contains the end location). ProGlobal,
however, uses the entire paragraph and may iden-
tify a likely end-location from earlier sentences.

Finally, we computed a human upper bound for
this task (last column of Table 3). During dataset
creation, each grid was fully annotated by 5 differ-
ent Turkers (Section 3). Here, for each grid, we
identify the Turker whose annotations result in the
best score for the end task with respect to the other
Turkers’ annotations. The observed upper bound
of ∼80% suggests that the task is both feasible and
well-defined, and that there is still substantial room
for creating better models.

5.4 Analysis

To further understand the strengths and weaknesses
of our systems, we ran the simplified paragraph in
Figure 2 verbatim through the models learned by
ProLocal and ProGlobal. The results are shown
in Figure 6, with errors highlighted in red.

ProLocal correctly interprets “Light from the
sun and CO2 enters the leaf.” to imply that the
light was at the sun before the event. In addition,
as there were no earlier mentions of light, it prop-
agates this location backwards in time, (correctly)
concluding the light was initially at the sun. How-
ever, it fails to predict that “combine” (after state 3)
destroys the inputs, resulting in continued predic-
tion of the existence and locations for those inputs.
One contributing factor is that ProLocal’s predic-
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Figure 6: ProLocal (top) and ProGlobal (bottom) pre-
dictions on a simple paragraph (errors in red).

tions ignore surrounding sentences (context), po-
tentially making it harder to distinguish destructive
vs. non-destructive uses of “combine”.

ProGlobal also makes some errors on this text,
most notably not realizing the light and CO2 exist
from the start (rather, they magically appear at the
leaf). Adding global consistency constraints may
help avoid such errors. It is able to predict the
sugar is formed at the leaf, illustating its ability
to persist and transfer location information from
earlier sentences to draw correct conclusions.

We additionally randomly selected 100 predic-
tion errors from the dev set for ProGlobal, and
identified four phenomena contributing to errors:

(1) Implicit Creation/Destruction: In 37% of
the errors, the information about the creation or
destruction of a participant is implicit or missing,
which resulted in existence classification errors.
For example, in the sentences “A fuel goes into
the generator. The generator converts mechanical
energy into electrical energy.”, “fuel” is implicitly
consumed as the generator converts mechanical
energy into electrical energy.

(2) Location Errors: In 27% of the examples,
the location spans were not perfectly identified as
follows: absolute wrong location span prediction
(17%), longer span prediction (6%), and location
prediction from different granularity (4%).

(3) Complex Syntax: In 13% of the examples, a

moving participant and its target location are sepa-
rated with a wide context within a sentence, making
it harder for the model to locate the location span.

(4) Propagation: ProGlobal tends to propagate
the previous location state to next step, which may
override locally detected location changes or prop-
agate the error from previous step to next steps. 9%
of the errors are caused by poor propagation.

5.5 Future Directions

This analysis suggests several future directions:
Enforcing global consistency constraints: e.g.,
it does not make sense to create an already-existing
entity, or destroy a non-existent entity. Global con-
straints were found useful in the earlier ProRead
system (Berant et al., 2014).
Data augmentation through weak supervision:
additional training data can be generated by ap-
plying existing models of state change, e.g., from
VerbNet (Kipper et al., 2008), to new sentences to
create additional sentence+state pairs.
Propagating state information backwards in
time: if e j is at li j after stepi, it is likely to also
be there at stepi−1 given no information to the con-
trary. ProGlobal, EntNet, and QRNs are inherently
unable to learn such a bias, given their forward-
propagating architectures.

6 Conclusion

New datasets and models are required to take read-
ing comprehension to a deeper level of machine
understanding. As a step in this direction, we
have created the ProPara dataset, the first to con-
tain natural text about a changing world along
with an annotation of entity states during those
changes. We have also shown that this dataset
presents new challenges for previous models, and
presented new models that exploit ideas from
surface-level QA, in particular LSTM input encod-
ing and span prediction, producing performance
gains. The dataset and models are available at
http://data.allenai.org/propara.
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Abstract

With the rise of e-commerce, people are ac-
customed to writing their reviews after receiv-
ing the goods. These comments are so impor-
tant that a bad review can have a direct impact
on others buying. Besides, the abundant in-
formation within user reviews is very useful
for extracting user preferences and item prop-
erties. In this paper, we investigate the ap-
proach to effectively utilize review informa-
tion for recommender systems. The proposed
model is named LSTM-Topic matrix factor-
ization (LTMF) which integrates both LSTM
and Topic Modeling for review understand-
ing. In the experiments on popular review
dataset Amazon , our LTMF model outper-
forms previous proposed HFT model and Con-
vMF model in rating prediction. Furthermore,
LTMF shows the better ability on making topic
clustering than traditional topic model based
method, which implies integrating the infor-
mation from deep learning and topic modeling
is a meaningful approach to make a better un-
derstanding of reviews.

1 Introduction

Recommender systems (RSs) are widely used in
the field of electronic commerce to provide per-
sonalized recommendation services for customers.
Most popular RSs are based on Collaborative Fil-
tering (CF), which makes use of users’ explicit
ratings or implicit behaviour for recommendations
(Koren, 2008). But CF models suffer from data
sparsity, which is also called “cold-start” prob-
lem. Models perform poorly when there is few
available data. To alleviate this problem, utiliz-
ing user reviews can be a good approach because
user reviews can directly reflect users’ preferences
and items’ properties and exactly correspond to
the user latent factors and item latent factors in CF
models.

∗corresponding author

To understand user reviews, previous ap-
proaches are mainly based on topic modeling, a
suite of algorithms that aim to discover the the-
matic information among documents (Blei, 2012).
The simplest and commonly used topic model
is latent dirichlet allocation(LDA). Recently, as
deep learning shows great performance in com-
puter vision (Krizhevsky et al., 2017) and NLP
(Kim, 2014), some approaches combining deep
learning with CF are proposed to capture latent
context features from reviews.

However, we find there are some limitations in
existing models. First, the LDA algorithm used
in previous models like Hidden Factors as Top-
ics (HFT) (McAuley and Leskovec, 2013) ignores
contextual information. If a user writes “I pre-
fer apple than banana when choosing fruits” in
a review, we can clearly know the user’s prefer-
ence and recommend items including apple. But
LDA ignores the structural information and con-
siders the two words as the same since they both
appear once in the sentence.

Compared with topic modeling, deep learning
methods such as Convolutional Neural Network
(CNN) and Recurrent Neural Network (RNN) are
able to retain more context information. CNN uses
sliding windows to capture local context and word
order. RNN considers a sentence as a word se-
quence, and the former word information will be
reserved and passed back, which gives RNN the
ability to retain the whole sentence information.

But these still exist some problems. For CNN,
the sizes of sliding windows are often small, which
causes CNN model fails to link words in the sen-
tence begin and end. Given the review “I prefer
apple than google when choosing jobs”, CNN
can not notice the two words ’apple’ and ’jobs’
simultaneously if the windows size is small, so
it will meet the ambiguity problem that the word
’apple’ means fruit or company. For RNN, al-
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though it performs better than CNN on persisting
former information, the information will still de-
creases with the length of sentences increasing. So
when a review is long, the effect of RNN is lim-
ited.

Faced with these problems, we propose to inte-
grate deep learning and topic modeling to extract
more global context information and get a deeper
understanding of user reviews. Deep learning
methods can reserve context information, while
topic modeling can provide word co-occurrence
relation to make a supplement for information
loss.

We use Long Short-Term Memory (LSTM) net-
work for the deep learning part, because it is
a special type of RNN which has better perfor-
mance on gradient vanishing and long term depen-
dence problems than vanilla RNN structure. We
use LDA for the topic modeling part. Then the
two parts are integrated into a matrix factoriza-
tion framework. The final model is named LSTM-
Topic matrix factorization (LTMF).

Furthermore, as the topic modeling part and
deep learning part are connected in our model, the
topic clustering results will be influenced by the
deep learning information. In experiments, LTMF
shows a better topic clustering ability than tradi-
tional LDA based HFT model. This gives us some
inspiration on using the integrating methods into
other tasks like sentiment classification.

In the remainder of the paper, we first review
previous work related to our work. Then we
address preliminaries and present our models in
detail. After that we evaluate our approach by
comparing our approach with state-of-the-art algo-
rithms. Finally we conclude the paper with future
work.

2 Related Work

There has been some earlier approaches to ex-
tract review information for RSs. Wang and Blei
(2011) proposed collaborative topic regression
(CTR) that combined topic modeling and collabo-
rative filtering in a probabilistic model. McAuley
and Leskovec (2013) developed a statistical model
HFT using a transfer function to combine rating
and review tightly. Ling et al. (2014) and Bao et al.
(2014) proposed models similar to CTR and HFT
with some structural differences.

Recently, several researchers begin to utilize
deep learning in RSs. Wang et al. (2015) pre-

sented a Bayesian model collaborative deep learn-
ing (CDL) leveraging SDAE neural networks as
a text feature learning component. Bansal et al.
(2016) trained a gated recurrent units (GRUs) net-
work to encode text sequences into latent vectors.
Zhao et al. (2016) trained a deep CNN to discover
the abstract representation of movie posters and
still frames, and incorporated it into a neighbor-
hood CF model. Kim et al. (2016) utilized CNN
to retain contextual information in review, and de-
veloped a document context-aware recommenda-
tion model (ConvMF). The ConvMF model is a re-
cently proposed model and is shown to outperform
PMF and CDL, and we choose it as a baseline in
our experiments. Zheng et al. (2017) proposed the
Deep Cooperative Neural Networks (DeepCoNN)
model which constructed two concurrent CNN to
simultaneously model user and item reviews and
then combined the features into Factorization Ma-
chine. Attention in neural networks has been pop-
ular in nearly years, Seo et al. (2017) proposed a
model using CNN with dual attention for rating
prediction. There are some similarity between the
D-attn model with our LTMF model for we both
want to extract more global information, where
they use attention CNN model and we utilize the
information from both topic modeling and deep
learning. The D-attn model fail to work if there
is not enough reviews, while our LTMF model use
review information as a supplementary of rating.
So it can still work effectively even there are few
reviews.

Besides, Diao et al. (2014) proposed a method
jointly modeling aspects, sentiments and ratings
for movie recommendation. Hu et al. (2015) pro-
posed MR3 model to combine ratings, social re-
lations and reviews together for rating prediction.
These hybrid models boost the performance than
individual components, which also give us some
inspiration on proposing the LTMF framework.

3 Preliminary

3.1 Notations

We use explicit ratings as the training and test data.
Suppose there are M users

U = {u1, u2, ..., ui, ..., uM}

and N items

V = {v1, v2, ..., vj , ..., vN},
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where each user and item is represented by a K-
dimension latent vector, ui ∈ RK and vj ∈
RK . The rating sparse matrix is denoted as R ∈
RM×N , where rij is the rating of user ui on item
vj . D is the review (document) corpus where dij
is the review of user ui on item vj .

3.2 PMF: a standard matrix factorization
model

Probabilistic Matrix Factorization (PMF) (Mnih
and Salakhutdinov, 2008) is an effective recom-
mendation model that uses matrix factorization
(MF) technique to find the latent features of users
and items from a probabilistic perspective. In
PMF, the predicted rating R̂ij is expressed as the
inner product of user latent vector ui and item la-
tent vector vj : R̂ij = uTi vj . To get latent vectors,
PMF minimises the following loss function:

L =

M∑

i

N∑

j

Iij(Rij − uTi vj)2

+ λu

M∑

i

‖ ui ‖2F +λv

N∑

j

‖ vj ‖2F , (1)

where Rij is the observed rating. The first part
of Eq.(1) is the sum-of-squared-error between pre-
dicted and observed ratings and the second part
is quadratic regularization terms to avoid over-
fitting. λu and λv are corresponding regulariza-
tion parameters. Iij is the indicator function which
equals 1 if i-th user rated j-th item, and equals 0
otherwise.

3.3 HFT: understand reviews through topic
modeling

Hidden Factors as Topics (HFT) (McAuley and
Leskovec, 2013) provides an effective approach
to integrates topic modeling into traditional CF
models. It utilizes LDA, the simplest topic
model which assumes there are k topics T =
{t1, t2, ..., tk} in document corpus D. Each doc-
ument d ∈ D has a topic distribution θd over T
and each topic has a word distribution φ over a
fixed vocabulary. To connect the document-topic
distribution θ and item factors v, HFT proposes a
transformation function:

θj,k =
exp(κvj,k)∑
k exp(κvj,k)

, (2)

where vj,k is the k-th latent factor in item vector
vj and θj,k is the k-th topic probability in item
document-topic distribution θj , κ is the parameter
controlling the “peakiness” of the transformation.

Besides, HFT introduces an additional variable ψ
to ensure the word distribution φk is a stochastic
vector which satisfies

∑
w φk,w = 1, the relation

is denoted as follows:

φk,w =
exp(ψk,w)∑
w exp(ψk,w)

s.t.
∑

w

φk,w = 1.

(3)
The final loss function is :

L =
M∑

i

N∑

j

Iij(Rij − R̂ij)2

− λt
N∑

d

∑

n∈Nd

log θd,zd,nφzd,n,wd,n
, (4)

where R̂ij is predicted ratings, θ and φ are the
topic and word distribution respectively, wd,n is
the n-th word in document d and zd,n is the word’s
corresponding topic, λt is a regularization param-
eters.

4 The LTMF Model

We propose the LSTM-Topic matrix factorization
(LTMF) model, which integrates LSTM and topic
modeling for recommendation. The model utilizes
both rating and review information. For the rating
part, we use probabilistic matrix factorization to
extract rating latent vectors. For the review part,
we use LDA (following the way of HFT) to extract
topic latent vectors and adopt an LSTM architec-
ture to generate document latent vectors . Then
we combine the three vectors into a unified model.
The overview of LTMF model is shown in Figure
1.

4.1 Parameter Relation
The left of Figure 1 is the parameters relations
in LTMF model, which can be divided into three
parts: Θ = {U ,V} is the parameters associated
with rating MF, Φ = {θ, φ} is the parameters asso-
ciated with topic model, Ω = {W, l} is the param-
eters associated with LSTM. The shaded nodes
are data (R:rating, D: reviews) where the others
are parameters. Single connection lines represent
there are constraint relationship between the two
nodes. Double connections (e.g. V and θ) mean
the relationship is bidirectional so they can affect
each other’s results.

4.2 LSTM Architecture
The right of Figure 1 is the LSTM architecture
used in our models. For the j-th item, we con-
catenate all of its reviews as one document se-
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Figure 1: The overview of LTMF model. Left:Parameters relations of LTMF. Right:the detailed LSTM architec-
ture.

quence Dj . Every word in the document sequence
Dj = (w1, w2, ..., wnj) will firstly be embedded
into a p dimension vector. Next, word vectors are
sent into LSTM network according to the word or-
der inDj and produces a latent vector. Finally, the
latent vector is sent to a full connect layer whose
output is the document latent vector lj . The above
process can be written as:

lj = LSTM(Dj ,W ), (5)
where Dj is the input document sequence, W rep-
resents weights and bias variables in LSTM net-
work.

4.3 Probabilistic Prior

Gaussian distribution is the basic prior hypothe-
sis in our model. We place zero-mean spherical
Gaussian priors on user latent features u, LSTM
weights W and observed ratings R. For item vec-
tor v, we place the Gaussian prior on its difference
with LSTM output lj :

p(v|lj , σ2
v) =

N∏

j=1

N (vj − lj |0, σ2
vI)

=
N∏

j=1

N (vj |lj , σ2
vI).

The function is important for connecting rat-
ings and reviews. Although document vector lj
is closed to item feature vector vj for they both re-
flect item’s properties. There still exists some dis-
crepancies. For example, when writing reviews,
users usually write more about appearance and
only briefly mention price. So in review based
document vector lj , the weight of “appearance”
will be larger than rating based latent vector vj .

To preserve the discrepancy between vj and lj ,
we import the Gaussian noise vector σv as the off-
set.

4.4 Objective Function

Finally, we maximize the log-posterior of the three
parts and get the objective function as follows:

L =
M∑

i

N∑

j

Iij(Rij − uTi vj)2

− λt
N∑

d

∑

n∈Nd

log θzd,nφzd,n,wd,n

+ λu

M∑

i

‖ ui ‖2F +λv

N∑

j

‖ vj − lj ‖2F

+ λW

Nk∑

k

‖Wk ‖2F , (6)

where Nk is the number of weighs in LSTM net-
work, λu, λv, λW are regularization parameters. z
is the topic assignment for each word, λt is the reg-
ularization parameters to control the proportion of
topic part.

The objective function of LTMF can be con-
sidered as an extended PMF model where the in-
formation from topic modeling and LSTM is in-
cluded as regular terms. In the next section, we
will explain how LTMF leverages the information
from topic modeling and LSTM, and why LTMF
can combine the information of the two parts.

4.5 The Effectiveness of LTMF

As shown in Figure 1, item vectors V connect with
both topic part and LSTM part, which means the
information from the two part will both affect the
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result of item vectors. If we take partial derivative
of Eq.(6) with respect to vj , the constraint rela-
tionship can be clearer:

∂L
∂vj

=

M∑

i=1

2Iij(Rij − uTi vj)ui + 2λv(vj − lj)

− λtκ
K∑

k=1

(nj,k −Nj
exp(κvj,k)∑

exp(κvj,k)
), (7)

In Eq.(7), the optimization direction of vj is
subject to two regular terms. The former one is
controlled by LSTM vector lj . The latter one
is controlled by topic parameters (κ, nj,k, Nj).
Hence, we can leverages the information from
both LSTM and topic modeling for recommenda-
tion.

Besides, note the double connections between
item vector V and topic distribution θ in Figure
1. They mean the information from topic model-
ing can affect the result of V , while the change in
V can also be passed to topic part and affect the
review understanding result of topic modeling by
Eq.2. For V and LSTM vector l, the analysis is
the same. Indeed, item vectors V plays the role of
transporter to connect LSTM part and topic mod-
eling part. This is why LTMF can combine the
information of topic modeling and LSTM to make
a deeper understanding of user reviews.

Furthermore, LTMF provides an effective
framework to integrate topic model with deep
learning networks for recommendation. In ex-
periments, we replace the LSTM part with CNN
to make a comparison model. Experiments show
both models boost the rating prediction accuracy.

4.6 Optimization

Our objective is to search:
arg min
Θ,Φ,z,κ,Ω

L(Θ,Φ, z, κ,Ω). (8)

Recall that Θ is the parameters associated with rat-
ings MF, Φ is the parameters associated with topic
modeling, z is the topic assignment for each word,
κ is the peakiness parameter to control the trans-
formation between item vector v and topic dis-
tribution θ, Ω is the parameters associated with
LSTM.

For vj is coupled with the parameters of topic
modeling and LSTM vector, we cannot optimize
these parameters independently. We adopt a pro-
cedure that alternates between two steps. In each
step we fix some parameters and optimize the oth-
ers. The optimization process is shown below:

1. solve the objective by fixing zt and Ωt:
arg min

Θ,Φ,κ
L(Θ,Φ, zt, κ,Ωt)

to update Θt+1, Φt+1, κt+1.

2. (a) update Ωt+1 with fixing vjt+1 and doc-
ument sequence Dj .

(b) sample zt+1
d,j with probability

p(zt+1
d,j = k) = φt+1

k,wd,j
.

In the step 1, we fix z and Ω to update remaining
terms Θ,Φ, κ by L-BFGS algorithm. In the step 2,
we fix Θ, Φ and κ to update LSTM parameters Ω
and topic model parameters z. Since LSTM part
and topic part are independent when item vectors
V are certain, we can update the two term respec-
tively. In step 2(a), we update Ω by back prop-
agation algorithm. With fixing the other parame-
ters, the objective function of W can be seen as
a weighted squared error function (‖ vj − lj ‖2F )
withL2 regularized terms (‖W ‖2F ), which means
we can useDj as the input and vj is the label to run
the back propagation process. In step 2(b), we iter-
ates through all documents and each word within
to update zd,j via Gibbs Sampling. The reason
why we do not divide the process into three steps
is that the step 2(a) and 2(b) are independent with
step 1 finished, which means we can parallelize
the two steps.

Finally, we repeat these two steps until conver-
gence. In practice, we run the step 1 with 5 gra-
dient iterations using LBFGS, then we iterate the
LSTM part 5 times. At the same time, we update
the topic model part once. The whole process is
called a cycle, and it usually takes 30 cycles to
reach a local optimum.

In addition to the gradient of vj , the gradients
of other parameters used in step 1 are listed as fol-
lows:
∂L
∂ui

=
N∑

j=1

2Iij(Rij − uTi vj)vj + 2λuui. (9)

∂L
∂ψ

= −λt
Nw∑

w=1

K∑

k=1

(
nk,w −Nk

exp(ψk,w)

zw

)

(10)

∂L
∂κ

= −λt
N∑

j=1

K∑

k=1

vj,k

(
njk −Nj

exp(κvj,k)

zj

)
.

(11)
where ψ is used to determine word distribution φ
by Eq.(3); nk,w is the number of times that word
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Dataset users items ratings av. words per item density
Amazon Instant Video (AIV) 29753 15147 135167 86.69 0.0030%

Apps for Android (AFA) 240931 51599 1322839 65.80 0.0106%
Baby (BB) 71812 42515 379969 81.83 0.0124%

Musical Instruments (MI) 29005 48751 150526 86.44 0.0106%
Office Product (OP) 59844 60628 286521 82.41 0.0079%

Pet Supplies (PS) 93270 70063 477859 78.86 0.0073%
Grocery Gourmet Food (GGF) 86389 108448 508676 76.97 0.0054%

Video Games (VG) 84257 39422 476546 92.55 0.0143%
Patio Lawn and Garden (PLG) 54167 57826 242944 82.22 0.0078%

Digital Music (DM) 56812 156496 351769 38.79 0.0040%

Table 1: Statistics of datasets.

w occurs in topic k; Nw is the word vocabulary
size of the document corpus; Nk is the number of
words in topic k; nj,k is the number of times when
topic k occurs in the document of item j; Nj is the
total number of words in document j; zw and zj
are the corresponding normalizers:

zw =
K∑

k=1

exp(ψk,w), zj =
K∑

k=1

exp(κvj,k).

5 Experiment

5.1 Datasets

We use the real-world Amazon dataset1 (collected
by McAuley et al. (2015)) for our experiments.
For the original dataset is too large, we choose
10 sub datasets in experiments. To increase data
density, we remove users which have less than 3
ratings. For raw review texts, we adopt the same
preprocessing methods as ConvMF2: set the max-
imum length of a item document to 300; remove
common stop words and document specific words
which have document frequency higher than 0.5;
choose top 8000 distinct words as the vocabulary;
remove all non-vocabulary words to construct in-
put document sequences. After preprocessing, the
statistics of datasets are listed in Table 1, where
the abbreviations of datasets are shown in paren-
theses.

5.2 Evaluation Procedure

5.2.1 Baseline
The baselines used in our experiments are listed as
follows:

1http://jmcauley.ucsd.edu/data/amazon/
2http://dm.postech.ac.kr/ cartopy/ConvMF/

• PMF: Probabilistic Matrix Factorization
(PMF) (Mnih and Salakhutdinov, 2008) is a
standard matrix factorization model for RSs.
It only uses rating information.

• HFT: This is a state-of-art method that com-
bines reviews with ratings (McAuley and
Leskovec, 2013). It utilizes LDA to capture
unstructured textual information in reviews.

• ConvMF: Convolutional Matrix Factoriza-
tion (ConvMF) (Kim et al., 2016) is a re-
cently proposed recommendation model. It
utilizes CNN to capture contextual informa-
tion of item reviews.

• LMF: LSTM Matrix Factorization (LMF) is
a submodel of LTMF without the topic part.
We can compare it with ConvMF to show the
effectiveness of LSTM than CNN on review
understanding.

• CTMF: We modify the LTMF model by re-
placing the LSTM part with CNN (following
the structure of ConvMF) and construct the
comparison model CNN-Topic Matrix Fac-
torization (CTMF). CTMF can be used to
evaluate the effectiveness of combining deep
learning and topic modeling.

In experiments, we randomly split one dataset
into training set, test set, validation set under pro-
portions of 80%, 10%, 10%, where each user and
item appears at least once in the training set. We
use Mean Square Error (MSE) as metric to evalu-
ate various models.

1610



(a) (b) (c) (d) (e) (f)
Dataset PMF HFT ConvMF CTMF LMF LTMF

AIV 1.436 (0.02) 1.368 (0.02) 1.388 (0.02) 1.350 (0.03) 1.321 (0.02) 1.309 (0.02)
AFA 1.673 (0.01) 1.649 (0.01) 1.651 (0.01) 1.648 (0.01) 1.635 (0.01) 1.629 (0.01)
BB 1.643 (0.01) 1.577 (0.01) 1.556 (0.02) 1.531 (0.01) 1.513 (0.02) 1.499 (0.01)
MI 1.555 (0.03) 1.423 (0.02) 1.399 (0.02) 1.367 (0.02) 1.317 (0.02) 1.302 (0.02)
OP 1.622 (0.02) 1.547 (0.02) 1.501 (0.02) 1.466 (0.02) 1.432 (0.02) 1.420 (0.02)
PS 1.796 (0.01) 1.736 (0.01) 1.698 (0.02) 1.680 (0.02) 1.646 (0.02) 1.626 (0.01)

GGF 1.585 (0.01) 1.539 (0.01) 1.478 (0.01) 1.446 (0.02) 1.393 (0.01) 1.386 (0.01)
VG 1.510 (0.02) 1.468 (0.01) 1.463 (0.01) 1.448 (0.01) 1.423 (0.01) 1.409 (0.01)
PLG 1.854 (0.02) 1.779 (0.02) 1.710 (0.02) 1.678 (0.02) 1.628 (0.02) 1.608 (0.02)
DM 1.197 (0.01) 1.171 (0.01) 1.032 (0.01) 0.990 (0.01) 0.968 (0.01) 0.965 (0.01)

Table 2: MSE results of various models (K=5). The best results are highlighted in bold. The standard deviations
of MSE results are shown in parenthesis.

5.2.2 Implementation Details
For all models, we set the dimension of user and
item latent vectors K = 5, and initialize the vec-
tors randomly between 0 and 1. Topic number
and the dimension of document latent vector l are
also set to 5. For methods using deep learning,
we initialized word latent vectors randomly with
the embedding dimension p = 200. The opti-
mization algorithm used in back propagation is
rmsprop and the activation function used in fully
connected layer is tanh . In LSTM network, we set
the output dimension to 128 and dropout rate 0.2.
For CTMF, we adopt the same setting as ConvMF
where the sliding window sizes is {3, 4, 5} and the
shared weights per window size is 100.

Hyper parameters are set as follows. For PMF,
λu = λv = 0.1. For HFT, we select λt ∈
{1, 5} which gives better result in each experi-
ment. For LMF and ConvMF, we set λu = 0.1
and λv = 5. For LTMF and CTMF, we select
λt ∈ {0.05, 0.1, 0.5} which gives the lowest vali-
dation set error.

5.3 Quantitative analysis of rating prediction

We evaluate these models and report the lowest
test set error on each dataset. The MSE results
are shown in Table 2 where the best result of each
dataset is highlighted in bold and the standard de-
viations of corresponding MSE are recorded in
parenthesis.

We can see that the LTMF model consistently
outperform these baselines on all datasets . This
clearly confirms the effectiveness of our proposed
method. To make a more intuitive comparison,
the improvement histograms of these models are
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Figure 2: Above: Improvements of HFT, ConvMF and
LMF, compared with PMF on different datasets. Be-
low: Improvements of CTMF and LTMF, compared
with ConvMF and LMF respectively.

shown in Figure 2.
The figure above are the improvements of HFT,

ConvMF and LMF compared with PMF on dif-
ferent datasets, where PMF only uses rating infor-
mation and the other three use both rating and re-
view information with different approaches. We
observe that all three methods make significant
improvements over PMF, which indicates review
information is helpful to model user and item fea-
tures as well as improve recommendation results.
Compared with HFT, LMF makes over 3% im-
provement on 9 out of the 10 datasets. ConvMF
performs better than HFT while LMF still obtains
over 3% improvement than ConvMF on 7 datasets.
The differences between HFT, ConvMF and LMF
can be attributed to their individual methods for re-
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Figure 3: Results for recommendation within limited ratings and reviews. Left: the MSE values of all models.
Right: the incerase compared with PMF.

views understanding. As mentioned in Section 1,
Topic Modeling based HFT only considers the co-
existence of words in texts and ignores structural
context information. CNN based ConvMF lacks
the ability to capture global context information
due to the size limitation of sliding windows. This
is exactly what LSTM possesses and why LSTM
based LMF model outperforms ConvMF.

The figure below is the comparison of two in-
tegrated models (LTMF and CTMF) that import
topic information with two original models that
only use deep learning (LMF and ConvMF). We
can see that both integrated models outperform the
original models, which confirms our conjecture
that recommendation results can be improved
by combining structural and unstructured in-
formation. For CTMF model, it makes over 2%
improvement on 5 out of 10 datasets compared
with ConvMF. As to LTMF model, it achieves
nearly 1% improvements that LMF on 7 out of 10
datasets.

The reason why LTMF gains less promotion can
be explained from two sides. Numerically, for the
comparison model LMF is already a strong base-
line proposed by ourselves, it’s more difficult to
make a significant improvement. Theoretically,
since LSTM can persist enough global informa-
tion when the input sentence is relatively short, the
supplements of topic information in LTMF are not
so remarkable. As an illustration, we can com-
pare the results on datasets “DM” and “VG”. For
the dataset “DM”, as shown in Table 1, it has the
fewest words per item (38.79) and the improve-
ment of LTMF is minimum. But for the dataset
“VG”, it has the most words per item (92.55). The
global context information obtained by LSTM will
still decrease with such long sentences, and the
topic information can make an effective supple-
ment. So the improvement of LTMF on “VG” is

greater and comparable with CTMF.

5.4 Recommendation with different data
sparsity

Rating data and review data are always sparse in
RSs. To compare these models on making rec-
ommendation in different data sparsity, especially
for new users who only have limited ratings, we
choose the dataset “Baby” and refilter it to make
sure every user has at least N ratings (N varies
from 1 to 10). A greater N means the user has
rated more items, so the data sparsity problem is
weaker. We test all models on the 10 subsets of
“Baby” with the same dataset split ratio and text
preprocessing. The final results are shown in Fig-
ure 3, where the left one is the MSE values of all
models, and the right one is the increase of the
other models compared with PMF.

We can observe that all models gain better rec-
ommendation accuracy with the increment of user
rating number N . In other words, user and item
latent features can be better extracted with more
useful information. When N is small, especially
when N = {2, 3}, the models which utilize both
review and rating information achieve biggest im-
provements over PMF. It suggests that review
information can provide effective supplement
when rating data is scarce. With the increase
of N , the improvements of all review used mod-
els become smaller. This is because models can
extract more features from gradually dense ratings
data, and the effectiveness of review data begins
to decrease. Same as the previous experiment, our
LTMF model achieve the best results in the com-
parison with other models.

5.5 Qualitative Analysis

In HFT, the result of topic words only depends on
the information from Topic Modeling. But in our
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Office Product (OP)

topic1 topic2 topic3 topic4 topic5
envelope markers pins wallet planner
erasers compatible scale notebooks keyboard
needs lead huge window tab

numbers mail credit notebook remove
letters nice document cardboard stickers

christmas camera attach plug clips

Table 3: Top topic words discovered by HFT

Office Product (OP)

topic1 topic2 topic3 topic4 topic5
bands bags scale wallet folder
drum camera document clock folders

remote cabinet magnets coins binder
chalk compatible monitors notebooks stickers

presentation tray pins shredder remove
buttons party fax bookmark head

Table 4: Top topic words discovered by LTMF

proposed LTMF framework, the information ex-
tracted by LSTM and Topic Modeling will both
affect the final word clustering results. So, we
can compare the topic words discovered by HFT
and LTMF to evaluate whether combing LSTM
and Topic Modeling is able to make a better un-
derstanding of user reviews.

We choose the dataset “Office Product” (OP)
and show the top topic words of HFT and LTMF in
Table 3 and Table 4. As we can see, there are many
words existed in both tables (e.g. “wallet”, “note-
books”, “document”). These words are closely re-
lated to the category of dataset “Office Product”,
which implies both models can get a good inter-
pretation of user reviews.

However, when we carefully compare the two
tables, there exists some differences. In Table 3,
there are some adjectives and verbs which have
little help for topic clustering (e.g. “nice”, “huge”,
“attach”), but they still get large weights and ap-
pear in the front of topic words list. Obviously,
HFT misinterprets these words for they usually
appear together with the real topic words. In Ta-
ble 4, we are not able to find them in top words
list, because extra information from LSTM makes
a timely supplement. Besides, similar situations
also occur on words “document” and “compati-
ble”. The word “document” is an apparent topic
word, so LTMF gives it a larger weight in topic
words list. For the word “compatible”, as an
adjectives, it can provide less topic information
than nouns, so LTMF decreases its weight and put

“camera” in the second place. From the above
analysis we can see LTMF shows the better topic
clustering ability than HFT.

6 Conclusion and Future Work

In this paper, we investigate the approach to ef-
fectively utilize review information for RSs. We
propose the LTMF model which integrates both
LSTM and Topic modeling in context aware rec-
ommendation. In the experiments, our LTMF
model outperforms HFT and ConvMF in rating
prediction especially when the data is sparse. Fur-
thermore, LTMF shows better ability on making
topic clustering than traditional topic model based
method HFT, which implies integrating the infor-
mation from deep learning and topic modeling is a
meaningful approach to make a better understand-
ing of reviews. In the future, we plan to evaluate
more complex networks for recommendation tasks
under the framework proposed by LTMF. Besides,
we are interested to apply the method of comb-
ing topic model and deep learning into some tradi-
tional NLP tasks.
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Abstract
NLP algorithms are increasingly used in com-
putational social science to take linguistic ob-
servations and predict outcomes like human
preferences or actions. Making these social
models transparent and interpretable often re-
quires identifying features in the input that pre-
dict outcomes while also controlling for po-
tential confounds. We formalize this need as
a new task: inducing a lexicon that is predic-
tive of a set of target variables yet uncorre-
lated to a set of confounding variables. We
introduce two deep learning algorithms for the
task. The first uses a bifurcated architecture
to separate the explanatory power of the text
and confounds. The second uses an adversarial
discriminator to force confound-invariant text
encodings. Both elicit lexicons from learned
weights and attentional scores. We use them
to induce lexicons that are predictive of timely
responses to consumer complaints (controlling
for product), enrollment from course descrip-
tions (controlling for subject), and sales from
product descriptions (controlling for seller).
In each domain our algorithms pick words
that are associated with narrative persuasion;
more predictive and less confound-related than
those of standard feature weighting and lexi-
con induction techniques like regression and
log odds.

1 Introduction

Applications of NLP to computational social sci-
ence and data science increasingly use lexical fea-
tures (words, prefixes, etc) to help predict non-
linguistic outcomes like sales, stock prices, hospi-
tal readmissions, and other human actions or pref-
erences. Lexical features are useful beyond pre-
dictive performance. They enhance interpretabil-
ity in machine learning because practitioners know
why their system works. Lexical features can also
be used to understand the subjective properties of
a text.

For social models, we need to be able to select
lexical features that predict the desired outcome(s)
while also controlling for potential confounders.
For example, we might want to know which words
in a product description lead to greater sales, re-
gardless of the item’s price. Words in a description
like “luxury” or “bargain” might increase sales
but also interact with our confound (price). Such
words don’t reflect the unique part of text’s ef-
fect on sales and should not be selected. Simi-
larly, we might want to know which words in a
consumer complaint lead to speedy administrative
action, regardless of the product being complained
about; which words in a course description lead to
higher student enrollment, regardless of the course
topic. These instances are associated with narra-
tive persuasion: language that is responsible for
altering cognitive responses or attitudes (Spence,
1983; Van Laer et al., 2013).

In general, we want words which are predictive
of their targets yet decorrelated from confound-
ing information. The lexicons constituted by these
words are useful in their own right (to develop
causal domain theories or for linguistic analysis)
but also as interpretable features for down-stream
modeling. Such work could help widely in appli-
cations of NLP to tasks like linking text to sales
figures (Ho and Wu, 1999), to voter preference
(Luntz, 2007; Ansolabehere and Iyengar, 1995), to
moral belief (Giles et al., 2008; Keele et al., 2009),
to police respect (Voigt et al., 2017), to financial
outlooks (Grinblatt and Keloharju, 2001; Chate-
lain and Ralf, 2012), to stock prices (Lee et al.,
2014), and even to restaurant health inspections
(Kang et al., 2013).

Identifying linguistic features that are indicative
of such outcomes and decorrelated with confounds
is a common activity among social scientists, data
scientists, and other machine learning practition-
ers. Indeed, it is essential for developing transpar-
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ent and interpretable machine learning NLP mod-
els. Yet there is no generally accepted and rigor-
ously evaluated procedure for the activity. Prac-
titioners have conducted it on a largely ad-hoc
basis, applying various forms of logistic and lin-
ear regression, confound-matching, or association
quantifiers like mutual information or log-odds to
achieve their aims, all of which have known draw-
backs (Imai and Kim, 2016; Gelman and Loken,
2014; Wurm and Fisicaro, 2014; Estévez et al.,
2009; Szumilas, 2010).

We propose to overcome these drawbacks via
two new algorithms that consider the causal struc-
ture of the problem. The first uses its architec-
ture to learn the part of the text’s effect which
the confounds cannot explain. The second uses
an adversarial objective function to match text en-
coding distributions regardless of confound treat-
ment. Both elicit lexicons by considering learned
weights or attentional scores. In summary, we

1. Formalize the problem into a new task.

2. Propose a pair of well-performing neural net-
work based algorithms.

3. Conduct the first systematic comparison of
algorithms in the space, spanning three do-
mains: consumer complaints, course enroll-
ments, and e-commerce product descriptions.

The techniques presented in this paper will help
scientists (1) better interpret the relationship be-
tween words and real-world phenomena, and (2)
render their NLP models more interpretable1.

2 Deconfounded Lexicon Induction

We begin by formalizing this language processing
activity into a task. We have access to text(s) T ,
target variable(s) Y , and confounding variable(s)
C. The goal is to pick a lexicon L such that when
words in T belonging to L are selected, the re-
sulting set L(T ) is related to Y but not C. There
are two types of signal at play: the part of Y that
T can explain, and that explainable by C. These
signals often overlap because language reflects cir-
cumstance, but we are interested in the part of T ’s
explanatory power which is unique to T , and hope
to choose L accordingly.

So if Var [E [Y |L(T ), C]] is the information in
Y explainable by both L(T ) and C, then our goal

1Code, hyperparameters, and instructions for practi-
tioners are online at https://nlp.stanford.edu/
projects/deconfounded-lexicon-induction/

is to choose L such that this variance is maximized
after C has been fixed. With this in mind, we for-
malize the task of deconfounded lexicon induc-
tion as finding a lexicon L that maximizes an
informativeness coefficient,

I(L) = E
[
Var
[
E
[
Y
∣∣L(T ), C

] ∣∣C
]]
, (1)

which measures the explanatory power of the lex-
icon beyond the information already contained in
the confounders C. Thus, highly informative lexi-
cons cannot simply collect words that reflect the
confounds. Importantly, this coefficient is only
valid for comparing different lexicons of the same
size, because in terms of maximizing this criterion,
using the entire text will trivially make for the best
possible lexicon.

Our coefficient I(L) can also be motivated via
connections to the causal inference literature: in
Section 7, we show that—under assumptions of-
ten used to analyze causal effects in observational
studies—the coefficient I(L) can correspond ex-
actly to the strength of T ’s causal effects on Y .

Finally, note that by expanding out an ANOVA
decomposition for Y , we can re-write this criterion
as

I(L) = E
[(
Y − E

[
Y
∣∣C, L(T )

])2]

− E
[(
Y − E

[
Y
∣∣C
])2]

,
(2)

i.e., I(L) measures the performance improvement
L(T ) affords to optimal predictive models that al-
ready have access to C. We use this fact for eval-
uation in Section 4.

3 Proposed Algorithms

We continue by describing the pair of novel algo-
rithms we are proposing for deconfounded lexicon
induction problems.

3.1 Deep Residualization (DR)

Motivation. Our first method is directly motivated
by the setup from Section 2. Recall that I(L)
measures the amount by which L(T ) can improve
predictions of Y made from the confounders C.
We accordingly build a neural network architec-
ture that first predicts Y directly from C as well as
possible, and then seeks to fine-tune those predic-
tions using T .
Description. First we pass the confounds through
a feed-forward neural network (FFNN) to obtain
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Figure 1: The Deep Residualization (DR) selector. Val-
ues which are used to calculate losses are enclosed in
red ovals. Top: DR+ATTN, which represents text as
a sequence of word embeddings. Bottom: DR+BOW,
which represents text as a vector of word frequencies.

preliminary predictions Ŷ ′. We also encode the
text into a continuous vector e ∈ Rd via two alter-
native mechanisms:

1. DR+ATTN: the text is converted into a
sequence of embeddings and fed into
Long Short-Term Memory (LSTM) cell(s)
(Hochreiter and Schmidhuber, 1997) fol-
lowed by an attention mechanism inspired
by Bahdanau et al. (2015). If the words
of a text have been embedded as vectors
x1, x2, ..., xn then e is calculated as a
weighted average of hidden states, where the
weights are decided by a FFNN whose pa-
rameters are shared across timesteps:

h0 = ~0

ht = LSTM(xt,ht−1)

lt = ReLU(W attnht) · vattn

pt =
exp(lt)∑
exp(li)

e =
∑

pihi

2. DR+BOW: the text is converted into a vec-
tor of word frequencies, which is compressed
with a two-layer feedforward neural network

(FFNN):

t = [freq1, freq2, ..., freqk]

h = ReLU(W hiddent)

e = ReLU(W outputt)

We then concatenate e with Ŷ ′ and feed the re-
sult through another neural network to generate fi-
nal predictions Ŷ . If Y is continuous we compute
loss with

Lcontinuous = ||Ŷ − Y ||2

If Y is categorical we compute loss with

Lcategorical = −p∗ log p̂∗

Where p̂∗ corresponds to the predicted probability
of the correct class. The errors from Ŷ are propa-
gated through the whole model, but the errors from
Ŷ ′ are only used to train its progenitor (Figure 1).

Note the similarities between this model and the
popular residualizing regression (RR) technique
(Jaeger et al., 2009; Baayen et al., 2010, inter alia).
Both use the text to improve an estimate gener-
ated from the confounds. RR treats this as two
separate regression tasks, by regressing the con-
founds against the variables of interest, and then
using the residuals as features, while our model
introduces the capacity for nonlinear interactions
by backpropagating between RR’s steps.
Lexicon Induction. We elicit lexicons from
+ATTN style models by (1) running inference on
a test set, but rather than saving those predictions,
saving the attentional distribution over each source
text, and (2) mapping each word to its average at-
tentional score and selecting the k highest-scoring
words.

For +BOW style models, we take the matrix that
compresses the text’s word frequency vector, then
score each word by computing the l1 norm of the
column that multiplies it, with the intuition that
important words are dotted with big vectors in or-
der to be a large component of e.

3.2 Adversarial Selector (A)

Motivation. We begin by observing that a desir-
able L can explain Y , but is unrelated to C, which
implies it should should struggle to predict C. The
Adversarial Selector draws inspiration from this.
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Figure 2: The Adversarial (A) selector. Values which
are used to calculate losses are enclosed in red ovals.
Top: A+ATTN, which represents text as a sequence of
word embeddings. Bottom: A+BOW, which represents
text as a vector of word frequencies.

It learns adversarial encodings of T which are use-
ful for predicting Y , but not useful for predicting
C. It is depicted in Figure 2.
Description. First, we encode T into e ∈ Rd via
the same mechanisms as the Deep Residualizer of
Section 3.1. e is then passed to a series of FFNNs
(“prediction heads”) which are trained to predict
each target and confound with the same loss func-
tions as that of Section 3.1. As gradients back-
propagate from the confound prediction heads to
the encoder, we pass them through a gradient re-
versal layer in the style of Ganin et al. (2016) and
Britz et al. (2017), which multiplies gradients by
−1. If the cumulative loss of the target variables
is Lt and that of the confounds is Lc, then the
loss which is implicitly used to train the encoder
is Le = Lt−Lc, thereby encouraging the encoder
to learn representations of the text which are not
useful for predicting the confounds.

Lexicons are elicited from this model via the
same mechanism as the Deep Residualizer of Sec-
tion 3.1.

4 Experiments

We evaluate the approaches described in Sec-
tions 3 and 5 by generating and evaluating de-
confounded lexicons in three domains: financial
complaints, e-commerce product descriptions, and
course descriptions. In each case the goal is

to find words which can always help someone
net a positive outcome (fulfillment, sales, enroll-
ment), regardless of their situation. This involves
finding words associated with narrative persua-
sion: predictive of human decisions or preferences
but decorrelated from non-linguistic information
which could also explain things. We analyze the
resulting lexicons, especially with respect to the
classic Aristotelian modes of persuasion: logos,
pathos, and ethos.

We compare the following algorithms:
Regression (R), Regression with Confound
features (RC), Mixed effects Regression (M),
Residualizing Regressions (RR), Log-Odds Ratio
(OR), Mutual Information (MI), and MI/OR with
regresssion (R+MI and R+OR). See Section 5 for
a discussion of these baselines, and the online
supplementary information for implementation
details. We also compare the proposed algorithms:
Deep Residualization using word frequencies
(DR+BOW) and embeddings (DR+ATTN), and
Adversarial Selection using word frequencies
(A+BOW) and embeddings (A+ATTN).

In Section 2 we observed that I(L) measures
the improvement in predictive power that L(T ) af-
fords a model already having access to C. Thus,
we evaluate each algorithm by (1) regressing C
on Y , (2) drawing a lexicon L, (3) regressing
C + L(T ) on Y , and (4) measuring the size of
gap in test prediction error between the models of
step (1) and (3). For classification problems, we
measured error with cross-entropy (XE):

XE = −
∑

i

pi log p̂i

performance = XEC −XEL(T ),C

And for regression, we computed the mean
squared error (MSE):

MSE =
1

n

∑

i

(Ŷi − Yi)2

performance =MSEC −MSEL(T ),C

Because we fix lexicon size but vary lexicon con-
tent, lexicons with good words will score highly
under this metric, yielding the large performance
improvements when combined with C.

We also report the average strength of associa-
tion between words in L and C. For categorical
confounds, we measure Cramer’s V (V ) (Cramér,
2016), and for continuous confounds, we use the
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point-biserial correlation coefficient (rpb) (Glass
and Hopkins, 1970). Note that rpb is mathemat-
ically equivalent to Pearson correlation in bivari-
ate settings. Here the best lexicons will score the
lowest.

We implemented neural models with the Ten-
sorflow framework (Abadi et al., 2016) and opti-
mized using Adam (Kingma and Ba, 2014). We
implemented linear models with the scikit learn
package (Pedregosa et al., 2011). We implemented
mixed models with the lme4 R package (Bates
et al., 2014). We refer to the online supplementary
materials for per-experiment hyperparameters.

For each dataset, we constructed vocabularies
from the 10,000 most frequently occurring tokens,
and randomly selected 2,000 examples for evalu-
ation. We then conducted a wide hyperparameter
search and used lexicon performance on the evalu-
ation set to select final model parameters. We then
used these parameters to induce lexicons from 500
random train/test splits. Significance is estimated
with a bootstrap procedure: we counted the num-
ber of trials each algorithm “won” (i.e. had the
largest errorC − errorL(T ),C). We also report
the average performance and correlation of all the
lexicons generated from each split. We ran these
experiments using lexicon sizes of k = 50, 150,
250, and 500 and observed similar behavior. The
results reported in the following sections are for
k = 150, and the words in Tables 1, and 2, 3 are
from randomly selected lexicons (other lexicons
had similar characteristics).

4.1 Consumer Financial Protection Bureau
(CFPB) Complaints

Setup. We consider 189,486 financial complaints
publicly filed with the Consumer Financial Pro-
tection Bureau (CFPB)2. The CFPB is a product
of Dodd-Frank legislation which solicits and ad-
dresses complaints from consumers regarding a
variety of financial products: mortgages, credit re-
ports, etc. Some submissions are handled on a
timely basis (< 15 days) while others languish.

We are interested in identifying salient words
which help push submissions through the bureau-
cracy and obtain timely responses, regardless of
the specific nature of the complaint. Thus, our
target variable is a binary indicator of whether
the complaint obtained a timely response. Our

2These data can be obtained from https:
//www.consumerfinance.gov/data-research/
consumer-complaints/

confounds are twofold, (1) a categorical variable
tracking the type of issue (131 categories), and (2)
a categorical variable tracking the financial prod-
uct (18 categories). For the proposed DR+BOW,
DR+ATTN, A+BOW, and A+ATTN models, we
set |e| to 1, 64, 1, and 256, respectively.
Results. In general, this seems to be a tractable
classification problem, and the confounds alone
are moderately predictive of timely response
(XEC = 1.06). The proposed methods appear
to perform the best, and DR+BOW achieved the
largest performance/correlation ratio (Figure 3).

Figure 3: Predictive performance (XEC −XEL(T ),C)
and average confound correlation (V/rpb) of lexicons
generated via our proposed algorithms and a variety of
methods in current use. The numbers to the right of
each bar indicate the number of winning bootstrap tri-
als.

DR+BOW MI RR R

. secondly being 100
ma’am forget 6 fargo
multiple focus issued wells
guide questions agreement .
submitted battle starting fdcpa
’nt vs 150.00 angry
honor certainly question owe
, contained in hipaa
xx/xx/xxxx the . file
ago be agreement across

Table 1: The ten highest-scoring words in lexicons gen-
erated by Deep Residualization + BOW (DR+BOW),
Mutual Information (MI), Residialized Regression
(RR), and regression (R).
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We obtain further evidence upon examining
the lexicons selected by four representative algo-
rithms: proposed (DR+BOW), a well-performing
baseline (RR), and two naive baselines (R, MI)
(Table 1). MI’s words appear unrelated to the
confounds, but don’t seem very persuasive, and
our results corroborate this: these words failed
to add predictive power over the confounds (Fig-
ure 3). On the opposite end of the spectrum, R’s
words appear somewhat predictive of the timely
response, but are confound-related: they include
the FDCPA (Fair Debt Collection Practices Act)
and HIPAA (Health Insurance Portability and Ac-
countability Act), which are directly related to the
confound of financial product.

The top-scoring words in RR’s lexicon include
numbers (“6”, “150.00”) and words that suggest
that the issue is ongoing (“being”, “starting”). On
the other hand, the words of DR+BOW draw on
the rhetorical devices of ethos by respecting the
reader’s authority (“ma’am”, “honor”), and logos
by suggesting that the writer has been proactive
about solving the issue (“multiple”, “submitted”,
“xx/xx/xxx”, “ago”). These are narrative qualities
that align with two of the persuasion literature’s
“weapons of influence”: reciprocation and com-
mitment (Kenrick et al., 2005). Several algorithms
implicitly favored longer (presumably more de-
tailed) complaints by selecting common punctu-
ation.

4.2 University Course Descriptions

Setup. We consider 141,753 undergraduate and
graduate course offerings over a 6-year period
(2010 - 2016) at Stanford University. We are in-
terested in how the writing style of a description
convinces students to enroll. We therefore choose
log(enrollment) as our target variable and control
for non-linguistic information which students also
use when making enrollment decisions: course
subject (227 categories), course level (26), num-
ber of requirements satisfied (7), whether there is
a final (3), the start time, and the combination of
days the class meets (26). All except start time are
modeled as categorical variables. For the proposed
DR+BOW, DR+ATTN, A+BOW, and A+ATTN
models, we set |e| to 1, 100, 16, and 64, respec-
tively.
Results. This appears to be a tractable regression
problem; the confounds alone are highly predic-
tive of course enrollment (MSEC = 3.67). (Fig-

A+ATTN R OR

future programming summer
instructor required interpretation
eating prerequisites stability
or computer attitude
doing management optimization
guest introduction completion
sexual chemical during
culture applications labor
research you production
project clinical background

Table 2: The ten highest-scoring words in lexicons gen-
erated by Adversarial + ATTN (A+ATTN), Regression
(R), and Log-Odds Ratio (OR).

ure 4). A+ATTN performed the best, and in gen-
eral, the proposed techniques produced the most-
predictive and least-correlated lexicons. Interest-
ingly, Residualization (RR) and Regression with
Confounds (RC) appear to outperform the Deep
Residualization selector.

In Table 2 we observe stark differences between
the highest-scoring words of a proposed technique
(A+ATTN) and two baselines with opposing char-
acteristics (R, OR) (Table 2). Words chosen via
Regression (R) appear predictive of enrollment,
but also related to the confounds of subject (“pro-
gramming”, “computer”, “management”, “chemi-
cal”, “clinical”) and level (“required”, “prerequi-
sites”, “introduction”).

Figure 4: Course description comparative perfor-
mance.

Log-Odds Ratio (OR) selected words which
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A+BOW RR

word transliteration translation word transliteration translation

ます masu polite suffix ７５
プロテイン purotein protein ５
お oh polite prefix ニチバン nichiban adhesive company
粒 tsubu grain ４
栄養 eiyō nutrition 群 gun group
ご go polite prefix サイズ saizu size
配合 haigō formulation 摂取 sesshu intake
デザート dezāto dessert 枚 mai sheet
錠 jō tablet 化学 kagaku chemical
大豆 daizu soy ミニ mini mini

Table 3: The ten highest-scoring words in lexicons generated by Adversarial Selection + BOW (A+BOW) and
Residualization (RR).

appear unrelated to both the confounds and
enrollment. The Adversarial Selector (A+ATTN)
selected words which are both confound-
decorrelated and predictive of enrollment. Its
words appeal to the concept of variety (“or”,
“guest”), and to pathos, in the form of universal
student interests (“future”, “eating”, “sexual”).
Notably, the A+ATTN words are also shorter
(mean length of 6.2) than those of R (9.3) and
OR (9.0), which coincides with intuition (students
often skim descriptions) and prior research (short
words are known to be more persuasive in some
settings (Pratkanis et al., 1988)). The lexicon also
suggests that students prefer courses with research
project components (“research”, “project”).

4.3 eCommerce Descriptions
Setup. We consider 59,487 health product listings
on the Japanese e-commerce website Rakuten3.
These data originate from a December 2012 snap-
shot of the Rakuten marketplace. They were tok-
enized with the JUMAN morphological analyzer
(Kurohashi and Nagao, 1999).

We are interested in identifying words which
advertisers could use to increase their sales, re-
gardless of the nature of the product. Therefore,
we set log(sales) as our target variable, and con-
trol for an item’s price (continuous) and seller (207
categories). The category of an item (i.e. tooth-
brush vs. supplement) is not included in these
data. In practice, sellers specialize in particular
product types, so this may be indirectly accounted
for. For the proposed DR+BOW, DR+ATTN,
A+BOW, and A+ATTN models, we set |e| to 4,

3These data can be obtained from https://rit.
rakuten.co.jp/data_release/

Figure 5: E-commerce comparative performance.

64, 4, and 30, respectively.
Results. This appears to be a more difficult pre-
diction task, and the confounds are only slightly
predictive of sales (MSEC = 116.34) (Figure 5).
Again, lexicons obtained via the proposed meth-
ods were the most successful, achieving the high-
est performance with the lowest correlation (Ta-
ble 3). When comparing the words selected by
A+BOW (proposed) and RR (widely used and
well performing), we find that both draw on the
rhetorical element of logos and demonstrate in-
formativeness (“nutrition”, “size”, etc.). A+BOW
also draws on ethos by identifying word stems as-
sociated with politeness. This quality draws on the
authority of shared cultural values, and has been
shown to appeal to Japanese shoppers (Pryzant
et al., 2017). On the other hand, RR selected sev-
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eral numbers and failed to avoid brand indicators:
“nichiban”, a large company which specializes in
medical adhesives, is one of the highest-scoring
words.

5 Related Work

There are three areas of related work which we
draw on. We address these in turn.
Lexicon induction. Some work in lexicon in-
duction is intended to help interpret the subjective
properties of a text or make make machine learn-
ing models more interpretable, i.e. so that prac-
titioners can know why their system works. For
example, Taboada et al. (2011); Hamilton et al.
(2016) induce sentiment lexicons, and Moham-
mad and Turney (2010); Hu et al. (2009) induce
emotion lexicons. Practitioners often get these
words by considering the high-scoring features of
regressions trained to predict an outcome (McFar-
land et al., 2013; Chahuneau et al., 2012; Ran-
ganath et al., 2013; Kang et al., 2013). They ac-
count for confounds through manual inspection,
residualizing (Jaeger et al., 2009; Baayen et al.,
2010), hierarchical modeling (Bates, 2010; Gus-
tarini, 2016; Schillebeeckx et al., 2016), log-odds
(Szumilas, 2010; Monroe et al., 2008), mutual in-
formation (Berg, 2004), or matching (Tan et al.,
2014; DiNardo, 2010). Many of these methods
are manual processes or have known limitations,
mostly due to multicollinearity (Imai and Kim,
2016; Chatelain and Ralf, 2012; Wurm and Fisi-
caro, 2014). Furthermore, these methods have not
been tested in a comparative setting: this work is
the first to offer an experimental analysis of their
abilities.
Causal inference. Our methods for lexicon in-
duction have connections to recent advances in the
causal inference literature. In particular, Johans-
son et al. (2016) and Shalit et al. (2016) propose
an algorithm for counterfactual inference which
bear similarities to our Adversarial Selector (Sec-
tion 3.2), Imai et al. (2013) advocate a lasso-based
method related to our Deep Residualization (DR)
method (Section 3.1), and Egami et al. (2017) ex-
plore how to make causal inferences from text
through careful data splitting. Unlike us, these pa-
pers are largely unconcerned with the underlying
features and algorithmic interpretability. Athey
(2017) has a recent survey of machine learning
problems where causal modeling is important.
Persuasion. Our experiments touch on the mech-

anism of persuasion, which has been widely stud-
ied. Most of this prior work uses lexical, syntac-
tic, discourse, and dialog interactive features (Stab
and Gurevych, 2014; Habernal and Gurevych,
2016; Wei et al., 2016), power dynamics (Rosen-
thal and Mckeown, 2017; Moore, 2012), or diction
(Wei et al., 2016) to study discourse persuasion as
manifested in argument. We study narrative per-
suasion as manifested in everyday decisions. This
important mode of persuasion is understudied be-
cause researchers have struggled to isolate the “ac-
tive ingredient” of persuasive narratives (Green,
2008; De Graaf et al., 2012), a problem that the
formal framework of deconfounded lexicon induc-
tion (Section 2) may help alleviate.

6 Conclusion

Computational social scientists frequently develop
algorithms to find words that are related to some
information but not other information. We en-
coded this problem into a formal task, proposed
two novel methods for it, and conducted the first
principled comparison of algorithms in the space.
Our results suggest the proposed algorithms of-
fer better performance than those which are cur-
rently in use. Upon linguistic analysis, we also
find the proposed algorithms’ words better reflect
the classic Aristotelian modes of persuasion: lo-
gos, pathos, and ethos.

This is a promising new direction for NLP re-
search, one that we hope will help computational
(and non-computational!) social scientists better
interpret linguistic variables and their relation to
outcomes. There are many directions for future
work. This includes algorithmic innovation, the-
oretical bounds for performance, and investigat-
ing rich social questions with these powerful new
techniques.

7 Appendix: Causal Interpretation of the
Informativeness Coefficient

Recall the definition of I(L):

I(L) = E
[
Var
[
E
[
Y
∣∣L(T ), C

] ∣∣C
]]

Here, we discuss how under standard (albeit
strong) assumptions that are often made to iden-
tify causal effects in observational studies, we can
interpret I(L) with L(T ) = T as a measure of the
strength of the text’s causal effect on Y .

Following the potential outcomes model of Ru-
bin (1974) we start by imagining potential out-
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comes Y (t) corresponding to the outcome we
would have observed given text t for any possible
text t ∈ T ; then we actually observe Y = Y (T ).
With this formalism, the causal effect of the text
is clear, e.g., the effect of using text t′ versus t is
simply Y (t′)− Y (t).

Suppose that T , our observed text, takes on
values in T with a distribution that depends
on C. Let’s also assume that the observed
text T is independent of the potential outcomes
{Y (t)}t∈T , conditioned on the confounders C
(Rosenbaum and Rubin, 1983). So we know
what would happen with any given text, but don’t
yet know which text will get selected (because
T is a random variable). Now if we fix C and
there is any variance remaining in Y (T ) (i.e.
E
[
Var
[
Y (T )

∣∣C, {Y (t)}t∈T
]]
> 0) then the text

has a causal effect on Y .
Now we assume that Y (t) = fc(t) + ε, mean-

ing that the difference in effects of one text t rel-
ative to another text t′ is always the same given
fixed confounders. For example, in a bag of words
model, this would imply that switching from using
the word “eating” versus “homework” in a course
description would always have the same impact on
enrollment (conditionally on confounders). With
this assumption in hand, then the causal effects of
T , E

[
Var
[
Y (T )

∣∣C, {Y (t)}t∈T
]]

, matches I(L)
as described in equation (1) (Imbens and Rubin,
2015). In other words, given the same assumptions
often made in observational studies, the informa-
tiveness coefficient of the full, uncompressed text
in fact corresponds to the amount of variation in Y
due to the causal effects of T .
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Abstract

This paper describes a novel application of
NLP models to detect denial of service attacks
using only social media as evidence. Individ-
ual networks are often slow in reporting at-
tacks, so a detection system from public data
could better assist a response to a broad at-
tack across multiple services. We explore NLP
methods to use social media as an indirect
measure of network service status. We de-
scribe two learning frameworks for this task:
a feed-forward neural network and a partially
labeled LDA model. Both models outperform
previous work by significant margins (20% F1
score). We further show that the topic-based
model enables the first fine-grained analysis of
how the public reacts to ongoing network at-
tacks, discovering multiple “stages” of obser-
vation. This is the first model that both de-
tects network attacks (with best performance)
and provides an analysis of when and how the
public interprets service outages. We describe
the models, present experiments on the largest
twitter DDoS corpus to date, and conclude
with an analysis of public reactions based on
the learned model’s output.

1 Introduction

Distributed Denial of Service (DDoS) attacks have
become more frequent and more severe in their
impact. Coordinated attacks across several ser-
vices are now common, yet there are fewer meth-
ods to detect multi-network events. Research into
detecting and preventing single attacks focuses on
direct evidence based on characteristics of a net-
work itself, such as monitoring abnormal traffic.
This paper instead investigates an aytpical source
for multiple attacks with indirect evidence: social
media text. Do users of attacked systems post on
social media? What can be learned from com-
ments? Can NLP learning models extract enough
information from user posts to detect attacks? Pre-

vious work on attack detection with social media
is sparse, and focused on detecting trending words.
This paper is the first to learn models of language
without ‘attack’ dictionaries and seed words. The
goal is the real-time detection of attacks without
network data. Our secondary goal is to illustrate
NLP applications to computer security topics.

Research on information extraction from social
media has shown that many types of events in the
world can be reliably detected from the language
that users post. Several approaches have been
shown effective in identifying events like earth-
quakes (Sakaki et al., 2010), concerts and prod-
uct releases (Ritter et al., 2012), and other natural
disasters (Neubig et al., 2011). Detecting DDoS
attacks is not too dissimilar from these goals. An
attack is a real event in the world, and it takes a
community by surprise. This paper thus adopts
ideas from NLP, but applies them to the unique
application of DDoS detection.

Social media is obviously not the only way (nor
the most direct) to monitor network services and
attacks. There are several commercial services
that directly measure outages, such as norsecorp1.
These perform direct monitoring of network re-
sponse. We do not propose social media as a bet-
ter alternative, but rather as an alternative that en-
hances direct monitoring. Social media also brings
its own unique benefits. For instance, social media
does not require a priori knowledge of which net-
works should be monitored. It can also help detect
“soft” outages like slowdowns and account block-
ages, things that direct monitoring cannot always
detect. Therefore, this paper is not suggesting a
replacement, but rather a new source of valuable
information. It is a monitoring architecture that is
not constrained by a predefined list of services.

Our goal in using social media is driven by the

1http://map.norsecorp.com
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hypothesis that as a network attack unfolds, its
users go through a series of observational stages
that can be automatically learned and detected.
The first stage is a state of confusion and basic
symptom observation, as seen in the following real
tweets from Twitter:

hey linode what’s happening? I can’t login, my
servers are down and you don’t reply on mails?

is xbox live experiencing some issues?

These tweets don’t discuss an attack even though
that is what was occurring. Later stages then de-
velop into direct commentary as the community
coelesces to a belief that an attack is the cause:

Breaking: Band of America website rumored to
be under DDoS attack.

Citi Bank & BofA under Massive DDoS attack

We show that our proposed LDA-based model
can effectively identify these stages. There is very
little previous work in this area, and that which
exists focuses entirely on the second stage. Ritter
et al. (2015) proposed models that include hard-
coded keywords like ‘DDoS’ and phrases like
‘<entity> is down’. Their work helped identify
attacks with social media, but these identifications
tend to be after the news has already reported
it. Early symptoms that are discussed don’t use
words like ‘DDoS’ because the conclusion has not
yet been drawn. We thus propose the first learn-
ing models that identify early attack discussions:
the first is a neural network, and the second is a
broader topic model that provides better insight
into the evolution of an attack.

Finally, our last goal is to model the themes
and topics that users notice during network at-
tacks. This is a somewhat subjective analysis, but
it is backed by an empirical model trained from
real-world data. Not only do we empirically pro-
duce state-of-the-art results, 25% gains over pre-
vious work, we also show that our detection sys-
tem learns topics of discussion previously uninves-
tigated in the security field.

The core contributions of this paper are as fol-
lows: (1) a 25% improvement over previous work
on attack detection, (2) we present the first neu-
ral network results on detecting network attacks
from social media, (3) we present a partially la-
beled LDA model for detecting network attacks
with state-of-the-art results, (4) the PLDA enables
the first analysis of the evolution of an attack as
seen through its users, and (5) we make available
the largest list of historical DDoS attacks to date.

2 Previous Work

The most relevant line of research to this paper is
event extraction from social media. Space pro-
hibits describing all work; the major approaches
vary in levels of supervision. Ritter et al. (2012)
used a Latent Dirichlet Allocation model to iden-
tify events in text without labeled data. They
showed you can cluster and extract events like
concerts, movies, and performances into a calen-
dar. General event detection from social media
has continued in several threads (Benson et al.,
2011; Popescu et al., 2011; Anantharam et al.,
2015; Wei, 2016; Zhou et al., 2017). Guo et al.
(2013) link tweets to news stories using an anno-
tated dataset. Sakaki et al. (2010) detect earth-
quake events by monitoring tweets with keywords
like ‘earthquake’. This is similar in goal to our
paper, but different in approach and brittle in its
application. We crucially do not assume that users
use known keywords and phrases.

We take inspiration from the thread of work
on flu detection (Lamb et al., 2013; Broniatowski
et al., 2013). Their work leverages mentions of
an event (‘caught’, ‘sick’, ‘flu’), and then uses hu-
man annotators to label these mentions as relevant
to the desired event (flu). We also identify men-
tions of an event, but we crucially differ by not
knowing event words a priori. We believe a typical
user does not know what a DDoS attack is, so we
cannot assume certain language will be used. A
major contribution of this work is the first analysis
of how the (perhaps uninformed) public perceives
DDoS attacks as they occur.

The first work (to our knowledge) on attack de-
tection from Twitter was Motoyama et al. (2010).
They tracked a single phrase “X is down” and
experimented with whether outages could be de-
tected from its counts. They use a trend detection
formula to notice increases of this one phrase to
trigger an alert. We compare against this strong
baseline later. The work by Kergl et al. (2016)
uses social media to identify users who discuss
zero-day exploits. While not directly related to
the work in this paper, its success reinforces the
hypothesis that social media contains useful data
for computer security monitoring.

The main thread in this area is the learning
model from Ritter et al. (Ritter et al., 2015) and
follow-on work (Kergl, 2015; Chang et al., 2016).
They proposed a weakly supervised learner to
identify cybersecurity events from Twitter. They
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Attacked Services (dd-mm-yy)
Ancestry.com 16-06-14 Lib. Congress 18-07-16
BBC Website 14-03-15 Newsweek 29-09-16
Call of Duty 20-09-14 Planned Parent. 29-07-15
DNS 21-10-16 Reddit 19-04-13
Github 27-03-15 Spamhaus 18-03-13

Table 1: A sample of 10 DDoS events in our dataset. A
20 day span is collected around each attack date.

collected tweets that contain the word ‘DDoS’,
and then collected a set of known network attack
days. The known days provided a training set from
which they trained this weakly-supervised clas-
sifier on the ‘DDoS’ tweets. An important con-
straint in their approach, similar to flu research, is
the need to use a seed word(s). Seed words enable
the collection of a very relevant training set, but
it limits the system because it depends on social
media posts to use these words, and more impor-
tantly, to actually know that a DDoS is happening.
We instead hypothesize that attacks are preceded
by users who first observe symptoms of the attack,
and don’t directly discuss a DDoS or use related
attack words. Our analysis shows we match sev-
eral orders of magnitude more tweets.

3 Datasets

We manually created a dataset of historical DDoS
attacks that include the entity attacked and the date
of attack. Most past attacks are difficult to identify
hour ranges, so we used a full 24-hour day as our
granularity. We included 6 attacks with sufficient
volume from previous work (Ritter et al., 2015),
but we grew this set to 50 attacks based on our own
investigations into recent years, mostly through
web search results for ‘DDoS attacks’. Table 1
lists some of these for illustration of its diversity.
The full list is at www.usna.edu/Users/cs/
nchamber/data/ddos/

For each of these known attacks, we collected
tweets that contained the attacked entity’s name
in a 20-day period: 17 days prior to the attack,
1 day on the attack, and 2 days following. We
wanted a sufficient lead up to the attack to include
previous work’s trending model (Motoyama et al.,
2010), and to provide non-attack days for evalua-
tion. The days surrounding the known attack date
are labeled NOT-ATTACK, and the attack day it-
self as ATTACK. Sometimes an attack lasted longer
than a single day, in which case the days following
were also labeled as ATTACK, as appropriate.

The historical attacks span the years 2012-2016.

We split the data so that years 2012, 2015, and
2016 comprise the training set, 2013 is the de-
velopment set, and the year 2014 is the test set
only used for computing final experiment num-
bers. Splitting on years (rather than months or
entities) guards against test set pollution into our
training set. The evaluation on the 2014 test set is
thus an unbiased experiment because nothing from
the entire year is included in training. For the ex-
periments, we use the union of training and devel-
opment to train the final models that are then used
to evaluate on the test year 2014. There are 200
test days in 2014, 50 in dev, and ˜500 in training.

The full dataset consists of 50 attack days over
approximately 800 days and 2 million tweets. The
only previous work on this area used seed words to
pull out around 9-10 thousand tweets. Our dataset
is more than 2 orders of magnitude larger. The
reason is due to the larger number of attacks we
collected, but notably our tweets are more diverse
and varied because we don’t require hard-coded
target words and phrases to match.

Formally, the dataset is 800 labeled datums:

di = (Entity,Date, Tweets, Label) (1)

where di ∈ D and D is the set of all days. Entity
is the attacked network service, Date is the cal-
endar date, and Tweets are all tweets on that date
mentioning that entity. Label is a binary variable:
ATTACK or NOT-ATTACK. Even though the day
following an attack often includes attack discus-
sion, it is still labeled NOT-ATTACK. Only if the at-
tack was ongoing is the next day labeled ATTACK.

4 Models

Two primary goals motivate the models we pro-
pose and evaluate. The first goal is the automatic
classification of attack and non-attack events. We
propose the first neural network for this task, and
move on to a generative model based on topic
models. We evaluate their relative performance
and compare against baselines from prior work.

The second goal is a model that enables anal-
ysis of user behavior during the evolution of an
attack. What do people notice? What do people
focus on? These are important questions for the
security community that NLP models can help an-
swer. We present a brief subjective study using the
generative model, show how learned topics change
over time, and discuss the data’s implications.

1628



4.1 Task Formulation
As discussed in Section 3, our input is labeled
datums: di = (Entity,Date, Tweets, Label).
Each datum in the training set has a known label
of ATTACK or NOTATTACK based on our histori-
cal knowledge of which entities were attacked on
which days. We thus formulate the task as a binary
classification over 24 hour days. We train models
with the labeled training set, and report final num-
bers on test. In order to tune parameters, we use
the development set to run grid searches over the
models’ parameters. The test set was always ex-
cluded from these until the final experiments.

4.2 Logistic Regression
Our first baseline model is logistic regression with
word-based features. The following were used:

Unigrams. All words in the tweets were lower-
cased and punctuation stripped.
Bigrams. All bigrams are included & lowercased.
Start and stop symbols are used for tweet bound-
aries, and punctuation included as separate tokens.
Bigram/Trigram Patterns. Since we know the
entity, we parameterize the entity’s mention in
each tweet, and build bigrams and trigrams around
them. For instance, the phrase “reddit is slow” is
included as a trigram feature “X is slow”. This
allows learning across instances, so “spamhaus is
slow” is included as the same feature.

We use the Stanford CoreNLP toolkit with de-
fault settings to train the model. We removed all
features that occurred only once. This model is
referred to as LogisticReg below.

4.3 Neural Network Models
Neural networks have made significant advance-
ments in many NLP areas. Two of the main rea-
sons for this are (1) improved representation of
the features, and (2) stacking of hidden layers pro-
vides a better data fit.

We experimented with two feed-forward neural
networks using word embeddings. We first trained
a simple one-layer neural network that is similar to
logistic regression, but with embeddings as input
(instead of frequency counts). This is the Neural-
1 model. We then trained a two-layer network with
hidden layer h of size m, and a softmax output
layer to the binary label task. This is the Neural-2
model.

The input to both of these models is as a Con-
tinuous Bag of Words (CBOW) model (Mikolov

et al., 2013). Unlike logistic regression, the only
features input to the network are unigrams (a
tweet’s individual tokens). Each unigram u has
a word embedding xu of length n, and they are all
input as a weighted average. The reader is referred
to Mikolov (2013) for more CBOW background.

We do not use pre-trained word embeddings,
but instead learn them from our data. The embed-
ding values are initialized randomly [0, 1] from the
uniform distribution. We used DyNet as our mod-
eling toolkit (Neubig et al., 2017).

Overfitting is often a problem with neural net-
works, and we quickly found our models doing
so. We thus applied 0.5 dropout for regularization
(Srivastava et al., 2014). We experimented with
other dropout values but did not see reliable gains
or losses, so kept it at the typical 0.5 value.

We trained other networks without word em-
beddings, but instead “one-hot vectors” where the
vector is the size of the vocabulary. This model did
not perform as well and required more memory,
so we do not report its results. Additional hidden
layers did not improve either, as expected from the
observed overfitting.

4.4 Constrained Topic Modeling

While the neural models above improve over pre-
vious work and baselines, they are difficult to in-
terpret what is actually learned. One of the ap-
plications of this paper is to analyze what people
discuss during network attacks. The hidden lay-
ers and word embeddings are opaque and difficult
from which to draw conclusions.

In contrast, a generative model that represents
words explicitly as probability distributions allows
for easier post-analysis. It also may generalize bet-
ter to this task because training data is more sparse
and noisy. While we have 2 million tweets, orders
of magnitude more than previous work, this is still
modest in size with 800 days. To make matters
worse, the dataset is biased toward NOTATTACK.
95% of the training set is NOTATTACK, leaving
few training instances that are actually labeled as
ATTACK. As shown in the next section, the neu-
ral models tend to overfit to these small signals.
Further, we observed that online discussions go
through different stages (Section 5.4), and the neu-
ral model merges stages to its detriment.

We thus propose a model inspired by Latent
Dirichlet Allocation (LDA) (Blei et al., 2003), but
a model carefully designed to the unique applica-
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tion at hand. For readers unfamiliar with LDA, the
model can be thought of as a clustering algorithm,
and an overview of LDA and its variants can be
found in Blei’s survey (Blei, 2012).

4.4.1 LDA for Security Events
A traditional LDA model can learn general top-
ics on our dataset with the hope that attack topics
bubble up. Our initial experiments found this to
be insufficient and the non-attack days were full
of distracting topics.

For the goal of analyzing attack discussion, we
need to encourage the LDA model to learn attack-
specific topics. We draw heavily from Labeled
LDA (Ramage et al., 2009). Each word is assigned
a topic as in standard LDA, but topics can have a
known label from the document. This is relevant
to this paper because we know which days are at-
tacks (in training). Thus, when a tweet is on an at-
tack day, we assign the tweet a label ATTACK, and
bias the Labeled LDA learner to assign its words
to an attack-related topic.

What labels do we have in our data? ATTACK

and NOTATTACK labels are first, but we also know
which entities are mentioned in tweets, providing
labels to learn entity-specific topics. We can la-
bel a tweet about reddit as REDDIT, and bias the
Labeled LDA algorithm to assign a reddit-specific
topic. The following tweet is an example:

reddit isn’t responding maybe DNS is wrong

This tweet mentions two entities (reddit and dns),
and it occurs on a known attack day for reddit in
training. This tweet thus has 3 labels (attack, red-
dit, dns). The tweet’s tokens can draw from 1 of 3
topics, which is good but a bit constraining. One
of the premises of this paper is that people discuss
attacks on social media in a variety of ways (not
just one topic). They might discuss hackers, the
DDoS attack itself, or just general downtime. The
vanilla Labeled LDA (Ramage et al., 2009) is then
too strict, but there is a multi-topic extension in
the Partially Labeled Dirichlet Allocation (PLDA)
(Ramage et al., 2011). PLDA is a version that in-
stead of having one topic per label, it learns Nl

topics for each label l. For our example tweet, to-
kens can now be labeled with 1 of

∑
lNl topics.

We use Nattack = 5 and Nreddit = Ndns = 5
in our experiments2, so this tweet would sample
from 15 topics.

2This is about reddit, but each company has its own 5 top-
ics. Experiments have 40 companies for total 200 topics.

Formally, let a tweet be defined as a document
d with words w ∈ Wd. Each document has a set
of labels Λ. This set Λ always contains the BACK-
GROUND label to capture general twitter conver-
sations. Further, if a network or company is men-
tioned in the document, Λ also contains the com-
pany’s label (e.g., MICROSOFT). Finally, the label
ATTACK is added to Λ if d is an attack day andWd

includes the attacked network’s name. Each word
w ∈ d has a latent label l and a latent topic zl. For
readers familiar with plate diagrams, this diagram
is shown in Figure 1. Readers will notice its simi-
larity to Ramage et al. (2009) with the addition of
a new β parameter and the important change that
the attack label is observed in training, but unob-
served in test. When observed (in training), we
favor assigning words to attack topics. When un-
observed, we want to dissuade but still allow for it
when the text strongly favors attack topics. To this
end, our PLDA differs from standard use in that ψ
is generated from a non-symmetric dirichlet with
hyperparameters v (a vector of length

∑
lNl) de-

fined as:

vi =

{
α, if i 6∈ AttackTopics
β, if i ∈ AttackTopics & attack 6∈ Λ

β ∗ 10, if i ∈ AttackTopics & attack ∈ Λ

This is a non-symmetric dirichlet prior that en-
ables attack labels to be chosen (β) without an
observed attack day. Every tweet must be able
to sample from attack topics because we need to
label future unknown (unlabeled) attacks. The
PLDA in the literature assumes full labeling at all
times, but our task is more difficult. When AT-
TACK is observed, its smoothing parameter’s value
is β∗10 because of our heightened certainty, rather
than simply β when unobserved.

The number of attack topicsNa and background
topics Nb was chosen empirically from dev set
performance. For simplicity and to avoid overfit-
ting, we chose a single number M = 5 of com-
pany topics ∀c Nc = M that is the same across all
companies and also Nattack = M . Only Nb was
varied in our parameter tuning stage to discover
how many background topics were necessary.

Space prohibits a full mathematical description
of PLDA, so we direct the reader to Ramage et
al. (2011) for details. Those unfamiliar with the
above formalities can think of it as a soft clustering
of words that is accomplished through sampling.
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Figure 1: Plate diagram of the partially labeled topic
model (PLDAttack). Dotted boxes are example values
of a non-attack tweet discussing Reddit.

4.4.2 Inference and Classification
Inference in this model is performed with col-
lapsed Gibbs sampling, sampling l and zl in turn
while holding all other variables constant. A
single iteration requires looping over the entire
dataset and assigning labels (topics) to each token
on each day. We repeat this process until conver-
gence of the joint probability of the model. After
convergence, we hold distributions θ, ψ constant
and run 20 more sampling iterations. Each word is
then assigned the topic that was sampled the most
in the 20 iterations.

Once sampling completes, this PLDAttack
model provides us two very useful tools. First,
the assigned topics enables us to use it as a classi-
fier for our target task: DDoS detection from so-
cial media. Second, the topics themselves allow
us to create timelines of discussions about DDoS
attacks. This provides a higher-level analysis of
what people say (Learned Topics).

With all words labeled, we want the model to
make a prediction about an entity e on a given
day d. Was the entity attacked3? We compute
the probability of an attack using the labels them-
selves without any modification:

P (attack|d) =

∑
w∈Wd

1{zw ∈ Attack}
|Wd|

(2)

where |Wd| is the number of words in all tweets
on day d and Attack is the set of attack topics.
1{x} is the indicator function. If this probability
is greater than a threshold, the entity/day is labeled
as an attack. Otherwise, it is not an attack.

The cutoff threshold depends on a typical prob-
ability that is assigned to tweets, and how frequent

3Or, is the entity currently under attack? This paper is an
early detection attempt, leaving live-tracking to future work.

an entity is actually mentioned on a given day.
We use the development set to identify the opti-
mal cutoff to maximize our F1 score.

5 Evaluation and Results

All experiments are conducted on the dataset de-
scribed in Datasets. The task is a binary classifi-
cation of ATTACK or NOTATTACK given a day of
tweets. All parameters are optimized on the de-
velopment set: we treat attack days as known on
training days, but hidden from the development
and test days. We calculate F1 score on the de-
velopment attack days, and optimize parameters
using a basic grid search. For the final reported
results, we combine train+dev into one observed
training set, and the test set is now included in
sampling, but with unobserved attack days. Since
the PLDAttack model is probabilistic, all reported
numbers are an average of 10 independent runs.

We use ATTACK F1 as the main evaluation tar-
get; the harmonic mean between precision and re-
call. Applications overly concerned with miss-
ing attacks would optimize to recall R. We chose
F1 as a happy balance between a quality classifier
(good precision P ) and a useful classifier (good re-
call R). We report all three scores for both the AT-
TACK and NOTATTACK labels, but optimize to F1
during parameter search on the development set.

5.1 Trending Baselines

Entity Trending: This baseline follows the hy-
pothesis that a website under attack is mentioned
more than usual, and language analysis is not re-
quired. There is credence to this idea. Much of our
data includes a spike in discussion on the attack
day (however, some non-attack days show similar
frequency spikes). We model frequency trending
with an exponential decay function similar to that
in Motoyama et al. (2010). It uses an Exponen-
tially Weighted Moving Average:

At = α ∗ nt + (1− α) ∗At−1 (3)

where At is the EWMA of day t, nt is the number
of tweets on day t, and α determines how the cur-
rent day’s count affects the moving average. We
then need a threshold Tt to determine when nt is
trending. This is based on a moving deviation σ2:

Dt = nt −At−1 (4)
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Non-Attack Attack
P R F1 P R F1

Freq Baseline .99 .87 .92 .29 .83 .43
Motoyama’10 .97 .94 .95 .35 .58 .44
LogisticReg .97 .75 .85 .14 .67 .24
Neural-1 .96 .97 .96 .54 .47 .49
Neural-2 .97 .96 .96 .55 .53 .53
PLDAttack .96 .96 .96 .61 .52 .55

Table 2: Results on the held-out test set of 200 test
datums. Motoyama’10 is a trending phrase baseline.

σ2t = β ∗D2
t + (1− β) ∗ σ2n−1 (5)

Given this deviation, the threshold is then:

Tt = Mt−1 + ε ∗ σt−1 (6)

If nt > Tt for a day, we signal an ATTACK.

Pattern Trending: This modified baseline ex-
actly duplicates Motoyama et al. (2010). Their
approach looks for trending mentions that match
the pattern, ‘X is down’. The X is substituted with
the company’s name. We use the same equation
6, but frequency nt is defined as how many tweets
contain the pattern (instead of just ‘X’).

5.2 Experiment Results

The test set results for baselines and models are
shown in Table 2. All improvements are statis-
tically significant as indicated using McNemar’s
two-tailed test. The trending baselines have high
recall. When an attack is happening, the network
does indeed trend on social media. Precision is
low, however, because non-security events also
cause discussions. The neural models outperform
the baselines, and a hidden layer (Neural-2) is def-
initely needed for increased detection. The train-
ing set of 500 documents is still small for neural
training, though. Neural models have many pa-
rameters, and they overfit to our training set de-
spite regularization with dropout, reducing dimen-
sions, and removing hidden layers. Even still, we
improved over the Motoyama baseline by 20% rel-
ative F1.

PLDA (PLDAttack) showed the highest preci-
sion when classifying an ATTACK. Since its recall
was similar to the neural models, it produced the
best F1 score. This is a 25% relative improvement
over previous work. PLDAttack generalizes to the
dataset slightly better than the neural models.

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
issues after attack down down

working service ddos servers anonymous
having #news under site megaupload
issue hit twitter hacked takes
email attack dns website sites
update website attacks goes music

services hackers massive taking claims
problem #tech services web doj

Table 3: The top words in each of 5 attack topics
learned from the entire train/test dataset.

We now have two good approaches for detecting
attacks: neural models and topic modeling. The
remaining question is to analyze what people are
actually discussing, and it is here that topic mod-
eling further shines.

5.3 Learned Topics

The generative model is attractive because we can
use its learned distributions to produce insight into
what people discuss. It is more precise in our ex-
periments, and the neural models are simply too
difficult to analyze.

Table 3 shows some of the attack topics that
were learned on one of our model’s runs (results
are an average of training runs). As can be seen,
though topics are similar, they capture subtle dif-
ferences in what people discuss during an attack.
The first topic represents tweets about news sur-
rounding the event. These often contain links, and
show up after the attack is made known to news
agencies. In contrast, topic 3 is more general about
servers down and specific services such as email.
The fourth topic captures discussion about Anony-
mous and the claims that the group makes about
taking sites down. This was obviously learned
as an artifact of our data which contains several
Anonymous-related events.

One of the most useful analyses we can do with
this type of model is track topic evolution over
time. Figure 2 illustrates one attack day and the
dramatic jump of the attack topics. For simplicity,
we plot the 5 attack topics, and hide the others as
they are generally flatter across the bottom. This
shows that social media became aware on the 9th
hour, and only took one more hour to reach peak
intensity. What is perhaps most useful with a time-
line is understanding the impact of an attack on its
users. There is a fair bit of chatter the day follow-
ing the event, showing that people do not easily
forget such attacks and depending on the entity,
this could have effects on how people engage. We
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Figure 2: Attack topics during a 3-day period around a DDoS on the Planned Parenthood (PP) website. The attack
was announced at 5pm on July 29. The green topic spikes with PP’s first tweet about the DDoS. The yellow &
brown topics rise hours before the announcement. They decrease after the attack, similar to the red ‘news’ topic.

also see that Planned Parenthood (in this example)
delayed in announcing the attack. Whether this is
tactical or simply how long it took to realize the
event, PLDAttack offers a natural way to discover
just how soon patrons (or the public in general)
became aware of the issue without an announce-
ment. Decision making around these events might
be guided by helpful NLP tools such as this.

Finally, we note previous work tracked tweets
with ‘DDoS’ in it. There were ˜50 such tweets,
but our models instead matched tens of thou-
sands. Previous seed-based work cannot produce
this type of analysis.

5.4 Attack Stages in Online Discussions

To analyze the PLDAttack model’s strengths, we
split attack days into “spiking” chunks to identify
common stages of online chatter. We use topic
frequency spikes for Reddit to provide diversity
in analysis from the Planned Parenthood Figure 2.
Reddit is a community based website attacked on
April 19, 2013. We identified four distinct stages
of a DDoS attack on social media: (1) Symptom,
(2) Inference, (3) Confirmation, and (4) Resump-
tion. Figure 3 shows examples from each stage.

The Symptom Stage is the earliest sign of a
problem with user observations of the network ser-
vice. These aren’t comments about malicious at-
tacks, but statements about authentication prob-
lems and unresponsive websites. This is the most
difficult stage for a learner (false positives). Ser-
vices can have trouble for a variety of reasons, not

necessarily DDoS attacks. Some of our evalua-
tion data includes inoccuous problems, and these
caused a decrease in precision.

The Inference Stage includes guesses about the
cause of the previous stage’s symptoms. These
can and do intermix with the Symptom Stage. As
seen in the reddit examples in Figure 3, some of
the users wonder if they broke reddit rather than a
malicious act occurring. We also see an example
of someone guessing that it is a DDoS attack, but
without actual knowledge of it.

The Confirmation Stage occurs when the web-
site publicly announces an attack. Not all attacks
have a public announcement. Our error analysis
revealed this to be the cause of several false nega-
tives. When the public is not directly informed,
the learning algorithms must rely on symptoms
and inferences only. Previous work largely iso-
lated itself to attacks with a Confirmation Stage,
for instance, relying on the ‘DDoS’ keyword to be
present (Ritter et al., 2015).

Finally, the Resumption Stage is when the net-
work service is restored. The reddit examples
show people commenting on the resumption, and
making jokes about the previous situation. Simi-
lar to the Symptom Stage, this stage contributes to
false positives because it also occurs with normal
routine network problems, not just malicious acts.

5.5 Error Analysis

Identifying the four stages above led to a natu-
ral method of studying errors in our model. We
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Symptom Stage
Please come back Reddit! I’m bored.
Reddit won’t authenticate me. #lifeisover
Reddit is calling me a robot and won’t let me use it

Inference Stage
There is a DDoS attack on Reddit right now?
i broke reddit? wat? I think we crashed Reddit #wow

Confirmation Stage
wow turns out reddit is being DDoS attacked right now
Reddit is experiencing a malicious DDoS attack
Reddit’s reward for the Boston bombing? DDOS attacks.

Resumption Stage
@JpDeathBlade Reddit is back and in full force.
Reddit may be returning.
It’s ok, Reddit is back up. Go home, nothing to see here.

Figure 3: Examples from the four stages of a social
media response to DDoS attacks.

chose a sample of false positives and false nega-
tives, and manually looked at these incorrect deci-
sions to align common mistakes with how they re-
lated to the 4 stages. Looking at the false positives,
the majority are from the Symptom and Inference
Stages. Looking at false negatives, we found at-
tacks where the network did not make a public
statement, so the Confirmation Stage was missing.

These stages of course do not account for all of
the mistakes that are made. Precision is at 61%
in our best model, leaving room for improvement.
Other reasons for errors included distractor events.
For example, the Boston Bombing occurred near
the Reddit DDoS. The preceding days included
thousands of tweets talking about the attack in
Boston. This is obviously a different type of at-
tack, and the machine learners were led astray.

5.6 Robustness

A danger in many stochastic processes is finding
one good run and only reporting on those results.
We thus compare our our model across runs and
found the topics to be somewhat robust and steady.
We chose five random runs of the best perform-
ing model (the one from Figure 2) and focused on
the largest attack topic. Is this topic learned in all
runs? Not only was the same topic subjectively
learned in each run, we graphed the observed fre-
quency of this largest attack topic from 5 of the 10
runs. Not only did it maintain the same frequency,
but also the same general shape across the runs.
Space prohibits more illustration, but the graph
can be found on our data website: www.usna.
edu/Users/cs/nchamber/data/ddos/

6 Discussion

The core conclusion from our experiments is that
social media does indeed contain signals to iden-
tify DDoS attacks. Our proposed neural network
outperformed previous work (Motoyama et al.,
2010) by 20% F1, a very large margin. Even
though online users are an indirect source of evi-
dence, the 53% F1 from the neural network shows
that useful information can be extracted from text.

We further improved results with the genera-
tive PLDAttack model based on topic modeling,
achieving a smaller 4% increase over the neural
net but 25% over the prior trending approach. Al-
though neural networks have significant advan-
tages over LDA-based models, PLDAttack offers
advantages by enabling deeper analysis of what
people say, what topics are discussed, and how at-
tack discussions evolve over time on Twitter. For
instance, it enabled Figure 2 to illustrate the differ-
ent topics that people discuss during such an event.

Can these results be used in a DDoS detection
framework? We believe it can. PLDAttack recall
may not be as high as desired, but it can be in-
creased by adjusting the prediction cutoff proba-
bility λ. We empirically set the cutoff based on
dev set performance to optimize F1. However, a
detection system may desire to optimize recall at
the expense of precision, thus choosing a lower λ
and forcing the system to predict attacks more of-
ten. This would increase false positives, but with
a human in the loop, it is manageable to monitor.

This paper thus proposed two NLP models for
learning to identify DDoS attacks from social me-
dia without network data. They leverage indirect
evidence described by users when they post online
about service availability. By identifying the early
topics before public announcements, we see this
as an important step toward a broad-scale mon-
itoring system not dependent on individual net-
work reporting. We hope our datasets and models
encourage further efforts in NLP and Computer
Security. Models and data are available online:
www.usna.edu/Users/cs/nchamber/data/ddos/
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Abstract

Estimating label proportions in a target cor-
pus is a type of measurement that is useful
for answering certain types of social-scientific
questions. While past work has described a
number of relevant approaches, nearly all are
based on an assumption which we argue is
invalid for many problems, particularly when
dealing with human annotations. In this paper,
we identify and differentiate between two rele-
vant data generating scenarios (intrinsic vs. ex-
trinsic labels), introduce a simple but novel
method which emphasizes the importance of
calibration, and then analyze and experimen-
tally validate the appropriateness of various
methods for each of the two scenarios.

1 Introduction

A methodological tool often used in the social sci-
ences and humanities (and practical settings like
journalism) is content analysis – the manual cat-
egorization of pieces of text into a set of cate-
gories which have been developed to answer a sub-
stantive research question (Krippendorff, 2012).
Automated content analysis holds great promise
for augmenting the efforts of human annotators
(O’Connor et al., 2011; Grimmer and Stewart,
2013). While this task bears similarity to text cat-
egorization problems such as sentiment analysis,
the quantity of real interest is often the proportion
of documents in a dataset that should receive each
label (Hopkins and King, 2010). This paper tack-
les the problem of estimating label proportions in
a target corpus based on a small sample of human
annotated data.

As an example, consider the hypothetical ques-
tion (not explored in this work) of whether hate
speech is increasingly prevalent in social media
posts in recent years. “Hate speech” is a difficult-
to-define category only revealed (at least initially)
through human judgments (Davidson et al., 2017).

Note that the goal would not be to identify individ-
ual instances, but rather to estimate a proportion,
as a way of measuring the prevalence of a social
phenomenon. Although we assume that trained
annotators could recognize this phenomenon with
some acceptable level of agreement, relying solely
on manual annotation would restrict the number
of messages that could be considered, and would
limit the analysis to the messages available at the
time of annotation.1

We thus treat proportion estimation as a mea-
surement problem, and seek a way to train an in-
strument from a limited number of human anno-
tations to measure label proportions in an unanno-
tated target corpus.

This problem can be cast within a supervised
learning framework, and past work has demon-
strated that it is possible to improve upon a naı̈ve
classification-based approach, even without access
to any labeled data from the target corpus (For-
man, 2005, 2008; Bella et al., 2010; Hopkins and
King, 2010; Esuli and Sebastiani, 2015). How-
ever, as we argue (§2), most of this work is based
on a set of assumptions that we believe are in-
valid in a significant portion of text-based research
projects in the social sciences and humanities.

Our contributions in this paper include:

• identifying two different data-generating sce-
narios for text data (intrinsic vs. extrinsic la-
bels) and and establishing their importance to
the problem of estimating proportions (§2);

• analyzing which methods are suitable for
each setting, and proposing a simple alterna-
tive approach for extrinsic labels (§3); and

• an empirical comparison of methods that val-
idates our analysis (§4).

1For additional examples see Grimmer et al. (2012), Hop-
kins and King (2010), and references therein.
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Complicating matters somewhat is the fact that
annotation may take place before the entire col-
lection is available, so that the subset of instances
that are manually annotated may represent a bi-
ased sample (§2). Because this is so frequently the
case, all of the results in this paper assume that we
must confront the challenges of transfer learning
or domain adaptation. (The simpler case, where
we can sample from the true population of inter-
est, is revisited in §5.)

2 Problem Definition

Our setup is similar to that faced in transfer learn-
ing, and we use similar terminology (Pan and
Yang, 2010; Weiss et al., 2016). We assume that
we have a source and a target corpus, comprised
of NS and NT documents respectively, the latter
of which are not available for annotation. We will
represent each corpus as a set of documents, i.e.,
X(S) = 〈x(S)

1 , ...,x
(S)
Ns
〉, and similarly for X(T ).

We further assume that we have a set of K mu-
tually exclusive categories, Y = {1, . . . ,K}, and
that we wish to estimate the proportion of doc-
uments in the target corpus that belong to each
category. These would typically correspond to a
quantity we wish to measure, such as what frac-
tion of news articles frame a policy issue in a par-
ticular way, what fraction of product reviews are
considered helpful, or what fraction of social me-
dia messages convey positive sentiment. Gener-
ally speaking, these categories will be designed
based on theoretical assumptions, an understand-
ing of the design of the platform that produced the
data, and/or initial exploration of the data itself.

In idealized text classification scenarios, it is
conventional to assume training data with already-
assigned gold-standard labels. Here, we are in-
terested in scenarios where we must generate our
labels via an annotation process.2 Specifically, as-
sume that we have some annotation function, A,
which produces a distribution over the K mutu-
ally exclusive labels, conditional on text. Given
a document, xi, the annotation process samples a
label from the annotation function, defined as:

A(xi, k) , p(yi = k | xi). (1)

Typically, the annotation function would repre-
sent the behavior of a human annotator (or group
of annotators), but it could also represent a less

2This could include gathering multiple independent anno-
tations per instance, but we will typically assume only one.

controlled real-world process, such as users rat-
ing a review’s helpfulness. Note that our setup
does include the special case in which true gold-
standard labels are available for each instance
(such as the authors of documents in an author-
ship attribution problem). In such a case, A is de-
terministic (assuming unique inputs).

Given that our objective is to mimic the annota-
tion process, we seek to estimate the proportion of
documents in the target corpus expected to be cat-
egorized into each of the K categories, if we had
an unlimited budget and full access to the target
corpus at the time of annotation. That is, we wish
to estimate q(T ), which we define as:

q(y = k |X(T )) , 1
NT

∑NT
i=1 p(yi = k | x(T )

i ).

(2)

Given a set of documents sampled from the
source corpus and L applications of the annotation
function, we can obtain, at some cost, a labeled
training corpus of L documents, i.e., D(train) =
〈(x1, y1), . . . , (xL, yL)〉. Because the source and
target corpora are not in general drawn from the
same distribution, we seek to make explicit our as-
sumptions about how they differ.3 Past literature
on transfer learning has identified several patterns
of dataset shift (Storkey, 2009). Here we focus
on two particularly important cases, linking them
to the relevant data generating processes, and ana-
lyze their relevance to estimating proportions.

Two kinds of distributional shift. There are
two natural assumptions we could make about
what is constant between the two corpora. We
could assume that there is no change in the dis-
tribution of text given a document’s label, that is
p(S)(x | y) = p(T )(x | y). Alternately, we could
assume that there is no change in the distribution
of labels given text, i.e., p(S)(y | x) = p(T )(y |
x). The former is assumed in the case of prior
probability shift, where we assume that p(y) dif-
fers but p(x | y) is constant, and the later is as-
sumed in the case of covariate shift, where we as-
sume that p(x) differs but p(y | x) is constant
(Storkey, 2009).

These two assumptions correspond to two fun-
damentally different types of scenarios that we
need to consider, which are summarized in Table
1. The first is where we are dealing with what we

3Clearly, if we make no assumptions about how the source
and target distributions are related, there is no guarantee that
supervised learning will work (Ben-David et al., 2012).
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Label type Intrinsic Extrinsic
Data generating

x ∼ p(x | y) y ∼ p(y | x)process
Assumed to differ

p(y) p(x)across domains
Assumed constant

p(x | y) p(y | x)across domains
Corresponding Prior Covariate

distributional probability shift
shift shift

Table 1: Data generating scenarios and corresponding
distributional properties.

will call intrinsic labels, that is labels which are in-
herent to each instance, and which in some sense
precede and predict the generation of the text of
that instance. A classic example of this scenario is
the case of authorship attribution (e.g., Mosteller
and Wallace, 1964), in which different authors are
assumed to have different propensities to use dif-
ferent styles and vocabularies. The identity of the
author of a document is arguably an intrinsic prop-
erty of that document, and it is easy to see a text as
having been generated conditional on its author.

The contrasting scenario is what we will refer
to as extrinsic labels; this scenario is our primary
interest. We assume here that the labels are not
inherent in the documents, but rather have been
externally generated, conditional on the text as
a stimulus to some behavioral process.4 We ar-
gue that this is the relevant assumption for most
annotation-based projects in the social sciences,
where the categories of interest do not correspond
to pre-existing categories that might have existed
in the minds of authors before writing, or affected
the writing process. Rather, these are theorized
categories that have been developed specifically to
analyze or measure some aspect of the document’s
effect that is of interest to the researcher.

We won’t always know the true distributional
properties of our datasets, but distinguishing be-
tween intrinsic and extrinsic labels provides a
guide. The critical point is that these two dif-
ferent labeling scenarios have different implica-
tions for robustness to distributional shift. In the
case of extrinsic labels, especially when work-
ing with trained annotators, it is reasonable to as-
sume that the behavior of the annotation func-
tion is determined purely by the text, such that
p(y | x) is unchanged between source and target,
and any change in label proportions is explained

4Fong and Grimmer (2016) also consider this process in
attempting to identify the causal effects of texts.

by a change in the underlying distribution of text,
p(x). With intrinsic labels, by contrast, it may be
the case that p(x | y) is the same for the source
and the target, assuming there are no additional
factors influencing the generation of text. In that
case, a shift in the distribution of features would
be fully explained by a difference in the underly-
ing label proportions.

The idea that there are different data generat-
ing processes is obviously not new.5 What is
novel here, however, is asking how these different
assumptions affect the estimation of proportions.
Virtually all past work on estimating proportions
has only considered prior probability shift, assum-
ing that p(x | y) is constant.6 Existing meth-
ods take advantage of this assumption, and can
be shown empirically to work well when it is sat-
isfied (e.g., through artificial modification of real
datasets to alter label proportions in a corpus). We
expect them to fail, however, in the case of extrin-
sic annotations, as there is no reason to think that
the required assumption should necessarily hold.

By contrast, the problem of covariate shift is
in some sense less of a problem because we di-
rectly observe X(T ). Since the annotation func-
tion is assumed to be unchanging, we could per-
fectly predict the expected label proportions in the
target corpus if we could learn the annotation func-
tion using labeled data from the source corpus.
The problem thus becomes how to learn a well-
calibrated approximation of the annotation func-
tion from a limited amount of labeled data.

3 Methods

Given a labeled training set and a target corpus,
the naı̈ve approach is to train a classifier through
any conventional means, predict labels on the tar-
get corpus, and return the relative prevalence of
predicted labels. Following Forman (2005), we re-
fer to this approach as classify and count (CC). If
using a probabilistic classifier, averaging the pre-
dicted posterior probabilities rather than predicted
labels will be referred to as probabilistic classify
and count (PCC; Bella et al., 2010).

Both approaches can fail, however. In the case
of intrinsic labels, this is because these approaches
will not account for the shift in prior label prob-

5Peters et al. (2014) describe these, somewhat confus-
ingly, as causal and anti-causal problems.

6For example, Hopkins and King (2010) argue that blog-
gers first decide on the sentiment they wish to convey and
then write a blog post conditional on that sentiment.
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ability, p(y), which is assumed to have occurred
(Hopkins and King, 2010). In the case of covari-
ate shift, the difference in p(x) will result in a
model that is not optimal (in terms of classifica-
tion performance) for the target domain. In both
cases, there is also the problem of classifier bias
or miscalibration. Particularly in the case of un-
balanced labels, a standard classifier is likely to be
biased, overestimating the probability of the more
common labels, and vice versa (Zhao et al., 2017).
Here we present a simple but novel method for ex-
trinsic labels, followed by a number of baseline
approaches against which we will compare. (See
supplementary material for additional details.)

3.1 Proposed method: calibrated
probabilistic classify and count (PCCcal)

One simple solution, which we propose here, is to
attempt to train a well-calibrated classifier. To be
clear, calibration refers to the long-run accuracy
of predicted probabilities. That is, a probabilistic
classifier, hθ(x), is well calibrated at the level µ
if, among all instances for which the classifier pre-
dicts class k with a probability of µ, the proportion
that are truly assigned to class k is also equal to µ.7

It has previously been shown (DeGroot and
Fienberg, 1983; Bröcker, 2009) that any proper
scoring rule (e.g., cross entropy, Brier score, etc.)
can be factored into two components representing
calibration and refinement, the later of which ef-
fectively measures how close predicted probabili-
ties are to zero or one. Minimizing a correspond-
ing loss function thus involves a trade-off between
these two components.

Optimizing only for calibration is not helpful,
as a trivial solution is to simply predict a probabil-
ity distribution equal to the observed label propor-
tions in the training data for all instances (which is
perfectly calibrated on the labeled sample). The
alternative we propose here is to train a classi-
fier using a typical objective (here, regularized log
loss) but use calibration on held-out data as a cri-
terion for model selection, i.e., when we tune hy-
perparameters via cross validation. We refer to
this method as calibrated PCC (PCCcal). Specif-
ically, we select regularization strength via grid
search, choosing the value that leads to the lowest
average calibration error across training / held-out
splits. Of course, other hyperparameters could be

7For example, a weather forecaster will be well-calibrated
if it rains on 60% of days for which the forecaster predicted a
60% chance of rain, etc.

included in model selection as well.
To estimate calibration error (CE) during cross-

validation, we use an approximation due to
Nguyen and O’Connor (2015), adaptive binning.
In the case of binary labels, this is computed as:

CE , 1
B

∑B
j=1

(
1
|Bj |
∑

i∈Bj yi − pθ(xi)
)2
, (3)

using B bins, where bin Bj contains instances for
which pθ(xi) are in the jth quantile, where pθ(xi)
is the predicted probability of a positive label for
instance i. For added robustness, we take the av-
erage of CE for B ∈ {3, 4, 5, 6, 7}.

In our experiments, we consider two variants
of PCC: the first, PCCF1 , which is a baseline,
is tuned conventionally for classification perfor-
mance, whereas the other (PCCcal) is tuned for cal-
ibration, as measured using CE, but is otherwise
identically trained. As a base classifier we make
use of l1-regularized logistic regression, operating
on n-gram features.8

3.2 Existing methods appropriate for
extrinsic labels

The idea of extrinsic labels has not been previ-
ously considered by past work on estimating pro-
portions, but it is closely related to the problems
of calibration and covariate shift. Here we briefly
summarize two representative methods, which we
consider as baselines (see supplementary material
for details).

Platt scaling. One approach to calibration is to
train a model using conventional methods and to
then learn a secondary calibration model. One of
the most common and successful variations on this
approach is Platt scaling, which learns a logistic
regression classifier on held-out training data, tak-
ing the scores from the primary classifier as in-
put. This model is then applied to the scores re-
turned by the primary classifier on the target cor-
pus (Platt, 1999). To estimate proportions, the pre-
dicted probabilities are then averaged, as in PCC.

Reweighting for covariate shift. Although they
are not typically thought of in the context of es-
timating proportions, several methods have been
proposed to deal directly with the problem of co-
variate shift, including kernel mean matching and

8More complex models could be considered, but we use
logistic regression because it is a well-understood and widely
applicable model that has been shown to be relatively well-
calibrated in general (Niculescu-Mizil and Caruana, 2005).
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its extensions (Huang et al., 2006; Sugiyama et al.,
2011). Here, we consider the two-stage method
from Bickel et al. (2009), which uses a logistic
regression model to distinguish between source
and target domains, and then uses the probabili-
ties from this model to re-weight labeled training
instances, to more heavily favor those that are rep-
resentative of the target domain. The appeal of this
method is that all unlabeled data can be used to es-
timate this shift.

3.3 Existing methods appropriate for
intrinsic labels

As previously mentioned, virtually all of the past
work on estimating proportions makes the as-
sumption that p(x | y) is constant between source
and target. Under this assumption, it can be shown
that p(y(θ) = j | y = k) is also constant for all j
and k, where y(θ) is the predicted label from hθ,
and y is the true (intrinsic) label. If these values
were known, then the label proportions in the tar-
get corpus could be found by taking the model’s
estimate of label proportions in the target corpus,
(CC), and then solving a linear system of equa-
tions as a post-classification correction. Although
a number of variations on this model have been
proposed, all are based on the same assumption,
thus we take a method known as adjusted classify
and count (ACC) as an exemplar, which directly
estimates the relevant quantities using a confusion
matrix (Forman, 2005). In the case of binary clas-
sification, this reduces to:

q̂ACC(y = 1 |X(T )) =

1
NT

∑NT
i=1 y

(θ)
i − FPR

TPR − FPR
,

(4)

where FPR = p̂(y(θ) = 1 | y = 0) and TPR =
p̂(y(θ) = 1 | y = 1) are both estimated using
held-out data.

4 Experiments

For our experiments, we focus on the case of bi-
nary classification where the difference between
the source and target corpora results from a differ-
ence in time—that is, the training documents are
sampled from one time period, and the goal is to
estimate label proportions on documents from a
future time period. We include examples of both
intrinsic and extrinsic labels to demonstrate the
importance of this distinction to the effectiveness
of different methods.

As described below, we create multiple subtasks
from each dataset by using different partitions of
the data. In all cases, we report absolute error (AE)
on the proportion of positive instances, averaged
across the subtasks of each dataset.

Although we do not have access to the true an-
notation function, we approximate the expected
label proportions in the target corpus by averag-
ing the available labels, which should be a very
close approximation when the number of avail-
able labels is large (which informed our choice of
datasets for these experiments). For a single sub-
task, the absolute error is thus evaluated as

AE =
∣∣∣q̂(y = 1 |X(T ))− 1

NT

∑NT
i=1 y

(T )
i

∣∣∣ . (5)

For all experiments, we also report the AE we
would obtain from using the observed label pro-
portions in the training sample as a prediction (la-
beled “Train”). Although this does not correspond
to an interesting prediction (as it only says the fu-
ture will always look exactly like the past), it does
represent a fundamental baseline. If a method is
unable to do better than this, it suggests that the
method has too much measurement error to be
useful.

To test for statistically significant differences
between methods, we use an omnibus application
of the Wilcoxon signed-rank test to compare one
method against all others, including a Bonferroni
correction for the total number of tests per hypoth-
esis. With 4 datasets, each with 2 sample sizes,
comparing against 6 other methods this results in
a significance threshold of approximately 0.001.

Finally, in order to connect this work with past
literature on estimating proportions, we also in-
clude a side experiment with one intrinsically-
labeled dataset where we have artificially modi-
fied the label proportions in the target corpus by
dropping positive or negatively-labeled instances
in order to simulate a large prior probability shift
between the source and target domains.

4.1 Datasets
We briefly describe the datasets we have used here
and provide additional details in the supplemen-
tary material. Note that although this work is
primarily focused on applications in which the
amount of human-annotated data is likely to be
small, fair evaluation of these methods requires
datasets that are large enough that we can approx-
imate the expected label proportion in the target

1640



corpus using the available labels; as such, the fol-
lowing datasets were chosen so as to have a rep-
resentative sample of sufficiently large intrinsi-
cally and extrinsically-labeled data, where docu-
ments were time-stamped, with label proportions
that differ between time periods.

Media Frames Corpus (MFC): As a primary
example of extrinsic labels, we use a dataset
of several thousand news articles that have been
annotated in terms of a set of broad-coverage
framing dimensions (such as economics, moral-
ity, etc.). We treat annotations as indicating the
presence or absence of each dimension, and con-
sider each one as a separate sub-task. As with all
datasets, we create a source and target corpus by
dividing the datasets by year. Particularly for this
dataset, it seems reasonable to posit that the an-
notation function was relatively constant between
source and target, as the annotators worked with-
out explicit knowledge of the article’s date (Card
et al., 2015).

Amazon reviews: As a secondary example of
extrinsic labels, we make use of a subset of Ama-
zon reviews for five different product categories,
each of which has tens of thousands of reviews.
For this dataset, we ignore the star rating associ-
ated with the review, and instead focus on predict-
ing the proportion of people that would rate the re-
view as helpful. Here we create separate subtasks
for each product category by considering each pair
of adjacent years as a source and target corpus, re-
spectively (McAuley et al., 2015).

Yelp reviews: As a primary example of a large
dataset with intrinsic labels, we make use of the
Yelp10 dataset, treating the source location of the
review as the label of interest. Specifically, we cre-
ate binary classification tasks by choosing pairs of
cities with approximately the same number of re-
views, and again use year of publication to divide
the data into source and target corpora, creating
multiple subtasks per pair of cities.

Twitter sentiment: Finally, we include a Twit-
ter sentiment analysis dataset which was collected
and automatically labeled, using the presence of
certain emoticons as implicit labels indicating pos-
itive or negative sentiment (with the emoticons
then removed from the text). Because of the way
this data was collected, and the relatively narrow
time coverage, it seems plausible to treat the sen-

timent as an intrinsic label. As with the above
datasets, we create subtasks by considering all
pairs of temporally adjacent days with sufficient
tweets, and treating them as a paired source and
target corpora, respectively. (Go et al., 2009).

4.2 Results

The results on the datasets with extrinsic and in-
trinsic labels are presented in Figures 1 and 2, re-
spectively.

As expected, the results differ in important
ways between intrinsically and extrinsically la-
beled datasets, although there are some results
which hold in all cases. In all settings, CC is worse
on average than predicting the observed propor-
tions in the training data (significantly worse for
the Amazon and Twitter datasets), reinforcing the
idea that averaging the predictions from a classi-
fier will lead to a biased estimate of label propor-
tions. This same finding holds for PCCF1 when the
amount of labeled data is small (L = 500), sug-
gesting that simply averaging the predicted prob-
abilities is not reliable without a sufficiently large
labeled dataset.

For the datasets with extrinsic labels, PCCcal

performs best on average in all settings. For the
MFC dataset, PCCcal is significantly better than
all methods except Platt scaling when L = 500
and significantly better than all methods except
reweighting and PCCF1 when L = 2000 (after
a Bonferroni correction, as in all cases). As ex-
pected, ACC is actually worse on average than
CC on the extrinsic datasets, presumably because
of the mismatched assumptions. Reweighting for
covariate shift offers mediocre performance in all
settings, perhaps because, while it attempts to ac-
count for covariate shift, it may still suffer from
miscalibration.

On the datasets with intrinsic labels, by con-
trast, no one method dominates the others. As
expected, ACC does poorly when the amount of
labeled data is small (L = 500); it does improve
upon CC when L = 4000, but not by enough to
do significantly better than other methods, perhaps
calling into question the validity of the assumption
that p(x | y) is constant in these datasets.

Surprisingly, both Platt scaling and PCCcal also
offer competitive performance in the experiments
with intrinsic labels. However, this is likely the
case in part because the change in label propor-
tions is relatively small from year to year (or day
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Figure 1: Absolute error (AE) on datasets with extrinsic labels. Each dot represents the result for a single subtask,
and bars show the mean. PCCcal (bottom row) performs best on average in all cases and is significantly better than
most other methods on MFC.
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Figure 2: Absolute error (AE) on datasets with intrinsic labels. No method is significantly better than all others.

to day in the case of Twitter). This is illustrated
by Figure 3, which presents the results of the side-
experiment with artificially modified (intrinsic) la-
bel proportions using a subset of the Twitter data.
These results confirm past findings, and show that
ACC drastically outperforms other methods such
as PCCF1 , if we selectively drop instances so as
to enforce a large difference in label proportions
between source and target. This is the expected
result, as ACC is the only method tailored to deal
with prior probability shift (which is being arti-
ficially simulated). Unfortunately, its advantage
is not maintained when the difference between
source and target is small, which is the case for
all of the naturally-occurring differences we found
in the Yelp and Twitter datasets. Although past
work has relied heavily on these sorts of simu-
lated differences and artificial experiments, it is
unclear whether they are a good substitute for real-
world data, given that we mostly observed rela-
tively small differences in practice.

Finally, we also tested the effect of using l2 in-
stead of l1 regularization, but found that it tended
to produce significantly worse estimates of pro-
portions using CC and PCCF1 on the datasets with

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80
Modified target label proportion

0.00

0.05

0.10

0.15

AE

PCCF1

ACC

Figure 3: Absolute error (AE) for predictions on one
day of Twitter data (L = 5000) when artificially modi-
fying target proportions. The proportion of positive la-
bels in the source corpus is 0.625. ACC performs sig-
nificantly better given an large artificially-created dif-
ference in label proportions between source and target,
but not when the difference is small.

extrinsic labels, and statistically indistinguishable
results using other methods, suggesting that either
type of regularization could serve as a basis for
PCCcal or Platt scaling.

5 Discussion

As anyone who has worked with human annota-
tions can attest, the process of collecting annota-
tions is messy and time-consuming, and tends to
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involve large numbers of disagreements (Artstein
and Poesio, 2008). Although it is conventional
to treat disagreements as errors on the behalf of
some subset of annotators, this paper provides an
alternative way of understanding these. By treat-
ing annotation as a stochastic process, conditional
on text, we can explain not only the disagree-
ments between annotators, but also the lack of
self-consistency that is also sometimes observed.
Although the assumption that p(y | x) does not
change is clearly a simplification, it seems reason-
able when working with trained annotators. Cer-
tainly this assumption seems much better justified
than the conventional assumption that p(x | y) is
constant, since the latter does not account for dif-
ferences in the distribution of text arising from dif-
ferences in subject matter, etc.

Although we have demonstrated that using a
method that is appropriate to the data generating
process is beneficial, it is important to note that
all methods presented here can still result in rela-
tively large errors in the worst cases. In part this is
due to the difficulty of learning a conditional dis-
tribution involving high-dimensional data (such as
text) with only a limited number of annotations.
Even with much more annotated data, however,
previously unseen features could still have a po-
tentially large impact on future annotations. Ulti-
mately, we should be cautious about all such pre-
dictions, and always validate where possible, by
eventually sampling and annotating data from the
target corpus.

What if we can sample from the target corpus?
Although there are many situations in which do-
main adaptation is unavoidable (such as predict-
ing public opinion from Twitter in real time with
models trained on the past), at least some re-
search projects in the humanities and social sci-
ences might reasonably have access to all data of
interest from the beginning of the project, such as
when working with a historical corpus. Although a
full proof is beyond the scope of this paper, in this
case, the best approach is almost certainly to sim-
ply sample a random set of documents, label them
using the annotation function, and report the rela-
tive prevalence of each label (Hopkins and King,
2010).

Although this simple random sampling (SRS)
approach ignores the text, it is an unbiased estima-
tor with variance that can easily calculated, at least

102 103 104
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Figure 4: Comparison of SRS and PCC in simulation
when we know the true model and sample from the tar-
get corpus (averaged over 200 repetitions).

in approximation.9 More importantly, because it
is independent of the dimensionality of the data,
it works well on high-dimensional data, such as
text, whereas classification-based approaches will
struggle. We can illustrate this by comparing SRS
and PCC in simulation. Figure 4 shows the mean
AE (averaged over 200 trials) for a case in which
we know the true model (including the prior on the
weights, and thus the appropriate amount of regu-
larization) and only need to learn the values of the
weights. Even in this idealized scenario, SRS re-
mains better than PCC for all values of L. (See
supplementary material for details).

Depending on the level of accuracy required,
simply sampling a few hundred documents and la-
beling them should be sufficient to get a reason-
ably reliable estimate of the overall label propor-
tions, along with an approximate confidence inter-
val. Unfortunately, this option is only available
when we have full access to the target corpus at
the time of annotation.

Additional related work. There is a small lit-
erature on the problem of estimating proportions
in a target dataset (see §1); as we have empha-
sized, almost all of it makes the assumption that
p(x | y) is the same for both source and tar-
get. Moreover, most of the methods that have
been proposed have been tested using relatively
small datasets, or datasets where the target cor-
pus has been artificially modified by altering the
label proportions in the target corpus (as we did
in the side experiment reported in Figure 3). It

9If we were sampling with replacement, the variance in
the binary case would be given by the standard formula
V[q̂SRS] = p̄(1−p̄)

L
, where p̄ = 1

NT

∑NT
i=1 p(yi = 1 | xi).

This may not be possible, however, as annotators seeing a
document for the second or third time would likely be af-
fected by their own past decisions. Nevertheless, using this
as the basis for a plug-in estimator should still be a reasonable
approximation when the target corpus is large. Please refer to
supplementary material for additional details.
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seems unclear that this is a good simulation of the
kind of shift in distribution that one is likely to en-
counter in practice. An exception to this is Esuli
and Sebastiani (2015), who test their method on
the RCV1-v2 corpus, also splitting by time. They
perform a large number of experiments, but un-
fortunately, nearly all of their experiments involve
only a very small difference in label proportions
between the source and target (with the vast ma-
jority < 0.01), which limits the generalizability of
their findings. Additional methods for calibration
could also be considered, such as the isotonic re-
gression approach of Zadrozny and Elkan (2002),
but in practice we would expect the results to be
very similar to Platt scaling.

Another line of work has approached the prob-
lem of aggregating labels from multiple annotators
(Raykar et al., 2009; Hovy et al., 2013; Yan et al.,
2013). That is, if we believe that some annota-
tors are more reliable than others, it might make
sense to try to determine this in an unsupervised
manner, and give more weight to the annotations
from the reliable annotators. This seems particu-
larly appropriate when dealing with uncooperative
annotators, as might be encountered, for example,
in crowdsourcing (Snow et al., 2008; Zhang et al.,
2016). However, with a team of trained annota-
tors, we believe that honest disagreements could
contain valuable information better not ignored.

Finally, this work also relates to the problem
of active learning, where the goal is to interac-
tively choose instances to be labeled, in a way
that maximizes accuracy while minimizing the to-
tal cost of annotation (Beygelzimer et al., 2009;
Baldridge and Osborne, 2004; Rai et al., 2010;
Settles, 2012). This is an interesting area that
might be productively combined with the ideas in
this paper. In general, however, the use of active
learning involves additional logistical complica-
tions and does not always work better than ran-
dom sampling in practice (Attenberg and Provost,
2011).

6 Conclusions

When estimating proportions in a target corpus,
it is important to take seriously the data gener-
ating process. We have argued that in the case
of data annotated by humans in terms of cate-
gories designed to help answer social-scientific re-
search questions, labels should be treated as ex-
trinsic, generated probabilistically conditional on

text, rather than as a combination of correct and
incorrect judgements about a label intrinsic to the
document. Moreover, it is reasonable to assume
in this case that p(y | x) is unchanging between
source and target, and methods that aim to learn
a well-calibrated classifier, such as PCCcal, are
likely to perform best. By contrast, if p(x | y) is
unchanging between source and target, then vari-
ous correction methods from the literature on es-
timating proportions, such as ACC, can perform
well, especially when differences are large. Ul-
timately, any of these methods can still result in
large errors in the worst cases. As such, validation
remains important when treating the estimation of
proportions as a type of measurement.
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Abstract

Peer reviewing is a central component
in the scientific publishing process. We
present the first public dataset of scien-
tific peer reviews available for research pur-
poses (PeerRead v1),1 providing an oppor-
tunity to study this important artifact. The
dataset consists of 14.7K paper drafts and
the corresponding accept/reject decisions
in top-tier venues including ACL, NIPS
and ICLR. The dataset also includes 10.7K
textual peer reviews written by experts for
a subset of the papers. We describe the data
collection process and report interesting ob-
served phenomena in the peer reviews. We
also propose two novel NLP tasks based
on this dataset and provide simple base-
line models. In the first task, we show that
simple models can predict whether a paper
is accepted with up to 21% error reduc-
tion compared to the majority baseline. In
the second task, we predict the numerical
scores of review aspects and show that sim-
ple models can outperform the mean base-
line for aspects with high variance such as
‘originality’ and ‘impact’.

1 Introduction

Prestigious scientific venues use peer reviewing to
decide which papers to include in their journals or
proceedings. While this process seems essential
to scientific publication, it is often a subject of de-
bate. Recognizing the important consequences of
peer reviewing, several researchers studied various
aspects of the process, including consistency, bias,
author response and general review quality (e.g.,
Greaves et al., 2006; Ragone et al., 2011; De Silva
and Vance, 2017). For example, the organizers of

1https://github.com/allenai/PeerRead

the NIPS 2014 conference assigned 10% of confer-
ence submissions to two different sets of reviewers
to measure the consistency of the peer reviewing
process, and observed that the two committees dis-
agreed on the accept/reject decision for more than a
quarter of the papers (Langford and Guzdial, 2015).

Despite these efforts, quantitative studies of peer
reviews had been limited, for the most part, to the
few individuals who had access to peer reviews of
a given venue (e.g., journal editors and program
chairs). The goal of this paper is to lower the barrier
to studying peer reviews for the scientific commu-
nity by introducing the first public dataset of peer
reviews for research purposes: PeerRead.

We use three strategies to construct the dataset:
(i) We collaborate with conference chairs and con-
ference management systems to allow authors and
reviewers to opt-in their paper drafts and peer re-
views, respectively. (ii) We crawl publicly available
peer reviews and annotate textual reviews with nu-
merical scores for aspects such as ‘clarity’ and ‘im-
pact’. (iii) We crawl arXiv submissions which co-
incide with important conference submission dates
and check whether a similar paper appears in pro-
ceedings of these conferences at a later date. In
total, the dataset consists of 14.7K paper drafts and
the corresponding accept/reject decisions, includ-
ing a subset of 3K papers for which we have 10.7K
textual reviews written by experts. We plan to
make periodic releases of PeerRead, adding more
sections for new venues every year. We provide
more details on data collection in §2.

The PeerRead dataset can be used in a variety of
ways. A quantitative analysis of the peer reviews
can provide insights to help better understand (and
potentially improve) various nuances of the review
process. For example, in §3, we analyze correla-
tions between the overall recommendation score
and individual aspect scores (e.g., clarity, impact
and originality) and quantify how reviews recom-
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Section #Papers #Reviews Asp. Acc / Rej

NIPS 2013–2017 2,420 9,152 × 2,420 / 0
ICLR 2017 427 1,304 � 172 / 255
ACL 2017 137 275 � 88 / 49

CoNLL 2016 22 39 � 11 / 11
arXiv 2007–2017 11,778 — — 2,891 / 8,887

total 14,784 10,770

Table 1: The PeerRead dataset. Asp. indicates
whether the reviews have aspect specific scores
(e.g., clarity). Note that ICLR contains the aspect
scores assigned by our annotators (see Section 2.4).
Acc/Rej is the distribution of accepted/rejected pa-
pers. Note that NIPS provide reviews only for
accepted papers.

mending an oral presentation differ from those rec-
ommending a poster. Other examples might in-
clude aligning review scores with authors to reveal
gender or nationality biases. From a pedagogical
perspective, the PeerRead dataset also provides in-
experienced authors and first-time reviewers with
diverse examples of peer reviews.

As an NLP resource, peer reviews raise interest-
ing challenges, both from the realm of sentiment
analysis—predicting various properties of the re-
viewed paper, e.g., clarity and novelty, as well as
that of text generation—given a paper, automati-
cally generate its review. Such NLP tasks, when
solved with sufficiently high quality, might help
reviewers, area chairs and program chairs in the
reviewing process, e.g., by lowering the number of
reviewers needed for some paper submission.

In §4, we introduce two new NLP tasks based on
this dataset: (i) predicting whether a given paper
would be accepted to some venue, and (ii) pre-
dicting the numerical score of certain aspects of
a paper. Our results show that we can predict the
accept/reject decisions with 6–21% error reduction
compared to the majority reject-all baseline, in four
different sections of PeerRead. Since the baseline
models we use are fairly simple, there is plenty of
room to develop stronger models to make better
predictions.

2 Peer-Review Dataset (PeerRead)

Here we describe the collection and compilation of
PeerRead, our scientific peer-review dataset. For
an overview of the dataset, see Table 1.

2.1 Review Collection
Reviews in PeerRead belong to one of the two
categories:

Opted-in reviews. We coordinated with the
Softconf conference management system and the
conference chairs for CoNLL 20162 and ACL
20173 conferences to allow authors and review-
ers to opt-in their drafts and reviews, respectively,
to be included in this dataset. A submission is in-
cluded only if (i) the corresponding author opts-in
the paper draft, and (ii) at least one of the review-
ers opts-in their anonymous reviews. This resulted
in 39 reviews for 22 CoNLL 2016 submissions,
and 275 reviews for 137 ACL 2017 submissions.
Reviews include both text and aspect scores (e.g.,
calrity) on a scale of 1–5.

Peer reviews on the web. In 2013, the NIPS
conference4 began attaching all accepted papers
with their anonymous textual review comments, as
well as a confidence level on a scale of 1–3. We
collected all accepted papers and their reviews for
NIPS 2013–2017, a total of 9,152 reviews for 2,420
papers.

Another source of reviews is the OpenReview
platform:5 a conference management system which
promotes open access and open peer reviewing.
Reviews include text, as well as numerical rec-
ommendations between 1–10 and confidence level
between 1–5. We collected all submissions to the
ICLR 2017 conference,6 a total of 1,304 official,
anonymous reviews for 427 papers (177 accepted
and 255 rejected).7

2.2 arXiv Submissions
arXiv8 is a popular platform for pre-publishing re-
search in various scientific fields including physics,
computer science and biology. While arXiv does
not contain reviews, we automatically label a sub-
set of arXiv submissions in the years 2007–2017
(inclusive)9 as accepted or probably-rejected, with

2The 20th SIGNLL Conference on Computational Natural
Language Learning; http://www.conll.org/2016

3The 55th Annual Meeting of the Association for Compu-
tational Linguistics; http://acl2017.org/

4The Conference on Neural Information Processing Sys-
tems; https://nips.cc/

5http://openreview.net
6The 5th International Conference on Learning Represen-

tations; https://iclr.cc/archive/www/2017.html
7The platform also allows any person to review the paper

by adding a comment, but we only use the official reviews of
reviewers assigned to review that paper.

8https://arxiv.org/
9For consistency, we only include the first arXiv version

of each paper (accepted or rejected) in the dataset.
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respect to a group of top-tier NLP, ML and AI
venues: ACL, EMNLP, NAACL, EACL, TACL,
NIPS, ICML, ICLR and AAAI.

Accepted papers. In order to assign ‘accepted’
labels, we use the dataset provided by Sutton and
Gong (2017) who matched arXiv submissions to
their bibliographic entries in the DBLP directory10

by comparing titles and author names using Jac-
card’s distance. To improve our coverage, we also
add an arXiv submission if its title matches an ac-
cepted paper in one of our target venues with a
relative Levenshtein distance (Levenshtein, 1966)
of < 0.1. This results in a total of 2,891 accepted
papers.

Probably-rejected papers. We use the follow-
ing criteria to assign a ‘probably-rejected’ label for
an arXiv submission:
• The paper wasn’t accepted to any of the target

venues.11

• The paper was submitted to one of the arXiv
categories cs.cl, cs.lg or cs.ai.12

• The paper wasn’t cross-listed in any non-cs cat-
egories.
• The submission date13 was within one month of

the submission deadlines of our target venues
(before or after).
• The submission date coincides with at least one

of the arXiv papers accepted for one of the target
venues.
This process results in 8,887 ‘probably-rejected’

papers.
Data quality. We did a simple sanity check

in order to estimate the number of papers that we
labeled as ‘probably-rejected’, but were in fact ac-
cepted to one of the target venues. Some authors
add comments to their arXiv submissions to indi-
cate the publication venue. We identified arXiv
papers with a comment which matches the term
“accept” along with any of our target venues (e.g.,
“nips”), but not the term “workshop”. We found
364 papers which matched these criteria, 352 out
of which were labeled as ‘accepted’. Manual in-
spection of the remaining 12 papers showed that
one of the papers was indeed a false negative (i.e.,
labeled as ‘probably-rejected’ but accepted to one
of the target venues) due to a significant change in

10http://dblp.uni-trier.de/
11Note that some of the ‘probably-rejected’ papers may be

published at workshops or other venues.
12See https://arxiv.org/archive/cs for a descrip-

tion of the computer science categories in arXiv.
13If a paper has multiple versions, we consider the submis-

sion date of the first version.

the paper title. The remaining 11 papers were not
accepted to any of the target venues (e.g., “accepted
at WMT@ACL 2014”).

2.3 Organization and Preprocessing

We organize v1.0 of the PeerRead dataset in five
sections: CoNLL 2016, ACL 2017, ICLR 2017,
NIPS 2013–2017 and arXiv 2007–2017.14 Since
the data collection varies across sections, differ-
ent sections may have different license agreements.
The papers in each section are further split into
standard training, development and test sets with
0.9:0.05:0.05 ratios. In addition to the PDF file of
each paper, we also extract its textual content using
the Science Parse library.15 We represent each
of the splits as a json-encoded text file with a list
of paper objects, each of which consists of paper
details, accept/reject/probably-reject decision, and
a list of reviews.

2.4 Aspect Score Annotations

In many publication venues, reviewers assign nu-
meric aspect scores (e.g., clarity, originality, sub-
stance) as part of the peer review. Aspect scores
could be viewed as a structured summary of the
strengths and weaknesses of a paper. While aspect
scores assigned by reviewers are included in the
opted-in sections in PeerRead, they are missing
from the remaining reviews. In order to increase
the utility of the dataset, we annotated 1.3K reviews
with aspect scores, based on the corresponding re-
view text. Annotations were done by two of the
authors. In this subsection, we describe the annota-
tion process in detail.

Feasibility study. As a first step, we verified
the feasibility of the annotation task by annotating
nine reviews for which aspect scores are available.
The annotators were able to infer about half of the
aspect scores from the corresponding review text
(the other half was not discussed in the review text).
This is expected since reviewer comments often
focus on the key strengths or weaknesses of the
paper and are not meant to be a comprehensive as-
sessment of each aspect. On average, the absolute
difference between our annotated scores and the
gold scores originally provided by reviewers is 0.51
(on a 1–5 scale, considering only those cases where
the aspect was discussed in the review text).

14We plan to periodicly release new versions of PeerRead.
15https://github.com/allenai/science-parse
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Data preprocessing. We used the official re-
views in the ICLR 2017 section of the dataset
for this annotation task. We excluded unofficial
comments contributed by arbitrary members of
the community, comments made by the authors
in response to other comments, as well as “meta-
reviews” which state the final decision on a paper
submission. The remaining 1,304 official reviews
are all written by anonymous reviewers assigned
by the program committee to review a particular
submission. We randomly reordered the reviews
before annotation so that the annotator judgments
based on one review are less affected by other re-
views of the same paper.

Annotation guidelines. We annotated seven
aspects for each review: appropriateness, clar-
ity, originality, soundness/correctness, meaning-
ful comparison, substance, and impact. For each
aspect, we provided our annotators with the in-
structions given to ACL 2016 reviewers for this
aspect.16 Our annotators’ task was to read the de-
tailed review text (346 words on average) and select
a score between 1–5 (inclusive, integers only) for
each aspect.17 When review comments do not ad-
dress a specific aspect, we do not select any score
for that aspect, and instead use a special “not dis-
cussed” value.

Data quality. In order to assess annotation
consistency, the same annotators re-annotated a
random sample consisting of 30 reviews. On aver-
age, 77% of the annotations were consistent (i.e.,
the re-annotation was exactly the same as the origi-
nal annotation, or was off by 1 point) and 2% were
inconsistent (i.e., the re-annotation was off by 2
points or more). In the remaining 21%, the as-
pect was marked as “not discussed” in one anno-
tation but not in the other. We note that different
aspects are discussed in the textual reviews at differ-
ent rates. For example, about 49% of the reviews
discussed the ‘originality’ aspect, while only 5%
discussed ‘appropriateness’.

3 Data-Driven Analysis of Peer Reviews

In this section, we showcase the potential of using
PeerRead for data-driven analysis of peer reviews.

Overall recommendation vs. aspect scores.
A critical part of each review is the overall rec-
ommendation score, a numeric value which best

16Instructions are provided in Appendix B.
17Importantly, our annotators only considered the review

text, and did not have access to the papers.

characterizes a reviewer’s judgment of whether the
draft should be accepted for publication in this
venue. While aspect scores (e.g., clarity, novelty,
impact) help explain a reviewer’s assessment of the
submission, it is not necessarily clear which aspects
reviewers appreciate the most about a submission
when considering their overall recommendation.

To address this question, we measure pair-wise
correlations between the overall recommendation
and various aspect scores in the ACL 2017 section
of PeerRead and report the results in Table 2.

Aspect ρ

Substance 0.59
Clarity 0.42

Appropriateness 0.30
Impact 0.16

Meaningful comparison 0.15
Originality 0.08

Soundness/Correctness 0.01

Table 2: Pearson’s correlation coefficient ρ be-
tween the overall recommendation and various as-
pect scores in the ACL 2017 section of PeerRead.

The aspects which correlate most strongly with
the final recommendation are substance (which con-
cerns the amount of work rather than its quality)
and clarity. In contrast, soundness/correctness and
originality are least correlated with the final rec-
ommendation. These observations raise interesting
questions about what we collectively care about
the most as a research community when evaluating
paper submissions.

Oral vs. poster. In most NLP conferences, ac-
cepted submissions may be selected for an oral pre-
sentation or a poster presentation. The presentation
format decision of accepted papers is based on rec-
ommendation by the reviewers. In the official blog
of ACL 2017,18 the program chairs recommend
that reviewers and area chairs make this decision
based on the expected size of interested audience
and whether the ideas can be grasped without back-
and-forth discussion. However, it remains unclear
what criteria are used by reviewers to make this
decision.

To address this question, we compute the mean
aspect score in reviews which recommend an oral
vs. poster presentation in the ACL 2017 section of

18https://acl2017.wordpress.com/2017/03/23/
conversing-or-presenting-poster-or-oral/
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PeerRead, and report the results in Table 3. No-
tably, the average ‘overall recommendation’ score
in reviews recommending an oral presentation is
0.9 higher than in reviews recommending a poster
presentation, suggesting that reviewers tend to rec-
ommend oral presentation for submissions which
are holistically stronger.

Presentation format Oral Poster ∆ stdev

Recommendation 3.83 2.92 0.90 0.89
Substance 3.91 3.29 0.62 0.84

Clarity 4.19 3.72 0.47 0.90
Meaningful comparison 3.60 3.36 0.24 0.82

Impact 3.27 3.09 0.18 0.54
Originality 3.91 3.88 0.02 0.87

Soundness/Correctness 3.93 4.18 -0.25 0.91

Table 3: Mean review scores for each presenta-
tion format (oral vs. poster). Raw scores range
between 1–5. For reference, the last column shows
the sample standard deviation based on all reviews.

ACL 2017 vs. ICLR 2017. Table 4 reports
the sample mean and standard deviation of various
measurements based on reviews in the ACL 2017
and the ICLR 2017 sections of PeerRead. Most
of the mean scores are similar in both sections,
with a few notable exceptions. The comments in
ACL 2017 reviews tend to be about 50% longer
than those in the ICLR 2017 reviews. Since re-
view length is often thought of as a measure of its
quality, this raises interesting questions about the
quality of reviews in ICLR vs. ACL conferences.
We note, however, that ACL 2017 reviews were
explicitly opted-in while the ICLR 2017 reviews
include all official reviews, which is likely to re-
sult in a positive bias in review quality of the ACL
reviews included in this study.

Another interesting observation is that the mean
appropriateness score is lower in ICLR 2017 com-
pared to ACL 2017. While this might indicate
that ICLR 2017 attracted more irrelevant submis-
sions, this is probably an artifact of our annotation
process: reviewers probably only address appro-
priateness explicitly in their review if the paper is
inappropriate, which leads to a strong negative bias
against this category in our ICLR dataset.

4 NLP Tasks

Aside from quantitatively analyzing peer reviews,
PeerRead can also be used to define interesting

Measurement ACL’17 ICLR’17

Review length (words) 531±323 346±213
Appropriateness 4.9±0.4 2.6±1.3

Meaningful comparison 3.5±0.8 2.9±1.1
Substance 3.6±0.8 3.0±0.9

Originality 3.9±0.9 3.3±1.1
Clarity 3.9±0.9 4.2±1.0
Impact 3.2±0.5 3.4±1.0

Overall recommendation 3.3±0.9 3.3±1.4

Table 4: Mean ± standard deviation of various
measurements on reviews in the ACL 2017 and
ICLR 2017 sections of PeerRead. Note that ACL
aspects were written by the reviewers themselves,
while ICLR aspects were predicted by our annota-
tors based on the review.

NLP tasks. In this section, we introduce two novel
tasks based on the PeerRead dataset. In the first
task, given a paper draft, we predict whether the
paper will be accepted to a set of target conferences.
In the second task, given a textual review, we pre-
dict the aspect scores for the paper such as novelty,
substance and meaningful comparison.19

Both these tasks are not only challenging from
an NLP perspective, but also have potential appli-
cations. For example, models for predicting the
accept/reject decisions of a paper draft might be
used in recommendation systems for arXiv submis-
sions. Also, a model trained to predict the aspect
scores given review comments using thousands of
training examples might result in better-calibrated
scores.

4.1 Paper Acceptance Classification

Paper acceptance classification is a binary classifi-
cation task: given a paper draft, predict whether the
paper will be accepted or rejected for a predefined
set of venues.

Models. We train a binary classifier to estimate
the probability of accept vs. reject given a paper,
i.e., P(accept=True | paper). We experiment
with different types of classifiers: logistic regres-
sion, SVM with linear or RBF kernels, Random
Forest, Nearest Neighbors, Decision Tree, Multi-
layer Perceptron, AdaBoost, and Naive Bayes. We
use hand-engineered features, instead of neural
models, because they are easier to interpret.

19We also experiment with conditioning on the paper itself
to make this prediction.
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ICLR cs.cl cs.lg cs.ai

Majority 57.6 68.9 67.9 92.1
Ours
(∆)

65.3
+7.7

75.7
+6.8

70.7
+2.8

92.6
+0.5

Table 5: Test accuracies (%) for acceptance classi-
fication. Our best model outperforms the majority
classifiers in all cases.

We use 22 coarse features, e.g., length of the
title and whether jargon terms such as ‘deep’ and
‘neural’ appear in the abstract, as well as sparse
and dense lexical features. The full feature set is
detailed in Appendix A.

Experimental setup. We experiment with the
ICLR 2017 and the arXiv sections of the PeerRead
dataset. We train separate models for each of the
arXiv category: cs.cl, cs.lg, and cs.ai. We
use python’s sklearn’s implementation of all mod-
els (Pedregosa et al., 2011).20 We consider various
regularization parameters for SVM and logistic re-
gression (see Appendix A.1 for a detailed descrip-
tion of all hyperparameters). We use the standard
test split and tune our hyperparameters using 5-fold
cross validation on the training set.

Results. Table 5 shows our test accuracies
for the paper acceptance task. Our best model
outperforms the majority classifier in all cases, with
up to 22% error reduction. Since our models lack
the sophistication to assess the quality of the work
discussed in the given paper, this might indicate
that some of the features we define are correlated
with strong papers, or bias reviewers’ judgments.

We run an ablation study for this task for the
ICLR and arXiv sections. We train only one model
for all three categories in arXiv to simplify our
analysis. Table 6 shows the absolute degradation in
test accuracy of the best performing model when
we remove one of the features. The table shows
that some features have a large contribution on
the classification decision: adding an appendix, a
large number of theorems or equations, the average
length of the text preceding a citation, the number
of papers cited by this paper that were published in
the five years before the submission of this paper,
whether the abstract contains a phrase “state of the
art” for ICLR or “neural” for arXiv, and length of
title.21

20http://scikit-learn.org/stable/
21Coefficient values of each feature are provided in Ap-

pendix A.

ICLR %

Best model 65.3
– appendix –5.4
– num_theorems –3.8
– num_equations –3.8
– avg_len_ref –3.8
– abstractstate-of-the-art –3.5
– #recent_refs –2.5

arXiv %

Best model 79.1
– avg_len_ref –1.4
– num_uniq_words –1.1
– num_theorems –1.0
– abstractneural –1.0
– num_refmentions –1.0
– title_length –1.0

Table 6: The absolute % difference in accu-
racy on the paper acceptance prediction task
when we remove only one feature from the full
model. Features with larger negative differences
are more salient, and we only show the six most
salient features for each section. The features are
num_X: number of X (e.g., theorems or equations),
avg_len_ref: average length of context before a ref-
erence, appendix: does paper have an appendix,
abstractX: does the abstract contain the phrase
X, num_uniq_words: number of unique words,
num_refmentions: number of reference mentions,
and #recent_refs: number of cited papers published
in the last five years.

4.2 Review Aspect Score Prediction
The second task is a multi-class regression task
to predict scores for seven review aspects: ‘im-
pact’, ‘substance’, ‘appropriateness’, ‘comparison’,
‘soundness’, ‘originality’ and ‘clarity’. For this
task, we use the two sections of PeerRead which
include aspect scores: ACL 2017 and ICLR 2017.22

Models. We use a regression model which
predicts a floating-point score for each aspect of
interest given a sequence of tokens. We train three
variants of the model to condition on (i) the paper
text only, (ii) the review text only, or (iii) both paper
and review text.

We use three neural architectures: convolutional
neural networks (CNN, Zhang et al., 2015), re-
current neural networks (LSTM, Hochreiter and
Schmidhuber, 1997), and deep averaging networks
(DAN, Iyyer et al., 2015). In all three architectures,
we use a linear output layer to make the final pre-
diction. The loss function is the mean squared error
between predicted and gold scores. We compare
against a baseline which always predicts the mean
score of an aspect, computed on the training set.23

Experimental setup. We train all models on
the standard training set for 100 iterations, and

22The CoNLL 2016 section also includes aspect scores but
is too small for training.

23This baseline is guaranteed to obtain mean square errors
less than or equal to the majority baseline.
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Figure 1: Root mean squared error (RMSE, lower is better) on the test set for the aspect prediction task
on the ACL 2017 (left) and the ICLR 2017 (right) sections of PeerRead.

select the best performing model on the standard
development set. We use a single 100 dimension
layer LSTM and CNN, and a single output layer of
100 dimensions for all models. We use GloVe 840B
embeddings (Pennington et al., 2014) as input word
representations, without tuning, and keep the 35K
most frequent words and replace the rest with an
UNK vector. The CNN model uses 128 filters and 5
kernels. We use an RMSProp optimizer (Tieleman
and Hinton, 2012) with 0.001 learning rate, 0.9
decay rate, 5.0 gradient clipping, and a batch size
of 32. Since scientific papers tend to be long, we
only take the first 1000 and 200 tokens of each
paper and review, respectively, and concatenate the
two prefixes when the model conditions on both
the paper and review text.24

Results. Figure 1 shows the test set root mean
square error (RMSE) on the aspect prediction task
(lower is better). For each section (ACL 2017 and
ICLR 2017), and for each aspect, we report the
results of four systems: ‘Mean’ (baseline), ‘Paper’,
‘Review’ and ‘Paper;Review’ (i.e., which informa-
tion the model conditions on). For each variant, the
model which performs best on the development set
is selected.

We note that aspects with higher RMSE scores
for the ‘Mean’ baseline indicate higher variance
among the review scores for this aspect, so we fo-
cus our discussion on these aspects. In the ACL
2017 section, the two aspects with the highest vari-
ance are ‘originality’ and ‘clarity’. In the ICLR
2017 section, the two aspects with the highest vari-
ance are ‘appropriateness’ and ‘meaningful com-
parison’. Surprisingly, the ‘Paper;Review’ model
outperforms the ‘Mean’ baseline in all four aspects,
and the ‘Review’ model outperforms the ‘Mean’

24We note that the goal of this paper is to demonstrate po-
tential uses of PeerRead, rather than develop the best model to
address this task, which explains the simplicity of the models
we use.

baseline in three out of four. On average, all models
slightly improve over the ‘Mean’ baseline.

5 Related Work

Several efforts have recently been made to collect
peer reviews. Publons25 consolidates peer reviews
data to build public reviewer profiles for partici-
pating reviewers. Crossref maintains the database
of DOIs for its 4000+ publisher members. They
recently launched a service to add peer reviews as
part of metadata for the scientific articles.26 Sur-
prisingly, however, most of the reviews are not
made publicly available. In contrast, we collected
and organized PeerRead such that it is easy for
other researchers to use it for research purposes,
replicate experiments and make a fair comparison
to previous results.

There have been several efforts to analyze the
peer review process (e.g., Bonaccorsi et al., 2018;
Rennie, 2016). Editors of the British Journal of
Psychiatry found differences in courtesy between
signed and unsigned reviews (Walsh et al., 2000).
Ragone et al. (2011) and Birukou et al. (2011) an-
alyzed ten CS conferences and found low corre-
lation between review scores and the impact of
papers in terms of future number of citations. Fang
et al. (2016) presented similar observations for NIH
grant application reviews and their productivity.
Langford and Guzdial (2015) pointed to inconsis-
tencies in the peer review process.

Several recent venues had single vs. double blind
review experiments, which pointed to single-blind
reviews leading to increased biases towards male
authors (Roberts and Verhoef, 2016) and famous in-
stitutions (Tomkins et al., 2017). Further, Le Goues
et al. (2017) showed that reviewers are unable to

25publons.com/dashboard/records/review/
26https://www.crossref.org/blog/

peer-reviews-are-open-for-registering-at-crossref/
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successfully guess the identity of the author in a
double-blind review. Recently, there have been
several initiatives by program chairs in major NLP
conferences to study various aspects of the review
process, mostly author response and general re-
view quality.27 In this work, we provide a large
scale dataset that would enable the wider scientific
community to further study the properties of peer
review, and potentially come up with enhancements
to current peer review model.

Finally, the peer review process is meant to judge
the quality of research work being disseminated
to the larger research community. With the ever-
growing rates of articles being submitted to top-
tier conferences in Computer Science and pre-print
repositories (Sutton and Gong, 2017), there is a
need to expedite the peer review process. Bal-
achandran (2013) proposed a method for automatic
analysis of conference submissions to recommend
relevant reviewers. Also related to our acceptance
predicting task are (Tsur and Rappoport, 2009)
and Ashok et al. (2013), both of which focuses
on predicting book reviews. Various automatic
tools like Grammerly28 can assist reviewers in dis-
covering grammar and spelling errors. Tools like
Citeomatic29 (Bhagavatula et al., 2018) are espe-
cially useful in finding relevant articles not cited
in the manuscript. We believe that the NLP tasks
presented in this paper, predicting the acceptance
of a paper and the aspect scores of a review, can
potentially serve as useful tools for writing a paper,
reviewing it, and deciding about its acceptance.

6 Conclusion

We introduced PeerRead, the first publicly avail-
able peer review dataset for research purposes, con-
taining 14.7K papers and 10.7K reviews. We ana-
lyzed the dataset, showing interesting trends such
as a high correlation between overall recommenda-
tion and recommending an oral presentation. We
defined two novel tasks based on PeerRead: (i) pre-
dicting the acceptance of a paper based on textual
features and (ii) predicting the score of each aspect
in a review based on the paper and review contents.
Our experiments show that certain properties of a

27See https://nlpers.blogspot.com/2015/06/
some-naacl-2013-statistics-on-author.html
and https://acl2017.wordpress.com/2017/03/27/
author-response-does-it-help/

28https://www.grammarly.com/
29http://allenai.org/semantic-scholar/

citeomatic/

paper, such as having an appendix, are correlated
with higher acceptance rate. Our primary goal is
to motivate other researchers to explore these tasks
and develop better models that outperform the ones
used in this work. More importantly, we hope that
other researchers will identify novel opportunities
which we have not explored to analyze the peer
reviews in this dataset. As a concrete example, it
would be interesting to study if the accept/reject
decisions reflect author demographic biases (e.g.,
nationality).

Acknowledgements

This work would not have been possible without
the efforts of Rich Gerber and Paolo Gai (develop-
ers of the softconf.com conference management
system), Stefan Riezler, Yoav Goldberg (chairs
of CoNLL 2016), Min-Yen Kan, Regina Barzilay
(chairs of ACL 2017) for allowing authors and re-
viewers to opt-in for this dataset during the official
review process. We thank the openreview.net,
arxiv.org and semanticscholar.org teams
for their commitment to promoting transparency
and openness in scientific communication. We
also thank Peter Clark, Chris Dyer, Oren Etzioni,
Matt Gardner, Nicholas FitzGerald, Dan Jurafsky,
Hao Peng, Minjoon Seo, Noah A. Smith, Swabha
Swayamdipta, Sam Thomson, Trang Tran, Vicki
Zayats and Luke Zettlemoyer for their helpful com-
ments.

References
Vikas Ganjigunte Ashok, Song Feng, and Yejin Choi.

2013. Success with style: Using writing style to
predict the success of novels. In Proc. of EMNLP.
pages 1753–1764.

Vipin Balachandran. 2013. Reducing human effort and
improving quality in peer code reviews using auto-
matic static analysis and reviewer recommendation.
In Proc. of ICSE.

Chandra Bhagavatula, Sergey Feldman, Russell Power,
and Waleed Ammar. 2018. Content-based citation
recommendation. In Proc. of NAACL.

Aliaksandr Birukou, Joseph R. Wakeling, Claudio Bar-
tolini, Fabio Casati, Maurizio Marchese, Katsiaryna
Mirylenka, Nardine Osman, Azzurra Ragone, Car-
les Sierra, and Aalam Wassef. 2011. Alternatives to
peer review: Novel approaches for research evalua-
tion. In Front. Comput. Neurosci..

Andrea Bonaccorsi, Antonio Ferrara, and Marco Mal-
garini. 2018. Journal ratings as predictors of article

1654



quality in arts, humanities, and social sciences: An
analysis based on the italian research evaluation ex-
ercise. In The Evaluation of Research in Social Sci-
ences and Humanities, Springer, pages 253–267.

Pali UK De Silva and Candace K Vance. 2017. Preserv-
ing the quality of scientific research: Peer review of
research articles. In Scientific Scholarly Communi-
cation, Springer, pages 73–99.

Ferric C Fang, Anthony Bowen, and Arturo Casadevall.
2016. NIH peer review percentile scores are poorly
predictive of grant productivity. eLife .

Sarah Greaves, Joanna Scott, Maxine Clarke, Linda
Miller, Timo Hannay, Annette Thomas, and Philip
Campbell. 2006. Nature’s trial of open peer review.
Nature 444(971):10–1038.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation 9(8):1735–
1780.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered composi-
tion rivals syntactic methods for text classification.
In Proc. of ACL-IJCNLP. volume 1, pages 1681–
1691.

John Langford and Mark Guzdial. 2015. The arbitrari-
ness of reviews, and advice for school administra-
tors. Communications of the ACM Blog 58(4):12–
13.

Claire Le Goues, Yuriy Brun, Sven Apel, Emery
Berger, Sarfraz Khurshid, and Yannis Smaragdakis.
2017. Effectiveness of anonymization in double-
blind review. ArXiv:1709.01609.

Vladimir I. Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. So-
viet physics doklady 10(8):707–710.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. JMLR
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Empirical Methods in Natural
Language Processing (EMNLP). pages 1532–1543.
http://www.aclweb.org/anthology/D14-1162.

Azzurra Ragone, Katsiaryna Mirylenka, Fabio Casati,
and Maurizio Marchese. 2011. A quantitative analy-
sis of peer review. In Proc. of ISSI.

Drummond Rennie. 2016. Make peer review scien-
tific: thirty years on from the first congress on peer
review, drummond rennie reflects on the improve-
ments brought about by research into the process–
and calls for more. Nature 535(7610):31–34.

Seán G Roberts and Tessa Verhoef. 2016. Double-
blind reviewing at evolang 11 reveals gender bias.
Journal of Language Evolution 1(2):163–167.

Charles Sutton and Linan Gong. 2017. Pop-
ularity of arxiv.org within computer science.
ArXiv:1710.05225.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running aver-
age of its recent magnitude. COURSERA: Neural
networks for machine learning 4(2):26–31.

Andrew Tomkins, Min Zhang, and William D Heavlin.
2017. Single versus double blind reviewing at wsdm
2017. ArXiv:1702.00502.

Oren Tsur and Ari Rappoport. 2009. Revrank: A fully
unsupervised algorithm for selecting the most help-
ful book reviews. In Proc. of ICWSM.

E. Walsh, Michael W Rooney, Louis Appleby, and
Greg Wilkinson. 2000. Open peer review: a ran-
domised controlled trial. The British journal of psy-
chiatry : the journal of mental science 176:47–51.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proc. of NIPS.

1655



Appendices

A Acceptance Classification Features

Table 7 shows the features used by our acceptance
classification model. Figure 2 shows the coeffi-
cients of all our features as learned by our best
classifier on both datasets.

A.1 Hyperparameters
This section describes the hyperparameters used
in our acceptance classification experiment. Un-
less stated otherwise, we used the sklearn default
hyperparameters. For decision tree and random
forest, we used maximum depth=5. For the latter,
we also used max_features=1. For MLP, we used
α = 1. For k-nearest neighbors, we used k = 3. For
logistic regression, we considered both l1 and l2
penalty.

Figure 2: Coefficient values for coarse features in
the paper acceptance classification, for ICLR and
arXiv.

B Reviewer Instructions

Below is the list of instructions to ACL 2016 re-
viewers on how to assign aspect scores to reviewed
papers.
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Features Description Labels

co
ar

se

abstract_contains_X
Whether abstract contains keywords X
⊂ deep, neural, embedding, outperform,

outperform, novel, state_of_the_art
boolean

title_length Length of title integer
num_authors Number of authors integer

most_recent_refs_year Most recent reference year 2001-2017
num_refs Number of references (sp) integer

num_refmentions Number of reference mentioned (sp) integer
avg_length_refs_mention Average length of references mentioned (sp) float

num_recent_refs Number of recent references
since the paper submitted (sp) integer

num_ref_to_X Number of X ⊂ figures, tables,
sections, equations, theorems (sp) integer

num_uniq_words Number of unique words (sp) integer
num_sections Number of sections (sp) integer

avg_sentence_length Average sentence length (sp) float
contains_appendix Whether contains an appendix or not (sp) boolean

prop_of_freq_words Proportion of frequent words (sp) float

Le
xi

ca
l BOW Bag-of-words in abstract integer

BOW+TFIDF TFIDF weighted BOW in abstract float
GloVe Average of GloVe word embeddings in abstract float

GloVe+TFIDF TFIDF weighted average
of word embeddings in abstract float

Table 7: List of coarse and lexical features used for acceptance classification task. sp refers features
extracted from science-parse.
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APPROPRIATENESS​ ​(1-5) 
 
Does​ ​the ​ ​paper​ ​fit​ ​in ​ ​ACL ​ ​2016? ​ ​(Please ​ ​answer​ ​this​ ​question ​ ​in ​ ​light​ ​of​ ​the ​ ​desire ​ ​to ​ ​broaden 
the ​ ​scope ​ ​of​ ​the ​ ​research ​ ​areas​ ​represented ​ ​at​ ​ACL.)  
 
5:​ ​Certainly.  
4:​ ​Probably.​ ​W 
3:​ ​Unsure.  
2:​ ​Probably​ ​not.  
1:​ ​Certainly​ ​not.  
 
CLARITY​ ​(1-5) 
For​ ​the ​ ​reasonably​ ​well-prepared ​ ​reader,​ ​is​ ​it​ ​clear​ ​what​ ​was​ ​done ​ ​and ​ ​why? ​ ​Is​ ​the ​ ​paper 
well-written ​ ​and ​ ​well-structured?  
 
5 ​ ​=​ ​Very​ ​clear.  
4 ​ ​=​ ​Understandable ​ ​by​ ​most​ ​readers.  
3 ​ ​=​ ​Mostly​ ​understandable ​ ​to ​ ​me ​ ​with ​ ​some ​ ​effort.  
2 ​ ​=​ ​Important​ ​questions​ ​were ​ ​hard ​ ​to ​ ​resolve ​ ​even ​ ​with ​ ​effort.  
1 ​ ​=​ ​Much ​ ​of​ ​the ​ ​paper​ ​is​ ​confusing.  
 
ORIGINALITY​ ​(1-5) 
How​ ​original ​ ​is​ ​the ​ ​approach? ​ ​Does​ ​this​ ​paper​ ​break​ ​new​ ​ground ​ ​in ​ ​topic,​ ​methodology,​ ​or 
content? ​ ​How​ ​exciting ​ ​and ​ ​innovative ​ ​is​ ​the ​ ​research ​ ​it​ ​describes?  
Note ​ ​that​ ​a ​ ​paper​ ​could ​ ​score ​ ​high​ ​for​ ​originality​ ​even ​ ​if​ ​the ​ ​results​ ​do ​ ​not​ ​show​ ​a ​ ​convincing 
benefit.  
 
5 ​ ​=​ ​Surprising:​ ​Significant​ ​new​ ​problem,​ ​technique,​ ​methodology,​ ​or​ ​insight​ ​--​ ​no ​ ​prior​ ​research 
has​ ​attempted ​ ​something ​ ​similar.  
4 ​ ​=​ ​Creative:​ ​An ​ ​intriguing ​ ​problem,​ ​technique,​ ​or​ ​approach ​ ​that​ ​is​ ​substantially​ ​different​ ​from 
previous​ ​research.  
3 ​ ​=​ ​Respectable:​ ​A​ ​nice ​ ​research ​ ​contribution ​ ​that​ ​represents​ ​a ​ ​notable ​ ​extension ​ ​of​ ​prior 
approaches​ ​or​ ​methodologies.  
2 ​ ​=​ ​Pedestrian:​ ​Obvious,​ ​or​ ​a ​ ​minor​ ​improvement​ ​on ​ ​familiar​ ​techniques.  
1 ​ ​=​ ​Significant​ ​portions​ ​have ​ ​actually​ ​been ​ ​done ​ ​before ​ ​or​ ​done ​ ​better. 
 
EMPIRICAL​ ​SOUNDNESS​ ​/​ ​CORRECTNESS​ ​(1-5) 
First,​ ​is​ ​the ​ ​technical ​ ​approach ​ ​sound ​ ​and ​ ​well-chosen? ​ ​Second,​ ​can ​ ​one ​ ​trust​ ​the ​ ​empirical 
claims​ ​of​ ​the ​ ​paper​ ​--​ ​are ​ ​they​ ​supported ​ ​by​ ​proper​ ​experiments​ ​and ​ ​are ​ ​the ​ ​results​ ​of​ ​the 
experiments​ ​correctly​ ​interpreted?  
 
5 ​ ​=​ ​The ​ ​approach ​ ​is​ ​very​ ​apt,​ ​and ​ ​the ​ ​claims​ ​are ​ ​convincingly​ ​supported.  
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4 ​ ​=​ ​Generally​ ​solid ​ ​work,​ ​although ​ ​there ​ ​are ​ ​some ​ ​aspects​ ​of​ ​the ​ ​approach ​ ​or​ ​evaluation ​ ​I​ ​am 
not​ ​sure ​ ​about.  
3 ​ ​=​ ​Fairly​ ​reasonable ​ ​work.​ ​The ​ ​approach ​ ​is​ ​not​ ​bad,​ ​and ​ ​at​ ​least​ ​the ​ ​main ​ ​claims​ ​are ​ ​probably 
correct,​ ​but​ ​I​ ​am​ ​not​ ​entirely​ ​ready​ ​to ​ ​accept​ ​them​ ​(based ​ ​on ​ ​the ​ ​material ​ ​in ​ ​the ​ ​paper).  
2 ​ ​=​ ​Troublesome.​ ​There ​ ​are ​ ​some ​ ​ideas​ ​worth ​ ​salvaging ​ ​here,​ ​but​ ​the ​ ​work​ ​should ​ ​really​ ​have 
been ​ ​done ​ ​or​ ​evaluated ​ ​differently.  
1 ​ ​=​ ​Fatally​ ​flawed. 
 
THEORETICAL​ ​SOUNDNESS​ ​/​ ​CORRECTNESS​ ​(1-5) 
First,​ ​is​ ​the ​ ​mathematical ​ ​approach ​ ​sound ​ ​and ​ ​well-chosen? ​ ​Second,​ ​are ​ ​the ​ ​arguments​ ​in ​ ​the 
paper​ ​cogent​ ​and ​ ​well-supported?  
 
5 ​ ​=​ ​The ​ ​mathematical ​ ​approach ​ ​is​ ​very​ ​apt,​ ​and ​ ​the ​ ​claims​ ​are ​ ​convincingly​ ​supported.  
4 ​ ​=​ ​Generally​ ​solid ​ ​work,​ ​although ​ ​there ​ ​are ​ ​some ​ ​aspects​ ​of​ ​the ​ ​approach ​ ​I​ ​am​ ​not​ ​sure ​ ​about 
or​ ​the ​ ​argument​ ​could ​ ​be ​ ​stronger.  
3 ​ ​=​ ​Fairly​ ​reasonable ​ ​work.​ ​The ​ ​approach ​ ​is​ ​not​ ​bad,​ ​and ​ ​at​ ​least​ ​the ​ ​main ​ ​claims​ ​are ​ ​probably 
correct,​ ​but​ ​I​ ​am​ ​not​ ​entirely​ ​ready​ ​to ​ ​accept​ ​them​ ​(based ​ ​on ​ ​the ​ ​material ​ ​in ​ ​the ​ ​paper).  
2 ​ ​=​ ​Troublesome.​ ​There ​ ​are ​ ​some ​ ​ideas​ ​worth ​ ​salvaging ​ ​here,​ ​but​ ​the ​ ​work​ ​should ​ ​really​ ​have 
been ​ ​done ​ ​or​ ​argued ​ ​differently.  
1 ​ ​=​ ​Fatally​ ​flawed. 
 
MEANINGFUL​ ​COMPARISON​ ​(1-5) 
Do ​ ​the ​ ​authors​ ​make ​ ​clear​ ​where ​ ​the ​ ​problems​ ​and ​ ​methods​ ​sit​ ​with ​ ​respect​ ​to ​ ​existing 
literature? ​ ​Are ​ ​the ​ ​references​ ​adequate? ​ ​For​ ​empirical ​ ​papers,​ ​are ​ ​the ​ ​experimental ​ ​results 
meaningfully​ ​compared ​ ​with ​ ​the ​ ​best​ ​prior​ ​approaches?  
 
5 ​ ​=​ ​Precise ​ ​and ​ ​complete ​ ​comparison ​ ​with ​ ​related ​ ​work.​ ​Good ​ ​job ​ ​given ​ ​the ​ ​space ​ ​constraints.  
4 ​ ​=​ ​Mostly​ ​solid ​ ​bibliography​ ​and ​ ​comparison,​ ​but​ ​there ​ ​are ​ ​some ​ ​references​ ​missing.  
3 ​ ​=​ ​Bibliography​ ​and ​ ​comparison ​ ​are ​ ​somewhat​ ​helpful,​ ​but​ ​it​ ​could ​ ​be ​ ​hard ​ ​for​ ​a ​ ​reader​ ​to 
determine ​ ​exactly​ ​how​ ​this​ ​work​ ​relates​ ​to ​ ​previous​ ​work.  
2 ​ ​=​ ​Only​ ​partial ​ ​awareness​ ​and ​ ​understanding ​ ​of​ ​related ​ ​work,​ ​or​ ​a ​ ​flawed ​ ​empirical 
comparison.  
1 ​ ​=​ ​Little ​ ​awareness​ ​of​ ​related ​ ​work,​ ​or​ ​lacks​ ​necessary​ ​empirical ​ ​comparison. 
 
SUBSTANCE​ ​(1-5) 
Does​ ​this​ ​paper​ ​have ​ ​enough ​ ​substance,​ ​or​ ​would ​ ​it​ ​benefit​ ​from​ ​more ​ ​ideas​ ​or​ ​results?  
Note ​ ​that​ ​this​ ​question ​ ​mainly​ ​concerns​ ​the ​ ​amount​ ​of​ ​work;​ ​its​ ​quality​ ​is​ ​evaluated ​ ​in ​ ​other 
categories.  
 
5 ​ ​=​ ​Contains​ ​more ​ ​ideas​ ​or​ ​results​ ​than ​ ​most​ ​publications​ ​in ​ ​this​ ​conference;​ ​goes​ ​the ​ ​extra 
mile.  
4 ​ ​=​ ​Represents​ ​an ​ ​appropriate ​ ​amount​ ​of​ ​work​ ​for​ ​a ​ ​publication ​ ​in ​ ​this​ ​conference.​ ​(most 
submissions)  
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3 ​ ​=​ ​Leaves​ ​open ​ ​one ​ ​or​ ​two ​ ​natural ​ ​questions​ ​that​ ​should ​ ​have ​ ​been ​ ​pursued ​ ​within ​ ​the ​ ​paper.  
2 ​ ​=​ ​Work​ ​in ​ ​progress.​ ​There ​ ​are ​ ​enough ​ ​good ​ ​ideas,​ ​but​ ​perhaps​ ​not​ ​enough ​ ​in ​ ​terms​ ​of 
outcome.  
1 ​ ​=​ ​Seems​ ​thin.​ ​Not​ ​enough​ ​ideas​ ​here ​ ​for​ ​a ​ ​full-length ​ ​paper. 
 
 
IMPACT​ ​OF​ ​IDEAS​ ​OR​ ​RESULTS​ ​(1-5) 
How​ ​significant​ ​is​ ​the ​ ​work​ ​described? ​ ​If​ ​the ​ ​ideas​ ​are ​ ​novel,​ ​will ​ ​they​ ​also ​ ​be ​ ​useful ​ ​or 
inspirational? ​ ​Does​ ​the ​ ​paper​ ​bring ​ ​any​ ​new​ ​insights​ ​into ​ ​the ​ ​nature ​ ​of​ ​the ​ ​problem?  
 
5 ​ ​=​ ​Will ​ ​affect​ ​the ​ ​field ​ ​by​ ​altering ​ ​other​ ​people's​ ​choice ​ ​of​ ​research ​ ​topics​ ​or​ ​basic​ ​approach.  
4 ​ ​=​ ​Some ​ ​of​ ​the ​ ​ideas​ ​or​ ​results​ ​will ​ ​substantially​ ​help ​ ​other​ ​people's​ ​ongoing ​ ​research.  
3 ​ ​=​ ​Interesting ​ ​but​ ​not​ ​too ​ ​influential.​ ​The ​ ​work​ ​will ​ ​be ​ ​cited,​ ​but​ ​mainly​ ​for​ ​comparison ​ ​or​ ​as​ ​a 
source ​ ​of​ ​minor​ ​contributions.  
2 ​ ​=​ ​Marginally​ ​interesting.​ ​May​ ​or​ ​may​ ​not​ ​be ​ ​cited.  
1 ​ ​=​ ​Will ​ ​have ​ ​no ​ ​impact​ ​on ​ ​the ​ ​field. 
 
IMPACT​ ​OF​ ​ACCOMPANYING​ ​SOFTWARE​ ​(1-5) 
If​ ​software ​ ​was​ ​submitted ​ ​or​ ​released ​ ​along ​ ​with ​ ​the ​ ​paper,​ ​what​ ​is​ ​the ​ ​expected ​ ​impact​ ​of​ ​the 
software ​ ​package? ​ ​Will ​ ​this​ ​software ​ ​be ​ ​valuable ​ ​to ​ ​others? ​ ​Does​ ​it​ ​fill ​ ​an ​ ​unmet​ ​need? ​ ​Is​ ​it​ ​at 
least​ ​sufficient​ ​to ​ ​replicate ​ ​or​ ​better​ ​understand ​ ​the ​ ​research ​ ​in ​ ​the ​ ​paper?  
 
5 ​ ​=​ ​Enabling:​ ​The ​ ​newly​ ​released ​ ​software ​ ​should ​ ​affect​ ​other​ ​people's​ ​choice ​ ​of​ ​research ​ ​or 
development​ ​projects​ ​to ​ ​undertake.  
4 ​ ​=​ ​Useful:​ ​I​ ​would ​ ​recommend ​ ​the ​ ​new​ ​software ​ ​to ​ ​other​ ​researchers​ ​or​ ​developers​ ​for​ ​their 
ongoing ​ ​work.  
3 ​ ​=​ ​Potentially​ ​useful:​ ​Someone ​ ​might​ ​find ​ ​the ​ ​new​ ​software ​ ​useful ​ ​for​ ​their​ ​work.  
2 ​ ​=​ ​Documentary:​ ​The ​ ​new​ ​software ​ ​useful ​ ​to ​ ​study​ ​or​ ​replicate ​ ​the ​ ​reported ​ ​research,​ ​although 
for​ ​other​ ​purposes​ ​they​ ​may​ ​have​ ​limited ​ ​interest​ ​or​ ​limited ​ ​usability.​ ​(Still ​ ​a ​ ​positive ​ ​rating)  
1 ​ ​=​ ​No ​ ​usable ​ ​software ​ ​released. 
 
IMPACT​ ​OF​ ​ACCOMPANYING​ ​DATASET​ ​(1-5) 
If​ ​a ​ ​dataset​ ​was​ ​submitted ​ ​or​ ​released ​ ​along ​ ​with ​ ​the ​ ​paper,​ ​what​ ​is​ ​the ​ ​expected ​ ​impact​ ​of​ ​the 
dataset? ​ ​Will ​ ​this​ ​dataset​ ​be ​ ​valuable ​ ​to ​ ​others​ ​in ​ ​the ​ ​form​ ​in ​ ​which ​ ​it​ ​is​ ​released? ​ ​Does​ ​it​ ​fill ​ ​an 
unmet​ ​need?  
 
5 ​ ​=​ ​Enabling:​ ​The ​ ​newly​ ​released ​ ​datasets​ ​should ​ ​affect​ ​other​ ​people's​ ​choice ​ ​of​ ​research ​ ​or 
development​ ​projects​ ​to ​ ​undertake.  
4 ​ ​=​ ​Useful:​ ​I​ ​would ​ ​recommend ​ ​the ​ ​new​ ​datasets​ ​to ​ ​other​ ​researchers​ ​or​ ​developers​ ​for​ ​their 
ongoing ​ ​work.  
3 ​ ​=​ ​Potentially​ ​useful:​ ​Someone ​ ​might​ ​find ​ ​the ​ ​new​ ​datasets​ ​useful ​ ​for​ ​their​ ​work.  
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2 ​ ​=​ ​Documentary:​ ​The ​ ​new​ ​datasets​ ​are ​ ​useful ​ ​to ​ ​study​ ​or​ ​replicate ​ ​the ​ ​reported ​ ​research, 
although ​ ​for​ ​other​ ​purposes​ ​they​ ​may​ ​have ​ ​limited ​ ​interest​ ​or​ ​limited ​ ​usability.​ ​(Still ​ ​a ​ ​positive 
rating)  
1 ​ ​=​ ​No ​ ​usable ​ ​datasets​ ​submitted. 
 
RECOMMENDATION​ ​(1-5) 
There ​ ​are ​ ​many​ ​good ​ ​submissions​ ​competing ​ ​for​ ​slots​ ​at​ ​ACL ​ ​2016;​ ​how​ ​important​ ​is​ ​it​ ​to 
feature ​ ​this​ ​one? ​ ​Will ​ ​people ​ ​learn ​ ​a ​ ​lot​ ​by​ ​reading ​ ​this​ ​paper​ ​or​ ​seeing ​ ​it​ ​presented?  
 
In ​ ​deciding ​ ​on ​ ​your​ ​ultimate ​ ​recommendation,​ ​please ​ ​think​ ​over​ ​all ​ ​your​ ​scores​ ​above.​ ​But 
remember​ ​that​ ​no ​ ​paper​ ​is​ ​perfect,​ ​and ​ ​remember​ ​that​ ​we ​ ​want​ ​a ​ ​conference ​ ​full ​ ​of​ ​interesting, 
diverse,​ ​and ​ ​timely​ ​work.​ ​If​ ​a ​ ​paper​ ​has​ ​some ​ ​weaknesses,​ ​but​ ​you ​ ​really​ ​got​ ​a ​ ​lot​ ​out​ ​of​ ​it,​ ​feel 
free ​ ​to ​ ​fight​ ​for​ ​it.​ ​If​ ​a ​ ​paper​ ​is​ ​solid ​ ​but​ ​you ​ ​could ​ ​live ​ ​without​ ​it,​ ​let​ ​us​ ​know​ ​that​ ​you're 
ambivalent.​ ​Remember​ ​also ​ ​that​ ​the ​ ​authors​ ​have ​ ​a ​ ​few​ ​weeks​ ​to ​ ​address​ ​reviewer​ ​comments 
before ​ ​the ​ ​camera-ready​ ​deadline.  
 
Should ​ ​the ​ ​paper​ ​be ​ ​accepted ​ ​or​ ​rejected?  
 
5 ​ ​=​ ​This​ ​paper​ ​changed ​ ​my​ ​thinking ​ ​on ​ ​this​ ​topic​ ​and ​ ​I'd ​ ​fight​ ​to ​ ​get​ ​it​ ​accepted;  
4 ​ ​=​ ​I​ ​learned ​ ​a ​ ​lot​ ​from​ ​this​ ​paper​ ​and ​ ​would ​ ​like ​ ​to ​ ​see ​ ​it​ ​accepted.  
3 ​ ​=​ ​Borderline:​ ​I'm​ ​ambivalent​ ​about​ ​this​ ​one.  
2 ​ ​=​ ​Leaning ​ ​against:​ ​I'd ​ ​rather​ ​not​ ​see ​ ​it​ ​in ​ ​the ​ ​conference.  
1 ​ ​=​ ​Poor:​ ​I'd ​ ​fight​ ​to ​ ​have ​ ​it​ ​rejected. 
 
REVIEWER​ ​CONFIDENCE​ ​(1-5) 
5 ​ ​=​ ​Positive ​ ​that​ ​my​ ​evaluation ​ ​is​ ​correct.​ ​I​ ​read ​ ​the ​ ​paper​ ​very​ ​carefully​ ​and ​ ​am​ ​familiar​ ​with 
related ​ ​work.  
4 ​ ​=​ ​Quite ​ ​sure.​ ​I​ ​tried ​ ​to ​ ​check​ ​the ​ ​important​ ​points​ ​carefully.​ ​It's​ ​unlikely,​ ​though ​ ​conceivable, 
that​ ​I​ ​missed ​ ​something ​ ​that​ ​should ​ ​affect​ ​my​ ​ratings.  
3 ​ ​=​ ​Pretty​ ​sure,​ ​but​ ​there's​ ​a ​ ​chance ​ ​I​ ​missed ​ ​something.​ ​Although ​ ​I​ ​have ​ ​a ​ ​good ​ ​feel ​ ​for​ ​this 
area ​ ​in ​ ​general,​ ​I​ ​did ​ ​not​ ​carefully​ ​check​ ​the ​ ​paper's​ ​details,​ ​e.g.,​ ​the ​ ​math,​ ​experimental ​ ​design, 
or​ ​novelty.  
2 ​ ​=​ ​Willing ​ ​to ​ ​defend ​ ​my​ ​evaluation,​ ​but​ ​it​ ​is​ ​fairly​ ​likely​ ​that​ ​I​ ​missed ​ ​some ​ ​details,​ ​didn't 
understand ​ ​some ​ ​central ​ ​points,​ ​or​ ​can't​ ​be ​ ​sure ​ ​about​ ​the ​ ​novelty​ ​of​ ​the ​ ​work.  
1 ​ ​=​ ​Not​ ​my​ ​area,​ ​or​ ​paper​ ​is​ ​very​ ​hard ​ ​to ​ ​understand.​ ​My​ ​evaluation ​ ​is​ ​just​ ​an ​ ​educated ​ ​guess. 
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Abstract

We present deep communicating agents
in an encoder-decoder architecture to ad-
dress the challenges of representing a
long document for abstractive summariza-
tion. With deep communicating agents,
the task of encoding a long text is divided
across multiple collaborating agents, each
in charge of a subsection of the input text.
These encoders are connected to a sin-
gle decoder, trained end-to-end using rein-
forcement learning to generate a focused
and coherent summary. Empirical results
demonstrate that multiple communicating
encoders lead to a higher quality summary
compared to several strong baselines, in-
cluding those based on a single encoder or
multiple non-communicating encoders.

1 Introduction

We focus on the task of abstractive summariza-
tion of a long document. In contrast to extractive
summarization, where a summary is composed of
a subset of sentences or words lifted from the in-
put text as is, abstractive summarization requires
the generative ability to rephrase and restructure
sentences to compose a coherent and concise sum-
mary. As recurrent neural networks (RNNs) are
capable of generating fluent language, variants of
encoder-decoder RNNs (Sutskever et al., 2014;
Bahdanau et al., 2015) have shown promising re-
sults on the abstractive summarization task (Rush
et al., 2015; Nallapati et al., 2017).

The fundamental challenge, however, is that the
strong performance of neural models at encoding
short text does not generalize well to long text.
The motivation behind our approach is to be able
to dynamically attend to different parts of the input
to capture salient facts. While recent work in sum-
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Tired of counting sheep ? Try

one of these remedies and get a

good nights sleep:Aroma ..

How to use it: Massage a dab of

aroma therapeutic balmor oil…

…

messages

  …
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paragraphs

1 2

1 2

layer-1 layer-2 layer-3

agent a
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Figure 1: Illustration of deep communicating agents
presented in this paper. Each agent a and b encodes
one paragraph in multiple layers. By passing new mes-
sages through multiple layers the agents are able to co-
ordinate and focus on the important aspects of the input
text.

marization addresses these issues using improved
attention models (Chopra et al., 2016), pointer
networks with coverage mechanisms (See et al.,
2017), and coherence-focused training objectives
(Paulus et al., 2018; Jaques et al., 2017), an effec-
tive mechanism for representing a long document
remains a challenge.

Simultaneous work has investigated the use of
deep communicating agents (Sukhbaatar et al.,
2016) for collaborative tasks such as logic puzzles
(Foerster et al., 2016), visual dialog (Das et al.,
2017), and reference games (Lazaridou et al.,
2016). Our work builds on these approaches to
propose the first study on using communicating
agents to encode long text for summarization.

The key idea of our model is to divide the hard
task of encoding a long text across multiple collab-
orating encoder agents, each in charge of a differ-
ent subsection of the text (Figure 1). Each of these
agents encodes their assigned text independently,
and broadcasts their encoding to others, allowing
agents to share global context information with
one another about different sections of the docu-
ment. All agents then adapt the encoding of their
assigned text in light of the global context and re-
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Figure 2: Multi-agent-encoder-decoder overview. Each agent a encodes a paragraph using a local encoder followed
by multiple contextual layers with agent communication through concentrated messages z(k)a at each layer k.
Communication is illustrated in Figure 3. The word context vectors cta are condensed into agent context c∗t .
Agent specific generation probabilities, pta, enable voting for the suitable out-of-vocabulary words (e.g., ’yen’) in
the final distribution.

peat the process across multiple layers, generat-
ing new messages at each layer. Once each agent
completes encoding, they deliver their information
to the decoder with a novel contextual agent atten-
tion (Figure 2). Contextual agent attention enables
the decoder to integrate information from multiple
agents smoothly at each decoding step. The net-
work is trained end-to-end using self-critical rein-
forcement learning (Rennie et al., 2016) to gener-
ate focused and coherent summaries.

Empirical results on the CNN/DailyMail and
New York Times datasets demonstrate that multi-
ple communicating encoders lead to higher quality
summaries compared to strong baselines, includ-
ing those based on a single encoder or multiple
non-communicating encoders. Human evaluations
indicate that our model is able to produce more fo-
cused summaries. The agents gather salient infor-
mation from multiple areas of the document, and
communicate their information with one another,
thus reducing common mistakes such as missing
key facts, repeating the same content, or including
unnecessary details. Further analysis reveals that
our model attains better performance when the de-
coder interacts with multiple agents in a more bal-
anced way, confirming the benefit of representing
a long document with multiple encoding agents.

2 Model

We extend the CommNet model of Sukhbaatar
et al. (2016) for sequence generation.

Notation Each document d is a sequence of
paragraphs xa, which are split across multiple en-
coding agents a=1,..,M (e.g., agent-1 encodes the
first paragraph x1, agent-2 the second paragraph
x2, so on). Each paragraph xa={wa,i}I , is a se-
quence of I words. We construct a V -sized vocab-
ulary from the training documents from the most
frequently appearing words. Each word wa,i is
embedded into a n-dimensional vector ea,i. All
W variables are linear projection matrices.

2.1 Multi-Agent Encoder
Each agent encodes the word sequences with the
following two stacked encoders.
Local Encoder The first layer is a local encoder
of each agent a, where the tokens of the corre-
sponding paragraph xa are fed into a single layer
bi-directional LSTM (bLSTM), producing the lo-
cal encoder hidden states, h(1)i ∈ RH :

−→
h

(1)
i ,
←−
h

(1)
i = bLSTM(ei,

−→
h

(1)
i−1,
←−
h

(1)
i+1) (1)

h
(1)
i =W1[

−→
h

(1)
i ,
←−
h

(1)
i ] (2)

where H is the hidden state dimensionality. The
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output of the local encoder layer is fed into the
contextual encoder.
Contextual Encoder Our framework enables
agent communication cycles across multiple en-
coding layers. The output of each contextual en-
coder is an adapted representation of the agent’s
encoded information conditioned on the informa-
tion received from the other agents. At each layer
k=1,..,K, each agent a jointly encodes the infor-
mation received from the previous layer (see Fig-
ure 3). Each cell of the (k+1)th contextual layer
is a bLSTM that takes three inputs: the hidden
states from the adjacent LSTM cells,

−→
h

(k+1)
i−1 ∈RH

or
←−
h

(k+1)
i+1 ∈RH , the hidden state from the previ-

ous layer h(k)i , and the message vector from other
agents z(k)∈RH and outputs h(k+1)

i ∈RH :

−→
h

(k+1)
i ,

←−
h

(k+1)
i =bLSTM(f(h

(k)
i , z(k)), (3)

−→
h

(k+1)
i−1 ,

←−
h

(k+1)
i+1 ) (4)

h
(k+1)
i =W2[

−→
h

(k+1)
i ,

←−
h

(k+1)
i ] (5)

where i=1..I indicates the index of each token in
the sequence.

The message z(k) received by any agent a in
layer k is the average of the outputs of the other
agents from layer k:

z(k) = 1
M−1

∑
m6=ah

(k)
m,I (6)

where h(k)m,I is the last hidden state output from the
kth contextual layer of each agent where m 6= a.
Here, we take the average of the messages re-
ceived from other encoder agents, but a parametric
function such as a feed forward model or an atten-
tion over messages could also be used.

The message z(k) is projected with the agent’s
previous encoding of its document:

f(h
(k)
i , z(k)) = vT1tanh(W3h

(k)
i +W4z

(k)) (7)

where v1,W3, and W4 are learned parameters
shared by every agent. Equation (7) combines the
information sent by other agents with the context
of the current token from this paragraph. This
yields different features about the current context
in relation to other topics in the source document.
At each layer, the agent modifies its representa-
tion of its own context relative to the information
received from other agents, and updates the infor-
mation it sends to other agents accordingly.

LSTM

LSTM

Figure 3: Multi-agent encoder message passing.
Agents b and c transmit the last hidden state output (I)
of the current layer k as a message, which are passed
through an average pool (Eq. (6)). The receiving agent
a uses the new message z(k)a as additional input to its
next layer.

2.2 Decoder with Agent Attention
The output from the last contextual encoder layer
of each agent {h(K)

a,i }I , which is a sequence of
hidden state vectors of each token i, is sent to
the decoder to calculate word-attention distribu-
tions. We use a single-layer LSTM for the decoder
and feed the last hidden state from the first agent
s0 = h

(K)
1,I as the initial state. At each time step t,

the decoder predicts a new word in the summary
wt and computes a new state st by attending to
relevant input context provided by the agents.

The decoder uses a new hierarchical attention
mechanism over the agents. First, a word attention
distribution lta (Bahdanau et al. (2015)) is com-
puted over every token {h(K)

a,i }I for each agent a:

lta = softmax(vT2 tanh(W5h
(K)
a +W6st + b1))

(8)

where lta∈[0, 1]I is the attention over all tokens in
a paragraph xa and v2, W5, W6, b1 are learned pa-
rameters. For each decoding step t, a new decoder
context is calculated for each agent:

cta =
∑

i

lta,ih
(K)
a,i (9)

which is the weighted sum of the encoder hidden
states of agent a. Each word context vector repre-
sents the information extracted by the agent from
the paragraph it has read. Here the decoder has to
decide which information is more relevant to the
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current decoding step t. This is done by weighting
each context vector by an agent attention yielding
the document global agent attention distribution
gt (see Figure 2):

gt = softmax(vT3tanh(W7c
t +W8st + b2)) (10)

where v3, W7, W8, and b2 are learned, and
gt ∈[0,1]M is a soft selection over M agents.
Then, we compute the agent context vector c∗t :

c∗t =
∑

ag
t
ac
t
a (11)

The agent context c∗t∈RH is a fixed length vector
encoding salient information from the entire doc-
ument provided by the agents. It is then concate-
nated with the decoder state st and fed through
a multi-layer perception to produce a vocabulary
distribution (over all vocabulary words) at time t:

P voc(wt|st, wt−1) = softmax(MLP([st, c∗t ]))
(12)

To keep the topics of generated sentences intact,
it is reasonable that the decoder utilize the same
agents over the course of short sequences (e.g.,
within a sentence). Because the decoder is de-
signed to select which agent to attend to at each
time step, we introduce contextual agent attention
(caa) to prevent it from frequently switching be-
tween agents. The previous step’s agent attention
c∗t−1 is used as additional information to the de-
coding step to generate a distribution over words:

P voc(wt|·) = softmax(MLP([st, c∗t , c
∗
t−1])) (13)

2.3 Multi-Agent Pointer Network
Similar to See et al. (2017), we allow for copying
candidate words from different paragraphs of the
document by computing a generation probability
value for each agent pta ∈[0,1] at each timestep t
using the context vector cta, decoder state st and
decoder input yt:

pta = σ(vT5c
t
a + vT6st + vT7yt + b) (14)

where b is a learned scalar, yt is the ground-
truth/predicted output (depending on the train-
ing/testing time). The generation probability de-
termines whether to generate a word from the vo-
cabulary by sampling from P voc(w|·), or copy-
ing a word from the corresponding agent’s input
paragraph xa by sampling from its attention distri-
bution lta. This produces an extended vocabulary

that includes words in the document that are con-
sidered out-of-vocabulary (OOV). A probability
distribution over the extended vocabulary is com-
puted for each agent:

P a(wt|·) = ptaP
voc(wt|·) + (1− pta)uta,w (15)

where uta,w is the sum of the attention for all
instances where w appears in the source docu-
ment. The final distribution over the extended vo-
cabulary, from which we sample, is obtained by
weighting each agent by their corresponding agent
attention values gta:

P (wt|st, wt−1) =
∑

a g
t
aP

a(wt|·) (16)

In contrast to a single-agent baseline (See et al.,
2017), our model allows each agent to vote for dif-
ferent OOV words at time t (Equation (16)). In
such a case, only the word that is relevant to the
generated summary up to time t is collaboratively
voted as a result of agent attention probability gta.

3 Mixed Objective Learning

To train the deep communicating agents, we use
a mixed training objective that jointly optimizes
multiple losses, which we describe below.

MLE Our baseline multi-agent model uses max-
imum likelihood training for sequence genera-
tion. Given y∗ = {y∗1 ,y∗2 ,...,y∗T } as the ground-
truth output sequence (human summary word se-
quences) for a given input document d, we mini-
mize the negative log-likelihood of the target word
sequence:

LMLE = −∑N
t=1 logp(y∗t |y∗1 . . . y∗t−1, d) (17)

Semantic Cohesion To encourage sentences in
the summary to be informative without repetition,
we include a semantic cohesion loss to integrate
sentence-level semantics into the learning objec-
tive. As the decoder generates the output word se-
quence {y1, y2 . . . yT }, it keeps track of the end
of sentence delimiter token (‘.’) indices. The hid-
den state vectors at the end of each sentence s′q,
q=1. . . Q, where s′q∈{st:yt=‘·’, 1≤t≤T}, are used
to compute the cosine similarity between two con-
secutively generated sentences. To minimize the
similarity between end-of-sentence hidden states
we define a semantic cohesion loss:

LSEM =
∑Q

q=2 cos(s
′
q, s
′
q−1) (18)
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The final training objective is then:

LMLE-SEM = LMLE + λLSEM (19)

where λ is a tunable hyperparameter.

Reinforcement Learning (RL) Loss Policy
gradient methods can directly optimize discrete
target evaluation metrics such as ROUGE that
are non-differentiable (Paulus et al., 2018; Jaques
et al., 2017; Pasunuru and Bansal, 2017; Wu et al.,
2016). At each time step, the word generated by
the model can be viewed as an action taken by an
RL agent. Once the full sequence ŷ is generated, it
is compared against the ground truth sequence y∗

to compute the reward r(ŷ).
Our model learns using a self-critical training

approach (Rennie et al., 2016), which learns by ex-
ploring new sequences and comparing them to the
best greedily decoded sequence. For each training
example d, two output sequences are generated:
ŷ, which is sampled from the probability distribu-
tion at each time step, p(ŷt|ŷ1 . . . ŷt−1, d), and ỹ,
the baseline output, which is greedily generated by
argmax decoding from p(ỹt|ỹ1 . . . ỹt−1, d). The
training objective is then to minimize:

LRL = (r(ỹ)− r(ŷ))∑N
t=1 logp(ŷt|ŷ1 . . . ŷt−1, d)

(20)
This loss ensures that, with better exploration, the
model learns to generate sequences ŷ that receive
higher rewards compared to the baseline ỹ, in-
creasing overall reward expectation of the model.

Mixed Loss While training with only MLE loss
will learn a better language model, this may not
guarantee better results on global performance
measures. Similarly, optimizing with only RL loss
may increase the reward gathered at the expense
of diminished readability and fluency of the gen-
erated summary (Paulus et al., 2018). A combi-
nation of the two objectives can yield improved
task-specific scores while maintaining fluency:

LMIXED = γLRL + (1− γ)LMLE (21)

where γ is a tunable hyperparameter used to bal-
ance the two objective functions. We pre-train
our models with MLE loss, and then switch to the
mixed loss. We can also add the semantic cohesion
loss term: LMIXED-SEM = γLRL+(1−γ)LMLE-SEM
to analyze its impact in RL training.

Intermediate Rewards We introduce sentence-
based rewards as opposed to end of summary re-
wards, using differential ROUGE metrics, to pro-
mote generating diverse sentences. Rather than re-
warding sentences based on the scores obtained at
the end of the generated summary, we compute in-
cremental rouge scores of a generated sentence ôq:

r(ôq) = r([ô1, . . . ôq])− r([ô1, . . . ôq−1]) (22)

Sentences are rewarded for the increase in
ROUGE they contribute to the full sequence, en-
suring that the current sentence contributed novel
information to the overall summary.

4 Experimental Setup

Datasets We conducted experiments on two sum-
marization datasets: CNN/DailyMail (Nallapati
et al., 2017; Hermann et al., 2015) and New York
Times (NYT) (Sandhaus, 2008). We replicate the
preprocessing steps of Paulus et al. (2018) to ob-
tain the same data splits, except that we do not
anonymize named entities. For our DCA models,
we initialize the number of agents before training,
and partition the document among the agents (i.e.,
three agent → three paragraphs). Additional de-
tails can be found in Appendix A.1.

Training Details During training and testing we
truncate the article to 800 tokens and limit the
length of the summary to 100 tokens for train-
ing and 110 tokens at test time. We distribute the
truncated articles among agents for multi-agent
models, preserving the paragraph and sentences
as possible. For both datasets, we limit the in-
put and output vocabulary size to the 50,000 most
frequent tokens in the training set. We train with
up to two contextual layers in all the DCA models
as more layers did not provide additional perfor-
mance gains. We fix γ = 0.97 for the RL term in
Equation (21) and λ = 0.1 for the SEM term in
MLE and MIXED training. Additional details are
provided in Appendix A.2.

Evaluation We evaluate our system using
ROUGE-1 (unigram recall), ROUGE-2 (bigram
recall) and ROUGE-L (longest common se-
quence).1 We select the MLE models with the
lowest negative log-likelihood and the MLE+RL
models with the highest ROUGE-L scores on a
sample of validation data to evaluate on the test

1We use pyrouge (pypi.python.org/pypi/pyrouge/0.1.3).
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Model ROUGE-1 ROUGE-2 ROUGE-L
SummaRuNNer (Nallapati et al., 2017) 39.60 16.20 35.30
graph-based attention (Tan et al., 2017) 38.01 13.90 34.00
pointer generator (See et al., 2017) 36.44 15.66 33.42
pointer generator + coverage (See et al., 2017) 39.53 17.28 36.38
controlled summarization with fixed values (Fan et al., 2017) 39.75 17.29 36.54
RL, with intra-attention (Paulus et al., 2018) 41.16 15.75 39.08
ML+RL, with intra-attention(Paulus et al., 2018) 39.87 15.82 36.90
(m1) MLE, pgen, no-comm (1-agent) (our baseline-1) 36.12 14.38 33.83
(m2) MLE+SEM, pgen, no-comm (1-agent) (our baseline-2) 36.90 15.02 33.00
(m3) MLE+RL, pgen, no-comm (1-agent) (our baseline-3) 38.01 16.43 35.49
(m4) DCA MLE+SEM, pgen, no-comm (3-agents) 37.45 15.90 34.56
(m5) DCA MLE+SEM, mpgen, with-comm (3-agents) 39.52 17.12 36.90
(m6) DCA MLE+SEM, mpgen, with-comm, with caa (3-agents) 41.11 18.21 36.03
(m7) DCA MLE+SEM+RL, mpgen, with-comm, with caa (3-agents) 41.69 19.47 37.92

Table 1: Comparison results on the CNN/Daily Mail test set using the F1 variants of Rouge. Best model models
are bolded.

Model Rouge-1 Rouge-2 Rouge-L
ML, no intra-attention (Paulus et al., 2018) 44.26 27.43 40.41
RL, no intra-attention (Paulus et al., 2018) 47.22 30.51 43.27
ML+RL, no intra-attention(Paulus et al., 2018) 47.03 30.72 43.10
(m1) MLE, pgen, no-comm (1-agent) (our baseline-1) 44.28 26.01 37.87
(m2) MLE+SEM, pgen, no-comm (1-agent) (our baseline-2) 44.50 28.04 38.80
(m3) MLE+RL, pgen, no-comm (1-agent) (our baseline-3) 46.15 29.50 39.38
(m4) DCA MLE+SEM, pgen, no-comm (3-agents) 45.84 28.23 39.32
(m5) DCA MLE+SEM, mpgen, with-comm (3-agents) 46.20 30.01 40.65
(m6) DCA MLE+SEM, mpgen, with-comm, with caa (3-agents) 47.30 30.50 41.06
(m7) DCA MLE+SEM+RL, mpgen with-comm, with caa (3-agents) 48.08 31.19 42.33

Table 2: Comparison results on the New York Times test set using the F1 variants of Rouge. Best model models
are bolded.

set. At test time, we use beam search of width 5
on all our models to generate final predictions.

Baselines We compare our DCA models against
previously published models: SummaRuNNer
(Nallapati et al., 2017), a graph-based attentional
neural model (Tan et al., 2017) an RNN-based ex-
tractive summarizer that combines abstractive fea-
tures during training; Pointer-networks with and
without coverage (See et al., 2017), RL-based
training for summarization with intra-decoder at-
tention (Paulus et al., 2018)), and Controllable Ab-
stractive Summarization (Fan et al., 2017) which
allows users to define attributes of generated sum-
maries and also uses a copy mechanism for source
entities and decoder attention to reduce repetition.

Ablations We investigate each new component
of our model with a different ablation, producing
seven different models. Our first three ablations
are: a single-agent model with the same local en-
coder, context encoder, and pointer network archi-
tectures as the DCA encoders trained with MLE
loss (m1); the same model trained with additional
semantic cohesion SEM loss (m2), and the same
model as the (m1) but trained with a mixed loss
and end-of-summary rewards (m3).

The rest of our models use 3 agents and in-
crementally add one component. First, we add
the semantic cohesion loss (m4). Then, we add
multi-agent pointer networks (mpgen) and agent
communication (m5). Finally, we add contex-
tual agent attention (caa) (m6), and train with the
mixed MLE+RL+SEM loss (m7). All DCA mod-
els use pointer networks.

5 Results

5.1 Quantitative Analysis
We show our results on the CNN/DailyMail and
NYT datasets in Table 1 and 2 respectively.
Overall, our (m6) and (m7) models with multi-
agent encoders, pointer generation, and commu-
nication are the strongest models on ROUGE-1
and ROUGE-2. While weaker on ROUGE-L than
the RL model from Paulus et al. (2018), the hu-
man evaluations in that work showed that their
model received lower readability and relevance
scores than a model trained with MLE, indicating
the additional boost in ROUGE-L was not corre-
lated with summary quality. This result can also
account for our best models being more abstrac-
tive. Our models use mixed loss not just to op-
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timize for sentence level structure similarity with
the reference summary (to get higher ROUGE as
reward), but also to learn parameters to improve
semantic coherence, promoting higher abstraction
(see Table 4 and Appendix B for generated sum-
mary examples).

Model ROUGE-1 ROUGE-2 ROUGE-L
2-agent 40.94 19.16 37.54
3-agent 41.69 19.47 37.92
5-agent 40.99 19.02 38.21

Table 3: Comparison of multi-agent models varying the
number of agents using ROUGE results of model (m7)
from Table 1 on CNN/Daily Maily Dataset.

Single vs. Multi-Agents All multi-agent models
show improvements over the single agent base-
lines. On the CNN/DailyMail dataset, compared
to MLE published baselines, we improve across
all ROUGE scores. We found that the 3-agent
models generally outperformed both 2- and 5-
agent models (see Table 3). This is in part be-
cause we truncate documents before training and
the larger number of agents might be more effi-
cient for multi-document summarization.

Independent vs. Communicating Agents When
trained on multiple agents with no communication
(m4), the performance of our DCA models is sim-
ilar to the single agent baselines (m1) and (m3).
With communication, the biggest jump in ROUGE
is seen on the CNN/DailyMail data, indicating that
the encoders can better identify the key facts in the
input, thereby avoiding unnecessary details.

Contextual Agent Attention (caa) Compared to
the model with no contextualized agent atten-
tion (m5), the (m6) model yields better ROUGE
scores. The stability provided by the caa helps the
decoder avoid frequent switches between agents
that would dilute the topical signal captured by
each encoder.

Repetition Penalty As neurally generated sum-
maries can be redundant, we introduced the se-
mantic cohesion penalty and incremental rewards
for RL to generate semantically diverse sum-
maries. Our baseline model optimized together
with SEM loss (m2) improves on all ROUGE
scores over the baseline (m1). Similarly, our
model trained with reinforcement learning uses
sentence based intermediate rewards, which also
improves ROUGE scores across both datasets.

5.2 Human Evaluations

We perform human evaluations to establish that
our model’s ROUGE improvements are correlated
with human judgments. We measure the com-
municative multi-agent network with contextual
agent attention in comparison to a single-agent
network with no communication. We use the fol-
lowing as evaluation criteria for generated sum-
maries: (1) non-redundancy, fewer of the same
ideas are repeated, (2) coherence, ideas are ex-
pressed clearly; (3) focus, the main ideas of the
document are shared while avoiding superfluous
details, and (4) overall, the summary effectively
communicates the article’s content. The focus and
non-redundancy dimensions help quantify the im-
pact of multi-agent communication in our model,
while coherence helps to evaluate the impact of the
reward based learning and repetition penalty of the
proposed models.

Evaluation Procedure We randomly selected 100
samples from the CNN/DailyMail test set and
use workers from Amazon Mechanical Turk as
judges to evaluate them on the four criteria defined
above. Judges are shown the original document,
the ground truth summary, and two model sum-
maries and are asked to evaluate each summary on
the four criteria using a Likert scale from 1 (worst)
to 5 (best). The ground truth and model summaries
are presented to the judges in random order. Each
summary is rated by 5 judges and the results are
averaged across all examples and judges.

We also performed a head-to-head evaluation
(more common in DUC style evaluations) and ran-
domly show two model generated summaries. We
ask the human annotators to rate each summary
on the same metrics as before without seeing the
source document or ground truth summaries.

Results Human evaluators significantly prefer
summaries generated by the communicating en-
coders. In the rating task, evaluators preferred the
multi-agent summaries to the single-agent cases
for all metrics. In the head-to-head evaluation, hu-
mans consistently preferred the DCA summaries
to those generated by a single agent. In both the
head-to-head and the rating evaluation, the largest
improvement for the DCA model was on the fo-
cus question, indicating that the model learns to
generate summaries with more pertinent details by
capturing salient information from later portions
of the document.
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Human Mr Turnbull was interviewed about his childhood and his political stance. He also admitted he planned to run
for prime minister if Tony Abbott had been successfully toppled in February’s leadership spill. The words
’primed minister’ were controversially also printed on the cover.

Single Malcolm Turnbull is set to feature on the front cover of the GQ Australia in a bold move that will no doubt set sena-
tors’ tongues wagging. Posing in a suave blue suit with a pinstriped shirt and a contrasting red tie , Mr Turnbull’s
confident demeanour is complimented by the bold, confronting words printed across the page: ’primed minister’.

Multi Malcolm Turnbull was set to run for prime minister if Tony Abbott had been successfully toppled in Febru-
ary’s leadership spill. He is set to feature on the front cover of the liberal party’s newsletter.

Human Daphne Selfe has been modelling since the fifties. She has recently landed a new campaign with vans and & other
stories. The 86-year-old commands 1,000 a day for her work.

Single Daphne Selfe, 86, shows off the collaboration between the footwearsuper-brandand theetherealhigh street store
with uncompromisinggrace. Daphne said of the collection , in which she appears with 22-year-old flo dron: ’the

& other stories collection that is featured in this story is truly relaxed and timeless with a modern twist’. The

shoes are then worn with pieces from the brands ss2015 collection.

Multi Daphne Selfe, 86, has starred in the campaign for vans and & other stories. The model appears with 22-year-old

flo dron & other hair collection . She was still commanding 1,000 a day for her work.
Table 4: Comparison of a human summary to best single- and multi-agent model summaries, (m3) and (m7)
from CNN/DailyMail dataset. Although single-agent model generates a coherent summary, it is less focused and
contains more unnecessary details ( highlighed red ) and misses keys facts that the multi-agent model successfully
captures (bolded).

Head-to-Head Score Based
Criteria SA MA = SA MA
non-redundancy 68 159 73 4.384 4.428
coherence 89 173 38 3.686 3.754
focus 83 181 36 3.694 3.884∗
overall 102 158 40 3.558 3.682∗

Table 5: Head-to-Head and score-based comparison
of human evaluations on random subset of CNN/DM
dataset. SA=single, MA=multi-agent. ∗ indicates sta-
tistical significance at p < 0.001 for focus and p <
0.03 for the overall.

5.3 Communication improves focus

To investigate how much the multi-agent models
discover salient concepts in comparison to sin-
gle agent models, we analyze ROUGE-L scores
based on the average attention received by each
agent. We compute the average attention received
by each agent per decoding time step for every
generated summary in the CNN/Daily Mail test
corpus, bin the document-summary pairs by the
attention received by each agent, and average the
ROUGE-L scores for the summaries in each bin.

Figure 4 outlines two interesting results. First,
summaries generated with a more distributed at-
tention over the agents yield higher ROUGE-L
scores, indicating that attending to multiple areas
of the document allows the discovery of salient
concepts in the later sections of the text. Second,
if we use the same bins and generate summaries
for the documents in each bin using the single-
agent model, the average ROUGE-L scores for the
single-agent summaries are lower than for the cor-
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Figure 4: The average ROUGE-L scores for summaries
that are binned by each agent’s average attention when
generating the summary (see Section 5.2). When the
agents contribute equally to the summary, the ROUGE-
L score increases.

responding multi-agent summaries, indicating that
even in cases where one agent dominates the at-
tention, communication between agents allows the
model to generate more focused summaries.

Qualitatively, we see this effect in Table 4,
where we compare the human generated sum-
maries against our best single agent model (m3)
and our best multi-agent model (m7). Model (m3)
generates good summaries but does not capture all
the facts in the human summary, while (m7) is able
to include all the facts with few extra details, gen-
erating more relevant and diverse summaries.

6 Related Work

Several recent works investigate attention mecha-
nisms for encoder-decoder models to sharpen the
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context that the decoder should focus on within the
input encoding (Luong et al., 2015; Vinyals et al.,
2015b; Bahdanau et al., 2015). For example, Lu-
ong et al. (2015) proposes global and local atten-
tion networks for machine translation, while oth-
ers investigate hierarchical attention networks for
document classification (Yang et al., 2016), senti-
ment classification (Chen et al., 2016), and dialog
response selection (Zhou et al., 2016).

Attention mechanisms have shown to be crucial
for summarization as well (Rush et al., 2015; Zeng
et al., 2016; Nallapati et al., 2017), and pointer
networks (Vinyals et al., 2015a), in particular,
help address redundancy and saliency in generated
summaries (Cheng and Lapata, 2016; See et al.,
2017; Paulus et al., 2018; Fan et al., 2017). While
we share the same motivation as these works,
our work uniquely presents an approach based on
CommNet, the deep communicating agent frame-
work (Sukhbaatar et al., 2016). Compared to prior
multi-agent works on logic puzzles (Foerster et al.,
2017), language learning (Lazaridou et al., 2016;
Mordatch and Abbeel, 2017) and starcraft games
(Vinyals et al., 2017), we present the first study in
using this framework for long text generation.

Finally, our model is related to prior works that
address repetitions in generating long text. See
et al. (2017) introduce a post-trained coverage net-
work to penalize repeated attentions over the same
regions in the input, while Paulus et al. (2018) use
intra-decoder attention to punish generating the
same words. In contrast, we propose a new se-
mantic coherence loss and intermediate sentence-
based rewards for reinforcement learning to dis-
courage semantically similar generations (§3).

7 Conclusions

We investigated the problem of encoding long
text to generate abstractive summaries and demon-
strated that the use of deep communicating agents
can improve summarization by both automatic and
manual evaluation. Analysis demonstrates that
this improvement is due to the improved ability of
covering all and only salient concepts and main-
taining semantic coherence in summaries.
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A Supplementary Material

Stats CNN/DM NYT
Avg. # tokens document 781 549
Avg. # tokens summary 56 40
Total # train doc-summ. pair 287,229 589,284
Total # validation doc-summ. pair 13,368 32,736
Total # test doc-summ. pair 11,490 32,739
Input token length 400/800 800
Output token length 100 100
(2-agent) Input token length / agent 375 400
(3-agent) Input token length / agent 250 200
(5-agent) Input token length / agent 150 160

Table 6: Summary statistics of CNN/DailyMail (DM)
and New York Times (NYT) Datasets.

A.1 Datasets
CNN/DailyMail: CNN/DailyMail dataset (Nal-
lapati et al., 2017; Hermann et al., 2015) is a col-
lection of online news articles along with multi-
sentence summaries. We use the same data
splits as in Nallapati et al. (2017). While ear-
lier work anonymized entities by replacing each
named entity with a unique identifier (e.g., Do-
minican Republic→entity15), we opted for
non-anonymized version.

New York Times (NYT): Although this dataset
has mainly been used to train extractive summa-
rization systems (Hong and Nenkova, 2014; Hong
et al., 2015; Li et al., 2016; Durrett et al., 2016),
it has recently been used for the abstractive sum-
marization task (Paulus et al., 2018). NYT dataset
(Sandhaus, 2008) is a collection of articles pub-
lished between 1996 and 2007. We use the scripts
provided in Li et al. (2016) to extract and pre-
process the NYT dataset with some modifications
in order to replicate the pre-processing steps pre-
sented in Paulus et al. (2018). Similar to (Paulus
et al., 2018), we sorted the documents by their
publication date in chronological order and used
the first 90% for training, the next 5% for val-
idation and last 5% for testing. They also use
pointer supervision by replacing all named entities
in the abstract if the type is ”PERSON”, ”LOCA-
TION”, ”ORGANIZATION” or ”MISC” using the
Stanford named entity recognizer (Manning et al.,
2014). By contrast, we did not anonymize the
NYT dataset to reduce pre-processing.

A.2 Training Details
We train our models on an NVIDIA P100 GPU
machine. We set the hidden state size of the en-
coders and decoders to 128. For both datasets,

we limit the input and output vocabulary size to
the 50,000 most frequent tokens in the training
set. We initialize word embeddings with 200-d
GloVe vectors (Pennington et al., 2014) and fine-
tune them during training. We train using Adam
with a learning rate of 0.001 for the MLE models
and 10−5 for the MLE+RL models. We tune the
gamma hyper-parameter in the mixed loss by it-
erating γ={0.95, 0.97, 0.99}. In almost all DCA
models, the 0.97 value yielded the best gains. We
train our models for 200,000 iterations. which
took 4-5 days for 2-3 agents and 5-6 days for 5
agents since it has more encoder parameters to
tune.

To avoid repetition, we prevent the decoder
from generating the same trigram more than once
during test, following Paulus et.al. (2018). In ad-
dition, for every predicted out-of-vocabulary to-
ken (UNK), we replace it with its most likely
origin by choosing the source word w with the
largest cascaded attention w := argmax

a,i
lta,i ∗ gta

(Eq. (8), (10)).

B Generated Summary Examples

This appendix provides example documents from
the test set, with side-by-side comparisons of
the human generated (golden) summaries and the
summaries produced by our models. Baseline is
a single-agent model trained with MLE+RL loss,
(m3) model in Table 1, while our best multi-agent
model is optimized by mixed MLE+SEM+RL
loss, the (m7) model in Table 1.

• red highlights : indicate details that should
not appear in the summary but the models
generated them.

• red : indicates factual errors in the summary.

• green highlights : indicate key facts in the
human (gold) summary that only one of the
models manage to capture.
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Document model abbey clancy is helping to target breast cancer , by striking a sultry pose in a new
charity campaign . the winner of 2013 ’s strictly come dancing joins singer foxes , 25 ,
victoria ’s secret angel lily donaldson , 28 , and model alice dellal , 27 , in the new series
of pictures by photographer simon emmett for fashion targets breast cancer . clancy , 29
, looks chic as she shows off her famous legs , wearing just a plain white shirt . abbey
clancy leads the glamour as she joins forces with her famous friends to target breast cancer
, by striking a sultry pose in a new charity campaign the model , who is mother to four
- year - old daughter sophia with footballer husband peter crouch , said: ’ as a mum , it
makes me proud to be part of a campaign that funds vital work towards ensuring the next
generation of young women do not have be afraid of a diagnosis of breast cancer . ’ i’m
wearing my support , and i want everyone across the uk to do the same and get behind this
campaign . ’ holding onto heaven singer foxes looks foxy in cropped stripy top and jeans
. abbey says she is proud to be part of a campaign that funds vital work towards ensuring
the next generation of young women do not have be afraid of a diagnosis of breast cancer
victoria ’s secret angel lily donaldson , who has been in the industry for years , also adds
some glamour to the charity campaign holding onto heaven singer foxes dons a stripy top
and jeans for the campaign she says she ’s ’ honoured ’ to be a part of she said: ’ i’m
so honoured to be taking part in this year ’s fashion targets breast cancer , and becoming
part of the campaign ’s awesome heritage . ’ fashion is a huge part of my life , and if by
taking part i can inspire women to wear their support , join the fight and take on breast
cancer head on , then that will be something to be really proud of . ’ now in its 19th year ,
the campaign has so far raised 13 . 5m for breakthrough breast cancer ’s research funding
. this year the range of clothes and accessories have been produced in conjunction with
high street partners m&s , river island , warehouse , topshop , laura ashley , debenhams ,
superga , baukjen and the cambridge satchel company . they can be viewed online at www
. fashiontargetsbreastcancer . org . uk/lookbook the campaign , which also stars alice
dellal , has so far raised 13 . 5m for breakthrough breast cancer ’s research funding

Human
(Gold)

models abbey and lily are joined by alice dellal and singer foxes . the women are pictured
’ wearing ’ their support . abbey , 29 , says she is proud to be part of a campaign that funds
vital work . campaign has raised 13 . 5m for breakthrough breast cancer ’s research .

Single
Agent
Baseline

strictly come dancing joins singer foxes , 25 , victoria ’s secret angel lily donaldson , 28
, and model alice dellal , 27 , in the new series of pictures by photographer simon emmett
for fashion targets breast cancer . clancy , 29 , looks chic as she shows off her famous legs
, wearing just a plain white shirt .

Multi
Agent

abbey says she is proud to be part of a campaign that funds vital work towards ensuring the
next generation of young women do not have been afraid of a diagnosis of breast cancer .
the campaign has raised 13 . 5m for breakthrough breast cancer ’s research .

Table 7: In this example both single- and multi-agent models demonstrate extractive behaviors. However, each
select sentences from different sections of the document. While the single model extracts the second and the third
sentences, the multi-agent model successfully selects salient sentences from sentences that are further down in the
document, specifically sentence 8 and 10. This can be attributed to the fact that agents can successfully encode
salient aspects distributed in distant sections of the document. An interesting result is that even though the multi-
agent model shows extractive behaviour in this example, it successfully selects the most salient sentences while
the single agent model includes superfluous details.
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Document michelle pfeiffer is the latest hollywood star preparing to hit the small screen . the oscar
nominated star known for her roles in iconic films such as scarface , dangerous liaisons
andthe age of innocence , has teamed up with katie couric to pitch a new television comedy
about a morning news program . also involved in the project , in which pfeiffer is attached
to star , is diane english , the creator of murphy brown . scroll down for video michelle
pfeiffer ( left ) is set to star in a new television comedy about a morning news program
produced by katie couric ( right ) the series was created by diane english ( above with
candice bergen ) , who was behind the show murphy brown , about a female news anchor
according to variety , pfeiffer ’s role will be that of a morning news anchor , making it very
similar to the real life role couric played as co - host of today for 15 years . couric will
serve as an executive producer and help ’ ensure the series strikes realistic notes . ’
the creator behind the project , english , was previously the brains behind brown , the
show starring candice bergen that centered around a female news anchor and ran for
ten seasons , winning 18 emmys . english would also serve as a writer , producer and
showrunner on the program. the ladies are currently in talks with hbo , showtime , amc
, netflix and amazon to pick up the program . couric will serve as an executive producer
, drawing on her experience as an anchor on today for 15 years pfeiffer would be the one
of the biggest stars yet to move to television , joining a group that now includes house of
cards stars robin wright and kevin spacey , true detective leads matthew mcconaughey and
woody harrelson , and even lady gaga , who recently announced she would be appearing
on the next season of american horror story . the actress has kept a low profile for the past
20 years since becoming a mother , only doing a handful of films in that time . she most
recently appeared alongside robert de niro in the mob comedy ’ the family . ’

Human
(Gold)

michelle pfeiffer is set to star in a new television comedy about a morning news program .
katie couric will serve as an executive producer , drawing on her experience as an anchor
on today for 15 years . the series was created by diane english , who was behind the show
murphy brown , about a female news anchor . the ladies are currently in talks with hbo ,
showtime , amc , netflix and amazon to pick up the program .

Single
Agent
Baseline

the oscar nominated star known for her roles in iconic filmssuch as scarface , dangerous

liaisons and the age of innocence , has teamed up with katie couric to pitch a new tele-
vision comedy about a morning news program . also involved in the project , in which
pfeiffer is attached to star , is diane english , the creator of murphy brown .

Multi
Agent

michelle pfeiffer is set to star in a new tv comedy about a morning news program
. couric will serve as an executive producer and showrunner on the project . the series
was created by diane english , the creator of murphy brown . pfeiffer is the one of the
biggest stars .

Table 8: The baseline model generates non-coherent summary that references the main character “Michelle Pfeif-
fer” in an ambiguous way towards the end of the generated summary. In contrast, the multi-agent model suc-
cessfully captures the main character including the key facts. One interesting feature that the multi-agent model
showcases is its simplification property, which accounts for its strength in abstraction. Specifically, it simplified
the bold long sentence in the document starting with ”couric will... and only generated the salient words.
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Document everton manager roberto martinez was forced to defend another penalty fiasco at the club
after ross barkley missed from the spot in their 1 - 0 win against burnley at goodison
park . the untried barkley inexplicably took the 10th minute kick awarded for a foul by
david jones on aaron lennon rather than leighton baines , who has scored 15 penalties
from 16 attempts in the premier league . although there was no dispute between the team
- mates this time , it brought back memories of everton ’s match against west brom in
january when kevin mirallas grabbed the ball from baines to take a penalty - and missed
. ross barkley steps up to take a 10th minute penalty despite the presence of leighton
baines on the pitch barkley ’s effort is saved byburnley goalkeeper tom heaton at goodison
park martinez insisted barkley was within his rights to request penalty - taking duties on
saturday . ’ if romelu lukaku had been on the pitch , he would have taken it . otherwise
, i am happy to have three or four players who can take penalties and let it depend on
how they feel at that moment , ’ argued the everton manager . baines ( left )has scored 15
penalties from 16 attempts in the premier league ’ ross showed incredible responsibility to
take it . i love seeing players take control of the big moments and leighton was happy to
given him that responsibility . ’ barkley ’s penalty was well - struck but wasn’t put in the
corner and burnley goalkeeper tom heaton dived to his right to save . fortunately for the
young england player , it didn’t prove costly as mirallas went on to score the only goal of
the game after 29 minutes . everton boss roberto martinez issues instructions to his players
during a break in play against burnley

Human
(Gold)

everton defeated burnley 1 - 0 at goodison park on saturday . kevin mirallas scored the
only goal of the game in the 29th minute . ross barkley had earlier missed a 10th - minute
penalty . leighton baines has scored 15 penalties from 16 attempts this season .

Single
Agent
Baseline

everton manager roberto martinez was forced to defend another penalty fiasco at the club

after ross barkley missed from the spot in their 1 - 0 win against burnley at goodison
park . the untried barkley inexplicably took the 10th minute kick awarded for a foul by
david jones on aaron lennon rather than leighton baines , who has scored 15 penalties
from 16 attempts in the premier league .

Multi
Agent

everton beat burnley 1 - 0 at goodison park in the premier league . ross barkley steps up to
take a 10th minute penalty but missed it . barkley has scored 15 penalties from 16 attempts
in the pitch .

Table 9: The single agent model generates summary with superfluous details and the facts are not clearly expressed.
Although it was able to capture the statistics of the player correctly (e.g., 15 penalties, 16 attempts), it still missed
the player who scored the only goal in the game (i.e., kevin mirallas). On the other hand multi-agent model was
able to generate a concise summary with several key facts. However, similar to single agent model, it missed to
capture the player who scored the only goal in the game. Interestingly, the document contains the word ”defeated’
but the multi-agent model chose to use beat instead, which does not exist in the original document.
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Abstract

Existing keyphrase extraction methods suffer
from data sparsity problem when they are con-
ducted on short and informal texts, especially
microblog messages. Enriching context is one
way to alleviate this problem. Considering that
conversations are formed by reposting and re-
plying messages, they provide useful clues for
recognizing essential content in target posts
and are therefore helpful for keyphrase iden-
tification. In this paper, we present a neural
keyphrase extraction framework for microblog
posts that takes their conversation context into
account, where four types of neural encoders,
namely, averaged embedding, RNN, attention,
and memory networks, are proposed to repre-
sent the conversation context. Experimental
results on Twitter and Weibo datasets1 show
that our framework with such encoders outper-
forms state-of-the-art approaches.

1 Introduction

The increasing popularity of microblogs results in
a huge volume of daily-produced user-generated
data. As a result, such explosive growth of data far
outpaces human beings’ reading and understand-
ing capacity. Techniques that can automatically
identify critical excerpts from microblog posts are
therefore in growing demand. Keyphrase extrac-
tion is one of the techniques that can meet this
demand, because it is defined to identify salient
phrases, generally formed by one or multiple
words, for representing key focus and main topics
for a given collection (Turney, 2000; Zhao et al.,
2011). Particularly for microblogs, keyphrase ex-
traction has been proven useful to downstream
applications such as information retrieval (Choi

*Work was done during the internship at Tencent AI Lab.
1Our datasets are released at: http://ai.tencent.

com/ailab/Encoding_Conversation_Context_
for_Neural_Keyphrase_Extraction_from_
Microblog_Posts.html

Target post for keyphrase extraction:
”I will curse you in that forum” is the lowest of low. You
are an embarrassment president Duterte. Childish!
Messages forming a conversation:
[R1]: any head of state will be irked if asked to report
to another head of state
[R2]: Really? Did Obama really asked Duterte to report
to him? LOL

Table 1: An example conversation about “presi-
dent Duterte” on Twitter. [Ri]: The i-th message in
conversation ordered by their positing time. pres-
ident Duterte: keyphrase to be detected; Italic
words: words that are related to the main topic in
conversations and can indicate the keyphrase.

et al., 2012), text summarization (Zhao et al.,
2011), event tracking (Ribeiro et al., 2017), etc.

To date, most efforts on keyphrase extraction on
microblogs treat messages as independent docu-
ments or sentences, and then apply ranking-based
models (Zhao et al., 2011; Bellaachia and Al-
Dhelaan, 2012; Marujo et al., 2015) or sequence
tagging models (Zhang et al., 2016) on them. It
is arguable that these methods are suboptimal for
recognizing salient content from short and infor-
mal messages due to the severe data sparsity prob-
lem. Considering that microblogs allow users to
form conversations on issues of interests by re-
posting with comments2 and replying to messages
for voicing opinions on previous discussed points,
these conversations can enrich context for short
messages (Chang et al., 2013; Li et al., 2015),
and have been proven useful for identifying topic-
related content (Li et al., 2016). For example, Ta-
ble 1 displays a target post with keyphrase “presi-
dent Duterte” and its reposting and replying mes-
sages forming a conversation.

Easily identified, critical words are mentioned
multiple times in conversations. Such as in [R2],
keyword “Duterte” re-occurs in the conversation.

2On Twitter, reposting behavior is named as retweet.
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Also, topic-relevant content, e.g., “head of state”,
“another head of state”, “Obama”, helps to in-
dicate keyphrase “president Duterte”. Such con-
textual information embedded in a conversation
is nonetheless ignored for keyphrase extraction in
existing approaches.

In this paper, we present a neural keyphrase
extraction framework that exploits conversation
context, which is represented by neural encoders
for capturing salient content to help in indicating
keyphrases in target posts. Conversation context
has been proven useful in many NLP tasks on so-
cial media, such as sentiment analysis (Ren et al.,
2016), summarization (Chang et al., 2013; Li
et al., 2015), and sarcasm detection (Ghosh et al.,
2017). We use four context encoders in our model,
namely, averaged embedding, RNN (Pearlmut-
ter, 1989), attention (Bahdanau et al., 2014), and
memory networks (Weston et al., 2015), which are
proven useful in text representation (Cho et al.,
2014; Weston et al., 2015; Huang et al., 2016; Nie
et al., 2017). Particularly in this task, to the best
of our knowledge, we are the first to encode con-
versations for detecting keyphrases in microblog
posts. Experimental results on Twitter and Sina
Weibo datasets demonstrate that, by effectively
encoding context in conversations, our proposed
approach outperforms existing approaches by a
large margin. Quantitative and qualitative analy-
sis suggest that our framework performs robustly
on keyphrases with various length. Some en-
coders such as memory networks can detect salient
and topic-related content, whose occurrences are
highly indicative of keyphrases. In addition, we
test ranking-based models with and without con-
sidering conversations. The results also confirm
that conversation context can boost keyphrase ex-
traction of ranking-based models.

2 Keyphrase Extraction with
Conversation Context Encoding

Our keyphrase extraction framework consists of
two parts, i.e., a keyphrase tagger and a conversa-
tion context encoder. The keyphrase tagger aims
to identify keyphrases from a target post, and the
context encoders captures the salient content in
conversations, which would indicate keyphrases in
the target post. The entire framework is learned
synchronously with the given target posts and their
corresponding conversation context. In prediction,
the keyphrase tagger identifies keyphrases in a

𝑥𝑖,𝑡−1 𝑥𝑖,𝑡 𝑥𝑖,𝑡+1
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Figure 1: The overall structure of our keyphrase
extraction framework with context encoder. Grey
dotted array refer to the inputs of target posts that
are also used in context encoding.

SINGLE xi,t is a one-word keyphrase (keyword).
BEGIN xi,t is the first word of a keyphrase.

MIDDLE xi,t is part of a keyphrase but it is neither
the first nor the last word of the keyphrase.

END xi,t is the last word of a keyphrase
NOT xi,t is not a keyword or part of a keyphrase.

Table 2: Definitions of different yi,t.

post with the help of representations generated by
the encoder. Figure 1 shows the overall structure
of our keyphrase extraction framework. In the rest
of this section, Section 2.1 describes the keyphrase
taggers used in our framework; Section 2.2 gives
the details of different context encoders.

2.1 Keyphrase Taggers
We follow Zhang et al. (2016) to cast keyphrase
extraction into the sequence tagging task. For-
mally, given a target microblog post xi formulated
as word sequence < xi,1, xi,2, ..., xi,|xi| >, where
|xi| denotes the length of xi, we aim to produce
a tag sequence < yi,1, yi,2, ..., yi,|xi| >, where yi,t
indicates whether xi,t is part of a keyphrase. In
detail, yi,t has five possible values:

yi,t ∈ {SINGLE, BEGIN,MIDDLE, END,NOT}

Table 2 lists the definition of each value. Zhang
et al. (2016) has shown that keyphrase extraction
methods with this 5-value tagset perform better
than those with binary outputs, i.e., only marked
with yes or no for a word to be part of a keyphrase.

To predict keyphrase tags, we use four state-
of-the-art neural sequence taggers, namely, recur-
rent neural networks (RNN) (Pearlmutter, 1989),
RNN with gated recurrent units (GRU) (Chung
et al., 2014), long short-term memory (LSTM)
networks (Hochreiter and Schmidhuber, 1997),
and bidirectional LSTM (BiLSTM) (Graves and
Schmidhuber, 2005).
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… …

Figure 2: The structure of attention-based conver-
sation context encoder.

In addition to one-type output, we also use
joint-layer RNN proposed by Zhang et al. (2016),
which is demonstrated to be the state-of-the-
art keyphrase tagger in previous work without
modeling conversation context. As a multi-task
learner (Collobert and Weston, 2008), joint-layer
RNN tackles two tasks with two types of outputs,
y1i,t and y2i,t. y

1
i,t has a binary tagset, which indi-

cates whether word xi,t is part of a keyphrase or
not. y2i,t employs the 5-value tagset defined in Ta-
ble 2. Besides the standard RNN version, in imple-
mentation, we also build the joint-layer RNN with
its GRU, LSTM, and BiLSTM counterparts. To be
consistent, taggers with one-type output with the
5-value tagset are named as single-layer taggers.

As shown in Figure 1, our keyphrase tagger is
built upon input feature map I(·), which embeds
each word xi,t in target post into a dense vector
format, i.e., I(xi,t) = νννi,t. We initialize input fea-
ture map by pre-trained embeddings, and update
embeddings during training.

2.2 Context Encoders
We aggregate all reposting and replying messages
in conversations to form a pseudo-document as
context by their posting time, and input context
in forms of word sequences into context encoder.
Let xci denote the context word sequence of the
target post xi, we propose four methods to encode
xci , namely, averaged embedding, RNN, attention,
and memory networks. Similar to keyphrase tag-
gers (see Section 2.1), each word xci,s in context xci
takes the form of a vector νννci,s mapped by an input
layer Ic(·), which is also initialized by pre-trained
embeddings, and updated in the training process.

2.2.1 Averaged Embedding
As a straightforward sentence representation tech-
nique, averaged embedding simply takes the aver-
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Figure 3: The structure of the conversation context
encoder based on memory networks.

age embeddings of words in a context, i.e., νννci,s, as
the encoding of context representation, i.e.,

eci =
1

|xci |

|xc
i |∑

s=1

νννci,s (1)

where |xci | is the length of xci in the context.

2.2.2 RNN
RNN encoders employ the recurrent neural net-
work model for the embedded context sequence
< νννci,1, ννν

c
i,2, ..., ννν

c
i,|xc

i |
>, through the recurrent

functions over all the states:

hci,s = δh(W
1
hh

c
i,s−1 +W2

hννν
c
i,s) (2)

where W1
h and W2

h are learnable weight matri-
ces, and δh is the component-wise sigmoid func-
tion. The encoder representation is thus given by
the hidden units at the last state:

eci = hc|xc
i | (3)

In this paper, RNN-based encoders have four
variants, namely, RNN, GRU, LSTM, and BiL-
STM. Particularly, as BiLSTM has two opposite
directions, its context representation takes the con-
catenation of the last states from both directions,
which come from two ends of a given context.

2.2.3 Attention
Attention-based encoders put attention mecha-
nism (Bahdanau et al., 2014) upon RNN model
for “soft-addressing” important words in the con-
versation context. In this paper, we use the
feed-forward attention (Raffel and Ellis, 2015;
SØnderby et al., 2015), as shown in Figure 2. The
encoder is thus represented as

eci =

|xci |∑

s=1

αci,sh
c
i,s (4)
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where αci,s is the attention coefficient obtained for
word xcs, which implicitly reflects its importance
for helping keyphrase identification. αci,s is com-
puted via a softmax over the hidden states by

αci,s = softmax(a(hci,s)) (5)

where a(·) is a learnable function formulated as:

a(hci,s) = tanh(Wah
c
i,s) (6)

which takes input only from on hci,s. Wa are pa-
rameters of the function a(·) to be learned.

2.2.4 Memory Networks
The encoder based on memory networks
(MemNN) (Weston et al., 2015) stores and
updates the representations of conversation
contexts in a memory module. The updated
representations are used to guide the keyphrase
tagger. Figure 3 illustrates its structure.

Formally, each embedded context sequence
Vc
i =< νννci,1, ννν

c
i,2, ..., ννν

c
i,|xc

i |
> is stored into mem-

ory Mi. We then yield the match between embed-
ded target post Vi =< νννi,1, νννi,2, ..., νννi,|xi| > and
context memory Mi by their inner product acti-
vated by softmax:

Pi = softmax(Vi ·Mi) (7)

where Pi,j,j′ captures the similarity between the
j-th word in conversation context xci and the j′-th
word in target post xi.

To transform context input xci into an aligned
form so that it is able to be added with Pi,
we include another embedding matrix Ci =<
µµµi,1, ...,µµµi,|xc

i | >. Similar to attention encoder,
the MemNN encoder aims to generate a represen-
tation, which addresses the important part in the
conversation context that helps tagging keyphrases
in target post xi. The sum of Ci and matching
matrix Pi serves as the encoded representation for
conversation context:

eci = Pi +Ci (8)

In particular, both attention and MemNN ex-
plores salient words in conversations that describe
main focus of the conversation, which helps indi-
cate keyphrases of a target post. In comparison,
MemNN explicitly exploits the affinity of target
posts and conversations in matching each other,
while attention implicitly highlights certain con-
text without taking target posts into account.

Dataset # of an-
not. msgs

# of msgs
in context

Context
length Vocab

Twitter
Train 3,976 3.38 49.74 34,412
Dev 497 3.19 46.44 7,186
Test 497 3.30 48.09 8,779

Weibo
Train 13,816 1.97 55.77 25,259
Dev 1,727 2.01 45.00 9,106
Test 1,727 1.82 51.95 9,305

Table 3: Statistics of two datasets. Train, Dev, and
Test denotes training, development, and test set,
respectively. # of annot. msgs: number of mes-
sages with keyphrase annotation, each containing
conversation context. # of msgs in context: av-
erage count of message in conversation context.
Context length: average count of words in conver-
sation context. Vocab: vocabulary size.

3 Experiment Setup

3.1 Datasets

Our experiments are conducted on two datasets
collected from Twitter and Weibo3, respectively.
The Twitter dataset is constructed based on
TREC2011 microblog track4. To recover conver-
sations, we used Tweet Search API5 to retrieve full
information of a tweet with its “in reply to status
id” included. Recursively, we searched the “in re-
ply to” tweet till the entire conversation is recov-
ered. Note that we do not consider retweet rela-
tions, i.e., reposting behaviors on Twitter, because
retweets provide limited extra textual information
for the reason that Twitter did not allow users to
add comments in retweets until 2015. To build
the Weibo dataset, we tracked real-time trending
hashtags6 on Weibo and used the hashtag-search
API7 to crawl the posts matching the given hash-
tag queries. In the end, a large-scale Weibo corpus
is built containing Weibo messages posted during
January 2nd to July 31st, 2014.

For keyphrase annotation, we follow Zhang
et al. (2016) to use microblog hashtags as gold-

3Weibo is short for Sina Weibo, the biggest microblog
platform in China and shares the similar market penetration
as Twitter (Rapoza, 2011). Similar to Twitter, it has a length
limitation of 140 Chinese characters.

4http://trec.nist.gov/data/tweets/
5http://developer.twitter.com/en/docs/

tweets/search/api-reference/get-saved_
searches-show-id

6http://open.weibo.com/wiki/Trends/
hourly

7http://www.open.weibo.com/wiki/2/
search/topics
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Single-layer Taggers Joint-layer Taggers
RNN GRU LSTM BiLSTM RNN GRU LSTM BiLSTM

No Encoder 44.9±1.4 53.9±4.7 54.9±3.8 60.8±3.6 51.0±3.3 56.1±3.4 55.1±2.6 62.5±0.9

Context Encoder
Avg Emb 50.4±0.9 58.8±2.9 56.0±0.7 62.2±3.0 51.5±1.7 59.0±3.5 58.7±3.7 64.5±0.4
RNN 46.4±1.6 56.4±1.9 55.6±2.5 59.0±2.4 52.2±2.8 54.4±2.8 58.3±1.8 63.7±1.3
GRU 50.3±0.8 53.7±1.0 58.0±0.9 56.8±2.3 50.8±4.8 52.3±3.8 57.0±2.1 63.0±1.3
LSTM 51.6±2.0 56.4±1.4 57.9±2.3 64.0±3.1 50.8±3.1 57.9±2.3 58.3±4.0 64.2±0.6
BiLSTM 49.2±1.7 58.3±1.1 56.0±2.0 62.6±3.2 52.7±3.4 56.8±1.0 56.5±3.6 63.7±2.3
Att (LSTM) 48.7±1.7 58.1±1.7 58.1±3.1 64.0±1.8 51.7±4.8 57.4±2.3 58.0±2.4 63.8±1.5
Att (BiLSTM) 51.7±1.4 58.3±1.5 57.0±3.6 62.8±2.5 52.3±4.3 58.0±1.8 59.0±3.9 64.2±3.4
MemNN 53.6±0.3 59.4±3.1 59.5±4.1 62.4±4.8 53.7±3.5 59.4±2.1 62.3±3.3 65.5±1.6

Table 4: Comparisons of the average F1 scores (%) and their standard deviations measured on Twitter over
the results of models with 5 sets of parameters for random initialization. The left half reports results of
single-layer taggers; The right half reports results of joint-layer taggers. Each column: results of the same
tagger with different encoders. Each row: results of different taggers with the same encoder. No Encoder:
taggers without encoding context. Abbreviations for context encoders: Avg Emb – averaged embedding;
Att (LSTM) – attention on LSTM; Att (BiLSTM) – attention on BiLSTM; MemNN – memory networks.

standard keyphrases8 and filtered all microblog
posts by two rules: first, there is only one hash-
tag per post; second, the hashtag is inside a post,
i.e., containing neither the first nor the last word
of a post. Then, we removed all the “#” symbols
in hashtags before keyphrase extraction. For both
Twitter and Weibo dataset, we randomly sample
80% for training, 10% for development, and the
rest 10% for test. Table 3 reports the statistics of
the two datasets. The dataset released by Zhang
et al. (2016) is not used because it does not con-
tain conversation information.

We preprocessed Twitter dataset with Twitter
NLP tool9 (Gimpel et al., 2011; Owoputi et al.,
2013) for tokenization. For Weibo dataset, we
used NLPIR tool10 (Zhang et al., 2003) for Chi-
nese word segmentation. In particular, Weibo con-
versations have an relatively wide range (from 3 to
8,846 words), e.g., one conversation could contain
up to 447 messages. If use the maximum length
of all conversations as the input length for en-
coders, padding the inputs will lead to a sparse ma-
trix. Therefore, for long conversations (with more
than 10 messages), we use KLSum (Haghighi and
Vanderwende, 2009) to produce summaries with a
length of 10 messages and then encode the pro-
duced summaries. In contrast, we do not sum-
marize Twitter conversations because their length
range is much narrower (from 4 to 1,035 words).

8Zhang et al. (2016) proves that 90% of the hashtag-
annotated keyphrases match human annotations.

9http://www.cs.cmu.edu/˜ark/TweetNLP/
10https://github.com/NLPIR-team/NLPIR

3.2 Model Settings

For keyphrase taggers based on RNN, GRU, and
LSTM, we follow Zhang et al. (2016) and set their
state size to 300. For the BiLSTM tagger, which
has two directions, we set the state size for each
direction to 150. The joint-layer taggers employ
the same hyper-parameters according to Zhang
et al. (2016). The state size of context encoders
shares the same settings with keyphrase taggers.
In training, the entire keyphrase extraction frame-
work uses cross-entropy loss and RMSprop opti-
mizer (Graves, 2013) for parameter updating.

We initialize input feature map I for target post
and Ic for conversation context by embeddings
pre-trained on large-scale external microblog col-
lections from Twitter and Weibo. Twitter embed-
dings are trained on 99M tweets with 27B tokens
and 4.6M words in the vocabulary. Weibo embed-
dings are trained on 467M Weibo messages with
1.7B words and 2.5M words in the vocabulary.

In comparison, we employ neural taggers with-
out encoding conversation context, which are
based on RNN, GRU, LSTM, and BiLSTM. We
also compare our models with the state-of-the-art
joint-layer RNN (Zhang et al., 2016) and its GRU,
LSTM, and BiLSTM variations.

To further illustrate the effectiveness of lever-
aging conversation context for keyphrase extrac-
tion, we also evaluate some ranking-based mod-
els, namely, TF-IDF (Salton and Buckley, 1988),
TextRank (Mihalcea and Tarau, 2004), and KEA
implemented by KEA-3.011 (Witten et al., 1999).

11www.nzdl.org/Kea/Download/KEA-3.0.zip
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Single-layer Taggers Joint-layer Taggers
RNN GRU LSTM BiLSTM RNN GRU LSTM BiLSTM

No encoder 58.8±1.4 66.2±0.8 67.3±1.6 74.8±0.7 55.5±0.5 64.1±0.7 64.9±0.6 76.8±0.5

Context Encoder
Avg Emb 63.3±0.9 68.2±0.7 69.4±0.4 76.6±0.9 61.1±1.2 69.7±1.3 69.3±0.7 79.8±0.6
RNN 58.2±1.6 64.9±0.6 65.3±0.8 73.1±0.1 60.9±0.5 67.1±0.6 66.7±0.5 71.2±0.7
GRU 56.5±0.8 67.0±0.6 67.4±1.1 73.8±0.7 58.4±1.1 65.5±0.8 67.1±0.4 76.2±0.7
LSTM 59.4±2.0 67.6±0.8 68.1±0.5 75.5±0.2 61.1±1.9 68.4±1.1 69.5±0.7 78.1±1.0
BILSTM 60.8±1.7 68.6±1.0 68.4±0.7 75.9±0.7 61.6±1.8 69.3±1.0 69.6±0.3 78.2±0.8
Att (LSTM) 62.4±1.8 67.6±1.1 69.0±0.7 75.8±1.2 63.1±1.3 70.2±0.8 70.8±1.3 79.3±0.5
Att (BiLSTM) 59.6±1.4 68.6±0.6 70.4±1.0 76.5±0.8 61.5±2.2 70.5±0.6 71.0±0.5 80.5±1.7
MemNN 61.1±0.4 69.3±0.5 69.9±0.7 79.1±1.1 61.8±1.4 68.7±0.9 69.3±0.4 79.6±1.4

Table 5: Comparisons of F1 scores on Weibo. The abbreviations are defined the same as those in Table 4.

We design two experiment settings when running
these models: 1) each target post is treated as a
document; 2) each conversation (containing the
target post) is treated as a document. We select the
top N words for each target post by their ranked-
orders and the threshold N is tuned on the de-
velopment set. As a result, N ranges from 2 to
7 for various methods. Particularly, since TF-
IDF and TextRank extract keywords instead of
keyphrases, we aggregate the selected keywords
according to Bellaachia and Al-Dhelaan (2012).

4 Experimental Results

Section 4.1 to 4.5 present quantitative and quali-
tative analysis of our neural keyprhase extraction
models. Section 4.6 reports the performance of
ranking-based models where we test the general
applicability of incorporating conversation context
to non-neural keyphase extraction methods.

4.1 Overall Comparisons

Table 4 and Table 5 report F1 scores on Twitter
and Weibo, respectively.12 We have the following
observations.

Conversation context is useful for keyphrase ex-
traction. By combining the encoded context in
conversations, the F1 scores of all taggers are bet-
ter than their basic versions without context en-
coders. It confirms that content in conversations
helps in indicating keyphrases in target posts.

Selecting the correct context encoder is impor-
tant. Encoding context simply by RNN or GRU
yields poor results. The reason for RNN is that
it suffers from gradient vanishing problem when
encoding long conversations (conversions in our

12We also tried BiRNN and BiGRU as keyphrase taggers
and as context encoders. They are outperformed by BiLSTM.
We don’t report these results due to the space limitation.

two datasets have over 45 words on average). The
reason for GRU is that its forget gates may be not
well trained to process important content when the
training set is small.

The results of AvgEmb are the worst on Twit-
ter while competitive to other encoders on Weibo.
The performance of AvgEmb is competitive to
other complex context encoders on Weibo. The
reason may be that incorrect word orders generally
do not affect the understanding in Chinese, where
word order misuse is prevalent in Chinese Weibo
messages. As a result, encoding word orders, as is
done by the encoders except AvgEmb, might bring
noise to keyphrase extraction on Weibo dataset. In
contrast, AvgEmb is the worst encoder on Twitter
dataset, as word order is crucial in English.

Identifying salient content in context is impor-
tant. Four types of context encoders have differ-
ent behaviors. Avg Emb considers all words in
conversation context are equally important. RNN-
variant context encoders, i.e., RNN, GRU, LSTM,
and BiLSTM, additionally explore the relations
between succeeded words without distinguishing
salient and non-salient words. Attention (Att
(LSTM) and Att (BiLSTM)) and MemNN can
recognize critical content in conversations, which
would indicate keyphrases in target posts. There-
fore, our keyphrase extraction framework with at-
tention or MemNN encoder has generally better
F1 scores than those with other encoders.

MemNN can effectively capture salient content
in context. On Twitter dataset, MemNN achieves
the best F1 scores when combining with var-
ious keyphrase taggers except for single-layer
GRU and BiLSTM. On Weibo dataset, although
MemNN does not always outperform other en-
coders, its performance is close to the best ones.
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SL BiLSTM JL BiLSTM
Twitter Weibo Twitter Weibo

No encoder 60.8 74.8 62.5 76.8
Avg Emb 61.0 75.7 63.3 79.2
RNN 58.8 72.7 63.1 71.1
GRU 56.4 73.1 62.7 76.0
LSTM 61.3 75.2 63.9 77.8
BiLSTM 62.0 75.4 62.3 78.0
Att (LSTM) 62.6 75.6 63.7 79.2
Att (BiLSTM) 62.0 76.5 63.9 79.9
MemNN 61.6 77.4 65.1 79.2

Table 6: The F1 scores of BiLSTM taggers mea-
sured on test instances without conversation con-
text (%). SL BiLSTM and JL BiLSTM denote
keyphrase tagger as single-layer and joint-layer
BiLSTM, respectively. The other abbreviations
are defined the same as those in Table 4.

4.2 Test without Conversation Context

Although we have shown in the previous section
that conversation context is useful for training ef-
fective models for keyphrase extraction on mi-
croblog posts, it is necessary to consider that con-
versation context might be unavailable to some
microblog posts, which do not sparking any re-
post or reply message. Under this circumstance,
the models trained on messages with conver-
sation context might be affected in extracting
the keyphrases for messages without conversation
context. To study whether conversation context
is critical in testing process, we assume that the
conversations are only available for training data,
while all the target posts in the test set have no
context to be leveraged. To this end, we apply the
models trained for the experiment in Section 4.1
on the test posts without using their conversation
context. In prediction, context encoders of the
trained models take the target posts instead of con-
versation as input. Results are reported in Table 6,
where models with context encoders yield better
F1 scores than their counterparts without such en-
coders no matter providing conversation to test
data or not. This observation indicates that encod-
ing conversations in training data helps in learn-
ing effective keyphrase extraction models, which
is beneficial to detect keyphrases in a microblog
post with or without its conversation context. In
addition, by comparing Table 6 with Table 4 and 5,
we find that, for each model with context encoder,
higher F1 scores are observed when conversation
context is used in testing process. This observa-
tion confirms that, conversation context of target
posts helps in indicating keyphrases in prediction.

Figure 4: The heatmap of the context representa-
tion generated by MemNN (see Eq. 8). The hori-
zontal axis refers to words in the conversation con-
text, while the vertical axis refers to words in the
target post. Darker colors indicate higher weights.
The red box indicates the keyphrase to be detected.

4.3 Qualitative Analysis

To qualitatively analyze why MemNN encoder
generally performs better in comparison, we con-
duct a case study on the sample instance in Ta-
ble 1. Recall that the keyphrase should be “pres-
ident Duterte”. We compare the keyphrases pro-
duced by the joint-layer BiLSTM tagger with var-
ious context encoders, given in Table 7. Of all
models, only the one with MemNN encoder tags
correctly. Interestingly, Avg Emb does not ex-
tract any keyphrase. The reason might be that it
considers each word in conversations independent
and equally important. Therefore, when using
this encoder, non-topic words like “if ” and “LOL”
may distract the keyphrase tagger in identifying
the key information. Models with BiLSTM, Att
(BiLSTM), and the basic model without encoder
mistakenly extract the sentiment word “childish”
since sentiment words are prominent on Twitter.

We also visualize context representation gen-
erated by MemNN for conversation context in
a heatmap shown in Figure 4. It is ob-
served that MemNN highlights different types of
words for keyphrases and non-keyphrases. For
keyphrases, MemNN highlights topical words
such as “Obama”. For non-keyphrases, MemNN
highlights non-topic words, e.g., “be”, “to”.
Therefore, features learned for keyphrases and
non-keyphrases are different, which can thus
benefit keyphrase tagger to correctly distinguish
keyphrases from non-keyphrases.

4.4 Keyphrases with Various Lengths

To further evaluate our methods, we investigate
them on keyphrases with various lengths. Figure 5
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Extracted keyphrase
Gold-standard president duterte
No encoder duterte childish
Context Encoder
Avg Emb NULL
BiLSTM duterte childish
Att (BiLSTM) president duterte childish
MemNN president duterte

Table 7: Outputs of joint-layer BiLSTM combined
with various context encoders given the example
illustrated in Table1. “NULL”: Avg Emb did not
produce any keyphrase.

shows the histograms of F1 scores yielded by a
single-layer and a joint-layer tagger on Twitter and
Weibo when keyphrase lengths are different. Note
that we only report the results of BiLSTM taggers
because their overall F1 scores are the best accord-
ing to Table 4 and Table 5.

In general, the F1 scores of all models decrease
when keyphrases becomes longer, which implies
that detecting longer keyphrases is harder than
short ones. In comparison of different context en-
coders, we observe that MemNN obtained the best
F1 score in detection of long keyphrases. This is
because MemNN highlights salient content in con-
versation context by jointly considering its sim-
ilarities with keyphrases in target posts. When
the keyphrases become longer, there are more
words in context highlighted, which hence helps
keyphrase tagger. For short keyphrases, MemNN
is still competitive with other context encoders.
The observation suggests that MemNN is robust
in detecting various length of keyphrases.

4.5 Error Analysis

In this section, we briefly discuss the errors found
in our experiments. It is observed that one ma-
jor incorrect prediction is additionally extracted
neighboring words surrounding a gold-standard
keyphrase. For example, in the tweet “Hillary
Clinton accepted gifts from UAE, Saudi Arabia,
Oman and others while SOS. CROOKED Podesta
Emails 29 ...”, in addition to the gold-standard
“Podesta Emails 29”, our models also extract out
“CROOKED”. In general, these additionally ex-
tracted words are mostly modifiers of keyphrases.
External features for identifying modifiers can be
used to filter these auxiliary parts of a keyphrase.

Another main error comes from the words that
are not keyphrases in target posts but reflect the
topics in conversations. For example, joint-layer

(a) SL BiLSTM on Twitter (b) JL BiLSTM on Twitter

(c) SL BiLSTM on Weibo (d) JL BiLSTM on Weibo

Figure 5: Histograms of F1 scores on extract-
ing keyphrases with various lengths. SL BiL-
STM: tagger based on single-layer BiLSTM. JL
BiLSTM: tagger based on joint-layer BiLSTM.
Length: count of words in keyphrases. For each
length range, histograms from left to right show
the results of No encoder, Avg Emb, LSTM, BiL-
STM, Att (LSTM), ATT (BiLSTM), and MemNN.

BiLSTM tagger with MemNN encoder mistak-
enly extracts “Hillary” as a keyphrase for “DOU-
BLE STANDARD: Obama DOJ Prosecuted Others
For Leaking FAR LESS Than Hillary Espionage
URL” whose keyphrase should be “Espionage”.
Because the corresponding conversation of this
post is centered around “Hillary” instead of “Espi-
onage”, such information is captured by the con-
text encoder, which leads to incorrect keyphrase
prediction. However, this type of error points
out the potential of extending our framework to
extracting keyphrases from conversations instead
of a post, which would be beneficial to gener-
ating summary-worthy content for conversations
(Fernández et al., 2008; Loza et al., 2014).

4.6 Ranking-based Models

Table 8 reports the results of ranking models on
Twitter and Weibo. We have the following ob-
servations. First, tagging-based models perform
much better than ranking-based ones in keyphrase
extraction. Comparing the results in Table 8 with
that in Table 4 and Table 5, all neural taggers
outperform non-neural ranking-based models by
a large margin. This fact, again, confirms that
keyphrase extraction is a challenging task on short
microblog messages. Compared to ranking-based
models, neural tagging models have the ability
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Twitter Weibo
Pre Rec F1 Pre Rec F1

w/o context
TF-IDF 6.3 48.8 11.1 1.9 7.3 3.0
TextRank 6.6 18.8 9.7 1.0 8.6 1.7
KEA 3.5 0.8 1.3 0.1 0.2 0.1
w/ context
TF-IDF 7.9 45.6 13.4 2.1 8.3 3.4
TextRank 4.8 20.8 7.8 1.0 9.5 1.8
KEA 15.4 12.9 14.0 2.2 12.3 3.7

Table 8: Precision, recall, and F1 scores of
ranking-based baselines (%). w/o context: each
target post is treated as a document; w/ con-
text: each conversation and its corresponding tar-
get post is treated as a document.

to capture indicative features. Second, conversa-
tion context improves ranking-based models by a
large margin. Simply by aggregating conversa-
tions to a pseudo-document, the F1 scores of TF-
IDF, TextRank, and KEA are generally better than
their counterparts that are only performed on tar-
get posts. For TF-IDF and TextRank, which are
unsupervised, context remarkably improves recall
by enriching more topic-related words. While for
supervised method KEA, context improves both
precision and recall, because supervision helps in
identifying good features from conversations.

5 Related Work

Previous work on extracting keyphrases mainly fo-
cuses on formal texts like news reports (Wan and
Xiao, 2008) and scientific articles (Nguyen and
Kan, 2007). Existing keyphrase extraction mod-
els can be categorized as ranking-based models
and tagging-based models. Ranking-based meth-
ods include models based on graph ranking (Mi-
halcea and Tarau, 2004; Wan and Xiao, 2008), text
clustering (Liu et al., 2009), TF-IDF (Jones, 2004;
Zhang et al., 2007; Lee and Kim, 2008; Kireyev,
2009; Wu and Giles, 2013), etc. The empirical
study provided by Hasan and Ng (2010) shows
that TF-IDF has robust performance and can serve
as a strong baseline. Tagging models focus on us-
ing manually-crafted features for binary classifiers
to predict keyphrases (Frank et al., 1999; Tang
et al., 2004; Medelyan and Witten, 2006). Our
models are in the line of tagging approaches, and
provide an alternative choice that incorporates ad-
ditionally knowledge from conversations.

Recently, keyphrase extraction methods have
been extended to social media texts (Zhao et al.,
2011; Bellaachia and Al-Dhelaan, 2012; Marujo

et al., 2015; Zhang et al., 2016). These work suf-
fers from the data sparsity issue because social
media texts are normally short. Also, they only
use internal information in the input text and ig-
nore external knowledge in conversation context.
Thus our work provides an improved approach
that compensates their limitations.

6 Conclusion

This work presents a keyphrase extraction frame-
work for microblog posts with considering conver-
sation context to alleviate the data sparsity in short
and colloquial messages. The posts to be tagged
are enriched by conversation context through four
types of encoders based on averaged embedding,
RNN, attention, and memory networks, which are
effective in capturing salient content in conversa-
tions that is indicative for keyphrase identification.
Experimental results on Twitter and Weibo dataset
have shown that by effectively encoding conversa-
tion context, our proposed models outperform ex-
isting approaches by a large margin. Qualitative
analysis confirm that our context encoders capture
critical content in conversations.
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Abstract

Automatic evaluation systems in the field of
automatic summarization have been relying on
the availability of gold standard summaries
for over ten years. Gold standard summaries
are expensive to obtain and often require the
availability of domain experts to achieve high
quality. In this paper, we propose an alter-
native evaluation approach based on pairwise
preferences of sentences. In comparison to
gold standard summaries, they are simpler and
cheaper to obtain. In our experiments, we
show that humans are able to provide useful
feedback in the form of pairwise preferences.
The new framework performs better than the
three most popular versions of ROUGE with
less expensive human input. We also show
that our framework can reuse already available
evaluation data and achieve even better results.

1 Introduction

Due to the huge amount of information contained
in texts, the task of automatic text summarization
(Mani, 2001; Nenkova and McKeown, 2011) is
a pressing challenge nowadays and will become
even more important in the future. Building sum-
marization systems is, however, not the only chal-
lenge in this field. Evaluation of automatically
generated summaries is also an active field of re-
search.

Ideally, we would like to ask humans for their
opinion about the quality of automatically gener-
ated summaries in an extrinsic evaluation (Hal-
teren and Teufel, 2003). Since summaries are gen-
erated for humans, they should also be evaluated
directly by humans. Unfortunately, manual evalu-
ation cannot be performed at a large scale because
of the huge effort which is necessary for evalua-
tion. (Lin, 2004) reported that 3,000 hours of hu-
man effort would be required for a simple evalu-
ation of the summaries for the Document Under-

standing Conference (DUC) 2003, a popular sum-
marization shared task series. This motivates re-
search of automatic evaluation methods for auto-
matic summarization.

ROUGE (Lin, 2004), the current method of
choice for evaluating automated text summariza-
tion, relies on the availability of gold standard
summaries. The gold standard summaries are used
to define the optimal output of a summarization
system. Writing high-quality summaries, how-
ever, requires the availability of expert writers and
takes a lot of effort. (Dang, 2005) reported that
creating the reference summaries for the DUC
2005 shared task was a difficult endeavor with an
effort of five hours to produce each reference sum-
mary. Since ROUGE needs at least four reference
summaries to become reasonably reliable, the ef-
fort sums up to at least 20 hours of annotation ef-
fort per topic. For this reason, gold standard sum-
maries are only available for a few, rather small
datasets. Also the more accurate (but also even
more expensive) Pyramid method (Nenkova and
Passonneau, 2004) requires expensive gold stan-
dard summaries.

Lack of larger and diverse evaluation corpora
limits research in automatic summarization. Fur-
thermore, currently available automatic evaluation
methods are viewed with skepticism (Rankel et al.,
2013). Proper evaluation is, however, an indis-
pensable ingredient for good research. Comput-
ing the similarity between two summaries as in
ROUGE is a very difficult task. This seems to
be obvious since estimating the similarity between
sentences and even words is still an active field of
research.

In this work, we present an alternative evalu-
ation framework which does not use gold stan-
dard summaries to estimate the quality of sum-
maries. Instead of comparing automatically gen-
erated summaries with gold standard summaries,
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our model is trained with simple and inexpensive
pairwise preferences (Thurstone, 1927; Fürnkranz
and Hüllermeier, 2010) of sentences. To this end,
we provide pairs of sentences from the input doc-
ument of a summarization task to human anno-
tators and ask which of the two sentences con-
tains more important information. We use here
the idea of intrinsic information importance (Hong
and Nenkova, 2014; Zopf et al., 2016) which de-
scribes that information can be intrinsically im-
portant. For example, the information “Donald
Trump won the U.S. presidential election” is in-
trinsically important. It is likely that it should also
be contained in the generated summary if this in-
formation is contained in an input document.

After collecting few preferences, our model
uses the preferences to generate a ranking of all
sentences according to information importance.
Summaries which contain sentences similar the
upper part of the ranking are then considered to be
better than summaries which contain unimportant
sentences from the lower part of the ranking.

Pairwise preferences are an appealing form of
annotation, since they are much easier to generate
than producing complex gold standard summaries.
Not only collecting the annotations is easier, but
also using the collected annotations is much sim-
pler. The presented model does not have to solve
the difficult task of estimating the similarity be-
tween generated and gold standard summaries. In-
stead, the model uses the ranking to estimate the
summary quality.

Figure 1 provides an illustration of the tradi-
tional evaluation and our new model. On the left,
the input documents are illustrated which should
be summarized. In the upper part gold standard
summaries are generated by humans and used to
estimate the quality of an automatically generated
summary. In the lower part, we collect pairwise
preferences of sentences and use the preferences
for evaluation.

An evaluation on topics from two standard
datasets, looking at predicting the relative ratings
of automatically generated summaries, shows that
our new evaluation model is as good as or better
than existing methods, at a much lower annotation
cost.

2 Related Work

In this section, we will recapitulate previous work
in automated text summarization evaluation, fo-

Figure 1: Illustration of traditional evaluation models
based on reference summaries (top) and the new model
(bottom) which is based on pairwise preferences.

cusing on three important approaches, namely
model-free evaluation, ROUGE, and Pyramid.
The evaluation methods are ordered according to
their annotation requirements from none (model-
free evaluation) to high (Pyramid). In addition to
the most prominent methods described below, sev-
eral evaluation models were developed in the Au-
tomatically Evaluating Summaries Of Peers (AE-
SOP) shared tasks. The systems in this shared
task also considered reference summaries as ad-
ditional information to evaluate a reference sum-
mary and are therefore as expensive as ROUGE
in terms of required human annotation. Similarly,
Giannakopoulos and Karkaletsis (2013) use ma-
chine learning to learn a linear combination of
n-gram methods to evaluate summaries. Mackie
et al. (2014), Giannakopoulos (2013), and Co-
han and Goharian (2016) investigate evaluation
for microblog, multilingual, and scientific sum-
marization, respectively. Our evaluation, on con-
trary, uses newswire datasets since this is the most
prominent application domain for automatic sum-
marization. Furthermore, we focus on evaluating
the information content of summaries and do not
evaluate linguistic quality. This is, for example,
captured by Pitler et al. (2004).

2.1 Model-free Evaluation

Model-free evaluation methods Jensen-Shannon
divergence (Louis and Nenkova, 2013) do not re-
quire human input such as gold standard sum-
maries and can therefore be applied without ad-
ditional cost. The quality of model-free evaluation
methods is however limited, which is validated in
our experiments (see Section 5).
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2.2 ROUGE

ROUGE (Lin, 2004) was first used in the Doc-
ument Understanding Conference (DUC) (Over
et al., 2007) and is nowadays the method of
choice for automatic evaluation in text summariza-
tion. Many popular summarization systems were
evaluated with ROUGE (Erkan and Radev, 2004;
Mihalcea and Tarau, 2004; Gillick et al., 2009;
Lin and Bilmes, 2011). It is inspired from the
BLEU evaluation method (Papineni et al., 2002)
and is based on measuring lexical n-gram over-
lap of (stemmed) tokens between generated and
gold standard summaries. Researchers usually
report the n-gram recall of a summary to eval-
uate the quality of a summary. The quality of
ROUGE is often criticized in the research com-
munity. Sjöbergh (2007), for example, shows
nicely how the ROUGE recall scoring can be
fooled easily. A simple greedy language model
based on the source documents extracts frequent
bi-grams which are likely to occur in the refer-
ence summaries. The generated texts are merely
lists of bi-grams and not meaningful sentences
which cannot be considered to be summaries.
However, they achieve superhuman ROUGE recall
scores. In the TAC 2008 shared task (Dang and
Owczarzak, 2008), both ROUGE-2 and ROUGE-
SU4 score automatic systems higher than human
summaries, which would lead to the conclusion
that these systems are able to produce better sum-
maries than humans. Furthermore, studies show
that the correlation between ROUGE scores and
human judgments may not be significant in non-
newswire genres and other summary types (Liu
and Liu, 2008). ROUGE also has many param-
eters (Graham, 2015), which makes reproduction
and comparison of results problematic. Last but
not least, ROUGE computes text similarity only
based on simple string matching. Expressing the
same information with different words is not re-
warded by ROUGE. In addition to Graham (2015),
Owczarzak et al. (2012) and Rankel et al. (2013)
analyze ROUGE in more detail.

Agreement with human judgments (Owczarzak
et al., 2012) can be used instead of Pearson’s cor-
relation to validate an automatic evaluation model.
Measuring agreement allows to obtain a better un-
derstanding of the performance of an evaluation
model compared to the Pearson correlation. We
will also use agreement similarly to Owczarzak
et al. (2012) in our experiments.

2.3 Pyramid

The Pyramid method (Nenkova et al., 2007) (sim-
ilar to (Teufel and Van Halteren, 2004)) was used
in the Text Analysis Conference (TAC) (Dang
and Owczarzak, 2008) and goes beyond lexical
comparisons. It is based on Summarization Con-
tent Units (SCUs, later also called Summary Con-
tent Units). An SCU is a set of lexical expres-
sions with same meaning (e.g. {”2 people passed
away”, ”two persons died”}). After generating
the gold standard summaries, SCUs are extracted
from these summaries and are weighted by their
occurrence frequency in an additional annotation
step. Furthermore, every generated summary has
to be annotated individually with SCUs before the
Pyramid method can be applied. (Nenkova and
Passonneau, 2004) have already reported that a
large-scale application of the Pyramid method is
infeasible. (Over et al., 2007) report a huge effort
for the annotation process in the DUC challenges.
This additional annotation effort is unattractive for
researchers, who prefer automatic methods such as
ROUGE. This is validated by the few applications
of the Pyramid method until today. The need for
more human annotation also introduces an addi-
tional source for annotation mistakes. Inspecting
the annotations in the TAC 2008 dataset in detail
reveals that this is not only a theoretical issue but
has practical implications.1 PEAK (Yang et al.,
2016) is an attempt to automate the Pyramid evalu-
ation (similar to (Passonneau et al., 2013)). PEAK
also requires reference summaries and is therefore
as expensive as ROUGE.

2.4 Qualitative Feedback in Other NLP
Tasks

Simple and inexpensive qualitative human feed-
back has already been used in the field of machine
translation (Callison-Burch, 2009; Callison-Burch
et al., 2012; Guzmán et al., 2015). (Snow et al.,
2008) showed that in a wide variate of NLP tasks,
cheap non-expert labels can replace expensive ex-
pert annotations. In comparison to our work, we
are not asking non-experts to perform the same
task as expert annotators (namely writing refer-
ences summaries) but replace the complex task
with a simpler tasks (providing qualitative feed-
back in form of pairwise preferences).

1We found several issues such as not annotating parent
SCUs, missing SCUs in sentences, and different annotations
for equal sentences.
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3 Problem Definition

First, we define T to be the set of all possible texts
which can be considered to be summaries. For a
given set of source documents D, we define a bi-
nary relation >D ⊂ T × T with the intuition that
a >D b holds for two texts a,b ∈ T if and only
if a is considered to be the better summary of doc-
ument collection D than b. Whenever the context
is clear, we will omit D and write a > b for short.
The relation > induces a strict total order (given
that ties are not allowed) over T . A text which
ranks high according to >D is a good summary of
the document collection D.

How good summaries are is annotated in sum-
marization corpora only for a very small subset
of assessed texts T+ ⊂ T by human annotators.
We use the relation >∗ to express in which order
summaries are ranked by humans in summariza-
tion corpora for each document set D (also called
topic or cluster). The relation >∗ therefore mod-
els the human judgments. For not assessed texts
T− = T \ T+ the human judgment is unknown.

The quality of an evaluation method E can be
assessed by measuring the agreement with the hu-
man judgments. Evaluation models define (im-
plicitly) a ranking >E by assigning scores to sum-
maries or predicting the ranking directly. Calcu-
lating the agreement of the ranking >E with the
human ranking defined by >∗ provides a scores
which can be used to assess the performance of
evaluation models. Measuring the agreement be-
tween two relations (which are sets) can be easily
done by computing the intersection of both sets:2

Agreement(>∗, >E) =
|>∗ ∩ >E |
|>∗| (1)

This evaluation of evaluation models is similar
to the definition of Agreement and Contradiction
in Owczarzak et al. (2012): “Agreements occur
when the two evaluation metrics make the same
distinction between System A and System B (...).
Contradictions occur when both metrics find a (...)
difference between A and B, but in opposite direc-
tions.” A perfect evaluation model, which predicts
the preference for all pairs of summaries correctly,
will have an agreement of 1 whereas a random

2We require that an evaluation metric has to make a de-
cision for two summaries if the two summaries are different
according to the human judgment. Formally: a >∗ b →
a >E b or b >E a.

Donald Trump won
the election and be-
came president.

�
The U.S. Congress
certified the results
on January 6.

Figure 2: Example of a pairwise preference annotation
of two sentences. The first sentence is preferred over
the second sentence because the first sentence contains
more important information given that the information
is not already known.

evaluation model, which always predicts the pref-
erence randomly, will have an expected value of
0.5 according to this measure.

We prefer to use the agreement as defined in
Equation 1 for evaluation since it can be much bet-
ter interpreted (Owczarzak et al., 2012). Further-
more, Pearson’s correlation is known to be sen-
sitive to outliers, is only able to measure linear
correlations, and requires normally distributed, in-
terval scaled residuals (Anscombe, 1973). These
properties cannot be assumed to be given when
comparing human scores and automated evalua-
tion measures. We therefore prefer to use the
agreement according to human judgments as de-
fined in Equation 1 instead of calculating Pear-
son’s correlation.

4 Preference-based Evaluation of
Summaries

In this section, we present a novel framework
which does not infer a ranking of automatically
generated summaries based on gold standard sum-
maries but based on pairwise preferences. The
fundamental idea is not to rely on expensive gold
standard summaries as previous work does, but
to ask annotators for their preferences about sen-
tences. Annotates label pairs of sentences with a
preference label which indicates which sentence
contains more important information. Figure 2
illustrates such a pairwise preference annotation.
A human would likely prefer the first sentence
to be included in a summary instead of the sec-
ond sentence because the first sentence contains,
compared to the second sentence, relatively im-
portant information. Based on the preferences, our
model generates a ranking which reflects the im-
portance of information which is contained in the
sentences. Sentences with important information
will be ranked high whereas sentences contain-
ing only less important information will be ranked
low.
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4.1 Sampling Preference Annotations

The easiest strategy to select pairs of sentences for
which preferences should be annotated is to sam-
ple pairs of sentences randomly and to ask anno-
tators to provide a preference label for each sam-
pled pair (i.e. annotating whether a � b or b � a
for two randomly sampled a, b ∈ S∗). The sen-
tences are sampled from all source document of a
topic and are therefore independent from the au-
tomatically generated summaries. Our model will
therefore not only be able to evaluate already gen-
erated summaries but also summaries which will
be generated in the future.

All preferences are stored in a matrix M . An
entry of n at position Mij indicates that sentence
with index i was preferred n-times over sentence
with index j. To reduce the number of annota-
tions, we apply a smooth propagation of knowl-
edge. The idea is that we do not only obtain infor-
mation about the sampled sentence pair but also
about pairs which are similar to the sampled pair.

To estimate how much information can be trans-
fered from one to another pair, we calculate the
similarities between all sentences. As similarity
measure we use the average of the well-known
and simple Cosine similarity of TF-IDF vectors
and Jaccard similarities. The combination allows
to both rely the similarity computation on lexi-
cal similarity (Jaccard) and on important content
words (Cosine). We define the set of all sentences
in the source documents of a topic as S∗. Let
(a, b), a, b ∈ S∗ be one annotated sentence pair
and ȧ, ḃ the vector of similarities between a and
b and all sentences (i.e. ȧi denotes the similarity
between a and the i-th sentence in S∗).

We define the similarity of the pair (a1, b1) and
the pair (a2, b2) as sim(a1, a2) ∗ sim(b1, b2). If a1
is the exact same sentence as a2 and b1 is sim-
ilar with a degree of 0.7 to b2, we will transfer
0.7 of the information from (a1, b1) to the pair
(a2, b2). Transferring information means that we
generate additional preferences based on human
preferences. If a1 was preferred over b1 by a
human annotator, we will additionally generate a
weighted preferences of with a weight of 0.7 be-
tween a2 and b2. This can be modeled by the outer
product ȧ1 ⊗ ḃ1 of a1 and b1. For each annotated
pair (a, b), in which a was preferred by a human
over b, we update matrix M by M ←M + ȧ⊗ ḃ.

4.2 Sentence Score Prediction

The proposed usage of pairwise preferences be-
tween sentences is close to the idea of generat-
ing a ranking of sports teams by playing individual
matches. Instead of competitions between teams,
we observe competitions between sentences. The
outcome of a match between teams equals to the
annotation of a pair of sentences by a human an-
notator. Since different people can have differ-
ent opinions about the importance of information
(Gambhir and Gupta, 2016), we expect that one
sentence will not always be preferred by humans
similarly to the situation that the better sports team
does not always win against a weaker opponent.
This is expressed by the winning probability be-
tween teams (or sentences).

In sports, the term power ranking is used to
describe a ranking which does not only rank the
individual teams but also assigns a score to each
team, the skill. A well-known method to generate
a power ranking is the Bradly-Terry (BT) model
(Bradley and Terry, 1952). It estimates the utili-
ties v(a), v(b) of two teams (or two sentences) a
and b so that the winning probability of a against
b equals the score of a divided by the sum of the
scores of a and b:

p(a is prefered over b) =
v(a)

v(a) + v(b)
(2)

An algorithm to find a maximum-likelihood esti-
mator (MLE) has already been proposed in (Zer-
melo, 1929). To find the MLE, we iteratively
perform Equation 3 for all sentences si until the
difference between two iterations is sufficiently
small.3 wins(si) denotes the total number of wins
of si and duels(si, sj) the number of duels played
between sentences si and sj . This information was
collected in the previous step and is stored in ma-
trix M .

v(si)← wins(si)
∑

i 6=j

duels(si, sj)
v(si) + v(sj)

(3)

We normalize the resulting skill vector after each
iteration since every multiple of the solution is also
a correct solution and therefore restrict the model
to converge to one particular solution.

3We initialize all scores v(si) equally with v(si)← 1
|s| .
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4.2.1 Summary Score Prediction
We estimate the score of summary s with function
u : T → R as follows:

u(s) =

|s|∑

i=1

wsi · v(argmax
s∈S∗

sim(s, si)) (4)

The utility of a summary is therefore defined
as the weighted sum of the sentence utilities v.
Since we do not want to restrict our model to
purely extractive summaries (which would mean
that all sentences contained in the automatic sum-
mary have to be exactly contained in the source
documents), we estimate the score of a sentence
si in the summary by searching for the most sim-
ilar sentence s in the source documents with sim-
ilarity function sim : S × S → [0, 1]. As weight
of si, we use |si||s| where |.| denotes the length of
the summary and sentence measured in number of
characters. The intuition of the weight is that a
sentence contributes more to the overall score of
a summary if it is longer. The score of a sum-
mary will decrease if a large fraction of the sum-
mary is occupied with a poor sentence. By using a
similarity function instead of a hard matching, our
method is able to generalize to unseen sentences.

The definition of u in Equation 4 does not con-
sider redundancy. Including a sentence s twice
would result in adding the score of s twice to the
summary score. This behavior of the evaluation
measure is not desirable. We therefore include a
redundancy penalization which does not reward
redundant information. For a summary s, we re-
duce the score of sentence s by

vred(s) = v(s)
1

|s|
∑

g∈s

num(g, s)

num(g, s)
(5)

where num(g, s) and num(g, s) denote the number
of occurrences of the bi-gram g in s and s, respec-
tively. |s| denotes the number of bi-grams in s.

4.3 Reusing Available Annotation
Information

For already existing summarization corpora, refer-
ence summaries and/or Pyramid annotations have
already been created. Instead of generating new
preference annotations by asking human annota-
tors, we can also reuse the available data to simu-
late annotations. To this end, we define functions
wr andwp which estimate the score of a single sen-
tence based on reference summaries (r) and Pyra-
mid scores (p), respectively. We will use the scores

generated by wr and wp to simulate annotations of
sentence pairs. For two sentence a, b we can sim-
ulate a human preference annotation of a � b if
wr(a) > wr(b) and a win of b over a otherwise
(equivalent for wp).

For a set of gold standard summaries R, we de-
fine wr : S → R simply to be the maximum sim-
ilarity to the sentences in the gold standard sum-
maries:

wr(s) = max
t∈r,r∈R

(sim(s, t)) (6)

If a very similar sentence appears in a gold stan-
dard summary, s will receive a high score. If no
similar sentences are in the gold standard sum-
maries the sentence will receive a low score.

Given that Pyramid annotations are available (as
in the TAC 2009 corpus, for example), we can
define the score of a sentence as the sum of the
weights of the matched unique SCUs (similar to
the Pyramid method). Annotations are, unfortu-
nately, only available for all sentences in the doc-
uments in T+ and not for sentences in S∗. We
therefore search for sentence s in S∗ for the most
similar sentence ŝ in the documents in T+

ŝ = argmax
t∈t,t∈T+

sim(s, t) (7)

and set the score of s to

wp(s) =
∑

scu∈ŝ
weight(scu) (8)

where scu ∈ t are all unique SCUs contained in t
and weight(scu) denotes the weight of an SCU as
defined in (Nenkova and Passonneau, 2004). As
described above, we will observe wins and losses
between pairs based on the estimated scores.

5 Experiments

We provide in this section a detailed analysis of
our proposed evaluation method. For the experi-
ment, we use eight topics from two popular multi-
document summarization datasets, the DUC 2004
(DUC04) and TAC 2009 (TAC09) corpora, which
are freely available upon request.4 Each topic
in the datasets contains ten source documents.
Each topic contains automatically generated sum-
maries which were generated in the DUC 2004
and TAC 2009 shared tasks. All automatically

4http://duc.nist.gov and https://tac.
nist.gov
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JS R1 R2 R3 R4 SU4 man
DUC04 0.480 0.651 0.639 0.649 0.606 0.558 0.673
TAC09 0.565 0.638 0.668 0.660 0.674 0.663 0.688

Table 1: Agreement of preference based evaluation as
defined in Equation 1 of different versions of Jensen-
Shannon, ROUGE and our novel model based on man-
ually labeled pairwise preferences.

generated summaries were evaluated by humans.
Each summary was labeled with a score from 1 to
5 (DUC04) or 1 to 10 (TAC09) indicating the in-
formation content of the summary. Evaluation of
grammatically, writing style, etc. is not included
in the scores. An evaluation model predicts the
preference for two selected summaries correctly if
the model predicts the same preference according
to the annotated reference scores and incorrectly
otherwise. We do not consider ties in the exper-
iments. In the following, we report the agree-
ment as described in Equation 1 for various ex-
periments. We use the abbreviations JS (Jensen-
Shannon), R1 - R4 (ROUGE-1 - ROUGE-4), SU4
(ROUGE-SU4), and PY (Pyramid (Nenkova and
Passonneau, 2004)) to denote the reference sys-
tems.

5.1 Manual Annotations

In the first experiment, we investigate whether hu-
mans are able to provide useful feedback in the
form of pairwise preferences.

To evaluate our model, we annotated 200 ran-
domly sampled sentence pairs for the first four
topics in the DUC04 and the first four topics in
the TAC09 corpus with pairwise preferences. The
preferences were used (including the previously
described smoothed sampling) as input for the
proposed model. The results are shown in Ta-
ble 1. Column man denotes the performance of
our now model and column Time (min) indicates
how much time was required to generate the an-
notations. This information is in particular impor-
tant for this paper since our main aim is to develop
a cheap evaluation framework. In average, our
model achieves an agreement of 0.673 in DUC04
and 0.688 in TAC09. This means, that 67.3/68.8
percent of all pairs of manually rated summaries
were predicted correctly. This outperforms the
best versions of ROUGE in the respective corpora
(SU4 with 65.1 percent in DUC04 and R2 with
66.0 percent in TAC09).

With an average annotation time per topic of 53

R1 R2 R4 PY man
+ref

man
+py

man
+ref
+py

DUC04 0.651 0.639 0.606 n/a 0.722 n/a n/a
TAC09 0.638 0.668 0.674 0.715 0.682 0.707 0.717

Table 2: Agreement of different versions of ROUGE
and Pyramid (PY) and our novel models based on hu-
man and automatically generated pairwise preferences
in addition to manually labeled preferences.

and 54 minutes our model needs much less anno-
tation effort than ROUGE.

5.2 Weak Supervision with Additionally
Simulated Annotations

In the next experiment, we are interested whether
we can simulate additional annotations based on
already available reference summaries and Pyra-
mid annotations. The automatically annotated
pairs can be considered to be an additional weak
supervision for the model. We simulated 200 ad-
ditional annotations based on reference summaries
and/or Pyramid annotations in addition to the 200
manual annotations per topic. To this end, we ran-
domly sampled 200 additional pairs and annotated
the pairs with a preference label based on refer-
ence summaries and/or Pyramid annotations. Ta-
ble 2, column man+ref contains the results for 200
manual + 200 simulated reference summary-based
annotations; column man+py contains the results
for 200 manual + 200 simulated Pyramid score-
based annotations; and column man+ref+py con-
tains results for 200 manual + 200 reference
summary-based + 200 Pyramid score-based anno-
tations. The results show that we can improve
the agreement with additional simulated annota-
tions based on reference summaries in DUC04 by
5 percent points. Additional annotations increased
Agreement in TAC09 by 3 percent points. This
leads to the conclusion that we can use already
available reference summaries in order to substi-
tute more human preference annotations, which
makes the trade-off between performance and an-
notations effort of our model even better.

5.3 Solely Using Simulated Annotations

Now, we investigate if simulated preferences are
already sufficient to produce reasonable good re-
sults. Table 3, columns ref and py contain the re-
sults of an experiment where we sampled 1,000
simulated pairwise annotations. Without any ad-
ditional annotation effort, the new model is able to
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R1 R2 R4 PY ref py
DUC04 0.651 0.639 0.606 n/a 0.716 n/a
TAC09 0.638 0.668 0.674 0.715 0.644 0.709

Table 3: Agreement with human judgments for refer-
ence systems and our model fed with only automati-
cally generated preferences labels.

perform much better than ROUGE at DUC 2004.
In TAC 2009, our model achieves similar perfor-
mance as the best performing evaluation based on
Pyramid annotations. We conclude that automat-
ically generating pairwise preferences based on
already available reference summaries is already
sufficient to outperform ROUGE. Pairwise pref-
erences generated based on the more expensive
Pyramid annotations do not improve the perfor-
mance.

5.4 Convergence

In the next experiment, we investigate how agree-
ment changes with an increasing amount of anno-
tations. Figure 3 shows how agreement improves
with more annotations. We sampled n annota-
tions (horizontal axis) randomly from the human
annotations and averaged the resulting agreement
scores (vertical axis) of 100 runs to obtain reli-
able results. We observe a continuous improve-
ment of agreement in all four topics in the TAC
2009 dataset which indicates that sampling more
annotations can further improve the performance
of our system.
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Figure 3: Agreement trajectories averaged over 100
runs per topic in the TAC 2009 corpus.

5.5 Ranking Evaluation

We now investigate the ranking generated by our
model directly. Since individual sentences are an-

notated in the TAC 2009 corpus with SCUs, we
can generate a ranking of the sentences and di-
rectly compare this ranking with the ranking gen-
erated by our model. Table 4 shows the percent-
age of correctly ordered sentence pairs (similar
to Kendall’s τ ) for our model without and with
smoothed sampling.

non-smoothed smoothed
man pyr ref man pyr ref

0.683 0.987 0.661 0.727 0.941 0.698

Table 4: Percentage of correctly ordered sentence pairs
in the TAC 2009 corpus for both a non-smoothed and a
smoothed sampling.

Smoothed sampling improves the raking of the
model if we use 200 manual or 200 reference
summary-based preferences in the TAC 2009 cor-
pus. Given that we can sample pairs based on
Pyramid scores, the model is able to reconstruct
the ranking almost perfectly if we do not use
smoothed sampling. With smoothed sampling,
the performance decreases in this case. The re-
sult confirms the previously observed performance
at summary scoring where preferences based on
Pyramid annotations performed best followed by
manually generated preference annotations.

6 Conclusions & Outook

Evaluating automatically generated summaries is
a challenging task and creating annotations which
are required by applications such as ROUGE or
Pyramid is laborious and expensive. We presented
an alternative model which does not rely on refer-
ence summaries or Pyramid annotations but only
on simple pairwise preferences of sentences.

We showed in our experiments that the pro-
posed model is able to perform better than the cur-
rent state-of-the-art ROUGE method with less ex-
pensive annotations and that humans are able to
provide useful feedback in the form of pairwise
preferences. In combination with already avail-
able references summaries and Pyramid annota-
tions, we were able to simulate more annotations,
which improved performance further.

We conclude that gold standard summaries are
not the only usable human feedback which can be
used for summary evaluation. Investigating other
kinds of feedback such as pairwise preferences
might be a promising future research direction.

In future work, we would like to investigate
whether we can use crowd-sourcing platforms to
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collect pairwise preferences on a large scale. Fur-
thermore, we want to investigate whether we can
reduce the number of required preferences with
smarter sampling methods. Active learning meth-
ods can be used to replace the simple random sam-
pling strategy. Additionally, the investigation of
more sophisticated similarity functions can poten-
tially improve the model’s performance.
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Abstract

Summarizing a document requires identifying
the important parts of the document with an
objective of providing a quick overview to a
reader. However, a long article can span sev-
eral topics and a single summary cannot do
justice to all the topics. Further, the interests
of readers can vary and the notion of impor-
tance can change across them. Existing sum-
marization algorithms generate a single sum-
mary and are not capable of generating mul-
tiple summaries tuned to the interests of the
readers. In this paper, we propose an attention
based RNN framework to generate multiple
summaries of a single document tuned to dif-
ferent topics of interest. Our method outper-
forms existing baselines and our results sug-
gest that the attention of generative networks
can be successfully biased to look at sentences
relevant to a topic and effectively used to gen-
erate topic-tuned summaries.

1 Introduction

Automatic text summarization is the task of gen-
erating/extracting short text snippet that embodies
the content of a larger document or a collection
of documents in a concise fashion. Traditionally,
researchers have used extractive methods for sum-
marization - where a set of sentences is selected
from an article and concatenated as-is to form the
summary. Extractive methods are limited by their
inability to paraphrase the content of the article
using new sentences and hence are very different
from the summaries created by humans, who para-
phrase a given article to generate summaries. Re-
cent works on summarization have come up with
sequence-to-sequence models for generating sum-
maries in a word-by-word fashion, thus ‘generat-
ing’ new sentences.

As articles get longer, it might span several
topics and therefore, a single summary is often

insufficient to satisfy the interests of the reader.
In these cases, it is desirable to produce sum-
maries that are aligned to the topical interests of
reader to enable better consumption. Extractive
summarization uses sentence-level features (Yang
et al., 2017) that have been leveraged for pro-
ducing query-focused or topic-based summaries.
However, for RNN-based frameworks, such tuned
summary generation is non-obvious due to the ab-
sence of explicit content based features.

To extend the advantages of abstractive summa-
rization and generate topic-tuned summaries, we
propose a neural encoder-decoder based frame-
work which takes an article along with a topic of
interest as input and generates a summary tuned
to the target topic of interest. Our method works
by training a neural framework to pay higher at-
tention to parts of the input articles relevant to
given topic. To overcome the lack of dataset con-
taining articles with multiple topic-oriented sum-
maries, we use a novel approach to artificially
create a topic-centric training corpus from the
CNN/Dailymail dataset (Hermann et al., 2015;
Nallapati et al., 2016) for training our model.

Table 1 shows an article with different sum-
maries generated by the proposed approach tuned
towards the topics of politics, finance and social
aspects. It can be seen that the business oriented
summary talks about IMF’s estimates about in-
crease in taxes and the summary for politics talks
about how it relates to the government’s upcoming
budget. The summary for the social topic elabo-
rates on universal basic income and social security.
Thus, for the same article, the proposed approach
is capable of generating different summaries tuned
to the input topic of interest.
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Title: IMF backs Universal Basic Income in India, serves Modi govt a
political opportunity
Article: Ahead of Union Budget 2018, the Narendra Modi-led govern-
ments last full-year budget to be presented in February, the International
Monetary Fund (IMF) has made a strong case for India adopting a fis-
cally neutral Universal Basic Income by eliminating both food and fuel
subsidies ...
Business: imf claim eliminating energy “ tax subsidies ” would require a
increase in fuel taxes and retail fuel prices such as petrol prices and tax of
rs400 ($ 6) per tonne on coal consumption ...
Politics: narendra modi-led government ’s last full-year budget to be pre-
sented in february. the international monetary fund has made a strong case
for india adopting a fiscally neutral universal basic income by eliminating
both food and fuel subsidies ...
Social: universal basic income is a form of social security guaranteed
to citizens and transferred directly to their bank accounts and is being
debated globally ...

Table 1: Topic oriented summaries generated by our
method for an article (from LiveMint) touching multi-
ple topics

2 Related Work

Traditional methods for summarization (Nenkova
and McKeown, 2011) extract key sentences from
the source text to construct the summary. Early
works on abstractive summarization were focused
on sentence compression based approaches (Filip-
pova, 2010; Berg-Kirkpatrick et al., 2011; Baner-
jee et al., 2015) which connected fragments from
multiple sentences to generate novel sentences for
the summary or template based approaches that
generated summaries by fitting content into a tem-
plate (Wang and Cardie, 2013; Genest and La-
palme, 2011).

With the advent of deep sequence to se-
quence models which generated text word-by-
word (Sutskever et al., 2014), attention based neu-
ral network models have been proposed for sum-
marizing long sentences. Rush et al. (2015) first
demonstrated the use of neural networks to gen-
erate shorter forms of long sentences. Nallapati
et al. (2016) proposed a neural approach for ab-
stractive summarization of large articles by apply-
ing the sequence to sequence model. See et al.
(2017) further improved the performance on ab-
stractive summarization of articles by introducing
the ability to copy words from the source article
(Gulcehre et al., 2016) using a pointer network
(Vinyals et al., 2015), in addition to generating
new words. However, all these frameworks focus
on generating a single summary, and do not sup-
port topic-tuned summary generation. We use the
architecture by See et al. as the starting point for
our work and develop a method to generate topic-
tuned summaries.

There have been some works on extending ex-
tractive summarization towards topical tuning. Lin

and Hovy (2000) proposed the idea of extract-
ing topic-based signature terms for summariza-
tion. Given a topic and a corpus of documents
relevant and not relevant to the topic, a set of
words characterizing each topic is extracted using
a log-likelihood based measure. Sentences which
contain these chosen words are assigned more
importance while summarizing. Conroy et al.
(2006) further extended the method for query-
based multi-document summarization by consid-
ering sentence overlap with both query terms and
topic signature words.

However, all these works rely on identifying
sentence level features to compute topic affini-
ties that are leveraged for choosing topic specific
sentences for the summary. Since sequence-to-
sequence frameworks generate text in a word-by-
word fashion, incorporating sentence level statis-
tics is not feasible in this framework. Therefore,
we modify the attention of the network to focus
on topic-specific parts of the input text to generate
the tuned summaries.

3 Topic aware pointer-generator network

Our method builds on top of the pointer-generator
network of See et al. which consists of an encoder
and a decoder both based on LSTM architecture.
Our contribution is a modified encoder to encode
the article in a topic-sensitive manner. However,
for the sake of completeness, we shall provide an
overview of the entire network, and will reuse no-
tations from their work to a large extent.

Given an input article as a sequence of words
a = w1, w2 . . . wn, and a scaled one-hot topic
vector ut, where t is a topic in a predefined set
of topics T , the network produces a summary
s = s1, s2, . . . , sk pertaining to the topic t. The
topic-vector ut has a non-zero value c > 0 only
for the entry corresponding to the desired topic
t of the summary. c designates the amount of
bias that should be put towards the topic while
generating the summary, higher values suggest-
ing higher bias. The input article is passed
through an embedding layer to transform them to
lower-dimensional embedding m1,m2, . . . ,mn.
The topic one-hot vector ut is concatenated to
each of the embedding to create the sequence
(m1, ut), (m2, ut), . . . , (mn, ut). This sequence
is passed to a bidirectional LSTM encoder which
computes a sequence of hidden states h1, h2, ..hn.
The final hidden state is passed to a decoder which
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is also a LSTM, and it serves as the initial hidden
state of the decoder. At each decoding step of the
decoder, an attention distribution at is calculated
over all words of the input article,

eti = vT tanh(Whhi +Wsst + batt) (1)

at = softmax(et) (2)

Here, st is the hidden state of the decoder at
timestep t, and v,Wh,Ws and batt are model pa-
rameters.

The attention model can be thought of as a prob-
ability distribution over words in the source text,
which aids the decoder in generating the next word
in the summary using words in the source text that
have higher attention. Since the encoder has infor-
mation about what is the topic of interest, the hi
are calculated in such a way that the correspond-
ing areas of the article receiving high attention are
relevant to the topic. We demonstrate this later in
Section 4.2. The decoder uses this attention to cal-
culate a context vector h∗t as a weighted sum of the
encoder hidden states to determine the next word
that is to be generated.

h∗t =
n∑

i=1

atihi, (3)

At each decoding time step, the decoder net-
work also gets as input yt, the last word in the
summary generated so far and computes a scalar
pgen denoting the probability of the network gen-
erating a new word from the vocabulary.

pgen = σ(wTh h
∗
t + wTs st + wTy yt + bgen) (4)

where wh, ws, wy, bgen are trained vectors. The
network probabilistically decides based on pgen,
whether to generate a new word from the vocabu-
lary or copy a word from the source text using the
attention distribution.

For each word w in the vocabulary, the model
calculates Pvocab(w), the probability of the word
getting newly generated next. Pvocab is calculated
by passing a concatenation st and h∗t through a lin-
ear transformation with sigmoid activation. Also,
for each word w′ in the input article, its total atten-
tion received yields its probability of being copied.
Since some words occur in the vocabulary and also
the input article, they will have non-zero proba-
bilities of being newly generated as well as being
copied. Therefore, the total probability of w being

the next word generated in the summary, denoted
by p is given by,

p(w) = pgenPvocab(w)+(1−pgen)
∑

i:wi=w

ati (5)

The second term allows the framework to choose
a word to copy from the input text using the atten-
tion distribution.

The pointer-generator network further employs
a coverage mechanism which modifies the loss
function to encourage diversity in attention distri-
butions over time steps. This prevents the network
from repeating the same phrases again while gen-
erating a summary. To handle out-of-vocabulary
words, the pointer-generator network also appends
them to the vocabulary before the article is en-
coded.

The training loss is set to be the average nega-
tive log-likelihood of the ground truth summaries.
The model is trained using back-propagation and
the Adagrad gradient descent algorithm (Duchi
et al., 2011).

Alternate to the the proposed architecture, one
can append the topic vector to the initial hidden
state of the encoder, or the initial state of the de-
coder. However, in our experiments, these ap-
proaches did not produce the desired tuning. An-
other alternative would be to use different Wh at-
tention matrix for each different topic and learn
topic specific attention biases. This again did not
perform well, perhaps due insufficient data avail-
able to train each topic’s Wh.

3.1 Generating the training data
The problem of generating multiple different sum-
maries of the same document based on topics of
interest requires a set of articles, each of them
(a) annotated with multiple (ut, s) pairs, where
t is a topic, and s is the summary of a oriented
to topic t. However, existing datasets for single-
document summarization (Over et al., 2007; Her-
mann et al., 2015) do not have multiple ground
truth summaries oriented to different topics for
each document. Moreover, existing datasets for
topic-based summarization are focused on multi-
document summarization and contain multiple ar-
ticles tagged with a relevant topic. For example,
DUC 2005 dataset (Dang, 2005) for topic based
multi-document summarization contains 50 top-
ics with each topic having 25 to 50 documents
in it. To address the lack of datasets with multi-
ple summaries of a single document, we propose
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an approach create such a dataset artificially. The
dataset is created in two steps.

We begin with fixing the set of topics for con-
sideration and learn a word frequency based rep-
resentation for each topic by using a corpus of ar-
ticles where each article is labelled with a topic.
For our experiment, we use the dataset of news ar-
ticles tagged with topics like politics, sports, edu-
cation etc. released at the 2017 KDD Data Science
+ Journalism Workshop (VoxMedia). We group
the articles by the topics, so that all articles having
topic t are represented by the set St. We repre-
sent each topic t as a vector et = (n1, n2, . . . , nv)
where v = |V | is the size of vocabulary of words
V = {w1, w2, ..., wv} and ni is the number of
times word wi occurs in St. We normalize et to
sum to 1.

We then take a corpus of articles with hu-
man generated summaries as a collection of (a, s)
pairs. For our purposes, we use the CNN-
Dailymail dataset which has articles with sum-
maries. We create an intermediate dataset which
consists of (a, ut, s) pairs, where ut is a one-hot
representation of the topic t of summary s. We
begin with labeling each summary with a topic by
computing the dot-product between summary (in
its bag-of-words representation) and the topic vec-
tors extracted in the previous step. Let < vs, et >
indicate the dot-product between the bag of words
representation of summary s and the topic vec-
tor for topic t. For each topic ti, sim(s, ti) =<
vs, eti > is the similarity of summary s to the topic
ti. Let’s say that ti has the highest similarity to
summary s and tj has the second highest similar-
ity. Then we say that summary s has topic ti with
confidence c = sim(s,ti)

sim(s,tj)
. If the confidence is less

than a threshold (set to 1.2 in our experiments),
we drop the article and summary from our dataset.
This enures that the intermediate dataset does not
include summaries with more than one dominant
topic. If the confidence is greater than the thresh-
old, we add the triple (a, uti , s) to the intermediate
dataset, where the vector uti keeps the value corre-
sponding to ti equal to the confidence c, instead of
1 as commonly done in one-hot vectors. This al-
lows us to retain the confidence of s being of topic
ti while training our model.

To generate the final dataset, we follow the steps
below:

1. Randomly pick (a1, ut1 , s1) and (a2, ut2 , s2)
from the intermediate dataset such that t1 6=

t2.

2. Make a new article a′ by sequentially pick-
ing up lines from a1 and a2. Each addition of
a new line is done by randomly selecting one
of a1 or a2 and extracting out a new line from
the beginning of it. This ensures that the lines
from a1 occur in the same order in a′ as orig-
inally in a1, and the same thing is true for a2
too. This ensures that the sequential flow of
content is retained in the merger.

3. Add (a′, ut1 , s1) to the final dataset.

4. Repeat step 2 to get a new article a′′ and add
(a′′, ut2 , s2) to the final dataset.

5. Discard (a1, ut1 , s1) and (a2, ut2 , s2) from
the intermediate dataset.

6. Repeat steps 1− 5 until the entire intermedi-
ate dataset is exhausted or all remaining in-
stances in it have the same topic.

The created final dataset is used to train the pro-
posed neural network for summarization. Since
every article in the final dataset is a combination
of two original articles, and the target summary to
be generated is of one of them, the model must
learn to distinguish between content coming from
the two original articles. The randomization of po-
sition of sentences from each original article while
merging, ensures that there is no position-specific
bias that the model can use either. Since the two
original articles have different topics, and the only
information given to the model to hint whose sum-
mary is to be generated is the topic of one of them,
the model is forced to learn what content is more
relevant to the given topic and generate a summary
accordingly.

We ended up with 112, 360 articles in our final
dataset since many article-summary pairs from the
CNNDailymail dataset were dropped due to insuf-
ficient confidence about their topics. Out of this,
103, 666 were used for training, 4, 720 for valida-
tion, and 3, 974 for testing.

4 Experimental Evaluation

To position our method against existing works, we
use the following summarizers as our baselines.

Our first baseline is the vanilla pointer gener-
ator (PG) described in the original work of See
et al. (2017). This method does not consider the
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desired topic of summary when generating a sum-
mary. For an unbiased evaluation, we use ex-
actly those unmerged article-summary pairs of the
CNN/Dailymail dataset for training and validation
which were eventually incorporated in the final
dataset. Then the trained model is applied to gen-
erate summaries of the test set of the final dataset.

Our next baseline is a frequency-based extrac-
tion method that selects lines from the input arti-
cle which are strongly aligned to the desired topic
ut. For each sentence, the relevance to each of the
predefined topics is calculated using a dot product
between their vector representations. The sentence
is designated to the topic having the maximum rel-
evance score, and the strength of alignment is the
ratio of the the highest and the second highest rel-
evance scores.

We extract all the sentences in the article which
are aligned to the target topic, and run it through
the pointer-generator network to create the sum-
mary. We refer to this baseline as abstractive
summarizer with frequency based extraction
(Freq-Abs). Alternatively, we take k sentences
which have the highest strength of alignment with
the target topic to create a purely extractive sum-
mary. k was set to 3 in accordance with the aver-
age number of sentences in the summaries of the
training set (2.83). We call this method extrac-
tive summarizer with frequency based extrac-
tion (Freq-Ext).

Our last baseline is a topic-signature based ap-
proach which also works by extracting sentences
from the article which are aligned to the target
topic. However, the selection of sentences is based
on topic signatures as described by Lin and Hovy
(2000) and Conroy et al. (2006) instead of word
frequencies. A topic signature is a set of words
relevant to the topic. For any given sentence, the
number of signature terms of each topic is com-
puted. The sentence is designated to belong to the
topic which has the highest number of its signature
terms occurring in it.

The topic signature is determined based a set
of documents T relevant to the topic, and a set
of background documents T ′ that is indicative of
general topics. It is assumed that in T and T ′,
the occurrence of each word w follows a binomial
distribution with probability of occurrence p. The
likelihood of observing T and T ′ is calculated un-
der two hypotheses - one where the probability of
occurrence of w is p1 in T and p2 in T ′ such that

p1 > p2, and the other where it is p in both T
and T ′. The ratio of likelihoods is calculated and
words for which this ratio is the highest are in-
cluded as part of the topic’s signature.

We extracted topic signatures using the sum-
maries of the training dataset as our corpus. For
each topic t, the corresponding summaries form
the topic specific corpus T , and the remaining
summaries make the background corpus. Table 2
shows a subset of the topic signatures.

Topic Signature words
business stock, firm, rate, google, worth, companies
education children, teacher, parents, schools, test
entertainment actor, star, league, movie, will, taylor
health disease, brain, people, risk, league, infection, blood
military arrested, police, car, officer, year, officers, killed, charged
politics party, campaign, secretary, democrats, bill, congress
social church, rich, life, woman, sex, identity, gender, will
sports scored, united, league, nfl, cup, england, beat, game
technology app, solar, launch, ipod, app, earth, energy, oil

Table 2: Words from signatures of different topics

Analogous to Freq-Abs and Freq-Ext, we try
two alternatives here as well - abstractive sum-
marizer with signature based extraction (Sign-
Abs) and extractive summarizer with signature
based extraction (Sign-Ext).

4.1 Performance on the created dataset

We used the 3, 974 article-topic-summary tuples
from our final dataset to evaluate the performance
of the summarizers. The models were given the
input article and topic and the generated summary
was compared with the ground truth summary.
We use ROUGE scores to measure the quality of
summaries. ROUGE scores measure the preci-
sion, recall and f-measure for the occurrence of
n-grams in the generated summary with respect to
the reference human generated summary. We use
the ROUGE-1, ROUGE-2 and ROUGE-L variants
(Lin and Och, 2004) which look at unigram, bi-
gram and longest common subsequence overlaps
between generated and reference summaries. Ta-
ble 3 shows the ROUGE F1 scores for the topic-
based summaries generated by different methods.
It is easy to see that the proposed method yields
the best performance across all the baselines.

Further, we also observed that the summaries
generated by our system show abstractive nature
as noted in See et al. (2017). Table 4 shows some
instances where our model used new words unseen
in the article.
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Algorithm ROUGE-1 ROUGE-2 ROUGE-L
PG 26.8 9.2 24.5

Freq-Abs 25.8 8.4 23.4
Freq-Ext 25.5 8.5 22.9
Sign-Abs 26.1 8.5 23.7
Sign-Ext 25.9 8.7 23.3

Our method 34.1 13.6 31.2

Table 3: ROUGE F1 scores obtained by various meth-
ods on the final test set

Article: spain ’s 2-0 defeat by holland on tues-
day brought back bitter memories of their dis-
astrous 2014 world cup , but coach vicente del
bosque will not be too worried ...
Summary: holland beat spain 2-0 at the ams-
terdam arena on tuesday night
Article: it ’s 11 years since arsenal won the
title. they went from invincibles to incapables
...
Summary: arsene wenger ’s side have 15 wins
in 17 appearances

Table 4: Summaries where our model uses new words
not seen in the input article

4.2 Performance on multi-topic articles

We ran the proposed model on original articles
from CNN-DailyMail dataset which were not part
of the final dataset used for training. Since the
articles were not annotated with topics, we gen-
erated summaries for all the different topics. We
then detected articles where the method generated
different summaries for different topics suggest-
ing the presence of more than one topic in the arti-
cle. Table 5 shows a few summaries generated by
the proposed approach where different summaries
were generated aligned to the input topics. The
first article talks about the dropping of a player
from a football squad. The summary oriented to
the military topic talks about the assault of a po-
lice officer by the player and his criminal history.
The sports summary talks about the player’s fate
in the remaining games of the season.

Similarly, we have different summaries for the
second article, where the education oriented sum-
mary talks about the educational affiliations of the
suspects and disciplinary procedures, whereas the
military summary talks about the arrests. Note that
these are among the original articles in the dataset
which were not used for creating any of the articles
in our final data used for training the model.

We also observe that the attention distribution

Title: Paul McGowan won’t be risked in final six
games of the season, as Dundee boss Paul Hartley
looks to help troubled midfielder
Military: dundee rogue paul mcgowan has been
handed his third conviction after assaulting a police of-
ficer . mcgowan escaped a jail sentence but was placed
under a restriction ...
Sports: paul hartley has warned that paul mcgowan
may not feature in any of the team ’s remaining six
games this season because he will not risk playing the
troubled midfielder this season ...
Title: Third suspect arrested in alleged Panama
City gang rape
Education: ryan calhoun has been a student at mid-
dle tennessee state university . the two are students and
have been “ placed on temporary suspension and disci-
plinary procedures ...
Military: sheriff ’s office : third person has been ar-
rested in the case of an alleged spring break gang rape
that was videotaped on a crowded stretch of panama
city beach , the bay county , florida , sheriff ’s office
said . the arrests come after a woman told police ...
Title: University of Michigan will go forward with
’American Sniper’ screening
Military: kyle was fatally shot at a texas shooting
range in 2013 . kyle cooper was nominated for an os-
car for his portrayal of chris kyle , a navy seal and most
lethal sniper in u.s. military history ...
Education: university of michigan has decided to pro-
ceed with a screening of the film “ american sniper ”
despite objections from some students . more than 200
signed a petition ...
Title: The Pope’s old iPad sells for $30,500
Business: the motorcycle sold for $ 284,000 at auction
, more than 10 times its normal sales price . a harley
motorcycle jacket signed by francis sold for nearly $
68,000 . ...
Education: ... the proceeds will go to a school in mon-
tevideo , uruguay . it ’s not the first time a papal hand-
me-down has gone for big bucks . ...

Table 5: Topic oriented summaries generated by our
method for articles from CNN-Dailymail dataset

varies according to the input topic of summary.
We investigate the amount of cumulative attention
(defined as coverage by See et al.) that is received
by each term summed over all the decoding steps
during generation. An example of the variation in
attention over an input article is shown in Figure 1.
The degree of yellow hue is used to represent the
value of coverage for each term. For the topic mil-
itary, words like jail and assualting receive higher
attention, whereas for the topic sports words like
games and player are highlighted. Figure 1(b) also
shows an example where our model summarizes
by skipping a clause (“which kick off at 3pm”).

4.3 Human evaluation of performance

Finally, we performed human evaluations of sum-
maries to compare the quality of our method
against the baselines. We restrict ourselves to
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(a) Coverage for the topic military

(b) Coverage for the topic sports

Figure 1: Variation in the attention coverage while summarizing an article for different topics

the best performing baseline - the topic signature
based abstractive summarizer (Sign-Abs), and the
vanilla pointer-generator.

We fetched articles touching multiple topics us-
ing the NYTimes Search API1, which allows to
search for articles on NYTimes which appear in
the news desk for a topic (the major topic) and are
tagged with another topic (the minor topic). For
different pairs of topics, we retrieved relevant ar-
ticles using the API and randomly selected few of
them to generate summaries tuned to the two top-
ics using our method and the baselines. We re-
trieved 18 total articles for the evaluation. Each
article had two topics leading to 36 (article,topic)
pairs for the summary generation. For each (arti-
cle,topic) pair, annotators were shown two sum-
maries - one generated by our method and the
other by one of the baselines. The task was to
choose the summary more relevant to the topic.
Each such task was annotated by 10 different an-
notators. Every annotator was assigned 9 tasks and
1 extra dummy task to check if they were paying
attention. Annotations from evaluators who an-
swered incorrectly to the dummy task were dis-
carded. We had a total of 720 annotations from
the human evaluation and their summary is shown
in Table 6.

The value under “Overall annotations” refers
to the fraction of all human responses across all

1https://developer.nytimes.com/

documents which rated the summary produced by
our method better than the alternate summary pro-
duced by the compared baseline method. Under-
standably, the proposed approach is comparable in
the preference to both the baselines for the major
topic (0.5667) - since most standard summaries
will cover the primary topic of the input. How-
ever, for the minor topic, it can be seen that the
proposed approach is better than the baselines.

The value under “Document annotations” indi-
cates the fraction of times the proposed method
was preferred by half or more of the annotators for
a document-topic pair. It is easy to see that the pro-
posed approach clearly outperforms the baselines
under this scenario. The difference in performance
is even more significant for summaries generated
for the non-major topic since our approach is capa-
ble of efficiently generating tuned summaries for
minor topics as well.

5 Conclusion

We proposed a method for generating multiple ab-
stractive summaries of a given document oriented
towards different topics of interest. Our method
works by modifying the attention mechanism of a
pointer-generator neural network to make it focus
on text relevant to a topic. For training our net-
work, we devised a novel way to create a dataset
where articles are tagged with topic oriented sum-
maries. Our method outperformed previous fea-
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Topics
Overall Annotations Document Annotations
vs PG vs Sign-Abs vs PG vs Sign-Abs

All 0.5889 0.6111 0.7222 0.8333
Major 0.5667 0.5667 0.6667 0.7778
Minor 0.6111 0.6556 0.7778 0.8889

Table 6: Evaluation of summaries of the proposed approach against Pointer Generator Framework and Topic
Signature based Summarizer by human annotators

ture based methods for topic oriented summariza-
tion using word frequencies or log likelihood ra-
tios.
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Abstract

In order to alleviate data sparsity and over-
fitting problems in maximum likelihood esti-
mation (MLE) for sequence prediction tasks,
we propose the Generative Bridging Network
(GBN), in which a novel bridge module is in-
troduced to assist the training of the sequence
prediction model (the generator network). Un-
like MLE directly maximizing the conditional
likelihood, the bridge extends the point-wise
ground truth to a bridge distribution condi-
tioned on it, and the generator is optimized to
minimize their KL-divergence. Three different
GBNs, namely uniform GBN, language-model
GBN and coaching GBN, are proposed to pe-
nalize confidence, enhance language smooth-
ness and relieve learning burden. Experiments
conducted on two recognized sequence predic-
tion tasks (machine translation and abstractive
text summarization) show that our proposed
GBNs can yield significant improvements over
strong baselines. Furthermore, by analyz-
ing samples drawn from different bridges, ex-
pected influences on the generator are verified.

1 Introduction

Sequence prediction has been widely used in tasks
where the outputs are sequentially structured and
mutually dependent. Recently, massive explo-
rations in this area have been made to solve prac-
tical problems, such as machine translation (Bah-
danau et al., 2014; Ma et al., 2017; Norouzi et al.,
2016), syntactic parsing (Vinyals et al., 2015),
spelling correction (Bahdanau et al., 2014), image
captioning (Xu et al., 2015) and speech recogni-
tion (Chorowski et al., 2015). Armed with mod-
ern computation power, deep LSTM (Hochreiter
and Schmidhuber, 1997) or GRU (Chung et al.,
2014) based neural sequence prediction models
have achieved the state-of-the-art performance.

The typical training algorithm for sequence
prediction is Maximum Likelihood Estimation
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…

…
…

…
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Figure 1: The overall architecture of our novel Gen-
erative Bridging Network (GBN). Two main compo-
nents, namely the generator network and the bridge
module, are connected through samples (Y 1 . . . Y K in
red) from the bridge module during training time. (We
sometimes call them generator and bridge in brief re-
spectively in the following discussion.) The generator
is implemented through an attentive encoder-decoder,
where in the figure Att represents the attention module.

(MLE), which maximizes the likelihood of the tar-
get sequences conditioned on the source ones:

✓⇤ = argmax
✓

E
(X,Y ⇤)⇠D

log p✓(Y
⇤|X) (1)

Despite the popularity of MLE or teacher forc-
ing (Doya, 1992) in neural sequence prediction
tasks, two general issues are always haunting: 1).
data sparsity and 2). tendency for overfitting, with
which can both harm model generalization.

To combat data sparsity, different strategies
have been proposed. Most of them try to take
advantage of monolingual data (Sennrich et al.,
2015; Zhang and Zong, 2016; Cheng et al., 2016).
Others try to modify the ground truth target based
on derived rules to get more similar examples for
training (Norouzi et al., 2016; Ma et al., 2017).
To alleviate overfitting, regularization techniques,
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such as confidence penalization (Pereyra et al.,
2017) and posterior regularization (Zhang et al.,
2017), are proposed recently.

As shown in Figure 1, we propose a novel learn-
ing architecture, titled Generative Bridging Net-
work (GBN), to combine both of the benefits from
synthetic data and regularization. Within the ar-
chitecture, the bridge module (bridge) first trans-
forms the point-wise ground truth into a bridge
distribution, which can be viewed as a target pro-
poser from whom more target examples are drawn
to train the generator. By introducing different
constraints, the bridge can be set or trained to pos-
sess specific property, with which the drawn sam-
ples can augment target-side data (alleviate data
sparsity) while regularizing the training (avoid
overfitting) of the generator network (generator).

In this paper, we introduce three different con-
straints to build three bridge modules. Together
with the generator network, three GBN systems
are constructed: 1). a uniform GBN, instantiating
the constraint as a uniform distribution to penal-
ize confidence; 2). a language-model GBN, in-
stantiating the constraint as a pre-trained neural
language model to increase language smoothness;
3). a coaching GBN, instantiating the constraint as
the generator’s output distribution to seek a close-
to-generator distribution, which enables the bridge
to draw easy-to-learn samples for the generator to
learn. Without any constraint, our GBN degrades
to MLE. The uniform GBN is proved to minimize
KL-divergence with a so-called payoff distribution
as in reward augmented maximum likelihood or
RAML (Norouzi et al., 2016).

Experiments are conducted on two sequence
prediction tasks, namely machine translation and
abstractive text summarization. On both of them,
our proposed GBNs can significantly improve
task performance, compared with strong base-
lines. Among them, the coaching GBN achieves
the best. Samples from these three different
bridges are demonstrated to confirm the expected
impacts they have on the training of the generator.
In summary, our contributions are:

• A novel GBN architecture is proposed for se-
quence prediction to alleviate the data spar-
sity and overfitting problems, where the
bridge module and the generator network are
integrated and jointly trained.

• Different constraints are introduced to build
GBN variants: uniform GBN, language-

model GBN and coaching GBN. Our GBN
architecture is proved to be a generalized
form of both MLE and RAML.

• All proposed GBN variants outperform the
MLE baselines on machine translation and
abstractive text summarization. Similar rela-
tive improvements are achieved compared to
recent state-of-the-art methods in the trans-
lation task. We also demonstrate the advan-
tage of our GBNs qualitatively by comparing
ground truth and samples from bridges.

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟

𝐵𝑟𝑖𝑑𝑔𝑒

Regularization-by-
synthetic-samples

𝑌∗

𝑝𝐶(𝑌)

𝑆(𝑌, 𝑌∗)

𝐶(𝑝𝜂, 𝑝𝑐)

Knowledge 
injection

𝑃𝜂(𝑌|𝑌∗)

𝐾𝐿(𝑝𝜂, 𝑝𝜃) 𝑝𝜃(𝑌|𝑋)
𝑌∗ 𝑝𝐶(𝑌)

Figure 2: Conceptual interpretation of our Generative
Bridging Network (GBN). See detailed discussion in
the beginning of Sec. 2.

2 Generative Bridging Network

In this section, we first give a conceptual interpre-
tation of our novel learning architecture which is
sketched in Figure 2. Since data augmentation and
regularization are two golden solutions for tack-
ling data sparsity and overfitting issues. We are
willing to design an architecture which can inte-
grate both of their benefits. The basic idea is to use
a so-called bridge which transforms Y ⇤ to an easy-
to-sample distribution, and then use this distribu-
tion (samples) to train and meanwhile regularize
the sequence prediction model (the generator).

The bridge is viewed as a conditional distribu-
tion1 p⌘(Y |Y ⇤) to get more target Y s given Y ⇤

so as to construct more training pairs (X, Y ). In
the meantime, we could inject (empirical) prior
knowledge into the bridge through its optimiza-
tion objective which is inspired by the design of
the payoff distribution in RAML. We formulate
the optimization objective with two parts in Equa-
tion (2): a) an expected similarity score com-
puted through a similarity score function S(·, Y ⇤)
interpolated with b) a knowledge injection con-
straint2 C(p⌘(Y |Y ⇤), pc(Y )) where ↵ controls the

1⌘ should be treated as an index of the bridge distribution,
so it is not necessarily the parameters to be learned.

2Note that, in our paper, we specify C to be KL-divergence
between the bridge distribution p⌘ and certain constraint dis-
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strength of the regularization, formally, we write
the objective function LB(⌘) as follows:

LB(⌘) =

E
Y⇠p⌘(Y |Y ⇤)

[�S(Y, Y ⇤)] + ↵C(p⌘(Y |Y ⇤), pc(Y ))

(2)

Minimizing it empowers the bridge distribution
not only to concentrate its mass around the ground
truth Y ⇤ but also to adopt certain hope property
from pc(Y ). With the constructed bridge distribu-
tion, we optimize the generator network P✓(Y |X)
to match its output distribution towards the bridge
distribution by minimizing their KL-divergence:

LG(✓) = KL(p⌘(Y |Y ⇤)||p✓(Y |X)) (3)

In practice, the KL-divergence is approximated
through sampling process detailed in Sec. 2.3.
As a matter of fact, the bridge is the crux of the
integration: it synthesizes new targets to allevi-
ate data sparsity and then uses the synthetic data
as regularization to overcome overfitting. Thus
a regularization-by-synthetic-example approach,
which is very similar to the prior-incorporation-
by-virtual-example method (Niyogi et al., 1998).

2.1 Generator Network
Our generator network is parameterized with
the commonly used encoder-decoder architec-
ture (Bahdanau et al., 2014; Cho et al., 2014). The
encoder is used to encode the input sequence X
to a sequence of hidden states, based on which
an attention mechanism is leveraged to compute
context vectors at the decoding stage. The con-
text vector together with previous decoder’s hid-
den state and previously predicted label are used,
at each time step, to compute the next hidden state
and predict an output label.

As claimed in Equation (3), the generator net-
work is not trained to maximize the likelihood of
the ground truth but tries best to match the bridge
distribution, which is a delegate of the ground
truth. We use gradient descent to optimize the KL-
divergence with respect to the generator:

rLG(✓) = E
Y⇠p⌘(Y |Y ⇤)

logrp✓(Y |X) (4)

The optimization process can be viewed as the
generator maximizing the likelihood of samples

tribution pc, however, we believe mathematical form of C is
not restricted, which could motivate further development.

drawn from the bridge. This may alleviate data
sparsity and overfitting by posing more unseen
scenarios to the generator and may help the gen-
erator generalize better in test time.

2.2 Bridge Module3

Our bridge module is designed to transform a
single target example Y ⇤ to a bridge distribu-
tion p⌘(Y |Y ⇤). We design its optimization tar-
get in Equation (2) to consist of two terms,
namely, a concentration requirement and a con-
straint. The constraint is instantiated as KL-
divergence between the bridge and a contraint dis-
tribution pc(Y ). We transform Equation (2) as fol-
lows, which is convenient for mathematical ma-
nipulation later:

LB(⌘) =

E
Y⇠p⌘

[�S(Y, Y ⇤)
⌧

] + KL(p⌘(Y |Y ⇤)||pc(Y ))

(5)

S(Y, Y ⇤) is a predefined score function which
measures similarity between Y and Y ⇤ and peaks
when Y = Y ⇤, while pc(Y ) reshapes the bridge
distribution. More specifically, the first term en-
sures that the bridge should concentrate around the
ground truth Y ⇤, and the second introduces willing
property which can help regularize the generator.
The hyperparameter ⌧ can be interpreted as a tem-
perature which scales the score function. In the
following bridge specifications, the score function
S(Y, Y ⇤) is instantiated according to Sec. 3.1.

1. Delta Bridge The delta bridge can be seen
as the simplest case where ↵ = 0 or no con-
straint is imposed. The bridge seeks to minimize

E
Y⇠p⌘(Y |Y ⇤)

[�S(Y,Y ⇤)
⌧ ]. The optimal solution is

when the bridge only samples Y ⇤, thus the Dirac
delta distribution is described as follows:

p⌘(Y |Y ⇤) = �Y ⇤(Y ) (6)

This exactly corresponds to MLE, where only ex-
amples in the dataset are used to train the genera-
tor. We regard this case as our baseline.

2. Uniform Bridge The uniform bridge adopts
a uniform distribution U(Y ) as constraint. This

3Although we name it bridge module, we explicitly learn
it with the generator when a closed-form static solution ex-
ists in terms of Equation (5). Otherwise, we will adopt an
encoder-decoder to construct a dynamic bridge network.
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bridge motivates to include noise into target exam-
ple, which is similar to label smoothing (Szegedy
et al., 2016). The loss function can be written as:

LB(⌘) =

E
Y⇠p⌘

[�S(Y, Y ⇤)
⌧

] + KL(p⌘(Y |Y ⇤)||U(Y ))

(7)

We can re-write it as follows by adding a constant
to not change the optimization result:

LB(⌘) + C = KL(p⌘(Y |Y ⇤)||exp S(Y,Y ⇤)
⌧

Z
)

(8)

This bridge is static for having a closed-form so-
lution:

p⌘(Y |Y ⇤) =
exp S(Y,Y ⇤)

⌧

Z
(9)

where Z is the partition function. Note that our
uniform bridge corresponds to the payoff distribu-
tion described in RAML (Norouzi et al., 2016).

3. Language-model (LM) Bridge The LM
bridge utilizes a pretrained neural language model
pLM (Y ) as constraint, which motivates to propose
target examples conforming to language fluency.

LB(⌘) =

E
Y⇠p⌘(Y |Y ⇤)

[�S(Y, Y ⇤)
⌧

] + KL(p⌘(Y |Y ⇤)||pLM )

(10)

Similar to the uniform bridge case, we can re-write
the loss function to a KL-divergence:

LB(⌘) + C

=KL(p⌘(Y |Y ⇤)||pLM (Y ) · exp S(Y,Y ⇤)
⌧

Z
)

(11)

Thus, the LM bridge is also static and can be seen
as an extension of the uniform bridge, where the
exponentiated similarity score is re-weighted by a
pretrained LM score, and renormalized:

p(Y |Y ⇤) =
pLM (Y ) exp S(Y,Y ⇤)

⌧

Z
(12)

where Z is the partition function. The above equa-
tion looks just like the payoff distribution, whereas
an additional factor is considered.

4. Coaching Bridge The coaching bridge uti-
lizes the generator’s output distribution as con-
straint, which motivates to generate training sam-
ples which are easy to be understood by the
generator, so as to relieve its learning burden.
The coaching bridge follows the same spirit as
the coach proposed in Imitation-via-Coaching (He
et al., 2012), which, in reinforcement learning vo-
cabulary, advocates to guide the policy (genera-
tor) with easy-to-learn action trajectories and let
it gradually approach the oracle when the optimal
action is hard to achieve.

LB(⌘) =

E
Y⇠p⌘

[�S(Y, Y ⇤)
⌧

] + KL(p✓(Y |X)||p⌘(Y |Y ⇤))
(13)

Since the KL constraint is a moving target when
the generator is updated, the coaching bridge
should not remain static. Therefore, we perform
iterative optimization to train the bridge and the
generator jointly. Formally, the derivatives for the
coaching bridge are written as follows:

rLB(⌘) = E
Y⇠p⌘

[�S(Y, Y ⇤)
⌧

r log p⌘(Y |Y ⇤)]

+ E
Y⇠p✓

r log p⌘(Y |Y ⇤)
(14)

The first term corresponds to the policy gradient
algorithm described in REINFORCE (Williams,
1992), where the coefficient �S(Y, Y ⇤)/⌧ corre-
sponds to reward function. Due to the mutual de-
pendence between bridge module and generator
network, we design an iterative training strategy,
i.e. the two networks take turns to update their
own parameters treating the other as fixed.

2.3 Training

The training of the above three variants is illus-
trated in Figure 3. Since the proposed bridges can
be divided into static ones, which only require pre-
training, and dynamic ones, which require contin-
ual training with the generator, we describe their
training process in details respectively.

2.3.1 Stratified-Sampled Training
Since closed-formed optimal distributions can be
found for uniform/LM GBNs, we only need to
draw samples from the static bridge distributions
to train our sequence generator. Unfortunately,
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Figure 3: The training processes of the three different
variants of our GBN architecture (Sec. 2.3).

due to the intractability of these bridge distribu-
tions, direct sampling is infeasible. Therefore, we
follow Norouzi et al. (2016); Ma et al. (2017) and
adopt stratified sampling to approximate the direct
sampling process. Given a sentence Y ⇤, we first
sample an edit distance m, and then randomly se-
lect m positions to replace the original tokens. The
difference between the uniform and the LM bridge
lies in that the uniform bridge replaces labels by
drawing substitutions from a uniform distribution,
while LM bridge takes the history as condition and
draws substitutions from its step-wise distribution.

2.3.2 Iterative Training

Since the KL-constraint is a moving target for the
coaching bridge, an iterative training strategy is
designed to alternately update both the generator
and the bridge (Algorithm 1). We first pre-train
both the generator and the bridge and then start to
alternately update their parameters. Figure 4 intu-
itively demonstrates the intertwined optimization
effects over the coaching bridge and the generator.
We hypothesize that iterative training with easy-
to-learn guidance could benefit gradient update,
thus result in better local minimum.

3 Experiment

We select machine translation and abstractive text
summarization as benchmarks to verify our GBN
framework.

3.1 Similarity Score Function

In our experiments, instead of directly using
BLEU or ROUGE as reward to guide the bridge
network’s policy search, we design a simple sur-

𝑷𝜼 𝑷𝜽

𝑌
2. Update learner 𝑃𝜃

𝑌
4. Update learner 𝑃𝜃

1. Update coach 𝑃𝜂
𝑌

3. Update coach 𝑃𝜂
𝑌

𝜹(𝒀)

Figure 4: Four iterative updates of the coaching bridge
and the generator. In an early stage, the pre-trained
generator P✓ may not put mass on some ground truth
target points within the output space, shown by �(Y ).
The coaching bridge is first updated with Equation (14)
to locate in between the Dirac delta distribution and
the generator’s output distribution. Then, by sampling
from the coaching bridge for approximating Equation
(4), target samples which demonstrate easy-to-learn se-
quence segments facilitate the generator to be opti-
mized to achieve closeness with the coaching bridge.
Then this process repeats until the generator converges.

rogate n-gram matching reward as follows:

S(Y, Y ⇤) = 0.4⇤N4+0.3⇤N3+0.2⇤N2+0.1⇤N1

(15)
Nn represents the n-gram matching score between
Y and Y ⇤. In order to alleviate reward sparsity at
sequence level, we further decompose the global
reward S(Y, Y ⇤) as a series of local rewards at ev-
ery time step. Formally, we write the step-wise
reward s(yt|y1:t�1, Y

⇤) as follows:

s(yt|y1:t�1, Y
⇤) =

8
>>>>><
>>>>>:

1.0; N(y1:t, yt�3:t)  N(Y ⇤, yt�3:t)

0.6; N(y1:t, yt�2:t)  N(Y ⇤, yt�2:t)

0.3; N(y1:t, yt�1:t)  N(Y ⇤, yt�1:t)

0.1; N(y1:t, yt)  N(Y ⇤, yt)

0.0; otherwise

(16)

where N(Y, Ỹ ) represents the occurrence of sub-
sequence Ỹ in whole sequence Y . Specifically, if
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Algorithm 1 Training Coaching GBN
procedure PRE-TRAINING

Initialize p✓(Y |X) and p⌘(Y |Y ⇤) with ran-
dom weights ✓ and ⌘

Pre-train p✓(Y |X) to predict Y ⇤ given X
Use pre-trained p✓(Y |X) to generate Ŷ

given X
Pre-train p⌘(Y |Y ⇤) to predict Ŷ given Y ⇤

end procedure
procedure ITERATIVE-TRAINING

while Not Converged do
Receive a random example (X, Y ⇤)
if Bridge-step then

Draw samples Y from p✓(Y |X)
Update bridge via Equation (14)

else if Generator-step then
Draw samples Y from p⌘(Y |Y ⇤)
Update generator via Equation (4)

end if
end while

end procedure

a certain sub-sequence yt�n+1:t from Y appears
less times than in the reference Y ⇤, yt receives re-
ward. Formally, we rewrite the step-level gradient
for each sampled Y as follows:

� S(Y, Y ⇤)
⌧

r log p⌘(Y |Y ⇤)

=
X

t

�s(yt|y1:t�1, Y
⇤)

⌧
· r log p⌘(yt|y1:t�1, Y

⇤)

(17)

3.2 Machine Translation
Dataset We follow Ranzato et al. (2015); Bah-
danau et al. (2016) and select German-English ma-
chine translation track of the IWSLT 2014 eval-
uation campaign. The corpus contains sentence-
wise aligned subtitles of TED and TEDx talks. We
use Moses toolkit (Koehn et al., 2007) and remove
sentences longer than 50 words as well as lower-
casing. The evaluation metric is BLEU (Papineni
et al., 2002) computed via the multi-bleu.perl.

System Setting We use a unified GRU-based
RNN (Chung et al., 2014) for both the generator
and the coaching bridge. In order to compare with
existing papers, we use a similar system setting
with 512 RNN hidden units and 256 as embed-
ding size. We use attentive encoder-decoder to
build our system (Bahdanau et al., 2014). Dur-
ing training, we apply ADADELTA (Zeiler, 2012)

Methods Baseline Model
MIXER 20.10 21.81 +1.71

BSO 24.03 26.36 +2.33

AC 27.56 28.53 +0.97

Softmax-Q 27.66 28.77 +1.11

Uniform GBN
(⌧ = 0.8)

29.10

29.80 +0.70

LM GBN
(⌧ = 0.8)

29.90 +0.80

Coaching GBN
(⌧ = 0.8)

29.98 +0.88

Coaching GBN
(⌧ = 1.2)

30.15 +1.05

Coaching GBN
(⌧ = 1.0)

30.18 +1.08

Table 1: Comparison with existing works on IWSLT-
2014 German-English Machine Translation Task.
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Figure 5: Coaching GBN’s learning curve on IWSLT
German-English Dev set.

with ✏ = 10�6 and ⇢ = 0.95 to optimize pa-
rameters of the generator and the coaching bridge.
During decoding, a beam size of 8 is used to ap-
proximate the full search space. An important
hyper-parameter for our experiments is the tem-
perature ⌧ . For the uniform/LM bridge, we fol-
low Norouzi et al. (2016) to adopt an optimal tem-
perature ⌧ = 0.8. And for the coaching bridge,
we test hyper-parameters from ⌧ 2 {0.8, 1.0, 1.2}.
Besides comparing with our fine-tuned baseline,
other systems for comparison of relative BLEU
improvement are: MIXER (Ranzato et al., 2015),
BSO (Wiseman and Rush, 2016), AC (Bahdanau
et al., 2016), Softmax-Q (Ma et al., 2017).

Results The experimental results are summa-
rized in Table 1. We can observe that our
fine-tuned MLE baseline (29.10) is already over-
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Methods RG-1 RG-2 RG-L
ABS 29.55 11.32 26.42
ABS+ 29.76 11.88 26.96
Luong-NMT 33.10 14.45 30.71
SAEASS 36.15 17.54 33.63
seq2seq+att 34.04 15.95 31.68
Uniform GBN

(⌧ = 0.8)
34.10 16.70 31.75

LM GBN
(⌧ = 0.8)

34.32 16.88 31.89

Coaching GBN
(⌧ = 0.8)

34.49 16.70 31.95

Coaching GBN
(⌧ = 1.2)

34.83 16.83 32.25

Coaching GBN
(⌧ = 1.0)

35.26 17.22 32.67

Table 2: Full length ROUGE F1 evaluation results on
the English Gigaword test set used by (Rush et al.,
2015). RG in the Table denotes ROUGE. Results
for comparison are taken from SAEASS (Zhou et al.,
2017).

competing other systems and our proposed GBN
can yield a further improvement. We also ob-
serve that LM GBN and coaching GBN have both
achieved better performance than Uniform GBN,
which confirms that better regularization effects
are achieved, and the generators become more ro-
bust and generalize better. We draw the learning
curve of both the bridge and the generator in Fig-
ure 5 to demonstrate how they cooperate during
training. We can easily observe the interaction
between them: as the generator makes progress,
the coaching bridge also improves itself to propose
harsher targets for the generator to learn.

3.3 Abstractive Text Summarization

Dataset We follow the previous works by Rush
et al. (2015); Zhou et al. (2017) and use the
same corpus from Annotated English Gigaword
dataset (Napoles et al., 2012). In order to be com-
parable, we use the same script 4 released by Rush
et al. (2015) to pre-process and extract the train-
ing and validation sets. For the test set, we use the
English Gigaword, released by Rush et al. (2015),
and evaluate our system through ROUGE (Lin,
2004). Following previous works, we employ
ROUGE-1, ROUGE-2, and ROUGE-L as the eval-
uation metrics in the reported experimental results.

4https://github.com/facebookarchive/NAMAS
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Figure 6: Coaching GBN’s learning curve on Abstrac-
tive Text Summarization Dev set.

System Setting We follow Zhou et al. (2017);
Rush et al. (2015) to set input and output vo-
cabularies to 119,504 and 68,883 respectively,
and we also set the word embedding size to
300 and all GRU hidden state size to 512.
Then we adopt dropout (Srivastava et al., 2014)
with probability p = 0.5 strategy in our out-
put layer. We use attention-based sequence-to-
sequence model (Bahdanau et al., 2014; Cho et al.,
2014) as our baseline and reproduce the results of
the baseline reported in Zhou et al. (2017). As
stated, the attentive encoder-decode architecture
can already outperform existing ABS/ABS+ sys-
tems (Rush et al., 2015). In coaching GBN, due to
the fact that the input of abstractive summarization
X contains more information than the summary
target Y ⇤, directly training the bridge p⌘(Y |Y ⇤)
to understand the generator p✓(Y |X) is infeasible.
Therefore, we re-design the coaching bridge to re-
ceive both source and target input X, Y and we
enlarge its vocabulary size to 88,883 to encom-
pass more information about the source side. In
Uniform/LM GBN experiments, we also fix the
hyper-parameter ⌧ = 0.8 as the optimal setting.

Results The experimental results are summa-
rized in Table 2. We can observe a significant
improvement via our GBN systems. Similarly,
the coaching GBN system achieves the strongest
performance among all, which again reflects our
assumption that more sophisticated regularization
can benefit generator’s training. We draw the
learning curve of the coaching GBN in Figure 6
to demonstrate how the bridge and the generator
promote each other.
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4 Analysis

By introducing different constraints into the bridge
module, the bridge distribution will propose dif-
ferent training samples for the generator to learn.
From Table 3, we can observe that most samples
still reserve their original meaning. The uniform
bridge simply performs random replacement with-
out considering any linguistic constraint. The LM
bridge strives to smooth reference sentence with
high-frequent words. And the coaching bridge
simplifies difficult expressions to relieve genera-
tor’s learning burden. From our experimental re-
sults, the more rational and aggressive diversifica-
tion from the coaching GBN clearly benefits gen-
erator the most and helps the generator generalize
to more unseen scenarios.

5 Related Literature

5.1 Data Augmentation and Self-training
In order to resolve the data sparsity problem in
Neural Machine Translation (NMT), many works
have been conducted to augment the dataset. The
most popular strategy is via self-learning, which
incorporates the self-generated data directly into
training. Zhang and Zong (2016) and Sennrich
et al. (2015) both use self-learning to leverage
massive monolingual data for NMT training. Our
bridge can take advantage of the parallel training
data only, instead of external monolingual ones to
synthesize new training data.

5.2 Reward Augmented Maximum
Likelihood

Reward augmented maximum likelihood or
RAML (Norouzi et al., 2016) proposes to in-
tegrate task-level reward into MLE training by
using an exponentiated payoff distribution. KL
divergence between the payoff distribution and the
generator’s output distribution are minimized to
achieve an optimal task-level reward. Following
this work, Ma et al. (2017) introduces softmax
Q-Distribution to interpret RAML and reveals its
relation with Bayesian decision theory. These
two works both alleviate data sparsity problem by
augmenting target examples based on the ground
truth. Our method draws inspiration from them
but seeks to propose the more general Generative
Bridging Network, which can transform the
ground truth into different bridge distributions,
from where samples are drawn will account for
different interpretable factors.

System Uniform GBN
Property Random Replacement
Reference the question is , is it worth it ?

Bridge the question lemon , was it worth it ?

System Language-model GBN
Property Word Replacement
Reference now how can this help us ?

Bridge so how can this help us ?

System Coaching GBN
Property Reordering
Reference i need to have a health care lexicon .

Bridge i need a lexicon for health care .

Property Simplification

Reference
this is the way that most of us were taught

to tie our shoes .

Bridge most of us learned to bind our shoes .

Table 3: Qualitative analysis for three different bridge
distributions.

5.3 Coaching

Our coaching GBN system is inspired by imita-
tion learning by coaching (He et al., 2012). In-
stead of directly behavior cloning the oracle, they
advocate learning hope actions as targets from a
coach which is interpolated between learner’s pol-
icy and the environment loss. As the learner makes
progress, the targets provided by the coach will
become harsher to gradually improve the learner.
Similarly, our proposed coaching GBN is moti-
vated to construct an easy-to-learn bridge distri-
bution which lies in between the ground truth and
the generator. Our experimental results confirm its
effectiveness to relieve the learning burden.

6 Conclusion

In this paper, we present the Generative Bridg-
ing Network (GBN) to overcome data sparsity and
overfitting issues with Maximum Likelihood Esti-
mation in neural sequence prediction. Our imple-
mented systems prove to significantly improve the
performance, compared with strong baselines. We
believe the concept of bridge distribution can be
applicable to a wide range of distribution matching
tasks in probabilistic learning. In the future, we in-
tend to explore more about GBN’s applications as
well as its provable computational and statistical
guarantees.
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Abstract

Sentence compression methods based on
LSTM can generate fluent compressed
sentences. However, the performance of
these methods is significantly degraded
when compressing long sentences since it
does not explicitly handle syntactic fea-
tures. To solve this problem, we propose
a higher-order syntactic attention network
(HiSAN) that can handle higher-order de-
pendency features as an attention distri-
bution on LSTM hidden states. Further-
more, to avoid the influence of incorrect
parse results, we train HiSAN by max-
imizing the probability of a correct out-
put together with the attention distribu-
tion. Experiments on the Google sentence
compression dataset show that our method
achieved the best performance in terms of
F1 as well as ROUGE-1,2 and L scores,
83.2, 82.9, 75.8 and 82.7, respectively.
In subjective evaluations, HiSAN outper-
formed baseline methods in both readabil-
ity and informativeness.

1 Introduction

Sentence compression is the task of compress-
ing long sentences into short and concise ones by
deleting words. To generate compressed sentences
that are grammatical, many researchers (Jing,
2000; Knight and Marcu, 2000; Berg-Kirkpatrick
et al., 2011; Filippova and Altun, 2013) have
adopted tree trimming methods. Even though Fil-
ippova and Altun (2013) reported the best results
on this task, automatic parse errors greatly degrade
the performances of these tree trimming methods.

1We used an LSTM-based sentence compression method
(Filippova et al., 2015) in the evaluation setting as described
in Section 4.1.
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Figure 1: F1 scores of LSTM-based sentence com-
pression method for each sentence length.1
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Figure 2: Average tree depths for each sentence
length.2

Recently, Filippova et al. (2015) proposed
an LSTM sequence-to-sequence (Seq2Seq) based
sentence compression method that can generate
fluent sentences without utilizing any syntactic
features. Therefore, Seq2Seq based sentence com-
pression is a promising alternative to tree trim-
ming.

However, as reported for a machine transla-
tion task (Cho et al., 2014; Pouget-Abadie et al.,
2014; Koehn and Knowles, 2017), the longer the
input sentences are, the worse the Seq2Seq per-
formances become. We also observed this prob-
lem in the sentence compression task. As shown
in Figure 1, the performance of Seq2Seq is de-
graded when compressing long sentences. In par-
ticular, the performance significantly falls if sen-
tence length exceeds 26 words. This is an impor-
tant problem, because sentences longer than the
average sentence length (=28 words) accounts for
42% of the Google sentence compression dataset.

As shown in Figure 2, long sentences have deep
2We treat the maximum distance from root node to the

leaf node as dependency tree depth.
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Pakistan signed a resolution on Monday to import 1,300 MW of electricity from Kyrgyz Republic and Tajikistan to overcome power shortage in summer season ...

Figure 3: An example compressed sentence and its dependency tree. The words colored by gray represent
deleted words.

dependency trees, which have long distances from
root node to words at leaf nodes. Therefore, im-
proving compression performance for sentences
with such deep dependency trees can help to com-
press longer sentences.

To deal with sentences that have deep depen-
dency trees, we focus on the chains of depen-
dency relationships. Figure 3 shows an exam-
ple of a compressed sentence with its dependency
tree. The topic of this sentence is import agree-
ment related to electricity. Thus, to generate in-
formative compression, the compressed sentence
must retain the country name. In this example,
the compressed sentence should keep the phrase
“from Kyrgyz Republic and Tajikistan”. Thus, the
compressed sentence must also keep the depen-
dency chain “import”, “resolution” and “signed”
because the phrase is a child of this chain. By
considering such higher-order dependency chains,
the system can implement informative compres-
sion. As can be seen from the example in Figure 3,
tracking a higher-order dependency chain for each
word would help to compress long sentences. This
paper refers to such dependency relationships by
the expression “d-length dependency chains”.

To handle a d-length dependency chain for sen-
tence compression with LSTM, we propose the
higher-order syntactic attention network (HiSAN).
HiSAN computes the deletion probability for a
given word based on the d-length dependency
chain starting from the word. The d-length de-
pendency chain is represented as an attention dis-
tribution, learned using automatic parse trees. To
alleviate the influence of parse errors in automatic
parse trees, we learn the attention distribution to-
gether with deletion probability.

Evaluation results on the Google sentence com-
pression dataset (Filippova and Altun, 2013) show
that HiSAN achieved the best F1, ROUGE-1,2 and
L scores 83.2, 82.9, 75.8 and 82.7, respectively. In
particular, HiSAN attained remarkable compres-
sion performance with long sentences. In human
evaluations, HiSAN also outperformed the base-
line methods.

2 Baseline Sequence-to-Sequence
Method

Sentence compression can be regarded as a tag-
ging task, where given a sequence of input tokens
x = (x0, ..., xn), a system assigns output label
yt, which is one of three types of specific labels
(“keep,”“delete,” or“end of sentence”) to each in-
put token xt (1 ≤ t ≤ n).

The LSTM-based approaches for sentence com-
pression are mostly based on the bi-LSTM based
tagging method (Tagger) (Klerke et al., 2016;
Wang et al., 2017; Chen and Pan, 2017) or
Seq2Seq (Filippova et al., 2015; Tran et al., 2016).
Tagger independently predicts labels in a point es-
timation manner, whereas Seq2Seq predicts labels
by considering previously predicted labels. Since
Seq2Seq is more expressive than Tagger, we built
HiSAN on the baseline Seq2Seq model.

Our baseline Seq2Seq is a version of Filip-
pova et al. (2015) extended through the addition
of bi-LSTM, an input feeding approach (Vinyals
et al., 2015; Luong et al., 2015), and a monotonic
hard attention method (Yao and Zweig, 2015; Tran
et al., 2016). As described in the evaluations sec-
tion, this baseline achieved comparable or even
better scores than the state-of-the-art scores re-
ported in Filippova et al. (2015). The baseline
Seq2Seq model consists of embedding, encoder,
decoder, and output layers.

In the embedding layer, the input tokens x are
converted to the embeddings e. As reported in
Wang et al. (2017), syntactic features are impor-
tant for learning a generalizable embedding for
sentence compression. Following their results, we
also introduce syntactic features into the embed-
ding layer. Specifically, we combine the surface
token embedding wi, POS embedding pi, and de-
pendency relation label embedding ri into a single
vector as follows:

ei = [wi, pi, ri] , (1)

where [] represents vector concatenation, and ei is
an embedding of token xi.

The encoder layer converts the embedding e
into a sequence of hidden states h = (h0, ..., hn)
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using a stacked bidirectional-LSTM (bi-LSTM) as
follows:

hi =
[−→
hi ,
←−
hi

]
(2)

−→
h i = LSTM−→

θ
(
−→
h i−1, ei) (3)

←−
h i = LSTM←−

θ
(
←−
h i−1, ei), (4)

where LSTM−→
θ

and LSTM←−
θ

represent forward
and backward LSTM, respectively. The final state
of the backward LSTM

←−
h 0 is inherited by the de-

coder as its initial state.
In the decoder layer, the concatenation of a 3-

bit one-hot vector which is determined by previ-
ously predicted label yt−1, previous final hidden
state dt−1 (explained later), and the input embed-
ding of xt, is encoded into the decoder hidden state
−→s t using stacked forward LSTMs.

Contrary to the original softmax attention
method, we can deterministically focus on one en-
coder hidden state ht (Yao and Zweig, 2015) to
predict yt in the sentence compression task (Tran
et al., 2016).3

In the output layer, label probability is calcu-
lated as follows:

P (yt | y<t,x) = softmax(Wo · dt) · δyt , (5)

dt = [ht,
−→s t] (6)

where Wo is a weight matrix of the softmax layer
and δyt is a binary vector where the yt-th element
is set to 1 and the other elements to 0.

3 Higher-order Syntactic Attention
Network

The key component of HiSAN is its attention mod-
ule. Unlike the baseline Seq2Seq, HiSAN em-
ploys a packed d-length dependency chain as dis-
tributions in the attention module. Section 3.1 ex-
plains the packed d-length dependency chain. Sec-
tion 3.2 describes the network structure of our at-
tention module, and Section 3.3 explains the learn-
ing method of HiSAN.

3.1 Packed d-length Dependency Chain
The probability for a packed d-length depen-
dency chain is obtained from a dependency graph,
which is an edge-factored dependency score ma-
trix (Hashimoto and Tsuruoka, 2017; Zhang et al.,

3This is because the output length is the same as the input
length, and each xt can be assigned to each yt in a one-to-one
correspondence.
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Figure 4: Dependency structures used in our
higher-order syntactic attention network.

2017). First, we explain the dependency graph.
Figure 4 (a) shows an example of the dependency
graph. HiSAN represents a dependency graph as
an attention distribution generated by the attention
module. A probability for each dependency edge
is obtained from the attention distribution.

Figure 4 (b) shows an example of the packed
d-length dependency chain. With our recursive
attention module, the probability for a packed d-
length dependency chain is computed as the sum
of probabilities for each path yielded by recur-
sively tracking from a word to its d-th ancestor.
The probability for each path is calculated as the
product of the probabilities of tracked edges. The
probability for the chain can represent several d-
length dependency chains compactly, and so alle-
viates the influence of incorrect parse results. This
is the advantage of using dependency graphs.

3.2 Network Architecture

Figure 5 shows the prediction process of HiSAN.
In this figure, HiSAN predicts output label y7

from the input sentence. The prediction process
of HiSAN is as follows.

1. Parent Attention module calculates
Pparent(xj |xt,x), the probability of xj being
the parent of xt, by using hj and ht. This
probability is calculated for all pairs of
xj , xt. The arc in Figure 5 shows the most
probable dependency parent for each child
token.
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Figure 5: Prediction process of our higher-order
syntactic attention network.

2. Recursive Attention module calculates
αd,t,j , the probability of xj being the d-th
order parent (d denotes the chain length) of
xt, by recursively using Pparent(xj |xt,x).
αd,t,j is also treated as an attention distribu-
tion, and used to calculate γd,t, the weighted
sum of h for each length d. For example,
a 3-length dependency chain of word x7

with highest probability is x6-x5-x2. The
encoder hidden states h6, h5 and h2, which
correspond to the dependency chain, are
weighted by calculated parent probabilities
α1,7,6, α2,7,5 and α3,7,2, respectively, and
then fed to the selective attention module.

3. Selective Attention module calculates
weight βd,t from its length, d ∈ d, for each
γd,t. d represents a group of chain lengths.
βd,t is calculated by encoder and decoder
hidden states. Each βd,t · γd,t is summed
to Ωt, the output of the selective attention
module.

4. Finally, the calculated Ωt is concatenated and
input to the output layer.

Details of each module are explained in the fol-
lowing subsection.

3.2.1 Parent Attention Module
Zhang et al. (2017) formalized dependency pars-
ing as the problem of independently selecting the
parent of each word in a sentence. They produced
a distribution over possible parents for each child
word by using the attention layer on bi-LSTM hid-
den layers.

In a dependency tree, a parent has more than
one child. Under this constraint, dependency pars-
ing is represented as follows. Given sentence
S = (x0, x1, ..., xn), the parent of xj is selected
from S \ xi for each token S \ x0. Note that x0

denotes the root node. The probability of token
xj being the parent of token xt in sentence x is
calculated as follows:

Pparent(xj |xt,x)=softmax(g(hj′ , ht)) · δxj ,(7)

g(hj′ , ht)=vT
a · tanh(Ua · hj′ + Wa · ht), (8)

where va, Ua and Wa are weight matrices of g.
Different from the attention based dependency

parser, Pparent(xj |xt,x) is jointly learned with
output label probability P (y | x) in the training
phase. Training details are given in Section 3.3.

3.2.2 Recursive Attention Module
The recursive attention module recursively calcu-
lates αd,t,j , the probability of xj being the d-th or-
der parent of xt, as follows:

αd,t,j =





n∑
k=1

αd−1,t,k · α1,k,j (d>1)

Pparent(xj |xt,x) (d=1)
. (9)

Furthermore, in a dependency parse tree, root
should not have any parent, and a token should not
depend on itself. In order to satisfy these rules, we
impose the following constraints on α1,t,j :

α1,t,j =





1 (t = 0 ∧ j = 0)
0 (t = 0 ∧ j > 0)
0 (t ̸= 0 ∧ t = j)

(10)

The 1st and 2nd lines of Eq. (10) represent the
case that the parent of root is also root. These con-
straints imply that root does not have any parent.
The 3rd line of Eq. (10) prevents a token from de-
pending on itself. Because the 1st line of Eq. (9)
is similar to the definition of matrix multiplication,
Eq. (9) can be efficiently computed on a CPU and
GPU4.

4In training, HiSAN with 1- and 3-length dependency
chains took 25 and 26 minutes, respectively, per epoch on
an Intel Xeon E5-2697 v3 2.60 GHz.
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By recursively using the single attention distri-
bution, it is no longer necessary to prepare addi-
tional attention distributions for each order when
computing the probability of higher order par-
ents. Furthermore, since it is not necessary to
learn multiple attention distributions, it becomes
unnecessary to use hyper parameters for adjust-
ing the weight of each distribution in training. Fi-
nally, this method can avoid the problem of sparse
higher-order dependency relations in the training
dataset.

The above calculated αd,t,j is used to weight the
bi-LSTM hidden layer h as follows:

γd,t =

n∑

k=j

αd,t,j · hj . (11)

Note that γd,t is inherited by the selective attention
module, as explained in the next section.

3.2.3 Selective Attention Module
To select suitable dependency orders of the input
sentence, the selective attention module weights
and sums the hidden states γd,t to Ωt by using
weighting parameter βd,t, according to the current
context as follows:

βd,t = softmax(Wc · ct) · δd, (12)

Ωt =
∑

d∈{0,d}
βd,t · γd,t, (13)

where Wc is the weight matrix of the softmax
layer, d is a group of chain lengths, ct is a
vector representing the current context, γ0,t is a
zero-vector, and β0,t indicates the weight when
the method does not use the dependency fea-
tures. Context vector ct is calculated as ct =
[
←−
h 0,
−→
h n,−→s t] using the current decoder hidden

state −→s t.
The calculated Ωt is concatenated and input to

the output layer. In detail, dt in Eq. (5) is replaced
by concatenated vector d′t = [ht, Ωt,

−→s t]; further-
more, instead of dt, d′t is also fed to the input of
the decoder LSTM at t + 1.

3.3 Objective Function

To alleviate the influence of parse errors, we
jointly update the 1st-order attention distribution
α1,t,k and label probability P (y|x) (Kamigaito
et al., 2017). The 1st-order attention distribution
is learned by dependency parse trees. If at,j = 1
is an edge between parent word wj and child wt

on a dependency tree (at,j = 0 denotes that wj is
not a parent of wt.), the objective function of our
method can be defined as:

−logP (y|x)− λ ·
n∑

j=1

n∑

t=1

at,j · logα1,t,j , (14)

where λ is a hyper-parameter that controls the im-
portance of the output labels and parse trees in the
training dataset.

4 Evaluations

4.1 Evaluation Settings

4.1.1 Dataset
This evaluation used the Google sentence com-
pression dataset (Filippova and Altun, 2013)5.
This dataset contains information of compression
labels, part-of-speech (POS) tags, dependency
parents and dependency relation labels for each
sentence.

We used the first and last 1,000 sentences of
comp-data.eval.json as our test and devel-
opment datasets, respectively. Note that our test
dataset is compatible wth that used in previous
studies (Filippova et al., 2015; Tran et al., 2016;
Klerke et al., 2016; Wang et al., 2017).

In this paper, we trained the following
baselines and HiSAN on all sentences of
sent-comp.train*.json (total 200,000
sentences)6,7,8.

In our experiments, we replaced rare words that
appear fewer than 10 times in our training dataset
with a special token ⟨UNK⟩. After this filtering,
the input vocabulary size was 23, 168.

4.1.2 Baseline Methods
For a fair comparison of HiSAN, we used the in-
put features described in Eq. (1) for the following
baseline methods:

5https://github.com/google-research-datasets/sentence-
compression

6Note that Filippova et al. (2015) used 2,000,000 sen-
tences for training their method, but these datasets are not
publicly available.

7We also demonstrate an experimental evaluation on a
small training set (total 8,000 sentences), that was used in
previous research. The results of this setting are listed in our
supplemental material.

8Note that the large training dataset lacks periods at the
end of compressed sentences. To unify the form of com-
pressed sentences in small and large settings, we added pe-
riods to the end of compressed sentences in the large training
dataset.
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Tagger: A method that regards sentence compres-
sion as a tagging task based on bi-LSTM (Klerke
et al., 2016; Wang et al., 2017).

Tagger+ILP: An extension of Tagger that inte-
grates ILP (Integer Linear Programming)-based
dependency tree trimming (Wang et al., 2017). We
set their positive parameter λ to 0.2.

Bi-LSTM: A method that regards sentence com-
pression as a sequence-to-sequence translation
task proposed by (Filippova et al., 2015). For a
fair comparison, we replaced their one-directional
LSTM with the more expressive bi-LSTM in the
encoder part. The initial state of the decoder is set
to the sum of the final states of the forward and
backward LSTMs.

Bi-LSTM-Dep: An extension of Bi-LSTM that
exploits features obtained from a dependency
tree (named LSTM-PAR-PRES in Filippova et al.
(2015)). Following their work, we fed the word
embedding and the predicted label of a depen-
dency parent word to the current decoder input of
Bi-LSTM.

Base: Our baseline Seq2Seq method described in
Section 2.

Attn: An extension of the softmax based atten-
tion method (Luong et al., 2015). We replaced ht

in Eq. (6) with the weighted sum calculated by
the commonly used concat attention (Luong et al.,
2015).

HiSAN-Dep: A variant of HiSAN that utilizes the
pipeline approach. We fix α1,j,t to 1.0 if xj is a
parent of xt in the input dependency parse tree,
0.0 otherwise. In this baseline, d = {1} was used.

4.1.3 Training Details
Following the previous work (Wang et al., 2017),
the dimensions of the word embeddings, LSTM
layers, and attention layer were set to 100. For
the Tagger-style methods, the depth of the LSTM
layer was set to 3, and for the Seq2Seq-style meth-
ods, the depth of the LSTM layer was set to 2.
In this setting, all methods have a total of six
LSTM-layers. The dimensions of POS and the
dependency-relation label embeddings were set to
40. All parameters were initialized by Glorot and
Bengio (2010)’s method. For all methods, we ap-
plied Dropout (Srivastava et al., 2014) to the input
of the LSTM layers. All dropout rates were set to
0.3.

During training, the learning rate was tuned
with Adam (Kingma and Ba, 2014). The initial
learning rate was set to 0.001. The maximum
number of training epochs was set to 30. The
hyper-parameter λ was set to 1.0 in the supervised
attention setting. All gradients were averaged in
each mini-batch. The maximum mini-batch size
was set to 16. The order of mini-batches was shuf-
fled at the end of each training epoch. The clip-
ping threshold of the gradient was set to 5.0. We
selected trained models with early stopping based
on maximizing per-sentence accuracy (i.e., how
many compressions could be fully reproduced) of
the development data set.

To obtain a compressed sentence, we used
greedy decoding, rather than beam decoding, as
the latter attained no gain in the development
dataset. All methods were written in C++ on
Dynet (Neubig et al., 2017).

4.2 Automatic Evaluation
In the automatic evaluation, we used token
level F1-measure (F1) as well as recall of
ROUGE-1, ROUGE-2 and ROUGE-L (Lin and
Och, 2004)9 as evaluation measures. We
used ∆C = system compression ratio −
gold compression ratio to evaluate how close
the compression ratio of system outputs was to
that of gold compressed sentences. The average
compression ratio of the gold compression for in-
put sentence was 39.8. We used micro-average for
F1-measure and compression ratio10, and macro-
average for ROUGE scores, respectively.

To verify the benefits of our methods on long
sentences, we additionally report scores on sen-
tences longer than the average sentence length
(= 28) in the test set. The average compression
ratio of the gold compression for longer input sen-
tences was 31.4.

All results are reported as the average scores of
five trials. In each trial, different random choices
were used to generate the initial values of the em-
beddings and the order of mini-batch processing.

Table 1 shows the results. HiSANs outper-
formed the other methods. In particular, HiSAN
(d = {1, 2, 4}) achieved the best score on F1,

9We used the ROUGE-1.5.5 script with option “-n 2 -m -d
-a”.

10We also report the macro-average of F1-measure and
compression ratio in our supplemental material.

11Note that we used average of all metrics to decide the
best score of the development dataset. The results are listed
in our supplemental material.
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ALL LONG
F1 ROUGE ∆C F1 ROUGE ∆C

1 2 L 1 2 L

Tagger 82.8 81.1 72.4 80.9 -3.0 80.4 78.7 69.7 78.4 -2.8
Tagger+ILP 79.0 76.1 64.6 75.8 -4.1 74.3 73.7 62.1 73.2 -3.6

Bi-LSTM 81.9 81.1 73.7 80.9 -2.2 78.9 78.4 70.4 78.0 -2.1
Bi-LSTM-Dep 82.3 81.5 74.1 81.3 -2.1 79.6 78.9 71.0 78.5 -1.9
Attn 82.4 81.6 74.3 81.4 -2.3 79.8 79.4 71.4 78.7 -2.2
Base 82.7 81.9 74.7 81.7 -2.4 80.1 79.1 71.7 79.0 -2.3
HiSAN-Dep (d = {1}) 82.7 82.1 74.9 81.9 -2.2 80.1 79.7 72.0 79.3 -1.9

(d = {1, 2}) 82.7 81.9 74.6 81.7 -2.4 80.5 79.9 72.3 79.5 -2.2
HiSAN-Dep (d = {1, 2, 3}) 83.1 82.0 74.9 81.8 -2.5 80.5 79.5 71.9 79.2 -2.3

(d = {1, 2, 4})∗ 82.9 82.1 74.9 81.9 -2.4 80.4 79.7 72.1 79.4 -2.1
(d = {1, 2, 3, 4}) 82.7 82.1 74.8 81.9 -2.2 80.1 79.6 71.9 79.3 -2.0

(d = {1}) 83.0 81.7 74.5 81.5 -2.9 80.6 79.6 72.1 79.3 -2.5
(d = {1, 2}) 83.1 82.3 75.1 82.2 -2.1 80.9 80.5 72.8 80.2 -1.9

HiSAN (d = {1, 2, 3}) 82.9 82.5 75.2 82.1 -2.1 80.7 80.2 72.6 79.9 -2.1
(d = {1, 2, 4})∗ 83.2 82.9 75.8 82.7 −1.7 80.9 80.6 73.2 80.3 −1.8
(d = {1, 2, 3, 4}) 82.7 82.0 74.7 81.8 -2.3 80.6 79.8 72.6 79.5 -2.3

Table 1: Results of automatic evaluation. ALL and LONG represent, respectively, the results in all
sentences and long sentences (longer than average length 28) in the test dataset. d represents the groups
of d-length dependency chains. ∗ indicates the model that achieved the best score among the same
methods with different d in the development dataset11. Bold values indicate the best scores.

ROUGE, and ∆C in all settings. The F1 scores of
HiSAN (ALL) were higher than the current state-
of-the-art score of .82, reported by Filippova et al.
(2015). The improvements in F1 and ROUGE
scores from the baselines methods in the LONG
setting are larger than those in the ALL setting.
¿From these results, we can conclude that d-length
dependency chains are effective for sentence com-
pression, especially in the case of longer than av-
erage sentences. HiSAN (d = {1}) outperformed
HiSAN-Dep in F1 scores in ALL and LONG set-
tings. This result shows the effectiveness of joint
learning the dependency parse tree and the output
labels.

4.3 Human Evaluation

In the human evaluation, we compared the base-
lines with our method, which achieved the highest
F1 score in the automatic evaluations. We used the
first 100 sentences that were longer than the aver-
age sentence length (= 28) in the test set for hu-
man evaluation. Similar to Filippova et al. (2015),
the compressed sentence was rated by five raters
who were asked to select a rating on a five-point
Likert scale, ranging from one to five for read-
ability (Read) and for informativeness (Info). We
report the average of these scores from the five
raters. To investigate the differences between the
methods, we also compared the baseline meth-

Read Info CR

All Tagger 4.54 3.41 30.9
(100) Base 4.64 3.45 31.1

HiSAN (d={1, 2, 4}) 4.68 3.52 31.6

Diff Base 4.79 3.46 29.4
(41) HiSAN (d={1, 2, 4}) 4.89 3.64 30.6

Table 2: Results of human evaluations. All de-
notes results for all sentences in the test set, and
Diff denotes results for the sentences for which the
methods yielded different compressed sentences.
Parentheses ( ) denote sentence size. CR denotes
the compression ratio. The average gold compres-
sion ratio for input sentence in All and Diff were
32.1 and 31.5, respectively. Other notations are
similar to those in Table 1.

ods and HiSAN using the sentences for which the
methods yielded different compressed sentences.

Table 2 shows the results. HiSAN (d =
{1, 2, 4}) achieved better results than the baselines
in terms of both readability and informativeness.
The results agree with those obtained from the au-
tomatic evaluations. ¿From the results on the sen-
tences whose compressed sentences were differ-
ent between Base and HiSAN (d = {1, 2, 4}), we
can clearly observe the improvement attained by
HiSAN (d={1, 2, 4}) in informativeness.
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Input Pakistan signed a resolution on Monday to import 1,300 MW of electricity from Kyrgyz Republic
and Tajikistan to overcome power shortage in summer season, said an official press release .

Gold Pakistan signed a resolution to import 1,300 MW of electricity from Kyrgyz Republic and Tajik-
istan .

Tagger Pakistan signed a resolution to import 1,300 MW of electricity Tajikistan to overcome shortage .
Tagger-ILP Pakistan signed resolution to import MW said .

Base Pakistan signed a resolution to import 1,300 MW of electricity .
HiSAN-Dep (d={1}) Pakistan signed a resolution to import 1,300 MW of electricity .

HiSAN (d={1, 2, 4}) Pakistan signed a resolution to import 1,300 MW of electricity from Kyrgyz Republic and Tajik-
istan .

Input US whistleblower Bradley Manning , charged with releasing over 700,000 battlefield reports from
Iraq and Afghanistan to Wikileaks , received a sentence of 35 years in prison from a military court
Wednesday .

Gold Bradley Manning received a sentence of 35 years in prison .

Tagger Bradley Manning received a sentence of 35 years .
Tagger-ILP Bradley Manning received a sentence of years .

Base Bradley Manning received a sentence of 35 years .
HiSAN-Dep (d={1}) Bradley Manning charged with releasing over 700,000 battlefield reports to Wikileaks received .

HiSAN (d={1, 2, 4}) Bradley Manning received a sentence of 35 years in prison .

Table 3: Example sentences and compressions.

5 Analysis

Table 3 shows examples of source sentences and
their compressed variants output by baseline and
HiSAN (d = {1, 2, 4}).

For both examples, the compressed sentence
output by Base is grammatically correct. How-
ever, the informativeness is inferior to that attained
by HiSAN (d = {1, 2, 4}). The compressed sen-
tence output by HiSAN-Dep in the second exam-
ple lacks both readability and informativeness. We
believe that this compression failure is caused by
incorrect parse results, because HiSAN-Dep em-
ploys the features obtained from the dependency
tree in the pipeline procedure.

As reported in recent papers (Klerke et al.,
2016; Wang et al., 2017), the F1 scores of Tagger
match or exceed those of the Seq2Seq-based meth-
ods. The compressed sentence of the first example
in Table 3 output by Tagger is ungrammatical. We
believe that this is mainly because Tagger can-
not consider the predicted labels of the previous
words. Tagger-ILP outputs grammatically incor-
rect compressed sentences in both examples. This
result indicates that THE ILP constraint based on
the parent-child relationships between words is in-
sufficient to generate fluent sentences.

Compared with these baselines, HiSAN (d =
{1, 2, 4}) output compressed sentences that were
fluent and had higher informativeness. This obser-
vation, which confirmed our expectations, is sup-

ported by the automatic and human evaluation re-
sults.

F1 ROUGE ∆C

1 2 L

Tagger 82.8 80.6 72.2 80.3 -3.2
Tagger+ILP 77.5 74.7 64.1 74.3 -4.6

Bi-LSTM 81.3 80.4 73.3 80.1 -2.2
Bi-LSTM-Dep 81.5 80.7 73.5 80.3 -2.1
Attn 81.9 81.0 73.9 80.6 -2.3
Base 82.1 81.0 73.9 80.7 -2.5

HiSAN-Dep
d = {1} 82.3 81.2 74.3 80.9 -2.4
d = {1, 2} 81.9 80.8 73.8 80.4 -2.6
d = {1, 2, 3} 82.6 81.2 74.3 80.9 -2.6
d = {1, 2, 4} 82.0 80.7 73.7 80.4 -2.7
d = {1, 2, 3, 4} 82.1 81.0 74.1 80.7 -2.5

HiSAN
d = {1} 82.7 81.4 74.5 81.1 -2.8
d = {1, 2} 82.6 81.8 74.9 81.5 -2.1
d = {1, 2, 3} 82.6 81.8 74.9 81.5 -2.3
d = {1, 2, 4} 82.8 82.2 75.5 82.0 −2.0
d = {1, 2, 3, 4} 82.4 81.3 74.4 81.0 -2.4

Table 4: Results of automatic evaluation using
sentences with deep dependency trees (deeper than
average depth 8). Bold results indicate the best
scores.

We confirm that the compression performance
of HiSAN actually improves if the sentences have
deep dependency trees. Table 4 shows the auto-
matic evaluation results for sentences with deep
dependency trees. We can observe that HiSAN
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Pakistan signed a resolution on Monday to import 1,300 MW of electricity from Kyrgyz Republic and Tajikistan to overcome power shortage in summer season ...
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Figure 6: An example compressed sentence and its dependency graph of HiSAN d = {1, 2, 4}. The
words colored by gray represent deleted words. The numbers for each arc represent a probabilistic
weight of a relationship between a parent and child words. The arcs contained in the parsed dependency
tree are located on the top side. The arcs not contained in the parsed dependency tree are located on the
bottom side.

with higher-order dependency chains has better
compression performance if the sentences have
deep dependency trees.

Figure 6 shows a compressed sentence and its
dependency graph as determined by HiSAN d =
{1, 2, 4}. Almost all arcs with large probabilis-
tic weights are contained in the parsed dependency
trees. Interestingly, some arcs not contained in the
parsed dependency trees connecting words which
are connected by the dependency chains in the
parsed dependency tree (colored by red). Consid-
ering the training dataset does not contain such
dependency relationships, we can estimate that
these arcs are learned in support of compressing
sentences. This result meets our expectation that
the dependency chain information is necessary for
compressing sentences accurately.

6 Related Work

Several neural network based methods for sen-
tence compression use syntactic features. Filip-
pova et al. (2015) employs the features obtained
from automatic parse trees in the LSTM-based
encoder-decoder in a pipeline manner. Wang et al.
(2017) trims dependency trees based on the scores
predicted by an LSTM-based tagger. Although
these methods can consider dependency relation-
ships between words, the pipeline approach and
the 1st-order dependency relationship fail to com-
press longer than average sentences.

Several recent machine translation studies also
utilize syntactic features in Seq2Seq models.
Eriguchi et al. (2017); Aharoni and Goldberg
(2017) incorporate syntactic features of the target
language in the decoder part of Seq2Seq. Both
methods outperformed Seq2Seq without syntac-
tic features in terms of translation quality. How-
ever, both methods fail to provide an entire parse
tree until the decoding phase is finished. Thus,

these methods cannot track all possible parents for
each word within the decoding process. Similar
to HiSAN, Hashimoto and Tsuruoka (2017) use
dependency features as attention distributions, but
different from HiSAN, they use pre-trained depen-
dency relations, and do not take into account the
chains of dependencies. Marcheggiani and Titov
(2017); Bastings et al. (2017) consider higher-
order dependency relationships in Seq2Seq by in-
corporating a graph convolution technique (Kipf
and Welling, 2016) into the encoder. However, the
dependency information of the graph convolution
technique is still given in pipeline manner.

Unlike the above methods, HiSAN can capture
higher-order dependency features using d-length
dependency chains without relying on pipeline
processing.

7 Conclusion

In this paper, we incorporated higher-order de-
pendency features into Seq2Seq to compress sen-
tences of all lengths.

Experiments on the Google sentence compres-
sion test data showed that our higher-order syn-
tactic attention network (HiSAN) achieved the
better performance than baseline methods on F1

as well as ROUGE-1,2 and L scores 83.2, 82.9,
75.8 and 82.7, respectively. Of particular impor-
tance, challenged with longer than average sen-
tences, HiSAN outperformed the baseline meth-
ods in terms of F1, ROUGE-1,2 and L scores. Fur-
thermore, HiSAN also outperformed the previous
methods for both readability and informativeness
in human evaluations.

From the evaluation results, we conclude that
HiSAN is an effective tool for the sentence com-
pression task.
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Abstract
Storyline generation aims to extract events de-
scribed on news articles under a certain top-
ic and reveal how those events evolve over
time. Most existing approaches first train su-
pervised models to extract events from news
articles published in different time periods and
then link relevant events into coherent stories.
They are domain dependent and cannot deal
with unseen event types. To tackle this prob-
lem, approaches based on probabilistic graphic
models jointly model the generations of events
and storylines without annotated data. How-
ever, the parameter inference procedure is too
complex and models often require long time
to converge. In this paper, we propose a nov-
el neural network based approach to extrac-
t structured representations and evolution pat-
terns of storylines without using annotated da-
ta. In this model, title and main body of a
news article are assumed to share the similar
storyline distribution. Moreover, similar doc-
uments described in neighboring time periods
are assumed to share similar storyline distribu-
tions. Based on these assumptions, structured
representations and evolution patterns of sto-
rylines can be extracted. The proposed mod-
el has been evaluated on three news corpora
and the experimental results show that it out-
performs state-of-the-art approaches accuracy
and efficiency.

1 Introduction

With the development of the internet, massive in-
formation about current events is generated and
propagated continuously on online news media
sites. It is difficult for the public to digest such
large volumes of information effectively. Story-
line generation, aiming at summarizing the devel-
opment of certain related events, has been inten-
sively studied recently (Diao and Jiang, 2014).

In general, storyline can be considered as an
event cluster where event-related news articles are

ordered and clustered depending on both con-
tent and temporal similarity. Different ways
of calculating content and temporal similarity
can be used to cluster related events (Yan et al.,
2011; Huang and Huang, 2013). Bayesian non-
parametric models could also be used to tackle
this problem by describing the storyline gener-
ating process using probabilistic graphical mod-
els (Li and Cardie, 2014; Diao and Jiang, 2014).
Nevertheless, most existing approaches extrac-
t events independently and link relevant events
in a post-processing step. More recently, Zhou
et al. (2016) proposed a non-parametric genera-
tive model to extract storylines which is combined
with Chinese Restaurant Processes (CRPs) to de-
termine the number of storylines automatically.
However, the parameter inference procedure is too
complex and the model requires long time to con-
verge. This makes it impractical to be deployed in
real-world applications.

Recently, deep learning techniques have been
successfully applied to various natural lan-
guage processing tasks. Several approach-
es (Mikolov et al., 2013; Le and Mikolov, 2014)
such as word2vec have been proved efficient in
representing rich syntactic and semantic informa-
tion in text. Therefore, it would be interesting
to combine the advantage of both probabilistic
graphical model and deep neural networks. There
have been some efforts in exploring this in recent
years. For example, Yang et al. (2015) proposed
a gaussian mixture neural topic model incorporat-
ing both the ordering of words and the semantic
meaning of sentences into a topic model. Cao et
al. (2015) explained topic models from the per-
spective of neural networks and proposed a neu-
ral topic model where the representation of words
and documents are combined into a unified frame-
work. However, to the best of our knowledge,
there is no attempt in extracting structured repre-
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sentation of storylines from text using neural net-
work based approaches.

In this paper, we propose a novel neural model
for storyline generation without the use of any an-
notated data. In specific, we assume that the story-
line distributions of a document’s title and its main
body are similar. A pairwise ranking approach
is used to optimize the model. We also assume
that similar documents described in neighboring
time periods should share similar storyline distri-
butions. Hence, the model learned in the previous
time period can be used for guiding the learning
of the model in the current period. Based on the
two assumptions, relevant events can be extracted
and linked. Furthermore, storyline filtering based
on confidence scores is performed. This makes it
possible to generate new storylines.

The main contributions of this paper are sum-
marized below:

• We propose a novel neural network based
model to extract structured representations
and evolution patterns of storylines. To the
best of our knowledge, it is the first attempt
to perform storyline generation based on neu-
ral network without any annotated data.

• The proposed approach has been evaluat-
ed on three corpora and a significant im-
provement on F-measure is achieved when
compared to the state-of-the-art approaches.
Moreover, the proposed approach only re-
quires a faction of the training time in com-
parison with the second best approach.

2 Related Work

Considering storyline as hidden topic, storyline
extraction can be casted into the topic detection
and tracking (TDT) problem. One popular way to
deal with TDT is through topic models. Howev-
er, traditional topic models such as Latent Dirich-
let Allocation (LDA) (Blei et al., 2003) do not de-
tect the dynamics of topic over time. Griffith-
s and Steyvers (2004) clustered texts using LDA
and then mapped the topics into corresponding
time periods. Blei and Lafferty (2006) develope-
d a dynamic topic model which captures the evo-
lution of topics in a sequentially organized cor-
pus of documents by using Gaussian time series
on the natural parameter of the multinomial top-
ics and logistic normal topic proportion model-
s. Unlike early work that relied on Markov as-

sumptions or discretization of time, Wang and M-
cCallum (2006) proposed a topic-over-time (TOT)
model where each topic is associated with a con-
tinuous distribution over timestamps. For each
document, the mixture distribution over topics is
influenced by both word co-occurrences and the
document’s timestamp. As a storyline might in-
clude more than one topic, Kawamae (2011) made
an improvement over TOT and proposed a trend
analysis model which generates storylines based
on the model trained in the previous time peri-
od. Ahmed and Xing (2008) employed Recurren-
t Chinese Restaurant Processes (RCRPs) to clus-
ter texts from discrete time slice while the num-
ber of clusters can grows automatically with the
data at each epoch. Following this, many ap-
proaches were proposed for storyline extraction
by combining RCRP with LDA (Ahmed et al.,
2011a,b; Ahmed and Xing, 2013). Considering
dependencies among clusters in different time pe-
riods, a distance-dependent CRP model was pro-
posed by (Blei and Frazier, 2011) which defines a
weight function to quantify the dependency in dif-
ferent clusters. Huang et al. (2015) proposed a Dy-
namic Chinese Restaurant Process (DCRP) model
which considers the birth, survival and death of a
storyline.

Recently, there have been increasing interests
in exploring neural network based approaches for
topic detection from text. These approaches can be
divided into two categories, solely based on neural
networks and a combination of topic models and
neural networks. For the first category, topic dis-
tributions of documents are modeled by a hidden
layer in neural networks. For example, Hinton and
Salakhutdinov (2009) proposed a two layer prob-
abilistic graphical model which is a generaliza-
tion of the restricted Boltzmann machine, called
a “Replicate Softmax”. It can be used to automati-
cally extract low-dimensional latent semantic rep-
resentations from a large unstructured collection
of documents. Larochelle and Lauly (2012) pro-
posed a neural autoregressive topic model to com-
pute the hidden units of the network efficiently.
There are also many approaches trying to combine
neural networks with topic models. For example,
Yang et al. (2015) presented a Gaussian mixture
neural topic model which incorporates both the or-
dering of words and the semantic meaning of sen-
tences into topic modeling. To make the neural
network based model more interpretable, Cao et
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al. (2015) explained topic models from the per-
spective of neural networks and proposed a neu-
ral topic model where the representation of words
and documents are combined into a unified frame-
work. Tian et al. (2016) proposed a sentence level
recurrent topic model assuming the generation of
each word within a sentence is dependent on both
the topic of the sentence and the the historical con-
text of its preceding words in the sentence. Wan et
al. (2012) introduced a hybrid model which com-
bines a neural networks with a latent topic model-
s. The neural network provides a low dimensional
embedding for the input data while the subsequent
distribution is captured by the topic model. How-
ever, most of the aforementioned models are sole-
ly for topic detection. They do not consider evolu-
tionary topic clustering for storyline generation.

3 Methodology

To model the generation of a storyline in consecu-
tive time periods from a stream of documents, we
propose a neural network based approach, called
Neural Storyline Extraction Model (NSEM), as
shown in Figure 1. In this model, we have the fol-
lowing assumptions:
Assumption 1: for a document, the storyline dis-
tribution of its title and main body should be simi-
lar.

In general, for any given document, its title and
main body should discuss the same storyline. Al-
though title may exist metaphor and metonymy to
catch the reader’s eye ball, the key entities and
words will not change such as name, location and
so on. Therefore, it is reasonable to assume that
the title h and its main body d of a document share
a similar storyline distribution. The storyline dis-
tributions of title and main body are denoted as
p(sh) and p(sd). Hence, p(sh) and p(sd) should
be similar. Based on this assumption, documents
at time period t can be clustered into several sto-
rylines in such a way. Let hpos denotes the correct
title to the main body d (positive example), and
hneg denotes an irrelevant title (negative exam-
ple), the similarity of the storyline distribution de-
rived from the main body d and that obtained from
the correct title hpos should be far more greater
than that obtained from irrelevant titles hneg, i.e.
sim(p(sd), p(shpos)) ≫ sim(p(sd), p(shneg)).
Different similarity metrics can be used to mea-
sure the similarity between two distributions.
Assumption 2: for similar documents in neighbor-

ing time periods, they should share similar story-
line distribution.

It is assumed that similar documents in the
neighboring time periods tend to share the same
storyline. For example, a document with the ti-
tle “Indian Election 2014: What are minorities to
do?” and another document in the next time peri-
od with the title “The efficiency of Indian elections
is time tested” should belong to the same storyline
“India election”. Based on this assumption, events
extracted in different time period can be linked in-
to storylines. As main body contains more infor-
mation than title, we only use the storyline distri-
bution of the main body, p(sd), in order to simpli-
fy the model structure. The learned information in
the previous time period is used to supervise the
learning in the current time period.

Based on the above two assumptions, the pro-
posed NSEM as shown in Figure 1 contains the
following four layers: (1) Input layer shown at the
left bottom part of Figure 1, takes d, hpos and hneg

as the input and transforms these texts into vectors;
(2) Main body-Storyline layer and Title-Storyline
layer, both are designed to generate storyline dis-
tributions; (3) Similarity layer aims to calculate
the similarity between the storyline distribution of
the main body and that of the title. In the top part
of Figure 1, the model learned in previous time
period is used to guide the storyline distribution
learning in current time period. We explain the
structure and function of each layer of NSEM in
more details below:

Input Layer (d, h): the input layer aims to repre-
sent the main body d and title h with distributed
embedding d⃗ and h⃗. Let the subscript pos denotes
the relevant title hpos (positive example) and sub-
script neg denotes an irrelevant title hneg (negative
example). For news articles, we pay more atten-
tion to the key elements of events such as location
l, person p , organization o and keywords w. Thus
an event is described by a quadruple ⟨l, p, o, w⟩.
We extract these elements from the main body and
concatenate their word embeddings as the feature
vector d⃗ = [⃗l, p⃗, o⃗, w⃗]. We obtain the title feature
h⃗ in the same way.

We first identify named entities and treat those
named entities with multi-word expressions (e.g.,
“Donald Trump”) as single tokens. Then we train
word2vec (Mikolov et al., 2013) to represent each
entity with a 100-dimensional embedding vector.
We also filter out less important keywords and en-
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Figure 1: Overall architecture of the Neural Storyline Extraction Model (NSEM).

tities based on some criteria such as TFIDF. For a
document containing more than one entity for the
same event element type, for example, a document
might contain mentions of different locations, we
calculate the weighted sum of all location embed-
dings according to their occurrence number. If a
certain event element is missing from a document,
we set it to “null”. After concatenating the four
key event elements, each document or title is rep-
resented by a 400-dimensional embedding vector.

Main body-Storyline Layer (p(sd) ∈ R1×S):
this layer aims to represent the storyline distribu-
tion p(sd) of main body d. Suppose there are a to-
tal of S storylines, the storyline distribution p(sd)
is a S-dimensional vector, denoted as p(sd) =
{p(sd = 1), · · · , p(sd = S)}. It can be formu-
lated as below:

p(sd) = f(d⃗ · W1 + b1) (1)

where W1 ∈ RK×S denotes the weight matrix, b
denote the bias, K = 400 is the dimension of the
document representation, and f denotes the activa-
tion function. Here we use the Softmax function.
The probability of the main body d belonging to
the storyline i can be written below:

p(sd = i) =
exp(d⃗ · W1i + b1i)∑S
i=1 exp(d⃗ · W1i + b1i)

(2)

Title-Storyline Layer (p(sh) ∈ R1×S): this layer
aims to represent the storyline distribution p(sh)
of title h. Similar to the Main body-Storyline lay-
er, we can obtain p(sh) and p(sh = i) of title h in
the following way:

p(sh) = f (⃗h · W2 + b2) (3)

p(sh = i) =
exp(⃗h · W2i + b2i)∑S
i=1 exp(⃗h · W2i + b2i)

(4)

Similarity Layer (gsim ∈ R): this layer aims
to calculate the similarity of the distributions be-
tween p(sd) and p(sh). The similarity score gsim

is calculated by the Kullback-Leibler (KL) diver-
gence:

gsim(d, h) = −
∑

p(sd) log
p(sh)

p(sd)
(5)

The similarity can be also calculated by other met-
ric methods.

3.1 Storyline Construction

Different from the common way which link rele-
vant events into storyline, we extract it in a unified
framework. According to our second assumption,
for the current time period t, we employ the sto-
ryline generation results in the previous time peri-
od t − 1 as constraints to guide the storyline gen-
eration process in t. For a document dt (we on-
ly use the main body here) in the time period t,
we first use the model trained in t − 1 to predict
its storyline distribution pt−1(sdt). Hence when
we learn pt(sdt), we would expect it to be similar
to pt−1(sdt). By doing so, we can link relevant
events in different time periods together. For cas-
es where intermittent storylines are observed, i.e.,
the related events occur initially, but disappear in
certain time periods and re-occur later, we select
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documents randomly from all previous time peri-
ods and make them participate in the learning of
current model.

3.2 Training

Our first assumption assumes that for a documen-
t, its title and main body should share similar s-
toryline distributions. Hence, we use a pairwise
ranking approach (Collobert et al., 2011) to opti-
mize p(sd) and p(sh). The basic idea is that the
storyline distribution of the main body d should
be more similar to that of the relevant title than ir-
relevant ones. We first define the loss function as
below:

L1(d, hpos, hneg) = max(0,

Ω − gsim(d, hpos) + gsim(d, hneg)) (6)

where Ω denotes the margin parameter, hpos de-
notes the relevant title and hneg denotes an ir-
relevant title. We choose titles whose elements
⟨l, p, o, k⟩ have no intersection with those positive
titles from the current time period as negative ex-
amples.

Our second assumption assume that for simi-
lar documents in neighboring time periods, they
should share similar storyline distribution. Hence,
the model learned in the previous time period can
be used for guiding the learning of the model in
the current period. Hence, when constructing sto-
ryline for the main body d in current time period t,
we use the model in previous time period t−1 and
predict the storyline distribution pt−1(sd). Then
we measure current storyline distribution pt(sd)
and predicted distribution pt−1(sd) by KL diver-
gence which can be defined as below:

L2(d) =
∑

pt−1(sd) log
pt(sd)

pt−1(sd)
(7)

Therefore, the final objective function is to min-
imize:

L =
∑

d

(αL1(d, hpos, hneg) + βL2(d)) (8)

where α and β are the weights controlling the con-
tributions of the two loss terms.

For the start time period, we only use L1 to op-
timize our model. Let Φt denote the model pa-
rameter in the time period t. Based on the mod-
el structure and the loss function described above,
the training procedure for NSEM is given in Algo-
rithm 1.

Algorithm 1 Training procedure for NSEM at the
time period t

Require: main bodies d; titles h; model parame-
ter Φt−1 at the time period t − 1

1: Initialize Φt

2: for d ∈ d do
3: Calculate its storyline distribution based on

Φt−1

4: end for
5: repeat
6: for every minibatch M in (d, h) do
7: for every pair (di, hi,pos) in minibatch

M do
8: Calculate the storyline distribution

p(sdi
)

9: Calculate the storyline distribution
p(shi,pos

)
10: Sample an irrelevant title hi,neg where

hi,neg ∩ hi,pos = ∅
11: Calculate the storyline distribution

p(shi,neg
)

12: Calculate L1(di, hi,pos, hi,neg)
13: Calculate L2(di)
14: end for
15: Calculate minibatch loss LM =∑

di
(αL1 +βL2) and gradients ∇ΦtLM

16: Update model parameter Φt

17: end for
18: until Convergence

3.3 Post-processing

As the number of storylines at each time period is
assumed to be the same, some newly emerging s-
torylines might be incorrectly linked with previous
storylines. Therefore, post-processing is needed to
filter out such erroneous linkings. We assume that
if a current storyline does not have any key ele-
ment in common with previously extracted story-
line, it should be flagged as a new storyline. We
define the Coverage of the storyline s as below:

Coverage(s, t, M) = (element)t
s ∩ (element)t−M

s (9)

where (element)t
s denotes the set of event ele-

ments in the time period t for storyline s and
(element)t−M

s denote the set of event elements
in the last M time periods for storyline s. If the
coverage Coverage(s, t, M) is less than a thresh-
old N , the current storyline s is considered as a
new one. For example, if the current storyline’
Coverage with index 5 is less than N , then previ-
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ous storyline with index 5 stops at current period
and the current storyline with index 5 is a new one.

4 Experiments

4.1 Setup

To evaluate the proposed approach, we use the
three datasets as in (Zhou et al., 2016). The statis-
tics of the three datasets are presented in Table 4.1.
Among which the Dataset III includes 30 different
types of manually annotated storylines which are
categorized into four types: (1) long-term story-
lines which last for more than 2 weeks; (2) short-
term storylines which last for less than 1 week; (3)
intermittent storylines which last for more than 2
weeks in total, but stop for a time and then ap-
pear again; (4) new storylines which emerge in the
middle of the period, not at the beginning.

Datasets Documents Storylines Dates

I 526,587 N/A 1-30 May 2014
II 101,654 77 1-7 May 2014
III 23,376 30 1-30 May 2014

Table 1: Statistics of the three datasets.

In our experiments, we used the Stanford named
entity recognizer 1 for identifying the named enti-
ties. In addition, we removed common stopwords
and only kept tokens which are verbs, nouns, or
adjectives from these news articles.

We chose the following four methods as the
baseline approaches.

1. DLDA (Blei and Lafferty, 2006): the dynam-
ic LDA is based on the Markovian assump-
tion that the topic-word distribution at the
current time period is only influenced by the
topic-word distribution in the previous time
period. Moreover, topic-word distributions
are linked across time periods by a Marko-
vian chain.

2. RCRP (Ahmed et al., 2011a): it is a non-
parametric model for evolutionary clustering
based on RCRP, which assumes that the past
story popularity is a good prior for curren-
t popularity.

3. SDM (Zhou et al., 2015): it assumes that the
number of storylines is fixed and the story-
line is modeled as a joint distribution over

1https://nlp.stanford.edu/software/CRF-NER.html

entities and keywords. The dependency of
different stories of the same storyline at dif-
ferent time periods is captured by modifying
Dirichlet priors.

4. DSEM (Zhou et al., 2016): this model is inte-
grated with CRPs so that the number of story-
lines can be determined automatically with-
out human intervention. Moreover, per-token
Metropolis-Hastings sampler based on light
LDA (Yuan et al., 2015) is used to reduce
sampling complexity.

For DLDA, SDM and our model NSEM, the s-
toryline number is set to 100 on both Dataset I-
I and III. In consideration of the dependency to
the historical storyline distributions, the number
of past epochs M is set to 7 for both SDM and
DSEM. For RCRP, the hyperparameter α is set to
1. For our model NSEM, the threshold Ω is set to
0.5 and the loss weight α and β are set to 1 and
0.5 respectively. In postprocess step, we empiri-
cally set the N to 7.

To evaluate the performance of the proposed ap-
proach, we use precision, recall and F-measure
which are commonly used in evaluating informa-
tion extraction systems. The precision is calculat-
ed based on the following criteria: 1) The entities
and keywords extracted refer to the same storyline;
2) The duration of the storyline is correct. We as-
sume that the start date (or end date) of a storyline
is the publication date of the first (or last) related
news article.

As there is no gold standard available for
Dataset I, we do manual examination with the ex-
perimental result. We search for the same period
of news and compare it with our results in the cri-
teria.

4.2 Experimental Results

The experimental results of the proposed approach
in comparison to the baselines on Dataset I, II and
III are presented in Table 2. For Dataset I, as it
is hard to know the ground-truth of storylines, we
only report the precision value by manually exam-
ining the extracted storylines.

It can be observed from Table 2 that the pro-
posed approach achieves the best performance on
the three datasets. In specific, for Dataset I, NSEM
extracts more storylines and with a higher preci-
sion value. For Dataset II containing 77 story-
lines, NSEM extracts 81 storylines among which
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Dataset I

Method Precision(%) # of extracted storylines

SDM 70.20 104
DSEM 75.43 114
NSEM 76.58 121

Dataset II

Method Precision(%) Recall(%) F-measure(%)

DLDA 62.67 61.03 61.84
RCRP 67.11 66.23 66.67
SDM 70.67 68.80 69.27

DSEM 73.17 77.92 75.47
NSEM 75.31 79.22 77.22

Dataset III

Method Precision(%) Recall(%) F-measure(%)

DLDA 46.16 43.33 42.86
RCRP 61.54 53.33 57.14
SDM 54.17 43.33 48.15

DSEM 75.00 70.00 72.41
NSEM 77.78 70.00 73.69

Table 2: Performance comparison of the storyline ex-
traction results on Dataset I, II and III.

61 are correct and outperforms DSEM with 2% in
F-measure. For dataset III consisting of 30 story-
lines, NSEM extracted 27 storylines among which
21 are correct. Although its recall value is the
same as DSEM, its precision value is nearly 3%
higher which results in better F-measure.

4.3 Impact of the Number of Storylines S

The proposed approach needs to preset the number
of storylines. To study the impact of the number
of storylines on the performance of the proposed
model, we conducted experiments Dataset III with
different numbers of storylines S varying between
25 and 150. Table 3 shows the performance of
storyline extraction with different value of S. It
can be observed that both precision and recall of
NSEM increase with the increasing number of s-
torylines until it reaches 100. If further increasing
S, the precision/recall have slight change and the
F-measure become relatively stable.

4.4 Structured Browsing

We illustrate the evolution of storylines using
structured browsing. The structured information
of the storylines such as locations, persons, enti-
ties, keywords are presented, together with titles
of some related documents. The number of relat-
ed documents for each storyline is also depicted to

Dataset III

S Precision(%) Recall(%) F-measure(%)

25 66.67 33.33 44.44
50 73.08 46.67 56.96
75 76.92 53.33 62.99

100 77.78 70.00 73.69
125 78.13 73.33 75.65
150 78.79 70.00 74.13

Table 3: The performances of NSEM with different S.

allow an easy visualization of storyline popularity
over time. Figure 2 illustrates three different types
of storylines including “Apple vs Samsung”, “Pis-
torious shoot Steenkamp” and “Egypt election”.

For the first storyline “Apple vs Samsung”, it s-
tarts at the beginning of the month and only lasts
for 9 days. Three representative epochs are high-
lighted. From the extracted organizations, “Ap-
ple, Samsung”, and keywords, “patent, infringe”,
it can be easily deduced that this is about “Apple
and Samsung infringed patents”.

For the storyline “Pistorious shoot Steenkamp”,
it is an intermittent storyline which lasts for more
than 2 weeks but with no related news articles in
some of the days in between. From Figure 2, it can
be observed that the storyline ceases for 2 days in
Day 10 and 11. From the structured representa-
tion of the early storylines, it can be observed that
there is a shooting event about Pistorious and S-
teenkamp in South African. After 2 day’s silence,
in Day 13, public attention was raised once again
since Pistorius applied for mental tests.

For the last storyline “Egypt election”, it starts
in Day 20 and continues beyond the end of May.
From the key event elements, location “Egypt”
and keywords “presidential, election”, it can be
easily inferred that there was a presidential elec-
tion in Egypt. It can also be observed that Sisi
and Morsi were both candidates for the Egypt’s
presidential election from persons extracted, “Sisi,
Morsi” in Day 26. In Day 29, the storyline reached
to the climax since Sisi won the election, which
can be discovered from the title “Sisi elected #E-
gypt president by landslide”.

4.5 Time Complexity

To explore the efficiency of the proposed ap-
proach, we conducted an experiment by compar-
ing the proposed approach NSEM with DSEM. D-
SEM employs the Metropolis-Hastings sampler to
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Figure 2: The structured representations of three ex-
ample storylines.

boost the sampling complexity in order to achieve
faster convergence. We train both models on train-
ing data varying from 1,000 to 10,000 documents.
Figure 3 illustrates the logarithm of time con-
sumed for each training set. It can be observed that
NSEM trains 30 times faster compared to DSEM,
showing the advantage of using a neural network
based approach in comparison with a Bayesian
model based method.
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Figure 3: Comparison of training time between NSEM
and DSEM.

4.6 Visualization of the Learned Distribution

Our proposed model is based on the two distribu-
tion similarity assumptions which we presented in
the Methodology section. To investigate the qual-
ity of the learned storyline distribution, we con-
ducted an experiment on Dataset III where the s-
toryline number S is set to 100. We randomly
choose three documents and calculate the storyline
distribution of theirs title and main body based on
our learned NSEM. We also randomly select three
pairs similar documents in different time periods
and draw their main body storyline distribution-
s based on the learned NSEM. It can be observed
from Figure 4 that the storyline distributions of the
title and the main body of a document are similar.
Moreover, the storyline distributions of two sim-
ilar documents in different time periods are also
similar.

5 Conclusions and Future Work

In this paper, we have proposed a neural network
based storyline extraction model, called NSEM, to
extract structured representations of storyline from
news articles. NSEM was designed based on the
two assumptions about the similarity of storyline
distributions of the title and the main body of the
same document, and the similarity of storyline dis-
tributions of similar documents in different time
periods. Experimental results show that our pro-
posed model outperforms the state-of-the-art ap-
proaches and only requires a fraction of training
time. In future work, we will explore the exten-
sion of our proposed model to cater for varying
number of storylines automatically and also better
deal with intermittent storylines.
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storyline

(a) Storyline distributions of title and main body.

storyline

(b) Storyline distributions of similar documents in different
time periods.

Figure 4: Visualization of the learned storyline distri-
butions.
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Abstract

Submodular maximization with the greedy
algorithm has been studied as an effective
approach to extractive summarization. This
approach is known to have three advan-
tages: its applicability to many useful sub-
modular objective functions, the efficiency
of the greedy algorithm, and the provable
performance guarantee. However, when it
comes to compressive summarization, we
are currently missing a counterpart of the
extractive method based on submodular-
ity. In this paper, we propose a fast greedy
method for compressive summarization.
Our method is applicable to any mono-
tone submodular objective function, includ-
ing many functions well-suited for docu-
ment summarization. We provide an ap-
proximation guarantee of our greedy algo-
rithm. Experiments show that our method
is about 100 to 400 times faster than an
existing method based on integer-linear-
programming (ILP) formulations and that
our method empirically achieves more than
95%-approximation.

1 Introduction

Automatic document summarization continues to
be a seminal subject of study in natural lan-
guage processing and information retrieval (Luhn,
1958; Edmundson, 1969; Cheng and Lapata, 2016;
Peyrard and Eckle-Kohler, 2017). Owing to the
recent advances in data collection, the size of doc-
ument data to be summarized has been exploding,
which has been bringing a drastic increase in the
demand for fast summarization systems.

Extractive summarization is a widely used ap-
proach to designing fast summarization systems.
With this approach, we construct a summary by

extracting some sentences from the original docu-
ment(s). The extractive approach is not only fast
but also has the potential to achieve state-of-the-
art ROUGE scores (Lin, 2004), which was revealed
by Hirao et al. (2017b). In many existing meth-
ods, sentences are extracted by solving various
subset selection problems: for example, the knap-
sack problem (McDonald, 2007), maximum cover-
age problem (Filatova and Hatzivassiloglou, 2004;
Takamura and Okumura, 2009a), budgeted median
problem (Takamura and Okumura, 2009b), and sub-
modular maximization problem (Lin and Bilmes,
2010). Of particular interest, the method based
on submodular maximization has three advantages:
(1) Many objective functions used for document
summarization are known to be monotone and
submodular (Lin and Bilmes, 2011; J Kurisinkel
et al., 2016); examples of such functions include
the coverage function, diversity reward function,
and ROUGE. Therefore, the method can deliver
high performance by using monotone submodular
objective functions that are suitable for the given
tasks. (2) The efficient greedy algorithm is effective
for the submodular maximization problem, which
provides fast summarization systems. (3) Theo-
retical performance guarantees of the greedy algo-
rithm can be proved; for example, a 1

2(1 − e−1)-
approximation guarantee can be obtained.

Although the above extractive methods success-
fully obtain summaries with high ROUGE scores,
they have the following shortcoming: A long sen-
tence typically has redundant parts, which means
a summary constructed simply by extracting some
sentences often includes many redundant parts. As
a result, if the limitation placed on summary length
is tight, the extractive approach cannot yield an
informative summary.

Compressive summarization is known to be ef-
fective in overcoming this problem. With this
approach, a summary is constructed with some

1737



compressed sentences, and thus we can obtain a
concise and informative summary. To make com-
pressed sentences, the dependency-tree-based ap-
proach (Filippova and Strube, 2008) is often used,
which is advantageous in that each compressed sen-
tence preserves its original dependency relations.
Specifically, given a set of dependency trees con-
structed for sentences in the original documents,
a summary is obtained by extracting some rooted
subtrees; each subtree corresponds to a compressed
sentence. Different from the extractive summa-
rization, the dependency relations in each sentence
must be taken into account, and hence the afore-
mentioned extractive methods cannot be applied to
compressive summarization. A number of methods
have been proposed for compressive summariza-
tion (Berg-Kirkpatrick et al., 2011; Almeida and
Martins, 2013; Morita et al., 2013; Kikuchi et al.,
2014; Hirao et al., 2017a). These methods formu-
late summarization as a type of combinatorial opti-
mization problem with a tree constraint, and they
obtain summaries by solving the problem. Unfor-
tunately, the existing methods have two drawbacks:
(1) The class of objective functions to which they
are applicable is limited; for example, they work
only with the linear function or coverage function.
As a result, the performance of these methods can-
not be improved by elaborating the objective func-
tions. (2) They contain costly procedures as their
building blocks: integer-linear-programming (ILP)
solvers, dynamic programming (DP) algorithms,
and so on. Therefore, they are not fast enough to be
applied to large-scale document data. In a nutshell,
compressive summarization is currently missing a
fast method that is applicable to a wide variety of
objective functions.

1.1 Our Contribution

In this paper, we propose a submodularity-based
greedy method for compressive summarization.
Our method is, so to speak, a compressive coun-
terpart of the greedy method for extractive sum-
marization (Lin and Bilmes, 2010). Similar to the
extractive method, our method has the three key
advantages:

1. Our method works with any monotone sub-
modular objective function, a wide class
of useful objective functions, examples of
which include the coverage function, ROUGE,
and many others (Lin and Bilmes, 2011;
J Kurisinkel et al., 2016).

2. Our method is faster than existing compres-
sive summarization methods since it employs
the efficient greedy algorithm. Specifically,
given a set, V , of all textual units contained in
the document data and a summary length lim-
itation value, L, our method requires at most
O(L|V |) objective function evaluations. Ex-
periments show that our method is about 100
to 400 times faster than the ILP-based method
implemented with CPLEX.

3. A theoretical guarantee of our method can
be proved; specifically, a 1

2(1 − e−1/λ)-
approximation guarantee can be obtained,
where λ is a parameter defined from given
document data (a definition is shown later).
This result generalizes the 1

2(1 − e−1)-
approximation of the greedy algorithm for
submodular maximization with a knapsack
constraint (Leskovec et al., 2007). In experi-
ments, our method achieved more that 95%-
approximation. Furthermore, our method at-
tained ROUGE1 scores comparable to those of
the ILP-based method.

1.2 Related Work

There are many existing methods for compres-
sive summarization (Berg-Kirkpatrick et al., 2011;
Almeida and Martins, 2013; Morita et al., 2013;
Kikuchi et al., 2014; Hirao et al., 2017a), and they
attempt to create summaries by solving optimiza-
tion problems with a tree and length constraints.
Unfortunately, these methods accept only a few
objective functions.

A common approach is to use ILP formulations.
Berg-Kirkpatrick et al. (2011) formulate the prob-
lem as an ILP with the coverage objective function,
which is solved by using an ILP solver. Almeida
and Martins (2013) also employs an ILP formula-
tion and solves the problem via an algorithm based
on dual decomposition, which runs faster than an
ILP solver.1 These ILP-based methods are optimal
in terms of objective function values. However, it
is hard to apply them to large-scale document data
since to solve ILPs often takes long computation
time.

1Their method was observed to be about 25 times faster
than GLPK, a commonly used free ILP solver. On the other
hand, CPLEX, which is a commercial ILP solver used in our
experiments, was observed to be about 3 to 20 times faster
than GLPK, and our method is about 100 to 400 times faster
than CPLEX. Consequently, our method is estimated to be
about 12 to 320 times faster than their method.
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In an attempt to uncover the potential power
of dependency-tree-based compressive summariza-
tion, Hirao et al. (2017a) solved ILPs with the
ROUGE objective function with an ILP solver.
Their method obtains summaries by directly maxi-
mizing the ROUGE score for given reference sum-
maries (i.e., any other methods cannot achieve
higher ROUGE scores than their method). The re-
sulting summaries, called oracle summaries, were
revealed to attain substantially high rouge scores,
which implies that there remains much room for
further research into compressive summarization.

A greedy method with a DP algorithm (Morita
et al., 2013) is probably the closest one to our idea.
Their method iteratively chooses compressed sen-
tences in a greedy manner, for which a DP algo-
rithm is employed. Thanks to the submodularity
of their objective function, their method enjoys a
1
2(1−e−1)-approximation guarantee. However, be-
cause of the costly DP procedure, their method is
less scalable than the standard greedy methods such
as the extractive method (Lin and Bilmes, 2010)
and ours. Moreover, it is applicable only to objec-
tive functions that are designed for their problem
settings; for example, it cannot use ROUGE as an
objective function.

1.3 Overview of Our Approach

A high-level sketch of our approach is as follows:
As in many existing works, we formulate the com-
pressive summarization task as a combinatorial op-
timization problem with a tree constraint, which we
call the submodular tree knapsack problem (STKP).
STKP is generally NP-hard; in fact, it includes the
knapsack problem and maximum coverage prob-
lem as special cases. Unfortunately, as we will
see later, a naive greedy algorithm for STKP does
not offer any approximation guarantee in general.
The main difficulty with STKP is that its tree con-
straint is too complex. To avoid dealing with the
complex constraint directly, we transform STKP
into a special case of the submodular cost submod-
ular knapsack problem (SCSKP) (Iyer and Bilmes,
2013). For general SCSKP, no approximation guar-
antee has been proved. Fortunately, in our case, a
1
2(1− e−1/λ)-approximation can be proved by ex-
ploiting the structure of the resulting SCSKP. Thus
we obtain a fast greedy method for compressive
summarization, which works with various mono-
tone submodular objective functions and enjoys an
approximation guarantee.

2 Submodularity

Given finite set V (e.g., a set of chunks), set func-
tion g : 2V → R is said to be submodular if
g(A ∪ B) + g(A ∩ B) ≤ g(A) + g(B) holds
for any A,B ⊆ V . We define g(A | B) :=
g(A ∪ B) − g(B). The submodularity is also
characterized by the following diminishing return
property: g({v} | A) ≥ g({v} | B) for any
A ⊆ B and v ∈ V \B. Set function g is mono-
tone if g(A) ≤ g(B) for any A ⊆ B. In this
paper, we focus on monotone submodular func-
tions such that g(∅) = 0. The submodularity and
monotonicity are a natural fit for document summa-
rization; intuitively, the marginal gain, g({v} | S),
of adding new chunk v ∈ V to summary S ⊆ V
is small if S already has many chunks (submodu-
larity), and a summary becomes more informative
as it gets more chunks (monotonicity). In fact, as
in (Lin and Bilmes, 2011), many objective func-
tions well-suited for document summarization have
submodularity and monotonicity; examples of such
functions include the coverage function, diversity
reward function, and ROUGE, to name a few.

3 Problem Statements

We formulate the summarization task as the follow-
ing subtree extraction problem called STKP here-
after. In what follows, we let [M ] := {1, . . . ,M}
for any positive integer M .

We attempt to summarize document data con-
sisting of N sentences. Each sentence forms a de-
pendency tree, which can be constructed by using
existing methods (e.g., (Filippova and Strube, 2008;
Filippova and Altun, 2013)). For convenience, we
call the dependency tree of a sentence the sentence
tree. The i-th sentence (i ∈ [N ]) yields sentence
tree Ti = (Vi, Ei) rooted at ri ∈ Vi, where Vi
is a set of textual units (e.g., words or chunks)
contained in the i-th sentence, and edges in Ei
represent their dependency relations. We define
a document tree with a dummy root vertex r as
T := ({r} ∪ V,E), where V and E are vertex and
edge sets, respectively, defined as follows:

V :=
⋃

i∈[N ]
Vi, E :=

⋃

i∈[N ]
{Ei ∪ {(r, ri)}}.

Namely, V is the set of all textual units contained
in the document data, and edges in E represent
the dependency relations as well as the relations
between r and ri, with which the multiple sentence
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(a) Document tree T = ({r} ∪ V,E)
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(b) Set of all paths rooted at r

Figure 1: Illustration of the problem reformulation. The left figure is a document tree rooted at r; it consists
of two sentence trees, T1 and T2, rooted at r1 and r2, respectively. We have V = {r1, r2, v1, . . . , v6}. The
right figure shows P , the set of all paths rooted at r. Note that |V | = |P| holds. With our method, the
greedy algorithm is performed over P , which requires at most O(|V |) objective function evaluations in
each iteration.

trees form a single document tree. Figure 1 (a)
illustrates an example of a document tree.

Given document tree T, a summary preserves
the original dependency relations if it forms a sub-
tree rooted at r in T. Therefore, our aim is to
find a rooted subtree of T that includes informative
textual units. For each v ∈ V , the length of v is
denoted by `v ≥ 0; for example, `v is the number
of words or characters in chunk v. If S ⊆ V is a
subset of the textual units included in an obtained
summary, its total length must be less than or equal
to the given length limitation value L ≥ 0; namely,
the following knapsack constraint must be satis-
fied:

∑
v∈S `v ≤ L. The quality of summary S

is evaluated by a monotone submodular function
g. Consequently, compressive summarization is
formulated as STKP:

maximize
S⊆V

g(S) (1)

subject to
∑

v∈S
`v ≤ L,

S ∪ {r} forms a subtree in T.

At first glance, it may seem that the following naive
greedy approach works well for this problem: Start-
ing from root r, we sequentially add the most bene-
ficial child to the current solution until the knapsack
constraint is violated. Unfortunately, the approxi-
mation ratio of this method can become arbitrarily
bad since it may miss beneficial vertices that are far

from r; if such missed vertices are more beneficial
than those added to the solution by a considerable
margin, the resulting approximation ratio is almost
equal to zero. To avoid this difficulty, we reformu-
late STKP in the next section.

4 Proposed Method

We observed that the naive greedy algorithm does
not work well for STKP (1) due to the complex tree
constraint. We circumvent this difficulty by trans-
forming STKP into a special case of the submod-
ular cost submodular knapsack problem (SCSKP).
We then provide a greedy algorithm for SCSKP.
An approximation guarantee of the greedy algo-
rithm is also presented.

4.1 Problem Reformulation

We show that STKP can be transformed into
SCSKP. Let P be a set of all paths that connect
v ∈ V to r. Note that there is a one-to-one corre-
spondence between v ∈ V and p ∈ P that connects
v to r, and hence |P| = |V |. We define Vp ⊆ V as
the set of vertices that are included in p ∈ P , and
we let VX := ⋃

p∈X Vp for any X ⊆ P . If X ⊆ P ,
then VX ∪{r} forms a subtree in T. Conversely, if
S ∪{r} forms a subtree in T (S ⊆ V ), there exists
X ⊆ P such that VX = S. Thus STKP (1) can
be transformed into the following maximization
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Algorithm 1 Greedy

1: U ← P , X ← ∅
2: while U 6= ∅ do
3: p = argmaxp′∈U

f(p′|X)
c(p′|X)

4: if c(X + p) ≤ L then
5: X ← X + p
6: end if
7: U ← U − p
8: end while
9: p̂ = argmaxp′∈P f(p′)

10: return Y = argmaxX′∈{X,p̂} f(X ′)

problem on P:

maximize
X⊆P

f(X) := g(VX) (2)

subject to c(X) :=
∑

v∈VX

`v ≤ L.

We here suppose that c(p) ≤ L holds for all p ∈ P ;
any p ∈ P violating this condition can be removed
in advance since no feasible solution includes such
p. The set functions f and c are monotone submod-
ular functions defined on P (see the Appendix),
and thus the above problem is SCSKP. Figure 1
illustrates how to transform STKP into SCSKP.

4.2 Greedy Algorithm
We provide a greedy algorithm for SCSKP (2). In
what follows, given any X,Y ⊆ P , we define the
binary operators + and − on P as

X + Y := {p ∈ P : p ∈ X and/or p ∈ Y },
X − Y := {p ∈ P : p ∈ X and p /∈ Y }.

Namely, they are the union and subtraction of two
subsets defined on P . We sometimes abuse the
notation and regard p ∈ P as a subset of P; for
example, we let X + p = X + {p} for any X ⊆ P
and p ∈ P . Furthermore, we define f(X | Y ) :=
f(X + Y )− f(Y ) and c(X | Y ) := c(X + Y )−
c(Y ) for any X,Y ⊆ P .

Algorithm 1 presents a concise description of
the greedy algorithm for SCSKP (2). In practice,
function evaluations in the above greedy algorithm
can be reduced by using the technique provided
in (Leskovec et al., 2007) with some modifications.
The resulting greedy algorithm requires at most
O(L|V |) function evaluations.

Different from the naive greedy algorithm ex-
plained in Section 3, the above greedy algorithm is
performed on the set of all rooted paths, P . Thus,

even if beneficial vertices are far from r, rooted
paths that include such beneficial vertices are con-
sidered as candidates to be chosen in each itera-
tion. As a result, we get the following performance
guarantee for Algorithm 1; we define λi as the
number of leaves in Ti for i ∈ [N ], and we let
λ := maxi∈[N ] λi.

Theorem 1. If Y ⊆ P is the output of Algorithm 1
and X∗ ⊆ P is an optimal solution for SCSKP (2),
then we have f(Y ) ≥ 1

2(1− e−1/λ)f(X∗).

Proof. See the Appendix.

In other words, Algorithm 1 enjoys a 1
2(1 −

e−1/λ)-approximation guarantee. Notably, if the
values of λi (i ∈ [N ]) are bounded by a small
constant for all N sentences, the performance guar-
antee does not deteriorate no matter how many
sentences are in the document data. This implies
that our method works effectively for summariz-
ing large-scale document data that comprises many
sentences.

4.3 Relation with Existing Work

We first see some existing results. For submodu-
lar maximization with a size constraint (i.e., |S|
must be at most a certain value), the greedy al-
gorithm has been proved to achieve (1 − e−1)-
approximation (Nemhauser et al., 1978). Khuller
et al. (1999) studied the maximum coverage
problem with a knapsack constraint, and proved
that the greedy algorithm achieves (1 − e−1/2)-
approximation. They also showed that (1− e−1)-
approximation can be obtained by executing the
greedy algorithm O(|V |3) times, and this result
was generalized to the case with a submodu-
lar objective function (Sviridenko, 2004). The
greedy algorithm for submodular maximization
with a knapsack constraint is known to achieve
1
2(1− e−1)-approximation (Leskovec et al., 2007).
Lin and Bilmes (2010) stated that (1 − e−1/2)-
approximation can be obtained with the greedy
algorithm, but a mistake in their proof was pointed
out by Morita et al. (2013).2

Unlike the above problem settings, submodular
maximization with a tree constraint has only a few
literatures. Krause et al. (2006) studied submodu-
lar maximization over a graph with a knapsack and
tree constraints, but their algorithm, called pSPIEL,

2Probably, this mistake can be fixed with the techniques
used in (Khuller et al., 1999).
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requires a complicated preprocessing step and im-
poses some assumptions on the problem, which do
not hold in most summarization tasks. Iyer and
Bilmes (2013) addressed SCSKP, a more general
problem setting. Their algorithm is, however, more
expensive than the greedy algorithm, and it only
achieves a bi-criterion approximation guarantee
(i.e., not only the objective value but also the mag-
nitude of constraint violation is approximated); if
we use this algorithm for document summariza-
tion, a resulting summary may violate the length
limitation.

We turn to the relation between our result and
the existing ones. We consider submodular maxi-
mization with a knapsack constraint. This problem
can be formulated as an STKP on a star graph,
whose vertex and edge sets are {r, r1, . . . , rN} and
{(r, r1), . . . , (r, rN )}, respectively (i.e., every leaf
corresponds to an element in V = {r1, . . . , rN}).
In this case, we have λ = 1, and thus we obtain
a 1

2(1− e−1)-approximation guarantee, matching
the result of (Leskovec et al., 2007).3

5 Objective Functions

As presented in (Lin and Bilmes, 2011), many ob-
jective functions used for document summarization
are known to be monotone and submodular. Below
we list examples of the functions that will be used
in the experiments.

Coverage Function
To use the coverage function is a simple but power-
ful approach to document summarization, and so it
appears in many existing works (e.g., (Filatova and
Hatzivassiloglou, 2004; Takamura and Okumura,
2009a; Berg-Kirkpatrick et al., 2011)). Let M be
the number of distinct words in the document data,
and suppose that they are indexed with j ∈ [M ].
We let wj (j ∈ [M ]) be the weight value of the
j-th word. Given summary S ⊆ V , the coverage
function COV(S) is defined as follows:

COV(S) :=
M∑

j=1
wjzj ,

where zj ∈ {0, 1} is a binary decision variable that
indicates whether the j-th word is included in S or
not; more precisely, zj = 1 if and only if at least
one textual unit in S contains the j-th word.

3 We also tried to obtain an approximation guarantee that
corresponds to the (1 − e−1/2)-approximation (Khuller et al.,
1999; Lin and Bilmes, 2010), but it was not straightforward to
apply their techniques to our case.

Coverage Function with Rewords
A summary obtained with the above coverage func-
tion often consists of many overly-compressed sen-
tences, which typically leads to low readability.
Morita et al. (2013) addressed this problem by
adding a positive reward term to the coverage func-
tion. Given summary S, let bri ∈ {0, 1} (i ∈ [N ])
be a binary decision variable that indicates whether
ri, the root node of sentence tree Ti, is included
in S or not. Note that, if S ∪ {r} forms a rooted
subtree in T, we have bri = 1 if and only if at
least one textual unit in the i-th sentence appears
in S. With these additional variables, the modified
coverage function can be written as

COVR(S) := COV(S) + γ

(∑

v∈S
`v −

N∑

i=1
bri

)
,

where γ ≥ 0 is a parameter that controls the rate
of sentence compression. The value of

∑N
i=1 bri

is equal to the number of sentences whose textual
unit(s) is used in S. Therefore, a summary that
consists of fewer sentences tends to get a higher
objective value, thus enhancing readability.

ROUGE

ROUGE (Lin, 2004) is widely used for summariza-
tion evaluation, and it is known to be highly corre-
lated with human evaluation. Furthermore, ROUGE

is known to be monotone and submodular (Lin and
Bilmes, 2011). Specifically, given K reference
summaries R1, . . . , RK ⊆ V and function Ce(S),
which counts the number of times that n-gram e
occurs in summary S ⊆ V , the ROUGEn score
function is defined as

ROUGEn(S)

:=
∑K
k=1

∑
e∈Rk

min{Ce(S),Ce(Rk)}∑K
k=1

∑
e∈Rk

Ce(Rk)
.

6 Experiments

We applied our method to compressive summariza-
tion tasks with the three kinds of objective func-
tions: the coverage function, the one with rewards,
and ROUGE1. To benchmark our method, we also
applied the ILP-based method to the tasks. These
two methods were compared in terms of achieved
approximation ratios, ROUGE1 scores, and running
times.
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Objective function Method Approximation ratio ROUGE1 Time (ms)

Coverage
Greedy 0.964 0.347 1.34

ILP 1.00 0.346 231

Coverage with rewards
Greedy 0.967 0.334 1.44

ILP 1.00 0.332 552

ROUGE1
Greedy 0.985 0.468 0.759

ILP (oracle) 1.00 0.494 92.1

Table 1: Approximation ratios, ROUGE1 scores, and running times for our method (Greedy) and the
ILP-based method (ILP); the average values over the 50 topics are presented. The two methods are applied
to compressive summarization tasks with three types of objective functions: Coverage, Coverage with
rewards, and ROUGE1. Summaries obtained with the ILP-based method and ROUGE1 objective function
are oracle summaries.

6.1 Settings

In the following experiments, we regard V as the
set of all chunks in the document data. For each
chunk v ∈ V , we let `v be the number of words
contained in v, and we set the length limitation,
L, to 100. For the coverage function and the one
with rewards, the weight values wj (j ∈ [M ]) were
estimated by logistic regression (Yih et al., 2007)
trained on the DUC-2003 dataset. For the coverage
function with rewards, we set the parameter, γ, to
0.9.

The experiments were conducted on the DUC-
2004 dataset for multiple document summarization
evaluation, which is a commonly used benchmark
dataset. The dataset consists of 50 topics, each
of which has 10 newspaper articles. The depen-
dency trees for this dataset were obtained as fol-
lows: We first applied the Stanford parser (de Marn-
effe et al., 2006) to all sentences in the dataset in or-
der to obtain dependency relations between words.
We then applied Filippova’s rules (Filippova and
Strube, 2008; Filippova and Altun, 2013) to the
obtained relations so as to construct trees that rep-
resent dependency relations between chunks. To
obtain summaries with high readability, we treated
a set of chunks connected with certain relations
(e.g., subject–object) as a single chunk.

Our algorithm was implemented in C++ and
compiled with GCC version 4.8.5. The ILP-
based method solved ILPs with CPLEX ver.
12.5.1.0, a widely used commercial ILP solver.
The details of ILP formulations for the three objec-
tive functions are presented in the Appendix. All
experiments were conducted on a Linux machine
(CPU: Intel Xeon E5-2620 v4 2.10GHz and 32GB
RAM).

6.2 Results

Table 1 summarizes the comparisons of the
achieved approximation ratios, ROUGE1 scores and
running times. The ILP-based method are al-
ways optimal in terms of objective values (i.e.,
100%-approximation is attained), and our method
achieved more than 95%-approximation. We ob-
served that the maximum number, λ, of leaves in
a sentence tree was about 22 on average, which
leads to a 2.2%-approximation guarantee of our
algorithm. Therefore, our method empirically per-
forms much better than the theoretical guarantee;
this is often the case with the greedy algorithm for
submodular maximization problems, in particular
when the problems have complex constraints. The
ROUGE1 scores of our method are comparable to
those of the ILP-based method. With the cover-
age function and the one with rewards, it happened
that our method attained slightly higher ROUGE1
scores than those of ILP-based methods;4 note that
this result is possible since the objective values
and ROUGE1 scores are not completely correlated.
The results on approximation ratios and ROUGE1
scores imply that our method compares favorably
with the ILP-based method in terms of empirical
performance. With regard to the running times, our
method substantially outperformed the ILP-based
method. Specifically, our method was about 170,
380, and 120 times faster than the ILP-based one
for the coverage function, the one with rewards,
and the ROUGE1 objective function, respectively.

Table 2 shows examples of the summaries ob-
tained by our method and the ILP-based method;
both methods used the coverage function with
rewards as an objective function. We see that

4 Similar results were observed in (Takamura and Oku-
mura, 2009a).
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Greedy:
Yeltsin suffered from disease and had a heart attack followed by multiple bypass surgery in the months.
Russian President Boris Yeltsin cut short a trip to Central Asia on Monday due to a respiratory infection
that revived questions about his health and ability to lead Russia through a sustained economic crisis.
Doctors insisted that Yeltsin fly home ahead of schedule. The prime minister reiterated Wednesday that
Yeltsin has plans to resign early elections. Russia’s Constitutional Court opened hearings Thursday on
whether Boris Yeltsin can seek a term. Sources in Primakov’s office said the cancellation was due to
concerns.
ILP:
Russian President Boris Yeltsin cut short a trip to a respiratory infection that revived questions about
his health and ability to lead Russia through a economic crisis. Yeltsin was spending outside Moscow
his spokesman Dmitry Yakushkin told reporters. Doctors insisted Monday that Yeltsin fly home from
Central Asia ahead of schedule because he was suffering. Yeltsin falls ill speculation arises. The prime
minister reiterated Wednesday that Yeltsin has plans to resign early elections. Russia’s Constitutional
Court opened hearings Thursday on whether Boris Yeltsin can seek a term. Sources in Primakov’s
office said the cancellation was due to concerns.

Table 2: Summaries obtained with our greedy method (upper) and the ILP-based method (lower) for
topic:D31032. To obtain these summaries, both methods used the coverage function with rewards as an
objective function.

both methods successfully created informative sum-
maries that preserve original dependency relations.
The readability of obtained summaries is unfortu-
nately not high enough. Note that not only our
method but also most compressive summarization
methods suffer this problem; in fact, there is lit-
tle difference between the two summaries obtained
with our method and the optimal ILP-based method
with regard to readability. To conclude, the empiri-
cal performance of our method matches that of the
ILP-based method, while running about 100 to 400
times faster.

7 Conclusion and Discussion

We proposed a fast greedy method for compres-
sive summarization. Our method works with
any monotone submodular objective function; ex-
amples of such functions include the coverage
function, ROUGE, and many others. The 1

2(1 −
e−1/λ)-approximation guarantee of our method
was proved, which generalizes the 1

2(1 − e−1)-
approximation for submodular maximization with
a knapsack constraint. Experiments showed that
our greedy method empirically achieves more than
95%-approximation and that it runs about 100 to
400 times faster than the ILP-based method im-
plemented with CPLEX. With the coverage func-
tion and its variant, our method attained as high
ROUGE1 scores as the ILP-based method.

As mentioned above, current compressive sum-

marization systems often fail to achieve high read-
ability, and one possible approach to this problem
is to develop better objective functions. Since our
method is applicable to various monotone submod-
ular objective functions and can find almost optimal
solutions efficiently, our method would be helpful
in testing the performance of newly proposed ob-
jective functions. Thus we believe that our method
is useful for advancing the study into compressive
summarization.

Interestingly, STKP can be seen as a variant of
DR-submodular maximization (Soma and Yoshida,
2017), which is a submodular maximization prob-
lem defined over integer lattice. The constraint that
appears in DR-submodular maximization is some-
what easier to deal with than that of our problem;
exploiting this, Soma and Yoshida (2017) devel-
oped a polynomial-time algorithm that achieves
roughly 1

2 -approximation. The techniques studied
in this field may be useful to develop better algo-
rithms for STKP, which we leave for future work.
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Abstract

Single document summarization is the task
of producing a shorter version of a docu-
ment while preserving its principal informa-
tion content. In this paper we conceptualize
extractive summarization as a sentence rank-
ing task and propose a novel training algorithm
which globally optimizes the ROUGE evalua-
tion metric through a reinforcement learning
objective. We use our algorithm to train a neu-
ral summarization model on the CNN and Dai-
lyMail datasets and demonstrate experimen-
tally that it outperforms state-of-the-art extrac-
tive and abstractive systems when evaluated
automatically and by humans.1

1 Introduction

Automatic summarization has enjoyed wide popu-
larity in natural language processing due to its po-
tential for various information access applications.
Examples include tools which aid users navigate
and digest web content (e.g., news, social media,
product reviews), question answering, and person-
alized recommendation engines. Single document
summarization — the task of producing a shorter
version of a document while preserving its infor-
mation content — is perhaps the most basic of
summarization tasks that have been identified over
the years (see Nenkova and McKeown, 2011 for a
comprehensive overview).

Modern approaches to single document summa-
rization are data-driven, taking advantage of the
success of neural network architectures and their
ability to learn continuous features without re-
course to preprocessing tools or linguistic annota-
tions. Abstractive summarization involves various
text rewriting operations (e.g., substitution, dele-
tion, reordering) and has been recently framed as
a sequence-to-sequence problem (Sutskever et al.,
2014). Central in most approaches (Rush et al.,
2015; Chen et al., 2016; Nallapati et al., 2016; See

1Our code and data are available here: https://github.
com/shashiongithub/Refresh.

et al., 2017; Tan and Wan, 2017; Paulus et al.,
2017) is an encoder-decoder architecture mod-
eled by recurrent neural networks. The encoder
reads the source sequence into a list of continuous-
space representations from which the decoder gen-
erates the target sequence. An attention mecha-
nism (Bahdanau et al., 2015) is often used to lo-
cate the region of focus during decoding.

Extractive systems create a summary by identi-
fying (and subsequently concatenating) the most
important sentences in a document. A few re-
cent approaches (Cheng and Lapata, 2016; Nalla-
pati et al., 2017; Narayan et al., 2017; Yasunaga
et al., 2017) conceptualize extractive summariza-
tion as a sequence labeling task in which each
label specifies whether each document sentence
should be included in the summary. Existing mod-
els rely on recurrent neural networks to derive a
meaning representation of the document which is
then used to label each sentence, taking the pre-
viously labeled sentences into account. These
models are typically trained using cross-entropy
loss in order to maximize the likelihood of the
ground-truth labels and do not necessarily learn
to rank sentences based on their importance due
to the absence of a ranking-based objective. An-
other discrepancy comes from the mismatch be-
tween the learning objective and the evaluation
criterion, namely ROUGE (Lin and Hovy, 2003),
which takes the entire summary into account.

In this paper we argue that cross-entropy train-
ing is not optimal for extractive summarization.
Models trained this way are prone to generating
verbose summaries with unnecessarily long sen-
tences and redundant information. We propose to
overcome these difficulties by globally optimiz-
ing the ROUGE evaluation metric and learning to
rank sentences for summary generation through a
reinforcement learning objective. Similar to pre-
vious work (Cheng and Lapata, 2016; Narayan
et al., 2017; Nallapati et al., 2017), our neural sum-
marization model consists of a hierarchical docu-
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ment encoder and a hierarchical sentence extrac-
tor. During training, it combines the maximum-
likelihood cross-entropy loss with rewards from
policy gradient reinforcement learning to directly
optimize the evaluation metric relevant for the
summarization task. We show that this global op-
timization framework renders extractive models
better at discriminating among sentences for the
final summary; a sentence is ranked high for selec-
tion if it often occurs in high scoring summaries.

We report results on the CNN and DailyMail
news highlights datasets (Hermann et al., 2015)
which have been recently used as testbeds for the
evaluation of neural summarization systems. Ex-
perimental results show that when evaluated auto-
matically (in terms of ROUGE), our model out-
performs state-of-the-art extractive and abstrac-
tive systems. We also conduct two human eval-
uations in order to assess (a) which type of sum-
mary participants prefer (we compare extractive
and abstractive systems) and (b) how much key
information from the document is preserved in the
summary (we ask participants to answer questions
pertaining to the content in the document by read-
ing system summaries). Both evaluations over-
whelmingly show that human subjects find our
summaries more informative and complete.

Our contributions in this work are three-fold: a
novel application of reinforcement learning to sen-
tence ranking for extractive summarization; cor-
roborated by analysis and empirical results show-
ing that cross-entropy training is not well-suited
to the summarization task; and large scale user
studies following two evaluation paradigms which
demonstrate that state-of-the-art abstractive sys-
tems lag behind extractive ones when the latter are
globally trained.

2 Summarization as Sentence Ranking

Given a document D consisting of a sequence of
sentences (s1,s2, ...,sn) , an extractive summarizer
aims to produce a summary S by selecting m sen-
tences from D (where m < n). For each sentence
si ∈ D, we predict a label yi ∈ {0,1} (where 1
means that si should be included in the summary)
and assign a score p(yi|si,D,θ) quantifying si’s
relevance to the summary. The model learns to as-
sign p(1|si,D,θ) > p(1|s j,D,θ) when sentence si
is more relevant than s j. Model parameters are de-
noted by θ. We estimate p(yi|si,D,θ) using a neu-
ral network model and assemble a summary S by
selecting m sentences with top p(1|si,D,θ) scores.

Our architecture resembles those previously

proposed in the literature (Cheng and Lapata,
2016; Nallapati et al., 2017; Narayan et al., 2017).
The main components include a sentence encoder,
a document encoder, and a sentence extractor (see
the left block of Figure 1) which we describe in
more detail below.

Sentence Encoder A core component of our
model is a convolutional sentence encoder which
encodes sentences into continuous representa-
tions. In recent years, CNNs have proven use-
ful for various NLP tasks (Collobert et al., 2011;
Kim, 2014; Kalchbrenner et al., 2014; Zhang et al.,
2015; Lei et al., 2015; Kim et al., 2016; Cheng
and Lapata, 2016) because of their effectiveness in
identifying salient patterns in the input (Xu et al.,
2015). In the case of summarization, CNNs can
identify named-entities and events that correlate
with the gold summary.

We use temporal narrow convolution by apply-
ing a kernel filter K of width h to a window of h
words in sentence s to produce a new feature. This
filter is applied to each possible window of words
in s to produce a feature map f ∈ Rk−h+1 where k
is the sentence length. We then apply max-pooling
over time over the feature map f and take the max-
imum value as the feature corresponding to this
particular filter K. We use multiple kernels of var-
ious sizes and each kernel multiple times to con-
struct the representation of a sentence. In Figure 1,
kernels of size 2 (red) and 4 (blue) are applied
three times each. Max-pooling over time yields
two feature lists f K2 and f K4 ∈ R3. The final sen-
tence embeddings have six dimensions.

Document Encoder The document encoder
composes a sequence of sentences to obtain a doc-
ument representation. We use a recurrent neural
network with Long Short-Term Memory (LSTM)
cells to avoid the vanishing gradient problem when
training long sequences (Hochreiter and Schmid-
huber, 1997). Given a document D consisting of
a sequence of sentences (s1,s2, . . . ,sn), we follow
common practice and feed sentences in reverse or-
der (Sutskever et al., 2014; Li et al., 2015; Filip-
pova et al., 2015; Narayan et al., 2017). This way
we make sure that the network also considers the
top sentences of the document which are partic-
ularly important for summarization (Rush et al.,
2015; Nallapati et al., 2016).

Sentence Extractor Our sentence extractor se-
quentially labels each sentence in a document
with 1 (relevant for the summary) or 0 (otherwise).
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Figure 1: Extractive summarization model with reinforcement learning: a hierarchical encoder-decoder model
ranks sentences for their extract-worthiness and a candidate summary is assembled from the top ranked sentences;
the REWARD generator compares the candidate against the gold summary to give a reward which is used in the
REINFORCE algorithm (Williams, 1992) to update the model.

It is implemented with another RNN with LSTM
cells and a softmax layer. At time ti, it reads
sentence si and makes a binary prediction, con-
ditioned on the document representation (obtained
from the document encoder) and the previously la-
beled sentences. This way, the sentence extractor
is able to identify locally and globally important
sentences within the document. We rank the sen-
tences in a document D by p(yi = 1|si,D,θ), the
confidence scores assigned by the softmax layer
of the sentence extractor.

We learn to rank sentences by training our
network in a reinforcement learning framework,
directly optimizing the final evaluation metric,
namely ROUGE (Lin and Hovy, 2003). Before we
describe our training algorithm, we elaborate on
why the maximum-likelihood cross-entropy ob-
jective could be deficient for ranking sentences
for summarization (Section 3). Then, we define
our reinforcement learning objective in Section 4
and show that our new way of training allows the
model to better discriminate amongst sentences,
i.e., a sentence is ranked higher for selection if it
often occurs in high scoring summaries.

3 The Pitfalls of Cross-Entropy Loss

Previous work optimizes summarization models
by maximizing p(y|D,θ) = ∏n

i=1 p(yi|si,D,θ),
the likelihood of the ground-truth labels
y = (y1,y2, ...,yn) for sentences (s1,s2, . . . ,sn),
given document D and model parameters θ. This
objective can be achieved by minimizing the

cross-entropy loss at each decoding step:

L(θ) =−
n

∑
i=1

log p(yi|si,D,θ). (1)

Cross-entropy training leads to two kinds of dis-
crepancies in the model. The first discrepancy
comes from the disconnect between the task def-
inition and the training objective. While MLE
in Equation (1) aims to maximize the likelihood
of the ground-truth labels, the model is (a) ex-
pected to rank sentences to generate a summary
and (b) evaluated using ROUGE at test time.
The second discrepancy comes from the reliance
on ground-truth labels. Document collections
for training summarization systems do not nat-
urally contain labels indicating which sentences
should be extracted. Instead, they are typically ac-
companied by abstractive summaries from which
sentence-level labels are extrapolated. Cheng
and Lapata (2016) follow Woodsend and Lapata
(2010) in adopting a rule-based method which as-
signs labels to each sentence in the document in-
dividually based on their semantic correspondence
with the gold summary (see the fourth column
in Table 1). An alternative method (Svore et al.,
2007; Cao et al., 2016; Nallapati et al., 2017) iden-
tifies the set of sentences which collectively gives
the highest ROUGE with respect to the gold sum-
mary. Sentences in this set are labeled with 1 and
0 otherwise (see the column 5 in Table 1).

Labeling sentences individually often generates
too many positive labels causing the model to
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0 A debilitating, mosquito-borne virus called Chikungunya has made its way to
North Carolina, health officials say.

21.2 1 1 (0,11,13) : 59.3
(0,13) : 57.5
(11,13) : 57.2
(0,1,13) : 57.1
(1,13) : 56.6
(3,11,13) : 55.0
(13) : 54.5
(0,3,13) : 54.2
(3,13) : 53.4
(1,3,13) : 52.9
(1,11,13) : 52.0
(0,9,13) : 51.3
(0,7,13) : 51.3
(0,12,13) : 51.0
(9,11,13) : 50.4
(1,9,13) : 50.1
(12,13) : 49.3
(7,11,13) : 47.8
(0,10,13) : 47.8
(11,12,13):47.7
(7,13) : 47.6
(9,13) : 47.5
(1,7,13) : 46.9
(3,7,13) : 46.0
(3,12,13) : 46.0
(3,9,13) : 45.9
(10,13) : 45.5
(4,11,13) : 45.3
...

1 It’s the state’s first reported case of the virus. 18.1 1 0
2 The patient was likely infected in the Caribbean, according to the Forsyth County

Department of Public Health.
11.2 1 0

3 Chikungunya is primarily found in Africa, East Asia and the Caribbean islands,
but the Centers for Disease Control and Prevention has been watching the virus,+
for fear that it could take hold in the United States – much like West Nile did more
than a decade ago.

35.6 1 0

4 The virus, which can cause joint pain and arthritis-like symptoms, has been on
the U.S. public health radar for some time.

16.7 1 0

5 About 25 to 28 infected travelers bring it to the United States each year, said
Roger Nasci, chief of the CDC’s Arboviral Disease Branch in the Division of
Vector-Borne Diseases.

9.7 0 0

6 ”We haven’t had any locally transmitted cases in the U.S. thus far,” Nasci said. 7.4 0 0
7 But a major outbreak in the Caribbean this year – with more than 100,000 cases

reported – has health officials concerned.
16.4 1 0

8 Experts say American tourists are bringing Chikungunya back home, and it’s just
a matter of time before it starts to spread within the United States.

10.6 0 0

9 After all, the Caribbean is a popular one with American tourists, and summer is
fast approaching.

13.9 1 0

10 ”So far this year we’ve recorded eight travel-associated cases, and seven of them
have come from countries in the Caribbean where we know the virus is being
transmitted,” Nasci said.

18.4 1 0

11 Other states have also reported cases of Chikungunya. 13.4 0 1
12 The Tennessee Department of Health said the state has had multiple cases of the

virus in people who have traveled to the Caribbean.
15.6 1 0

13 The virus is not deadly, but it can be painful, with symptoms lasting for weeks. 54.5 1 1
14 Those with weak immune systems, such as the elderly, are more likely to suffer

from the virus’ side effects than those who are healthier.
5.5 0 0

Story Highlights
• North Carolina reports first case of mosquito-borne virus called Chikungunya • Chikungunya is primarily found in
Africa, East Asia and the Caribbean islands • Virus is not deadly, but it can be painful, with symptoms lasting for weeks

Table 1: An abridged CNN article (only first 15 out of 31 sentences are shown) and its “story highlights”. The
latter are typically written by journalists to allow readers to quickly gather information on stories. Highlights are
often used as gold standard abstractive summaries in the summarization literature.

overfit the data. For example, the document in Ta-
ble 1 has 12 positively labeled sentences out of 31
in total (only first 10 are shown). Collective labels
present a better alternative since they only per-
tain to the few sentences deemed most suitable to
form the summary. However, a model trained with
cross-entropy loss on collective labels will under-
fit the data as it will only maximize probabilities
p(1|si,D,θ) for sentences in this set (e.g., sen-
tences {0,11,13} in Table 1) and ignore all other
sentences. We found that there are many candidate
summaries with high ROUGE scores which could
be considered during training.

Table 1 (last column) shows candidate
summaries ranked according to the mean of
ROUGE-1, ROUGE-2, and ROUGE-L F1 scores.
Interestingly, multiple top ranked summaries have
reasonably high ROUGE scores. For example,
the average ROUGE for the summaries ranked
second (0,13), third (11,13), and fourth (0,1,13)
is 57.5%, 57.2%, and 57.1%, and all top 16 sum-
maries have ROUGE scores more or equal to
50%. A few sentences are indicative of important
content and appear frequently in the summaries:
sentence 13 occurs in all summaries except one,

while sentence 0 appears in several summaries
too. Also note that summaries (11,13) and (1,13)
yield better ROUGE scores compared to longer
summaries, and may be as informative, yet more
concise, alternatives.

These discrepancies render the model less ef-
ficient at ranking sentences for the summariza-
tion task. Instead of maximizing the likelihood of
the ground-truth labels, we could train the model
to predict the individual ROUGE score for each
sentence in the document and then select the top
m sentences with highest scores. But sentences
with individual ROUGE scores do not necessar-
ily lead to a high scoring summary, e.g., they may
convey overlapping content and form verbose and
redundant summaries. For example, sentence 3,
despite having a high individual ROUGE score
(35.6%), does not occur in any of the top 5 sum-
maries. We next explain how we address these is-
sues using reinforcement learning.

4 Sentence Ranking with Reinforcement
Learning

Reinforcement learning (Sutton and Barto, 1998)
has been proposed as a way of training sequence-
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to-sequence generation models in order to directly
optimize the metric used at test time, e.g., BLEU
or ROUGE (Ranzato et al., 2015). We adapt re-
inforcement learning to our formulation of extrac-
tive summarization to rank sentences for summary
generation. We propose an objective function that
combines the maximum-likelihood cross-entropy
loss with rewards from policy gradient reinforce-
ment learning to globally optimize ROUGE. Our
training algorithm allows to explore the space of
possible summaries, making our model more ro-
bust to unseen data. As a result, reinforcement
learning helps extractive summarization in two
ways: (a) it directly optimizes the evaluation met-
ric instead of maximizing the likelihood of the
ground-truth labels and (b) it makes our model bet-
ter at discriminating among sentences; a sentence
is ranked high for selection if it often occurs in
high scoring summaries.

4.1 Policy Learning
We cast the neural summarization model intro-
duced in Figure 1 in the Reinforcement Learning
paradigm (Sutton and Barto, 1998). Accordingly,
the model can be viewed as an “agent” which in-
teracts with an “environment” consisting of docu-
ments. At first, the agent is initialized randomly,
it reads document D and predicts a relevance
score for each sentence si ∈ D using “policy”
p(yi|si,D,θ), where θ are model parameters. Once
the agent is done reading the document, a sum-
mary with labels ŷ is sampled out of the ranked
sentences. The agent is then given a “reward” r
commensurate with how well the extract resem-
bles the gold-standard summary. Specifically, as
reward function we use mean F1 of ROUGE-1,
ROUGE-2, and ROUGE-L. Unigram and bigram
overlap (ROUGE-1 and ROUGE-2) are meant to
assess informativeness, whereas the longest com-
mon subsequence (ROUGE-L) is meant to assess
fluency. We update the agent using the REIN-
FORCE algorithm (Williams, 1992) which aims to
minimize the negative expected reward:

L(θ) =−Eŷ∼ pθ [r(ŷ)] (2)

where, pθ stands for p(y|D,θ). REINFORCE is
based on the observation that the expected gradient
of a non-differentiable reward function (ROUGE,
in our case) can be computed as follows:

∇L(θ) =−Eŷ∼ pθ [r(ŷ)∇ log p(ŷ|D,θ)] (3)

While MLE in Equation (1) aims to maximize
the likelihood of the training data, the objective

in Equation (2) learns to discriminate among sen-
tences with respect to how often they occur in high
scoring summaries.

4.2 Training with High Probability Samples
Computing the expectation term in Equation (3) is
prohibitive, since there is a large number of pos-
sible extracts. In practice, we approximate the ex-
pected gradient using a single sample ŷ from pθ
for each training example in a batch:

∇L(θ)≈−r(ŷ)∇ log p(ŷ|D,θ)

≈−r(ŷ)
n

∑
i=1

∇ log p(ŷi|si,D,θ) (4)

Presented in its original form, the REINFORCE
algorithm starts learning with a random policy
which can make model training challenging for
complex tasks like ours where a single document
can give rise to a very large number of candidate
summaries. We therefore limit the search space
of ŷ in Equation (4) to the set of largest prob-
ability samples Ŷ. We approximate Ŷ by the k
extracts which receive highest ROUGE scores.
More concretely, we assemble candidate sum-
maries efficiently by first selecting p sentences
from the document which on their own have high
ROUGE scores. We then generate all possible
combinations of p sentences subject to maximum
length m and evaluate them against the gold sum-
mary. Summaries are ranked according to F1 by
taking the mean of ROUGE-1, ROUGE-2, and
ROUGE-L. Ŷ contains these top k candidate sum-
maries. During training, we sample ŷ from Ŷ in-
stead of p(ŷ|D,θ).

Ranzato et al. (2015) proposed an alternative to
REINFORCE called MIXER (Mixed Incremental
Cross-Entropy Reinforce) which first pretrains the
model with the cross-entropy loss using ground
truth labels and then follows a curriculum learning
strategy (Bengio et al., 2015) to gradually teach
the model to produce stable predictions on its own.
In our experiments MIXER performed worse than
the model of Nallapati et al. (2017) just trained on
collective labels. We conjecture that this is due
to the unbounded nature of our ranking problem.
Recall that our model assigns relevance scores to
sentences rather than words. The space of senten-
tial representations is vast and fairly unconstrained
compared to other prediction tasks operating with
fixed vocabularies (Li et al., 2016; Paulus et al.,
2017; Zhang and Lapata, 2017). Moreover, our
approximation of the gradient allows the model to
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converge much faster to an optimal policy. Advan-
tageously, we do not require an online reward esti-
mator, we pre-compute Ŷ, which leads to a signifi-
cant speedup during training compared to MIXER
(Ranzato et al., 2015) and related training schemes
(Shen et al., 2016).

5 Experimental Setup

In this section we present our experimental
setup for assessing the performance of our
model which we call REFRESH as a shorthand
for REinFoRcement Learning-based Extractive
Summarization. We describe our datasets, discuss
implementation details, our evaluation protocol,
and the systems used for comparison.

Summarization Datasets We evaluated our
models on the CNN and DailyMail news high-
lights datasets (Hermann et al., 2015). We used the
standard splits of Hermann et al. (2015) for train-
ing, validation, and testing (90,266/1,220/1,093
documents for CNN and 196,961/12,148/10,397
for DailyMail). We did not anonymize entities or
lower case tokens. We followed previous studies
(Cheng and Lapata, 2016; Nallapati et al., 2016,
2017; See et al., 2017; Tan and Wan, 2017) in as-
suming that the “story highlights” associated with
each article are gold-standard abstractive sum-
maries. During training we use these to generate
high scoring extracts and to estimate rewards for
them, but during testing, they are used as reference
summaries to evaluate our models.

Implementation Details We generated extracts
by selecting three sentences (m = 3) for CNN arti-
cles and four sentences (m = 4) for DailyMail ar-
ticles. These decisions were informed by the fact
that gold highlights in the CNN/DailyMail vali-
dation sets are 2.6/4.2 sentences long. For both
datasets, we estimated high-scoring extracts us-
ing 10 document sentences (p = 10) with highest
ROUGE scores. We tuned the initialization pa-
rameter k for Ŷ on the validation set: we found
that our model performs best with k = 5 for the
CNN dataset and k = 15 for the DailyMail dataset.

We used the One Billion Word Benchmark cor-
pus (Chelba et al., 2013) to train word embeddings
with the skip-gram model (Mikolov et al., 2013)
using context window size 6, negative sampling
size 10, and hierarchical softmax 1. Known words
were initialized with pre-trained embeddings of
size 200. Embeddings for unknown words were
initialized to zero, but estimated during training.

L
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• A SkyWest Airlines flight made an emergency landing
in Buffalo, New York, on Wednesday after a passenger
lost consciousness, officials said.
• The passenger received medical attention before being
released, according to Marissa Snow, spokeswoman for
SkyWest.
• She said the airliner expects to accommodate the 75
passengers on another aircraft to their original destination
– Hartford, Connecticut – later Wednesday afternoon.

Se
e

et
al

. • Skywest Airlines flight made an emergency landing in
Buffalo, New York, on Wednesday after a passenger lost
consciousness.
• She said the airliner expects to accommodate the 75
passengers on another aircraft to their original destination
– Hartford, Connecticut.
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• A SkyWest Airlines flight made an emergency landing
in Buffalo, New York, on Wednesday after a passenger
lost consciousness, officials said.
• The passenger received medical attention before being
released, according to Marissa Snow, spokeswoman for
SkyWest.
• The Federal Aviation Administration initially reported
a pressurization problem and said it would investigate.

G
O

L
D • FAA backtracks on saying crew reported a pressuriza-

tion problem
• One passenger lost consciousness
• The plane descended 28,000 feet in three minutes

Q1 Who backtracked on saying crew reported a pressuriza-
tion problem? (FAA)

Q2 How many passengers lost consciousness in the incident?
(One)

Q3 How far did the plane descend in three minutes? (28,000
feet)

Figure 2: Summaries produced by the LEAD base-
line, the abstractive system of See et al. (2017) and
REFRESH for a CNN (test) article. GOLD presents
the human-authored summary; the bottom block shows
manually written questions using the gold summary
and their answers in parentheses.

Sentences were padded with zeros to a length
of 100. For the sentence encoder, we used a list
of kernels of widths 1 to 7, each with output chan-
nel size of 50 (Kim et al., 2016). The sentence
embedding size in our model was 350.

For the recurrent neural network component
in the document encoder and sentence extractor,
we used a single-layered LSTM network with
size 600. All input documents were padded with
zeros to a maximum document length of 120. We
performed minibatch cross-entropy training with a
batch size of 20 documents for 20 training epochs.
It took around 12 hrs on a single GPU to train.
After each epoch, we evaluated our model on
the validation set and chose the best performing
model for the test set. During training we used
the Adam optimizer (Kingma and Ba, 2015) with
initial learning rate 0.001. Our system is imple-
mented in TensorFlow (Abadi et al., 2015).

Evaluation We evaluated summarization qual-
ity using F1 ROUGE (Lin and Hovy, 2003). We
report unigram and bigram overlap (ROUGE-1
and ROUGE-2) as a means of assessing infor-
mativeness and the longest common subsequence
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(ROUGE-L) as a means of assessing fluency.2 We
compared REFRESH against a baseline which sim-
ply selects the first m leading sentences from each
document (LEAD) and two neural models similar
to ours (see left block in Figure 1), both trained
with cross-entropy loss. Cheng and Lapata (2016)
train on individual labels, while Nallapati et al.
(2017) use collective labels. We also compared
our model against the abstractive systems of Chen
et al. (2016), Nallapati et al. (2016), See et al.
(2017), and Tan and Wan (2017).3

In addition to ROUGE which can be mislead-
ing when used as the only means to assess the in-
formativeness of summaries (Schluter, 2017), we
also evaluated system output by eliciting human
judgments in two ways. In our first experiment,
participants were presented with a news article
and summaries generated by three systems: the
LEAD baseline, abstracts from See et al. (2017),
and extracts from REFRESH. We also included
the human-authored highlights.4 Participants read
the articles and were asked to rank the summaries
from best (1) to worst (4) in order of informative-
ness (does the summary capture important infor-
mation in the article?) and fluency (is the sum-
mary written in well-formed English?). We did
not allow any ties. We randomly selected 10 arti-
cles from the CNN test set and 10 from the Dai-
lyMail test set. The study was completed by five
participants, all native or proficient English speak-
ers. Each participant was presented with the 20
articles. The order of summaries to rank was ran-
domized per article and the order of articles per
participant. Examples of summaries our subjects
ranked are shown in Figure 2.

Our second experiment assessed the degree to
which our model retains key information from the
document following a question-answering (QA)
paradigm which has been previously used to eval-
uate summary quality and text compression (Mor-

2We used pyrouge, a Python package, to compute all
ROUGE scores with parameters “-a -c 95 -m -n 4 -w 1.2.”

3Cheng and Lapata (2016) report ROUGE recall scores on
the DailyMail dataset only. We used their code (https://
github.com/cheng6076/NeuralSum) to produce ROUGE
F1 scores on both CNN and DailyMail datasets. For other
systems, all results are taken from their papers.

4We are grateful to Abigail See for providing us with the
output of her system. We did not include output from Nallap-
ati et al. (2017), Chen et al. (2016), Nallapati et al. (2016), or
Tan and Wan (2017) in our human evaluation study, as these
models are trained on a named-entity anonymized version of
the CNN and DailyMail datasets, and as result produce sum-
maries which are not comparable to ours. We did not include
extracts from Cheng and Lapata (2016) either as they were
significantly inferior to LEAD (see Table 2).

ris et al., 1992; Mani et al., 2002; Clarke and La-
pata, 2010). We created a set of questions based
on the gold summary under the assumption that it
highlights the most important document content.
We then examined whether participants were able
to answer these questions by reading system sum-
maries alone without access to the article. The
more questions a system can answer, the better it
is at summarizing the document as a whole.

We worked on the same 20 documents used in
our first elicitation study. We wrote multiple fact-
based question-answer pairs for each gold sum-
mary without looking at the document. Questions
were formulated so as to not reveal answers to sub-
sequent questions. We created 71 questions in to-
tal varying from two to six questions per gold sum-
mary. Example questions are given in Figure 2.
Participants read the summary and answered all
associated questions as best they could without ac-
cess to the original document or the gold summary.
Subjects were shown summaries from three sys-
tems: the LEAD baseline, the abstractive system
of See et al. (2017), and REFRESH. Five partici-
pants answered questions for each summary. We
used the same scoring mechanism from Clarke and
Lapata (2010), i.e., a correct answer was marked
with a score of one, partially correct answers with
a score of 0.5, and zero otherwise. The final
score for a system is the average of all its question
scores. Answers were elicited using Amazon’s
Mechanical Turk crowdsourcing platform. We up-
loaded data in batches (one system at a time) on
Mechanical Turk to ensure that same participant
does not evaluate summaries from different sys-
tems on the same set of questions.

6 Results

We report results using automatic metrics in Ta-
ble 2. The top part of the table compares RE-
FRESH against related extractive systems. The bot-
tom part reports the performance of abstractive
systems. We present three variants of LEAD, one
is computed by ourselves and the other two are
reported in Nallapati et al. (2017) and See et al.
(2017). Note that they vary slightly due to dif-
ferences in the preprocessing of the data. We re-
port results on the CNN and DailyMail datasets
and their combination (CNN+DailyMail).

Cross-Entropy vs Reinforcement Learning
The results in Table 2 show that REFRESH is su-
perior to our LEAD baseline and extractive sys-
tems across datasets and metrics. It outperforms
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Models CNN DailyMail CNN+DailyMail
R1 R2 RL R1 R2 RL R1 R2 RL

LEAD (ours) 29.1 11.1 25.9 40.7 18.3 37.2 39.6 17.7 36.2
LEAD∗ (Nallapati et al., 2017) — — — — — — 39.2 15.7 35.5
LEAD (See et al., 2017) — — — — — — 40.3 17.7 36.6
Cheng and Lapata (2016) 28.4 10.0 25.0 36.2 15.2 32.9 35.5 14.7 32.2
Nallapati et al. (2017)∗ — — — — — — 39.6 16.2 35.3
REFRESH 30.4 11.7 26.9 41.0 18.8 37.7 40.0 18.2 36.6
Chen et al. (2016)∗ 27.1 8.2 18.7 — — — — — —
Nallapati et al. (2016)∗ — — — — — — 35.4 13.3 32.6
See et al. (2017) — — — — — — 39.5 17.3 36.4
Tan and Wan (2017)∗ 30.3 9.8 20.0 — — — 38.1 13.9 34.0

Table 2: Results on the CNN and DailyMail test sets. We report ROUGE-1 (R1), ROUGE-2 (R2), and ROUGE-L
(RL) F1 scores. Extractive systems are in the first block and abstractive systems in the second. Table cells are filled
with — whenever results are not available. Models marked with ∗ are not directly comparable to ours as they are
based on an anonymized version of the dataset.

the extractive system of Cheng and Lapata (2016)
which is trained on individual labels. REFRESH

is not directly comparable with Nallapati et al.
(2017) as they generate anonymized summaries.
Their system lags behind their LEAD baseline on
ROUGE-L on the CNN+DailyMail dataset (35.5%
vs 35.3%). Also note that their model is trained
on collective labels and has a significant lead over
Cheng and Lapata (2016). As discussed in Sec-
tion 3 cross-entropy training on individual labels
tends to overgenerate positive labels leading to
less informative and verbose summaries.

Extractive vs Abstractive Systems Our auto-
matic evaluation results further demonstrate that
REFRESH is superior to abstractive systems (Chen
et al., 2016; Nallapati et al., 2016; See et al.,
2017; Tan and Wan, 2017) which are all vari-
ants of an encoder-decoder architecture (Sutskever
et al., 2014). Despite being more faithful to the ac-
tual summarization task (hand-written summaries
combine several pieces of information from the
original document), abstractive systems lag behind
the LEAD baseline. Tan and Wan (2017) present
a graph-based neural model, which manages to
outperform LEAD on ROUGE-1 but falters when
higher order ROUGE scores are used. Amongst
abstractive systems See et al. (2017) perform best.
Interestingly, their system is mostly extractive, ex-
hibiting a small degree of rewriting; it copies more
than 35% of the sentences in the source docu-
ment, 85% of 4-grams, 90% of 3-grams, 95% of
bigrams, and 99% of unigrams.

Human Evaluation: System Ranking Table 3
shows, proportionally, how often participants
ranked each system, 1st, 2nd, and so on. Per-
haps unsurprisingly human-authored summaries
are considered best (and ranked 1st 39% of the

Models 1st 2nd 3rd 4th QA
LEAD 0.11 0.21 0.34 0.33 36.33
See et al. (2017) 0.14 0.18 0.31 0.36 28.73
REFRESH 0.35 0.42 0.16 0.07 66.34
GOLD 0.39 0.19 0.18 0.24 —

Table 3: System ranking and QA-based evaluations.
Rankings (1st, 2nd, 3rd and 4th) are shown as propor-
tions. Rank 1 is the best and Rank 4, the worst. The
column QA shows the percentage of questions that par-
ticipants answered correctly by reading system sum-
maries.

time). REFRESH is ranked 2nd best followed by
LEAD and See et al. (2017) which are mostly
ranked in 3rd and 4th places. We carried out pair-
wise comparisons between all models in Table 3 to
assess whether system differences are statistically
significant. There is no significant difference be-
tween LEAD and See et al. (2017), and REFRESH

and GOLD (using a one-way ANOVA with post-
hoc Tukey HSD tests; p< 0.01). All other differ-
ences are statistically significant.

Human Evaluation: Question Answering The
results of our QA evaluation are shown in the last
column of Table 3. Based on summaries generated
by REFRESH, participants can answer 66.34%
of questions correctly. Summaries produced by
LEAD and the abstractive system of See et al.
(2017) provide answers for 36.33% and 28.73% of
the questions, respectively. Differences between
systems are all statistically significant (p< 0.01)
with the exception of LEAD and See et al. (2017).

Although the QA results in Table 3 follow the
same pattern as ROUGE in Table 2, differences
among systems are now greatly amplified. QA-
based evaluation is more focused and a closer re-
flection of users’ information need (i.e., to find out
what the article is about), whereas ROUGE simply
captures surface similarity (i.e., n-gram overlap)
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between output summaries and their references.
Interestingly, LEAD is considered better than See
et al. (2017) in the QA evaluation, whereas we
find the opposite when participants are asked to
rank systems. We hypothesize that LEAD is in-
deed more informative than See et al. (2017) but
humans prefer shorter summaries. The average
length of LEAD summaries is 105.7 words com-
pared to 61.6 for See et al. (2017).

7 Related Work

Traditional summarization methods manually de-
fine features to rank sentences for their salience
in order to identify the most important sentences
in a document or set of documents (Kupiec et al.,
1995; Mani, 2001; Radev et al., 2004; Filatova
and Hatzivassiloglou, 2004; Nenkova et al., 2006;
Spärck Jones, 2007). A vast majority of these
methods learn to score each sentence indepen-
dently (Barzilay and Elhadad, 1997; Teufel and
Moens, 1997; Erkan and Radev, 2004; Mihalcea
and Tarau, 2004; Shen et al., 2007; Schilder and
Kondadadi, 2008; Wan, 2010) and a summary is
generated by selecting top-scored sentences in a
way that is not incorporated into the learning pro-
cess. Summary quality can be improved heuris-
tically, (Yih et al., 2007), via max-margin meth-
ods (Carbonell and Goldstein, 1998; Li et al.,
2009), or integer-linear programming (Woodsend
and Lapata, 2010; Berg-Kirkpatrick et al., 2011;
Woodsend and Lapata, 2012; Almeida and Mar-
tins, 2013; Parveen et al., 2015).

Recent deep learning methods (Kågebäck et al.,
2014; Yin and Pei, 2015; Cheng and Lapata, 2016;
Nallapati et al., 2017) learn continuous features
without any linguistic preprocessing (e.g., named
entities). Like traditional methods, these ap-
proaches also suffer from the mismatch between
the learning objective and the evaluation crite-
rion (e.g., ROUGE) used at the test time. In
comparison, our neural model globally optimizes
the ROUGE evaluation metric through a rein-
forcement learning objective: sentences are highly
ranked if they occur in highly scoring summaries.

Reinforcement learning has been previously
used in the context of traditional multi-document
summarization as a means of selecting a sentence
or a subset of sentences from a document clus-
ter. Ryang and Abekawa (2012) cast the sentence
selection task as a search problem. Their agent
observes a state (e.g., a candidate summary), ex-
ecutes an action (a transition operation that pro-
duces a new state selecting a not-yet-selected sen-

tence), and then receives a delayed reward based
on tf ∗ idf. Follow-on work (Rioux et al., 2014)
extends this approach by employing ROUGE as
part of the reward function, while Henß et al.
(2015) further experiment with Q-learning. Mollá-
Aliod (2017) has adapt this approach to query-
focused summarization. Our model differs from
these approaches both in application and formu-
lation. We focus solely on extractive summariza-
tion, in our case states are documents (not sum-
maries) and actions are relevance scores which
lead to sentence ranking (not sentence-to-sentence
transitions). Rather than employing reinforcement
learning for sentence selection, our algorithm per-
forms sentence ranking using ROUGE as the re-
ward function.

The REINFORCE algorithm (Williams, 1992)
has been shown to improve encoder-decoder text-
rewriting systems by allowing to directly opti-
mize a non-differentiable objective (Ranzato et al.,
2015; Li et al., 2016; Paulus et al., 2017) or to in-
ject task-specific constraints (Zhang and Lapata,
2017; Nogueira and Cho, 2017). However, we
are not aware of any attempts to use reinforcement
learning for training a sentence ranker in the con-
text of extractive summarization.

8 Conclusions

In this work we developed an extractive summa-
rization model which is globally trained by opti-
mizing the ROUGE evaluation metric. Our train-
ing algorithm explores the space of candidate sum-
maries while learning to optimize a reward func-
tion which is relevant for the task at hand. Ex-
perimental results show that reinforcement learn-
ing offers a great means to steer our model to-
wards generating informative, fluent, and concise
summaries outperforming state-of-the-art extrac-
tive and abstractive systems on the CNN and Dai-
lyMail datasets. In the future we would like to fo-
cus on smaller discourse units (Mann and Thomp-
son, 1988) rather than individual sentences, mod-
eling compression and extraction jointly.
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Günes Erkan and Dragomir R. Radev. 2004. LexRank:
Graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence
Research 22(1):457–479.

Elena Filatova and Vasileios Hatzivassiloglou. 2004.
Event-based extractive summarization. In Pro-
ceedings of ACL Workshop on Text Summarization
Branches Out. Barcelona, Spain, pages 104–111.

Katja Filippova, Enrique Alfonseca, Carlos A. Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with LSTMs. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Lisbon,
Portugal, pages 360–368.

Sebastian Henß, Margot Mieskes, and Iryna Gurevych.
2015. A reinforcement learning approach for adap-
tive single- and multi-document summarization. In
Proceedings of International Conference of the Ger-
man Society for Computational Linguistics and Lan-
guage Technology. Duisburg-Essen, Germany, pages
3–12.

Karl Moritz Hermann, Tomáš Kočiský, Edward
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Abstract

This work introduces a new problem, rela-
tional summarization, in which the goal is to
generate a natural language summary of the re-
lationship between two lexical items in a cor-
pus, without reference to a knowledge base.
Motivated by the needs of novel user inter-
faces, we define the task and give examples of
its application. We also present a new query-
focused method for finding natural language
sentences which express relationships. Our
method allows for summarization of more than
two times more query pairs than baseline re-
lation extractors, while returning measurably
more readable output. Finally, to help guide
future work, we analyze the challenges of re-
lational summarization using both a news and
a social media corpus.

1 Introduction

Research on automatic summarization (Nenkova
et al., 2011; Das and Martins, 2007) aims to help
users understand large document sets. However,
the details of how textual summaries might actu-
ally be presented to users are often ignored. We
propose that user interfaces which display note-
worthy terms or concepts present the need for re-
lational summaries: descriptions of the relation-
ship between two entities or noun phrases from a
corpus.

Examples of such interfaces include: comman-
dline software for examining noteworthy terms or
phrases (Squirrell, 2017; Robinson, 2016; Mon-
roe et al., 2008), point-and-click browsers which
display named entities and their interconnec-
tions on a network diagram (Wright et al., 2009;
Görg et al., 2014; Tannier, 2016), concept map
browsers (Falke and Gurevych, 2017b) and doc-
ument search engines which suggest terms rele-
vant to a query, such as the related searches dis-
played on Wikipedia info boxes from Google. In

Aristide

Aristide

Gen. 
Cedras

UN

Liberation 
Theology

rival of
influenced by

relied on

Aristide the Haitian leader … governing philosophy informed by liberation theology

Aristide, as a young Catholic priest … was influenced by the liberation theology

Aristide was earlier expelled from Salesian Order for promoting  liberation theology

Clintoncriticizedconcept
map

snippet
box

Figure 1: An example interface which requires rela-
tional summarization. The user has queried for the en-
tity Aristide. The interface shows a concept map (top),
displaying short summaries of Aristide’s important re-
lationships. The user has drilled down to see a more
detailed summary of Aristide’s relationship with liber-
ation theology, displayed in a snippet box (bottom).

all such settings a natural question arises: what is
the nature of the relationship between the entities
or concepts shown in the interface? One particular
interface which presents the need for a relational
summary is shown in figure 1.

Relational questions are ubiquitous and varied.
Examples include the following. What is the rela-
tionship between the “City of London” and “goal-
delivery of Newgate” in 18th century court records
(Hitchcock et al., 2012)? What is the relation-
ship between “Advanced Integrated Systems” and
“United Arab Emirates” in the Paradise Papers?1

What does “dad” have to do with “mom” on the
subreddit discussion forum Relationship Advice?

This study seeks to answer such questions by
examining the problem of relational summariza-
tion, which lies at the intersection of prior work
on summarization and relation extraction. Un-
like previous efforts at summarizing relationships
(Falke and Gurevych, 2017a), our approach fo-
cuses on answering user queries about the connec-
tions between two particular terms, without ref-

1https://www.icij.org/investigations/paradise-papers/
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United States ousted former President Jean-Bertrand Aristide 
… Jean-Bertrand Aristide restored to power  … under watch of United States … Jean-Bertrand Aristide restored to power under watch of United States

Jean-Bertrand Aristide, left Haiti for the United States

United States ousted former President Jean-Bertrand Aristide … the United States ousted former President Jean-Bertrand Aristide to …

… claimed the United States said that Rev. Jean-Bertrand Aristide wanted to …
… by the United States since the Rev. Jean-Bertrand Aristide argued … 
… Jean-Bertrand Aristide, left Haiti for the United States in March …

Candidate set

SummaryMention set

Jean-Bertrand Aristide restored to power under watch of United States 

summary
construction

task

candidate set generation task

…

Figure 2: A relational summary is a synopsis of all sentences which mention two terms, denoted (t1) and (t2).
We refer to such sentences as a mention set. In the figure above (t1) is Jean-Bertrand Aristide and (t2) is
United States. To create a summary first requires identifying all statements in the mention set which coherently
describe some relationship between (t1) and (t2). This candidate set generation task is a prerequisite for the
subsequent summary construction task: selecting the top K candidates to create a summary. In this work, we
offer a method for the first task and show how the second task will likely require a diversity of summarization
techniques (§6).

erencing a knowledge graph (Voskarides et al.,
2015).2 In order to answer such queries we:

• Formally define the problem (§2), which we
divide into two subtasks: candidate set gen-
eration and summary construction.

• Provide a new method for the candidate set
generation task (§4), which we show outper-
forms baseline relation extraction techniques
(§5) in terms of readability and yield.

• Analyze the summary construction task for
future work (§6), demonstrating that differ-
ent summarization techniques are likely most
appropriate for different mention sets.

2 Formal definition and method

We refer to all sentences within a collection of
documents which contain two terms, (t1) and
(t2) as the mention set. (t1) and (t2) are noun
phrases, a syntactic category which encompasses
both traditional named entities like people and
places, as well as less concrete, but important,
entities and concepts like “liberation theology”
(Handler et al., 2016).

A relational summary is a synopsis of the men-
tion set. A summary consists of K relation state-
ments, each displayed on its own line. Relation
statements are natural language expressions which
begin with (t1) and end with (t2). We refer
to the span of tokens in between (t1) and (t2)
as a relation phrase. We use the notation (t1) r
(t2) to denote a relation statement, indicating two

2Relational summaries are intended for general-purpose
corpus analysis. Existing knowledge bases do not cover top-
ics discussed in many corpora, such as historical court records
(Hitchcock et al., 2012). Therefore, our approach does not
employ a knowledge base.

terms and a relation phrase. In the relation state-
ment, “Aristide fled Haiti”, r is the token “fled”,
(t1) is the token Aristide, and (t2) is the token
Haiti.

Relation statements, which are strings intended
for human readers, are similar to the 3-tuples, “re-
lations”, from prior work on information extrac-
tion (Banko et al., 2007). However, in this work,
we show that the assumptions underlying the ex-
traction of 3-tuples for machines (§3) leads to poor
performance in summarizing mention sets for peo-
ple (§5).

In this study, we present a strictly extractive
method for generating relation statements: each
relation statement must be constructed by delet-
ing tokens from some sentence in the mention set.3

Some relation statements constructed by deleting
tokens from a sentence make sense; others do not.
We refer to any (t1) r (t2) which makes makes
sense to a human reader as acceptable.4 Table
1 shows examples of acceptable and unacceptable
relation statements, constructed by deletion.

s1 Aristide
(t1)

fled
r

Haiti
(t2)

in 2004.

s2 For instance Bush
(t1)

told
r

Aristide
(t2)

to leave.

Table 1: Two relation statements constructed by delet-
ing tokens from source sentences, s1 and s2. The re-
lation statement extracted from s1 is acceptable; the
statement extracted from s2 is not.

3In subsequent studies of relation extractors (§5), we al-
low extractors to lightly introduce new tokens, such as adding
the word “is” in relations expressed as noun phrases.

4Linguists sometimes use the term “acceptability” to refer
to human judgements of the well-formedness of utterance.
See Sprouse and Schütze (2014) for an overview.
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Only acceptable relation statements are permit-
ted in a summary. The set of all possible accept-
able relation statements is called the candidate
set, denoted C. We refer to the task of identify-
ing all acceptable relation statements as the candi-
date set generation task. Identifying a candidate
set presents a subsequent problem of choosing the
best collection of K relation statements from C to
create a summary. We refer to this second step as
the summary construction task.

As in traditional summarization (Das and Mar-
tins, 2007; Nenkova et al., 2011), a good relational
summary should (i) be readable, (ii) include the
most important aspects of the relationship between
(t1) and (t2), (iii) avoid redundancy, and (iv)
cover the full diversity of topics in the mention set.

Relational summaries might be presented with
different kinds of user interfaces. In cases where
a user seeks to browse many relationships, a sum-
mary might be displayed as a concept map (Falke
and Gurevych, 2017a), where the two terms are
vertexes in a directed graph and their relationship
is printed along the edge label between them. In
cases where user wants to investigate a specific
relationship, a relational summary might be dis-
played as a snippet box: a short list of sentences
which begin and end with the two terms. Figure 1
shows a snippet box and concept map. In a snippet
box, both the number of lines in the summary and
the length of the lines in the summary is longer
than in a concept map.

3 Related work

Relational summarization intersects with a diver-
sity of prior work from natural language process-
ing, including work on relation extraction, sum-
marization and sentence compression.

Traditionally, the goal of relation extraction is
to cull structured facts for knowledge databases
from unstructured text. Often, such facts take
the form of a 3-tuple which defines a relationship
between two arguments, such as (arg1=Angela
Merkel, rel=met with, arg2=Theresa May). If ex-
tractors do not make use of a predefined schema,
the task of finding relations is called Open Infor-
mation Extraction (OpenIE). OpenIE systems5 of-
fer an off-the-shelf method for generating a candi-
date set for a relational summary. Their output can
easily be linearized to (t1) r (t2) statements by

5There are many available OpenIE systems. See
Stanovsky and Dagan (2016) for an inventory of major work.

simply concatenating the three arguments of the
triple to form a string.

However, we find that the recall of relation ex-
tractors is often too low to summarize many men-
tion sets. We measure this disadvantage exten-
sively in section §5.1. One reason for their poor
performance might be that extractors have goals
and assumptions which are poorly suited to the re-
lation summarization task. In relation extraction,
the aim is to find relation strings that recur for
many different entity pairs, which allows such sys-
tems to build knowledge databases. For instance,
relation extraction might be used to build tables
of world leaders who rel=“met with” other world
leaders in order to analyze international politics.
From this perspective, long, sparse, heterogenous
and detailed relation strings which might apply
only to a pair of specific arguments are unde-
sirable, as they make it difficult to find general
patterns across many different entity pairs. For
example, the influential ReVerb OpenIE system
(Fader et al., 2011) excludes “overly-specific re-
lation phrases” which apply only to two entities.
One way to help ensure that relations generalize
across entity pairs is to strive for arguments which
are as short as possible, a common goal in OpenIE
(Stanovsky and Dagan, 2016).6

Our method for generating a candidate set is
closer to approaches from sentence compression
(Knight and Marcu, 2002; Clarke and Lapata,
2008; Filippova and Altun, 2013; Filippova et al.,
2015), an NLP task which seeks to make a source
sentence shorter while preserving the most impor-
tant information and producing readable output.
We show that our sentence compression approach
allows us to achieve higher readability than off-
the-shelf relation extractors (§5).

Sentence compression is often used in tradi-
tional extractive summarization to make more ef-
ficient use of a budgeted summary length. We dis-
cuss summarization further in §6, where we con-
sider how existing work might be applied to the
problem of selecting K statements from the can-
didate set.

6Methods from the relation extraction literature which
seek to deduce facts from extracted relations, such as Riedel
et al. (2013), might also help identify useful summaries in fu-
ture work. Relations which imply that other relations are true
might make good summaries.

1762



Sampled unacceptable compression Auburn police are investigating the death of a Tuskegee woman who died ...
Known acceptable compression Drug firm Glenmark has opened its new facility in Argentina which would ...

Table 2: Examples of known acceptable and presumed unacceptable training examples, with entities shown in
bold. We refer to crossed out spans as outside of the compression. Our model uses grammatical information from
inside and outside of the compression to predict the acceptability of a compression.

4 Query-focused candidate set
generation

Traditionally, relation extraction begins with a
fixed notion of what constitutes a desirable “rela-
tion” between two arguments, defined by a prede-
fined schema, a syntactic template (Fader et al.,
2011), or a collection of seed examples (Angeli
et al., 2015). The relation extraction task is then
to correctly identify spans in which arguments are
joined by a relation.

The relational summarization problem is some-
what different: we begin with a pair of query
terms, (t1) and (t2), and we wish to learn the
nature of their relationship. Therefore, any state-
ment which coherently describes any relationship
between the two query terms is potentially of in-
terest, even if it does not match prior expectations
of what constitutes a relation.

We thus approach the candidate set generation
task as a specialized form of sentence compres-
sion: we attempt to predict if a sentence from
the text can be coherently compressed to the form
(t1) r (t2). Table 2 shows examples of sentences
which can and cannot be shortened to this form.

We use gold standard sentence–compression
pairs from the Filippova and Altun (2013) dataset
to supervise this prediction. In sentence compres-
sion corpora, gold standard compressions must
be acceptable sentences. Therefore, compressions
from the dataset which happen to begin and end
with a named entity,7 once extracted from source
sentences, can serve as positive examples of ac-
ceptable relation statements. On the other hand,
randomly chosen spans of the form (t1) r (t2),
which happen to arise in source sentences, are
very often not acceptable as standalone sentences.
These randomly sampled spans can serve as exam-
ples of unacceptable relation statements. We then
predict acceptability with supervision from known
gold acceptable and sampled, presumed incoher-
ent examples.8

7https://github.com/google-research-datasets/
sentence-compression

8We manually inspect 100 negative examples, selected at
random, and find that roughly 80% are in fact incoherent.

Filtering the original dataset in this manner9

yields 17,529 positive and 30,266 negative sen-
tences. We then downsample negative training
examples to create two balanced classes of equal
size, and use 81% of data for training, 9% for val-
idation and the remaining 10% for testing.

Let p(c = 1 | s, (t1) r (t2)) indicate the
probability that a span of form (t1) r (t2) ex-
tracted from sentence s is coherent. We model
p(c = 1|s, (t1) r (t2)) using logistic regres-
sion, with features based on the position of part-
of-speech tags and dependency edges in s. Specif-
ically, each sentence in the filtered dataset contains
a span of the form (t1) r (t2). We refer to the to-
kens in this span as in the compression because
a user would see these tokens in a relation state-
ment compressed from s. Each sentence also con-
tains spans of tokens which are outside of the com-
pression because they are deleted from the original
source sentence to create a relation statement. Ta-
ble 2 displays examples.

Our feature vector records the counts of how
many times each part-of-speech tag in the tagset
occurs in the compression and also independently
records the counts of how many times each part-
of-speech tag occurs out of the compression. We
refer to the count of each part-of-speech tag in the
compression and the count of each part-of-speech
tag out of the compression as Φ. We also count the
occurrence of each possible dependency edge la-
bel in the compression, and the count of each pos-
sible dependency edge label out of the compres-
sion. If a label’s dependent lies in the compres-

9We also exclude randomly chosen spans which happen to
encompass the entire source sentence and exclude randomly
chosen spans where (t1) and (t2) are joined by only edges
of type compound in the dependency graph of the compres-
sion (e.g. “Coup leader Cedras ...”). We use CoreNLP version
3.8 to extract enhanced++ Universal Dependencies (Man-
ning et al., 2014; Schuster and Manning, 2016; Nivre et al.,
2016). We also filter positive and negative examples where
the span between (t1) and (t2) is longer than J=75 charac-
ters, to simulate a space constraint in a user interface. Finally,
we remove all punctuation from the end of the sentence for
both positive and negative examples because all gold positive
compressions end in punctuation marks. For positive exam-
ples, if the compressed version of a sentence deletes tokens
between t1 and t2, we replace the span between t1 and t2 in
the source sentence with the compression.
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p(c = 1|s, (t1) r (t2)) (t1) r (t2)
.005 Jean-Bertrand Aristide that the United States
.010 United States since the Rev. Jean-Bertrand Aristide

... ...
.894 United States ousted former President Jean-Bertrand Aristide
.976 Jean-Bertrand Aristide, left Haiti for the United States

Table 3: Highest and lowest coherence predictions from the set United States – Jean-Bertrand Aristide

sion, we consider the label in the compression.10

We refer to these dependency edge counts as Ψ.
Our final feature vector, Ω, is defined as the con-
catenation of Ψ and Φ.

Features Test accuracy
Φ (pos) .858
Ψ (deps) .892
Ω (deps & pos) .896

Table 4: Test accuracies.

We implement our model with scikit-learn (Pe-
dregosa et al., 2011) and manually tune the inverse
regularization constant to the setting, c = 1, which
achieves the highest accuracy on the validation set.
For evaluation, a sentence is presumed coherent if
p(c = 1|s, (t1) r (t2)) > .5. Using the fea-
ture vector Ω we achieve an accuracy of .896 on
the test set. We also present results using only the
Ψ and Φ features (table 4) because reliable de-
pendency parses are not available in some settings
(Blodgett et al., 2016; Bamman, 2017).

Two limitations of this approach suggest areas
for future work. First, in some cases, the rela-
tionship between (t1) and (t2) might not be ex-
pressed in the form, (t1) r (t2), as in “Russia and
France signed an agreement”. In order to gener-
ate candidate relation statements it would be help-
ful to lightly rewrite the sentence, as in “Russia
signed an agreement with France”. Additionally,
a sentence might express a relationship between
two terms but be too long to display on a concept
map or a snippet box. In these cases, it would be
helpful to compress the sentence to create a more
concise relation statement.

5 Experiments

Any relational summarization system should de-
liver a high-quality summary when a user queries
for two terms. Therefore, ideally, a system should
generate the largest possible candidate set, without
returning incoherent relation statements. We thus

10Enhanced dependencies allow for a token to have more
than one incoming edge (i.e., multiple parents). If there is
more than one incoming edge, we pick an edge at random.

evaluate our query-focused generation method in
terms of both readability and yield (total relation
statements recalled). Our method generates three
times more relation statements than OpenIE sys-
tems, allowing for summarization of two times
more query pairs. We also achieve higher scores
in a test of human coherence judgements (table 5).

More concretely, we evaluate our compression-
based method for generating candidate sets against
two relation extractor baselines on two very differ-
ent corpora: (1) all comments from the large “rela-
tionships”11 subreddit from June, 2015 – Septem-
ber, 201712 and (2) a collection of New York
Times articles from 1987 to 2007 which men-
tion the country “Haiti” (Sandhaus, 2008). For
each corpus, we first find a collection of multi-
word phrases using the phrasemachine pack-
age (Handler et al., 2016) which extracts all multi-
word, noun phrase terms from the corpus.

After extracting all terms, we determine the top
100 terms, by count. We then examine all non-
empty mention sets for all possible combinations
of two top terms. A mention set is a set of sen-
tences which mention two terms (§2). We exam-
ine all mention sets because an investigator should
be able to investigate any entity she chooses while
analyzing a corpus.

In subsequent experiments, we require all rela-
tion statements be less than or equal to J = 75
characters, which excludes overly verbose relation
statements which are unsuitable for many user in-
terfaces.

5.1 Yield experiments

Off-the-shelf relation extractors generate 3-tuples
from each mention set. Some of those 3-tuples
might have one argument which is equal to (t1)
and another argument which is equal to (t2).
Each such 3-tuple can be linearized into a string
of the form (t1) r (t2) to generate a candidate
set. However, we find that using extractors in this

11“relationships” refers to interpersonal relationships
12https://medium.com/@jason 82699/

pushshift-reddit-api-md-c2d70745c270
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manner achieves a low yield (total number of ex-
tracted relations). A low yield is undesirable both
because it limits the number of mention sets which
may be summarized and generates fewer relation
statements from which to select an optimal rela-
tional summary.

More precisely, we identify the 3-tuples which
an OpenIE system extracts from a mention set
such that exactly one argument from the triple is
equal13 to (t1) and exactly one argument from the
triple is equal to (t2). We refer to these 3-tuples as
“matching”. We then count (1) the total number of
mention sets which contain at least one matching
3-tuple and (2) the total number matching 3-tuples
across all mention sets. We refer to such counts as
the yield of a candidate generation system.

We measure the yield of Stanford OpenIE (An-
geli et al., 2015) and ClausIE (Del Corro and
Gemulla, 2013) on the New York Times and Red-
dit corpora, and compare each system to our
compression-based approach (§4).14 We mea-
sure these two relation extractors because Stanford
OpenIE is included with the popular CoreNLP
software and ClausIE achieves the highest recall
in two systematic studies of relation extractors
(Stanovsky and Dagan, 2016; Zhang et al., 2017).

We find that, for the great majority of sentences,
relation extractors do not extract any relations be-
tween (t1) and (t2). Moreover, for many men-
tion sets, the number of relations extracted with
off-the-shelf systems is often zero. We show these
results in table 5.

This suggests that although relation summariza-
tion is superficially similar to relation extraction,
off-the-shelf extractors are poor tools for creating
textual units to summarize mention sets. Very of-
ten, two terms are related to each other in ways
which are simply not captured by relation extrac-
tors.

13Note that OpenIE systems might not extract the literal
string (t1) or (t2) as arguments. For instance, if (t1)
is “Merkel” the OpenIE system might extract the argument
“Angela Merkel”. If some term and some argument from a
relational triple share the same head token in the dependency
parse of the sentence we say that they are equal. Falke and
Gurevych (2017c) employ a similar equality criterion. We
tokenize with CoreNLP. In extremely rare cases, tokenization
mismatches between CoreNLP and ClausIE make it impossi-
ble to apply this criterion.

14For our compression-based approach, we count all cases
where p(c = 1 | s, (t1) r (t2)) > .5 as extracting a relation
statement.

5.2 Human acceptability judgments
Our compression-based method achieves higher
yield than off-the-shelf relation extractors. How-
ever, because all sentences in a mention set include
(t1) and (t2), it is always possible to generate a
very large candidate set by simply extracting all
spans between (t1) and (t2) from the mention
set, regardless if such relation statements are co-
herent. We examine if gains in yield come at the
expense of acceptability by presenting randomly
selected relation statements to workers on the plat-
form Figure Eight15 (formerly Crowdflower) and
asking workers to rate the extent to which they
agree or disagree as to whether a relation state-
ment is a “coherent English sentence” on a scale
from 1 to 5. Each relation statement is shown to
three workers in total.16 Our approach is broadly
similar to the readability experiments reported in
Filippova and Altun (2013).

We solicit 481 total judgements from work-
ers and calculate the mean acceptability score, by
method and corpus (table 5). Our method achieves
the highest mean acceptability score for both cor-
pora.

Additionally, aggregating judgments across cor-
pora, we observe a statistically significant (p=8 x

10−4) difference between our method (µ=3.89, σ=

1.38) and Stanford OpenIE (µ = 3.33, σ = 1.46) in
a two-tailed t-test. Our method also achieves a
higher mean score than ClausIE (µ=3.69, σ=1.44),
although the difference is not significant.

6 Future work: summary construction
task

After a relational summarization system generates
a candidate set, the next task is selecting the top
K candidate statements for inclusion in a sum-
mary (figure 2). In this work, we do not at-
tempt this summary construction task. However,
in this section, we analyze the nature of the rela-
tional summarization challenge by describing dif-
ferences among mention sets, and how these dif-
ferences might affect future efforts at summariza-
tion.

We observe that mention sets are inherently het-
erogenous. Some describe a single, temporally-

15https://www.figure-eight.com/
16We use seven test questions to filter out careless or bad

faith responses. Workers must answer 70% of test questions
correctly to be included in a task’s results. We construct test
questions blindly, without knowledge of the system which
generated the relation statement.

1765



Yield Coherence

Total non-empty pairs Total rel. stmts. Mean judgment

Haiti Reddit Haiti Reddit Haiti Reddit
ClauseIE 128 1,121 279 3,949 3.67 3.71
StanfordOIE 443 1,488 972 5,605 3.69 2.97
This work 739 3,766 2,954 21,495 3.94 3.85

Upper bound 2,472 4,496 43,051 123,760 Range: 1-5

Table 5: We compare Stanford OpenIE, ClausIE and our headline-based compression method for the candidate set
generation task on two different corpora (Haiti articles from New York Times, and the Reddit relationships forum)
in terms of (1) how many entity pairs have a non-empty candidate set, (2) how many total relation statements are
generated, and (3) the average human judgment of acceptability (§5.2). For yield measures, the upper bound on
the left shows the total number of non-empty entity pairs (i.e. how many pairs actually cooccur in at least one
sentence, out of all

(
100
2

)
= 4950 theoretically possible pairs) and the upper bound on the right shows the total

number of sentences in the corpus which mention at least two of the terms. Our method summarizes more entity
pairs across both corpora, and achieves the highest acceptability scores among all techniques (§5.2).

focused event. Others describe a consistent, un-
changing relationship. Still others describe intri-
cate sagas unfolding across time. For instance,
within the Haiti corpus, one mention set describes
events in 1994 when General Cedras fled to the
Dominican Republic. This mention set is quite
different from a set of sentences in the Reddit cor-
pus in which users assert that video games are a
deal breaker in interpersonal relationships. Fig-
ure 3 displays hand-crafted summarizes for these
mention sets.

In general, the properties which guide how a
mention set should be summarized are its size,
topical diversity, temporal focus and the degree
to which the set expresses states or events. In this
section, we use the notation (t1) – (t2) to refer
to a mention set. For instance, New York – London
would refer to all sentences from a corpus which
contain the names of both of these cities.

Size. In general, because many word types in a
corpus occur infrequently (Zipf, 1949), the num-
ber of sentences which mention (t1) and (t2)
is often small. For instance, of the 320,670 total
sentences in the Haiti corpus, only 160 mention
“Jean-Bertrand Aristide” and the “United States,”
which is nonetheless among the larger mention
sets in the corpus. In general, larger sets often
describe complex and noteworthy relationships,
which are more difficult to summarize (figure 3c).
Note that although individual mention sets are of-
ten small enough to simply read (unlike in some
multi-document summarization settings), summa-
rization of mention sets is still quite useful, as
practitioners will often seek to understand many
different relationships as they investigate a new

topic (e.g. figure 1).

Topical diversity. In general, some mention
sets are focused on a single topic, others are more
diffuse. For instance, after losing power in a sec-
ond, 2004 coup Haiti’s Jean Bertrand Aristide was
forced into exile in South Africa. The mention
set for Jean Bertrand Aristide – South Africa con-
tains twelve sentences which (mostly, but not ex-
clusively) describe Aristide’s removal from power
and life in exile in South Africa from 2004 on-
wards. Detecting and including diverse or com-
plex topics is a classic aim of traditional multi doc-
ument summarization (e.g. Lin and Hovy (2000)),
which might be applied in this new setting.

Temporal focus. In timestamped corpora such
as news archives or social media posts, some men-
tion sets are focused within certain time periods;
others are spread across the span of the corpus.
For instance, in the Haiti corpus, General Cedras –
Dominican Republic are only mentioned together
during a few months of 1994 (figure 3b). A good
summary for this mention set should describe a
central event from this time period: when General
Cedras fled to the Dominican Republic. On the
other hand, Jean-Bertrand Aristide – United States
are mentioned together in 67 months in the cor-
pus, covering a number of important events spread
across decades (figure 3c). For this mention set, a
narrow summary focusing on a single event would
be inappropriate.

Many existing methods specialize in detecting
(Chaney et al., 2016), tracking (Allan et al., 1998)
and summarizing evolving topics in timestamped
documents. Some systems focus specifically on
summarizing event “spikes”: both in news (e.g.
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video games and I don’t want that to be a deal breaker
video games was a deal breaker
video games is a deal breaker

(a) A hand-crafted summary for the mention set video games–deal breaker. The mention set contains many stative descriptions
of the relationships between the two terms, indicating that a summary might focus on presenting fixed relationships rather than
evolving events.

General Cedras ... last week fled to the Dominican Republic
Dominican Republic ... has indicated it will not permit permanent residence by General Cedras

(b) A hand-crafted summary for the mention set General Cedras–Dominican Republic. The set has a high number of mentions
which all fall within a several month span, hinting at a relationship focused on a particular event at a particular point in time.

Aug. 1994 United States supports the restoration of the democratically elected president of Haiti, Jean-Bertrand Aristide
Oct. 1995 Jean-Bertrand Aristide was restored to power a year ago under the watch of United States
Sep. 2002 United States and other donors withheld contributions, hoping to spur President Jean-Bertrand Aristide
Mar. 2004 Jean-Bertrand Aristide asserted that he had been driven from power by the United States

(c) A hand-crafted summary for the mention set Jean-Bertrand Aristide–United States, one of the largest in the Haiti corpus.
The mention set describes a complex, shifting relationship; at different times over several decades, Aristide was a beneficiary,
opponent and critic of the United States.

Figure 3: Mention sets are heterogenous, requiring a diversity of summarization techniques. In this work, we
analyze the diversity of mention sets towards future attempts that the relational summarization problem.

Alfonseca et al. (2013)) and on social media (e.g.
Nichols et al. (2012)). In some cases, the event de-
scribed in a mention set will even match the loose
form of a common narrative template (Chambers
and Jurafsky, 2008), such as when the two terms
are codefendants at a trial.

Mention sets which are more temporally diffuse
are also more challenging. Update summarization
refers to summarizing changes introduced by new
documents, possibly from a high volume stream
(Kedzie et al., 2015). This form of summarization
is important in cases when a relationship shifts or
changes through time, as in figure 3c.

States or events. Mention sets may be coarsely
divided into cases where the set expresses a stable
state or property of the world in the eyes of the
author (e.g. “England is a close ally of the US” or
“video games are a deal breaker”) and cases where
the relation statement expresses a change or event
(e.g. “Gen. Cedras fled to the Dominican Repub-
lic” or “dad left mom”). In many interesting cases,
the mention set contains a mix of stative and even-
tive relation statements which express a narrative,
such as “America is an ally of South Korea” and
“America sent a destroyer to South Korea”.

Defining (Pustejovsky, 1991), extracting
(Aguilar et al., 2014) and determining relation-
ships between events (Hovy et al., 2013) is a
challenging research area. But a better under-
standing of states and events would improve
future work. For instance, if a summary includes
the event “Jolie divorced Pitt”, it does not need

to include the stative relation phrase “Jolie was
married to Pitt”. To our knowledge, there is no
prior work which considers how fine-grained
relations between states and events might be
employed for summarization. MacCartney and
Manning (2009) offer a framework which might
serve as a useful starting catalog.

Conclusion

This work defines a problem which lies at the
intersection of typically unrelated fields in natu-
ral language processing, summarization and rela-
tion extraction. We present a new method which
finds large numbers of natural language expres-
sions which coherently describe relationships. We
also analyze the challenges of the relational sum-
marization task, by investigating and describing
the inherent heterogeneity of mention sets. Be-
cause of this heterogeneity, we argue that future
attempts to summarize relationships will likely re-
quire a diversity of models and techniques.
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Abstract
This work takes a first step toward movie
content analysis by tackling the novel task
of movie overview generation. Overviews are
natural language texts that give a first impres-
sion of a movie, describing aspects such as its
genre, plot, mood, or artistic style. We create a
dataset that consists of movie scripts, attribute-
value pairs for the movies’ aspects, as well
as overviews, which we extract from an on-
line database. We present a novel end-to-end
model for overview generation, consisting of
a multi-label encoder for identifying screen-
play attributes, and an LSTM decoder to gen-
erate natural language sentences conditioned
on the identified attributes. Automatic and hu-
man evaluation show that the encoder is able
to reliably assign good labels for the movie’s
attributes, and the overviews provide descrip-
tions of the movie’s content which are infor-
mative and faithful.

1 Introduction

Movie summarization is the task of automatically
summarizing a screenplay in order to gain a gen-
eral impression of its content. This may include
describing the movie’s main characters and plot,
its genre, artistic style, and so on. As more and
more movies are being produced every year1, there
is an ever growing need to facilitate this task. Po-
tential applications include producing shorter ver-
sions of scripts to help with the decision mak-
ing process in a production company, enhancing
movie search by generating descriptions of what
the movie is about, and notably, supporting movie
recommendation engines by abstracting over spe-
cific keywords to more general concepts.

Figure 1 gives an example of the type of movie
content analysis we would like to obtain auto-
matically. The information is taken from Jinni, a

1According to http://www.boxofficemojo.com/ dur-
ing 2009–2016, movie releases went up from 536 to 729.

Mood: Suspenseful, Captivating, Tense, Scary
Plot: Serial Killer, Special Agents, Investigation,

Mind Game, Psychopath, Crimes, Deadly,
Law Enforcement, Mind and Soul, Rivalry

Genre: Crime, Thriller
Style: Strong Female Presence
Attitude: Serious, Realistic
Place: Maryland, USA, Virginia
Period: 20th Century, 90s
Based on: Based on Book
Praise: Award Winner, Blockbuster, Critically Ac-

claimed, Oscar Winner, Modern Classic,
Prestigious Awards

Flag: Brief Nudity, Sexual Content, Strong Violent
Content

The Silence of the Lambs can be described as tense, captivat-
ing, and suspenseful. The plot revolves around special agents,
mind games, and a psychopath. The main genres are thriller
and crime. In terms of style, The Silence of the Lambs stars a
strong female character. In approach, it is serious and realis-
tic. It is located in Maryland and Virginia. The Silence of the
Lambs takes place in the 1990s. It is based on a book. The
movie has received attention for being a modern classic, an
Oscar winner, and a blockbuster. Note that The Silence of the
Lambs involves brief nudity and sexual content.

Figure 1: Jinni attributes, their values, and overview for
“The Silence of the Lambs”. Underlined attribute val-
ues appear in the overview.

large database (and movie recommendation en-
gine) which indexes movies based on attributes
and their values2 (see the top half of Figure 1)
and further aggregates these into a comprehen-
sive overview (see the second half of Figure 1).
Jinni’s movie attributes were created by film pro-
fessionals based on analysis of user reviews and
metadata. There are hundreds, and they aim to
describe aspects such as mood, style, plot, and
setting for any released movie or TV show. Al-
though some of these attributes could not be pos-
sibly ascribed without information from external
sources (e.g., Praise, or Based on), others could
be inferred by watching the movie or reading the

2Throughout this paper attributes are in italic font and
their values in sans serif.
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screenplay (e.g., Genre, Plot, Flag, Mood, Place).
This work takes a step toward automatic script

summarization by jointly modeling the tasks of
movie attribute identification and overview gen-
eration. Specifically, we propose a novel neu-
ral network architecture which draws insights
from encoder-decoder models recently proposed
for machine translation (Bahdanau et al., 2015)
and related sentence generation tasks (Wen et al.,
2015; Mei et al., 2016; Lebret et al., 2016). Our
model takes the screenplay as input and gener-
ates an overview for it. Rather than representing
the script as a sequence, we employ feed-forward
neural networks (Zhang and Zhou, 2006; Kurata
et al., 2016) to encode the screenplay into var-
ious attributes (e.g., Plot, Genre) and their la-
bels (e.g., thriller, romance), viewing movie con-
tent analysis as a multi-label classification prob-
lem. Our decoder generates movie overviews us-
ing a Long Short-Term Memory network (LSTM;
Hochreiter and Schmidhuber, 1997), a type of re-
current neural network with a more complex com-
putational unit which is semantically conditioned
(Wen et al., 2015, 2016) on this attribute specific
representation. Our model is trained end-to-end
using screenplays and movie overviews as the su-
pervision signal.

In both automatic and human-based evaluations
our neural network architecture outperforms com-
petitive baselines and generates movie overviews
which are well-received by human judges. To the
best of our knowledge, this is the first work to au-
tomatically analyze and summarize the content of
screenplays.

2 Related Work

Recent years have seen increased interest in
the computational analysis of movie screenplays.
Ye and Baldwin (2008) create animated story-
boards using the action descriptions of movie
scripts. Danescu-Niculescu-Mizil and Lee (2011)
use screenplays to study the coordination of lin-
guistic styles in dialog. Bamman et al. (2013)
induce personas of film characters from movie
plot summaries. Agarwal et al. (2014a; 2014b;
2015) extract social networks from scripts, cre-
ate xkcd movie narrative charts, and automate the
Bechdel test which is designed to assess the pres-
ence of women in movies. Gorinski and Lapata
(2015) summarize screenplays by selecting impor-
tant scenes. Our work joins this line of research

in an attempt to automatically induce information
pertaining to a movie’s content such as its genre
and plot elements.

There has been a surge of interest recently in
repurposing sequence transduction neural network
architectures for various generation tasks such as
machine translation (Sutskever et al., 2014), sen-
tence compression (Chopra et al., 2016), and sim-
plification (Zhang and Lapata, 2017). Central to
these approaches is an encoder-decoder architec-
ture modeled by recurrent neural networks. The
encoder reads the source sequence into a list of
continuous-space representations from which the
decoder generates the target sequence. Previously
proposed architectures are not directly applicable
to our task for at least two reasons: (a) the corre-
spondence between screenplays and overviews is
very loose, and (b) the screenplay is not strictly
speaking a sequence (a screenplay is more like
a book consisting of thousands of sentences),
and cannot be easily compressed into a vector-
based representation from which to generate the
overview.

Rather than attempting to decode the overview
directly from the screenplay, we encode the lat-
ter into attribute-value pairs which we then decode
into overviews. We conceptualize the generation
task as a joint problem of multi-label categoriza-
tion, where each screenplay is assigned to one or
more categories, and content-sensitive natural lan-
guage generation. Many machine learning tech-
niques have been proposed for building automatic
text categorization systems (see Sebastiani, 2002
and Dalal and Zaveri, 2011 for overviews), includ-
ing neural networks (Belanger and McCallum,
2016; Kurata et al., 2016). Our encoder is a feed-
forward neural network, which, however, is able to
capture label interactions which are important for
our content analysis task. Our decoder employs an
enhanced LSTM architecture which directly max-
imizes the probability of the overview given the
screenplay’s attribute values. Conditional LSTMs
have been applied to various related tasks, includ-
ing image description generation (Vinyals et al.,
2015), the verbalization of database records (Mei
et al., 2016; Lebret et al., 2016), and the generation
of dialogue acts (Wen et al., 2015, 2016).

3 The Jinni Movie Dataset

Our dataset was built on top of ScriptBase, a col-
lection of 1,276 movie scripts, which Gorinski and
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Attribute Jinni Frequent Merged
Mood 29 19 19
Plot 406 101 101
Genre 31 31 31
Attitude 8 8 8
Place 173 53 24
Flag 9 9 6

Table 1: Movie attributes and their values.

Lapata (2015) obtained by automatically crawling
web-sites such as imsdb.com. We crawled Jinni3

in order to obtain attributes and overviews (see
Figure 1) for each movie in ScriptBase. As men-
tioned earlier, attributes have values which are es-
sentially labels/tags describing the movie’s con-
tent, whereas overviews are short summaries giv-
ing a first impression of the movie. The crawl re-
sulted in 917 movies which Jinni and ScriptBase
had in common. We further split these into train-
ing, development and test sets, with 617, 200, and
100 instances, respectively. We concentrate on the
six types of attributes shown in Table 1 whose val-
ues we hypothesize can be inferred from analyzing
the movie’s screenplay.

Table 1 provides an overview of the number of
labels used in our experiments. Jinni contains a
wealth of attribute values varying from nine for
Flag to more than 400 for Plot. Additionally, value
names for some attributes are synonyms or near-
synonyms (e.g., Nudity and Brief Nudity for Flag).
We reduced the set of attribute values to those that
occurred most frequently (column Frequent in the
table) and merged synonyms into a common label
(column Merged).

4 Neural Network Architecture

We could approach the movie overview genera-
tion task using an attention-based encoder-decoder
model (Bahdanau et al., 2015). The encoder would
transform the screenplay into a sequence of hid-
den states with an LSTM (Hochreiter and Schmid-
huber, 1997) or another type of computational
unit (Cho et al., 2014). The decoder would use
another recurrent neural network to generate the
overview one word at time, conditioning on all
previously generated words and the representation
of the input, while an attention mechanism would
revisit the input sequence dynamically highlight-
ing pieces of information relevant for the gener-
ation task. As mentioned earlier, viewing screen-

3Dated on 2015/04/18 and available from http://www.
jinni.com/.
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Figure 2: Neural network architecture: given feature
vector x representing a screenplay, we employ feed-
forward multi-label classification networks to encode
the movie into a content vector pθ representing at-
tribute labels; this encoding is fed into an LSTM with
a content selection cell.

plays as a sequence of sentences is problematic
both computationally and conceptually. Even if
we used a hierarchical encoder (Tang et al., 2015;
Yang et al., 2016) by first building representations
of sentences and then aggregating those into a rep-
resentation of a screenplay, it is doubtful whether
a fixed length vector could encode the content of
the movie in its entirety or whether the attention
mechanism would effectively isolate the parts of
the input relevant for generation.

We therefore propose an architecture that con-
sists of two stacked neural network models for
the tasks of movie attribute identification and
overview generation. Figure 2 illustrates our
model. We use simple feed-forward neural net-
works to impose some structure on the input by
identifying the labels that most likely apply to the
screenplay. We subsequently employ a semanti-
cally conditioned LSTM (Wen et al., 2015, 2016)
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to select the content for which to generate sen-
tences. This architecture is advantageous for a
number of reasons. Firstly, by imposing structure
on the screenplays, the generation network is faced
with a more compact and informative representa-
tion. This allows us to make use of a content se-
lection LSTM similar to Wen et al., (2015; 2016),
generating fluent and label-specific outputs. Sec-
ondly, it enables us to train the screenplay en-
coder (aka classification network) and the decoder
jointly, in an end-to-end fashion.

4.1 Multi-label Encoder

As shown in Figure 1, the overview highlights var-
ious aspects of the movie, essentially devoting a
sentence to each attribute. This observation moti-
vates us to encode the screenplay as a set of at-
tributes (with their values) and then decode these
into a sentence one by one. We treat attribute en-
coding as a multi-label classification problem: an
attribute (e.g., Genre or Plot), will typically have
multiple values (aka labels) which are suitable
for the movie and should occur in the generated
sentence. Furthermore, these labels naturally in-
fluence each other. For example, a movie whose
Genre is Crime is also likely to be a Thriller while
it is less likely to be a Parody. In traditional multi-
label classification such interactions are either ig-
nored (Read et al., 2011; Tsoumakas and Katakis,
2006; Godbole and Sarawagi, 2004; Zhang and
Zhou, 2005), or represented by label combina-
tions (Tsoumakas and Vlahavas, 2007; Read et al.,
2008). A few approaches assume or impose an ex-
isting structure on the label space (Schwing and
Urtasun, 2015; Chen et al., 2015; Huang et al.,
2015; Jaderberg et al., 2014; Stoyanov et al., 2011;
Hershey et al., 2014; Zheng et al., 2015).

We employ a neural network approach with the
aim of abstracting the screenplay into a set of
meaningful labels whose correlations are discov-
ered automatically, during training. As shown on
top of Figure 2, our encoder is a feed-forward neu-
ral network where individual neurons represent the
labels to be classified. The input to the network is
a feature vector x representing the screenplay (we
discuss the specific features we use in more detail
shortly):

hn = σ(Wnxn) (1)

The input is split into k segments by feature type,
and the feature segments are fed into k separate
fully connected hidden layers. The hidden layer

outputs are then combined using simple element-
wise addition:

f = h1⊕h2⊕·· ·⊕hk (2)

The combined feature layer is used to compute
an l-sized output layer, where l corresponds to the
size of the classification label set. The final activa-
tion of the output units is obtained by applying the
sigmoid function to the output layer:

O = σ(Wo f ) (3)

In order to better capture label interactions, we
adapt a method of network initialization recently
introduced in Kurata et al. (2016). In this ap-
proach, instead of initializing the model’s output
weights Wo from a uniform distribution, the first p
rows of the weight matrix are initialized according
to λ patterns observed in the data. To this end, we
initialize the nth row of Wo with pattern λn (equa-
tion (4)), which is a vector corresponding to the
nth label-assignment observed in the training data:

W n
o = i(λn) (4)

The initialization weight i for unit l of pattern λn

is set to 0 if the corresponding label is not present
in the given instance; or to the upper bound UB
of the normalized initialization weights of hidden
layer h and output layer o, scaled by the number
of times c the pattern occurs in the data:

i(λl
n) =

{√
c×UB if λl

n = 1
0 otherwise

(5)

UB =

√
6√

|h|+ |o|
(6)

We follow Glorot and Bengio (2010) in using
√

6
as normalization factor for UB, and limit the num-
ber of patterns λ to the most frequently observed
label assignments.

Our model uses three types of features repre-
senting the screenplay’s lexical make up, its un-
derlying character relations, and interactions.

Lexical Features An obvious feature class is the
language of the movie. Comedies will be char-
acterized by a different vocabulary compared to
thrillers or historical drama. We thus represent
each script as a vector of 7,500 dimensions corre-
sponding to the most frequent words in the train-
ing corpus. Vector components were set to the
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words’ tf-idf values. Words in scripts were fur-
ther annotated with their sentiment values using
the AFINN lexicon (Nielsen, 2011), a list of words
scored with sentiment strength within the range
[−5,+5]. We extracted several features based on
these sentiment values such as the sentiment score
of the entire movie, the number of scenes with
positive/negative sentiment, the ratio of positive to
negative scenes, and the minimum and maximum
scene sentiment. From scene headings, we were
also able to extrapolate the number of internal and
external locations per script.

Graph-based Features Our graph-based fea-
tures are similar to those described in Gorinski
and Lapata (2015). Specifically, we view screen-
plays as weighted, undirected graphs, where ver-
tices correspond to movie characters and edges
denote character-to-character interactions (essen-
tially the number of times two characters talk to
each other or are involved in a common action).
From the graph we extract features corresponding
to the number of main and supporting characters,
which we identify by measuring their centrality in
the movie network (e.g., the number of edges ter-
minating in a given node). We also estimate char-
acter polarity by summing the sentiment of each
character’s utterances as well as the ratio of posi-
tive to negative characters in a given script.

Interaction-based Features We extract features
based on how often any two characters interact,
i.e., whether they are engaged in a conversation or
in the same event (e.g., if a character kills another).
We identify interactions as described in Gorinski
and Lapata (2015) and measure the number of in-
teractions per scene and movie, the number of pos-
itive and negative interactions, and their ratio.

4.2 Movie Overview Decoder
Our decoder generates a movie overview from
the multi-label encoding described above. For
this, we adapt the LSTM architecture of Wen
et al. (2015; 2016) which was originally de-
signed for dialogue act generation (e.g., given
input inform(type=“hotel”, count=“182”, dogsal-
lowed=“dontcare”), the network outputs “there are
182 hotels if you do not care whether dogs are al-
lowed”). The network performs content selection,
i.e., decides which attribute labels to talk about,
while generating the sentences describing them.

As outlined in the lower part of Figure 2, a sig-
moid control gate feeds a content vector, p0, into

a traditional LSTM cell to generate a natural lan-
guage surface form. At each timestep t, the output
word wt is drawn from an output distribution con-
ditioned on the previous hidden layer ht−1 as well
as the previous content vector pt−1. The content
selection cell effectively acts as a sentence plan-
ner, retaining or omitting information from the
original vector p0 at every time step t to guide the
sentence generating LSTM cell. Our LSTM archi-
tecture is defined by the following equations:

it = σ(Wwiwt +Whiht−1) (7)

ft = σ(Ww f wt +Wh f ht−1) (8)

ot = σ(Wwowt +Whoht−1) (9)

ĉt = tanh(Wwcwt +Whcht−1) (10)

rt = σ(Wwrwt +Whrht−1) (11)

pt = rt � pt−1 (12)

ct = ft � ct−1 + it � ĉt + tanh(Wpc pt) (13)

where σ is the sigmoid function, it , ft ,ot ,rt ∈
[0,1]n are input, forget, output, and reading gates
respectively, and ĉt and ct are proposed cell value
and true cell value at time t.

In the original paper, the input p0 to the LSTM
is a 1-hot representation of the information that
should be included in the natural language output.
In our setup, we relax this constraint such that each
element of p0 ∈ [0,1], i.e., we directly use the out-
put of the multi-label encoder just described.

4.3 Training
The proposed architecture is trained jointly in an
end-to-end fashion, minimizing the objective:

F(θ) =∑
t

yT
t log(ŷt)+ ||pT ||+

T−1

∑
t=0

ηξ||pt+1−pt ||

(14)
where yt and ŷt are the observed and predicted
word distributions over the training data, pT is
the content vector at the final time index T , p0 is
the initial content vector as given by the encoder
network, and η,ξ are training constants. The sec-
ond term in the objective penalizes the network for
generating output without realizing all required la-
bels, while the third term deters the network from
utilizing more than one label at any given time
step.

The model is trained on pairs of scripts and sen-
tences extracted from Jinni. To give a concrete ex-
ample, a training instance for the Plot sentence
from Figure 1 would consist of the features repre-
senting the movie’s screenplay, and the overview’s
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Attributes ZeroR NB DS SVM Lib MLE
Mood 43.6 51.2 47.1 45.3 50.7 58.4
Plot 31.3 36.7 35.4 31.5 39.6 43.9
Genre 37.1 52.4 45.8 40.6 54.9 55.3
Attitude 63.0 68.5 67.3 64.0 71.6 76.5
Place 51.3 49.7 54.9 51.4 54.2 58.6
Flag 51.7 49.3 54.7 51.4 50.9 57.0
All 46.3 51.3 50.9 47.4 53.7 58.3

Table 2: Attribute identification (average %F1 across
10 folds). Best system in bold.

Plot sentence “The plot revolves around special
agents, mind games, and a psychopath.”. The Plot
multi-label network encodes the script into con-
tent vector p0, and the LSTM learns which “la-
bels” represented in p0 to talk about while its train-
ing objective discourages to leave too many labels
unmentioned. The observed output error is back-
propagated through the LSTM and the embedding
network using stochastic gradient descent (Bottou,
1991) with decaying learning rate.

5 Evaluation

In this section we report our evaluation exper-
iments. We begin by assessing how good our
encoder is at capturing screenplay content and
then proceed to evaluated the generated overviews
themselves.

5.1 How Good is the Encoder?
In order to assess encoder’s ability to induce struc-
ture over screenplays, we focus solely on the
top part of the architecture in Figure 2. Specif-
ically, we trained stand-alone models for the six
attributes shown in Table 1 on the gold data pro-
vided in the Jinni dataset. All networks used the
same features introduced earlier and were initial-
ized using the pattern-based method of Kurata
et al. (2016). To better capture the fact that we are
dealing with multi-label assignments, we used the
global error function described in Zhang and Zhou
(2006). Given the network output vector ŷ for in-
put x, the true bag of label assignments y and its
complement ȳ, the error observed for each instance
is computed as:

E =
1
|y||ȳ| ∑

(k,l)∈y×ȳ
exp(−(ŷk− ŷl)) (15)

The networks were trained with stochastic gra-
dient descent during back propagation, using the
same method as for the full model.

Attributes ZeroR Lib MLE
Mood 43.4 48.0 61.6
Plot 32.8 38.9 42.9
Genre 37.8 54.6 58.5
Attitude 61.2 69.0 73.1
Place 48.2 46.1 54.4
Flag 48.8 46.4 54.0
All 45.4 50.5 57.4

Table 3: Attribute identification (%F1; test set).

We compared our multi-label encoders (MLE)
against several baselines. These include assigning
the most frequent attribute labels to each movie
based on the attributes’ mean distribution (ZeroR),
Naive Bayes (NB), Decision Stump (DS), LibLin-
ear (Lib; Fan et al., 2008) and Support Vector Ma-
chines (SVMs; Chang and Lin, 2011). For each
comparison system, we trained a binary classifier
per attribute label using features identical to the
ones used for the MLE.

Table 2 shows F1 performance on the training
data for MLE and comparison systems, averaged
over 10 folds. As can be seen, MLE performs best,
followed by LibLinear. Table 3 compares MLE,
ZeroR, and Lib, the strongest baseline, on the test
set using F1 and the best parameters found for
each system during cross-validation. As can be
seen, MLE outperforms Lib across attributes, and
is superior to ZeroR by a large margin. F1 differ-
ences between MLE and LibLinear are significant
(p< 0.01), using approximate randomization test-
ing (Noreen, 1989).

Overall, the results in Tables 2 and 3 indicate
that the classification task is hard. This is espe-
cially true for Plot which has the largest number of
labels. Nevertheless, the multi-label encoders in-
troduced here achieve good performance on their
own, indicating that they are able to capture the
content of the screenplay, albeit approximately.

5.2 How Good is the Decoder?

We next evaluate the performance of the jointly
trained system which we call MORGAN as a short-
hand for Movie OveRview GenerAtioN model.
MORGAN is trained on pairs of screenplays and
their corresponding verbalizations in the Jinni
dataset. Unfortunately, our dataset is relatively
small for neural network training; it contains 617
movies only, i.e., there are 617 sentences for each
attribute. To alleviate this problem, we augmented
the data as follows. We extracted sentence tem-
plates from the training set (209 in total), ex-
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Mood T can be described as M1 and M2
The mood of T is M1.

Plot The plot centers around a P1, P2, and P3
The plot revolves around P1, P2, and P3

Genre The main genres are G1, G2, and G2
T is M1 and M2 movie

Attitude In approach, T is A1
The pacing is A1

Place The setting is L1
It is located in L1

Flag Note that the movie involves F1 and F2
Note that it includes F1, F2, and F3

Table 4: Template sentences extracted from Jinni
overviews. Variable T is filled by the movie’s title,
whereas M, G, P, A, L, F correspond to values for at-
tributes Mood, Genre, Plot, Attitude, Place, and Flag,
respectively.

amples of which are shown in Table 5. We re-
placed the title and attribute values with variables
(shown as capital letters in the table). We then used
the templates to generate additional data for each
movie by substituting attribute variables in tem-
plate sentences with permutations of the movie’s
gold-standard labels. We thereby obtained a total
of 31,000 training instances.

The model was trained with a learning rate
of 0.5, using a decay of 0.01 over 50 epochs, fix-
ing it for subsequent epochs. Constants η and ξ in
equation (14) were set to 10−4 and 100, respec-
tively. At test time, we used screenplay features
as input and generated one sentence per attribute.
We arranged these into an overview following the
ordering Mood � Plot � Genre � Attitude �
Place � Flag which is fixed and attested in all
overviews in our dataset.

We compared MORGAN against several sys-
tems: (1) a random baseline, selecting for each
movie and attribute type a random sentence from
the training set; (2) a nearest-neighbor baseline
(NN) which uses the same screenplay features as
MORGAN (and cosine similarity) to identify the
closest matching script in the training data, and
rehashes its overview as output; (3) an attention-
based LSTM (Bahdanau et al., 2015) trained on
script sentence pairs (31,000 in total); and (4)
six attention-based LSTMs, one per attribute type,
trained on script sentence pairs (on average 5,200
per LSTM). The attention LSTMs were trained on
the same screenplay features as MORGAN, with
the attention mechanism at each timestep t focus-
ing on parts of the input. Example overviews gen-

Models BLUE Coherence Grammaticality
Random 38.0 2.42∗ 3.83
NN 40.4 3.45 3.93
Attn 23.0 2.93∗ 3.91
typAttn 37.9 3.20 3.80
MORGAN 42.0 3.72 4.08
Jinni — 4.27 4.22

Table 5: BLEU scores and mean coherence and gram-
maticality ratings for movie overviews. ∗ significantly
different from MORGAN (p< 0.05). Best performing
system shown in bold.

erated by MORGAN, the attention LSTMs, and the
nearest neighbor system are shown in Table 6.

We evaluated system output with multi-
reference BLEU4 (Papineni et al., 2002), using
sentences from the extended gold-standard as ref-
erences. Table 5 (first column) summarizes our re-
sults. As can be seen, MORGAN outperforms the
attention based models, the nearest neighbor sys-
tem, and the random baseline. The attention-based
models cannot succinctly capture the movie’s con-
tent in order to render it into meaningful sentences.
Although the generated sentences are more or less
grammatical on their own (see Table 6), the gener-
ated overview lacks coherence, and is fairly repet-
itive. The model does not reliably learn what type
of information to focus on for the generation task.
For MORGAN this problem is alleviated during the
encoding step, which performs content distillation
prior to generating overview sentences.

5.3 How are System Overviews Perceived by
Humans?

In addition to evaluating system output automati-
cally, we are also interested in how it is perceived
by humans. To this end, we ran two judgment elic-
itation studies on Amazon Mechanical Turk. Both
experiments were conducted on 12 movies. In a
pre-test we asked 20 workers whether they had
seen the movies in our test set and chose the three
most popular ones from each of the genres Action,
Comedy, Drama, and Romance.

In our first experiment Turkers were presented
with an overview taken from the Jinni gold stan-
dard, MORGAN or one of the comparison systems
and asked to rate its coherence (i.e., whether it was
readily comprehensible or difficult to follow) on
a scale from 1 (incoherent) to 5 (coherent). Sub-
sequently, they had to rate the grammaticality of

4We use NLTK’s (http://www.nltk.org/) implementation
of BLEU, and report the interpolation of BLEU 1 through 4.
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Nearest Neighbor
The mood of Burn after Reading is stylized. The plot revolves around love and romance, motives, buddies, and friends.
Its main genres are romance, crime, and comedy. In approach, Burn after Reading is semi serious. It takes place, at least
partly, in the USA. Note that Burn after Reading involves violent content, profanity, and sexual content.

attnLSTM
The setting is Europe. It is a sci-fi, adventure, and adventure movie. Note that Burn after Reading includes violent
content. Burn after Reading is set in the USA. It is located in the USA. It is set, at least in part, in the USA.

typed attnLSTM
The mood of Burn after Reading is bleak, touching, and feel good. The plot revolves around ambition motives, love and
romance, and fall in love. It is an adventure and fantasy, and features thriller themes. In approach, Burn after Reading
is serious. Burn after Reading is set, at least in part, in the USA. Note that Burn after Reading involves violent content.

MORGAN
The mood of Burn after Reading is feel good, exciting, and clever. The plot centers around ambition, special agents,
and partners. Burn after Reading is a comedy movie. In approach, it is realistic and semi serious. It is set, at least in
part, in the USA. Note that it involves profanity.

JINNI
Burn after Reading can be described as cynical, clever, and exciting. The plot revolves around espionage , disorder,
and escapades. Burn after Reading’s main genres are comedy and crime. In approach, it is not serious and realistic.
Burn after reading is set, at least in part, in an urban environment. It is located in Virginia. Note that it involves sexual
content, profanity, and violent content.

Nearest Neighbor
Lara Croft: Tomb Raider can be described as touching, offbeat, and humorous. The plot revolves around a psychopath,
a chase, and couples motives. Its main genres are drama and comedy. In approach, Lara Croft: Tomb Raider is semi
serious. Lara Croft: Tomb Raider is set in the USA.

attnLSTM
Lara Croft: Tomb Raider is set, at least in part, in a dangerous and in a haunted house. The plot centers around buddies,
disorder, and criminal heroes motives. The plot centers around escapades, supernatural, and deadly. The setting is a
school or college environment. Note that Lara Croft: Tomb raider includes drugs/alcohol and sexual content. The mood
of Lara Croft: Tomb Raider is rough, being, and contemplative.

typed attnLSTM
The mood of Lara Croft: Tomb Raider is suspenseful, exciting, and stylized. The plot revolves around a police investi-
gation, cons and scams, and couple relations motives. Lara Croft: Tomb Raider’s main genres are fantasy, action, and
comedy. In approach, it is serious and fantastic. Lara Croft: Tomb Raider is set, at least in part, in the USA. Note that
Lara Croft: Tomb Raider involves profanity and violent content.

MORGAN
Lara Croft: Tomb Raider can be described as suspenseful and rough. The plot centers around danger, a master villain,
and deadly. Lara Croft: Tomb raider is an adventure, thriller, and action movie. In approach, it is fantastic. Lara Croft:
Tomb Raider takes place, at least partly in Europe. Note that it involves profanity.

JINNI
Lara Croft: Tomb Raider can be described as stylized, exciting, and suspenseful. The plot revolves around time travel,
a treasure hunt, and a master villain. The main genres are action, adventure, and fantasy. In approach, it is fantastical
and serious. Note that it involves violent content.

Table 6: Overviews generated by MORGAN and comparison systems for “Burn after Reading” (top) and “Lara
Croft; Tomb Raider” (bottom).

each overview sentence, again on a scale from 1
(ungrammatical) to 5 (grammatical) and decide
whether it appropriately described aspects of the
movie’s content (“Yes”, “No”, “Unsure”). We
elicited five responses for each overview across six
systems (Jinni, typAttn, Attn, Random, NN, and
MORGAN) and 12 movies. Finally, participants
had to answer a question relating to the movie’s
content, to make sure that they had actually seen
the movie. We discarded responses with wrong
answers to the content question. Examples of the
overviews participants judged are given in Table 6.

Table 5 (columns 2 and 3) summarizes the re-
sults of our first judgment elicitation study. All
systems perform well with regards to grammati-

Model Mood Plot Genre Attitude Place Flag All
Random 37.7 39.6 34.0 43.4 35.8 50.9 19.0∗
NN 78.6 67.9 71.4 66.1 58.9 91.1 58.9∗
Attn 38.2 38.2 38.2 41.8 51.0 34.5 40.0∗
typAttn 60.0 60.0 53.3 57.8 66.7 64.4 40.0∗
MORGAN 89.5 73.7 80.7 71.9 63.2 89.5 82.5
Jinni 91.1 89.3 92.9 82.1 67.9 75.0 91.1

Table 7: Proportion of sentences and overviews (All)
which describe the movie accurately. ∗ significantly
different from MORGAN (p< 0.05). Best performing
system per attribute is in bold.

cality. This is not surprising for Random and NN
which do not perform any generation. Attn and
typAttn also perform well with MORGAN achiev-
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ing highest scores for grammaticality amongst au-
tomatic systems. Grammaticality differences be-
tween the various systems in Table 5 and the Jinni
gold standard are not statistically significant (us-
ing a one-way ANOVA with post-hoc Tukey HSD
tests). Overviews generated by MORGAN are per-
ceived as more coherent in relation to those gen-
erated by comparison systems, even though the
model does not explicitly take coherence into ac-
count. MORGAN overviews are not significantly
different in terms of coherence from Jinni, ty-
pAttn, and NN, but are significantly better than
Random and Attn.

Table 7 shows the percentage of sentences (per
attribute and overall) which participants think de-
scribe the movie’s content felicitously. MORGAN

identifies most aspects of the movie successfully,
in some cases close to (Mood, Place) or even bet-
ter (Flag) than the original Jinni overview. MOR-
GAN is significantly better compared to all other
models but not significantly worse than Jinni (us-
ing a χ2 test; see last column in Table 7).

In a second experiment, participants were pre-
sented with six overviews for a movie (from Jinni,
Attn, typAttn, Random, NN, and MORGAN) and
asked to rank them (equal ranks were not allowed)
in order of relevance (i.e., whether they express
content relevant to the movie). Again, we obtained
five responses for each movie. As can be seen in
Table 8, while Jinni is ranked first most of the time,
MORGAN is ranked second followed by the NN
system. We further converted the ranks to ratings
on a scale of 1 to 6 (assigning ratings 6. . .1 to rank
placements 1. . .6) and performed and ANOVA
which showed that all systems are significantly
(p < 0.05) worse than Jinni but MORGAN is sig-
nificantly better than the comparison systems.

6 Conclusions

In this work we have presented a novel approach
to automatic movie content analysis. We have as-
sembled a new dataset which combines ScriptBase
(Gorinski and Lapata, 2015), a corpus of movie
scripts, with information gathered from Jinni, a
large movie database. We proposed an end-to-
end model for movie overview generation via
multi-attribute encoders and a semantically condi-
tioned LSTM decoder. Experimental results show
that our encoders are capable of distilling mean-
ingful structures from the screenplay. When ap-
plied to the overview generation task, our end-

Model 1st 2nd 3rd 4th 5th 6th AvgRank
Random 1.0 5.8 16.3 22.1 19.2 35.6 4.59
NN 5.8 19.2 24.0 23.1 15.4 12.5 3.60
Attn 3.8 13.5 20.2 28.8 16.3 17.3 3.92
typAttn 1.9 7.7 15.4 10.6 33.6 30.8 4.58
MORGAN 8.7 42.3 22.1 12.5 12.5 1.9 2.71
Jinni 78.8 11.5 1.9 2.9 2.9 1.9 1.45

Table 8: Relevance rankings (shown as proportions)
given to overviews by human subjects. Most frequent
rank per system and Jinni is in bold.

to-end model outperforms a standard attention-
based LSTM. Human evaluation also indicates the
overviews generated by our model are felicitous,
informative, and rated favorably by humans.

In the future, we would like to investigate
how attribute-specific features can improve per-
formance compared to our more general feature
set which is invariant for each sentence type. It
would also be possible to equip the model with
a hierarchical decoder which generates a docu-
ment instead of individual sentences. Although
currently our model relies solely on textual infor-
mation, it would be interesting to incorporate addi-
tional modalities such as video (Zhou et al., 2010)
or audio (e.g., we expect comedies to be visually
very different from thrillers, or romantic movies to
have a different score from superhero movies). Fi-
nally, we would like to examine whether the con-
tent analysis presented here can extend to different
types of fiction such as novels or short stories.
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Abstract

The task of automatic text summarization is to
generate a short text that summarizes the most
important information in a given set of doc-
uments. Sentence regression is an emerging
branch in automatic text summarizations. Its
key idea is to estimate the importance of in-
formation via learned utility scores for indi-
vidual sentences. These scores are then used
for selecting sentences from the source doc-
uments, typically according to a greedy se-
lection strategy. Recently proposed state-of-
the-art models learn to predict ROUGE recall
scores of individual sentences, which seems
reasonable since the final summaries are evalu-
ated according to ROUGE recall. In this paper,
we show in extensive experiments that follow-
ing this intuition leads to suboptimal results
and that learning to predict ROUGE precision
scores leads to better results. The crucial dif-
ference is to aim not at covering as much infor-
mation as possible but at wasting as little space
as possible in every greedy step.

1 Introduction

More and more data is generated in textual form
in newspapers, social media platforms, and micro-
blogging services and it has become impossible
for humans to read, comprehend, and filter all the
available data. Automatic summarization aims at
mitigating these problems by “taking an informa-
tion source, extracting content from it, and pre-
senting the most important content to the user in
a condensed form and in a manner sensitive to the
users or applications needs” (Mani, 2001).

Very prominent in automatic text summariza-
tion is the idea of extractive summarization. In ex-
tractive summarization, summaries are not gener-
ated from scratch. Instead, sentences in the source
documents, which are supposed to be summarized,
are extracted and concatenated to form a summary.
To be able to select sentences in a meaningful

manner, it is crucial for the extractive systems to
be able to estimate the utility of individual sen-
tences.

Supervised extractive methods are usually mod-
eled in a regression framework. Hence, this sub-
field of automatic summarization is called sen-
tence regression. The predicted scores are used to
generate a ranking of the sentences, and a greedy
strategy is often used in combination with addi-
tional redundancy avoidance to select sentences
which will be added to the iteratively generated
summary (Carbonell and Goldstein, 1998). An-
other method for the selection is solving an integer
linear programming (ILP) problem (Gillick et al.,
2008; Hong and Nenkova, 2014) which is, how-
ever, an NP-hard problem (Filatova and Hatzivas-
siloglou, 2004). Even though it can be argued that
the complexity is not an issue since there are good
solvers for ILPs, it remains a problem when large
document collections with many sentences have to
be summarized or the system should be used on a
large scale for many users. The greedy approach
is due its simplicity and efficiency very appealing.

Crucial for building sentence regression mod-
els is the choice of the regressands which has
to be predicted by the models. Most of the re-
cent works try to predict ROUGE recall scores of
individual sentences, which seems to be an ob-
vious choice since the final summaries are also
evaluated with ROUGE recall metrics (Lin, 2004;
Owczarzak et al., 2012). We show in this paper
that following this intuition leads to suboptimal
results. In extensive experiments, we investigate
sentence regression models with perfect and noisy
prediction of different regressand candidates with
and without redundancy avoidance. In all exper-
iments, we observe the very same result: learn-
ing to predict ROUGE precision scores of sen-
tences leads to better results than learning to pre-
dict ROUGE recall scores if the scores are selected
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with a greedy algorithm afterwards. Our findings
are in particular important for automatic summa-
rization research since the best models currently
available are sentence regression models trained to
predict ROUGE recall scores. We expect that sim-
ply replacing ROUGE recall scores as regressand
with ROUGE precision scores can potentially im-
prove these state-of-the-art models further.

We note in passing that the problem is rem-
iniscent of defining heuristics in inductive rule
learning: Individual rules are typically evalu-
ated according to their consistency (minimiz-
ing the amount of false positives) and complete-
ness (maximizing the amount of true positives),
which loosely correspond to precision and recall
(Fürnkranz and Flach, 2005). Heuristics such as
weighted relative accuracy, which give equal im-
portance to both dimensions, are successfully used
for evaluating single rules in subgroup discovery
(Lavrač et al., 2004), but tend to over-generalize
when being used for selecting rules for inclusion
into a predictive rule set. The reason for this is
that a lack of completeness can be repaired by
adding more rules, whereas a lack of consistency
can not, so that consistency or precision of indi-
vidual rules should receive a higher weight in the
selection task. Transferred to summarization, this
means that space wasted by recall-oriented selec-
tion cannot be used anymore whereas a low recall
in a partial summary can be repaired by adding
more sentences.

In the following, we will first formalize the
problem of extractive summarization and outline
the greedy selection strategy (Section 2). Previ-
ously extractive summarization systems, in par-
ticularly sentence regression models, are summa-
rized in Section 3. We then present an intuition
why predicting ROUGE precision scores can po-
tentially give better results in Section 4. In ex-
tensive experiments (Section 5), we actually show
the previously stated hypothesis which says that
selecting sentence according to ROUGE precision
instead of ROUGE recall leads to better results if
sentence are selected greedily.

2 Extractive Summarization

In this section, we will first formally define the
problem of extractive summarization and then
describe the greedy sentence selection strategy
which is used by many prior works.

2.1 Problem Definition

The task in extractive summarization is to gener-
ate a list of sentences S (the summary) from given
list of input sentences I (the text to summarize).
The size of the generated summary S must not
be longer than a predefined length l (usually mea-
sured in words or characters).

In order to select sentences, both supervised
and unsupervised models are used to predict util-
ity scores of sentences in a first phase. In a second
phase, sentences are selected and concatenated to
build a summary.

For evaluation, the generated summary is typ-
ically compared to human written summaries by
automatic means, in many cases by computing so-
called ROUGE scores (Lin, 2004).

2.2 Greedy Selection Strategy

A popular strategy to select sentences based on the
previously predicted utility scores is the greedy
sentence selection strategy which is described in
Algorithm 1.

Algorithm 1 Greedy Sentence Selection with Re-
dundancy Avoidance in Extractive Summarization

list of all input sentences I = s1, . . . , sn
utility function u
desired summary length l

1: π = permutation of I s.t. u(sπ(1)) ≥ · · · ≥ u(sπ(n))
2: S ← ∅, i← 1
3: while |S| < l and i < n do
4: if sim(sπ(i), S) < θ) then
5: S ← S + sπ(i)
6: end if
7: i← i+ 1
8: end while
9: return S

According to the greedy strategy, the sentence
with the highest utility score is selected first. Af-
ter the best sentence has been selected, it is re-
moved from the input list of available sentences,
and the former second best sentence is considered
next. Redundancy avoidance strategies are used to
ensure that sentences with similar contents are not
added multiple times to the summary. A simple
strategy computes the similarity of the currently
best sentence and all already selected sentences.
If the maximum similarity exceeds a predefined
threshold θ, the summarizer removes the sentences
from the input list without adding it to the sum-
mary. The selection process is repeated until the
desired summary length is reached. Once a deci-
sion is made, it is never revised.

1783



3 Sentence Regression for Extractive
Summarization

After the field of automatic summarization has
been dominated by unsupervised extractive sum-
marization models for some time (Carbonell and
Goldstein, 1998; Erkan and Radev, 2004; Mihal-
cea and Tarau, 2004; Li et al., 2006), supervised
regression models are more commonly used in re-
cent years. The crucial difference is that super-
vised models learn to predict regressands based on
training examples in a training phase whereas un-
supervised models do not predict regressands. We
focus on supervised extractive regression systems
in this paper. Comprehensive overviews of au-
tomatic summarization (Nenkova and McKeown,
2011; Gambhir and Gupta, 2016; Yao et al., 2017)
also cover unsupervised methods in more detail
and include abstractive summarization methods
which are out of scope for this paper.

Extractive sentence regression can be described
as the task of learning regressands for indi-
vidual sentences from examples. The gen-
eral learning problem can be formulated as
yi = u(xi) + ei where yi denotes the regressand
(also called dependent variable or target variable)
of sentence xi (the regressor, also called indepen-
dent variable or features), and ei denotes the ith
residuum (also called error). Sentence regression
aims at learning the utility function u from ob-
served sentence-utility pairs in order to minimize
the errors for unseen sentences-utility pairs.

Kupiec et al. (1995) proposed one of the first
supervised summarization systems, which trains a
Bayesian model to predict the probability that a
sentence will be included in the summary. They
criticized that although a large number of different
features had been used in previous unsupervised
models, no principled method to select or weight
the features had been proposed at this time. In-
stead of generating summaries, the performance
of the model was evaluated based on the classifica-
tion output of the model for individual sentences.
Similarly, Conroy and O’leary (2001) use a Hid-
den Markov Model to predict the probability that
a sentence is included in a reference summary.

The model proposed by Li et al. (2006) already
predicts utility scores for individual sentences.
The model weights are, however, not learned in
a supervised training but assigned by humans. Li
et al. (2007) extends this previously proposed un-
supervised model and used a support vector re-

gression (SVR) model in the DUC 2007 shared
task (Over et al., 2007). Both Li et al. (2006)
and Li et al. (2007) use a greedy selection strat-
egy. Instead of learning to predict the probability
of appearance of a sentence in a summary (Kupiec
et al., 1995; Conroy and O’leary, 2001), Li et al.
(2007) use the average and maximum text simi-
larity of candidate sentences and reference sum-
maries as regressands. Ouyang et al. (2011) also
applied SVR but used the sum of word probabil-
ities as regressand. Their system therefore also
tends to select longer sentences similarly to sys-
tems which use ROUGE recall.

PriorSum (Cao et al., 2015b) follows Li et al.
(2007) and presents a linear regression framework
which uses prior and document dependent fea-
tures. As regressand, ROUGE-2 recall is used.

Cao et al. (2015a) propose a hierarchical regres-
sion process which predicts the importance of sen-
tences based on its constituents. ROUGE-1 recall
and ROUGE-2 recall are used as regressand for
sentences. For sentence selection, they implement
both a greedy selection and a selection based on
integer linear programming.

The Redundancy-Aware Sentence Regression
(Ren et al., 2016) framework models both im-
portance and redundancy jointly. They train a
multi-layer perceptron which then predicts rela-
tive importance utilities based on ROUGE-2 recall
scores.

REGSUM (Hong and Nenkova, 2014) predicts
sentence importance based on word importance
and additional features. They use a greedy se-
lection strategy with additional redundancy avoid-
ance which only appends sentences to the sum-
mary if the maximum cosine similarity to already
selected sentences is lower than a fixed threshold.

We summarize that ROUGE recall is often used
in the field of sentence regression in combina-
tion with a greedy selection and an additional re-
dundancy avoidance strategy. In the following,
we first describe the underlying intuition of using
ROUGE recall. Second, we describe why using
ROUGE precision instead can be potentially bet-
ter. Later, we show in the experiments that using
ROUGE precision is not only theoretically appeal-
ing but also works better in practice than ROUGE
recall.
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4 ROUGE Recall vs. ROUGE Precision

The ROUGE metric (Lin, 2004) is the method of
choice for the evaluation of generated summaries
in the field of automatic summarization. Its idea is
to compute the similarity between automatically
generated summaries and references summaries,
which are typically provided by humans.

ROUGE can be viewed as an evaluation mea-
sure for an information retrieval task in which pre-
cision and recall can be measured. Let E be a set
of elements, R ⊂ E the multiset of desired ele-
ments in the reference output,G ⊂ E is the gener-
ated output multiset, and |.| the size of a multiset.
Then, the recall is defined as

r(G,R) =
|G ∩R|
|R| (1)

and measures how much of the desired content
was returned by the system. On the other hand,
precision is defined as

p(G,R) =
|G ∩R|
|G| , (2)

and measures how much of the returned content
was actually desirable. We define the intersection
∩ of two multisets as the smallest multiset S with
σS(e) = min(σG(e), σR(e)) ∀e ∈ G,R, where
σS(e) indicates the number of appearances of ele-
ment e in set S.

In ROUGE-n, the multiset E is defined as the
set of all n-grams, the desired reference multisetR
contains all n-grams in a reference summary, and
the multiset G contains all n-grams in the system
summary. We use multisets and not sets since the
same n-gram can be contained multiple times in a
text.

When ROUGE was first introduced as the eval-
uation metric for the DUC 2003 shared task (Over
et al., 2007), Lin and Hovy (2003) reported that
metrics based on ROUGE recall scores have a
good agreement with human judgments. A sum-
mary with a high ROUGE recall will contain many
n-grams which also appear in the reference sum-
maries. Owczarzak et al. (2012) showed that
ROUGE-2 recall is the best variant (highest agree-
ment with human judgments) of ROUGE recall
if automatically generated summaries have to be
evaluated. ROUGE-2 recall is therefore often used
to evaluate automatic summarization systems.

Crucial for the use of ROUGE recall is the
length limitation of the generated summaries.

Figure 1: Exemplary illustration of selecting sen-
tences according to precision and recall. The tar-
get summary has 5 slots. Sentence A will be
selected according to recall since it has a recall
scores of 0.6 whereas sentence B and C only have
a recall score of 0.4. Sentence A, however, occu-
pies already all available slots in the summary. No
more sentence can be selected. Sentence B will be
first selected according to precision due to a preci-
sion scores of 1.0. After the selection of sentence
B, 3 slots are still available in the summary which
can be used to fit sentence C to improve the overall
summary recall to 0.8.

Usually, the generated summaries are limited to
a fixed number of words or characters. Without
such a length restriction, systems would be able to
generate arbitrary long texts to increase the recall.

Summarization systems aim at maximizing
ROUGE recall scores of the generated summaries,
since the final summaries are evaluated with
ROUGE recall. Greedy extractive summarization
approaches try to maximize the overall ROUGE
recall of a summary by incrementally adding sen-
tences with a high ROUGE recall to the summary.
The idea of this strategy is to pack as much impor-
tant content as possible into the summary in every
step in order to increase the ROUGE recall of the
resulting summary. What is usually not considered
is the fact that this strategy tends to select longer
sentences, since longer sentences tend to have a
higher recall. They, however, can contain propor-
tionally more unimportant information, for exam-
ple in subordinate clauses. As a result, fewer sen-
tences can be selected since the maximum length
of the summary is reached earlier.

An alternative strategy, which has not been dis-
cussed in the literature so far, is to select sentences
according to their ROUGE precision scores. The
idea behind this approach is not to cover as much
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as information as possible but to waste as lit-
tle space as possible. Selecting sentences ac-
cording to precision will not have a bias for
longer sentences but for short and dense sentences.
Since this strategy tends to selected shorter sen-
tences, more sentence can be included in the sum-
mary, which can, in turn, again result in a higher
ROUGE recall of the resulting summary.

Figure 1 shows an example in which selecting
sentences according to ROUGE precision leads
to a higher ROUGE recall score of the result-
ing summary than selecting sentences according
to ROUGE recall. In the following section, we
will show that the intuition described in this sec-
tion is not only appealing in theory, but can also
be substantiated in empirical experiments.

We summarize that selecting sentences accord-
ing to ROUGE precision scores can, intuitively,
be better than selecting sentences according to
ROUGE recall scores even though the final sum-
maries are always evaluated with ROUGE recall
metrics.

5 Experimental Setup

We now present the experimental setups in which
we test different regressand candidates for sen-
tence regression in three different, well-known
multi-document summarization (MDS) corpora.
We used the MDS corpora from the DUC 20041,
TAC 2008, and TAC 20092 summarization shared
tasks. All corpora contain 10 input documents and
4 reference summaries for each topic. The number
of topics are 50, 46, and 44, respectively. We sim-
ulate in the experiments the outcomes of regres-
sion models which use different regressands. This
will provide us with theoretical insights on which
regressand candidates should be considered in re-
gression models and will answer the main question
of this paper: Which scores to predict in sentence
regression for text summarization? For our ex-
periments, we produce summaries containing 665
characters for DUC2004 and summaries contain-
ing 100 words for TAC2008 and TAC2009.

5.1 Regressand Candidates

The key ingredient of greedy extractive summa-
rization is the utility function u(.), which is used

1http://duc.nist.gov
2https://tac.nist.gov

for sorting the sentences in the first step of Al-
gorithm 1. In this paper, we examine 7 different
regressand candidates (in boldface) which can be
used as regressands when the utility function u is
learned via supervised regression.

ROUGE-1 recall (R1 Rec) and ROUGE-2 re-
call (R2 Rec) are computed according to Equa-
tion 1 for all sentences in the input documents.
ROUGE-n recall counts the n-gram overlap of the
input sentence and the reference summaries. The
more n-grams in the reference documents are cov-
ered by a sentence, the higher the score is. These
regressands are usually used by prior sentence re-
gression works.

We also compute the ROUGE-1 precision (R1
Prec) and ROUGE-2 precision (R2 Prec) for all
sentences according to Equation 2. A sentence
has a high ROUGE-n precision if a high rate of n-
grams in the sentence match with n-grams in the
reference documents. Sentences with a high den-
sity of matching n-grams are therefore preferred
by ROUGE precision. The main claim of this pa-
per is that ROGUE precision scores should be pri-
marily considered in sentence regression works in-
stead of ROUGE recall scores. We therefore ex-
pect that R1 Prec and R2 Prec will perform better
than R1 Rec and R2 Rec.

As a reference point, we compute for each sen-
tence the maximum similarity (maxADW) for and
the average similarity (avgADW) with all sen-
tences in the reference summaries (denoted by list
S) according to a state-of-the-art ADW similarity
measure (Pilehvar et al., 2013). ADW computes
the semantic similarity of two sentences by finding
an optimal alignment of word senses contained in
the two sentences.

maxADW(s) = max
t∈S

ADWsim(s, t) (3)

avgADW(s) =
1

|S| ·
∑

t∈S

ADWsim(s, t) (4)

Computing the maximum similarity aligns with
the idea that a good sentence in the input docu-
ments matches well with one sentence in the ref-
erence summary. A sentence is representative for
the whole summary if it has a high average sim-
ilarity with all the reference summary sentences.
For each sentence, we also randomly generated
(random) sentence scores which are used as re-
gressand.
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6 Results

6.1 Optimal Prediction without Redundancy
Avoidance

In the first experiment, we investigate how helpful
the predicted scores are under the assumption that
the regressand candidates can be predicted per-
fectly. The experiment therefore shows how a sys-
tems will perform in the optimal case. We do not
consider redundancy avoidance strategies in this
experiment so that observed performance differ-
ences are solely due to differences in the used re-
gressand candidates.

DUC2004 TAC2008 TAC2009
R-1 R-2 R-1 R-2 R-1 R-2

R1 Rec 38.63 08.99 39.28 11.08 34.31 08.37
R2 Rec 39.23 12.07 42.39 16.20 37.42 13.03
R1 Prec 41.29 11.18 43.56 14.65 39.45 12.17
R2 Prec 39.18 12.73 43.46 18.19 37.81 13.64
maxADW 37.60 10.13 42.55 15.46 34.56 11.05
avgADW 38.50 09.62 40.97 12.43 35.48 09.34
random 31.76 04.66 29.58 04.60 29.88 04.63

Table 1: Summarization results in three different
multi-document summarization corpora without
redundancy avoidance. Columns R-1 and R-2 dis-
play the summary quality according to ROUGE-1
recall and ROUGE-2 recall scores, respectively.

The results of the experiment are shown in Ta-
ble 1. It can be seen that in all corpora the use of
ROUGE-1 precision regressands of the sentences
leads to better results than using ROUGE-1 recall
regressands if ROUGE-1 recall is used as evalua-
tion metric for the final summary. Analogous re-
sults can be observed for ROUGE-2 scores. This
indicates that using ROUGE recall as regressand
in a sentences regression framework is not very
promising. Thus, the results are a first confirma-
tion of the previously described intuition that pre-
dicting precision scores can be better than predict-
ing recall scores.

Table 2 provides details about the lengths of
the produced summaries according to number of
stems and number of sentences. The hypothesis
that an algorithm that selects sentences according
to recall tends to select longer sentences (stated in
Section 4) is confirmed. The results therefore also
confirm that longer sentences tend to have a higher
recall.

In addition to the standard DUC and TAC cor-
pora, we also report results for 2 German datasets,
namely the DBS corpus (Benikova et al., 2016)
and a subset of the German part of the auto-hMDS

avg. stems avg. sentences
D04 T08 T09 D04 T08 T09

R1 Rec 166 132 141 3.42 2.67 2.70
R2 Rec 160 129 132 4.26 3.46 3.55
R1 Prec 157 125 127 7.76 6.75 6.07
R2 Prec 157 129 126 7.10 6.13 6.09
maxADW 158 127 129 6.56 5.06 5.11
avgADW 158 126 126 5.12 4.13 4.02
random 164 131 131 6.66 5.21 4.89

Table 2: Averaged lengths of resulting summaries
measured in number of stems (avg. stems) and
number of sentences (avg. sentences). D04 refers
to DUC2004 and T08 and T09 refer to TAC2008
and TAC2009, respectively. We count also par-
tially contained sentences which have been cut by
the ROUGE length limitation.

corpus (Zopf et al., 2016; Zopf, 2018). The DBS
corpus contains topics from the educational do-
main. auto-hMDS contains heterogeneous topics
retrieved from Wikipedia and automatically col-
lected source documents retrieved from web sites.
The results are displayed in Table3 and show that
the results can be transferred to German. We ad-
ditionally observe that ROUGE-1 precision seems
to be a bit stronger in DBS compared to ROUGE-2
precision even if the resulting summaries are eval-
uated with ROUGE-2 recall.

DBS hMDS
R-1 R-2 R-1 R-2

R1 Rec 33.48 13.89 31.94 13.38
R2 Rec 38.67 21.77 40.67 24.39
R1 Prec 42.20 25.55 43.25 23.01
R2 Prec 37.01 23.12 41.65 24.96
random 23.27 04.23 20.63 02.36

Table 3: Results as in Table 1, but for 2 datasets
(DBS and auto-hMDS) containing German docu-
ments.

6.2 Optimal Prediction of F-Scores

The previous experiment clearly showed that se-
lecting sentences according to ROUGE precision
outperforms a selection according to ROUGE re-
call. In this experiment, we will evaluate if a trade-
off between recall and precision can lead to even
better results. It is, e.g., known that in inductive
rule learning, parametrized measures such as the
m-estimate, which may be viewed as a trade-off
between precision and weighted relative accuracy,
can be tuned to outperform its constituent heuris-
tics (Janssen and Fürnkranz, 2010). In retrieval
tasks, the F-measure provides a more commonly
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Figure 2: Results of mixing ROUGE-1/2 precision and ROUGE-1/2 recall using Fα(p, r)-Measure in
different datasets evaluated with ROUGE-1 recall (left) and ROUGE-2 recall (right). For example, the
curve labeled DUC2004-R1 shows the results of mixing ROUGE-1 precision and ROUGE-1 recall in the
DUC 2004 corpus.

used trade-off between precision and recall, so we
chose to use this measure for our experiments.
We compute for all sentences the F-measure with
0 ≤ α ≤ 1 as

Fα(p, r) =
1

α
p + 1−α

r

(5)

where a α = 0 is equivalent to recall and α = 1
equals precision.

The results of the experiment, which are dis-
played in Figure 2, show that precision (α = 1.0)
is already close to the optimum but that incorporat-
ing also a small fraction of recall (α ≈ 0.9) leads
to the best results which indicates that a slight bias
towards longer sentences can improve the result
even further. A possible explanation is that there
are short sentences in the input documents which
are considerably redundant to other high precision
sentences. However, overall the trend in the re-
sults (increasing evaluation scores with increasing
α, which means increasing impact of ROUGE pre-
cision) substantiate the general hypothesis of this
paper, namely that sentence selection measures
should target precision instead of recall.

6.3 Optimal Prediction with Redundancy
Avoidance

Summarization systems usually apply a redun-
dancy avoidance strategy in order to avoid in-
cluding the same information multiple times in
the summary. In this experiment, we investigate
whether incorporating a simple redundancy avoid-
ance strategy will lead to different results.

During the greedy selection process, we com-
pute the similarity of the currently highest scor-
ing sentence and all already selected sentences
(see Algorithm 1, line 4). The highest scoring
sentence will be skipped if the maximum similar-
ity of the sentence and the already selected sen-
tences is higher than a predefined threshold θ. We
use the state-of-the-art ADW similarity measure
to compute the similarities and test the quality of
the generated summaries as in the previous ex-
periments with ROUGE-1 and ROUGE-2 recall.
The results of the experiment for the thresholds
θ = 0.4, 0.5, . . . , 1.0 are displayed in Figure 3.

We see that sentence selection using ROUGE-
1/2 precision scores (red and blue solid lines) con-
sistently leads to better results than with ROUGE-
1/2 recall scores (red and blue dashed lines) for
all chosen redundancy thresholds. Selecting ac-
cording to maximum ADW similarity leads to
consistently better results than selecting accord-
ing to the average ADW similarity. This indi-
cates that it is better to search for sentences which
align well with a part of the summary than se-
lecting sentences which align relatively well with
the whole summary. The best results are achieved
with thresholds of θ = 0.5 and θ = 0.6 which
worked well for both ROUGE-1 and ROUGE-2
recall in both datasets.

6.4 Noisy Predictions

In the previous experiments, we showed the results
of a greedy summarizer which selects sentences
according to perfectly predicted scores. Summa-
rization systems are, however, not capable of pre-
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Figure 3: Summary quality assessed with
ROUGE-1 recall and ROUGE-2 recall with dif-
ferent redundancy avoidance thresholds θ in the
DUC 2004 (top half) and TAC 2008 (bottom half)
datasets.

dicting the scores perfectly. We will therefore in-
vestigate whether imperfect predictions have an
influence on our results in the next experiment.
This will also give insights about the robustness of
a greedy summarizer in the presence of imprecise
predictions.

In order to get model-independent results, we
simulate imperfect precisions by adding two dif-
ferent kinds of noise to simulate imperfect predic-
tions, namely additive uniformly distributed con-
tinuous noise U(a, b) and additive Gaussian noise
N (µ, σ2). For the uniform noise U(a, b), we test
boundaries from a = −0.2, b = 0.2 to a = −0.4,
b = 0.4. For Gaussian noise, we use mean µ = 0
and variance σ2 ∈ {0.05, 0.1, 0.2}. Based on the
results in the previous section, we fix the redun-
dancy threshold to 0.6 in this experiment. Due to
the random noise, the experiments are no longer
deterministic. We therefore run each experiment
10 times and report averaged results.

The results of these experiments (see Table 4)
confirm that predicting ROUGE precision is al-
ways better than predicting ROUGE recall, in the
presence of different kinds of noises and different
noise intensities. In case strong Gaussian noise
is applied (Table 4, last block), the quality of the

score DUC2004 TAC2008 TAC2009
R-1 R-2 R-1 R-2 R-1 R-2

U
(−

0
.2
,
0
.2
) R1 Rec 37.22 07.71 36.73 08.79 37.06 08.99

R2 Rec 36.93 08.74 36.45 09.91 37.83 11.06
R1 Prec 42.53 10.87 42.19 12.57 43.65 13.58
R2 Prec 40.37 12.04 40.63 14.23 42.25 15.49

U
(−

0
.3
,
0
.3
) R1 Rec 36.78 07.43 35.70 08.00 36.04 08.27

R2 Rec 35.45 07.54 34.62 08.58 36.08 09.43
R1 Prec 42.02 10.45 41.42 11.75 42.75 12.83
R2 Prec 39.56 11.16 38.94 12.64 40.91 14.29

U
(−

0
.4
,
0
.4
) R1 Rec 36.10 06.92 34.91 07.48 35.85 07.93

R2 Rec 34.92 07.32 34.08 07.85 3.545 08.70
R1 Prec 41.27 09.98 40.44 11.04 41.63 11.92
R2 Prec 39.02 10.63 38.22 11.74 39.51 12.97

N
(0
,
0
.0
5
) R1 Rec 37.53 07.93 36.99 09.31 37.40 09.36

R2 Rec 35.46 07.60 35.50 09.41 36.07 09.96
R1 Prec 43.55 11.99 43.59 13.98 45.58 15.56
R2 Prec 41.06 12.92 42.80 16.46 43.97 17.48

N
(0
,
0
.1
) R1 Rec 35.63 06.83 34.45 07.31 35.06 07.57

R2 Rec 33.39 06.04 32.76 06.93 32.88 07.98
R1 Prec 41.70 10.19 41.41 12.09 43.06 13.23
R2 Prec 38.41 10.33 38.27 12.43 40.15 13.94

N
(0
,
0
.2
) R1 Rec 33.59 05.72 32.00 05.78 32.36 05.99

R2 Rec 32.64 05.28 30.76 05.48 31.47 06.01
R1 Prec 38.19 08.01 37.34 09.00 38.75 10.06
R2 Prec 35.07 07.45 34.08 08.45 34.71 09.08

Table 4: Summarization results in three differ-
ent multi-document summarization corpora with
noisy score prediction with uniform noise (top)
and Gaussian noise (bottom).
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summaries decreases more strongly if ROUGE-2
precision scores are predicted, which means that
predicting ROUGE-1 precision might be better
than predicting ROUGE-2 precision in the case of
low prediction quality.

7 Conclusions

Current state-of-the-art sentence regression sys-
tems for automatic summarization learn to predict
ROUGE recall scores of individual sentences and
apply a greedy sentence selection strategy in or-
der to generate summaries. We show in a wide
range of experiments that this design choice leads
to suboptimal results. In all experiments, we ob-
served the same pattern. The resulting summaries
will have a lower quality if ROUGE recall scores
for sentences are used instead of ROUGE preci-
sion – no matter whether or not redundancy avoid-
ance is considered and whether or not the scores
can be predicted perfectly.

In an experiment where we combined both
ROUGE recall and ROUGE precision with an F-
score computation, we confirmed the previously
described observation that the quality of sum-
maries tends to improve with a growing ratio of
ROUGE precision vs. ROUGE recall, with a max-
imum performance for a ratio of α ≈ 0.9. Biasing
the sentence selection slightly to longer sentences
is therefore promising. This goes in line with an
often applied pre-processing step in which very
short sentences are discarded without further anal-
ysis (Erkan and Radev, 2004; Cao et al., 2015b).

We also presented an intuition why a selec-
tion according to ROUGE precision leads to bet-
ter results. A system which selects according to
ROUGE recall will tend to select longer sentences,
since longer sentences tend to have a higher re-
call. We conclude that systems should instead of
fitting iteratively as much as possible into a sum-
mary rather aim at wasting as little space as possi-
ble in every step.

For future works, it is very simple to incor-
porate the findings presented in this paper. In-
stead of learning to predict ROUGE recall scores,
the regressand can simply be exchanged and the
ROUGE precision can be used instead. Based on
the findings in this paper, we expect that the mod-
els will benefit from this modification. We fur-
thermore conclude that comparisons between ILP
and greedy methods (Cao et al., 2015a) are biased
in favor of ILP. A better comparison is possible if

precision scores are used as input for greedy sys-
tems instead of recall scores.
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Abstract

Variational autoencoders (VAE) combined
with hierarchical RNNs have emerged as a
powerful framework for conversation model-
ing. However, they suffer from the notori-
ous degeneration problem, where the decoders
learn to ignore latent variables and reduce
to vanilla RNNs. We empirically show that
this degeneracy occurs mostly due to two rea-
sons. First, the expressive power of hierar-
chical RNN decoders is often high enough to
model the data using only its decoding distri-
butions without relying on the latent variables.
Second, the conditional VAE structure whose
generation process is conditioned on a context,
makes the range of training targets very sparse;
that is, the RNN decoders can easily overfit to
the training data ignoring the latent variables.
To solve the degeneration problem, we pro-
pose a novel model named Variational Hier-
archical Conversation RNNs (VHCR), involv-
ing two key ideas of (1) using a hierarchical
structure of latent variables, and (2) exploiting
an utterance drop regularization. With evalu-
ations on two datasets of Cornell Movie Dia-
log and Ubuntu Dialog Corpus, we show that
our VHCR successfully utilizes latent vari-
ables and outperforms state-of-the-art models
for conversation generation. Moreover, it can
perform several new utterance control tasks,
thanks to its hierarchical latent structure.

1 Introduction

Conversation modeling has been a long interest of
natural language research. Recent approaches for
data-driven conversation modeling mostly build
upon recurrent neural networks (RNNs) (Vinyals
and Le, 2015; Sordoni et al., 2015b; Shang et al.,
2015; Li et al., 2017; Serban et al., 2016). Ser-
ban et al. (2016) use a hierarchical RNN struc-
ture to model the context of conversation. Ser-
ban et al. (2017) further exploit an utterance latent

variable in the hierarchical RNNs by incorporat-
ing the variational autoencoder (VAE) framework
(Kingma and Welling, 2014; Rezende et al., 2014).

VAEs enable us to train a latent variable model
for natural language modeling, which grants us
several advantages. First, latent variables can
learn an interpretable holistic representation, such
as topics, tones, or high-level syntactic proper-
ties. Second, latent variables can model inher-
ently abundant variability of natural language by
encoding its global and long-term structure, which
is hard to be captured by shallow generative pro-
cesses (e.g. vanilla RNNs) where the only source
of stochasticity comes from the sampling of output
words.

In spite of such appealing properties of la-
tent variable models for natural language mod-
eling, VAEs suffer from the notorious degenera-
tion problem (Bowman et al., 2016; Chen et al.,
2017) that occurs when a VAE is combined with
a powerful decoder such as autoregressive RNNs.
This issue makes VAEs ignore latent variables,
and eventually behave as vanilla RNNs. Chen
et al. (2017) also note this degeneration issue by
showing that a VAE with a RNN decoder prefers
to model the data using its decoding distribution
rather than using latent variables, from bits-back
coding perspective. To resolve this issue, several
heuristics have been proposed to weaken the de-
coder, enforcing the models to use latent variables.
For example, Bowman et al. (2016) propose some
heuristics, including KL annealing and word drop
regularization. However, these heuristics cannot
be a complete solution; for example, we observe
that they fail to prevent the degeneracy in VHRED
(Serban et al., 2017), a conditional VAE model
equipped with hierarchical RNNs for conversation
modeling.

The objective of this work is to propose a novel
VAE model that significantly alleviates the degen-

1792



eration problem. Our analysis reveals that the
causes of the degeneracy are two-fold. First, the
hierarchical structure of autoregressive RNNs is
powerful enough to predict a sequence of utter-
ances without the need of latent variables, even
with the word drop regularization. Second, we
newly discover that the conditional VAE structure
where an utterance is generated conditioned on
context, i.e. a previous sequence of utterances, in-
duces severe data sparsity. Even with a large-scale
training corpus, there only exist very few target ut-
terances when conditioned on the context. Hence,
the hierarchical RNNs can easily memorize the
context-to-utterance relations without relying on
latent variables.

We propose a novel model named Variational
Hierarchical Conversation RNN (VHCR), which
involves two novel features to alleviate this prob-
lem. First, we introduce a global conversational la-
tent variable along with local utterance latent vari-
ables to build a hierarchical latent structure. Sec-
ond, we propose a new regularization technique
called utterance drop. We show that our hierar-
chical latent structure is not only crucial for facil-
itating the use of latent variables in conversation
modeling, but also delivers several additional ad-
vantages, including gaining control over the global
context in which the conversation takes place.

Our major contributions are as follows:
(1) We reveal that the existing conditional VAE

model with hierarchical RNNs for conversation
modeling (e.g. (Serban et al., 2017)) still suffers
from the degeneration problem, and this problem
is caused by data sparsity per context that arises
from the conditional VAE structure, as well as the
use of powerful hierarchical RNN decoders.

(2) We propose a novel variational hierarchical
conversation RNN (VHCR), which has two dis-
tinctive features: a hierarchical latent structure and
a new regularization of utterance drop. To the best
of our knowledge, our VHCR is the first VAE con-
versation model that exploits the hierarchical la-
tent structure.

(3) With evaluations on two benchmark datasets
of Cornell Movie Dialog (Danescu-Niculescu-
Mizil and Lee, 2011) and Ubuntu Dialog Corpus
(Lowe et al., 2015), we show that our model im-
proves the conversation performance in multiple
metrics over state-of-the-art methods, including
HRED (Serban et al., 2016), and VHRED (Ser-
ban et al., 2017) with existing degeneracy solu-

tions such as the word drop (Bowman et al., 2016),
and the bag-of-words loss (Zhao et al., 2017).

2 Related Work

Conversation Modeling. One popular approach
for conversation modeling is to use RNN-based
encoders and decoders, such as (Vinyals and Le,
2015; Sordoni et al., 2015b; Shang et al., 2015).
Hierarchical recurrent encoder-decoder (HRED)
models (Sordoni et al., 2015a; Serban et al., 2016,
2017) consist of utterance encoder and decoder,
and a context RNN which runs over utterance rep-
resentations to model long-term temporal structure
of conversation.

Recently, latent variable models such as VAEs
have been adopted in language modeling (Bow-
man et al., 2016; Zhang et al., 2016; Serban et al.,
2017). The VHRED model (Serban et al., 2017)
integrates the VAE with the HRED to model Twit-
ter and Ubuntu IRC conversations by introducing
an utterance latent variable. This makes a condi-
tional VAE where the generation process is condi-
tioned on the context of conversation. Zhao et al.
(2017) further make use of discourse act labels to
capture the diversity of conversations.

Degeneracy of Variational Autoencoders. For
sequence modeling, VAEs are often merged with
the RNN encoder-decoder structure (Bowman
et al., 2016; Serban et al., 2017; Zhao et al., 2017)
where the encoder predicts the posterior distribu-
tion of a latent variable z, and the decoder models
the output distributions conditioned on z. How-
ever, Bowman et al. (2016) report that a VAE
with a RNN decoder easily degenerates; that is,
it learns to ignore the latent variable z and falls
back to a vanilla RNN. They propose two tech-
niques to alleviate this issue: KL annealing and
word drop. Chen et al. (2017) interpret this degen-
eracy in the context of bits-back coding and show
that a VAE equipped with autoregressive models
such as RNNs often ignores the latent variable to
minimize the code length needed for describing
data. They propose to constrain the decoder to
selectively encode the information of interest in
the latent variable. However, their empirical re-
sults are limited to an image domain. Zhao et al.
(2017) use an auxiliary bag-of-words loss on the
latent variable to force the model to use z. That
is, they train an auxiliary network that predicts
bag-of-words representation of the target utterance
based on z. Yet this loss works in an opposite di-
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rection to the original objective of VAEs that min-
imizes the minimum description length. Thus, it
may be in danger of forcibly moving the informa-
tion that is better modeled in the decoder to the
latent variable.

3 Approach

We assume that the training set consists of N i.i.d
samples of conversations {c1, c2, ..., cN} where
each ci is a sequence of utterances (i.e. sentences)
{xi1,xi2, ...,xini}. Our objective is to learn the
parameters of a generative network θ using Maxi-
mum Likelihood Estimation (MLE):

argmax
θ

∑

i

log pθ(ci) (1)

We first briefly review the VAE, and explain the
degeneracy issue before presenting our model.

3.1 Preliminary: Variational Autoencoder

We follow the notion of Kingma and Welling
(2014). A datapoint x is generated from a latent
variable z, which is sampled from some prior dis-
tribution p(z), typically a standard Gaussian dis-
tribution N (z|0, I). We assume parametric fam-
ilies for conditional distribution pθ(x|z). Since
it is intractable to compute the log-marginal like-
lihood log pθ(x), we approximate the intractable
true posterior pθ(z|x) with a recognition model
qφ(z|x) to maximize the variational lower-bound:

log pθ(x) ≥ L(θ,φ;x) (2)

= Eqφ(z|x)[− log qφ(z|x) + log pθ(x, z)]

= −DKL(qφ(z|x)‖p(z))+Eqφ(z|x)[log pθ(x|z)]

Eq. 2 is decomposed into two terms: KL diver-
gence term and reconstruction term. Here, KL
divergence measures the amount of information
encoded in the latent variable z. In the extreme
where KL divergence is zero, the model com-
pletely ignores z, i.e. it degenerates. The expec-
tation term can be stochastically approximated by
sampling z from the variational posterior qφ(z|x).
The gradients to the recognition model can be ef-
ficiently estimated using the reparameterization
trick (Kingma and Welling, 2014).

3.2 VHRED

Serban et al. (2017) propose Variational Hierarchi-
cal Recurrent Encoder Decoder (VHRED) model

for conversation modeling. It integrates an ut-
terance latent variable zutt

t into the HRED struc-
ture (Sordoni et al., 2015a) which consists of three
RNN components: encoder RNN, context RNN,
and decoder RNN. Given a previous sequence
of utterances x1, ...xt−1 in a conversation, the
VHRED generates the next utterance xt as:

henc
t−1 = f enc

θ (xt−1) (3)

hcxt
t = f cxt

θ (hcxt
t−1,h

enc
t−1) (4)

pθ(z
utt
t |x<t) = N (z|µt,σtI) (5)

where µt = MLPθ(h
cxt
t ) (6)

σt = Softplus(MLPθ(h
cxt
t )) (7)

pθ(xt|x<t) = fdec
θ (x|hcxt

t , z
utt
t ) (8)

At time step t, the encoder RNN f enc
θ takes the pre-

vious utterance xt−1 and produces an encoder vec-
tor henc

t−1 (Eq. 3). The context RNN f cxt
θ models the

context of the conversation by updating its hidden
states using the encoder vector (Eq. 4). The con-
text hcxt

t defines the conditional prior pθ(zutt
t |x<t),

which is a factorized Gaussian distribution whose
mean µt and diagonal variance σt are given by
feed-forward neural networks (Eq. 5-7). Finally
the decoder RNN fdec

θ generates the utterance xt,
conditioned on the context vector hcxt

t and the la-
tent variable zutt

t (Eq. 8). We make two important
notes: (1) the context RNN can be viewed as a
high-level decoder, and together with the decoder
RNN, they comprise a hierarchical RNN decoder.
(2) VHRED follows a conditional VAE structure
where each utterance xt is generated conditioned
on the context hcxt

t (Eq. 5-8).
The variational posterior is a factorized Gaus-

sian distribution where the mean and the diago-
nal variance are predicted from the target utterance
and the context as follows:

qφ(z
utt
t |x≤t) = N (z|µ′t,σ′tI) (9)

where µ′t = MLPφ(xt,h
cxt
t ) (10)

σ′t = Softplus(MLPφ(xt,h
cxt
t )) (11)

3.3 The Degeneration Problem
A known problem of a VAE that incorporates
an autoregressive RNN decoder is the degeneracy
that ignores the latent variable z. In other words,
the KL divergence term in Eq. 2 goes to zero and
the decoder fails to learn any dependency between
the latent variable and the data. Eventually, the
model behaves as a vanilla RNN. This problem is
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Figure 1: Degeneration of VHRED. The KL di-
vergence term continuously decreases as training
proceeds, meaning that the decoder ignores the la-
tent variable zutt. We train the VHRED on Cornell
Movie Dialog Corpus with word drop and KL an-
nealing.

first reported in the sentence VAE (Bowman et al.,
2016), in which following two heuristics are pro-
posed to alleviate the problem by weakening the
decoder.

First, the KL annealing scales the KL diver-
gence term of Eq. 2 using a KL multiplier λ, which
gradually increases from 0 to 1 during training:

L̃(θ,φ;x) = −λDKL(qφ(z|x)‖p(z)) (12)

+Eqφ(z|x)[log pθ(x|z)]

This helps the optimization process to avoid lo-
cal optima of zero KL divergence in early training.
Second, the word drop regularization randomly re-
places some conditioned-on word tokens in the
RNN decoder with the generic unknown word to-
ken (UNK) during training. Normally, the RNN
decoder predicts each next word in an autoregres-
sive manner, conditioned on the previous sequence
of ground truth (GT) words. By randomly replac-
ing a GT word with an UNK token, the word drop
regularization weakens the autoregressive power
of the decoder and forces it to rely on the latent
variable to predict the next word. The word drop
probability is normally set to 0.25, since using a
higher probability may degrade the model perfor-
mance (Bowman et al., 2016).

However, we observe that these tricks do not
solve the degeneracy for the VHRED in conver-
sation modeling. An example in Fig. 1 shows that
the VHRED learns to ignore the utterance latent
variable as the KL divergence term falls to zero.
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Figure 2: The average ratio E[σ2
t ]/Var(µt) when

the decoder is only conditioned on zutt
t . The ratio

drops to zero as training proceeds, indicating that
the conditional priors pθ(zutt

t |x<t) degenerate to
separate point masses.

3.4 Empirical Observation on Degeneracy
The decoder RNN of the VHRED in Eq. 8 con-
ditions on two information sources: deterministic
hcxt
t and stochastic zutt. In order to check whether

the presence of deterministic source hcxt
t causes

the degeneration, we drop the deterministic hcxt
t

and condition the decoder only on the stochastic
utterance latent variable zutt:

pθ(xt|x<t) = fdec
θ (x|zutt

t ) (13)

While this model achieves higher values of KL di-
vergence than original VHRED, as training pro-
ceeds it again degenerates with the KL divergence
term reaching zero (Fig. 2).

To gain an insight of the degeneracy, we exam-
ine how the conditional prior pθ(zutt

t |x<t) (Eq. 5)
of the utterance latent variable changes during
training, using the model above (Eq. 13). Fig. 2
plots the ratios of E[σ2

t ]/Var(µt), where E[σ2
t ]

indicates the within variance of the priors, and
Var(µt) is the between variance of the priors.
Note that traditionally this ratio is closely related
to Analysis of Variance (ANOVA) (Lomax and
Hahs-Vaughn, 2013). The ratio gradually falls to
zero, implying that the priors degenerate to sep-
arate point masses as training proceeds. More-
over, we find that the degeneracy of priors co-
incide with the degeneracy of KL divergence, as
shown in (Fig. 2). This is intuitively natural: if
the prior is already narrow enough to specify the
target utterance, there is little pressure to encode
any more information in the variational posterior
for reconstruction of the target utterance.
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Figure 3: Graphical representation of the Varia-
tional Hierarchical Conversation RNN (VHCR).
The global latent variable zconv provides a global
context in which the conversation takes place.

This empirical observation implies that the fun-
damental reason behind the degeneration may
originate from combination of two factors: (1)
strong expressive power of the hierarchical RNN
decoder and (2) training data sparsity caused by
the conditional VAE structure. The VHRED is
trained to predict a next target utterance xt con-
ditioned on the context hcxt

t which encodes infor-
mation about previous utterances {x1, . . . ,xt−1}.
However, conditioning on the context makes the
range of training target xt very sparse; even in
a large-scale conversation corpus such as Ubuntu
Dialog (Lowe et al., 2015), there exist one or very
few target utterances per context. Therefore, hier-
archical RNNs, given their autoregressive power,
can easily overfit to training data without using the
latent variable. Consequently, the VHRED will
not encode any information in the latent variable,
i.e. it degenerates. It explains why the word drop
fails to prevent the degeneracy in the VHRED.
The word drop only regularizes the decoder RNN;
however, the context RNN is also powerful enough
to predict a next utterance in a given context even
with the weakened decoder RNN. Indeed we ob-
serve that using a larger word drop probability
such as 0.5 or 0.75 only slows down, but fails to
stop the KL divergence from vanishing.

3.5 Variational Hierarchical Conversation
RNN (VHCR)

As discussed, we argue that the two main causes
of degeneration are i) the expressiveness of the
hierarchical RNN decoders, and ii) the condi-
tional VAE structure that induces data sparsity.
This finding hints us that in order to train a non-
degenerate latent variable model, we need to de-
sign a model that provides an appropriate way to

regularize the hierarchical RNN decoders and al-
leviate data sparsity per context. At the same time,
the model should be capable of modeling complex
structure of conversation. Based on these insights,
we propose a novel VAE structure named Varia-
tional Hierarchical Conversation RNN (VHCR),
whose graphical model is illustrated in Fig. 3. Be-
low we first describe the model, and discuss its
unique features.

We introduce a global conversation latent vari-
able zconv which is responsible for generating a
sequence of utterances of a conversation c =
{x1, . . . ,xn}:

pθ(c|zconv) = pθ(x1, . . . ,xn|zconv) (14)

Overall, the VHCR builds upon the hierarchi-
cal RNNs, following the VHRED (Serban et al.,
2017). One key update is to form a hierarchical
latent structure, by using the global latent variable
zconv per conversation, along with local the latent
variable zutt

t injected at each utterance (Fig. 3):

henc
t = f enc

θ (xt) (15)

hcxt
t =

{
MLPθ(z

conv), if t = 0

f cxt
θ (hcxt

t−1,h
enc
t−1, z

conv), otherwise

pθ(xt|x<t, zutt
t , z

conv) = fdec
θ (x|hcxt

t , z
utt
t , z

conv)

pθ(z
conv) = N (z|0, I) (16)

pθ(z
utt
t |x<t, zconv) = N (z|µt,σtI) (17)

where µt = MLPθ(h
cxt
t , z

conv) (18)

σt = Softplus(MLPθ(h
cxt
t , z

conv)). (19)

For inference of zconv, we use a bi-directional
RNN denoted by f conv, which runs over the utter-
ance vectors generated by the encoder RNN:

qφ(z
conv|x1, ...,xn) = N (z|µconv,σconvI) (20)

where hconv = f conv(henc
1 , ...,henc

n ) (21)

µconv = MLPφ(h
conv) (22)

σconv = Softplus(MLPφ(h
conv)). (23)

The posteriors for local variables zutt
t are then con-

ditioned on zconv:

qφ(z
utt
t |x1, ...,xn, z

conv) = N (z|µ′t,σ′tI) (24)

where µ′t = MLPφ(xt,h
cxt
t , z

conv) (25)

σ′t = Softplus(MLPφ(xt,h
cxt
t , z

conv)).

Our solution of VHCR to the degeneration
problem is based on two ideas. The first idea is
to build a hierarchical latent structure of zconv for
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Figure 4: The comparison of KL divergences. The
VHCR with the utterance drop shows high and sta-
ble KL divergence, indicating the active use of la-
tent variables. w.d and u.d denote the word drop
and the utterance drop, respectively.

a conversation and zutt
t for each utterance. As zconv

is independent of the conditional structure, it does
not suffer from the data sparsity problem. How-
ever, the expressive power of hierarchical RNN
decoders makes the model still prone to ignore la-
tent variables zconv and zutt

t . Therefore, our second
idea is to apply an utterance drop regularization to
effectively regularize the hierarchical RNNs, in or-
der to facilitate the use of latent variables. That is,
at each time step, the utterance encoder vector henc

t

is randomly replaced with a generic unknown vec-
tor hunk with a probability p. This regularization
weakens the autoregressive power of hierarchical
RNNs and as well alleviates the data sparsity prob-
lem, since it induces noise into the context vector
hcxt
t which conditions the decoder RNN. The dif-

ference with the word drop (Bowman et al., 2016)
is that our utterance drop depresses the hierarchi-
cal RNN decoders as a whole, while the word
drop only weakens the lower-level decoder RNNs.
Fig. 4 confirms that with the utterance drop with a
probability of 0.25, the VHCR effectively learns to
use latent variables, achieving a significant degree
of KL divergence.

3.6 Effectiveness of Hierarchical Latent
Structure

Is the hierarchical latent structure of the VHCR
crucial for effective utilization of latent variables?
We investigate this question by applying the ut-
terance drop on the VHRED which lacks any hi-
erarchical latent structure. We observe that the
KL divergence still vanishes (Fig. 4), even though

the utterance drop injects considerable noise in the
context hcxt

t . We argue that the utterance drop
weakens the context RNN, thus it consequently
fail to predict a reasonable prior distribution for
zutt (Eq. 5-7). If the prior is far away from the re-
gion of zutt that can generate a correct target utter-
ance, encoding information about the target in the
variational posterior will incur a large KL diver-
gence penalty. If the penalty outweighs the gain
of the reconstruction term in Eq. 2, then the model
would learn to ignore zutt, in order to maximize
the variational lower-bound in Eq. 2.

On the other hand, the global variable zconv al-
lows the VHCR to predict a reasonable prior for
local variable zutt

t even in the presence of the ut-
terance drop regularization. That is, zconv can act
as a guide for zutt by encoding the information for
local variables. This reduces the KL divergence
penalty induced by encoding information in zutt to
an affordable degree at the cost of KL divergence
caused by using zconv. This trade-off is indeed a
fundamental strength of hierarchical models that
provide parsimonious representation; if there ex-
ists any shared information among the local vari-
ables, it is coded in the global latent variable re-
ducing the code length by effectively reusing the
information. The remaining local variability is
handled properly by the decoding distribution and
local latent variables.

The global variable zconv provides other bene-
fits by representing a latent global structure of a
conversation, such as a topic, a length, and a tone
of the conversation. Moreover, it allows us to con-
trol such global properties, which is impossible for
models without hierarchical latent structure.

4 Results

We first describe our experimental setting, such as
datasets and baselines (section 4.1). We then re-
port quantitative comparisons using three differ-
ent metrics (section 4.2–4.4). Finally, we present
qualitative analyses, including several utterance
control tasks that are enabled by the hierarchal la-
tent structure of our VHCR (section 4.5). We defer
implementation details and additional experiment
results to the supplementary file.

4.1 Experimental Setting

Datasets. We evaluate the performance of conver-
sation generation using two benchmark datasets:
1) Cornell Movie Dialog Corpus (Danescu-
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Model NLL Recon. KL div.
HRED 3.873 - -

VHRED ≤ 3.912 3.619 0.293
VHRED + w.d ≤ 3.904 3.553 0.351
VHRED + bow ≤ 4.149 2.982 1.167

VHCR + u.d ≤ 4.026 3.523 0.503

(a) Cornell Movie Dialog

Model NLL Recon. KL div.
HRED 3.766 - -

VHRED ≤ 3.767 3.654 0.113
VHRED + w.d ≤ 3.824 3.363 0.461
VHRED + bow ≤ 4.237 2.215 2.022

VHCR + u.d ≤ 3.951 3.205 0.756

(b) Ubuntu Dialog

Table 1: Results of Negative Log-likelihood. The
inequalities denote the variational bounds. w.d and
u.d., and bow denote the word drop, the utterance
drop, and the auxiliary bag-of-words loss respec-
tively.

Cornell Ubuntu
Model Total zconv zutt Total zconv zutt

VHRED 0.351 - 0.351 0.461 - 0.461
VHCR 0.503 0.189 0.314 0.756 0.198 0.558

Table 2: KL divergence decomposition. VHRED
and VHCR are trained with word drop and utter-
ance drop respectively.

Niculescu-Mizil and Lee, 2011), containing
220,579 conversations from 617 movies. 2)
Ubuntu Dialog Corpus (Lowe et al., 2015), con-
taining about 1 million multi-turn conversations
from Ubuntu IRC channels. In both datasets, we
truncate utterances longer than 30 words.

Baselines. We compare our approach with four
baselines. They are combinations of two state-of-
the-art models of conversation generation with dif-
ferent solutions to the degeneracy. (i) Hierarchical
recurrent encoder-decoder (HRED) (Serban et al.,
2016), (ii) Variational HRED (VHRED) (Ser-
ban et al., 2017), (iii) VHRED with the word
drop (Bowman et al., 2016), and (iv) VHRED with
the bag-of-words (bow) loss (Zhao et al., 2017).

Performance Measures. Automatic evalua-
tion of conversational systems is still a challeng-
ing problem (Liu et al., 2016). Based on lit-
erature, we report three quantitative metrics: i)
the negative log-likelihood (the variational bound
for variational models), ii) embedding-based met-
rics (Serban et al., 2017), and iii) human evalua-
tion via Amazon Mechanical Turk (AMT).

4.2 Results of Negative Log-likelihood

Table 1 summarizes the per-word negative log-
likelihood (NLL) evaluated on the test sets of
two datasets. For variational models, we instead
present the variational bound of the negative log-
likelihood in Eq. 2, which consists of the recon-
struction error term and the KL divergence term.
The KL divergence term can measure how much
each model utilizes the latent variables.

We observe that the NLL is the lowest by the
HRED. Variational models show higher NLLs, be-
cause they are regularized methods that are forced
to rely more on latent variables. Independent of
NLL values, we later show that the latent variable
models often show better generalization perfor-
mance in terms of embedding-based metrics and
human evaluation. In the VHRED, the KL di-
vergence term gradually vanishes even with the
word drop regularization; thus, early stopping is
necessary to obtain a meaningful KL divergence.
The VHRED with the bag-of-words loss (bow)
achieves the highest KL divergence, however, at
the cost of high NLL values. That is, the vari-
ational lower-bound minimizes the minimum de-
scription length, to which the bow loss works in
an opposite direction by forcing latent variables to
encode bag-of-words representation of utterances.
Our VHCR achieves stable KL divergence without
any auxiliary objective, and the NLL is lower than
the VHRED + bow model.

Table 2 summarizes how global and latent vari-
able are used in the VHCR. We observe that
VHCR encodes a significant amount of informa-
tion in the global variable zconv as well as in the
local variable zutt, indicating that the VHCR suc-
cessfully exploits its hierarchical latent structure.

4.3 Results of Embedding-Based Metrics

The embedding-based metrics (Serban et al.,
2017; Rus and Lintean, 2012) measure the tex-
tual similarity between the words in the model
response and the ground truth. We represent
words using Word2Vec embeddings trained on
the Google News Corpus1. The average metric
projects each utterance to a vector by taking the
mean over word embeddings in the utterance, and
computes the cosine similarity between the model
response vector and the ground truth vector. The
extrema metric is similar to the average metric,
only except that it takes the extremum of each di-

1https://code.google.com/archive/p/word2vec/.
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Model Average Extrema Greedy
1-turn

HRED 0.541 0.370 0.387
VHRED 0.543 0.356 0.393

VHRED + w.d 0.554 0.365 0.404
VHRED + bow 0.555 0.350 0.411

VHCR + u.d 0.585 0.376 0.434
3-turn

HRED 0.556 0.372 0.395
VHRED 0.554 0.360 0.398

VHRED + w.d 0.566 0.369 0.408
VHRED + bow 0.573 0.360 0.423

VHCR + u.d 0.588 0.378 0.429
(a) Cornell Movie Dialog

Model Average Extrema Greedy
1-turn

HRED 0.567 0.337 0.412
VHRED 0.547 0.322 0.398

VHRED + w.d 0.545 0.314 0.398
VHRED + bow 0.545 0.306 0.398

VHCR + u.d 0.570 0.312 0.425
3-turn

HRED 0.559 0.324 0.402
VHRED 0.551 0.315 0.397

VHRED + w.d 0.551 0.309 0.399
VHRED + bow 0.552 0.303 0.398

VHCR + u.d 0.574 0.311 0.422
(b) Ubuntu Dialog

Table 3: Results of embedding-based metrics. 1-
turn and 3-turn responses of models per context.

mension, instead of the mean. The greedy metric
first finds the best non-exclusive word alignment
between the model response and the ground truth,
and then computes the mean over the cosine simi-
larity between the aligned words.

Table 3 compares the different methods with
three embedding-based metrics. Each model gen-
erates a single response (1-turn) or consecutive
three responses (3-turn) for a given context. For
3-turn cases, we report the average of metrics mea-
sured for three turns. We use the greedy decoding
for all the models.

Our VHCR achieves the best results in most
metrics. The HRED is the worst on the Cornell
Movie dataset, but outperforms the VHRED and
VHRED + bow on the Ubuntu Dialog dataset. Al-
though the VHRED + bow shows the highest KL
divergence, its performance is similar to that of
VHRED, and worse than that of the VHCR model.
It suggests that a higher KL divergence does not
necessarily lead to better performance; it is more
important for the models to balance the modeling
powers of the decoder and the latent variables. The
VHCR uses a more sophisticated hierarchical la-
tent structure, which better reflects the structure of

natural language conversations.

4.4 Results of Human Evaluation
Table 4 reports human evaluation results via Ama-
zon Mechanical Turk (AMT). The VHCR outper-
forms the baselines in both datasets; yet the per-
formance improvement in Cornell Movie Dialog
are less significant compared to that of Ubuntu.
We empirically find that Cornell Movie dataset is
small in size, but very diverse and complex in con-
tent and style, and the models often fail to gener-
ate sensible responses for the context. The perfor-
mance gap with the HRED is the smallest, sug-
gesting that the VAE models without hierarchical
latent structure have overfitted to Cornell Movie
dataset.

4.5 Qualitative Analyses
Comparison of Predicted Responses. Table 5
compares the generated responses of algorithms.
Overall, the VHCR creates more consistent re-
sponses within the context of a given conversation.
This is supposedly due to the global latent variable
zconv that provides a more direct and effective way
to handle the global context of a conversation. The
context RNN of the baseline models can handle
long-term context to some extent, but not as much
as the VHCR.

Interpolation on zconv. We present examples of
one advantage by the hierarchical latent structure
of the VHCR, which cannot be done by the other
existing models. Table 6 shows how the generated
responses vary according to the interpolation on
zconv. We randomly sample two zconv from a stan-
dard Gaussian prior as references (i.e. the top and
the bottom row of Table 6), and interpolate points
between them. We generate 3-turn conversations
conditioned on given zconv. We see that zconv con-
trols the overall tone and content of conversations;
for example, the tone of the response is friendly in
the first sample, but gradually becomes hostile as
zconv changes.

Generation on a Fixed zconv. We also study
how fixing a global conversation latent variable
zconv affects the conversation generation. Table 7
shows an example, where we randomly fix a ref-
erence zconv from the prior, and generate multiple
examples of 3-turn conversation using randomly
sampled local variables zutt. We observe that zconv

heavily affects the form of the first utterance; in
the examples, the first utterances all start with a
“where” phrase. At the same time, responses show
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Cornell Ubuntu
Opponent Wins Losses Ties Wins Losses Ties

VHCR vs HRED 28.5± 1.9 28.2± 1.9 43.3± 2.1 52.9± 2.1 42.2± 2.1 4.9± 0.9
VHCR vs VHRED + w.d 29.9± 1.9 28.0± 1.9 42.1± 2.1 48.1± 2.1 40.1± 3.6 11.9± 1.4
VHCR vs VHRED + bow 31.3± 2.0 26.9± 1.9 41.7± 2.1 46.1± 2.1 39.9± 2.1 14.0± 1.5

Table 4: Results of human evaluation via AMT. Human turkers are asked to choose which response is
more appropriate in a given context, without knowing which algorithms generate which responses. For
each pair of models, we carry out three evaluation batches, each of which consists of 100 random test
samples evaluated by five unique humans. We report mean preferences with ±90% confidence interval.

Context HRED VHRED VHRED+bow VHCR
i’m going home. → what’s wrong? → i don’t
know. one of these days, i’m gon na see louis.
my back’s killing me.

i don’t know. i don’t want to be here.
i’m going to be here.

are you going to go
now?

this isn’t a joke. you’re
going to be here.

how’s sleeping beauty?→ still sleeping.→ kiss
him, maybe he’ll turn into a frog.

he’s a good man. what? we won’t? maybe he’s dead.

when i mount my usb drive i get a permission
denied but i can easily see the files if i boot via
live cd any ideas on how i→ the file permissions
of the ext3 file system are likely preventing you
→ thanks, any idea on options to fix?

no, i don’t know
how to fix it, but
i’m not sure how to
fix it

what kind of filesystem
is it on?

you did it just first? then
you’ll need to reboot
and then remount it up
again, if your problem
persists, i’d give you the

the only thing i can think
of is to fix the permis-
sions issue, try mount-
ing the drive with the uid
and gid options in the
forum

hello i need some support, anybody there? →
go ahead with your questions. <unk> are not
expected on irc.→ i have an hp pavilion<unk>
here and i can’t get it to install ubuntu

what’s the prob-
lem?

<unk>. what’s the
problem?

i’m sorry. they should be sup-
ported by canonical.
you don’t need to use
them.

Table 5: Qualitative comparison of generated responses. Top two rows show the samples from Cornell
Movie Dialog, while the bottom two rows are from Ubuntu Dialog.

nice to meet you.
→ where’s my wife?
→ she’s asleep.
go on, frank.
→ i ll tell you what i’m doing. i’m a little tired.
→ why?
now, you’re not going.
→ not for a long time.
→ but you’re a little<unk>.
get out of here.
→ all right.
→ you want to go home?
get out of here!!!
→ it’s not your fault, is n’t it?
→ why? what’s wrong?

Table 6: An example of interpolated 3-turn re-
sponses over zconv on Cornell Movie Dialog.

variations according to different local variables
zutt. These examples show that the hierarchical
latent structure of VHCR allows both global and
fine-grained control over generated conversations.

5 Discussion

We introduced the variational hierarchical conver-
sation RNN (VHCR) for conversation modeling.
We noted that the degeneration problem in exist-
ing VAE models such as the VHRED is persis-
tent, and proposed a hierarchical latent variable
model with the utterance drop regularization. Our
VHCR obtained higher and more stable KL diver-
gences than various versions of VHRED models
without using any auxiliary objective. The empir-

where is she?
→ she’s the only one who knows where she is, she’s going to be all right.
→ oh, you’re the only one who’s gon na be. she’s a<unk>.
where’s my wife?
→ you’ve got to get out of here, you know? you’re the one who’s gon na
be here.
→ oh, that’s nice.
where are you?
→ well, i was just thinking about you and i know what you’re doing. i’m
going to have to go to the<unk> and i’m
→ i’m sorry.
where are you going?
→ to get you to the airport.
→ you’re going to be late?
where are you going?
→ to the <unk>. i am not going to tell you what i am. i am the only one
who has to be. i will be the
→ you’ve got to stop!

Table 7: An example of 3-turn responses condi-
tioned on sampled zutt for a single fixed zconv.

ical results showed that the VHCR better reflected
the structure of natural conversations, and outper-
formed previous models. Moreover, the hierarchi-
cal latent structure allowed both global and fine-
grained control over the conversation generation.
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Abstract

Virtual agents are becoming a promi-
nent channel of interaction in cus-
tomer service. Not all customer in-
teractions are smooth, however, and
some can become almost comically
bad. In such instances, a human agent
might need to step in and salvage the
conversation. Detecting bad conversa-
tions is important since disappointing
customer service may threaten cus-
tomer loyalty and impact revenue. In
this paper, we outline an approach to
detecting such egregious conversations,
using behavioral cues from the user,
patterns in agent responses, and user-
agent interaction. Using logs of two
commercial systems, we show that us-
ing these features improves the detec-
tion F1-score by around 20% over us-
ing textual features alone. In addi-
tion, we show that those features are
common across two quite different do-
mains and, arguably, universal.

1 Introduction

Automated conversational agents (chatbots)
are becoming widely used for various tasks
such as personal assistants or as customer ser-
vice agents. Recent studies project that 80%
of businesses plan to use chatbots by 20201,
and that chatbots will power 85% of customer
service interactions by the year 20202. This
increasing usage is mainly due to advances
in artificial intelligence and natural language
processing (Hirschberg and Manning, 2015)

1http://read.bi/2gU0szG
2http://gtnr.it/2z428RS

along with increasingly capable chat devel-
opment environments, leading to improve-
ments in conversational richness and robust-
ness.

Still, chatbots may behave extremely badly,
leading to conversations so off-the-mark that
only a human agent could step in and salvage
them. Consequences of these failures may in-
clude loss of customer goodwill and associ-
ated revenue, and even exposure to litigation
if the failures can be shown to include fraudu-
lent claims. Due to the increasing prevalence
of chatbots, even a small fraction of such egre-
gious3 conversations could be problematic for
the companies deploying chatbots and the
providers of chatbot services.

In this paper we study detecting these egre-
gious conversations that can arise in numer-
ous ways. For example, incomplete or in-
ternally inconsistent training data can lead to
false classification of user intent. Bugs in dia-
log descriptions can lead to dead ends. Fail-
ure to maintain adequate context can cause
chatbots to miss anaphoric references. In the
extreme case, malicious actors may provide
heavily biased (e.g., the Tay chatbot4) or even
hacked misbehaviors.

In this article, we focus on customer care
systems. In such setting, a conversation usu-
ally becomes egregious due to a combination
of the aforementioned problems. The result-
ing customer frustration may not surface in
easily detectable ways such as the appearance
of all caps, shouting to a speech recognizer, or
the use of profanity or extreme punctuation.
Consequently, the chatbot will continue as if
the conversation is proceeding well, usually

3Defined by the dictionary as outstandingly bad.
4http://bit.ly/2fwYaa5
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Customer: I got 2 quotes for the flight ticket, but i’m won-
dering what the details of each ticket are?
Agent: Please select ”Buy” next to the ticket you’d like to
purchase.
Customer: No, I don’t want to buy yet till I know the details
of the flights.
Agent: If you’re in the process of renting a car, please con-
tinue with by clicking ”Next”
Customer: Are you a real person?
Agent: I am a digital assistant. I’ve been trained to answer
questions about travels. Ask me any questions you have.
Customer: I asked a specific question and you gave me a
random answer about car rental which I’m not interested in.
Agent: I’m not trained on that yet, but I’m still learning.
You may want to rephrase your question and try again.
Customer: This service is pointless , can i talk to a real live
person?
Agent: We don’t currently have live agents to chat with on-
line.

Figure 1: Example of an egregious conversa-
tion.

leading to conversational breakdown.
Consider, for example, the anonymized but

representative conversation depicted in Fig-
ure 1. Here the customer aims to understand
the details of a flight ticket. In the first two
turns, the chatbot misses the customer’s in-
tentions, which leads to the customer ask-
ing “Are you a real person?”. The customer
then tries to explain what went wrong, but
the chatbot has insufficient exposure to this
sort of utterance to provide anything but the
default response (“I’m not trained on that”).
The response seems to upset the customer
and leads to a request for a human agent,
which is rejected by the system (“We don’t
currently have live agents”). Such rejection
along with the previous responses could lead
to customer frustration (Amsel, 1992).

Being able to automatically detect such
conversations, either in real time or through
log analysis, could help to improve chatbot
quality. If detected in real time, a human
agent can be pulled in to salvage the conver-
sation. As an aid to chatbot improvement,
analysis of egregious conversations can often
point to problems in training data or system
logic that can be repaired. While it is possible
to scan system logs by eye, the sheer volume
of conversations may overwhelm the analyst
or lead to random sampling that misses im-
portant failures. If, though, we can automat-
ically detect the worst conversations (in our
experience, typically under 10% of the total),

the focus can be on fixing the worst problems.
Our goal in this paper is to study conver-

sational features that lead to egregious con-
versations. Specifically, we consider customer
inputs throughout a whole conversation, and
detect cues such as rephrasing, the presence
of heightened emotions, and queries about
whether the chatbot is a human or requests
to speak to an actual human. In addition,
we analyze the chatbot responses, looking for
repetitions (e.g. from loops that might be
due to flow problems), and the presence of
”not trained” responses. Finally, we analyze
the larger conversational context exploring,
for example, where the presence of a ”not
trained” response might be especially prob-
lematic (e.g., in the presence of strong cus-
tomer emotion).

The main contributions of this paper are
twofold: (1) This is the first research focus-
ing on detecting egregious conversations in
conversational agent (chatbot) setting and (2)
this is the first research using unique agent,
customer, and customer-agent interaction fea-
tures to detect egregiousness.

The rest of this paper is organized as fol-
lows. We review related work, then we for-
mally define the methodology for detecting
egregious conversations. We describe our
data, experimental setting, and results. We
then conclude and suggest future directions.

2 Related Work

Detecting egregious conversations is a new
task, however, there is related work that aim
at measuring the general quality of the in-
teractions in conversational systems. These
works studied the complementary problem
of detecting and measuring user satisfaction
and engagement. Early work by (Walker
et al., 1997, 2001) discussed a framework that
maximizes the user satisfaction by consid-
ering measures such as number of inappro-
priate utterances, recognition rates, number
of times user requests repetitions, number
of turns per interaction, etc. Shortcomings
of this approach are discussed by (Hajdin-
jak and Mihelic, 2006). Other works focus
on predicting the user engagement in such
systems. Examples include (Kiseleva et al.,
2016b,a; Jiang et al., 2015). Specifically, these
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works evaluated chat functionality by asking
users to make conversations with an intelli-
gent agent and measured the user satisfaction
along with other features such as the auto-
matic speech recognition (ASR) quality and
intent classification quality. In (Sandbank
et al., 2017) the authors presented a conversa-
tional system enhanced with emotion analy-
sis, and suggested using emotions as triggers
for human escalation. In our work, we like-
wise use emotion analysis as predictive fea-
tures for egregious conversation. The works
of (Sarikaya, 2017; Sano et al., 2017) studied
reasons why users reformulated utterances
in such systems. Specifically, in (Sarikaya,
2017) they reported on how the different rea-
sons affect the users’ satisfaction. In (Sano
et al., 2017) they focused on how to automat-
ically predict the reason for user’s dissatis-
faction using different features. Our work
also explores user reformulation (or rephras-
ing) as one of the features to predict egregious
conversations. We build on the previous
work by leveraging some of the approaches
in our classifier for egregious conversations.
In (Walker et al., 2000; Hastie et al., 2002) the
authors also looked for problems in a specific
setting of spoken conversations. The main
difference with our work is that we focus on
chat logs for domains for which the expected
user utterances are a bit more diverse, using
interaction features as well as features that
are not sensitive to any architectural aspects
of the conversational system (e.g., ASR com-
ponent). Several other approaches for eval-
uating chatbot conversations indirectly cap-
ture the notion of conversational quality. For
example, several prior works borrowed from
the field of pragmatics in various metrics
around the principles of cooperative conver-
sation (Chakrabarti and Luger, 2013; Saygin
A. P., 2002). In (Steidl et al., 2004) they mea-
sured dialogue success at the turn level as
a way of predicting the success of a conver-
sation as a whole. (Webb et al., 2010) cre-
ated a measure of dialogue appropriateness
to determine its role in maintaining a conver-
sation. Recently, (Liu et al., 2016) evaluated
a number of popular measures for dialogue
response generation systems and highlighted
specific weaknesses in the measures. Simi-

larly, in (Sebastian et al., 2009) they developed
a taxonomy of available measures for an end-
user’s quality of experience for multimodel
dialogue systems, some of which touch on
conversational quality. All these measures
may serve as reasons for a conversation turn-
ing egregious, but none try to capture or pre-
dict it directly.

In the domain of customer service, re-
searchers mainly studied reasons for fail-
ure of such systems along with suggestions
for improved design (Mimoun et al., 2012;
Gnewuch et al., 2017). In (Mimoun et al.,
2012) the authors analyzed reasons sales chat-
bots fail by interviewing chatbots experts.
They found that a combination of exagger-
ated customer expectations along with a re-
duction in agent performance (e.g., failure to
listen to the consumer, being too intrusive)
caused customers to stop using such systems.
Based on this qualitative study, they pro-
posed an improved model for sales chatbots.
In (Gnewuch et al., 2017) they studied service
quality dimensions (i.e., reliability, empathy,
responsiveness, and tangibility) and how to
apply them during agent design. The main
difference between those works and ours is
that they focus on qualitative high-level anal-
ysis while we focus on automatic detection
based on the conversations logs.

3 Methodology

The objective of this work is to reliably detect
egregious conversations between a human
and a virtual agent. We treat this as a binary
classification task, where the target classes are
“egregious” and “non-egregious”. While we
are currently applying this to complete con-
versations (i.e., the classification is done on
the whole conversation), some of the features
examined here could likely be used to detect
egregious conversations as they were unfold-
ing in real time. To perform egregious conver-
sation detection, features from both customer
inputs and agent responses are extracted, to-
gether with features related to the combina-
tion of specific inputs and responses. In ad-
dition, some of these features are contextual,
meaning that they are dependent on where in
the conversation they appear.

Using this set of features for detecting egre-
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gious conversations is novel, and as our ex-
perimental results show, improves perfor-
mance compared to a model based solely
on features extracted from the conversation’s
text. We now describe the agent, customer,
and combined customer-agent features.

3.1 Agent Response Features

A virtual agent is generally expected to
closely simulate interactions with a human
operator (Reeves and Nass, 1996; Nass and
Moon,Y, 2000; Krämer, 2008). When the agent
starts losing the context of a conversation,
fails in understanding the customer intention,
or keeps repeating the same responses, the il-
lusion of conversing with a human is lost and
the conversation may become extremely an-
noying. With this in mind, we now describe
the analysis of the agent’s responses and as-
sociated features (summarized in the top part
of Table 1).

3.1.1 Repeating Response Analysis

As typically implemented, the virtual agent’s
task is to reliably detect the intent of each
customer’s utterance and respond meaning-
fully. Accurate intent detection is thus a fun-
damental characteristic of well-trained vir-
tual agents, and incorrect intent analysis is
reported as the leading cause of user dissat-
isfaction (Sarikaya, 2017). Moreover, since a
classifier (e.g., SVM, neural network, etc.) is
often used to detect intents, its probabilistic
behavior can cause the agent to repeat the
same (or semantically similar) response over
and over again, despite the user’s attempt to
rephrase the same intent.

Such agent repetitions lead to an unnat-
ural interaction (Klüwer, 2011). To identify
the agent’s repeating responses, we measured
similarity between agent’s subsequent (not
necessarily sequential) turns. We represented
each sentence by averaging the pre-trained
embeddings5 of each word in the sentence,
calculating the cosine similarity between the
representations. Turns with a high similarity
value6 are considered as repeating responses.

5https://code.google.com/archive/p/word2vec
6Empirically, similarity values ≥ 0.8

3.1.2 Unsupported Intent Analysis
Given that the knowledge of a virtual agent is
necessarily limited, we can expect that train-
ing would not cover all customer intents. If
the classifier technology provides an estimate
of classification confidence, the agent can re-
spond with some variant of “I’m not trained
on that” when confidence is low. In some
cases, customers will accept that not all re-
quests are supported. In other cases, un-
supported intents can lead to customer dis-
satisfaction (Sarikaya, 2017), and cascade to
an egregious conversation (as discussed be-
low in Section 3.3). We extracted the possible
variants of the unsupported intent messages
directly from the system, and later matched
them with the agent responses from the logs.

3.2 Customer Inputs Features

From the customer’s point of view, an in-
effective interaction with a virtual agent is
clearly undesirable. An ineffective interaction
requires the expenditure of relatively large
effort from the customer with little return
on the investment (Zeithaml et al., 1990; Mi-
moun et al., 2012). These efforts can appear as
behavioral cues in the customer’s inputs, and
include emotions, repetitions, and more. We
used the following customer analysis in our
model. Customer features are summarized in
the middle part of Table 1.

3.2.1 Rephrasing Analysis
When a customer repeats or rephrases an ut-
terance, it usually indicates a problem with
the agent’s understanding of the customer’s
intent. This can be caused by different
reasons as described in (Sano et al., 2017).
To measure the similarity between subse-
quent customer turns to detect repetition or
rephrasing, we used the same approach as de-
scribed in Section 3.1.1. Turns with a high
similarity value6 are considered as rephrases.

3.2.2 Emotional Analysis
The customer’s emotional state during the
conversation is known to correlate with the
conversation’s quality (Oliver, 2014). In or-
der to analyze the emotions that customers
exhibit in each turn, we utilized the IBM Tone
Analyzer service, available publicly online7.

7https://ibm.co/2hnYkCv
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This service was trained using customer care
interactions, and infers emotions such as frus-
tration, sadness, happiness. We focused on neg-
ative emotions (denoted as NEG EMO) to
identify turns with a negative emotional peak
(i.e., single utterances that carried high neg-
ative emotional state), as well as to estimate
the aggregated negative emotion throughout
the conversation (i.e., the averaged negative
emotion intensity). In order to get a more
robust representation of the customer’s neg-
ative emotional state, we summed the score
of the negative emotions (such as frustration,
sadness, anger, etc.) into a single negative sen-
timent score (denoted as NEG SENT). Note
that we used the positive emotions as a fil-
ter for other customer features, such as the
rephrasing analysis. Usually, high positive
emotions capture different styles of “thank-
ing the agent”, or indicate that the customer is
somewhat satisfied (Rychalski and Hudson,
2017), thus, the conversation is less likely to
become egregious.

3.2.3 Asking for a Human Agent
In examining the conversation logs, we no-
ticed that it is not unusual to find a customer
asking to be transferred to a human agent.
Such a request might indicate that the virtual
agent is not providing a satisfactory service.
Moreover, even if there are human agents,
they might not be available at all times, and
thus, a rejection of such a request is some-
times reasonable, but might still lead to cus-
tomer frustration (Amsel, 1992).

3.2.4 Unigram Input
In addition to the above analyses, we also de-
tected customer turns that contain exactly one
word. The assumption is that single word
(unigram) sentences are probably short cus-
tomer responses (e.g., no, yes, thanks, okay),
which in most cases do not contribute to the
egregiousness of the conversation. Hence,
calculating the percentage of those turns out
of the whole conversation gives us another
measurable feature.

3.3 Customer-Agent Interaction Features

We also looked at features across conversa-
tion utterance-response pairs in order to cap-
ture a more complete picture of the interac-

Group Feature Description Contextual?

Agent

AGNT RPT Similarity of subsequent agent re-
sponses

Yes

#AGNT !TRND Number of times the agent replied
with “not trained”

No

Customer

MAX 3 RPHRS Max rephrasing similarity score of
3 subsequent turns

Yes

#RPHRS Number of customer rephrasing
throughout the conversation

Yes

MAX NEG EMO Max negative emotion in the con-
versation

No

NEG SENT Aggregated negative sentiment in
the conversation

No

DIFF NEG SENT Difference between max turn-
level negative sentiment and
conversation-level

Yes + No

RPHRS & NEG SENT Rephrasing of subsequent turns
with an average high negative sen-
timent

Yes

HMN AGT & NEG SENT Negative sentiment when asking
for a human agent

No

#1 WRD Turns that contained only one word Yes

Customer-

NEG SENT & AGNT !TRND Customer negative sentiment with
agent replying “not trained”

No

Agent

HMN AGT & AGNT !TRND Customer asking to talk to a human
agent followed by the agent reply-
ing “not trained”

No

Interaction

LNG SNTNS & AGNT !TRND Customer long turn followed by an
agent “not trained” response

No

RPHRS & SMLR The similarity between the cus-
tomer’s turn and the agent’s re-
sponse in case of customer rephras-
ing

No

RPHRS & AGNT !TRND The similarity between the cus-
tomer’s turns when the agent’s re-
sponse is “not trained”

No

CONV LEN Total number of customer turns
and agent responses

No

Table 1: Features sets description.

tion between the customer and the virtual
agent. Here, we considered a pair to be
customer utterance followed by an agent re-
sponse. For example, a pair may contain a
turn in which the customer expressed nega-
tive emotions and received a response of “not
trained” by the agent. In this case, we would
leverage the two analyses: emotional and un-
supported intent. Figure 1 gives an exam-
ple of this in the customer’s penultimate turn.
Such interactions may divert the conversation
towards becoming egregious. These features
are summarized in the last part of Table 1.

3.3.1 Similarity Analysis

We also calculated the similarity between the
customer’s turn and the virtual agent’s re-
sponse in cases of customer rephrasing. This
analysis aims to capture the reason for the
customer rephrasing. When a similarity score
between the customer’s turn and the agent’s
response is low, this may indicate a misclassi-
fied intent, as the agent’s responses are likely
to share some textual similarity to the cus-
tomer’s utterance. Thus, a low score may in-
dicate a poor interaction, which might lead
the conversation to become egregious. An-
other similarity feature is between two cus-
tomer’s subsequent turns when the agent’s
response was “not trained”.
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3.4 Conversation Egregiousness
Prediction Classifier

We trained a binary SVM classifier with a lin-
ear kernel. A feature vector for a sample in
the training data is generated using the scores
calculated for the described features, where
each feature value is a number between [0,1].
After the model was trained, test conversa-
tions are classified by the model, after being
transformed to a feature vector in the same
way a training sample is transformed. The
SVM classification model (denoted EGR) out-
puts a label “egregious” or “non-egregious”
as a prediction for the conversation.

4 Experiments

4.1 Dataset

We extracted data from two commercial sys-
tems that provide customer support via con-
versational bots (hereafter denoted as com-
pany A and company B). Both agents are us-
ing similar underlying conversation engines,
each embedded in a larger system with its
own unique business logic. Company A’s
system deals with sales support during an
online purchase, while company B’s system
deals with technical support for purchased
software products. Each system logs con-
versations, and each conversation is a se-
quence of tuples, where each tuple consists of
{conversation id, turn id, customer input, agent
response}. From each system, we randomly
extracted 10000 conversations. We further
removed conversations that contained fewer
than 2 turns, as these are too short to be
meaningful since the customer never replied
or provided more details about the issue at
hand. Figure 2 depicts the frequencies of con-
versation lengths which follow a power-law
relationship. The conversations from com-
pany A’s system tend to be longer, with an
average of 8.4 turns vs. an average of 4.4 turns
for company B.

4.2 Experimental Setup

The first step in building a classification
model is to obtain ground truth data. For
this purpose, we randomly sampled conver-
sations from our datasets. This sample in-
cluded 1100 and 200 conversations for com-
pany A and company B respectively. The
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Figure 2: Frequency versus conversation
length for company A and company B on a
log-log scale.

sampled conversations were tagged using an
in-house tagging system designed to increase
the consistency of human judgements. Each
conversation was tagged by four different ex-
pert judges8. Given the full conversation,
each judge tagged whether the conversation
was egregious or not following this guide-
line: “Conversations which are extraordinar-
ily bad in some way, those conversations
where you’d like to see a human jump in and
save the conversation”.

We generated true binary labels by consid-
ering a conversation to be egregious if at least
three of the four judges agreed. The inter-
rater reliability between all judges, measured
by Cohen’s Kappa, was 0.72 which indicates
high level agreement. This process generated
the egregious class sizes of 95 (8.6%) and 16
(8%) for company A and company B, respec-
tively. This verifies the unbalanced data ex-
pectation as previously discussed.

We also implemented two baseline models,
rule-based and text-based, as follows:

Rule-based. In this approach, we look for
cases in which the virtual agent responded
with a “not trained” reply, or occurrences of
the customer requesting to talk to a human
agent. As discussed earlier, these may be in-
dicative of the customer’s dissatisfaction with
the nature of the virtual agent’s responses.

Text-based. A model that was trained to
predict egregiousness given the conversa-
tion’s text (all customer and agent’s text dur-

8judges that are HCI experts and have experience in
designing conversational agents systems.
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Egregious Non-Egregious
Model P R F P R F
Rule-based 0.28 0.54 0.37 0.95 0.87 0.91
Text-based 0.46 0.56 0.50 0.96 0.94 0.95
EGR 0.47 0.79 0.59 0.98 0.92 0.95

Table 2: Cross-validation results for the base-
lines and EGR models.

ing the conversation). This model was imple-
mented using state-of-the-art textual features
as in (Herzig et al., 2017). In (Herzig et al.,
2017) emotions are detected from text, which
can be thought of as similar to our task of pre-
dicting egregious conversations.

We evaluated these baseline methods
against our classifier using 10-fold cross-
validation over company A’s dataset (we did
not use company B’s data for training due
to the low number of tagged conversations).
Since class distribution is unbalanced, we
evaluated classification performance by us-
ing precision (P), recall (R) and F1-score (F)
for each class. The EGR classifier was imple-
mented using an SVM with a linear kernel9.

4.3 Classification Results

Table 2 depicts the classification results for
both classes and the three models we ex-
plored. The EGR model significantly out-
performed both baselines10. Specifically, for
the egregious class, the precision obtained by
the text-based and EGR models were simi-
lar. This indicates that the text analyzed by
both models encodes some information about
egregiousness. On the other hand, for the re-
call and hence the F1-score, the EGR model
relatively improved the text-based model by
41% and 18%, respectively. We will further
analyze the models below.

4.4 Feature Set Contribution Analysis

To better understand the contributions of dif-
ferent sets of features to our EGR model, we
examined various features in an incremental
fashion. Based on the groups of feature sets
that we defined in Section 3, we tested the
performance of different group combinations,
added in the following order: agent, customer
and customer-agent interactions.

9http://scikit-learn.org/stable/modules/svm.html
10EGR with p < 0.001, using McNemar’s test.
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Figure 3: Precision (P), Recall (R), and F1-
score (F) for various group combinations.

Figure 3 depicts the results for the clas-
sification task. The x-axis represents spe-
cific combinations of groups, and the y-axis
represents the performance obtained. Figure
3 shows that adding each group improved
performance, which indicates the informative
value of each group. The figure also suggests
that the most informative group in terms of
prediction ability is the customer group.

4.5 Cross-Domain Analysis

We also studied how robust our features
were: If our features generalize well, perfor-
mance should not drop much when testing
company B with the classifier trained exclu-
sively on the data from company A. Although
company A and company B share similar
conversation engine platforms, they are com-
pletely different in terms of objectives, do-
main, terminology, etc. For this task, we uti-
lized the 200 annotated conversations of com-
pany B as test data, and experimented with
the different models, trained on company A’s
data. The rule-based baseline does not re-
quire training, of course, and could be ap-
plied directly.

Table 3 summarizes the results showing
that the performance of the EGR model is rel-
atively stable (w.r.t the model’s performance
when it was trained and tested on the same
domain), with a degradation of only 9% in
F1-score11. In addition, the results also show
that the text-based model performs poorly
when applied to a different domain (F1-score
of 0.11). This may occur since textual features
are closely tied to the training domain.

11EGR model results are statistically significant com-
pared to the baselines models with p < 0.001, using
McNemar’s test.
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Egregious Non-Egregious
Model P R F P R F
Rule-based 0.15 0.12 0.14 0.93 0.94 0.93
Text-based 0.33 0.06 0.11 0.92 0.99 0.96
EGR 0.41 0.81 0.54 0.98 0.90 0.94

Table 3: Cross domain performance ( models
trained on company A’s data, tested on com-
pany B’s data).

4.6 Models Analysis

4.6.1 Customer Rephrasing Analysis

Inspired by (Sarikaya, 2017; Sano et al., 2017)
we analyzed the customer rephrasing mo-
tivations for both the egregious and the
non-egregious classes. First, we detected
customer rephrasing as described in Sec-
tion 3.2.1, and then assigned to each its mo-
tivation. Specifically, in our setting, the rel-
evant motivations are12: (1) Natural language
understanding (NLU) error - the agent’s in-
tent detection is wrong, and thus the agent’s
response is semantically far from the cus-
tomer’s turn; (2) Language generation (LG) lim-
itation - the intent is detected correctly, but the
customer is not satisfied by the response (for
example, the response was too generic); (3)
Unsupported intent error - the customer’s in-
tent is not supported by the agent.

In order to detect NLU errors, we mea-
sured the similarity between the first cus-
tomer turn (before the rephrasing) and the
agent response. We followed the methodol-
ogy presented in (Jovita et al., 2015) claiming
that the best answer given by the system has
the highest similarity value between the cus-
tomer turn and the agent answer. Thus, if
the similarity was < 0.8 we considered this
as an erroneous detection. If the similarity
was ≥ 0.8 we considered the detection as cor-
rect, and thus the rephrasing occurred due to
LG limitation. To detect unsupported intent er-
ror we used the approach described in Sec-
tion 3.1.2. As reported in table 4, rephras-
ing due to an unsupported intent is more
common in egregious conversations (18% vs.
14%), whereas, rephrasing due to generation
limitations (LG limitation) is more common in

12We did not consider other motivations like au-
tomatic speech recognition (ASR) errors, fallback to
search, and backend failure as they are not relevant to
our setting.

Egregious Non-egregious
NLU error 48% 48%
LG limitation 33% 37%
Unsupported intent error 18% 14%

Table 4: Percentage of different customer
rephrasing reasons for egregious, and non-
egregious conversations.

non-egregious conversations (37% vs. 33%).
This indicates that customers are more tol-
erant of cases where the system understood
their intent, but the response is not exactly
what they expected, rather than cases where
the system’s response was “not trained”. Fi-
nally, the percentage of rephrasing due to
wrong intent detection (NLU errors) is similar
for both classes, which is somewhat expected
as similar underlying systems provided NLU
support.

4.6.2 Recall Analysis

We further investigated why the EGR model
was better at identifying egregious conversa-
tions (i.e., its recall was higher compared to
the baseline models). We manually examined
26 egregious conversations that were identi-
fied justly so by the EGR model, but mis-
classified by the other models. Those con-
versations were particularly prevalent with
the agent’s difficulty to identify correctly the
user’s intent due to NLU errors or LG limita-
tion. We did not encounter any unsupported
intent errors leading to customer rephrasing,
which affected the ability of the rule-based
model to classify those conversations as egre-
gious. In addition, the customer intents that
appeared in those conversations were very
diverse. While customer rephrasing was cap-
tured by the EGR model, for the text-based
model some of the intents were new (did not
appear in the training data) and thus were
difficult for the model to capture.

5 Conclusions and Future Work

In this paper, we have shown how it is pos-
sible to detect egregious conversations using
a combination of customer utterances, agent
responses, and customer-agent interactional
features. As explained, the goal of this work
is to give developers of automated agents
tools to detect and then solve problems cre-
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ated by exceptionally bad conversations. In
this context, future work includes collecting
more data and using neural approaches (e.g.,
RNN, CNN) for analysis, validating our mod-
els on a range of domains beyond the two ex-
plored here. We also plan to extend the work
to detect egregious conversations in real time
(e.g., for escalating to a human operators),
and create log analysis tools to analyze the
root causes of egregious conversations and
suggest possible remedies.
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Abstract

An enormous amount of conversation occurs
online every day, such as on chat platforms
where multiple conversations may take place
concurrently. Interleaved conversations lead to
difficulties in not only following discussions
but also retrieving relevant information from
simultaneous messages. Conversation disen-
tanglement aims to separate intermingled mes-
sages into detached conversations.

In this paper, we propose to leverage represen-
tation learning for conversation disentangle-
ment. A Siamese hierarchical convolutional
neural network (SHCNN), which integrates
local and more global representations of a
message, is first presented to estimate the
conversation-level similarity between closely
posted messages. With the estimated simi-
larity scores, our algorithm for conversation
identification by similarity ranking (CISIR)
then derives conversations based on high-
confidence message pairs and pairwise redun-
dancy. Experiments were conducted with four
publicly available datasets of conversations
from Reddit and IRC channels. The experi-
mental results show that our approach signif-
icantly outperforms comparative baselines in
both pairwise similarity estimation and con-
versation disentanglement.

1 Introduction

With the growth of ubiquitous internet and mobile
devices, people now commonly communicate in
the virtual world. Among the various methods of
communication, text-based conversational media,
such as internet relay chat (IRC) (Werry, 1996)
and Facebook Messenger1, has been and remains
one of the most popular choices. In addition, many
enterprises have started to use conversational chat
platforms such as Slack2 to enhance team col-
laboration. However, multiple conversations may

1Facebook Messenger: https://www.messenger.
com/

2Slack: https://slack.com/

Thread Message
...

...
T31 Malcolm: If running as root, I need to set up a global config

rather than ⇠/.fetchmailrc ?
T38 Elma: i’m sure i missed something but fonts rendering in my

gimp works isn’t at its best
T39 Sena: is there anyway to see what the CPU temperature is?
T38 Elma: is it because of gimp or i missed some tuning or such?
T31 Rache: Specify a non-default name run control file.
T41 Denny: so how does one enforce a permission set and own-

ership set on a folder and all its children?
T31 Malcolm: in the man page it doesn’t mention any global

fetchmailrc file... that is what was confusing me...
T42 Shenna: hi, are sata drives accessed as sda or hda?
T41 Elma: -R for recursive...
T42 Elma: sda

...
...

Figure 1: A segment of real-world conversations in-
volving six users and five (annotated) threads from the
IRC dataset.

occur simultaneously when conversations involve
three or more participants. Aoki et al. (2006)
found an average of 1.79 conversations among
eight participants at a time. Moreover, some plat-
forms like chatrooms in Twitch may have more
concurrent conversations (Hamilton et al., 2014).
Interleaved conversations can lead to difficulties
in both grasping discussions and identifying mes-
sages related to a search result. For example, Fig-
ure 1 shows a segment of conversations from the
real-world IRC dataset as an example. Five inter-
leaved threads are involved in only ten messages.
Messages in the same thread may not have identi-
cal keywords. Moreover, a user (i.e., Elma) can
participate in multiple threads. Hence, a robust
mechanism to disentangle interleaved conversa-
tions can improve a user’s satisfaction with a chat
system.

One solution for conversation disentanglement
is to model the task as a topic detection and track-
ing (TDT) (Allan, 2002) task by deciding whether
each incoming message starts a new topic or be-
longs to an existing conversation. Messages in
the same conversation may have higher similarity
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scores (Shen et al., 2006; Mayfield et al., 2012) or
similar context messages (Wang and Oard, 2009).
However, similarity thresholds for determining
new topics vary depending on context. Embed-
ding of earlier messages, resulting in duplication
of parts of messages, can alter the similarity score.
More specifically, the similarity scores obtained in
previous work cannot well represent conversation-
level relationships between messages.

Several studies have examined the use of sta-
tistical (Du et al., 2017) and linguistic features
(Elsner and Charniak, 2008, 2010, 2011; May-
field et al., 2012) for predicting user annotations
of paired message similarity. These studies em-
ployed bag-of-words representations which do not
capture term similarity and cannot distinguish
word importance and relationships between words
in a message. Thus, better representations of mes-
sages and their relationships are needed.

Recent studies have demonstrated the effec-
tiveness of deep learning methods in represen-
tation learning (Bengio et al., 2013), aiming to
infer low-dimensional distributed representations
for sparse data such as text (Hinton and Salakhut-
dinov, 2006). These representations can be de-
rived not only for words (Mikolov et al., 2013) but
also sentences and documents (Le and Mikolov,
2014). In particular, convolutional neural net-
works (CNNs) have been shown to efficiently and
effectively preserve important semantic and syn-
tactic information from embedded text sequences
(Blunsom et al., 2014). It has been demonstrated
that CNNs produce state-of-the-art results in many
NLP tasks such as text classification (Kim, 2014;
Lai et al., 2015; Zhang et al., 2015) and sentiment
analysis (Tang et al., 2014; Poria et al., 2015).
Existing approaches, however, do not take advan-
tage of deep learning techniques to model relation-
ships between messages for disentangling conver-
sations. (Mehri and Carenini, 2017) defined many
statistical features for use with a random forest for
in-thread classification and used a recurrent neural
network (RNN) only to model adjacent messages
with an external dataset as a feature.

In this paper, we aim to leverage deep learn-
ing for conversation disentanglement. Our pro-
posed approach consists of two stages: (1) mes-
sage pair similarity estimation and (2) conversa-
tion identification. In the first stage, we pro-
pose the Siamese hierarchical convolutional neural
network (SHCNN) to estimate conversation-level
similarity between pairs of closely posted mes-
sages. SHCNN is framed as a Siamese architec-
ture (Mueller and Thyagarajan, 2016) concatenat-

ing the outputs of two hierarchical convolutional
neural networks and additional features. Com-
pared to other conventional CNN-based Siamese
networks (Severyn and Moschitti, 2015; Yin et al.,
2016), SHCNN models not only local information
in adjacent words but also more global semantic
information in a message. In the second stage,
the algorithm of conversation identification by
similarity ranking (CISIR) ranks messages within
a time window paired with each message and con-
structs a message graph involving high-rank con-
nections with strong confidence. Although only
high-confidence relations are represented in the
constructed graph, the redundancy of pairwise re-
lationships can capture the connectivity of mes-
sages within a conversation.

In summary, the main contributions of this pa-
per are threefold: (1) Deep similarity estimation
for conversation disentanglement: To the best of
our knowledge, this is the first study applying deep
learning to estimate similarities between messages
for disentangling conversations. SHCNN simul-
taneously captures and compares local and global
characteristics of two messages to estimate their
similarity. Message representations are also opti-
mized towards the task of conversation disentan-
glement. (2) Efficient and effective method: The
selection of message pairs posted closely in time
and the proposed CISIR algorithm significantly re-
duces the computational time from O

�
|M |2

�
to

O (k|M |), where |M | is the number of messages,
and k is the maximum number of messages posted
within a fixed-length time window. When many
messages are posted over a long period, the com-
putational time of our approach could be near-
linear. (3) Empirical improvements over previ-
ous work: Extensive experiments have been con-
ducted on four publicly available datasets, includ-
ing three synthetic conversation datasets and one
real conversation dataset from Reddit3 and IRC
conversations. Our approach outperforms all com-
parative baselines for both similarity estimation
and conversation disentanglement.

2 Related Work

Methods for conversation disentanglement can
be simply categorized into unsupervised and su-
pervised approaches. Unsupervised approaches
(Wang and Oard, 2009) estimate the relationship
between messages through unsupervised similar-
ity functions such cosine similarity, and assign
messages to conversations based on a predefined

3Reddit: https://www.reddit.com/
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threshold. In contrast, supervised methods exploit
a set of user annotations (Elsner and Charniak,
2008; Mayfield et al., 2012; Shen et al., 2006; Du
et al., 2017; Mehri and Carenini, 2017) to adapt
to different datasets. Our approach can be classi-
fied as a supervised approach because a small set
of user annotations is used to train the SHCNN.

In addition to conversations, some studies pre-
dict the partial structure of threaded data, espe-
cially for online forums (Aumayr et al., 2011;
Wang et al., 2011b,a). These studies merely clas-
sify parent-child relationships in disentangled, in-
dependent threads. Moreover, they focus only on
comments to the same post. Indeed, conversation
disentanglement is a more difficult task.

Estimating the similarity of text pairs is an es-
sential part in our approach. Many studies also
focus on similar tasks aside from conversation
disentanglement, such as entailment prediction
(Mueller and Thyagarajan, 2016; Wang and Jiang,
2017) and question-answering (Severyn and Mos-
chitti, 2015; Amiri et al., 2016; Yin et al., 2016).
However, most of their models are complicated
and require a larger amount of labeled training
data; limited conversational data can lead to un-
satisfactory performance as shown in Section 4.

3 Conversation Disentanglement

In this section, we formally define the objective
of this work and notations used. A two-stage ap-
proach is then proposed to address the problem.

3.1 Problem Statement

Given a set of speakers S, a message m is de-
fined as a tuple m = (w, s, t), where w =
hw1, w2, · · · , wni is a word sequence posted by the
speaker s 2 S at time t in seconds. Each message
m is associated with a conversation z (m). Mes-
sages in different conversations can be posted con-
currently, i.e., conversations can be interleaved.

Following the settings of previous work (El-
sner and Charniak, 2008, 2010, 2011; Mayfield
et al., 2012), a set of pairwise annotations A =
{(mi, mj , y)}, where y 2 {0, 1}, is given for
training the model. More specifically, a Boolean
value y indicates whether two messages mi and
mj are in the same conversation, i.e., z(mi) and
z(mj) are identical.

Given a set of messages M and the pairwise
annotations A as training data, the goal is to
learn a model that can identify whether mes-
sages are posted in the same conversation z(m).
Note that the number of conversations |Z =

{z(m) | 8m 2M} | is always unknown to the
system.

3.2 Framework Overview
Figure 2 illustrates our two-stage framework. The
first stage aims to estimate pairwise similarity
among messages. Message pair selection is ap-
plied to focus on the similarity between messages
that are posted closely in time and thus more likely
to be in the same conversation. The Siamese hi-
erarchical CNN (SHCNN) is proposed for learn-
ing message representations and estimating pair-
wise similarity scores. The overlapping hierarchi-
cal structure of SHCNN models a message at mul-
tiple semantic levels and obtains representations
that are more comprehensive.

In the second stage, our conversation identifica-
tion by similarity ranking (CISIR) algorithm ex-
ploits the redundancy and connectivity of pair-
wise relationships to identify conversations as
connected components in a message graph.

3.3 Message Pair Selection
Most of the previous work on conversation disen-
tanglement focused on pairwise relationships be-
tween messages (Mayfield et al., 2012). Espe-
cially for single-pass clustering approaches, all
pairs of messages need to be enumerated during
similarity computation (Wang and Oard, 2009).
However, if messages have been collected for a
long time, the number of message pairs could be
too mammoth to be processed in an acceptable
amount of time. More precisely, it leads to at least
O(n2) computational time, where n is the num-
ber of messages. As shown in Figure 3, the per-
centage of messages in the same conversation as
a given message becomes significantly lower with
a longer elapsed time between consecutive mes-
sages. In light of this observation, an assumption
is made as follows:
Assumption 1 The elapsed time between two
consecutive messages posted in the same conver-
sation is not greater than T hours, where T is a
small number.
More specifically, in our dataset every message mi

is posted within T hours earlier or later than any
other message mj in the same conversation, i.e.,
|ti�tj |
3600 < T for all pairs (mi, mj), where t is in

seconds. For example, in the IRC dataset the av-
erage elapsed time between consecutive messages
in a conversation is only 7 minutes. If a conver-
sation is ongoing, there may not be an extended
silence before a new message; conversely, an ex-
tended silence could be treated as the start of a new
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Figure 2: Illustration of our proposed two stage method. In the first stage, (1a) message pairs are selected for (1b)
estimating pairwise similarity with a Siamese hierarchical CNN (SHCNN). In the second stage, (2) the algorithm
of conversation identification by similarity ranking (CISIR) constructs a graph with strong relationships among
messages and finds conversations as connected components.
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Figure 3: The percentage of messages in the same con-
versation as a given message with elapsed time between
messages no greater than i hours for four experimental
datasets.

conversation. With this assumption, the number
of pairs can be reduced to O(kn), where k is the
maximum number of messages posted in a T -hour
time window. By default T is set to 1 hour in our
experiments.

In addition, it is worth mentioning that it may be
possible to include conversational structure, such
as replied-to relations, into the model. For exam-
ple, after using CISIR to identify conversational
threads, structure inference may be performed us-
ing methods such as described in (Aumayr et al.,
2011) or (Wang et al., 2011b) and the structure
used to refine the threads. In this study, we focus
on only conversation disentanglement.

3.4 Similarity Estimation with the Siamese
Hierarchical CNN (SHCNN)

Given a set of message pairs, we propose the
Siamese hierarchical CNN (SHCNN) to estimate
the similarity between a pair of messages.

|w| words
message input m

convolutional
message

matrix Wc

d-dimensional word embedding

...
...

high-level
message

matrix WH

low-level
conv. feature

map cL
i

high-level
conv. feature

map cH
i

64-dim low-level
representation

m̂L

64-dim high-level
representation

m̂H

128-dim message representation m̂

d⇥ |w| message matrix W
d⇥ |w| message matrix W

Figure 4: Illustration of hierarchical CNN (HCNN) for
message representation. The labels with a larger font
size indicate the corresponding tensors, and the labels
with a smaller font size explain the operations between
tensors.

3.4.1 Hierarchical CNN for Message
Representation

The effectiveness of CNNs for representing text
has already been addressed in previous studies.
However, single-layer CNNs (Kim, 2014; Sev-
eryn and Moschitti, 2015) may not represent high-
level semantics while low-level information could
be diluted with multiple-layer CNNs (Yin et al.,
2016). The hierarchical CNN (HCNN) is de-
signed to simultaneously capture low- and high-
level message meanings as shown in Figure 4.

A message mi is first represented by a d ⇥ |w|
message matrix W 2 Rd⇥|w|, where d is the di-
mension of a word embedding, and |w| is the num-
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ber of words in a message. For low-level informa-
tion, we exploit single-layer CNNs (Kim, 2014;
Severyn and Moschitti, 2015) with a set of d⇥ kL

kernels, where L denotes “Low”, to extract n-
gram semantics of kL contiguous words. In this
paper, 64 d ⇥ kL kernels, where kL = 5, are ap-
plied to obtain 64 low-level features m̂L. Note that
the kernel row dimension is identical to the word
embedding dimension to jointly consider the full
embedding vector. As a consequence, convolution
with each kernel produces a vector cL

i , which is
then aggregated by max-over-time pooling (Col-
lobert et al., 2011; Kim, 2014).

To acquire high-level semantics across a mes-
sage, HCNN uses another multiple-layer CNN for
feature extraction. A 1 ⇥ kC kernel is applied to
W , thereby generating a convolutional message
matrix W C . Features covering broader contents
are computed by applying a 1 ⇥ 2 kernel to a
max-pooling layer with a stride of 2, producing
a high-level message matrix W H . The row sizes
of the two kernels are set to 1 to capture relations
within each embedding dimension, and convolu-
tion is performed on W H with 64 d⇥ kH kernels
to capture relations across embedding dimensions.
The generated convolutional feature maps cH

i are
subject to max-over-time pooling, resulting in 64
features m̂H . Finally, a message representation
m̂ is constructed by concatenating m̂L and m̂H ,
i.e., creating a 128-dimensional feature vector, for
characterizing both low- and high-level semantics
of a message m. In this paper, both kC and kH

are set to 5 while computing high-level represen-
tations.

3.4.2 Siamese Hierarchical CNN (SHCNN)

A Siamese structure with two identical sub-
networks is useful to exploit the affinity between
representations of two instances in the same hid-
den space (Severyn and Moschitti, 2015; Yin et al.,
2016; Wang and Jiang, 2017). For similarity esti-
mation, we propose the Siamese hierarchical CNN
(SHCNN) using a Siamese structure that blends
the outputs from two HCNNs as well as some con-
text features.

Figure 5 shows the structure of the SHCNN for
estimating the similarity between two messages
mi and mj where the message representations m̂i

and m̂j are generated by two sub-networks HC-
NNs (See Figure 4). There are many ways to deal
with two sub-networks, such as using a similar-
ity matrix (Severyn and Moschitti, 2015) or an at-
tention matrix (Yin et al., 2016). However, both
methods lead to an enormous number of parame-

message 
input !"

HCNN

message 
input !#

message 
representation	!%"

message 
representation	!%#

HCNN
element-wise

absolute difference
&

fully-connected
layer

'( !", !#

context
features
*(!" ,!#)

Figure 5: The siamese hierarchical CNN (SHCNN) for
similarity estimation. Note that the model structure of
an HCNN is shown in Figure 4.

ters for long messages. We propose to indepen-
dently compute the element-wise absolute differ-
ences (Mueller and Thyagarajan, 2016) between a
pair of message representations m̂i and m̂j , each
from a sub-network. More formally, the absolute
difference d is a vector where the k-th element is
computed as |m̂i(k)�m̂j(k)|. This approach pro-
vides not only fewer parameters but also the flex-
ibility to observe interactions among different di-
mensions in representations. Our experiments also
show it outperforms the other two approaches in
similarity estimation (See Section 4).

In addition to message contents, contexts such
as temporal and user information were also usu-
ally considered in previous studies about conver-
sation disentanglement (Wang and Oard, 2009; El-
sner and Charniak, 2010, 2011). In this paper,
we focus on the performance of message content
representations and only incorporate four context
features: speaker identicality, absolute time differ-
ence and the number of duplicated words with and
without weighting by inverse document frequency
(Christopher et al., 2008). SHCNN concatenates
the context features x(mi, mj) with the absolute
difference d as the input of a fully-connected layer
of the same size.

The final output of SHCNN ŷ (mi, mj) is
normalized by a logistic sigmoid function (Han
and Moraga, 1995), representing the probability
P (z(mi) = z(mj)).

3.4.3 Activation Functions
All convolutional layers and the fully-connected
layer require activation functions, and the choice
affects the performance (Maas et al., 2013). Pop-
ular functions include rectified linear units (Re-
LUs) (LeCun et al., 2015), hyperbolic tangent
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units (tanh) and exponential linear units (ELUs)
(Clevert et al., 2016). In this study, we conducted
informal comparison experiments and ELU was fi-
nally chosen for all functions because it performed
the best.

3.4.4 Optimization and Implementation
Details

Given a set of annotated message pairs A =
{(mi, mj , y)}, where y is a Boolean value indicat-
ing whether two messages are in the same conver-
sation, SHCNN is optimized with binomial cross
entropy (Goodfellow et al., 2016). More formally,
the objective function is as follows:

X

(mi,mj ,y)2A

[y · log(ŷ + ✏) + (1� y) · log(1� ŷ + ✏)]+�||✓||2

where ŷ simplifies ŷ(mi, mj), and ✏ is a small
number, i.e., 10�9 in our experiments, preventing
underflow errors. The term � serves as the weight
for L2-regularization for the set of parameters ✓.

In our experiments, SHCNN is implemented by
TensorFlow (Abadi et al., 2016) and trained by the
Adam optimizer (Kingma and Ba, 2015) with an
initial learning rate of 10�3. The dropout tech-
nique (Srivastava et al., 2014) is utilized in the
fully-connected layer with a dropout probability
of 0.1. Word embeddings are initialized using the
publicly available fastText 300-dimensional pre-
trained embeddings from Facebook (Bojanowski
et al., 2016). The batch size is set to 512, and the
maximum number of training epochs is 1,000. The
final model is determined by evaluating the mean
average precision (MAP) on a validation dataset
every 100 iterations.

3.5 Conversation Identification by SImilarity
Ranking (CISIR)

In the second stage of conversation disentangle-
ment, i.e., part (2) in Figure 2, we aim to sepa-
rate conversations based on the identified message
pairs and their estimated similarity.

3.5.1 Graph-based Methods and
Conversation Connectivity

It is intuitive to apply graph-based methods if pair-
wise relationships of messages are exploited (El-
sner and Charniak, 2008). Furthermore, methods
based on single-pass clustering (Wang and Oard,
2009) can be also be treated as graph-based meth-
ods. However, graph-based methods have a risky
drawback: A single false positive connection be-
tween two messages can be propagated to several
messages from different conversations. As shown

Algorithm 1: The algorithm of conversa-
tion disentanglement by similarity ranking
(CISIR).

1 CISIR (M , D, r, h);
Input : Message set M , the set of selected

message pairs D, the threshold of
similarity ranks r and the threshold
of similarity scores h.

Output: A set of conversations C
2 Let G = (M , ;) be an undirected message

graph
3 for m 2M do
4 Dm =

{(mi, mj , ŷ) | mi = m _mj = m}
5 Rank entries in Dm by ŷ in a descending

order
6 for k = 1 to min(r, |Dm|) do
7 Let (mi, mj , ŷ) be the k-th entry in

ranked Dm

8 if ŷ < h then
9 break

10 Add an edge (mi, mj) into G

11 C = ConnectedComponents(G)
12 return C

in Figure 3, a certain percentage of message pairs
are in different conversations, which can lead to
numerous false positive connections.

False alarms may be reduced by raising the
threshold that determines whether two messages
are connected (Wang and Oard, 2009). However,
a high threshold can make disentangled conversa-
tions fragmented and the best threshold for each
pair could vary.

3.5.2 The CISIR Algorithm
Instead of setting a high threshold, we propose the
algorithm of Conversation Identification by SImi-
larity Ranking (CISIR). CISIR focuses on the top
messages ranked by similarity scores. Based on
Assumption 1, for each message, there exists at
least one or more other messages in the same con-
versation posted closely in time. With this redun-
dancy, a few pairs with stronger confidence, i.e.,
the top-ranked pairs, can be enough to extend a
correct connectivity to earlier or later messages,
while the low-ranked pairs can be ignored to re-
duce the risk of error propagation.

Given a set of selected message pairs with esti-
mated similarity scores D = {(mi, mj , ŷ)}, Al-
gorithm 1 shows the procedure of CISIR with two
parameters r and h, where r is a high threshold
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of similarity ranks and h is a lower threshold of
similarity scores. Note that CISIR filters out pairs
with low scores because a message can have more
than r same-conversation pairs posted in its T -
hour time window. For each message, CISIR ranks
all of its associated pairs by the estimated similar-
ity and only retrieves the top-r pairs whose sim-
ilarity scores are greater than h. These retrieved
high-confidence pairs are treated as the edges in a
message graph G. Finally, CISIR divides G into
connected components, and the messages in each
connected component are treated as a conversa-
tion. In this paper, we use grid search to set r and
h as 5 and 0.5, respectively.

3.5.3 Improvement of Time Complexity
The efficiency of Algorithm 1 can be further im-
proved. The top-r qualified pairs for each mes-
sage can be pre-processed by a scan of D with |M |
min-heaps which always contain at most r+1 ele-
ments. When r is a small constant number, it only
takes O(|D|) = O(k · |M |) for pre-processing,
where k is the maximum number of messages
posted in a T -hour time window. With pre-
processed top pairs, CISIR can do graph construc-
tion and find connected components in O(k|M |),
which compares favorably to conventional meth-
ods in O(|M |2).

4 Experiments

In this section, we conduct extensive experiments
on four publicly available datasets to evaluate
SHCNN and CISIR in two stages.

4.1 Datasets and Experimental Settings
4.1.1 Datasets
Three datasets from Reddit and one dataset of IRC
are used as the experimental datasets.

• Reddit Datasets4 The Reddit dataset is com-
prised of all posts and corresponding comments
in all sub-reddits (i.e., forums in Reddit.com)
from June 2016 to May 2017. Comments un-
der a post can be treated as messages in one
conversational thread. Here we manually merge
all comments in a sub-reddit to construct a syn-
thetic dataset of interleaved conversations. Note
that although it is called a “synthetic dataset,” all
messages are written by real users. Three sub-
reddits with different popularity levels as shown
in Table 1 are selected to build three datasets:
gadgets, iPhone and politics.
4The organized Reddit dataset is publicly available in

https://files.pushshift.io/reddit/.

Dataset Reddit IRCgadgets iPhone politics
Conversations 287 617 3,671 39

Messages 8,518 12,433 105,663 497
Speakers 5,185 5,231 25,289 71

Train/Valid Pairs 3,445 5,556 244,492 5,995
Test Pairs 27,565 44,450 1,955,943 47,966

Table 1: Statistics of four datasets after pre-processing.

• IRC Dataset. An annotated IRC dataset used
in (Elsner and Charniak, 2008) is also included
in our experiments. The IRC dataset consists
of about 6 hours of messages in interleaved
conversations. Even though the IRC dataset is
significantly smaller and shorter than the Red-
dit datasets, it consists of natural, interleaved
conversations with ground truth annotations, in-
cluding thread id.

4.1.2 Experimental Settings
Humans may not participate in a large number of
simultaneous conversations. e.g., an average of
1.79 for eight people (Aoki et al., 2006), but there
could be hundreds of concurrent posts in a subred-
dit. Hence, we adjusted the datasets to be more
similar to real conversations. Specifically we re-
moved some conversations so that every dataset
has at most ten conversations at any point in time.
Short messages with less than five words are also
removed because even for humans they are fre-
quently ambiguous. Too short conversations with
less than ten messages are also discarded as out-
liers (Ren et al., 2011). Training and validation
data are randomly chosen from only 10% of the se-
lected message pairs, respectively, because in real
situations obtaining labels could be very costly.
The remaining 80% of pairs are regarded as test-
ing data. As a result, Table 1 shows the statistics
of the four datasets after pre-processing.

4.2 Pairwise Similarity Estimation
Message pair similarity estimation is treated as a
ranking task and evaluated with three ranking eval-
uation metrics: precision at 1 (P@1), mean av-
erage precision (MAP) and mean reciprocal rank
(MRR) (Christopher et al., 2008). We compare
the performance with six baseline methods, in-
cluding the difference of posted time (TimeD-
iff ), sameness of speakers (Speaker), cosine sim-
ilarity of text (Text-Sim), the approach proposed
by Elsner and Charniak (2008) (Elsner), DeepQA
(Severyn and Moschitti, 2015) and ABCNN (Yin
et al., 2016). Note that DeepQA and ABCNN
are neural network-based models for question-
answering. The approach of Mehri and Carenini
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Dataset Reddit Datasets IRC Datasetgadgets iPhone politics
Metric P@1 MRR MAP P@1 MRR MAP P@1 MRR MAP P@1 MRR MAP

TimeDiff 0.6916 0.8237 0.8170 0.6085 0.7651 0.7495 0.4412 0.6362 0.5644 0.3262 0.5180 0.4384
Speaker 0.5643 0.7046 0.7425 0.5364 0.6595 0.6590 0.4021 0.4620 0.3914 0.4356 0.6263 0.6891
Text-Sim 0.7913 0.8746 0.8440 0.7347 0.8318 0.7872 0.5245 0.6672 0.5326 0.3712 0.5269 0.3108

Elsner 0.7758 0.8651 0.8321 0.6809 0.7935 0.7471 0.4643 0.6132 0.4884 0.1094 0.1886 0.2063
DeepQA 0.8011 0.8755 0.8511 0.7156 0.8112 0.7766 0.5593 0.6759 0.5685 0.7811 0.8182 0.8050
ABCNN 0.8374 0.8511 0.8502 0.8112 0.8520 0.8118 0.7419 0.6221 0.6644 0.7008 0.4142 0.5858
SHCNN 0.8834 0.9281 0.9005 0.8375 0.8944 0.8497 0.7696 0.8392 0.6967 0.9785 0.9838 0.9819

SHCNN (L) 0.8470 0.9080 0.8702 0.8066 0.8792 0.8275 0.7225 0.8070 0.6438 0.9807 0.9834 0.9750
SHCNN (H) 0.8490 0.9105 0.8704 0.8158 0.8851 0.8313 0.7228 0.8110 0.6283 0.9635 0.9728 0.8632

Table 2: Performance of pairwise similarity estimation in four datasets. Our approach is denoted as SHCNN.The
performance with only low-level or high-level representations are denoted as SHCNN (L) and SHCNN (H). All
improvements of SHCNN against the best baseline are significant at the 1% level of significance in a paired t-test.

z(mi) Message

T16 “Arlie: Wow, maybe we just missed it when
we were driving around”

T18 “Arlie: i’ve been very close to that situation
myself”

Figure 6: An example message pair in two different
conversations from IRC shows how SHCNN discrimi-
nates between messages on different topics. The left-
most column is the conversation IDs of the correspond-
ing messages. SHCNN predicts 0.67% of being in the
same conversation for this pair while DeepQA with
single-layer CNNs predicts 69.81%.

(2017) was not compared in our experiments be-
cause the RNN requires additional message se-
quences; moreover, its performance was only
mildly better than Elsner, which performed poorly
on IRC in Table 2.

Table 2 shows the performance of similarity es-
timation. Among all methods, neural network ap-
proaches (Severyn and Moschitti, 2015; Yin et al.,
2016) perform better than other methods in most
cases, indicating that message content representa-
tion has considerable impact on estimating pair-
wise similarity. SHCNN outperforms most of the
baselines even if only low-level (L) or high-level
(H) representations are exploited. When SHCNN
captures both low- and high-level semantics, it
significantly outperforms all baselines across the
four datasets. For example, ABCNN can outper-
form SHCNN using only either low- or high-level
representations in the politics dataset; however,
SHCNN turns the tables after using both represen-
tations. An interesting observation is that ABCNN
is the best baseline in every dataset except for IRC;
this may be because the IRC data is too small to
train complicated attention structures. On the con-
trary, our SHCNN can precisely capture semantics
even with few parameters and limited data.

To shed deeper insights of how SHCNN sur-
passes other methods, we exhibit the prediction

z(mi) Message

T16
“Very well, I seem to be trying to show Arlie
how its done and am coding a webserver.”

T16

“Arlie: Good enough doesnt cut it! Is
the ’faster’ method a big change in design?
Could I implement later without wanting to
kill myself?”

Figure 7: An example message pair in a conversation
from IRC shows how SHCNN captures similarity in lo-
cal information. The leftmost column is the conversa-
tion IDs of the corresponding messages. SHCNN pre-
dicts 70.41% for this pair while ABCNN with multiple-
layer CNNs predicts 36.50%.

results of the IRC data and demonstrate the capa-
bility of SHCNN to simultaneously preserve local
and more global information. Figure 6 presents
an example to show how SHCNN is better than
other methods in capturing more high-level topi-
cal information. Even though the main sentences
of two messages are clearly on different topics,
the baseline method DeepQA (Severyn and Mos-
chitti, 2015) still predicts a high similarity. This
could be attributed to the context of author men-
tion (Wang and Oard, 2009) and a bias on the lo-
cal information, i.e., the exact same term “Arlie”,
in the Siamese network used in DeepQA. On the
contrary, SHCNN can capture more global infor-
mation that differentiates the topics and correctly
predicts a very low score. Figure 7 illustrates an-
other example of how SHCNN outperforms other
methods in preserving the similarity of local infor-
mation. Both of the messages in the example have
some segments related to software engineering. A
baseline method ABCNN (Yin et al., 2016) with
multiple-layer CNNs, however, still predicts a low
score. This might be because both sentences are
long so that the local information is diluted after
processing by multiple CNN layers. Differently,
SHCNN is able to seize local information, cor-
rectly predicting a high score.
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Dataset Reddit Datasets IRC Datasetgadgets iPhone politics
Metric NMI ARI F1 NMI ARI F1 NMI ARI F1 NMI ARI F1

Doc2Vec 0.1757 0.0008 0.0589 0.2318 0.0002 0.0718 0.2672 0.0001 0.0506 0.2046 0.0048 0.1711
Block-10 0.7745 0.1840 0.3411 0.8203 0.2349 0.4251 0.8338 0.1724 0.3451 0.4821 0.0819 0.2087
Speaker 0.7647 0.0440 0.2094 0.7861 0.1001 0.3339 0.7480 0.0637 0.2207 0.7394 0.4572 0.6310
CBME 0.6913 0.0212 0.1465 0.7280 0.0339 0.1966 0.7883 0.0165 0.1382 0.2818 0.0324 0.1970
GTM 0.7942 0.1787 0.2986 0.8198 0.0536 0.2566 0.8496 0.3076 0.4292 0.0226 0.0001 0.2064

CISIR 0.8254 0.4287 0.4939 0.8552 0.4236 0.5187 0.8825 0.3561 0.4950 0.9330 0.9543 0.8798
Oracle 0.8608 0.4852 0.5560 0.9003 0.5448 0.6358 0.9651 0.8286 0.8863 0.9838 0.9850 0.9819

Table 3: Performance of conversation disentanglement in four datasets. Our approach is denoted as CISIR. “Ora-
cle” indicates the optimal performance if CISIR correctly retrieves all message pairs in identical conversations. All
improvements of CISIR against the best baseline are significant at the 1% level of significance in a paired t-test.

4.3 Conversation Identification

For conversation identification, three clustering
metrics are adopted for evaluation: normalized
mutual information (NMI), adjusted rand index
(ARI) and F1 score (F1). Six methods are im-
plemented as the baselines for conversation disen-
tanglement, including Doc2Vec (Le and Mikolov,
2014), blocks of 10 messages (Block-10), mes-
sages of respective speakers (Speaker) (Elsner
and Charniak, 2011), context-based message ex-
pansion (CBME) (Wang and Oard, 2009) and a
graph-theoretical model with chat- and content-
specific features (Elsner and Charniak, 2008)
(GTM). The embedding-based clustering method,
i.e., Doc2Vec, applies affinity propagation (Frey
and Dueck, 2007) to cluster messages embedded
using Doc2Vec without being given the number of
clusters, with the idea that messages in the same
conversation would form a cluster. Note that mes-
sage pairs in the training and validation data are
not utilized in prediction for a fair comparison to
all methods.

Table 3 shows the performance of conversa-
tion disentanglement. Note that “Oracle” repre-
sents the optimal performance for CISIR when
all message pairs in identical conversations in D
are correctly retrieved. Because pairs in D may
not have enough coverage to connect all mes-
sages in a coversation, the optimal performance
could be lower than 1.0. CISIR performs bet-
ter than all baseline methods for all datasets, and
achieves excellent performance in IRC, due in
part to the high-performing similarity estimates
from the first stage. Among the baseline methods,
GTM performs relatively well on all datasets ex-
cept for IRC. This is because messages are more
frequently posted in the IRC dataset, thereby in-
creasing the number of incorrect pairs in the con-
structed graph. Examining the graph constructed
by GTM, there are only two connected compo-
nents, indicating that many conversations were in-

correctly combined; in contrast, CISIR may be ex-
empt from error propagation because it only relies
on top-ranked pairs. Doc2Vec is trained to pre-
dict words in a document in an unsupervised man-
ner. Its lowest performance in the experiments
may point out a need for supervised learning in
the specific task of conversation disentanglement
to tackle the variation in semantic patterns. Time
and author contextual cues do help conversation
disentanglement as seen in the results of Block-10
and Speaker. Both of these contexts are integrated
into our model.

5 Conclusions
In this paper, we propose a novel framework
for disentangling conversations, including similar-
ity estimation for message pairs and conversation
identification. In contrast to previous work, we as-
sume that we do not need to select all message
pairs in the first stage, thereby reducing compu-
tational time without sacrificing performance too
much. To estimate conversation-level similarity,
a Siamese Hierarchical Convolutional Neural Net-
work, SHCNN, is proposed to minimize the es-
timation error as well as preserve both the low-
and high-level semantics of messages. In the sec-
ond stage, we developed the Conversation Identi-
fication by SImilarity Ranking, CISIR, algorithm,
which exploits the assumption made in the first
stage and identifies individual, entangled conver-
sations with high-ranked message pairs. Extensive
experiments conducted on four publicly available
datasets show that SHCNN and CISIR outperform
several existing approaches in both similarity esti-
mation and conversation identification.
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Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. 2016. Fast and accurate deep net-
work learning by exponential linear units (elus). In
ICLR’16.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
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Abstract
Inferring missing links in knowledge graphs
(KG) has attracted a lot of attention from the
research community. In this paper, we tackle a
practical query answering task involving pre-
dicting the relation of a given entity pair. We
frame this prediction problem as an inference
problem in a probabilistic graphical model and
aim at resolving it from a variational infer-
ence perspective. In order to model the rela-
tion between the query entity pair, we assume
that there exists an underlying latent variable
(paths connecting two nodes) in the KG, which
carries the equivalent semantics of their rela-
tions. However, due to the intractability of
connections in large KGs, we propose to use
variation inference to maximize the evidence
lower bound. More specifically, our frame-
work (DIVA) is composed of three modules,
i.e. a posterior approximator, a prior (path
finder), and a likelihood (path reasoner). By
using variational inference, we are able to in-
corporate them closely into a unified archi-
tecture and jointly optimize them to perform
KG reasoning. With active interactions among
these sub-modules, DIVA is better at handling
noise and coping with more complex reason-
ing scenarios. In order to evaluate our method,
we conduct the experiment of the link pre-
diction task on multiple datasets and achieve
state-of-the-art performances on both datasets.

1 Introduction

Large-scaled knowledge graph supports a lot of
downstream natural language processing tasks
like question answering, response generation, etc.
However, there are large amount of important facts
missing in existing KG, which has significantly
limited the capability of KG’s application. There-
fore, automated reasoning, or the ability for com-
puting systems to make new inferences from the
observed evidence, has attracted lots of attention
from the research community. In recent years,

there are surging interests in designing machine
learning algorithms for complex reasoning tasks,
especially in large knowledge graphs (KGs) where
the countless entities and links have posed great
challenges to traditional logic-based algorithms.
Specifically, we situate our study in this large KG
multi-hop reasoning scenario, where the goal is
to design an automated inference model to com-
plete the missing links between existing entities
in large KGs. For examples, if the KG contains
a fact like president(BarackObama, USA) and
spouse(Michelle, BarackObama), then we would
like the machines to complete the missing link
livesIn(Michelle, USA) automatically. Systems for
this task are essential to complex question answer-
ing applications.

To tackle the multi-hop link prediction problem,
various approaches have been proposed. Some
earlier works like PRA (Lao et al., 2011; Gard-
ner et al., 2014, 2013) use bounded-depth ran-
dom walk with restarts to obtain paths. More re-
cently, DeepPath (Xiong et al., 2017) and MIN-
ERVA (Das et al., 2018), frame the path-finding
problem as a Markov Decision Process (MDP) and
utilize reinforcement learning (RL) to maximize
the expected return. Another line of work along
with ours are Chain-of-Reasoning (Das et al.,
2016) and Compositional Reasoning (Neelakantan
et al., 2015), which take multi-hop chains learned
by PRA as input and aim to infer its relation.

Here we frame the KG reasoning task as a
two sub-steps, i.e. “Path-Finding” and “Path-
Reasoning”. We found that most of the re-
lated research is only focused on one step, which
leads to major drawbacks—lack of interactions
between these two steps. More specifically, Deep-
Path (Xiong et al., 2017) and MINERVA (Das
et al., 2018) can be interpreted as enhancing the
“Path-Finding” step while compositional reason-
ing (Neelakantan et al., 2015) and chains of rea-
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soning (Das et al., 2016) can be interpreted as en-
hancing the “Path-Reasoning” step. DeepPath is
trained to find paths more efficiently between two
given entities while being agnostic to whether the
entity pairs are positive or negative, whereas MIN-
ERVA learns to reach target nodes given an entity-
query pair while being agnostic to the quality of
the searched path1. In contrast, chains of reason-
ing and compositional reasoning only learn to pre-
dict relation given paths while being agnostic to
the path-finding procedure. The lack of interac-
tion prevents the model from understanding more
diverse inputs and make the model very sensitive
to noise and adversarial samples.

In order to increase the robustness of existing
KG reasoning model and handle noisier environ-
ments, we propose to combine these two steps to-
gether as a whole from the perspective of the la-
tent variable graphic model. This graphic model
views the paths as discrete latent variables and re-
lation as the observed variables with a given entity
pair as the condition, thus the path-finding module
can be viewed as a prior distribution to infer the
underlying links in the KG. In contrast, the path-
reasoning module can be viewed as the likelihood
distribution, which classifies underlying links into
multiple classes. With this assumption, we intro-
duce an approximate posterior and design a vari-
ational auto-encoder (Kingma and Welling, 2013)
algorithm to maximize the evidence lower-bound.
This variational framework closely incorporates
two modules into a unified framework and jointly
train them together. By active cooperations and
interactions, the path finder can take into account
the value of searched path and resort to the more
meaningful paths. Meanwhile, the path reasoner
can receive more diverse paths from the path finder
and generalizes better to unseen scenarios. Our
contributions are three-fold:

• We introduce a variational inference frame-
work for KG reasoning, which tightly in-
tegrates the path-finding and path-reasoning
processes to perform joint reasoning.

• We have successfully leveraged negative
samples into training and increase the robust-
ness of existing KG reasoning model.

• We show that our method can scale up to
large KG and achieve state-of-the-art results

1MINERVA assigns constant rewards to all paths reaching
the destination while ignoring their qualities.

on two popular datasets.

The rest of the paper is organized as follow.
In Section 2 we will outline related work on KG
embedding, multi-hop reasoning, and variational
auto-encoder. We describe our variational knowl-
edge reasoner DIVA in Section 3. Experimental re-
sults are presented in Section 4, and we conclude
in Section 5.

2 Related Work

2.1 Knowledge Graph Embeddings
Embedding methods to model multi-relation data
from KGs have been extensively studied in recent
years (Nickel et al., 2011; Bordes et al., 2013;
Socher et al., 2013; Lin et al., 2015; Trouillon
et al., 2017). From a representation learning per-
spective, all these methods are trying to learn a
projection from symbolic space to vector space.
For each triple (es, r, ed) in the KG, various score
functions can be defined using either vector or ma-
trix operations. Although these embedding ap-
proaches have been successful capturing the se-
mantics of KG symbols (entities and relations)
and achieving impressive results on knowledge
base completion tasks, most of them fail to model
multi-hop relation paths, which are indispensable
for more complex reasoning tasks. Besides, since
all these models operate solely on latent space,
their predictions are barely interpretable.

2.2 Multi-Hop Reasoning
The Path-Ranking Algorithm (PRA) method is
the first approach to use a random walk with
restart mechanism to perform multi-hop reason-
ing. Later on, some research studies (Gardner
et al., 2014, 2013) have revised the PRA algo-
rithm to compute feature similarity in the vector
space. These formula-based algorithms can cre-
ate a large fan-out area, which potentially under-
mines the inference accuracy. To mitigate this
problem, a Convolutional Neural Network(CNN)-
based model (Toutanova et al., 2015) has been
proposed to perform multi-hop reasoning. Re-
cently, DeepPath (Xiong et al., 2017) and MIN-
ERVA (Das et al., 2018) view the multi-hop rea-
soning problem as a Markov Decision Process,
and leverages REINFORCE (Williams, 1992) to
efficiently search for paths in large knowledge
graph. These two methods are reported to achieve
state-of-the-art results, however, these two mod-
els both use heuristic rewards to drive the policy
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search, which could make their models sensitive
to noises and adversarial examples.

2.3 Variational Auto-encoder

Variational Auto-Encoder (Kingma and Welling,
2013) is a very popular algorithm to perform ap-
proximate posterior inference in large-scale sce-
narios, especially in neural networks. Recently,
VAE has been successfully applied to various
complex machine learning tasks like image gen-
eration (Mansimov et al., 2015), machine trans-
lation (Zhang et al., 2016), sentence genera-
tion (Guu et al., 2017a) and question answer-
ing (Zhang et al., 2017). Zhang et al. (2017) is
closest to ours, this paper proposes a variational
framework to understand the variability of human
language about entity referencing. In contrast, our
model uses a variational framework to cope with
the complex link connections in large KG. Un-
like the previous research in VAE, both Zhang
et al. (2017) and our model uses discrete vari-
ables as the latent representation to infer the se-
mantics of given entity pairs. More specifically,
we view the generation of relation as a stochastic
process controlled by a latent representation, i.e.
the connected multi-hop link existed in the KG.
Though the potential link paths are discrete and
countable, its amount is still very large and poses
challenges to direct optimization. Therefore, we
resort to variational auto-encoder as our approxi-
mation strategy.

3 Our Approach

3.1 Background

Here we formally define the background of our
task. Let E be the set of entities and R be the
set of relations. Then a KG is defined as a col-
lection of triple facts (es, r, ed), where es, ed ∈ E
and r ∈ R. We are particularly interested in the
problem of relation inference, which seeks to an-
swer the question in the format of (es, ?, ed), the
problem setting is slightly different from standard
link prediction to answer the question of (es, r, ?).
Next, in order to tackle this classification problem,
we assume that there is a latent representation for
given entity pair in the KG, i.e. the collection of
linked paths, these hidden variables can reveal the
underlying semantics between these two entities.
Therefore, the link classification problem can be
decomposed into two modules – acquire underly-
ing paths (Path Finder) and infer relation from la-

tent representation (Path Reasoner).

Path Finder The state-of-the-art ap-
proach (Xiong et al., 2017; Das et al., 2018)
is to view this process as a Markov Decision
Process (MDP). A tuple < S,A, P > is defined to
represent the MDP, where S denotes the current
state, e.g. the current node in the knowledge
graph, A is the set of available actions, e.g. all
the outgoing edges from the state, while P is
the transition probability describing the state
transition mechanism. In the knowledge graph,
the transition of the state is deterministic, so we
do not need to model the state transition P .

Path Reasoner The common approach (Lao
et al., 2011; Neelakantan et al., 2015; Das et al.,
2016) is to encode the path as a feature vector and
use a multi-class discriminator to predict the un-
known relation. PRA (Lao et al., 2011) proposes
to encode paths as binary features to learn a log-
linear classifier, while (Das et al., 2016) applies
recurrent neural network to recursively encode the
paths into hidden features and uses vector similar-
ity for classification.

3.2 Variational KG Reasoner (DIVA)

Here we draw a schematic diagram of our model
in Figure 1. Formally, we define the objec-
tive function for the general relation classification
problem as follows:

Obj =
∑

(es,r,ed)∈D
log p(r|(es, ed))

=
∑

(es,r,ed)∈D
log
∑

L

pθ(L|(es, ed))p(r|L)

(1)

where D is the dataset, (es, r, ed) is the triple con-
tained in the dataset, and L is the latent connecting
paths. The evidence probability p(r|(es, ed)) can
be written as the marginalization of the product of
two terms over the latent space. However, this ev-
idence probability is intractable since it requires
summing over the whole latent link space. There-
fore, we propose to maximize its variational lower
bound as follows:

ELBO = E
L∼qϕ(L|r,(es,ed))

[log pθ(r|L)]−

KL(qϕ(L|r, (es, ed))||pβ(L|(es, ed)))
(2)
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Figure 1: The probabilistic graphical model of our pro-
posed approach. Arrows with dotted border represent
the approximate posterior, which is modeled as a multi-
nomial distribution over the whole link space. Arrows
with solid border represent the prior and likelihood dis-
tributions.

Specifically, the ELBO (Kingma and Welling,
2013) is composed of three different terms – like-
lihood pθ

(
r|L), prior pβ

(
L|(es, et)), and posterior

qϕ
(
L|(es, ed), r). In this paper, we use three neu-

ral network models to parameterize these terms
and then follow (Kingma and Welling, 2013) to
apply variational auto-encoder to maximize the
approximate lower bound. We describe these three
models in details below:

Path Reasoner (Likelihood). Here we propose
a path reasoner using Convolutional Neural Net-
works (CNN) (LeCun et al., 1995) and a feed-
forward neural network. This model takes path se-
quence L = {a1, e1, · · · , ai, ei, · · · an, en} to out-
put a softmax probability over the relations set R,
where ai denotes the i-th intermediate relation and
ei denotes the i-th intermediate entity between the
given entity pair. Here we first project them into
embedding space and concatenate i-th relation em-
bedding with i-th entity embedding as a combined
vector, which we denote as {f1, f2, · · · , fn} and
fi ∈ R2E . As shown in Figure 2, we pad the em-
bedding sequence to a length of N . Then we de-
sign three convolution layers with window size of
(1× 2E), (2× 2E), (3× 2E), input channel size
1 and filter size D. After the convolution layer,
we use (N × 1), (N − 1 × 1), (N − 2 × 1) to
max pool the convolution feature map. Finally, we
concatenate the three vectors as a combined vector
F ∈ R3D. Finally, we use two-layered MLP with
intermediate hidden size of M to output a softmax
distribution over all the relations set R.

F = f(f1, f2, · · · , fN )
p(r|L; θ) = softmax(WrF + br)

(3)
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Figure 2: Overview of the CNN Path Reasoner.
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Figure 3: An overview of the path finder model. Note
that rq (query relation) exists in the approximate pos-
terior while disappearing in the path finder model and
et represents the target entity embedding, cτ is the out-
put of MLP layer at time step τ , a′, e′ denotes the con-
nected edges and ends in the knowledge graphs.

where f denotes the convolution and max-pooling
function applied to extract reasoning path feature
F , and Wr, br denote the weights and bias for the
output feed-forward neural network.

Path Finder (Prior). Here we formulate the
path finder p(L|(es, ed)) as an MDP problem, and
recursively predict actions (an outgoing relation-
entity edge (a, e)) in every time step based on the
previous history ht−1 as follows:

ct = ReLU(Wh[ht; ed] + bh)

p((at+1, et+1)|ht, β) = softmax(Atct)
(4)

where the ht ∈ RH denotes the history embed-
ding, ed ∈ RE denotes the entity embedding,
At ∈ R|A|×2E is outgoing matrix which stacks the
concatenated embeddings of all outgoing edges
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and |A| denotes the number of outgoing edge, we
use Wh and bh to represent the weight and bias
of the feed-forward neural network outputting fea-
ture vector ct ∈ R2E . The history embedding ht is
obtained using an LSTM network (Hochreiter and
Schmidhuber, 1997) to encode all the previous de-
cisions as follows:

ht = LSTM(ht−1, (at, et)) (5)

As shown in Figure 3, the LSTM-based path finder
interacts with the KG in every time step and de-
cides which outgoing edge (at+1, et+1) to follow,
search procedure will terminate either the target
node is reached or the maximum step is reached.

Approximate Posterior. We formulate the pos-
terior distribution q(L|(es, ed), r) following the
similar architecture as the prior. The main differ-
ence lies in the fact that posterior approximator is
aware of the relation r, therefore making more rel-
evant decisions. The posterior borrows the history
vector from finder as ht, while the feed-forward
neural network is distinctive in that it takes the re-
lation embedding also into account. Formally, we
write its outgoing distribution as follows:

ut = ReLU(Whp[ht; ed; r] + bhp)

q((at+1, et+1)|ht;ϕ) = softmax(Atut)
(6)

where Whp and bhp denote the weight and bias for
the feed-forward neural network.

3.3 Optimization

In order to maximize the ELBO with respect to the
neural network models described above, we follow
VAE (Kingma and Welling, 2013) to interpret the
negative ELBO as two separate losses and mini-
mize these them jointly using a gradient descent:

Reconstruction Loss. Here we name the first
term of negative ELBO as reconstruction loss:

JR = E
L∼qϕ(L|r,(es,ed))

[− log pθ(r|L)] (7)

this loss function is motivated to reconstruct the
relationR from the latent variable L sampled from
approximate posterior, optimizing this loss func-
tion jointly can not only help the approximate pos-
terior to obtain paths unique to particular relation
r, but also teaches the path reasoner to reason over
multiple hops and predict the correct relation.

KL-divergence Loss. We name the second term
as KL-divergence loss:

JKL = KL(qϕ(L|r, (es, ed))|pβ(L|(es, ed)))
(8)

this loss function is motivated to push the prior dis-
tribution towards the posterior distribution. The
intuition of this loss lies in the fact that an entity
pair already implies their relation, therefore, we
can teach the path finder to approach the approx-
imate posterior as much as possible. During test-
time when we have no knowledge about relation,
we use path finder to replace posterior approxima-
tor to search for high-quality paths.

Derivatives. We show the derivatives of the loss
function with respect to three different models.
For the approximate posterior, we re-weight the
KL-diverge loss and design a joint loss function as
follows:

J = JR + wKLJKL (9)

where wKL is the re-weight factor to combine
these two losses functions together. Formally, we
write the derivative of posterior as follows:

∂J

∂ϕ
= E

L∼qϕ(L))
[− fre(L)

∂ log qϕ(L|(es, ed), r)
∂ϕ

(10)

where fre(L) = log pθ + wKL log
pβ
qϕ

denotes the
probability assigned by path reasoner. In prac-
tice, we found that the KL-reward term log

pβ
qϕ

causes severe instability during training, so we fi-
nally leave this term out by setting wKL as 0. For
the path reasoner, we also optimize its parameters
with regard to the reconstruction as follows:

∂JR
∂θ

= E
L∼qϕ(L)

− ∂ log pθ(r|L)
∂θ

(11)

For the path finder, we optimize its parameters
with regard to the KL-divergence to teach it to in-
fuse the relation information into the found links.

∂JKL
∂β

= E
L∼qϕ(L)

− ∂ log pβ(L|(es, ed))
∂β

(12)

Train & Test During training time, in contrast
to the preceding methods like Das et al. (2018);
Xiong et al. (2017), we also exploit negative
samples by introducing an pseudo “n/a” relation,
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Algorithm 1 The DIVA Algorithm.
1: procedure TRAINING & TESTING

2: Train:
3: for episode← 1 to N do
4: Rollout K paths from posterior pϕ
5: if Train-Posterior then
6: ϕ← ϕ− η × ∂Lr

∂ϕ
7: else if Train-Likelihood then
8: θ ← θ − η × ∂Lr

∂θ
9: else if Train-Prior then

10: β ← β − η × ∂LKL
∂β

11: end if
12: end for
13: Test MAP:
14: Restore initial parameters θ, β
15: Given sample (es, rq, (e1, e2, · · · , en))
16: Li ← BeamSearch(pβ(L|es, ei))
17: Si ← 1

|Li|
∑

l∈Li pθ(rq|l)
18: Sort Si and find positive rank ra+

19: MAP ← 1
1+ra+

20: end procedure

which indicates “no-relation” between two enti-
ties. Therefore, we manage to decompose the data
sample (eq, rq, [e

−
1 , e

−
2 , · · · , e+n ]) into a series of

tuples (eq, r′q, ei), where r′q = rq for positive sam-
ples and r′q = n/a for negative samples. Dur-
ing training, we alternatively update three sub-
modules with SGD. During test, we apply the
path-finder to beam-search the top paths for all tu-
ples and rank them based on the scores assign by
path-reasoner. More specifically, we demonstrate
the pseudo code in Algorithm 1.

3.4 Discussion
We here interpret the update of the posterior ap-
proximator in equation Equation 10 as a special
case of REINFORCE (Williams, 1992), where
we use Monte-Carlo sampling to estimate the ex-
pected return log pθ(r|L) for current posterior pol-
icy. This formula is very similar to DeepPath and
MINERVA (Xiong et al., 2017; Das et al., 2018)
in the sense that path-finding process is described
as an exploration process to maximize the pol-
icy’s long-term reward. Unlike these two mod-
els assigning heuristic rewards to the policy, our
model assigns model-based reward log pθ(r|L),
which is known to be more sophisticated and con-
siders more implicit factors to distinguish between
good and bad paths. Besides, our update formula
for path reasoner Equation 11 is also similar to

chain-of-reasoning (Das et al., 2016), both models
are aimed at maximizing the likelihood of relation
given the multi-hop chain. However, our model
is distinctive from theirs in a sense that the ob-
tained paths are sampled from a dynamic policy,
by exposing more diverse paths to the path rea-
soner, it can generalize to more conditions. By the
active interactions and collaborations of two mod-
els, DIVA is able to comprehend more complex in-
ference scenarios and handle more noisy environ-
ments.

4 Experiments

To evaluate the performance of DIVA, we explore
the standard link prediction task on two different-
sized KG datasets and compare with the state-of-
the-art algorithms. Link prediction is to rank a list
of target entities (e−1 , e

−
2 , · · · , e+n ) given a query

entity eq and query relation rq. The dataset is ar-
ranged in the format of (eq, rq, [e−1 , e

−
2 , · · · , e+n ]),

and the evaluation score (Mean Averaged Preci-
sion, MAP) is based on the ranked position of the
positive sample.

4.1 Dataset and Setting

We perform experiments on two datasets, and
the details of the statistics are described in Ta-
ble 1. The samples of FB15k-237 (Toutanova
et al., 2015) are sampled from FB15k (Bordes
et al., 2013), here we follow DeepPath (Xiong
et al., 2017) to select 20 relations including Sports,
Locations, Film, etc. Our NELL dataset is down-
loaded from the released dataset2, which contains
12 relations for evaluation. Besides, both datasets
contain negative samples obtained by using the
PRA code released by Lao et al. (2011). For each
query rq, we remove all the triples with rq and r−1q
during reasoning. During training, we set number
of rollouts to 20 for each training sample and up-
date the posterior distribution using Monte-Carlo
REINFORCE (Williams, 1992) algorithm. Dur-
ing testing, we use a beam of 5 to approximate
the whole search space for path finder. We follow
MINERVA (Das et al., 2018) to set the maximum
reasoning length to 3, which lowers the burden for
the path-reasoner model. For both datasets, we set
the embedding size E to 200, the history embed-
ding size H to 200, the convolution kernel feature
size D to 128, we set the hidden size of MLP for
both path finder and path reasoner to 400.

2https://github.com/xwhan/DeepPath
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Dataset #Ent #R #Triples #Tasks
FB15k-237 14,505 237 310,116 20
NELL-995 75,492 200 154,213 12

Table 1: Dataset statistics.

Model 12-rel MAP 9-rel MAP
RPA (Lao et al., 2011) 67.5 -
TransE (Bordes et al., 2013) 75.0 -
TransR (Lin et al., 2015) 74.0 -
TransD (Ji et al., 2015) 77.3 -
TransH (Wang et al., 2014) 75.1 -
MINERVA (Das et al., 2018) - 88.2
DeepPath (Xiong et al., 2017) 79.6 80.2
RNN-Chain (Das et al., 2016) 79.0 80.2
CNN Path-Reasoner 82.0 82.2
DIVA 88.6 87.9

Table 2: MAP results on the NELL dataset. Since
MINERVA (Das et al., 2018) only takes 9 relations out
of the original 12 relations, we report the known results
for both version of NELL-995 dataset.

4.2 Quantitative Results

We mainly compare with the embedding-based al-
gorithms (Bordes et al., 2013; Lin et al., 2015;
Ji et al., 2015; Wang et al., 2014), PRA (Lao
et al., 2011), MINERVA (Das et al., 2018),
DeepPath (Xiong et al., 2017) and Chain-of-
Reasoning (Das et al., 2016), besides, we also
take our standalone CNN path-reasoner from
DIVA. Besides, we also try to directly max-
imize the marginal likelihood p(r|es, ed) =∑

L p(L|es, ed)p(r|L) using only the prior and
likelihood model following MML (Guu et al.,
2017b), which enables us to understand the su-
periority of introducing an approximate posterior.
Here we first report our results for NELL-995
in Table 2, which is known to be a simple dataset
and many existing algorithms already approach
very significant accuracy. Then we test our meth-
ods in FB15k (Toutanova et al., 2015) and report
our results in Table 3, which is much harder than
NELL and arguably more relevant for real-world
scenarios.

Besides, we also evaluate our model on FB-15k
20-relation subset with HITS@N score. Since our
model only deals with the relation classification
problem (es, ?, ed) with ed as input, so it’s hard for
us to directly compare with MINERVA (Das et al.,
2018). However, here we compare with chain-
RNN (Das et al., 2016) and CNN Path-Reasoner
model, the results are demonstrated as Table 4.
Please note that the HITS@N score is computed
against relation rather than entity.

Model 20-rel MAP
PRA (Lao et al., 2011) 54.1
TransE (Bordes et al., 2013) 53.2
TransR (Lin et al., 2015) 54.0
MINERVA (Das et al., 2018) 55.2
DeepPath (Xiong et al., 2017) 57.2
RNN-Chain (Das et al., 2016) 51.2
CNN Path-Reasoner 54.2
MML (Guu et al., 2017b) 58.7
DIVA 59.8

Table 3: Results on the FB15k dataset, please note that
MINERVA’s result is obtained based on our own imple-
mentation.

Model HITS@3 HITS@5
RNN-Chain (Das et al., 2016) 0.80 0.82
CNN Path-Reasoner 0.82 0.83
DIVA 0.84 0.86

Table 4: HITS@N results on the FB15k dataset

Result Analysis We can observe from the above
tables Table 3 and Table 2 that our algorithm has
significantly outperformed most of the existing
algorithms and achieves a very similar result as
MINERVA (Das et al., 2018) on NELL dataset
and achieves state-of-the-art results on FB15k. We
conclude that our method is able to deal with more
complex reasoning scenarios and is more robust
to the adversarial examples. Besides, we also ob-
serve that our CNN Path-Reasoner can outperform
the RNN-Chain (Das et al., 2016) on both datasets,
we speculate that it is due to the short lengths of
reasoning chains, which can extract more useful
information from the reasoning chain.

From these two pie charts in Figure 5, we can
observe that in NELL-995, very few errors are
coming from the path reasoner since the path
length is very small. A large proportion only con-
tains a single hop. In contrast, most of the failures
in the FB15k dataset are coming from the path rea-
soner, which fails to classify the multi-hop chain
into correct relation. This analysis demonstrates
that FB15k is much harder dataset and may be
closer to real-life scenarios.

4.3 Beam Size Trade-offs

Here we are especially interested in studying the
impact of different beam sizes in the link predic-
tion tasks. With larger beam size, the path finder
can obtain more linking paths, meanwhile, more
noises are introduced to pose greater challenges
for the path reasoner to infer the relation. With
smaller beam size, the path finder will struggle
to find connecting paths between positive entity
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Figure 4: MAP results varying beam size and the error type’s occurrence w.r.t to beam size. A beam size that is
too large or too small would cause performance to drop.

Type Reasoning Path Score

Negative athleteDirkNowitzki→ (athleteLedSportsteam)→ sportsteamMavericks 0.98
Positive athleteDirkNowitzki→ (athleteLedSportsteam)→ sportsteamDallasMavericks 0.96
Explanation “maverick” is equivalent to “dallas-maverick”, but treated as negative sample -

Negative athleteRichHill→ (personBelongsToOrganization)→ sportsteamChicagoCubs 0.88
Positive athleteRichHill→ (personBelongsToOrganization)→ sportsteamBlackhawks 0.74
Explanation Rich Hill plays in both sportsteam but the knowledge graph only include one -

Negative coachNikolaiZherdev→ (athleteHomeStadium)→ stadiumOreventvenueGiantsStadium
→ (teamHomestadium−1)→ sportsteamNewyorkGiants 0.98

Positive coachNikolaiZherdev→ (athleteHomeStadium)→ stadiumOreventvenueGiantsStadium
→ (teamHomestadium−1)→ sportsteam-rangers 0.72

Explanation The home stadium accommodates multiple teams, therefore the logic chain is not valid -

Table 5: The three samples separately indicates three frequent error types, the first one belongs to “duplicate
entity”, the second one belongs to “missing entity”, while the last one is due to “wrong reasoning”. Please note
that the parenthesis terms denote relations while the non-parenthesis terms denote entities.

Path-finder	
error
48%

Path-reasoner	
error
13%

KG	noise
39%

NELL	ERROR	STATISTICS

Path-finder	error Path-reasoner	error KG	noise

Path-finder	
error
32%

Path-reasoner	
error
68%

FB15K	ERROR	STATISTICS

Path-finder	error Path-reasoner	error

Figure 5: Error analysis for the NELL and FB15k link
prediction task. Since FB15k dataset uses placeholders
for entities, we are not able to analyze whether the error
comes from KG noise.

pairs, meanwhile eliminating many noisy links.
Therefore, we first mainly summarize three dif-
ferent types and investigate their changing curve
under different beam size conditions:

1. No paths are found for positive samples,
while paths are found for negative samples,
which we denote as Neg>Pos=0.

2. Both positive samples and negative samples
found paths, but the reasoner assigns higher

scores to negative samples, which we denote
as Neg>Pos>0.

3. Both negative and positive samples are not
able to find paths in the knowledge graph,
which we denote as Neg=Pos=0.

We draw the curves for MAP and error ratios
in Figure 4 and we can easily observe the trade-
offs, we found that using beam size of 5 can bal-
ance the burden of path-finder and path-reasoner
optimally, therefore we keep to this beam size for
the all the experiments.

4.4 Error Analysis

In order to investigate the bottleneck of DIVA, we
take a subset from validation dataset to summarize
the causes of different kinds of errors. Roughly,
we classify errors into three categories, 1) KG
noise: This error is caused by the KG itself, e.g
some important relations are missing; some enti-
ties are duplicate; some nodes do not have valid
outgoing edges. 2) Path-Finder error: This error
is caused by the path finder, which fails to arrive
destination. 3) Path-Reasoner error: This error
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is caused by the path reasoner to assign a higher
score to negative paths. Here we draw two pie
charts to demonstrate the sources of reasoning er-
rors in two reasoning tasks.

4.5 Failure Examples

We also show some failure samples in Table 5 to
help understand where the errors are coming from.
We can conclude that the “duplicate entity” and
“missing entity” problems are mainly caused by
the knowledge graph or the dataset, and the link
prediction model has limited capability to resolve
that. In contrast, the “wrong reasoning” problem
is mainly caused by the reasoning model itself and
can be improved with better algorithms.

5 Conclusion

In this paper, we propose a novel variational in-
ference framework for knowledge graph reason-
ing. In contrast to prior studies that use a ran-
dom walk with restarts (Lao et al., 2011) and ex-
plicit reinforcement learning path finding (Xiong
et al., 2017), we situate our study in the context of
variational inference in latent variable probabilis-
tic graphical models. Our framework seamlessly
integrates the path-finding and path-reasoning pro-
cesses in a unified probabilistic framework, lever-
aging the strength of neural network based repre-
sentation learning methods. Empirically, we show
that our method has achieved the state-of-the-art
performances on two popular datasets.
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Abstract

Recognizing temporal relations among events
and time expressions has been an essential but
challenging task in natural language process-
ing. Conventional annotation of judging tem-
poral relations puts a heavy load on annota-
tors. In reality, the existing annotated corpora
include annotations on only ”salient” event
pairs, or on pairs in a fixed window of sen-
tences. In this paper, we propose a new ap-
proach to obtain temporal relations from abso-
lute time value (a.k.a. time anchors), which is
suitable for texts containing rich temporal in-
formation such as news articles. We start from
time anchors for events and time expressions,
and temporal relation annotations are induced
automatically by computing relative order of
two time anchors. This proposal shows sev-
eral advantages over the current methods for
temporal relation annotation: it requires less
annotation effort, can induce inter-sentence re-
lations easily, and increases informativeness
of temporal relations. We compare the em-
pirical statistics and automatic recognition re-
sults with our data against a previous tempo-
ral relation corpus. We also reveal that our
data contributes to a significant improvement
of the downstream time anchor prediction task,
demonstrating 14.1 point increase in overall
accuracy.

1 Introduction

Temporal information extraction is becoming an
active research field in natural language process-
ing (NLP) due to the rapidly growing need for
NLP applications such as timeline generation and
question answering (Llorens et al., 2015; Meng
et al., 2017). It has great potential to create many
practical applications. For example, SemEval-
2015 Task 4 (Minard et al., 2015) collects news
articles about a target entity and the task required
participants automatically ordering the events in-

volving that entity in a timeline. The timeline rep-
resentation of news can help people more easily
comprehend a mass of information. This work
aims to contribute to such timeline applications
by extracting temporal information in specific do-
mains like news articles.

TimeBank1 (Pustejovsky et al., 2003) is the
first widely used corpus with temporal informa-
tion annotated in the NLP community. It contains
183 news articles that have been annotated with
events, time expressions and temporal relations
between events and time expressions. The anno-
tation follows the TimeML2 specification (Saurı
et al., 2006). Along with the TimeBank and
other temporal information corpora, a series of
competitions on temporal information extraction
(TempEval-1,2,3) (Verhagen et al., 2009, 2010;
UzZaman et al., 2012) are attracting growing re-
search efforts.

A majority of temporal information corpora
adopt temporal links (TLINKs) to encode tem-
poral information in documents. A TLINK de-
notes a temporal relation between mentions, i.e.,
events, time expressions and document creation
time (DCT) (Setzer, 2002). However, annotat-
ing TLINKs is a painful work, because annotation
candidates are quadratic to the number of men-
tions in a document. The original TimeBank only
annotated those “salient” mention pairs judged
by annotators, while the definition of “salient” is
not necessarily clear. Annotators had to face a
complicated task; identify “salient” mention pairs,
and label temporal relations. For solving this,
many dense annotation schemata are proposed to
force annotators to annotate more or even com-
plete graph pairs. However, dense annotation is
time-consuming and unstable human judgments

1https://catalog.ldc.upenn.edu/LDC2006T08
2http://www.timeml.org/
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on “salient” pairs are not improved at all. As a
consequence, a high proportion of “vague” or “no-
link” pairs appears in these dense corpora such as
TimeBank-Dense (Cassidy et al., 2014).

In this work, we propose a new approach to ob-
tain temporal relations from time anchors, i.e. ab-
solute time value, of all mentions. We assume
that a temporal relation can be induced by com-
paring the relative temporal order of two time an-
chors (e.g. YYYY-MM-DD) in a time axis. We
use pre-defined rules (Section 3) to generate tem-
poral order (TORDER) relations (e.g. BEFORE,
AFTER, SAME DAY, etc.) by taking two anno-
tated time anchors as input. This proposal requires
the annotation of time anchors, of which the an-
notation effort is linear with the number of men-
tions. This is the first work to obtain temporal re-
lations shifted from the annotation of individual
mentions, which is distinguished from most anno-
tation work of manually annotating mention pairs.

This approach brings several advantages over
the current temporal relation annotation. First, as
long as time anchors of all mentions in a docu-
ment are given, our pre-defined rules can induce
the temporal relations for all the quadratic pairs.
This skips the step of identifying “salient” pairs.
Second, annotating the time anchors is relatively
easy, as the annotation work is linear to the num-
ber of mentions. Third, the automatic generation
rules can provide flexible relation types based on
our definition and this increased informativeness
might contribute positively to downstream tasks.

In our first evaluation (Section 4), we compare
the correspondence and difference between the
new TORDERs and conventional TLINKs. The
comparison of empirical statistics shows the new
data is label balanced, contains informative rela-
tions and reduces “vague” relations. Besides, the
classification performance suggests the new data
achieve reasonable accuracy, although accuracy
numbers are not directly comparable.

Many text processing tasks are often requiring
to know time anchors when events occurred in a
timeline. In Section 5, we evaluate the data in a
downstream time anchor prediction task (Reimers
et al., 2016) by using the temporal relation rec-
ognizers separately trained with TORDERs or
TLINKs. The main results show that the recog-
nizer trained with our TORDERs significantly out-
performs the recognizer trained with the TLINKs
by 14.1 point exact match accuracy.

2 Background

2.1 Temporal Relation Annotation
TimeBank started a wave of data-driven tempo-
ral information extraction research in the NLP
community. The original TimeBank only anno-
tated relations judged to be salient by annotators
and resulted in sparse annotations. Subsequent
TempEval-1,2,3 competitions (Verhagen et al.,
2009, 2010; UzZaman et al., 2012) mostly relied
on TimeBank, but also aimed to improve cover-
age by annotating relations between all events and
time expressions in the same sentence. However,
most missing relations between mentions in differ-
ent sentences are not considered.

In order to solve the sparsity issue, re-
searchers started the work towards denser anno-
tation schema. Bramsen et al. (2006) annotated
multi-sentence segments of text to build directed
acyclic graphs. Kolomiyets et al. (2012) anno-
tated temporal dependency structures, though they
only focused on relations between pairs of events.
Do et al. (2012) produced the densest annotation
and the annotator was required to annotate pairs
“as many as possible”. Cassidy et al. (2014) pro-
posed a compulsory mechanism to force annota-
tors to label every pair in a given sentence win-
dow. They performed the annotation (TimeBank-
Dense) on a subset (36 documents) of TimeBank,
which achieved a denser corpus with 6.3 TLINKs
per event and time expression, comparing to 0.7 in
the original TimeBank corpus. However, it raises
the issue that hand-labeling all dense TLINKs is
extremely time-consuming and the unclear defini-
tion of “salient” is not improved at all.

2.2 Temporal Relation Classification
The majority of the temporal relation classifiers
focus on exploiting a variety of features to improve
the performance in TimeBank. Laokulrat et al.
(2013) extracted lexical and morphological fea-
tures derived from WordNet synsets. Mani et al.
(2006); D’Souza and Ng (2013) incorporated se-
mantic relations between verbs from VerbOcean.

Recently, more researchers move on to di-
verse approaches on the TimeBank-Dense corpus.
Chambers et al. (2014) proposed a multi-sieve
classifier composed of several rule-based and ma-
chine learning based sieves ranked by their pre-
cision. Mirza and Tonelli (2016) started to mine
the value of low-dimensional word embeddings by
concatenating them with traditional sparse feature
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vectors to improve their classifier.
Inspired by the success of the deep learn-

ing work in the similar task: relation extrac-
tion, Cheng and Miyao (2017) proposed the short-
est dependency path based Bi-directional Long
short-term memory (Hochreiter and Schmidhuber,
1997) (Bi-LSTM) to achieve state-of-the-art per-
formance in the TimeBank-Dense corpus, which
is adopted for the experiments in this paper. There
are two reasons to use this classifier: 1) inter-
sentence temporal relations are well treated. 2)
only word, part-of-speech and dependency rela-
tion embeddings are required as input.

2.3 Time Anchor Annotation
A related task: Cross-Document Event Order-
ing (Minard et al., 2015) aims to order the events
involving a target entity in a timeline given writ-
ten news in English. Compared to traditional
TLINKs, annotating time anchors of events is in-
tuitively more straightforward in such tasks.

Reimers et al. (2016) proposed an annotation
scheme, which requires annotators to infer the ex-
act time of each individual event. They distin-
guished events that occur at a Single-Day from that
span over Multi-Day by setting the granularity as
one day. For Single-Day events, the event time
is written in the format ‘YYYY-MM-DD’ when the
precise event time can be determined. Otherwise,
they required annotators to narrow down the pos-
sible time as precisely as possible. An imprecise
Single-Day event can be annotated as a tuple (af-
ter, before), e.g. ‘(after 1998-10-02, )’, ‘(, before
2000-01-31)’ or ‘(after 1998-10-02, before 2000-
01-31)’. In the case of Multi-Day, an event is an-
notated as a tuple (begin, end), where begin and
end are represented with Single-Day. For instance
of a sentence:

The economy created jobs at a surpris-
ingly robust pace in January, the gov-
ernment reported on Friday, evidence
that America’s economic stamina has
withstood any disruption caused so far
by the financial tumult in Asia.

The Multi-Day event created is annotated as
(begin=1998-01-01, end=1998-01-31). The
Single-Day event reported is annotated as the
same day as DCT (1998-02-06). The imprecise
Multi-Day event disruption is annotated as (be-
gin=(, before1998-02-06), end=(, before1998-02-
06)) as the event must have occurred before the

Figure 1: Anchoring events in a timeline

time of this news, but the precise begin and end
dates cannot be inferred from the text. Time
anchors have the capability of anchoring all the
events from a document into the same timeline as
shown in Figure 1. They annotated the time an-
chors of total 1,498 events from 36 documents of
TimeBank-Dense.

In temporal information retrieval, Berberich
et al. (2010) proposed a four-tuple representa-
tion (‘earliest begin’, ‘latest begin’, ‘earliest end’,
‘latest end’) for uncertain time expression (e.g.
‘1990s’) in order to integrate such temporal infor-
mation into language model. In the time anchor
annotation, an event ‘in 1990s’ will be annotated
as a Multi-Day event with imprecise begin and end
points, i.e. (begin=(after 1990-01-01, before1999-
12-31), end=(after 1990-01-01, before1999-12-
31)), which is quite similar to their four-tuple rep-
resentation.

3 Automatic generation of TORDERs

TimeML states that TLINKs present a temporal
relation between event to event, event to time ex-
pression, and event to DCT. The sparse TLINK
coverage in the majority of temporal information
corpora is attributed to the unstable identification
of “salient” pairs by human annotators. Denser
annotation schemata somehow improved sparse-
ness, but the annotation work became very time-
consuming. These issues plague the development
of temporal information extraction work.

Our temporal order (TORDER) proposal is de-
signed with the goal of solving unstable recogni-
tion of “salient” pairs and reducing annotation ef-
fort. We hypothesize that a temporal relation can
be automatically computed by comparing the rela-
tive temporal order between two time anchors (e.g.
YYYY-MM-DD) in a time axis. We propose a set of
pre-defined generation rules, which have the capa-
bility to rigorously induce a TORDER by taking
the two annotated time anchors as input. Annotat-
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TORDER Condition
Two precise S1 and S2

BEFORE if S1 < S2

AFTER if S1 > S2

SAME DAY if S1 = S2

A precise S1 and an imprecise S2 (after2, before2)
BEFORE if S1 ≤ after2
AFTER if S1 ≥ before2
VAGUE other cases

Two imprecise S1 (after1, before1) and S2 (after2, before2)
BEFORE if before1 ≤ after2
AFTER if after1 ≥ before2
PVAGUE if before1 = before2 and after1 = after2
VAGUE other cases

Table 1: Definition of the temporal orders between two
Single-Day events. ‘<’, ‘>’, ‘=’ denote one event is in
the left of, right of and same position as the other event
in a left-to-right time axis.

ing time anchors of individual mentions extremely
reduces annotation effort, as it is linear with men-
tion numbers. As long as time anchors are given,
our pre-defined rules can induce the temporal re-
lations for all the quadratic pairs, which skips the
step of identifying “salient” pairs.

TimeBank contains the normalized date ‘YYYY-
MM-DD’ of time expressions and DCT, but does
not include events’ time. Our proposal of induc-
ing a TORDER by comparing two time anchors
requires the time anchor annotation of events in
the same granularity as time expressions and DCT.
Therefore, annotating the events with ‘YYYY-MM-
DD’ is a reasonable setting and one day is used as
the minimal granularity of annotation. We choose
the annotation (Reimers et al., 2016) of the day-
level time anchors of events as the source of our
automatic TORDER generator. In the case that
a corpus can provide more specific time informa-
tion ‘YYYY-MM-DD, hh-mm-ss’ (e.g. this morn-
ing, three o’clock in the afternoon), our TORDER
generator can be flexible to handle this informa-
tion as long as the time anchors of all mentions
are annotated in the same granularity.

For the clear demonstration of the definition
of the auto-generated temporal order, we sepa-
rately describe the generation of the pairs with
two Single-Day mentions, and the pairs involv-
ing Multi-Day mentions. In this paper, TORDER
labels are written in the upper-case bold font to
be distinguished from TLINK labels written in the
lower-case italic font. Table 1 introduces the defi-
nition of temporal orders between two Single-Day
pairs S1 and S2. PVAGUE (i.e. partially vague)
denotes that two imprecise time anchors are equiv-
alent. For instance, we cannot induce a clear
temporal relation between two events both occur-

TORDER Condition
A Single-Day S1 and a Multi-DayM2 (begin2, end2)

BEFORE if S1 BEFORE begin2
AFTER if S1 AFTER end2
IS INCLUDED if S1 AFTER/SAME DAY begin2 and S1

BEFORE/SAME DAY end2
VAGUE other case

Two Multi-DayM1 (begin1, end1) andM2 (begin2, end2)
BEFORE if end1 BEFORE begin2
AFTER if begin1 AFTER end2
SAME SPAN if begin1 SAME DAY begin2 and end1 SAME DAY

end2
IS INCLUDED if begin1 AFTER/SAME DAY begin2 and end1

BEFORE/SAME DAY end2 (*)
INCLUDES if begin1 BEFORE/SAME DAY begin2 and end1

AFTER/SAME DAY end2 (*)
PVAGUE if begin1 PVAGUE/SAME DAY begin2 and end1

PVAGUE/SAME DAY end2 (*)
VAGUE other cases

Table 2: Definition of the temporal orders involving
Multi-Day events M (begin, end). ‘*’ denotes exclud-
ing the SAME SPAN case in the current condition.

ring on (,before1998-02-06), but nevertheless both
events provide partially equivalent date informa-
tion ‘1998-02-06’. It can possibly provide useful
information for the future processes of classifica-
tion or time inference. PVAGUE in the Multi-Day
definition takes the same consideration.

In order to introduce the temporal orders in-
volving Multi-Day events, a Multi-Day event M
is denoted as a tuple of two Single-Day dates
(begin, end). A temporal order between a Single-
Day S1 and Multi-Day M2 (begin2, end2) can be
derived by computing the temporal order of two
Single-Day S1 and begin2, or S1 and end2 first.
All the types of temporal orders involving Multi-
Day events are defined in Table 2. One addi-
tional INCLUDES relation that Multi-Day event
includes a Single-Day event can be obtained by re-
versing the symmetric IS INCLUDED.

The example of automatically computing tem-
poral orders can be demonstrated by using the
events in Figure 1. Both Multi-Day created and
disruption are clearly BEFORE the Single-Day
reported, because reported is AFTER the end
dates of created and disruption. The relation
between created and disruption is induced as
VAGUE, as the imprecise begin, end of disruption
cannot be determined with a relation to created.

In this paper, the definition adopts a similar re-
lation set to TLINK for the purpose that we can
perform fair comparison and evaluation in the next
two sections. However, our inducing proposal
can be very scalable to introduce more tempo-
ral relations. For instance, Allen’s interval al-
gebra (Allen, 1990) defines ‘starts’, ‘finish’ rela-
tions, which are not included in our current defini-
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tion. We can easily extend our definition by detect-
ing whether two time anchors have the equivalent
begin or end points.

Our inducing proposal takes human annotated
time expressions and normalized values as inputs
to generate TORDER relations as the training data
of the next processes (e.g. classification). In
the case of processing raw texts, we can perform
detection and normalization of time expressions
by using existing temporal taggers, e.g. Heidel-
Time (Strötgen and Gertz, 2015), SUTime (Chang
and Manning, 2012), etc.

4 Comparison of TORDERs and
TLINKs

Fairly evaluating the TORDER’s capability of
encoding temporal order information compared
to the existing data is difficult but necessary
work. This section provides empirical statistics of
TORDER and TLINK annotations, and compare
the performance of automatic recognition. Addi-
tionally, we evaluate these two frameworks in a
downstream task performance in Section 5.

4.1 Correspondences and Differences

Our new TORDERs are formally similar to the
conventional TLINKs, as both state a temporal
relation between two mentions. BEFORE and
AFTER represent that one mention occurs before
or after in a timeline, which is close to before
and after. INCLUDES and IS INCLUDED are
more clearly conditioned as a Single-Day or Multi-
Day mention occurs during the other Multi-Day
mention, compared to includes and is included.
SAME DAY and SAME SPAN are designed for
the one-day minimal granularity. Ideally, these
two relations will include simultaneous and other
TLINKs with two mentions occurring in the same
day. VAGUE and PVAGUE state that our gener-
ation rules cannot induce the relations, similar to
vague (i.e. annotators cannot judge the relations).

The one-day minimal granularity is the main
reason causing the difference between TORDER
and TLINK types. For a sentence:

I went to sleep after taking a bath.

According to the TimeML specification, sleep is
obviously after bath. But in the one-day gran-
ularity, the relation is shifted to SAME DAY.
This brings the obstacle that we cannot mea-
sure whether the temporal information encoded in

TORDERs is more informative than TLINKs by
directly comparing the classification results.

Our TORDER definition shows the capability of
capturing some relations which cannot be encoded
by TLINK. For instance:

Stocks rose, pushing the Dow Jones
industrial average up 72.24 points, to
8,189.49, leaving the index within 70
points of its record.

These TLINKs among the three events are anno-
tated as vague in TimeBank-Dense, as the annota-
tors cannot state their temporal orders. However,
we can easily obtain SAME DAY relations, since
their day-level time anchors are the same.

Imprecisely represented time anchors (e.g. after
YYYY-MM-DD) are the major drawback of losing
temporal order information. For instance:

America’s economic stamina has with-
stood any disruption...

The TLINK between withstood and disruption is
annotated as after. While both of them were anno-
tated as the same time anchor (begin=before 1998-
02-06, end= before 1998-02-06), our TORDER
generator induced a PVAGUE relation and tempo-
ral order information is lost.

The hypothesis that our proposal skipping the
unstable manual identification of “salient” pairs
can reduce the VAGUE relations in the new data.
This can be measured by comparing the numbers
of the TORDER and TLINK relations on the same
mention pairs. If the observation of a part of vague
TLINKs induced as non-VAGUE TORDERs in
the new data can be found, it will be the evidence.

Depending on the text domain, TLINKs or
TORDERs can be advantageous in different sce-
narios. TLINKs can capture the temporal order-
ing information between events, when time ex-
pressions are often absent in the documents such
as novels and narratives. But the annotation work
is time consuming and a part of relations will be
neglected by the unstable human identification of
“salient” pairs. TORDERs have the capability of
capturing more informative relations by skipping
the “salient” pairs recognition and need less anno-
tation effort. But they require that the events can
be anchored in a timeline from a document (e.g.
often the case of news articles) and imprecise time
anchors cause some information loss.
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Figure 2: The label distribution of the TORDER and TLINK relations

b a s i ii v
BEFORE 1486 24 0 22 26 542
AFTER 19 1242 5 26 66 503
SAME DAY 155 93 83 164 343 647
SAME SPAN 4 0 9 5 6 42
INCLUDES 104 61 2 225 25 372
IS INCLUDED 56 71 1 25 214 333
PVAGUE 91 40 41 23 36 336
VAGUE 331 261 33 145 136 1464

Table 3: The comparison of the numbers of TORDER
and TLINK annotations for the same mention
pairs. b:before, a:after, s:simultaneous, i:includes,
ii:is included, v:vague.

4.2 Empirical Comparison

Investigating the quality of auto-generated
TORDERs is important to demonstrate the value
of this research. In this section, we empirically
compare the statistics of the auto-generated
TORDERs and human-annotated TLINKs. Theo-
retically, a TORDER between two mentions with
any distance in a document can be automatically
computed. However, it is important to make the
new data in a comparable manner to the existing
data. In this paper, we follow the process of
TimeBank-Dense (Cassidy et al., 2014) to gen-
erate the complete graph of the 10,007 mention
pairs in the same and adjacent sentences. The
TORDER data used in this paper are publicly
available3 and our scalable generation method can
be easily applied for inducing relations of longer
distance pairs.

Table 3 shows the comparison between the
numbers of the TimeBank-Dense TLINKs and
the new TORDERs. One observation as we ex-
pected is that our approach captures new relations
for a considerable part of the mention pairs that
were judged as v (vague) in the human-annotated

3https://github.com/racerandom/temporalorder

TLINKs. 542 vague relations are induced as AF-
TER in the new TORDERs, as well as other rela-
tion types. However, a part of non-vague TLINKs
are shifted to VAGUE TORDERs. This matches
our description of the imprecise time anchor is-
sue. It is a trade-off between the part of mention
pairs obtaining richer temporal information and
the part of pairs losing information. That is the
reason why we need a downstream task (i.e. Time
Anchors Prediction in Section 5) to measure how
much temporal order information is encoded in
TORDERs and TLINKs. The shift of TLINK rela-
tions to SAME DAY due to the one-day minimal
granularity setting can also be clearly observed.

Figure 2 shows the label distributions of the
auto-generated TORDERs and the TimeBank-
Dense TLINKs. We investigate the statistics of
Event-Event, Event-Time, and Event-DCT pairs.
The TimeBank-Dense corpus is obviously sparser
due to the high proportion of vague in all three
types of pairs. Our TORDERs show a more
balanced distribution of labels, which suggests
that this method possibly encodes more infor-
mative temporal orders compared to the tradi-
tional TLINKs. In particular, TORDERs show ex-
tremely rare VAGUE labels in Event-DCT pairs.
When given the precise Single-Day DCT of a doc-
ument, our proposal to compare the temporal or-
der between the time anchor of a event and the
DCT manages to avoid the most unstable judg-
ments made by the human annotators in the Event-
DCT pairs. Although the different definition of
TORDERs from TLINKs makes direct compar-
ison difficult, the more balanced distribution of
TORDERs can possibly provide more informative
classification results to benefit the downstream
tasks.
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Event-DCT Event-Time Event-Event
F1 N F1 N F1 N

AFTER 0.585 65 0.509 67 0.426 184
BEFORE 0.659 65 0.452 68 0.488 257
INCLUDES 0.400 38 0.136 27 0.158 105
IS INCLUDED 0 0 0 20 0.077 86
SAME DAY 0.631 82 0.485 56 0.314 131
SAME SPAN 0 0 0 2 0 0
PVAGUE 0 0 0 1 0.149 92
VAGUE 0 18 0.417 119 0.487 335
Overall 0.557 268 0.403 360 0.374 1190
Non-VAGUE 0.597 250 0.390 240 0.351 763

(a) TORDER
Event-DCT Event-Time Event-Event

F1 N F1 N F1 N
after 0.582 68 0.550 64 0.443 223
before 0.612 58 0.331 91 0.465 326
includes 0.170 22 0.290 31 0.126 45
is included 0.559 48 0.338 42 0.099 47
simultaneous 0 0 0 6 0 19
vague 0.433 72 0.557 126 0.6116 530
Overall 0.511 268 0.441 360 0.492 1190
Non-vague 0.539 196 0.378 234 0.395 660

(b) TLINK

Table 4: The classification results of Event-Event,
Event-DCT and Event-Time F1-measure on individual
relation types and weighted overall F1. ‘N’ denotes the
number of the relations in the test split.

4.3 Classification Results

Although the classification results of TORDERs
and TLINKs are not directly comparable, they
can show some evidence whether TORDERs is
functional to provide temporal order information.
Table 4 shows the Bi-LSTM classification re-
sults with the data split4(Chambers et al., 2014)
(27 training/validation documents, 9 testing docu-
ments).

The classification system achieves fairly high
F1 0.631 in Event-DCT and 0.485 in Event-Time
on the SAME DAY temporal orders, which are
the main information source to predict the precise
time of events. The performance on AFTER, BE-
FORE temporal orders are close to the TLINKs
in number, but not meaningfully comparable. The
high proportion of vague in the TLINKs results in
biased predictions. When we use a more meaning-
ful evaluation ‘Non-vague’ overall, the TLINKs
performance drops sharply. Generally, the clas-
sification results suggest that our proposal of auto-
generated TORDERs has sufficient capability to
encode temporal information, which can be well

4https://github.com/nchambers/caevo/blob/master/src/mai
n/java/caevo/Evaluate.java

classified from the textual inputs.

5 Evaluation in Time Anchor Prediction

In this section, we describe a two-step system
trained with the existing TLINKs and our data
to challenge a downstream time anchor prediction
task. The different performance can be seen as the
evidence whether our auto-generated TORDERs
can capture comparable temporal information to
the human-annotated TLINKs.

5.1 Task Definition

Predicting the time of events from the news ar-
ticles is an attractive goal, which is a necessary
step towards automatic event timeline extraction.
Reimers et al. (2016) bring the task of time anchor
prediction, which aims to predict the time anchor
of each Single-Day event given a document. They
use a general two-step process to determine the
event anchors as shown in Figure 3. Given a set
of documents with events and time expressions al-
ready annotated, the system first obtains a list of
possible times for each event. Then, the most pre-
cise time is selected for each event.

A serious issue is that their baseline system still
depends on the TimeBank-Dense TLINK classi-
fier and the time anchor annotation is only used
for the final evaluation. That leaves the space
to consider a new method without relying on the
human-annotated TLINKs. Our auto-generated
TORDERs are a natural alternative to TLINKs
to provide the similar temporal order information
of mention pairs, but with less annotation efforts.
The second-step selection rules just need a slight
modification to replace the previous TLINK types
with the new TORDER types.

5.2 The Two-step System in Experiments

In this work, we adopt a similar two-step archi-
tecture. The first-step temporal order classifier is
designed to provide the temporal relations of the
mention pairs in a document.

The second-step selects the most precise time
by taking all Event-Time and Event-DCT relations
of a target event as input. For instance in Figure 3,
the second-step received a set of relations e.g.
(is included,DCT ), (is included, Friday) and
(vague, January) of reported. For the system
trained with the TimeBank-Dense TLINKs, we
adopt the same selection algorithm as described in
(Reimers et al., 2016). When the system is trained
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Event Type Source TORDER Gold TORDER TLINK Gold TLINK
Exact Partial Exact Partial Exact Partial Exact Partial

Precise
Event-DCT 0.586 0.866 0.739 0.866 0.387 0.570 0.525 0.545
Event-Time 0.384 0.555 0.577 0.619 0.216 0.288 0.412 0.447
All 0.660 0.870 0.835 0.930 0.444 0.611 0.595 0.617

Imprecise
Event-DCT 0.351 0.631 0.530 0.647 0.234 0.395 0.364 0.449
Event-Time 0.074 0.217 0.119 0.184 0.051 0.133 0.200 0.227
All 0.299 0.642 0.509 0.686 0.252 0.429 0.444 0.517

Overall
Event-DCT 0.482 0.762 0.619 0.769 0.319 0.493 0.454 0.503
Event-Time 0.259 0.419 0.393 0.444 0.149 0.255 0.326 0.358
All 0.501 0.769 0.646 0.822 0.360 0.530 0.528 0.573

Table 5: The comparison of the cross-validation performance in the time anchor prediction task. ‘Exact’ and
‘Partial’ denote the two evaluation metrics: exact match and partial match accuracy. ‘Gold’ denotes the oracle
performance of using the gold TORDERs or gold TLINKs as the input of the second-step.
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Figure 3: The two-step process to determine the event
anchors proposed in (Reimers et al., 2016).

with the TORDERs, we slightly modified the algo-
rithm by replacing the TLINK relations with sim-
ilar TORDER relations. SAME DAY replaces si-
multaneous to predict precise dates, although their
definition is quite different.

5.3 Experiment Settings

We perform a 6-fold cross-validation strategy to
predict all the TORDERs and TLINKs of the men-
tion pairs in the 36 documents of the TimeBank-
Dense corpus. In each run, we split 30 documents
for training and validation to predict the other 6
test documents.

We define two evaluation metrics, i.e. Exact
Match accuracy and Partial Match accuracy to
measure the performance in this task as follows:

exact match =
#Number of the exact match predictions

#Total number of the test samples

partial match =
#Number of the partial match predictions

#Total number of the test samples

We define two partial match cases: 1) a precise
(1998-02-06) is partial match with an imprecise
(after 1998-02-06), if the date values are the same.
2) (after 1998-02-06) is partial match with (after
1998-02-06, before 1998-02-21), if one is a part of
the other.

5.4 Main Results
Table 5 summarizes the main results of the two-
step time anchor prediction system trained with
TORDER and TLINK data. ‘Precise’, ‘Impre-
cise’ and ‘Overall’ denote the results of predicting
time anchors of precise events, imprecise events,
and overall performance. ‘Event-DCT’ or ‘Event-
Time’ denotes the second-step selection takes only
Event-DCT or Event-Time pairs as input, which
helps us to investigate how much information is
provided by the different types of pairs for pre-
dicting the final time anchors. The new TORDERs
show significantly superior out-performance in all
three settings (i.e. only Event-DCT pairs, only
Event-Time pairs, or Event-DCT + Event-Time),
compared to the TLINKs. With both Event-DCT
and Event-Time temporal order information, the
system achieves the highest overall exact match
and partial match accuracy.

The Event-DCT, Event-Time pairs are the
source of temporal information for predicting time
anchors. The system only using the Event-DCT
achieves surprisingly high accuracy, particularly
on the TORDER partial match accuracy of the
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Exact Partial
CAEVO 0.442 0.553
Bi-LSTM TLINK 0.437 0.550
Bi-LSTM TORDER 0.586 0.811

Table 6: The comparison to the state-of-the-art dense
TLINK classifier

precise events. The reason is that most events re-
ported in news articles usually occur in precisely
the same day as DCT. Therefore, the TORDER
Event-DCT is benefited from the low proportion
of vague relations, which sharply outperforms
the TLINK Event-DCT by 16.3% overall exact
match. However, the contribution of the Event-
Time to the overall might be underestimated in
this task somehow. The TORDER Event-Time
still beats the TLINKs by 11% overall exact match
and 16.4% overall partial match. Furthermore,
the Event-Time encoding the temporal informa-
tion within 1-sentence window in our experiments
can be easily strengthen by our TORDER proposal
to introduce more inter-sentence pairs.

5.5 Comparison to a state-of-the-art dense
TLINK classifier

In this section, we perform an additional ex-
periment to make a comparison to a system
with the first-step replaced by a state-of-the-art
dense TLINK classifier CAEVO (Chambers et al.,
2014). We adopt the data split setting in Sec-
tion 4.3 for three classifiers: CAEVO, Bi-LSTM
classifier trained with TLINKs and Bi-LSTM clas-
sifier trained with TORDERs.

The results are summarized in Table 6. CAEVO
achieves the exact match accuracy slightly bet-
ter than the Bi-LSTM model trained with the
TLINKs. The Bi-LSTM model trained with the
TORDERs sharply outperforms the other two sys-
tems by approximate 14% exact match accuracy
and approximate 26% in partial match accuracy.

6 Conclusion

In this paper, we propose a new approach to ob-
tain temporal relations based on time anchors (i.e.
absolute time value) of mentions in news articles.
Our pre-defined generation rules can automati-
cally induce TORDER relations by comparing the
temporal order of two time anchors in a timeline.
The requirement of our proposal for annotating
time anchors is much easier compared to conven-
tional methods, as the annotation effort is linear

with the number of mentions. The TORDER data
used in this paper are publicly available. The anal-
ysis, empirical comparison and classification re-
sults of the new TORDERs and the TimeBank-
Dense TLINKs show our new data achieve the low
VAGUE proportion, the informative relation types
and the balanced label distribution. We perform
the second evaluation of using the temporal rela-
tion classifier to complete the downstream task of
time anchor prediction in news articles. The main
results show our TORDERs significantly outper-
form the TLINKs in this task, which suggests our
proposal has the capability to encode informative
temporal order information with less annotation
effort.

The main limitation of TORDER is that events
are required to be anchored in a timeline. Strötgen
and Gertz (2016) introduce the highly different
characteristics of time expressions in four domains
of text. It suggests that our proposal is difficult
to be applied in some domains. One possible so-
lution is to adopt a hybrid annotation method to
annotate a target event towards the most relevant
event (TLINK-style), when temporal information
is absent in its context. Although this work is mo-
tivated for contributing to timeline applications,
evaluating this proposal in the temporal question
answering is also valuable. SAME DAY could
be harmful because this task possibly requires to
know the exact order between two events occur-
ring on the same day. It is worth conceiving a
more general solution to improve the limitations
of TORDER in the future work.
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Abstract

Entity Linking (EL) systems aim to automati-
cally map mentions of an entity in text to the
corresponding entity in a Knowledge Graph
(KG). Degree of connectivity of an entity in
the KG directly affects an EL system’s abil-
ity to correctly link mentions in text to the
entity in KG. This causes many EL systems
to perform well for entities well connected
to other entities in KG, bringing into focus
the role of KG density in EL. In this paper,
we propose Entity Linking using Densified
Knowledge Graphs (ELDEN). ELDEN is an
EL system which first densifies the KG with
co-occurrence statistics from a large text cor-
pus, and then uses the densified KG to train
entity embeddings. Entity similarity measured
using these trained entity embeddings result
in improved EL. ELDEN outperforms state-
of-the-art EL system on benchmark datasets.
Due to such densification, ELDEN performs
well for sparsely connected entities in the KG
too. ELDEN’s approach is simple, yet effec-
tive. We have made ELDEN’s code and data
publicly available.

1 Introduction

Entity Linking (EL) is the task of mapping men-
tions of an entity in text to the corresponding entity
in Knowledge Graph (KG) (Hoffart et al., 2011;
Dong et al., 2014; Chisholm and Hachey, 2015).
EL systems primarily exploit two types of infor-
mation: (1) similarity of the mention to the candi-
date entity string, and (2) coherence between the
candidate entity and other entities mentioned in
the vicinity of the mention in text. Coherence es-
sentially measures how well the candidate entity is
connected, either directly or indirectly, with other
KG entities mentioned in the vicinity (Milne and
Witten, 2008; Globerson et al., 2016). In the state-

✓
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Figure 1: Improving entity disambiguation per-
formance using KG densification: edges to
WWW conference, a sparsely-connected entity
in the KG, is increased by adding edges from pseudo
entity Program Committee whose mention co-
occurs with it in web corpus. ELDEN, the system
proposed in this paper, uses such densified KG to
successfully link ambiguous mention WWW to the
correct entity WWW conference, instead of the more
popular entity World Wide Web.

of-the-art EL system by (Yamada et al., 2016), co-
herence is measured as distance between embed-
dings of entities. This system performs well on
entities which are densely-connected in KG, but
not so well on sparsely-connected entities in the
KG.

We demonstrate this problem using the exam-
ple sentence in Figure 1. This sentence has two
mentions: Andrei Broder and WWW. The figure
also shows mention-entity linkages, i.e., mentions
and their candidate entities in KG. Using a conven-
tional EL system, the first mention Andrei Broder1

can be easily linked to Andrei Broder using
string similarity between the mention and candi-
date entity strings. String similarity works well
in this case as this mention is unambiguous in
the given setting. However, the second mention

1We use italics to denote textual mentions and
typewriter to indicate an entity in KG.
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WWW has two candidates, World Wide Web
and WWW conference, and hence is ambiguous.
In such cases, coherence measure between the
candidate entity and other unambiguously linked
entity(ies) is used for disambiguation.

State-of-the-art EL systems measure coherence
as similarity between embeddings of entities. The
entity embeddings are trained based on the num-
ber of common edges in KG2. In our example,
common edges are edges World Wide Web
shares with Andrei Broder and
edges WWW conference shares with
Andrei Broder. But WWW conference has
less number of edges (it is a sparsely-connected
entity) compared to World Wide Web. This
leads to poor performance3 whereby WWW is
erroneously linked to World Wide Web instead
of linking to WWW conference.

In this paper, we propose ELDEN, an EL sys-
tem which increases nodes and edges of the KG by
using information available on the web about enti-
ties and pseudo entities. Pseudo Entities are words
and phrases that frequently occur in Wikipedia,
and co-occur with mentions of KG entities in
the web corpus. Thus ELDEN uses a web cor-
pus to find pseudo entities and refines the co-
occurrences with Pointwise Mutual Information
(PMI) (Church and Hanks, 1989) measure. EL-
DEN then adds edges to the entity from pseudo en-
tities. In Figure 1, pseudo entity Program Commit-
tee co-occurs with mentions of Andrei Broder
and WWW conference in web corpus and has
a positive PMI value with both. So EL-
DEN adds edges from Program Committee to
Andrei Broder and WWW conference, den-
sifying neighborhood of the entities. Coherence,
now measured as similarity between entity embed-
dings where embeddings are trained on densified
KG, leads to improved EL performance.

Density (number of KG edges) of candidate en-
tity affects EL performance. In our analysis of
density and number of entities having that density
in the Wikipedia KG, we find that entities with 500
edges or less make up more than 90%. Thus, creat-
ing an EL system that performs well on densely as
well as sparsely-connected entities is a challeng-
ing, yet unavoidable problem.

2Wikipedia Link based Measure (WLM) (Milne and Wit-
ten, 2008) used in Yamada et al.’s system is based on number
of common edges in KG.

3This paper focuses on mention disambiguation. We as-
sume mention and candidate entities are detected already.

We make the following contributions:

• ELDEN presents a simple yet effective graph
densification method which may be applied
to improve EL involving any KG.

• By using pseudo entities and unambiguous
mentions of entity in a corpus, we demon-
strate how non-entity-linked corpus can be
used to improve EL performance.

• We have made ELDEN’s code and data pub-
licly available4.

2 Related Work

Entity linking: Most EL systems use coherence
among entities (Cheng and Roth, 2013) to link
mentions. We studied coherence measures and
datasets used in six recent5 EL systems (He et al.,
2013; Huang et al., 2015; Sun et al., 2015; Ya-
mada et al., 2016; Globerson et al., 2016; Bar-
rena et al., 2016). We see that the two popu-
lar datasets used for evaluating EL (Chisholm and
Hachey, 2015) on documents are CoNLL (Hoffart
et al., 2011) and TAC2010 (Ji et al., 2010), here
after TAC. The popular coherence measures used
are (1) WLM, (2) Entity Embedding Similarity
and (3) Jaccard Similarity (Chisholm and Hachey,
2015; Guo et al., 2013). WLM is widely acknowl-
edged as most popular (Hoffart et al., 2012) with
almost all the six approaches analyzed above using
WLM or its variants. Entity embedding similarity
(Yamada et al., 2016) is reported to give highest
EL6 performance and is the baseline of ELDEN.
Enhancing entity disambiguation: Among
methods proposed in literature to enhance entity
disambiguation utilizing KG (Bhattacharya and
Getoor) uses additional relational information be-
tween database references; (Han and Zhao, 2010)
uses semantic relatedness between entities in other
KGs; and (Shen et al., 2018) uses paths con-
sisting of defined relations between entities in the
KG (IMDB and DBLP). All these methods utilize
structured information, while our method shows
how unstructured data (web corpus about the en-
tity to be linked) can be effectively used for entity
disambiguation.
Entity Embeddings: ELDEN presents a method
to enhance embedding of entities and words in a

4https://github.com/
priyaradhakrishnan0/ELDEN

5 (Shen et al., 2015) presents a survey of EL systems.
6Named Entity Disambiguation (NED) and EL are syn-

onymous terms in research (Hoffart et al., 2011)
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common vector space. Word embedding meth-
ods like word2vec (Mikolov et al., 2013) and
Glove (Pennington et al., 2014) have been ex-
tended to entities in EL (Yamada et al., 2016; Fang
et al., 2016; Zwicklbauer et al., 2016; Huang et al.,
2015). These methods use data about entity-entity
co-occurrences to improve the entity embeddings.
In ELDEN, we improve it with web corpus co-
occurrence statistics. Ganea and Hofmann (2017)
present a very interesting neural model for jointly
learning entity embedding along with mentions
and contexts.
KG densification with pseudo entities: KG den-
sification using external corpus has been studied
by Kotnis et al. (2015) and Hegde and Taluk-
dar (2015). Densifying edge graph is also studied
as ‘link prediction’ in literature (Martı́nez et al.,
2016). Kotnis et al. augment paths between KG
nodes using ‘bridging entities’ which are noun
phrases mined from an external corpus. ELDEN
has a similar approach as it proposes densifying
the KG edges of entities by adding edges from
pseudo entities. However, densification is used for
relation inference in the former methods whereas
it is used for entity coherence measurement in EL-
DEN.
Word co-occurrence measures: Chaudhari et
al. (2011) survey several co-occurrence mea-
sures for word association including PMI, Jac-
card (Dice, 1945) and Co-occurrence Significance
Ratio (CSR). Damani (2013) proves that consid-
ering corpus level significant co-occurrences, PMI
is better than others. Budiu et al. (2007) compare
Latent Semantic Analysis (LSA), PMI and Gener-
alized Latent Semantic Analysis (GLSA) and con-
clude that for large corpora like web corpus, PMI
works best on word similarity tests. Hence, we
chose PMI to refine co-occurring mentions of en-
tities in web corpus.

3 Definitions and Problem Formulation
In this section, we present a few definitions and
formulate the EL problem.
Knowledge Graph (KG): A Knowledge Graph is
defined as G = (E,F ) with entities E as nodes
and F as edges. In allegiance to EL literature
and baselines (Milne and Witten, 2008; Glober-
son et al., 2016), we use the Wikipedia hyperlink
graph as the KG in this paper, where nodes corre-
spond to Wikipedia articles and edges are incom-
ing links from one Wikipedia article to another.
ELDEN ultimately uses a densified version of this

Wikipedia KG, as described in Section 4.
Sparsely connected entities: Following Hoffart
et al. (2012), we define an entity to be a sparsely
connected entity, if the number of edges incident
on the entity node in the KG is less than thresh-
old η7. Otherwise, the entity is called a densely-
connected entity.
Entity Linking (EL): Given a set of mentions
MD = {m1, ...,mn} in a document D, and a
knowledge graph G = (E,F ), the problem of en-
tity linking is to find the assignment Λ : MD →
ED, where ED is the set of entities linked to men-
tions in document D such that ED ⊆ E.

For mention mi ∈ MD, let the set of possible
entities it can link to (candidate entities) be Ci.
Then, the solution to the EL problem is an assign-
ment Λ where,

Λ(mi) = arg max
e∈Ci

[φ(mi, e) + β · ψ(e, ED)]

(1)
Here, φ(mi, e) ∈ [0, 1] measures the contextual
compatibility of mentionmi and entity e. φ(mi, e)
is obtained by combining prior probability and
context similarity. ψ(e, ED) measures the coher-
ence of e with entities in ED. β is a variable con-
trolling inclusion of ψ in the assignment Λ.
Problem Formulation : (Yamada et al., 2016) is a
recently proposed state-of-the-art EL system. We
consider it as a representative EL system and use
it as the main baseline for the experiments in this
paper. In this section, we briefly describe Yamada
et al. (2016)’s two-step approach that solves the
EL problem presented above.

Step 1: A mention mi ∈ MD is defined to be
unambiguous if ∃e ∈ Ci such that φ(mi, e) ≥ γ.
Let M (u)

D ⊆ MD be the set of such unambigu-
ous mentions in document D. For all unambigu-
ous mentions m ∈ M

(u)
D , Yamada et al. freeze

the assignment by solving Equation 1 after set-
ting β = 0. In other words, ψ(e, ED) is not used
while assigning entities to unambiguous mentions.
Assigning entities first to unambiguous mentions
has also been found to be helpful in prior research
(Milne and Witten, 2008; Guo and Barbosa, 2014).
Let AD be the set of entities linked to in this step.
In Figure 1, mention Andrei Broder is unambigu-
ous8.

7Like (Hoffart et al., 2012) we set η = 500 for the exper-
iments in this paper.

8Between mention Andrei Broder and entity
Andrei Broder, string similarity and prior probabil-
ity are 1.0. In the experiments we use a γ value of 0.95.
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Notation Definition
ve entity embedding of entity e with dimension 1 ∗ d
E set of all titles in Wikipedia

S set of all pseudo entities considered in ELDEN

E+ set of all entities considered in ELDEN

V word vectors ofE+ where V ∈ Rk∗d

ψELDEN Embedding similarity measured using V trained onGdense

ψYamada Embedding similarity measured using V trained on input
KGG

Table 1: Notation used in KG densification and learn-
ing entity embeddings (Please see Sec 4 for more de-
tails).

Step 2: In this step, Yamada et al. links all am-
biguous mentions by solving Equation 2.

Λ(mi) =

arg max
e∈Ci


φ(mi, e) +

1

|AD|
∑

ej∈AD
ve · vej




∀mi ∈MD \M (u)
D (2)

where ve, vej ∈ Rd are d-dimensional embed-
dings of entities e and ej respectively. Please
note that the equation above is a reformulation
of Equation 1 with β = 1 and ψ(e, ED) =
1
|AD|

∑
ej∈AD ve · vej , where AD is derived from

ED as described in Step 1. As coherence
ψ(e, ED) is applied only in disambiguation of am-
biguous mentions, we apply densification to only
selective nodes of KG.

Embeddings of entities are generated using
word2vec model and trained using WLM (Details
in Section 5). Given a graph G = (E,F ), the
WLM coherence measure ψwlm(ei, ej) between
two entities ei and ej is defined in Equation 3
where Ce is the set of entities with edge to entity
e.

ψwlm(ei, ej) = 1−
log(max(|Cei |, |Cej |))− log(|Cei ∩ Cej )|)

log(|E|)− log(min(|Cei |, |Cej |))
(3)

4 Our Approach: ELDEN

In this section, we present ELDEN, our proposed
approach. ELDEN extends (Yamada et al., 2016),
with one important difference: rather than work-
ing with the input KG directly, ELDEN works
with the densified KG, created by selective den-
sification of the KG with co-occurrence statistics
extracted from a large corpus. Even though this

is a simple change, this results in improved EL
performance. The method performs well even for
sparsely connected entities.
Overview : Overview of the ELDEN system is
shown in Figure 2. ELDEN starts off with densi-
fication of the input KG, using statistics from web
corpus. Embeddings of entities are then learned
utilizing the densified KG in the next step. Em-
bedding similarity estimated using the learned en-
tity embeddings is used in calculating coherence
measure in subsequent EL. Notation used is sum-
marized in Table 1.
(i)KG Densification Figure 2 depicts densifica-
tion of KG in ‘Input KG’ and ‘Densified KG’. It
shows two Wikipedia titles Andrei Broder and
WWW conference from our running example
(Figure 1). There are no edges common between
Andrei Broder and WWW conference. In a
web corpus, mentions of Andrei Broder and
WWW conference co-occur with Program com-
mittee and it has a positive PMI value with both
the entities. So ELDEN adds an edge from Pro-
gram committee to both the entities. Here Pro-
gram committee is a pseudo entity. Thus, ELDEN
densifies the KG by adding edges from pseudo en-
tities when the mentions of Wikipedia entity and
pseudo entity co-occur in a web corpus and the
pseudo entity has a positive PMI value with given
entity.

Taking a closer look, KG densification pro-
cess starts from ‘input KG’ which is Wikipedia
hyperlink graph G = (E,F ), where the nodes
are Wikipedia titles (E) and edges are hyperlinks
(F ). ELDEN processes Wikipedia text corpus and
identifies phrases (unigrams and bi-grams) that oc-
cur frequently, i.e. more than 10 times in it. We
denote these phrases as pseudo entities (S) and
add them as nodes to the KG. Let E+ = E ∪ S
be the resulting set of nodes.

ELDEN then adds edges connecting entities in
E+ to entities in E. This is done by processing
a web text corpus looking for mentions of enti-
ties in E+, and linking the mentions to entities in
KG G

′
= (E+, F ). ELDEN uses Equation 1 with

β = 0 for this entity linking, i.e. only mention-
entity similarity φ(m, e) is used during this link-
ing9. Based on this entity linked corpus, a co-
occurrence matrix M of size |E+| × |E+| is con-
structed. Each cell Mi,j is set to the PMI between

9Since prior probabilities of pseudo entities are not avail-
able, only mention-entity similarity component of φ(m, s) is
used while linking a mention m to a pseudo entity s ∈ S.
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Input KG Densified KG

Densification

Web Corpus

Andrei_Broder

WWW_conference

Andrei_Broder

WWW_conference

Program 
Committee

Embedding similarity = 𝝍ELDEN = Cosine (vEntity1 , vEntity2)

Cosine (vAndrei_Broder , vWWW_conference)   > Cosine (vAndrei_Broder, vWorld_Wide_Web)

Learn Entity 
Representation

.0.02,..0.11…0.14..

.0.05,..0.01...0.06..

vAndrei_Broder

vWWW_conference

.0.03,..0.12…0.15.. vWorld_Wide_Web

Entity Embeddings (V)

Figure 2: ELDEN consists of KG densification, training entity embeddings on densified KG and building EL
system that uses similarity between the trained embeddings as coherence measure. ELDEN’s difference from
baseline method is that while baseline method uses input KG for training ve, ELDEN uses densified KG for
training ve. Hence, the improved performance of ELDEN is solely attributed to densification.

Objective function
component

Feature
Group

Feature Explanation

Contextual
compati-
bility
φ(mi, ei)

Base

Entity Prior Fraction of edges that links to the entity
Prior Probability Of all possible pages a mention can link to, the probability that it links to a

given page
Max Prior Probability Maximum value of prior probabilities for a mention
Max Prior Probability in document Maximum value of prior probabilities for a document
Num of candidates Candidate count of the mention

String
Similarity

Exact match Whether mention is an exact match of candidate
Partial match Whether mention is part of candidate

Coherence
ψ(ei, ej)

Coherence
measures

ψwlm WLM (Please see Equation 3)
ψYamada Similarity between entity embeddings that are learned using ψwlm

ψdense ψwlm calculated on densified KB
ψELDEN Similarity between entity embeddings that are trained using ψdense

ψELDEN++ Combination of ψwlm, ψYamada, ψdense, and ψELDEN. ELDEN uses
this coherence feature.

Table 2: Features used by various EL systems. Context compatibility φ(mi, ei) and coherence ψ(ei, ej) of Equa-
tion 1 are parameterized using features as shown above. Context compatibility features are used by all systems.
Coherence features used by Yamada16 are ψwlm and ψYamada. ELDEN uses ψELDEN++ as coherence feature.

the entities e and e
′
.

Me,e′ = PMI(e, e
′
) = log

f(e, e
′
)×N

f(e)× f(e′)

where f(e) is the frequency of entity e in web cor-
pus, f(e, e

′
) is the sentence-constrained pair fre-

quency of the entity pair (e, e
′
) in web corpus, and

N =
∑

e,e′∈E+
f(e, e

′
). Please note that PMI, and

there by M , are symmetric. The expanded set of
edges, F+, is now defined as

F+ = F∪{(e, e′), (e′ , e) | e′ ∈ E+, e ∈ E,Me,e′ > 0}

In other words, we augment the set of initial edges
F with additional edges connecting entities in E+

with entities in E such that PMI between the enti-
ties is positive.

ELDEN now constructs the KG Gdense =
(E+, F+), which is a densified version of the in-
put KG G = (E,F ). ELDEN uses this densified
KG Gdense for subsequent processing and entity
linking.
(ii)Learning Embeddings of Densified KG En-
tities ELDEN derives entity embeddings using
the same setup, corpus and Word2vec skip-gram
with negative sampling model as in Yamada et al.,
However, instead of training embeddings over the
input KG, ELDEN trains embeddings of entities in
the densified KG Gdense. Let V be the word2vec
matrix containing embeddings of entities in E+

where V ∈ Rk∗d. ve is the embedding of entity
e in E+ with dimension 1 ∗ d.

In word2vec model, entities in context are used
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to predict the target entity. ELDEN maximizes
the objective function (Goldberg and Levy, 2014)
of word2vec skip-gram model with negative sam-
pling, L =

∑
(t,c)∈P Lt,c where

Lt,c = log θ(vc · vt) +
∑

n∈N(t,c)

log θ(−vn · vt)

Here vt and vc are the entity embeddings of tar-
get entity t and context entity c. P is the set
of target-context entity pairs considered by the
model. N(t,c) is a set of randomly sampled enti-
ties used as negative samples with pair (t, c). This
objective is maximized with respect to variables
vt’s and vc’s, where θ(x) = 1

1+e−x .
P and N are derived usingGdense. t and c are en-

tities inE+ such that c shares a common edge with
t. vn is randomly sampled from V, for entities that
do not share a common edge with t. Entity em-
bedding similarity measured using V trained this
way on Gdense is ψELDEN. Embedding similarity
is measured as cosine distance between ves. Em-
beddings of S are trained using positive and nega-
tive word contexts derived using context length.
(iii) Bringing it All Together: ELDEN

ELDEN is a supervised EL system which uses
two sets of features: (1) contextual compatibility
φ(m, e); and (2) coherence ψ(ei, ej). These fea-
tures are summarized in Table 2. Similarity be-
tween entity embeddings is measured as cosine
similarity between ves.

5 Experiments

In this section, we evaluate the following:

• Is ELDEN’s corpus co-occurrence statistics-
based densification helpful in disambiguating
entities better? (Sec. 6.1)

• Where does ELDEN’s selective densification
of KG nodes link entities better? (Sec. 6.3)

Setup : ELDEN is implemented using Random
Forest ensemble 10 (Breiman, 1998). Parameter
values were set using CoNLL development set.
Feature limit of 3 with number of estimators as
100 yielded best performance.
Knowledge Graph: Wikipedia Following prior
EL literature, we use Wikipedia hypergraph as
our KG (Milne and Witten, 2008; Globerson
et al., 2016). This KG is enhanced with pseudo
entities as explained in Section 4. We process

10http://scikit-learn.org

Specifics Value
Number of titles after cleaning (|E|) 4.6 M

Number of pseudo entities (|S|) 1.3 M

Total number of entities (|E+|) 5.9 M

Number of epochs 3

Learning rate 0.25 linearly reducing to 0.01

Number of negative samples (|N|) 5

Context window size 3

Dimensions of embedding (d) 100

Table 3: Parameters used in Wikipedia processing and
training KG.

the Wikipedia corpus following the same proce-
dure as in Yamada et al. (2016). We cleaned 11

Wikipedia dump dated Nov 2015. We then parsed
the Wikipedia article text to identify pseudo enti-
ties. More details on KG and parameters used for
training embeddings are in Table 3. Training took
4 days on gpu with 2 cores.
Preprocessing: Web corpus and Densified KG
For our experiments, we created a web corpus by
querying Google12. Candidate entities of all men-
tions in the dataset are queried in Google and top
ten search results are considered for unigram and
bigram frequencies. This corpus occupied 6.8GB
for candidate entities of TAC and CoNLL dataset
mentions (54336 entities). Even for sparsely con-
nected entities, an average corpus size of 670 lines
or more13 was collected. We note that though
some of the entities mentioned in this dataset are
ten or more years old, we are able to collect, on an
average more than 670 lines of web content. Thus
corpus proves to be a good source of additional
links for densification, for both common and rare
entities. As Taneva and Weikum (2013) also note,
it is not hard to find content about sparsely con-
nected entities on the web.

The web corpus is analyzed for mentions and
pseudo entities. Co-occurrence matrix M is cre-
ated14 for mention and pseudo entities occurring
within window of size 10 for PMI calculation15.
Edges are added from pseudo entities with positive
PMI to mention of given entity. In experiments we
add edges from top 10 pseudo entities ordered by

11by removing disambiguation, navigation, maintenance
and discussion pages.

12https://www.google.com/
13A detailed analysis of knowledge gained from crawling

for common versus less common entities is present in Figure
1 of supplementary material.

14This co-occurrence matrix is downloadable with source
code.

15We experimented with window sizes 10, 25 and 50. We
chose 10 that gave best results
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PMI values16.
Evaluation Dataset: In line with prior work
on EL, we test the performance of ELDEN on
CoNLL and TAC datasets. As this paper fo-
cuses on entity disambiguation, we tested ELDEN
against datasets and baseline methods for disam-
biguation. We note that the entity disambiguation
evaluation part of other recent datasets like ERD
2014 and TAC 2015 is exactly same as the TAC
2010 evaluation (Ellis et al., 2014) 17.
Training: ELDEN’s parameters were tuned us-
ing training (development) sets of CoNLL and
TAC datasets. CoNLL and TAC datasets consist
of documents where mentions are marked and en-
tity to which the mention links to, is specified. We
use only mentions that link to a valid Wikipedia
title (non NIL entities) and report performance on
test set. Some aspects of these datasets relevant to
our experiments are provided below.
CoNLL: In CoNLL test set (5267 mentions), we
report Precision of topmost candidate entity, ag-
gregated over all mentions (P-micro) and aggre-
gated over all documents (P-macro), i.e., if tp, fp
and p are the individual true positives, false posi-
tives and precision for each document in a dataset
of δ documents, then

Pmicro =

δ∑
i=1

tpi

δ∑
i=1

tpi+
δ∑
i=1

fpi

and Pmacro =

δ∑
i=1

pi

δ .

For CoNLL candidate entities, we use (Pershina
et al., 2015) dataset18.
TAC: In TAC dataset, we report P-micro of top-
ranked candidate entity on 1,020 mentions. P-
macro is not applicable to TAC as most documents
have only one mention as query mention ( or ’men-
tion to be linked’). For TAC candidate entities, we
index the Wikipedia word tokens and titles using
solr19. We index terms in (1) title of the entity, (2)
title of another entity redirecting to the entity, and
(3) names of anchors that point to the entity, in line
with baselines. We are making this TAC candidate
set publicly available.
Baseline: Yamada16 Our baseline is the Yamada
et al. system explained in Section 3. Entity em-
bedding distance measured using ve trained on the

16This is a tunable parameter.
17These recent datasets consist of other evaluations, e.g.,

mention detection, multilinguality etc. which is beyond the
scope of the paper and hence we didnt focus on them in the
paper.

18https://github.com/masha-p/PPRforNED
19http://lucene.apache.org/solr/

Method CONLL

(P-micro)

CONLL

(P-macro)

TAC

(P-micro)
(Hoffart et al., 2011) 82.5 81.7 -
(He et al., 2013) 85.6 84.0 81.0

(Ling et al., 2015) 67.5 - 86.8

(Barrena et al., 2016) 88.32 - -
(Chisholm and Hachey,
2015)

88.7 - 80.7

(Pershina et al., 2015) 91.8 89.9 -
(Globerson et al., 2016) 91.7 - 87.2

(Yamada et al., 2016) 93.1 92.6 85.2

ELDEN 93.0 93.7 89.6

Table 4: Performance comparison with other recent EL
approaches. ELDEN matches best results in CoNLL
and outperforms the state-of-the-art in TAC dataset.
(Please see Section 6.1 for details and ψELDEN++ row
of Table 5 for ELDEN results.)

input KG G is ψYamada.

6 Results

6.1 Does ELDEN’s selective densification
help in disambiguation in EL?

In Table 4, we compare ELDEN’s EL performance
with results of other recently proposed state-of-
the-art EL methods that use coherence models. We
see that ELDEN results matches best results on
CoNLL and outperforms state-of-the-art in TAC
dataset. In the table, the last four rows uses the
Pershina et al. (2015) candidate set and hence, we
provide a comparison of their disambiguation per-
formance. Improved results of ELDEN over base-
line is attributed to the improved disambiguation
due to KG densification.

6.2 Why does ELDEN’s selective
densification work?

We conduct ablation analysis using various fea-
ture and feature combinations and present perfor-
mance of ELDEN and baseline in Table 5. Start-
ing with base features, we add various features to
ELDEN incrementally and report their impact on
performance. The results when using base feature
group alone, and base and string similarity groups
together (φ) are presented in first and second rows
for each dataset. We compare ψELDEN to three co-
herence measures: ψwlm, ψYamada and ψdense, de-
tails of which are provided in Table 2. The perfor-
mance improvement from each of the four coher-
ence measures are in the next four rows. Perfor-
mance of ELDEN from using all four coherence
features is given in ψELDEN++ row.

On CoNLL dataset, ψdense combined with φ,
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Dataset Features P-micro P-macro

CoNLL

Base 87.0 88.3

φ 90.0 91.2

φ+ ψwlm 91.0* 91.8

φ+ ψYamada 90.0* 91.1

φ+ ψdense 92.0* 93.0

φ+ ψELDEN 91.0* 91.2

φ+ ψwlm + ψYamada 91.0 91.8

φ+ ψdense + ψELDEN 91.0 92.6

φ+ ψELDEN++ 93.0 93.7

TAC

Base 78.2

φ 80.2

φ+ ψwlm 82.5*

φ+ ψYamada 83.1*

φ+ ψdense 85.5*

φ+ ψELDEN 87.3*

φ+ ψwlm + ψYamada 84.4

φ+ ψdense + ψELDEN 88.7

φ+ ψELDEN++ 89.6

Table 5: Ablation analysis involving various coher-
ence measures (see Table 2 for definitions of these
measures). Statistically significant improvements over
φ are marked with an asterisk. ELDEN’s coherence
measure, ψELDEN++, achieves the best overall perfor-
mance. P-macro is not applicable to TAC as most docu-
ments have only one mention marked as query. (Please
see Section 6.2).

gave an improvement of 2.0 and 1.9 (P-micro and
P-macro) over Yamada16 results. We note that Ya-
mada16 results are from our re-implementation of
(Yamada et al., 2016) system 20 and we are able
to almost reproduce the baseline results. We also
present the results combining baseline’s ψYamada

and ψwlm versus ELDEN’s ψELDEN and ψdense in
next two rows. We find the ELDEN’s KG densifi-
cation features perform better than baselines.

On TAC dataset also, combined with φ, ψdense

is found to do better than ψwlm and ψELDEN gives
a significant P-micro improvement of 4.2 over
ψYamada. The ψELDEN++ P-micro in TAC dataset
is statistically significant21. In short, we find the
KG densification features, ψdense and ψELDEN,
as the features causing better performance of EL-
DEN on both datasets.

6.3 Where does ELDEN’s selective
densification work better?

While most EL systems give higher precision on
CoNLL dataset than TAC dataset, ELDEN per-
forms with high precision on TAC dataset too.

20We have re-implemented the Yamada et al system us-
ing hyper-parameters specified in the paper and these are our
best-effort results.

21We performed two tailed t-test, with 2-tail 95% value of
1.96.

% sparsely connected Entities

Dataset Train Test
TAC 78.8 63.6

CoNLL 48.4 48.2

Table 6: Percentage of sparsely connected entities in
evaluation datasets. TAC has higher composition of
sparsely connected entities than CoNLL. Hence, EL-
DEN results are better in TAC over CoNLL (Please see
Table 4).

This is explained by analyzing distribution of
densely-connected and sparsely connected entities
in TAC and CoNLL datasets as presented in Ta-
ble 6. We see that CoNLL test set has almost half
as densely-connected and half as sparsely con-
nected entities, whereas in TAC test set, 63.6%
are sparsely connected entities. This higher con-
stitution of sparsely connected entities in TAC, ex-
plains ELDEN’s better results in TAC relative to
CoNLL dataset. As the number of sparsely con-
nected entities is more than the number of densely-
connected entities in most KGs (Reinanda et al.,
2016), our method is expected to be of significance
for most KGs.

6.4 What type of EL errors are best fixed
with ELDEN’s selective densification ?

We analyzed errors fixed by ELDEN on TAC
dataset. We categorize the errors into four classes
in line with error classes of Ling et al. (2015). We

0
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20
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40

50

60

70

Synonym Acronym Specific	label Miscellaneous

False	Positive	Analysis

FP FP	after	densification

Figure 3: False positives of ELDEN before and after
KG densification. Errors reduce with use of ψdense and
ψELDEN measures. (Please see Sec 6.4)

manually analyzed 240 wrong predictions of Ya-
mada16 and compared it with that of ELDEN, and
the results are presented in Figure 3. We found
errors to reduce with use of KG densification fea-
tures and most of the errors eliminated were in
“Specific label” class. Errors in this class called
for better modeling of mention’s context and link-
based similarity (Ling et al., 2015).(More details
of this analysis in the supplementary document.)
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7 Conclusion

We started this study by analyzing the perfor-
mance of a state-of-the-art Entity Linking (EL)
system and found that its performance was low
when linking entities sparsely-connected in the
KG. We saw that this can be addressed by densi-
fying the KG with respect to the given entity. We
proposed ELDEN, which densifies edge graph of
entities using pseudo entities and mentions of en-
tities in a large web corpus. Through our experi-
ments, we find that ELDEN outperforms state-of-
the-art baseline on benchmark datasets.

We believe that ELDENs combination of KG
densification and entity embeddings is novel. Poor
performance of EL systems on sparsely connected
entities has been recognized as one of the open
challenges by prior research. ELDEN performs
well on sparsely connected entities too, as a val-
idation of our method of combining KG densifica-
tion followed by embedding. Our approach may
be applied to any KG as the densification is per-
formed with the help of unstructured data, and
not any specific KG. We hope the simple graph
densification method utilized in ELDEN will be
of much interest to the research community.

Pseudo entities can be looked at as entity can-
didates for KG expansion, as also noted by Farid
et al. (2016). In future, we plan to enhance EL-
DEN using EL of pseudo entities to estimate en-
tity prior of entities not present in KG. We also
plan to explore entity embeddings obtained using
other graph densifying methods.
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Abstract

In this paper, we propose to study the prob-
lem of COURT VIEW GENeration from the
fact description in a criminal case. The
task aims to improve the interpretability of
charge prediction systems and help auto-
matic legal document generation. We for-
mulate this task as a text-to-text natural lan-
guage generation (NLG) problem. Sequence-
to-sequence model has achieved cutting-edge
performances in many NLG tasks. However,
due to the non-distinctions of fact descrip-
tions, it is hard for Seq2Seq model to gen-
erate charge-discriminative court views. In
this work, we explore charge labels to tackle
this issue. We propose a label-conditioned
Seq2Seq model with attention for this prob-
lem, to decode court views conditioned on
encoded charge labels. Experimental results
show the effectiveness of our method.1

1 Introduction

Previous work has brought up multiple legal as-
sistant systems with various functions, such as
finding relevant cases given the query (Chen
et al., 2013), providing applicable law articles
for a given case (Liu and Liao, 2005) and etc.,
which have substantially improved the working ef-
ficiency. As legal assistant systems, charge predic-
tion systems aim to determine appropriate charges
such as homicide and assault for varied criminal
cases by analyzing textual fact descriptions from
cases (Luo et al., 2017), but ignore to give out the
interpretations for the charge determination.

Court view is the written explanation from
judges to interprete the charge decision for cer-
tain criminal case and is also the core part in a le-
gal document, which consists of rationales and a

∗ indicates equal contribution.
† Corresponding author.

1Data and codes are available at https://github.
com/oceanypt/Court-View-Gen.

charge where the charge is supported by the ratio-
nales as shown in Fig. 1. In this work, we propose
to study the problem of COURT VIEW GENeration
from fact descriptions in cases, and we formu-
late it as a text-to-text natural language generation
(NLG) problem (Gatt and Krahmer, 2017). The
input is the fact description in a case and the out-
put is the corresponding court view. We only fo-
cus on generating rationales because charges can
be decided by judges or charge prediction systems
by also analyzing the fact descriptions (Luo et al.,
2017; Lin et al., 2012). COURT-VIEW-GEN has
beneficial functions, in that: (1) improve the inter-
pretability of charge prediction systems by gener-
ating rationales in court views to support the pre-
dicted charges. The justification for charge de-
cision is as important as deciding the charge it-
self (Hendricks et al., 2016; Lei et al., 2016). (2)
benefit the automatic legal document generation as
legal assistant systems, by automatically generat-
ing court views from fact descriptions, to release
much human labor especially for simple cases but
in large amount, where fact descriptions can be
obtained from legal professionals or techniques
such as information extraction (Cowie and Lehn-
ert, 1996).

COURT-VIEW-GEN is not a trivial task. High-
quality rationales in court views should contain the
important fact details such as the degree of injury
for charge of intentional injury, as they are im-
portant basis for charge determination. Fact de-
tails are like the summary for the fact description
similar to the task of DOCument SUMmarization
(Yao et al., 2017). However, rationales are not the
simple summary with only fact details, to support
charges, they should be charge-discriminative with
deduced information which does not appear in fact
descriptions. The fact descriptions for charge of
negligent homicide usually only describe some-
one being killed without direct statement about
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FACT DESCRIPTION
... 经审理查明, 2009年7月10日23时许,被告人陈某伙同八至九名男青年在徐闻县新寮镇建寮路口附近路上拦截住搭载着李某的摩托车,然后,
被告人陈某等人持钢管、刀对李某进行殴打。经法医鉴定,李某伤情为轻伤。... # ... After hearing, our court identified that at 23:00 on July 10,
2009, the defendant Chen together with other eight or nine young men stopped Lee who was riding a motorcycle on street near the road in Xinliao town
Xuwen County, after that the defendant Chen and the others beat Lee with steel pipe and knife. According to forensic identification, Lee suffered minor
wound. ...
COURT VIEW
本院认为, 被告人陈某无视国家法律,伙同他人,持器械故意伤害他人身体致一人轻伤 rationales, 其 行 为 已 构 成故意伤害罪 charge。#
Our court hold that the defendant Chen ignored the state law and caused others minor wound with equipment together with others rationales. His acts
constituted the crime of intentional assault charge. ...

Table 1: An example of fact description and court view from a legal document for a case.

task. Firstly, it is hard to maintain the discrimina-
tions of generated court views when input fact de-
scriptions are none-discriminative among charges
in subtle difference. For example, the charges
of intentional homicide and negligent homicide
are similar and the corresponding fact descrip-
tions will be expressed in similar way. Both of
the fact descriptions of the two charges will de-
scribe the defendant killing someone but will not
directly point out that the defendant is in intention
or in neglect, causing it hard to generate charge-
discriminative court views. Secondly, high-quality
court views should contain the fact details in the
fact descriptions such as the degree of injury for
intentional injury charge because fact details are
the important basis for charge determination.

Traditional natural language generation (NLG)
will need much human-labor to design rules
and templates. To overcome the difficulties
of COURT-VIEW-GEN mentioned above and the
shortcomings of traditional NLG methods, in
this work, we propose a novel label conditioned
sequence to sequence model with attention for
COURT-VIEW-GEN aiming to directly map fact
descriptions to court views. The architecture of
our model is shown in Figure 1. Fact descriptions
are encoded into context vectors by an encoder
then a decoder generates court views with these
vectors. To generate more class-discriminative
court views from none-discriminative fact descrip-
tions among charges with subtle difference, we in-
troduce to encode charges as the labels for the cor-
responding fact descriptions and decode the court
views conditioned on the charge labels by addi-
tionally encoding the charge information. The in-
tuition lies in that charge labels will provide ex-
tra information to classify the non-discriminative
fact descriptions and make the decoder learn to
select words related to the charges to decode.
To maintain the fact details from fact descrip-
tions like the degree of injury for charge of in-
tentional injury, we further apply the widely used

attention mechanism (?) into Seq2Seq model.
By applying attention technic, every time con-
text vectors will contain most important informa-
tion from the fact descriptions for decoder. Ex-
perimental results show that our model has strong
performance on COURT-VIEW-GEN and exploit-
ing charge labels will significantly improve the
class-discriminations of generated court views es-
pecially for charges with subtle differences.

Our contributions of this paper can be summa-
rized as follows:
•We propose the task of court view generation

which is meaningful but has bot been well studied
before.
• We introduce a novel label conditioned se-

quence to sequence model with attention for
COURT-VIEW-GEN.
• Experimental results demonstrate the ef-

fectiveness of our model and exploiting charge
labels will significantly improve the class-
discriminations of generated court views.

2 Related Work

Our work is firstly related to previous studies on
legal assistant systems. The task of charge predic-
tion is to determine appropriate charges such as
intentional homicide or intentional injury by ana-
lyzing the contents of fact descriptions. Previous
works regard the task of charge prediction as a text
classification problem (????). ? adopt KNN to
classify charges in Taiwan and recently, ? propose
an attention based deep learning model to scale
the charge classes to a large number. Besides, re-
searchers also introduce to identify applicable arti-
cles for a given case (???), answer legal questions
as a consult system (??) and search relevant cases
for a given query (??). As a legal assistant sys-
tem, COURT-VIEW-GEN can benefit automatic le-
gal document generation by generating the part of
court views from fact descriptions obtained from
the last phase if we generate legal document step
by step. The fact descriptions can be constructed

Figure 1: An example of fact description and court view from a legal document in a case.

the motive for killing, DOC-SUM will only sum-
marize the fact of someone being killed, but ratio-
nales have to further contain the killing intention,
aiming to be discriminative from those rationales
for other charges like intentional homicide. How-
ever, it is hard to generate charge-discriminative
rationales when input fact descriptions are not dis-
tinct among other facts with different charges. The
fact descriptions for charge of intentional homi-
cide are similar to those for charge of negligent
homicide and also describe someone being killed
but without clear motive, making it hard to gener-
ate charge-discriminative court views with accu-
rate killing motives among the two charges.

Recently, sequence-to-sequence model with
encoder-decoder paradigm (Sutskever et al., 2014)
has achieved cutting-edge results in many NLG
tasks, such as paraphrase (Mallinson et al., 2017),
code generation (Ling et al., 2016) and question
generation (Du et al., 2017). Seq2Seq model
has also exhibited state-of-the-art performances
on task of DOC-SUM (Chopra et al., 2016; Tan
et al., 2017). However, non-distinctions of fact
descriptions render Seq2Seq model hard to gen-
erate charge-discriminative rationales. In this pa-
per, we explore charge labels of the correspond-
ing fact descriptions, to benefit generating charge-
discriminative rationales, where charge labels can
be easily decided by human or charge predic-
tion systems. Charge labels will provide with ex-
tra information to classify the non-discriminative
fact descriptions. We propose a label-conditioned
Seq2Seq model with attention for our task, in
which fact descriptions are encoded into context
vectors by an encoder and a decoder generates ra-
tionales with these vectors. We further encode
charges as the labels and decode the rationales
conditioned on the labels, to entail the decoder
to learn to select gold-charge-related words to de-
code. Widely used attention mechanism (Luong
et al., 2015) is fused into the Seq2Seq model, to
learn to align target words to fact details in fact

descriptions. Similar to Luo et al. (2017), we eval-
uate our model on Chinese criminal cases by con-
structing dataset from Chinese government web-
site.

Our contributions in this paper can be summa-
rized as follows:
•We propose the task of court view generation

and release a real-world dataset for this task.
• We formulate the task as a text-to-text NLG

problem. We utilize charge labels to benefit
charge-discriminative court views generation, and
propose a label-conditioned sequence-to-sequence
model with attention for this task.
• Extensive experiments are conducted on a

real-world dataset. The results show the effi-
ciency of our model and exploiting charge labels
for charge-discriminations improvement.

2 Related Work

Our work is firstly related to previous studies on
legal assistant systems. Previous work considers
the task of charge prediction as a text classifica-
tion problem (Luo et al., 2017; Liu et al., 2004;
Liu and Hsieh, 2006; Lin et al., 2012). Recently,
Luo et al. (2017) investigate deep learning meth-
ods for this task. Besides, there are also works on
identifying applicable articles for a given case (Liu
and Liao, 2005; Liu and Hsieh, 2006; Liu et al.,
2015), answering legal questions as a consulting
system (Kim et al., 2014; Carvalho et al., 2015)
and searching relevant cases for a given query
(Raghav et al., 2016; Chen et al., 2013). As a le-
gal assistant system, COURT-VIEW-GEN can ben-
efit automatic legal document generation by gener-
ating court views from fact descriptions obtained
from the last phase, through legal professionals or
other technics like information extraction (Cowie
and Lehnert, 1996) from raw documents in a case,
if we generate legal documents step by step.

Our work is also related to recent studies on
model interpretation (Ribeiro et al., 2016; Lipton,
2016; Ling et al., 2017). Recently, much work has
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paid attention to giving textual explanations for
classifications. Hendricks et al. (2016) generate
visual explanations for image classification. Lei
et al. (2016) propose to learn to select most sup-
portive snippets from raw texts for text classifica-
tion. COURT-VIEW-GEN can improve the inter-
pretability of charge prediction systems by gener-
ating textual court views when predict the charges.

Our label-conditioned Seq2Seq model steams
from widely used encoder-decoder paradigm
(Sutskever et al., 2014) which has been widely
used in machine translation (Bahdanau et al.,
2014; Luong et al., 2015), summarization (Tan
et al., 2017; Nallapati et al., 2016; Chopra et al.,
2016; Cheng and Lapata, 2016), semantic pars-
ing (Dong and Lapata, 2016) and paraphrase
(Mallinson et al., 2017) or other NLG problems
such as product review generation (Dong et al.,
2017) and code generation (Yin and Neubig, 2017;
Ling et al., 2016). Hendricks et al. (2016) propose
to encode image labels for visual-language models
to generate justification texts for image classifica-
tion. We also introduce charge labels into Seq2Seq
model to improve the charge-discriminations of
generated rationales. Widely used attention mech-
anism (Luong et al., 2015; Xu et al., 2015) is ap-
plied to generate fact details more accurately.

3 COURT-VIEW-GEN Problem

Court View is the judicial explanation to interpret
the reasons for the court making such charge for
a case, consisting of the rationales and the charge
supported by the rationales as shown in Fig. 1. In
this work, we only focus on generating the part of
rationales in court views. Charge prediction can be
achieved by human or charge prediction systems
(Luo et al., 2017). Final court views can be easily
constructed by combining the generated rationales
and the pre-decided charges.
Fact Description is the identified facts in a case
(relevant events that have happened) such as the
criminal acts (e.g. degree of injury).

The input of our model is the word sequen-
tial fact description in a case and the out-
put is a word sequential court view (rationales
part). We define the fact description as x =
(x1, x2, · · · , x|x|) and the corresponding ratio-
nales as y = (y1, y2, · · · , y|y|). The charge
for the case is denoted as v and will be ex-
ploited for COURT-VIEW-GEN. The task of
COURT-VIEW-GEN is to find ŷ given x condi-
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<S> y1 y2 y|Y|
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Figure 2: Label-conditioned Seq2Seq model with at-
tention.

tioned on the charge label v:

ŷ = argmax
y

P (y|x, v) (1)

where P (y|x, v) is the likelihood of the predicted
rationales in the court view.

4 Our Model

4.1 Sequence-to-Sequence Model with
Attention

Similar to Luong et al. (2015), our Seq2Seq model
consists of an encoder and a decoder as shown in
Fig. 2. Given the pair of fact description and ra-
tionales in court view (x, y), the encoder reads the
word sequence of x and then the decoder will learn
to predict the rationales in court view y. The prob-
ability of predicted y is given as follows:

P (y) =

|y|∏

i=1

P (yi|y<i, x) (2)

where y<i = y1, y2, · · · , yi−1. We use a bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)
as encoder and use another LSTM as decoder sim-
ilar to Du et al. (2017).
Decoder. From the decoder side, at time t, the
probability to predict yt is computed as follows:

P (yt|y<t, ct) = softmax(W1 tanh(W0[st; ct]))

where W0 and W1 are learnable parameters; st is
the hidden state of decoder at time t; ct is the con-
text vector generated from the encoder side con-
taining the information of x at time t; here the bias
of model is omitted for simplification. The hidden
state of st is computed as follows:

st = LSTMd(yt−1, st−1)

where yt−1 is the word embedding vector for pre-
state target word at time t− 1. The initial state for
decoder is initialized by the last state of encoder.
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Context vector of ct is computed by summing
up the hidden states of {hk}|x|k=1 generated by the
encoder with attention mechanism and we adopt
global attention (Luong et al., 2015) in our work.
Encoder with Attention. We adopt a one-layer
bidirectional LSTM to encoder the fact descrip-
tions. The hidden state hj at time j is computed
as follows:

hj = [
−→
hj ;
←−
hj ]

where hj is the concatenation of forward hidden
state

−→
hj and backward hidden state

←−
hj , specifi-

cally:

−→
hj =

−−−−→
LSTMe(xj ,

−→
h j−1)

←−
hj =

←−−−−
LSTMe(xj ,

←−
h j+1)

The hidden outputs {hk}|x|k=1 will be used to com-
pute the context vectors for decoder.

From the decoder side, by applying attention
mechanism at time i, the context vector of ci is
generated as follows:

ci =

|x|∑

j=1

αijhj (3)

where αij is the attention weight and is computed
as follows:

αij =
exp(sTi W2hj)∑|x|
k=1 exp(s

T
i W2hk)

(4)

where si is the hidden output state at time i in the
decoder side.

4.2 Label-conditioned Sequence-to-Sequence
Model with Attention

Given the tuple of fact description, rationales in
court view and charge label (x, y, v), the probabil-
ity to predict y is computed as follows:

P (y) =

|y|∏

i=1

P (yi|y<i, x, v) (5)

From this formula, encoding charge labels pro-
vides extra constrains comparing to Eq. (2), and
restricts the target word searching space from the
whole space to only gold-charge-related space
for rationales generation, so model can generate
more charge-distinct rationales. Charge labels are
trainable parameters denoted by Ev where every

charge will have a trainable vector from Ev, which
will be updated in the model training process.

As shown in Fig. 2, in the decoder side, at time
t, yt is predicted with the probability as follows:

P (yt|y<t, ct, v) =
softmax(W1 tanh(W0[st; ct;E

v
[v]])) (6)

where Ev[v] is the embedding vector of v obtained
from Ev. In this formula, we connect charge label
v to st and ct aiming to influence the word selec-
tion process. We hope that our model can learn the
latent connections between the charge label v and
the words of rationales in court views through this
way, to decode out charge-discriminative words.

As shown in Fig. 2, we further embed the
charge label v to highlight the computing of hid-
den state st at time t and st is merged as follows:

st = LSTMd(yt−1, s
v
t−1)

svt−1 = fv(st−1, v)

fv = tanh(Wv[st−1;Ev[v]] + bv) (7)

where Wv and bv are learnable parameters. In
this way, the information of charge label can be
embedded into st. From Eq. (3) and Eq. (4), at-
tention weights ct are computed from st, so encod-
ing the charge label v to hidden states will make
the model concentrate more on charge-related in-
formation from fact descriptions to help generate
more accurate fact details.

4.3 Model Training and Inference
Suppose we are given the training data:
{x(i), y(i), v(i)}Ni=1, we aim to maximize the
log-likelihood of generated rationales in court
views given the fact descriptions and charge
labels, so the loss function is computed as
follows:

L(θ) = −
N∑

i=1

logP (y(i)|x(i), v(i); θ)

= −
N∑

i=1

|y(i)|∑

j=1

logP (y
(i)
j |y

(i)
<j , x

(i), v(i); θ)

We split the training data into multiple batches
with size of 64 and adopt adam learning (Kingma
and Ba, 2014) to update the parameters in ev-
ery batch data. At the inference time, we encode
the fact descriptions and charge labels into vec-
tors and use the decoder to generate rationales in
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# Training set 153706
# Dev set 9152
# Test set 9123
Avg. # tokens in fact desc. 219.9
Avg. # tokens in rationales 30.6
Num. of # charge labels 51
# Dict. size in fact desc. 222482
# Dict. size in rationales 21305

Table 1: Statistics of our dataset.

court views based on Eq. (1). We adopt the algo-
rithm of beam search to generate rationales. Beam
search size is set to 5. To make generation pro-
cess stoppable, an indicator tag “</s>” is added
to the end of the rationales sequences, and when
“</s>” is generated the inference process will be
terminated. The generated word sequential paths
will be ranked and the one with largest value is
selected as the final rationales in court view.

5 Experiments

5.1 Data Preparation

Following Luo et al. (2017), we construct dataset
from the published legal documents in China
Judgements Online2. We extract the fact descrip-
tions, rationales in court views and charge labels
using regular expressions. The paragraph started
with “经审理查明” (“our court identified that”)
is regarded as the fact description and the part be-
tween “本院认为” (“our court hold that”) and the
charge are regarded as the rationales. Nearly all
the samples in dataset match this extraction pat-
tern. Length threshold of 256 is set up, and fact
description longer than that will be stripped, leav-
ing too long facts for future study. We use the to-
kens of “<name>”, “<num>” and “<date>” to
replace the names, numbers and dates appearing
in the corpus. We tokenize the Chinese texts with
the open source tool of HanLP3. For charge labels,
we select the top 50 charge labels ranked by occur-
rences and leave the left charges as others. Details
about our dataset are shown in Table 1.

For cases with multiple charges and multiple
defendants, we can separate the fact descriptions
and the court views according to the charges or
the defendants. In this work, we only focus on
the cases with one defendant and one charge, leav-
ing the complex cases for future study, so we can
collect large enough data from the published legal

2http://wenshu.court.gov.cn
3https://github.com/hankcs/HanLP

documents without human to annotate the data.

5.2 Experimental Settings
Word embeddings are randomly initialized and
updated in the training process, with the size of
512 tuned from {256, 512, 1024}. Charge label
vectors are initialized randomly with size of 512.
Maximal vocabulary size of encoder is set to 100K
words and decoder is 50K by stripping words ex-
ceeding the bounds. Maximal source length is 256
and target is 50. The hidden size of LSTM is 1024
tuned from {256, 512, 1024}. We choose perplex-
ity as the update metric. Early stopping mech-
anism is applied to train the model. The initial
learning rate is set to 0.0003 and the reduce fac-
tor is 0.5. Model performance will be checked on
the validation set after every 1000 batches training
and keep the parameters with lowest perplexity.
Training process will be terminated if model per-
formance is not improved for successive 8 times.

5.3 Comparisons with Baselines
Evaluation Metrics. We adopt both automatic
evaluation and human judgement for model eval-
uation. BLEU-4 score (Papineni et al., 2002) and
variant Rouge scores (Lin, 2004) are adopted for
automatic evaluation which have been widely used
in many NLG tasks. We set up two evaluation di-
mensions for human judgement: 1) how fluent of
the rationales in court view is; 2) how accurate of
the rationales is, aiming to evaluate how many fact
details have been accurately expressed in the gen-
erated rationales. We adopt 5 scales for both fluent
and accurate evaluation (5 is for the best). We ask
three annotators who knows well about our task
to conduct the human judgement. We randomly
select 100 generated rationales in court views for
every evaluated method. The three raters are also
asked to judge whether rationales can be adopted
for use in comprehensive evaluation (adoptable)
and record the number of adoptable rationales for
every evaluated method.
Baselines.
• Rand is to randomly select rationales in court

views from the training set (method of Randall).
We also randomly choose rationales from pools
with same charge labels (Randcharge). Adopting
Rand method is to indicate the low bound perfor-
mance of COURT-VIEW-GEN.
• BM25 is a retrieval baseline to index the

fact description match to the input fact description
with highest BM25 score (Robertson and Walker,
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AUTOMATIC EVALUATION
MODEL (%) B-4 R-1 R-2 R-L
Randall 6.4 26.5 6.2 25.1
Randcharge 24.9 53.6 29.1 49.3
BM25f2f 40.1 63.5 43.7 60.3
BM25f2f+charge 42.8 67.1 47.4 63.8
MOSES+ 6.2 39.8 20.8 18.6
NN-S2S 38.4 65.5 45.1 62.2
RAS† 44.1∗∗ 69.1∗∗ 50.3∗∗ 65.9∗∗

Ours 45.8 70.9 52.5 67.7

HUMAN JUDGEMENT

MODEL FLUENT ACC. ADOPT.(%)

BM25f2f 4.95 3.66∗∗ 0.47∗∗

BM25f2f+charge 4.94 3.90∗∗ 0.50∗∗

MOSES+ 1.39∗∗ 1.31∗∗ 0∗∗

NN-S2S 4.97 4.07∗∗ 0.62∗

RAS† 4.96 4.25∗ 0.64∗

Ours 4.93 4.54 0.72

Table 2: Results of automatic evaluation and human
judgement with BLEU-4 and full length of F1 scores
of variant Rouges. Best results are labeled as boldface.
Statistical significance is indicated with ∗∗(p < 0.01)
and ∗ (p < 0.05) comparing to our full model.

1994) from the training set, and use its rationales
as the result (BM25f2f). Similar fact descriptions
may have the similar rationales. Fact descriptions
from pools with same charges are also retrieved
(BM25f2f+charge), to see how much improvement
that adding charge labels can gender.
• MOSES+ (Koehn et al., 2007) is a phrase-

based statistical machine translation system map-
ping fact descriptions to rationales. KenLM
(Heafield et al., 2013) is adopted to train a trigram
language model on the target corpus of training set
which is tuned on the validation set with MERT.
• NN-S2S is the basic Seq2Seq model without

attention from Sutskever et al. (2014) for machine
translation. We set one LSTM layer for encoding
and another one LSTM layer for decoding. We
adopt perplexity for training metric and select the
model with lowest perplexity on validation set.
• RAS† is an attention based abstract summa-

rization model from Chopra et al. (2016). To deal
with the much longer fact descriptions, we exploit
the more advanced bidirectional LSTM model for
the encoder instead of the simple convolutional
model. Another LSTM model is set as the decoder
coherent to Chopra et al. (2016).
Experimental Results. In automatic evaluation
from Table 2, the evaluation scores are relatively
high even for method of Randcharge, which indi-
cates that the expressions of the rationales with
same charge labels are similar with many over-

lapped n-grams, such that the rationales for crime
of theft usually begin with “以非法占有为目的”
(“in intention of illegal possession”). Accurately
generating fact details like degree of injury or time
of theft is more difficult. Retrieval method by
adding charge labels is the strong baseline even
better than basic Seq2Seq model. Adding atten-
tion mechanism will improve the performance in-
dicated by the method of RAS† which is supe-
rior to retrieval methods. By exploiting charge
labels, our full model achieves the best perfor-
mance. The performances of statistical machine
translation model are really poor, for it requiring
the lengths of parallel corpus to be similar.

In human evaluation, we can see that retrieval
methods can not accurately express fact details,
for that it is hard to retrieve rationales containing
details all matching the fact descriptions. How-
ever, our system can learn to generate fact details
by analyzing fact descriptions. Dropping attention
mechanism will have negative effects on model
performance. RAS† has worse performance in
ACC. whose main reason may lie in that RAS† can
not generate charge-discriminative rationales with
deduced information, which demonstrates that our
task is not the simple DOC-SUM task. For the flu-
ent evaluation, generation models are highly close
to retrieval methods whose rationales are writ-
ten by humans, which reflects that the generation
models can generate highly natural rationales.

5.4 Further Analysis

Impact of Exploiting Charge Labels.
• Charge2Charge Analysis. We first analyze

the effects of exploiting charge labels on model
performance charge to charge, by dropping to en-
code charges based on our full model. From the
results shown in Fig. 3, we can find that the re-
sults can be improved much by exploiting charge
labels among nearly all charges. This result also
indicates that the non-distinct fact descriptions are
common among nearly all charges and reflects the
difficulty of this task, but utilizing charge labels
can release the seriousness of the problem.
• Charge-discriminations Analysis. We fur-

ther evaluate the effects of charge labels for
charge-discriminations improvement on specific
charges with non-distinct fact descriptions: inten-
tional homicide, negligent homicide, duty embez-
zlement and corruption. For every charge, two
participants are asked to count the number of ra-
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Figure 3: Results of impact of exploiting charge labels
evaluated charge to charge in the metric of BLEU-4
(similar results can gender in other three metrics but
are omitted for space saving).
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Figure 4: Portions of charge-discriminative rationales
in court views for every charge with 20 candidates.

tionales that are relevant to the charge on 20 ran-
domly selected candidates.

From Fig. 4, the number of charge discrimina-
tive rationales can be much improved among ev-
ery charge by utilizing charge information, which
demonstrates that charge labels can provide with
much extra charge-related information to deal with
latent information in fact descriptions. For crimes
of homicide, the motives for killing are latent in
the descriptions of killing without direct state-
ment, but our system can learn to align the mo-
tives in rationales to the charge labels which are
the strong distinct indicator for the two motives.
Ablation Study. We also ablate our full model
to reveal different components of encoding charge
labels for performance improvement. As shown in
Table 3, “ / softmax comp.” is to remove the part
in Eq. (6) and yields worse performance than our
full model, but better than “ / charge comp.” that
ignores to encode charge labels, which is same to
the situation of “ / hidden comp.” that removes the
part in Eq. (7). Our full model is still better than
the ablated models. This finding shows that both
of the methods of exploiting charge labels can im-
prove model performance and stacking them will
achieve better results.
Attention Mechanism Analysis. Heat map in
Fig. 5 is used to illustrate the attention mecha-
nism. The “slight injury” is aligned between the
source and target. “responsibility” and “run” are
well aligned to “away”, which demonstrate the

ABLATION STUDY
MODEL (%) B-4 R-1 R-2 R-L
Our System 45.8∗∗ 70.9∗∗ 52.5∗∗ 67.7∗∗

/ softmax comp. 45.7∗∗ 70.8∗∗ 52.3∗∗ 67.5∗∗

/ hidden comp. 45.7∗∗ 70.2∗ 51.9∗ 67.0∗

/ charge comp. 43.7 68.6 49.7 65.5

Table 3: Results of ablation study. Statistical signifi-
cance is indicated with ∗∗ (p < 0.01) and ∗ (p < 0.05)
comparing to the ablation of “ / charge comp.”.
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Figure 5: Heat map for attention mechanism analysis.
The column is the source and the raw is the target.

efficiency of attention mechanism for generating
fact details by forcing context vectors to focus
more on fact details.
Performance by Reference Size. We further
investigate the model performance by rationales
length in court views. As shown in Fig. 6, not sur-
prisingly the model performance drops when the
length of reference rationales increases. Within
the size of 30, BLEU-4 score can maintain around
0.4 and F1 score keeps around 0.5. Exceeding the
length of 30, model performance decreases dra-
matically.
Human eval. vs. Automatic eval. Are BLEU
and Rouge suitable for COURT-VIEW-GEN eval-
uation? Following the work of (Papineni et al.,
2002; Liu et al., 2016), for the models evaluated
in human judgemnet, we draw the linear regres-
sions of their BLEU-4 and variant Rouge scores,
as the function of ACC. and ADOPT. from human
judgement respectively as shown in Fig. 7. From
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0.8

pe
rf

or
m

ac
e BLEU-4 F1 of ROUGE-2

Figure 6: Model performance by rationales length with
BLEU-4 and full length of F1 of Rouge-2.

1860



1 6acc.
0

50

B
-4

1 6acc.
30

80

R
-1

1 6acc.
20

60

R
-2

1 6acc.
0

90

R
-L

0 1adopt.
0

50

B
-4

0 1adopt.
30

80

R
-1

0 1adopt.
20

60

R
-2

0 1adopt.
0

80

R
-L

coef.:0.983 coef.:0.995 coef.:0.993 coef.:0.990

coef.:0.975coef.:0.975coef.:0.952 coef.:0.965

Figure 7: ACC. and ADOPT. of human judgement pre-
dict automatic evaluation scores.

the results, we can find that automatic evaluations
track well with the human judgement with high
correlation coefficients. This finding demonstrates
that BLEU-4 and variant Rouges are adoptable for
COURT-VIEW-GEN evaluation and provides the
basis for future studies on this task.
Error Analysis. Our model has the drawback of
generating latent fact details, which appear in ra-
tionales but are not clearly expressed in fact de-
scriptions. For example, for the time of theft in
charge of larceny, the term of “多次” (“several
times”) appears in rationales but may not be ex-
pressed in fact descriptions directly, only with de-
scriptions of larceny but without exact term for
this detail, so it will be hard for attention mecha-
nism to learn to align “多次” in rationales to latent
information in fact descriptions. In the generated
rationales on test set, we find that only 42.4% sam-
ples can accurately extract out the term of “多次”.
It may need designed rules to deal with such de-
tails, like that count the time of theft from the de-
scriptions, and if the time exceeds 1 then the term
of “多次” can be generated in rationales.

5.5 Analysis through Cases
Fake Charge Label Conditioned Study. What
generated rationales in court views will be if they
are conditioned on fake charge labels? We se-
lect one fact description with gold charge of inten-
tional injury, then generate rationales conditioned
on fake charges of defiance and affray crime, in-
tentional homicide and neglectful homicide.

From Fig. 8, the rationales conditioned on fake
charges will be partly relevant to fake charge la-
bels and also maintain fact details from the input
fact description of gold charge. For the fake charge
of intentional homicide, its fact details should
be “caused someone dead”, but instead express
“causing someone slight injury” which is relevant
to charge of intentional injury. For charge pre-
diction systems, the discriminations between fact
details and charges will help to remind people that
the prediction results may be unreliable.

Case Study. Examples of generated rationales in
court views are shown in Fig. 8. Generally speak-
ing, our full label-conditioned model has high ac-
curacy on generating fact details better than base-
line models. For charges of traffic accident crime
and negligent homicide, all fact details are gen-
erated. The extra information from charge labels
helps the model to capture more important fact de-
tails, by forcing model to pay more attention to
charge-related information in fact descriptions.

As for the charge-discrimination analysis, from
the rationales of negligent homicide, we can infer
that its fact description may relate to a traffic ac-
cident, which is non-distinct from that for traffic
accident crime. Without encoding charge labels,
Ours / c wrongly generates the rationales coherent
to traffic accident crime, because traffic accidents
are the strong indicator for traffic crimes, but the
charge label will provide extra bias towards the
homicide crime, so our full model can generate
highly discriminative rationales. Utilizing charge
labels, retrieval method can easily retrieve charge-
related rationales, but hard to index rationales
with accurate fact details. For charge of larceny,
our full model extracts nearly all fact details but
misses the fact of “多次”(“several times”), reflect-
ing the shortcoming of dealing with latent details.

6 Conclusion and Future Work

In this paper, we propose a novel task of court
view generation and formulate it as a text-to-text
NLG problem. We utilize charge labels to benefit
the generation of charge-discriminative rationales
in court views and propose a label-conditioned
Seq2Seq model with attention for this task. Exten-
sive experiments show the efficiency of our model
and exploiting charge labels.

In the future: 1) More advanced technologies
like reinforcement learning (Sutton and Barto,
1998) can be introduced to generate latent fact de-
tails such as the time of theft more accurately; 2)
In this work, we only generate rationales in court
views omitting charge prediction, it is interesting
to see whether jointly generating the two parts will
benefit both of the tasks; 3) Studying verification
mechanism is meaningful to judge whether gener-
ated court views can really be adopted which is
important for COURT-VIEW-GEN in practice; 4)
More complex cases with multiple charges and
multiple defendants will be considered in the fu-
ture.
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MODEL [CHARGE] GENERATED COURT VIEWS CONDITIONED ON FAKE CHARGE LABEL
Gold [故意伤害罪] PP 故意伤害他人 身体，致一人轻伤 。# [intentional injury] PP intentionally injured others body , caused one people slight injury .

Ours

[寻衅滋事罪] PP 随意殴打他人 ，致一人轻伤 ，情节恶劣。# [defiance and affray crime] PP beat others at will , caused one people slight injury .
[故意杀人罪] PP 故意非法剥夺他人生命 ，致一人轻伤 。# [intentional homicide] PP intentionally illegally deprived someone of life , caused one people
slight injury .
[过失致人死亡罪] PP 过失 致一人轻伤 。# [neglectful homicide] PP neglectfully caused one people slight injury .

MODEL [CHARGE] GENERATED COURT VIEWS

Gold

[交通肇事罪] PP 违反交通运输管理法规，造成一人死亡 ，二人受伤 的交通事故，负事故的全部责任 。 # [traffic accident crime] PP violated traffic
transportation management regulations , caused one people dead , two people injured , take accident’s full responsibility .
[过失致人死亡罪] PP 在驾驶机动车过程中，疏忽大意 ，致使他人被碾压致死 。# [negligent homicide] PP when driving car , being neglectful , caused
people dead by rolling .
[盗窃罪] PP 以非法占有为目的，伙同他人 多次 秘密窃取公民财物，数额较大 。# [larceny] PP in intention of illegal possession , ganged up with others
and stole goods secretly in relatively large amount for several times .

Ours

PP 违反交通运输管理法规，发生交通事故，致一人死亡 ，二人受伤 ，负事故的全部责任 。 # PP violated traffic transportation management
regulations , caused traffic accident , caused one people dead , two people injured , take accident’s full responsibility . "
PP 因疏忽大意 致一人死亡 。 # PP neglectfully caused one people dead . "
PP 以非法占有为目的，结伙他人 秘密窃取他人财物，数额较大 。# PP in intention of illegal possession , ganged up with others and stole goods secretly
in relatively large amount . %

Ours / c

PP 违反交通运输管理法规，发生重大交通事故，致一人死亡 ，负事故的全部责任 。 # PP violated traffic transportation management regulations ,
caused severe traffic accident , caused one people dead , took accident’s full responsibility%
PP 违反交通运输管理法规，发生重大交通事故 ，致一人死亡，负事故的全部责任 。# PP violated traffic transportation management regulations ,
caused severe traffic accident , caused one people dead , took accident’s full responsibility . %
PP 以非法占有为目的，秘密窃取他人财物，数额较大 。# PP in intention of illegal possession , stole goods secretly in relatively large amount . %

BM25f2f+c

PP 违反道路交通运输管理法规，致一人死亡 且负事故主要责任 。# PP violated road traffic transportation management regulations , caused one people
dead , took accident’s main responsibility . %
PP 驾驶车辆过程中疏忽大意 ，过失 致一人死亡 。# PP when driving , neglectfully caused one people dead . "
PP 以非法占有为目的，秘密窃取公民财物。# PP in intention of possession , stole goods secretly . %

Table 5: Examples of generated court views and fake charge label conditioned generated court views.

times”) which is important in penalty measure-
ment. Actually, the time of larceny is not all di-
rectly expressed in fact description and only de-
scribes the fact of larceny, so it is hard for model
to learn to align the time of larceny in court view
to latent information in fact description.
Fake Charge Label Conditioned Study. What
generated court views will be if they are condi-
tioned on fake charge labels? We select one fact
description with gold charge label of intentional
injury then generate court views conditioned on
fake charge labels of defiance and affray crime, in-
tentional homicide and neglectful homicide. From
Table ??, the court views conditioned on fake
charges will be class-discriminative relevant to the
fake charge labels and also maintain fact details
from the input fact description of gold charge. For
the fake charge of intentional homicide, its cor-
responding fact will be “caused someone dead”,
but instead express “causing someone slight in-
jury” which is relevant to charge of intentional in-
jury. The discriminations between fact details and
charge will help to remind people that the predic-
tion for charge may be unreliable.

6 Conclusion and Future Works

In this paper, we propose a meaningful but not-
well studied task of court view generation. We
introduce a novel charge label conditioned se-
quence to sequence model for COURT-VIEW-GEN.
Experimental results show the effectiveness of
our model. Generating court views conditioned

on charge labels by encoding charge labels will
significantly improve the class-discriminations of
generated court views.

In the future: 1) We will apply the copy mech-
anism (??) to improve the diversities and charac-
teristics of generated court views which are im-
portant for generating high-quality court views;
2) More advanced technologies like reinforcement
learning (?) will be introduced to generate latent
fact details such as the time of theft more accu-
rately; 3) In this work, we only generate rationales
in court views omitting charge prediction, it is in-
teresting to see whether jointly generating the two
parts will benefit both of the tasks.
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Santos, Çaglar Gülçehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-
sequence rnns and beyond. In Proceedings of the
20th SIGNLL Conference on Computational Natu-
ral Language Learning, CoNLL 2016, August 11-12,
2016. pages 280–290.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics. pages 311–318.

1863



K. Raghav, P. K. Reddy, and V. B. Reddy. 2016. An-
alyzing the extraction of relevant legal judgments
using paragraph-level and citation information. In
AI4JArtificial Intelligence for Justice.
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Abstract
We consider the task of text attribute transfer:
transforming a sentence to alter a specific at-
tribute (e.g., sentiment) while preserving its
attribute-independent content (e.g., changing
“screen is just the right size” to “screen is too
small”). Our training data includes only sen-
tences labeled with their attribute (e.g., pos-
itive or negative), but not pairs of sentences
that differ only in their attributes, so we must
learn to disentangle attributes from attribute-
independent content in an unsupervised way.
Previous work using adversarial methods has
struggled to produce high-quality outputs. In
this paper, we propose simpler methods mo-
tivated by the observation that text attributes
are often marked by distinctive phrases (e.g.,
“too small”). Our strongest method extracts
content words by deleting phrases associated
with the sentence’s original attribute value, re-
trieves new phrases associated with the target
attribute, and uses a neural model to fluently
combine these into a final output. On human
evaluation, our best method generates gram-
matical and appropriate responses on 22%
more inputs than the best previous system, av-
eraged over three attribute transfer datasets:
altering sentiment of reviews on Yelp, altering
sentiment of reviews on Amazon, and altering
image captions to be more romantic or humor-
ous.

1 Introduction

The success of natural language generation (NLG)
systems depends on their ability to carefully con-
trol not only the topic of produced utterances, but
also attributes such as sentiment and style. The de-
sire for more sophisticated, controllable NLG has
led to increased interest in text attribute transfer—
the task of editing a sentence to alter specific at-
tributes, such as style, sentiment, and tense (Hu

∗Work done while the author was a visiting researcher at
Stanford University.

great food but horrible staff and very very rude workers !

target=positivegreat food staff and very workers !

great food , awesome staff , very personable
and very efficient atmosphere !

Delete attribute markers

Run system

(b) Attribute transfer

neg

pos

pos

pos

pos

neg

neg

neg

worst
very disappointed
won't be back
...

delicious
great place for
well worth
...

(a) Extracting attribute markers

Figure 1: An overview of our approach. (a) We identify
attribute markers from an unaligned corpus. (b) We
transfer attributes by removing markers of the original
attribute, then generating a new sentence conditioned
on the remaining words and the target attribute.

et al., 2017; Shen et al., 2017; Fu et al., 2018). In
each of these cases, the goal is to convert a sen-
tence with one attribute (e.g., negative sentiment)
to one with a different attribute (e.g., positive sen-
timent), while preserving all attribute-independent
content1 (e.g., what properties of a restaurant are
being discussed). Typically, aligned sentences
with the same content but different attributes are
not available; systems must learn to disentangle
attributes and content given only unaligned sen-
tences labeled with attributes.

Previous work has attempted to use adversarial
1 Henceforth, we refer to attribute-independent content as

simply content, for simplicity.
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networks (Shen et al., 2017; Fu et al., 2018) for
this task, but—as we demonstrate—their outputs
tend to be low-quality, as judged by human raters.
These models are also difficult to train (Salimans
et al., 2016; Arjovsky and Bottou, 2017; Bous-
malis et al., 2017).

In this work, we propose a set of simpler, easier-
to-train systems that leverage an important ob-
servation: attribute transfer can often be accom-
plished by changing a few attribute markers—
words or phrases in the sentence that are indicative
of a particular attribute—while leaving the rest of
the sentence largely unchanged. Figure 1 shows an
example in which the sentiment of a sentence can
be altered by changing a few sentiment-specific
phrases but keeping other words fixed.

With this intuition, we first propose a simple
baseline that already outperforms prior adversarial
approaches. Consider a sentiment transfer (nega-
tive to positive) task. First, from unaligned cor-
pora of positive and negative sentences, we iden-
tify attribute markers by finding phrases that oc-
cur much more often within sentences of one at-
tribute than the other (e.g., “worst” and “very
disppointed” are negative markers). Second, given
a sentence, we delete any negative markers in it,
and regard the remaining words as its content.
Third, we retrieve a sentence with similar content
from the positive corpus.

We further improve upon this baseline by in-
corporating a neural generative model, as shown
in Figure 1. Our neural system extracts content
words in the same way as our baseline, then gen-
erates the final output with an RNN decoder that
conditions on the extracted content and the target
attribute. This approach has significant benefits at
training time, compared to adversarial networks:
having already separated content and attribute, we
simply train our neural model to reconstruct sen-
tences in the training data as an auto-encoder.

We test our methods on three text attribute
transfer datasets: altering sentiment of Yelp
reviews, altering sentiment of Amazon reviews,
and altering image captions to be more roman-
tic or humorous. Averaged across these three
datasets, our simple baseline generated gram-
matical sentences with appropriate content and
attribute 23% of the time, according to human
raters; in contrast, the best adversarial method
achieved only 12%. Our best neural system in turn
outperformed our baseline, achieving an average

success rate of 34%. Our code and data, including
newly collected human reference outputs for
the Yelp and Amazon domains, can be found
at https://github.com/lijuncen/
Sentiment-and-Style-Transfer.

2 Problem Statement

We assume access to a corpus of labeled sen-
tences D = {(x1, v1), . . . , (xm, vm)}, where
xi is a sentence and vi ∈ V , the set of
possible attributes (e.g., for sentiment, V =
{“positive”, “negative”}). We define Dv = {x :
(x, v) ∈ D}, the set of sentences in the corpus
with attribute v. Crucially, we do not assume ac-
cess to a parallel corpus that pairs sentences with
different attributes and the same content.

Our goal is to learn a model that takes as input
(x, vtgt) where x is a sentence exhibiting source
(original) attribute vsrc, and vtgt is the target at-
tribute, and outputs a sentence y that retains the
content of x while exhibiting vtgt.

3 Approach

As a motivating example, suppose we wanted to
change the sentiment of “The chicken was deli-
cious.” from positive to negative. Here the word
“delicious” is the only sentiment-bearing word, so
we just need to replace it with an appropriate neg-
ative sentiment word. More generally, we find that
the attribute is often localized to a small fraction of
the words, an inductive bias not captured by pre-
vious work.

How do we know which negative sentiment
word to insert? The key observation is that the re-
maining content words provide strong cues: given
“The chicken was . . . ”, one can infer that a taste-
related word like “bland” fits, but a word like
“rude” does not, even though both have negative
sentiment. In other words, while the deleted senti-
ment words do contain non-sentiment information
too, this information can often be recovered using
the other content words.

In the rest of this section, we describe our
four systems: two baselines (RETRIEVEONLY

and TEMPLATEBASED) and two neural mod-
els (DELETEONLY and DELETEANDRETRIEVE).
An overview of all four systems is shown in Fig-
ure 2. Formally, the main components of these
systems are as follows:

1. Delete: All 4 systems use the same proce-
dure to separate the words in x into a set of
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(3) Generate
output sentence 

Inputs

(2) Retrieve similar sentence 
with target attribute

RetrieveOnly
i have had it for a while

but barely used it .

TemplateBased
i have had this mount for

about a year and it barely used .

DeleteAndRetrieve
i have had this mount for 

about a year and barely used it .

DeleteOnly
i have had this mount for 

about a year and it still works .

   Extract target
attribute markers

RNN

RNN

: negative

: positive

      : i have had this mount for 
about a year and it works great .

      : i have had this mount 
for about a year and it .

: i have had it for a while
   but barely used it .

: barely used

(1) Delete
attribute markers

Figure 2: Our four proposed methods on the same sentence, taken from the AMAZON dataset. Every method uses
the same procedure (1) to separate attribute and content by deleting attribute markers; they differ in the construction
of the target sentence. RETRIEVEONLY directly returns the sentence retrieved in (2). TEMPLATEBASED combines
the content with the target attribute markers in the retrieved sentence by slot filling. DELETEANDRETRIEVE
generates the output from the content and the retrieved target attribute markers with an RNN. DELETEONLY
generates the output from the content and the target attribute with an RNN.

attribute markers a(x, vsrc) and a sequence of
content words c(x, vsrc).

2. Retrieve: 3 of the 4 systems look through the
corpus and retrieve a sentence xtgt that has
the target attribute vtgt and whose content is
similar to that of x.

3. Generate: Given the content c(x, vsrc), target
attribute vtgt, and (optionally) the retrieved
sentence xtgt, each system generates y, ei-
ther in a rule-based fashion or with a neural
sequence-to-sequence model.

We describe each component in detail below.

3.1 Delete

We propose a simple method to delete attribute
markers (n-grams) that have the most discrimina-
tive power. Formally, for any v ∈ V , we define the
salience of an n-gram u with respect to v by its
(smoothed) relative frequency in Dv:

s(u, v) =
count(u,Dv) + λ(∑

v′∈V,v′ 6=v count(u,Dv′)
)
+ λ

,

(1)
where count(u,Dv) denotes the number of times
an n-gram u appears inDv, and λ is the smoothing
parameter. We declare u to be an attribute marker
for v if s(u, v) is larger than a specified threshold
γ. The attributed markers can be viewed as dis-
criminative features for a Naive Bayes classifier.

We define a(x, vsrc) to be the set of all source
attribute markers in x, and define c(x, vsrc) as the
sequence of words after deleting all markers in
a(x, vsrc) from x. For example, for “The chicken
was delicious,” we would delete “delicious” and
consider “The chicken was. . . ” to be the content
(Figure 2, Step 1).

3.2 Retrieve

To decide what words to insert into c(x, vsrc), one
useful strategy is to look at similar sentences with
the target attribute. For example, negative sen-
tences that use phrases similar to “The chicken
was. . . ” are more likely to contain “bland” than
“rude.” Therefore, we retrieve sentences of simi-
lar content and use target attribute markers in them
for insertion.

Formally, we retrieve xtgt according to:

xtgt = argmin
x′∈Dvtgt

d(c(x, vsrc), c(x′, vtgt)), (2)

where d may be any distance metric comparing
two sequences of words. We experiment with two
options: (i) TF-IDF weighted word overlap and
(ii) Euclidean distance using the content embed-
dings in Section 3.3 (Figure 2, Step 2).

3.3 Generate

Finally, we describe how each system generates y
(Figure 2, Step 3).
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RETRIEVEONLY returns the retrieved sen-
tence xtgt verbatim. This is guaranteed to produce
a grammatical sentence with the target attribute,
but its content might not be similar to x.

TEMPLATEBASED replaces the attribute mark-
ers deleted from the source sentence a(x, vsrc)
with those of the target sentence a(xtgt, vtgt).2 This
strategy relies on the assumption that if two at-
tribute markers appear in similar contexts , they
are roughly syntactically exchangeable. For ex-
ample, “love” and “don’t like” appear in similar
contexts (e.g., “i love this place.” and “i don’t like
this place.”), and exchanging them is syntactically
valid. However, this naive swapping of attribute
markers can result in ungrammatical outputs.

DELETEONLY first embeds the content
c(x, vsrc) into a vector using an RNN. It then
concatenates the final hidden state with a learned
embedding for vtgt, and feeds this into an RNN
decoder to generate y. The decoder attempts to
produce words indicative of the source content
and target attribute, while remaining fluent.

DELETEANDRETRIEVE is similar to DELE-
TEONLY, but uses the attribute markers of the re-
trieved sentence xtgt rather than the target attribute
vtgt. Like DELETEONLY, it encodes c(x, vsrc)
with an RNN. It then encodes the sequence of
attribute markers a(xtgt, vtgt) with another RNN.
The RNN decoder uses the concatenation of this
vector and the content embedding to generate y.

DELETEANDRETRIEVE combines the ad-
vantages of TEMPLATEBASED and DELE-
TEONLY. Unlike TEMPLATEBASED, DELETE-
ANDRETRIEVE can pick a better place to insert
the given attribute markers, and can add or remove
function words to ensure grammaticality. Com-
pared to DELETEONLY, DELETEANDRETRIEVE

has a stronger inductive bias towards using target
attribute markers that are likely to fit in the current
context. Guu et al. (2018) showed that retrieval
strategies like ours can help neural generative
models. Finally, DELETEANDRETRIEVE gives
us finer control over the output; for example, we
can control the degree of sentiment by deciding
whether to add “good” or “fantastic” based on
the retrieved sentence xtgt.

2 Markers are replaced from left to right, in order. If there
are not enough markers in xtgt, we use an empty string.

3.4 Training

We now describe how to train DELETEAN-
DRETRIEVE and DELETEONLY. Recall that at
training time, we do not have access to ground
truth outputs that express the target attribute. In-
stead, we train DELETEONLY to reconstruct the
sentences in the training corpus given their con-
tent and original attribute value by maximizing:

L(θ) =
∑

(x,vsrc)∈D
log p(x | c(x, vsrc), vsrc); θ).

(3)
For DELETEANDRETRIEVE, we could simi-

larly learn an auto-encoder that reconstructs x
from c(x, vsrc) and a(x, vsrc). However, this re-
sults in a trivial solution: because a(x, vsrc) and
c(x, vsrc) were known to come from the same sen-
tence, the model merely learns to stitch the two
sequences together without any smoothing. Such
a model would fare poorly at test time, when we
may need to alter some words to fluently com-
bine a(xtgt, vtgt) with c(x, vsrc). To address this
train/test mismatch, we adopt a denoising method
similar to the denoising auto-encoder (Vincent
et al., 2008). During training, we apply some
noise to a(x, vsrc) by randomly altering each at-
tribute marker in it independently with probability
0.1. Specifically, we replace an attribute marker
with another randomly selected attribute marker
of the same attribute and word-level edit distance
1 if such a noising marker exists, e.g., “was very
rude” to “very rude”, which produces a′(x, vsrc).

Therefore, the training objective for DELETE-
ANDRETRIEVE is to maximize:

L(θ) =
∑

(x,vsrc)∈D
log p(x | c(x, vsrc), a′(x, vsrc); θ).

(4)

4 Experiments

We evaluated our approach on three domains: flip-
ping sentiment of Yelp reviews (YELP) and Ama-
zon reviews (AMAZON), and changing image cap-
tions to be romantic or humorous (CAPTIONS).
We compared our four systems to human refer-
ences and three previously published adversarial
approaches. As judged by human raters, both of
our two baselines outperform all three adversarial
methods. Moreover, DELETEANDRETRIEVE out-
performs all other automatic approaches.
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Dataset Attributes Train Dev Test

YELP
Positive 270K 2000 500
Negative 180K 2000 500

CAPTIONS
Romantic 6000 300 0
Humorous 6000 300 0

Factual 0 0 300

AMAZON
Positive 277K 985 500
Negative 278K 1015 500

Table 1: Dataset statistics.

4.1 Datasets
First, we describe the three datasets we use, which
are commonly used in prior works too. All
datasets are randomly split into train, develop-
ment, and test sets (Table 1).

YELP Each example is a sentence from a busi-
ness review on Yelp, and is labeled as having ei-
ther positive or negative sentiment.

AMAZON Similar to YELP, each example is a
sentence from a product review on Amazon, and is
labeled as having either positive or negative senti-
ment (He and McAuley, 2016).

CAPTIONS In the CAPTIONS dataset (Gan
et al., 2017), each example is a sentence that de-
scribes an image, and is labeled as either factual,
romantic, or humorous. We focus on the task of
converting factual sentences into romantic and hu-
morous ones. Unlike YELP and AMAZON, CAP-
TIONS is actually an aligned corpus—it contains
captions for the same image in different styles.
Our systems do not use these alignments, but we
use them as gold references for evaluation.

CAPTIONS is also unique in that we reconstruct
romantic and humorous sentences during training,
whereas at test time we are given factual captions.
We assume these factual captions carry only con-
tent, and therefore do not look for and delete fac-
tual attribute markers; The model essentially only
inserts romantic or humorous attribute markers as
appropriate.

4.2 Human References
To supply human reference outputs to which we
could compare the system outputs for YELP and
AMAZON, we hired crowdworkers on Amazon
Mechanical Turk to write gold outputs for all test
sentences. Workers were instructed to edit a sen-
tence to flip its sentiment while preserving its con-
tent.

Our delete-retrieve-generate approach relies on
the prior knowledge that to accomplish attribute

transfer, a small number of attribute markers
should be changed, and most other words should
be kept the same. We analyzed our human ref-
erence data to understand the extent to which hu-
mans follow this pattern. We measured whether
humans preserved words our system marks as
content, and changed words our system marks
as attribute-related (Section 3.1). We define the
content word preservation rate Sc as the average
fraction of words our system marks as content
that were preserved by humans, and the attribute-
related word change rate Sa as the average frac-
tion of words our system marks as attribute-related
that were changed by humans:

Sc =
1

|Dtest|
∑

(x,vsrc,y∗)∈Dtest

|c(x, vsrc) ∩ y∗|
|c(x, vsrc)|

Sa = 1− 1

|Dtest|
∑

(x,vsrc,y∗)∈Dtest

|a(x, vsrc) ∩ y∗|
|a(x, vsrc)| ,

(5)
where Dtest is the test set, y∗ is the human refer-
ence sentence, and | · | denotes the number of non-
stopwords. Higher values of Sc and Sa indicate
that humans preserve content words and change
attribute-related words, in line with the inductive
bias of our model. Sc is 0.61, 0.71, and 0.50
on YELP, AMAZON, and CAPTIONS, respectively;
Sa is 0.72 on YELP and 0.54 on AMAZON (not ap-
plicable on CAPTIONS).

To understand why humans sometimes deviated
from the inductive bias of our model, we ran-
domly sampled 50 cases from YELP where hu-
mans changed a content word or preserved an
attribute-related word. 70% of changed content
words were unimportant words (e.g., “whole”
was deleted from “whole experience”), and an-
other 18% were paraphrases (e.g., “charge” be-
came “price”); the remaining 12% were errors
where the system mislabeled an attribute-related
word as a content word (e.g., “old” became
“new”). 84% of preserved attribute-related words
did pertain to sentiment but remained fixed due to
changes in the surrounding context (e.g., “don’t
like” became “like”, and “below average” be-
came “above average”); the remaining 16% were
mistagged by our system as being attribute-related
(e.g., “walked out”).

4.3 Previous Methods

We compare with three previous models, all of
which use adversarial training. STYLEEMBED-
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YELP AMAZON CAPTIONS
Gra Con Att Suc Gra Con Att Suc Gra Con Att Suc

CROSSALIGNED 2.8 2.9 3.5 14% 3.2 2.5 2.9 7% 3.9 2.0 3.2 16%
STYLEEMBEDDING 3.5 3.7 2.1 9% 3.2 2.9 2.8 11% 3.3 2.9 3.0 17%
MULTIDECODER 2.8 3.1 3.0 8% 3.0 2.6 2.8 7% 3.4 2.8 3.2 18%
RETRIEVEONLY 4.2 2.7 4.2 25% 3.8 2.8 3.1 17% 4.2 2.6 3.8 27%
TEMPLATEBASED 3.0 3.9 3.9 21% 3.4 3.6 3.1 19% 3.3 4.1 3.5 33%
DELETEONLY 3.0 3.7 3.9 24% 3.7 3.8 3.2 24% 3.6 3.5 3.5 32%
DELETEANDRETRIEVE 3.3 3.7 4.0 29% 3.9 3.7 3.4 29% 3.8 3.5 3.9 43%
Human 4.6 4.5 4.5 75% 4.2 4.0 3.7 44% 4.3 3.9 4.0 56%

Table 2: Human evaluation results on all three datasets. We show average human ratings for grammaticality (Gra),
content preservation (Con), and target attribute match (Att) on a 1 to 5 Likert scale, as well as overall success
rate (Suc). On all three datasets, DELETEANDRETRIEVE is the best overall system, and all four of our methods
outperform previous work.

DING (Fu et al., 2018) learns an vector encoding
of the source sentence such that a decoder can
use it to reconstruct the sentence, but a discrimi-
nator, which tries to identify the source attribute
using this encoding, fails. They use a basic MLP
discriminator and an LSTM decoder. MULTIDE-
CODER (Fu et al., 2018) is similar to STYLEEM-
BEDDING, except that it uses a different decoder
for each attribute value. CROSSALIGNED (Shen
et al., 2017) also encodes the source sentence into
a vector, but the discriminator looks at the hidden
states of the RNN decoder instead. The system is
trained so that the discriminator cannot distinguish
these hidden states from those obtained by forcing
the decoder to output real sentences from the tar-
get domain; this objective encourages the real and
generated target sentences to look similar at a pop-
ulation level.

4.4 Experimental Details

For our methods, we use 128-dimensional word
vectors and a single-layer GRU with 512 hidden
units for both encoders and the decoder. We use
the maxout activation function (Goodfellow et al.,
2013). All parameters are initialized by sampling
from a uniform distribution between−0.1 and 0.1.
For optimization, we use Adadelta (Zeiler, 2012)
with a minibatch size of 256.

For attribute marker extraction, we consider
spans up to 4 words, and the smoothing parameter
λ is set to 1. We set the attribute marker thresh-
old γ, which controls the precision and recall of
our attribute markers, to 15, 5.5 and 5 for YELP,
AMAZON, and CAPTIONS. These values were set
by manual inspection of the resulting markers and
tuning slightly on the dev set. For retrieval, we
used the TF-IDF weighted word overlap score for
DELETEANDRETRIEVE and TEMPLATEBASED,

and the Euclidean distance of content embeddings
for RETRIEVEONLY. We find the two scoring
functions give similar results.

For all neural models, we do beam search with
a beam size of 10. For DELETEANDRETRIEVE,
similar to Guu et al. (2018), we retrieve the top-
10 sentences and generate results using markers
from each sentence. We then select the output with
the lowest perplexity given by a separately-trained
neural language model on the target-domain train-
ing data.

4.5 Human Evaluation

We hired workers on Amazon Mechanical Turk to
rate the outputs of all systems. For each source
sentence and target attribute, the same worker was
shown the output of each tested system. Workers
were asked to rate each output on three criteria on
a Likert scale from 1 to 5: grammaticality, sim-
ilarity to the target attribute, and preservation of
the source content. Finally, we consider a gener-
ated output “successful” if it is rated 4 or 5 on all
three criteria. For each dataset, we evaluated 400
randomly sampled examples (200 for each target
attribute).

Table 2 shows the human evaluation results. On
all three datasets, both of our baselines have a
higher success rate than the previously published
models, and DELETEANDRETRIEVE achieves the
best performance among all systems. Addition-
ally, we see that human raters strongly preferred
the human references to all systems, suggesting
there is still significant room for improvement on
this task.

We find that a human evaluator’s judgment of a
sentence is largely relative to other sentences be-
ing evaluated together and examples given in the
instruction (different for each dataset/task). There-
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fore, evaluating all system outputs in one batch is
important and results on different datasets are not
directly comparable.

4.6 Analysis
We analyze the strengths and weaknesses of the
different systems. Table 3 show typical outputs of
each system on the YELP and CAPTIONS dataset.

We first analyze the adversarial methods.
CROSSALIGNED and MULTIDECODER tend to
lose the content of the source sentence, as seen
in both the example outputs and the overall hu-
man ratings. The decoder tends to generate a fre-
quent but only weakly related sentence with the
target attribute. On the other hand, STYLEEM-
BEDDING almost always generates a paraphrase of
the input sentence, implying that the encoder pre-
serves some attribute information. We conclude
that there is a delicate balance between preserv-
ing the original content and dropping the original
attribute, and existing adversarial models tend to
sacrifice one or the other.

Next, we analyze our baselines. RE-
TRIEVEONLY scores well on grammaticality and
having the target attribute, since it retrieves sen-
tences with the desired attribute directly from the
corpus. However, it is likely to change the con-
tent when there is no perfectly aligned sentence
in the target domain. In contrast, TEMPLATE-
BASED is good at preserving the content because
the content words are guaranteed to be kept. How-
ever, it makes grammatical mistakes due to the
unsmoothed combination of content and attribute
words.

DELETEANDRETRIEVE and DELETEONLY

achieve a good balance among grammaticality,
preserving content, and changing the attribute.
Both have strong inductive bias on what words
should be changed, but still have the flexibility to
smooth out the sentence. The main difference is
that DELETEONLY fills in attribute words based
on only the target attribute, whereas DELETE-
ANDRETRIEVE conditions on retrieved attribute
words. When there is a diverse set of phrases to
fill in—for example in CAPTIONS— condition-
ing on retrieved attribute words helps generate
longer sentences with more specific attribute de-
scriptions.

4.7 Automatic Evaluation
Following previous work (Hu et al., 2017; Shen
et al., 2017), we also compute automatic evalua-

tion metrics, and compare these numbers to our
human evaluation results.

We use an attribute classifier to assess whether
outputs have the desired attribute (Hu et al., 2017;
Shen et al., 2017). We define the classifier score as
the fraction of outputs classified as having the tar-
get attribute. For each dataset, we train an attribute
classifier on the same training data. Specifically,
we encode the sentence into a vector by a bidirec-
tional LSTM with an average pooling layer over
the outputs, and train the classifier by minimizing
the logistic loss.

We also compute BLEU between the output and
the human references, similar to Gan et al. (2017).
A high BLEU score primarily indicates that the
system can correctly preserve content by retain-
ing the same words from the source sentence as
the reference. One might also hope that it has
some correlation with fluency, though we expect
this correlation to be much weaker.

Table 4 shows the classifier and BLEU scores.
In Table 5, we compute the system-level corre-
lation between classifier score and human judg-
ments of attribute transfer, and between BLEU
and human judgments of content preservation and
grammaticality. We also plot scores given by
the automatic metrics and humans in Figure 4.
While the scores are sometimes well-correlated,
the results vary significantly between datasets; on
AMAZON, there is no correlation between the clas-
sifier score and the human evaluation. Manual in-
spection shows that on AMAZON, some product
genres are associated with either mostly positive
or mostly negative reviews. However, our sys-
tems produce, for example, negative reviews about
products that are mostly discussed positively in the
training set. Therefore, the classifier often gives
unreliable predictions on system outputs. As
expected, BLEU does not correlate well with hu-
man grammaticality ratings. The lack of automatic
fluency evaluation artificially favors systems like
TEMPLATEBASED, which make more grammati-
cal mistakes. We conclude that while these auto-
matic evaluation methods are useful for model de-
velopment, they cannot replace human evaluation.

4.8 Trading off Content versus Attribute

One advantage of our methods is that we can
control the trade-off between matching the target
attribute and preserving the source content. To
achieve different points along this trade-off curve,
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From negative to positive (YELP)
SOURCE we sit down and we got some really slow and lazy service .
CROSSALIGNED we went down and we were a good , friendly food .
STYLEEMBEDDING we sit down and we got some really slow and prices suck .
MULTIDECODER we sit down and we got some really and fast food .
TEMPLATEBASED we sit down and we got some the service is always great and even better service .
RETRIEVEONLY i got a veggie hoagie that was massive and some grade a customer service .
DELETEONLY we sit down and we got some great and quick service .
DELETEANDRETRIEVE we got very nice place to sit down and we got some service .

From factual to romantic (CAPTIONS)
SOURCE two dogs play by a tree .
CROSSALIGNED a dog is running through the grass .
STYLEEMBEDDING two dogs play against a tree .
MULTIDECODER two dogs play by a tree .
TEMPLATEBASED two dogs play by a tree loving .
RETRIEVEONLY two dogs are playing in a pool as best friends .
DELETEANDRETRIEVE two dogs play by a tree , enjoying the happiness of childhood .
DELETEONLY two dogs in love play happily by a tree .

From negative to positive (AMAZON)
SOURCE this is the worst game i have come across in a long time .
CROSSALIGNED this is the best thing i ve had for a few years .
STYLEEMBEDDING this is the worst game i have come across in a long time .
MULTIDECODER this is the best knife i have no room with a long time .
TEMPLATEBASED this is the best come across in a long time .
RETRIEVEONLY the customer support is some of the best i have come across in a long time .
DELETEONLY this is the best game i have come across in a long time .
DELETEANDRETRIEVE this is the best game i have come across in a long time .

Table 3: Example outputs on YELP, CAPTIONS, and AMAZON. Additional examples for transfer from opposite
directions are given in Table 6. Added or changed words are in italic. Attribute markers are colored.

YELP CAPTIONS AMAZON
Classifier BLEU Classifier BLEU Classifier BLEU

CROSSALIGNED 73.7% 3.1 74.3% 0.1 74.1% 0.4
STYLEEMBEDDING 8.7% 11.8 54.7% 6.7 43.3% 10.0
MULTIDECODER 47.6% 7.1 68.5% 4.6 68.3% 5.0
TEMPLATEBASED 81.7% 11.8 92.5% 17.1 68.7% 27.1
RETRIEVEONLY 95.4% 0.4 95.5% 0.7 70.3% 0.9
DELETEONLY 85.7% 7.5 83.0% 9.0 45.6% 24.6
DELETEANDRETRIEVE 88.7% 8.4 96.8% 7.3 48.0% 22.8

Table 4: Automatic evaluation results. “Classifier” shows the percentage of sentences labeled as the target attribute
by the classifier. BLEU measures content similarity between the output and the human reference.

we simply vary the threshold γ (Section 3.1) at
test time to control how many attribute markers
we delete from the source sentence. In contrast,
other methods (Shen et al., 2017; Fu et al., 2018)
would require retraining the model with different
hyperparameters to achieve this effect.

Figure 3 shows this trade-off curve for
DELETEANDRETRIEVE, DELETEONLY, and
TEMPLATEBASED on YELP, where target at-
tribute match is measured by the classifier score
and content preservation is measured by BLEU.3

We see a clear trade-off between changing the
attribute and retaining the content.

3 RETRIEVEONLY is less affected by what content words
are preserved, especially when no good output sentence ex-
ists in the target corpus. Therefore, we found that it did not
exhibit a clear content-attribute trade-off.

5 Related Work and Discussion

Our work is closely related to the recent body of
work on text attribute transfer with unaligned data,
where the key challenge to disentangle attribute
and content in an unsupervised way. Most existing
work (Shen et al., 2017; Zhao et al., 2018; Fu et al.,
2018; Melnyk et al., 2017) uses adversarial train-
ing to separate attribute and content: the content
encoder aims to fool the attribute discriminator by
removing attribute information from the content
embedding. However, we find that empirically it
is often easy to fool the discriminator without ac-
tually removing the attribute information. There-
fore, we explicitly separate attribute and content
by taking advantage of the prior knowledge that
the attribute is localized to parts of the sentence.

To address the problem of unaligned data, Hu
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Classifier BLEU
Attribute Content Grammaticality

All data 0.810 (p < 0.01) 0.876 (p < 0.01) −0.127 (p = 0.58)
YELP 0.991 (p < 0.01) 0.935 (p < 0.01) 0.119 (p = 0.80)

CAPTIONS 0.982 (p < 0.01) 0.991 (p < 0.01) −0.631 (p = 0.13)
AMAZON −0.036 (p = 0.94) 0.857 (p < 0.01) 0.306 (p = 0.50)

Table 5: Spearman correlation between two automatic evaluation metrics and related human evaluation scores.
While some correlations are strong, the classifier exhibits poor correlation on AMAZON, and BLEU only measures
content, not grammaticality.
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Figure 3: Trade-off curves between matching the target
attribute (measured by classifier scores) and preserving
the content (measured by BLEU). Bigger points on the
curve correspond to settings used for both training and
our official evaluation.

et al. (2017) relies on an attribute classifier to
guide the generator to produce sentences with a
desired attribute (e.g. sentiment, tense) in the
Variational Autoencoder (VAE) framework. Sim-
ilarly, Zhao et al. (2018) used a regularized au-
toencoder in the adversarial training framework;
however, they also find that these models require
extensive hyperparameter tuning and the content
tends to be changed during the transfer. Shen
et al. (2017) used a discriminator to align target
sentences and sentences transfered to the target
domain from the source domain. More recently,
unsupervised machine translation models (Artetxe
et al., 2017; Lample et al., 2017) used a cycle
loss similar to Jun-Yan et al. (2017) to ensure that
the content is preserved during the transformation.
These methods often rely on bilinguial word vec-
tors to provide word-for-word translations, which
are then finetune by back-translation. Thus they
can be used to further improve our results.

Our method of detecting attribute markers is
reminiscent of Naive Bayes, which is a strong
baseline for tasks like sentiment classification
(Wang and Manning, 2012). Deleting these at-

tribute markers can be viewed as attacking a Naive
Bayes classifier by deleting the most informative
features (Globerson and Roweis, 2006), similarly
to how adversarial methods are trained to fool an
attribute classifier. One difference is that our clas-
sifier is fixed, not jointly trained with the model.

To conclude, we have described a simple
method for text attribute transfer that outperforms
previous models based on adversarial training.
The main leverage comes from the inductive bias
that attributes are usually manifested in localized
discriminative phrases. While many prior works
on linguistic style analysis confirm our observa-
tion that attributes often manifest in idiosyncratic
phrases (Recasens et al., 2013; Schwartz et al.,
2017; Newman et al., 2003), we recognize the fact
that in some problems (e.g., Pavlick and Tetreault
(2017)), content and attribute cannot be so cleanly
separated along phrase boundaries. Looking for-
ward, a fruitful direction is to develop a notion
of attributes more general than n-grams, but with
more inductive bias than arbitrary latent vectors.

Reproducibility. All code, data, and ex-
periments for this paper are available on the
CodaLab platform at https://worksheets.
codalab.org/worksheets/
0xe3eb416773ed4883bb737662b31b4948/.
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Abstract

We propose syntactically controlled para-
phrase networks (SCPNs) and use them to
generate adversarial examples. Given a sen-
tence and a target syntactic form (e.g., a con-
stituency parse), SCPNs are trained to pro-
duce a paraphrase of the sentence with the de-
sired syntax. We show it is possible to create
training data for this task by first doing back-
translation at a very large scale, and then us-
ing a parser to label the syntactic transforma-
tions that naturally occur during this process.
Such data allows us to train a neural encoder-
decoder model with extra inputs to specify the
target syntax. A combination of automated
and human evaluations show that SCPNs gen-
erate paraphrases that follow their target spec-
ifications without decreasing paraphrase qual-
ity when compared to baseline (uncontrolled)
paraphrase systems. Furthermore, they are
more capable of generating syntactically ad-
versarial examples that both (1) “fool” pre-
trained models and (2) improve the robustness
of these models to syntactic variation when
used to augment their training data.

1 Introduction

Natural language processing datasets often suf-
fer from a dearth of linguistic variation, which
can hurt the generalization of models trained on
them. Recent work has shown it is possible to
easily “break” many learned models by evaluating
them on adversarial examples (Goodfellow et al.,
2015), which are generated by manually intro-
ducing lexical, pragmatic, and syntactic variation
not seen in the training set (Ettinger et al., 2017).
Robustness to such adversarial examples can po-
tentially be improved by augmenting the training
data, as shown by prior work that introduces rule-
based lexical substitutions (Jia and Liang, 2017;

FAuthors contributed equally.

I’d have to say the star 
and director are the big 
problems here negative

The man is standing in the 
water at the base of a 
waterfall

entailment

A man is standing in      
the water at the base of 
a waterfall

By the way, you know, the 
star and director are the 
big problems positive

The man, at the base of 
the waterfall, is standing 
in the water

A man is standing in      
the water at the 
base of a waterfall neutral

S

PP PRN NP VP

SCPN S

NP , PP , VP

SCPN

Figure 1: Adversarial examples for sentiment analysis
(left) and textual entailment (right) generated by our
syntactically controlled paraphrase network (SCPN) ac-
cording to provided parse templates. In both cases, a
pretrained classifier correctly predicts the label of the
original sentence but not the corresponding paraphrase.

Liang et al., 2017). However, more complex trans-
formations, such as generating syntactically ad-
versarial examples, remain an open challenge, as
input semantics must be preserved in the face of
potentially substantial structural modifications. In
this paper, we introduce a new approach for learn-
ing to do syntactically controlled paraphrase gen-
eration: given a sentence and a target syntactic
form (e.g., a constituency parse), a system must
produce a paraphrase of the sentence whose syn-
tax conforms to the target.

General purpose syntactically controlled para-
phrase generation is a challenging task. Ap-
proaches that rely on handcrafted rules and gram-
mars, such as the question generation system
of McKeown (1983), support only a limited num-
ber of syntactic targets. We introduce the first
learning approach for this problem, building on
the generality of neural encoder-decoder models to
support a wide range of transformations. In doing
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so, we face two new challenges: (1) obtaining a
large amount of paraphrase pairs for training, and
(2) defining syntactic transformations with which
to label these pairs.

Since no large-scale dataset of sentential para-
phrases exists publicly, we follow Wieting et al.
(2017) and automatically generate millions of
paraphrase pairs using neural backtranslation.
Backtranslation naturally injects linguistic varia-
tion between the original sentence and its back-
translated counterpart. By running the process at
a very large scale and testing for the specific vari-
ations we want to produce, we can gather ample
input-output pairs for a wide range of phenomena.
Our focus is on syntactic transformations, which
we define using templates derived from linearized
constituency parses (§2). Given such parallel data,
we can easily train an encoder-decoder model that
takes a sentence and target syntactic template as
input, and produces the desired paraphrase.1

A combination of automated and human evalu-
ations show that the generated paraphrases almost
always follow their target specifications, while
paraphrase quality does not significantly deteri-
orate compared to vanilla neural backtranslation
(§4). Our model, the syntactically controlled para-
phrase network (SCPN), is capable of generating
adversarial examples for sentiment analysis and
textual entailment datasets that significantly im-
pact the performance of pretrained models (Fig-
ure 1). We also show that augmenting train-
ing sets with such examples improves robustness
without harming accuracy on the original test sets
(§5). Together these results not only establish the
first general purpose syntactically controlled para-
phrase approach, but also suggest that this general
paradigm could be used for controlling many other
aspects of the target text.

2 Collecting labeled paraphrase pairs

In this section, we describe a general purpose pro-
cess for gathering and labeling training data for
controlled paraphrase generation.

2.1 Paraphrase data via backtranslation

Inducing paraphrases from bilingual data has long
been an effective method to overcome data lim-
itations. In particular, bilingual pivoting (Ban-
nard and Callison-Burch, 2005) finds quality para-

1Code, labeled data, and pretrained models available at
https://github.com/miyyer/scpn.

phrases by pivoting through a different language.
Mallinson et al. (2017) show that neural machine
translation (NMT) systems outperform phrase-
based MT on several paraphrase evaluation met-
rics.

In this paper, we use the PARANMT-50M cor-
pus from Wieting and Gimpel (2017). This cor-
pus consists of over 50 million paraphrases ob-
tained by backtranslating the Czech side of the
CzEng (Bojar et al., 2016) parallel corpus. The
pretrained Czech-English model used for transla-
tion came from the Nematus NMT system (Sen-
nrich et al., 2017). The training data of this system
includes four sources: Common Crawl, CzEng
1.6, Europarl, and News Commentary. The CzEng
corpus is the largest of these four and was found to
have significantly more syntactic diversity than the
other data sources (Wieting and Gimpel, 2017).2

2.2 Automatically labeling paraphrases with
syntactic transformations

We need labeled transformations in addition to
paraphrase pairs to train a controlled paraphrase
model. Manually annotating each of the millions
of paraphrase pairs is clearly infeasible. Our key
insight is that target transformations can be de-
tected (with some noise) simply by parsing these
pairs.3

Specifically, we parse the backtranslated para-
phrases using the Stanford parser (Manning et al.,
2014),4 which yields a pair of constituency parses
〈p1, p2〉 for each sentence pair 〈s1, s2〉, where s1 is
the reference English sentence in the CzEng cor-
pus and s2 is its backtranslated counterpart. For
syntactically controlled paraphrasing, we assume
s1 and p2 are inputs, and the model is trained
to produce s2. To overcome learned biases of
the NMT system, we also include reversed pairs
〈s2, s1〉 during training.

2.2.1 Syntactic templates
To provide syntactic control, we lin-
earize the bracketed parse structure with-
out leaf nodes (i.e., tokens). For exam-
ple, the corresponding linearized parse

2Syntactic diversity was measured by the entropy of the
top two levels of parse trees in the corpora.

3Similar automated filtering could be used to produce data
for many other transformations, such as tense changes, point-
of-view shifts, and even stylometric pattern differences (Feng
et al., 2012). This is an interesting area for future work.

4Because of the large dataset size, we use the faster but
less accurate shift-reduce parser written by John Bauer.
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tree for the sentence “She drove home.” is
(S(NP(PRP))(VP(VBD)(NP(NN)))(.)).
A system that requires a complete linearized
target parse at test-time is unwieldy; how do we
go about choosing the target parse? To simplify
test-time usage, we relax the target syntactic form
to a parse template, which we define as the top
two levels of the linearized parse tree (the level
immediately below the root along with the root);
the prior example’s template is S→NP VP. In
the next section, we design models such that users
can feed in either parse templates or full parses
depending on their desired level of control.

3 Syntactically Controlled Paraphrase
Networks

The SCPN encoder-decoder architecture is built
from standard neural modules, as we describe in
this section.

3.1 Neural controlled paraphrase generation
Given a sentential paraphrase pair 〈s1, s2〉 and a
corresponding target syntax tree p2 for s2, we
encode s1 using a bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997), and our decoder is
a two-layer LSTM augmented with soft attention
over the encoded states (Bahdanau et al., 2014)
as well as a copy mechanism (See et al., 2017).
Following existing work in NMT (Sennrich et al.,
2015), we preprocess s1 and s2 into subword units
using byte pair encoding, and we perform decod-
ing using beam search. For all attention compu-
tations, we use a bilinear product with a learned
parameter matrix W: given vectors u and v, we
score them by uTWv.

We incorporate the target syntax p2 into the gen-
eration process by modifying the inputs to the de-
coder. In particular, a standard decoder LSTM re-
ceives two inputs at every time step: (1) the em-
bedding wt−1 of the ground-truth previous word
in s2, and (2) an attention-weighted average at of
the encoder’s hidden states. We additionally pro-
vide a representation zt of the target p2, so at every
time step the decoder computes

ht = LSTM([wt−1;at; zt]). (1)

Since we preserve bracketed parse structure, our
linearized parses can have hundreds of tokens.
Forcing all of the relevant information contained
by the parse tree into a single fixed representation
(i.e., the last hidden state of an LSTM) is difficult

with such large sequences. Intuitively, we want
the decoder to focus on portions of the target parse
tree that correspond with the current time step. As
such, we encode p2 using a (unidirectional) LSTM
and compute zt with an attention-weighted aver-
age of the LSTM’s encoded states at every time
step. This attention mechanism is conditioned on
the decoder’s previous hidden state ht−1.

3.2 From parse templates to full parses

As mentioned in Section 2.2.1, user-friendly sys-
tems should be able to accept high-level parse tem-
plates as input rather than full parses. Preliminary
experiments show that SCPN struggles to maintain
the semantics of the input sentence when we re-
place the full target parse with templates, and fre-
quently generates short, formulaic sentences. The
paraphrase generation model seems to rely heav-
ily on the full syntactic parse to determine out-
put length and clausal ordering, making it diffi-
cult to see how to modify the SCPN architecture
for template-only target specification.

Instead, we train another model with exactly the
same architecture as SCPN to generate complete
parses from parse templates. This allows us to do
the prediction in two steps: first predict the full
syntactic tree and then use that tree to produce the
paraphrase. Concretely, for the first step, assume
t2 is the parse template formed from the top two
levels of the target parse p2. The input to this parse
generator is the input parse p1 and t2, and it is
trained to produce p2. We train the parse generator
separately from SCPN (i.e., no joint optimization)
for efficiency purposes. At test time, a user only
has to specify an input sentence and target tem-
plate; the template is fed through the parse gener-
ator, and its predicted target parse is in turn sent to
SCPN for paraphrase generation (see Figure 2).

3.3 Template selection and post-processing

By switching from full parses to templates, we
have reduced but not completely removed the bur-
den of coming up with a target syntactic form.
Certain templates may be not be appropriate for
particular input sentences (e.g., turning a long sen-
tence with multiple clauses into a noun phrase).
However, others may be too similar to the input
syntax, resulting in very little change. Since tem-
plate selection is not a major focus of this pa-
per, we use a relatively simple procedure, selecting
the twenty most frequent templates in PARANMT-
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The    man    is    standing   in     the    water    …

+

The    man       ,        at      the    base …

The    man      ,        at      the    base     of    …

( ROOT ( S ( NP ( DT ) ( NN ) ) ( VP ( VBZ ) ( VP ( VBG ) ( PP ( IN ) ( NP ( NP ( DT ) ( NN ) …

+

( ROOT ( S ( NP (NP ( DT ) ( NN ) ) ( , ) ( PP ( IN ) ( NP ( NP ( DT ) ( NN ) ) ( PP ( IN ) …

+
( ROOT ( S ( … 

( ROOT ( S ( NP ) ( , ) ( PP ) ( , ) ( VP ) ) )

+
parse generator

paraphrase generator

target template t2

input parse p1

input sentence s1

target sentence s2

target parse p2

Figure 2: SCPN implements parse generation from templates as well as paraphrase generation from full parses as
encoder-decoder architectures (attention depicted with dotted lines, copy mechanism with double stroked lines).
While both components are trained separately, at test-time they form a pipelined approach to produce a controlled
paraphrase from an input sentence s1, its corresponding parse p1, and a target template t2.

50M.5

Since we cannot generate a valid paraphrase for
every template, we postprocess to remove non-
sensical outputs. In particular, we filter gener-
ated paraphrases using n-gram overlap and para-
phrastic similarity, the latter of which is com-
puted using the pretrained WORD,TRIAVG sen-
tence embedding model from Wieting and Gim-
pel (2017).6 These paraphrastic sentence embed-
dings significantly outperform prior work due to
the PARANMT-50M data.

4 Intrinsic Experiments

Before using SCPN to generate adversarial exam-
ples on downstream datasets, we need to make
sure that its output paraphrases are valid and gram-
matical and that its outputs follow the specified
target syntax. In this section, we compare SCPN to
a neural backtranslation baseline (NMT-BT) on the
development set of our PARANMT-50M split us-
ing both human and automated experiments. NMT-
BT is the same pretrained Czech-English model
used to create PARANMT-50M; however, here we
use it to generate in both directions (i.e., English-
Czech and Czech-English).

5However, we do provide some qualitative examples of
rare and medium-frequency templates in Table 3.

6After qualitatively analyzing the impact of different fil-
tering choices, we set minimum n-gram overlap to 0.5 and

Model 2 1 0

SCPN w/ full parses 63.7 14.0 22.3
SCPN w/ templates 62.3 19.3 18.3

NMT-BT 65.0 17.3 17.7

Table 1: A crowdsourced paraphrase evaluation on a
three-point scale (0 = no paraphrase, 1 = ungrammat-
ical paraphrase, 2 = grammatical paraphrase) shows
both that NMT-BT and SCPN produce mostly grammat-
ical paraphrases. Feeding parse templates to SCPN in-
stead of full parses does not impact its quality.

4.1 Paraphrase quality & grammaticality

To measure paraphrase quality and grammatical-
ity, we perform a crowdsourced experiment in
which workers are asked to rate a paraphrase pair
〈s, g〉 on the three-point scale of Kok and Brock-
ett (2010), where s is the source sentence and g is
the generated sentence. A 0 on this scale indicates
no paraphrase relationship, while 1 means that g
is an ungrammatical paraphrase of s and 2 means
that g is a grammatical paraphrase of s. We select
100 paraphrase pairs from the development set of
our PARANMT-50M split (after the postprocess-
ing steps detailed in Section 3.3) and have three
workers rate each pair.7 To focus the evaluation on
the effect of syntactic manipulation on quality, we

minimum paraphrastic similarity to 0.7.
7We use the Crowdflower platform for our experiments.
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only select sentences whose top-level parse tem-
plates differ (i.e., ts 6= tg), ensuring that the out-
put of both systems varies syntactically from the
source sentences.

The results (Table 1) show that the uncontrolled
NMT-BT model’s outputs are comparable in qual-
ity and grammaticality to those of SCPN; neither
system has a significant edge. More interestingly,
we observe no quality drop when feeding tem-
plates to SCPN (via the parse generator as de-
scribed in Section 3.2) instead of complete parse
trees, which suggests that the parse generator is
doing a good job of generating plausible parse
trees; thus, for all of the adversarial evaluations
that follow, we only use the templated variant of
SCPN.

4.2 Do the paraphrases follow the target
specification?

We next determine how often SCPN’s generated
paraphrases conform to the target syntax: if g is
a generated paraphrase and pg is its parse, how of-
ten does pg match the ground-truth target parse p2?
We evaluate on our development set using exact
template match: g is deemed a syntactic match to
s2 only if the top two levels of its parse pg matches
those of p2. We evaluate two SCPN configurations,
where one is given the full target parse p2 and
the other is given the result of running our parse
generator on the target template t2. As a sanity
check, we also evaluate our parse generator using
the same metric.

The results (Table 2) show that SCPN does in-
deed achieve syntactic control over the majority
of its inputs. Our parse generator produces full
parses that almost always match the target tem-
plate; however, paraphrases generated using these
parses are less syntactically accurate.8 A quali-
tative inspection of the generated parses reveals
that they can differ from the ground-truth target
parse in terms of ordering or existence of lower-
level constituents (Table 6); we theorize that these
differences may throw off SCPN’s decoder.

The NMT-BT system produces paraphrases that
tend to be syntactically very similar to the input
sentences: 28.7% of these paraphrases have the
same template as that of the input sentence s1,
while only 11.1% have the same template as the
ground-truth target s2. Even though we train SCPN

8With that said, exact match is a harsh metric; these para-
phrases are more accurate than the table suggests, as often
they differ by only a single constituent.

Model Parse Acc.

SCPN w/ gold parse 64.5
SCPN w/ generated parse 51.6
Parse generator 99.9

Table 2: The majority of paraphrases generated by
SCPN conform to the target syntax, but the level of syn-
tactic control decreases when using generated target
parses instead of gold parses. Accuracy is measured
by exact template match (i.e., how often do the top two
levels of the parses match).

on data generated by NMT backtranslation, we
avoid this issue by incorporating syntax into our
learning process.

5 Adversarial example generation

The intrinsic evaluations show that SCPN produces
paraphrases of comparable quality to the uncon-
trolled NMT-BT system while also adhering to the
specified target specifications. Next, we examine
the utility of controlled paraphrases for adversar-
ial example generation. To formalize the prob-
lem, assume a pretrained model for some down-
stream task produces prediction yx given test-time
instance x. An adversarial example x′ can be
formed by making label-preserving modifications
to x such that yx 6= yx′ . Our results demonstrate
that controlled paraphrase generation with appro-
priate template selection produces far more valid
adversarial examples than backtranslation on sen-
timent analysis and entailment tasks.

5.1 Experimental setup

We evaluate our syntactically adversarial
paraphrases on the Stanford Sentiment Tree-
bank (Socher et al., 2013, SST) and SICK
entailment detection (Marelli et al., 2014). While
both are relatively small datasets, we select
them because they offer different experimental
conditions: SST contains complicated sentences
with high syntactic variance, while SICK almost
exclusively consists of short, simple sentences.
As a baseline, we compare the ten most probable
beams from NMT-BT to controlled paraphrases
generated by SCPN using ten templates randomly
sampled from the template set described in
Section 3.3.9 We also need pretrained models

9We also experimented with the diverse beam search
modification proposed by Li et al. (2016b) for NMT-BT but
found that it dramatically warped the semantics of many
beams; crowdsourced workers rated 49% of its outputs as 0
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template paraphrase
original with the help of captain picard , the borg will be prepared for everything .
(SBARQ(ADVP)(,)(S)(,)(SQ)) now , the borg will be prepared by picard , will it ?
(S(NP)(ADVP)(VP)) the borg here will be prepared for everything .
(S(S)(,)(CC)(S) (:)(FRAG)) with the help of captain picard , the borg will be prepared , and the borg will be

prepared for everything ... for everything .
(FRAG(INTJ)(,)(S)(,)(NP)) oh , come on captain picard , the borg line for everything .

original you seem to be an excellent burglar when the time comes .
(S(SBAR)(,)(NP)(VP)) when the time comes , you ’ll be a great thief .
(S(‘‘)(UCP)(’’)(NP)(VP)) “ you seem to be a great burglar , when the time comes . ” you said .
(SQ(MD)(SBARQ)) can i get a good burglar when the time comes ?
(S(NP)(IN)(NP)(NP)(VP) look at the time the thief comes .

Table 3: Syntactically controlled paraphrases generated by SCPN for two examples from the PARANMT-50M
development set. For each input sentence, we show the outputs of four different templates; the fourth template is
a failure case (highlighted in green) exhibiting semantic divergence and/or ungrammaticality, which occurs when
the target template is unsuited for the input.

for which to generate adversarial examples; we
use the bidirectional LSTM baseline for both
SST and SICK outlined in Tai et al. (2015) since
it is a relatively simple architecture that has
proven to work well for a variety of problems.10

Since the SICK task involves characterizing the
relationship between two sentences, for simplicity
we only generate adversarial examples for the first
sentence and keep the second sentence fixed to
the ground truth.

5.2 Breaking pretrained models

For each dataset, we generate paraphrases for
held-out examples and then run a pretrained model
over them.11 We consider a development exam-
ple x broken if the original prediction yx is cor-
rect, but the prediction yx′ for at least one para-
phrase x′ is incorrect. For SST, we evaluate on the
binary sentiment classification task and ignore all
phrase-level labels (because our paraphrase mod-
els are trained on only sentences). Table 4 shows
that for both datasets, SCPN breaks many more ex-
amples than NMT-BT. Moreover, as shown in Ta-
ble 5, NMT-BT’s paraphrases differ from the origi-
nal example mainly by lexical substitutions, while
SCPN often produces dramatically different syn-
tactic structures.

5.3 Are the adversarial examples valid?

We have shown that we can break pretrained mod-
els with controlled paraphrases, but are these para-

on the three-point scale.
10We initialize both models using pretrained GloVe em-

beddings (Pennington et al., 2014) and set the LSTM hidden
dimensionality to 300.

11Since the SICK development dataset is tiny, we addition-
ally generate adversarial examples on its test set.

phrases actually valid adversarial examples? After
all, it is possible that the syntactic modifications
cause informative clauses or words (e.g., nega-
tions) to go missing. To measure the validity of
our adversarial examples, we turn again to crowd-
sourced experiments. We ask workers to choose
the appropriate label for a given sentence or sen-
tence pair (e.g., positive or negative for SST), and
then we compare the worker’s judgment to the
original development example’s label. For both
models, we randomly select 100 adversarial ex-
amples and have three workers annotate each one.
The results (Table 4) show that on the more com-
plex SST data, a higher percentage of SCPN’s para-
phrases are valid adversarial examples than those
of NMT-BT, which is especially encouraging given
our model also generates significantly more adver-
sarial examples.

5.4 Increasing robustness to adversarial
examples

If we additionally augment the training data of
both tasks with controlled paraphrases, we can
increase a downstream model’s robustness to ad-
versarial examples in the development set. To
quantify this effect, we generate controlled para-
phrases for the training sets of SST and SICK us-
ing the same templates as in the previous exper-
iments. Then, we include these paraphrases as
additional training examples and retrain our biL-
STM task models.12 As shown by Table 4, train-
ing on SCPN’s paraphrases significantly improves
robustness to syntactic adversaries without affect-
ing accuracy on the original test sets. One im-

12We did not experiment with more complex augmenta-
tion methods (e.g., downweighting the contribution of para-
phrased training examples to the loss).
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No augmentation With augmentation

Model Task Validity Test Acc Dev Broken Test Acc Dev Broken

SCPN SST 77.1 83.1 41.8 83.0 31.4
NMT-BT SST 68.1 83.1 20.2 82.3 20.0

SCPN SICK 77.7 82.1 33.8 82.7 19.8
NMT-BT SICK 81.0 82.1 20.4 82.0 11.2

Table 4: SCPN generates more legitimate adversarial examples than NMT-BT, shown by the results of a crowd-
sourced validity experiment and the percentage of held-out examples that are broken through paraphrasing. Fur-
thermore, we show that by augmenting the training dataset with syntactically-diverse paraphrases, we can improve
the robustness of downstream models to syntactic adversaries (see “Dev Broken” before and after augmentation)
without harming accuracy on the original test set.

portant caveat is that this experiment only shows
robustness to the set of templates used by SCPN;
in real-world applications, careful template selec-
tion based on the downstream task, along with
using a larger set of templates, is likely to in-
crease robustness to less constrained syntactic ad-
versaries. Augmentation with NMT-BT’s para-
phrases increases robustness on SICK, but on SST,
it degrades test accuracy without any significant
gain in robustness; this is likely due to its lack of
syntactic variation compared to SCPN.

6 Qualitative Analysis

In the previous section, we quantitatively eval-
uated the SCPN’s ability to produce valid para-
phrases and adversarial examples. Here, we take a
look at actual sentences generated by the model.
In addition to analyzing SCPN’s strengths and
weaknesses compared to NMT-BT, we examine the
differences between paraphrases generated by var-
ious configurations of the model to determine the
impact of each major design decision (e.g., tem-
plates instead of full parses).

Syntactic manipulation: Table 3 demonstrates
SCPN’s ability to perform syntactic manipulation,
showing paraphrases for two sentences generated
using different templates. Many of the examples
exhibit complex transformations while preserving
both the input semantics and grammaticality, even
when the target syntax is very different from that
of the source (e.g., when converting a declarative
to question). However, the failure cases demon-
strate that not every template results in a valid
paraphrase, as nonsensical outputs are sometimes
generated when trying to squeeze the input seman-
tics into an unsuitable target form.

Adversarial examples: Table 5 shows that
SCPN and NMT-BT differ fundamentally in the
type of adversaries they generate. While SCPN

mostly avoids lexical substitution in favor of mak-
ing syntactic changes, NMT-BT does the opposite.
These examples reinforce the results of the exper-
iment in Section 4.2, which demonstrates NMT-
BT’s tendency to stick to the input syntax. While
SCPN is able to break more validation examples
than NMT-BT, it is alarming that even simple lex-
ical substitution can break such a high percentage
of both datasets we tested.

Ebrahimi et al. (2017) observe a similar phe-
nomenon with HotFlip, their gradient-based sub-
stitution method for generating adversarial exam-
ples. While NMT-BT does not receive signal from
the downstream task like HotFlip, it also does not
require external constraints to maintain grammat-
icality and limit semantic divergence. As future
work, it would be interesting to provide this down-
stream signal to both NMT-BT and SCPN; for the
latter, perhaps this signal could guide the template
selection process, which is currently fixed to a
small, finite set.

Templates vs. gold parses: Why does the level
of syntactic control decrease when we feed SCPN

parses generated from templates instead of gold
parses (Table 2)? The first two examples in Ta-
ble 6 demonstrate issues with the templated ap-
proach. In the first example, the template is not ex-
pressive enough for the parse generator to produce
slots for the highlighted clause. A potential way to
combat this type of issue is to dynamically define
templates based on factors such as the length of
the input sentence. In the second example, a pars-
ing error results in an inaccurate template which
in turn causes SCPN to generate a semantically-
divergent paraphrase. The final two examples
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template original paraphrase
(S(ADVP)(NP)(VP)) moody , heartbreaking , and filmed in

a natural , unforced style that makes
its characters seem entirely convincing
even when its script is not .

so he ’s filmed in a natural , unforced
style that makes his characters seem
convincing when his script is not .

(S(PP)(,)(NP)(VP)) there is no pleasure in watching a child
suffer .

in watching the child suffer , there is no
pleasure .

(S(S)(,)(CC)(S)) the characters are interesting and often
very creatively constructed from figure
to backstory .

the characters are interesting , and they
are often built from memory to back-
story .

every nanosecond of the the new guy
reminds you that you could be doing
something else far more pleasurable .

each nanosecond from the new guy re-
minds you that you could do something
else much more enjoyable .

harris commands the screen , using his
frailty to suggest the ravages of a life of
corruption and ruthlessness .

harris commands the screen , using his
weakness to suggest the ravages of life
of corruption and recklessness .

Table 5: Adversarial sentiment examples generated by SCPN (top) and NMT-BT (bottom). The predictions of a
pretrained model on the original sentences are correct (red is negative, blue is positive), while the predictions on
the paraphrases are incorrect. The syntactically controlled paraphrases of SCPN feature more syntactic modification
and less lexical substitution than NMT-BT’s backtranslated outputs.

show instances where the templated model per-
forms equally as well as the model with gold
parses, displaying the capabilities of our parse
generator.

Removing syntactic control: To examine the
differences between syntactically controlled and
uncontrolled paraphrase generation systems, we
train an SCPN without including zt, the attention-
weighted average of the encoded parse, in the de-
coder input. This uncontrolled configuration pro-
duces outputs that are very similar to its inputs, of-
ten identical syntactically with minor lexical sub-
stitution. Concretely, the uncontrolled SCPN pro-
duces a paraphrase with the same template as its
input 38.6% of the time, compared to NMT-BT’s
28.7% (Section 4.2).13

7 Related Work

Paraphrase generation (Androutsopoulos and
Malakasiotis, 2010; Madnani and Dorr, 2010)
has been tackled using many different meth-
ods, including those based on hand-crafted
rules (McKeown, 1983), synonym substitu-
tion (Bolshakov and Gelbukh, 2004), machine
translation (Quirk et al., 2004), and, most recently,
deep learning (Prakash et al., 2016; Mallinson
et al., 2017; Dong et al., 2017). Our syntacti-
cally controlled setting also relates to controlled
language generation tasks in which one desires
to generate or rewrite a sentence with particular
characteristics. We review related work in both

13A configuration without the copy mechanism copies in-
put syntax even more, with a 47.7% exact template match.

paraphrase generation and controlled language
generation below.

7.1 Data-driven paraphrase generation

Madnani and Dorr (2010) review data-driven
methods for paraphrase generation, noting two
primary families: template-based and translation-
based. The first family includes approaches
that use hand-crafted rules (McKeown, 1983),
thesaurus-based substitution (Bolshakov and Gel-
bukh, 2004; Zhang and LeCun, 2015), lattice
matching (Barzilay and Lee, 2003), and template-
based “shake & bake” paraphrasing (Carl et al.,
2005). These methods often yield grammatical
outputs but they can be limited in diversity.

The second family includes methods that
rewrite the input using methods based on parallel
text (Bannard and Callison-Burch, 2005), machine
translation (Quirk et al., 2004; Napoles et al.,
2016; Suzuki et al., 2017), or related statistical
techniques (Zhao et al., 2009). Of particular rel-
evance to our work are methods that incorporate
syntax to improve fluency of paraphrase output.
Callison-Burch (2008) constrains paraphrases to
be the same syntactic type as the input, though he
was focused on phrase-level, not sentential, para-
phrasing. Pang et al. (2003) learn finite-state au-
tomata from translation pairs that generate syn-
tactic paraphrases, though this requires multiple
translations into the same language and cannot be
used to generate paraphrases outside this dataset.
Shen et al. (2006) extend this to deeper syntactic
analysis. All of these approaches use syntax to
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template (S(CC)(S)(,)(NP)(ADVP)(VP))
original damian encouraged me , criticized , he ... he always made me go a little deeper .
SCPN parse but damian , he supported me , he told me , he always made me go a little deeper .
SCPN template but damian supported me , he always made me go a little deeper .

template (S(S)(,)(NP)(VP))
original zacharias did n’t deserve to die , grishanov thought , and he was aware of the huge irony of his situation
SCPN parse zacharias did not deserve to die , grishanov told himself , realizing the greatest irony of all .
SCPN template zacharias did not deserve to die , he was aware of the great irony of his situation .

template S(S)(,)(S))
original give me some water , my lips are dry , and i shall try to tell you .
SCPN parse give me some water , i have just a dry mouth .
SCPN template give me some water , my lips are dry .

template (S(NP)(,)(ADVP)(,)(VP))
original in the meantime , the house is weakened , and all its old alliances and deals are thrown into doubt .
SCPN parse the house , meanwhile , is weakening , which will be all of its old alliances and business .
SCPN template the house , meanwhile , is weakened , and its old alliances and deals are thrown into doubt .

Table 6: Examples from PARANMT-50M comparing the output of two SCPN configurations, one with gold target
parses (SCPN parse) and one with parses generated from templates (SCPN template), where templates are the top
two levels of the gold parses. The first two examples demonstrate issues with missing information caused by
inexpressive templates and parsing errors, respectively. The remaining examples, in which both configurations
produce syntactically similar paraphrases, showcase the ability of the parse generator to produce viable full parses.

improve grammaticality, which is handled by our
decoder language model.

Recent efforts involve neural methods. Iyyer
et al. (2014) generate paraphrases with depen-
dency tree recursive autoencoders by randomly se-
lecting parse trees at test time. Li et al. (2017) gen-
erate paraphrases using deep reinforcement learn-
ing. Gupta et al. (2017) use variational autoen-
coders to generate multiple paraphrases. These
methods differ from our approach in that none of-
fer fine-grained control over the syntactic form of
the paraphrase.

7.2 Controlled language generation

There is growing interest in generating language
with the ability to influence the topic, style, or
other properties of the output.

Most related to our methods are those based
on syntactic transformations, like the tree-to-tree
sentence simplification method of Woodsend and
Lapata (2011) based on quasi-synchronous gram-
mar (Smith and Eisner, 2006). Our method is
more general since we do not require a gram-
mar and there are only soft constraints. Perhaps
the closest to the proposed method is the con-
ditioned recurrent language model of Ficler and
Goldberg (2017), which produces language with
user-selected properties such as sentence length
and formality but is incapable of generating para-
phrases.

For machine translation output, Niu et al. (2017)

control the level of formality while Sennrich et al.
(2016) control the level of politeness. For dia-
logue, Li et al. (2016a) affect the output using
speaker identity, while Wang et al. (2017) develop
models to influence topic and style of the out-
put. Shen et al. (2017) perform style transfer on
non-parallel texts, while Guu et al. (2017) gener-
ate novel sentences from prototypes; again, these
methods are not necessarily seeking to gener-
ate meaning-preserving paraphrases, merely trans-
formed sentences that have an altered style.

8 Conclusion

We propose SCPN, an encoder-decoder model
for syntactically controlled paraphrase generation,
and show that it is an effective way of generat-
ing adversarial examples. Using a parser, we la-
bel syntactic variation in large backtranslated data,
which provides training data for SCPN. The model
exhibits far less lexical variation than existing un-
controlled paraphrase generation systems, instead
preferring purely syntactic modifications. It is ca-
pable of generating adversarial examples that fool
pretrained NLP models. Furthermore, by training
on such examples, we increase the robustness of
these models to syntactic variation.
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Abstract
Sentiment analysis is used as a proxy to mea-
sure human emotion, where the objective is
to categorize text according to some prede-
fined notion of sentiment. Sentiment anal-
ysis datasets are typically constructed with
gold-standard sentiment labels, assigned based
on the results of manual annotations. When
working with such annotations, it is common
for dataset constructors to discard “noisy” or
“controversial” data where there is significant
disagreement on the proper label. In datasets
constructed for the purpose of Twitter senti-
ment analysis (TSA), these controversial ex-
amples can compose over 30% of the origi-
nally annotated data. We argue that the re-
moval of such data is a problematic trend be-
cause, when performing real-time sentiment
classification of short-text, an automated sys-
tem cannot know a priori which samples
would fall into this category of disputed sen-
timent. We therefore propose the notion of a
“complicated” class of sentiment to categorize
such text, and argue that its inclusion in the
short-text sentiment analysis framework will
improve the quality of automated sentiment
analysis systems as they are implemented in
real-world settings. We motivate this argu-
ment by building and analyzing a new publicly
available TSA dataset of over 7,000 tweets
annotated with 5x coverage, named MTSA.
Our analysis of classifier performance over our
dataset offers insights into sentiment analysis
dataset and model design, how current tech-
niques would perform in the real world, and
how researchers should handle difficult data.

1 Introduction

The goal of sentiment analysis is to determine the
attitude or emotional state held by the author of

*These authors contributed equally to this work.
†These authors contributed equally to this work.
#These authors contributed equally to this work.

Tweet text + - 0

Members came in today for lunch to learn

more about competitive events.

0 0 5

15 year old with an iPhone X, like DAMN

girl, Whatcha gonna do with that much

power in your hands? Facebook?

Snapchat? That’s it?

0 2 3

i am really missing the food my family

makes rn

2 2 1

Table 1: Example tweets from our dataset over varying
levels of annotator labellings; +, -, 0 stand for POSI-
TIVE, NEGATIVE, OBJECTIVE.

a piece of text. Automatic sentiment classifica-
tion that can quickly garner user sentiment is use-
ful for applications ranging from product market-
ing to measuring public opinion. The volume and
availability of short-text user content makes auto-
mated sentiment analysis systems highly attractive
for companies and organizations, despite poten-
tial complications arising from their short length
and specialized use of language. The popularity of
Twitter as a social media platform on which people
can readily express their thoughts, feelings, and
opinions, coupled with the openness of the plat-
form, provides a large amount of publicly accessi-
ble data ripe for analysis, being a well established
domain for sentiment analysis as reflecting real-
world attitudes (Pak and Paroubek, 2010; Bollen
et al., 2011). In this paper, we look into Twit-
ter sentiment analysis (TSA) as a suitable, core
instance of general short-text sentiment analysis
(Thelwall et al., 2010, 2012; Kiritchenko et al.,
2014; Dos Santos and Gatti, 2014), and encourage
the methods and practices presented to be applied
across other domains.

Building a TSA model that can automatically
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determine the sentiment of a tweet has received
significant attention over the past several years.
However, since most state-of-the-art TSA mod-
els use machine learning to tune their parameters,
their performance – and relevance to a real-world
implementation setting – is highly dependent on
the dataset on which they are trained.

TSA dataset construction has, unfortunately,
received less attention than TSA model design.
Many commonly used TSA datasets make as-
sumptions that do not hold in a real-world imple-
mentation setting. For example, it is a common
practice for studies to discard tweets on which
there is high annotator disagreement. While some
argue that this is done to remove noise result-
ing from poor annotator quality, this argument
does not hold when considering that these datasets
present high rates of unanimous annotator agree-
ment1. This suggests that the problem is not poor
annotators, but, rather, difficult data that does not
fall into the established categories of sentiment.

Consider the sample tweets in Table 1 drawn
from our dataset, one with unanimous agreement
on an OBJECTIVE label, one with 60% agreement,
and one with complete disagreement. We observe
that, as the amount of disagreement across anno-
tations increases, so too does the clarity of what
the tweet’s gold standard label really should be.
Though the issues we raise may seem obvious, the
absence of their proper treatment in the existing
literature suggests the need to systematically con-
sider their implications in sentiment analysis.

In this paper, we propose the inclusion of a
COMPLICATED class of sentiment to indicate that
the text does not fall into the established categories
of sentiment. We offer insights into the differ-
ences between tweets that receive different levels
of inter-annotator-agreement, providing empirical
evidence that tweets with differing levels of agree-
ment are qualitatively different from each other.

Our claims are supported by empirical analysis
of a new TSA dataset, the McGill Twitter Senti-
ment Analysis dataset (MTSA), which we release
publicly with this work2. The dataset contains
7,026 tweets across five different topic-domains,
annotated with 5x coverage. We release this
dataset with the raw annotation results, and hope
that researchers and organizations will be able to

1Annotator disagreement information has proven useful
in other areas of sentiment analysis (Wilson et al., 2005).

2Download at https://github.com/networkdynamics/

mcgill-tsa

analyze our dataset and build models that can be
applied in real-world sentiment analysis settings.

2 Current Problems in TSA

The field of Twitter Sentiment Analysis (TSA) has
seen a considerable productive work over the past
several years, and several large reviews and sur-
veys have been written to highlight the trends and
progress of the field, its datasets, and the meth-
ods used for building automatic TSA systems (Saif
et al., 2013; Medhat et al., 2014; Martı́nez-Cámara
et al., 2014; Giachanou and Crestani, 2016).

There are a variety of methods for construct-
ing TSA datasets along a variety of domains,
ranging from very specific (e.g., OMD (Shamma
et al., 2009)) to general (e.g., SemEval 2013-
2014 (Nakov et al., 2016)). While there is the
popular Stanford Twitter corpus, constructed with
noisy labellings (Go et al., 2009), the more com-
mon method of constructing TSA datasets re-
lies on manual annotation (usually crowd-sourced)
of tweet sentiment to establish gold-standard la-
bellings according to a pre-defined set of possi-
ble label categories (often POSITIVE, NEGATIVE,
and NEUTRAL) (Shamma et al., 2009; Speriosu
et al., 2011; Thelwall et al., 2012; Saif et al., 2013;
Nakov et al., 2016; Rosenthal et al., 2017).

One of the earliest manually annotated TSA
datasets, the Obama-McCain Debate (OMD)
(Shamma et al., 2009) was released with the spe-
cific annotator votes for each tweet, rather than a
final specific label assignment. Nonetheless, most
work on this dataset filters out tweets with less
than two-thirds agreement (Speriosu et al., 2011;
Saif et al., 2013) (Table 2). Unfortunately, many
later dataset releases have not followed the exam-
ple of the OMD; the designers of such datasets
have opted instead to release only the resultant la-
belling according to a motivated (but constraining)
label-assignment schema, often removing tweets
with high inter-annotator disagreement from the fi-
nal dataset release (Saif et al., 2013; Nakov et al.,
2016; Rosenthal et al., 2017).

The assumptions and implications resulting
from such design choices should be carefully con-
sidered by researchers before deciding on how to
construct or analyze sentiment analysis datasets.
Indeed, a current limitation in the field is the lack
of attention paid to label-assignment schemes,
which ultimately determine the gold-standard la-
bellings of samples. We argue that researchers
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Name # Annotated Discarded Coverage Labels Ref.

OMD 3,238 1,087 (33.6%)3 3x +, -, MIXED,
OTHER

(Shamma
et al., 2009)

STS-Gold 3,000 794 (26.5%) 3x +, -, 0, MIXED,
OTHER

(Saif et al.,
2013)

SemEval
2013-14 (B)

17,048 Unknown 5x +, -, 0 (Nakov
et al., 2016)

SemEval
2017

12,379 None (0%) 5x s+, w+, w-, s-, 0 (Rosenthal
et al., 2017)

Table 2: Summary of some of the major TSA datasets used in recent work. Symbols +, -, 0 stand for POSITIVE,
NEGATIVE, and NEUTRAL, respectively; prefixes s, w stand for STRONGLY and WEAKLY.

should consider whether or not the choices made
during dataset construction adequately reflect a
situation in which automatic sentiment analysis
systems would be used in real-world settings.

2.1 General Trends in TSA Datasets

In the SemEval 2017 Task 4 (Rosenthal et al.,
2017), a thorough 5x coverage annotation scheme
is used (each tweet is annotated by at least five
people). Annotations were made on a five-
point scale, with categories STRONGLYNEGA-
TIVE, WEAKLYNEGATIVE, NEUTRAL, WEAK-
LYPOSITIVE, and STRONGLYPOSITIVE. If at
least three out of five of the annotators gave the
same labelling, that was accepted as the final an-
notation. Otherwise, the authors used an av-
eraging scheme (mapping the labels to integers
−2,−1, 0, 1, 2) to determine the final label, taking
the average of the labellings and rounding accord-
ing to a specific criterion. This is highly problem-
atic. For example, if a controversial tweet receives
two STRONGLYNEGATIVE, two STRONGLYPOS-
ITIVE, and one NEUTRAL labelling, it will have a
resultant label of NEUTRAL. Yet, the tweet would
certainly not be “neutral”, it would be qualitatively
different from a tweet with unanimous agreement
on a NEUTRAL labelling. In Section 5, we pro-
vide empirical results supporting this claim, dis-
covering that high-disagreement data is qualita-
tively different from high-agreement data.

Nakov et al. (2016) provide a thorough explo-
ration into the specific design decisions and con-
siderations made during the construction of the
2013-2014 SemEval shared task for short-text sen-
timent analysis. In Subtask B, annotators de-

3Note that the entire OMD dataset was released with an-
notator votes, but most studies remove that proportion tweets
where there was not at least two-thirds agreement on label.

termined the overall polarity of a piece of text,
according to a ternary labelling scheme between
POSITIVE, NEGATIVE, or NEUTRAL. The final
label of the sentence was “determined based on
the majority of the labels” according to 5x cov-
erage. The designers thus discarded sentences
where there was no majority annotator agreement,
since such sentences “are likely to be controversial
cases” (p. 40); they do not report how much data
was discarded.

Saif et al. (2013) constructed a new dataset, the
STS-Gold, by taking into account several limita-
tions of the TSA datasets they reviewed. In their
study, 3,000 tweets were labelled with 3x cover-
age. Any tweet without unanimous agreement on
the label was discarded; this decision was justi-
fied by the argument that they did not want “noisy
data” in their dataset. Thus, they discarded 794
tweets, or 26.5% of their originally annotated data.
While we argue that this is a problematic design
decision, we note that discarding data in this way
successfully isolated unanimous-agreement from
majority-agreement data, thus avoiding conflating
tweets with different levels of agreement, unlike in
the 2013-14 and 2017 SemEval tasks.

The annotation scheme for the STS-Gold re-
solves one of the problems in the SemEval 2017
Task, as it provides an option for labelling a
MIXED category, capturing tweets bearing mul-
tiple conflicting sentiments. It also provides the
OTHER category for tweets where it is “difficult
to decide on a proper label”. Interestingly, the
dichotomy between the high frequency of high-
disagreement tweets (794 total) compared to the
low frequency of tweets unanimously labelled as
OTHER (4 total) is consistent with our findings on
the COMPLICATED label (Section 3.3).
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The challenges and possible approaches to man-
ual sentiment annotation have been previously dis-
cussed by Mohammad (2016), who offers impor-
tant insights into how questions and problem de-
scriptions should be posed to annotators.

2.2 Summary of TSA Problems

Based on analysis of the design choices of the
three datasets described above, and on the thor-
ough overview of other datasets found in (Saif
et al., 2013), we conclude that there are two pri-
mary limitations in the standard TSA datasets.

First, the lack of distinction between data with
majority- vs. unanimous-agreement on the anno-
tated label (Nakov et al., 2016; Rosenthal et al.,
2017). In the analysis (Sections 3.3 and 6) of our
TSA dataset, we observe a clear qualitative differ-
ence between majority-agreement and unanimous-
agreement data, suggesting that these sets of data
should not necessarily be treated in the same way.

Second, the systematic removal of controver-
sial (or, high-disagreement) data (Saif et al., 2013;
Nakov et al., 2016). We argue that this tendency
is problematic because any automatic sentiment
analysis system to be implemented in a real-world
setting cannot know a priori which tweets will be
“noisy” or “controversial”. An automatic senti-
ment analysis system trained on such a dataset will
inevitably mislabel such tweets as they appear in a
real-world implementation setting.

We therefore suggest that the following
paradigm become the norm in the field: in re-
leasing sentiment analysis datasets, researchers
should provide the specific annotations obtained
for each sample (as was done by Shamma et al.
(2009)), in addition to the resultant labelling based
on the label-assignment scheme they decide upon.
Additionally, data with high levels of annotator
disagreement should not be discarded, rather, it
should be included in dataset releases.

3 Building the MTSA Dataset

The absence of a TSA dataset containing raw
annotations and sufficient coverage to identify
sources of annotator disagreement necessitated the
creation of a new annotated dataset. Here, we
provide an overview of the development of a new
McGill TSA (MTSA) dataset composed of 7,026
tweets annotated with 5x coverage.

Topic Count % of Total

Sports 1752 24.9
Food 1729 24.6
Media 1697 24.2
Commercial Tech. 1353 19.3
General 495 7.0

Total 7026 100

Table 3: Distribution of annotated tweets by topic.

3.1 Data Collection

Tweets were collected from Twitter’s streaming
API, filtered for English tweets that contained
at least one English token, that were posted
by users in North American time-zones. Each
tweet had to contain at least one keyword from a
topic cloud relating to Food (example keywords:
“weight”, “breakfast”, “protein”), Media (“cin-
ema”, “gameofthrones”, “reggae”), Commercial
Technology (“microsoft”, “laptop”, “iphone”), or
Sports (“spurs”, “hockey”, “habs”). Using this
topic cloud and a diverse set of keywords per topic
(average of 38 hand-selected keywords per topic),
we collected tweets with the intent to represent
the general sentiment surrounding a specific topic,
while reducing the bias that would result by rely-
ing on a single topic or keyword. A further subset
of tweets (categorized as General) was collected
from the stream, without any keyword filters, in
order to further broaden the representative scope
of our dataset.

We additionally filtered out tweets containing
external links or images, arguing that analysis of
these multimodal tweets is a separate problem, be-
longing to the domain of Multimodal Sentiment
Analysis (Poria et al., 2016; Soleymani et al.,
2017). After the entire filtering process4 was com-
plete, we obtained 7,026 tweets across the differ-
ent topics, which would be annotated with 5x cov-
erage. The distribution of these tweets is seen be-
low in Table 3.

3.2 Data Annotation

Data annotation was crowd-sourced using the
CrowdFlower platform5. All qualified Crowd-
Flower contributors had the opportunity to com-
plete the task, which was presented as: carefully

4See supplemental material for full enumeration of the
specific filters used and the keywords used for each topic.

5Website: https://www.crowdflower.com
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read the tweet, determine whether or not it ex-
presses sentiment (e.g., OBJECTIVE or not), if
it does, categorize the sentiment as being either
POSITIVE, NEGATIVE, or COMPLICATED. In the
instructions, COMPLICATED was presented as the
preferable option when the sentiment expressed in
the tweet was ambiguous, mixed or could be in-
terpreted as both positive and/or negative. After a
one-line description of the meaning of each cate-
gory, the contributor was presented with examples
of tweets belonging in each category before start-
ing the task.

In order to be considered qualified to complete
the task, the contributor had to correctly answer
at least 8 of 10 test questions, which we manu-
ally selected and labelled. When a user failed a
test question, they were presented with the correct
answer and a corresponding justification to ensure
that they understood the task.

We experimented with the inclusion of test
questions from the COMPLICATED category dur-
ing screening, and found that this was a major
source of protest among high-quality annotators.
Indeed, it may be paradoxical to expect annotators
to agree on tweets that cause significant disagree-
ment. Furthermore, due to the heterogeneous na-
ture of this class, such test questions would risk
biasing the annotators’ notion of the category. As
such, we limited our test questions to OBJECTIVE,
POSITIVE, and NEGATIVE tweets.

Users who successfully passed the initial test
questions annotated a maximum of 400 tweets.
Of those tweets, 10% were additional hidden test
questions to continuously assess the quality of the
annotators; an accuracy of at least 80% on these
test questions was the threshold for including their
annotations in the dataset. In the end, a total of
35,926 tasks were completed by 181 trusted con-
tributors, resulting in 7,026 annotated tweets.

3.3 Dataset Analysis

The annotated tweets are categorized by four
agreement levels: Unanimous (5 out of 5 agreed
on the label), Consensus (exactly 4 out of 5
agreed), Majority (exactly 3 out of 5 agreed), or
Disputed (maximum 2 out of 5 agreed). The dis-
tribution of agreement rates was consistent across
topics (see supplemental material), thus the entire
dataset is merged for the remainder of the analysis.

Annotator agreement distribution. Tweets
with at least Consensus agreement compose 64%
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Figure 1: Most frequent annotation by annotator agree-
ment rates. Of the 553 Disputed tweets, only 129 had a
single most frequent annotation.

of the dataset (4505 tweets), and tweets with at
least Majority agreement compose 92% of the
dataset (6473 tweets; see Table 4). The decision to
discard tweets with significant annotator disagree-
ment, as previously done in TSA research, would
result in the loss of 8% to 34% of the annotated
tweets in our dataset, depending on whether to
filter to a minimum Majority or Consensus agree-
ment, respectively. Interestingly, these numbers
are consistent with the proportion of discarded
tweets in previous literature (Table 2).

Sentiment and annotator agreement. Tweets
that caused more disagreement among the hu-
man annotators were found to be more sentiment-
laden (majority label of POSITIVE, NEGATIVE, or
COMPLICATED; Figure 1). Objective tweets com-
posed 78% (1892 tweets), 63% (1311), and 50%
(983) of the Unanimous, Consensus, and Majority
subsets of annotated tweets, respectively.

COMPLICATED label usage. Use of the COM-
PLICATED label by annotators was infrequent, and
of those tweets with high inter-annotator agree-
ment, almost exclusively limited to tweets that ex-
pressed clear, mixed sentiment. For example, the
single tweet that received a unanimous COMPLI-
CATED annotation had clear mixed sentiment: “the
iPhone 6s is so big and hard to use but I still like
it”. There were a total of 13 tweets with at least
Consensus agreement for the COMPLICATED la-
bel (see supplemental material). These specific
tweets largely corresponded to the MIXED label
used in previous TSA datasets (Shamma et al.,
2009; Saif et al., 2013). Other types of ambiguous
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Agreement Count % of Total

Unanimous 2415 34.4
Consensus 2090 29.7
Majority 1968 28.0
Disputed 553 7.9

Total 7026 100

Table 4: Annotator agreement rates. Unanimous stands
for 100% annotator agreement, Consensus 80%, Ma-
jority 60%, and Disputed <60%.

tweets that did not clearly fall clearly within OB-
JECTIVE, POSITIVE, and NEGATIVE categories
were not consistently identified as COMPLICATED

by annotators. Rather, those tweets were a source
of significant disagreement.

4 Classifying Tweet Sentiment

Here, we present the construction of shallow clas-
sifier and the experiments performed to study the
phenomenon of annotator disagreement. Our ob-
jective was not to build a state-of-the-art classifier
with optimal accuracy rates, rather, we sought to
understand how the inclusion or exclusion of tweet
subsets based on annotator disagreement impacts
classification accuracy.

4.1 Preprocessing and Feature Extraction

To use machine learning methods with textual
data, it is necessary to represent the data in a vector
space such that each sample has the same dimen-
sionality, despite varying sequence lengths. We
concatenated three different standard feature ex-
traction methods to build vector representations of
tweets: N-Grams (unigrams and bigrams), mean
word embedding (GLoVE embeddings built from
twitter data (Pennington et al., 2014)6), and Senti-
WordNet scores (Baccianella et al., 2010).7

4.2 Experimental Design

As described in Section 2, most recent work in
TSA has agglomerated tweets together based on
the majority labelling. For example, a tweet an-
notated with a Majority agreement labelling (e.g.,
3 OBJECTIVE and 2 NEGATIVE) would be given
the label OBJECTIVE, just as one with Unanimous

6
https://nlp.stanford.edu/projects/glove/

7See supplemental material for full elaboration of the pre-
processing decisions and features extracted.

Label Count % of Total

OBJECTIVE 4186 59.6
POSITIVE 1187 16.9
NEGATIVE 1038 14.8
COMPLICATED 62 0.9
Disputed 553 7.9

Total 7026 100

Table 5: Distribution of tweets across classes, where
the label given is the result of majority vote.

agreement on an OBJECTIVE labelling. In our ex-
periments with our collected dataset (Section 3)
we seek to determine whether or not there is a
qualitative difference between high- versus low-
agreement data.

Experiment I. In the first experiment setting,
we agglomerate tweets according to the tradi-
tional practice for assigning labels based on an-
notations (Section 2); e.g., we remove tweets with
at least a Majority voted label as COMPLICATED,
and remove the Disputed tweets (that is, we re-
move 8.75% of our annotated data for these exper-
iments), creating a 3-class classification problem.
We experiment over four different sets of our data
in this scenario: the full dataset (minus the COM-
PLICATED 8.75%); tweets with exactly Majority
agreement; tweets with exactly Consensus agree-
ment; and tweets with exactly Unanimous agree-
ment on the label (see Figure 1 for the label distri-
butions over each of these subsets). Additionally,
when making predictions on a specific subset, we
present results from training solely on the subset
versus training on all of the data in this setting.

Experiment II. In the second experiment set-
ting, we sought to determine the impact of includ-
ing controversial samples, making a 4-class classi-
fication problem. Samples that were labelled with
at least Majority agreement on a COMPLICATED

label, and samples with Disputed agreement, were
all assigned the label COMPLICATED. We thus
used the entirety of our dataset for this experi-
ment, where the COMPLICATED class accounted
for 8.75% (615) of the samples, with the rest of the
samples being given the majority-vote labelling.

Methods. For both experiments, we use a logis-
tic regression classifier with balanced training set
class weights, using the feature set described in
Section 4.1. Preliminary experiments with fea-
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Figure 2: Experiment I. Weighted- and macro-F1-scores, obtained by testing logistic regression (LR) and a strat-
ified random guesser (dummy) on the different agreement-level subsets, as described in Section 4.2. Black bars
indicate plus/minus one standard deviation from the mean, as computed from the accuracies obtained across each
of the 5 cross-validated folds.

ture ablation, whether or not to balance the train
set classes, and different models (SVM with lin-
ear or RBF kernel, Random Forests, Naive Bayes,
and K-Nearest-Neighbors), proved that this model
variant was the best. We compare to a stratified
random guesser, which predicts according to the
distribution of classes in the training set (e.g., if
50% of the training set has samples labelled as
OBJECTIVE, it will guess OBJECTIVE 50% of the
time). To account for possible variance in the re-
sults, we use 5-fold cross validation over the full
dataset, where the accuracy reported is the average
over the specific scores obtained on each fold.

4.3 Evaluation
We evaluate with weighted- and macro-F1-scores
to assess classifier performance. F1-score is a
common way to measure classifier performance
in sentiment analysis as it computes the harmonic
mean between precision and recall. In multi-class
classification, we obtain a one-versus-all F-score,
Fc, for each class c in our set of possible classes,
C. Weighted F-score weights each F-score by its
support in the test set; if there are nc samples in
the test set belonging to class c, then the weighted
F-score is expressed by Fweighted in Equation 1.

Fweighted =
1

(
∑
nc)

∑

c∈C
ncFc (1)

Naturally, the weighted F-score is influenced by
the frequency of samples in a class; so, in our case,
it is biased toward the OBJECTIVE class due to its

large frequency compared to the other classes (Ta-
ble 5; Figure 1). Thus, we also report the macro F-
score, which averages the F-scores for each class
without considering their support, expressed by
Fmacro in Equation 2. This score evaluates model
performance isolated from the class distribution,
allowing us to determine if a change in accuracy
is the result of simply a change in distribution of
classes or a change in model generalization ability.

Fmacro =
1

|C|
∑

c∈C
Fc (2)

5 Results

In Figure 2, we present the results for Experiment I
(Section 4.2). We note that the presented accu-
racy is higher when evaluated with weighted F-
score versus macro F-score. Since both weighted-
and macro-F1-score increase as we move along to
higher agreement subsets, we conclude that the ac-
curacy improvement is not solely due to a change
in distribution of classes. Rather, there must be
a qualitative difference between high- vs. low-
agreement tweets, otherwise the accuracy would
have been the same across agreement levels.

In Figure 3, we present the normalized confu-
sion matrix obtained from Experiment II. We ob-
serve that the model poorly classifies COMPLI-
CATED tweets. Although the model uses bal-
anced class weights for training, it predicts OB-
JECTIVE the majority of the time, where each
other class is most frequently mistaken as OBJEC-
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Trained on all Trained on subset
Test subset Precision Recall F1-Score Precision Recall F1-Score

All 0.681 0.660 0.669 – – –
Majority 0.552 0.524 0.533 0.502 0.488 0.491
Consensus 0.689 0.674 0.680 0.680 0.633 0.652
Unanimous 0.789 0.821 0.803 0.843 0.761 0.793

Table 6: Experiment I. Macro-F1 score results for precision, recall, and F1-score, as shown visually in Figure 2.
These are the mean scores across the 5 cross-validated folds. Bold numbers indicate the improvement of training
on all data versus just the subset being tested upon.

Figure 3: Experiment II. Normalized confusion matrix
from using logistic regression.

Label Precision Recall F1

COMPLICATED 0.199 0.138 0.163
POSITIVE 0.599 0.605 0.602
OBJECTIVE 0.766 0.806 0.786
NEGATIVE 0.510 0.487 0.498

Total – weighted 0.650 0.667 0.658
Total – macro 0.518 0.509 0.512

Table 7: Experiment II. Results across evaluation met-
rics, as shown visually in Figure 3. Results are com-
puted by agglomerating all predictions made across
each of the 5 cross-validated folds.

TIVE. The final weighted-F1-score and macro-F1-
scores, were, respectively: 65.8% and 51.2% with
logistic regression, and 41.1% and 24.7% with the
stratified random guesser. This large difference
between weighted and macro is largely due to the
poor classifier performance on the COMPLICATED

class.

6 Discussion

The interpretation of expressed sentiment is an in-
herently subjective exercise, the gold-standard of

which is the sentiment perceived by other humans.
Thus, it is crucial to better understand sentiment
annotation itself to inform future classifier design.

Annotator disagreement is not human error.
Our results show that annotator disagreements
cannot simply be attributed to human error. There
is a clear decrease in classifier performance when
testing on subsets of tweets with lower annota-
tor agreement (Figure 2), suggesting that tweets
across these subsets are qualitatively different
from each other. From a probabilistic perspective,
this means that samples that obtain high annota-
tor agreement are generated by a different real-
world function than those that obtain low annota-
tor agreement. This perspective is further justified
by the fact that classifier performance is roughly
the same when training on the full dataset versus
when training just on the specific agreement level
subsets. Future work should explore how to han-
dle this data, and we recommend reporting results
on the different subsets by agreement-level.

On defaulting to the majority label. When
each tweet is assigned a gold-standard label ac-
cording to the majority annotation, we demon-
strated that there are qualitative differences be-
tween tweets with Majority, Consensus, and
Unanimous agreement. As exemplified by the
sample tweets in Table 1, the differences between
the two tweets with a majority OBJECTIVE anno-
tation is reflected in the inter-annotator disagree-
ment. We have shown that the subtleties in senti-
ment expression are masked by simply taking the
majority label, and future work would involve fac-
toring in these varying levels of agreement on la-
bels during the model design process.

Standards for sentiment analysis datasets. To
advance the field of short-text sentiment analy-
sis, it is necessary to change common practices
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in dataset design and development. First, future
datasets should be released with the raw annota-
tor label assignments without discarding any an-
notated data. This would allow other researchers
to experiment with different means of handling
annotation-disagreement during the model design
process. Secondly, we argue that sufficient resolu-
tion of short-text sentiment annotations requires at
least 5x coverage. Our dataset, MTSA, of 7,026
tweets was constructed with 5x annotation cov-
erage, a resolution at which we can just begin to
distinguish these subsets of tweets. Higher cov-
erage may be needed still to identify and under-
stand these annotator disagreements. In contrast,
the differences between these two subsets would
be masked using the 3x coverage commonly found
in other datasets.

Identifying ambiguous data. Results from Ex-
periment II, and analysis of our COMPLICATED

tweets, reveal that detecting high-disagreement
tweets is a difficult task for both classifiers and hu-
mans. The poor performance of human annotators
on identifying ambiguous tweets in our study, and
the fact that high disagreement affected up to one
third of the samples across TSA datasets, suggests
that “complicatedness” is a real phenomenon. The
optimal way to handle and identify this data re-
quires further research. It is, however, an essen-
tial problem to solve, as real-world implementa-
tions of automated sentiment analysis systems will
inevitably be confronted with such data. Such a
system may be able to leverage the raw annota-
tions during training, which is why we release the
MTSA dataset with the raw annotation results in-
cluded, and suggest all others do this as well.

7 Conclusion

In this paper, we highlight the need to better en-
gage with how humans actually annotate data in
short-text sentiment analysis dataset construction
by constructing the new McGill Twitter Senti-
ment Analysis (MTSA) dataset. Future work in-
volves leveraging raw human annotations to im-
prove sentiment analysis classifiers, and finding
ways to better detect and understand the “compli-
cated” property in these samples that cause high
annotator disagreement. Additionally, we encour-
age researchers to use MTSA in the development
of other methods for short text sentiment analysis,
including unsupervised, lexicon-based, and rule-
based methods.
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Abstract

We combine multi-task learning and semi-
supervised learning by inducing a joint embed-
ding space between disparate label spaces and
learning transfer functions between label em-
beddings, enabling us to jointly leverage un-
labelled data and auxiliary, annotated datasets.
We evaluate our approach on a variety of se-
quence classification tasks with disparate la-
bel spaces. We outperform strong single and
multi-task baselines and achieve a new state-
of-the-art for topic-based sentiment analysis.

1 Introduction

Multi-task learning (MTL) and semi-supervised
learning are both successful paradigms for learn-
ing in scenarios with limited labelled data and
have in recent years been applied to almost all ar-
eas of NLP. Applications of MTL in NLP, for ex-
ample, include partial parsing (Søgaard and Gold-
berg, 2016), text normalisation (Bollman et al.,
2017), neural machine translation (Luong et al.,
2016), and keyphrase boundary classification (Au-
genstein and Søgaard, 2017).

Contemporary work in MTL for NLP typically
focuses on learning representations that are useful
across tasks, often through hard parameter shar-
ing of hidden layers of neural networks (Collobert
et al., 2011; Søgaard and Goldberg, 2016). If
tasks share optimal hypothesis classes at the level
of these representations, MTL leads to improve-
ments (Baxter, 2000). However, while sharing
hidden layers of neural networks is an effective
regulariser (Søgaard and Goldberg, 2016), we po-
tentially loose synergies between the classification
functions trained to associate these representations
with class labels. This paper sets out to build an ar-
chitecture in which such synergies are exploited,

?The first two authors contributed equally.

with an application to pairwise sequence classifi-
cation tasks. Doing so, we achieve a new state of
the art on topic-based sentiment analysis.

For many NLP tasks, disparate label sets are
weakly correlated, e.g. part-of-speech tags corre-
late with dependencies (Hashimoto et al., 2017),
sentiment correlates with emotion (Felbo et al.,
2017; Eisner et al., 2016), etc. We thus propose to
induce a joint label embedding space (visualised
in Figure 2) using a Label Embedding Layer that
allows us to model these relationships, which we
show helps with learning.

In addition, for tasks where labels are closely
related, we should be able to not only model their
relationship, but also to directly estimate the cor-
responding label of the target task based on auxil-
iary predictions. To this end, we propose to train
a Label Transfer Network (LTN) jointly with the
model to produce pseudo-labels across tasks.

The LTN can be used to label unlabelled and
auxiliary task data by utilising the ‘dark knowl-
edge’ (Hinton et al., 2015) contained in auxil-
iary model predictions. This pseudo-labelled data
is then incorporated into the model via semi-
supervised learning, leading to a natural combi-
nation of multi-task learning and semi-supervised
learning. We additionally augment the LTN with
data-specific diversity features (Ruder and Plank,
2017) that aid in learning.

Contributions Our contributions are: a) We
model the relationships between labels by induc-
ing a joint label space for multi-task learning. b)
We propose a Label Transfer Network that learns
to transfer labels between tasks and propose to
use semi-supervised learning to leverage them for
training. c) We evaluate MTL approaches on a va-
riety of classification tasks and shed new light on
settings where multi-task learning works. d) We
perform an extensive ablation study of our model.
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e) We report state-of-the-art performance on topic-
based sentiment analysis.

2 Related work

Learning task similarities Existing approaches
for learning similarities between tasks enforce a
clustering of tasks (Evgeniou et al., 2005; Jacob
et al., 2009), induce a shared prior (Yu et al., 2005;
Xue et al., 2007; Daumé III, 2009), or learn a
grouping (Kang et al., 2011; Kumar and Daumé
III, 2012). These approaches focus on homoge-
neous tasks and employ linear or Bayesian mod-
els. They can thus not be directly applied to our
setting with tasks using disparate label sets.

Multi-task learning with neural networks Re-
cent work in multi-task learning goes beyond hard
parameter sharing (Caruana, 1993) and considers
different sharing structures, e.g. only sharing at
lower layers (Søgaard and Goldberg, 2016) and
induces private and shared subspaces (Liu et al.,
2017; Ruder et al., 2017). These approaches, how-
ever, are not able to take into account relationships
between labels that may aid in learning. Another
related direction is to train on disparate annota-
tions of the same task (Chen et al., 2016; Peng
et al., 2017). In contrast, the different nature of our
tasks requires a modelling of their label spaces.

Semi-supervised learning There exists a wide
range of semi-supervised learning algorithms,
e.g., self-training, co-training, tri-training, EM,
and combinations thereof, several of which have
also been used in NLP. Our approach is proba-
bly most closely related to an algorithm called co-
forest (Li and Zhou, 2007). In co-forest, like here,
each learner is improved with unlabeled instances
labeled by the ensemble consisting of all the other
learners. Note also that several researchers have
proposed using auxiliary tasks that are unsuper-
vised (Plank et al., 2016; Rei, 2017), which also
leads to a form of semi-supervised models.

Label transformations The idea of manually
mapping between label sets or learning such a
mapping to facilitate transfer is not new. Zhang
et al. (2012) use distributional information to map
from a language-specific tagset to a tagset used
for other languages, in order to facilitate cross-
lingual transfer. More related to this work, Kim
et al. (2015) use canonical correlation analysis to
transfer between tasks with disparate label spaces.
There has also been work on label transformations

in the context of multi-label classification prob-
lems (Yeh et al., 2017).

3 Multi-task learning with disparate
label spaces

3.1 Problem definition

In our multi-task learning scenario, we have access
to labelled datasets for T tasks T1, . . . , TT at train-
ing time with a target task TT that we particularly
care about. The training dataset for task Ti consists
of Nk examples XTi = {xTi1 , . . . , xTiNk

} and their
labels YTi = {yTi1 , . . . ,yTiNk

}. Our base model is
a deep neural network that performs classic hard
parameter sharing (Caruana, 1993): It shares its
parameters across tasks and has task-specific soft-
max output layers, which output a probability dis-
tribution pTi for task Ti according to the following
equation:

pTi = softmax(WTih+ bTi) (1)

where softmax(x) = ex/
∑‖x‖

i=1 e
xi , WTi ∈

RLi×h, bTi ∈ RLi is the weight matrix and bias
term of the output layer of task Ti respectively,
h ∈ Rh is the jointly learned hidden representa-
tion, Li is the number of labels for task Ti, and h
is the dimensionality of h.

The MTL model is then trained to minimise the
sum of the individual task losses:

L = λ1L1 + . . .+ λTLT (2)

where Li is the negative log-likelihood objec-
tive Li = H(pTi ,yTi) = − 1

N

∑
n

∑
j logp

Ti
j yTij

and λi is a parameter that determines the weight
of task Ti. In practice, we apply the same weight
to all tasks. We show the full set-up in Figure 1a.

3.2 Label Embedding Layer

In order to learn the relationships between labels,
we propose a Label Embedding Layer (LEL) that
embeds the labels of all tasks in a joint space. In-
stead of training separate softmax output layers as
above, we introduce a label compatibility function
c(·, ·) that measures how similar a label with em-
bedding l is to the hidden representation h:

c(l,h) = l · h (3)

where · is the dot product. This is similar to
the Universal Schema Latent Feature Model in-
troduced by Riedel et al. (2013). In contrast to
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Figure 1: a) Multi-task learning (MTL) with hard parameter sharing and 3 tasks T1−3 and L1−3 labels per task. A
shared representation h is used as input to task-specific softmax layers, which optimise cross-entropy losses L1−3.
b) MTL with the Label Embedding Layer (LEL) embeds task labels l

T1−3

1−Li
in a joint embedding space and uses

these for prediction with a label compatibility function. c) Semi-supervised MTL with the Label Transfer Network
(LTN) in addition optimises an unsupervised loss Lpseudo over pseudo-labels zTT on auxiliary/unlabelled data.
The pseudo-labels zTT are produced by the LTN for the main task TT using the concatenation of auxiliary task
label output embeddings [oi−1,oi,oi+1] as input.

other models that use the dot product in the objec-
tive function, we do not have to rely on negative
sampling and a hinge loss (Collobert and Weston,
2008) as negative instances (labels) are known.
For efficiency purposes, we use matrix multipli-
cation instead of a single dot product and softmax
instead of sigmoid activations:

p = softmax(Lh) (4)

where L ∈ R(
∑

i Li)×l is the label embedding
matrix for all tasks and l is the dimensionality of
the label embeddings. In practice, we set l to the
hidden dimensionality h. We use padding if l <
h. We apply a task-specific mask to L in order to
obtain a task-specific probability distribution pTi .
The LEL is shared across all tasks, which allows
us to learn the relationships between the labels in
the joint embedding space. We show MTL with
the LEL in Figure 1b.

3.3 Label Transfer Network

The LEL allows us to learn the relationships be-
tween labels. In order to make use of these re-
lationships, we would like to leverage the predic-
tions of our auxiliary tasks to estimate a label for
the target task. To this end, we introduce the Label
Transfer Network (LTN). This network takes the
auxiliary task outputs as input. In particular, we
define the output label embedding oi of task Ti as

the sum of the task’s label embeddings lj weighted
with their probability pTij :

oi =

Li∑

j=1

pTij lj (5)

The label embeddings l encode general relation-
ship between labels, while the model’s probability
distribution pTi over its predictions encodes fine-
grained information useful for learning (Hinton
et al., 2015). The LTN is trained on labelled tar-
get task data. For each example, the correspond-
ing label output embeddings of the auxiliary tasks
are fed into a multi-layer perceptron (MLP), which
is trained with a negative log-likelihood objective
LLTN to produce a pseudo-label zTT for the target
task TT :

LTNT = MLP([o1, . . . ,oT−1]) (6)

where [·, ·] designates concatenation. The map-
ping of the tasks in the LTN yields another signal
that can be useful for optimisation and act as a reg-
ulariser. The LTN can also be seen as a mixture-
of-experts layer (Jacobs et al., 1991) where the
experts are the auxiliary task models. As the la-
bel embeddings are learned jointly with the main
model, the LTN is more sensitive to the rela-
tionships between labels than a separately learned
mixture-of-experts model that only relies on the
experts’ output distributions. As such, the LTN
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can be directly used to produce predictions on un-
seen data.

3.4 Semi-supervised MTL
The downside of the LTN is that it requires addi-
tional parameters and relies on the predictions of
the auxiliary models, which impacts the runtime
during testing. Instead, of using the LTN for pre-
diction directly, we can use it to provide pseudo-
labels for unlabelled or auxiliary task data by
utilising auxiliary predictions for semi-supervised
learning.

We train the target task model on the pseudo-
labelled data to minimise the squared error be-
tween the model predictions pTi and the pseudo
labels zTi produced by the LTN:

Lpseudo =MSE(pTT , zTT ) = ||pTT − zTT ||2
(7)

We add this loss term to the MTL loss in Equa-
tion 2. As the LTN is learned together with the
MTL model, pseudo-labels produced early during
training will likely not be helpful as they are based
on unreliable auxiliary predictions. For this rea-
son, we first train the base MTL model until con-
vergence and then augment it with the LTN. We
show the full semi-supervised learning procedure
in Figure 1c.

3.5 Data-specific features
When there is a domain shift between the datasets
of different tasks as is common for instance when
learning NER models with different label sets, the
output label embeddings might not contain suffi-
cient information to bridge the domain gap.

To mitigate this discrepancy, we augment the
LTN’s input with features that have been found
useful for transfer learning (Ruder and Plank,
2017). In particular, we use the number of word
types, type-token ratio, entropy, Simpson’s index,
and Rényi entropy as diversity features. We calcu-
late each feature for each example.1 The features
are then concatenated with the input of the LTN.

3.6 Other multi-task improvements
Hard parameter sharing can be overly restrictive
and provide a regularisation that is too heavy when
jointly learning many tasks. For this reason, we
propose several additional improvements that seek

1For more information regarding the feature calculation,
refer to Ruder and Plank (2017).

Task Domain N L Metric

Topic-2 Twitter 4,346 2 ρPN

Topic-5 Twitter 6,000 5 MAEM

Target Twitter 6,248 3 FM1
Stance Twitter 2,914 3 FFA1

ABSA-L Reviews 2,909 3 Acc
ABSA-R Reviews 2,507 3 Acc
FNC-1 News 39,741 4 Acc
MultiNLI Diverse 392,702 3 Acc

Table 1: Training set statistics and evaluation metrics
of every task. N : # of examples. L: # of labels.

to alleviate this burden: We use skip-connections,
which have been shown to be useful for multi-
task learning in recent work (Ruder et al., 2017).
Furthermore, we add a task-specific layer before
the output layer, which is useful for learning task-
specific transformations of the shared representa-
tions (Søgaard and Goldberg, 2016; Ruder et al.,
2017).

4 Experiments

For our experiments, we evaluate on a wide range
of text classification tasks. In particular, we
choose pairwise classification tasks—i.e. those
that condition the reading of one sequence on an-
other sequence—as we are interested in under-
standing if knowledge can be transferred even
for these more complex interactions. To the
best of our knowledge, this is the first work
on transfer learning between such pairwise se-
quence classification tasks. We implement all our
models in Tensorflow (Abadi et al., 2016) and
release the code at https://github.com/
coastalcph/mtl-disparate.

4.1 Tasks and datasets

We use the following tasks and datasets for our
experiments, show task statistics in Table 1, and
summarise examples in Table 2:

Topic-based sentiment analysis Topic-based
sentiment analysis aims to estimate the sentiment
of a tweet known to be about a given topic. We
use the data from SemEval-2016 Task 4 Subtask B
and C (Nakov et al., 2016) for predicting on a two-
point scale of positive and negative (Topic-2)
and five-point scale ranging from highly negative
to highly positive (Topic-5) respectively. An
example from this dataset would be to classify the
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Topic-based sentiment analysis:
Tweet: No power at home, sat in the dark listening

to AC/DC in the hope it’ll make the electricity come
back again

Topic: AC/DC
Label: positive

Target-dependent sentiment analysis:
Text: how do you like settlers of catan for the wii?

Target: wii
Label: neutral

Aspect-based sentiment analysis:
Text: For the price, you cannot eat this well in

Manhattan
Aspects: restaurant prices, food quality

Label: positive

Stance detection:
Tweet: Be prepared - if we continue the policies of

the liberal left, we will be #Greece
Target: Donald Trump

Label: favor

Fake news detection:
Document: Dino Ferrari hooked the whopper wels

catfish, (...), which could be the biggest in the world.
Headline: Fisherman lands 19 STONE catfish which

could be the biggest in the world to be hooked
Label: agree

Natural language inference:
Premise: Fun for only children

Hypothesis: Fun for adults and children
Label: contradiction

Table 2: Example instances from the datasets de-
scribed in Section 4.1.

tweet “No power at home, sat in the dark listen-
ing to AC/DC in the hope it’ll make the electric-
ity come back again” known to be about the topic
“AC/DC”, which is labelled as a positive senti-
ment. The evaluation metrics for Topic-2 and
Topic-5 are macro-averaged recall (ρPN ) and
macro-averaged mean absolute error (MAEM )
respectively, which are both averaged across top-
ics.

Target-dependent sentiment analysis Target-
dependent sentiment analysis (Target) seeks to
classify the sentiment of a text’s author towards
an entity that occurs in the text as positive, neg-
ative, or neutral. We use the data from Dong
et al. (2014). An example instance is the ex-
pression “how do you like settlers of catan for
the wii?” which is labelled as neutral towards
the target “wii’.’ The evaluation metric is macro-
averaged F1 (FM1 ).

Aspect-based sentiment analysis Aspect-based
sentiment analysis is the task of identifying

whether an aspect, i.e. a particular property of an
item is associated with a positive, negative, or neu-
tral sentiment (Ruder et al., 2016). We use the data
of SemEval-2016 Task 5 Subtask 1 Slot 3 (Pon-
tiki et al., 2016) for the laptops (ABSA-L) and
restaurants (ABSA-R) domains. An example is the
sentence “For the price, you cannot eat this well
in Manhattan”, labelled as positive towards both
the aspects “restaurant prices” and “food quality”.
The evaluation metric for both domains is accu-
racy (Acc).

Stance detection Stance detection (Stance)
requires a model, given a text and a target en-
tity, which might not appear in the text, to pre-
dict whether the author of the text is in favour or
against the target or whether neither inference is
likely (Augenstein et al., 2016). We use the data
of SemEval-2016 Task 6 Subtask B (Mohammad
et al., 2016). An example from this dataset would
be to predict the stance of the tweet “Be prepared
- if we continue the policies of the liberal left,
we will be #Greece” towards the topic “Donald
Trump”, labelled as “favor”. The evaluation met-
ric is the macro-averaged F1 score of the “favour”
and “against” classes (FFA1 ).

Fake news detection The goal of fake news de-
tection in the context of the Fake News Challenge2

is to estimate whether the body of a news arti-
cle agrees, disagrees, discusses, or is unrelated to-
wards a headline. We use the data from the first
stage of the Fake News Challenge (FNC-1). An
example for this dataset is the document “Dino
Ferrari hooked the whopper wels catfish, (...),
which could be the biggest in the world.” with
the headline “Fisherman lands 19 STONE catfish
which could be the biggest in the world to be
hooked” labelled as “agree”. The evaluation met-
ric is accuracy (Acc)3.

Natural language inference Natural language
inference is the task of predicting whether one sen-
tences entails, contradicts, or is neutral towards
another one. We use the Multi-Genre NLI cor-
pus (MultiNLI) from the RepEval 2017 shared
task (Nangia et al., 2017). An example for an in-
stance would be the sentence pair “Fun for only
children”, “Fun for adults and children”, which are
in a “contradiction” relationship. The evaluation
metric is accuracy (Acc).

2http://www.fakenewschallenge.org/
3We use the same metric as Riedel et al. (2017).
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Stance FNC MultiNLI Topic-2 Topic-5* ABSA-L ABSA-R Target

Augenstein et al. (2016) 49.01 - - - - - - -
Riedel et al. (2017) - 88.46 - - - - - -
Chen et al. (2017) - - 74.90 - - - - -
Palogiannidi et al. (2016) - - - 79.90 - - - -
Balikas and Amini (2016) - - - - 0.719 - - -
Brun et al. (2016) - - - - - - 88.13 -
Kumar et al. (2016) - - - - - 82.77 86.73 -
Vo and Zhang (2015) - - - - - - - 69.90

STL 41.1 72.72 49.25 63.92 0.919 76.74 67.47 64.01

MTL + LEL 46.26 72.71 49.94 80.52 0.814 74.94 79.90 66.42
MTL + LEL + LTN, main model 43.16 72.73 48.75 73.90 0.810 75.06 83.71 66.10
MTL + LEL + LTN + semi, main model 43.56 72.72 48.00 72.35 0.821 75.42 83.26 63.00

Table 3: Comparison of our best performing models on the test set against a single task baseline and the state of
the art, with task specific metrics. *: lower is better. Bold: best. Underlined: second-best.

4.2 Base model

Our base model is the Bidirectional Encoding
model (Augenstein et al., 2016), a state-of-the-
art model for stance detection that conditions a
bidirectional LSTM (BiLSTM) encoding of a text
on the BiLSTM encoding of the target. Un-
like Augenstein et al. (2016), we do not pre-train
word embeddings on a larger set of unlabelled in-
domain text for each task as we are mainly inter-
ested in exploring the benefit of multi-task learn-
ing for generalisation.

4.3 Training settings

We use BiLSTMs with one hidden layer of 100
dimensions, 100-dimensional randomly initialised
word embeddings, a label embedding size of 100.
We train our models with RMSProp, a learning
rate of 0.001, a batch size of 128, and early stop-
ping on the validation set of the main task with a
patience of 3.

5 Results

Our main results are shown in Table 3, with a com-
parison against the state of the art. We present the
results of our multi-task learning network with la-
bel embeddings (MTL + LEL), multi-task learn-
ing with label transfer (MTL + LEL + LTN), and
the semi-supervised extension of this model. On
7/8 tasks, at least one of our architectures is better
than single-task learning; and in 4/8, all our archi-
tectures are much better than single-task learning.

The state-of-the-art systems we compare
against are often highly specialised, task-
dependent architectures. Our architectures, in
contrast, have not been optimised to compare

favourably against the state of the art, as our
main objective is to develop a novel approach to
multi-task learning leveraging synergies between
label sets and knowledge of marginal distributions
from unlabeled data. For example, we do not
use pre-trained word embeddings (Augenstein
et al., 2016; Palogiannidi et al., 2016; Vo and
Zhang, 2015), class weighting to deal with label
imbalance (Balikas and Amini, 2016), or domain-
specific sentiment lexicons (Brun et al., 2016;
Kumar et al., 2016). Nevertheless, our approach
outperforms the state-of-the-art on two-way
topic-based sentiment analysis (Topic-2).

The poor performance compared to the state-
of-the-art on FNC and MultiNLI is expected; as
we alternate among the tasks during training, our
model only sees a comparatively small number of
examples of both corpora, which are one and two
orders of magnitude larger than the other datasets.
For this reason, we do not achieve good perfor-
mance on these tasks as main tasks, but they are
still useful as auxiliary tasks as seen in Table 4.

6 Analysis

6.1 Label Embeddings

Our results above show that, indeed, modelling the
similarity between tasks using label embeddings
sometimes leads to much better performance. Fig-
ure 2 shows why. In Figure 2, we visualise the
label embeddings of an MTL+LEL model trained
on all tasks, using PCA. As we can see, simi-
lar labels are clustered together across tasks, e.g.
there are two positive clusters (middle-right and
top-right), two negative clusters (middle-left and
bottom-left), and two neutral clusters (middle-top
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Figure 2: Label embeddings of all tasks. Positive, neg-
ative, and neutral labels are clustered together.

and middle-bottom).
Our visualisation also provides us with a pic-

ture of what auxilary tasks are beneficial, and to
what extent we can expect synergies from multi-
task learning. For instance, the notion of posi-
tive sentiment appears to be very similar across the
topic-based and aspect-based tasks, while the con-
ceptions of negative and neutral sentiment differ.
In addition, we can see that the model has failed
to learn a relationship between MultiNLI labels
and those of other tasks, possibly accounting for
its poor performance on the inference task. We
did not evaluate the correlation between label em-
beddings and task performance, but Bjerva (2017)
recently suggested that mutual information of tar-
get and auxiliary task label sets is a good predictor
of gains from multi-task learning.

6.2 Auxilary Tasks

For each task, we show the auxiliary tasks that
achieved the best performance on the development
data in Table 4. In contrast to most existing work,
we did not restrict ourselves to performing multi-
task learning with only one auxiliary task (Søgaard
and Goldberg, 2016; Bingel and Søgaard, 2017).
Indeed we find that most often a combination of
auxiliary tasks achieves the best performance. In-
domain tasks are less used than we assumed; only
Target is consistently used by all Twitter main
tasks. In addition, tasks with a higher number of
labels, e.g. Topic-5 are used more often. Such
tasks provide a more fine-grained reward signal,
which may help in learning representations that
generalise better. Finally, tasks with large amounts

Main task Auxiliary tasks

Topic-2 FNC-1, MultiNLI, Target

Topic-5
FNC-1, MultiNLI, ABSA-L,
Target

Target FNC-1, MultiNLI, Topic-5
Stance FNC-1, MultiNLI, Target
ABSA-L Topic-5
ABSA-R Topic-5, ABSA-L, Target

FNC-1
Stance, MultiNLI, Topic-5,
ABSA-R, Target

MultiNLI Topic-5

Table 4: Best-performing auxiliary tasks for different
main tasks.

of training data such as FNC-1 and MultiNLI
are also used more often. Even if not directly re-
lated, the larger amount of training data that can be
indirectly leveraged via multi-task learning may
help the model focus on relevant parts of the rep-
resentation space (Caruana, 1993). These obser-
vations shed additional light on when multi-task
learning may be useful that go beyond existing
studies (Bingel and Søgaard, 2017).

6.3 Ablation analysis
We now perform a detailed ablation analysis of
our model, the results of which are shown in Ta-
ble 5. We ablate whether to use the LEL (+
LEL), whether to use the LTN (+ LTN), whether
to use the LEL output or the main model output
for prediction (main model output is indicated by
, main model), and whether to use the LTN as a
regulariser or for semi-supervised learning (semi-
supervised learning is indicated by + semi). We
further test whether to use diversity features (– di-
versity feats) and whether to use main model pre-
dictions for the LTN (+ main model feats).

Overall, the addition of the Label Embed-
ding Layer improves the performance over regular
MTL in almost all cases.

6.4 Label transfer network
To understand the performance of the LTN, we
analyse learning curves of the relabelling func-
tion vs. the main model. Examples for all tasks
without semi-supervised learning are shown in
Figure 3. One can observe that the relabelling
model does not take long to converge as it has
fewer parameters than the main model. Once the
relabelling model is learned alongside the main
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Stance FNC MultiNLI Topic-2 Topic-5* ABSA-L ABSA-R Target

MTL 44.12 72.75 49.39 80.74 0.859 74.94 82.25 65.73

MTL + LEL 46.26 72.71 49.94 80.52 0.814 74.94 79.90 66.42
MTL + LTN 40.95 72.72 44.14 78.31 0.851 73.98 82.37 63.71
MTL + LTN, main model 41.60 72.72 47.62 79.98 0.814 75.54 81.70 65.61
MTL + LEL + LTN 44.48 72.76 43.72 74.07 0.821 75.66 81.92 65.00
MTL + LEL + LTN, main model 43.16 72.73 48.75 73.90 0.810 75.06 83.71 66.10

MTL + LEL + LTN + main preds feats 42.78 72.72 45.41 66.30 0.835 73.86 81.81 65.08
MTL + LEL + LTN + main preds feats, main model 42.65 72.73 48.81 67.53 0.803 75.18 82.59 63.95

MTL + LEL + LTN + main preds feats – diversity feats 42.78 72.72 43.13 66.3 0.835 73.5 81.7 63.95
MTL + LEL + LTN + main preds feats – diversity feats, main model 42.47 72.74 47.84 67.53 0.807 74.82 82.14 65.11

MTL + LEL + LTN + semi 42.65 72.75 44.28 77.81 0.841 74.10 81.36 64.45
MTL + LEL + LTN + semi, main model 43.56 72.72 48.00 72.35 0.821 75.42 83.26 63.00

Table 5: Ablation results with task-specific evaluation metrics on test set with early stopping on dev set. LTN
means the output of the relabelling function is shown, which does not use the task predictions, only predictions
from other tasks. LTN + main preds feats means main model predictions are used as features for the relabelling
function. LTN, main model means that the main model predictions of the model that trains a relabelling function
are used. Note that for MultiNLI, we down-sample the training data. *: lower is better. Bold: best. Underlined:
second-best.

Task Main LTN Main (Semi) LTN (Semi)

Stance 2.12 2.62 1.94 1.28
FNC 4.28 2.49 6.92 4.84
MultiNLI 1.5 1.95 1.94 1.28
Topic-2 6.45 4.44 5.87 5.59
Topic-5* 9.22 9.71 11.3 5.90
ABSA-L 3.79 2.52 9.06 6.63
ABSA-R 10.6 6.70 9.06 6.63
Target 26.3 14.6 20.1 15.7

Table 6: Error analysis of LTN with and without semi-
supervised learning for all tasks. Metric shown: per-
centage of correct predictions only made by either the
relabelling function or the main model, respectively,
relative to the the number of all correct predictions.

model, the main model performance first stag-
nates, then starts to increase again. For some of the
tasks, the main model ends up with a higher task
score than the relabelling model. We hypothesise
that the softmax predictions of other, even highly
related tasks are less helpful for predicting main
labels than the output layer of the main task model.
At best, learning the relabelling model alongside
the main model might act as a regulariser to the
main model and thus improve the main model’s
performance over a baseline MTL model, as it is
the case for TOPIC-5 (see Table 5).

To further analyse the performance of the LTN,
we look into to what degree predictions of the
main model and the relabelling model for individ-
ual instances are complementary to one another.
Or, said differently, we measure the percentage of
correct predictions made only by the relabelling

Figure 3: Learning curves with LTN for selected tasks,
dev performances shown. The main model is pre-
trained for 10 epochs, after which the relabelling func-
tion is trained.

model or made only by the main model, relative
to the number of correct predictions overall. Re-
sults of this for each task are shown in Table 6 for
the LTN with and without semi-supervised learn-
ing. One can observe that, even though the rela-
belling function overall contributes to the score to
a lesser degree than the main model, a substan-
tial number of correct predictions are made by the
relabelling function that are missed by the main
model. This is most prominently pronounced for
ABSA-R, where the proportion is 14.6.
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7 Conclusion

We have presented a multi-task learning archi-
tecture that (i) leverages potential synergies be-
tween classifier functions relating shared represen-
tations with disparate label spaces and (ii) enables
learning from mixtures of labeled and unlabeled
data. We have presented experiments with com-
binations of eight pairwise sequence classification
tasks. Our results show that leveraging synergies
between label spaces sometimes leads to big im-
provements, and we have presented a new state
of the art for topic-based sentiment analysis. Our
analysis further showed that (a) the learned label
embeddings were indicative of gains from multi-
task learning, (b) auxiliary tasks were often ben-
eficial across domains, and (c) label embeddings
almost always led to better performance. We also
investigated the dynamics of the label transfer net-
work we use for exploiting the synergies between
disparate label spaces.
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Abstract

Predicting the emotional value of lexical items
is a well-known problem in sentiment analy-
sis. While research has focused on polarity for
quite a long time, meanwhile this early focus
has been shifted to more expressive emotion
representation models (such as Basic Emo-
tions or Valence-Arousal-Dominance). This
change resulted in a proliferation of hetero-
geneous formats and, in parallel, often small-
sized, non-interoperable resources (lexicons
and corpus annotations). In particular, the lim-
itations in size hampered the application of
deep learning methods in this area because
they typically require large amounts of input
data. We here present a solution to get around
this language data bottleneck by rephrasing
word emotion induction as a multi-task learn-
ing problem. In this approach, the predic-
tion of each independent emotion dimension
is considered as an individual task and hidden
layers are shared between these dimensions.
We investigate whether multi-task learning
is more advantageous than single-task learn-
ing for emotion prediction by comparing our
model against a wide range of alternative emo-
tion and polarity induction methods featuring
9 typologically diverse languages and a total
of 15 conditions. Our model turns out to out-
perform each one of them. Against all odds,
the proposed deep learning approach yields the
largest gain on the smallest data sets, merely
composed of one thousand samples.

1 Introduction

Deep Learning (DL) has radically changed the
rules of the game in NLP by dramatically boost-
ing performance figures in almost all applications
areas. Yet, one of the major premises of high-
performance DL engines is their dependence on
huge amounts of training data. As such, DL seems
ill-suited for areas where training data are scarce,
such as in the field of word emotion induction.

We will use the terms polarity and emotion here
to distinguish between research focusing on “se-
mantic orientation” (Hatzivassiloglou and McKe-
own, 1997) (the positiveness or negativeness) of
affective states, on the one hand, and approaches
which provide predictions based on some of the
many more elaborated representational systems
for affective states, on the other hand.

Originally, research activities focused on polar-
ity alone. In the meantime, a shift towards more
expressive representation models for emotion can
be observed that heavily draws inspirations from
psychological theory, e.g., Basic Emotions (Ek-
man, 1992) or the Valence-Arousal-Dominance
model (Bradley and Lang, 1994).

Though this change turned out to be really ben-
eficial for sentiment analysis in NLP, a large vari-
ety of mutually incompatible encodings schemes
for emotion and, consequently, annotation formats
for emotion metadata in corpora have emerged that
hinder the interoperability of these resources and
their subsequent reuse, e.g., on the basis of align-
ments or mergers (Buechel and Hahn, 2017).

As an alternative way of dealing with thus
unwarranted heterogeneity, we here examine the
potential of multi-task learning (MTL; Caruana
(1997)) for word-level emotion prediction. In
MTL for neural networks, a single model is fit-
ted to solve multiple, independent tasks (in our
case, to predict different emotional dimensions)
which typically results in learning more robust and
meaningful intermediate representations. MTL
has been shown to greatly decrease the risk of
overfitting (Baxter, 1997), work well for various
NLP tasks (Setiawan et al., 2015; Liu et al., 2015;
Søgaard and Goldberg, 2016; Cummins et al.,
2016; Liu et al., 2017; Peng et al., 2017), and
practically increases sample size, thus making it
a natural choice for small-sized data sets typically
found in the area of word emotion induction.
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After a discussion of related work in Section 2,
we will introduce several reference methods and
describe our proposed deep MTL model in Sec-
tion 3. In our experiments (Section 4), we will
first validate our claim that MTL is superior to
single-task learning for word emotion induction.
After that, we will provide a large-scale evalua-
tion of our model featuring 9 typologically diverse
languages and multiple publicly available embed-
ding models for a total of 15 conditions. Our
MTL model surpasses the current state-of-the-art
for each of them, and even performs competitive
relative to human reliability. Most notably how-
ever, our approach yields the largest benefit on the
smallest data sets, comprising merely one thou-
sand samples. This finding, counterintuitive as it
may be, strongly suggests that MTL is particularly
beneficial for solving the word emotion induction
problem. Our code base as well as the resulting
experimental data is freely available.1

2 Related Work

This section introduces the emotion representation
format underlying our study and describes exter-
nal resources we will use for evaluation before we
discuss previous methodological work.

Emotion Representation and Data Sets. Psy-
chological models of emotion can typically be
subdivided into discrete (or categorical) and di-
mensional ones (Stevenson et al., 2007; Calvo and
Mac Kim, 2013). Discrete models are centered
around particular sets of emotional categories con-
sidered to be fundamental. Ekman (1992), for in-
stance, identifies six Basic Emotions (Joy, Anger,
Sadness, Fear, Disgust and Surprise).

In contrast, dimensional models consider emo-
tions to be composed of several influencing fac-
tors (mainly two or three). These are often referred
to as Valence (a positive–negative scale), Arousal
(a calm–excited scale), and Dominance (perceived
degree of control over a (social) situation)—the
VAD model (Bradley and Lang (1994); see Figure
1 for an illustration). Many contributions though
omit Dominance (the VA model) (Russell, 1980).
For convenience, we will still use the term “VAD”
to jointly refer to both variants (with and without
Dominance).

VAD is the most common framework to acquire
empirical emotion values for words in psychology.

1 https://github.com/JULIELab/wordEmotions
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Figure 1: Affective space spanned by the Valence-
Arousal-Dominance (VAD) model, together with the
position of six Basic Emotions; as determined by Rus-
sell and Mehrabian (1977).

Over the years, a considerable number of such
resources (also called “emotion lexicons”) have
emerged from psychological research labs (as well
as some NLP labs) for diverse languages. The
emotion lexicons we use in our experiments are
listed in Table 1. An even more extensive list of
such data sets is presented by Buechel and Hahn
(2018). For illustration, we also provide three
sample entries from one of those lexicons in Ta-
ble 2. As can be seen, the three affective dimen-
sions behave complementary to each other, e.g.,
“terrorism” and “orgasm” display similar Arousal
but opposing Valence.

The task we address in this paper is to predict
the values for Valence, Arousal and Dominance,
given a lexical item. As is obvious from these ex-
amples, we consider emotion prediction as a re-
gression, not as a classification problem (see argu-
ments discussed in Buechel and Hahn (2016)).

In this paper, we focus on the VAD format for
the following reasons: First, note that the Valence
dimension exactly corresponds to polarity (Turney
and Littman, 2003). Hence, with the VAD model,
emotion prediction can be seen as a generalization
over classical polarity prediction. Second, to the
best of our knowledge, the amount and diversity of
available emotion lexicons with VAD encodings is
larger than for any other format (see Table 1).

Word Embeddings. Word embeddings are
dense, low-dimensional vector representations of
words trained on large volumes of raw text in an
unsupervised manner. The following are among
today’s most popular embedding algorithms:
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Source ID Language Format # Entries

Bradley and Lang (1999) EN English VAD 1,034
Warriner et al. (2013) EN+ English VAD 13,915
Redondo et al. (2007) ES Spanish VAD 1,034
Stadthagen-Gonzalez et al. (2017) ES+ Spanish VA 14,031
Schmidtke et al. (2014) DE German VAD 1,003
Yu et al. (2016a) ZH Chinese VA 2,802
Imbir (2016) PL Polish VAD 4,905
Montefinese et al. (2014) IT Italian VAD 1,121
Soares et al. (2012) PT Portuguese VAD 1,034
Moors et al. (2013) NL Dutch VAD 4,299
Sianipar et al. (2016) ID Indonesian VAD 1,490

Table 1: Emotion lexicons used in our experiments (with their bibliographic source, identifier, language they refer
to, emotion representation format, and number of lexical entries they contain).

Word Valence Arousal Dominance
sunshine 8.1 5.3 5.4
terrorism 1.6 7.4 2.7
orgasm 8.0 7.2 5.8

Table 2: Three sample entries from Warriner et al.
(2013). They use 9-point scales ranging from 1
(most negative/calm/submissive) to 9 (most posi-
tive/excited/dominant).

WORD2VEC (with its variants SGNS and CBOW)
features an extremely trimmed down neural
network (Mikolov et al., 2013). FASTTEXT is
a derivative of WORD2VEC, also incorporating
sub-word character n-grams (Bojanowski et al.,
2017). Unlike the former two algorithms which
fit word embeddings in a streaming fashion,
GLOVE trains word vectors directly on a word
co-occurrence matrix under the assumption to
make more efficient use of word statistics (Pen-
nington et al., 2014). Somewhat similar, SVDPPMI
performs singular value decomposition on top of
a point-wise mutual information co-occurrence
matrix (Levy et al., 2015).

In order to increase the reproducibility of our
experiments, we rely on the following widely
used, publicly available embedding models trained
on very large corpora (summarized in Table 3):
the SGNS model trained on the Google News cor-
pus2 (GOOGLE), the FASTTEXT model trained
on Common Crawl3 (COMMON), as well as the
FASTTEXT models for a wide range of languages
trained on the respective Wikipedias4 (WIKI).

2https://code.google.com/archive/p/
word2vec/

3https://fasttext.cc/docs/en/
english-vectors.html

4https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.
md

Note that WIKI denotes multiple embedding mod-
els with different training and vocabulary sizes
(see Grave et al. (2018) for further details). Ad-
ditionally, we were given the opportunity to reuse
the English embedding model from Sedoc et al.
(2017) (GIGA), a strongly related contribution (see
below). Their embeddings were trained on the En-
glish Gigaword corpus (Parker et al., 2011).

Word-Level Prediction. One of the early ap-
proaches to word polarity induction which is
still popular today (Köper and Schulte im Walde,
2016) was introduced by Turney and Littman
(2003). They compute the polarity of an unseen
word based on its point-wise mutual information
(PMI) to a set of positive and negative seed words,
respectively.

SemEval-2015 Task 10E featured polarity in-
duction on Twitter (Rosenthal et al., 2015). The
best system relied on support vector regression
(SVR) using a radial base function kernel (Amir
et al., 2015). They employ the embedding vec-
tor of the target word as features. The results of
their SVR-based system were beaten by the DEN-
SIFIER algorithm (Rothe et al., 2016). DENSIFIER

learns an orthogonal transformation of an embed-
ding space into a subspace of strongly reduced di-
mensionality.

Hamilton et al. (2016) developed SENTPROP, a
graph-based, semi-supervised learning algorithm
which builds up a word graph, where vertices cor-
respond to words (of known as well as unknown
polarity) and edge weights correspond to the sim-
ilarity between them. The polarity information is
then propagated through the graph, thus comput-
ing scores for unlabeled nodes. According to their
evaluation, DENSIFIER seems to be superior over-
all, yet SENTPROP produces competitive results
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ID Language Method Corpus # Tokens # Types # Dimensions

GOOGLE English SGNS Google News 1× 1011 3× 106 300
COMMON English FASTTEXT Common Crawl 6× 1011 2× 106 300
GIGA English CBOW Gigawords 4× 10 9 2× 106 300
WIKI all FASTTEXT Wikipeda — — 300

Table 3: Embedding models used for our experiments with identifier, language, embedding algorithm, training
corpus, its size in the number of tokens, size of the vocabulary (types) of the resulting embedding model and its
dimensionality.

only when the seed lexicon or the corpus the word
embeddings are trained on is very small.5

For word emotion induction, a very similar ap-
proach to SENTPROP has been proposed by Wang
et al. (2016a). They also propagate affective infor-
mation (Valence and Arousal, in this case) through
a word graph with similarity weighted edges.

Sedoc et al. (2017) recently proposed an ap-
proach based on signed spectral clustering where a
word graph is constructed not only based on word
similarity but also on the considered affective in-
formation (again, Valence and Arousal). The emo-
tion value of a target word is then computed based
on the seed words in its cluster. They report to
outperform the results from Wang et al. (2016a).

Contrary to the trend to graph-based methods,
the best system of the IALP 2016 Shared Task
on Chinese word emotion induction (Yu et al.,
2016b) employed a simple feed-forward neural
network (FFNN) with one hidden layer in com-
bination with boosting (Du and Zhang, 2016).

Another very recent contribution which advo-
cates a supervised set-up was published by Li et al.
(2017). They propose ridge regression, again us-
ing word embeddings as features. Even with this
simple approach, they report to outperform many
of the above methods in the VAD prediction task.6

Sentence-Level and Text-Level Prediction.
Different from the word-level prediction task
(the one we focus on in this contribution), the
determination of emotion values for higher-level
linguistic units (especially sentences and texts)
is also heavily investigated. For this problem,
DL approaches are meanwhile fully established
as the method of choice (Wang et al., 2016b;
Abdul-Mageed and Ungar, 2017; Felbo et al.,
2017; Mohammad and Bravo-Marquez, 2017).

5Personal correspondence with William L. Hamil-
ton; See also README at https://github.com/
williamleif/socialsent

6However, they also report extremely weak performance
figures for some of their reference methods.

It is important to note, however, that the meth-
ods discussed for these higher-level units cannot
easily be transferred to solve the word emotion in-
duction problem. Sentence-level and text-level ar-
chitectures are either adapted to sequential input
data (typical for RNN, LSTM, GRNN and related
architectures) or spatially arranged input data (as
with CNN architectures). However, for word em-
beddings (the default input for word emotion in-
duction) there does not seem to be any meaningful
order of their components. Therefore, these more
sophisticated DL methods are, for the time being,
not applicable for the study at hand.

3 Methods

In this section, we will first introduce various ref-
erence methods (two originally polarity-based for
which we offer adaptations for VAD prediction)
before defining our own neural MTL model and
discussing its difference from previous work.

Let V := {w1, w2, ..., wm} be our word vocab-
ulary and let E := {e1, e2, ..., em} be a set of em-
bedding vectors such that ei ∈ Rn denotes the n-
dimensional vector representation of word wi. Let
D := {d1, d2, ..., dl} be a set of emotional dimen-
sions. Our task is to predict the empirically deter-
mined emotion vector emo(w) ∈ Rl given a word
w and the embedding space E.

3.1 Reference Methods

Linear Regression Baseline (LinReg). We pro-
pose (multi-variate) linear regression as an obvi-
ous baseline for the problem:

emoLR(wk) := Wek + b (1)

where W is a matrix, Wi∗ contains the regression
coefficients for the i-th affective dimension and b
is the vector of bias terms. The model parame-
ters are fitted using ordinary least squares. Tech-
nically, we use the scikit-learn.org imple-
mentation with default parameters.
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Ridge Regression (RidgReg). Li et al. (2017)
propose ridge regression for word emotion induc-
tion. Ridge regression works identically to lin-
ear regression during prediction, but introduces
L2 regularization during training. Following the
authors, for our implementation, we again use
the scikit-learn implementation with default
parameters.

Turney-Littman Algorithm (TL). As one of
the earliest contributions in the field, Turney and
Littman (2003) defined a simple PMI-based ap-
proach to determine the semantic polarity SPTL
of a word w:

SPTL(w) :=
∑

s∈seeds+
pmi(w, s) −

∑

s∈seeds−
pmi(w, s)

(2)
where seeds+ and seeds− are sets of positive and
negative seed words, respectively. Since this algo-
rithm is still popular today (Köper and Schulte im
Walde, 2016), we here provide a novel modifica-
tion for adapting this originally polarity-based ap-
proach to word emotion induction with vectorial
seed and output values.

First, we replace PMI-based association of seed
and target word w and s by their similarity sim
based on their word embeddings ew and es:

sim(w, s) := max(0,
ew · es

||ew|| × ||es||
) (3)

emo(w) :=
∑

s∈seeds+
sim(w, s) −

∑

s∈seeds−
sim(w, s)

(4)
Although this step is technically not required for
the adaptation, it renders the TL algorithm more
comparable to the other approaches evaluated in
Section 4 besides from most likely increasing per-
formance. Equation (4) can be rewritten as

emo(w) :=
∑

s∈seeds
sim(w, s)× emo(s) (5)

where seeds := seeds+ ∪ seeds− and emo(s)
maps to 1, if s ∈ seeds+, and −1, if s ∈ seeds−.

Equation (5) can be trivially adapted to an n-
dimensional emotion format by redefining emo(s)
such that it maps to a vector from Rn instead of
{−1, 1}. Our last step is to introduce a normal-
ization term such that emo(w)TL lies within the

range of the seed lexicon.

emoTL(w) :=

∑
s∈seeds sim(w, s)× emo(s)∑

s∈seeds sim(w, s)
(6)

As can be seen from Equation (6), for the more
general case of n-dimensional emotion prediction,
the Turney-Littman algorithm naturally translates
into a weighted average where the seed emotion
values are weighted according to the similarity to
the target item.

Densifier. Rothe et al. (2016) train an orthogo-
nal matrix Q ∈ Rn×n (n being the dimensionality
of the word embeddings) such that applying Q to
an embedding vector ei concentrates all the polar-
ity information in its first dimension such that the
polarity of a word wi can be computed as

SPDENSIFIER(wi) := pQei (7)

where p = (1, 0, 0, ..., 0)T ∈ R1×n .
For fitting Q, the seeds are arranged into pairs of

equal polarity (the set pairs=) and those of oppos-
ing polarity (pairs6=). A good fit for Q will mini-
mize the distance within the former and maximize
the distance within the latter which can be ex-
pressed by the following two training objectives:

argmin
Q

∑

(wi,wj)∈pairs=
|pQ(ei − ej)| (8)

argmax
Q

∑

(wi,wj)∈pairs6=
|pQ(ei − ej)| (9)

The objectives described in the expressions (8) and
(9) are combined into a single loss function (using
a weighting factor α ∈ [0, 1]) which is then mini-
mized using stochastic gradient descent (SGD).

To adapt this algorithm to dimensional emotion
formats, we construct a positive seed set, seeds+v ,
and a negative seed set, seeds−v , for each emotion
dimension v ∈ D. LetMv be the mean value of all
the entries of the training lexicon for the affective
dimension v. Let SDv be the respective standard
deviation and β ∈ R, β ≥ 0. Then all entries
greater than Mv + βSDv are assigned to seeds+v
and those less than Mv − βSDv are assigned to
seeds−v . Q is fitted individually for each emotion
dimension v.

Training was performed according to the orig-
inal paper with the exception that (following
Hamilton et al. (2016)) we did not apply the
proposed re-orthogonalization after each training
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step, since we did not find any evidence that
this procedure actually results in improved perfor-
mance. The hyperparameters α and β were set to
.7 and .5 (respectively) for all experiments based
on a pilot study. Since the original implementa-
tion is not accessible, we devised our own using
tensorflow.org.

Boosted Neural Networks (ensembleNN). Du
and Zhang (2016) propose simple FFNNs in com-
bination with a boosting algorithm. An FFNN
consists of an input or embedding layer with acti-
vation a(0) ∈ Rn which is equal to the embedding
vector ek when predicting the emotion of a word
wk. The input layer is followed by multiple hidden
layers with activation

a(l+1) := σ(W (l+1)a(l) + b(l+1)) (10)

where W (l+1) and b(l+1) are the weights and bi-
ases for layer l + 1 and σ is a nonlinear activation
function. Since we treat emotion prediction as a
regression problem, the activation on the output
layer aout (where out is the number of non-input
layers in the network) is computed as the affine
transformation

a(out) := W (out)a(out−1) + b(out) (11)

Boosting is a general machine learning tech-
nique where several weak estimators are combined
to form a strong estimator. The authors used
FFNNs with a single hidden layer of 100 units
and rectified linear unit (ReLU) activation. The
boosting algorithm AdaBoost.R2 (Drucker, 1997)
was used to train the ensemble (one per affective
dimension). Our re-implementation copies their
technical set-up7 exactly using scikit-learn.

3.2 Multi-Task Learning Neural Network
The approaches introduced in Section 3.1 and Sec-
tion 2 vary largely in their methodological founda-
tions, i.e., they comprise semi-supervised and su-
pervised machine learning techniques—both sta-
tistical and neural ones. Yet, they all have in com-
mon that they treat the prediction of the different
emotional dimensions as separate tasks. That is,
they fit one individual model per VAD dimension
without sharing parameters between them.

In contradistinction, the key feature of our ap-
proach is that we fit a single FFNN model to

7Original settings available at https://github.
com/StevenLOL/ialp2016_Shared_Task
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Figure 2: MTL architecture for VAD prediction.

predict all VAD dimensions jointly, thus apply-
ing multi-task learning to word emotion induction.
Hence, we treat the prediction of Valence, Arousal
and Dominance as three independent tasks. Our
multi-task learning neural network (MTLNN) (de-
picted in Figure 2) has an output layer of three
units such that each output unit represents one of
the VAD dimensions. However, the activation in
our two hidden layers (of 256 and 128 units, re-
spectively) is shared across all VAD dimensions,
and so are the associated weights and biases.

Thus, while we train our MTLNN model it is
forced to learn intermediate representations of the
input which are generally informative for all VAD
dimensions. This serves as a form of regulariza-
tion, since it becomes less likely for our model to
fit the noise in the training set as noise patterns
may vary across emotional dimensions. Simulta-
neously, this has an effect similar to an increase
of the training size, since each sample now leads
to additional error signals during backpropagation.
Intuitively, both properties seem extremely use-
ful for relatively small-sized emotion lexicons (see
Section 4 for empirical evidence).

The remaining specifications of our model
are as follows. We use leaky ReLU activation
(LReLU) as nonlinearity (Maas et al., 2013).

LReLU(zi) := max(γzi, zi) (12)

with γ := .01 for our experiments. For regular-
ization, dropout (Srivastava et al., 2014) is applied
during training with a probability of .2 on the em-
bedding layer and .5 on the hidden layers. We train
for 15, 000 iterations (well beyond convergence on
each data set we use) with the ADAM optimizer
(Kingma and Ba, 2015) of .001 base learning rate,
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batch size of 128 and Mean-Squared-Error loss.
The weights are randomly initialized (drawn from
a normal distribution with a standard deviation
.001) and biases are uniformly initialized as .01.
Tensorflow is used for implementation.

4 Results

In this section, we first validate our assumption
that MTL is superior to single-task learning for
word emotion induction. Next, we compare our
proposed MTLNN model in a large-scale evalua-
tion experiment.

Performance figures will be measured as Pear-
son correlation (r) between our automatically pre-
dicted values and human gold ratings. The Pear-
son correlation between two data series X =
x1, x2, ..., xn and Y = y1, y2, ..., yn takes values
between +1 (perfect positive correlation) and −1
(perfect negative correlation) and is computed as

rxy :=

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

(13)
where x̄ and ȳ denote the mean values for X and
Y , respectively.

4.1 Single-Task vs. Multi-Task Learning

The main hypothesis of this contribution is that an
MTL set-up is superior to single-task learning for
word emotion induction. Before proceeding to the
large-scale evaluation of our proposed model, we
will first examine this aspect of our work.

For this, we use the following experimental set-
up: We will compare the MTLNN model against
its single-task learning counterpart (SepNN).
SepNN simultaneously trains three separate neu-
ral networks where only the input layer, yet no
parameters of the intermediate layers are shared
across the models. Each of the separate networks
is identical to MTLNN (same layers, dropout, ini-
tialization, etc.), yet has only one output neuron,
thus modeling only one of the three affective VAD
dimensions. SepNN is equivalent to fitting our
proposed model (but with only one output unit)
to the different VAD dimensions individually, one
after the other. Yet, training these separate net-
works simultaneously (not jointly!) makes both
approaches, MTLNN and SepNN, easier to com-
pare.

We will run MTLNN against SepNN on the
EN and the EN+ data set (the former is very
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Figure 3: Performance of our proposed MTLNN
model vs. its single-task learning counterpart SepNN
against training steps.

small, the latter relatively large; see Table 1) us-
ing the following set-up: for each gold lexicon
and model, we randomly split the data 9/1 and
train for 15, 000 iterations on the larger split (the
same number of steps is used for the main exper-
iment). After each one-thousand iterations step,
model performance is tested on the held-out data.
This process will be repeated 20 times and the per-
formance figures at each one-thousand iterations
step will be averaged. In a final step, we will av-
erage the results for each of the three emotional
dimensions and only plot this average value. The
results of this experiment are depicted in Figure 3.

First of all, each combination of model and data
set displays a satisfactory performance of at least
r ≈ .75 after 15,000 steps compared to previous
work (see below). Overall, performance is higher
for the smaller EN lexicon. Although counterintu-
itive (since smaller lexicons lead to fewer training
samples), this finding is consistent with prior work
(Sedoc et al., 2017; Li et al., 2017) and is prob-
ably related to the fact that smaller lexicons usu-
ally comprise a larger portion of strongly emotion-
bearing words. In contrast, larger lexicons add
more neutral words which tend to be harder to pre-
dict in terms of correlation.

As hypothesized, the MTLNN model does in-
deed outperform the single task model on both
data sets. Our data also suggest that the gain from
the MTL approach is larger on smaller data sets
(again in concordance with our expectations). Fig-
ure 3 reveals that this might be due to the regulariz-
ing effect of MTL, since the SepNN model shows
signs of overfitting on the EN data set. Yet, even
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Language Data Embeddings LinReg RidgReg TL Densifier ensembleNN MTLNN

English EN+ GOOGLE 0.696 0.696 0.631 0.622 0.728 0.739***
English EN+ COMMON 0.719 0.719 0.659 0.652 0.762 0.767***
English EN+ WIKI 0.666 0.666 0.591 0.584 0.706 0.712***
English EN GOOGLE 0.717 0.732 0.723 0.712 0.688 0.810***
English EN COMMON 0.731 0.741 0.741 0.726 0.717 0.824***
English EN WIKI 0.656 0.667 0.674 0.665 0.681 0.777***
Spanish ES WIKI 0.698 0.709 0.704 0.690 0.700 0.804***
Spanish ES+ WIKI 0.693 0.694 0.603 0.598 0.766 0.778***
German DE WIKI 0.709 0.719 0.714 0.710 0.700 0.801***
Chinese ZH WIKI 0.716 0.717 0.586 0.599 0.737 0.744**
Polish PL WIKI 0.650 0.650 0.577 0.553 0.687 0.712***
Italian IT WIKI 0.656 0.665 0.672 0.659 0.630 0.751***
Portuguese PT WIKI 0.673 0.684 0.685 0.678 0.672 0.768***
Dutch NL WIKI 0.651 0.652 0.559 0.532 0.704 0.730***
Indonesian ID WIKI 0.581 0.586 0.581 0.576 0.575 0.660***

Average 0.638 0.659 0.611 0.605 0.676 0.728***

Table 4: Results of our main experiment in averaged Pearson correlation; best result per condition (in rows) in
bold, second best result underlined; significant difference (paired two-tailed t-test) over the second best system
marked with “*”, “**”, or “***” for p < .05, .01, or .001, respectively.

when the separate model does not overfit (as on
the EN+ lexicon), MTLNN reveals better results.

Although SepNN needs fewer training steps be-
fore convergence, the MTLNN model trains much
faster, thus still converging faster in terms of run-
time (about a minute on a middle-class GPU). This
is because MTLNN has only about a third as many
parameters as the separate model SepNN.

4.2 Comparison against Reference Methods

We combined each of the selected lexicon data
sets (Table 1) with each of the applicable publicly
available embedding models (Section 2; the em-
bedding model provided by Sedoc et al. (2017)
will be used separately) for a total of 15 condi-
tions, i.e, the rows in Table 4.

For each of these conditions, we performed a
10-fold cross-validation (CV) for each of the 6
methods presented in Section 3 such that each
method is presented with the identical data splits.8

For each condition, algorithm, and VA(D) dimen-
sion, we compute the Pearson correlation r be-
tween gold ratings and predictions. For concise-
ness, we present only the average correlation over
the respective affective dimensions in Table 4 (Va-
lence and Arousal for ES+ and ZH, VAD for the
others). Note that the methods we compare our-
selves against comprise the current state-of-the art
in both polarity and emotion induction (as de-
scribed in Section 2).

8This procedure constitutes a more direct comparison
than using different splits for each method and allows using
paired t-tests.

As can be seen, our proposed MTLNN model
outperforms all other approaches in each of the 15
conditions. Regarding the average over all affec-
tive dimensions and conditions, it outperforms the
second best system, ensembleNN, by more than
5%-points. In line with our results from Sec-
tion 4.1, those improvements are especially pro-
nounced on smaller data sets containing one up
to two thousand entries (EN, ES, IT, PT, ID) with
close to 10%-points improvement over the respec-
tive second-best system.

Concerning the relative ordering of the affec-
tive dimensions, in line with former studies (Sedoc
et al., 2017; Li et al., 2017), the performance fig-
ures for the Valence dimension are usually much
higher than for Arousal and Dominance. Using
MTLNN, for many conditions, we see the pat-
tern that Valence is about 10%-points above the
VAD average, Arousal being 10%-points below
and Dominance being roughly equal to the aver-
age over VAD (this applies, e.g., to EN, EN+ and
IT). On other data sets (e.g., PL, NL and ID), the
ordering between Arousal and Dominance is less
clear though Valence still stands out with the best
results. We observe the same general pattern for
the reference methods, as well.

Concerning the comparison to Sedoc et al.
(2017), arguably one of most related contributions,
they report a performance of r = .768 for Valence
and .582 for Arousal on the EN+ data set in a 10-
fold CV using their own embeddings. In contrast,
MTLNN using the COMMON model achieves r =
.870 and .674 in the same set-up—about 10%-
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Valence Arousal Dominance
MTLNN EN .918 .730 .825
MTLNN EN+ .870 .674 .758
ISR EN ∼ EN+ .953 .759 .795
SHR EN+ .914 .689 .770

Table 5: Comparison of the MTLNN model against
inter-study reliability (ISR) between the EN and the
EN+ data set and split-half reliability (SHR) of the EN+
data set (in Pearson correlation).

points better on both dimensions. However, the
COMMON model was trained on much more data
than the embeddings Sedoc et al. (2017) use. For
the most direct comparison, we also repeated this
experiment using their embedding model (GIGA).
We find that MTLNN still clearly outperforms
their results with r = .814 for Valence and .607
for Arousal.9

MTLNN achieves also very strong results in di-
rect comparison to human performance (see Table
5). Warriner et al. (2013) (who created EN+) re-
port an inter-study reliability (ISR; i.e., the corre-
lation of the aggregated ratings from two different
studies) between the EN and the EN+ lexicon of
r = .953, .759 and .795 for VAD, respectively.
Since EN is a subset of EN+, we can compare
these performance figures against our own results
on the EN data set where we achieved r = .918,
.730 and .825, respectively. Thus, our proposed
method did actually outperform human reliability
for Dominance and is competitive for Valence and
Arousal, as well.

This general observation is also backed up by
split-half reliability data (SHR; i.e., when ran-
domly splitting all individual ratings in two groups
and averaging the ratings within each group, how
strong is the correlation between these averaged
ratings?). For the EN+ data set, Warriner et al.
(2013) report an SHR of r = .914, .689 and .770
for VAD, respectively. Again, our MTLNN model
performs very competitive with r = .870, .674
and .758, respectively using the COMMON embed-
dings.

5 Conclusion

In this paper, we propose multi-task learning
(MTL) as a simple, yet surprisingly efficient
method to improve the performance and, at the
same time, to deal with existing data limitations

9We also clearly outperform their results for the NL and
ES+ data sets. For these cases, our embedding models were
similar in training size.

in word emotion induction—the task to predict
a complex emotion score for an individual word.
We validated our claim that MTL is superior to
single-task learning by achieving better results
with our proposed method in performance as well
as training time compared to its single-task coun-
terpart. We performed an extensive evaluation of
our model on 9 typologically diverse languages,
using different kinds of word embedding mod-
els for a total 15 conditions. Comparing our
approach to state-of-the-art methods from word
polarity and word emotion induction, our model
turns out to be superior in each condition, thus set-
ting a novel state-of-the-art performance for both
polarity and emotion induction. Moreover, our re-
sults are even competitive to human annotation re-
liability in terms of inter-study as well as split-half
reliability. Since this contribution was restricted to
the VAD format of emotion representation, in fu-
ture work we will examine whether MTL yields
similar gains for other representational schemes,
as well.
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Abstract

We often talk about events that impact us posi-
tively or negatively. For example “I got a job”
is good news, but “I lost my job” is bad news.
When we discuss an event, we not only under-
stand its affective polarity but also the reason
why the event is beneficial or detrimental. For
example, getting or losing a job has affective
polarity primarily because it impacts us finan-
cially. Our work aims to categorize affective
events based upon human need categories that
often explain people’s motivations and desires:
PHYSIOLOGICAL, HEALTH, LEISURE, SO-
CIAL, FINANCIAL, COGNITION, and FREE-
DOM. We create classification models based
on event expressions as well as models that
use contexts surrounding event mentions. We
also design a co-training model that learns
from unlabeled data by simultaneously train-
ing event expression and event context classi-
fiers in an iterative learning process. Our re-
sults show that co-training performs well, pro-
ducing substantially better results than the in-
dividual classifiers.

1 Introduction

Recent research has focused on identifying affec-
tive events in text, which are activities or states
that positively or negatively affect the people who
experience them. Recognizing affective events in
text is challenging because they appear as factual
expressions and their affective polarity is often im-
plicit. For example, “I broke my arm” and “I got
fired” are usually negative experiences, while “I
broke a record” and “I went to a concert” are
typically positive experiences. Several NLP tech-
niques have been developed to recognize affec-
tive events, including patient polarity verb boot-
strapping (Goyal et al., 2010, 2013), implicature
rules (Deng and Wiebe, 2014), label propagation
(Ding and Riloff, 2016), pattern-based learning

(Vu et al., 2014; Reed et al., 2017), and semantic
consistency optimization (Ding and Riloff, 2018).

Our research aims to probe deeper and under-
stand not just the polarity of affective events, but
the reason for the polarity. Events can impact peo-
ple in many ways, and understanding why an event
is beneficial or detrimental is a fundamental as-
pect of language understanding and narrative text
comprehension. Additionally, many applications
could benefit from understanding the nature of af-
fective events, including text summarization, con-
versational dialogue processing, and mental health
therapy or counseling systems. As an illustra-
tion, a mental health therapy system can benefit
from understanding why someone is in a negative
state. If the triggering event for depression is “I
broke my leg” then the reason is about the per-
son’s Health, but if the triggering event is “I broke
up with my girlfriend” then the reason is based on
Social relationships.

We hypothesize that the polarity of affective
events can often be attributed to a relatively small
set of human need categories. Our work is moti-
vated by theories in psychology that explain peo-
ple’s motivations, desires, and overall well-being
in terms of categories associated with basic hu-
man needs, such as Maslow’s Hierarchy of Needs
(Maslow et al., 1970) and Fundamental Human
Needs (Max-Neef et al., 1991). Drawing upon
these works, we propose that the polarity of af-
fective events often arises from 7 types of human
needs: PHYSIOLOGICAL, HEALTH, LEISURE,
SOCIAL, FINANCIAL, COGNITION, and FREE-
DOM. For example, “I broke my arm” has neg-
ative polarity because it negatively impacts one’s
Health, “I got fired” is negative because it neg-
atively impacts one’s Finances, and “I am con-
fused” is negative because it reflects a problem re-
lated to Cognition.

We explore this hypothesis and tackle the chal-
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lenge of categorizing affective events in text with
respect to these 7 human need categories. As our
evaluation data, we use events extracted from per-
sonal blog posts and manually labeled with affec-
tive polarity in previous work (Ding and Riloff,
2018). These affective events were then subse-
quently annotated for the human need categories.

In this paper, we design several types of classifi-
cation models that learn from both labeled and un-
labeled data. First, we present supervised learning
models that use lexical and embedding features for
the words in event expressions, as well as models
that learn from the sentence contexts surrounding
mentions of event expressions. Next, we explore
self-training and co-training models that exploit
both labeled and unlabeled data for training. The
most effective system is a co-training model that
uses two classifiers with two different views in an
iterative learning process: one classifier only uses
the words in an event expression, and the other
classifier only uses the contexts surrounding in-
stances of an event expression. Our results show
that this co-training model effectively uses unla-
beled data to substantially improve results com-
pared to classifiers trained only with labeled data,
yielding gains in both precision and recall.

2 Related Work

Recently, there has been growing interest in rec-
ognizing the affective polarity of events. For ex-
ample, Goyal et al. (2013) developed a boot-
strapped learning method to learn patient polar-
ity verbs, which impart affective polarities to their
patients. Li et al. (2015) designed methods to ex-
tract verb expressions that imply negative opin-
ions from reviews. Rashkin et al. (2016) re-
cently proposed connotation frames to incorpo-
rate the connotative polarities for a verb’s argu-
ments from the writer’s and other event entities’
perspectives. Li et al. (2014) proposed a boot-
strapping approach to extract major life events
from tweets using congratulation and condolence
speech acts. Most of these major life events are
affective although their work did not identify po-
larity. Another group of researchers have stud-
ied +/- effect events (Deng et al., 2013; Choi and
Wiebe, 2014) which they previously called bene-
factive/malefactive events. Their work mainly fo-
cused on inferring implicit opinions through im-
plicature rules (Deng and Wiebe, 2014, 2015).

Ding and Riloff (2016) designed an event con-

text graph model to identify affective events us-
ing label propagation. Reed et al. (2017) demon-
strated that automatically acquired patterns could
benefit the recognition of first-person related af-
fective sentences. Most recently, Ding and Riloff
(2018) developed a semantic consistency model
to induce a large set of affective events using
three types of semantic relations in an optimiza-
tion framework. (We use their annotated affective
event data set in our work.) All of this previous
work only identifies affective events and their po-
larities. In contrast, our work aims to identify the
reason for the affective polarity of an event.

The human need categories are inspired by two
prior theories. The first one is Maslow’s Hierar-
chy of Needs (Maslow et al., 1970) which was de-
veloped to study people’s motivations and person-
alities. The second one is Fundamental Human
Needs (Max-Neef et al., 1991) which was devel-
oped to help communities identify their strengths
and weaknesses. The human need categories are
also related to the concept of “goals”, which has
been proposed by (Schank and Abelson, 1977)
to understand narrative stories. Goals could be
very specific to a character in a particular narra-
tive story. However, but many types of goals orig-
inate from universal needs and desires shared by
most people (Max-Neef et al., 1991). In addition,
our work is also related to research on wish de-
tection (Goldberg et al., 2009), desire fulfillment
(Chaturvedi et al., 2016), and modelling protago-
nist goals and desires (Rahimtoroghi et al., 2017).

Self-training is a semi-supervised learning
method to improve performance by exploiting un-
labeled data. Self-training has been successfully
used in many NLP applications such as informa-
tion extraction (Ding and Riloff, 2015) and syn-
tactic parsing (McClosky et al., 2006). Co-training
(Blum and Mitchell, 1998) uses both labeled and
unlabeled data to train models that have two differ-
ent views of the data. Co-training has been previ-
ously used for many NLP tasks including spectral
clustering (Kumar and Daumé, 2011), word sense
disambiguation (Mihalcea, 2004), coreference res-
olution (Phillips and Riloff, 2002), and sentiment
analysis (Wan, 2009; Xia et al., 2015).

3 Affective Event Data

The goal of our research is to categorize affective
events based on 7 categories of human needs. To
facilitate this work, we build upon a large data set
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Physiological Health Leisure Social Finance Cognition Freedom Emotion None
19 (4%) 52 (10%) 75 (14%) 108 (20%) 29 (5%) 26 (5%) 7 (1%) 128 (24%) 98 (18%)

Table 1: Distribution of Human Need Categories (each cell shows the frequency and percentage).

created for prior research (Ding and Riloff, 2018)
which aims to identify affective events. We will
refer to this data as the AffectEvent dataset. We
will briefly describe this data and the human need
category annotations that we added on top of it.

The AffectEvent dataset contains events ex-
tracted from a personal story corpus that was cre-
ated by applying a personal story classifier (Gor-
don and Swanson, 2009) to 177 million blog posts.
The personal story corpus contains 1,383,425 per-
sonal story blogs. StanfordCoreNLP (Manning
et al., 2014) was used for POS and NER tagging
and SyntaxNet (Andor et al., 2016) for parsing.
Each event is represented using a frame-like struc-
ture to capture the meanings of different types of
events. Each event representation contains four
components: 〈Agent, Predicate, Theme, PP〉.
The Predicate is a simple verb phrase correspond-
ing to an action or state. The Agent is a named
entity, nominal, or pronoun, and is extracted us-
ing syntactic heuristics rather than semantic role
labeling. We use “Theme” loosely to allow a NP
or adjective to fill this role. The PP component
is composed of a preposition and a NP. All words
in the event are lemmatized, and active and passive
voices are normalized to have the same representa-
tion. See (Ding and Riloff, 2018) for more details
of the event representation. Table 2 shows some
examples of extracted events.

Positive Events Human Need
〈 our pizza; arrive, -, -〉 Physiological
〈 ear, be, better, - 〉 Health
〈 I, watch, Hellboy II, -〉 Leisure
〈 we, get, marry, -〉 Social
〈 I, get, my new laptop, -〉 Finance
〈 my memory, be, vivid, -〉 Cognition
〈 my heart, feel, happy, -〉 Emotion
〈 we, be, legal, -〉 None
Negative Events Human Need
〈 I, grow, hungry, - 〉 Physiological
〈 my face, look, pale, - 〉 Health
〈 -, rain out, game, -〉 Leisure
〈 you, confront, me, -〉 Social
〈 I, be, unemployed, at time 〉 Finance
〈 my memory, not serve, me, -〉 Cognition
〈 I, be, scared, -〉 Emotion
〈 it, not work, -, for me〉 None

Table 2: Examples of Affective Events with Human
Need Category Labels

3.1 Human Need Category Annotations

Affective events impact people in a positive or
negative way for a variety of reasons. We hypoth-
esized that the polarity of most affective events
arises from the satisfaction or violation of basic
human needs. Psychologists have developed theo-
ries that explain people’s motivations, desires, and
overall well-being in terms of categories associ-
ated with basic human needs, such as Maslow’s
Hierarchy of Needs (Maslow et al., 1970) and Fun-
damental Human Needs (Max-Neef et al., 1991).
Based upon this work, we defined 7 human need
categories, which are briefly described below.

Physiological Needs maintain our body’s basic
functions (e.g., air, food, water, sleep). Health
Needs are to be physically healthy and safe.
Leisure Needs are to have fun, to be relaxed, to
have leisure time, to appreciate and enjoy beauty.
Social Needs are to have good social relations
(e.g., family, friendship), to have good self-worth
and self-esteem, and to be respected by others. Fi-
nancial Needs are to obtain and protect financial
income, to acquire and maintain valuable posses-
sions, to have a job and satisfying work. Cogni-
tion Needs are to obtain skills, information, and
knowledge, to receive education, to improve one’s
intelligence, and to mentally process information
correctly. Freedom Needs are the ability to move
or change positions freely, and to access things
or services in a timely manner. We also de-
fined two categories for event expressions that
represent explicit emotions and opinions (Emo-
tions/Sentiments/Opinions) and events that do not
fall into any other categories (None of the Above).

We added manual annotations for human need
categories on top of the manually annotated pos-
itive and negative affective events in the Af-
fectEvent dataset. Three people were asked to
assign a human need category label to each of
the 559 affective events in the AffectEvent test
set. Annotators achieved good pairwise inter-
annotator agreement (κ ≥ .65) on this task. The
Cohen’s kappa scores were κ=.69, κ=.66 and
κ=.65. We assigned a single category to each
event because most of the affective events fell into
just one category in our preliminary study, even
though some cases could legitimately be argued
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for multiple categories. We discuss this issue fur-
ther in Section 5.4

The distribution of human need categories is
shown in Table 1. Since very few affective events
were found to belong to the Freedom category, this
category was merged into None. Additionally, 17
events received three different labels from the an-
notators, so they were discarded. The majority
label was then assigned to the remaining events,
yielding a gold standard data set of 542 affective
events with human need category labels. Some of
the annotated examples are shown in Table 2. A
more detailed description of the human need cat-
egory definitions, data set, and manual annotation
effort is described in (Ding et al., 2018). This data
set is freely available for other researchers to use.

In the next section, we present classification
models designed to tackle this human needs cat-
egorization task.

4 Categorizing Human Needs with
Labeled and Unlabeled Data

Automatically categorizing affective events in text
based on human needs is a new task, so we in-
vestigated several types of approaches. First, we
designed supervised classifiers to categorize af-
fective events based upon the words in the event
expressions, which we will refer to as Event Ex-
pression Classifiers. We explored lexical fea-
tures, word embedding features, and semantic cat-
egory features, along with several types of ma-
chine learning algorithms.

Our task is to determine the human need cate-
gory of an affective event based on the meaning of
the event itself, independent of any specific con-
text.1 But we hypothesized that collecting the con-
texts around instances of the events could also pro-
vide valuable information to infer human need cat-
egories. So we also designed Event Context Clas-
sifiers to use the sentence contexts around event
mentions as features.

Our gold standard data set is relatively small, so
supervised learning that relies entirely on manu-
ally labeled data may not have sufficient coverage
to perform well across the human need categories.
However, the AffectEvent dataset contains a very
large set of events that were extracted from the
same blog corpus, but not manually labeled with

1We view this as assuming the most common interpreta-
tion of an event, which would be the default in the absence of
context.

affective polarity. Consequently, we explored two
weakly supervised learning methods to exploit this
large set of unlabeled events. First, we tried self-
training to iteratively improve the event expres-
sion classifier. Second, we designed a co-training
model that takes advantage of both an event ex-
pression classifier and an event context classifier to
learn from the unlabeled events. These two types
of classifiers provide complementary views of an
event, so new instances labeled by one classifier
can be used as valuable new data to benefit the
other classifier, in an iterative learning cycle.

4.1 Event Expression Classifiers

The most obvious approach is to use the words in
event expressions as features for recognizing hu-
man need categories (e.g., {ear, be, better} for
the event <ear, be, better>). We experimented
with both lexical (string) features and pre-trained
word embedding features. For the latter, we used
GloVe (Pennington et al., 2014) vectors (200d)
pretrained on 27B tweets. For each event expres-
sion, we compute its embedding as the average of
its words’ embeddings.

We also designed semantic features using the
lexical categories in the LIWC lexicon (Pen-
nebaker et al., 2007) to capture a more general
meaning for each word. LIWC is a dictionary of
words associated with “psychologically meaning-
ful” lexical categories, some of which are directly
relevant to our task, such as AFFECTIVE, SO-
CIAL, COGNITIVE, and BIOLOGICAL PROCESS.
We identify the LIWC category of the head word
of each phrase in the event representation and use
them as Semantic Category features.

We experimented with three types of supervised
classification models: logistic regression (LR),
support vector machines (SVM), and recurrent
neural network classifiers (RNN). One advantage
of the RNN is that it considers the word order in
the event expression, which can be important. In
our experiments, we used the Scikit-learn imple-
mentation (Pedregosa et al., 2011) for the LR clas-
sifier, and LIBSVM (Chang and Lin, 2011) with a
linear kernel for the SVM classifier. For the RNN,
we used the example LSTM implementation from
Keras (Chollet et al., 2015) github, which was de-
veloped to build a sentiment classifier. We used
the default parameters in our experiments2.

2LR and SVM use the one-vs-rest (ovr) scheme, while
RNN is a single multi-class classifier.
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4.2 Event Context Classifiers

The event dataset was originally extracted from
a large collection of blog posts, which contain
many instances of the events in different sen-
tences. We hypothesized that the contexts sur-
rounding instances of an event can also provide
strong clues about the human need category asso-
ciated with the event. Therefore, we also created
Event Context Classifiers to exploit the sentence
contexts around event mentions. We explored sev-
eral designs for event context classifiers, which are
explained below.

ContextSentBOW : For each event in the training
set, we first collect all sentences mentioning this
event and assign the event’s human need category
as the label for each sentence. Each sentence is
then used as a training instance for the event con-
text classifier. We use a bag-of-words representa-
tion for each sentence.

ContextSentEmbed : This variation labels sen-
tences exactly the same way as the previous
model. But each sentence is represented as a dense
embedding vector, which is computed as the aver-
age of the embeddings for each word in the sen-
tence. We used GloVe (Pennington et al., 2014)
vectors (200d) pretrained on 27B tweets.

ContextAllBOW : Instead of treating each sen-
tence as a training instance, for this model we ag-
gregate all of the sentences that mention the same
event to create one giant context for the event.
Each event corresponds to one training instance
in this model, which is represented using bag-of-
word features.

ContextAllEmbed : This variation aggregates the
sentences that mention an event exactly like the
previous model. But each sentence is represented
as a dense embedding vector. First, we compute an
embedding vector for each sentence as the average
of the embeddings of its words. Then we compute
a single context embedding by averaging all of the
sentence embeddings.

In the data, some events appear in many sen-
tences, while others appear in just a few sentences.
To maintain balance, we randomly sample 10 sen-
tences for each event to use as its contexts.

To predict the human need category of an event,
we first apply the event context classifier to con-
texts that mention the event, which produces a
probability distribution over the human need cat-
egories. For each category, we compute its mean
probability. Finally, we assign the event with the

human need category that has the highest mean
probability (i.e. argmax).

4.3 Self-Training the Event Expression
Classifier

Our labeled data set is relatively small, but as men-
tioned previously, the AffectEvent dataset con-
tains a large set of unlabeled events as well. So
we designed a self-training model to try to itera-
tively improve the event expression classifier by
exploiting the unlabeled event data.

The self-training process works as follows. Ini-
tially, the event expression classifier is trained us-
ing the manually labeled events. Then the classi-
fier is applied to the unlabeled events and assigns
a human need category to each event with a con-
fidence value. For each human need category, we
select the unlabeled event that has been assigned to
that category with the highest confidence. There-
fore, each category will have one additional la-
beled event at each iteration. The newly labeled
events are added to the labeled data set, and the
classifier is re-trained for the next iteration.

4.4 Co-Training with Event Expression and
Event Context Classifiers

The sentence contexts in which an event appears
contain complementary information to the event
expression itself. So we designed co-training
models to exploit these complementary types of
classifiers to iteratively learn from unlabeled data.

Figure 1: The Co-Training Model

Figure 1 shows the architecture of our co-
training model. Initially, an event expression clas-
sifier and an event context classifier are indepen-
dently trained on the manually labeled training
data. Each classifier is then applied to the large
collection of unlabeled events EU . For each hu-
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man need category, we then select the event that
has been assigned to the category with the highest
confidence value as a new instance to label. Con-
sequently, each category will receive two addi-
tional labeled events at each iteration, one from the
event expression classifier and another one from
the event context classifier.3 Both sets of newly
labeled events are then added to the labeled set
EL, and each of the classifiers is re-trained on the
expanded set of labeled data. Because the classi-
fiers have different views of the events, the new
instances labeled by one classifier serve as fresh
training instances for the other, unlike self-training
with a single classifier where it is learning entirely
from its own predictions. The following section
describes the co-training algorithm in more detail.

4.4.1 The Co-Training Algorithm
Our co-training algorithm is shown in Algorithm
1. The input to the algorithm are the sets of la-
beled events EL and unlabeled events EU . Each
event is associated with both an event expression
and the set of sentences in which it occurs in the
blogs corpus.

For each iteration, the event expression classi-
fier is first trained using the labeled eventsEL with
the event expression view. Then, we construct an
event context view Xcon for each event in the la-
beled set EL. The context sentences are used dif-
ferently depending on the type of context model
(described in Section 4.2). An event context clas-
sifier is then trained using the context view Xcon.
Both classifiers are then independently applied to
the unlabeled events EU . For each human need
category, each classifier selects one event to label
based on its most confident prediction. All of the
newly labeled events are then added to the labeled
training set EL, and the process repeats.

4.4.2 Prediction with Co-Trained Classifiers
The co-training process simultaneously trains two
classifiers, so here we explain how we use the re-
sulting classifiers after the co-training process has
finished. For each event e in the test set, we apply
both the event expression classifier and the event
context classifier, which each produce a probabil-
ity distribution over the human need categories.
Then we explore two different methods to com-
bine the two probability distributions for each test

3The event expression classifier first selects from unla-
beled events, then the event context classifier does the selec-
tion. This ensures that there are 16 new events in total at each
iteration.

Algorithm 1 Co-Training Algorithm
1: Input: Labeled EL, unlabeled EU events
2: while Not maximum iteration do
3: Train the event expression classifier on EL
4: Construct context view (Xcon) of EL
5: Train the event context classifier on Xcon

6: Apply the event expression classifier to EU
and select new labeled events (Eexp)

7: Apply the event context classifier toEU and
select new labeled events (Econ)

8: Update labeled events:
EL = EL ∪ Eexp ∪ Econ

9: end while

event: (1) sum, we compute the final probability
vector p(e) by applying the element-wise summa-
rization operation to the two predicted probability
vectors; (2) product, we compute the final p(e)
as the element-wise product of the two vectors.
Then, the final probability vector is normalized to
make sure the sum of probabilities over all classes
is 1. Finally, we predict an event’s human need
category as the one with the highest probability.

5 Evaluation

We conducted experiments to evaluate the meth-
ods described in Section 4. For all of our exper-
iments, the results are reported based on 3-fold
cross-validation on the 542 affective events manu-
ally labeled with human need categories. We show
the average results over 3-folds in the following
sections. For development, we used a distinct set
of events labeled during preliminary studies. We
did not tune any of the models, using only their de-
fault parameter settings. We present experimental
results in terms of precision, recall, and F1 score,
macro-averaged over the human need categories.

5.1 Performance of Event Expression
Classifiers

Table 4 shows the results4 for the event expression
classifiers. We also evaluated the ability of the
LIWC lexicon (Pennebaker et al., 2007) to label
the event expressions. We manually aligned the
relevant LIWC categories with our human need
categories, as shown in Table 3. Then we labeled
each event by identifying the human need cate-
gory of each word in the event phrase and assign-

4Since we report the average precision, recall, F1 score
over 3-folds, the F1 score can be smaller than both precision
and recall in some cases.
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ing the most frequent category to the event.5 If no
words were assigned to our categories, we labeled
the event as None. The top row of Table 4 shows
that LIWC achieved 39% recall but only 47.7%
precision. The reason is that some categories in
LIWC are more generalized compared with the
definitions of our corresponding categories. For
example, the words “abandon” and “damage” be-
long to the Affect category (corresponding to our
Emotion category) in LIWC. However, based on
our definition the event “my house was damaged”
actually belongs to the Finance category. In this
way, the Emotion category is overly generalized
which leads to low precision for this class.

LIWC Category Human Need Category
Ingest → Physiological
Health, Body, Death → Health
Leisure → Leisure
Social → Social
Money, Work → Finance
Inhib, Insight → Cognition
Affect → Emotion

Table 3: LIWC Mapping to Human Need Categories.

The LR and SVM rows in Table 4 show the
performance of the logistic regression (LR) and
support vector machine (SVM) classifiers, respec-
tively. We evaluated classifiers with bag-of-words
features (BOW) and classifiers with event embed-
ding features (Embed), computed as the average
of the embeddings for all words in the event ex-
pression. We also tried adding semantic category
features from LIWC to each feature set, denoted
as +SemCat. The results show that the Embed
features performed best for both the LR and SVM
classifiers. Adding the SemCat features improved
upon the bag-of-word representations, but not the
embeddings.

The last two rows of Table 4 show the perfor-
mance of two RNN classifiers, one using lexical
words as input (RNNWords) and one using pre-
trained word embeddings as input (RNNEmbedSeq).
The RNNEmbedSeq system takes the sequence of
word embeddings as input rather than the aver-
age embeddings. As with the other classifiers,
the word embedding feature representations per-
formed best, achieving an F1 score 54.4%, which
is comparable to the F1 score of the LREmbed sys-
tem. However, the RNN’s precision was only
58%, compared to 64.2% for the logistic regres-

5For ties, we remove a component one by one in the order
of Agent, PP, Theme until we obtain a majority label.

Method Precision Recall F1
LIWC 47.7 39.0 38.6
LRBOW 33.6 28.7 27.3
LRBOW+SemCat 55.2 39.6 41.9
LREmbed+SemCat 60.1 49.3 51.9
LREmbed 64.2 51.7 54.8
SVMBOW 52.3 43.1 44.8
SVMBOW+SemCat 51.0 45.9 46.8
SVMEmbed+SemCat 50.4 48.4 48.6
SVMEmbed 51.3 50.7 50.5
RNNWords 45.2 39.6 40.1
RNNEmbedSeq 58.0 53.7 54.4

Table 4: Performance of Event Expression Classifiers

sion model, with only 2% higher recall that does
not fully compensate for the lower precision. Neu-
ral net models often need large training sets, so the
relatively small size of our training data may not
be ideal for an RNN.

Overall, we concluded that the logistic re-
gression classifier with event embedding features
(LREmbed) achieved the best performance because
of its F1 score (54.8%) and higher precision
(64.2%).

5.2 Performance of Event Context Classifiers

Table 5 shows the performance4 of the event con-
text classifiers described in Section 4.2. Since lo-
gistic regression worked best in the previous ex-
periments, we only evaluated logistic regression
classifiers in our remaining experiments. The re-
sults show that using each context sentence as an
individual training instance (ContextSentBOW and
ContextSentEmbed) substantially outperformed the
classifiers that merged all the context sentences
as a single training instance (ContextAllBOW and
ContextAllEmbed). Overall, the best performing
system ContextSentEmbed achieved an F1 score of
44.3% with 59.1% Precision.

Method Precision Recall F1
ContextAllBOW 20.6 18.0 17.8
ContextAllEmbed 38.2 29.9 29.1
ContextSentBOW 48.2 31.4 32.8
ContextSentEmbed 59.1 41.9 44.3

Table 5: Performance of Event Context Classifiers

It is worth noting that the precision of the best
contextual classifier was only 5% below that of the
best event expression classifier, while there was a
10% difference in their recall. Since they achieved
(roughly) similar levels of precision and repre-
sent complementary views of events, a co-training
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framework seemed like a logical way to use them
together to gain additional benefits from unlabeled
event data.

We also created a classifier that combined event
expression features and event context features to-
gether. But combining them did not improve per-
formance.

5.3 Performance of Self-Training and
Co-Training Models

In this section, we evaluate the weakly supervised
self-training and co-training methods that addi-
tionally use unlabeled data. To keep the num-
ber of unlabeled events manageable, we only used
events in the AffectEvent dataset that had fre-
quency ≥ 100, which produced an unlabeled data
set of 23,866 events.

We used the best performing event expression
classifier (LREmbed) in these models, and the co-
training framework includes the best performing
event context classifier (ContextSentEmbed) as well.
We also experimented with the sum and prod-
uct variants for co-training (described in Sec-
tion 4.4.2), which are denoted as CoTrainsum and
CoTrainprod. We ran both the self-training and co-
training methods for 20 iterations.
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Figure 2: Learning Curves

Figure 2 tracks the performance of the self-
training and co-training models after each itera-
tion, in terms of F1 score. The flat line shows
the F1 score for the best classifier that uses only
labeled data (LREmbed). Both types of models
yield performance gains from iteratively learning
with the unlabeled data, but the co-training models
perform substantially better than the self-training
model. Even after just 5 iterations, co-training

achieves an F1 score over 58%, and by 20 itera-
tions performance improves to > 60%.

Table 6 shows the results for these models af-
ter 20 iterations, which was an arbitrary stopping
criterion, and after 17 iterations, which happened
to produce the best results for all three systems.
The first two rows show the results of the best per-
forming event context classifier (ContextSentEmbed)
and best performing event expression classifier
(LREmbed) from the previous experiments, for the
sake of comparison.

Table 6 shows that after 20 iterations, the
CoTrainprod model performed best, yielding an F1
score of 61% compared to 54.8% for the LREmbed

model. Furthermore, we see gains in both recall
and precision.

All three systems performed best after 17 itera-
tions, so we show those results as well to give an
idea of additional gains that would be possible if
we could find an optimal stopping criterion. Our
data set was small so we did not feel that we had
enough data to fine-tune parameters, but we see
the potential to further improve performance given
additional tuning data.

Method Precision Recall F1
Supervised Models

ContextSentEmbed 59.1 41.9 44.3
LREmbed 64.2 51.7 54.8

After 20 Iterations
SelfTrain 63.2 54.2 56.6
CoTrainsum 66.2 58.2 60.3
CoTrainprod 67.1 58.7 61.0

Best Results, After 17 Iterations
SelfTrain 63.5 54.1 56.7
CoTrainsum 68.6 59.0 61.7
CoTrainprod 69.7 59.5 62.4

Table 6: Performance of Self-Training and Co-Training

Table 7 shows a breakdown of the performance
across the individual human need categories for
two models: the best event expression classifier
and the best co-training model (CoTrainprod after
17 iterations). We see that the co-training model
outperformed the LREmbed model on every cate-
gory. Co-training improved performance the most
for the Finance and Cognition categories, yielding
F1 score gains of +12% and +16%, respectively,
and notably improving both recall and precision.

5.4 Analysis
We manually examined our system’s predictions
to better understand its behavior. We found
that most of the correctly classified Physiological
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LREmbed CoTrainProd

Category Pre Rec F1 Pre Rec F1
Physiological 82 57 67 81 68 74
Health 65 40 49 68 50 57
Leisure 62 59 60 69 63 66
Social 61 72 66 68 79 73
Finance 61 31 40 67 44 52
Cognition 75 31 42 92 46 58
Emotion 60 75 66 64 74 69
None 47 49 48 48 52 50

Table 7: Breakdown of results across Human Need cat-
egories. Each cell shows Precision, Recall, and F1.

events were related to food, while the correctly
classified Cognition events were primarily about
learning and understanding. Our method missed
many events for the Health, Finance, and Cog-
nition classes. For Health, many medical symp-
toms were not recognized, such as “my face looks
pale” and “I puked”. For Finance, the system
missed events related to possessions (e.g., “engine
stopped running” and “my clock is wrong”) and
jobs (e.g., “I went to resign”).

We also took a closer took at which categories
were confused with other categories. Figure 3
shows the confusion matrix between CoTrainProd

and the gold annotations. Each cell shows the total
number of confusions across the 3-folds of cross-
validation. The category names are abbreviated as
Physiological (Phy), Health (Hlth), Leisure (Leis),
Social (Socl), Finance (Fnc), Cognition (Cog), and
Emotion (Emo). #Tot denotes the total number of
events in each row or column.

Pred. \ Gold Phy Hlth Leis Socl Fnc Cog Emo None #Tot
Phy 13 1 0 0 1 0 0 2 17
Hlth 1 26 1 0 1 1 4 8 42
Leis 1 1 48 4 0 1 4 10 69
Socl 0 6 4 84 2 3 10 11 120
Fnc 1 0 2 0 13 0 1 5 22
Cog 0 0 0 0 0 12 1 2 15
Emo 1 5 12 12 3 1 91 16 141
None 2 13 8 8 9 8 17 51 116
#Tot 19 52 75 108 29 26 128 105 542

Figure 3: Confusion between Predictions and Gold.

The co-training model had difficulty distin-
guishing the None category from other classes,
presumably because None does not have its own
semantics but is used for affective events that do
not belong to any of the other categories. We also
see that the system often confuses Emotion with
Leisure and Social. This happens because many
event expressions contain words that refer to emo-
tions. Our guidelines instructed annotators to fo-
cus on the event and assign the Emotion label only

when no event is described beyond an emotion
(e.g., “I was thrilled”). Consequently, the gold
label of “I love journey” is Leisure and “I’m wor-
ried about my mom” is Social, but both were clas-
sified by the system as Emotion. In future work,
it may be advantageous to allow event expressions
to be labeled as both an explicit Emotion and a
Human Need category based on the target of the
emotion.

6 Conclusions

In this work, we introduced a new challenge to
recognize the reason for the affective polarity of
events in terms of basic human needs. We de-
signed four types of classification methods to cat-
egorize affective events according to human need
categories, exploiting both labeled and unlabeled
data. We first evaluated event expression and event
context classifiers, trained using only labeled data.
Then we designed self-training and co-training
methods to additionally exploit unlabeled data. A
co-training model that simultaneously trains event
expression and event context classifiers produced
substantial performance gains over the individual
models. However, performance on the human
need categories still has substantial room for im-
provement. In future work, obtaining more human
annotations will be useful to build a better human
needs categorization system. In addition, applying
and analyzing the human needs of affective events
in narrative stories and conversations is a fruitful
and interesting direction for future research.
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Abstract

Reasoning is a crucial part of natural lan-
guage argumentation. To comprehend an argu-
ment, one must analyze its warrant, which ex-
plains why its claim follows from its premises.
As arguments are highly contextualized, war-
rants are usually presupposed and left implicit.
Thus, the comprehension does not only require
language understanding and logic skills, but
also depends on common sense. In this pa-
per we develop a methodology for reconstruct-
ing warrants systematically. We operationalize
it in a scalable crowdsourcing process, result-
ing in a freely licensed dataset with warrants
for 2k authentic arguments from news com-
ments.1 On this basis, we present a new chal-
lenging task, the argument reasoning compre-
hension task. Given an argument with a claim
and a premise, the goal is to choose the cor-
rect implicit warrant from two options. Both
warrants are plausible and lexically close, but
lead to contradicting claims. A solution to this
task will define a substantial step towards auto-
matic warrant reconstruction. However, exper-
iments with several neural attention and lan-
guage models reveal that current approaches
do not suffice.

1 Introduction

Most house cats face enemies. Russia has the op-
posite objectives of the US. There is much innova-
tion in 3-d printing and it is sustainable.

What do the three propositions have in com-
mon? They were never uttered but solely presup-
posed in arguments made by the participants of
online discussions. Presuppositions are a funda-
mental pragmatic instrument of natural language
argumentation in which parts of arguments are left
unstated. This phenomenon is also referred to as

1Available at https://github.com/UKPLab/
argumentreasoning-comprehension-task/, including
source codes and supplementary materials.

common knowledge (Macagno and Walton, 2014,
p. 218), enthymemes (Walton, 2007b, p. 12),
tacit major premises (Amossy, 2009, p. 319), or
implicit warrants (Newman and Marshall, 1991,
p. 8). Wilson and Sperber (2004) suggest that,
when we comprehend arguments, we reconstruct
their warrants driven by the cognitive principle of
relevance. In other words, we go straight for the
interpretation that seems most relevant and logi-
cal within the given context (Hobbs et al., 1993).
Although any incomplete argument can be com-
pleted in different ways (Plumer, 2016), it is as-
sumed that certain knowledge is shared between
the arguing parties (Macagno and Walton, 2014,
p. 180).

Filling the gap between the claim and premises
(aka reasons) of a natural language argument em-
pirically remains an open issue, due to the inher-
ent difficulty of reconstructing the world knowl-
edge and reasoning patterns in arguments. In a di-
rect fashion, Boltužić and Šnajder (2016) let an-
notators write down implicit warrants, but they
concluded only with a preliminary analysis due
to large variance in the responses. In an indi-
rect fashion, implicit warrants correspond to ma-
jor premises in argumentation schemes; a concept
heavily referenced in argumentation theory (Wal-
ton, 2012). However, mapping schemes to real-
world arguments has turned out difficult even for
the author himself.

Our main hypothesis is that, even if there is no
limit to the tacit length of the reasoning chain be-
tween claims and premises, it is possible to sys-
tematically reconstruct a meaningful warrant, de-
pending only on what we take as granted and what
needs to be explicit. As warrants encode our cur-
rent presupposed world knowledge and connect
the reason with the claim in a given argument, we
expect that other warrants can be found which con-
nect the reason with a different claim. In the ex-
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Title: Is Marijuana a Gateway Drug? Description: Does us-
ing marijuana lead to the use of more dangerous drugs, mak-
ing it too dangerous to legalize?
Reason: Milk isn’t a gateway drug even though most peo-
ple drink it as children. And since {Warrant 1 | Warrant 2},
Claim: Marijuana is not a gateway drug.
4 Warrant 1: milk is similar to marijuana
7 Warrant 2: milk is not marijuana

Figure 1: Instance of the argument reasoning compre-
hension task. The correct warrant has to be identified.
Notice the fallacious presupposed false analogy used
by the author to make the argument.

treme case, there may exist an alternative warrant
in which the same reason is connected to the op-
posite claim.

The intuition of alternative warrants is key to the
systematic methodology that we develop in this
paper for reconstructing a warrant for the original
claim of an argument. In particular, we first ‘twist’
the stance of a given argument, trying to plausibly
explain its reasoning towards the opposite claim.
Then, we twist the stance back and use a similar
reasoning chain to come up with a warrant for the
original argument. As we discuss further below,
this works for real-world arguments with a miss-
ing piece of information that is taken for granted
and considered as common knowledge, yet, would
lead to the opposite stance if twisted.

We demonstrate the applicability of our
methodology in a large crowdsourcing study. The
study results in 1,970 high-quality instances for a
new task that we call argument reasoning com-
prehension: Given a reason and a claim, identify
the correct warrant from two opposing options.
An example is given in Figure 1. A solution to
this task will represent a substantial step towards
automatic warrant reconstruction. However, we
present experiments with several neural attention
and language models which reveal that current ap-
proaches based on the words and phrases in argu-
ments and warrants do not suffice to solve the task.

The main contributions of this paper are (1) a
methodology for obtaining implicit warrants real-
ized by means of scalable crowdsourcing and (2)
a new task along with a high-quality dataset. In
addition, we provide (a) 2,884 user-generated ar-
guments annotated for their stance, covering 50+
controversial topics, (b) 2,026 arguments with an-
notated reasons supporting the stance, (c) 4,235
rephrased reason gists, useful for argument sum-
marization and sentence compression, and (d) a

method for checking the reliability of crowdwork-
ers in document and span labeling using traditional
inter-annotator agreement measures.

2 Related Work

It is widely accepted that an argument consists of a
claim and one or more premises (reasons) (Damer,
2013). Toulmin (1958) elaborated on a model of
argument in which the reason supports the claim
on behalf of a warrant. The abstract structure of
an argument then is Reason→ (since) Warrant→
(therefore) Claim. The warrant takes the role of
an inference rule, similar to the major premise in
Walton’s terminology (Walton, 2007a).

In principle, the chain Reason → Warrant →
Claim is applicable to deductive arguments and
syllogisms, which allows us to validate arguments
properly formalized in propositional logic. How-
ever, most natural language arguments are in fact
inductive (Govier, 2010, p. 255) or defeasible
(Walton, 2007b, p. 29).2 Accordingly, the unsuit-
ability of formal logic for natural language argu-
ments has been discussed by argumentation schol-
ars since the 1950’s (Toulmin, 1958). To be clear,
we do not claim that arguments cannot be rep-
resented logically (e.g., in predicate logic), how-
ever the drift to informal logic in the 20th cen-
tury makes a strong case that natural language
argumentation is more than modus ponens (van
Eemeren et al., 2014).

In argumentation theory, the notion of a war-
rant has also been contentious. Some argue that
the distinction of warrants from premises is clear
only in Toulmin’s examples but fails in practice,
i.e., it is hard to tell whether the reason of a given
argument is a premise or a warrant (van Eemeren
et al., 1987, p. 205). However, Freeman (2011)
provides alternative views on modeling an argu-
ment. Given a claim and two or more premises, the
argument structure is linked if the reasoning step
involves the logical conjunction of the premises.
If we treat a warrant as a simple premise, then the
linked structure fits the intuition behind Toulmin’s
model, such that premise and warrant combined
give support to the claim. For details, see (Free-
man, 2011, Chap. 4).

2A recent empirical example is provided by Walker et al.
(2014) who propose possible approaches to identify patterns
of inference from premises to claims in vaccine court cases.
The authors conclude that it is extremely rare that a reasoning
is explicitly laid out in a deductively valid format.
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What makes comprehending and analyzing ar-
guments hard is that claims and warrants are usu-
ally implicit (Freeman, 2011, p. 82). As they are
‘taken for granted’ by the arguer, the reader has
to infer the contextually most relevant content that
she believes the arguer intended to use. To this
end, the reader relies on common sense knowledge
(Oswald, 2016; Wilson and Sperber, 2004).

The reconstruction of implicit premises has al-
ready been faced in computational approaches. In
light of the design of their argument diagramming
tool, Reed and Rowe (2004) pointed out that the
automatic reconstruction is a task that skilled an-
alysts find both taxing and hard to explain. More
recently, Feng and Hirst (2011) as well as Green
(2014) outlined the reconstruction of missing en-
thymemes or warrants as future work, but they
never approached it since. To date, the most ad-
vanced attempt in this regard is from Boltužić and
Šnajder (2016). The authors let annotators ‘re-
construct’ several propositions between premises
and claims and investigated whether the number
of propositions correlates with the semantic dis-
tance between the claim and the premises. How-
ever, they conclude that the written warrants heav-
ily vary both in depth and in content. By contrast,
we explore cases with a missing single piece of
information that is considered as common knowl-
edge, yet leading to the opposite conclusion if
twisted. Recently, Becker et al. (2017) also exper-
imented with reconstructing implicit knowledge in
short German argumentative essays. In contrast to
our work, they used expert annotators who itera-
tively converged to a single proposition.

As the task we propose involves natural lan-
guage comprehension, we also review relevant
work outside argumentation here. In particular,
the goal of the semantic inference task textual en-
tailment is to classify whether a proposition entails
or contradicts a hypothesis (Dagan et al., 2009).
A similar task, natural language inference, was
boosted by releasing the large SNLI dataset (Bow-
man et al., 2015) containing 0.5M entailment pairs
crowdsourced by describing pictures. While the
understanding of semantic inference is crucial in
language comprehension, argumentation also re-
quires coping with phenomena beyond semantics.
Rajpurkar et al. (2016) presented a large dataset
for reading comprehension by answering ques-
tions over Wikipedia articles (SQuAD). In an anal-
ysis of this dataset Sugawara and Aizawa (2016)

found, though, that only 6.2% of the questions
require causal reasoning, 1.2% logical reasoning,
and 0% analogy. In contrast, these reasoning types
often make up the core of argumentation (Walton,
2007a). Mostafazadeh et al. (2016) introduced the
cloze story test, in which the appropriate ending of
a narrative has to be selected automatically. The
overall context of this task is completely differ-
ent to ours. Moreover, the narratives were writ-
ten from scratch by explicitly instructing crowd
workers, whereas our data come from genuine ar-
gumentative comments. Common-sense reason-
ing was also approached by Angeli and Manning
(2014) who targeted the inference of common-
sense facts from a large knowledge base. Since
their logical formalism builds upon an enhanced
version of Aristotle’s syllogisms, its applicability
to natural language argumentation remains limited
(see our discussion above). In contrast to our data
source, a few synthetic datasets for general natu-
ral language reasoning have been recently intro-
duced, such as answers to questions over a de-
scribed physical world (Weston et al., 2016) or an
evaluation set of 100 questions in the Winograd
Schema Challenge (Levesque et al., 2012).

Finally, we note that, although being related, re-
search on argument mining, argumentation qual-
ity, and stance classification is not in the imme-
diate scope of this paper. For details on these,
we therefore refer to recent papers from Lippi and
Torroni (2016); Habernal and Gurevych (2017) or
Mohammad et al. (2016).

3 Argument Reasoning Comprehension

Let R be a reason for a claim C, both of which be-
ing propositions extracted from a natural language
argument. Then there is a warrant W that justi-
fies the use of R as support for C, but W is left
implicit.

For example, in a discussion about whether de-
clawing a cat should be illegal, an author takes
the following position (which is her claim C): ‘It
should be illegal to declaw your cat’. She gives
the following reason (R): ‘They need to use their
claws for defense and instinct’.3 The warrant W
could then be ‘If cat needs claws for instincts, de-
clawing would be against nature’ or similar. W re-
mains implicit, because R already implies C quite
obviously and so, according to common sense, any
further explanation seems superfluous.

3The example is taken from our dataset introduced below.

1932



Now, the question is how to find the warrant W
for a given reason R and claim C. Our key hy-
pothesis in the definition of the argument reason-
ing comprehension task is the existence of an al-
ternative warrant AW that justifies the use of R as
support for the opposite ¬C of the claim C (regard-
less of the question of how strong this justification
is).

For the example above, assume that we ‘twist’
C to ‘It should be legal to declaw your cat’ (¬C)
but use the same reason R. Is it possible to come
up with an alternative warrant AW that justifies R?
In the given case, ‘most house cats don’t face en-
emies’ would bridge R to ¬C quite plausibly. If
we now use a reasoning based on AW but twist
AW again such that it leads to the claim C, we get
‘most house cats face enemies’, which is a plausi-
ble warrant W for the original argument containing
R and C. 4

Constructing an alternative warrant is not pos-
sible for all reason/claim pairs; in some reasons
the arguer’s position is deeply embedded. As a
result, trying to give a plausible reasoning for the
opposite claim ¬C either leads to nonsense or to a
proposition that resembles a rebuttal rather than a
warrant (Toulmin, 1958). However, if both W and
AW are available, they usually capture the core of a
reason’s relevance and reveal the implicit presup-
positions (examples follow further below).

Based on our key hypothesis, we define the ar-
gument reasoning comprehension task as:

Given a reason R and a claim C along with the
title and a short description of the debate they oc-
cur in, identify the correct warrant W from two
candidates: the correct warrant W and an incor-
rect alternative warrant AW.

An instance of the task is thus basically given
by a tuple (R,C,W,AW ). The debate title and de-
scription serve as the context of R and C. As it is
binary, we propose to evaluate the task using ac-
curacy.

4 Reconstruction of Implicit Warrants

We now describe our methodology to systemati-
cally reconstruct implicit warrants, along with the
scalable crowdsourcing process that operational-
izes the methodology. The result of the process is

4This way, we also reveal the weakness of the original ar-
gument that was hidden in the implicit premise. It can be
challenged by asking the arguer whether house cats really
face enemies.

a dataset with authentic instances (R,C,W,AW ) of
the argument reasoning comprehension task.

4.1 Source Data

Instead of extending an existing dataset, we de-
cided to create a new one from scratch, because
we aimed to study a variety of controversial issues
in user-generated web comments and because we
sought for a dataset with a permissive license.

As a source, we opted for the Room for De-
bate section of the New York Times.5 It pro-
vides authentic argumentation on contemporary
issues with good editorial work and moderation
— as opposed to debate portals such as createde-
bate.com, where classroom assignments, silly top-
ics, and bad writing prevail. We manually selected
188 debates with polar questions in the title. These
questions are controversial and provoking, giving
a stimulus for stance-taking and argumentation.6

For each debate we created two explicit opposing
claims, e.g., ‘It should be illegal to declaw your
cat’ and ‘It should be legal to declaw your cat’.
We crawled all comments from each debate and
sampled about 11k high-ranked, root-level com-
ments.7

4.2 Methodology and Crowdsourcing Process

The methodology we propose consists of eight
consecutive steps that are illustrated in Figure 2
and detailed below. Each step can be operational-
ized with crowdsourcing. For our dataset, we per-
formed crowdsourcing on 5,000 randomly sam-
pled comments using Amazon Mechanical Turk
(AMT) from December 2016 to April 2017. Be-
fore, each comment was split into elementary dis-
course units (EDUs) using SistaNLP (Surdeanu
et al., 2015).

1. Stance Annotation For each comment, we
first classify what stance it is taking (recall that
we always have two explicit claims with opposing
stance). Alternatively, it may be neutral (consider-

5https://www.nytimes.com/roomfordebate
6Detailed theoretical research on polar and alternative

questions can be found in (van Rooy and Šafářová, 2003);
Asher and Reese (2005) analyze bias and presupposition in
polar questions.

7To remove ‘noisy’ candidates, we applied several crite-
ria, such as the absence of quotations or URLs and certain
lengths. For details, see the source code we provide. We did
not check any quality criteria of arguments, as this was not
our focus; see, e.g., (Wachsmuth et al., 2017) for argumenta-
tion quality.
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Figure 2: Overview of the methodology of reconstructing implicit warrants for argument reasoning comprehension.

ing both sides) or may not take any stance.8

All 2,884 comments in our dataset classified as
stance-taking by the crowdworkers were then also
annotated as to whether being sarcastic or ironic;
both pose challenges in analyzing argumentation
not solved so far (Habernal and Gurevych, 2017).

2. Reason Span Annotation For all comments
taking a stance, the next step is to select those
spans that give a reason for the claim (with a single
EDU as the minimal unit).

In our dataset, the workers found 5,119 rea-
son spans, of which 2,026 lay within arguments.
About 40 comments lacked any explicit reason.

3. Reason Gist Summarization This new task
is, in our view, crucial for downstream annota-
tions. Each reason from the previous step is rewrit-
ten, such that the reason’s gist in the argument re-
mains the same but the clutter is removed (exam-
ples are given in the supplementary material which
is available both in the ACL Anthology and the
project GitHub site). Besides, wrongly annotated
reasons are removed in this step. The result is pairs
of reason R and claim C.

All 4,294 gists in our dataset were summarized
under Creative Commons Zero license (CC-0).

4. Reason Disambiguation Within our method-
ology, we need to be able to identify to what ex-
tent a reason itself implies a stance: While ‘C be-
cause R’ allows for many plausible interpretations
(as discussed above), whether R→ C or R→ ¬C
depends on how much presupposition is encoded
in R. In this step, we decide which claim (C or
¬C) is most plausible for R, or whether both are

8We also experimented with approaching the annotations
top-down starting by annotating explicit claims, but the re-
sults were unsatisfying. This is in line with empirical obser-
vations made by Habernal and Gurevych (2017) who showed
that the majority of claims in user-generated arguments are
implicit.

similarly plausible (in the given data, respective
reasons turned out to be rather irrelevant though).

We used only those 1,955 instances where R in-
deed implied C according to the workers, as this
suggests at least some implicit presupposition in
R.

5. Alternative Warrant This step is the trick-
iest, since it requires both creativity and ‘brain
twisting’. As exemplified in Section 3, a plausible
explanation needs to be given why R supports ¬C
(i.e., the alternative warrant AW ). Alternatively,
this may be classified as being impossible.

Exact instructions for our workers can be found
in the provided sources. All 5,342 alternative war-
rants in our dataset are written under CC-0 license.

6. Alternative Warrant Validation As the pre-
vious step produces largely uncontrolled writings,
we validate each fabricated alternative warrant AW
as to whether it actually relates to the reason R. To
this end, we show AW and ¬C together with two
alternatives: R itself and a distracting reason. Only
instances with correctly validated R are kept.

For our dataset, we sampled the distracting rea-
son from the same debate topic, using the most
dissimilar to R in terms of skip-thought vectors
(Kiros et al., 2015) and cosine similarity. We
kept 3,791 instances, for which the workers also
rated how ‘logical’ the explanation of AW was (0–
2 scale).

7. Warrant For Original Claim This step
refers to the second task in the example from Sec-
tion 3: Given R and C, make minimal modifi-
cations to the alternative warrant AW , such that
it becomes an actual warrant W (i.e., such that
R→W →C).

For our dataset, we restricted this step to those
2,613 instances that had a ‘logic score’ of at least
0.68 (obtained from the annotations mentioned
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above), in order to filter out nonsense alternative
warrants. All resulting 2,447 warrants were writ-
ten by the workers again under CC0 license.

8. Warrant Validation To ensure that each tuple
(R,C,W,AW ) allows only one logical explanation
(i.e., either R→W→C or R→AW→C is correct,
not both), all instances are validated again.

Disputed cases in the dataset (according to our
workers) were fixed by an expert to ensure quality.
We ended up with 1,970 instances to be used for
the argument reasoning comprehension task.

4.3 Agreement and Dataset Statistics
To strictly assess quality in the entire crowdsourc-
ing process, we propose an evaluation method that
enables ‘classic’ inter-annotator agreement mea-
sures for crowdsourcing, such as Fleiss’ κ or
Krippendorff’s α . Applying κ and α directly to
crowdsourced data has been disputed (Passonneau
and Carpenter, 2014). For estimating gold labels
from the crowd, several models have been pro-
posed; we rely on MACE (Hovy et al., 2013).
Given a number of noisy workers, MACE out-
puts best estimates, outperforming simple major-
ity votes. At least five workers are recommended
for a crowdsourcing task, but how reliable is the
output really?

We hence collected 18 assignments per item and
split them into two groups (9+9) based on their
submission time. We then considered each group
as an independent crowdsourcing experiment and
estimated gold labels using MACE for each group,
thus yielding two ‘experts from the crowd.’ Hav-
ing two independent ‘experts’ from the crowd al-
lowed us to compute standard agreement scores.
We also varied the size of the sub-sample from
each group from 1 to 9 by repeated random sam-
pling of assignments. This revealed how the score
varies with respect to the crowd size per ‘expert’.

Figure 3 shows the Cohen’s κ agreement for
stance annotation with respect to the crowd size
computed by our method. As MACE also includes
a threshold for keeping only the most confident
predictions in order to benefit precision, we tuned
this parameter, too. Deciding on the number of
workers per task is a trade-off between the desired
quality and the budget. For example, reason span
annotation is a harder task; however, the results for
six workers are comparable to those for the expert
annotations of Habernal and Gurevych (2017).9

9The supplementary material contains a detailed figure;
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Figure 3: Cohen’s κ agreement for stance annotation
on 98 comments. As a trade-off between reducing costs
(i.e., discarding fewer instances) and increasing relia-
bility, we chose 5 annotators and a threshold of 0.95
for this task, which resulted in κ = 0.58 (moderate to
substantial agreement).

Table 1 lists statistics of the entire crowdsourc-
ing process carried out for our dataset, including
tasks for which we created data as a by-product.

4.4 Examples
Below, we show three examples in which implicit
common-sense presuppositions were revealed dur-
ing the construction of the alternative warrant AW
and the original warrant W . For brevity, we omit
the debate title and description here. A full walk-
through example is found in the supplementary
material.

R: Cooperating with Russia on terrorism ignores Russia’s
overall objectives.

C: Russia cannot be a partner.
AW : Russia has the same objectives of the US.
W : Russia has the opposite objectives of the US.

R: Economic growth needs innovation.
C: 3-D printing will change the world.

AW : There is no innovation in 3-d printing since it’s unsus-
tainable.

W : There is much innovation in 3-d printing and it is sus-
tainable.

R: College students have the best chance of knowing his-
tory.

C: College students’ votes do matter in an election.
AW : Knowing history doesn’t mean that we will repeat it.
W : Knowing history means that we won’t repeat it.

5 Experiments

Given the dataset, we performed first experiments
to assess the complexity of argument reasoning
comprehension. To this end, we split the 1,970 in-
stances into three sets based on the year of the de-

not to be confused with Figure 3 which refers to stance anno-
tation.
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# Methodology Step Input Sata Size Output Data Size Quality Assurance Use of Data

1 Stance annotation Comment, topic 5,000 Stance-taking
arguments

2,884 Cohen’s κ 0.58 Argument stance
detection; sarcastic
argument detection

2 Reason span annotation Stance-taking argument 2,884 Reason spans (in
arguments)

5,119
(2,026)

Krippendorff’s αu 0.51 Argument component
detection; argumentative
text segmentation

3 Reason gist
summarization

Claim, reason span 5,119 Summarized reason
gists (in arguments)

4,294
(1,927)

Qualified workers,
manual inspection

Abstractive argument
summarization; reason
clustering; empirical
analysis of controversies

4 Reason disambiguation Reason gist, both claims 4,235 Reasons implying
original stance

1,955 Cohen’s κ 0.42
(task-important
categories)

Argument component
stance detection

5 Writing alternative
warrant

Reason gist, opposing
claim

1,955 Fabricated warrant for
reason and opposing
claim

5,342 Qualified workers,
manual inspection

–

6 Alternative warrant
validation

Opposing claim,
alternative warrant,
reason, distracting
reason

5,342 Plausible triple of
reason, alternative
warrant, and opposing
claim

3,791 – Reason/Warrant
relevance detection

7 Writing warrant for
original claim

Claim, reason,
alternative warrant

2,613* Warrant similar to
alternative warrant for
reason and claim

2,447 Qualified workers,
manual inspection

–

8 Warrant validation Claim, reason, warrant,
alternative warrant

2,447 Validated triple of
reason, warrant, and
claim

1,970 Qualified workers,
experts for hard cases

Argument reasoning
comprehension (our
main task)

Table 1: Details and statistics of the datasets resulting from the eight steps of our methodology implemented in
a crowdsourcing process. *Input instances were filtered by their ‘logic score’ assigned in Step 6, such that the
weakest 30% were discarded. A more detailed description is available in the readme file of the source code.

bate they were taken from: 2011–2015 became the
training set (1,210 instances), 2016 the develop-
ment set (316 instances), and 2017 the test set (444
instances). This follows the paradigm of learning
on past data and predicting on new ones. In addi-
tion, it removes much lexical and topical overlap.

5.1 Human Upper Bounds
To evaluate human upper bounds for the task, we
sampled 100 random questions (such as those pre-
sented in Section 4.4) from the test set and dis-
tributed them among 173 participants of an AMT
survey. Every participant had to answer 10 ques-
tions. We also asked the participants about their
highest completed education (six categories) and
the amount of formal training they have in rea-
soning, logic, or argumentation (no training, some,
or extensive). In addition, they specified for each
question how familiar they were with the topic (3-
point scale).

How Hard is the Task for Humans? It de-
pends, as shown in Figure 4. Whereas educa-
tion had almost negligible influence on the perfor-
mance, the more extensive formal training in rea-
soning the participants had, the higher their score
was. Overall, 30 of the 173 participants scored
100%. The mean score for those with extensive
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Figure 4: Human upper bounds on the argument rea-
soning comprehension task with respect to education
and formal training in reasoning, logic, or argumenta-
tion. For each configuration, the mean values are dis-
played together with the number of participants (above
the bar) and with their standard deviations (error bars).

formal training was 90.9%. For all participants,
the mean was 79.8%. However, we have to note
that some of the questions are more difficult than
others, for which we could not control explicitly.

Does Topic Familiarity Affect Human Perfor-
mance? Not really, i.e., we found no significant
(Spearman) correlation between the mean score
and familiarity of a participant in almost all educa-
tion/training configurations. This suggests that ar-
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gument reasoning comprehension skills are likely
to be independent of topic-specific knowledge.

5.2 Computational Models
To assess the complexity of computationally ap-
proaching argument reasoning comprehension, we
carried out first experiments with systems based
on the following models.

The simplest considered model was the random
baseline, which chooses either of the candidate
warrants of an instance by chance. As another
baseline, we used a 4-gram Modified Kneser-Ney
language model trained on 500M tokens (100k
vocabulary) from the C4Corpus (Habernal et al.,
2016). The effectiveness of language models was
demonstrated by Rudinger et al. (2015) for the
narrative cloze test where they achieved state-of-
the-art results. We computed log-likelihood of the
candidate warrants and picked the one with lower
score.10

To specifically appoach the given task, we im-
plemented two neural models based on a bidirec-
tional LSTM. In the standard attention version,
we encoded the reason and claim using a BiL-
STM and provided it as an attention vector after
max-pooling to LSTM layers from the two avail-
able warrants W0 and W1 (corresponding to W and
AW , see below). Our more elaborated version
used intra-warrant attention, as shown in Figure
5. Both versions were also extended with the de-
bate title and description added as context to the
attention layer (w/ context). We trained the re-
sulting four models using the ADAM optimizer,
with heavy dropout (0.9) and early stopping (5
epochs), tuned on the development set. Input em-
beddings were pre-trained word2vec’s (Mikolov
et al., 2013). We ran each model three times with
random initializations.

To evaluate all systems, each instance in our
dataset is represented as a tuple (R,C,W0,W1) with
a label (0 or 1). If the label is 0, W0 is the cor-
rect warrant, otherwise W1. Recall that we have
two warrants W and AW whose correctness de-
pends on the claim: W is correct for R and the
original claim C, whereas AW would be correct
for R and the opposite claim ¬C. We thus dou-
bled the training data by adding a permuted in-
stance (R,C,W1,W0) with the respective correct la-
bel; this led to increased performance. The overall

10This might seem counterintuitive, but since W is cre-
ated by rewriting AW , it may suffer from some dis-coherency,
which is then caught by the language model.

Figure 5: Intra-warrant attention. Only the attention
vector for the warrant W1 is shown; the attention vector
for W0 is constructed analogously. Grey areas represent
a modification with additional context.

results of all approaches (humans and systems) are
shown in Table 2. Intra-warrant attention with rich
context outperforms standard neural models with a
simple attention, but it only slightly beats the lan-
guage model on the dev set. The language model
is basically random on the test set.

A manual error analysis of 50 random wrong
predictions (a single run of the best-performing
system on the dev set) revealed no explicit pattern
of encountered errors. Drawing any conclusions is
hard given the diversity of included topics and the
variety of reasoning patterns. A possible approach
would be to categorize warrants using, e.g., argu-
mentation schemes (Walton et al., 2008) and break
down errors accordingly. However, this is beyond
the scope here and thus left for future work.

Can We Benefit from Alternative Warrants and
Opposite Claims? Since the reasoning chain
R→AW→¬C is correct, too, we also tried adding
respective instances to the training set (thus dou-
bling the size). In this configuration, however, the
neural models failed to learn anything better than a
random guess. The reason behind is probably that
the opposing claims are lexically very close, usu-
ally negated, and the models cannot pick this up.
This underlines that argument reasoning compre-
hension cannot be solved by simply looking at the
occurring words or phrases.

6 Conclusion and Outlook

We presented a new task called argument reason-
ing comprehension that tackles the core of rea-
soning in natural language argumentation — im-
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Approach Dev (±) Test (±)
Human average .798 .162
Human w/ training in reasoning .909 .114

Random baseline .473 .039 .491 .031
Language model .617 .500

Attention .488 .006 .513 .012
Attention w/ context .502 .031 .512 .014
Intra-warrant attention .638 .024 .556 .016
Intra-warrant attent. w/ context .637 .040 .560 .055

Table 2: Accuracy of each approach (humans and sys-
tems) on the development set and test set, respectively.

plicit warrants. Moreover, we proposed a method-
ology to systematically reconstruct implicit war-
rants in eight consecutive steps. So far, we imple-
mented the methodology in a manual crowdsourc-
ing process, along with a strategy that enables
standard inter-annotator agreement measures in
crowdsourcing.

Following the process, we constructed a new
dataset with 1,970 instances for the task. This
number might not seem large (e.g., compared to
0.5M from SNLI), but tasks with hand-crafted
data are of a similar size (e.g., 3,744 Story Cloze
Test instances). Also, the crowdsourcing pro-
cess is scalable and is limited only by the bud-
get.11 Moreover, we created several data ‘by-
products’ that are valuable for argumentation re-
search: 5,000 comments annotated with stance,
which outnumbers the 4,163 tweets for stance de-
tection of Mohammad et al. (2016); 2,026 argu-
ments with 4,235 annotated reasons, which is six
times larger than the 340 documents of Habernal
and Gurevych (2017); and 4,235 summarized rea-
son gists — we are not aware of any other hand-
crafted dataset for abstractive argument summa-
rization built upon authentic arguments.

Based on the dataset, we evaluated human per-
formance in argument reasoning comprehension.
Our findings suggest that the task is harder for peo-
ple without formal argumentation training, while
being solvable without knowing the topic. We also
found that neural attention models outperform lan-
guage models on the task.

In the short run, we plan to draw more attention
to this topic by running a SemEval 2018 shared
task.12 A deep qualitative analysis of the war-
rants from the theoretical perspective of reasoning

11In our case, the total costs were about $6,000 including
bonuses and experiments with the workflow set-up.

12https://competitions.codalab.org/
competitions/17327

patterns or argumentation schemes is also neces-
sary. In the long run, an automatic generation and
validation warrants can be understood as the ul-
timate goal in argument evaluation. It has been
claimed that for reconstructing and evaluating nat-
ural language arguments, one has to fully ‘roll out’
their implicit premises (van Eemeren et al., 2014,
Chap. 3.2) and leverage knowledge bases (Wyner
et al., 2016). We believe that a system that can
distinguish between the wrong and the right war-
rant given its context will be helpful in filtering out
good candidates in argument reconstruction.

For the moment, we just made a first empirical
step towards exploring how much common-sense
reasoning is necessary in argumentation and how
much common sense there might be at all.
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Abstract

We explore deception detection in interview
dialogues. We analyze a set of linguistic fea-
tures in both truthful and deceptive responses
to interview questions. We also study the per-
ception of deception, identifying characteris-
tics of statements that are perceived as truth-
ful or deceptive by interviewers. Our analysis
show significant differences between truthful
and deceptive question responses, as well as
variations in deception patterns across gender
and native language. This analysis motivated
our selection of features for machine learning
experiments aimed at classifying globally de-
ceptive speech. Our best classification perfor-
mance is 72.74 F1-Score (about 27% better
than human performance), which is achieved
using a combination of linguistic features and
individual traits.

1 Introduction

Deception detection is a critical problem studied
by psychologists, criminologists, and computer
scientists. In recent years the NLP and speech
communities have increased their interest in de-
ception detection. Language cues are inexpen-
sive and easy to collect, and research examining
text-based and speech-based cues to deception has
been quite promising. Prior work has examined
deceptive language in several domains, including
fake reviews, mock crime scenes, and opinions
about topics such as abortion or the death penalty.
In this work we explore the domain of interview
dialogues, which are similar to many real-world
deception conditions.

Previous work has presented the results of clas-
sification experiments using linguistic features,
attempting to identify which features contribute
most to classification accuracy. However, stud-
ies often do not include an empirical analysis of
features. We might know that a particular feature

set (e.g. LIWC categories) is useful for deception
classification, but we lack insight about the nature
of the deceptive and truthful language that makes
the feature set useful, and whether the differences
in language use are statistically significant. In this
work we conduct an empirical analysis of feature
sets and report on the different characteristics of
truthful and deceptive language. In addition, pre-
vious work has focused on the characteristics of
deceptive language, and not on the characteristics
of perceived deceptive language. We are also in-
terested in human perception of deception; that is,
what are the characteristics of language that lis-
teners perceive as truthful or deceptive? We ex-
amine a unique dataset that includes information
about both the deceiver and the interviewer, along
with interviewer judgments of deception. Along
with an analysis of deceptive and truthful speech,
we analyze the believed and disbelieved speech,
according to reported interviewer judgments. Fi-
nally, previous work has focused on general infer-
ences about deception; here we include analysis
of gender and native language, to study their ef-
fect on deceptive behavior, and also their effect on
perception of deception. This work contributes to
the critical problem of automatic deception detec-
tion, and increases our scientific understanding of
deception, deception perception, and speaker dif-
ferences in deceptive behavior.

The paper is organized as follows: In Section
2 we review related work in language-based cues
to deception. Section 3 describes the dataset used
for this work, and Section 4 details the different
feature sets we employ. In Section 5, we report
on the results of our empirical study of indicators
of deception and perceived deception, as well as
gender and native language differences. Section
6 presents our machine learning classification re-
sults using the deception indicator feature sets. We
conclude in Section 7 with a discussion and ideas
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for future work.

2 Related Work

Language-based cues to deception have been ana-
lyzed in many genres. Ott et al. (2011) compared
approaches to automatically detecting deceptive
opinion spam, using a crowdsourced dataset of
fake hotel reviews. Several studies use a fake
opinion paradigm for collecting data, instructing
subjects to write or record deceptive and truth-
ful opinions about controversial topics such as the
death penalty or abortion, or about a person that
they like/dislike (Newman et al., 2003; Mihalcea
and Strapparava, 2009). Other research has fo-
cused on real-world data obtained from court tes-
timonies and depositions (Fornaciari and Poesio,
2013; Bachenko et al., 2008; Pérez-Rosas et al.,
2015). Real-world deceptive situations are high-
stakes, where there is much to be gained or lost if
deception succeeds or fails; it is hypothesized that
these conditions are more likely to elicit strong
cues to deception. However, working with such
data requires extensive research to annotate each
utterance for veracity, so such datasets are often
quite small and not always reliable.

Linguistic features such as n-grams and lan-
guage complexity have been analyzed as cues
to deception (Pérez-Rosas and Mihalcea, 2015;
Yancheva and Rudzicz, 2013). Syntactic fea-
tures such as part of speech tags have also been
found to be useful for structured data (Ott et al.,
2011; Feng et al., 2012). Statement Analysis
(Adams, 1996) is a text-based deception detec-
tion approach that combines lexical and syntac-
tic features. An especially useful resource for
text-based deception detection is the Linguistic In-
quiry and Word Count (LIWC) (Pennebaker and
King, 1999), which groups words into psycholog-
ically motivated categories. In addition to lexi-
cal features, some studies have examined acoustic-
prosodic cues to deception (Rockwell et al., 1997;
Enos, 2009; Mendels et al., 2017). (Benus et al.,
2006) studied pause behavior in deceptive speech.
This work is very promising, but it is more dif-
ficult to obtain large, cleanly recorded speech cor-
pora with deception annotations than to obtain text
corpora. An excellent meta-study of verbal cues to
deception can be found in (DePaulo et al., 2003).

3 Data

3.1 Corpus

For this work, we examined the Columbia X-
Cultural Deception (CXD) Corpus (Levitan et al.,
2015a) a collection of within-subject deceptive
and non-deceptive speech from native speakers of
Standard American English (SAE) and Mandarin
Chinese (MC), all speaking in English. The corpus
contains dialogues between 340 subjects. A varia-
tion of a fake resume paradigm was used to collect
the data. Previously unacquainted pairs of sub-
jects played a ”lying game” with each other. Each
subject filled out a 24-item biographical question-
naire and were instructed to create false answers
for a random half of the questions. They also re-
ported demographic information including gender
and native language, and completed the NEO-FFI
personality inventory (Costa and McCrae, 1989).

The lying game was recorded in a sound booth.
For the first half of the game, one subject assumed
the role of the interviewer, while the other an-
swered the biographical questions, lying for half
and telling the truth for the other; questions cho-
sen in each category were balanced across the cor-
pus. For the second half of the game, the subjects
roles were reversed, and the interviewer became
the interviewee. During the game, the interviewer
was allowed to ask the 24 questions in any order
s/he chose; the interviewer was also encouraged to
ask follow-up questions to aid them in determin-
ing the truth of the interviewees answers. Inter-
viewers recorded their judgments for each of the
24 questions, providing information about human
perception of deception. The entire corpus was or-
thographically transcribed using the Amazon Me-
chanical Turk (AMT)1 crowd-sourcing platform,
and the speech was segmented into inter-pausal
units (IPUs), defined as pause-free segments of
speech separated by a minimum pause length of
50 ms. The speech was also segmented into turn
units, where a turn is defined as a maximal se-
quence of IPUs from a single speaker without
any interlocutor speech that is not a backchan-
nel. There are two forms of deception annota-
tions in the corpus: local and global. Interviewees
labeled their responses with local annotations by
pressing a ”T” or ”F” key for each utterance as
they spoke. These keypresses were automatically
aligned with speaker IPUs and turns. Global la-

1https://www.mturk.com/mturk/
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bels were provided by the biographical question-
naire, where each of the 24 questions was labeled
as truthful or deceptive.

Consider the following dialogue:
Interviewer: What is your mother’s job?
Interviewee: My mother is a doctor (F). She has
always worked very late hours and I felt neglected
as a child (T).

Is the interviewee response true or false? We
differentiate between global and local deception.
Globally, the response to the question is deceptive.
However, it contains local instances of both truth
and deception. In this work we focus on dialogue-
based deception, using global deception labels.

3.2 Global Segmentation

Previous work with the CXD corpus has focused
on IPU-level and turn-level analysis and classifi-
cation of local deception, mostly with acoustic-
prosodic features (Levitan et al., 2015b; Mendels
et al., 2017). Here we are interested in exploring
global deception at the dialogue-level for the first
time in this corpus. We define response-segments
as sets of turns that are related to a single question
(of the 24 interview questions). In order to anno-
tate these segments, we first used a question de-
tection and identification system (Maredia et al.,
2017) that uses word embeddings to match se-
mantically similar variations of questions to a tar-
get question list. This was necessary because in-
terviewers asked the 24 questions using different
wording from the original list of questions. On
this corpus, (Maredia et al., 2017) obtained an F1-
score of .95%.

After tagging interviewer turns with this sys-
tem, we labeled the set of interviewee turns be-
tween two interviewer questions q1 and q2 as cor-
responding to question q1. The intuition behind
this was that those turns were responses to follow
up questions related to q1, and while the ques-
tion detection and identification system discussed
above did not identify follow up questions, we
found that most of the follow up questions after
an interviewer question q1 would be related to q1
in our hand annotation. We evaluated this global
segmentation on a hand-annotated test set of 17
interviews (about 10% of the corpus) consisting
of 2,671 interviewee turns, 408 interviewer ques-
tions, and 977 follow up questions. Our global
segmentation approach resulted in 77.8% accuracy
on our hand-labeled test set (errors were mostly

due to turns that were unrelated to any question).
We performed our analysis and classification on

two segmentations of the data using this tagging
method: (1) first turn: we analyzed only the sin-
gle interviewee turn directly following the original
question, and (2) multiple turns we analyzed the
entire segment of interviewee turns that were re-
sponding to the original interviewer question and
subsequent follow-up questions. In our classifica-
tion experiments, we explore whether a deceptive
answer is be better classified by the interviewee’s
initial response or by all of the follow-up conver-
sation between interviewer and interviewee.

4 Features

LIWC Previous work has found that deceivers
tend to use different word usage patterns when
they are lying (Newman et al., 2003). We used
LIWC (Pennebaker et al., 2001) to extract seman-
tic features from each utterance. LIWC is a text
analysis program that computes features consist-
ing of normalized word counts for 93 semantic
classes. LIWC dimensions have been used in
many studies to predict outcomes including per-
sonality (Pennebaker and King, 1999), deception
(Newman et al., 2003), and health (Pennebaker
et al., 1997). We extracted a total of 93 features
using LIWC 2015 2, including standard linguis-
tic dimensions (e.g. percentage of words that are
pronouns, articles), markers of psychological pro-
cesses (e.g. affect, social, cognitive), punctuation
categories (e.g periods, commas), and formality
measures (e.g. fillers, swear words).
Linguistic We extracted 23 linguistic features
3 which we adopted from previous deception
studies such as (Enos, 2009; Bachenko et al.,
2008). Included in this list are binary and
numeric features capturing hedge words, filled
pauses, laughter, complexity, contractions, and
denials. We include Dictionary of Affect Lan-
guage (DAL) (Whissell et al., 1986) scores that
measure the emotional meaning of texts, and a
specificity score which measures level of detail
(Li and Nenkova, 2015). The full list of features
is: ’hasAbsolutelyReally’, ’hasContraction’,
’hasI’, ’hasWe’, ’hasYes’, ’hasNAposT’ (turns

2A full description of the features is found here: https:
//s3-us-west-2.amazonaws.com/downloads.
liwc.net/LIWC2015_OperatorManual.pdf

3A detailed explanation of these linguistic features and
how they were computed is found here: http://www.cs.
columbia.edu/speech/cxd/features.html
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that contain words with the contraction ”n’t”),
’hasNo’, ’hasNot’, ’isJustYes’, ’isJustNo’, ’noYe-
sOrNo’, ’specificDenial’, ’thirdPersonPronouns’,
’hasFalseStart’, ’hasFilledPause’, ’numFilled-
Pauses’, ’hasCuePhrase’, ’numCuePhrases’,
’hasHedgePhrase’, ’numHedgePhrases’,
’hasLaugh’, ’complexity’, ’numLaugh’, ’DAL-
wc’, ’DAL-pleasant’, ’DAL-activate’, ’DAL-
imagery’, ’specScores’ (specificity score).
Response Length Previous work has found that
response length, in seconds, is shorter in deceptive
speech, and that the difference in number of words
in a segment of speech is insignificant between de-
ceptive and truthful speech (DePaulo et al., 2003).
For our question-level analysis, we used four dif-
ferent measures for response length: the total
number of seconds of an interviewee response-
segment, the total number of words in an intervie-
wee response-segment, the average response time
of a turn in an interviewee response-segment, and
the average number of words per turn in an inter-
viewee response-segment.
Individual Traits We analyzed gender and na-
tive language of the speakers to determine if these
traits were related to ability to deceive and to de-
tect deception. We also analyzed linguistic cues to
deception across gender and native language, and
used gender and native language information in
our classification experiments. All speakers were
either male or female, and their native language
was either Standard American English or Man-
darin Chinese. In addition, we used the NEO-FFI
(5 factor) personality inventory scores as features
in classification experiments, but not for the statis-
tical analysis in this paper.
Follow-up Questions Follow-up questions are
questions that an interviewer asks after they ask
a question from the original prescribed set of
questions. We hypothesized that if an inter-
viewer asked more follow-up questions, they were
more likely to identify deceptive responses, be-
cause asking follow-up questions indicated inter-
viewer doubt of the interviewee’s truthfulness. For
each interviewee response-segment, we counted
the number of follow-up questions interviewees
were asked by the interviewer.

5 Analysis

In order to analyze the differences between decep-
tive and truthful speech, we extracted the above
features from each question response-segment,

and calculated a series of paired t-tests between
the features of truthful speech and deceptive
speech. All tests for significance correct for
family-wise Type I error by controlling the false
discovery rate (FDR) at α = 0.05. The kth small-
est p value is considered significant if it is less than
k∗α
n .

5.1 Interviewee Responses

Table 1 shows the features that were statistically
significant indicators of truth and deception in in-
terviewee response-segments consisting of multi-
ple turns. Below, we highlight some interesting
findings.

In contrast to (DePaulo et al., 2003), we found
that the total duration of an interviewee response-
segment was longer for deceptive speech than for
truthful speech. Additionally, while (DePaulo
et al., 2003) showed that the number of words
in a segment of speech was not significantly dif-
ferent between deceptive and truthful speech, we
found that deceptive response-segments had more
words than truthful response-segments. Further-
more, we found that longer average response time
per turn and more words per sentence were signif-
icant indicators of deception. These results show
that when interviewees are trying to deceive, not
only is their aggregate response longer in dura-
tion and number of words, but their individual re-
sponses to each follow-up question are also longer.
Consistent with (DePaulo et al., 2003), we found
that more filled pauses in an interviewee response-
segment was a significant indicator of deception.
Deceivers are hypothesized to experience an in-
crease in cognitive load (Vrij et al., 1996), and this
can result in difficulties in speech planning, which
can be signaled by filled pauses. Although (Be-
nus et al., 2006) found that, in general, the use of
pauses correlates more with truthful than with de-
ceptive speech, we found that filled pauses such as
”um” were correlated with deceptive speech. The
LIWC cogproc (cognitive processes) dimension,
which includes words such as ”cause”, ”know”,
”ought” was significantly more frequent in truth-
ful speech, also supporting the theory that cogni-
tive load is increased while practicing deception.

We found that increased DALimagery scores,
which compute words often used in speech to cre-
ate vivid descriptions, were indicators of decep-
tion. We also found that the LIWC language sum-
mary variables of authenticity and adjectives
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Feature Deception Truth Neutral
Lexical DAL.activate, DAL.imagery, DAL.pleasant isJustNo complexity, DAL.wc

noYesOrNo, numCuePhrase, isJustYes
numFilledPauses, numHedgePhrases numLaugh
specScores, thirdPersonPronouns specificDenial

LIWC achieve, adj, adverb, affiliation certain, dic affect, apostro, assent
analytic, article, authentic function, negate, netspeak auxverb, body, cogproc
cause, clout, compare, conj colon, comma, death
dash, discrep, drives, family differ, female, filler
feel, focusfuture, focuspast, friend i, ingest, insight, leisure
health, interrog, ipron, male posemo, quant, quote
motion, percept, ppron, prep relig, sad, see
pronoun, power, relativ, reward sixltr, they, tone, work
shehe, social, space, swear
verb, WC, we, WPS, you

Response length num words, response length
avg response length, avg num words

Followup num turns

Table 1: Statistically significant indicators of truth and deception in interviewee response-segments con-
sisting of multiple turns related to a single question.

Feature Deception Truth Neutral
Lexical DAL.imagery, DAL.pleasant DAL.actvate complexity, DAL.wc

numCuePhrases, numFilledPauses isJustNo isJustYes, noYesOrNo
numHedgePhrases, specificDenial numLaugh
specScores, thirdPersonPronoun

LIWC adverb, article,authentic, body negate apostro, bio, cause
conj, focuspast, interrog, ipron certain, clout, cogproc, compare
prep, pronoun, WC, WPS discrep, focusfuture, function

insight, money, motion
negemo, nonflu, number
posemo, ppron, relative

Response length num words
response length
avg num words
avg response length

Followup num turns

Table 2: Statistically significant indicators of perceived truth and deception in interviewer judgments of
interviewee responses.

were indicators of deception: in an effort to
sound more truthful and authentic, interviewees
may have provided a level of detail that is un-
characteristic of truthful speech. Similarly, the
specificity metric was indicative of deception:
deceptive responses contained more detailed lan-
guage. Words in the LIWC clout category - a cate-
gory describing words that indicate power of influ-
ence - were more prevalent in deceptive responses,
suggesting that subjects sounded more confident
while lying. Interrogatives were an indicator
of deception. In the context of the interviewer-
interviewee paradigm, these are interviewee ques-
tions to the interviewer. Perhaps this was a tech-
nique used to stall so that they had more time to

develop an answer (e.g. ”Can you repeat the ques-
tion?”), or to deflect the interviewer’s attention
from their deception and put the interviewer on the
spot. We observed that hedge words and phrases,
which speakers use to distance themselves from
a proposition, were more frequent in deceptive
speech. This is consistent with Statement Analysis
(Adams, 1996), which posits that hedge words are
used in deceptive statements to intentionally cre-
ate vagueness that obscures facts. Consistent with
this finding, certainty in language (words such
as ”always” or ”never”) was a strong indicator of
truthfulness.

It is also interesting to note the features that
were not significant indicators of truth or decep-
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tion. For example, there was no significant differ-
ence in laughter frequency or apostrophes (used
for contractions in this corpus) between truthful
and deceptive responses.

When we compared indicators of truth vs. de-
ception across multiple turns to indicators of truth
vs. deception in just the first turns of interviewee
response-segments, we found that, generally, indi-
cators in first turns are a subset of indicators across
multiple turns. In some cases there were inter-
esting differences. For example, although tone
(emotional tone - higher numbers indicate more
positive, and lower indicate negative) was not a
significant indicator of deception for the entire in-
terviewee response-segment, negative tone was a
moderate indicator of deception in first turns. This
suggests that the tone of interviewees, when they
have just started their lie, is different from when
they are given the opportunity to expand on that
lie. The findings from our analysis of first turns
suggest that there might be enough information
in the first response alone to distinguish between
deceptive and truthful speech; we test this in our
classification experiments in Section 6.

5.2 Interviewer Judgments of Deception

In addition to analyzing the linguistic differences
between truthful and deceptive speech, we were
interested in studying the characteristics of speech
that is believed or disbelieved. Since the CXD cor-
pus includes interviewer judgments of deception
for each question asked, we have the unique op-
portunity to study human perception of deception
on a large scale. Table 2 shows the features that
were statistically significant indicators of truth and
deception in interviewee responses - consisting of
multiple turns - that were perceived as true or false
by interviewers. Here we highlight some interest-
ing findings. There were many features that were
prevalent in speech that interviewers perceived as
deceptive, which were in fact cues to deception.
For example, speech containing more words in a
response-segment and more words per sentence
was generally perceived as deceptive by interview-
ers, and indeed, this perception was correct. Dis-
believed answers had a greater frequency of filled
pauses and hedge words, and greater specificity,
all of which were increased in deceptive speech.

There were also several features that were in-
dicators of deception, but were not found in
higher rates in statements that were perceived

as false. For example, the LIWC dimensions
clout and certain were not significantly differ-
ent in believed vs. disbelieved interviewee re-
sponses, but clout was increased in deceptive
speech and certain language was increased in
truthful speech. There were also features that were
significantly different between believed and disbe-
lieved statements, but were not indicators of de-
ception. For example, statements that were per-
ceived as false by interviewers had a greater pro-
portion of specificDenials (e.g. ”I did not”) than
those that were perceived as true; this was not
a valid cue to deception. Number of turns was
increased in dialogue segments where the inter-
viewer did not ultimately believe the interviewee
response. That is, more follow up questions were
asked when an interviewer did not believe their in-
terlocutor’s response, which is an intuitive behav-
ior. When we compared indicators of speech that
was perceived as deceptive across multiple turns to
indicators of speech that was perceived as decep-
tive in just the first turns, we found that, generally,
indicators in first turns are a subset of indicators
across multiple turns.

On average, human accuracy at judging truth
and deception in the CXD corpus was 56.75%,
and accuracy at judging deceptive statements only
was 47.93%. The average F1-score for humans
was 46. Thus, although some cues were correctly
perceived by interviewers, humans were generally
poor at deception perception. Nonetheless, char-
acterizing the nature of speech that is believed or
not believed is useful for applications where we
would ultimately like to synthesize speech that is
trustworthy.

5.3 Gender and Native Language Differences
in Deception Behavior

Having discovered many differences between de-
ceptive and truthful language across all speakers,
we were interested in analyzing differences in de-
ceptive language across groups of speakers. Using
gender and native language (English or Mandarin
Chinese) as group traits, we conducted two types
of analysis. First, we directly compared decep-
tion performance measures (ability to deceive as
interviewee, and ability to detect deception as in-
terviewer) between speakers with different traits,
to assess the effect of individual characteristics on
deception abilities. In addition, we compared the
features of deceptive and truthful language in sub-
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Group Deception Truth
Male analytic, friend, interrog posemo
Female achieve, adverb, article

authentic, cause compare
discrep,family, feel
focusfuture, percept, power
relativ, we

English acheve, adverb, affiliation
compare, interrog, power
relativ, space, swear

Chinese analytic, bio cause certain
discrep, feel, health (informal)
percep, (filler) (netspeak)

Table 3: Gender-specific and language-specific in-
dicators of deception and truth. We consider a re-
sult to approach significance if its uncorrected p
value is less than 0.05 and indicate this with () in
the table.

sets of the corpus, considering only people with
a particular trait, in order to determine group-
specific patterns of deceptive language. As be-
fore, tests for significance correct for family-wise
Type I error by controlling the false discovery rate
(FDR) at α = 0.05. The kth smallest p value is
considered significant if it is less than k∗α

n .

5.3.1 Gender
There were no significant differences in deception
ability between male and female speakers. How-
ever, there were many differences in language be-
tween male and female speakers. Further, some
features were only discriminative between decep-
tion and truth for a specific gender. Table 3 shows
linguistic features that were significantly different
between truthful and deceptive speech, but only
for one gender. In some cases the feature was
found in different proportions in male and females,
and in other cases there was no significant differ-
ence. For example, family words were indicative
of deception only in female speakers, and these
words were also used more frequently by female
speakers than male speakers.

The LIWC category of compare was also in-
dicative of deception for females only, and this
feature was generally found more frequently in fe-
male speech. Article usage was only significantly
different between truthful and deceptive speech
in females (more articles were found in deceptive
speech), but articles were used more frequently in
male speech. On the other hand, the LIWC cate-
gory of posemo (positive emotion) was increased
in truthful speech for male speakers only, and there

was no significant difference of posemo frequency
across gender.

5.3.2 Native Language

Interviewees were more successful at deceiving
native Chinese speakers than at deceiving native
English speakers (t(170) = −2.13, p = 0.033).
This was true regardless of interviewee gender
and native language, and slightly stronger for fe-
male interviewers (t(170) = −2.22, p = 0.027).
When considering only female interviewers, inter-
viewees were more successful at deceiving non-
native speakers than native speakers, but this dif-
ference was not significant when considering only
male interviewers. As with gender, there were sev-
eral features that were discriminative between de-
ception and truth for only native speakers of En-
glish, or only native speakers of Mandarin. Table
3 shows LIWC categories and their relation to de-
ception, broken down by native language. For ex-
ample, power words were found more frequently
in deception statements, when considering native
English speakers only. In general, power words
were used more by native Mandarin speakers than
by native English speakers. LIWC categories of
compare, relative, and swear were more preva-
lent in deceptive speech, only for English speak-
ers. On the other hand, feel and perception di-
mensions were only indicators of deception for
native Mandarin speakers, although there was no
significant difference in the use of these word cat-
egories across native language. Informal and
netspeak word dimensions tended to be more fre-
quent in truthful speech for native Chinese speak-
ers only (approaching significance), and these
word categories were generally more frequent in
native Mandarin speech. Finally, filler words
tended to be more frequent in deceptive speech
(approaching significance) only for native Man-
darin speakers, and these were used more fre-
quently by native Mandarin speakers than native
English speakers.

Overall, our findings suggest that deceptive be-
havior in general, and deceptive language in par-
ticular, are affected by a person’s individual char-
acteristics, including gender and native language.
When building a deception classification system,
it is important to account for this variation across
speaker groups.
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Features Segmentation Accuracy Precision Recall F1-score
Human baseline Multiple turns 56.75 56.50 40.00 46.50
LIWC Single turn 65.75 65.79 65.74 65.72

Multiple turns 72.78 72.84 72.74 72.74
Lexical Single turn 66.95 66.97 66.95 66.94

Multiple turns 70.33 70.46 70.28 70.25
LIWC+lexical Single turn 68.35 68.36 68.35 68.35

Multiple turns 71.66 71.77 71.60 71.58
LIWC+individual Single turn 67.50 67.50 67.50 67.49

Multiple turns 71.85 71.93 71.80 71.79
Lexical+individual Single turn 69.32 69.33 69.32 69.31

Multiple turns 69.95 70.06 69.89 69.86
LIWC+lexical+individual Single turn 70.87 70.87 70.87 70.87

Multiple turns 72.40 72.50 72.34 72.33

Table 4: Random Forest classification of single turn and multiple turn segmentations, using text-based
features and individual traits (gender, native language, NEO-FFI personality scores).

6 Deception Classification

Motivated by our analysis showing many signif-
icant differences in the language of truthful and
deceptive responses to interview questions, we
trained machine learning classifiers to automati-
cally distinguish between truthful and deceptive
text, using the feature sets described in section
4. We compared classification performance for
the two segmentation methods described in sec-
tion 3.2: first turn and multiple turns. This al-
lowed us to explore the role of context in auto-
matic deception detection. When classifying inter-
viewee response-segments, should the immediate
response only be used for classification, or is in-
clusion of surrounding turns helpful? This has im-
plications not only for deception classification, but
for practitioners as well. Should human interview-
ers make use of responses to follow up questions
when determining response veracity, or should the
initial response receive the most consideration?

We compared the performance of 3 classifica-
tion algorithms: Random Forest, Logistic Regres-
sion, and SVM (sklearn implementation). In total,
there were 7,792 question segments for both sin-
gle turn and multiple turns segmentations. We di-
vided this into 66% train and 33% test, and used
the same fixed test set in experiments for both seg-
mentations in order to directly compare results.
The random baseline performance is 50, since the
dataset is balanced for truthful and deceptive state-
ments. Another baseline is human performance,
which is 46.0 F1 in this corpus. The Random For-

est classifier was consistently the best performing,
and we only report those results due to space con-
straints. Table 4 displays the classification perfor-
mance for each feature set individually, as well
as feature combinations, for both single turn and
multiple turn segmentations. It also shows the hu-
man baseline performance, obtained from the in-
terviewers’ judgments of deception in the corpus,
which were made after asking each question along
with related follow-up questions (i.e. multiple turn
segmentation).

The best performance (72.74 F1-score) was ob-
tained using LIWC features extracted from mul-
tiple turns. This is a 22.74% absolute increase
over the random baseline of 50, and a 26.74%
absolute increase over the human baseline of 46.
The performance of classifiers trained on multi-
ple turns was consistently better than those trained
on single turns, for all feature sets. For multiple
turns, LIWC features were better than the lexi-
cal feature set, and combining lexical with LIWC
features did not improve over the performance of
LIWC features alone. Adding individual traits in-
formation was also not beneficial. However, when
considering the first turn only, the best results
(70.87 F1-score) were obtained using a combina-
tion of LIWC+lexical+individual features. Using
the first turns segmentation, lexical features were
slightly better than LIWC features, and interest-
ingly, adding individual traits helped both feature
sets. A combination of LIWC and lexical features
was better than each on its own.

These results suggest that contextual informa-
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tion, in the form of follow up questions, is ben-
eficial for deception classification. It seems that
individual traits, including gender, native lan-
guage, and personality scores, are helpful in de-
ception classification under the condition where
contextual information is not available. When the
contextual information is available, the the addi-
tional lexical content is more useful than individ-
ual traits.

7 Conclusions and Future Work

In this paper we presented a study of deceptive
language in interview dialogues. Our analysis of
linguistic characteristics of deceptive and truth-
ful speech provides insight into the nature of de-
ceptive language. We also analyzed the linguis-
tic characteristics of speech that is perceived as
deceptive and truthful, which is important for un-
derstanding the nature of trustworthy speech. We
explored variation across gender and native lan-
guage in linguistic cues to deception, highlight-
ing cues that are specific to particular groups of
speakers. We built classifiers that use combina-
tions of linguistic features and individual traits to
automatically identify deceptive speech. We com-
pared the performance of using cues from the sin-
gle first turn of an interviewee response-segment
with using cues from the full context of multiple
interviewee turns, achieving performance as high
as 72.74% F1-score (about 27% better than human
detection performance).

This work contributes to the critical problem
of automatic deception detection, and increases
our scientific understanding of deception, decep-
tion perception, and individual differences in de-
ceptive behavior. In future work, we plan to con-
duct similar analysis in additional deception cor-
pora in other domains, in order to identify consis-
tent domain-independent deception indicators. In
addition, we plan to conduct cross-corpus machine
learning experiments, to evaluate the robustness of
these and other feature sets in deception detection.
We also would like to explore additional feature
combinations, such as adding acoustic-prosodic
features. Finally, we plan to conduct an empirical
analysis of deception behavior across personality
types.
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Abstract
We show that explicit pragmatic inference aids
in correctly generating and following natural
language instructions for complex, sequential
tasks. Our pragmatics-enabled models reason
about why speakers produce certain instruc-
tions, and about how listeners will react upon
hearing them. Like previous pragmatic mod-
els, we use learned base listener and speaker
models to build a pragmatic speaker that uses
the base listener to simulate the interpretation
of candidate descriptions, and a pragmatic lis-
tener that reasons counterfactually about al-
ternative descriptions. We extend these mod-
els to tasks with sequential structure. Eval-
uation of language generation and interpreta-
tion shows that pragmatic inference improves
state-of-the-art listener models (at correctly
interpreting human instructions) and speaker
models (at producing instructions correctly in-
terpreted by humans) in diverse settings.

1 Introduction

How should speakers and listeners reason about
each other when they communicate? A core in-
sight of computational pragmatics is that speaker
and listener agents operate within a cooperative
game-theoretic context, and that each agent ben-
efits from reasoning about others’ intents and ac-
tions within that context. Pragmatic inference has
been studied by a long line of work in linguistics,
natural language processing, and cognitive sci-
ence. In this paper, we present a technique for lay-
ering explicit pragmatic inference on top of mod-
els for complex, sequential instruction-following
and instruction-generation tasks. We investigate a
range of current data sets for both tasks, showing
that pragmatic behavior arises naturally from this
inference procedure, and gives rise to state-of-the-
art results in a variety of domains.

Consider the example shown in Figure 1a, in
which a speaker agent must describe a route to

(a)

Behavior

Base	
Speaker

Rational	
Speaker

✔

walk forward four times

go forward four segments to the 
intersection with the bare concrete hall

(b)

Instruction walk along the blue carpet and you pass  
two objects

Base	
Listener

Rational	
Listener

✗

✔

Figure 1: Real samples for the SAIL navigation en-
vironments, comparing base models, without explicit
pragmatic inference, to the rational pragmatic infer-
ence procedure. (a) The rational speaker, which rea-
sons about listener behavior, generates instructions
which in this case are more robust to uncertainty about
the listener’s initial orientation. (b) The base listener
moves to an unintended position (even though it cor-
rectly passes two objects). The rational listener, which
reasons about the speaker, infers that a route ending
at the sofa would have been described differently, and
stops earlier.

a target position in a hallway. A conventional
learned instruction-generating model produces a
truthful description of the route (walk forward four
times). But the pragmatic speaker in this paper,
which is capable of reasoning about the listener,
chooses to also include additional information (the
intersection with the bare concrete hall), to reduce
potential ambiguity and increase the odds that the
listener reaches the correct destination.

This same reasoning procedure also allows a lis-
tener agent to overcome ambiguity in instructions
by reasoning counterfactually about the speaker
(Figure 1b). Given the command walk along the
blue carpet and you pass two objects, a conven-
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tional learned instruction-following model is will-
ing to consider all paths that pass two objects,
and ultimately arrives at an unintended final po-
sition. But a pragmatic listener that reasons about
the speaker can infer that the long path would have
been more easily described as go to the sofa, and
thus that the shorter path is probably intended. In
these two examples, which are produced by the
system we describe in this paper, a unified rea-
soning process (choose the output sequence which
is most preferred by an embedded model of the
other agent) produces pragmatic behavior for both
speakers and listeners.

The application of models with explicit prag-
matic reasoning abilities has so far been largely
restricted to simple reference games, in which the
listener’s only task is to select the right item from
among a small set of candidate referents given
a single short utterance from the speaker. But
as the example shows, there are real-world in-
struction following and generation tasks with rich
action spaces that might also benefit from prag-
matic modeling. Moreover, approaches that learn
to map directly between human-annotated instruc-
tions and action sequences are ultimately limited
by the effectiveness of the humans themselves.
The promise of pragmatic modeling is that we can
use these same annotations to build a model with a
different (and perhaps even better) mechanism for
interpreting and generating instructions.

The primary contribution of this work is to
show how existing models of pragmatic reasoning
can be extended to support instruction following
and generation for challenging, multi-step, inter-
active tasks. Our experimental evaluation focuses
on four instruction-following domains which have
been studied using both semantic parsers and at-
tentional neural models. We investigate the in-
terrelated tasks of instruction following and in-
struction generation, and show that incorporat-
ing an explicit model of pragmatics helps in both
cases. Reasoning about the human listener allows
a speaker model to produce instructions that are
easier for humans to interpret correctly in all do-
mains (with absolute gains in accuracy ranging
from 12% to 46%). Similarly, reasoning about the
human speaker improves the accuracy of the lis-
tener models in interpreting instructions in most
domains (with gains in accuracy of up to 10%).
In all cases, the resulting systems are competitive
with, and in many cases exceed, results from past

state-of-the-art systems for these tasks.1

2 Problem Formulation

Consider the instruction following and instruc-
tion generation tasks shown in Figure 1, where an
agent must produce or interpret instructions about
a structured world context (e.g. walk along the
blue carpet and you pass two objects).

In the instruction following task, a listener
agent begins in a world state (in Figure 1 an ini-
tial map location and orientation). The agent is
then tasked with following a sequence of direction
sentences d1 . . . dK produced by humans. At each
time t the agent receives a percept yt, which is a
feature-based representation of the current world
state, and chooses an action at (e.g. move forward,
or turn). The agent succeeds if it is able to reach
the correct final state described by the directions.

In the instruction generation task, the agent
receives a sequence of actions a1, · · · aT along
with the world state y1, · · · yT at each action, and
must generate a sequence of direction sentences
d1, . . . dK describing the actions. The agent suc-
ceeds if a human listener is able to correctly follow
those directions to the intended final state.

We evaluate models for both tasks in four do-
mains. The first domain is the SAIL corpus
of virtual environments and navigational direc-
tions (MacMahon et al., 2006; Chen and Mooney,
2011), where an agent navigates through a two-
dimensional grid of hallways with patterned walls
and floors and a discrete set of objects (Figure 1
shows a portion of one of these hallways).

In the three SCONE domains (Long et al.,
2016), the world contains a number of objects with
various properties, such as colored beakers which
an agent can combine, drain, and mix. Instructions
describe how these objects should be manipulated.
These domains were designed to elicit instructions
with a variety of context-dependent language phe-
nomena, including ellipsis and coreference (Long
et al., 2016) which we might expect a model of
pragmatics to help resolve (Potts, 2011).

3 Related Work

The approach in this paper builds upon long lines
of work in pragmatic modeling, instruction fol-
lowing, and instruction generation.

1Source code is available at http://github.com/
dpfried/pragmatic-instructions
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Pragmatics Our approach to pragmatics (Grice,
1975) belongs to a general category of rational
speech acts models (Frank and Goodman, 2012),
in which the interaction between speakers and
listeners is modeled as a probabilistic process
with Bayesian actors (Goodman and Stuhlmüller,
2013). Alternative formulations (e.g. with best-
response rather than probabilistic dynamics) are
also possible (Golland et al., 2010). Inference in
these models is challenging even when the space
of listener actions is extremely simple (Smith
et al., 2013), and one of our goals in the present
work is to show how this inference problem can be
solved even in much richer action spaces than pre-
viously considered in computational pragmatics.
This family of pragmatic models captures a num-
ber of important linguistic phenomena, especially
those involving conversational implicature (Mon-
roe and Potts, 2015); we note that many other top-
ics studied under the broad heading of “pragmat-
ics,” including presupposition and indexicality, re-
quire different machinery.

Williams et al. (2015) use pragmatic reasoning
with weighted inference rules to resolve ambigu-
ity and generate clarification requests in a human-
robot dialog task. Other recent work on pragmatic
models focuses on the referring expression gener-
ation or “contrastive captioning” task introduced
by Kazemzadeh et al. (2014). In this family are
approaches that model the listener at training time
(Mao et al., 2016), at evaluation time (Andreas and
Klein, 2016; Monroe et al., 2017; Vedantam et al.,
2017; Su et al., 2017) or both (Yu et al., 2017b;
Luo and Shakhnarovich, 2017).

Other conditional sequence rescoring models
that are structurally similar but motivated by con-
cerns other than pragmatics include Li et al. (2016)
and Yu et al. (2017a). Lewis et al. (2017) perform
a similar inference procedure for a competitive ne-
gotiation task. The language learning model of
Wang et al. (2016) also features a structured out-
put space and uses pragmatics to improve online
predictions for a semantic parsing model. Our ap-
proach in this paper performs both generation and
interpretation, and investigates both structured and
unstructured output representations.

Instruction following Work on instruction fol-
lowing tasks includes models that parse com-
mands into structured representations processed
by a rich execution model (Tellex et al., 2011;
Chen, 2012; Artzi and Zettlemoyer, 2013; Guu

et al., 2017), and models that map directly from
instructions to a policy over primitive actions
(Branavan et al., 2009), possibly mediated by an
intermediate alignment or attention variable (An-
dreas and Klein, 2015; Mei et al., 2016). We use
a model similar to Mei et al. (2016) as our base
listener in this paper, evaluating on the SAIL nav-
igation task (MacMahon et al., 2006) as they did,
as well as the SCONE context-dependent execu-
tion domains (Long et al., 2016).

Instruction generation Previous work has also
investigated the instruction generation task, in par-
ticular for navigational directions. The GIVE
shared tasks (Byron et al., 2009; Koller et al.,
2010; Striegnitz et al., 2011) have produced a
large number of interactive direction-giving sys-
tems, both rule-based and learned. The work most
immediately related to the generation task in this
paper is that of Daniele et al. (2017), which also
focuses on the SAIL dataset but requires substan-
tial additional structured annotation for training,
while both our base and pragmatic speaker models
learn directly from strings and action sequences.

Older work has studied the properties of effec-
tive human strategies for generating navigational
directions (Anderson et al., 1991). Instructions
of this kind can be used to extract templates for
generation (Look, 2008; Dale et al., 2005), while
here we focus on the more challenging problem of
learning to generate new instructions from scratch.
Like our pragmatic speaker model, Goeddel and
Olson (2012) also reason about listener behavior
when generating navigational instructions, but rely
on rule-based models for interpretation.

4 Pragmatic inference procedure

As a foundation for pragmatic inference, we as-
sume that we have base listener and speaker mod-
els to map directions to actions and vice-versa.
(Our notation for referring to models is adapted
from Bergen et al. (2016).) The base listener, L0,
produces a probability distribution over sequences
of actions, conditioned on a representation of the
directions and environment as seen before each
action: PL0(a1:T |d1:K , y1:T ). Similarly, the base
speaker, S0, defines a distribution over possible
descriptions conditioned on a representation of the
actions and environment: PS0(d1:K |a1:T , y1:T ).

Our pragmatic inference procedure requires
these base models to produce candidate outputs
from a given input (actions from descriptions, for
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Base	
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Base	
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Speaker Instructions

Rational 
Listener
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Pragmatic	
Inference
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…
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…
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+

Base	
Listener

Base	
Speaker

(a) (b)
Figure 2: (a) Rational pragmatic models embed base listeners and speakers. Potential candidate sequences are
drawn from one base model, and then the other scores each candidate to simulate whether it produces the desired
pragmatic behavior. (b) The base listener and speaker are neural sequence-to-sequence models which are largely
symmetric to each other. Each produces a representation of its input sequence (a description, for the listener;
actions with associated environmental percepts, for the listener) using an LSTM encoder. The output sequence is
generated by an LSTM decoder attending to the input.

the listener; descriptions from actions, for the
speaker), and calculate the probability of a fixed
output given an input, but is otherwise agnostic to
the form of the models.

We use standard sequence-to-sequence mod-
els with attention for both the base listener and
speaker (described in Section 5). Our models use
segmented action sequences, with one segment
(sub-sequence of actions) aligned with each de-
scription sentence dj , for all j ∈ {1 . . .K}. This
segmentation is either given as part of the train-
ing and testing data (in the instruction following
task for the SAIL domain, and in both tasks for
the SCONE domain, where each sentence corre-
sponds to a single action), or is predicted by a sep-
arate segmentation model (in the generation task
for the SAIL domain), see Section 5.

4.1 Models

Using these base models as self-contained mod-
ules, we derive a rational speaker and rational lis-
tener that perform inference using embedded in-
stances of these base models (Figure 2a). When
describing an action sequence, a rational speaker
S1 chooses a description that has a high chance of
causing the listener modeled by L0 to follow the
given actions:

S1(a1:T ) = argmax
d1:K

PL0(a1:T |d1:K , y1:T ) (1)

(noting that, in all settings we explore here, the
percepts y1:T are completely determined by the ac-
tions a1:T ). Conversely, a rational listener L1 fol-
lows a description by choosing an action sequence
which has high probability of having caused the

speaker, modeled by S0, to produce the descrip-
tion:

L1(d1:K) = argmax
a1:T

PS0(d1:K |a1:T , y1:T ) (2)

These optimization problems are intractable to
solve for general base listener and speaker agents,
including the sequence-to-sequence models we
use, as they involve choosing an input (from a
combinatorially large space of possible sequences)
to maximize the probability of a fixed output se-
quence. We instead follow a simple approximate
inference procedure, detailed in Section 4.2.

We consider also incorporating the scores of the
base model used to produce the candidates. For
the case of the speaker, we define a combined ra-
tional speaker, denoted S0 · S1, that selects the
candidate that maximizes a weighted product of
probabilities under both the base listener and the
base speaker:

argmax
d1:K

PL0(a1:T |d1:K , y1:T )λ

× PS0(d1:K |a1:T , y1:T )1−λ (3)

for a fixed interpolation hyperparameter λ ∈ [0, 1].
There are several motivations for this combination
with the base speaker score. First, as argued by
Monroe et al. (2017), we would expect varying de-
grees of base and reasoned interpretation in human
speech acts. Second, we want the descriptions pro-
duced by the model to be fluent descriptions of the
actions. Since the base models are trained discrim-
inatively, maximizing the probability of an output
sequence for a fixed input sequence, their scoring
behaviors for fixed outputs paired with inputs dis-
similar to those seen in the training set may be
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poorly calibrated (for example when conditioning
on ungrammatical descriptions). Incorporating the
scores of the base model used to produce the can-
didates aims to prevent this behavior.

To define rational listeners, we use the symmet-
ric formulation: first, draw candidate action se-
quences from L0. For L1, choose the actions that
achieve the highest probability under S0; and for
the combination model L0 · L1 choose the actions
with the highest weighted combination of S0 and
L0 (paralleling equation 3).

4.2 Inference

As in past work (Smith et al., 2013; Andreas and
Klein, 2016; Monroe et al., 2017), we approximate
the optimization problems in equations 1, 2, and
3: use the base models to generate candidates, and
rescore them to find ones that are likely to produce
the desired behavior.

In the case of the rational speaker S1, we use
the base speaker S0 to produce a set of n can-
didate descriptions w

(1)
1:K1

. . . w
(n)
1:Kn

for the se-
quences a1:T , y1:T , using beam search. We then
find the score of each description under PL0 (us-
ing it as the input sequence for the observed output
actions we want the rational speaker to describe),
or a weighted combination of PL0 and the origi-
nal candidate score PS0 , and choose the descrip-
tion w(j)

1:Kj
with the largest score, approximately

solving the maximizations in equations 1 or 3, re-
spectively. We perform a symmetric procedure for
the rational listener: produce action sequence can-
didates from the base listener, and rescore them
using the base speaker.2

As the rational speaker must produce long out-
put sequences (with multiple sentences), we inter-
leave the speaker and listener in inference, deter-
mining each output sentence sequentially. From a
list of candidate direction sentences from the base
speaker for the current subsequence of actions, we
choose the top-scoring direction under the listener
model (which may also condition on the direc-
tions which have been output previously), and then

2We use ensembles of models for the base listener and
speaker (subsection 5.3), and to obtain candidates that are
high-scoring under the combination of models in the ensem-
ble, we perform standard beam search using all models in
lock-step. At every timestep of the beam search, each pos-
sible extension of an output sequence is scored using the
product of the extension’s conditional probabilities across all
models in the ensemble.

move on to the next subsequence of actions.3

5 Base model details

Given this framework, all that remains is to de-
scribe the base models L0 and S0. We imple-
ment these as sequence-to-sequence models that
map directions to actions (for the listener) or ac-
tions to directions (for the speaker), additionally
conditioning on the world state at each timestep.

5.1 Base listener

Our base listener model, L0, predicts action se-
quences conditioned on an encoded representation
of the directions and the current world state. In
the SAIL domain, this is the model of Mei et al.
(2016) (illustrated in green in Figure 2b for a sin-
gle sentence and its associated actions), see “do-
main specifics” below.

Encoder Each direction sentence is encoded
separately with a bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997); the LSTM’s hidden
states are reset for each sentence. We obtain a rep-
resentation hek for the kth word in the current sen-
tence by concatenating an embedding for the word
with its forward and backward LSTM outputs.

Decoder We generate actions incrementally us-
ing an LSTM decoder with monotonic alignment
between the direction sentences and subsequences
of actions; at each timestep the decoder predicts
the next action for the current sentence w1:M (in-
cluding choosing to shift to the next sentence).
The decoder takes as input at timestep t the cur-
rent world state, yt and a representation zt of the
current sentence, updates the decoder state hd, and
outputs a distribution over possible actions:

hdt = LSTMd(h
d
t−1, [Wyyt, zt])

qt =Wo(Wyyt +Whh
d
t +Wzzt)

p(at | a1:t−1, y1:t, w1:M ) ∝ exp(qt)

where all weight matrices W are learned param-
eters. The sentence representation zt is produced
using an attention mechanism (Bahdanau et al.,
2015) over the representation vectors he1 . . . h

e
M

3We also experimented with sampling from the base mod-
els to produce these candidate lists, as was done in previ-
ous work (Andreas and Klein, 2016; Monroe et al., 2017).
In early experiments, however, we found better performance
with beam search in the rational models for all tasks.
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for words in the current sentence:

αt,k ∝ exp(v · tanh(Wdh
d
t−1 +Weh

e
k))

zt =

M∑

k=1

αt,kh
e
k

where the attention weights αt,k are normalized
to sum to one across positions k in the input, and
weight matrices W and vector v are learned.

Domain specifics For SAIL, we use the align-
ments between sentences and route segments an-
notated by Chen and Mooney (2011), which were
also used in previous work (Artzi and Zettlemoyer,
2013; Artzi et al., 2014; Mei et al., 2016). Fol-
lowing Mei et al. (2016), we reset the decoder’s
hidden state for each sentence.

In the SCONE domains, which have a larger
space of possible outputs than SAIL, we extend
the decoder by: (i) decomposing each action into
an action type and arguments for it, (ii) using sepa-
rate attention mechanisms for types and arguments
and (iii) using state-dependent action embeddings.
See Appendix A in the supplemental material for
details. The SCONE domains are constructed so
that each sentence corresponds to a single (non-
decomposed) action; this provides our segmenta-
tion of the action sequence.

5.2 Base speaker

While previous work (Daniele et al., 2017) has re-
lied on more structured approaches, we construct
our base speaker model S0 using largely the same
sequence-to-sequence machinery as above. S0 (il-
lustrated in orange in Figure 2b) encodes a se-
quence of actions and world states, and then uses
a decoder to output a description.

Encoder We encode the sequence of vector em-
beddings for the actions at and world states yt us-
ing a bidirectional LSTM. Similar to the base lis-
tener’s encoder, we then obtain a representation het
for timestep t by concatenating at and yt with the
LSTM outputs at that position.

Decoder As in the listener, we use an LSTM de-
coder with monotonic alignment between direc-
tion sentences and subsequences of actions, and
attention over the subsequences of actions. The
decoder takes as input at position k an embed-
ding for the previously generated word wk−1 and
a representation zk of the current subsequence of

actions and world states, and produces a distribu-
tion over words (including ending the description
for the current subsequence and advancing to the
next). The decoder’s output distribution is pro-
duced by:

hdk = LSTMd(h
d
k−1, [wk−1, zk])

qk =Whh
d
k +Wzzk

p(wk | w1:k−1, a1:T , y1:T ) ∝ exp(qk)

where all weight matrices W are learned parame-
ters.4 As in the base listener, the input represen-
tation zk is produced by attending to the vectors
he1 . . . h

e
T encoding the input sequence (here, en-

coding the subsequence of actions and world states
to be described):

αk,t ∝ exp(v · tanh(Wdh
d
k−1 +Weh

e
t ))

zk =
T∑

t=1

αk,t h
e
t

The decoder’s LSTM state is reset at the beginning
of each sentence.

Domain specifics In SAIL, for comparison to
the generation system of Daniele et al. (2017)
which did not use segmented routes, we train a
route segmenter for use at test time. We also rep-
resent routes using a collapsed representation of
action sequences. In the SCONE domains, we
(i) use the same context-dependent action embed-
dings used in the listener, and (ii) don’t require an
attention mechanism, since only a single action is
used to produce a given sentence within the se-
quence of direction sentences. See Appendix A
for more details.

5.3 Training

The base listener and speaker models are trained
independently to maximize the conditional likeli-
hoods of the actions–directions pairs in the train-
ing sets. See Appendix A for details on the opti-
mization, LSTM variant, and hyperparameters.

We use ensembles for the base listener L0 and
base speaker S0, where each ensemble consists of
10 models trained from separate random parame-
ter initializations. This follows the experimental
setup of Mei et al. (2016) for the SAIL base lis-
tener.

4All parameters are distinct from those used in the base
listener; the listener and speaker are trained separately.
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Single-sentence Multi-sentence
listener Rel Abs Rel Abs

past work 69.98 65.28 26.07 35.44
(MBW) (AZ) (MBW) (ADP)

L0 68.40 59.62 24.79 13.53
L0 · L1 71.64 64.38 34.05 24.50

accuracy gain +3.24 +4.76 +9.26 +10.97

Table 1: Instruction-following results on the SAIL
dataset. The table shows cross-validation test accu-
racy for the base listener (L0) and pragmatic listen-
ers (L0 · L1), along with the gain given by prag-
matics. We report results for the single- and multi-
sentence conditions, under the relative and absolute
starting conditions5, comparing to the best-performing
prior work by Artzi and Zettlemoyer (2013) (AZ), Artzi
et al. (2014) (ADP), and Mei et al. (2016) (MBW).
Bold numbers show new state-of-the-art results.

6 Experiments

We evaluate speaker and listener agents on both
the instruction following and instruction genera-
tion tasks in the SAIL domain and three SCONE
domains (Section 2). For all domains, we com-
pare the rational listener and speaker against the
base listener and speaker, as well as against past
state-of-the-art results for each task and domain.
Finally, we examine pragmatic inference from
a model combination perspective, comparing the
pragmatic reranking procedure to ensembles of a
larger number of base speakers or listeners.

For all experiments, we use beam search both
to generate candidate lists for the rational systems
(section 4.2) and to generate the base model’s out-
put. We fix the beam size n to be the same in both
the base and rational systems, using n = 20 for
the speakers and n = 40 for the listeners. We
tune the weight λ in the combined rational agents
(L0 · L1 or S0 · S1) to maximize accuracy (for lis-
tener models) or BLEU (for speaker models) on
each domain’s development data.

6.1 Instruction following

We evaluate our listener models by their accuracy
in carrying out human instructions: whether the
systems were able to reach the final world state
which the human was tasked with guiding them
to.

SAIL We follow standard cross-validation eval-
uation for the instruction following task on the
SAIL dataset (Artzi and Zettlemoyer, 2013; Artzi

listener Alchemy Scene Tangrams

GPLL 52.9 46.2 37.3
L0 69.7 70.9 69.6

L0 · L1 72.0 72.7 69.6
accuracy gain +2.3 +1.8 +0.0

Table 2: Instruction-following results in the SCONE
domains. The table shows accuracy on the test set. For
reference, we also show prior results from Guu et al.
(2017) (GPLL), although our models use more super-
vision at training time.

a red guy appears on the far left
then to orange’s other side

base listener, L0 rational listener, L0 · L1

Figure 3: Action traces produced for a partial instruc-
tion sequence (two instructions out of five) in the Scene
domain. The base listener moves the red figure to a
position that is a marginal, but valid, interpretation of
the directions. The rational listener correctly produces
the action sequence the directions were intended to de-
scribe.

et al., 2014; Mei et al., 2016).5 Table 1 shows
improvements over the base listener L0 when us-
ing the rational listener L0 · L1 in the single- and
multi-sentence settings. We also report the best
accuracies from past work. We see that the largest
relative gains come in the multi-sentence setting,
where handling ambiguity is potentially more im-
portant to avoid compounding errors. The rational
model improves on the published results of Mei
et al. (2016), and while it is still below the sys-
tems of Artzi and Zettlemoyer (2013) and Artzi
et al. (2014), which use additional supervision in
the form of hand-annotated seed lexicons and log-
ical domain representations, it approaches their re-
sults in the single-sentence setting.

SCONE In the SCONE domains, past work
has trained listener models with weak supervision

5Past work has differed in the handling of undetermined
orientations in the routes, which occur in the first state for
multi-sentence routes and the first segment of their corre-
sponding single-sentence routes. For comparison to both
types of past work, we train and evaluate listeners in two
settings: Abs, which sets these undetermined starting orien-
tations to be a fixed absolute orientation, and Rel, where an
undetermined starting orientation is set to be a 90 degree ro-
tation from the next state in the true route.
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speaker SAIL Alchemy Scene Tangrams

DBW 70.9 — — —
S0 62.8 29.3 31.3 60.0

S0 · S1 75.2 75.3 69.3 88.0
accuracy gain +12.4 +46.0 +38.0 +28.0

human-generated 73.2 83.3 78.0 66.0

Table 3: Instruction generation results. We report the
accuracies of human evaluators at following the outputs
of the speaker systems (as well as other humans) on 50-
instance samples from the SAIL dataset and SCONE
domains. DBW is the system of Daniele et al. (2017).
Bold numbers are new state-of-the-art results.

(with no intermediate actions between start and
end world states) on a subset of the full SCONE
training data. We use the full training set, and to
use a model and training procedure consistent with
the SAIL setting, train listener and speaker mod-
els using the intermediate actions as supervision
as well.6 The evaluation method and test data are
the same as in past work on SCONE: models are
provided with an initial world state and a sequence
of 5 instructions to carry out, and are evaluated on
their accuracy in reaching the intended final world
state.

Results are reported in Table 2. We see gains
from the rational system L0 · L1 in both the
Alchemy and Scene domains. The pragmatic
inference procedure allows correcting errors or
overly-literal interpretations from the base listener.
An example is shown in Figure 3. The base lis-
tener (left) interprets then to orange’s other side
incorrectly, while the rational listener discounts
this interpretation (it could, for example, be bet-
ter described by to the left of blue) and produces
the action the descriptions were meant to describe
(right). To the extent that human annotators al-
ready account for pragmatic effects when generat-
ing instructions, examples like these suggest that
our model’s explicit reasoning is able to capture
interpretation behavior that the base sequence-to-
sequence listener model is unable to model.

6.2 Instruction generation

As our primary evaluation for the instruction gen-
eration task, we had Mechanical Turk workers
carry out directions produced by the speaker mod-

6Since the pragmatic inference procedure we use is ag-
nostic to the models’ training method, it could also be ap-
plied to the models of Guu et al. (2017); however we find that
pragmatic inference can improve even upon our stronger base
listener models.

speaker SAIL Alchemy Scene Tangrams

DBW 11.00 — — —
S0 12.04 19.34 18.09 21.75

S0 · S1 10.78 18.70 27.15 23.03
BLEU gain -1.26 -0.64 +9.06 +1.28

accuracy gain +12.4 +46.0 +38.0 +28.0(from Table 3)

Table 4: Gains in how easy the directions are to fol-
low are not always associated with a gain in BLEU.
This table shows corpus-level 4-gram BLEU compar-
ing outputs of the speaker systems to human-produced
directions on the SAIL dataset and SCONE domains,
compared to gains in accuracy when asking humans to
carry out a sample of the systems’ directions (see Ta-
ble 3).

els (and by other humans) in a simulated version of
each domain. For SAIL, we use the simulator re-
leased by Daniele et al. (2017) which was used in
their human evaluation results, and we construct
simulators for the three SCONE domains. In all
settings, we take a sample of 50 action sequences
from the domain’s test set (using the same sam-
ple as Daniele et al. (2017) for SAIL), and have
three separate Turk workers attempt to follow the
systems’ directions for the action sequence.

Table 3 gives the average accuracy of subjects
in reaching the intended final world state across
all sampled test instances, for each domain. The
“human-generated” row reports subjects’ accu-
racy at following the datasets’ reference direc-
tions. The directions produced by the base speaker
S0 are often much harder to follow than those pro-
duced by humans (e.g. 29.3% of S0’s directions
are correctly interpretable for Alchemy, vs. 83.3%
of human directions). However, we see substan-
tial gains from the rational speaker S0 ·S1 over S0
in all cases (with absolute gains in accuracy rang-
ing from 12.4% to 46.0%), and the average accu-
racy of humans at following the rational speaker’s
directions is substantially higher than for human-
produced directions in the Tangrams domain. In
the SAIL evaluation, we also include the direc-
tions produced by the system of Daniele et al.
(2017) (DBW), and find that the rational speaker’s
directions are followable to comparable accuracy.

We also compare the directions produced by the
systems to the reference instructions given by hu-
mans in the dataset, using 4-gram BLEU7 (Pap-

7See Appendix A for details on evaluating BLEU in the
SAIL setting, where there may be a different number of ref-
erence and predicted sentences for a given example.
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human take away the last item
undo the last step

S0
remove the last figure
add it back

S0 · S1
remove the last figure
add it back in the 3rd position

Figure 4: Descriptions produced for a partial action se-
quence in the Tangrams domain. Neither the human
nor base speaker S0 correctly specifies where to add
the shape in the second step, while the rational speaker
S0 · S1 does.

ineni et al., 2002) in Table 4. Consistent with past
work (Krahmer and Theune, 2010), we find that
BLEU score is a poor indicator of whether the di-
rections can be correctly followed.

Qualitatively, the rational inference procedure is
most successful in fixing ambiguities in the base
speaker model’s descriptions. Figure 4 gives a
typical example of this for the last few timesteps
from a Tangrams instance. The base speaker cor-
rectly describes that the shape should be added
back, but does not specify where to add it, which
could lead a listener to add it in the same position
it was deleted. The human speaker also makes this
mistake in their description. This speaks to the
difficulty of describing complex actions pragmat-
ically even for humans in the Tangrams domain.
The ability of the pragmatic speaker to produce
directions that are easier to follow than humans’
in this domain (Table 3) shows that the pragmatic
model can generate something different (and in
some cases better) than the training data.

6.3 Pragmatics as model combination

Finally, our rational models can be viewed
as pragmatically-motivated model combinations,
producing candidates using base listener or
speaker models and reranking using a combina-
tion of scores from both. We want to verify that
a rational listener using n ensembled base listen-
ers and n base speakers outperforms a simple en-
semble of 2n base listeners (and similarly for the
rational speaker).

Fixing the total number of models to 20 in each

listener experiment, we find that the rational lis-
tener (using an ensemble of 10 base listener mod-
els and 10 base speaker models) still substantially
outperforms the ensembled base listener (using 20
base listener models): accuracy gains are 68.5→
71.6%, 70.1 → 72.0%, 71.9 → 72.7%, and 69.1
→ 69.6% for SAIL single-sentence Rel, Alchemy,
Scene, and Tangrams, respectively.

For the speaker experiments, fixing the total
number of models to 10 (since inference in the
speaker models is more expensive than in the fol-
lower models), we find similar gains as well: the
rational speaker improves human accuracy at fol-
lowing the generated instructions from 61.9 →
73.4%, 30.7 → 74.7%, 32.0 → 66.0%, 58.7 →
92.7%, for SAIL, Alchemy, Scene, and Tangrams,
respectively.8

7 Conclusion

We have demonstrated that a simple procedure for
pragmatic inference, with a unified treatment for
speakers and listeners, obtains improvements for
instruction following as well as instruction gen-
eration in multiple settings. The inference proce-
dure is capable of reasoning about sequential, in-
terdependent actions in non-trivial world contexts.
We find that pragmatics improves upon the perfor-
mance of the base models for both tasks, in most
cases substantially. While this is perhaps unsur-
prising for the generation task, which has been dis-
cussed from a pragmatic perspective in a variety
of recent work in NLP, it is encouraging that prag-
matic reasoning can also improve performance for
a grounded listening task with sequential, struc-
tured output spaces.
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type arguments contextual embedding

Alchemy
MIX source i contents of i
POUR source i, target j contents of i and j
DRAIN amount a, source i a, contents of i

Scene
ENTER color c, source i people at i− 1 and i+ 1
EXIT source i people at i, i− 1, i+ 1
MOVE source i, target j people at i, j − 1, j + 1
SWITCH source i, target j people at i and j
TAKEHAT source i, target j people at i and j

Tangrams
REMOVE position i —
SWAP positions i and j —

INSERT position i, shape s index of step when s
was removed

Table 5: Action types, arguments, and elements of the
world state or action history that are extracted to pro-
duce contextual action embeddings.

A Supplemental Material

A.1 SCONE listener details
We factor action production in each of the three
SCONE domains, separately predicting the action
type and the arguments specific to that action type.
Action types and arguments are listed in the first
two columns of Table 5. For example, Alchemy’s
actions involve predicting the action type, a po-
tential source beaker index i and target beaker in-
dex j, and potential amount to drain a. All fac-
tors of the action (the type and options for each
argument) are predicted using separate attention
mechanisms, which produce a vector qf giving un-
normalized scores for factor f (e.g. scoring each
possible type, or each possible choice for the argu-
ment).

We also obtain state-specific embeddings of ac-
tions, to make it easier for the model to learn
relevant features from the state embeddings (e.g.
rather than needing to learn to select the region
of the state vector corresponding to the 5th beaker
in the action MIX(5) in Alchemy, this action’s
contextual embedding encodes the current content
of the 5th beaker). We incorporate these state-
specific embeddings into computation of the ac-
tion probabilities using a bilinear bonus score:

b(a) = q>Wqaa+ w>a a

where q is the concatenation of all qf factor scor-
ing vectors, and Wqa and wa are a learned param-
eter matrix and vector, respectively. This bonus
score b(a) for each action is added to the un-

normalized score for the corresponding action a
(computed by summing the entries of the qf vec-
tors which correspond to the factored action com-
ponents), and the normalized output distribution is
then produced using a softmax over all valid ac-
tions.

A.2 SAIL speaker details
Since our speaker model operates on segmented
action sequences, we train a route segmenter on
the training data and then predict segmentations
for the test data. This provides a closer compar-
ison to the generation system of Daniele et al.
(2017) which did not use segmented routes. The
route segmenter runs a bidirectional LSTM over
the concatenated state and action embeddings (as
in the speaker encoder), then uses a logistic output
layer to classify whether the route should be split
at each possible timestep. We also collapse con-
secutive sequences of forward movement actions
into single actions (e.g. MOVE4 representing four
consecutive forward movements), which we found
helped prevent counting errors (such as outputting
move forward three when the correct route moved
forward four steps).

A.3 SCONE speaker details
We use a one-hot representation of the arguments
(see Table 5) and contextual embedding (as de-
scribed in A.1) for each action at as input to the
SCONE speaker encoder at time t (along with
the representation et of the world state, as in
SAIL). Since SCONE uses a monotonic, one-to-
one alignment between actions and direction sen-
tences, the decoder does not use a learned atten-
tion mechanism but fixes the contextual represen-
tation zk to be the encoded vector at the action cor-
responding to the sentence currently being gener-
ated.

A.4 Training details
We optimize model parameters using ADAM

(Kingma and Ba, 2015) with default hyperparam-
eters and the initialization scheme of Glorot and
Bengio (2010). All LSTMs have one layer. The
LSTM cell in both the listener and the follower use
coupled input and forget gates, and peephole con-
nections to the cell state (Greff et al., 2016). We
also apply the LSTM variational dropout scheme
of Gal and Ghahramani (2016), using the same
dropout rate for inputs, outputs, and recurrent con-
nections. See Table 6 for hyperparameters. We
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dropout hidden attention
model domain rate dim dim

L0 SAIL 0.25 100 100
L0 Alchemy 0.1 50 50
L0 Scene 0.1 100 100
L0 Tangrams 0.3 50 100

S0 SAIL 0.25 100 100
S0 Alchemy 0.3 100 –
S0 Scene 0.3 100 –
S0 Tangrams 0.3 50 –

Table 6: Hyperparameters for the base listener (L0) and
speaker (S0) models. The SCONE speakers do not use
an attention mechanism.

perform early stopping using the evaluation met-
ric (accuracy for the listener and BLEU score for
the speaker) on the development set.

A.5 Computing BLEU for SAIL
To compute BLEU in the SAIL experiments, as
the speaker models may choose produce a differ-
ent number of sentences for each route than in
the true description, we obtain a single sequence
of words from a multi-sentence description pro-
duced for a route by concatenating the sentences,
separated by end-of-sentence tokens. We then
calculate corpus-level 4-gram BLEU between all
these sequences in the test set and the true multi-
sentence descriptions (concatenated in the same
way).
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Abstract

Election manifestos document the intentions,
motives, and views of political parties. They
are often used for analysing a party’s fine-
grained position on a particular issue, as well
as for coarse-grained positioning of a party
on the left–right spectrum. In this paper we
propose a two-stage model for automatically
performing both levels of analysis over man-
ifestos. In the first step we employ a hierar-
chical multi-task structured deep model to pre-
dict fine- and coarse-grained positions, and in
the second step we perform post-hoc calibra-
tion of coarse-grained positions using proba-
bilistic soft logic. We empirically show that
the proposed model outperforms state-of-art
approaches at both granularities using mani-
festos from twelve countries, written in ten dif-
ferent languages.

1 Introduction

The adoption of NLP methods has led to signif-
icant advances in the field of computational so-
cial science (Lazer et al., 2009), including politi-
cal science (Grimmer and Stewart, 2013). Among
a myriad of data sources, election manifestos are
a core artifact in political analysis. One of the
most widely used datasets by political scientists is
the Comparative Manifesto Project (CMP) dataset
(Volkens et al., 2017), which contains manifestos
in various languages, covering over 1000 parties
across 50 countries, from elections dating back to
1945.

In CMP, a subset of the manifestos has been
manually annotated at the sentence-level with one
of 57 political themes, divided into 7 major cat-
egories.1 Such categories capture party posi-
tions (FAVORABLE, UNFAVORABLE or NEITHER)

1https://manifesto-project.wzb.eu/
coding_schemes/mp_v5

on fine-grained policy themes, and are also use-
ful for downstream tasks including calculating
manifesto-level (policy-based) left–right position
scores (Budge et al., 2001; Lowe et al., 2011;
Däubler and Benoit, 2017). An example sentence
from the Green Party of England and Wales 2015
election manifesto where they take an UNFAVOR-
ABLE position on MILITARY is:

We would: Ensure that ... less is spent
on military research.

Elsewhere, they take a FAVORABLE position on
WELFARE STATE:

Double Child Benefit.

Such manual annotations are labor-intensive and
prone to annotation inconsistencies (Mikhaylov
et al., 2012). In order to overcome these
challenges, supervised sentence classification ap-
proaches have been proposed (Verberne et al.,
2014; Subramanian et al., 2017).

Other than the sentence-level labels, the man-
ifesto text also has a document-level score that
quantifies its position on the left–right spectrum.
Different approaches have been proposed to de-
rive this score, based on alternate definitions of
“left–right” (Slapin and Proksch, 2008; Benoit and
Laver, 2007; Lo et al., 2013; Däubler and Benoit,
2017). Among these, the RILE index is the most
widely adopted (Merz et al., 2016; Jou and Dalton,
2017), and has been shown to correlate highly with
other popular scores (Lowe et al., 2011). RILE
is defined as the difference between RIGHT and
LEFT positions on (pre-determined) policy themes
across sentences in a manifesto (Volkens et al.,
2013); for instance, UNFAVORABLE position on
MILITARY is categorized as LEFT. RILE is popular
in CMP in particular, as mapping individual sen-
tences to LEFT/RIGHT/NEUTRAL categories has
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been shown to be less sensitive to systematic er-
rors than other sentence-level class sets (Klinge-
mann et al., 2006; Volkens et al., 2013).

Finally, expert survey scores are gaining popu-
larity as a means of capturing manifesto-level po-
litical positions, and are considered to be context-
and time-specific, unlike RILE (Volkens et al.,
2013; Däubler and Benoit, 2017). We use the
Chapel Hill Expert Survey (CHES) (Bakker et al.,
2015), which comprises aggregated expert sur-
veys on the ideological position of various polit-
ical parties. Although CHES is more subjective
than RILE, the CHES scores are considered to be
the gold-standard in the political science domain.

In this work, we address both fine- and coarse-
grained multilingual manifesto text policy position
analysis, through joint modeling of sentence-level
classification and document-level positioning (or
ranking) tasks. We employ a two-level structured
model, in which the first level captures the struc-
ture within a manifesto, and the second level cap-
tures context and temporal dependencies across
manifestos. Our contributions are as follows:
• we employ a hierarchical sequential deep model

that encodes the structure in manifesto text for
the sentence classification task;
• we capture the dependency between the

sentence- and document-level tasks, and also
utilize additional label structure (categoriza-
tion into LEFT/RIGHT/NEUTRAL: Volkens et al.
(2013)) using a joint-structured model;
• we incorporate contextual information (such as

political coalitions) and encode temporal depen-
dencies to calibrate the coarse-level manifesto
position using probabilistic soft logic (Bach
et al., 2015), which we evaluate on the predic-
tion of the RILE index or expert survey party
position score.

2 Related Work

Analysing manifesto text is a relatively new appli-
cation at the intersection of political science and
NLP. One line of work in this space has been
on sentence-level classification, including classi-
fying each sentence according to its major polit-
ical theme (1-of-7 categories) (Zirn et al., 2016;
Glavaš et al., 2017a), its position on various policy
themes (Verberne et al., 2014; Biessmann, 2016;
Subramanian et al., 2017), or its relative disagree-
ment with other parties (Menini et al., 2017). Re-
cent approaches (Glavaš et al., 2017a; Subrama-

nian et al., 2017) have also handled multilingual
manifesto text (given that manifestos span multi-
ple countries and languages; see Section 5.1) us-
ing multilingual word embeddings.

At the document level, there has been work
on using label count aggregation of (manually-
annotated) fine-grained policy positions, as fea-
tures for inductive analysis (Lowe et al., 2011;
Däubler and Benoit, 2017). Text-based ap-
proaches has used dictionary-based supervised
methods, unsupervised factor analysis based tech-
niques and graph propagation based approaches
(Hjorth et al., 2015; Bruinsma and Gemenis,
2017; Glavaš et al., 2017b). A recent paper
closely aligned with our work is Subramanian
et al. (2017), who address both sentence- and
document-level tasks jointly in a multilingual set-
ting, showing that a joint approach outperforms
previous approaches. But they do not exploit the
structure of the text and use a much simpler model
architecture: averages of word embeddings, ver-
sus our bi-LSTM encodings; and they do not lever-
age domain information and temporal regularities
that can influence policy positions (Greene, 2016).
This work will act as a baseline in our experiments
in Section 5.

Policy-specific position classification can be
seen as related to target-specific stance classifi-
cation (Mohammad et al., 2017), except that the
target is not explicitly mentioned in most cases.
Secondly, manifestos have both fine- and coarse-
grained positions, similar to sentiment analysis
(McDonald et al., 2007). Finally, manifesto text
is well structured within and across documents
(based on coalition), has temporal dependencies,
and is multilingual in nature.

3 Proposed Approach

In this section, we detail the first step of
our two-stage approach. We use a hierarchi-
cal bidirectional long short-term memory (“bi-
LSTM”) model (Hochreiter and Schmidhuber,
1997; Graves et al., 2013; Li et al., 2015) with a
multi-task objective for the sentence classification
and document-level regression tasks. A post-hoc
calibration of coarse-grained manifesto position is
given in Section 4.

Let D be the set of manifestos, where a man-
ifesto d ∈ D is made up of L sentences, and a
sentence si has T words: wi1, wi2, ...wiT . The
set Ds ⊂ D is annotated at the sentence-level
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with positions on fine-grained policy issues (57
classes). The task here is to learn a model that
can: (a) classify sentences according to policy is-
sue classes; and (b) score the overall document on
the policy-based left–right spectrum (RILE), in an
inter-dependent fashion.

Word encoder: We initialize word vector rep-
resentations using a multilingual word embed-
ding matrix, We. We construct We by aligning
the embedding matrices of all the languages to
English, in a pair-wise fashion. Bilingual pro-
jection matrices are built using pre-trained Fast-
Text monolingual embeddings (Bojanowski et al.,
2017) and a dictionary D constructed by trans-
lating 5000 frequent English words using Google
Translate. Given a pair of embedding matrices E
(English) andO (Other), we use singular value de-
composition of OTDE (which is UΣV T ) to get
the projection matrix (W ∗=UV T ), since it also
enforces monolingual invariance (Artetxe et al.,
2016; Smith et al., 2017). Finally, we obtain the
aligned embedding matrix, We, as OW ∗.

We use a bi-LSTM to derive a vector repre-
sentation of each word in context. The bi-LSTM
traverses the sentence si in both the forward and
backward directions, and the encoded representa-
tion for a given word wit ∈ si, is defined by con-
catenating its forward (

−→
h it) and backward hidden

states (
←−
h it), t ∈

[
1, T

]
.

Sentence model: Similarly, we use a bi-LSTM
to generate a sentence embedding from the word-
level bi-LSTM, where each input sentence si is
represented using the last hidden state of both the
forward and backward LSTMs. The sentence em-
bedding is obtained by concatenating the hidden
representations of the sentence-level bi-LSTM, in
both the directions, hi =

[−→
h i,
←−
h i

]
, i ∈

[
1, L

]
.

With this representation, we perform fine-grained
classification (to one-of-57 classes), using a soft-
max output layer for each sentence. We mini-
mize the cross-entropy loss for this task, over the
sentence-level labeled set Ds ⊂ D. This loss is
denoted LS .

Document model: To represent a docu-
ment d we use average-pooling over the sen-
tence representations hi and predicted output
distributions (yi) of individual sentences,2 i.e.,

2Preliminary experiments suggested that this representa-
tion performs better than using either hidden representations
or just the output distribution.

Vd = 1
L

∑
i∈d

[
yi
hi

]
. The range of RILE is

[−100, 100], which we scale to the range [−1, 1],
and model using a final tanh layer. We minimize
the mean-squared error loss function between the
predicted r̂d and actual RILE score rd, which is
denoted as LD:

LD =
1

|D|

|D|∑

d=1

‖r̂d − rd‖22 (1)

Overall, the loss function for the joint model
(Figure 1), combining LS and LD, is:

LJ = αLS + (1− α)LD (2)

where 0 ≤ α ≤ 1 is a hyper-parameter which is
tuned on a development set.

3.1 Joint-Structured Model
The RILE score is calculated directly from the
sentence labels, based on mapping each label ac-
cording to its positioning on policy themes, as
LEFT, RIGHT and NEUTRAL (Volkens et al., 2013).
Specifically, 13 out of 57 classes are categorized
as LEFT, another 13 as RIGHT, and the rest as
NEUTRAL. We employ an explicit structured loss
which minimizes the deviation between sentence-
level LEFT/RIGHT/NEUTRAL polarity predictions
p and the document-level RILE score. The mo-
tivation to do this is two-fold: (a) enabling inter-
action between the sentence- and document-level
tasks with homogeneous target space (polarity and
RILE); and (b) since we have more documents
with just RILE and no sentence-level labels,3 aug-
menting an explicit semi-supervised learning ob-
jective could propagate down the RILE label to
generate sentence labels that concord with the doc-
ument score.

For the sentence-level polarity prediction
(shown in Figure 1), we use cross-entropy loss
over the sentence-level labeled set Ds ⊂ D,
which is denoted as LSP

. The explicit structured
sentence-document loss is given as:

Lstruc =
1

|D|

|D|∑

d=1

(
1

Ld

∑

i∈d
(piright − pileft )− rd

)2

(3)

3Strictly speaking, for these documents even, sentence an-
notation was used to derive the RILE score, but the sentence-
level labels were never made available.
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Figure 1: Hierarchical bi-LSTM for joint sentence–
document analysis (yi denotes the predicted 57-class
distribution of sentence si; pi denotes the distribution
over LEFT (in red), RIGHT (in blue) and NEUTRAL (in
yellow); rd denotes the RILE score of d).

where piright and pileft are the predicted RIGHT and
LEFT class probabilities for a sentence si (∈ d),
rd is the actual RILE score for the document d,
and Ld is the length of each document, d ∈ D.
We augment the joint model’s loss function (Equa-
tion (2)) with LSP

and Lstruc to generate a regu-
larized multi-task loss:

LT = LJ + βLSP
+ γLstruc (4)

where β, γ ≥ 0 are hyper-parameters which are,
once again, tuned on the development set. We
refer to the model trained with Equation (2) as
“Joint”, and that trained with Equation (4) as
“Jointstruc”.

4 Manifesto Position Re-ranking

We leverage party-level information to enforce
smoothness and regularity in manifesto position-
ing on the left–right spectrum (Greene, 2016). For
example, manifestos released by parties in a coali-
tion are more likely to be closer in RILE score, and
a party’s position in an election is often a relative
shift from its position in earlier election, so tempo-
ral information can provide smoother estimations.

4.1 Probabilistic Soft Logic
To address this, we propose an approach using
hinge-loss Markov random fields (“HL-MRFs”),
a scalable class of continuous, conditional graph-
ical models (Bach et al., 2013). HL-MRFs have

been used for many tasks including political fram-
ing analysis on Twitter (Johnson et al., 2017) and
user stance classification on socio-political issues
(Sridhar et al., 2014). These models can be speci-
fied using Probabilistic Soft Logic (“PSL”) (Bach
et al., 2015), a weighted first order logical template
language. An example of a PSL rule is

λ : P(a) ∧ Q(a, b)→ R(b)

where P, Q, and R are predicates, a and b are vari-
ables, and λ is the weight associated with the rule.
PSL uses soft truth values for predicates in the in-
terval

[
0, 1
]
. The degree of ground rule satisfac-

tion is determined using the Lukasiewicz t-norm
and its corresponding co-norm as the relaxation of
the logical AND and OR, respectively. The weight
of the rule indicates its importance in the HL-MRF
probabilistic model, which defines a probability
density function of the form:

P (Y|X) ∝ exp

(
−

M∑

r=1

λrφr(Y,X)

)
,

φr(Y,X) = max {lr(Y,X), 0}ρr ,
(5)

where φr(Y,X) is a hinge-loss potential corre-
sponding to an instantiation of a rule, and is spec-
ified by a linear function lr and optional exponent
ρr ∈ {1, 2}. Note that the hinge-loss potential cap-
tures the distance to satisfaction.4

4.2 PSL Model
Here we elaborate our PSL model (given in Ta-
ble 1) based on coalition information, manifesto
content-based features (manifesto similarity and
right–left ratio), and temporal dependency. Our
target pos (calibrated RILE) is a continuous vari-
able

[
0, 1
]
, where 1 indicates that a manifesto oc-

cupies an extreme right position, 0 denotes an ex-
treme left position, and 0.5 indicates center. Each
instance of a manifesto and its party affiliation are
denoted by the predicates Manifesto and Party.

Coalition: We model multi-relational networks
based on regional coalitions within a given
country (RegCoalition),5 and also cross-
country coalitions in the European parliament

4Degree of satisfaction for the example PSL rule r, ¬P ∨
¬Q ∨ R, using the Lukasiewicz co-norm is given as min{2−
P− Q+ R, 1}. From this, the distance to satisfaction is given
as max{P+ Q− R− 1, 0}, where P+ Q− R− 1 indicates the
linear function lr .

5http://www.parlgov.org/
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PSLcoal — Coalition features

Manifesto(x)∧Party(x, a)∧Manifesto(y)∧Party(y, b)∧SameElec(x, y)∧RegCoalition(a, b)∧pos(x)→ pos(y)
Manifesto(x) ∧ Party(x, a) ∧ Manifesto(y) ∧ Party(y, b) ∧ SameElec(x, y) ∧ RegCoalition(a, b) ∧ ¬pos(x) →
¬pos(y)
Manifesto(x)∧ Party(x, a)∧ Manifesto(y)∧ Party(y, b)∧ Recent(x, y)∧ EUCoalition(a, b)∧ pos(x)→ pos(y)
Manifesto(x)∧Party(x, a)∧Manifesto(y)∧Party(y, b)∧Recent(x, y)∧EUCoalition(a, b)∧¬pos(x)→ ¬pos(y)
Transitivity

Manifesto(x) ∧ Party(x, a) ∧ Manifesto(y) ∧ Party(y, b) ∧ Manifesto(z) ∧ Party(z, c) ∧
SameElec(x, y) ∧ SameElec(y, z) ∧ RegCoalition(a, b) ∧ RegCoalition(b, c) ∧ pos(x)

→ pos(z)

Manifesto(x) ∧ Party(x, a) ∧ Manifesto(y) ∧ Party(y, b) ∧ Manifesto(z) ∧ Party(z, c) ∧
SameElec(x, y) ∧ SameElec(y, z) ∧ RegCoalition(a, b) ∧ RegCoalition(b, c) ∧ ¬pos(x) → ¬pos(z)

Manifesto(x) ∧ Party(x, a) ∧ Manifesto(y) ∧ Party(y, b) ∧ Manifesto(z) ∧ Party(z, c) ∧
Recent(x, y) ∧ Recent(y, z) ∧ EUCoalition(a, b) ∧ EUCoalition(b, c) ∧ pos(x)

→ pos(z)

Manifesto(x) ∧ Party(x, a) ∧ Manifesto(y) ∧ Party(y, b) ∧ Manifesto(z) ∧ Party(z, c) ∧
Recent(x, y) ∧ Recent(y, z) ∧ EUCoalition(a, b) ∧ EUCoalition(b, c) ∧ ¬pos(x) → ¬pos(z)

PSLesim — Similarity-based relational feature

Manifesto(x) ∧ Manifesto(y) ∧ Similarity(x, y) ∧ Recent(x, y) ∧ pos(x)→ pos(y)
Manifesto(x) ∧ Manifesto(y) ∧ Similarity(x, y) ∧ Recent(x, y) ∧ ¬pos(x)→ ¬pos(y)

PSLploc — Right–left ratio

Manifesto(x) ∧ LwRightLeftRatio(x)→ pos(x)
Manifesto(x) ∧ ¬LwRightLeftRatio(x)→ ¬pos(x)

PSLtemp— Temporal Dependency

Manifesto(x) ∧ Party(x, a) ∧ PreviousManifesto(x, a, t) ∧ pos(t)→ pos(x)
Manifesto(x) ∧ Party(x, a) ∧ PreviousManifesto(x, a, t) ∧ ¬pos(t)→ ¬pos(x)

Table 1: PSL Model: Values for Similarity, LwRightLeftRatio and pos are obtained from the joint-structured
model (Figure 1). Except for pos, other values are fixed in the network. Domain (y) for SameElec(x, y) is within
the country, and for Recent(x, y) covers all the countries. ¬ denotes negation. Distance to satisfaction for each
ground rule is obtained using a hinge-loss potential, which is then used inside the HL-MRF model (Equation (5)),
where pos is Y.

(EUCoalition).6 We set the scope of in-
teraction between manifestos (x and y) from
a country to the same election (SameElec).
For manifestos across countries, we consider
only the most recent manifesto (Recent)
from each party (y), released within 4 years
relative to x. We use a logistic transforma-
tion of the number of times two parties have
been in a coalition in the past (to get a value
between 0 and 1), for both RegCoalition

and EUCoalition. We also construct rules
based on transitivity for both the relational
features, i.e., parties which have had common
coalition partners, even if they were not allies
themselves, are likely to have similar policy
positions.

Manifesto similarity: Manifestos that are sim-
ilar in content are expected to have simi-
lar RILE scores (and associated sentence-

6http://www.europarl.europa.eu

level label distributions), similar to the mod-
eling intuition captured by Burford et al.
(2015) in the context of congressional debate
vote prediction. For a pair of recent mani-
festos (Recent) we use the cosine similarity
(Similarity) between their respective doc-
ument vectors Vd (Figure 1).

Right–left ratio: For a given manifesto,
we compute the ratio of sentences
categorized under RIGHT to OTHERS

( # RIGHT
# RIGHT+# LEFT+# NEUTRAL ), where the catego-

rization for sentences is obtained using the
joint-structured model (Equation (4)). We
also encode the location of sentence ls in
a document, by weighing the count of sen-
tences for each class C by its location value∑

s∈C log(ls + 1) (referred to as loc lr).
The intuition here is that the beginning
parts of a manifesto tends to contain generic
information such as preamble, compared to
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later parts which are more policy-dense. We
perform a logistic transformation of loc lr to
derive the LwRightLeftRatio.

Temporal dependency: We capture the temporal
dependency between a party’s current mani-
festo position and its previous manifesto po-
sition (PreviousManifesto).

Other than for the look-up based random vari-
ables, the network is instantiated with predictions
(for Similarity, LwRightLeftRatio and pos)
from the joint-structured model (Figure 1). All the
random variables, except pos (which is the target
variable), are fixed in the network. These values
are then used inside a PSL model for collective
probabilistic reasoning, where the first-order logic
given in Table 1 is used to define the graphical
model (HL-MRF) over the random variables de-
tailed above. Inference on the HL-MRF is used to
obtain the most probable interpretation such that it
satisfies most ground rule instances, i.e., consider-
ing the relational and temporal dependencies.

5 Evaluation

5.1 Experimental Setup
As our dataset, we use manifestos from CMP for
European countries only, as in Section 5.5 we will
validate the manifesto’s overall position on the
left-right spectrum, using the Chapel Hill Expert
Survey (CHES), which is only available for Euro-
pean countries (Bakker et al., 2015). In this, we
sample 1004 manifestos from 12 European coun-
tries, written in 10 different languages — Dan-
ish (Denmark), Dutch (Netherlands), English (Ire-
land, United Kingdom), Finnish (Finland), French
(France), German (Austria, Germany), Italian
(Italy), Portuguese (Portugal), Spanish (Spain),
and Swedish (Sweden). Out of the 1004 mani-
festos, 272 are annotated with both sentence-level
labels and RILE scores, and the remainder only
have RILE scores (see Table 2 for further statis-
tics).

There are (less) scenarios where a natural sen-
tence is segmented into sub-sentences and anno-
tated with different classes (Däubler et al., 2012).
Hence we use NLTK sentence tokenizer followed
by heuristics from Däubler et al. (2012) to ob-
tain sub-sentences. Consistent with previous work
(Subramanian et al., 2017), we present results
with manually segmented and annotated test doc-
uments.

Lang. # Docs (Anntd.) # Sents (Anntd.)

Danish 175 (36) 29694 (8762)
Dutch 107 (48) 132524 (70559)

English 117 (27) 86603 (34512)
Finnish 97 (16) 17979 (8503)
French 53 (10) 22747 (5559)
German 117 (46) 111376 (73652)
Italian 98 (15) 41455 (5154)

Portuguese 60 (9) 40922 (11077)
Spanish 85 (50) 145355 (93964)
Swedish 95 (15) 19551 (7938)

Total 1004 (272) 648206 (319680)

Table 2: Statistics of dataset (“Anntd.” refers to the
number of documents with sentence annotations in the
second column, and the number of sentences with an-
notations in the third column).

5.2 Baseline Approaches

Sentence-level baseline approaches include:

• BoW-NN : TF-IDF-weighted unigram bag-
of-words representation of sentences (Biess-
mann, 2016), and monolingual training using
a multi-layer perceptron (“MLP”) model.

• BoT-NN : Similar to above, but trigram bag-
of-words.

• AE-NN : MLP model with average multilin-
gual word embeddings as the sentence repre-
sentation (Subramanian et al., 2017).

• CNN : Convolutional neural network
(“CNN”: Glavaš et al. (2017a)) with multi-
lingual word embeddings.

• Bi-LSTM : Simple bi-LSTM over multilin-
gual word embeddings, last hidden units are
concatenated to form the sentence representa-
tion, and fed directly into a softmax sentence-
level layer. We evaluate two scenarios: (1)
with a trainable embedding matrix We (Bi-
LSTM(+up) ); and (2) without a trainable
We.

Document-level baseline approaches include:

• BoC : Bag-of-centroids (BoC) document rep-
resentation based on clustering the word em-
beddings (Lebret and Collobert, 2014), fed
into a neural network regression model.

• HCNN : Hierarchical CNN, where we en-
code both the sentence and document using
stacked CNN layers.
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• HNN : State-of-the-art hierarchical neural
network model of Subramanian et al. (2017),
based on average embedding representations
for sentences and the document.

We present results evaluated under two different
settings: (a) 80–20% random split averaged across
10 runs to validate the hierarchical model (Sec-
tion 5.3 and Section 5.4); and (b) temporal set-
ting, where train- and test-set are split chronologi-
cally, to validate both the hierarchical deep model
and the PSL approach especially, since we encode
temporal dependencies (Section 5.5).

5.3 Hierarchical Sentence- and
Document-level Model

We present sentence-level results with a 80–20%
random split in Table 3, stratified by country, av-
eraged across 10 runs. For Bi-LSTM , we found
the setting with a trainable embedding matrix
(Bi-LSTM(+up) ) to perform better than the non-
trainable case (Bi-LSTM ). Hence we use a similar
setting for Joint and Jointstruc. We show the effect
of α (from Equation (2)) in Figure 2a, based on
which we set α = 0.3 hereafter. With the chosen
model, we study the effect of the structured loss
(Equation (4)), by varying γ with fixed β = 0.1,
as shown in Figure 2b. We observe that γ = 0.7
gives the best performance, and varying β with γ
at 0.7 does not result in any further improvement
(see Figure 2c). Sentence-level results measured
using F-measure, for baseline approaches and the
proposed models selected from Figure 2a (Joint),
Figures 2b and 2c (Jointstruc) are given in Table 3.
We also evaluate the special case of α = 1, in
the form of sentence-only model Jointsent. For the
document-level task, results for overall manifesto
positioning measured using Pearson’s correlation
(r) and Spearman’s rank correlation (ρ) are given
in Table 4. We also evaluate the hierarchical bi-
LSTM model with document-level objective only,
Jointdoc.

We observe that hierarchical modeling
(Jointsent, Joint and Jointstruc) gives the best
performance for sentence-level classification for
all the languages except Portuguese, on which
it performs slightly worse than Bi-LSTM(+up) .
Also, Jointstruc, does not improve over Jointsent.
We perform further analysis to see the effect of
joint-structured model on the sentence-level task
under sparsely-labeled conditions in Section 5.4.
On the other hand, for the document-level task,
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Figure 2: Effect of hyper-parameters on sentence- and
document-level performance. denotes F-measure
(right axis) and × denotes Pearson correlation (left
axis).

the joint model (Joint) performs better than
Jointdoc and all the baseline approaches. Lastly,
the joint-structured model (Jointstruc) provides
further improvement over Joint .

5.4 Analysis of Joint-Structured Model for
Sentence-level task

To understand the utility of joint modeling, espe-
cially given that there are more manifestos with
document-level labels only than both sentence-
and document-level labels, we compare the fol-
lowing two settings: (1) Jointstruc, which uses ad-
ditional manifestos with document-level supervi-
sion (RILE); and (2) Jointsent, which uses mani-
festos with sentence-level supervision only. We
vary the proportion of labeled documents at the
sentence-level, from 10% to 80%, to study the ef-
fect under sparsely-labeled conditions. Note that
80% is the maximum labeled training data un-
der the cross-validation setting. In other cases, a
subset (say 10%) is randomly sampled for train-

1970



Lang. BoW-NN BoT-NN AE-NN CNN Bi-LSTM Bi-LSTM(+up) Jointsent Joint Jointstruc

Danish 0.35 0.33 0.35 0.31 0.38 0.38 0.44 0.40 0.43
Dutch 0.41 0.41 0.40 0.34 0.39 0.43 0.52 0.50 0.50

English 0.39 0.43 0.43 0.40 0.45 0.47 0.49 0.50 0.49
Finnish 0.30 0.34 0.33 0.30 0.38 0.39 0.44 0.41 0.42
French 0.36 0.37 0.36 0.37 0.42 0.44 0.48 0.49 0.48
German 0.33 0.35 0.37 0.35 0.40 0.41 0.45 0.45 0.46
Italian 0.33 0.38 0.37 0.31 0.37 0.39 0.49 0.52 0.52

Portuguese 0.32 0.38 0.31 0.28 0.43 0.46 0.44 0.44 0.43
Spanish 0.38 0.39 0.39 0.35 0.42 0.41 0.50 0.49 0.50
Swedish 0.46 0.42 0.36 0.36 0.41 0.44 0.49 0.46 0.46

Avg. 0.36 0.38 0.38 0.35 0.40 0.42 0.48 0.47 0.48

Table 3: Micro-Averaged F-measure for sentence classification. Best scores are given in bold.

Approach r ρ

BoC 0.18 0.20
HCNN 0.24 0.26
HNN 0.28 0.32

Jointdoc 0.30 0.37
Joint 0.46 0.54

Jointstruc 0.50 0.63

Table 4: RILE score prediction performance. Best
scores are given in bold.
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Figure 3: F-measure for Jointstruc vs. Jointsent across
different ratios of sentence-level labeled manifestos
(averaged over 10 runs, with standard deviation)

ing. From Figure 3, having more manifestos with
document-level supervision demonstrates the ad-
vantage of semi-supervised learning, especially
when the sentence-level supervision is sparse (≤
40%)— Jointstruc performs better than Jointsent.

5.5 Manifesto Position Re-ranking using PSL

Finally, we present the results using PSL, which
calibrates the overall manifesto position on the
left–right spectrum, obtained using the joint-
structured model (Jointstruc). As we evaluate the
effect of temporal dependency, we use manifestos
before 2008-09 for training (868 in total) and the
later ones (until 2015, 136 in total) for testing.
This test set covers one recent set of election man-
ifestos for most countries, and two for the Nether-

Approach F-measure

AE-NN 0.31
Bi-LSTM(+up) 0.36
Jointstruc 0.42

Table 5: Micro-averaged F-measure for manifestos re-
leased after 2008-09. Best scores are given in bold.

lands, Spain and United Kingdom. To avoid vari-
ance in right-to-left ratio and the target variable
(pos, initialized using Jointstruc) between the train-
ing and test sets, we build a stacked network
(Fast and Jensen, 2008), whereby we estimate
values for the training set using cross-validation
across the training partition, and estimate values
for the test-set with a model trained over the en-
tire training data. Note that we build the Jointstruc
model afresh using the chronologically split train-
ing set, and the parameters are tuned again using
an 80-20 random split of the training set. For
a consistent view of results for both the tasks
(and stages), we provide micro-averaged results
for sentence-classification with the competing ap-
proaches (from Table 3): AE-NN (Subramanian
et al., 2017), Bi-LSTM(+up) , and Jointstruc. Re-
sults are presented in Table 5, noting that the re-
sults for a given method will differ from earlier
due to the different data split.

For the document-level regression task, we also
evaluate other approaches based on manifesto sim-
ilarity and automated scaling with sentence-level
policy positions:

• Cross-lingual scaling (CLS ): A recent un-
supervised approach for crosslingual politi-
cal speech text scoring (Glavaš et al., 2017b),
based on TF-IDF weighed average word-
embeddings to represent documents, and a
graph constructed using pair-wise document
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RILE CHES

r ρ r ρ

CLS 0.11 0.10 0.09 0.07
PCA 0.26 0.17 0.01 −0.02
Jointstruc 0.46 0.42 0.42 0.42
PSLcoal 0.51 0.45 0.49 0.45
PSLcoal + esim 0.52 0.47 0.50 0.46
PSLcoal + esim + ploc 0.54 0.56 0.53 0.56
PSLcoal + esim + ploc + temp 0.54 0.57 0.55 0.61

Table 6: Manifesto regression task using the two-stage
approach. Best scores are given in bold.

similarity. Given two pivot texts (for left and
right), label propagation approach is used to
position other documents.

• PCA: Apply principal component analysis
(Gabel and Huber, 2000) on the distribu-
tion of sentence-level policy positions (56
classes, without 000), and use the projection
on its principal component to explain maxi-
mum variance in its sentence-level positions,
as a latent manifesto-level position score.

• Jointstruc: We evaluate the scores obtained
using Jointstruc, which we calibrate using
PSL.

We validate the calibrated position scores us-
ing both RILE and CHES7 scores. We use CHES
2010-14, and map the manifestos to the closest
survey year (wrt its election date). CHES scores
are used only for evaluation and not during train-
ing. We provide results in Table 6 by augmenting
features for the PSL model (Table 1) incremen-
tally. We observed that the coalition-based fea-
ture, and polarity of sentences with its position
information improves the overall ranking (r, ρ).
Document similarity based relational feature pro-
vides only mild improvement (similarly to Burford
et al. (2015)), and temporal dependency provides
further improvement against CHES. That is, com-
bining content, network and temporal features pro-
vides the best results.

6 Conclusion and Future Work

This work has been targeted at both fine- and
coarse-grained manifesto text position analysis.
We have proposed a two-stage approach, where
in the first step we use a hierarchical multi-task

7https://www.chesdata.eu/

deep model to handle the sentence- and document-
level tasks together. We also utilize additional in-
formation on label structure, to augment an aux-
iliary structured loss. Since the first step places
the manifesto on the left–right spectrum using
text only, we leverage context information, such
as coalition and temporal dependencies to cali-
brate the position further using PSL. We observed
that: (a) a hierarchical bi-LSTM model performs
best for the sentence-level classification task, of-
fering a 10% improvement over the state-of-art
approach (Subramanian et al., 2017); (b) model-
ing the document-level task jointly, and also aug-
menting the structured loss, gives the best perfor-
mance for the document-level task and also helps
the sentence-level task under sparse supervision
scenarios; and (c) the inclusion of a calibration
step with PSL provides significant gains in perfor-
mance against both RILE and CHES, in the form
of an increase from ρ = 0.42 to 0.61 wrt CHES
survey scores.

There are many possible extensions to this
work, including: (a) learning multilingual word
embeddings with domain information; and (b)
modeling other policy related scores from text,
such as “support for EU integration”.
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Thomas Däubler, Kenneth Benoit, Slava Mikhaylov,
and Michael Laver. 2012. Natural sentences as valid
units for coded political texts. British Journal of Po-
litical Science 42(4):937–951.

Andrew Fast and David Jensen. 2008. Why stacked
models perform effective collective classification.
In Proceedings of the Eighth International Confer-
ence on Data Mining. IEEE, pages 785–790.

Matthew J Gabel and John D Huber. 2000. Putting par-
ties in their place: Inferring party left-right ideolog-
ical positions from party manifestos data. American
Journal of Political Science pages 94–103.
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Goran Glavaš, Federico Nanni, and Simone Paolo
Ponzetto. 2017b. Unsupervised cross-lingual scal-
ing of political texts. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics: Volume 2, Short
Papers. volume 2, pages 688–693.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Proceedings of the inter-
national conference on Acoustics, speech and signal
processing (ICASSP). IEEE, pages 6645–6649.

Zachary Greene. 2016. Competing on the issues:
How experience in government and economic condi-
tions influence the scope of parties policy messages.
Party Politics 22(6):809–822.

Justin Grimmer and Brandon M Stewart. 2013. Text as
data: The promise and pitfalls of automatic content
analysis methods for political texts. Political analy-
sis 21(3):267–297.

Frederik Georg Hjorth, Robert Tranekær Klemmensen,
Sara Binzer Hobolt, Martin Ejnar Hansen, and Pe-
ter Kurrild-Klitgaard. 2015. Computers, coders, and
voters: Comparing automated methods for estimat-
ing party positions. Research and Politics 2(2):1–9.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Kristen Johnson, Di Jin, and Dan Goldwasser. 2017.
Leveraging behavioral and social information for
weakly supervised collective classification of politi-
cal discourse on twitter. In Proceedings of the Asso-
ciation for Computational Linguistics. ACL, pages
741–752.

Willy Jou and Russell J. Dalton. 2017. Left-right ori-
entations and voting behavior. Oxford Research En-
cyclopedia of Politics .

Hans-Dieter Klingemann, Andrea Volkens, Judith
Bara, Ian Budge, and Michael McDonald. 2006.
Mapping Policy Preferences II. Estimates for Par-
ties, Electors, and Governments in Eastern Europe,
European Union, and OECD. Oxford University
Press.

David Lazer, Alex Sandy Pentland, Lada Adamic,
Sinan Aral, Albert Laszlo Barabasi, Devon Brewer,
Nicholas Christakis, Noshir Contractor, James
Fowler, Myron Gutmann, et al. 2009. Life in the
network: the coming age of computational social
science. Science (New York, NY) 323(5915):721.
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Abstract

Natural Language Inference is a challenging
task that has received substantial attention, and
state-of-the-art models now achieve impres-
sive test set performance in the form of ac-
curacy scores. Here, we go beyond this sin-
gle evaluation metric to examine robustness
to semantically-valid alterations to the input
data. We identify three factors - insensitiv-
ity, polarity and unseen pairs - and compare
their impact on three SNLI models under a va-
riety of conditions. Our results demonstrate
a number of strengths and weaknesses in the
models’ ability to generalise to new in-domain
instances. In particular, while strong perfor-
mance is possible on unseen hypernyms, un-
seen antonyms are more challenging for all
the models. More generally, the models suffer
from an insensitivity to certain small but se-
mantically significant alterations, and are also
often influenced by simple statistical correla-
tions between words and training labels. Over-
all, we show that evaluations of NLI models
can benefit from studying the influence of fac-
tors intrinsic to the models or found in the
dataset used.

1 Introduction

The task of Natural Language Inference (NLI)1

has received a lot of attention and has elicited
models which have achieved impressive results
on the Stanford NLI (SNLI) dataset (Bowman
et al., 2015). Such results are impressive due
to the linguistic knowledge required to solve the
task (LoBue and Yates, 2011; Maccartney, 2009).
However, the ever-growing complexity of these
models inhibits a full understanding of the phe-
nomena that they capture.

1Also known as Recognizing Textual Entailment.

As a consequence, evaluating these models
purely on test set performance may not yield
enough insight into the complete repertoire of abil-
ities learned and any possible abnormal behav-
iors (Kummerfeld et al., 2012; Sammons et al.,
2010). A similar case can be observed in models
from other domains; take as an example an image
classifier that predicts based on the image’s back-
ground rather than on the target object (Zhao et al.,
2017; Ribeiro et al., 2016), or a classifier used in
social contexts that predicts a label based on racial
attributes (Crawford and Calo, 2016). In both ex-
amples, the models exploit a bias (an undesired
pattern hidden in the dataset) to enhance accuracy.
In such cases, the models may appear to be robust
to new and even challenging test instances; how-
ever, this behavior may be due to spurious factors,
such as biases. Assessing to what extent the mod-
els are robust to these contingencies just by look-
ing at test accuracy is, therefore, difficult.

In this work we aim to study how certain fac-
tors affect the robustness of three pre-trained NLI
models (a conditional encoder, the DAM model
(Parikh et al., 2016), and the ESIM model (Chen
et al., 2017)). We call these target factors insen-
sitivity (not recognizing a new instance), polarity
(a word-pair bias), and unseen pairs (recognizing
the semantic relation of new word pairs). We be-
came aware of these factors based on an explo-
ration of the models’ behavior, and we hypothe-
size that these factors systematically influence the
behavior of the models.

In order to systematically test if the above fac-
tors affect robustness, we propose a set of chal-
lenging instances for the models: We sample a set
of instances from SNLI data, we apply a trans-
formation on this set that yields a new set of in-
stances, and we test both how well the models

1975



classify these new instances and whether the tar-
get factors influence the models’ behavior. The
transformation (swapping a pair of words between
premise and hypothesis sentences) is intended to
yield both easy and difficult instances to challenge
the models, but easy for a human to annotate them.

We draw motivation to study the robustness
of NLI models from previous work on evaluat-
ing complex models (Isabelle et al., 2017; White
et al., 2017). Furthermore, we base our approach
on the discipline of behavioral science which pro-
vides methodologies for analyzing how certain
factors influence the behavior of subjects under
study (Epling and Pierce, 1986).

We aim to answer the research questions: How
robust is the predictive behavior of the pre-trained
models under our transformation to input data? Do
the target factors (insensitivity, polarity, and un-
seen pairs) influence the prediction of the models?
Are these factors common across models?

Our results show that the models are robust
mainly where the semantics of the new instances
do not change significantly with respect to the
sampled instances and thus the class labels remain
unaltered; i.e., the models are insensitive to our
transformation to input data. However, when the
class labels change, the models significantly drop
accuracy. In addition, the models exploit a bias,
polarity, to stay robust when facing new instances.
We also find that the models are able to cope with
unseen word pairs under a hypernym relation, but
not with those under an antonym relation, suggest-
ing their inability to learn a symmetric relation.

2 Related Work

2.1 Analysis of Complex Models
Previous works in ML and NLP have analyzed
different aspects of complex models using a va-
riety of approaches; for example, understanding
input-output relationships by approximating the
local or global behavior of the model using an
interpretable model (Ribeiro et al., 2016; Craven
and Shavlik, 1996), or analyzing the output of the
model under lesions of its internal mechanism (Li
et al., 2016). Another line of work has analyzed
the robustness of NLP models both via controlled
experiments to complement the information from
the test set accuracy and test abilities of the models
(Isabelle et al., 2017; B. Hashemi and Hwa, 2016;
White et al., 2017) and via adversarial instances to
expose weaknesses (Jia and Liang, 2017). In addi-

tion, work has been done to uncover and diminish
gender biases in datasets captured by structured
prediction models (Zhao et al., 2017) and word
embeddings (Bolukbasi et al., 2016). However,
to the best of our knowledge, there is no previous
work to study the robustness of NLI models while
analyzing factors affecting their predictions.

2.2 Behavior Analysis
Previous work on behavioral science has focused
on understanding how environmental factors in-
fluence behaviors in both human (Soman, 2001)
and animal (Mench, 1998) subjects with the ob-
jective of predicting behavioral patterns or analyz-
ing environmental conditions. This methodology
also helps to identify and understand abnormal be-
haviour by collecting behavioral data without the
need to reach any internal component of the sub-
ject (Birkett and Newton-Fisher, 2011).

We base our approach in the discipline of be-
havioral science since some of our research ques-
tions and objectives align to those from this dis-
cipline; in addition, its methodology to study how
factors effect on the subjects’ behavior provides
statistical guarantees.

3 Background

3.1 Natural Language Inference
NLI, or RTE, is the task of inferring whether a
natural language sentence (hypothesis) is entailed
by another natural language sentence (premise)
(Maccartney, 2009; Dagan et al., 2009; Da-
gan and Glickman, 2004). More formally,
given a pair of natural language sentences i =
(premise, hypothesis), a model classifies the
type of relation such sentences fall in from three
possible classes, entailment, where the hypoth-
esis is necessarily true given the premise, neu-
tral, where the hypothesis may be true given the
premise, and contradiction, where the hypothesis
is necessarily false given the premise. Solving this
task is challenging since it requires linguistic and
semantic knowledge, such as co-reference, hyper-
nymy, and antonymy (LoBue and Yates, 2011), as
well as pragmatic knowledge and informal reason-
ing (Maccartney, 2009).

3.2 Behavior Analysis
Behavior analysis seeks to account for the role that
factors (independent variables) play in the behav-
ior (dependent variable) of subjects. Testing for

1976



the influence of a factor on the subject’s behavior
can be done via statistical tests: A null hypothesis
states no association between a target factor and
behavior, whereas the alternative hypothesis states
an association (McDonald, 2014).

4 Dataset and Models

4.1 SNLI Dataset
The Stanford NLI dataset (Bowman et al., 2015)
was created with the purpose of training deep neu-
ral models while providing human-annotated data.
Each instance was created by providing a premise
sentence, harvested from a pre-existing dataset, to
a crowdsource worker who was instructed to pro-
duce three hypothesis sentences, one for each NLI
class (entailment, neutral, contradiction). This
process yielded a balanced dataset containing
around 570K instances.

4.2 Models
Conditional Encoder We use two bidirectional
LSTMs; the first LSTM encodes the premise sen-
tence into a fixed-size vector embedding by se-
quentially reading on a word basis, while the sec-
ond LSTM encodes the hypothesis sentence con-
ditioned on the representation of the premise sen-
tence. At the final layer we used a softmax over the
class labels on top of a 3-layer MLP. All embed-
dings, of dimensionality d = 100, were randomly
initialized and learned during training. Accuracy
on SNLI’s dev set is 0.782.

Decomposable Attention Model DAM (Parikh
et al., 2016) consists of 2-layer multilayer-
perceptrons (MLPs) factorized in a 3-step process.
First, a soft-alignment matrix is created for all the
words in both the premise and hypothesis. Then,
each word of the premise is paired with the soft-
alignment representation of the hypothesis sen-
tence and fed into an MLP, and similarly for each
word in the hypothesis with the soft-alignment of
the premise. The resulting representations are then
aggregated where the vector representations of the
premise are summed up and the same for those of
the hypothesis; the new representations are then
fed to an MLP, followed by a linear layer and a
softmax whose output is a class label. We use
d = 300 dimensional GloVe embeddings (not up-
dated at training time). All layers use the ReLU
function. Accuracy on SNLI’s dev set is 0.854.

Enhanced Sequential Information Model
ESIM (Chen et al., 2017) performs inference in
three stages. First, Input Encoding uses BiLSTMs
to produce representations of each word in its
context within premise or hypothesis. Then,
Local Inference Modelling constructs new word
representations for each hypothesis (premise)
by summing over the BiLSTM hidden states for
the premise (hypothesis) words using weights
from a soft attention matrix. Additionally, these
representations are enhanced with element-wise
products and differences of the original hidden
states vectors and the new attention based vectors.
Finally, Inference Composition uses a BiLSTM,
average and max pooling and an MLP output
layer to produce predicted labels. Accuracy on
SNLI’s dev set is 0.882.

5 Methods

We test our main hypothesis (Section 1) by per-
turbing instances in a controlled, simple, and
meaningful way. This alteration, at the instance
level, yields new sets of instances which range
from easy (the semantics and the label of the new
instance are the same to those of the original in-
stance) to challenging (both semantics and label
of the new instance change with respect to those
of the original instance), but all of them remain
easy to annotate for a human.

To examine how the models generalize from
seen instances to transformed instances, we sam-
ple our original instances from the SNLI training
set, which we refer to as control instances from
now on. We then produce new instances which
differ either minimally from the control instances,
by changing only a single word in the premise and
hypothesis, or more substantially, by copying the
same sentence structure into the premise and hy-
pothesis with a single word changed. In this way,
we produce instances that contain only words seen
at training time, within sentence structures also
seen at training time. Thus, our evaluation sets
are as in-domain as possible, and control for fac-
tors associated with novel sentential contexts and
vocabulary.

5.1 Basic Procedure and Statistical Analyses
We first sample an instance from the SNLI dataset
according to a given criterion, namely we look for
a specific word pair in the instance; then, we apply
our transformation over the word pair. This pro-
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cedure generates a new instance. After that, the
models label the new instance, and we statistically
analyze which target factors influenced the models
to respond in such a way via chi-square (McNe-
mar’s, independence, and homogeneity) tests (Mc-
Donald, 2014; Alpaydin, 2010). When the sample
size is too small we apply Yate’s correction or a
Fisher test. We use the StatsModels (Seabold and
Perktold, 2010) and SciPy (Oliphant, 2007) pack-
ages. The level of significance is p < 0.0001,
unless otherwise stated.2 This procedure is ap-
plied in four experiments, where we study the ef-
fect of different word pairs (hypernym, hyponym,
and antonyms) and the effect of two types of con-
text words surrounding the word pairs which we
refer to as in situ and ex situ (explained in Section
5.3).

5.2 Transformation and Word Pairs
Given a set of word pairs of the form W =
(w1, w2), where w1 and w2 hold under a se-
mantic relation s ∈ {antonymy, hypernymy,
hyponymy}, we look through the training set for
instances ik = (pk, hk), where pk and hk are
premise and hypothesis sentences, respectively,
such that w1 ∈ pk and w2 ∈ hk. For each instance
ik we apply transformation T : we swap w1 with
w2; this transformation yields an instance im =
(pm, hm) where w2 ∈ pm, w1 ∈ hm and w1 /∈
pm, w2 /∈ hm.3

An example of transformation T on a contra-
diction instance ik is the following:

(1) pk : A soccer game occurring at sunset.
hk : A basketball game is occurring at
sunrise.

Where the word pair (sunset , sunrise) are
antonyms. After applying transformation T , we
obtain the new contradiction instance im:

(2) pm : A soccer game occurring at sunrise.
hm : A basketball game is occurring at
sunset.

Consider now the following instance il (class la-
bel entailment):

(3) pl : A little girl hugs her brother on a
footbridge in a forest.
hl : A pair of siblings are on a bridge.

2We apply a Bonferroni correction.
3If a word w1 or w2 appears more than once, we replace

all the appearances with its corresponding pair, w2 or w1.

If we now apply transformation T on the hyper-
nym word pair (footbridge, bridge) we derive the
new instance in (class neutral):

(4) pn : A little girl hugs her brother on a bridge
in a forest.
hn : A pair of siblings are on a footbridge.

Since swapping word pairs under hypernymy or
hyponymy relations may yield a different class la-
bel for the new instance, we manually annotate all
the instances in the new sample, discarding those
that are semantically incoherent.

5.3 Experimental Conditions
We consider two types of sentential context for the
word pairs, namely in situ and ex situ. Examples
of instances under the in situ condition are Exam-
ples 1, 2, 3, and 4 in Section 5.2. The name in situ
refers to the fact that we analyze the effect of the
transformation T within the original context of the
premise and hypothesis sentences. This allows to
control for confounding factors, such as sentence
length and order of the context words.

We also consider an ex situ condition in which
we remove the word pair from the original premise
and hypothesis and analyze the effect of the trans-
formation T within a simplified sentential con-
text which is the same in premise and hypothe-
sis. Specifically, we randomly select either the
premise or hypothesis context from the original
instance and copy it into both positions. In this
way, we obtain a sentence pair where the only dif-
ference between the premise and hypothesis is the
word pair, which allows us to isolate the effect of
this pair from its interaction with the surrounding
context; this condition thus allows to control for
context words. This process yields a new set of
instances, which we refer to as E.

An example of an ex situ instance can be con-
structed from Example 1 (Section 5.2). If the
premise sentence is selected, then after perform-
ing the procedure described above, the following
sentence pair ek is generated:

(5) pk : A soccer game occurring at sunset.
hk : A soccer game occurring at sunrise.

Given a sample E, we apply the transformation
T in order to generate a transformed sample ET
where the word pairs are swapped, similar to the
procedure applied in Section 5.2 on SNLI control
instances in order to generate their transformed in-
stances counterpart. In the latter case, we say that
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Whole sample Subset 1: Subset 2: Subset 3:
Gold label changes Unseen word pairs Polarity 6= gold label

Exp sample ESIM DAM CE ESIM DAM CE ESIM DAM CE ESIM DAM CE
1 IA 0.970 0.946 0.820 0.900 0.900 0.750

ITA1 0.933 0.946 0.732 0.600 0.500 0.400 0.681 0.637 0.536
ITA2 0.721 0.771 0.645 0.554 0.653 0.476
ITA3 0.722 0.745 0.646 0.568 0.630 0.535

2 EA 0.953 0.958 0.508 0.400 0.500 0.450
ETA 0.933 0.929 0.480 0.575 0.500 0.175 0.565 0.492 0.260

3 IH 0.898 0.819 0.828 0.836 0.701 0.733
ITH 0.648 0.691 0.543 0.315 0.509 0.271 0.694 0.777 0.555 0.719 0.697 0.586

4 EH 0.771 0.849 0.742 0.715 0.707 0.461
ETH 0.576 0.788 0.534 0.551 0.783 0.516 0.527 0.666 0.472 0.631 0.674 0.507

Table 1: Accuracy scores of all models. Exp: experiment number. Whole sample: accuracy scores on the
whole sample. Subset 1: subset of transformed instances that have different gold label with respect to
the control instances they were generated from. Subset 2: subset of transformed instances that contain
word pairs unseen at training time. Subset 3: subset of control or transformed instances containing word
pairs whose polarity does not match the instance’s gold label.

given a sample of control instances I we generate
a transformed sample IT .

As an example of obtaining a transformed ex
situ instance, we apply T to (sunset , sunrise) in
Example 5 to obtain the new instance em:

(6) pm : A soccer game occurring at sunrise.
hm : A soccer game occurring at sunset.

We note that for both conditions, in situ and ex
situ, the same word pairs are swapped, so the dif-
ferences are the surrounding context words and the
factors being controlled.

5.4 Test Sets
In each experiment we use two sets of instances
in order to measure the robustness of the models
and analyze our target factors: 1) The control in-
stances where the target word pair is in its original
position and 2) the transformed instances gener-
ated after applying transformation T . The name
of each set corresponds with the experimental set-
ting it is used in. Samples used in in situ exper-
iments are named as I , and E for ex situ. Sub-
scripts distinguish both the type of word pairs (A
for antonyms and H for hypernym/hyponym) and
the type of set (control or transformed). For exam-
ple, IA refers to the control in situ set whose in-
stances contain antonym word pairs, whereas ETH

refers to the ex situ transformed test set containing
hypernym/hyponym swapped word pairs.

We clarify: a) the sets IA and IH are sampled
from the SNLI dataset; b) transformed test sets are

generated from control sets containing control in-
stances; c) we refer to the sets EA and EH as con-
trol test sets because the target word pairs are in
their original position, and we apply T on them in
order to obtain the transformed samples ETA and
ETH , respectively.

Details about the sets: In order to build set
IA, we sample only contradiction instances (in-
stances in EA are also contradictions). We use
the antonym word pairs from (Mohammad et al.,
2013) to yield the sets ITA1 and ETA, which also
only contain contradictions since the relation of
antonymy is symmetric.4 We build two more sets,
ITA2 and ITA3 (explained in Section 6.1). Sets
IH , EH , ITH , and ETH contain instances with
any class label. In order to generate sets ITH and
ETH , we use the hypernym word pairs from (Ba-
roni et al., 2012). We manually annotate these
transformed sets and discard incoherent instances.

5.5 Factors Under Study
We describe the three target factors that we hy-
pothesize that affect the models’ response.

Insensitivity is the name we give to the ten-
dency of a model to predict the original label on
a transformed instance that is similar to a control
instance. Thus a model would be insensitive if,
for example, it incorrectly predicts the same class
label for both the control instance in Example 3

4The word pair (sunset , sunrise) holds in an antonymy
relation regardless of the position of the words in premise and
hypothesis sentences.
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and the transformed instance in Example 4 just be-
cause they closely resemble each other. A simple
measure of the impact of this effect is to look at
the accuracy on the subset of instances in which
the gold label was changed by the transformation.
We show this effect by statistically correlating the
rate of correct predictions with changes in the la-
bels predicted.

Unseen Word Pairs are another factor we can
use to evaluate robustness. In this case, we are
interested in the subset of transformed instances
where the swapped word pair is now in an order
within premise and hypothesis that was unseen in
the training data. An example is Example 2 which
contains the unseen word pair (sunrise, sunset);
i.e., no instance in the training set contains the
word sunrise in the premise and the word sun-
set in the hypothesis. Poor performance on this
subset reflects an inability to exploit the symme-
try (antonym pairs) or anti-symmetry (hypernym
pairs) of the word pairs involved. We show mod-
els’ abilities to cope with unseen pairs by statisti-
cally associating proportions of instances contain-
ing unseen pairs with incorrect predictions rates.

Polarity is the name we give to the association
between a word pair and the most frequent class it
is found in across training instances. For example,
we associate the word pair (sunset , sunrise) with
polarity contradiction because it mainly appears
on training instances with label contradiction. We
define four main categories of polarity: neutral,
contradiction, entailment, and none for unseen
word pairs.5 Accuracy on the subset of instances
where polarity and gold label disagree is an indica-
tor of the extent to which a model is influenced by
this factor. For example, a model incorrectly pre-
dicting label entailment for the instance in Exam-
ple 4 (class neutral) based on the polarity of class
entailment of its word pair (bridge, footbridge)
indicates that the model is influenced by this fac-
tor. We show this influence by statistically corre-
lating labels predicted with polarities.

6 Experiments and Results

Table 1 presents the performance of the models
across the different test sets. In general, DAM
and ESIM seem to be more robust than CE, with

5We also define categories when a word pair appears the
same number of times in two classes, such as entailment-
neutral, though these cases are rare.

the latter’s accuracy degrading to essentially ran-
dom performance on the most challenging subsets.
However, this general trend is reversed in a single
row of the table. On ETH , ESIM shows a compa-
rable performance to CE. And on Subset 3 of IH ,
DAM appears to rely on a bias (polarity) in the
same way as CE. Overall, all models are affected
by the three target factors, dropping performance
up to 0.25, 0.20, and 0.28 for ESIM, DAM, CE,
respectively, just by virtue of our simple transfor-
mation of swapping words.

6.1 Experiment 1: Swapping Antonyms in In
Situ Instances

In this experiment we use sets IA and ITA1 . Swap-
ping antonyms seems to have no effect on the
overall performance of the DAM model on ITA1

when compared to IA, and little effect on ESIM.
Thus these two models appear to be robust to this
transformation. Nonetheless, further analysis will
not support the conclusion that both models have
learned that antonymy is symmetric, and we will
show that this seemingly robust behavior is due
to confounding factors and not due to inference
abilities. Accuracy scores of CE model seem to
reveal that it is much less robust to the antonym
swap, with performance significantly dropping by
roughly 10.5% according to a McNemar’s test.

Insensitivity Because instances in ITA1 are con-
tradiction, we perform a proxy experiment to un-
derstand the models’ sensitivity. From IA, we sub-
stitute one of the antonyms in each word pair (in
each instance) with a hyponym, hypernym, or syn-
onym6 of the other. Doing this on both the premise
and hypothesis yields two new samples, ITA2 and
ITA3 , which we manually annotate.

Examples of control (Example 7) and trans-
formed (Example 8) instances are given below,
showing the replacement of young, in the hypoth-
esis, with aged, a synonym of elderly from the
premise. This transformation changes gold-label
from contradiction to neutral. Approximately,
half the sample yields such changes in gold-label.

(7) pk : An elderly woman sitting on a bench.
hk : A young mother sits down.

(8) pm : An elderly woman sitting on a bench.
hm : An aged mother sits down.

6We manually select these from WordNet such that it ap-
pears at least t = 10 times in the training set on either the
premise sentences or the hypothesis sentences.
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This transformation leads to a considerable drop
in overall performance for all models when accu-
racy scores on sets ITA2 and ITA3 are compared
to the accuracy on the control instances in IA: up
to 0.175 (CE), 0.201 (DAM), and 0.24 (ESIM)
points (Table 1). To test if insensitivity to the
transformation is associated with these behaviors,
we measure accuracy only on those instances that
changed gold-label (Subset 1 from the sets ITA2

and ITA3 ), where we see a further reduction in
performance for all models. 2-way tests of inde-
pendence provide strong evidence for the insensi-
tivity of the models (CE: χ2(1) = 73.33, DAM:
χ2(1) = 108.30, ESIM: χ2(1) = 175.34).

Table 2 shows the case for ESIM: most of its in-
correct predictions are due to predicting the same
label on both control and transformed instances
when these two type of instances have different
gold labels. Paradoxically, this effect works in
the models’ favour in the antonym swapping case
(ITA1 ) because all the gold-labels remain as con-
tradiction. Thus ignoring the transformation will
avoid any loss in performance.

Distribution of predictions
Labels predicted correct incorrect

change 155 31
no change 8 100

Table 2: Contingency table for ESIM: Predictions
on transformed instances with different gold labels
from those of the control instances.

Unseen Word Pairs The results in the column
Subset 2 of ITA1 (Table 1) suggest that perfor-
mance on unseen word pairs is weak. How-
ever, only 40 instances within ITA1 contain un-
seen antonym pairs; thus the impact of this re-
sult may be limited. 2-way tests of homogene-
ity show that the difference in accuracy of predic-
tions in instances containing seen or unseen word
pairs is nonetheless significant for all models (CE:
χ2(1) = 19.46, DAM: χ2(1) = 74.16, ESIM:
χ2(1) = 39.33). In other words, the models strug-
gle to recognize the reversed antonym pairs, even
though they were all seen in their original order at
training time. This effect can be seen, for example,
in the contingency table for DAM in Table 3.

Polarity Only 11% of the instances in the trans-
formed sample ITA1 contain word pairs that have
polarity other than contradiction. Thus, a model

Word pairs
Predictions seen unseen

correct 567 20
incorrect 13 20

Table 3: Contingency table for DAM: Predictions
distributed according to instances containing a
seen or an unseen antonym word pair.

relying only on this factor could achieve an accu-
racy of 89%. We investigate if the predicted labels
on instances in ITA1 are associated with the po-
larity of the transformed word pair. For all mod-
els, independence tests are highly significant (CE:
χ2(6) = 30.69, DAM: χ2(6) = 101.26, ESIM:
χ2(6) = 64.40). Table 4 shows that the predic-
tions of DAM change according to the polarity of
the word pairs. For example, when the polarity is
contradiction, around 98.5% of the predictions are
contradictions; however, this figure changes when
the polarity is neutral where the rate of correct pre-
dictions (contradictions) fall to 80.7%, and a more
dramatic fall is observed when the word pairs are
unseen (polarity none) where only 50% of the pre-
dictions are correct. This is strong evidence that
the models learned to rely on polarity.

We note that a model with perfect accuracy on
ITA1 , would lead to a statistic that does not reject
the null hypothesis, showing in this case that the
predictions are independent of polarity.

Polarity
Prediction

Neutral Contradiction Entailment

Neutral 5 21 0
Contradiction 5 543 3

Entailment 0 3 0
None 8 20 12

Table 4: Contingency table for DAM: Predictions
distributed according to the polarity of target word
pairs found in the transformed instances.

6.2 Experiment 2: Swapping Antonyms in
Ex Situ Instances

In this experiment, we use samples EA and ETA.
Swapping antonyms has little effect on the per-
formance of all models, where the biggest drop
comes from DAM (0.029 points). However, the
CE model performs quite poorly at both samples
(0.508 and 0.48 accuracy points on EA and ETA);
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this drop in performance, with respect to the in
situ condition, suggests that the repeated sentence
context is too different from the structure of the
training instances for the CE model to generalize
effectively.

In this condition, we refrain from analyzing the
effect of insensitivity, since doing so would re-
quire a transformation similar to that in the in
situ condition, which might add an extra layer of
change and the results may turn difficult to inter-
pret.

Unseen Word Pairs Accuracy scores strongly
suggest that the models are weak at dealing with
unseen antonym pairs (Subset 2 of ETA in Table
1); drops in performance on this subset range from
0.315 up to 0.429 points across the three mod-
els. Tests of homogeneity show strong evidence of
this weakness for all models (CE: χ2(1) = 15.91,
DAM: χ2(1) = 59.17, ESIM: χ2(1) = 44.72).
Comparing results on this subset with those of
Subset 2 in ITA1 , we notice that ESIM and DAM
keep similar behavior, but CE seems to be strongly
affected by this context type.

Polarity All models perform poorly in the sub-
set of instances where polarity disagrees with gold
label of the instance (Subset 3 of ETA), showing
that the models’ behavior rely on this bias. These
results are highly significant (CE: χ2(6) = 34.37,
DAM: χ2(6) = 136.99, ESIM: χ2(6) = 103.47).
This is further evidence that the models get con-
fused with a simple reversal of an antonym pair.

6.3 Experiment 3: Swapping Hypernyms and
Hyponyms in In Situ Instances

We now study the effect on the robustness of the
systems when we swap hypernym and hyponym
word pairs in in situ instances. Whole sample ac-
curacy scores in Table 1 significantly drop, accord-
ing to McNemar’s tests, by 0.25 (ESIM), 0.285
(CE), and 0.128 (DAM) points when we com-
pare scores on control instances (IH ) with those
on transformed instances (ITH ). We investigate
the role of our target factors on these behaviors.

Insensitivity Around 42% of the instances in
ITH (Subset 1) have different gold label from
those in IH . On these instances, the models’ re-
sults are severely impaired: CE and ESIM mod-
els’ performances drop to close-to-random (0.271
and 0.315), while DAM decreases by 0.18 points.
All models’ errors on this subset are strongly as-

sociated with failure to change the predicted class
(CE:χ2(1) = 90.73, DAM:χ2(1) = 101.52,
ESIM:χ2(1) = 150.92). In contrast to the case
in Experiment 1, insensitivity acts in detriment of
the models’ robustness when gold labels change
after the transformation.

Unseen Word Pairs Whereas model perfor-
mance was significantly worse on unseen antonym
pairs, this effect is not obvious on the hyponym-
hypernym results (Subset 2 of ITH ). In fact,
all models have a slightly higher accuracy on
this subset than overall. Homogeneity tests find
no evidence of an association between unseen
word pairs and incorrect predictions for any model
(CE:χ2(1) = 0.00036, p = 0.98, DAM:χ2(1) =
0.98, p = 0.32, ESIM:χ2(1) = 0.178, p = 0.67).
This effect may be explained by the models ex-
ploiting information from word embeddings. It
has been shown that word embeddings are able to
capture hypernymy (Sanchez and Riedel, 2017);
thus the models may use this information to gen-
eralize to unseen hypernym pairs.

Polarity We find very strong evidence for an
association between polarity and class label pre-
dicted on sample IH for all models (CE:χ2(10) =
168.40, DAM:χ2(10) = 182.76, ESIM:χ2(10) =
157.76). However, for sample ITH , only DAM
keeps this strong correlation (χ2(14) = 47.71). In
the case of CE, we find weak evidence in favour
of this correlation on instances of ITH (χ2(14) =
25.27, p = 0.03). For ESIM we find no evidence
of correlation (χ2(14) = 22.72, p = 0.06), thus
we do not reject the null hypothesis. Polarity’s in-
fluence can be observed in Subset 3 of IH (Table
1), where we observe a drop in accuracy for in-
stances whose gold labels do not match the polar-
ity of the word pairs, compared to the accuracy
of the whole sample; this means that when the
models have polarity as a cue, they improve per-
formance.

6.4 Experiment 4: Swapping Hypernyms and
Hyponyms in Ex Situ Instances

All models’ performance significantly drop (p <
0.01) after our transformation by 0.208 (CE),
0.061 (DAM) and 0.195 (ESIM) points, where
performance of ESIM is comparable to that of CE
on both samples, EH and ETH . Compared to the
in situ condition, DAM’s performance improves,
opposite to CE’s and ESIM’s behavior.
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Insensitivity The drop in performance de-
scribed above can be partially explained by in-
sensitivity to changes in gold label, since around
93% of the instances in ETH changed gold-label
with respect to EH . We find strong statistical ev-
idence for this hypothesis (CE:χ2(1) = 175.19,
DAM:χ2(1) = 158.62, ESIM:χ2(1) = 252.27).
However, in the case of DAM, this factor seems
to play a small role on its behavior as seen when
we compare accuracy on Subset 1 with that of the
whole transformed sample.

Insensitivity seems to have a bigger influence
on the models when the transformed instances are
closer to the training set: Accuracy scores on Sub-
set 1 from ITH are smaller than those on Subset 1
from ETH .

Unseen Word Pairs Similar to the in situ con-
dition, our homogeneity tests show no evidence
for incorrect predictions being due to unseen word
pairs (CE:χ2(1) = 0.35, p = 0.55, DAM:χ2(1) =
2.43, p = 0.11, ESIM:χ2(1) = 0.183, p = 0.66).
We posit the same explanation as before: Models
may use hypernymy information contained in the
embeddings.

Polarity We find statistically high correlation of
the models’ predictions with the polarity of the
word pairs in the instances from both samples, EH

(CE:χ2(10) = 261.77, DAM:χ2(10) = 312.67,
ESIM:χ2(10) = 176.38) and ETH (CE:χ2(14) =
56.52, DAM:χ2(14) = 258.09, ESIM:χ2(10) =
105.70). This evidence indicates that all models
use, to some extent, the polarity as a feature for
predicting class labels.

7 Discussion and Conclusions

Although all three models achieve strong results
on the original SNLI development set (CE: 0.782,
DAM: 0.854, ESIM: 0.882), each model exhibits
particular weaknesses on the transformed train-
ing instances. Notably, all perform poorly on
ITH instances in which the gold label is changed,
with ESIM and CE performing below the level of
chance. Thus, on these instances, the models tend
to predict the label of the original unaltered train-
ing instance and inference in this case is similar to
nearest-neighbour prediction.

On the other hand, much better performance
is obtained for the DAM and ESIM models on
ITH instances containing unseen word pairs, indi-
cating these models have learned to infer hyper-

nym/hyponym relations from information in the
pre-trained word embeddings. In contrast, perfor-
mance on the unseen word pairs in ITA1 and ETA

suggests that inferring antonymy from the embed-
dings is more difficult.

Weak performance is seen again on the EA and
ETA instances where the polarity of the antonym
pair is not consistent with the gold label. For these
cases, the only difference between premise and hy-
pothesis is the antonym pair, and the models tend
to fall back on predicting the most frequent gold
label seen for that word pair.

One result that remains anomalous is the over-
all performance of the ESIM model on the whole
ETH sample. While this sample contains unseen
word pairs and instances in which the gold label
changes or is inconsistent with polarity, these ef-
fects do not by themselves explain the poor per-
formance overall. Neither is this weakness ex-
plained by the ex situ structure, in which premise
and hypothesis differ by only one word, as perfor-
mance on the control ex situ sample, EH , is much
stronger. The effect, then, appears to be due to an
interaction of the ex situ structure in combination
with the transformation.

In the present work, we have limited our-
selves to examining single influences indepen-
dently. However, there are undoubtedly manifold
interactions contributing to model performance. In
fact, the complexities of these models (LSTMs,
attention mechanisms and MLPs) are specifically
intended to capture the interactions between the
words in the premise and hypothesis. Further work
is required to understand what these interactions
are and how they contribute to performance. Fully
uncovering these factors in current NLI datasets is
a pre-requisite for the construction of more effec-
tive resources in the future.
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Abstract

We present a novel approach for determining
learners’ second language proficiency which
utilizes behavioral traces of eye movements
during reading. Our approach provides stand-
alone eyetracking based English proficiency
scores which reflect the extent to which the
learner’s gaze patterns in reading are similar to
those of native English speakers. We show that
our scores correlate strongly with standard-
ized English proficiency tests. We also demon-
strate that gaze information can be used to ac-
curately predict the outcomes of such tests.
Our approach yields the strongest performance
when the test taker is presented with a suite of
sentences for which we have eyetracking data
from other readers. However, it remains effec-
tive even using eyetracking with sentences for
which eye movement data have not been previ-
ously collected. By deriving proficiency as an
automatic byproduct of eye movements during
ordinary reading, our approach offers a poten-
tially valuable new tool for second language
proficiency assessment. More broadly, our re-
sults open the door to future methods for infer-
ring reader characteristics from the behavioral
traces of reading.

1 Introduction

It is currently estimated that over 1.5 billion peo-
ple are learning English as a Second Language
(ESL) worldwide. Their learning progress is com-
monly evaluated with classroom tests prepared by
language instructors, quizzes in language learn-
ing software such as Duolingo and Rosetta Stone,
and by official standardized language proficiency
tests such as TOEFL, IELTS, MET and others.
In “high stakes” scenarios, official language profi-
ciency tests are the de-facto standards for language
assessment; they are accepted by educational and
professional institutions, and are taken by millions
of language learners every year (for example, in

2016 over three million people took the IELTS test
(IELTS, 2017)). These tests probe language profi-
ciency based on performance on various linguistic
tasks, including grammar and vocabulary exams,
reading and listening comprehension questions, as
well as essay writing and speaking assignments.

Despite their ubiquity, traditional approaches to
language proficiency testing have several draw-
backs. First, such tests are typically prepared man-
ually and require extensive resources for test de-
velopment. Moreover, their validity can be un-
dermined by test specific training, prior knowl-
edge of the evaluation mechanisms (Powers et al.,
2002), as well as plain cheating via unauthorized
access to test materials. Further, the utilized test-
ing and evaluation methodologies vary across dif-
ferent tests, and test materials are in most cases
inaccessible to the research community. Perhaps
most crucially, the reliance of these tests on the
end products of linguistic tasks makes it challeng-
ing to study learners’ language processing patterns
and the difficulties they encounter in real time.

In this work we propose a novel methodol-
ogy for language proficiency assessment which
marks a significant departure from traditional lan-
guage proficiency tests and addresses many of
their drawbacks. In our approach, we determine
language proficiency from broad coverage analy-
sis of eye movements during reading of free-form
text in a foreign language, a special case of the
general problem of inferring comprehender char-
acteristics and cognitive state from the measur-
able traces of real-time language processing. Our
framework does not require the test taker to pre-
pare for the test or to perform any hand-crafted lin-
guistic tasks, but simply to attentively read an ar-
bitrary set of sentences. To the best of our knowl-
edge, this work is the first to propose and imple-
ment such an approach, yielding a novel language
proficiency evaluation scheme which relies solely
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on ordinary reading.

Our framework builds on previous research in
psycholinguistics demonstrating that the eyetrack-
ing record reflects how readers interact with the
text and how language processing unfolds over
time (Frazier and Rayner, 1982; Rayner, 1998;
Rayner et al., 2012). In particular, it has been
shown that key aspects of the reader’s character-
istics and cognitive state, such as mind wander-
ing during reading (Reichle et al., 2010), dyslexia
(Rello and Ballesteros, 2015) and native language
(Berzak et al., 2017) can be inferred from their
gaze record. Despite these advances, the poten-
tial of the rich and highly informative behavioral
signal obtainable from human reading for auto-
mated inference about readers, and specifically
about their linguistic proficiency has thus far been
largely unutilized.

Here, we first introduce EyeScore, an indepen-
dent measure of ESL proficiency which reflects
the extent to which a learner’s English reading pat-
terns resemble those of native speakers. Second,
we present a regression model which uses gaze
features to predict the learner’s scores on specific
external proficiency tests. We address each of our
tasks in two data regimes: Fixed Text, which re-
quires eyetracking training data for the specific
sentences presented to the test taker, as well as
the more general and challenging Any Text regime,
where the test taker is presented with arbitrary
sentences for which no previous eyetracking data
is available. To enable prediction mechanisms in
both regimes, we utilize previously proposed gaze
features, and develop new linguistically and psy-
chologically motivated feature sets which capture
the interaction between eye movements and lin-
guistic properties of the text.

We demonstrate the effectiveness of our ap-
proach via score comparison to standardized En-
glish proficiency tests. Our primary benchmark
test, taken in lab by 145 ESL participants, are
the grammar and listening sections of the Michi-
gan English Test (MET) whose scores range from
0 to 50. EyeScore yields 0.5 Pearson’s correla-
tion to MET in the Fixed Text regime, and 0.48
in the Any Text regime. Our regression model for
predicting MET scores from eye movement fea-
tures obtains a correlation of 0.7 and a Mean Ab-
solute Error (MAE) of 3.31 points in the Fixed
Text regime, and 0.49 correlation and 4.11 MAE
in the Any Text regime. Our results are sub-

stantially stronger compared to a baseline using
only raw reading speed, and are reasonably close
to correlations among traditional proficiency tests.
These outcomes confirm the promise of the pro-
posed methodology to reliably measure language
proficiency.

This paper is structured as follows. Section 2
describes the data and the experimental setup. In
section 3 we delineate our feature sets for charac-
tering eye movements in human reading. Section
4 introduces EyeScore, a second language profi-
ciency metric which is based on similarity of read-
ing patterns to native speakers. In section 5 we
use eyetracking patterns to predict scores on MET
and TOEFL. In section 6 we survey related work.
Finally, we conclude and discuss future work in
section 7.

2 Experimental Setup

Our study uses the dataset of eye movement
records and English proficiency scores introduced
in Berzak et al. (2017)1, which we describe here in
brief. The dataset contains gaze recordings of 37
native English speakers and 145 ESL speakers be-
longing to four native language backgrounds: 36
Chinese, 36 Japanese, 36 Portuguese and 37 Span-
ish. Participants were presented with free-form
English sentences appearing as one-liners. To en-
courage attentive reading each sentence was fol-
lowed by a yes/no comprehension question. Dur-
ing the experiment participants held a controller
with buttons for indicating sentence reading com-
pletion and answering the sentence comprehen-
sion questions. Participants’ eye movements were
recorded using a desktop mount EyeLink 1000
eyetracker (SR Research) at a sampling rate of
1000Hz.

2.1 Procedure and Reading Materials

An experimental trial for a sentence starts with a
presentation of a target circle at the center left of a
blank screen. A 300ms fixation on this circle trig-
gers a one-liner sentence on a new screen starting
at the same location. After completing reading the
sentence, participants are presented with the let-
ter Q on a blank screen. A 300ms fixation on this
letter triggers a question about the sentence on a
new screen. Participants provide a yes/no answer
to the question and are subsequently informed if

1The data was collected under IRB approval, and all the
participants provided written informed consent.
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they answered correctly. The first trial of the ex-
periment was presented to familiarize participants
with the experimental setup, and is discarded from
the analysis.

Each participant read a total of 156 English
sentences, randomly drawn from the Wall Street
Journal Penn Treebank (WSJ-PTB) (Marcus et al.,
1993). The maximal sentence length was set
to 100 characters, yielding an average sentence
length of 11.4 words. All the sentences include the
manual PTB annotations of POS tags (Santorini,
1990) and phrase structure trees, as well as Google
universal POS tags (Petrov et al., 2012) and depen-
dency trees obtained from the Universal Depen-
dency Treebank (UDT) (McDonald et al., 2013).

2.2 Experimental Regimes
Half of the 156 sentences presented to each par-
ticipant belong to the Fixed Text regime, and the
other half belong to the Any Text regime. Sen-
tences from the two regimes were interleaved ran-
domly and presented to all participants in the same
order.

Fixed Text In this regime, all the participants
read the same suite of 78 pre-selected sentences
(900 words). The Fixed Text regime supports
token-level comparisons of reading patterns for
specific words in the same contexts across read-
ers. It enables the construction of a proficiency test
which relies on a fixed battery of reading materials
for which previous eyetracking data was collected.

Any Text In the second, Any Text regime, dif-
ferent participants read different sets of 78 sen-
tences each (880 words on average). This regime
generalizes the Fixed Text scenario; predicting
reader characteristics in this regime requires for-
mulating type-level abstractions that would al-
low meaningful comparisons of reading patterns
across different sentences. It corresponds to a pro-
ficiency test in which the sentences presented to
the test taker are completely arbitrary, and no prior
eyetracking data is available for them.

2.3 Standardized English Tests
We use participants’ performance on the Michi-
gan English Test (MET) and TOEFL as external
benchmarks of their English proficiency.

Michigan English Test (MET) Our primary in-
dicator of English proficiency is the listening and
grammar sections of the MET (Form-B), which
were administered by Berzak et al. (2017) in-lab,
and taken by all the 145 non-native participants

upon completion of the reading experiment. The
test has a total of 50 multiple choice questions,
comprising 20 listening comprehension questions
and 30 written grammar questions. The test score
is computed as the number of correct answers for
these questions, with possible scores ranging from
0 to 50. The mean MET score in the dataset is
41.46 (std 6.27).

TOEFL Berzak et al. (2017) also collected self-
reported scores on the most recently taken offi-
cial English proficiency test, which we use here as
a secondary evaluation benchmark. We focus on
the most commonly reported test, the TOEFL-iBT
whose scores range from 0 to 120. We take into ac-
count only test results obtained less than four years
prior to the experiment, yielding 33 participants.
We sum the scores of the reading and listening sec-
tions of test, with a total possible score range of
0 to 60. In cases where participants reported only
the overall score, we divided that score by two. We
further augment this data with 20 participants who
took the TOEIC Listening and Reading test within
the same four years range, resulting in a total of
53 external proficiency scores. The TOEIC scores
were converted to the TOEFL scale by fitting a
third degree polynomial on an unofficial score
conversion table2 between the tests. The converted
scores were then divided by two. Henceforth we
refer to both TOEFL-iBT and TOEIC scores con-
verted to TOEFL-iBT scale as TOEFL scores. The
mean TOEFL score is 47.6 (std 9.55). The Pear-
son’s r correlation between the TOEFL and MET
scores in the dataset is 0.74.

2.4 Data Split

We divide the ESL speakers into train-
ing/development and test sets in the following
manner. For MET, we split our 145 ESL par-
ticipants into a training/development set of 88
participants and a test set of 57 participants.
The test set consists of an entire held out native
language – 36 speakers of Portuguese – as well
as 7 participants randomly sampled from each
of the remaining three native languages. Our
test set is thus particularly challenging due to
the large fraction of participants belonging to the
held out language, a design which emphasizes

2http://theedge.com.hk/conversion-table-for-toefl-ibt-
pbt-cbt-tests/ Although both TOEFL and TOEIC are
administered by the same company (ETS), to the best of our
knowledge there is no publicly available official conversion
table between the two tests.
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Figure 1: Illustration of the data split for MET into a
training/development set (88 participants) and a test set
(57 participants).

generalization to language learner populations
which are not part of the training set. Figure 1
presents a schematic overview of our MET split.
For TOEFL, due to the limited available data, in
Section 4 we report EyeScore correlations for all
the 53 test takers, and in Section 5 we perform
regression experiments using leave-one-out cross
validation.

3 Eye Movement Features

In order to capture behavioral psycholinguistic
traces of language proficiency we utilize several
linguistically and psychologically motivated fea-
ture representations of eye movements in read-
ing. We include features introduced in prior work
(see Words in Fixed Context and Syntactic Clus-
ters (Berzak et al., 2017)) as well as newly de-
veloped feature sets (see Word Property Coeffi-
cients and Transitions). All our features rely on
the well established division of gaze trajectories
into fixations (stops) and saccades (movements be-
tween fixations) that characterizes human reading
(Rayner, 1998).

Our fixation based features make use of several
standard metrics of fixation times, defined below.

• First Fixation duration (FF) Duration of the
first fixation on a word.

• First Pass duration (FP) Time spent from
first entering a word to first leaving it (includ-
ing re-fixations within the word).

• Total Fixation duration (TF) The sum of all
fixation times on a word.

• Regression Path duration (RP) Time from
first entering a word until proceeding to its
right.

Our feature sets are divided into two groups.
The first group consists of type-level features, ap-
plicable both in the Any Text and Fixed Text
regimes. The second group of feature sets is token-
based and can be extracted only in the Fixed Text
regime, because it presupposes the same textual
input for all participants.

3.1 Type-Level Features

Word Property Coefficients (WP-Coefficients)
This new feature set quantifies the influence of
three key word characteristics on reading times of
individual readers: word length, word frequency
and surprisal. The last measures the difficulty of
processing a word in a sentence (Hale, 2001; Levy,
2008), and is defined as its negative log probability
given a sentential context:

surprisal(wi|w1...i−1) = − log(wi|w1...i−1)
(1)

In the reading literature, these three characteris-
tics were suggested as the most prominent linguis-
tic factors influencing word reading times (e.g. In-
hoff and Rayner, 1986; Rayner and Well, 1996;
Pollatsek et al., 2008; Kliegl et al., 2004; Rayner
et al., 2004, 2011; Smith and Levy, 2013; Luke
and Christianson, 2016); whereby longer, less fre-
quent and contextually less predictable words are
fixated longer.

To derive this feature set, we measure length
as the number of characters in the word. Word
(log) frequencies are obtained from the BLLIP-
WSJ corpus (Charniak et al., 2000). Estimates
of surprisal are obtained from a trigram lan-
guage model with Chen and Goodman’s modified
Kneser-Ney smoothing trained on the BLLIP-WSJ
using SRILM (Stolcke et al., 2002). We then fit
for each participant four regression models that
use these three word characteristics to predict the
word’s raw FF, FP, TF and RP durations. The re-
gression models are fitted using Ordinary Least
Squares (OLS). We also train a logistic regres-
sion model for predicting word skips. Finally, we
extract the weights and intercepts of these mod-
els and encode them as features. As each of the
five models has three coefficients and one intercept
term, the resulting WP-Coefficients feature set has
20 features.

Syntactic Clusters (S-Clusters)
Following Berzak et al. (2017), we extract aver-
age word reading times clustered by POS tags and
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syntactic functions. We utilize three metrics of
reading times, FF, FP and TF durations. We then
cluster words according to three types of syntac-
tic criteria, Google Universal POS tags, PTB POS
tags, and the syntactic function label of the word
to its head word. To derive the feature set, we av-
erage the word fixation times of each cluster. An
example of an S-Cluster feature is the average TF
duration for words with the PTB POS tag DT. We
take into account only cluster labels that appear
at least once in the reading input of all the partici-
pants, yielding a total of 312 S-Clusters features in
the Fixed Text regime. In the Any Text regime we
obtain 156 S-Clusters features for MET and 165
S-Clusters features for TOEFL.

3.2 Token-Level Features

Transitions
Transitions is a new feature set which summarizes
the sequence of saccades between words in a sen-
tence. Given a sentence with n words, we con-
struct an n × n matrix T . A matrix entry ti,j
records the number of saccades whose launch site
falls within word i and landing site falls within
word j. With a total of 11,616 possible transitions
in the Fixed Text sentences, the resulting feature
set contains 9,077 features with a non-zero value
for at least one participant for MET, and 8,132
such features for TOEFL.

Words in Fixed Context (WFC)
This feature set was previously used in Berzak et
al. (2017) and consists of reading times for words
within fixed contexts. We extract FP and TF du-
rations for the 900 words in the Fixed Text sen-
tences, resulting in a total of 1,800 WFC features.

4 English Proficiency Scoring Based on
Eye Movements in Reading

We hypothesize that language proficiency influ-
ences the way that learners process a second lan-
guage, which in turn will be reflected in eye move-
ment patterns in reading. Specifically, we propose
to examine whether the more proficient is an ESL
learner, the more similar are their reading patterns
to those of native English speakers. We opera-
tionalize the notion of native-like reading in the
following manner. First, given a feature represen-
tation of choice and a dataset D comprising ESL
learners DL2 and native speakers DL1 we Z score
each feature in D using a Z scaler derived from

DL2. We then obtain a prototype feature vector of
native reading vL1 by averaging the feature vectors
of the native speakers.

vL1 =
1

|DL1|
∑

y∈DL1

vy (2)

Finally, we obtain an eyetracking based profi-
ciency score of an ESL learner by computing the
cosine similarity of their feature vector to the na-
tive reading prototype. Hereafter we refer to this
measure as EyeScore.

EyeScorey∈DL2
=

vy · vL1

‖vy‖‖vL1‖
(3)

Reading Speed Normalization To reduce bias
towards fast readers, the feature representations
used for Eyescore are normalized to be invariant to
the reading speed of the participant. Specifically,
for the S-Clusters and WFC feature sets we fol-
low the normalization procedure of Berzak et al.
(2017), where for a given participant, the reading
time of a wordwi according to a fixation metricM
is normalized by SM,C , the metric’s fixation time
per word in the linguistic context C:

SM,C =
1

|C|
∑

w∈C
Mw (4)

The linguistic context is defined as the surround-
ing sentence in the Fixed Text regime, and the en-
tire textual input in the Any Text regime. The nor-
malized fixation time is then obtained as:

Mnormwi =
Mwi

SM,C
(5)

For the WC-Coefficients features we take into ac-
count only the 15 model coefficients, and omit
the 5 intercept features which capture the reading
speed of the participant. Finally, we also normal-
ize the Transitions features matrix T by the to-
tal number of saccades in the sentence to obtain
Tnorm in which

∑
i,j tnormi,j = 1.

4.1 Correlation with MET and TOEFL
We evaluate the ability of EyeScore to capture
language proficiency by comparing it against our
two external proficiency tests, MET and TOEFL.
Table 1 presents the Pearson’s r correlation of
EyeScore with MET and TOEFL for the feature
sets described in section 3 using the MET train-
ing/development set and all the participants who
took TOEFL.
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MET TOEFL
Features Fixed Any Fixed Any
Reading Speed 0.28 0.27 0.15 0.13
WP-Coefficients 0.38 0.37 0.21 0.13
S-Clusters 0.45 0.48 0.50 0.45
Transitions 0.45 NA 0.44 NA
WFC 0.50 NA 0.54 NA

Table 1: Pearson’s r of EyeScore for different feature
sets with MET (training/development set, 88 partici-
pants) and TOEFL (all 53 participants). Fixed denotes
the Fixed Text regime in which all the participants read
the same sentences, and Any denotes the Any Text
regime where different readers read different sentences.

The strongest correlations, 0.5 for MET and
0.54 for TOEFL, are obtained in the Fixed Text
regime using the WFC features. This outcome
confirms the effectiveness reading time compar-
isons when the presented sentences are shared
across participants. To illustrate the quality of
this result, Figure 2 presents a comparison of
EyeScore and MET scores in the Fixed Text and
WFC features setup. We further note good per-
formance of the Transitions and S-Clusters fea-
tures in this regime across both proficiency tests.
The strongest performance in the Any Text regime
is obtained using the S-Clusters features, yielding
0.48 correlation with MET and 0.45 correlation
with TOEFL. These results are competitive with
the WFC feature set in the Fixed Text regime, sug-
gesting that reliable EyeScores can be obtained
even when no prior eyetracking data is available
for the sentences presented to the test taker.

In order to contextualize the correlations ob-
tained with the EyeScore approach, we first com-
pare our results to raw reading speed, an informa-
tive baseline which does not rely on eyetracking.
EyeScore substantially outperforms this baseline
for nearly all the feature sets on both MET and
TOEFL, clearly showing the benefit of eye move-
ment information for our task. Next, we consider
possible upper bounds for our correlations. While
obtaining such upper bounds is challenging, we
can use correlations between different traditional
standardized proficiency tests as informative refer-
ence points. First, as mentioned previously, in our
dataset the MET and reported TOEFL scores have
a Pearson’s r correlation of 0.74. We further note
an external study conducted by the testing com-
pany Education First (EF) which measured the
correlation of their flagship standardized English
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Figure 2: Comparison of MET (training/development
set, 88 participants) with EyeScore using Words in
Fixed Context (WFC) features in the Fixed Text
regime.

proficiency test EFSET-PLUS with TOEFL-iBT
(Luecht, 2015). Using 384 participants who took
both tests, the study found a Pearson’s r of 0.63 for
the reading comprehension and 0.69 for the listen-
ing comprehension sections of these tests. Despite
the radical difference of our testing methodology,
our strongest feature sets obtain rather competi-
tive results relative to these correlations, further
strengthening the evidence for the ability of our
approach to capture language proficiency.

5 Predicting Performance on MET and
TOEFL

In section 4 we introduced EyeScore as an inde-
pendent metric of language proficiency which is
based on eye movements during reading. Here, we
examine whether eye movements can also be used
to explicitly predict the performance of partici-
pants on specific external standardized language
proficiency tests. This task is of practical value
for development of predictive tools for standard-
ized proficiency tests, and constitutes an alterna-
tive framework for studying the relevance of eye
movement patterns in reading to language profi-
ciency.

To address this task, we use Ridge regression
to predict overall scores on an external proficiency
test from eye movement features in reading. The
model parameters θ are obtained by minimizing
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MET TOEFL
Fixed Any Fixed Any

Features r MAE r MAE r MAE r MAE
Reading Speed 0.27 4.58 0.24 4.62 0.09 7.92 0.06 7.96
WP-Coefficients 0.43 4.11 0.44 4.14 0.34 7.76 0.31 7.49
S-Clusters 0.56 3.87 0.49 4.11 0.55 7.45 0.50 7.76
Transitions 0.52 3.93 NA NA 0.38 7.11 NA NA
WFC 0.70 3.31 NA NA 0.50 6.68 NA NA

Table 2: Pearson’s r and Mean Absolute Error (MAE) for prediction of MET scores (test set, 57 participants) and
TOEFL scores (leave-one-out cross validation, all 53 participants) from eye movement patterns in reading. We
consider two baselines which do not use eyetracking information: (1) the average proficiency score in the training
set, which yields 4.82 MAE on MET and 8.29 MAE on TOEFL, and (2) the reading speed of the participant.

the following loss objective:
∑

i

(yi − θ · f(xi))2 + λ‖θ‖22 (6)

where yi is a participant’s test score, xi is their
eye movement record, and f(xi) are the extracted
eye movement features. To calibrate the model
with respect to native English speakers, we aug-
ment each training set DL2tr with the group of 37
native speakers DL1 whose proficiency scores are
assigned to the maximum grade of the respective
test (50 for MET and 60 for TOEFL)3. Based on
MET performance on the train/dev set, the features
used for predicting scores on both tests are not nor-
malized for speed4. As a preprocessing step, we
fit a Z scaler for each feature using the ESL par-
ticipants in the training set, and apply it to all the
participants in the training and test sets.

Results

We evaluate prediction accuracy using Pearson’s
r and Mean Absolute Error (MAE) from the true
proficiency test scores. The λ parameter for MET
is optimized for MAE on 10 fold cross validation
within the training/development set. For TOEFL,
which has a relatively small number of partici-
pants, we report results on leave-one-out cross val-
idation with λ set to 1.

Table 2 presents the results for both proficiency
tests. We consider two baselines; the first is as-
signing all test set participants with the average

3Our experiments on the training/development set indi-
cate that this training data augmentation step leads in most
cases to improved regression performance.

4We note that in line with the low correlation of reading
speed with TOEFL, speed normalized features tend to be bet-
ter predictors of TOEFL scores, obtaining r 0.59 and MAE
6.47 with WFC features in the Fixed Text regime, and r 0.58
and MAE 7.19 with S-Clusters in the Any Text regime.
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Figure 3: Comparison of MET scores (test set, 57 par-
ticipants) with predicted MET scores using Words in
Fixed Context (WFC) eye movement features in the
Fixed Text regime.

score of the training participants. This baseline
yields an MAE of 4.82 on MET and 8.29 on
TOEFL. The second baseline uses reading speed
as the sole feature for prediction. In all cases, our
eyetracking based features outperform the average
score and reading speed baselines.

The performance of the different feature sets is
in most cases consistent across the two proficiency
tests and is largely in line with the correlations of
EyeScore reported in Table 1. Similarly to the
EyeScore outcomes, the best performance in the
Fixed Text regime is obtained using the WFC fea-
ture set, with a Pearson’s r of 0.7 and MAE of
3.31 for MET. This result is highly competitive
with correlations between different standardized
English proficiency tests. Figure 3 depicts a com-
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parison between MET scores and our MET predic-
tions in this setup. On TOEFL, WFC features ob-
tain the strongest MAE of 6.68, while S-Clusters
have a higher r coefficient of 0.55.

In the Any Text regime, differently from Eye-
Score, we obtain comparable results for the S-
Clusters and WP-Coefficients feature sets. Over-
all, the improvements of both feature sets over the
baselines in the Any Text regime further support
the ability of type-level features to generalize the
task of language proficiency prediction to arbitrary
sentences.

6 Related Work

Our work lies on the intersection of language
proficiency assessment, second language acquisi-
tion (SLA), the psychology of reading and NLP.
Automated language proficiency assessment from
free-form linguistic performance has been stud-
ied mainly in language production (Dikli, 2006;
Williamson, 2009; Shermis and Burstein, 2013).
Over the past several decades, multiple essay and
speech scoring systems have been developed for
learner language using a wide range of linguis-
tically motivated feature sets (e.g. Lonsdale and
Strong-Krause, 2003; Landauer, 2003; Xi et al.,
2008; Yannakoudakis et al., 2011). Some of these
systems have been deployed in official language
proficiency tests, for example the e-rater essay
scoring system (Attali and Burstein, 2004) used in
TOEFL (Ramineni et al., 2012). While this line of
work focuses on assessment of language produc-
tion, here we introduce and address for the first
time automated language assessment during on-
line language comprehension.

In SLA, there has been considerable interest in
eyetracking, where studies have mostly focused
on controlled experiments examining processing
of specific linguistic phenomena such as syntactic
ambiguities, cognates and idioms (Dussias, 2010;
Roberts and Siyanova-Chanturia, 2013). A no-
table exception is (Cop et al., 2015) who used free-
form reading to study differences in fixation times
and saccade lengths between native and non-native
readers. Our work also adopts broad coverage
analysis of reading patterns, which we use to for-
mulate predictive models of language proficiency.

Our study draws on a large body of work in the
psychology of reading (see Rayner, 1998; Rayner
et al., 2012, for overview) which has suggested
that eye movement patterns during reading are sys-

tematically influenced by a broad range of lin-
guistic characteristics of the text, and reflect how
readers mentally engage with the text (Frazier and
Rayner, 1982; Rayner and Frazier, 1989; Reichle
et al., 1998; Engbert et al., 2005; Demberg and
Keller, 2008; Reichle et al., 2009; Levy et al.,
2009, among many others). Prior work on read-
ing has also demonstrated that gaze provides valu-
able information about various characteristics of
the reader and their cognitive state. For example,
Reichle et at. (2010) have shown that eye move-
ment patterns are categorically different in atten-
tive versus mindless reading. In Rello and Balles-
teros (2015) eye movements were used to distin-
guish between readers with and without dyslexia.
Berzak et al. (2017) collected the dataset used in
our work and used it to predict the first language of
non-native English readers from gaze. We build on
these studies to motivate our task and design fea-
ture representations which encode linguistic fac-
tors known to affect the human reading process.

Related work in NLP developed predictive
models of reading times in reading of free-form
text (e.g. Nilsson and Nivre, 2009; Hara et al.,
2012; Hahn and Keller, 2016). In a complemen-
tary vein, eyetracking signal has been used for
linguistic annotation tasks such as POS tagging
(Barrett and Søgaard, 2015a; Barrett et al., 2016)
and prediction of syntactic functions (Barrett and
Søgaard, 2015b). Both lines of investigation pro-
vide further evidence for the tight interaction be-
tween eye movements and linguistic properties of
the text, which we leverage in our work for infer-
ence about the linguistic knowledge of the reader.

7 Conclusion and Discussion

We present a novel approach for automated assess-
ment of language proficiency which relies on eye
movements during reading of free-form text. Our
EyeScore test captures the similarity of language
learners’ gaze patterns to those of native speak-
ers, and correlates well with the standardized tests
MET and TOEFL. A second variant of our ap-
proach accurately predicts participants’ scores on
these two tests. To the best of our knowledge, the
proposed framework is the first proof-of-concept
for a system which utilizes eyetracking to measure
linguistic ability.

In future work, we plan to extend the analysis
of the validity and consistency of our approach,
and further explore its applications for language
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proficiency evaluation. In particular, we will ex-
amine the impact of factors that can undermine
the validity of language proficiency tests, such as
test specific training, familiarity with the evalua-
tion system’s features (Powers et al., 2002), and
cheating via unauthorized prior access to test ma-
terials. Since participants are less likely to be
able to manipulate their eye movements in an in-
formed and systematic manner—readers are gen-
erally not even aware that their eye movements
are saccadic—and since our test can be performed
on arbitrary sentences, we expect it to be robust
to prior exposure to the test materials and test-
ing methodology. We will further study the con-
sistency of our scores for repeated tests by the
same participants. A preliminary split-half analy-
sis indicates that eyetracking based scores are ex-
pected to be highly consistent across tests. Fi-
nally, our approach can be combined with tradi-
tional proficiency testing methodologies, whereby
gaze will be recorded while the participant is tak-
ing a standardized language proficiency test. This
will enable developing novel approaches to lan-
guage proficiency assessment which will integrate
task based performance with real time monitoring
of cognitive and linguistic processing.
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Abstract

Speakers often have more than one way to ex-
press the same meaning. What general princi-
ples govern speaker choice in the face of op-
tionality when near semantically invariant al-
ternation exists? Studies have shown that op-
tional reduction in language is sensitive to con-
textual predictability, such that the more pre-
dictable a linguistic unit is, the more likely it
is to get reduced. Yet it is unclear to what ex-
tent these cases of speaker choice are driven
by audience design versus toward facilitating
production.

Here we argue that for a different option-
ality phenomenon, namely classifier choice
in Mandarin Chinese, Uniform Information
Density and at least one plausible variant of
availability-based production make opposite
predictions regarding the relationship between
the predictability of the upcoming material and
speaker choices. In a corpus analysis of Man-
darin Chinese, we show that the distribution of
speaker choices supports the availability-based
production account, and not Uniform Informa-
tion Density.

1 Introduction

The expressivity of natural language often gives
speakers multiple ways to convey the same mean-
ing. Meanwhile, linguistic communication takes
place in the face of environmental and cognitive
constraints. For instance, language users have lim-
ited memory and cognitive resources, the environ-
ment is noisy, and so forth. What general princi-
ples govern speaker choice in the face of alterna-
tions that are (nearly) semantically invariant? To
the extent that we are able to provide a general
answer to this question it will advance our funda-
mental knowledge of human language production.

Studies have shown that alternations are very
often sensitive to contextual predictability. For

well-studied cases of optional REDUCTION in lan-
guage, the following trend is widespread: the more
predictable a linguistic unit is, the more likely it is
to get reduced. Predictable words are phonetically
reduced (Jurafsky et al., 2001; Bell et al., 2009;
Seyfarth, 2014) and have shorter lexical forms (Pi-
antadosi et al., 2011), and optional function words
are more likely to be omitted when the phrase
they introduce is predictable (Jaeger, 2010). Yet
it is unclear to what extent speakers’ choices when
faced with an alternation are made due to audi-
ence design or to facilitate production. For exam-
ple, the above pattern of predictability sensitivity
in optional reduction phenomena is predicted by
both the Uniform Information Density (UID) hy-
pothesis (Levy and Jaeger, 2007), a theory which
that the speaker aims to convey information at a
relatively constant rate and which can be moti-
vated via considerations of optimality from the
comprehender’s perspective (e.g., Smith and Levy,
2013), and by the speaker-centric availability-
based production hypothesis (Bock, 1987; Ferreira
and Dell, 2000), which hypothesizes that the dom-
inant factor in determining speaker choice is that
the speaker uses whatever material is readily avail-
able when it comes time to convey a particular part
of a planned message.

Here we argue that for a different optionality
phenomenon, namely classifier choice in Man-
darin Chinese, UID and availability-based produc-
tion make opposite predictions regarding the re-
lationship between the predictability of upcoming
material and speaker choice. In a corpus analysis
of Mandarin Chinese, we show that the distribu-
tion of speaker choices supports the availability-
based production account, and not UID.
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2 Uniform Information Density and
Availability-based Production

In Sections 2 and 3, we explain why the UID and
availability-based production accounts make the
same predictions in many cases, but can be poten-
tially disentangled using Chinese classifier choice.
Here we exemplify predictions of these two ac-
counts in the case of optional function word omis-
sion.

For optional function word omission such as
that-omission ((1) and (2)), predictability effects
have been argued to be consistent with both
the speaker-oriented account of AVAILABILITY-
BASED PRODUCTION (Bock, 1987; Ferreira and
Dell, 2000) and the potentially audience-oriented
account of UNIFORM INFORMATION DENSITY

(Levy and Jaeger, 2007). On both accounts, but for
different reasons, the less predictable the clause in-
troduced by the functional word, the more likely
the speaker will be to produce the function word
that.

(1) The student (that) you tutored graduated.

(2) The woman thought (that) we were crazy.

The UID hypothesis claims that within bound-
aries defined by grammar, when multiple options
are available to encode a message, speakers pre-
fer the variant that distributes information density
most uniformly, thus lowering the chance of in-
formation loss or miscommunication (Levy and
Jaeger, 2007; Jaeger, 2010). In (1), if the func-
tion word that is omitted, the first word of the
relative clause you serves two purposes: signal-
ing the onset of the relative clause, and convey-
ing part of the contents of the relative clause itself.
These both contribute to the information content
of the first relative clause-internal word. If one or
both is high-surprisal, then the first relative clause-
internal word might be a peak in information den-
sity, as illustrated in Figure 1 (top left). If instead
the function word that is produced, that signals the
onset of the relative clause, and you only commu-
nicates part of the content of the relative clause
itself. This could help eliminate any sharp peak in
information density, as illustrated in Figure 1 (bot-
tom left). Thus, if the speaker’s goal is to transfer
information as smoothly as possible, the less pre-
dictable the upcoming clause, the more inclined
the speaker would be to produce the function word
that.

On the availability-based production hypothe-
sis, speaker choice is governed by the relationship
by the relative time-courses of (i) when a part of
a message needs to be expressed within an utter-
ance, and (ii) when the linguistic material to en-
code that part of the message becomes available
for production. If material that specifically en-
codes a part of the message is available when it
comes time to convey that part of the message,
it will be used—that is the PRINCIPLE OF IMME-
DIATE MENTION of Ferreira and Dell (2000). If,
on the other hand, that material is not yet avail-
able, then other available material consistent with
the grammatical context produced thus far and that
does not cut off the speaker’s future path to con-
veying the desired content will be used. In (1),
assuming the function word that is always avail-
able when the speaker plans to produce a relative
clause, the speaker will produce that when the up-
coming relative clause or the first part of its con-
tents are not yet available. If phrase structures
and phrase contents take longer to become avail-
able when they are lower-predictability—an as-
sumption consistent with the literatures on picture
naming (Oldfield and Wingfield, 1965) and word
naming (Balota and Chumbley, 1985)—then the
less predictable the relative clause, the lower the
probability that its first word, w1, will be avail-
able when the time comes to begin the relative
clause, as illustrated in Figure 2 (left). Under
these circumstances, the speaker would choose to
produce other available material, namely function
word that. If, in contrast, the upcoming relative
clause is predictable, then w1 will be more likely
to be available, and the speaker would be more
likely to omit the function word that and imme-
diately proceed with w1.

While these two accounts differ at many levels,
they make the same prediction for function word
omission in syntactic reduction such as (1) and (2).
It is difficult to disentangle these accounts empir-
ically.1 Below we will show that for a different
optionality phenomenon, namely classifier choice
in Mandarin, these accounts may make different
predictions.

1Prior work (Jaeger, 2010) acknowledged this entangle-
ment of the predictions of these accounts, and attempted to
tease the accounts apart via joint modeling using logistic re-
gression. The present study builds on these efforts by ex-
ploring a case involving a starker disentanglement of the ac-
counts’ predictions.
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Figure 1: Schematic illustrations of Uniform Information Density in the context of relative clause (left) and classi-
fier choice (right). The grey lines indicate a hypothetical channel capacity.

3 Classifiers in Mandarin Chinese

Languages in the world can be broadly grouped
into classifier languages and non-classifier lan-
guages. In non-classifier languages, such as En-
glish and other Indo-European languages, a nu-
meral modifies a noun directly: e.g., three tables,
two projects. In Mandarin Chinese and other clas-
sifier languages, a numeral classifier is obligatory
when a noun is to be preceded with a numeral
(and often obligatory with demonstratives): e.g.,
san zhang zhuozi “three CL.flat table”, liang xiang
gongcheng “two CL.item project”. Although it has
been hypothesized that numeral classifiers play a
functional role analogous to that of the singular–
plural distinction in other languages (Greenberg,
1972), it is not clear whether there is a meaningful
correlation between the presence of numeral clas-
sifiers and plurality among the languages of the
world (Dryer and Haspelmath, 2013).

In Mandarin, classifiers, together with their as-
sociated numeral or demonstrative, precede the
head noun of a noun phrase. There are about 100
individual numeral classifiers (Ma, 2015). While
different nouns are compatible with different SPE-
CIFIC classifiers, there is a GENERAL classifier
ge(个) that can be used with most nouns. In some
cases, the alternating options between using a gen-
eral or a specific classifier with the same noun are
almost semantically invariant. Table 1 shows ex-
amples of classifier options in fragments of natu-
rally occuring texts.

Yet these options have different effects on the

information densities of the following nouns. A
specific classifier is more likely to reduce the in-
formation density of the upcoming noun than a
general classifier because a specific classifier con-
strains the space of possible upcoming nouns more
tightly (Klein et al., 2012). Consider the following
pair of classifier examples (3) and (4).

(3) 我
wo
买了
mai-le

三
san
张
zhang

桌子
zhuozi

I bought three CL.flat table (“I bought three tables”)

(4) 我
wo
买了
mai-le

三
san
个
ge
桌子
zhuozi

I bought three CL.general table (“I bought three ta-
bles”)

As shown in Figure 1 (top right), while a general
classifier has some information (e.g., signaling
there will be a noun), it has relatively low infor-
mation density—it is the most frequent and gen-
erally the highest-probability classifier in many
contexts. In comparison, as illustrated in Figure
1 (bottom right), a specific classifier has higher
information density—specific classifiers are less
frequent than the general classifier and typically
lower-predictability—but, crucially, it constrains
the hypothesis space for the identity of the upcom-
ing noun, since the noun’s referent must meet cer-
tain semantic requirement that the classifier is as-
sociated with. The UID hypothesis predicts that
speakers choose a specific classifier more often
when the predictability of the noun would other-
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Figure 2: Schematic illustrations of availability-based production in the context of relative clause (left) and classi-
fier choice (right). X axis presents the progression of time. The dotted lines indicate onset times for relative clause
and classifier respectively.

wise be low.
Availability-based production, provided three

plausible assumptions, makes different predictions
than UID. The first assumption is that a speaker
must access a noun lemma in order to access its ap-
propriate specific classifier. The second assump-
tion is that unpredictable noun lemmas are harder
and/or slower to access (as described in Section 2,
this assumption is supported by findings from the
naming literature). The third assumption is that
the general classifier is always available, regard-
less of the identity of the upcoming noun, as it
is compatible with virtually every noun. Under
these assumptions, for unpredictable nouns, spe-
cific classifiers will less often be available to the
speaker when the time comes to initiate production
of classifier, as shown in Figure 2 (right). Since
noun lemmas need to be accessed before their as-
sociated specific classifiers, the less predictable
the noun, the less likely the noun lemma and hence
the associated specific classifier is to be available
by the classifier onset time t. The general classi-
fier, in contrast, is always accessible. Under these
assumptions, the availability-based production hy-
pothesis thus predicts that speakers choose a gen-
eral classifier more often when the following noun
is less predictable.

4 Data and Processing

To provide data for this study, we created a corpus
of naturally occurring classifier-noun pairs from
SogouCS, a collection of online news texts from

various channels of Sohu News (Sogou, 2008).
The deduplicated version of the corpus (see Sec-
tion 4.1 for deduplication details) has 11,548,866
sentences. To parse and annotate the data, we
built a pipeline to 1) clean and deduplicate the
data, 2) part-of-speech tag and syntactically parse
the clean text, and 3) extract and filter classifier-
noun pairs from the parsed text. We are aware
that a spoken corpus would be ideal to investigate
speaker choice, but nothing this big is available.
Instead we used SogouCS to approximate the lan-
guage use of native speakers.

4.1 Cleaning and deduplication

Since the data contain web pages, many snippets
are not meaningful content but automatically gen-
erated text such as legal notices. To use this cor-
pus as a reasonable approximation of language ex-
perience of speakers, we performed deduplication
on the data, following similar practice adopted by
other work dealing with web-based corpora (Buck
et al., 2014). After cleaning the text, we removed
repeated lines in the corpus.

4.2 Word segmentation, POS-tagging and
syntactic parsing

We used the Stanford CoreNLP toolkit for word
segmentation, part-of-speech tagging, and syn-
tactic parsing (Manning et al., 2014). We used
CoreNLP’s Shift-Reduce model for parsing (Zhu
et al., 2013). We also got dependency parsing re-
sults as part of the Stanford CoreNLP output.
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Noun 个 (ge, CL.general) 项 (xiang, CL.item) 张 (zhang, CL.flat)

公告 一口气发布 11个公告 连续发布三项公告 门口贴了一张公告

announ- a CL breath release 11 CL consecutively release three CL door paste a CL announcement

cement announcement announcement

“release 11 announcements at one “release three announcements in a” “there is an announcement on the door”

go” row”

账单 女儿拿着一个账单就过来了 在一张账单上解决所有收费问题

bill daughter carry a CL bill at once not co-occurring on a CL bill solve all charge problem

come

“daughter came with a bill at once” “solve all charge problems on a bill”

工程 跟圆明园有关的一个工程 抓好六项重点工程

project to Yuanmingyuan related de a CL grasp six CL key project not co-occurring

project

“a project related to Yuanmingyuan” “manage six key projects”

活动 昨天我参加了一个活动 广州市今天开展的一项活动

activity yesterday I attend a CL activity Guangzhou today hold de a CL not co-occurring

activity

“yesterday I attended an activity” “an activity held by Guangzhou today”

Table 1: Examples from development set of available classifier options that are semantically (near-)invariant

4.3 Extracting and filtering classifier-noun
pairs

From the parsed corpus, we extracted all obser-
vations where the head noun has a nummod re-
lation with a numeral and the numeral has a
mark:clf relation with a classifier. Figure 3 illus-
trates two such examples. We included classifiers
in the list of 105 individual classifiers identified
by Ma (2015) that are identified by the Stanford
CoreNLP toolkit. For the purpose of restricting
our data to cases of (nearly) semantically invariant
alternation, we excluded classifiers such as zhong
(“CL.kind”) that would introduce a clear truth-
conditional change in utterance meaning, com-
pared with the general classifier ge. We did fur-
ther filtering to get nouns that can be used with
both the general classifier and at least one specific
classifier. This left us 1,479,579 observations of
classifier-noun pairs.

To construct the development set, we randomly
sampled about 10% of the noun types (1,179)
and extracted all observations with of these noun
types. We manually checked and filtered applica-
ble classifiers for these noun types and we ended
up with 713 noun types for the development set.
For the test set, we also randomly sampled about
10% of the noun types (1,093) and extracted all
observations with these noun types. We did not
perform manual filtering of the test set. We reserve
the remaining 80% for future work.

三 张 桌子
san zhang zhuozi

three CL table

nummod

mark:clf

六 项 重点 工程
san xiang zhongdian gongcheng
six CL key project

nummod

mark:clf nmod

Figure 3: Classifier examples where the head noun has
a nummod relation with a numeral and the numeral has
a mark:clf relation with the classifier

5 Model estimation

We use SURPRISAL, the negative log probabil-
ity of the word in the context (Hale, 2001; Levy,
2008; Demberg and Keller, 2008; Frank and Bod,
2011; Smith and Levy, 2013), generated from a
language model to estimate noun predictability.
Since classifiers occur before their corresponding
nouns, to avoid circularity, we mapped all tar-
get classifiers to the same token, CL, in the seg-
mented text for language modeling, analogous to
the procedure used in (Levy and Jaeger, 2007) and
similar studies. We implemented 5gram modified
Kneser-Ney smoothed models with the SRI Lan-
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guage Modeling toolkit (Stolcke, 2002) and per-
formed ten-fold cross-validation to estimate noun
surprisal.

We used a mixed-effect logit model to inves-
tigate the relationship between noun predictabil-
ity and classifier choice. The dependent variable
was the binary outcome of whether a general or a
specific classifier was used. For each noun type,
we also identified its most frequently used spe-
cific classifier. We included two predictors in the
analysis: noun surprisal and noun log frequency.2

We included noun frequency as a control factor for
two reasons. First, noun frequency has shown ef-
fects on many aspects of speaker behavior. Sec-
ond, surprisal and frequency of a word are intrinsi-
cally correlated. Taken together, these two reasons
make noun frequency an important potential con-
found to be controlled for in investigating any po-
tential effect of noun surprisal on classifier choice.

We included noun and potential specific clas-
sifier as random factors, both with random inter-
cepts and random slopes for noun surprisal. This
random effect structure is maximal with regard
to testing effects of noun surprisal, which varies
within noun and within classifier (Barr et al.,
2013). We then applied the model to the test set.
The full formula in the style of R’s lme4 package
(Bates et al., 2014) is:

cl_choice˜noun_surprisal+log_noun_freq

+(1+noun_surprisal|noun)

+(1+noun_surprisal|potential_spec_cl)

We used Markov chain Monte Carlo (MCMC)
methods in the R package MCMCglmm (Hadfield
et al., 2010) for significance testing, an based our
p-values on the posterior distribution of regression
model parameters using an uninformative prior
and determining the largest possible symmetric
posterior confidence interval on one side of zero,
as is common for MCMC-based mixed model fit-
ting (Baayen et al., 2008).

6 Results

In both the development set and the test set, overall
we saw more observations with a specific classifier
than with a general classifier (55.4% vs. 44.6%
in the development set, 63.1% vs. 36.9% in the
test set). For the development set, we find that the
less predictable the noun, the less likely a specific

2We used base 2 here to be consistent with the base used
in noun surprisal.

classifier is to be used (β = −0.038, p < 0.001,
Figure 4). There was no effect of noun frequency
(β = 0.018, p = 0.51, Figure 5). For the test set,
the result of noun predictability replicates (β =
−0.059, p < 0.001, Figure 6).3 In the test set but
not in the development set, we also found an effect
of noun frequency (β = −0.11, p < 0.001, Fig-
ure 7): the more frequent the noun, the less likely
a specific classifier is to be used. Further analy-
sis suggests that this effect of noun frequency in
the test set is likely to be an artifact of incorrect
noun–classifier associations that would disappear
were we to filter the test set in the same way as we
filtered the development set.4 The consistent effect
of noun surprisal on classifier choice in both our
development and test sets supports the availability-
based production hypothesis, and is inconsistent
with the predictions of UID.

One potential concern regarding the above con-
clusion that noun predictability drives classifier
choice is that it might not fully take into account
effects of the frequencies of classifiers themselves
on availability. The availability-based production
hypothesis does not exclude the possibility that a
classifier’s accessibility is substantially dependent
on its frequency, and the general classifier is in-
deed the most frequently used classifier. However,
if specific classifier frequency were confounding
the apparent effect of noun surprisal that we see
in our analysis, there would have to be a correla-
tion in our dataset between specific classifier fre-
quency and noun surprisal. Our inclusion of a by-
specific-classifier random intercept largely rules
out the possibility that even a correlation that the
above-mentioned one could be driving our effect.
To be thorough, we tried a version of our regres-
sion analysis that also include a fixed effect for the
log frequency of potential specific classifier as a
control. We did not find any qualitative change to

3As can be seen in Figure 6, there is a bump at bin 27 in
the rate of using a specific classifier. We consider this likely
to be due to data sparsity: the number of observations is small
in the last two bins of noun surprisal (n = 27 and n = 3),
and there is no such bump in the development set.

4We found a marginal effect of noun frequency in our un-
filtered development set, where the more frequent the noun
was, the less likely it was used with a specific classifier.
We did further analysis with the dev set and found that
the“nouns” (some of them were misclassified as nouns from
the results of the automatic parsing) that were excluded tend
to have a higher frequency compared to the ones that were
included, and the excluded ones also had a lower rate of con-
curring with a specific classifier. This tendency suggests that
in the unfiltered test set, illegible nouns may contribute at
least partially to the noun frequency effect.
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Figure 4: Dev set: N-gram estimated noun surprisal
and the rate of using a specific classifier (as opposed
to the general classifier ge).

●
●

●

●

●

●

●

●

121,826 obs., 60 classifier types, 713 noun types

0.0

0.2

0.4

0.6

0.8

1.0

3 5 7 9 11 13 15 17
Binned Log Noun Frequency

R
at

e 
of

 U
si

ng
 a

 S
pe

ci
fic

 C
la

ss
ifi

er

0

50

100

150

200

3 5 7 9 11 13 15 17

C
ou

nt
 (

ty
pe

s)

Figure 5: Dev set: Noun frequency (log scale) and
the rate of using a specific classifier (as opposed to
the general classifier ge).
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and the rate of using a specific classifier.
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the rate of using a specific classifier.
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the results: the effect of noun surprisal on specific
classifier choice remains the same. We also note
that in this new analysis, we do not find a signif-
icant effect of specific classifier log frequency on
classifier choice (p = 0.629 for the dev set and
p = 0.7 for the test set). This additional analysis
suggests that it is unlikely that the effect of spe-
cific classifier frequency to be driving the effect of
noun surprisal.

Overall, we did not find evidence for the UID
hypothesis at the level of alternating options with
different information density, in our case, a spe-
cific classifier versus a general classifier. We
demonstrate that within the scope of near seman-
tically invariant alternation, classifier choice is
modulated by noun predictability with the ten-
dency to facilitate speaker production. Our results
lend support to an availability-based production
model. We did not find consistent evidence for
the effect of noun frequency on classifier choice.
The effect of noun frequency remains unclear and
we will need to test it with a larger sample of noun
types.

7 Conclusion

Though it has proven difficult to disentangle UID
and availability-based production through optional
word omission phenomena, we have demonstrated
here that the two accounts can potentially be
distinguished through at least one word alterna-
tion phenomenon. The UID hypothesis predicts
that predictable nouns favor the general classi-
fier whereas availability-based production predicts
that predictable nouns favor a specific classifier.
Our empirical results favor the availability-based
production account.

To the best of our knowledge, this is the first
study that demonstrates contextual predictability
is correlated with classifier choice. This study
provides a starting point to understand the cog-
nitive mechanisms governing speaker choices as
manifested in various language optionalities. Ulti-
mately we plan to complement our corpus analysis
with real-time language production experiments
to more throughly test hypotheses about speaker
choice.
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Abstract

Automatic identification of spurious instances
(those with potentially wrong labels in
datasets) can improve the quality of exist-
ing language resources, especially when an-
notations are obtained through crowdsourc-
ing or automatically generated based on coded
rankings. In this paper, we present an ef-
fective approach inspired by queueing the-
ory and psychology of learning to automati-
cally identify spurious instances in datasets.
Our approach discriminates instances based
on their “difficulty to learn,” determined by a
downstream learner. Our method can be ap-
plied to any dataset assuming the existence
of a neural network model for the target task
of the dataset. Our best approach outper-
forms competing state-of-the-art baselines and
has a MAP of 0.85 and 0.22 in identifying
spurious instances in synthetic and carefully-
crowdsourced real-world datasets respectively.

1 Introduction

The importance of error-free language resources
cannot be overstated as errors can inversely af-
fect interpretations of the data, models developed
from the data, and decisions made based on the
data. Although the quality of language resources
can be improved through good annotation guide-
lines, test questions, etc., annotation noise still
exists (Gupta et al., 2012; Lasecki et al., 2013).
For example, Figure 1 shows sample spurious in-
stances (those with potentially wrong labels) in
CIFAR-10 (Krizhevsky, 2009) which is a bench-
mark dataset for object classification. Spurious
instances can mislead systems, and, if available
in test data, lead to unrealistic comparison among
competing systems.

Previous works either directly identify noise
in datasets (Hovy et al., 2013; Dickinson and
Meurers, 2003; Eskin, 2000; Loftsson, 2009),

(a) Truck (b) Airplane (c) Cat

Figure 1: Spurious instances in CIFAR-10. (a) not a
truck, (b) missing annotation for car as another object
category, (c) incomplete image of a cat.

or develop models that are more robust against
noise (Guan et al., 2017; Natarajan et al., 2013;
Zhu et al., 2003; Zhu and Wu, 2004). Furthermore,
recent works on adversarial perturbation have
tackled this problem (Goodfellow et al., 2015;
Feinman et al., 2017). However, most previous
approaches require either annotations generated
by each individual annotator (Guan et al., 2017),
or both task-specific and instance-type (genuine
or adversarial) labels for training (Hendrik Met-
zen et al., 2017; Zheng et al., 2016), or noise-free
data (Xiao et al., 2015). Such information is often
not available in the final release of most datasets.

Current approaches utilize prediction probabil-
ity/loss of instances to tackle the above challenges
in identifying spurious instances. This is because
prediction probability/loss of spurious instances
tend to be lower than that of genuine instances (He
and Garcia, 2009). In particular, the Bayesian
Uncertainty model (Feinman et al., 2017) defines
spurious instances as those that have greater un-
certainty (variance) in their stochastic predictions,
and the Variational Inference model (Rehbein and
Ruppenhofer, 2017; Hovy et al., 2013) expects
greater posterior entropy in predictions made for
spurious instances.

In this paper, our hypothesis is that spurious
instances are frequently found to be difficult to
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learn during training process. This difficulty in
learning stems from the intrinsic discrepancy be-
tween spurious and the cohort of genuine instances
which frequently makes a learner less confident in
predicting the wrong labels of spurious instances.
Based on this hypothesis, we present two frame-
works which are inspired by findings in queue-
ing theory and psychology, namely Leitner queue
network (Leitner, 1974) and Curriculum Learn-
ing (Bengio et al., 2009). Our frameworks can be
considered as schedulers that schedule instances to
train a downstream learner (e.g. a neural network)
with respect to “easiness”/“difficulty” of instances
- determined by the extent to which the learner can
correctly label (e.g. classify) instances during the
training process. The two frameworks, however,
differ in their views on the theory of learning as
we describe below:

Curriculum learning is inspired by the learning
principle that humans can learn more effectively
when training starts with easier concepts and
gradually proceeds with more difficult ones (Ben-
gio et al., 2009). On the other hand, Leitner system
is inspired by spaced repetition (Dempster, 1989;
Cepeda et al., 2006), the learning principle that ef-
fective and efficient learning can be achieved by
working more on difficult concepts and less on
easier ones. Both frameworks are effective, con-
ceptually simple, and easy to implement.

The contributions of this paper are as follows:
(a) we develop a cognitively-motivated and effec-
tive algorithm for identifying spurious instances in
datasets, (b) our approach can be applied to any
dataset without modification if there exists a neu-
ral network architecture for the target task of the
dataset, and (c) we release a tool that can be easily
used to generate a ranked list of spurious instances
in datasets.1 Our tool requires a dataset and its
corresponding network architecture to generate a
ranked list of spurious instances in the dataset.

Our best approach (Leitner model) has a mean
average precision (MAP) of 0.85 and 0.22 in iden-
tifying spurious instances on real-world and syn-
thetic datasets and outperforms competing state-
of-the-art baselines.

2 Method

We assume that our learner is a neural network
which trains for k iterations until convergence.
Furthermore, we assume that spurious and gen-

1https://scholar.harvard.edu/hadi/spot

Algorithm 1. Curriculum Spotter
Input: H : training data, V : validation data, k : num-
ber of iterations
Output: Ranked list of spurious instances

0 batch = H
1 S0[hj ] = 0 for hj ∈ H
2 For epoch = 1 to k:
8 model = train(batch,V)
3 loss = Loss(model,H)
4 λ = compute lambda(model, loss,H)
5 easy batch = sample easy(λ, loss,H)
6 hard batch = H− easy batch
7 batch = easy batch+ top( epoch

k
, hard batch)

9 Sepoch = update stat(Sepoch−1, hard batch,
loss)

10 End for
11 return sort(Sk,H, loss)

Figure 2: Curriculum Spotter. Loss(.) computes
loss of a network with respect to given instances,
compute lambda(.) computes the average loss
of current model for correctly classified instances,
sample easy(.) creates list of easy instances using
current loss values, top(.) returns epoch/k fraction
of easiest hard instances, update stat(.) scores in-
stances according to Eq. (1), and sort(.) ranks in-
stances based on the resulting scores S updated by
Eq. (2).

uine instances are mixed at training time and the
network is only provided with task-specific but not
genuine/spurious labels for the instances.

2.1 Curriculum Learning

Bengio et al. (2009) and Kumar et al. (2010) de-
veloped training paradigms which are inspired by
the learning principle that humans can learn more
effectively when training starts with easier con-
cepts and gradually proceeds with more difficult
ones. Since easiness of information is not read-
ily available in most datasets, previous approaches
used heuristic techniques (Spitkovsky et al., 2010;
Basu and Christensen, 2013) or optimization algo-
rithms (Jiang et al., 2015, 2014) to quantify easi-
ness for instances. These approaches consider an
instance as easy if its prediction loss is smaller
than a threshold (λ). Given a neural network as
the learner, we adopt curriculum learning to iden-
tify spurious instances as follows (see Figure 2):

At each iteration i, we divide all instances into
easy and hard batches using the iteration-specific
threshold λi and the loss values of instances at iter-
ation i, obtained from the current partially-trained
network. All instances with a loss smaller than
λi are considered as easy and the rest are consid-
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ered as hard. All easy instances in conjunction
with δi ∈ [0, 1] fraction of easiest hard instances
(those with smallest loss values greater than λi)
are used for training at iteration i. We set each λi
to the average2 loss of training instances that are
correctly classified by the current partially-trained
network. Furthermore, at each iteration i > 1, we
set δi = i/k where k is the total number of itera-
tions. In this way, difficult instances are gradually
introduced to the network at every new iteration.

The update stat(.) function in Figure 2
scores instances based on their frequency of oc-
currence in the hard batch. In particular, for each
instance hi:

Se(hi) = Se−1(hi)+ (1)

1hard batche(hi)×
( 1

|hard batche| + losse(hi)
)
,

where Se(hi) is the score of hi at iteration e,
1Y (x) is an indicator function which is 1 when
x ∈ Y and otherwise 0, hard batche indicates the
set of hard instances at iteration e, and losse(hi)
is the loss of the network for hi at iteration e. The
above function assigns higher scores to instances
that are frequently considered as hard instances
by the curriculum learning framework (such in-
stances are ranked higher in the final ranked list of
spurious instances). It also assigns a final score of
Sk(hi) = 0 to instances that are treated as easy in-
stances throughout the training process, i.e. those
that have a loss smaller than the iteration-specific
threshold λi at each iteration i and, therefore, are
always placed in the easy batch. To break the tie
for these instances in the final ranking, we resort
to their final loss values as follows:

Sk(hi) = lossk(hi), if Sk(hi) = 0. (2)

2.2 Leitner System

The Leitner System is inspired by the broad evi-
dence in psychology that shows human ability to
retain information improves with repeated expo-
sure and exponentially decays with delay since last
exposure (Cepeda et al., 2006). Spaced repetition
forms the building block of many educational de-
vices, such as flashcards, in which small pieces of
information are repeatedly presented to a learner
on a schedule determined by a spaced repetition

2We also considered maximum and median loss, but aver-
age loss led to greater training gain in terms of effectiveness.

Algorithm 2. Leitner Spotter
Input: H : training data, V : validation data, k : num-
ber of iterations, n : number of queues
Output: Ranked list of spurious instances

0 Q = [q0, q1, . . . , qn−1]
1 q0 = [H], qi = [] for i ∈ [1, n− 1]
2 S0[hj ] = 0 for hj ∈ H
3 For epoch = 1 to k:
4 batch = []
5 For i = 0 to n− 1:
6 If epoch%2i == 0:
7 batch = batch+ qi
8 End For
9 promos, demos, loss = train(batch,V)
10 update queue(Q, promos, demos)
11 Sepoch = update stat(Sepoch−1, Q, loss)
12 End for
13 return sort(Sk,H, loss)
q0 epochs = {1, 2, 3, 4, 5, . . . }
q1 epochs = {2, 4, 6, 8, 10, . . . }
q2 epochs = {4, 8, 12, 16, 20, . . . }
. . .

Figure 3: Leitner Spotter. The train(.) func-
tion trains the network using instances in the cur-
rent batch, update queue(.) promotes the correctly
classified instances–promos–to their next queues and
demotes the wrongly classified ones–demos–to q0,
update stat(.) scores instances according to Eq. (3),
and sort(.) ranks instances based on resulting scores
S updated by Eq. (4).

algorithm. Such algorithms show that human
learners can learn efficiently and effectively by in-
creasing intervals of time between subsequent re-
views of previously learned materials (Dempster,
1989; Novikoff et al., 2012). We adopt the Leitner
system to identify spurious instances as follows:

Suppose we have n queues {q0, q1, . . . , qn−1}.
The Leitner system initially places all instances in
the first queue, q0. As Figure 3 shows, the system
trains with instances of qi at every 2i iterations.
At each iteration, only instances in the selected
queues will be used for training the network. Dur-
ing training, if an instance from qi is correctly clas-
sified by the network, the instance will be “pro-
moted” to qi+1, otherwise it will be “demoted”
to the first queue, q0. Therefore, as the network
trains through time, higher queues will accumu-
late easier instances which the network is most ac-
curate about, while lower queues carry either hard
or potentially spurious instances. This is because
of the intrinsic discrepancy between spurious in-
stances and the cohort of genuine instances which
makes the network less confident in predicting the
wrong labels of spurious instances. Figure 3 (bot-
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tom) provides examples of queues and their corre-
sponding processing epochs.

The update stat(.) function in Figure 3
scores instances based on their occurrence in q0.
In particular, for each instance hi:

Se(hi) = Se−1(hi)+1qe0(hi)×
( 1

|qe0|
+losse(hi)

)
,

(3)
where |qe0| indicates the number of instance in q0
at iteration e. The above function assigns higher
scores to instances that frequently occur in q0. It
also assigns a final score of Sk(hi) = 0 (at the
last iteration) to instances that have never been de-
moted to q0. To break the tie for such instances,
we use their final loss value as follows:

Sk(hi) = lossk(hi), if Sk(hi) = 0. (4)

3 Experiments

3.1 Evaluation Metrics

We employ a TREC-like evaluation setting to
compare models against each other. For this, we
create a pool of K most spurious instances iden-
tified by different models. If needed, e.g. in case
of real-world datasets, we manually label all in-
stances in the pool and come to agreement about
their labels. Then, we compare the resulting labels
with the original labels in the dataset to determine
spurious/genuine instances. We compare mod-
els based on the standard TREC evaluation mea-
sures, namely mean average precision (MAP), pre-
cision after r instances are retrieved (P@r), and,
only for synthetic data, precision after all spuri-
ous instances are retrieved (Rprec). We use the
trec-eval toolkit to compute performance of
different models.3

3.2 Datasets

We develop synthetic and real-world datasets for
our experiments. Since, in contrast to real-world
datasets, (most4) synthetic datasets do not con-
tain any noisy instances, we can conduct large-
scale evaluation by injecting spurious instances
into such datasets. Table 1 shows detail informa-
tion about our datasets.

3http://trec.nist.gov/trec_eval/
4Some synthetic datasets may contain noise, see sam-

ple inconsistencies that our model identified in the bAbi
dataset (Weston et al., 2016) in Table 3.

Dataset Train/Val SpRatio Input Output
Synthetic Dataset

Addition 10K/2K α ∈ (0, 0.5] (x,y ≥ 0) x+ y

Real-world Datasets
Twitter 10K/1K 0.30 brand tweet pos/neg
Reddit 4K/400 0.23 cancer post rel/irel

Table 1: Dataset Information. “SpRatio” shows the
fraction of spurious instances in the TREC pool; size of
the pool for Addition is 10K instances with no limit on
the top K retrieved instances; the corresponding value
for Twitter and Reddit datasets are 198 and 152 posts
respectively for top K = 50.

3.2.1 Synthetic Dataset
The Addition dataset, initially developed
by Zaremba and Sutskever (2014), is a syn-
thetic dataset in which an input instance is a pair
of non-negative integers smaller than 10l and
the corresponding output is the arithmetic sum
of the input; we set l = 4 in our experiments.
Since this dataset contains only genuine instances,
we create noisy datasets by injecting α × N
spurious instances into (1 − α) × N genuine
instances, where N = 10K is the total number
of training instances and α ≤ 0.5 indicates the
noise level in the dataset. We create spurious
instances as follows: given three random numbers
xi, xj , xk ∈ [0, 10l) such that xj 6= xk, the wrong
sum (output) for the pair (xi, xj) is computed as:

max(0, xi + (−1)o × xk),

where o is a random variable that takes values
from O = {1, 2} with equal probability.

3.2.2 Real-world Datasets
We crowdsource annotations for two real-world
datasets, namely Twitter and Reddit posts (see Ta-
ble 1). For quality control, we carefully develop
annotation schemas as well as high quality test
questions (see below) to minimize the chances of
spurious labels in the resulting annotations.

The Twitter dataset contains tweets about a
telecommunication brand. Tweets contain brand
name or its products and services. Annotators
are instructed to label tweets as positive/negative
if they describe positive/negative sentiment about
the target brand. We use 500 labeled instances for
annotation quality assurance and ignore data gen-
erated by annotators who have less than 80% ac-
curacy on these instances. The resulting Fleiss’
kappa (Fleiss, 1971) is κ = 0.66 on our Twitter
dataset which indicates substantial agreement.
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The Reddit dataset includes posts about colon,
breast, or brain cancer. These posts contain
phrases like colon cancer, breast cancer, or brain
cancer. Annotators are instructed to label a post
as “relevant” if it describes a patient’s experience
(including sign and symptoms, treatments, etc.,)
with respect to the cancer. In contrast, “irrele-
vant” posts are defined as generic texts (such as
scientific papers, news, etc.,) that discuss cancer
in general without describing a real patient expe-
rience. We use 300 labeled instances for annota-
tion quality assurance and ignore annotations gen-
erated by users who have less than 80% accuracy
on these instances. The resulting Fleiss’ kappa is
κ = 0.48 for the Reddit dataset which indicates
moderate agreement.

3.3 Settings

For the synthetic Addition dataset, we set the size
of the TREC pool to K = 10, 000 (size of training
data) which indicates there is no limitation on the
number of spurious instances that a model can re-
trieve; note that we have a spurious/genuine label
for each instance in the Addition dataset and there-
fore do not need to label the resulting TREC pool
manually. Furthermore, we consider the LSTM
network developed by Sutskever et al. (2014) as
the downstream learner.5 Without noise in data,
this network obtains a high accuracy of 99.7% on
the Addition task.

For the real-world datasets, we allow each
model to submits its top 50 most spurious in-
stances to the TREC pool (we have five models in-
cluding our baselines). As mentioned before, we
manually label these instances to determine their
spurious/genuine labels. This leads to TREC pools
of size 198 and 152 posts (with 59 and 35 spuri-
ous instances) for the Twitter and Reddit datasets
respectively.

We use the MLP network fastText (Joulin
et al., 2017) as the downstream learner - for more
effective prediction, we add a Dense layer of size
512 before the last layer of fastText. This net-
work obtains accuracy of 74.6% and 70.2% on
Twitter and Reddit datasets respectively.

Finally, for the Leitner system, we experiment
with different queue lengths, n = {3, 5, 7}, and
set n = 5 in the experiments as this value leads to
slightly better performance in our experiments.

5http://github.com/fchollet/keras/
blob/master/examples/addition_rnn.py

3.4 Baselines
We consider the following baselines; each baseline
takes a dataset and a model as input and generates
a ranked list of spurious instances in the dataset:
• Prediction Probability (PP): Since predic-

tion loss of spurious instances tend to be higher
than that of genuine ones (He and Garcia, 2009;
Hendrycks and Gimpel, 2016), this baseline ranks
instances in descending order of their prediction
loss after networks are trained through standard
(rote) training.
• Variational inference (VI) (Hovy et al.,

2013; Rehbein and Ruppenhofer, 2017): This
model approximates posterior entropy from sev-
eral predictions made for each individual instance
(see below).6

• Bayesian Uncertainty (BU) (Feinman et al.,
2017): This model ranks instances with respect to
the uncertainty (variance) in their stochastic pre-
dictions.7

BU estimates an uncertainty score for each indi-
vidual instance by generating T = 50 predictions
for the instance from a distribution of network
configurations. The prediction disagreement tends
to be common among spurious instances (high un-
certainty) but rare among genuine instances (low
uncertainty). Uncertainty of instance x with pre-
dictions {y1, . . . ,yT } is computed as follows:

1

T

T∑

i=1

y>i yi −
( 1
T

T∑

i=1

yi

)>( 1
T

T∑

i=1

yi

)
.

Variational inference (VI) (Rehbein and Rup-
penhofer, 2017; Hovy et al., 2013) detects spu-
rious instances by approximating the posterior
p(y|x) with a simpler distribution q(y) (called
variational approximation to the posterior) which
models the prediction for each instance. The
model jointly optimizes the two distributions
through EM: in the E-step, q is updated to mini-
mize the divergence between the two distributions,
D(q||p); in the M-step, q is kept fixed while p is
adjusted. The two steps are repeated until conver-
gence. Instances are then ranked based on their
posterior entropies. Similar to BU, we generate
T = 50 predictions for each instance.

For both BU and VI baselines, we apply a
dropout rate of 0.5 after the first and last hidden

6http://isi.edu/publications/
licensed-sw/mace/

7http://github.com/rfeinman/
detecting-adversarial-samples
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layers of our downstream networks to generate
predictions. See (Gal and Ghahramani, 2016) for
the ability of dropout neural networks in represent-
ing model uncertainty.

3.5 Experimental Results

The overall mean average precisions (MAPs)
of different models on synthetic and real-world
datasets are reported in Table 2. For the synthetic
dataset (Addition), we report average MAP across
all noise levels, and for real-world datasets (Twit-
ter and Reddit), we report average MAP at their
corresponding noise levels obtained from corre-
sponding TREC pools. We use t-test for signifi-
cance testing and asterisk mark (*) to indicate sig-
nificant difference at ρ = 0.05 between top two
competing systems.

The results show that Leitner (Lit) and Bayesian
uncertainty (BU) models considerably outperform
prediction probability (PP) and curriculum learn-
ing (CL) on both synthetic and real-world datasets.
In case of real-world datasets, we didn’t find sig-
nificant difference between top two models per-
haps because of the small size of corresponding
TREC pools (198 Twitter posts and 152 Reddit
posts, see Table 1). Overall, BU and Lit show aver-
age MAP of 0.81, and 0.85 on the synthetic dataset
and 0.15, 0.22 on real-world datasets respectively.
The higher performance of Lit indicates that spu-
rious instances often appear in q0. The lower per-
formance of CL, however, can be attributed to
its training strategy which may label spurious in-
stances as easy instances if their loss values are
smaller than the loss threshold (section 2.1). The
large difference between the performances of Lit
and CL (two methods based on repeated scoring
across training epochs) shows that the way that
repetition is utilized by different methods largely
affects their final performance in spotting spuri-
ous instances. In addition, VI shows lower perfor-
mance than BU and Lit on synthetic data, but com-
parable performance to BU on real-world datasets.

Furthermore, the results show that the perfor-
mance of all models are considerably lower on
real-world datasets than the synthetic dataset. This
could be attributed to the more complex nature
of our real-world datasets which leads to weaker
generalizability of downstream learners on these
datasets (see next section for discussion on train-
ing performance). This can in turn inversely affect
the performance of different spotters, e.g. by en-

Synthetic Real-world
noise = [0.1, 0.5] noise = {0.28, 0.35}

PP 0.719 0.100
CL 0.718 0.067
VI 0.757 0.142
BU 0.811 0.148
Lit 0.851∗ 0.225

Table 2: Average overall MAP performance across
datasets and noise levels.

couraging most instances to be considered as hard
and thus placed in lower queues of Lit or in the
hard batch of CL, or by increasing the prediction
uncertainty and entropy in case of BU and VI re-
spectively. In addition, as we mentioned before,
we carefully setup the annotation task to minimize
the chances of spurious labels in the resulting an-
notations. Therefore, we expect a considerably
smaller fraction of spurious instances in our real-
world datasets.

Figures 4(a) and 4(d) report MAP and precision
after all spurious instances have been retrieved
(Rprec) on Addition at different noise levels re-
spectively; note that α = 0.5 means equal num-
ber of spurious and genuine instances in training
data (here, we do not report the performance of
CL due to its lower performance and for better pre-
sentation). First, the results show that Lit and BU
considerably outperform PP and VI. Furthermore,
BU shows considerably high performance at lower
noise levels, α ≤ 0.2, while Lit considerably out-
performs BU at greater noise levels, α > 0.2.
The lower performance of BU at higher noise lev-
els might be because of the poor generalizability
of LSTM in the context of greater noise which
may increase the variance in the prediction prob-
abilities of most instances (see section 3.6 for our
note on training performance). In terms of aver-
age Rprec, the overall performance of PP, CL, VI,
BU, and Lit models is 0.62, 0.57, 0.65, 0.70, and
0.74 respectively on the Addition dataset across
all noise levels (see the corresponding values for
MAP in Table 2). The lower Rprec values than
MAP indicate that some spurious instances are
ranked very low by models. These are perhaps the
most difficult spurious instances to identify.

For the real-world datasets, we only report MAP
and P@r (precision at rank r) as spurious/genuine
labels are only available for those instances that
make it to the TREC pool but not for all instances.
The results on Reddit, Figures 4(b) and 4(e) re-
spectively, show that Lit outperforms other mod-
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Figure 4: Models performance across datasets. MAP indicates mean average precision, Rprec indicates precision
after all spurious instances are retrieved, and P@r indicates precision after r instances are retrieved. In (a) and (b)
performance values are reported at different noise levels α ∈ (0, 0.5].

els, but VI and BU show comparable MAP (in
contrast to their performance on Addition). Fur-
thermore, Figure 4(e) shows that Lit generates a
more accurate ranked list of spurious instances and
consistently outperforms other models at almost
all ranks. In particular, it maintains a MAP of
around 60% at rank 20, while other models have
consistently lower MAP than 50% at all ranks.

The results on the Twitter dataset, Fig-
ures 4(c) and 4(f), show that Lit outperforms other
models. However, interestingly, PP outperforms
BU in terms of both MAP and P@r across almost
all ranks. This result could be attributed to the sub-
stantial annotation agreement on Twitter dataset
(Fleiss’ κ = 0.66 ) which could make network
predictions/loss values more representative of gold
labels. Figure 4(f) also shows that Lit is the most
precise model in identifying spurious instances.
Note that P@5 is an important metric in search
applications and as Figures 4(e) and 4(f) show, at
rank 5, Lit is 2-3 times more precise than the best-
performing baseline on our real-world datasets.

Given any dataset and its corresponding neural
network, our Leitner model simultaneously trains
the network and generates a ranked list of spuri-
ous instances in the dataset. For this purpose, the
model tracks loss values and occurrences of in-
stances in the lower Leitner queue during training.

3.6 Notes on Training Performance

Figure 5(a) shows the accuracy of the LSTM net-
work (Sutskever et al., 2014) trained with differ-
ent training regimes on the validation data of Ad-
dition with different noise levels; note that Rote
represents standard training where at each itera-
tion all instances are used to train the network. As
the results show, at lower noise levels, the training
performance (i.e. the generalizability/accuracy of
the LSTM network) is generally high and compa-
rable across different training regimes, e.g. close
to 100% at α = 0. However, Lit leads to a slightly
weaker training performance than CL and Rote as
the noise level increases. This is because Lit learns
from spurious instances more frequently than gen-
uine ones. This may decrease the training perfor-
mance of Lit, especially with greater amount of
noise in data. However, this training strategy in-
creases the spotting performance of Lit as spurious
instances seem to occur in lower queues of Leitner
more frequently, see Figure 4.

In addition, the accuracy of fastText (Joulin
et al., 2017) is reported in Figure 5(b). The re-
sults show that different training regimes lead to
comparable performance on both datasets (accu-
racy of around 75% and 70% on Twitter and Red-
dit respectively). The relatively lower training per-
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Figure 5: Accuracy of LSTM/fastText trained with different schedulers. Rote: standard training.
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Figure 6: Behavior of prediction loss across training epochs. (a) S: spurious, G: genuine; L: low, H: high.

formance on these datasets can contribute to the
weaker performance of spotters on these datasets.

3.7 Discussion
We first report insights on why prediction loss
alone is not enough to identify spurious instances.
For this analysis, we track the loss of spurious and
genuine instances at each training iteration.8 Fig-
ure 6(a) shows the number of spurious/genuine in-
stances with low/high loss at each epoch; where,
we use the average loss of correctly classified
training instances at each epoch as a pivot value
to determine the low and high loss values for that
epoch. Initially, almost all spurious and genuine
instances have high loss values (see SH and GH
in Figure 6(a)). However, the sheer imbalance
of genuine instances relative to spurious instances
means that there will still be a relatively large
number of genuine instances with large loss - these
are simply difficult instances. Furthermore, the
number of spurious instances with lower loss val-
ues (SL) slowly increases as the network gradu-
ally learns the wrong labels of some spurious in-
stances; this, in turn, decreases the expected loss

8Here we use Addition with N = 10K training instances
and noise level of α = 0.2.

of such instances. Since PP merely ranks instances
based on loss values, the above two factors may
cause some spurious instances to be ranked lower
than genuine ones by PP; see Figure 6(b) for MAP
of PP in detecting spurious instances at every it-
eration. Using queue information from the Leit-
ner system adds information that loss alone does
not; we suspect that the learner can find principled
solutions that trade off losses between one diffi-
cult genuine instance and another (causing them
to bounce between q0 and higher queues) with-
out harming total loss, but that the more random
nature of spurious instances means that they are
consistently misclassified, staying in q0. Verifying
this hypothesis will be the subject of future work.

For our second analysis, we manually inspect
highly ranked instances in q0 of Lit. We use the
synthetic dataset bAbi (Weston et al., 2016) which
is a systematically generated QA dataset for which
the task is to generate an answer given a ques-
tion and its corresponding story. As the learner,
we use an effective LSTM network specifically
developed for this task.9 Table 3 shows sample
instances from bAbi which are highly ranked by

9https://github.com/fchollet/keras/
blob/master/examples/babi_rnn.py
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Story: Mary traveled to the garden. Daniel went to
the garden. Mary journeyed to the kitchen. Mary went
back to the hallway. Daniel traveled to the office.
Daniel moved to the garden. Sandra went back to the
kitchen. John traveled to the bathroom.
Question: Where is Mary?
Answer: hallway
Story: John went to the office. Daniel journeyed to
the office. Sandra picked up the football there. San-
dra went to the bedroom. Sandra left the football there.
Sandra went back to the kitchen. Sandra traveled to
the hallway. Sandra moved to the garden.
Question: Where is the football?
Answer: bedroom

Table 3: Sample inconsistencies in bAbi dataset.

Lit. We observe inconsistencies in the given sto-
ries. In the first case, the story contains the sen-
tence “Mary went back to the hallway,” while the
previous sentences indicate that Mary was in the
“garden/kitchen” but not “hallway” before. In the
second case, the sentence “Sandra picked up the
football there” is inconsistent with story because
the word “there” doesn’t refer to any specific loca-
tion. We conjecture that these inconsistencies can
mislead the learner or at least make the learning
task more complex. Our model can be used to ex-
plore language resources for such inconsistencies.

4 Related Work

There is broad evidence in psychology that shows
human ability to retain information improves with
repeated exposure and exponentially decays with
delay since last exposure. Ebbinghaus (1913,
2013), and recently Murre and Dros (2015), stud-
ied the hypothesis of the exponential nature of
forgetting in humans. Three major indicators
were identified that affect memory retention in hu-
mans: delay since last review of learning materi-
als and strength of human memory (Ebbinghaus,
1913; Dempster, 1989; Wixted, 1990; Cepeda
et al., 2006; Novikoff et al., 2012), and, more
recently, difficulty of learning materials (Reddy
et al., 2016).

The above findings show that human learners
can learn efficiently and effectively by increasing
intervals of time between subsequent reviews of
previously learned materials (spaced repetition).
In (Amiri et al., 2017), we built on these find-
ings to develop efficient and effective training
paradigms for neural networks. Previous research
also investigated the development of cognitively-
motivated training paradigms named curriculum
learning for artificial neural networks (Bengio

et al., 2009; Kumar et al., 2010). The difference
between the above models is in their views to
learning: curriculum learning is inspired by the
learning principle that training starts with easier
concepts and gradually proceeds with more diffi-
cult ones (Bengio et al., 2009). On the other hand,
spaced repetition models are inspired by the learn-
ing principle that effective and efficient learning
can be achieved by working more on difficult con-
cepts and less on easier ones.

In this research, we extend our spaced repeti-
tion training paradigms to simultaneously train ar-
tificial neural networks and identify training in-
stances with potentially wrong labels (spurious in-
stances) in datasets. Our work is important be-
cause spurious instances may inversely affect in-
terpretations of the data, models developed from
the data, and decisions made based on the data.
Furthermore, spurious instances lead to unrealis-
tic comparison among competing systems if they
exist in test data.

5 Conclusion and Future Work

We present a novel approach based on queueing
theory and psychology of learning to identify spu-
rious instances in datasets. Our approach can be
considered as a scheduler that iteratively trains a
downstream learner (e.g. a neural network) and
detects spurious instances with respect to their dif-
ficulty to learn during the training process. Our ap-
proach is robust and can be applied to any dataset
without modification given a neural network de-
signed for the target task of the dataset.

Our work can be extended by: (a) utilizing sev-
eral predictions for each training instance, (b) in-
vestigating the extent to which a more sophisti-
cated and effective downstream learner can affect
the performance of different spotters, (c) devel-
oping models to better distinguish hard genuine
instances from spurious ones, and (d) developing
ranking algorithms to improve the performance of
models on real-world datasets.
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Abstract

This paper explores the time course of lexi-
cal memory retrieval by modeling fluent lan-
guage production. The duration of retrievals
is predicted using the ACT-R cognitive archi-
tecture. In a large-scale observational study of
a spoken corpus, we find that language pro-
duction at a time point preceding a word is
sped up or slowed down depending on activa-
tion of that word. This computational analy-
sis has consequences for the theoretical model
of language production. The results point to
interference between lexical and phonological
stages as well as a quantifiable buffer for lexi-
cal information that opens up the possibility of
non-sequential retrievals.

1 Introduction

Speech varies greatly in fluency, and some of its
speed variation can be traced to the utterance spo-
ken (Jespersen, 1992). Low-frequency words, for
instance, are known to slow down speech (e.g.,
Bell et al., 2009). Variables correlated with flu-
ency give valuable cues to the architecture of the
language processing system. However, a model to
explain these data has yet to emerge.

In this paper, we propose a cognitive model of
fluency, in which lexical memory retrievals may
explain some of the variability in speech rates. In
particular, frequency, context and recent uses to-
gether have the potential to quantify retrieval de-
lays through activation (Anderson, 1991). Acti-
vation, in its most common usage, refers to the
way nodes in semantic networks become easier to
retrieve after adjacent nodes have been activated,
typically through a presentation (Collins and Lof-
tus, 1975). In particular, activation makes a direct
claim that more highly activated words require less
time to retrieve, and vice versa (Anderson, 1983).

The language production process as a whole
likely requires some amount of sequential process-

ing. For instance, the standard model proposes
that an idea is generated, lexicalized, grammati-
cally and morphologically encoded, and only then
phonologically encoded (Bock and Levelt, 2002).
Still, most models of language production pre-
suppose some amount of planning of output (e.g.,
Pickering and Garrod, 2013), so we could instead
divide language production into planning this out-
put and the actual process of outputting. The over-
lap and relationship of these processes is not fully
understood, but given that most output is likely
planned, the scale at which the planning takes
place and the amount of time between planned
output and the actual process of outputting re-
mains unclear. However, if interactions between
processes are observed, then we can likewise see
when they overlap in time.

To summarize, we are suggesting that some of
the variance in speech rate is not due to the lin-
guistic properties of the words currently or about
to be outputted, but the words still in the plan-
ning phase. We propose a model that uses a buffer
of several words between initial retrieval and out-
put, during which grammatical and morphological
encoding take place. We examine this by calcu-
lating retrieval activation for a word and evaluat-
ing the influence of that activation on the empiri-
cal speech timing several words beforehand, using
the Switchboard corpus. The effect of activation
is distributed over preceding words in a way that
is characteristic of a shared-resource, buffer-based
account of language production.

2 Related Work

2.1 Stages of Language Production

Grammatical encoding can be divided into
functional and positional processing steps
(Bock and Levelt, 2002). The functional step
selects lexical items and assigns functions, while
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the positional step then combines the items to
produces constituents. In our account, we expect
that these mutually dependent steps work in
parallel.

An important early part of functional process-
ing retrieves lexical information, which we will
examine in this paper. We evaluate the conse-
quences of lexical access, which is assumed to be
affected by the cost associated with any retrieval
from declarative memory. Much discussion in this
area has concerned the question whether lexical
access happens in a single stage (Dell et al., 1997)
or in multiple stages and overlaps with grammat-
ical encoding (Caramazza, 1997; Roelofs et al.,
1998; Caramazza, 2006). Here, we follow ACT-
R’s serial and partially symbolic nature, which
in turn leads to some theoretical commitments
to non-parallel processing: language production
is staged and discrete. Nonetheless, each stage
can be composed of several steps, and steps from
syntactic and phonological processing likely in-
terleave. This is compatible with empirical find-
ings and the overall theoretical debate (Ferreira
and Slevc, 2007). The precise timeline of process-
ing is unclear, but as we will argue in this paper,
large-scale speech data can give us usable clues to
that effect.

2.2 Incrementality in Language Production

The second issue we address concerns the timing
of memory retrievals, which is also related to the
idea of incremental processing. It is a commonly
implied assumption that language processing pro-
ceeds incrementally. In grammatical encoding,
this property concerns when and in which order
syntactic choices are made. For instance, all of
them could be made before phonological process-
ing starts (non-incremental case), or they could be
made in order as necessary. Existing high-level
models of language production proceed incremen-
tally at various steps in a chain of content selec-
tion, aggregation and sentence realization (e.g.,
Bock and Levelt, 2002; Guhe, 2007).

Ferreira (1996) makes an argument for incre-
mentality, based on the observation that com-
petitive syntactic alternatives facilitate production
rather than making it more difficult. An incremen-
tal account of sentence realization would predict
such an effect, as syntactic “flexibility” introduced
by the alternatives makes it easier to find a work-
able syntactic decision. By contrast, without in-

cremental commitment to each structure, compet-
ing material slows down the process, because it
would lead to combinatory explosion. However,
later results establish nuance. Ferreira and Swets
(2002) show that incremental production is possi-
ble, but it is “under strategic control”; it depends
on semantic information, and it could be modu-
lated by external factors, such as stress.

If processing were fully incremental, then it
would follow that lexical memory retrievals are
also fully incremental. The order words are re-
trieved in would be the same as the order words
are eventually outputted in. However, if other fea-
tures modulate this, then it would imply that incre-
mental processing is instead variable, as suggested
by earlier accounts.

2.3 Speech Rates
Several studies have illustrated the effects of fre-
quency, recency, and context (Bell et al., 2009;
Arnon and Priva, 2014) on speech rates. These
studies motivated our modelling choices, as re-
cency, frequency, and context are also the key
components of the ACT-R theory of memory.

Recent research has found a correlation be-
tween rate of speech and the information content
of that speech. (e.g., Arnon and Cohen Priva,
2013). Thus far, this correlation lacks a precise
theory with a cognitive explanation. By producing
a cognitive model of these speech rates, we pro-
vide evidence for such a theory.

2.4 Lexical Retrieval
This paper examines the time course of lexical re-
trieval for the case of fluent, naturalistic speech.
Different facets of language can interfere with lex-
ical retrieval in different contexts, which provides
evidence toward an architecture: Schriefers et al.
(1990) found that semantic, but not phonological
material can cause interference, suggesting that
the two are represented separately. Ratcliff and
McKoon’s (1989) study focuses on sentence re-
trieval and found that semantic information is also
retrieved in stages. Here, we seek to model the
retrieval process in the context of fluent speech.

There are a number of memory models in the lit-
erature that provide accounts of the timing of lex-
ical access. For instance, classic models such as
Dell’s (1986)’s model of spreading activation dur-
ing language production and Levelt et al.’s (1999)
WEAVER++ model both provide quantitative val-
ues for retrieval times based on the form of a word.
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Figure 1: Our psychological model assumes that language production involves several parallel processes, and that
retrieval of lemmas can interact with concurrent retrieval and/or encoding of phonological representations (dashed
arrows) due to concurrent resource usage. Lemmas are retrieved several words before they are spoken. Their exact
point of retrieval could depend on other factors. Likewise, while we represent phonological retrieval/encoding as
a separate process for clarity, we make no claim to what extent these processes overlap.

Models such as Rapp and Goldrick (2000) focus
on modeling speech errors based on word activa-
tion and context. Our model differs from these
in that it attempts to model retrievals from flu-
ent speech rates, rather than single word lexical
retrieval based on picture naming tasks. Finally,
while speech errors are likely related to failed
lexical memory retrievals, we focus on speech
that was eventually successfully retrieved and pro-
duced.

More relevantly, Dell and O’Seaghdha (1992)
examine the time course of lexical access in lan-
guage production. In particular, they use series
of three words and EEG data to estimate lexi-
cal retrieval time. However, the lab setting it
took place in precluded it as a study of natural-
istic speech. Further, their model of the effects
of word-properties relied on primarily qualitative
attributes, such as semantic or phonetic related-
ness. In particular, they find additional evidence
for lemma and phonological retrieval taking place
in separate stages, based on inhibition and facili-
tation effects. The goal of the present study is to
expand the examined time frame in the hopes of
replicating their argument on naturalistic speech
while viewing effects found throughout, rather
than just a three word window.

3 ACT-R Model

To motivate the corpus-based empirical analysis,
we first describe our high-level model of the lan-
guage production process. Our method primarily
relies on simulating the state of lexical declarative
memory during language production. After we
simulate the memory retrievals for each word, we
can compare this information to the actual empiri-
cal timing data in the corpus. In particular, we rely
on Anderson’s (1983) original account of memory.
This framework was selected rather than newer or
more task-specific frameworks as it is the same
underlying memory model of ACT-R, which has
been used to explain a wide variety of language
phenomena (e.g., Vasishth and Lewis, 2004; Reit-
ter et al., 2011), but also has been used to explain
everything from decision-making (e.g., Marewski
and Mehlhorn, 2011) to visual attention in graphi-
cal user interfaces (e.g., Byrne et al., 1999). Thus,
by using this model, our work naturally builds
upon a large body of work, using the same mech-
anisms to explain a variety of tasks.

Figure 1 illustrates how lemma retrieval of a tar-
get word affects phonological encoding of speak-
ing of an earlier word. Retrieval timing is com-
putationally estimated using the cognitive archi-
tecture ACT-R, and we assume that this retrieval
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time proportionally affects phonological encod-
ing. This can take place strategically, via a
metacognitive process that coordinates these dif-
ferent modules, or via interference because both
processes share declarative memory resources.

Our model of lexical memory is principally
based on Anderson (1983)’s discussion of recency,
frequency, and context effects. Activation (A)
within the context of the ACT-R system is gen-
erally described by the sum of base-level learn-
ing (bll) and spreading activation (sa), which we
adopt for our model as well (Anderson et al.,
2004). Activation, can be defined as a linear com-
bination of spreading activation base-level learn-
ing:

A(x) = sa(x) + bll(x) (1)

For our purposes, we consider x to refer to an
individual word. Base-level learning refers to the
frequency and recency effects. In the base-level
learning equation, it can refer to both because of
the decay parameter, d, which causes more recent
presentations to be more important, with older pre-
sentations (signified by their time of presentation,
t) becoming exponentially less relevant. These
older presentations, when considered together, add
to the equation through their sheer quantity, pro-
viding the frequency effect, defined as:

bll(x) = log

(∑

i∈Px

t−di

)
(2)

In this equation, Px refers to the list of x’s pre-
sentations, so ti is the time from that presentation
to the present. Naturally, for something with as
many presentations as any given word, it is infea-
sible to computationally manage that sum. How-
ever, the full equation can be approximated using
only the total number of presentations and the k
most recent presentations and nx = |Px| (Petrov,
2006).

bll(x) ≈ log




k∑

i

t−di +
(nx − k)

(
t1−dnx

− t1−dk

)

(1− d) (tnx − tk)




(3)
While Petrov (2006) shows that the equation is

close even for k = 1, we used k = 5 to more
closely approximate the original equation. We
then use the ACT-R default for the decay param-
eter, 0.5. Note that it has been suggested (e.g.,

Lewis and Vasishth, 2005; Cole et al., 2017) that
this decay parameter could be different for lan-
guage processing. In this work, we are only con-
cerned with relative, rather than absolute values
for a word’s activation in memory.

In order to compute the total number of pre-
sentations, we relied on a fairly simple estimate.
We multiply the number of seconds a person has
been alive with the average speaking rate and
that word’s frequency to obtain an estimate of the
amount of times a person has encountered that
word; it is difficult to measure the difference be-
tween being exposed to the lexical form of the
word compared to the phonological form, and it
is even harder to measure any subsymbolic expo-
sure due to thought. Still, using this formula, a un-
igram score computed by SRILM (Stolcke, 2002)
applied to the British National Corpus, the aver-
age speaking rate of Switchboard participants (197
words/minute) as computed by Yuan et al. (2006),
and the average age of Switchboard participants
(37) (Godfrey et al., 1992), we can compute a
baseline number of presentations for every word
in Switchboard.

Next, computing spreading activation on a cor-
pus as described in Anderson (1983) would like-
wise be computationally intractable. However,
Pirolli et al. (2006) showed that for large sample
sizes of language, Pointwise-Mutual Information
is nearly identical. Therefore, we use Semilar’s
PMI database computed on the Wikipedia corpus
(Rus et al., 2013; Church and Hanks, 1990).

In the ACT-R system, generally only items
currently in working memory affect memory re-
trievals (Anderson et al., 2004). Likewise, we
maintain the n previous words in a buffer to com-
pute their spreading activation to the next word.
We used n = 5 as an estimate for working mem-
ory size in language, as found in a reading task
(Daneman and Carpenter, 1980). For our model,
we compute the spreading activation between re-
trieved word, x, and each word in working mem-
ory, y, as:

sa(x) ≈
n∑

y

pmi(x, y) =
n∑

y

log
p(x, y)

p(x)p(y)
(4)

Once we have a value for activation, it’s fairly
simple to compute an estimate for retrieval time
(RT) using the same equations from Anderson
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(1983).

RT = I + 1/A− Ke−KA

(1− e−KA)
(5)

In this equation, I is an intercept, easily fit-
ted with a linear model. As a parameter, K rep-
resents the cutoff time (in seconds) before there
is a retrieval failure. This equation actually only
represents the time required in the case of suc-
cessful retrievals, which is nonetheless bounded
by K, which in that sense could be thought of as
the maximum possible time for a successful re-
trieval. While retrieval failures are part of nor-
mal ACT-R processing, they are not relevant to our
model. Since our model is formed of already spo-
ken words, they cannot represent retrieval failures.
Thus, while the equation only represents success-
ful retrievals, it is appropriate for our model. We
chose the architectural default of 1.0 for K.

4 Methods

4.1 Corpus Analysis
The empirical speech data was taken from the
Switchboard corpus (Godfrey et al., 1992) which
is part of the Penn Treebank corpus (Marcus et al.,
1993). This dataset consists of telephone conver-
sations between strangers on a random topic, an-
notated to include the start and finish time for ev-
ery word that has been spoken. Using our model of
lexical memory as described in the previous sec-
tion, we trace through the model and compute the
activation of each word at its onset time.

Once the activation was computed for each
word at the point when it was spoken, our goal
was to observe its effect on overall speaking rates.
In order to estimate when x was retrieved, we ex-
amined the speech some number of words back
from word x. If words are spoken systematically
more slowly or quickly based on word x’s acti-
vation and their positional relationship to word x,
then we can assume where words are spoken more
slowly, retrievals are taking place. Where words
are spoken more quickly, retrievals have finished.
Importantly, since this is being computed at ev-
ery sentence position, this should not capture po-
sitional effects. See Figure 1 for a visual depic-
tion of our model of interference during lexical re-
trieval, which allows us to infer retrieval based on
such interference.

While a naive model may expect lexical re-
trieval to occur immediately before grammatical

or phonological encoding, this is not necessarily
the case. Indeed, the amount of time before en-
coding may not be constant and may vary from
word to word.

Our analysis of the corpus requires comput-
ing each word’s delay, which is defined as the
amount of time between the onsets of two sequen-
tial words, including any disfluencies that occur.
As words themselves naturally can require differ-
ent amounts of time to speak, we instead use the
adjusted delay which is computed by taking the
average of all of the durations of that word (as
found in Switchboard) and subtracting it from the
given duration. Thus, the adjusted delay could
be a positive or a negative number, representing
slowdowns and speedups, respectively. Through-
out this paper, we use the term delay to actually
refer to this adjusted delay. The delay referred
to in Figure 1 is thus the adjusted delay: the dif-
ference between the expected delay based on the
word form and the actual observed delay. To be
clear, that means that if a delay term is not zero,
there was a variation from the normal speed of
processing, to either be quicker (negative delay)
or slower (positive delay).

These speedups and slowdowns, and their rela-
tionship to retrieval time, allow us to make an ar-
gument about the interaction between lexical and
phonological processing. From a statistical point
of view, as we are comparing retrieval time and
slowdowns in the same units, our linear model
could be thought of as the percentage of retrieval
time that is behaviorally reflected in language pro-
duction.

4.2 Experiment

Data were analyzed with two related models. Ini-
tially, we tested an interaction model in order to
test our hypothesis of the interaction between de-
lay and offset (see Table 1). From this informa-
tion, we use exploratory data analysis in the form
of a discrete model, in order to explore the critical
regions of the graph (see Table 2). From this ex-
ploratory data analysis, we present the pooled ver-
sion of the discrete model for easier interpretation
of our found effects (see Table 3). For both mod-
els, the activation of a target word and its expected
retrieval time burden was computed, as were the
delays for the n words preceding the target word.
Importantly, note that in both models, when we re-
fer to the expected retrieval time or activation, we
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are referring to the target word, not any of the pre-
ceding words. Both models are concerned with the
word offset (i), which refers to the number of in-
terceding words between the given delay and the
target word, such that i = 0 refers to the word im-
mediately before the target word.

In the interaction model, we are interested in the
interaction term between word offset and delay: its
goal is to show how the correlation changes with
offset. In this model, every observation only uses
a single offset, chosen randomly, for each target
word. All of the other observations for that word
are discarded. This is to ensure the observations
are independent. The correlation coefficients of
interest are the correlation of delay as a whole,
and its interaction effect with offset. In general,
the coefficient of offset by itself is likely captur-
ing some distributional information about the data,
rather than anything interesting with how it relates
to memory retrievals. As a linear model:

RT ∼ delay ∗ offset

Meanwhile, the discrete model’s observations
consist of a word’s expected retrieval time and the
delays from previous words. Then, we make a lin-
ear model using each of the delays as a predictor.
Note that in this notation, delayi refers to the de-
lay of offset word i. To reiterate, i represents how
many interceding words there are between that off-
set word and the target word. As a linear model,
this would be:

RT ∼ delay0 + delay1 + ...+ delayn

The goal of the interaction model is to show
the robustness of the slope associated with index,
while the goal of the discrete model is to allow
for a non-linear relationship between offset and
the effect of delay on activation, examining up to
25 previous words. Exploring this non-linear rela-
tionship allowed us to infer the critical regions of
this effect. Importantly, the discrete model’s goal
was to explore the significant relationship found in
the interaction model more deeply, rather than to
itself justify the effect.

Under the model shown in Figure 1, we expect
that longer retrieval times of the target word are as-
sociated with slowdowns of speech production at
some time before the target word is spoken. Ear-
lier than that point, the target word should have no
influence on speech production.

Estimate Std. Error t-value p-value

(Intercept) .1796 .0002 728.715 < .00001 ***
offset .0015 .0010 1.1512 .011 **
delay .0668 .0048 13.839 < .00001 ***

delay*offset -.0066 .0005 −12.411 < .00001 ***

F-stat DF p-value Adj R2 Multi R2

102.2 802055 < .00001 0.0005 0.0005

Table 1: Linear regression predicting expected retrieval
time of a target word as a function of the delay in speak-
ing of a previous word at that offset.

Estimate Std. Error
I .1844 .0002

d0 -.0033 .0001
d1 -.0011 .0001
d2 -.0006 .0001
d3 -.0002 .0001
d4 -.0001 .0001
d5 -.0001 .0001
d6 .0002 .0001
d7 .0001 .0001
d8 .0002 .0001
d9 -.0001 .0001
d10 .0002 .0001
d11 .0000 .0001
d12 .0002 .0001
d13 .0000 .0001

d14..d24 0.000. 0.000

Table 2: The linear effects model relating each discrete
delay term with expected retrieval time. A higher num-
ber on the delay term signifies the number of words
between the delayed word and the target word. This ex-
ploratory data analysis was done to inform the pooled
model. Also see Figure 2.

5 Results and Discussion

If one focuses on the interaction model, our ex-
periments yield a relatively counterintuitive result:
namely, delay is correlated in the direction oppo-
site to what is expected. One would imagine that
delay and retrieval time should be positively cor-
related: if people are speaking words more slowly
(positive delay), then likewise, their retrieval time
should be higher. However, we discovered a ro-
bust effect in the opposite direction: higher delays
imply shorter expected retrieval times, and shorter
delays imply longer expected retrieval times. In
other words, when people are expected to need the
longest to retrieve words, they actually speak more
quickly, and vice versa.
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Estimate Std. Error t-value p-value

(Intercept) .1843 .0002 728.715 < .00001 ***
early -.0052 .0010 −46.36 < .00001 ***

early(ns) 0.000 0.000 −0.8200 .412
late .0009 .0002 5.448 < .00001 ***

late(ns) .0002 .0002 1.263 .2070

F-stat DF p-value Adj R2 Multi R2

567.9 777924 < .00001 0.003 .003

Table 3: Pooled version of discrete linear model, based
on critical regions from the graph. Regions are broken
at 3, 5, and 14 respectively.
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Figure 2: The discrete model’s linear predictors (see also Ta-
ble 2). Error bars represent normal 95% confidence intervals.
This graph and Figure 3 have similar critical regions, which
informed the pooled model presented in Table 3: 0-2 appear
significant and negative, 3-4 are not significant (slightly neg-
ative), 5-14 are significant and positive, 15+ is not significant.

Examining the effect for larger offsets, however,
we observe that the effect reverses before disap-
pearing. Thus, we see an effect in the expected
direction for the delays of word offsets 4 through
14. This is commensurate with word planning that
takes place several words in advance rather than
immediately before the word; likewise, the effect
also disappears in the interaction model based on
the interaction effect.

See also Figure 2 and Figure 3, which are vi-
sualizations of the discrete and interaction model,
respectively. These graphs show how the relation-
ship between activation of a word and speech de-
lay develops over the offsets, i, before the word.
While Figure 2 has its effects pulled directly from
Table 2, Figure 3 is produced by raw data, defined
by:

y(j, i) =
Aj − β0
delayi

(6)

These graphs were designed to demonstrate

how the effect switches from positive to negative
as we move back from immediately before the
word to earlier in the utterance. With the interac-
tion model, we wanted to show statistical evidence
for the pattern of effects; the discrete model quan-
tifies the gradual fade to zero. We interpret the
models as follows.

1. There is a strong negative correlation of
the word delays with expected retrieval time
for the words immediately before the target
word. Since retrieval time is a function of ac-
tivation, this would imply that the observable
phonological effect happens later for more
activated words, which are likely retrieved
shortly before their use.

2. There is a weaker but significant positive cor-
relation of the word delays with expected re-
trieval time for words about 5-14 words pre-
ceding the target word. These delays likely
occur for words with less activation, whose
retrievals are likely initiated early to ensure
that there is enough time.

3. For words very far away from the target word,
there is no reliable effect, implying that this
is not just an effect of a cyclical information
distribution.

6 General Discussion

These results confirm some classical findings on
lexical retrieval, while adding a subtle but reliable
new effect. Further, these findings have some im-
plications for incrementality and uniform informa-
tion density.
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Figure 3: Smoothed correlation between delay and expected
retrieval time across offset, created using a sample of raw data
(representative of the interaction model). Effect disappears
after offset 15, but full graph is not shown to avoid smoothing
small but significant effects with non-significant effects.
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In our discussion, we will frequently refer to
the activation of a word. Recall that activation in
the ACT-R sense is the inverse of the expected re-
trieval time: higher activation implies a shorter ex-
pected retrieval time. While retrieval time makes
more sense in a time-predictive linear model, it is
easier to interpret our results based on its relation-
ship to activation.

6.1 Lexical Retrieval
It is difficult to separate the lexical retrieval effects
we found into the two categories of retrievals de-
scribed by Levelt (1992): a lemma retrieval and
a later phonological retrieval. However, this is
not to claim that they cannot be, but simply that
our methodology did not easily allow us to. A
commonly implied assumption is that lemma re-
trievals shouldn’t interfere with phonological pro-
cesses (e.g., Schriefers et al., 1990), though it is
difficult to know if a speech slowdown is due to a
phonological or semantic interference due to our
experimental setup. However, since in our exper-
iment, effects are still observed at large distances
from the target words, either phonological forms
can be retrieved in a non-incremental way (pos-
sibly even before lemmas for other words are re-
trieved), or the retrieval of the lemma does inter-
fere with phonological encoding in some way; for
instance, by activating related phonological forms.
Still, we ultimately find the same pattern of effects
as Dell and O’Seaghdha (1992): facilitatory ef-
fects close to the target word, with inhibitory ef-
fects further away. The primary difference is the
time frame, which is possibly due to their experi-
mental setup.

6.2 Process Model
We found a surprising effect: words with higher
activation are not spoken more quickly, but more
slowly. This also applies to the words that imme-
diately precede them. However, if we look fur-
ther back, we see a robust effect in the expected
direction: if the approaching word has a high ac-
tivation, they are said more quickly, but if the
approaching word has a low activation, they are
said more slowly. We argue that this slowdown
is the result of shared resources between phono-
logical and grammatical encoding, and as activa-
tion directly predicts retrieval time, we posit that
word retrievals are part of what causes slowdowns.
The corresponding speedups could be because the
work of planning the sentence up to that point is

then done. The most important prediction of this
is that it means low activation words are retrieved
earlier, which would imply that there is some cog-
nitive strategy facilitating the necessity of initiat-
ing early retrievals for low activation words.

6.3 Incrementality

These results provide information about the tim-
ing of memory retrievals, given that such retrievals
are related to activation. As activation is inher-
ently related with how long a memory retrieval
should take, it makes sense there are some cog-
nitive strategies for coping with this disparity in
order to produce seemingly fluent dialogue. That
strategy involves buffering: retrieving and storing
the words that will need longer to retrieve, based
on the structure of the sentence.

Further, this type of buffering strategy could be
part of the strategy that Ferreira and Swets (2002)
refer to, when they propose the incrementality of
language production is under “strategic control.”
While a purely incremental strategy might have
interlocutors retrieve in a purely incremental fash-
ion, there are some hiccups: certain words take
longer to retrieve than others. By this logic, if
grammatical encoding proceeds in a purely incre-
mental fashion, then lexical retrieval does not, and
vice versa. Thus, it is reasonable to believe that the
grading of incrementality found in natural human
discourse is not only variable from situation to sit-
uation, but it may be variable amongst competing
processes for any given situation.

6.4 Uniform Information Density

Let’s consider an additional explanation. The
Constant Entropy Rate Hypothesis (Genzel and
Charniak, 2002) posits that lexical material is dis-
tributed across a sentence (and other units) such
that its information is held approximately con-
stant. Could a difficult-to-retrieve, slow word at
position j be likely to be combined with easier-
to-retrieve, high-frequency words at positions j −
4...j−1, causing the significantly increased speech
rate we found there?

The model of buffered retrievals, along with
the empirical evidence, may provide a cognitive
mechanism that results in an approximately con-
stant entropy rate. Thus, Uniform Information
Density (UID, e.g., Jaeger, 2010) could be con-
sidered a consequence of the cognitive procedures
involved in retrieving syntactic-lexical items from
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declarative memory while grammatically encod-
ing those materials retrieved earlier.

7 Future Work

Our work opens up several possible avenues for
future research. While it is unclear if syntax rules
are retrieved from some form of implicit mem-
ory (e.g., Reitter et al., 2011), lexical items clearly
are. Syntactic processing could potentially adapt
to working memory, rather than itself guide lex-
ical retrievals (e.g., Cole and Reitter, 2017). By
this argument, memory retrieval is a largely au-
tomatic, rather than attention-driven process, and
syntax makes use of what is available to produce
fluent dialogue. In this type of model, the constant
size of the retrieval buffer would provide a clear
corollary to Uniform Information Density.

Furthermore, this paper does not clearly differ-
entiate between lemma and phonological retrieval.
Although we do not expect phonological forms
to be retrieved as early as the effects we are see-
ing, we also do not expect lemma retrieval to have
effects on phonological encoding. A computa-
tionally implemented process model could explore
these effects in more detail.

Lastly, this study provides another mechanism
by which non-sequential dependencies in lan-
guage production are observed. It seems possible
that non-incremental language processing can be
explained as a process that involves general mem-
ory mechanisms including cue-based memory re-
trieval. What is in question is whether we really
process local syntax using structured, memory-
hungry models (i.e., with syntax trees); we note
that in natural language processing, skip-grams
can capture local, non-incremental relationships
among words. Thus, the relationship between
working memory, syntax trees, and skip-grams ap-
pears to be of continued interest.

8 Conclusions

In this paper, we explore the process of lexical
memory retrieval in the context of language pro-
duction. In contrast to previous work, we look at a
corpus of natural speech and do not rely on single
word retrievals in an experimental setting. This al-
lows us to observe how certain processes involved
in fluent language production overlap. In particu-
lar, the data support a model according to which
lexical retrievals can happen quite early. By using
the formalism defined by the empirically-validated

ACT-R framework, we show when memory re-
trievals are taking place through the effect on
speaking rates, seeing facilitation early and inhibi-
tion later. We conclude that low-activation words
can be retrieved as early as 14 words before they
are spoken. As low activation words are higher in-
formation and require longer to retrieve, this has
theoretical implications for some empirical find-
ings of language processing.
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Abstract

When learning POS taggers and syntactic
chunkers for low-resource languages, differ-
ent resources may be available, and often
all we have is a small tag dictionary, mo-
tivating type-constrained unsupervised induc-
tion. Even small dictionaries can improve the
performance of unsupervised induction algo-
rithms. This paper shows that performance can
be further improved by including data that is
readily available or can be easily obtained for
most languages, i.e., eye-tracking, speech, or
keystroke logs (or any combination thereof).
We project information from all these data
sources into shared spaces, in which the union
of words is represented. For English unsuper-
vised POS induction, the additional informa-
tion, which is not required at test time, leads to
an average error reduction on Ontonotes do-
mains of 1.5% over systems augmented with
state-of-the-art word embeddings. On Penn
Treebank the best model achieves 5.4% error
reduction over a word embeddings baseline.
We also achieve significant improvements for
syntactic chunk induction. Our analysis shows
that improvements are even bigger when the
available tag dictionaries are smaller.

1 Introduction

It is a core assumption in linguistics that humans
have knowledge of grammar and that they use
this knowledge to generate and process language.
Reading, writing, and talking leave traces of this
knowledge and in psycholinguistics this data is
used to analyze our grammatical competencies.
Psycholinguists are typically interested in falsify-
ing a specific hypothesis about our grammatical
competencies and therefore collect data with this
hypothesis in mind. In NLP, we typically require
big, representative corpora. NLP usually has in-

Lea Frermann carried out this work while at the Univer-
sity of Edinburgh.

duced the models from expensive corpus annota-
tions by professional linguists, but recently, a few
researchers have shown that data traces from hu-
man processing can be used directly to improve
NLP models (Klerke et al., 2016; Barrett et al.,
2016; Plank, 2016).

In this paper, we investigate whether unsuper-
vised POS induction and unsupervised syntactic
chunking can be improved using human text pro-
cessing traces. We also explore what traces are
beneficial, and how they are best combined. Our
work supplements psycholinguistic research by
evaluating human data on larger scale than usual,
but more robust unsupervised POS induction also
contributes to NLP for low-resource languages for
which professional annotators are hard to find, and
where instead, data from native speakers can be
used to augment unsupervised learning.

We explore three different modalities of data
reflecting human processing plus standard, pre-
trained distributional word embeddings for com-
parison, but also because some modalities might
fare better when combined with distributional
vectors. Data reflecting human processing come
from reading (two different eye-tracking corpora),
speaking (prosody), and typing (keystroke log-
ging). We test three different methods of combin-
ing the different word representations: a) canon-
ical correlation analysis (CCA) (Faruqui and
Dyer, 2014b) and b) singular value decompo-
sision and inverted softmax feature projection
(SVD+IS) (Smith et al., 2017) and c) simple con-
catenation of feature vectors.

Contributions We present experiments in unsu-
pervised POS and syntactic chunk induction using
multi-modal word representations, obtained from
records of reading, speaking, and writing. Indi-
vidually, all modalities are known to contain syn-
tactic processing signals, but to the best of our
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knowledge, we are the first to combine them in
one model. Our work extends on previous work
in several respects: (a) We compare using data
traces from gaze, speech, and keystrokes. (b) We
consider three ways of combining such informa-
tion that do not require access to data from all
modalities for all words. (c) While some previ-
ous work assumed access to gaze data at test time,
our models do not assume access to any modali-
ties at test time. (d) We evaluate how much the ad-
ditional information helps, depending on the size
of the available tag dictionary. (e) While related
work on keystrokes and prosody focused on a sin-
gle feature, all our word representations are multi-
dimensional and continuous.

2 Related work

Eye-tracking data reflect the eye movements
during reading and provide millisecond-accurate
records of the readers fixations. It is well estab-
lished that the duration of the fixations reflect
the processing load of the reader (Rayner, 1998).
Words from closed word classes are usually fix-
ated less often and for shorter time than words
from open word classes (Rayner and Duffy, 1988).
Psycholinguistics, however, is generally not inter-
ested in covering all linguistic categories, and psy-
cholinguists typically do not study corpora, but
focus instead on small suites of controlled exam-
ples in order to explore human cognition. This is
in contrast with NLP. Some studies have, how-
ever, tried to bridge between psycholinguistics and
NLP. Demberg and Keller (2008) found that eye
movements reflected syntactic complexity . Bar-
rett and Søgaard (2015a) and Barrett and Søgaard
(2015b) have tried to–respectively–predict a full
set of syntactic classes and syntactic functions
across domains in supervised setups. Barrett et al.
(2016), which is the work most similar to ours,
used eye-tracking features from the Dundee Cor-
pus (Kennedy et al., 2003), which has been aug-
mented with POS tags by Barrett et al. (2015).
They tried for POS induction both on token-
level and type-level features. They found that eye-
tracking features significantly improved tagging
accuracy and that type-level eye-tracking features
helped more than token-level. We use the same ar-
chitecture as Barrett et al. (2016).

Keystroke logs also reflect the processing du-
rations, but of writing. Pauses, burst and revisions
in keystroke logs are used to investigate the cogni-

tive process of writing (Matsuhashi, 1981; Baaijen
et al., 2012). Immonen and Mäkisalo (2010) found
that for English-Finnish translation and monolin-
gual Finnish text production, predicate phrases are
often preceded by short pauses, whereas adpo-
sitional phrases are more likely to be preceded
by long pauses. Pauses preceding noun phrases
grow with the length of the phrase. They sug-
gest that the difference is explained by the pro-
cessing of the predicate begins before the produc-
tion of the clause starts, whereas noun phrases and
adpositional phrases are processed during writ-
ing. Pre-word pauses from keystroke logs have
been explored with respect to multi-word expres-
sions (Goodkind and Rosenberg, 2015) and have
also been used to aid shallow parsing (Plank,
2016) in a multi-task bi-LSTM setup.

Prosodic features provide knowledge about
how words are pronounced (tone, duration, voice
etc.). Acoustic cues have already been used to im-
prove unsupervised chunking (Pate and Goldwa-
ter, 2011) and parsing (Pate and Goldwater, 2013).
Pate and Goldwater (2011) cluster the acoustic
signal and use cluster label as a discrete feature
whereas Pate and Goldwater (2013) use a quan-
tized word duration feature.

Plank (2016) and Goodkind and Rosen-
berg (2015) also used a single keystroke feature
(keystroke pre-word pause) and the former study
also discretized the feature. Our work, in contrast,
uses acoustic and keystroke features as multi-
dimensional, continuous word representations.

3 Modalities

In our experiments, we begin with five sets of
word representations: prosody, keystroke, gaze as
recorded in the GECO corpus, gaze as recorded in
the Dundee corpus, as well as standard, text-based
word embeddings from eigenwords. See below for
details and references. All modalities except the
pre-trained word embeddings reflect human pro-
cessing of language. For all modalities, we use
type-level-averaged features of lower-cased word
types.

The choice of using type-averaged features is
motivated by Barrett et al. (2016), who tried both
token-level and type-averaged eye-tracking fea-
tures for POS induction and found that type-
level gaze features worked better than token-level.
Type-averaged features also have the advantage of
not relying on access to the auxillary data at test
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Figure 1: The percentage of overlapping word
types for pairs of modalities. Overlapping words
are used for projecting word representations into
a shared space. Read column-wise. E.g. when
combining eigenwords and prosody, only 1.2% of
the 46973 eigenvector word types are overlapping
(bottom left), and 97.8% of the 598 prosody word
types are overlapping (top right).

time. Type-level averages are simply looked up in
an embedding file for all previously seen words.
On the other hand, type-level features obviously
do not represent ambiguities, e.g., beat as a verb
and a noun separately. All our features, except log-
transformed word frequencies were normalized.

We run unsupervised induction experiments for
all (25 − 1 = 31) combinations of our five
data sources on the development sets to determine
which data types contribute to the task. We con-
sider three different ways of combining modali-
ties, two of which learn a projection into a shared
space using word overlap as supervision, and one
simply concatenates the embedding spaces. The
combination methods are further described in §4.

We list the number of word types per modal-
ity and percentage of pair-wise overlapping words
in Figure 1. We only use existing data from na-
tive speaking participants, for reproducibility and
in order not to get learner effects ie. biases intro-
duced by non-native speakers. §3.2-3.5 describe
each modality in detail, and how we compute the
word representations. §3.1 describes a set of basic
features used in all of our experiments.

3.1 Basic features

Like Li et al. (2012), we append a small set of ba-
sic features to all our feature sets: features relating
to orthography such as capitalization, digits and
suffix. Furthermore we append log word frequency
and word length. Word frequencies per million are

Modality n found pairs Weigh. av. cor.

Prosody 31 0.369
Keystroke 1082 0.060
GECO 2449 -0.030
Dundee 4066 -0.035
Eigenwords 9828 0.197

Table 1: Results on word association norms from
wordvectors.org Correlation weighted by number
of found pairs per word embedding type.

obtained from British National corpus (BNC) fre-
quency lists (Kilgarriff, 1995). Word length and
word frequency explain around 70% of the vari-
ance in the eye movement (Carpenter and Just,
1983) and are therefore also important for estimat-
ing the impact of gaze features beyond such infor-
mation. Plank (2016) used keystroke features for
shallow chunking and did not find any benefit of
normalizing word length by pre-word pause before
typing each word, but Goodkind and Rosenberg
(2015) did find a strong logarithmic relationship
between word length and pre-word pause as well
as between word frequency and pre-word pause.

3.2 Dundee and GECO eye-tracking corpora

We use two different eye-tracking corpora. The
GECO corpus (Cop et al., 2017) and the Dundee
Corpus (Kennedy et al., 2003) are the two largest
eye movement corpora with respect to word count.
We use the native English part of the GECO cor-
pus and the English part of the Dundee Corpus.
The GECO corpus is publicly available1 and the
Dundee Corpus is available for research purposes.

Participants and data The Dundee Corpus is
described in Kennedy and Pynte (2005). The
Dundee Corpus consists of the eye movements of
10 readers as they read the same 20 newspaper
articles. For GECO, all 14 participants in the na-
tive English part read a full Agatha Christie novel.
Both corpora contain > 50.000 words per reader.
All participants for both corpora are adult, native
speakers of English and skilled readers.

Self-paced reading Both eye-tracking corpora
reflect natural reading by making the reading self-
paced and using naturally-occurring, contextual-
ized text.

1http://expsy.ugent.be/downloads/geco/
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Features Eye movements–like most features re-
flecting human processing–are very susceptible to
experiment-specific effects e.g. instructions and
order effects such as fatigue. Furthermore, the
GECO corpus has a slightly different eye move-
ment feature set than what we have for the Dundee
corpus. Therefore we treat the two eye move-
ment corpora as two individual modalities in or-
der to assess their individual contributions. GECO
has 34 features reflecting word-based processing.
Dundee has 30 word-based features that were ex-
tracted from the raw data and previously used
for POS induction by Barrett et al. (2016). For
GECO, we use the features that are already ex-
tracted by the authors of the corpus. Both corpora
include five word-based features e.g., first fixation
duration (which is a measure said to reflect early
syntactic and semantic integration), total fixation
time and fixation probability. The Dundee Corpus
has more features concerning the context words
whereas GECO has pupil size and many features
distinguishing the different passes over a word.

3.3 Prosody

The prosody features are described in detail in Fr-
ermann and Frank (2017) and are freely avail-
able.2 They are derived from the Brent (Brent
and Siskind, 2001) and Providence (Demuth
et al., 2006) portions of the CHILDES cor-
pus (MacWhinney, 2000), comprising longitudi-
nal datasets of raw speech directed to 22 children,
and its transcription. Word-level speech-text align-
ments were obtained automatically using forced
alignment. For each token-level audio snippet, a
set of 88 prosody features was extracted based on
a previously established feature set (Eyben et al.,
2016), including standard features derived from
F0–F3 formants, spectral shape and rhythm fea-
tures, intensity and MFCC features among others.
Type-level prosody features were obtained as av-
eraged token-level features for each word type.

3.4 Keystroke features

We extracted keystroke features from the publicly
available data from Killourhy and Maxion (2012).
This data contains key hold times and pauses of all
key presses of 20 subjects as they completed tran-
scription and free composition tasks. We only used
data from the free composition part. A pause is de-
fined by the authors as the duration from keydown

2https://github.com/ColiLea/prosodyAOA

to keydown. The free composition data consists of
a total of 14890 typed words and 2198 word types.

For each word, we extracted the following fea-
tures: (i) average key hold duration of all charac-
ters associated with producing the word, (ii) pre-
word pause, (iii) hold duration of space key before
word, (iv) pause length of space key press pause
before word, and (v) ratio of keypresses used in
the word production to length of the final word.
For each word, we also included these five fea-
tures for up to 3 words before. In total, we have
5 ∗ 4 = 20 keystroke features. We use lower-cased
word type averages, as with the other modalities.

3.5 Eigenwords

Eigenwords are standard, pre-trained word em-
beddings, induced using spectral-learning tech-
niques (Dhillon et al., 2015). We used the 30-
dimensional, pre-trained eigenvectors.3

3.6 Preliminary evaluation

Our application of these word representations and
their combinations is unsupervised POS and syn-
tactic chunk induction, but before presenting our
projection methods in §4 and our experiments in
§5, we present a preliminary evaluation of the dif-
ferent modalities using word association norms.

Table 1 shows the weighted correlation between
cosine distances in the representations and the hu-
man ratings in the word association norm datasets
available at wordvectors.org (Faruqui and
Dyer, 2014a). Eigenwords, not surprisingly, cor-
relates better than the representation based on pro-
cessing data – with the exception of prosody. The
correlation with prosody is non-significant, how-
ever, because of the small sample size.

4 Combining datasets

We now have word representations from differ-
ent, complementary modalities, with very differ-
ent coverages, but all including a small overlap.
We assume that the different modalities contain
complementary human text processing traces be-
cause they reflect different cognitive processes,
which motivates us to combine these different
sources of information. Our assumption is con-
firmed in the evaluation. The fact that we have
very low coverage for some modalities, and the

3http://www.cis.upenn.edu/˜ungar/
eigenwords/
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fact that we have an overlap between all our vo-
cabularies, specifically motivates an approach, in
which we use the intersection of word types to
learn a projection from two or more of these
modalities into a shared space. Obviously, we can
also simply concatenate our representations, but
because of the low coverage of some modalities
and because co-projecting modalities has some
regularization effect, we hypothesize that it is bet-
ter to learn a projection into a shared space. This
hypothesis is verified by the results in §6.

4.1 Concatenating modalities
The simplest way of combining the modalities is
concatenating the corresponding vectors for each
word. The different modalities have different di-
mensionalities, so we would need to perform di-
mensionality reduction to sum or average vectors,
and the non-overlapping words don’t allow for e.g.
taking the outer product, so we simply concatenate
the vectors instead. We use 0 for missing values.

4.2 CCA
§4.2 and §4.3 describe two different projection
methods for projecting the representations in the
different modalities into a shared space. We use
the intersection of the lower-cased vocabulary for
the alignment, i.e., as a supervision signal. For ex-
ample, if the words man, dog and speak exist in
both eigenword and keystroke data, from these 2
x 3 vectors, CCA estimate the transformation for
the vectors for house, cat and boy, which (in this
example) only exists in the keystroke data.

Canonical Correlation Analysis (CCA), as orig-
inally proposed by Hotelling (1936), is a method
of finding the optimum linear combination be-
tween two sets of variables, so the set of variables
are transformed onto a projected space while the
correlation is maximized. We use the implemen-
tation of Faruqui and Dyer (2014b) made for cre-
ating bilingual embeddings. We use modalities in-
stead of languages. The size of the projected space
is smaller than or equal to the original dimension.

We incrementally combine modalities and
project them to new, shared spaces using the in-
tersection of the lower-cased vocabulary. We add
them by the order of word type count starting with
the modality with most word types. For the first
projection only, we reduce the size of the projected
space. We set the ratio of the first projected space
(only two modalities) to 0.6 based on POS induc-
tion results on development data using the setup

described in §5.

4.3 SVD and Inverted Softmax

As an alternative to CCA, but closely related, we
also use a projection method proposed and imple-
mented by Smith et al. (2017), which uses sin-
gular value decomposition and inverted softmax
(SVD+IS). This method uses a reference space,
rather than projecting all modalities into a new
space. Smith et al. (2017) apply SVD+IS to obtain
an orthogonal transformation matrix that maps the
source language into the target language. In ad-
dition, in order to estimate their confidence on
the predicted target, they use an inverted softmax
function for determining the probability that a tar-
get word translates back into a source word.

Like for CCA, we incrementally project
datasets onto each other starting with the most
word-type rich modality. We use the highest di-
mensionality of any of our representations (88 di-
mensions).

5 Experiments

This section presents our POS and syntactic chunk
induction experiments. We present the datasets we
used in our experiments, the sequence tagging ar-
chitecture, based on second-order hidden Markov
models, as well as the dictionary we used to con-
strain inference at training and test time.

5.1 Data

For unsupervised POS induction, we use
Ontonotes 5.0 (Weischedel et al., 2013) for
training, development and test. We set all hyper-
parameters on the newswire (NW) domain,
optimizing performance on the development set.
Size of the development set is 154,146 tokens.
We run individual experiments on each of the
seven domains, with these hyper-parameters,
reporting performance on the relevant test set.
The domains are broadcast conversation (BC),
broadcast news (BN), magazines (MZ), newswire
(NW), the Bible (PT), telephone conversations
(TC), and weblogs (WB). We also train and test
unsupervised POS induction on the CoNLL 2007
(Nivre et al., 2007) splits of the Penn Treebank
(Marcus et al., 1993) using the hyper-parameter
settings from Ontonotes. We mapped all POS
labels to Google’s coarse-grained, universal POS
tagset (Petrov et al., 2012). For model selection,
we select based both on best results on Ontonotes
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Rules

DET → NP
VERB → VP

NOUN|PRONOUN|NUM → NP
. → O

ADJ → NP|ADJP
ADV → NP|VP|ADVP|AD
PRT → NP|PRT

CONJ → O|NP
ADP → PP|VP|SBAR

Table 2: Heuristics for expanding our POS dictionary to
chunks

NW development as well as Penn Treebank
development sets.

For syntactic chunk induction, we use the brack-
eting data from Penn Treebank with the standard
splits for syntactic chunking. We tune hyperpa-
rameters for chunking on the development set and
select best models based on the development re-
sult.

5.2 Model

We used a modification of the implementation of
a type-constrained, second-order hidden Markov
model with maximum entropy emissions from Li
et al. (2012) (SHMM-ME). It is a second-order
version of the first order maximum entropy HMM
presented in (Berg-Kirkpatrick et al., 2010) with
the important addition that it is constrained by a
crowd-sourced tag dictionary (Wiktionary). This
means that for all words in the Wiktionary, the
model is only allowed to predict one of the tags
listed for it in Wiktionary

The same model was used in Barrett et al.
(2016) to improve unsupervised POS inducing us-
ing gaze data from the Dundee Corpus, and in Bin-
gel et al. (2016) to augment an unsupervised POS
tagger with features from fMRI recordings.

The number of EM iterations used for inducing
our taggers was tuned using eigenvector embed-
dings on the development data, considering values
1..50. PoS performance peaked at iterations 30 and
31. We use 30 in all our POS experiments. For syn-
tactic chunking, we use 48 iterations, which led
to the best performance on the PTB development
data using only eigenword embeddings.

5.3 Wiktionary

The Wiktionary constrains the predicted tags in
our model. The better the Wiktionary, the better
the predictions.

For POS-tagging we used the same Wiktionary

Feature set TA

No embeddings 60.32
Eigenwords 59.26

Best combined models

CCA Dun GECO Pros 63.33*†
SVD+IS GECO Key Pros 62.91*
Concat Eig GECO Key 61.16

Table 3: Chunk tagging accuracy. Best models
from CCA, SVD+IS and concatenation. Model
section on development set. * p < .001 Mcnemar
mid-p test when comparing to no embeddings. †
p < .001 Mcnemar mid-p test when comparing to
Eigenwords.)

dump4 that Li et al. (2012) used in their orig-
inal experiments. The Wiktionary dump associ-
ated word types with Google’s universal parts-of-
speech labels.

For chunking, Wiktionary does not provide
direct information about the possible labels of
words. We instead apply simple heuristics to re-
late POS information to syntactic chunking labels.
Since we already know the relation between words
and POS labels from Wiktionary, we can compute
the transitive closure in order to obtain a dictionary
relating words with syntactic chunking labels. We
present the heuristics in Table 2.

Note that the rules are rather simple. We do not
claim this is the best possible mapping. We are re-
lying on these simple heuristics only to show that
it is possible to learn syntactic chunkers in an un-
supervised fashion by relying on a combination of
features from different modalities and a standard,
crowd-sourced dictionary.

6 Results

All our POS tagging accuracies can be seen in
Table 4. Our first observation is that human pro-
cessing data helps unsupervised POS induction. In
fact, the models augmented with processing data
are consistently better than the baseline without
vector representations, as well as better than only
using distributional word embeddings.

Generally, CCA seems to find the best projec-
tion into a common space for system combina-
tions. For Penn Treebank, the CCA-aligned model
is the best and this result is significant (p <

4https://code.google.com/archive/p/wikily-supervised-
pos-tagger/
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Ontonotes PTB
Feature set BC BN MZ NW PT TC WB avg

No embeddings 83.1 84.41 85.32 84.94 85.14 77.8 85.93 83.81 82.83
Eigenwords 83.16 84.68* 85.48 85.07 85.31 78.07 85.88 83.95 83.38*

Best Ontonotes NW models

CCA Eig Dun 83.45*† 84.99* 85.79* 85.38*† 85.2 77.99 86.38*† 84.17 84.28*†
SVD+IS Dun GECO Key 83.24 84.76 86.22*† 85.33*† 85.44 77.84 85.95 84.11 84.25*†
Concat Eig Dun GECO 83.39*† 84.78* 85.8*† 85.36*† 85.45 78.38* 86.21† 84.19 83.91*†

Best PTB models

CCA Eig Dun 83.45*† 84.99* 85.79* 85.38*† 85.2 77.99 86.38*† 84.17 84.28*†
SVD+IS Dun Key 83.24 84.59 86.12*† 85.28*† 85.39 77.90 85.86 84.05 84.24*†
Concat Eig Pros 83.22 84.54 85.67 85.01 84.98 77.98 85.97 83.91 84.22*†

Table 4: POS tagging accuracies for baselines and the model combinations that performed best on
newswire development data (NW). Best performance per domain is boldfaced. *) p < .001 McNemar
mid-p test when compared to the no embeddings condition for the corresponding test set. †) p < .001
McNemar mid-p test when compared to eigenwords for the corresponding test set.

.001) when comparing both to no embeddings and
eigenwords. For Ontonotes 5.0, CCA is better than
the other projection methods in 4/7 domains, but
when averaging, concatenation gets the higher re-
sult.

The standard embeddings are often part of the
best combinations, but the human processing data
contributes with important information; in 4/7 do-
mains as well as on PTB data, we see a signifi-
cantly better performance (p < .001) with a com-
bination of modalities when comparing to eigen-
words.

Aligning Dundee with eigenwords is the best
POS model both according to the Ontonotes 5.0
NW development set and the Penn Treebank de-
velopment set. Dundee is the most frequent modal-
ity in the six best POS induction models with five
appearances. Eigenwords is second most frequent
with four appearances.

The syntactic chunking accuracies are in Ta-
ble 3. Also here CCA is the better combination
method. For chunking, all combined models are
better than no embeddings and eigenwords. The
improvement is significant compared to no embed-
dings for concatenation p < .001. For CCA, the
result is significantly better than no embeddings
and eigenwords.

For chunking, GECO data appears in all best
models and is thus the most frequent modalities.
Keystroke and prosody appears in two best mod-
els each.

Keystroke Dundee GECO

Dundee 16.84
GECO 11.39 1.02
CCA all 13.98 3.72 3.09

Table 5: Graph similarities in [0,∞), 0 = identical.

7 Analysis

7.1 What is in the vectors?

Nearest neighbor graphs We include a detailed
analysis of subgraphs of the nearest neighbor
graphs in the embedding spaces of keystrokes,
Dundee, GECO, and CCA projection of all modal-
ities. Specifically, we consider the nearest neigh-
bor graphs among the 15 most frequent unam-
bigous nouns, according to Wiktionary.5 See Fig-
ure 2 for plots of the nearest neighbor graphs. The
prosody features containing less than 600 word
types only contained 2 of the 15 nouns and is
therefore not included in this analysis.

Projecting word representations into a shared
space using linear methods assumes approximate
isomorphism between the embedding spaces - or
at least their nearest neighbor graphs. We use the
VF2 algorithm (Cordella et al., 2001) to verify that
the subgraphs are not isomorphic, but this can also
be seen directly from Figure 2. Neither keystroke
and gaze embeddings, nor the two different gaze-
induced embeddings are isomorphic.

5Wiktionary is a crowd-sourced, imperfect dictionary, and
one of the ”unambiguous nouns” is spends, which, we as-
sume, you are more likely to encounter as a verb.
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(a) Keystroke (b) Dundee

(c) Geco (d) CCA projection, all modalities
Figure 2: Nearest neighbor graphs for 15 frequent nouns.

Since none of the modalities induce isomor-
phic nearest neighbor graphs, this does not tell
us much about similarities between modalities. To
quantify the similarity of non-isomorphic graphs,
we use eigenvector similarity Shigehalli and Shet-
tar (2011), which we calculate by computing the
Laplacian eigenvalues for the nearest neighbors,
and for each graph, find the smallest k such that
the sum of the k largest eigenvalues is <90% of
the eigenvalues. We then take the smallest k of the
two, and use the sum of the squared differences
between the largest k eigenvalues as our similarity
metric.

Using this metric to quantify graph similarity,
we see in Table 5 that, not surprisingly, the gaze
graphs are the most similar. The projected space
is more similar to the gaze spaces, but balances
gaze and keystroke information. The GECO em-
beddings agree more with the keystrokes than the
Dundee embeddings does.

t-SNE plots We take words that–according to
the Wiktionary–can only have one tag and sort
them by BNC frequency (Kilgarriff, 1995) in de-
scending order. For these words and their POS tags
we get the feature vector of the POS model yield-
ing the highest result on both Ontonotes and PTB:
CCA-projected eigenwords and Dundee features.
For the first 200 occurrences of the frequency-
sorted list, we reduce dimensionality using t-
Distributed Stochastic Neighbor Embedding (t-
SNE) (Maaten and Hinton, 2008) and plot the re-
sult. Figure 3 shows that 200 most frequent con-
tent words cluster with respect to their POS tag,
somewhat distinguishing verbs from nouns and
adjectives from adverbs in CCA space.

7.2 How big a Wiktionary do we need?

Our Wiktionary for English contains POS infor-
mation for 72,817 word types. Word types have
6.2 possible POS categories on average meaning
we have over 450.000 entries in our POS dic-
tionary. For Penn Treebank, 70.0% of wordtypes
of the test set are covered by the dictionary. For
the chunking data, 70.4% of wordtypes of the
test set are covered by the dictionary. The En-
glish Wiktionary is thus much bigger than wik-
tionaries for low-resource language (Garrette and
Baldridge, 2013). How big a dictionary is needed
to achieve good performance, and can we get away
with a smaller dictionary if we have processing
data? This section explores the performance of the
model as a function of the Wiktionary size.

We sorted the Wiktionary by word frequency
obtained from BNC (Kilgarriff, 1995) and in-
creased the Wiktionary size for the best POS sys-
tem starting with 0 (no dictionary). For each Wik-
tionary size, we compare with the baseline with-
out access to processing data and eigenwords. The
learning curve can be seen in Figure 4a and Fig-
ure 4b. We observe that having entries for the most
frequent words is a lot better than having no dic-
tionary, and that the difference between our best
system and the baseline exists across all dictionary
sizes. With 10,000 entries, all systems seems to
reach a plateau.

8 Discussion

Genres and domains When collecting our
human language processing data, we did not
control for genre. Our data sets span child-
directed speech, free text composition, and skilled
adults reading fiction and newspaper articles. The
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Figure 4: Learning curve assuming Wiktionary en-
tries for k most frequent words, comparing our
best PoS induction system against our baseline.
On Ontonotes WB development data, 30 training
iterations.

Dundee corpus (newspaper articles) matches the
genre of at least some of the Ontonotes test set.
Immonen and Mäkisalo (2010) found that for
keystroke, genre does seem to have an effect on
average pause length, be it sentence initial, word
initial, clause initial or phrase initial. Texts orga-
nized linearly–e.g. reports and narratives–require
less pausing than texts with a global approach, like
expository, persuading and generalizing text. Our
results show that human processing features trans-
fer across genres, but within-genre data would
probably be beneficial for results.

Richer representations The type-level features
we use, do not take context into account, and the
datasets we use, are too small to enrich our rep-
resentations. Human processing data is more and
more readily available, however. Eye trackers are
probably built into the next generation of con-
sumer hardware, and speech records and keystroke
logs are recordable with existing technology.

9 Conclusion

We have shown how to improve unsupervised
POS induction and syntactic chunking signifi-
cantly using data reflecting human language pro-
cessing. Our model, which is a second-order hid-
den Markov model, is the first to combine multidi-
mensional, continuous features of eye movements,
prosody and keystroke logs. We have shown that
these features can be combined using projection
techniques, even when they only partially over-
lap in word coverage. None of our models re-
quire access to these features at test time. We ex-
perimented with all combinations of modalities,
and our results indicate that eye tracking is use-
ful for both chunking and POS induction. Finally,
we have shown that the potential impact of human
processing data also applies in a low-resource set-
ting, i.e., when available tag dictionaries are small.
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Abstract

This paper presents a new corpus and a robust
deep learning architecture for a task in reading
comprehension, passage completion, on multi-
party dialog. Given a dialog in text and a pas-
sage containing factual descriptions about the
dialog where mentions of the characters are re-
placed by blanks, the task is to fill the blanks
with the most appropriate character names that
reflect the contexts in the dialog. Since there is
no dataset that challenges the task of passage
completion in this genre, we create a corpus by
selecting transcripts from a TV show that com-
prise 1,681 dialogs, generating passages for
each dialog through crowdsourcing, and anno-
tating mentions of characters in both the dialog
and the passages. Given this dataset, we build
a deep neural model that integrates rich feature
extraction from convolutional neural networks
into sequence modeling in recurrent neural net-
works, optimized by utterance and dialog level
attentions. Our model outperforms the previ-
ous state-of-the-art model on this task in a dif-
ferent genre using bidirectional LSTM, show-
ing a 13.0+% improvement for longer dialogs.
Our analysis shows the effectiveness of the at-
tention mechanisms and suggests a direction to
machine comprehension on multiparty dialog.

1 Introduction

Reading comprehension that challenges machine’s
ability to understand a document through question
answering has gained lots of interests. Most of the
previous works for reading comprehension have fo-
cused on either children’s stories (Richardson et al.,
2013; Hill et al., 2016) or newswire (Hermann et al.,
2015; Onishi et al., 2016). Few approaches have
attempted comprehension on small talks, although
they are evaluated on toy examples not suitable to
project real-life performance (Weston et al., 2015).
It is apparent that the main stream of reading com-
prehension has not been on the genre of multiparty

dialog although it is the most common and natural
means of human communication. The volume of
data accumulating from group chat or messaging
continues to outpace data accumulation from other
writing sources. The combination of available and
rapidly developing analytic options, a marked need
for dialogue processing, and the disproportionate
generation of data from conversations through text
platforms inspires us to create a corpus consisting
of multiparty dialogs and develop learning models
that make robust inference on their contexts.

Passage completion is a popular method of evalu-
ating reading comprehension that is adapted by sev-
eral standardized tests (e.g., SAT, TOEFL, GRE).
Given a document and a passage containing factual
descriptions about the contexts in the document, the
task replaces keywords in the passage with blanks
and asks the reader to fill in the blanks. This task is
particularly challenging when the document is in a
form of dialog because it needs to match contexts
between colloquial (dialog) and formal (passage)
writings. Moreover, a context that can be described
in a short passage, say a sentence, tends to be ex-
pressed across multiple utterances in dialog, which
requires discourse-level processing to make the full
interpretation of the context.

This paper introduces a new corpus for passage
completion on multiparty dialog (Section 3), and a
deep learning architecture that produces robust re-
sults for understanding dialog contexts (Section 4).
Our experiments show that models trained by this
architecture significantly outperform the previous
state-of-the-art model using bidirectional LSTM,
especially on longer dialogs (Section 5). Our analy-
sis highlights the comprehension of our models for
matching utterances in dialogs to words in passages
(Section 6). To the best of our knowledge, this is
the first time that the sentence completion task is
thoroughly examined with a challenging dataset on
multiparty dialog using deep learning models.
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Figure 1: The overview of passage generation. Each episode is split into scenes, and each summary is segmented
to sentences. Elasticsearch passes the scene-sentence pairs to crowd workers who are asked to check the relevancy,
replace all pronouns with the corresponding names, and generate new passages for the scenes (Section 3.1).

2 Related Work

Hermann et al. (2015) introduced the CNN/Daily
Mail dataset where documents and passages were
news articles and their summaries respectively, and
evaluated neural models with three types of readers.
Chen et al. (2016) proposed the entity centric model
and the bidirectional LSTM model using attention,
and conducted a thorough analysis on this dataset.
Trischler et al. (2016) presented the EpiReader that
combined a reasoner with an extractor for encoding
documents and passages using both CNN and RNN.
Dhingra et al. (2017) proposed the gated-attention
reader that incorporated attention on multiplicative
interactions between documents and passages. At
last, Cui et al. (2017) introduced the attention-over-
attention reader that placed document-to-passage
attention over passage-to-document attention.

Hill et al. (2016) released the Children Book Test
dataset where documents were children’s book sto-
ries and passages were excerpts from those stories.
Paperno et al. (2016) introduced the LAMBADA
dataset comprising novels from the Book corpus.
Onishi et al. (2016) introduced the Who-did-What
dataset consisting of articles from the LDC English
Gigaword newswire corpus. All corpora described
above provide queries, that are passages where cer-
tain words are masked by blanks, for the evaluation
of passage completion. More datasets are available
for another type of a reading comprehension task,
that is multiple choice question answering, such as
MCTest (Richardson et al., 2013), TriviaQA (Joshi
et al., 2017), RACE (Lai et al., 2017), and SQuAD
(Rajpurkar et al., 2016).

Unlike the other corpora where documents and
passages are written in a similar writing style, they
are multiparty dialogs and plot summaries in our
corpus, which have very different writing styles.
This raises another level of difficulty to match con-
texts between documents and queries for the task
of passage completion.

3 Corpus

The Character Mining project provides transcripts
of the TV show Friends for ten seasons in the JSON
format.1 Each season contains ≈24 episodes, each
episode is split into ≈13 scenes, where each scene
comprises a sequence of≈21 utterances. Chen et al.
(2017) annotated the first two seasons of the show
for an entity linking task, where personal mentions
(e.g., she, mom, Rachel) were identified by their
corresponding characters. Jurczyk and Choi (2017)
collected plot summaries of all episodes for the first
eight seasons to evaluate a document retrieval task
that returned a ranked list of relevant documents
given any sentence in the plot summaries.

For the creation of our corpus, we collect more
plot summaries for the last two seasons of Friends
from the fan sites suggested by Jurczyk and Choi
(2017), generate passages for each dialog using
the plot summaries and crowdsourced descriptions
(Section 3.1), then annotate mentions of all charac-
ters in both the dialogs and the passages for passage
completion (Section 3.2).

3.1 Passage Generation
An episode consists of multiple scenes, which may
or may not be coherent. In our corpus, each scene
is considered a separate dialog. The lengths of the
scenes vary from 1 to 256 utterances; we select
only scenes whose lengths are between 5 and 25 ut-
terances as suggested by the previous works (Chen
and Choi, 2016; Jurczyk and Choi, 2017), which
notably improves the readability for crowd workers,
resulting higher quality annotation.

The plot summaries collected from the fan sites
are associated with episodes, not scenes. To break
down the episode-level summaries into scene-level,
they are segmented into sentences by the tokenizer
in NLP4J.2 Each sentence in the plot summaries
1nlp.mathcs.emory.edu/character-mining
2https://github.com/emorynlp/nlp4j
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(a) A dialog from Friends: Season 8, Episode 12, Scene 2.
ID Speaker Utterance

1 - [Scene: Central Perk, @ent01 and @ent02 are there as @ent03 enters.]
2 @ent03 Hey! Oh, I’m so glad you guys are here. I’ve been dying to tell someone what happened in the Paleontology department today.
3 @ent01 (To @ent02) Do you think he saw us or can we still sneak out?
4 @ent03 Professor @ent04, the head of the department, so ...
5 @ent02 They made you head of the department!
6 @ent03 No, I get to teach one of his advanced classes! Why didn’t I get head of the department?
7 @ent01 Oh! Hey @ent02, listen umm ...
8 @ent02 Yeah.
9 @ent01 I got a big date coming up, do you know a good restaurant?

10 @ent02 Uh, @ent05’s Cafe. They got great food and it’s really romantic.
11 @ent01 Ooh, great! Thanks!
12 @ent02 Yeah! Oh, and then afterwards you can take her to the Four Seasons for drinks.

Or you go downtown and listen to some jazz. Or dancing - Oh! Take her dancing!
13 @ent01 You sure are naming a lot of ways to postpone xxx, I’ll tell ya ...
14 @ent02 Ooh, I miss dating. Gettin’ all dressed up and going to a fancy restaurant. I’m not gonna be able to do that for so long,

and it’s so much fun! I mean not that sitting at home worrying about giving birth to a sixteen pound baby is not fun.
15 @ent01 Hey, y’know what?
16 @ent02 Huh?
17 @ent01 Why don’t I take you out?
18 @ent02 What?! @ent01, you don’t want to go on a date with a pregnant lady.
19 @ent01 Yes I do! And we’re gonna go out, we’re gonna have a good time,

and take your mind off of childbirth and c-sections and-and giant baby heads stretching out ...
20 @ent02 (interrupting) Okay! I’ll go with ya! I’ll go! I’ll go with ya.
21 @ent01 I’ll be fun.
22 @ent02 All right?

(b) Passages generated for the dialog in (a).
ID Passage
1 @ent03 announces that @ent03 is going to be teaching a graduate class at the university.
2 @ent02 misses dressing up for romantic dates so @ent01 promises to take @ent02 out.
3 @ent02 misses dating, so @ent01 promises to show @ent02 a good time.
4 @ent01 asks @ent02 where to go on a date and then @ent01 decides to take @ent02 on a date to get @ent02’s mind off having a baby.

(c) Queries generated from the passages in (b).
ID Passage
1.a x announces that @ent03 is going to be teaching a graduate class at the university.
1.b @ent03 announces that x is going to be teaching a graduate class at the university.
2.a x misses dressing up for romantic dates so @ent01 promises to take @ent02 out.
2.b @ent02 misses dressing up for romantic dates so x promises to take @ent02 out.
2.c @ent02 misses dressing up for romantic dates so @ent01 promises to take x out.

· · ·
Table 1: An example dialog and its passages and queries from our corpus. All mentions are encoded by their entity
IDs. The queries are generated by replacing each unique entity in every passage with the variable x (Section 3.2).
@ent01: Joey, @ent02: Rachel, @ent03: Ross, @ent04: Neuman, @ent05: Paul.

is then queried to Elasticsearch that has indexed
the selected scenes, and the scene with the highest
relevance is retrieved. Finally, the retrieved scene
along with the queried sentence are sent to a crowd
worker who is asked to determine whether or not
they are relevant, and perform anaphora resolution
to replace all pronouns in the sentence with the
corresponding character names. The sentence that
is checked for the relevancy and processed by the
anaphora resolution is considered a passage.

Out of 6,014 sentences collected from the plot
summaries, 2,994 of them got turned into passages;
in other words, about a half of the sentences could
not be paired with relevant scenes by Elasticsearch.
In addition to these pseudo-generated passages, two
more sets of passages are created. For the first set,

crowd workers are asked to generate new passages
including factual descriptions different from the
ones that are pseudo-generated. This produced ad-
ditional 615 passages; however, passages in this
set could be biased toward the dominant characters.
To increase the diversity of the character entities in
the passages, crowd workers are asked to generate
the second set of passages that include factual de-
scriptions related to only non-dominant characters.
A total of 1,037 passages are generated in this set,
which makes passage completion even more chal-
lenging since the chance of the dominant characters
being the answers becomes much lower with this
second set. Figure 1 shows the overview of passage
generation. Note that Amazon Mechanical Turk is
used for all crowdsourcing.
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3.2 Mention Annotation
For all dialogs and their passages, mentions are first
detected automatically by the named entity recog-
nizer in NLP4J (Choi, 2016) using the PERSON

entity, then manually corrected. For each passage
including multiple mentions, a query is created for
every mention by replacing it with the variable x:

Rachel misses dating, so Joey offers to take Rachel out.
⇒ x misses dating, so Joey offers to take Rachel out.
⇒ Rachel misses dating, so x offers to take Rachel out.
⇒ Rachel misses dating, so Joey offers to take x out.

Following Hermann et al. (2015), all mentions im-
plying the same character are encoded by the same
entity ID. A different set of entity IDs are randomly
generated for each dialog; for the above example,
Joey and Rachel may be encoded by @ent01 and
@ent02 in this dialog (Table 1), although they can
be encoded by different entity IDs in other dialogs.
This random encoding prevents learning models
from overfitting to certain types of entities. On the
other hand, the same set of entity IDs are applied
to the passages associated with the dialog.

One issue still remains that characters in this
dataset are often mentioned by several aliases (e.g.,
nicknames, honorifics) such that it is not trivial to
cluster mentions implying the same character using
simple string matching. Thus, an entity dictionary
is created for each character whose key is the name
of the character and the value is a list of aliases for
the character, manually inspected throughout the
entire show. This entity dictionary is then used to
link mentions in both the dialogs and the passages
to their character entities.

Type Count
# of dialogs 1,681
# of passages 4,646
# of queries 13,487
Avg. # of utterances per dialog 15.8
Avg. # of tokens per dialog/passage 290.8 / 19.9
Avg. # of mentions per dialog/passage 24.4 / 3.0
Avg. # of entities per dialog/passage 5.4 / 2.2
Max # of mentions per dialog/passage 117 / 15
Max # of entities per dialog/passage 16 / 7

Table 2: The overall statistics of our corpus.

Table 2 shows the overall statistics of our corpus.
It is relatively smaller than the other corpora (Sec-
tion 2). However, it is the largest, if not the only,
corpus for the evaluation of passage completion on
multiparty dialog that still gives enough instances
to develop meaningful models using deep learning.

4 Approach

This section presents our deep learning architecture
that integrates rich feature extraction from convolu-
tional neural networks (CNN) into robust sequence
modeling in recurrent neural networks (RNN) (Sec-
tion 4.1). The combination of CNN and RNN has
been adapted by several NLP tasks such as text sum-
marization (Cheng and Lapata, 2016), essay scor-
ing (Dong et al., 2017), sentiment analysis (Wang
et al., 2016), or even reading comprehension (Dhin-
gra et al., 2017). Unlike previous works that feed a
sequence of sentences encoded by CNN to RNN, a
sequence of utterances is encoded by CNN in our
model, where each utterance is spoken by a distinct
speaker and contains one or more sentences that
are coherent in topics. Our best model is optimized
by both the utterance (Section 4.2) and the dialog
(Section 4.3) level attentions, showing significant
improvement over the pure CNN+RNN model.

4.1 CNN + LSTM

Each utterance comes with a speaker label encoded
by the entity ID in our corpus (Table 1). This entity
ID is treated as the first word of the utterance in
our models. Before training, random embeddings
are generated for all entity IDs and the variable x
with the same dimension d as word embeddings.
All utterances and queries are zero-padded to their
maximum lengths m and n, respectively.

Convolution

U1

Convolution

Uk

LSTM↓d LSTM↓d

LSTM↑d LSTM↑d

· · ·

· · ·

Q

LSTM↓q LSTM↓q

LSTM↑q LSTM↑q

· · ·

· · ·
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D

· · ·

~u1 ~uk

~h #d ~h #q~h "q~h "d

Softmax

Figure 2: The overview of the CNN+LSTM model.

Given a query and a dialog comprising k-number
of utterances, the query matrix Q ∈ Rn×d and the
utterance matrix Ui ∈ Rm×d are created using the
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word, entity, and variable embeddings ∀i ∈ [1, k].
For each Ui, 2D convolutions are performed for 2-5
grams, where each convolution takes f -number of
filters and the output of every filter is max-pooled,
resulting a vector of the size f . These vectors are
concatenated to create the utterance embedding
~ui ∈ R1×4·f , then the utterance embeddings are
stacked to generate the dialog matrix D ∈ Rk×4·f .
This dialog matrix is fed into a bidirectional LSTM
consisting of two networks, LSTM↓d and LSTM↑d,
that process the sequence of utterance embeddings
in both directions. In parallel, Q is fed into another
bidirectional LSTM with LSTM↓q and LSTM↑q that
process the sequence of word embeddings in Q.
Each LSTM returns two vectors from the last hid-
den states of LSTM↓∗ and LSTM↑∗:
~h ↓d= LSTM ↓d (D) ~h ↑d= LSTM ↑d (D)

~h ↓q= LSTM ↓q (Q) ~h ↑q= LSTM ↑q (Q)

All the outputs of LSTMs are concatenated and fed
into the softmax layer that predicts the most likely
entity for x in the query, where each dimension of
the output layer represents a separate entity:

O = softmax(~h ↓d ⊕~h ↑d ⊕~h ↓q ⊕~h ↑q)
predict(U1, . . . ,Uk,Q) = argmax(O)

Figure 2 demonstrates our CNN+LSTM model that
shows significant advantage over the pure bidirec-
tional LSTM model as dialogs get longer.

4.2 Utterance-level Attention
Inspired by Yin et al. (2016), attention is applied
to every word pair in the utterances and the query.
First, the similarity matrix Si ∈ Rm×n is created
for each utterance matrix Ui by measuring the sim-
ilarity score between every word in Ui and Q:

Si[r, c] = sim(Ui[r, :],Q[c, :])

sim(x, y) = 1/(1+‖x−y‖)

The similarity matrix is then multiplied by the atten-
tion matrix A ∈ Rn×d learned during the training.
The output of this multiplication produces another
utterance embedding U′i ∈ Rm×d, which is chan-
neled to the original utterance embedding Ui and
generates the 3D matrix Vi ∈ R2×m×d (Figure 3):

U′i = Si ·A
Vi = Ui �U′i

Vi is fed into the CNN in Section 4.1 instead of Ui
and constructs the dialog matrix D.

Q

�

Ui

Si

U0
i

⌦

Vi

A
Figure 3: The overview of the utterance-level attention.

4.3 Dialog-level Attention
The utterance-level attention is for the optimization
of local contents through word similarities between
the query and the utterances. To give a global view
to the model, dialog-level attention is applied to the
query matrix Q and the dialog matrix D. First, 1D
convolutions are applied to each row in Q and D,
generating another query matrix Q′ ∈ Rn×e and
dialog matrix D′ ∈ Rm×e, where e is the number
of filters used for the convolutions.

DQ ⌦

⌦ ⌦

Q0 D0

P
~pc

~pr~aq ~ad

1D Convolution

Sum

Figure 4: The overview of the dialog-level attention.

Q′ is then multiplied to D′T , resulting another sim-
ilarity matrix P ∈ Rn×m. Furthermore, the sum of
each row in P is concatenated to create ~pc ∈ Rn×1,
and the sum of each column in P is also concate-
nated to create ~pr ∈ R1×m:

P = Q′ ·D′T

~pc[r] =
∑m

j=1 P [r, j]

~pr[c] =
∑n

j=1 P [j, c]

~pTc is multiplied to Q′ and ~pr is multiplied to D′,
producing the attention embeddings ~aq ∈ R1×e
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Model Development Set Evaluation Set
Org. 25 50 100 Org. 25 50 100

Human Evaluation - - - - 74.02 - - -
Majority 28.61 27.65 21.57 19.79 30.08 28.23 21.58 17.59
Entity Centric 52.28 45.29 45.82 42.17 47.36 43.83 45.56 42.47
Bi-LSTM 72.24 68.90 64.51 55.17 71.21 67.37 62.95 53.76
CNN+LSTM 70.97 70.24 69.40 65.43 70.28 69.20 68.35 64.13
CNN+LSTM+UA 72.42 71.73 70.67 66.46 71.84 69.88 69.18 66.99
CNN+LSTM+DA 72.24 71.30 70.21 66.37 71.46 69.88 69.30 65.51
CNN+LSTM+UA+DA 72.21 72.14 71.45 67.86 72.42 71.01 69.98 66.99

Table 3: Results on the development and the evaluation sets from all models.

and ~ad ∈ R1×e, respectively. Finally, these atten-
tion embeddings are concatenated with the outputs
of the LSTMs in Section 4.1 then fed into the soft-
max layer to make the prediction:

~aq = ~pTc ·Q′

~ad = ~pr ·D′

O = softmax(~h ↓d ⊕~h ↑d ⊕~h ↓q ⊕~h ↑q ⊕~ad ⊕ ~aq)
predict(U1, . . . ,Uk,Q) = argmax(O)

Similar attentions have been proposed by Yin et al.
(2016) and evaluated on NLP tasks such as answer
selection, paraphrase identification, and textual en-
tailment; however, they have not been adapted to
passage completion. It is worth mentioning that
we have tried many other kinds of attention mecha-
nisms and empirically found that the combination
of these two attentions yields the best result for the
passage completion task.

5 Experiments

The Glove 100-dimensional pre-trained word em-
beddings (Pennington et al., 2014) are used for all
experiments (d = 100). The maximum lengths of
utterances and queries are m = 92 and n = 126,
and the maximum number of utterances is k = 25.
For the 2/1D convolutions in Sections 4.1 and 4.3,
f = e = 50 filters are used, and the ReLu acti-
vation is applied to all convolutional layers. The
dimension of the LSTM outputs ~h ↓↑∗ is 32, and
the tanh activation is applied to all hidden states
of LSTMs. Finally, the Adam optimizer with the
learning rate of 0.001 is used to learn the weights
of all models. Table 4 shows the dataset split for
our experiments that roughly gives 80/10/10% for
training/development/evaluation sets.

Train Develop Evaluate Total
Queries 10,785 1,349 1,353 13,487

Table 4: Dataset split for our experiments, where each
query is considered a separate instance.

5.1 Utterance Pruning

Most utterances in our corpus are relatively short
except for a few ones so that padding all utterances
to their maximum length is practically inefficient.
Thus, pruning is used for those long utterances.
For any utterance containing more than 80 words,
that is about 1% of the entire dataset, stopwords are
removed. If the utterance still has over 80 words, all
words whose document frequencies are among the
top 5% in the training set are removed. If the length
is still greater than 80, all words whose document
frequencies are among the top 30% in the training
set are removed. By doing so, we reduce down the
maximum length of utterances from 1,066 to 92,
which dramatically speeds up the modeling without
compromising the accuracy.

5.2 Datasets with Longer Dialogs

The average number of utterances per dialog is 15.8
in our corpus, which is relatively short. To demon-
strate the model robustness for longer dialogs, three
more datasets are created in which all dialogs have
the fixed lengths of 25, 50, and 100 by borrowing
utterances from their consecutive scenes. The same
sets of queries are used although models need to
search through much longer dialogs in order to an-
swer the queries for these new datasets. The three
pseudo-generated datasets as well as the original
dataset are used for all our experiments.

5.3 Human Evaluation

Human performance is examined on the evaluation
set of the original length using crowdsourcing. The
workers are presented with passages and the corre-
sponding dialogs and asked to choose the answer
from the list of entities that appear in the dialog.
For fair comparisons, the encoded input where the
character names are replaced with the entity IDs
are used for this evaluation as well, to minimize
the bias from external knowledge.
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5.4 Baselines

Three models are used to establish comprehensible
baseline results:

Majority This model picks the dominant entity
in the dialog as the answer for each query.

Entity Centric This is our reimplementation of
Chen et al. (2016)’s entity centric model. Our entity
centric model was evaluated on the CNN/Daily
Mail dataset and showed a comparable result to the
previous work.

Bi-LSTM This is the bidirectional LSTM model
introduced by Chen et al. (2016), which outper-
forms their entity centric model by a large margin.
We use their implementation of this model;3 the
input to this model is a list of words across all utter-
ances within the dialog. All hyperparameters are
tuned using the development set.

5.5 Results

Table 3 shows the results from all models. The
human performance on the evaluation set is only
1.6+% higher than the best performing model,
which on part shows the difficulty of the task. It
should be noted that character anonymization pro-
cess makes it harder to for people to find the answer.
However, it also possible that some participants
of the evaluation may enter the answer randomly
(i.e the results may not truly reflect human perfor-
mance). Notice that the performance of the major-
ity model on our dataset is similar to the ones in the
CNN/Daily Mail dataset, which validates the level
of difficulty in our corpus. As expected, the entity
centric model sets its performance in between the
majority model and the other deep learning models.
For all of our models and Bi-LSTM, experiments
are run three times with different random seeds and
the accuracies are averaged. The accuracy of Bi-
LSTM reported on the CNN dataset is 72.4, which
is similar to its performance on our dataset. Our
models coupled with both the utterance-level and
the dialog-level attentions (CNN+LSTM+UA+DA)
outperform all the other models except for the one
on the development set of the original dataset. Our
models show significant advantage over Bi-LSTM
as the length of the dialog gets larger.

Figure 5 shows the learning curves from Bi-
LSTM and CNN+LSTM+UA+DA on the original
dataset. The red circle and the black star mark the
3github.com/danqi/rc-cnn-dailymail
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Figure 5: Training curves on the original dataset.

peaks of CNN+LSTM+UA+DA and Bi-LSTM, re-
spectively. Although the accuracies between these
models are very similar, our model converges in
fewer epochs. Figure 6 shows the learning curves
from both models in 3 trials on the length-100
dataset. Our models take fewer epochs to con-
verge and the variance of performance across trials
is smaller, implying that our models are not as sen-
sitive to the hyperparameter tuning as Bi-LSTM.

Figure 6: Training curves on the length-100 dataset.

6 Analysis

6.1 Attention Visualization
Figure 7 depicts the dialog-level attention matrix,
that is P in Section 4.3, for the example in Table 1.
The x-axis and y-axis denote utterances and words
in the query, respectively. Each cell represents the
attention value between a word in the query and
an utterance. From this visualization, we see that
query words such as misses, take, good, and time
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have the most attention from utterances as they are
the keywords to find the answer entity. The utter-
ances 14, 15 and 17 that give out the answer also
get relatively high attention from the query words.
This illustrates the effectiveness of the dialog-level
attention in our model.
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Figure 7: Visualization of the dialog-level attention ma-
trix P for the example in Table 1.

6.2 Comparisons

Table 5 shows the confusion matrix between Bi-
LSTM and CNN+LSTM +UA+DA on the original
dataset. During the error analysis, it is noticed
that Bi-LSTM is better at capturing exact string
matches or paraphrases. As shown by the first two
examples in Table 6, it is clear that those queries
can be answered by capturing just the snippets of
the dialogs. In the first example, “x makes up
his mind about something” in the query matches
“@ent06 sets his mind on something” in the dialog.

Model Bi-LSTM: T Bi-LSTM: F
C+L+U+D: T 850 133
C+L+U+D: F 118 252

Table 5: The confusion matrix between Bi-LSTM and
CNN+LSTM+UA+DA.

In the second example, query phrase “the closet that
x and @ent03 were in” also has the exact string
match“the closet @ent18 and @ent03 were in” in
the dialog. Although these cues are usually parts
of sentences in long utterances, since Bi-LSTM is
based on only words, it still is able to locate them
correctly. On the other hand, our model encodes
each utterance and then feeds encoded vectors to
LSTMs, so the high level representation of the cues
are mixed with other information, which hinders
the model’s ability to find the exact string matches.

Our model is better at answering queries that re-
quire inference from multiple utterances. As shown
by the last two examples in Table 6, the cues to the
answers distribute across several utterances and
there is no obvious match of words or phrases. In
the third example, the model needs to infer that
in the sentence “(She reaches over to look at the
label on the box)”, she refers to @ent18 and con-
nect this information with the later utterance by
@ent18 “This is addressed to Mrs. @ent16 down-
stairs” in order to answer the query. In the last
example, finding the correct answer requires the
model to interpret that the utterances “What the
hell was that?!” and “(They both scream and jump
away.)” reflect the outcome of startles, which is
the verb in the query. As dialogs become longer
in the padded datasets, because of the utterance
encoding procedure, our model’s ability’s ability to
locate relevant part of dialog is not influenced as
much, whereas it becomes much more difficult for
Bi-LSTM to find the matches.

6.3 Discussion

It is worth mentioning that besides the models pre-
sented in Section 4, the attention-over-attention
reader was also experimented with our dataset,
which outperformed various neural systems by a
large margin on both the CNN news dataset and the
Children Book Test dataset (Cui et al., 2017). We
first reimplemented their model and experimented
on the CNN dataset and achieved similar results
as reported in the previous paper. We then exper-
imented this model on our original length dataset.
However, even after an extensive hyperparameter
turning on the development set, this model did not
achieve results comparable to those of either Bi-
LSTM or our models, so we did not make a further
analysis on this model.

7 Conclusion

We introduce a new corpus consisting of multiparty
dialogs and crowdsourced annotation for the task
of passage completion. To the best of our knowl-
edge, this is the first corpus that can challenge deep
learning models for passage completion on this
genre. We also present a deep learning architec-
ture combining convolutional and recurrent neural
networks, coupled with utterance-level and dialog-
level attentions. Models trained by our architec-
ture significantly outperform the one trained by
the pure bidirectional LSTM, especially on longer
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Model Query Dialog

Bi-LSTM
@ent12 says that once x makes up his mind Because you know as well as I do that once @ent06
about something, @ent06 will have xxx with it. sets his mind on something, more often than not,

he ’s going to have sex with it.

Bi-LSTM
@ent06 points out that people are screwing Oh, by the way. Two people screwing in there
in the closet that x and @ent03 were in. (points to the closet @ent18 and @ent03 were in)

if you want to check that out.
@ent18 This is the best cheesecake I have ever had.
Where did you get this? (She reaches over to look

CNN+LSTM x saw on the box that the cheesecake at the label on the box.) @ent10 It was at the front
+UA+DA was addressed to Mrs. @ent16. door. When I got home. Somebody sent it to us.

@ent18 @ent10, this is not addressed to you.
This is addressed to Mrs. @ent16 downstairs. ...

CNN+LSTM @ent17 startles @ent02 and x in the hallway @ent17 DANGER !!! DANGER !!!!!
+UA+DA to prove @ent17’ point, which sets off an @ent02 @ent17 !!! @ent03 What the hell was

on-going competition of psuedo-attacks. that ?! (They both scream and jump away.)

Table 6: Examples for model comparison. The first column denotes the model that makes the correct prediction.

dialogs. Our analysis demonstrates the compre-
hension of our model using the attention matrix.
For the future work, we will expand the annotation
for more entity types and automatically link men-
tions with respect to their entities using an entity
linker. All our resources including the annotated
corpus and source codes of the models are avail-
able at: https://github.com/emorynlp/
reading-comprehension.
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Abstract

In this paper, we propose a generalizable di-
alog generation approach that adapts multi-
turn reasoning, one recent advancement in the
field of document comprehension, to gener-
ate responses (“answers”) by taking current
conversation session context as a “document”
and current query as a “question”. The major
idea is to represent a conversation session into
memories upon which attention-based mem-
ory reading mechanism can be performed mul-
tiple times, so that (1) user’s query is properly
extended by contextual clues and (2) optimal
responses are step-by-step generated. Consid-
ering that the speakers of one conversation are
not limited to be one, we separate the single
memory used for document comprehension
into different groups for speaker-specific topic
and opinion embedding. Namely, we utilize
the queries’ memory, the responses’ memory,
and their unified memory, following the time
sequence of the conversation session. Experi-
ments on Japanese 10-sentence (5-round) con-
versation modeling show impressive results on
how multi-turn reasoning can produce more
diverse and acceptable responses than state-
of-the-art single-turn and non-reasoning base-
lines.

1 Introduction

Dialogue systems such as chatbots are a thriving
topic that is attracting increasing attentions from
researchers (Sordoni et al., 2015; Serban et al.,
2016; Li et al., 2015; Wen et al., 2016). Recent
achievements, such as deep neural networks for
text generating, user profiling (Li et al., 2014), and
natural language understanding, have accelerated
the progresses of this field, which was historically
approached by conventional rule-based and/or sta-
tistical response ranking strategies.

∗Work done when Ander was an intern in Microsoft. Wu
and Ander contributed equally to this paper.

Response ranking models retrieve the most suit-
able response(s) from a fixed set of (question,
answer) pairs given a dialogue context and cur-
rent query from a user (Banchs and Li, 2012;
Lowe et al., 2015). Learning-to-rank approaches
were applied to compute the similarity scores of
between (query, context) and indexed candidate
(question, answer) pairs to return the optimal “an-
swer” to the user. These ranking-based retrieval
strategies have been well-applied as an impor-
tant approach to dialogue systems, yet the set of
scripted responses are limited and are short at gen-
eralization. On the other hand, statistical machine
translation (SMT) systems have been applied to
dialogue systems (Ritter et al., 2011), taking user’s
query as a source language sentence and the chat-
bot’s response as a target language sentence. La-
beled data for learning-to-ranking training will not
be necessary anymore and all we need is the large-
scale (question, answer) pairs.

The sequence-to-sequence model proposed in
(Sutskever et al., 2014) applied end-to-end train-
ing of neural networks to text generation. This
model, further enhanced by an attention mecha-
nism (Bahdanau et al., 2014), was generic and
allowed its application to numerous sequence-
to-sequence learning tasks such as neural ma-
chine translation (NMT) (Cho et al., 2014; Bah-
danau et al., 2014), image captioning (Donahue
et al., 2015; Mao et al., 2015), speech recogni-
tion (Chan et al., 2015) and constituency parsing
(Vinyals et al., 2015). The simplicity of these
models makes them attractive, since “translation”
and “alignment” are learned jointly on the fly.

Specially, Vinyals and Le (2015) applied the
sequence-to-sequence model to conversational
modeling and achieved impressive results on var-
ious datasets. Their model was trained to predict
a response given the previous sentence (s). Shang
et al. (2015) combined local and global attentions
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and reported better results than retrieval based sys-
tems. Sordoni et al. (2015) explored three differ-
ent end-to-end approaches for the problem of pre-
dicting the response given a query attached with a
single message context.

Multi-turn conversation modeling is considered
to be more difficult than machine translation, since
there are many more acceptable responses for a
given (context, query) input and these often rely
on external knowledge and/or contextual reason-
ing. Dialogue systems trained with a maximum
likelihood estimation (MLE) objective function, as
most SMT utilizes, often learn to reply generic
sentences as “I don’t know” or “sounds good”,
which have a high incidence in the “answer” part
of (question, answer) style training datasets. There
have been various attempts at diversifying the re-
sponses (Li et al., 2016a; Yu et al., 2016; Li et al.,
2017) but the lack of variations in the responses
remains as an essential challenge. We wonder that
if this stress can be relieved by modeling the prior
context in a rather fine-grained way.

In document comprehension fields, multi-turn
reasoning (also called multi-hop reasoning) has
delivered impressive results by assimilating vari-
ous pieces of information to produce an unified
answer (Hill et al., 2015; Dhingra et al., 2016).
Through multi-turn reading the document’s mem-
ory using attention models, current question can
be extended with much richer knowledge. This
makes it easier to figure out the correct answer
from that document. Different documents need to
be read different times to yield out the correct an-
swer for the input question. Specially, Shen et al.
(2016) use a dynamic number of turns by intro-
ducing a termination gate to control the number of
iterations of reading and reasoning.

Motivated by the reasoning network for docu-
ment comprehension (Shen et al., 2016), we pro-
pose multi-turn reasoning neural networks that
generate the proper response (or, “answer”) by
attention-based reasoning from current conver-
sation session (“document”) and current query
(identical to “question” in document comprehen-
sion) from the user. In particular, our networks
utilize conversation context and explicitly sep-
arate speakers’ interventions into sentence-level
and conversation-level memories. Our first model
uses plain single-turn attention to integrate all
the memories, and the second approach integrates
multi-turn reasoning. The formulation of our pro-

posed approach is designed in a generalized way,
allowing for inclusion of additional information
such as external knowledge bases (Yih and Ma,
2016; Ghazvininejad et al., 2017; Han et al., 2015)
or emotional memories (Zhou et al., 2017). More-
over, our approach for two-speaker scenario can
be easily extended to group chatting by a further
speaker-specific memory splitting.

We evaluate the performances of our meth-
ods by comparing three configurations trained on
a Japanese twitter conversation session dataset.
Each conversation session contains 10 sentences
which are 5-round between two real-world speak-
ers. The results provide evidences that multi-turn
reasoning neural networks can help improving the
consistency and diversity of multi-turn conversa-
tion modeling.

This paper is structured as follows: Section 2
gives a general description of multi-turn conver-
sation modeling; Section 3 describes background
neural language modeling, text generation, and at-
tention mechanisms; Section 4.1 first introduces a
model with multiple attention modules and then
explains how the multi-turn reasoning mechanism
can be further integrated into the previous mod-
els; Sections 5, 6 and 7 describe the experimen-
tal settings and results using automatic evaluation
metrics, detailed human-evaluation based analy-
sis, and conclusions, respectively.

2 Multi-turn Conversation Modeling

Consider a dataset D consisting of a list of con-
versations between two speakers. Each conversa-
tion d ∈ D is an ordered sequence of sentences
si, where i ∈ [1, Td] and Td is the number of sen-
tences in d, produced by two speakers alternately.
In this way, for si, sj ∈ d, both sentences are from
the same speaker if and only if i ≡ j (mod 2).
Note that, our definition includes the case that one
speaker continuously expresses his/her message
through several sentences. We simply concatenate
these sentences into one to ensure that the conver-
sation is modeled with alternate speakers.

A multi-turn conversation model is trained to
search parameters that maximize the likelihood of
every sentence si ∈ d where i ≥ 2, supposing
that the beginning sentence s1 is always given as a
precondition:

θM = argmax
θ
{L(θ,D)}, (1)

2050



where

L(θ,D) =
∑

d∈D

Td∏

i=2

p(si|s<i). (2)

Here, s<i are sentences sj ∈ d and j < i.
The probability of each sentence, p(si|s<i), is

frequently estimated by a conditional language
model. Note that, traditional single-turn conver-
sation models or NMT models are a special case
of this model by simply setting Td to be 2. That
is, the generation of the next sentence is session-
insensitive and is only determined by the former
single sentence. Another aspect of understand-
ing this contextual conversation model is that, the
number of reference contextual sentences s<i is
not limited to be one. Suppose there are already 9
sentences known in one conversation session and
we want to generate the 10-th sentence, then from
p(s1) to p(s9) are all preconditions and we will
only need to focus on estimating p(s10|s<10).

We adapt sequence-to-sequence neural models
(Sutskever et al., 2014) for multi-turn conversa-
tion modeling. They are separated into an encoder
part and a decoder part. The encoder part applies
a RNN on the input sequence(s) s<i to yield prior
information. The decoder part estimates the prob-
ability of the generated output sequence si by em-
ploying the last hidden state of the encoder as the
initial hidden state of the decoder. Sutskever et al.
(2014) applied this technique to NMT and impres-
sive experimental results were reported thereafter.

Using Equation 2, we are modeling two chat-
bots talking with each other, since all the s2,...,Td
are modeled step-by-step on the fly. However, we
can add constraints to determine whose responses
to be generated, either one speaker or both of
them. That is, when i takes odd integers of 1, 3, 5
and so on, we are modeling the first speaker. Even
integers of i indicates a generation of responses for
the second speaker.

3 Language Modeling and Text
Generation

Language models (LM) are trained to compute the
probability of a sequence of tokens (words or char-
acters or other linguistic units) being a linguistical
sentence. Frequently, the probability of a sentence
s with Ts tokens is computed by the production
of the probabilities of each token yj ∈ s given its

contexts y<j and y>j :

p(s) =

Ts∏

j=1

p(yj |y<j , y>j). (3)

When generating a sequence based on a LM,
we can generate one word at a time based on the
previously predicted words. In this situation, only
the previously predicted words are known and the
probability of current sequence is approximated
by dropping the posterior context. That is,

p(yj |y<j , y>j) ≈ p(yj |y<j). (4)

We construct a sequence generation LM using
sequence-to-sequence neural network f . The neu-
ral network intercalates linear combinations and
non-linear activate functions to estimate the prob-
ability of mass function. Then, in the encoder part
of f , the contextual information is represented by
a fixed-size hidden vector hj :

p(yj |y<j , y>j) ≈ f(yj−1, hj , θf ), (5)

where θf represents f ’s trainable parameters.
To embed the previous word sequence into

a fixed-size vector, recurrent neural networks
(RNN) such as long short term memory (LSTM)
networks (Hochreiter and Schmidhuber, 1997) or
gated recurrent units (GRU) (Cho et al., 2014) are
widely used. These networks repeat a recurrent
operation on each input word:

hj = g(hj−1, yj−1, θg), (6)

where θg represents the trainable parameters of a
RNN function g, and hj is the hidden state of the
RNN at time j.

3.1 Conditional Language Modeling
The hidden state h of a RNN can accumulate infor-
mation from previous words (yj ∈ s and j < Ts)
or previous sentences (si ∈ d and i < Td) which
ensures the encoding and decoding processes in
sequence-to-sequence models. Since the contex-
tual sentences are known already, the encoder can
represent them in both forward (~hj) and back-
ward ( ~hj) directions. The results from both re-
cursions can be combined by a concatenated op-
eration. This is referred to as bidirectional RNN
shorted as BiRNN (Schuster and Paliwal, 1997).

hj = [~h>j ; ~h
>
j ]
>. (7)
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For each sentence si ∈ d (i < Td), we
annotate the combination of the final states of
each RNN direction as a memory vector mi =

[(~h
(i)
Tsi

)T; ( ~h
(i)

1 )T]T. A projection of annotationmi

can be used as the decoder’s initial state t0 such as
t0 = tanh(WsmTd′ ) and Td′ < Td. Ws here is
a weight matrix that projects mTd′ into a vector
that shares a same dimension with t0. In (Bah-
danau et al., 2014) for NMT, ~h1, backward encod-
ing of a single source sentence, was used to initial-
ize t0 = tanh(Ws

~h1).

3.2 Attention Mechanism

Summarizing all contextual information into one
single fixed-length vector becomes weaker to
guide the generation of the target sentence as the
contextual information grows longer. To tackle
this problem, an attention mechanism (Bahdanau
et al., 2014) was applied to NMT for learning to
align and translate jointly. In this attention-based
model, the conditional probability in Equation 4 is
defined as:

p(yj |y<j) = f(yj−1, tj , cj , θf ), (8)

where

tj = g(tj−1, yj−1, cj , θg) (9)

is a RNN hidden state in the decoder part for time
j and cj =

∑Ts
i=1 α

(j)
i hi is a context vector, a

weighted combination of the annotation set mem-
ory (h1, ..., hTs) produced by encoding a source
sentence swith length Ts. The weight α(j)

i of each
(source) annotation hi is computed by

α
(j)
i =

exp(e
(j)
i )

∑Ts
l=1 exp(e

(j)
l )

. (10)

where e(j)i is an alignment model and is imple-
mented by a feed-forward network a:

e
(j)
i = a(hi, tj−1). (11)

This method was applied to single-turn conver-
sation modeling (Vinyals and Le, 2015). We use
this model, with attention over each immediately
previous sentence si−1 ∈ d for generating si, as
a baseline for our experiments. We annotate this
model as SIMPLE subsequently in this paper.

4 Multi-turn Reasoning Network with
Multiple Type Memories

The attention mechanism described in Equations
8 and 9 is performed in a single-turn feed-forward
fashion. However, for complex context and com-
plex queries, human readers often revisit the given
context in order to perform deeper inference af-
ter one turn reading. This real-world reading phe-
nomenon motivated the multi-turn reasoning net-
works for document comprehension (Shen et al.,
2016). Considering dialog generation scenario
with given rich context, we intuitively think if the
attentions can be performed multi-turns so that the
conversation session is better understood and the
simple query, which frequently omits unknown
number of context-sensitive words, can be ex-
tended for a better generation of the response. The
domain adaptation from document comprehension
to dialog generation is feasible by taking the rich
context of the speakers as a “document”, current
user’s query as a “question” and the chatbot’s re-
sponse as an “answer”.

However, there are still several major chal-
lenges for this domain adaptation. First, a docu-
ment is frequently written by a single author with
one (hidden) personality, one writing style, and
one distribution of the engagement rates of the top-
ics appearing in that document. These are not the
case for conversation scenario in which at least
two speakers are involved with different (hidden)
personalities, personalized speaking styles, and di-
verse engagement rate distributions of the topics in
that conversation session. Second, for document
comprehension, the output is frequently a single
named entity (Shen et al., 2016) and thus a single
softmax function can satisfy this one-shot rank-
ing problem. However, we will need a RNN de-
coder utilizing context vectors for generating the
target response sentence being a sequence of to-
kens (words or characters) instead of one single
named entity.

We tackle the first challenge by separating the
context into multiple type memories upon which
attention models are performed. For the second
difference, we replace the simple softmax output
layer by a GRU decoder employing reasoning-
attention context vectors.

4.1 Separation of contextual information

The SIMPLEmodel can use multiple turns of con-
text to infer the response by concatenating them
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during decoding, using a separator symbol such
as EOS for end-of-sentence. Sordoni et al. (2015)
separated the query message and the previous two
context messages when conditioning the response.
The previous context messages were concatenated
and treated as a single message.

In our proposed models, we use more than three
turns for the context. We separate the last mes-
sage (the query) from the previous turns to pro-
duce a set of annotations h, one per character1 in
the sentence. While encoding the contextual in-
formation, we separate the mi from each speaker
into two sets. The motivation is to capture indi-
vidual characteristics such as personalized topical
information and speaking style (Li et al., 2016b).
We refer to the set of annotations from the same
speaker as one memory. That is, the sentences for
which the probabilities are being predicted as Mr

(response memory, specially corresponds to the
chatbot’s side) and the question set as Mq (query
memory, specially corresponds to the user’s side).
We further apply a RNN on top of mi to produce
one more set of vectors Mc (context memory):

Mc =

Tc⋃

i=0

{m(c)
i }, (12)

in which,

m
(c)
i = RNN(mi,m

(c)
i−1), (13)

where Tc is the number of turns (sentences) in the
conversation. The initial state m(c)

0 is a trainable
parameter.

We apply an attention mechanism on each of the
memories Mq, Mr, Mc and Mh (of current query)
separately. Refer to Figure 1 for an intuitive illus-
tration of these memories. Following (Shen et al.,
2016), we choose projected cosine similarity func-
tion as the attention module. The attention score
aqj,i on memory mq

i ∈ Mq for a RNN hidden state
tj in the decoder part is computed as follows:

aqj,i = softmaxi=1,...,|Mq |cos(W q
1m

q
i ,W

q
2 tj),

(14)
where W q

1 and W q
2 are weight vectors associated

with mq
i and tj , respectively. Consequently, the

attention vector on the query sequences is given
by:

cqj =

|Mq |∑

i=1

aqj,im
q
i . (15)

1Most Japanese characters, such as Kanji, have indepen-
dent semantic meanings other than English letters

Figure 1: Illustration of the architecture of our
REASON model. In the example conversation session,
six context sentences are encoded independently by
a biRNN. The character-specific annotations from the
sixth sentence (i.e., current query) compose the only
sentence-level Mh memory. Mr,q,c are conversation-
level memories. The last mi from each sentence are
distributed alternately in Mq and Mr memories. Also,
m1,...,6 are iterated sequentially by a single-direction
RNN to produce six context annotations in Mc using
Equation 13. In the bottom of the diagram, a reasoning
module (Figure 2) is used instead of the plain attention
used in MULTI.

Similarly, the attention scores and attention vec-
tors on the other three memories can be derived by
replacing q with r, c, and h in Equations 14, 15.

We then concatenate these resulting attention
vectors into a final context vector cMj , which is
consequently applied to Equations 8 and 9. Since
the dimension of the updated context vector cMj is
four times larger, its weight matrix C will need
to be enlarged with a same column dimension
with the dimension of cMj so that CcMj still aligns
with the dimension of the hidden layer vector tj .
More details of the GRU function style definition
of tj using cj can be found in (Bahdanau et al.,
2015). We refer to this model that integrates multi-
ple types of memories through separated attention
mechanisms as MULTI.

Note that, by separately embedding conversa-
tion context into multiple type memories follow-
ing the number of speakers, we can easily extend
this two speaker scenario into group chatting in
which tens or hundreds of speakers can be engaged
in. The only extension is to further separateMq by
speakers. Consequently, the context vector can be
concatenated using the attention vectors by read-

2053



�✁✂✄

☎✆�✁✂✄

✝✞✟

✠✁

✡✄
☛

✡☞
☛ ✡✌

☛

✍
✄ ✍

☞ ✍
✌

✎✏✑✒✓ ✎✏✑✒✓

✔✕✖✗✘✕✖✙ ✔✕✖✗✘✕✖✙
✚✛✜✓

✢✍✔✣✤✥✦

✔
✧✕✕
✗✘
✧✕✕
✙ ★✁✩

☛
✄

✪✓✫✬✛✭✓✒✮ ✯✰✩✱✩✲✩✳

✏✴✴✓✵✴✭✬✵

✔
✧✕✕
✗✘
✧✕✕
✙ ★✁✩

☛
☞

✔✕✖✗✘✕✖✙

✴✓✛✫✭✵✏✴✭✬✵

�
✁

☎
✆�✁

✝✞✟

✪✓✫✬✛✭✓✒✮ ✯✰✩✱✩✲✩✳

✞✓✏✒✬✵✭✵✶ ✷✬✸

✞✓✏✒✬✵✭✵✶ ✷✬✸

✹✺✻

✹✏✴✓✻

✼

✠✁✂✄

★✽
✁✩

☛

✾✿☞

✼

✢✍✔✣✤✥✦

★✽
✁❀✄❁

☛

✾

★✽✁✩

☛

✾✿☞

Figure 2: Illustration of the reason part of the REASON
model. This figure is drawn by partially referring Fig-
ure 1 in (Shen et al., 2016).

ing all the memories. The theoretical benefit is
that the chatbot can softly keep track of each indi-
vidual speaker’s topics and then make a decision
of how to response to that speaker. Another exten-
sion will be using a reinforcement learning policy
to determine when to let the chatbot to give a re-
sponse to which speaker in current group chatting.

Generally, the number and type of memories
can be enlarged in a reasonable way, such as by in-
troducing external knowledge (Yih and Ma, 2016;
Ghazvininejad et al., 2017; Han et al., 2015) or
performing sentiment analysis to the “fact mem-
ories” to yield emotional memories (Zhou et al.,
2017). A detailed description and experimental
testifying is out of the scope of this paper.

4.2 Reasoning Neural Dialogue System

As illustrated in Figure 2, we apply a multi-
turn reasoning mechanism, following Shen et al.
(2016), to the multiple-type annotation memories.
This reasoning mechanism replaces the single-turn
attention mechanism. We adapt the idea of us-
ing a termination state during the inference to dy-
namically determine how many turns to reason.
The termination module can decide whether to
continue to infer the next turn (of re-reading the
four types of memories) after digesting interme-
diate topical and speaker-specific information, or
to terminate the whole inference process when it

concludes that existing information is sufficient to
generate the next word in a response. Generally,
the idea is to construct a reasoning attention vector
that works as a context vector during generating
the next word. This idea is included in the “Rea-
soning box” in Figure 2. Specially, yj−1 stands for
a former word generated by the hidden state ŝj−1
in the GRU decoder. Ey is the embedding matrix.
We use a full-connection layer to map from ŝj−1
to the initial reasoning hidden state hR

1 , since hR
m

should be with the same length alike each memory
vector in Mq,r,c,h and ŝj−1’s dimension is smaller
than that. Thus, (1) outside the “reasoning box”,
we use a GRU decoder to yield ŝj so that a next
word yj can be generated, and (2) inside the “rea-
soning box”, we read the memories to yield the
“optimal” contextual vector. The “reasoning box”
takes the memoriesMq,r,c,h and ŝj−1 as inputs and
finally outputs cR

j,m.
The number of reasoning turns for yielding the

“reasoning attention vectors” (cR
j which is further

indexed by reasoning steps of 1, 2 in Figure 2)
during the decoding inference is dynamically pa-
rameterized by both the contextual memories and
current query, and is generally related to the com-
plexities of the conversation context and current
query.

The training steps are performed as per the gen-
eral framework as described in Equations 8 and 9.
For each reasoning hidden state hR

m, the termina-
tion probability om is estimated by ftg(hR

m; θtg),
which is

om = (1− om−1) ∗ σ(w>t hR
m + bt), (16)

where θtg = {wt, bt}, wt is a weight vector, bt
is a bias, and σ is the sigmoid logistic function.
Then, different hidden states hR

m are first weighted
by their termination probabilities om and then
summed to produce a reasoning-attention context
vector cR

j (using the equations as described pre-
viously in Section 3.2), which is consequently
used to construct the next reasoning step’s hR

2 =
RNN(hR

1 , cR
j,1). The final cR

j,m (m ≥1 is the final
reasoning step) will be used in Equations 8 and 9
in a way alike former attention vectors. During
our experiments, we instead used a sum of from
o2 × cR

j,1 to om+1 × cR
j,m as the final c′Rj,m for next

word generation.
During generating each word in the response,

our network performs a response action rm at
the m-th step, which implies that the termina-
tion gate variables o1:m = (o1 = 0, o2 =
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A: i’m bored
B: boooring
A: isn’t it? (ˆ_ˆ)
B: everybody is asleep
A: really?

(ˆ_ˆ) my friends are still awake! :P
B: lucky!

xD feels lonely with everyone asleep
A: almost everyone is awake (ˆvˆ)
B: whyyy?!

my friends go early to bed.
Or is it me that’s late? xD

A: it’s us who are late! xD
B: true, very true xD

Figure 3: A 5-round conversation of speakers A and B.

0, ..., om−1 = 0, om = 1). A stochastic pol-
icy π((om, rm)|hR

m, tj ; θ) with parameters θ to get
a distribution of termination actions, to continue
reading the conversation context (i.e., Mq,r,c,h) or
to stop, and of response actions rm for predict-
ing the next word if the model decides to stop at
current step. In our experiments, we set a max-
imum step parameter Tmax to be 5 for heuristi-
cally avoiding too many reasoning times. We fol-
low (Shen et al., 2016) to compute the expected
reward and its gradient for one instance. We refer
to this model with multi-turn reasoning attentions
as REASON.

5 Experiments

In our experiments, we used a dataset consisting of
Japanese twitter conversations. Each conversation
contains 10 sentences from two real-world alter-
nating speakers. Given the origin of the dataset, it
is quite noisy, containing misspelled words, slang
and kaomoji (multi-character sequences of facial
emoticons) among meaningful words and charac-
ters. Preliminary experiments by using a word-
based approach resulted in the vocabulary size be-
ing too big and with too many word breaking er-
rors, we instead used a character-based approach.
Figure 3 shows a sample 10-sentence conversa-
tion in which original Japanese sentences were
translated into English and similar spelling pat-
terns were kept in a sense (such as boooring for
boring and whyyy for why).

We kept the conversations in which all sen-
tences were no more than 20 characters. This fil-
tering strategy resulted in a dataset of 254K con-
versations from which 100 (1K sentences) where
taken out for testing and another 100 for validat-

Conversation Characters
sessions Sentences (Unique)

Train 253K 2.5M 24M (6,214)
Validation 100 1K 10K (836)
Test 100 1K 9.3K (780)

Table 1: Statistics of the filtered datasets.

Figure 4: Cost curves of NLL during training.

ing and hyper-parameter tuning. The training set
contains 6,214 unique characters, which are used
as our vocabulary with the addition of two spe-
cial symbols, an UNK (out-of-vocabulary unknown
word) and an EOS (end-of-sentence). Table 1
shows major statistics of the dataset.

The training minimizes negative log-likelihood
(NLL) per character on the nine sentences s2,...,10
of each conversation. One configuration in MULTI
and REASON is that, we respectively use the
reference contexts (instead of former automati-
cally generated sentences) to generate current sen-
tence. That is, when generating si, we use the
golden contextual sentences of from s1 to si−1.
These three systems were respectively trained 3
epochs (10,000 iterations) on an AdaDelta (Zeiler,
2012) optimizer. Character embedding matrix was
shared by both the encoder and the decoder parts.
All the hidden layers, in the encoding/decoding
parts and the attention models, were of size 200
and the character embeddings were of size 100.
The recurrent units that we used were GRU. The
gradients were clipped at the maximum gradient
norm of 1. The reasoning module’s maximum
steps Tmax was set to be 5. The data was iterated
on mini-batches of less than 1,500 symbols each.

We initialized the recurrent weight matrices in
GRUs as random orthogonal matrices. Unless spe-
cially mentioned, all the elements of the 0-indexed
vectors and all bias vectors were initialized to
be zero. Any other weight matrices were initial-
ized by sampling from the Gaussian distribution
of mean 0 and variance 0.01.

Figure 4 shows the progression of the NLLs per
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SIMPLE MULTI REASON

B
L

E
U

-4 Train 1.98 1.97 2.30
Validation 1.80 2.12 2.62
Test 2.20 2.13 2.89

B
L

E
U

-2 Train 6.77 6.78 7.03
Validation 6.67 6.89 8.14
Test 7.19 7.24 7.97

Table 2: Character-level BLEU-2/4 (%) scores.

character during training. The validation costs be-
gun converging in the third epoch for the three
models. The plot roughly shows lower cost for
more complex models.

Galley et al. (2015) obtained better correla-
tion with human evaluation when using BLEU-2
rather than BLEU-4. We thus report both of these
scores for automatic evaluation and comparison.
The character-level BLEU-4 and BLEU-2 scores
for the trained models are reported in Table 2.
The REASON model achieved consistently better
BLEU-2 and BLEU-4 scores in the three datasets.
MULTI performed slightly better than SIMPLE on
the validation set yet that performance is less sta-
ble than REASON.

Figure 4 also reflects that, (1) the final train-
ing costs of SIMPLE and MULTI are quite close
with each other at iteration 10,000; (2) there is a
big margin of between the final training cost of
REASON and that of SIMPLE or MULTI; and (3)
the validation costs exactly follows an order of
SIMPLE > MULTI > REASON.

6 Analysis

Figure 5 illustrates an English translation of a con-
versation and the responses suggested by each of
the described models. This conversation is ex-
tracted from the test set. The three responses are
different from the reference response, but the one
from REASON looks the most consistent with the
given context. The response from MULTI is con-
tradicting the context of speaker B as he/she said
Not at all in a former sentence.

As it has been shown in (Liu et al., 2016) that
BLEU doesn’t correlate well with human judg-
ments, we asked three human evaluators to re-
spectively examine 900 responses from each of the
models given their reference contexts. The evalua-
tors were asked to judge (1) whether one response
is acceptable and (2) whether one response is bet-
ter than the other two responses. A summary of
this evaluation is displayed in Table 3. The accept-
able column refers to the percentage of responses

A: I feel nostalgic. This was so cute.
B: It’s gross. What’s that picture?
A: It’s cute! It used to be on TV.
B: Isn’t that from a children’s show?
A: Yes
B: I know that one!!
A: Isn’t it cute?
B: Not at all
A: Uh! I can’t believe it...
SIMPLE (B:) MULTI (B:) REASON (B:)
Uh! it isn’t. It’s cute! Do you think it’s cute?
Reference
B: Are you asking me whether the picture is cute?

Figure 5: Sample responses generated by the three
models and the recorded reference response, translated
to English. Both MULTI and REASON include cute, yet
MULTI contradicts a previous response Not at all.

accept- best-of- > >
able three † SIMPLE‡ MULTI‡

SIMPLE 42% 25% - 45%
MULTI 52% 29% 55% -
REASON 65% 46% 59% 58%

Table 3: Human evaluation of the responses generated
by the three models. † Percentage over the conversa-
tions that had at least one response accepted. ‡ From
the cases where any of both compared models was ac-
ceptable. > = “better than”.

that were considered acceptable by at least two
of the human evaluators while the best-of-three
columns refers to the percentage of times that each
model’s response was considered by at least two
evaluators to be better than the other two’s, from
the contexts that had at least one acceptable re-
sponse. The last two columns make one-to-one
comparisons. In 18% of the contexts, none of the
models produced an acceptable response.

This human evaluation shows that complexer
models are more likely to produce acceptable re-
sponses. The MULTI and REASON models are
only different in the attention mechanism of multi-
turn reasoning. The reasoning module performed
better than single-turn attention 58% of the times.

Table 4 contains the character-level distinct-n
(Li et al., 2016a) metrics for n-grams where 1 ≤
n ≤ 5. This metric measures the number of dis-
tinct n-grams divided by the total number of n-
grams in the generated responses. The displayed
results are computed on the concatenation of all
the responses to the test-set contexts. The Refer-
ence column was computed on the reference re-
sponses and represents the optimal human-like ra-
tio.
SIMPLE performed the best at uni-gram diver-
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SIMPLE MULTI REASON Reference
distinct-1 .039 .028 .032 .088
distinct-2 .112 .095 .121 .407
distinct-3 .199 .180 .238 .588
distinct-4 .248 .241 .310 .587
distinct-5 .255 .265 .328 .530

Table 4: N-gram diversity metrics of between (1) the
responses generated to the test set and (2) their refer-
ence responses.

sity. For n-grams n ≥ 2, REASON produced
the most diverse outputs. While the results for
REASON were consistently better than the other
two models, the results for MULTI were not al-
ways better than SIMPLE. This indicates MULTI
does not always benefit from the augmented con-
text without the multi-turn reasoning attentions.

7 Conclusions

We have presented a novel approach to multi-turn
conversation modeling. Our approach uses multi-
ple explicitly separated memories to represent rich
conversational contexts. We also presented multi-
turn reasoning attentions to integrate various an-
notation memories. We run experiments on three
different models with and without the introduced
approaches and measured their performances us-
ing automatic metrics and human evaluation.

Experimental results verified that the increased
contexts are able to help producing more accept-
able and diverse responses. Driven by the depth
of the reasoning attention, the diversities of the
responses are significantly improved. We argue
that the reasoning attention mechanism helps in-
tegrating the multiple pieces of information as it
can combine them in a more complex way than a
simple weighted sum. We further observed that as
the accuracy of the conversation model improves,
the diversity of the generated responses increases.

The proposed approach of multi-turn reason-
ing over multiple memory attention networks is
presented in a general framework that allows the
inclusion of memories of multiple resources and
types. Applying to group chatting with more than
two speakers and reasoning over emotion embed-
dings or knowledge vectors included from an ex-
ternal knowledge base/graph are taken as our fu-
ture directions.
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Abstract

In this work, we present a hybrid learn-
ing method for training task-oriented dialogue
systems through online user interactions. Pop-
ular methods for learning task-oriented dia-
logues include applying reinforcement learn-
ing with user feedback on supervised pre-
training models. Efficiency of such learning
method may suffer from the mismatch of di-
alogue state distribution between offline train-
ing and online interactive learning stages. To
address this challenge, we propose a hybrid
imitation and reinforcement learning method,
with which a dialogue agent can effectively
learn from its interaction with users by learn-
ing from human teaching and feedback. We
design a neural network based task-oriented
dialogue agent that can be optimized end-to-
end with the proposed learning method. Ex-
perimental results show that our end-to-end
dialogue agent can learn effectively from the
mistake it makes via imitation learning from
user teaching. Applying reinforcement learn-
ing with user feedback after the imitation
learning stage further improves the agent’s ca-
pability in successfully completing a task.

1 Introduction

Task-oriented dialogue systems assist users to
complete tasks in specific domains by understand-
ing user’s request and aggregate useful informa-
tion from external resources within several dia-
logue turns. Conventional task-oriented dialogue
systems have a complex pipeline (Rudnicky et al.,
1999; Raux et al., 2005; Young et al., 2013) con-
sisting of independently developed and modularly
connected components for natural language un-
derstanding (NLU) (Mesnil et al., 2015; Liu and
Lane, 2016; Hakkani-Tür et al., 2016), dialogue
state tracking (DST) (Henderson et al., 2014c;

∗Work done while the author was an intern at Google.
†Work done while at Google Research.

Mrkšić et al., 2016), and dialogue policy learn-
ing (Gasic and Young, 2014; Shah et al., 2016; Su
et al., 2016, 2017). These system components are
usually trained independently, and their optimiza-
tion targets may not fully align with the overall
system evaluation criteria (e.g. task success rate
and user satisfaction). Moreover, errors made in
the upper stream modules of the pipeline propa-
gate to downstream components and get amplified,
making it hard to track the source of errors.

To address these limitations with the con-
ventional task-oriented dialogue systems, re-
cent efforts have been made in designing end-
to-end learning solutions with neural network
based methods. Both supervised learning (SL)
based (Wen et al., 2017; Bordes and Weston,
2017; Liu and Lane, 2017a) and deep reinforce-
ment learning (RL) based systems (Zhao and Es-
kenazi, 2016; Li et al., 2017; Peng et al., 2017)
have been studied in the literature. Comparing to
chit-chat dialogue models that are usually trained
offline using single-turn context-response pairs,
task-oriented dialogue model involves reasoning
and planning over multiple dialogue turns. This
makes it especially important for a system to be
able to learn from users in an interactive manner.
Comparing to SL models, systems trained with
RL by receiving feedback during users interac-
tions showed improved model robustness against
diverse dialogue scenarios (Williams and Zweig,
2016; Liu and Lane, 2017b).

A critical step in learning RL based task-
oriented dialogue models is dialogue policy learn-
ing. Training dialogue policy online from scratch
typically requires a large number of interactive
learning sessions before an agent can reach a satis-
factory performance level. Recent works (Hender-
son et al., 2008; Williams et al., 2017; Liu et al.,
2017) explored pre-training the dialogue model
using human-human or human-machine dialogue
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corpora before performing interactive learning
with RL to address this concern. A potential draw-
back with such pre-training approach is that the
model may suffer from the mismatch of dialogue
state distributions between supervised training and
interactive learning stages. While interacting with
users, the agent’s response at each turn has a di-
rect influence on the distribution of dialogue state
that the agent will operate on in the upcoming di-
alogue turns. If the agent makes a small mistake
and reaches an unfamiliar state, it may not know
how to recover from it and get back to a normal
dialogue trajectory. This is because such recovery
situation may be rare for good human agents and
thus are not well covered in the supervised train-
ing corpus. This will result in compounding er-
rors in a dialogue which may lead to failure of a
task. RL exploration might finally help to find cor-
responding actions to recover from a bad state, but
the search process can be very inefficient.

To ameliorate the effect of dialogue state distri-
bution mismatch between offline training and RL
interactive learning, we propose a hybrid imitation
and reinforcement learning method. We first let
the agent to interact with users using its own pol-
icy learned from supervised pre-training. When an
agent makes a mistake, we ask users to correct the
mistake by demonstrating the agent the right ac-
tions to take at each turn. This user corrected dia-
logue sample, which is guided by the agent’s own
policy, is then added to the existing training cor-
pus. We fine-tune the dialogue policy with this di-
alogue sample aggregation (Ross et al., 2011) and
continue such user teaching process for a number
of cycles. Since asking for user teaching at each
dialogue turn is costly, we want to reduce this user
teaching cycles as much as possible and continue
the learning process with RL by collecting simple
forms of user feedback (e.g. a binary feedback,
positive or negative) only at the end of a dialogue.

Our main contributions in this work are:

• We design a neural network based task-
oriented dialogue system which can be op-
timized end-to-end for natural language un-
derstanding, dialogue state tracking, and dia-
logue policy learning.

• We propose a hybrid imitation and reinforce-
ment learning method for end-to-end model
training in addressing the challenge with dia-
logue state distribution mismatch between of-
fline training and interactive learning.

The remainder of the paper is organized as fol-
lows. In section 2, we discuss related work in
building end-to-end task-oriented dialogue sys-
tems. In section 3, we describe the proposed
model and learning method in detail. In Section
4, we describe the experiment setup and discuss
the results. Section 5 gives the conclusions.

2 Related Work

Popular approaches in learning task-oriented
dialogue include modeling the task as a par-
tially observable Markov Decision Process
(POMDP) (Young et al., 2013). RL can be applied
in the POMDP framework to learn dialogue
policy online by interacting with users (Gašić
et al., 2013). The dialogue state and system action
space have to be carefully designed in order to
make the policy learning tractable (Young et al.,
2013), which limits the model’s usage to restricted
domains.

Recent efforts have been made in designing
end-to-end solutions for task-oriented dialogues,
inspired by the success of encoder-decoder based
neural network models in non-task-oriented con-
versational systems (Serban et al., 2015; Li et al.,
2016). Wen et al. (Wen et al., 2017) designed an
end-to-end trainable neural dialogue model with
modularly connected system components. This
system is a supervised learning model which is
evaluated on fixed dialogue corpora. It is un-
known how well the model performance gener-
alizes to unseen dialogue state during user inter-
actions. Our system is trained by a combina-
tion of supervised and deep RL methods, as it is
shown that RL may effectively improve dialogue
success rate by exploring a large dialogue action
space (Henderson et al., 2008; Li et al., 2017).

Bordes and Weston (2017) proposed a task-
oriented dialogue model using end-to-end memory
networks. In the same line of research, people ex-
plored using query-regression networks (Seo et al.,
2016), gated memory networks (Liu and Perez,
2017), and copy-augmented networks (Eric and
Manning, 2017) to learn the dialogue state. These
systems directly select a final response from a list
of response candidates conditioning on the dia-
logue history without doing slot filling or user goal
tracking. Our model, on the other hand, explic-
itly tracks user’s goal for effective integration with
knowledge bases (KBs). Robust dialogue state
tracking has been shown (Jurčı́ček et al., 2012) to
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be critical in improving dialogue success in task
completion.

Dhingra et al. (2017) proposed an end-to-end
RL dialogue agent for information access. Their
model focuses on bringing differentiability to the
KB query operation by introducing a “soft” re-
trieval process in selecting the KB entries. Such
soft-KB lookup is prone to entity updates and ad-
ditions in the KB, which is common in real world
information systems. In our model, we use sym-
bolic queries and leave the selection of KB enti-
ties to external services (e.g. a recommender sys-
tem), as entity ranking in real world systems can
be made with much richer features (e.g. user pro-
files, location and time context, etc.). Quality of
the generated symbolic query is directly related
to the belief tracking performance. In our pro-
posed end-to-end system, belief tracking can be
optimized together with other system components
(e.g. language understanding and policy) during
interactive learning with users.

Williams et al. (2017) proposed a hybrid code
network for task-oriented dialogue that can be
trained with supervised and reinforcement learn-
ing. They show that RL performed with a super-
vised pre-training model using labeled dialogues
improves learning speed dramatically. They did
not discuss the potential issue of dialogue state
distribution mismatch between supervised pre-
training and RL interactive learning, which is ad-
dressed in our dialogue learning framework.

3 Proposed Method

Figure 1 shows the overall system architecture
of the proposed end-to-end task-oriented dialogue
model. We use a hierarchical LSTM neural net-
work to encode a dialogue with a sequence of
turns. User input to the system in natural lan-
guage format is encoded to a continuous vector via
a bidirectional LSTM utterance encoder. This user
utterance encoding, together with the encoding of
the previous system action, serves as the input to a
dialogue-level LSTM. State of this dialogue-level
LSTM maintains a continuous representation of
the dialogue state. Based on this state, the model
generates a probability distribution over candidate
values for each of the tracked goal slots. A query
command can then be formulated with the state
tracking outputs and issued to a knowledge base to
retrieve requested information. Finally, the system
produces a dialogue action, which is conditioned

on information from the dialogue state, the esti-
mated user’s goal, and the encoding of the query
results . This dialogue action, together with the
user goal tracking results and the query results, is
used to generate the final natural language system
response via a natural language generator (NLG).
We describe each core model component in detail
in the following sections.

3.1 Utterance Encoding
We use a bidirectional LSTM to encode the user
utterance to a continuous representation. We refer
to this LSTM as the utterance-level LSTM. The
user utterance vector is generated by concatenat-
ing the last forward and backward LSTM states.
Let Uk = (w1, w2, ..., wTk) be the user utterance
at turn k with Tk words. These words are firstly
mapped to an embedding space, and further serve
as the step inputs to the bidirectional LSTM. Let−→
ht and

←−
ht represent the forward and backward

LSTM state outputs at time step t. The user ut-
terance vector Uk is produced by: Uk = [

−→
hTk ,
←−
h1],

where
−→
hTk and

←−
h1 are the last states in the forward

and backward LSTMs.

3.2 Dialogue State Tracking
Dialogue state tracking, or belief tracking, main-
tains the state of a conversation, such as user’s
goals, by accumulating evidence along the se-
quence of dialogue turns. Our model maintains
the dialogue state in a continuous form in the
dialogue-level LSTM (LSTMD) state sk. sk is up-
dated after the model processes each dialogue turn
by taking in the encoding of user utterance Uk and
the encoding of the previous turn system output
Ak−1. This dialogue state serves as the input to the
dialogue state tracker. The tracker updates its es-
timation of the user’s goal represented by a list of
slot-value pairs. A probability distribution P (lmk )
is maintained over candidate values for each goal
slot type m ∈M :

sk = LSTMD(sk−1, [Uk, Ak−1]) (1)

P (lmk |U≤k, A<k) = SlotDistm(sk) (2)

where SlotDistm is a single hidden layer MLP
with softmax activation over slot type m ∈M .

3.3 KB Operation
The dialogue state tracking outputs are used to
form an API call command to retrieve information
from a knowledge base. The API call command is
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User: Movie for the day 
after tomorrow, please

System: Ok, what 
time do you prefer? 

Bi-LSTM 
Utterance Encoder

LSTM 
Dialogue State

Knowledge 
Base

Policy
Network

Natural Language 
Generator request(time)

System dialogue act 
at turn k

Query results
encoding

User utterance 
encoding at turn k

System dialogue act 
embedding at turn k-1

time=none

date=Thursday
Dialogue State

Tracking

Figure 1: Proposed end-to-end task-oriented dialogue system architecture.

produced by replacing the tokens in a query com-
mand template with the best hypothesis for each
goal slot from the dialogue state tracking output.
Alternatively, an n-best list of API calls can be
generated with the most probable candidate values
for the tracked goal slots. In interfacing with KBs,
instead of using a soft KB lookup as in (Dhingra
et al., 2017), our model sends symbolic queries to
the KB and leaves the ranking of the KB entities
to an external recommender system. Entity rank-
ing in real world systems can be made with much
richer features (e.g. user profiles, local context,
etc.) in the back-end system other than just fol-
lowing entity posterior probabilities conditioning
on a user utterance. Hence ranking of the KB en-
tities is not a part of our proposed neural dialogue
model. In this work, we assume that the model re-
ceives a ranked list of KB entities according to the
issued query and other available sources, such as
user models.

Once the KB query results are returned, we save
the retrieved entities to a queue and encode the re-
sult summary to a vector. Rather then encoding the
real KB entity values as in (Bordes and Weston,
2017; Eric and Manning, 2017), we only encode a
summary of the query results (i.e. item availabil-
ity and number of matched items). This encoding
serves as a part of the input to the policy network.

3.4 Dialogue Policy

A dialogue policy selects the next system action
in response to the user’s input based on the cur-
rent dialogue state. We use a deep neural network
to model the dialogue policy. There are three in-
puts to the policy network, (1) the dialogue-level
LSTM state sk, (2) the log probabilities of candi-
date values from the belief tracker vk, and (3) the

LSTM Dialogue State,

System action 
at turn k

Policy Network

Query results
 encoding

Slot value logits

Figure 2: Dialogue state and policy network.

encoding of the query results summary Ek. The
policy network emits a system action in the form
of a dialogue act conditioning on these inputs:

P (ak | U≤k, A<k, E≤k) = PolicyNet(sk, vk, Ek)
(3)

where vk represents the concatenated log probabil-
ities of candidate values for each goal slot, Ek is
the encoding of query results, and PolicyNet is a
single hidden layer MLP with softmax activation
function over all system actions.

The emitted system action is finally used to pro-
duce a system response in natural language format
by combining the state tracker outputs and the re-
trieved KB entities. We use a template based NLG
in this work. The delexicalised tokens in the NLG
template are replaced by the values from either the
estimated user goal values or the KB entities, de-
pending on the emitted system action.

3.5 Supervised Pre-training
By connecting all the system components, we have
an end-to-end model for task-oriented dialogue.
Each system component is a neural network that
takes in underlying system component’s outputs
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in a continuous form that is fully differentiable,
and the entire system (utterance encoding, dia-
logue state tracking, and policy network) can be
trained end-to-end.

We first train the system in a supervised man-
ner by fitting task-oriented dialogue samples. The
model predicts the true user goal slot values and
the next system action at each turn of a dia-
logue. We optimize the model parameter set θ by
minimizing a linear interpolation of cross-entropy
losses for dialogue state tracking and system ac-
tion prediction:

min
θ

K∑

k=1

−
[ M∑

m=1

λlm logP (lmk
∗|U≤k,A<k,E<k; θ)

+λa logP (a
∗
k|U≤k,A<k,E≤k; θ)

]

(4)

where λs are the linear interpolation weights for
the cost of each system output. lmk

∗ is the ground
truth label for the tracked user goal slot type m ∈
M at the kth turn, and a∗k is the true system action
in the corpus.

3.6 Imitation Learning with Human
Teaching

Once obtaining a supervised training dialogue
agent, we further let the agent to learn interactively
from users by conducting task-oriented dialogues.
Supervised learning succeeds when training and
test data distributions match. During the agent’s
interaction with users, any mistake made by the
agent or any deviation in the user’s behavior may
lead to a different dialogue state distribution than
the one that the supervised learning agent saw dur-
ing offline training. A small mistake made by the
agent due to this covariate shift (Ross and Bagnell,
2010; Ross et al., 2011) may lead to compound-
ing errors which finally lead to failure of a task.
To address this issue, we propose a dialogue imi-
tation learning method which allows the dialogue
agent to learn from human teaching. We let the
supervised training agent to interact with users us-
ing its learned dialogue policy πθ(a|s). With this,
we collect additional dialogue samples that are
guided by the agent’s own policy, rather than by
the expert policy as those in the supervised train-
ing corpora. When the agent make mistakes, we
ask users to correct the mistakes and demonstrate
the expected actions and predictions for the agent
to make. Such user teaching precisely addresses

Algorithm 1 Dialogue Learning with Human
Teaching and Feedback

1: Train model end-to-end on dialogue samples
D with MLE and obtain policy πθ(a|s) . eq 4

2: for learning iteration k = 1 : K do
3: Run πθ(a|s) with user to collect new

dialogue samples Dπ

4: Ask user to correct the mistakes in the
tracked user’s goal for each dialogue turn
in Dπ

5: Add the newly labeled dialogue samples
to the existing corpora: D ← D ∪Dπ

6: Train model end-to-end on D and obtain
an updated policy πθ(a|s) . eq 4

7: end for
8: for learning iteration k = 1 : N do
9: Run πθ(a|s) with user for a new dialogue

10: Collect user feedback as reward r
11: Update model end-to-end and obtain an

updated policy πθ(a|s) . eq 5
12: end for

the limitations of the currently learned dialogue
model, as these newly collected dialogue samples
are driven by the agent’s own policy. Specifically,
in this study we let an expert user to correct the
mistake made by the agent in tracking the user’s
goal at the end of each dialogue turn. This new
batch of annotated dialogues are then added to the
existing training corpus. We start the next round
of supervised model training on this aggregated
corpus to obtain an updated dialogue policy, and
continue this dialogue imitation learning cycles.

3.7 Reinforcement Learning with Human
Feedback

Learning from human teaching can be costly, as
it requires expert users to provide corrections at
each dialogue turn. We want to minimize the num-
ber of such imitation dialogue learning cycles and
continue to improve the agent via a form of super-
vision signal that is easier to obtain. After the imi-
tation learning stage, we further optimize the neu-
ral dialogue system with RL by letting the agent
to interact with users and learn from user feed-
back. Different from the turn-level corrections in
the imitation dialogue learning stage, the feedback
is only collected at the end of a dialogue. A pos-
itive reward is collected for successful tasks, and
a zero reward is collected for failed tasks. A step
penalty is applied to each dialogue turn to encour-
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age the agent to complete the task in fewer steps.
In this work, we only use task-completion as the
metric in designing the dialogue reward. One can
extend it by introducing additional factors to the
reward functions, such as naturalness of interac-
tions or costs associated with KB queries.

To encourage the agent to explore the dialogue
action space, we let the agent to follow a softmax
policy during RL training by sampling system ac-
tions from the policy network outputs. We apply
REINFORCE algorithm (Williams, 1992) in op-
timizing the network parameters. The objective
function can be written as Jk(θ) = Eθ [Rk] =

Eθ
[∑K−k

t=0 γtrk+t

]
, with γ ∈ [0, 1) being the dis-

count factor. With likelihood ratio gradient esti-
mator, the gradient of the objective function can
be derived as:

∇θJk(θ) = ∇θEθ [Rk]
=
∑

ak

πθ(ak|sk)∇θ log πθ(ak|sk)Rk

= Eθ [∇θ log πθ(ak|sk)Rk]
(5)

This last expression above gives us an unbiased
gradient estimator.

4 Experiments

4.1 Datasets
We evaluate the proposed method on DSTC2
(Henderson et al., 2014a) dataset in restaurant
search domain and an internally collected dialogue
corpus1 in movie booking domain. The movie
booking dialogue corpus has an average number of
8.4 turns per dialogue. Its training set has 100K di-
alogues, and the development set and test set each
has 10K dialogues.

The movie booking dialogue corpus is gener-
ated (Shah et al., 2018) using a finite state ma-
chine based dialogue agent and an agenda based
user simulator (Schatzmann et al., 2007) with nat-
ural language utterances rewritten by real users.
The user simulator can be configured with differ-
ent personalities, showing various levels of ran-
domness and cooperativeness. This user simula-
tor is also used to interact with our end-to-end
training agent during imitation and reinforcement
learning stages. We randomly select a user profile

1The dataset can be accessed via https:
//github.com/google-research-datasets/
simulated-dialogue

when conducting each dialogue simulation. Dur-
ing model evaluation, we use an extended set of
natural language surface forms over the ones used
during training time to evaluate the generalization
capability of the proposed end-to-end model in
handling diverse natural language inputs.

4.2 Training Settings
The size of the dialogue-level and utterance-level
LSTM state is set as 200 and 150 respectively.
Word embedding size is 300. Embedding size for
system action and slot values is set as 32. Hidden
layer size of the policy network is set as 100. We
use Adam optimization method (Kingma and Ba,
2014) with initial learning rate of 1e-3. Dropout
rate of 0.5 is applied during supervised training to
prevent the model from over-fitting.

In imitation learning, we perform mini-batch
model update after collecting every 25 dialogues.
System actions are sampled from the learned pol-
icy to encourage exploration. The system action
is defined with the act and slot types from a dia-
logue act (Henderson et al., 2013). For example,
the dialogue act “confirm(date = monday)” is
mapped to a system action “confirm date” and
a candidate value “monday” for slot type “date”.
The slot types and values are from the dialogue
state tracking output.

In RL optimization, we update the model with
every mini-batch of 25 samples. Dialogue is con-
sidered successful based on two conditions: (1)
the goal slot values estimated from dialogue state
tracking fully match to the user’s true goal values,
and (2) the system is able to confirm with the user
the tracked goal values and offer an entity which
is finally accepted by the user. Maximum allowed
number of dialogue turn is set as 15. A positive
reward of +15.0 is given at the end of a success-
ful dialogue, and a zero reward is given to a failed
case. We apply a step penalty of -1.0 for each turn
to encourage shorter dialogue for task completion.

4.3 Supervised Learning Results
Table 4.3 and Table 4.3 show the supervised learn-
ing model performance on DSTC2 and the movie
booking corpus. Evaluation is made on DST accu-
racy. For the evaluation on DSTC2 corpus, we use
the live ASR transcriptions as the user input utter-
ances. Our proposed model achieves near state-of-
the-art dialogue state tracking results on DSTC2
corpus, on both individual slot tracking and joint
slot tracking, comparing to the recent published
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results using RNN (Henderson et al., 2014b) and
neural belief tracker (NBT) (Mrkšić et al., 2016).
In the movie booking domain, our model also
achieves promising performance on both individ-
ual slot tracking and joint slot tracking accuracy.
Instead of using ASR hypothesis as model input
as in DSTC2, here we use text based input which
has much lower noise level in the evaluation of the
movie booking tasks. This partially explains the
higher DST accuracy in the movie booking do-
main comparing to DSTC2.

Model Area Food Price Joint
RNN 92 86 86 69
RNN+sem. dict 92 86 92 71
NBT 90 84 94 72
Our SL model 90 84 92 72

Table 1: Dialogue state tracking results on DSTC2

Goal slot Accuracy
Num of Tickets 98.22
Movie 91.86
Theater Name 97.33
Date 99.31
Time 97.71
Joint 84.57

Table 2: DST results on movie booking dataset

4.4 Imitation and RL Results
Evaluations of interactive learning with imitation
and reinforcement learning are made on metrics
of (1) task success rate, (2) dialogue turn size, and
(3) DST accuracy. Figures 3, 4, and 5 show the
learning curves for the three evaluation metrics.
In addition, we compare model performance on
task success rate using two different RL training
settings, the end-to-end training and the policy-
only training, to show the advantages of perform-
ing end-to-end system optimization with RL.

Task Success Rate As shown in the learning
curves in Figure 3, the SL model performs poorly.
This might largely due to the compounding er-
rors caused by the mismatch of dialogue state dis-
tribution between offline training and interactive
learning. We use an extended set of user NLG
templates during interactive evaluation. Many of
the test NLG templates are not seen by the super-
vised training agent. Any mistake made by the
agent in understanding the user’s request may lead
to compounding errors in the following dialogue

Figure 3: Interactive learning curves on task success
rate.

turns, which cause final task failure. The red curve
(SL + RL) shows the performance of the model
that has RL applied on the supervised pre-training
model. We can see that interactive learning with
RL using a weak form of supervision from user
feedback continuously improves the task success
rate with the growing number of user interactions.
We further conduct experiments in learning dia-
logue model from scratch using only RL (i.e. with-
out supervised pre-training), and the task success
rate remains at a very low level after 10K dialogue
simulations. We believe that it is because the di-
alogue state space is too complex for the agent
to learn from scratch, as it has to learn a good
NLU model in combination with a good policy to
complete the task. The yellow curve (SL + IL
500 + RL) shows the performance of the model
that has 500 episodes of imitation learning over
the SL model and continues with RL optimization.
It is clear from the results that applying imitation
learning on supervised training model efficiently
improves task success rate. RL optimization af-
ter imitation learning increases the task success
rate further. The blue curve (SL + IL 1000 +
RL) shows the performance of the model that has
1000 episodes of imitation learning over the SL
model and continues with RL. Similarly, it shows
hints that imitation learning may effectively adapt
the supervised training model to the dialogue state
distribution during user interactions.

Average Dialogue Turn Size Figure 4 shows
the curves for the average turn size of successful
dialogues. We observe decreasing number of dia-
logue turns in completing a task along the grow-
ing number of interactive learning sessions. This
shows that the dialogue agent learns better strate-
gies in successfully completing the task with fewer
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Figure 4: Interactive learning curves on average dia-
logue turn size.

number of dialogue turns. The red curve with
RL applied directly after supervised pre-training
model gives the lowest average number of turns
at the end of the interactive learning cycles, com-
paring to models with imitation dialogue learn-
ing. This seems to be contrary to our observa-
tion in Figure 3 that imitation learning with hu-
man teaching helps in achieving higher task suc-
cess rate. By looking into the generated dialogues,
we find that the SL + RL model can handle easy
tasks well but fails to complete more challenging
tasks. Such easy tasks typically can be handled
with fewer number of turns, which result in the
low average turn size for the SL + RL model.
On the other hand, the imitation plus RL models
attempt to learn better strategies to handle those
more challenging tasks, resulting in higher task
success rates and also slightly increased dialogue
length comparing to SL + RL model.

Dialogue State Tracking Accuracy Similar
to the results on task success rate, we see that im-
itation learning with human teaching quickly im-
proves dialogue state tracking accuracy in just a
few hundred interactive learning sessions. The
joint slots tracking accuracy in the evaluation of
SL model using fixed corpus is 84.57% as in Table
4.3. The accuracy drops to 50.51% in the interac-
tive evaluation with the introduction of new NLG
templates. Imitation learning with human teach-
ing effectively adapts the neural dialogue model to
the new user input and dialogue state distributions,
improving the DST accuracy to 67.47% after only
500 imitation dialogue learning sessions. Another
encouraging observation is that RL on top of SL
model and IL model not only improves task suc-
cess rate by optimizing dialogue policy, but also

Figure 5: Interactive learning curves on dialogue state
tracking accuracy.

Figure 6: Interactive learning curves on task success
rate with different RL training settings.

further improves dialogue state tracking perfor-
mance. This shows the benefits of performing end-
to-end optimization of the neural dialogue model
with RL during interactive learning.

End-to-End RL Optimization To further show
the benefit of performing end-to-end optimization
of dialogue agent, we compare models with two
different RL training settings, the end-to-end train-
ing and the policy-only training. End-to-end RL
training is what we applied in previous evaluation
sections, in which the gradient propagates from
system action output layer all the way back to
the natural language user input layer. Policy-only
training refers to only updating the policy network
parameters during interactive learning with RL,
with all the other underlying system parameters
fixed. The evaluation results are shown in Fig-
ure 6. From these learning curves, we see clear
advantage of performing end-to-end model update
in achieving higher dialogue task success rate dur-
ing interactive learning comparing to only updat-
ing the policy network.
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4.5 Human User Evaluations

We further evaluate the proposed method with
human judges recruited via Amazon Mechanical
Turk. Each judge is asked to read a dialogue be-
tween our model and user simulator and rate each
system turn on a scale of 1 (frustrating) to 5 (opti-
mal way to help the user). Each turn is rated by 3
different judges. We collect and rate 100 dialogues
for each of the three models: (i) SL model, (ii) SL
model followed by 1000 episodes of IL, (iii) SL
and IL followed by RL. Table 3 lists the mean and
standard deviation of human scores overall sys-
tem turns. Performing interactive learning with
imitation and reinforcement learning clearly im-
proves the quality of the model according to hu-
man judges.

Model Score
SL 3.987 ± 0.086
SL + IL 1000 4.378 ± 0.082
SL + IL 1000 + RL 4.603 ± 0.067

Table 3: Human evaluation results. Mean and standard
deviation of crowd worker scores (between 1 to 5).

5 Conclusions

In this work, we focus on training task-oriented
dialogue systems through user interactions, where
the agent improves through communicating with
users and learning from the mistake it makes. We
propose a hybrid learning approach for such sys-
tems using end-to-end trainable neural network
model. We present a hybrid imitation and rein-
forcement learning method, where we firstly train
a dialogue agent in a supervised manner by learn-
ing from dialogue corpora, and continuously to
improve it by learning from user teaching and
feedback with imitation and reinforcement learn-
ing. We evaluate the proposed learning method
with both offline evaluation on fixed dialogue cor-
pora and interactive evaluation with users. Exper-
imental results show that the proposed neural dia-
logue agent can effectively learn from user teach-
ing and improve task success rate with imitation
learning. Applying reinforcement learning with
user feedback after imitation learning with user
teaching improves the model performance further,
not only on the dialogue policy but also on the
dialogue state tracking in the end-to-end training
framework.
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Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell.
2011. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In In-
ternational Conference on Artificial Intelligence and
Statistics. pages 627–635.

Alexander I Rudnicky, Eric H Thayer, Paul C Constan-
tinides, Chris Tchou, R Shern, Kevin A Lenzo, Wei
Xu, and Alice Oh. 1999. Creating natural dialogs in
the carnegie mellon communicator system. In Eu-
rospeech.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007. Agenda-based user
simulation for bootstrapping a pomdp dialogue sys-
tem. In NAACL-HLT .

Minjoon Seo, Ali Farhadi, and Hannaneh Hajishirzi.
2016. Query-regression networks for machine com-
prehension. arXiv preprint arXiv:1606.04582 .

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2015. Build-
ing end-to-end dialogue systems using generative hi-
erarchical neural network models. arXiv preprint
arXiv:1507.04808 .

Pararth Shah, Dilek Hakkani-Tür, Liu Bing, and
Gokhan Tür. 2018. Bootstrapping a neural conver-
sational agent with dialogue self-play, crowdsourc-
ing and on-line reinforcement learning. In NAACL-
HLT .

Pararth Shah, Dilek Hakkani-Tür, and Larry Heck.
2016. Interactive reinforcement learning for task-
oriented dialogue management. In NIPS 2016 Deep
Learning for Action and Interaction Workshop.

Pei-Hao Su, Pawel Budzianowski, Stefan Ultes, Mil-
ica Gasic, and Steve Young. 2017. Sample-efficient
actor-critic reinforcement learning with supervised
data for dialogue management. In SIGDIAL.

Pei-Hao Su, Milica Gasic, Nikola Mrksic, Lina Rojas-
Barahona, Stefan Ultes, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2016. On-line active
reward learning for policy optimisation in spoken di-
alogue systems. In ACL.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić,
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Abstract

It has been proven that automatic conversa-
tional agents can be built up using the End-
to-End Neural Response Generation (NRG)
framework, and such a data-driven methodol-
ogy requires a large number of dialog pairs for
model training and reasonable evaluation met-
rics for testing. This paper proposes a Large
Scale Domain-Specific Conversational Corpus
(LSDSCC) composed of high-quality query-
response pairs extracted from the domain-
specific online forum, with thorough pre-
processing and cleansing procedures. Also,
a testing set, including multiple diverse re-
sponses annotated for each query, is con-
structed, and on this basis, the metrics for
measuring the diversity of generated results
are further presented. We evaluate the per-
formances of neural dialog models with the
widely applied diversity boosting strategies on
the proposed dataset. The experimental results
have shown that our proposed corpus can be
taken as a new benchmark dataset for the NRG
task, and the presented metrics are promising
to guide the optimization of NRG models by
quantifying the diversity of the generated re-
sponses reasonably.

1 Introduction

Conversational agents (a.k.a. Chat-bots) are ef-
fective media to establish communications with
human beings and have received much attention
from academic and industrial experts in recent
years (Serban et al., 2017). One essential fact pro-
moting the research work on conversational agents
is the explosive growth of human interaction data
accumulated in the social network services, such
as Twitter1 and Reddit2. So, it is possible to build
Chat-bots based on data-driven approaches (Ser-
ban and Pineau, 2015).

1https://twitter.com/
2https://www.reddit.com/

Nevertheless, there still remains a great chal-
lenge for building such conversational agents: at
present, the automatic evaluation metrics of NRG
models can hardly afford to measure the seman-
tic relevance and diversity of generated results
reasonably, and even the latter evaluation aspect
has been paid little attention. The widely ac-
cepted evaluating methods employed by the exist-
ing NRG models can be categorized as: a) metrics
inherited from Machine Translation, e.g., BLEU,
Perplexity, etc. (Yao et al., 2015; Lowe et al.,
2017; Wu et al., 2018); b) discrete scores mea-
suring the quality of generated results by human
labeling (Shang et al., 2015; Serban et al., 2016;
Xu et al., 2017); and c) case study comparing the
generated results of different NRG models (Shang
et al., 2015; Wang et al., 2017). The disappointing
situation is that these evaluating methods have not
revealed tangible difference among NRG models,
the reasons for which can be reflected by the ex-
ample given in Table 1.

Query: Where did you get that from?

Ground-truth responses: I got it from her.

– I do not know. – Cloverfield wiki.
– New York Times. – From movie theatre.

Query: Airplane is now available on Netflix!

Ground-truth responses: Thank you!

– Is it worth watching?
– Thank you for that I’ll add it to my list.
– Awesome, I haven’t watched it!

Table 1: Cases of queries with diverse responses.

For each query in Table 1, one response from
the testing set is taken as the ground truth, together
with responses with more morphological and se-
mantic variations, marked with the symbol “–”.
These samples indicate that the numerical met-
rics inherited from NMT which discard the diver-
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sity among responses, cannot reflect marginal dif-
ferences among generative models, which is sup-
ported by the research work of Liu et al. (2016).
Thus, an NRG model with good capability to pro-
duce diverse and meaningful responses is possible
to be judged as a poor one by the BLEU/Perplexity
based evaluations. Meanwhile, the metrics based
on human labeling are still promising, yet the
expensive cost and inconsistency among labelers
limit the scale of human-annotation. Therefore,
it becomes a necessity to develop reasonable auto-
matic evaluation metrics, that can be taken to mea-
sure both candidate response’s diversity and its
relevance to the given query, to effectively guide
the training of NRG models towards the state of
promoting meaningful and diverse responses (Li
et al., 2016a; Shao et al., 2017; Freitag and Al-
Onaizan, 2017).

In order to evaluate the performance of NRG
models automatically and reasonably, a well-
annotated testing set should be built first. But
then, building such a high-quality testing set is a
non-trivial task indeed. On one hand, most exist-
ing source datasets cover various domains, mak-
ing it difficult to evaluate the generated results in
case that the domain of the generated response
is different from that of the reference. On the
other hand, a large number of noises, typos, and
slangs distribute in existing large-scale datasets,
such as Twitter corpus (Ritter et al., 2011) and
Ubuntu dialog corpus (Kadlec et al., 2015). For
instance, there are many file directories with com-
puter names in Ubuntu dialog corpus. Therefore,
qualified domain-specific datasets are desperately
required to evaluate NRG models with different ar-
chitectures reasonably.

To address the above issues, we build a high-
quality and domain-specific dialog corpus com-
posed of a carefully prepared training set, and
meanwhile, a testing set is constructed by collect-
ing multiple reference responses for each query
and conducting group-aware human annotation on
collected responses. On this basis, we proposed
three discriminative metrics: MaxBLEU, Mean Di-
versity Score (MDS), and Probabilistic Diversity
Score (PDS), to primarily evaluate the diversity
of generated responses with relevance also con-
sidered. To further assess the performance and
effectiveness of the test set cooperating with the
proposed metrics, the widely applied Sequence-
to-Sequence (Seq2Seq) (Bahdanau et al., 2014;

Sutskever et al., 2014) based models with the
available diversity promotion methods are imple-
mented, and experiments are conducted on the
proposed Large Scale Domain-Specific Conversa-
tional Corpus (LSDSCC) dataset. The experimen-
tal results stay consistent with the previous ex-
perience acquired from human-labeled sets, and
the performance of these models suggests that the
LSDSCC corpus and discriminative metrics will
provide insights for future research in the field of
NRG.

2 Related Work

Seq2Seq based conversation modeling approaches
have been proven to be able to generate response
directly (Vinyals and Le, 2015; Shang et al., 2015).
However, these models tend to produce generic
responses to any given queries, namely the defi-
cient diversity problem (Shao et al., 2017). Recent
studies attempt to constrain these universal replies
and promote more diverse responses with various
strategies during the procedure of training or in-
ference (Li et al., 2016a,b; Mou et al., 2016; Xing
et al., 2017; Shao et al., 2017). Besides, there still
exits another meaningful option, that is, to employ
reasonable diversity oriented evaluation metrics to
guide the optimization of models.

The quality of testing sets is a primary fac-
tor for such evaluation of NRG models. Existing
large-scale corpora contain the Movie Dialogue,
Ubuntu, Twitter, and Reddit corpus (Banchs,
2012; Uthus and Aha, 2013; Ritter et al., 2010;
Schrading et al., 2015). The Ubuntu corpus is
built by scraping a large scale tech support dia-
logues from Ubuntu IRC forum for building re-
sponse ranking models (Kadlec et al., 2015). Sim-
ilarly, Sordoni et al. (2015) provide external con-
text information for message response pairs from
Twitter FireHose. Besides, Dodge et al. (2016)
and Schrading et al. (2015) collect real conversa-
tions from movie categories of Reddit community,
which are integrated into a multi-task corpus on
movie for the ranking task and discourse analy-
sis. In the above corpora, there are only one or
two reference responses for most query, which is
completely unlike that of the practical conversa-
tion scenario (Li et al., 2017b). By contrast, this
paper construct a high-quality testing set, includ-
ing multi-references for each query. In this regard,
our testing set is more close to the real-world set-
ting.
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Besides the testing set, evaluation metrics are
also important for the performance measurement
of NRG models. Most frequently applied evalu-
ation metrics for NRG models are inherited from
NMT to measure the fluency and relevance of gen-
erated responses, such as Perplexity, BLEU (Pap-
ineni et al., 2002) and deltaBLEU (Galley et al.,
2015). Although these metrics demonstrate the
relevance between the given query and the gen-
erated responses, they overlook the reply’s diver-
sity that is of great importance in conversation set-
ting. Thus, efforts are devoted to simulate the hu-
man subjective judgment, which is similar with
the response ranking task in retrieval-based chat
agents (Lowe et al., 2017; Tao et al., 2018), but un-
avoidable uncertainty and errors are brought into
the systems (Hu et al., 2014). In addition, auto-
matic evaluation metrics (e.g. BLEU, deltaBLEU,
etc.) are limited by the fact that each query only
has references with the exact same meaning and
many overlapped phrases, which is unreasonable
in the conversational scenario.

3 Data Processing and Analysis

Previous studies indicate that more focused topics
and less diverged domain is helpful to guide NRG
models away from the state of producing univer-
sal responses (Mou et al., 2016; Xing et al., 2017),
so we compose a domain-specific corpora by con-
straining the domain of crawled dialogues from
Reddit to its movie discussion board3. The quality
of the data in Reddit movie category has been dis-
cussed by Stoddard (2015) and Jamnik and Lane
(2017), who point out that the popularity is a good
indication of relative quality and the movie cate-
gory is one of the most popular boards in Reddit.
Thus, the data in Reddit movie category is orig-
inally high-quality. In this section, the pipeline
for building the LSDSCC dataset will be discussed
in detail, and necessary statistical indicators are
collected to demonstrate its distribution. More-
over, human evaluation is conducted to measure
the quality of the obtained training set.

3.1 Data Processing

Data Cleansing. We crawl threads from the movie
discussion board of Reddit that includes human-
to-human conversations as the raw dataset, and
conduct the following cleansing operations:

3https://www.reddit.com/r/movies/, selected from
https://www.reddit.com/r/datasets

a) For each thread, we strip away the mark-
down and html syntax tokens, e.g., “[word](url)” is
transformed to “word”, “&gt;” is reformed to “>”,
etc. Meanwhile, all forms of urls, emails and dig-
its withing the paragraphs are normalized as “url”,
“email” and “digits” tokens respectively;

b) As emoticons in the data originated from so-
cial media services always provide essential emo-
tional information of users, we propose to convert
the same groups of emoticons into corresponding
words (e.g., “:-)” will be reverted to “happy”) to
preserve such emotion knowledge;

c) Finally, replicated words or characters (e.g.,
“cooool” and “ahahaha”, etc.) are substituted with
its normal form using regular expressions.

Query Vocabulary Size Coverage (%)

overlong words 17,084 10.32 %
non-ascii words 58,720 35.46 %

Response Vocabulary Size Coverage (%)

overlong words 15,914 7.94 %
non-ascii words 71,997 35.94 %

Table 2: Composition of noise words in the query and
response vocabulary of the raw data.

Vocabulary Truncation. After the above pre-
processing operations, there still exist redun-
dant unformatted slang and noisy strings (e.g.,
“Iloveyou”), which have low-frequency in the
crawled raw data. Consequently, the vocabulary
size of the dataset is exceeding 160K as shown
in Table 2. Keeping a such large vocabulary
for Seq2Seq based models will consume exces-
sive memory and make those models difficult to
converge, while pruning low-frequency unformat-
ted slang and noisy strings into “UNK” symbols
would directly harm the performance of the model
since excessive knowledge hidden in these strings
are ignored in the training process. To address this
issue, we break these slangs and noises into sev-
eral frequent words in our corpus and eliminate
non-ASCII tokens. In this way, sufficient informa-
tion of the dataset is maintained for model train-
ing. Finally, the vocabulary sizes of the dataset
are reduced to around 50K.
Dialog Pruning. Statistical results on the sen-
tence length of query-response pairs in the cleaned
corpus are illustrated in Fig. 1. Concerning the
fact that recurrent neural networks can not effi-
ciently capture the semantics of over-long sen-
tences and previous studies indicate that such re-
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Figure 1: Sentence length coverage of queries and re-
sponses within the dataset.

sponses would make the decoder hard to con-
verge (Greff et al., 2017), it is necessary to prune
the pairs containing very long sentences. After
the sentences are tokenized using the NLTK toolk-
its4, the cases with queries longer than 100 or re-
sponses exceeding 60 words are pruned directly,
and 76.25% of the dataset are finally reserved.

After pruning the corpus, there remain 738,095
single-turn and 346,543 multi-turn conversations.
Since this paper focuses on the single-turn dialogs,
the evaluative testing set and detailed experiments
in the following sections are designed for single-
turn corpus. As the testing set will select pairs
from the preprocessed data, the corresponding tu-
ples will be deleted to avoid coverage.

3.2 Query-Response Relevance of the Dataset
As one of the most important qualities of the con-
versational corpus, the query-response relevance
demonstrates the overall quality of the dataset.
Human evaluations of the query-response rele-
vance are conducted to validate the quality of the
dataset used in this paper. Nine experienced an-
notators are invited to evaluate the query-response
relevance of 500 single-turn dialogs uniformly
sampled from the whole dataset obtained in Sub-
section 3.1. In the evaluation, we ask each an-
notator to label whether the response is appropri-
ate to the corresponding query in the given query-
response pair. A pair is tagged as “Unsure” if
the annotator could not confirm the degrees of
relevance without related context and background
movie knowledge. The labeled result is shown
in Table 3. It is observed that 85% samples in
the query-response relevance task are confirmed
to keep high relevance between the query and the
corresponding responses. Moreover, there exist

4http://www.nltk.org/

only about 6.6% irrelevant noises. So, the resource
can be considered as a high-quality one and can be
used in the practical task.

Category Relevant Unsure Irrelevant

Numbers 427 40 33

Percentage 85.4% 8% 6.6%

Table 3: Query-Response Relevance on the single-turn
training set.

4 Testing Set and Evaluation Metrics

Existing evaluation metrics of dialog agents mea-
sure the quality of the generated sentences only by
referring to the existing responses, which obeys
the same principle with NMT models’ metrics.
However, one essential difference between NRG
and NMT lies in the fact that, a large group of re-
sponses can be considered as relevant to a given
query in conversations, while the number of ref-
erences to a translation result is quite limited for
NMT models. So the diversity degree of candi-
dates which have not covered by NMT oriented
evaluation metrics, is supposed to be quantified
and measured in NRG models.

Currently, few studies focus on the evalua-
tion based on the group of references, which is
more meaningful and reasonable for NRG models.
Therefore, we proposed three metrics: MaxBLEU,
Mean Diversity Score, and Probabilistic Diversity
Score, to quantify both the relevance and diver-
sity of the generated responses. Since these met-
rics are based on the multi-reference, we first de-
scribe the procedure of building testing set, with
multi-references for each query. Then, the metrics
for NRG models are detailed based on the multi-
reference testing set.

4.1 Multi-Reference Testing Set Construction
Fig. 2 illustrates the response quantity distribution
of queries in the preprocessed data. While the test-
ing set is randomly sampled from the preprocessed
data, the response quantity distribution of the test-
ing set is the same as that in Fig. 2. In this case,
the multi-reference testing set for NRG evaluation
is difficult to construct by directly extracting sam-
ples from the dialog corpus, since there are too few
queries that contain more than three responses.
Roughly choosing samples from such data is pos-
sible to bring topic bias into the testing set, and
manually filtering suitable candidate pairs from

2073



them is also time-consuming and expensive. Nev-
ertheless, there exist large amounts of queries that
are highly semantically similar or correlated with
each other. This indicates that the multiple refer-
ences can be obtained by selecting responses of
queries that are semantically identical to the orig-
inal query. What’s more, the human-annotation is
involved to proofread the filtered pairs’ quality and
complete the final labeling.
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Figure 2: Distribution of reply quantities in training set.

When constructing the testing set, the very
first step is getting semantically similar (or even
identical) queries with the given ones. For this
purpose, this paper adopts the TF-IDF similarity
and semantic embedding based distance to mea-
sure the similarity between queries. The pro-
cedure of gaining similar queries is divided into
two stage: In the first stage, we employ Apache
Lucene5 to exploit the word-level TF-IDF patterns
within queries, and then extract the top 100 sim-
ilar queries with highest scores given by Lucene
for each query. Yet, these candidates only capture
n-gram level similarity with the probably diverged
semantics. Thus, in the second stage, we utilize
paragraph vector algorithm (a.k.a Doc2vec6 ) (Le
and Mikolov, 2014) to resort the selected simi-
lar queries in the semantic space and only queries
of similarity score higher than a certain threshold
(i.e., 0.9) are reserved. Table 4 lists several identi-
cal queries filtered by Lucene and Doc2vec meth-
ods with the given query. It should be noted that
the Lucene index and Doc2vec need to be initial-
ized by feeding all the sentences in the dialogue
corpus.

To reserve as much information as possible and
balance the distribution of the composed testing
set, we divide the dataset into several subsets
based on the response number of queries, and then
sample testing data from each subset uniformly.
Concretely, according to the response number,

5https://lucene.apache.org/
6https://radimrehurek.com/gensim/models/doc2vec.html

Similar Queries Similarity

If you haven’t already, watch the animatrix. 0.97

Do not watch the animatrix,
you may leave you house. 0.95

I don’t have much to ad except,
that people really should watch animatrix. 0.94

I recommend you watch the matrix. 0.91

Table 4: Filtered queries identical to the original query:
“You should watch the animatrix.”

queries of the dataset are divided into three sub-
sets: a) queries with less than 3 responses, b)
queries with 3 to 5 responses, and c) queries with
more than 5 responses. We randomly sample 100
queries from each subset, and thus 300 queries are
obtained as the testing set. Aiming at building a
multiple references testing set, each query in the
testing set is assigned with 15 responses, includ-
ing the original responses and the ones of the most
similar queries obtained by the procedure of last
paragraph.

Afterwards, three skilled and experienced label-
ers familiar with movies are employed and care-
fully trained to crosswise annotate the filtered test-
ing set. In addition, labelers can also obtain some
background of the corresponding query since there
are additional details for most queries in Reddit.
In this case, the quality of selected samples can
be guaranteed. Besides, the annotators are asked
not only to label the relevance of query and ref-
erence responses, but also reorganize the indepen-
dent references into groups by the semantic simi-
larity subjectively. The grouping strategy is intro-
duced for the purpose of evaluating the diversity
of responses generated by different models.

In the relevance oriented annotation procedure,
the labelers are first asked to judge whether a can-
didate response is appropriate and natural to the
input query. If a candidate response is grammat-
ically correct and semantically relevant with the
corresponding query from the annotators’ perspec-
tive, it should be labeled as “1”. Otherwise, the
annotators have to give “0” label to the candi-
date. Then, for each query, the annotators need
to split responses labeled with “1” into different
groups based on word overlapping between them,
with stop-word overlapping ignored. Finally, the
groups with the similar semantics are merged into
a larger group by the annotators, so as to get the
final grouped responses.
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At last, we obtain a high-quality testing set, in
which each query is assigned with different num-
bers of reference responses. Fig. 3 shows the dis-
tribution of the response numbers in the testing set.
Comparing to the original response number distri-
bution in Fig. 2, the replies distribution of the test-
ing set is much more appropriate for the conver-
sational scenario. Furthermore, responses to the
corresponding query are categorized into several
groups. In this case, NRG models can be evaluated
reasonably using such a testing set. One sampled
case in the testing set is shown in the left phase
of Fig. 4, and there are eight responses in the la-
beled data divided into four groups. The different
metrics in this figure will be introduced in the fol-
lowing sections. It should be noted that both the
single-turn dialogs and the annotated testing set
are released7.
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Figure 3: Aggregated responses per query in testing set.

4.2 The Metric on Response Relevance

Since the NRG architecture is analogous to the
NMT models, introducing the BLEU scores to
evaluate the semantic relevance of the generated
results is acceptable. However, it is not reason-
able to average the BLEU scores of the generated
response to each reference, because the seman-
tic of each reference varies significantly. Aiming
at revealing the variation and diversity among re-
sponses, which have not yet covered at the NMT
models, we propose a MaxBLEU metric customized
for response generation based on the Multi-BLEU
metric (Madnani et al., 2008). Noticing that the
metrics inherited from SMT, like BLEU, is not
able to evaluate the diversity of responses, we pro-
pose the specified metrics for diversity evaluation,
which will be described in the next subsection.

Given an input query, the NRG model is able to
generate a set of hypothesis {hi}8. Meanwhile,

7https://drive.google.com/file/d/1nbpbnhwNP14xAc4SAc1-
NN5lvEr01dQb/view?usp=sharing

8Following the terms in machine translation, this part
takes “hypothesis” to represent “response”.

according to the human-annotation strategy de-
scribed in Subsection 4.1, the set of references can
be reorganized, based on their semantic similarity,
into the groups with the format of {rij}, where rij
denotes the j-th reference in the i-th group. On
this basis, the MaxBLEU metric is defined as:

MaxBLEU(hi) = argmax
k

Multi-BLEU(hi, rk·) (1)

where rk· denotes all the references in the k-
th group. That is, we begin by calculating all
the multi-BLEU scores between each hypothesis
and grouped references, and pick the score for
the sentence with the highest BLEU as the score
for this set of hypothesis, so that we make an
alignment between generated hypothesis h to the
group-aware references r. For simplicity, one re-
sponse can only be aligned to one group reference,
and multi-group references are not considered in
this work.

4.3 Metrics on Response Diversity
Given a query, the diversity degree of candidate
responses is an essential criterion for evaluating
the performances of NRG models. Currently, most
studies tend to demonstrate the diversities of dif-
ferent models by sampling and comparing the gen-
erated results, or labeling the diversity of the gen-
erated samples, which makes it difficult to bench-
mark and automatically evaluate different models.
Although Li et al. (2017a) propose to calculate the
number of distinct unigrams and bigrams of gener-
ated responses, such scores do not align well with
human inspection (Serban et al., 2017).

Algorithm 1 Two Response Diversity Metrics.
Input:

hypothesis set H and reference set R ;
Output:

Mean Diversity Score (MDS);
Probabilistic Diversity Score (PDS);

1: for all ri· ∈ R do . Initialize
2: pi = 1/|R|,
3: p′i = |ri·|/

∑
j |rj·|.

4: end for
5: for all hi ∈ H do . Compute alignment
6: k = argmaxj Multi-BLEU(hi, rj·).
7: MDS(k) = pk,
8: PDS(k) = p′k.
9: end for

10: return
∑

k MDS(k),
∑

k PDS(k)

Therefore, we propose two evaluative metrics
based on the MaxBLEU metric for diversity mea-
surement: a) Mean Diversity Score (MDS) and b)
Probabilistic Diversity Score (PDS). Basically, the
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1.1 Rogen and Goldberg are producing a movie being acted by the 
Workaholics guys.
1.2 I think Rogen is producing a movie from Workaholics guys, 
should be fun!
2.1 He's also in top five by Chris Rock.
2.2 He has an important role in the top five and it's hilarious.
2.3 He was quite in in top five, another comedy that came out recently.
2.4 Looks he have pretty big role in top five, the new Chris Rock movie.
3.1 When I saw Anders, I thought he was going to be a CIA analyst, 
especially when Rogen asked him if he was still Associate Producer.
4.1 Anders is my favorite too Blake annoys me sometimes but the show 
wouldn't be the same without him.

Query: Anders from Workaholics being in there was more unexpected for me, I hope he gets bigger roles in major comedies he's definitely my favorite.

Grouped Reference Responses

1 The Workaholics should be fun.
2 The Workaholics guys are fun.

3 He's also in top five by Chris Rock.
4 He has an important role.
5 I saw Anders, and he is good.

6 I thought he was good.
7 He is my favorite.
8 Anders annoys me.

Hypothesis MaxBLEU

0.02
1.00
0.007

0.62
0.10
0.09

0.14
0.13

2
2
2

K

4
4
4

1
1
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3/4
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Figure 4: A sampled testing case including a given query, the grouped reference responses and the generated ones
(hypothesis) with the proposed metrics, among which “K” is obtained by performing argmax upon MaxBLEU

scores. The MDS metric is calculated with the partitioned groups and PDS metric is calculated with the weight of
each group in the overall the candidate set.

two metrics aim at measuring the overall diversity
of the whole set of generation results (hypothe-
sis) by taking them as an entirety, and the detailed
calculation steps of the proposed metrics are illus-
trated in Algorithm 1. According to the algorithm,
the PDS metric assumes that the weight of each ref-
erence group is distributed uniformly, regardless
of the reference number in each group. Similarly,
the MDS metric takes the count of the members
in each group as the weight of the corresponding
group, and actually compute the weighted cover-
age upon the reference group.

5 Experiments and Analysis

In this section, we present the detailed experi-
ments on the single-turn dialog dataset and analy-
sis on generated results, in accordance to the pro-
posed metrics.

5.1 Baselines and Experimental Setups
Experiments are conducted using the popular
Seq2Seq based models with the currently available
diversity prompting strategies as follows:
1) Basic Seq2Seq. We employ the basic Seq2Seq
to build the encoder-decoder architecture running
on the proposed dataset, by taking the bidirec-
tional LSTM cell as the encoder to address the in-
put sentences ordering problem and classic LSTM
cell as the decoder (Vinyals and Le, 2015).
2) Attention-Seq2Seq. As proposed by Vinyals
and Le (2015); Luong et al. (2015), a concatenated
version of attention mechanism is applied upon the
basic Seq2Seq model.
3) Greedy-Seq2Seq. Based on the basis Seq2Seq
model, the diversity promotion strategy proposed

by Li et al. (2016b) is applied in the generating
procedure, and the training procedure stays the
same. Hyper parameter γ, a.k.a. diversity rate, are
set with empirical experiments (i.e., γ = 0.1, 0.8)
to reveal the efforts.
4) Greedy-Attn-Seq2Seq. Following the work
of Li et al. (2016b), the greedy diversity promo-
tion strategy is applied on the Seq2Seq model with
attention mechanism similar with model 2, and we
set hyper parameter γ = 0.1, 0.8.
5) MMI-Seq2Seq. In the generation procedure,
Maximum Mutual Information (MMI) model is
applied in the decoder to prune generic answers
on the basic Seq2Seq model (Li et al., 2016a).

In our research, we implement these models
on the TensorFlow platform9, and Adam opti-
mizer (Kingma and Ba, 2015) is employed for gra-
dient optimization during training. Besides, we
choose to prune the words whose frequencies are
below 2, so the source and target vocabulary are
set to 42, 257 and 46, 865 respectively.

In addition, we set the batch size to 50, hidden
size of encoder to 256, hidden size of decoder to
512 and learning rate to 2e − 4. The gradients
are clipped within [−3.0, 3.0] to avoid the gradient
explosion problem. Every model runs on a single
GPU separately for at least one week before con-
vergence. Afterwards, for all these methods, we
generate a set of hypothesis sentences with beam
size set to k = 50, and the evaluation scores are
obtained using the proposed metrics.

After running through 25 epochs on the dataset,
the training log-loss of the basic Seq2Seq mod-

9https://www.tensorflow.org
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Models MaxBLEU MDS PDS

Seq2Seq (Vinyals and Le, 2015) 1.30 0.230 0.253
Attention-Seq2Seq (Luong et al., 2015) 1.42 0.235 0.262
Greedy-Seq2Seq (γ = 0.1) (Li et al., 2016b) 1.88 0.249 0.243
Greedy-Seq2Seq (γ = 0.8) 1.72 0.297 0.291
Greedy-Attn-Seq2Seq (γ = 0.1) (Li et al., 2016b) 2.27 0.252 0.248
Greedy-Attn-Seq2Seq (γ = 0.8) 2.05 0.285 0.287
MMI-Seq2Seq (Li et al., 2016a) 2.15 0.311 0.329

Table 5: Performances of different models trained on the LSDSCC dataset with three metrics: MaxBLEU, MDS, PDS.

els converge to about 4.2 and the Seq2Seq models
augmented with attention converge to 3.1. Also,
we set the dropout rate to 0.5, which enables us
to tune the models though much more epochs and
avoid the over-fitting problems.

5.2 Relevance Analysis

The semantic relevance of the generated responses
is represented by the MaxBLEU scores, which are
listed in the corresponding column of Table 5.
From this benchmarking table, it can be observed
that the attention mechanism is helpful for de-
coders to improve the relevance of the generated
responses, since the Attention-Seq2Seq performs
better than the basic Seq2Seq on the dataset, in
terms of all the three metrics. However, the rela-
tive gain of the attention layer is limited, indicat-
ing that modeling relation of query and response
by attention module is not able to directly solve
the learning paradigm of conversations.

In accordance to the results of Greedy-Seq2Seq
(γ = 0.1) and Greedy-Seq2Seq (γ = 0.8), the
hyper-parameter γ actually plays an important role
in the generation steps of the decoder. Since γ
is introduced to constrain the selection probabil-
ity of the next-step word by performing the re-
ranking process, and the larger value of this pa-
rameter will lead to the greater impact upon gen-
erating steps and produce more diverse sentences,
we evaluate this greedy strategy with γ set with
two empirical value. It can be seen that the model
with the smaller γ performs better than the one
with the larger parameter, which can be attributed
to the fact that responses with more diversity are
less similar to references. Similar observation can
be get from the results of models Greedy-Attn-
Seq2Seq (γ = 0.1) and Greedy-Attn-Seq2Seq
(γ = 0.8). Besides, the reason for setting γ =
0.1, 0.8 in this part is that they are well represented
for the poor diversity and good diversity, which the
exact score of γ will vary under different configu-
rations and structures of model.

In addition, the MMI model is proved to be
promising to enhance the generation models, by
improving both the relevant and diversity of gen-
erated responses. Even though the MMI-Seq2Seq
model has not got the highest MaxBLEU, it outper-
forms the other ones on diversity, which will be
discussed in the following subsection.

5.3 Diversity Analysis

Table 5 also illustrates the MDS and PDS score of
each benchmark. It is observed that the greedy
strategies in the generating procedure with the
greater parameter γ can boost the diversity of gen-
erated responses obviously. This phenomenon is
attributed to the inter-sibling ranking policy in the
decoding procedure, which tends to choose hy-
potheses from diverse parents. In addition, the
MMI strategy gets the highest MDS and PDS, be-
cause the MMI criterion relieves the constraint
of the language model, under which general re-
sponses always get a higher generative probability.

Meanwhile, the PDS metric aligns well with
the basic MDS, but the relative gap becomes
larger within the Greedy-Seq2Seq (γ = 0.1) and
Greedy-Seq2Seq (γ = 0.8) models. The rea-
son for enlarging relative gap between different
models, is to distinguish the performance of sim-
ilar models and evaluate the performance of spe-
cific module inside the models. When comparing
Seq2Seq and Attention-Seq2Seq, relative gain of
applied attention module to the overall model in
terms of MDSwas 2.1%, while it became 3.6% con-
sidering the PDS metric.

Practically, it is reasonable to make a trade-off
between the relevance and diversity. The PDS is
more suitable for choosing the systems with strin-
gent diversity requirement, and the MDS is a softer
metric, which should be taken into consideration
when measuring the diversity improvements by in-
tegrating some new modules into NRG models.

Moreover, it can be observed that the relevance
oriented metric MaxBLEU gets improvement along
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with the increasing of the diversity oriented PDS

and MDS. This phenomenon indicates a relation-
ship between relevance and diversity against that
in some of text generation tasks (e.g., image cap-
tion (Yao et al., 2017)). Since there are generally
many references for a given query, the relevance
and diversity are possible to be improved simulta-
neously for the response generation task (Li et al.,
2016a). And thus, the topic changing on the gen-
erated results is tolerable.

5.4 Human Correlation Analysis

To validate the correlations between human rat-
ings and the proposed metrics, we further invite 9
annotators with rich movie knowledge to judge the
relevance and diversity of the generated responses
from benchmark methods. Each baseline model
generate 10 responses for each query in the test
dataset. The annotators are first asked to judge
whether a generated response is relevant to the
query (labeled with 1) or not (labeled with 0). Af-
ter that, the annotators estimate the diversity of
relevant responses of each query with a scale of
1 to 3. The final Fleiss Kappa (Fleiss, 1971) score
is 0.46, which denotes moderate agreement of the
annotators.

Model Spearman p-value Pearson p-value

MaxBLEU 0.31 0.022 0.29 0.036
MDS 0.36 0.041 0.33 0.028
PDS 0.39 0.038 0.35 0.040

Table 6: Correlation between the proposed metrics and
human judgments for the Reddit dataset.

The Pearson and Spearman correlation between
the human evaluations and each metric are given in
Table 6. It can be observed that the proposed met-
rics correlate with human judgments moderately
with p − value < 0.05, which is quite different
from the correlation test in Liu et al. (2016). This
can be attributed to the fact that there are multi-
ple references for each query in our test dataset.
Although the proposed metrics are derived from
the word-overlap based BLEU scores, expanding
references of each query makes such scores much
more reasonable for evaluating the relevance and
diversity of generated responses.

6 Conclusion and Future Work

In this paper, we have proposed the Large Scale
Domain-Specific Conversational Corpus (LSD-

SCC), collected from the movie discuss threads
in the Reddit community, for training and testing
the Neural Response Generation (NRG) models.
In addition, necessary data cleansing and prun-
ing works are done to remove noises in the ut-
terances. Moreover, we employ volunteers to an-
notate a diverse query-responses testing set, with
reference groups taken into consideration for ob-
jectively quantifying the diversity of generated re-
sults. On the basis of the testing set, we propose
two evaluative diversity metrics (mean diversity
score and probabilistic diversity score) calculated
according to the standard MaxBLEU score.

Furthermore, we investigate the performance of
popular Seq2Seq based models with various diver-
sity promotion strategies, and the score of them are
collected to validate the effectiveness of the pro-
posed metrics. The proposed dataset and evalua-
tion metrics are expected to be used for the effec-
tive training and reasonable testing of NRG mod-
els.

In the future studies, we would explore the pos-
sibility of promoting diversity on the learning pro-
cedure, by directly optimizing diversity loss in the
cost function. Besides, injecting external infor-
mation during response’s generation would be an-
other challenging work.
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Abstract

Coding EMRs with diagnosis and procedure
codes is an indispensable task for billing, sec-
ondary data analyses, and monitoring health
trends. Both speed and accuracy of coding
are critical. While coding errors could lead
to more patient-side financial burden and mis-
interpretation of a patient’s well-being, timely
coding is also needed to avoid backlogs and
additional costs for the healthcare facility. In
this paper, we present a new neural network ar-
chitecture that combines ideas from few-shot
learning matching networks, multi-label loss
functions, and convolutional neural networks
for text classification to significantly outper-
form other state-of-the-art models. Our eval-
uations are conducted using a well known de-
identified EMR dataset (MIMIC) with a vari-
ety of multi-label performance measures.

1 Introduction

Electronic medical record (EMR) coding is the
process of extracting diagnosis and procedure
codes from the digital record (the EMR) pertain-
ing to a patient’s visit. The digital record is mostly
composed of multiple textual narratives (e.g., dis-
charge summaries, pathology reports, progress
notes) authored by healthcare professionals, typ-
ically doctors, nurses, and lab technicians. Hos-
pitals heavily invest in training and retaining pro-
fessional EMR coders to manually annotate all pa-
tient visits by reviewing EMRs. Proprietary com-
mercial software tools often termed as computer-
assisted coding (CAC) systems are already in use
in many healthcare facilities and were found to
be helpful in increasing medical coder productiv-
ity (Dougherty et al., 2013). Thus progress in au-
tomated EMR coding methods is expected to di-
rectly impact real world operations.

In the US, the diagnosis and procedure codes
used in EMR coding are from the Interna-

tional Classification of Diseases (ICD) terminol-
ogy (specifically the ICD-10-CM variant) as re-
quired by the Health Insurance Portability and
Accountability Act (HIPPA). ICD codes facili-
tate billing activities, retrospective epidemiologi-
cal studies, and also enable researchers to aggre-
gate health statistics and monitor health trends.
To code EMRs effectively, medical coders are ex-
pected to have thorough knowledge of ICD-10-
CM and follow a complex set of guidelines to code
EMRs. For example, if a coder accidentally uses
the code “heart failure” (ICD-10-CM code I50) in-
stead of “acute systolic (congestive) heart failure”
(ICD-10-CM code I50.21), then the patient may
be charged substantially more1 causing significant
unfair burden. Therefore, it is important for coders
to have better tools at their disposal to find the
most appropriate codes. Additionally, if coders
become more efficient, hospitals may hire fewer
coders to reduce their operating costs. Thus auto-
mated coding methods are expected to help with
expedited coding, cost savings, and error control.

In this paper, we treat medical coding of EMR
narratives as a multi-label text classification prob-
lem. Multi-label classification (MLC) is a ma-
chine learning task that assigns a set of labels
(typically from a fixed terminology) to an in-
stance. MLC is different from multi-class prob-
lems, which assign a single label to each exam-
ple from a set of labels. Compared to general
multi-label problems, EMR coding has three dis-
tinct challenges. First, with thousands of ICD
codes, the label space is large and the label dis-
tribution is extremely unbalanced – most codes
occur very infrequently with a few codes occur-
ring several orders of magnitude more than oth-
ers. Second and more importantly, a patient may
have a large number of diagnoses and procedures.

1https://nyti.ms/2oxrjCv
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On average, coders annotate an EMR with more
than 20 such codes and hence predicting the top
one or two codes is not sufficient for EMR cod-
ing. Third, EMR narratives may be very long (e.g.,
discharge summaries may have over 1000 words),
which may result in a needle in a haystack situa-
tion when attempting to seek evidence for particu-
lar codes.

Recent advances in extreme multi-label classi-
fication have proven to work well for large label
spaces. Many of these methods (Yu et al., 2014;
Bhatia et al., 2015; Liu et al., 2017) focus on cre-
ating efficient multi-label models that can handle
104 to 106 labels. While these models perform
well in large label spaces, they don’t necessarily
focus on improving prediction of infrequent la-
bels. Typically, they optimize for the top 1, 3, or 5
ranked labels by focusing on the P@1, P@3, and
P@5 evaluation measures. The labels ranked at
the top usually occur frequently in the dataset and
it is not obvious how to handle infrequent labels.
One solution would be to ignore the rare labels.
However, when the majority of medical codes are
infrequent, this solution is unsatisfactory.

While neural networks have shown great
promise for text classification (Kim, 2014; Yang
et al., 2016; Johnson and Zhang, 2017), the label
imbalances associated with EMR coding hinder
their performance. Imagine if a dataset contains
only one training example for every class leading
to one-shot learning, a subtask of few-shot learn-
ing. How can we classify a new instance? A triv-
ial solution would be to use a non-parametric 1-
NN (1 nearest neighbor) classifier. 1-NN does not
require learning any label specific parameters and
we only need to define features to represent our
data and a distance metric. Unfortunately, defining
good features and picking the best distance metric
is nontrivial. Instead of manually defining the fea-
ture set and distance metric, neural network train-
ing procedures have been developed to learn them
automatically (Koch et al., 2015). For example,
matching networks (Vinyals et al., 2016) can auto-
matically learn discriminative feature representa-
tions and a useful distance metric. Therefore, us-
ing a 1-NN prediction method, matching networks
work well for infrequent labels. However, re-
searchers typically evaluate matching networks on
multi-class problems without label imbalance. For
EMR coding with extreme label imbalance with
several labels occurring thousands of times, tra-

ditional parametric neural networks (Kim, 2014)
should work very well on the frequent labels. In
this paper, we introduce a new variant of matching
networks (Vinyals et al., 2016; Snell et al., 2017)
to address the EMR coding problem. Specifically,
we combine the non-parametric idea of k-NN and
matching networks with traditional neural network
text classification methods to handle both frequent
and infrequent labels encountered in EMR coding.

Overall, we make the following contributions in
this paper:

• We propose a novel semi-parametric neural
matching network for diagnosis/procedure
code prediction from EMR narratives. Our
architecture employs ideas from matching
networks (Vinyals et al., 2016), multiple at-
tention (Lin et al., 2017), multi-label loss
functions (Nam et al., 2014a), and convolu-
tional neural networks (CNNs) for text clas-
sification (Kim, 2014) to produce a state-of-
the-art EMR coding model.

• We evaluate our model on publicly available
EMR datasets to ensure reproducibility and
benchmarking; we also compare against prior
state-of-the-art methods in EMR coding and
demonstrate robustness across multiple stan-
dard evaluation measures.

• We analyze and measure how each compo-
nent of our model affects the performance us-
ing ablation experiments.

2 Related Work

In this section we cover recent methodologies that
are either relevant to our approach and problem or
form the main ingredients of our contribution.

2.1 Extreme Multi-label Classification
Current methods for extreme MLC fall into two
categories: embedding and tree-based methods.
Embedding-based methods aim to reduce the
training complexity. They effectively reduce the
label space by assuming the training label ma-
trix is low rank. Intuitively, rather than learning
independent classifiers for each label (binary rel-
evance) (Tsoumakas et al., 2010), classifiers are
learned in a reduced label space L̂ � L where L
is the total number of labels. Likewise, a projec-
tion matrix is learned to convert predictions from
the reduced label space back to the original la-
bel space. In general, embedding methods vary
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based on how they reduce the label space and
how the projection operation is optimized. Tai
and Lin (2012) use principal component analy-
sis (PCA) to reduce the label space. Low-rank Em-
pirical risk minimization for Multi-Label Learning
(LEML) (Yu et al., 2014) jointly optimizes the la-
bel space reduction and the projection processes.
RobustXML (Xu et al., 2016) is similar to LEML
but it treats infrequent labels as outliers and mod-
els them separately. Liu et al. (2017) employ neu-
ral networks for extreme multi-label problems us-
ing a funnel-like architecture that reduces the la-
bel vector dimensionality. Tree-based multi-label
methods work by recursively splitting the feature
space. These methods usually differ based on the
node splitting criterion. FastXML (Prabhu and
Varma, 2014) partitions the feature space using
the nDCG measure as the splitting criterion. Pfas-
treXML (Jain et al., 2016) improves on FastXML
by using a propensity scored nDCG splitting cri-
terion and re-ranking the predicted labels to opti-
mize various ranking measures.

2.2 Memory Augmented Neural Networks

Memory networks (Weston et al., 2014) have ac-
cess to external memory, typically consisting of
information the model may use to make predic-
tions. Intuitively, informative memories concern-
ing a given instance are found by the memory net-
work to improve its predictive power. Kamra et al.
(2017) use memory networks to fix issues of catas-
trophic forgetting. They show that external mem-
ory can be used to learn new tasks without for-
getting previous tasks. Memory networks are now
applied to a wide variety of natural language pro-
cessing tasks, including question answering and
language modeling (Sukhbaatar et al., 2015; Bor-
des et al., 2015; Miller et al., 2016).

Matching networks (Vinyals et al., 2016; Snell
et al., 2017) have recently been developed for
few/one-shot learning problems. We can interpret
matching networks as a key-value memory net-
work (Miller et al., 2016). The “keys” are training
instances, while the “values” are the labels asso-
ciated with each training example. Intuitively, the
concept is similar to a hashmap. The model will
search for the most similar training instance to find
its respective “value”. Also, matching networks
can be interpreted as a k-NN based model that
automatically learns an informative distance met-
ric. Finally, Altae-Tran et al. (2017) used match-

ing networks for drug discovery, a problem where
data is limited.

2.3 Diagnosis Code Prediction
The 2007 shared task on coding radiology re-
ports (Pestian et al., 2007) was the first effort that
popularized automated EMR coding. Tradition-
ally, linear methods have been used for diagno-
sis code prediction. Perotte et al. (2013) devel-
oped a hierarchical support vector machine (SVM)
model that takes advantage of the ICD-9-CM hier-
archy. In our prior work, we train a linear model
for every label (Rios and Kavuluru, 2013) and
re-rank the labels using a learning-to-rank proce-
dure (Kavuluru et al., 2015). Zhang et al. (2017)
supplement the diagnosis code training data with
data from PubMed (biomedical article corpus and
search system) to train linear models using both
the original training data and the PubMed data.

Recent advances in neural networks have also
been put to use for EMR coding: Baumel et al.
(2018) trained a CNN with multiple sigmoid out-
puts using binary cross-entropy. Duarte et al.
(2017) use hierarchical recurrent neural networks
(RNNs) to annotate death reports with ICD-10
codes. Vani et al. (2017) introduced grounded
RNNs for EMR coding. They found that itera-
tively updating their predictions at each time step
significantly improved the performance. Finally,
similar to our work, memory networks (Prakash
et al., 2017) have recently been used for diagnosis
coding. However, we would like to note two sig-
nificant differences between the memory network
from Prakash et al. (2017) and our model. First,
they don’t use a matching network and their mem-
ories rely on extracting information about each la-
bel from Wikipedia. In contrast, our model does
not use any auxiliary information. Second, they
only evaluate on the 50 most frequent labels, while
we evaluate on all the labels in the dataset.

3 Our Architecture

An overview of our model is shown in Figure 1.
Our model architecture has two main components.

1. We augment a CNN with external memory
over a support set S, which consists of a small
subset of the training dataset. The model
searches the support set to find similar exam-
ples with respect to the input instance. We
make use of the homophily assumption that
similar instances in the support set are coded
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Figure 1: The matching CNN architecture. For each input instance, x, we search a support set using different
representations of x and use the similar support instances and auxiliary features to the output layer.

with similar labels. Therefore, we use the re-
lated support set examples as auxiliary fea-
tures. The similar instances are chosen au-
tomatically by combining ideas from metric
learning and neural attention. We emphasize
that unlike in a traditional k-NN setup, we do
NOT explicitly use the labels of the support
set instances. The support set essentially en-
riches and complements the features derived
from the input instance.

2. Rather than predicting labels by thresholding,
we rank them and select the top k labels spe-
cific to each instance where k is predicted us-
ing an additional output unit (termed MetaL-
abeler). We train the MetaLabeler along with
the classification loss using a multi-task train-
ing scheme.

Before we go into more specific details of our ar-
chitecture, we introduce some notation. Let X
represent the set of all training documents and x
be an instance of X . Likewise, let S represent the
set of support instances and s be an instance of S.
We let L be the total number of unique labels. Our
full model is described in following subsections.

3.1 Convolutional Neural Networks

We use a CNN to encode each document follow-
ing what is now a fairly standard approach consist-
ing of an embedding layer, a convolution layer, a
max-pooling layer, and an output layer (Collobert
et al., 2011; Kim, 2014). However, in our architec-
ture, the CNN additionally aids in getting interme-

diate representations for the multi-head matching
network component (Section 3.2).

Intuitively, CNNs make use of the sequential
nature of text, where a non-linear function is ap-
plied to region vectors formed from vectors of
words in short adjacent word sequences. Formally,
we represent each document as a sequence of word
vectors, [w1,w2, . . . ,wn], where wi ∈ Rd repre-
sents the vector of the i-th word in the document.
The region vectors are formed by concatenating
each window of s words, wi−s+1|| . . . ||wi, into a
local region vector cj ∈ Rsd. Next, cj is passed to
a non-linear function

ĉj = ReLU(Wcj + b),

where W ∈ Rv×sd, b ∈ Rv, and ReLU is a recti-
fied linear unit (Glorot et al., 2011; Nair and Hin-
ton, 2010). Each row of W represents a convolu-
tional filter; so v is the total number of filters.

After processing each successive region vec-
tor, we obtain a document representation D =
[ĉ1, ĉ2, . . . , ĉn+s−1] by concatenating each ĉj
forming a matrix D ∈ Rv×(n+s−1). Each row of
D is referred to as a feature map, formed by differ-
ent convolutional filters. Unfortunately, this repre-
sentation is dependent on the length of the docu-
ment and we cannot pass it to an output layer. We
use max-over-time pooling to create a fixed size
vector

g(s) = [ĉ1max, ĉ
2
max, . . . , ĉ

q
max],

where ĉjmax = max(ĉj1, ĉ
j
2, . . . , ĉ

j
n+s−1).
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3.2 Multi-Head Matching Network
Using the support set and the input instance, our
goal is to estimate P (y|x, S). The support set S
is chosen based on nearest neighbors and its selec-
tion process is discussed in Section 3.4. Among
instances in S, our model finds informative sup-
port instances with respect to x and creates a fea-
ture vector using them. This feature vector is com-
bined with the input instance to make predictions.

First, each support instance sk ∈ S is projected
into the support space using a simple single-layer
feed forward NN as

h(g(sk)) = ReLU(Ws g(sk) + bs),

where Ws ∈ Rz×v and bs ∈ Rz . Likewise, we
project each input instance x into the input space
using a different feed forward neural network,

pi(g(x)) = ReLU(Wi
α g(x) + biα),

where Wi
α ∈ Rz×v and biα ∈ Rz . Compared

to the support set neural network where we use
only a single network, for the input instance we
have u projection neural networks. This means we
have u versions of x, an idea that is similar to self-
attention (Lin et al., 2017), where the model learns
multiple representations of an instance. Here each
pi(g(x)) represents a single “head” or representa-
tion of the input x. Using different weight ma-
trices, [W1

α, . . . ,W
u
α] and [b1

α, . . . ,b
u
α], we cre-

ate different representations of x (multiple heads).
For both the input multi-heads and the support in-
stance projection, we note that the same CNN is
used (also indicated in Figure 1) whose output is
subject to the feed forward neural nets outlined
thus far in this section.

Rather than searching for a single informative
support instance, we search for multiple relevant
support instances. For each of the u input instance
representations, we calculate a normalized atten-
tion score

Ai,k =
exp(−d(pi(g(x)), h(g(sk)))∑

sk′∈S
[
exp(−d(pi(g(x)), h(g(sk′)))

]

whereAi,k represents the score of the k-th support
example with respect to the i-th input representa-
tion pi(g(x)) and

d(xi,xj) = ‖xi − xj‖22,

is the square of the Euclidean distance between the
input and support representations.

Next, the normalized scores are aggregated into
a matrix A ∈ Ru×|S|. Then, we create a feature
vector

q = vec(AS) (1)

where q ∈ Ruz , vec is the matrix vectorization
operator, and S ∈ R|S|×z is the support instance
CNN feature matrix whose i-th row is h(g(si)) for
i = 1, . . . , |S|. Intuitively, multiple weighted av-
erages of the support instances are created, one for
each of the u input representations. The final fea-
ture vector,

h = q || g(x), (2)

is formed by concatenating the CNN representa-
tion of the input instance x and the support set
feature vector q.

Finally, the output layer for L labels involves
computing

ŷ = P (y|x, S) = σ(Wc h+ bc) (3)

where Wc ∈ RL×(uz+v), bc ∈ RL, and σ is the
sigmoid function. Because we use a sigmoid acti-
vation function, each label prediction (ŷi) is in the
range from 0 to 1.

3.3 MetaLabeler

The easiest method to convert ŷ into label predic-
tions is to simply threshold each element at 0.5.
However, most large-scale multi-label problems
are highly imbalanced. When training using bi-
nary cross-entropy, the threshold 0.5 is optimized
for accuracy. Therefore, our predictions will be bi-
ased towards 0. A simple way to fix this problem
is to optimize the threshold value for each label.
Unfortunately, searching for the optimal threshold
of each label is computational expensive in large
label spaces. Here we train a regression based out-
put layer

r̂ = ReLU(Wr g(x) + br)

where r̂ estimates the number of labels x should
be annotated with. At test time, we rank each label
by its score in ŷ. Next, r̂ is rounded to the nearest
integer and we predict the top r̂ ranked labels.

3.4 Training

To train our model, we need to define two
loss functions. First, following recent work-
ing on multi-label classification with neural net-
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works (Nam et al., 2014b), we train using a multi-
label cross-entropy loss. The loss is defined as

Lc =
L∑

i=1

[
− yi log(ŷi)− (1− yi) log(1− ŷi)

]
,

which sums the binary cross-entropy loss for each
label. The second loss is used to train the MetaL-
abeler for which we use the mean squared error

Lr = ‖r− r̂‖22

where r is the vector of correct numbers of labels
and r̂ is our estimate. We train these two losses
using a multi-task learning paradigm (Collobert
et al., 2011).

Similar to previous work with matching net-
works (Vinyals et al., 2016; Snell et al., 2017),
“episode” or mini-batch construction can have an
impact on performance. In the multi-label setting,
episode construction is non-trivial. We propose
a simple strategy for choosing the support set S
which we find works well in practice. First, at the
beginning of the training process we loop over all
training examples and store g(x) for every train-
ing instance. We will refer to this set of vectors as
T . Next, for every step of the training process (for
every mini-batch M ), we search T \M to find the
e nearest neighbors (using Euclidean distance) per
instance to form our support set S. Likewise, we
add e random examples from T \M to the sup-
port set. Therefore, our support set S contains up
to |M |e+ e instances. The purpose of the random
examples is to ensure the distance metric learned
during training (captured by improving represen-
tations of documents as influenced by all network
parameters) is robust to noisy examples.

3.5 Matching Network Interpretation

If we do not use the support set label vectors, then
what is our network learning? To answer this
question we directly compare the matching net-
work formulation to our method. Matching net-
works can be expressed as

ŷ =
∑

sk∈S
a(x, sk)ysk

where a(, ) is the attention/distance learned be-
tween two instances, k indexes each support in-
stance, and yk is a one-hot encoded vector. a(, )
is equivalent to A1,k assuming we use a single

head. Traditional matching networks use one-
hot encoded vectors because they are evaluated on
multi-class problems. EMR coding is a multi-label
problem. Hence, yk is a multi-hot encoded vec-
tor. Moreover, with thousands of labels, it is un-
likely even for neighboring instance pairs to share
many labels; this problem is not encountered in
the multi-class setting. We overcome this issue by
learning new output label vectors for each support
set instance. Assuming a single head, our method
can be re-written as

ŷ = σ(W1
c g(x) + bc +

∑

sk∈S
a(x, sk) ỹsk), (4)

where ỹk is the learned label vector for support
instance s. Next, we define ỹk, the learned support
set vectors, as

ỹsk = W2
c h(g(sk)) (5)

where both W1
c and W2

c are submatrices of Wc.
Using this reformulation, we can now see that our
method’s main components (equations (1)-(3)) are
equivalent to this more explicit matching network
formulation (equations (4)–(5)). Intuitively, our
method combines a traditional output layer – the
first half of equation 4 – with a matching network
where the support set label vectors are learned to
better match the labels of their nearest neighbors.

4 Experiments

In this section we compare our work with prior
state-of-the-art medical coding methods. In Sec-
tion 4.1 we discuss the two publicly available
datasets we use. Next, Section 4.2 describes the
implementation details of our model. We summa-
rize the various baselines and models we compare
against in Section 4.3. The evaluation metrics are
described in Section 4.4. Finally, we discuss how
our method performs in Section 4.5.

4.1 Datasets

EMR data is generally not available for public use
especially if it involves textual notes. Therefore,
we focus on the publicly available Medical Infor-
mation Mart for Intensive Care (MIMIC) datasets
for benchmarking purposes. We evaluate using
two versions of MIMIC: MIMIC II (Lee et al.,
2011) and MIMIC III (Johnson et al., 2016), where
the former is a relatively smaller and older dataset
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# Train # Test # Labels LC AI/L

MIMIC II 18822 2282 7042 36.7 118.8
MIMIC III 37016 2755 6932 13.6 80.8

Table 1: This table presents the number of training
examples (# Train), the number of test examples (#
Test), label cardinality (LC), and the average number
of instances per label (AI/L) for the MIMIC II and
MIMIC III datasets.

and the latter is the most recent version. Follow-
ing prior work (Perotte et al., 2013; Vani et al.,
2017), we use the free text discharge summaries
in MIMIC to predict the ICD-9-CM2 codes. The
dataset statistics are shown in Table 1.

For comparison purposes, we use the same
MIMIC II train/test splits as Perotte et al. (2013).
Specifically, we use discharge reports collected
from 2001 to 2008 from the intensive care unit
(ICU) of the Beth Israel Deaconess Medical Cen-
ter. Following Perotte et al. (2013), the labels for
each discharge summary are extended using the
parent of each label in label set. The parents are
based on the ICD-9-CM hierarchy. We use the hi-
erarchical label expansion to maximize the prior
work we can compare against.

The MIMIC III dataset has been extended to
include health records of patients admitted to the
Beth Israel Deaconess Medical Center from 2001
to 2012 and hence provides a test bed for more ad-
vanced learning methods. Unfortunately, it does
not have a standard train/test split to compare
against prior work given we believe we are the
first to look at it for this purpose. Hence, we use
both MIMIC II and MIMIC III for comparison
purposes. Furthermore, we do not use the hierar-
chical label expansion on the MIMIC III dataset.

Before we present our results, we discuss an
essential distinction between the MIMIC II and
MIMIC III datasets. Particularly, we are inter-
ested in the differences concerning label imbal-
ance. From Table 1, we find that MIMIC III
has almost twice as many examples compared to
MIMIC II in the dataset. However, MIMIC II on
average has more instances per label. Thus, al-
though MIMIC III has more examples, each la-
bel is used fewer times on average compared to

2In 2015, a federal mandate was issued that requires the
use of ICD-10 instead of ICD-9. However because of this
recent change, ICD-10 training data is limited. Therefore, we
use publicly available ICD-9 datasets for evaluation.

MIMIC II. The reason for this is because of how
the label sets for each instance were extended us-
ing the ICD-9 hierarchy in MIMIC II.

4.2 Implementation Details
Preprocessing: Each discharge summary was to-
kenized using a simple regex tokenization scheme
(\w\w+). Also, each word/token that occurs less
than five times in the training dataset was replaced
with the UNK token.
Model Details: For our CNN, we used convo-
lution filters of size 3, 4 and 5 with 300 filters
for each filter size. We used 300 dimensional
skip-gram (Mikolov et al., 2013) word embed-
dings pre-trained on PubMed. The Adam opti-
mizer (Kingma and Ba, 2015) was used for train-
ing with the learning rate 0.0001. The mini-
batch size was set to 4, e – the number of
nearest neighbors per instance – was set to 16,
and the number of heads (u) is set to 8. Our
code is available at: https://github.com/
bionlproc/med-match-cnn

4.3 Baseline Methods
In this paper, we focused on comparing our
method to state-of-the-art methods for diagno-
sis code prediction such as grounded recurrent
neural networks (Vani et al., 2017) (GRNN) and
multi-label CNNs (Baumel et al., 2018). We
also compare against traditional binary relevance
methods where independent binary classifiers (L1-
regularized linear models) are trained for each
label. Next, we compare against hierarchical
SVM (Perotte et al., 2013), which incorporates the
ICD-9-CM label hierarchy. Finally, we also re-
port the results of the traditional matching network
with one modification: We train the matching net-
work with the multi-label loss presented in Sec-
tion 3.4 and threshold using the MetaLabeler de-
scribed in Section 3.3.

We also present two versions of our model:
Match-CNN and Match-CNN Ens. Match-CNN
is the multi-head matching network introduced in
Section 3. Match-CNN Ens is an ensemble that
averages three Match-CNN models, each initial-
ized using a different random seed.

4.4 Evaluation Metrics
We evaluate our method using a wide variety of
standard multi-label evaluation metrics. We use
the popular micro and macro averaged F1 mea-
sures to assess how our model (with the MetaL-
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F1 AUC (PR) AUC (ROC) P@k R@k
Prec. Recall Micro Macro Micro Macro Micro Macro 8 40 8 40

Flat SVM (Perotte et al., 2013) 0.867 0.164 0.276 – – – – – – – – –
Hier. SVM (Perotte et al., 2013) 0.577 0.301 0.395 – – – – – – – – –

Logistic (Vani et al., 2017) 0.774 0.395 0.523 0.042 0.541 0.125 0.919 0.704 0.913 0.572 0.169 0.528
Attn BoW (Vani et al., 2017) 0.745 0.399 0.52 0.027 0.521 0.079 0.975 0.807 0.912 0.549 0.169 0.508
GRU-128 (Vani et al., 2017) 0.725 0.396 0.512 0.027 0.523 0.082 0.976 0.827 0.906 0.541 0.168 0.501
BiGRU-64 (Vani et al., 2017) 0.715 0.367 0.485 0.021 0.493 0.071 0.973 0.811 0.892 0.522 0.165 0.483
GRNN-128 (Vani et al., 2017) 0.753 0.472 0.58 0.052 0.587 0.126 0.976 0.815 0.93 0.592 0.172 0.548
BiGRNN-64 (Vani et al., 2017) 0.761 0.466 0.578 0.054 0.589 0.131 0.975 0.798 0.925 0.596 0.172 0.552

CNN (Baumel et al., 2018) * 0.810 0.403 0.538 0.031 0.599 0.127 0.971 0.759 0.931 0.585 0.207 0.586

Matching Network * 0.439 0.388 0.412 0.014 0.394 0.034 0.893 0.551 0.793 0.427 0.172 0.425

Match-CNN (Ours) 0.605 0.561 0.582 0.064 0.612 0.148 0.977 0.792 0.930 0.586 0.207 0.590
Match-CNN Ens. (Ours) 0.616 0.567 0.591 0.066 0.623 0.157 0.977 0.793 0.935 0.594 0.208 0.598

Table 2: Results for the MIMIC II dataset. Models marked with * represent our custom implementations.

F1 AUC (PR) AUC (ROC) P@k R@k
P R Micro Macro Micro Macro Micro Macro 8 40 8 40

Logistic (Vani et al., 2017) * 0.711 0.242 0.361 0.026 0.419 0.147 0.961 0.751 0.554 0.211 0.414 0.686
CNN (Baumel et al., 2018) * 0.726 0.246 0.367 0.021 0.376 0.095 0.942 0.697 0.534 0.196 0.395 0.636
Matching Network * 0.248 0.237 0.242 0.008 0.183 0.028 0.823 0.554 0.310 0.128 0.231 0.431

Match-CNN (Ours) 0.466 0.447 0.456 0.041 0.421 0.119 0.963 0.726 0.557 0.206 0.413 0.670
Match-CNN Ens. (Ours) 0.488 0.449 0.468 0.043 0.441 0.129 0.965 0.760 0.570 0.211 0.422 0.683

Table 3: Results for the MIMIC III dataset. Models marked with * represent our custom implementations.

abeler) performs when thresholding predictions.
For problems with large labels spaces that suffer
from significant imbalances in label distributions,
the default threshold of 0.5 generally performs
poorly (hence our use of MetaLabeler). To remove
the thresholding effect bias, we also report differ-
ent versions of the area under the precision-recall
(PR) and receiver operating characteristic (ROC)
curves. Finally, in a real-world setting, our system
would not be expected to replace medical coders.
We would expect medical coders to use our system
to become more efficient in coding EMRs. There-
fore, we would rank the labels based on model
confidence and medical coders would choose the
correct labels from the top few. To understand if
our system would be useful in a real-world setting,
we evaluate with precision at k (P@k) and recall
at k (R@k). Having high P@k and R@k are crit-
ical to effectively encourage the human coders to
use and benefit from the system.

4.5 Results

We show experimental results on MIMIC II in Ta-
ble 2. Overall, our method improves on prior work
across a variety of metrics. With respect to mi-
cro F1, we improve upon GRNN-128 by over 1%.

Also, while macro-F1 is still low in general, we
also improve macro F1 compared to state-of-the-
art neural methods by more than 1%. In general,
both micro and macro F1 are highly dependent on
the thresholding methodology. Rather than thresh-
olding at 0.5, we rank the labels and pick the top k
based on a trained regression output layer. Can we
do better than using a MetaLabeler? To measure
this, we look at the areas under PR/ROC curves.
Regarding micro and macro PR-AUC, we improve
on prior work by ≈ 2.5%. This suggests that via
better thresholding, the chances of improving both
micro and macro F1 are higher for Match-CNN
compared to other methods. Finally, we are also
interested in metrics that evaluate how this model
would be used in practice. We perform compara-
bly with prior work on P@k. We show strong im-
provements in R@k with over a 4% improvement
in R@40 compared to grounded RNNs and over
1% improvement when compared with Baumel
et al. (2018). Our method also outperforms match-
ing networks across every evaluation measure.

We present MIMIC III results in Table 3. We
reiterate that MIMIC III does not have a standard
train/test split. Hence we compare our model to
our implementations of methods from prior ef-
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F1 P@k R@k AUC (PR)
Micro Macro 8 40 8 40 Micro Macro

Match-CNN 0.456 0.041 0.557 0.206 0.413 0.670 0.421 0.119
- Matching 0.429 0.034 0.534 0.196 0.395 0.636 0.376 0.095
- MetaLabler 0.391 0.026 0.557 0.206 0.413 0.670 0.421 0.119
- Multi-Head 0.450 0.034 0.548 0.202 0.403 0.656 0.417 0.113

Table 4: Ablation results for the MIMIC III dataset.

forts. For MIMIC III also we show improve-
ments in multiple evaluation metrics. Interest-
ingly, our method performs much better than the
standard CNN on MIMIC III, compared to the rel-
ative performances of the two methods on MIMIC
II. Match-CNN improves on CNN in R@40 by al-
most 5% on the MIMIC III dataset. The gain in
R@40 is more than the 1% improvement found
on MIMIC II. We hypothesize that the improve-
ments on MIMIC III are because the label imbal-
ance found in MIMIC III is higher than MIMIC II.
Increased label imbalances mean more labels oc-
cur less often. Therefore, we believe our model
works better with less training examples per label
compared to the standard CNN model.

In Table 4 we analyze each component of our
model using an ablation analysis on the MIMIC III
dataset. First, we find that removing the matching
component significantly effects our performance
by reducing micro PR-AUC by almost 5%. Re-
garding micro and macro F1, we also notice that
the MetaLabeler heuristic substantially improves
on default thresholding (0.5). Finally, we see that
the multi-head matching component provides rea-
sonable improvements to our model across multi-
ple evaluation measures. For example, P@8 and
P@40 decrease by around 1% when we use atten-
tion with a single input representation.

5 Conclusion

In this paper, we introduce a semi-parametric
multi-head matching network with a specific ap-
plication to EMR coding. We find that by combin-
ing the non-parametric properties of matching net-
works with a traditional classification output layer,
we improve metrics for both frequent and infre-
quent labels in the dataset. In the future, we plan to
investigate three limitations of our current model.

1. We currently use a naive approach to choose
the support set. We believe that improving

the support set sampling method could sub-
stantially improve performance.

2. We hypothesize that a more sophisticated
thresholding method could have a significant
impact on the micro and macro F1 measures.
As we show in Table 4, MetaLabeler outper-
forms naive thresholding strategies. How-
ever, given our method shows non-trivial
gains in PR-AUC compared to micro/macro
F1, we believe better thresholding strategies
are a worthy avenue to seek improvements.

3. Both the MIMIC II and MIMIC III datasets
have around 7000 labels but ICD-9-CM con-
tains over 16000 labels and ICD-10-CM has
nearly 70,000 labels. In future work, we be-
lieve significant attention should be given to
zero-shot learning applied to EMR coding.
To predict labels that have never occurred in
the training dataset, we think it is vital to
take advantage of the ICD hierarchy. Baker
and Korhonen (2017) improve neural net-
work training by incorporating hierarchical
label information to create better weight ini-
tializations. However, this does not help with
respect to zero-shot learning. If we can better
incorporate expert knowledge about the label
space, we may be able to infer labels we have
not seen before.
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Abstract

Despite the recent popularity of word embed-
ding methods, there is only a small body of
work exploring the limitations of these repre-
sentations. In this paper, we consider one as-
pect of embedding spaces, namely their sta-
bility. We show that even relatively high fre-
quency words (100-200 occurrences) are often
unstable. We provide empirical evidence for
how various factors contribute to the stability
of word embeddings, and we analyze the ef-
fects of stability on downstream tasks.

1 Introduction

Word embeddings are low-dimensional, dense
vector representations that capture semantic prop-
erties of words. Recently, they have gained
tremendous popularity in Natural Language Pro-
cessing (NLP) and have been used in tasks as
diverse as text similarity (Kenter and De Rijke,
2015), part-of-speech tagging (Tsvetkov et al.,
2016), sentiment analysis (Faruqui et al., 2015),
and machine translation (Mikolov et al., 2013a).
Although word embeddings are widely used
across NLP, their stability has not yet been fully
evaluated and understood. In this paper, we ex-
plore the factors that play a role in the stability
of word embeddings, including properties of the
data, properties of the algorithm, and properties of
the words. We find that word embeddings exhibit
substantial instabilities, which can have implica-
tions for downstream tasks.

Using the overlap between nearest neighbors in
an embedding space as a measure of stability (see
section 3 below for more information), we ob-
serve that many common embedding spaces have
large amounts of instability. For example, Figure 1
shows the instability of the embeddings obtained
by training word2vec on the Penn Treebank (PTB)
(Marcus et al., 1993). As expected, lower fre-
quency words have lower stability and higher fre-
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Figure 1: Stability of word2vec as a property of fre-
quency in the PTB. Stability is measured across ten
randomized embedding spaces trained on the training
portion of the PTB (determined using language model-
ing splits (Mikolov et al., 2010)). Each word is placed
in a frequency bucket (x-axis), and each column (fre-
quency bucket) is normalized.

quency words have higher stability. What is sur-
prising however about this graph is the medium-
frequency words, which show huge variance in
stability. This cannot be explained by frequency,
so there must be other factors contributing to their
instability.

In the following experiments, we explore which
factors affect stability, as well as how this stability
affects downstream tasks that word embeddings
are commonly used for. To our knowledge, this
is the first study comprehensively examining the
factors behind instability.

2 Related Work

There has been much recent interest in the applica-
tions of word embeddings, as well as a small, but
growing, amount of work analyzing the properties
of word embeddings.

Here, we explore three different embedding
methods: PPMI (Bullinaria and Levy, 2007),

2092



word2vec (Mikolov et al., 2013b), and GloVe
(Pennington et al., 2014). Various aspects of the
embedding spaces produced by these algorithms
have been previously studied. Particularly, the ef-
fect of parameter choices has a large impact on
how all three of these algorithms behave (Levy
et al., 2015). Further work shows that the param-
eters of the embedding algorithm word2vec influ-
ence the geometry of word vectors and their con-
text vectors (Mimno and Thompson, 2017). These
parameters can be optimized; Hellrich and Hahn
(2016) posit optimal parameters for negative sam-
pling and the number of epochs to train for. They
also demonstrate that in addition to parameter set-
tings, word properties, such as word ambiguity, af-
fect embedding quality.

In addition to exploring word and algorithmic
parameters, concurrent work by Antoniak and
Mimno (2018) evaluates how document properties
affect the stability of word embeddings. We also
explore the stability of embeddings, but focus on a
broader range of factors, and consider the effect of
stability on downstream tasks. In contrast, Anto-
niak and Mimno focus on using word embeddings
to analyze language (e.g., Garg et al., 2018), rather
than to perform tasks.

At a higher level of granularity, Tan et al. (2015)
analyze word embedding spaces by comparing
two spaces. They do this by linearly transforming
one space into another space, and they show that
words have different usage properties in different
domains (in their case, Twitter and Wikipedia).

Finally, embeddings can be analyzed using
second-order properties of embeddings (e.g., how
a word relates to the words around it). Newman-
Griffis and Fosler-Lussier (2017) validate the use-
fulness of second-order properties, by demonstrat-
ing that embeddings based on second-order prop-
erties perform as well as the typical first-order em-
beddings. Here, we use second-order properties of
embeddings to quantify stability.

3 Defining Stability

We define stability as the percent overlap between
nearest neighbors in an embedding space.1 Given
a word W and two embedding spaces A and B,
take the ten nearest neighbors of W in both A

and B. Let the stability of W be the percent

1This metric is concurrently explored in work by Anto-
niak and Mimno (2018).

Model 1 Model 2 Model 3
metropolitan ballet national
national metropolitan ballet
egyptian bard metropolitan
rhode chicago institute
society national glimmerglass
debut state egyptian
folk exhibitions intensive
reinstallation society jazz
chairwoman whitney state
philadelphia rhode exhibitions

Table 1: Top ten most similar words for the word inter-
national in three randomly intialized word2vec models
trained on the NYT Arts Domain. Words in all three
lists are in bold; words in only two of the lists are itali-
cized.

overlap between these two lists of nearest neigh-
bors. 100% stability indicates perfect agreement
between the two embedding spaces, while 0% sta-
bility indicates complete disagreement. In order to
find the ten nearest neighbors of a word W in an
embedding spaceA, we measure distance between
words using cosine similarity.2 This definition of
stability can be generalized to more than two em-
bedding spaces by considering the average overlap
between two sets of embedding spaces. LetX and
Y be two sets of embedding spaces. Then, for ev-
ery pair of embedding spaces (x, y), where x ∈ X
and y ∈ Y , take the ten nearest neighbors of W in
both x and y and calculate percent overlap. Let the
stability be the average percent overlap over every
pair of embedding spaces (x, y).

Consider an example using this metric. Ta-
ble 1 shows the top ten nearest neighbors for the
word international in three randomly initialized
word2vec embedding spaces trained on the NYT
Arts domain (see Section 4.3 for a description
of this corpus). These models share some simi-
lar words, such as metropolitan and national, but
there are also many differences. On average, each
pair of models has four out of ten words in com-
mon, so the stability of international across these
three models is 40%.

The idea of evaluating ten best options is also
found in other tasks, like lexical substitution (e.g.,
McCarthy and Navigli, 2007) and word associa-

2We found comparable results for other distance metrics,
such as l1 norm, l2 norm, and l∞ norm, but we report re-
sults from cosine similarity to be consistent with other word
embedding research.
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Figure 2: Stability of GloVe on the PTB. Stability
is measured across ten randomized embedding spaces
trained on the training data of the PTB (determined us-
ing language modeling splits (Mikolov et al., 2010)).
Each word is placed in a frequency bucket (left y-axis)
and stability is determined using a varying number of
nearest neighbors for each frequency bucket (right y-
axis). Each row is normalized, and boxes with more
than 0.01 of the row’s mass are outlined.

tion (e.g., Garimella et al., 2017), where the top
ten results are considered in the final evaluation
metric. To give some intuition for how changing
the number of nearest neighbors affects our stabil-
ity metric, consider Figure 2. This graph shows
how the stability of GloVe changes with the fre-
quency of the word and the number of neighbors
used to calculate stability; please see the figure
caption for a more detailed explanation of how
this graph is structured. Within each frequency
bucket, the stability is consistent across varying
numbers of neighbors. Ten nearest neighbors per-
forms approximately as well as a higher number
of nearest neighbors (e.g., 100). We see this pat-
tern for low frequency words as well as for high
frequency words. Because the performance does
not change substantially by increasing the num-
ber of nearest neighbors, it is computationally less
intensive to use a small number of nearest neigh-

bors. We choose ten nearest neighbors as our met-
ric throughout the rest of the paper.

4 Factors Influencing Stability

As we saw in Figure 1, embeddings are sometimes
surprisingly unstable. To understand the factors
behind the (in)stability of word embeddings, we
build a regression model that aims to predict the
stability of a word given: (1) properties related to
the word itself; (2) properties of the data used to
train the embeddings; and (3) properties of the al-
gorithm used to construct these embeddings. Us-
ing this regression model, we draw observations
about factors that play a role in the stability of
word embeddings.

4.1 Methodology

We use ridge regression to model these various
factors (Hoerl and Kennard, 1970). Ridge re-
gression regularizes the magnitude of the model
weights, producing a more interpretable model
than non-regularized linear regression. This regu-
larization mitigates the effects of multicollinearity
(when two features are highly correlated). Specif-
ically, given N ground-truth data points with M
extracted features per data point, let xn ∈ R1×M

be the features for sample n and let y ∈ R1×N be
the set of labels. Then, ridge regression learns a
set of weights w ∈ R1×M by minimizing the least
squares function with l2 regularization, where λ is
a regularization constant:

L(w) =
1

2

N∑

n=1

(yn −w>xn)2 +
λ

2
||w||2

We set λ = 1. In addition to ridge regression,
we tried non-regularized linear regression. We ob-
tained comparable results, but many of the weights
were very large or very small, making them hard
to interpret.

The goodness of fit of a regression model is
measured using the coefficient of determination
R2. This measures how much variance in the de-
pendent variable y is captured by the independent
variables x. A model that always predicts the ex-
pected value of y, regardless of the input features,
will receive anR2 score of 0. The highest possible
R2 score is 1, and the R2 score can be negative.

Given this model, we create training instances
by observing the stability of a large number of
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words across various combinations of two embed-
ding spaces. Specifically, given a wordW and two
embedding spaces A and B, we encode proper-
ties of the word W , as well as properties of the
datasets and the algorithms used to train the em-
bedding spaces A and B. The target value associ-
ated with this features is the stability of the word
W across embedding spaces A and B. We repeat
this process for more than 2,500 words, several
datasets, and three embedding algorithms.

Specifically, we consider all the words present
in all seven of the data domains we are using (see
Section 4.3), 2,521 words in total. Using the fea-
ture categories described below, we generate a fea-
ture vector for each unique word, dataset, algo-
rithm, and dimension size, resulting in a total of
27,794,025 training instances. To get good aver-
age estimates for each embedding algorithm, we
train each embedding space five times, random-
ized differently each time (this does not apply to
PPMI, which has no random component). We
then train a ridge regression model on these in-
stances. The model is trained to predict the stabil-
ity of word W across embedding spaces A and B
(where A and B are not necessarily trained using
the same algorithm, parameters, or training data).
Because we are using this model to learn associa-
tions between certain features and stability, no test
data is necessary. The emphasis is on the model it-
self, not on the model’s performance on a specific
task.

We describe next each of the three main cate-
gories of factors examined in the model. An ex-
ample of these features is given in Table 2.

4.2 Word Properties

We encode several features that capture attributes
of the word W . First, we use the primary and sec-
ondary part-of-speech (POS) of the word. Both
of these are represented as bags-of-words of all
possible POS, and are determined by looking at
the primary (most frequent) and secondary (sec-
ond most frequent) POS of the word in the Brown
corpus3 (Francis and Kucera, 1979). If the word is
not present in the Brown corpus, then all of these
POS features are set to zero.

To get a coarse-grained representation of the

3Here, we use the universal tagset, which consists of
twelve possible POS: adjective, adposition, adverb, conjunc-
tion, determiner / article, noun, numeral, particle, pronoun,
verb, punctuation mark, and other (Petrov et al., 2012).

Word Properties
Primary part-of-speech Adjective
Secondary part-of-speech Noun
# Parts-of-speech 2
# WordNet senses 3
Syllables 5
Data Properties
Raw frequency in corpus A 106
Raw frequency in corpus B 669
Diff. in raw frequency 563
Vocab. size of corpus A 10,508
Vocab. size of corpus B 43,888
Diff. in vocab. size 33,380
Overlap in corpora vocab. 17%
Domains present Arts, Europarl
Do the domains match? False
Training position in A 1.02%
Training position in B 0.15%
Diff. in training position 0.86%
Algorithm Properties
Algorithms present word2vec, PPMI
Do the algorithms match? False
Embedding dimension of A 100
Embedding dimension of B 100
Diff. in dimension 0
Do the dimensions match? True

Table 2: Consider the word international in two em-
bedding spaces. Suppose embedding spaceA is trained
using word2vec (embedding dimension 100) on the
NYT Arts domain, and embedding space B is trained
using PPMI (embedding dimension 100) on Europarl.
This table summarizes the resulting features for this
word across the two embedding spaces.

polysemy of the word, we consider the number of
different POS present. For a finer-grained repre-
sentation, we use the number of different Word-
Net senses associated with the word (Miller, 1995;
Fellbaum, 1998).

We also consider the number of syllables in a
word, determined using the CMU Pronuncing Dic-
tionary (Weide, 1998). If the word is not present
in the dictionary, then this is set to zero.

4.3 Data Properties

Data features capture properties of the training
data (and the word in relation to the training data).
For this model, we gather data from two sources:
New York Times (NYT) (Sandhaus, 2008) and Eu-
roparl (Koehn, 2005). Overall, we consider seven
domains of data: (1) NYT - U.S., (2) NYT - New
York and Region, (3) NYT - Business, (4) NYT -
Arts, (5) NYT - Sports, (6) All of the data from
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Vocab. Num. Tokens /
Dataset Sentences Size Vocab. Size
NYT US 13,923 5,787 64.37
NYT NY 36,792 11,182 80.41
NYT Business 21,048 7,212 75.96
NYT Arts 28,161 10,508 65.29
NYT Sports 21,610 5,967 77.85
All NYT 121,534 24,144 117.98
Europarl 2,297,621 43,888 1,394.28

Table 3: Dataset statistics.

domains 1-5 (denoted “All NYT”), and (7) All of
English Europarl. Table 3 shows statistics about
these datasets. The first five domains are chosen
because they are the top five most common cate-
gories of news articles present in the NYT corpus.
They are smaller than “All NYT” and Europarl,
and they have a narrow topical focus. The “All
NYT” domain is more diverse topically and larger
than the first five domains. Finally, the Europarl
domain is the largest domain, and it is focused on
a single topic (European Parliamentary politics).
These varying datasets allow us to consider how
data-dependent properties affect stability.

We use several features related to domain. First,
we consider the raw frequency of word W in both
the domain of data used for embedding space A
and the domain of data for space B. To make
our regression model symmetric, we effectively
encode three features: the higher raw frequency
(between the two), the lower raw frequency, and
the absolute difference in raw frequency.

We also consider the vocabulary size of each
corpus (again, symmetrically) and the percent
overlap between corpora vocabulary, as well as the
domain of each of the two corpora, represented
as a bag-of-words of domains. Finally, we con-
sider whether the two corpora are from the same
domain.

Our final data-level features explore the role
of curriculum learning in stability. It has been
posited that the order of the training data affects
the performance of certain algorithms, and previ-
ous work has shown that for some neural network-
based tasks, a good training data order (curricu-
lum learning strategy) can improve performance
(Bengio et al., 2009). Curriculum learning has
been previously explored for word2vec, where it
has been found that optimizing training data order
can lead to small improvements on common NLP
tasks (Tsvetkov et al., 2016). Of the embedding

algorithms we consider, curriculum learning only
affects word2vec. Because GloVe and PPMI use
the data to learn a complete matrix before build-
ing embeddings, the order of the training data will
not affect their performance. To measure the ef-
fects of training data order, we include as features
the first appearance of word W in the dataset for
embedding space A and the first appearance of W
in the dataset for embedding space B (represented
as percentages of the total number of training sen-
tences)4. We further include the absolute differ-
ence between these percentages.

4.4 Algorithm Properties

In addition to word and data properties, we encode
features about the embedding algorithms. These
include the different algorithms being used, as
well as the different parameter settings of these
algorithms. Here, we consider three embedding
algorithms, word2vec, GloVe, and PPMI. The
choice of algorithm is represented in our feature
vector as a bag-of-words.

PPMI creates embeddings by first building
a positive pointwise mutual information word-
context matrix, and then reducing the dimension-
ality of this matrix using SVD (Bullinaria and
Levy, 2007). A more recent word embedding al-
gorithm, word2vec (skip-gram model) (Mikolov
et al., 2013b) uses a shallow neural network
to learn word embeddings by predicting context
words. Another recent method for creating word
embeddings, GloVe, is based on factoring a matrix
of ratios of co-occurrence probabilities (Penning-
ton et al., 2014).

For each algorithm, we choose common param-
eter settings. For word2vec, two of the parameters
that need to be chosen are window size and mini-
mum count. Window size refers to the maximum
distance between the current word and the pre-
dicted word (e.g., how many neighboring words to
consider for each target word). Any word appear-
ing less than the minimum count number of times
in the corpus is discarded and not considered in the
word2vec algorithm. For both of these features,
we choose standard parameter settings, namely, a
window size of 5 and a minimum count of 5. For
GloVe, we also choose standard parameters. We

4All word2vec experiments reported here are run in a
multi-core setting, which means that these percentages are
approximate. However, comparable results were achieved us-
ing a single-core version of word2vec.
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Feature Weight
Lower training data position of word W -1.52
Higher training data position of W -1.49
Primary POS = Numeral 1.12
Primary POS = Other -1.08
Primary POS = Punctuation mark -1.02
Overlap between corpora vocab. 1.01
Primary POS = Adjective -0.92
Primary POS = Adposition -0.92
Do the two domains match? 0.91
Primary POS = Verb -0.88
Primary POS = Conjunction -0.84
Primary POS = Noun -0.81
Primary POS = Adverb -0.79
Do the two algorithms match? 0.78
Secondary POS = Pronoun 0.62
Primary POS = Determiner -0.48
Primary POS = Particle -0.44
Secondary POS = Particle 0.36
Secondary POS = Other 0.28
Primary POS = Pronoun -0.26
Secondary POS = Verb -0.25
Number of word2vec embeddings -0.21
Secondary POS = Adverb 0.15
Secondary POS = Determiner 0.14
Number of NYT Arts Domain -0.14
Number of NYT All Domain 0.14
Number of GloVe embeddings 0.13
Number of syllables -0.11

Table 4: Regression weights with a magnitude greater
than 0.1, sorted by magnitude.

use 50 iterations of the algorithm for embedding
dimensions less than 300, and 100 iterations for
higher dimensions.

We also add a feature reflecting the embedding
dimension, namely one of five embedding dimen-
sions: 50, 100, 200, 400, or 800.

5 Lessons Learned: What Contributes to
the Stability of an Embedding

Overall, the regression model achieves a coeffi-
cient of determination (R2) score of 0.301 on the
training data, which indicates that the regression
has learned a linear model that reasonably fits the
training data given. Using the regression model,
we can analyze the weights corresponding to each
of the features being considered, shown in Table 4.
These weights are difficult to interpret, because
features have different distributions and ranges.
However, we make several general observations
about the stability of word embeddings.

Observation 1. Curriculum learning is impor-
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Figure 3: Stability of both word2vec and GloVe as
properties of the starting word position in the training
data of the PTB. Stability is measured across ten ran-
domized embedding spaces trained on the training data
of the PTB (determined using language modeling splits
(Mikolov et al., 2010)). Boxes with more than 0.02%
of the total vocabulary mass are outlined.

tant. This is evident because the top two features
(by magnitude) of the regression model capture
where the word first appears in the training data.
Figure 3 shows trends between training data posi-
tion and stability in the PTB. This figure contrasts
word2vec with GloVe (which is order invariant).

To further understand the effect of curriculum
learning on the model, we train a regression model
with all of the features except the curriculum
learning features. This model achieves an R2

score of 0.291 (compared to the full model’s score
of 0.301). This indicates that curriculum learning
is a factor in stability.

Observation 2. POS is one of the biggest factors
in stability. Table 4 shows that many of the top
weights belong to POS-related features (both pri-
mary and secondary POS). Table 5 compares aver-
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Primary POS Avg. Stability
Numeral 47%
Verb 31%
Determiner 31%
Adjective 31%
Noun 30%
Adverb 29%
Pronoun 29%
Conjunction 28%
Particle 26%
Adposition 25%
Punctuation mark 22%

Table 5: Percent stability broken down by part-of-
speech, ordered by decreasing stability.

age stabilities for each primary POS. Here we see
that the most stable POS are numerals, verbs, and
determiners, while the least stable POS are punc-
tuation marks, adpositions, and particles.

Observation 3. Stability within domains is
greater than stability across domains. Table 4
shows that many of the top factors are domain-
related. Figure 4 shows the results of the regres-
sion model broken down by domain. This figure
shows the highest stabilities appearing on the di-
agonal of the matrix, where the two embedding
spaces both belong to the same domain. The sta-
bilities are substantially lower off the diagonal.

Figure 4 also shows that “All NYT” general-
izes across the other NYT domains better than
Europarl, but not as well as in-domain data (“All
NYT” encompasses data from US, NY, Business,
Arts, and Sports). This is true even though Eu-
roparl is much larger than “All NYT”.

Observation 4. Overall, GloVe is the most sta-
ble embedding algorithm. This is particularly
apparent when only in-domain data is considered,
as in Figure 5. PPMI achieves similar stability,
while word2vec lags considerably behind.

To further compare word2vec and GloVe, we
look at how the stability of word2vec changes
with the frequency of the word and the number of
neighbors used to calculate stability. This is shown
in Figure 6 and is directly comparable to Figure 2.
Surprisingly, the stability of word2vec varies sub-
stantially with the frequency of the word. For
lower-frequency words, as the number of near-
est neighbors increases, the stability increases ap-
proximately exponentially. For high-frequency
words, the lowest and highest number of nearest
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Figure 5: Percent stability broken down between algo-
rithm (in-domain data only).

neighbors show the greatest stability. This is dif-
ferent than GloVe, where stability remains reason-
ably constant across word frequencies, as shown
in Figure 2. The behavior we see here agrees with
the conclusion of (Mimno and Thompson, 2017),
who find that GloVe exhibits more well-behaved
geometry than word2vec.

Observation 5. Frequency is not a major factor
in stability. To better understand the role that fre-
quency plays in stability, we run separate ablation
experiments comparing regression models with
frequency features to regression models without
frequency features. Our current model (using raw
frequency) achieves an R2 score of 0.301. Com-
parably, a model using the same features, but with
normalized instead of raw frequency, achieves a
score of 0.303. Removing frequency from either
regression model gives a score of 0.301. This indi-
cates that frequency is not a major factor in stabil-
ity, though normalized frequency is a larger factor
than raw frequency.

Finally, we look at regression models using only
frequency features. A model using only raw fre-
quency features has an R2 score of 0.008, while
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Figure 6: Stability of word2vec on the PTB. Stability
is measured across ten randomized embedding spaces
trained on the training data of the PTB (determined us-
ing language modeling splits (Mikolov et al., 2010)).
Each word is placed in a frequency bucket (left y-axis)
and stability is determined using a varying number of
nearest neighbors for each frequency bucket (right y-
axis). Each row is normalized, and boxes with more
than 0.01 of the row’s mass are outlined.

a model with only normalized frequency features
has an R2 score of 0.0059. This indicates that
while frequency is not a major factor in stability, it
is also not negligible. As we pointed out in the in-
troduction, frequency does correlate with stability
(Figure 1). However, in the presence of all of these
other features, frequency becomes a minor factor.

6 Impact of Stability on Downstream
Tasks

Word embeddings are used extensively as the first
stage of neural networks throughout NLP. Typi-
cally, embeddings are initalized based on a vector
trained with word2vec or GloVe and then further
modified as part of training for the target task. We
study two downstream tasks to see whether stabil-
ity impacts performance.

Since we are interested in seeing the impact of
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Figure 7: Absolute error for word similarity.

word vector stability, we choose tasks that have an
intuitive evaluation at the word level: word simi-
larity and POS tagging.

6.1 Word Similarity

To model word similarity, we use 300-dimensional
word2vec embedding spaces trained on the PTB.
For each pair of words, we take the cosine simi-
larity between those words averaged over ten ran-
domly initialized embedding spaces.

We consider three datasets for evaluating word
similarity: WS353 (353 pairs) (Finkelstein et al.,
2001), MTurk287 (287 pairs) (Radinsky et al.,
2011), and MTurk771 (771 pairs) (Halawi et al.,
2012). For each dataset, we normalize the simi-
larity to be in the range [0, 1], and we take the ab-
solute difference between our predicted value and
the ground-truth value. Figure 7 shows the results
broken down by stability of the two words (we al-
ways consider Word 1 to be the more stable word
in the pair). Word similarity pairs where one of the
words is not present in the PTB are omitted.

We find that these word similarity datasets do
not contain a balanced distribution of words with
respect to stability; there are substantially more
unstable words than there are stable words. How-
ever, we still see a slight trend: As the combined
stability of the two words increases, the average
absolute error decreases, as reflected by the lighter
color of the cells in Figure 7 while moving away
from the (0,0) data point.

6.2 Part-of-Speech Tagging

Part-of-speech (POS) tagging is a substantially
more complicated task than word similarity. We
use a bidirectional LSTM implemented using
DyNet (Neubig et al., 2017). We train nine sets of
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(a) POS error probability with fixed vectors.
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(b) POS error probability when vectors may shift in training.
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(c) Cosine similarity between original word vectors and
shifted word vectors.

Figure 8: Results for POS tagging. (a) and (b) show
average POS tagging error divided by the number of to-
kens (darker is more errors) while either keeping word
vectors fixed or not during training. (c) shows word
vector shift, measured as cosine similarity between ini-
tial and final vectors. In all graphs, words are bucketed
by frequency and stability.

128-dimensional word embeddings with word2vec
using different random seeds. The LSTM has a
single layer and 50-dimensional hidden vectors.
Outputs are passed through a tanh layer before
classification. To train, we use SGD with a learn-
ing rate of 0.1, an input noise rate of 0.1, and re-
current dropout of 0.4.

This simple model is not state-of-the-art, scor-
ing 95.5% on the development set, but the word
vectors are a central part of the model, provid-
ing a clear signal of their impact. For each word,
we group tokens based on stability and frequency.

Figure 8 shows the results.5 Fixing the word vec-
tors provides a clearer pattern in the results, but
also leads to much worse performance: 85.0% on
the development set. Based on these results, it
seems that training appears to compensate for sta-
bility. This hypothesis is supported by Figure 8c,
which shows the similarity between the original
word vectors and the shifted word vectors pro-
duced by the training. In general, lower stability
words are shifted more during training.

Understanding how the LSTM is changing the
input embeddings is useful information for tasks
with limited data, and it could allow us to im-
prove embeddings and LSTM training for these
low-resource tasks.

7 Conclusion and Recommendations

Word embeddings are surprisingly variable, even
for relatively high frequency words. Using a re-
gression model, we show that domain and part-of-
speech are key factors of instability. Downstream
experiments show that stability impacts tasks us-
ing embedding-based features, though allowing
embeddings to shift during training can reduce this
effect. In order to use the most stable embed-
ding spaces for future tasks, we recommend ei-
ther using GloVe or learning a good curriculum
for word2vec training data. We also recommend
using in-domain embeddings whenever possible.

The code used in the experiments described
in this paper is publicly available from http:
//lit.eecs.umich.edu/downloads.html.
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Abstract

We investigate the task of mining relevant
stocks given a topic of concern on emerg-
ing capital markets, for which there is lack
of structural understanding. Deep learning is
leveraged to mine evidences from large scale
textual data, which contain valuable market in-
formation. In particular, distributed word sim-
ilarities trained over large scale raw texts are
taken as a basis of relevance measuring, and
deep reinforcement learning is leveraged to
learn a strategy of topic expansion, given a
small amount of manually labeled data from fi-
nancial analysts. Results on two Chinese stock
market datasets show that our method outper-
forms a strong baseline using information re-
trieval techniques.

1 Introduction

Stock prices are affected by events. For exam-
ple, recent announcement of a state plan to build
a new economic region, Xiong’an near Beijing,
by the Chinese government has led to the rise of
hundreds of stocks, which can directly or indi-
rectly benefit from the plan. As a second example,
the winning of a lawsuit against IP (Intellectual
Property) breach can strengthen investors’ confi-
dence on technological and entertainment com-
panies. We refer to the topics or themes of such
events (e.g. Xiong’an and IP) as concepts and their
relevant stocks as concept stocks. Given a news
event, it can be highly useful for investors to find
a list of relevant concept stocks for making invest-
ment decisions.

For popular concepts, lists of relevant concept
stocks can be found from analyst reports from
financial websites. On the other hand, concepts
are dynamic and flexible. In addition, insights can
be relatively scarce for emerging capital markets,
such as the Chinese market, which had been closed
to foreign investments before 2015. It is therefore

雄安
Xiong’an

白洋淀
Baiyangdian

安新县
Anxin county

容城
Rongcheng

保定市
Baoding	city

河北省
Hebei	province

冀东
East Hebei

京津冀
Beijing-Tianjin-
Hebei

河北省政府
Hebei	government

石家庄市
Shijiazhuang	city

京津冀一体化
Coordinated	development	
of	Beijing-Tianjin-Hebei

经济带
Economic district

滨海新区
Binhai new	area

Figure 1: Concept relatedness. A ⇒ B indicates that
B is one of the 3 most related concepts to A.

a challenging research question how to automat-
ically find out potentially relevant stocks given a
topic of interest, from a large market of multi-
thousand equities.

Intuitively, evidences between concepts and
stocks exist in text documents over the Internet.
For example, news articles report events and com-
panies involved. In addition, company filings such
as annual/quarter reports contain factual knowl-
edge about stocks, which can also be useful back-
ground information. For example, knowing that a
company invests heavily on research is useful for
correlating the company with IP-protection laws.
Such evidence-mining process can involve mul-
tiple steps. As shown in Figure 1, starting from
concept, Xiong’an, one might learn that the new
economical region is located in the Baiyangdian
area, which is further located in Hebei province.
By further reading, one can infer that the new eco-
nomic region is related with the coordinated devel-
opment plan for the Beijing-Tianjin-Hebei region,
and therefore benefit a wider range of stocks.

Based on the intuition above, we build a neu-
ral model for mining evidences for concept stock
recommendation. The basis of our model is dis-
tributed similarities between concepts and stocks,
obtained from embeddings trained over large-scale
raw documents. Embedding similarities encode
correlations from direct narrative evidence within
context windows. To further include a multi-step
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evidence mining, we build an iterative model for
concept expansion, augmenting a given concept
by iteratively adding more relevant concepts from
background documents. As demonstrated in Fig-
ure 1, this process can be ambiguous, since there
can be multiple directions for further reading given
a set of concepts. We leverage a small amount of
manually labeled data, downloaded from financial
analysis websites, for guiding evidence mining.

In particular, we take a reinforcement learning
method, which regards the evidence mining pro-
cess as a decision process. The starting point is
a given input concept, such as Xiong’an or Elec-
tronic Vehicle. At each step, a decision is made to
stop further reading, or to continue adding related
concepts to the set of concepts being considered.
Existing concepts can also be removed from fur-
ther consideration. Documents that discuss each
concept are used to support the decision. After the
process stops, relevant stocks to the set of concepts
are recommended. The decision process is guided
using a neural network model structure, trained
with a loss function over the quality of the finally
recommended stocks.

Results on two Chinese datasets show that our
method outperforms a strong ranking-based base-
line, which utilizes only direct evidences. Our
method can be easily adapted for other markets
given the availability of a small amount of train-
ing data. Our code is released1.

2 Related Work

Our work is related to information retrieval and
query expansion, where a concept can be regarded
as a query and relevant stocks can be regarded as
retrieved results. We rely on external evidence for
correlating concepts and stocks.

Ranking is an important problem in informa-
tion retrieval. We focus on ranking using neu-
ral models here. One line of work (Shen et al.,
2014a,b) models queries and documents using
convolutional neural network and ranks the doc-
uments pair-wise or list-wise. Another related
method (Cao et al., 2015) adopts recursive neu-
ral networks to rank sentences for multi-document
summarization. These methods requires massive
annotated data, which is expensive to obtain for
concept stock recommendation.

Query Expansion: One line of work (Cao

1https://github.com/leuchine/
concept-stock-recommendation

et al., 2008; Preston and Colman, 2000) uti-
lizes a feedback-based relevance model to expand
queries. Another line applies language modeling
to estimate conditional probabilities of concepts
given a query, and expands the query with the most
probable concepts (Bai et al., 2005; Carpineto and
Romano, 2012). Recently, word embeddings are
adopted for query expansion (Kuzi et al., 2016;
Diaz et al., 2016). Our framework belongs to this
line of work with a difference that we use rein-
forcement learning to dynamically expand queries
instead of following handcrafted rules such as us-
ing k-nearest neighbors.

Reinforcement Learning: Our work aligns
with existing work using reinforcement learning
to collect evidences. Narasimhan et al. (2016)
utilize external evidence to improve information
extraction. While the work requires handcrafted
features, our model uses dense embedding fea-
tures. Athukorala et al. (2016) devise an interac-
tive search engine balancing exploration and ex-
ploitation. Their work relies on user interaction
to make decisions. In contrast, our work does
not rely on active feedback, which can be ex-
pensive to obtain under our settings. Rodrigo and
Cho (2017) introduce a query reformulation sys-
tem based on reinforcement learning that rewrites
a long and complex query to maximize the number
of relevant documents returned. Differently, we do
not assume complex queries and focus on recom-
mending relevant stocks in our system. Zhong et
al. (2017) solves a different problem, i.e. trans-
lating natural language questions to corresponding
SQL queries.

3 Problem Definition

Our task is to find stocks relevant to a concept
according to a variety of data sources, such as
news, tweets and company files. Formally, given
a concept c, a set of m stocks {oi}mi=1 and n
data sources {Si}ni=1, where each Si is a set
of documents {Di

j}
|Si|
j=1 and each Di

j is a se-
quence of words w1, w2...w|Di

j |, we assume the
relevant stocks of the concept are revealed in the
data sources (e.g. we discover PetroChina as a
concept stock of ‘petroleum’ from the document
‘PetroChina acquires Keppel’s entire stake in Sin-
gapore Petroleum’) and the task is to automati-
cally discover these relations and select a subset
of stocks as c’s concept stocks based on the data
sources {Si}ni=1.
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Figure 2: Concept Stock Recommendation Models

4 Representation

Motivated by the success of embedding-based
models (Mikolov et al., 2013; Pennington et al.,
2014) in capturing semantic regularities, we use
embeddings to represent concepts, stocks and doc-
uments.

In particular, we adopt Chinese word segmenta-
tion (Yang et al., 2017) to obtain words from doc-
uments. Doc2Vec (Le and Mikolov, 2014) is then
used on the documents of each data source Si to
obtain a local word embedding matrix Ei and a
local document embedding matrix F i, where each
column of Ei (F i) corresponds to a word (doc-
ument) vector representation of Si. In particular,
we use embeddings, Eic and Eio as the local con-
cept representation of c and the local stock repre-
sentation of o in data source Si, respectively. Fur-
thermore, we obtain a global word embedding ma-
trix E by averaging the local embedding matrices,
E1...En, where Ec and Eo are regarded as the
global concept representation of c and the global
stock representation of o, respectively.

We propose a ranking baseline and a reinforce-
ment learning model for query expansion based on
these representations.

5 Ranking Baseline

Inspired by Shen et al. (2014a; 2014b), our rank-
ing baseline discriminatively projects the repre-
sentations of concepts and evidences of stocks into
a semantic space for measuring their relevances.

Mining Evidences: Formally, given a concept c
and a stock o, we consult the data sources, retriev-
ing the set of documents {Di

c,o} most relevant to
(c, o) from each data source Si as evidences.

To obtain evidences, we use c’s local embed-
ding Eic and o’s local embedding Eio for repre-
senting the stock-concept pair (c, o). Cosine simi-
larities are calculated between Eic + Eio and each
column of F i for measuring the semantic related-
ness of each document to (c, o). Suppose that the
columns are normalized, the scores are calculated
as:

score({Di
j}|Si|
j=1) = (F i)T (Eic + Eio) (1)

q (q is set as 5 empirically) documents {Di
c,o}with

the maximum scores are selected as evidences
from each Si. When |F i| is large, we use approx-
imate k-nearest-neighbor algorithms, namely Lo-
cality Sensitive Hashing (Datar et al., 2004), to im-
prove efficiency.

Learning to Rank o Given c: The overall
framework for measuring relevances is shown in
Figure 2 (a). Given a concept c and stock o, for
each data source Si, the local stock representation
Eio and the local document representations of the
q most relevant documents, denoted as {F ic,o}, are
sequentially fed into Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) to
acquire a semantic representation of the evidences.

A bidirectional extension (Graves and Schmid-
huber, 2005) is applied to capture semantics
both left-to-right and right-to-left. As a result,
two sequences of hidden states are obtained, i.e.
�
h1,

�
h2...

�
hq+1 and

�
h1,

�
h2...

�
hq+1. We concatenate

�
ht and

�
ht at each time step to obtain the final hid-

den states h1, h2...hq+1.
Average pooling (Boureau et al., 2010) is ap-

plied on the hidden states h1, h2...hq+1 to obtain
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evidence representation Iic,o,

Iic,o =

∑q+1
t=1 ht
q + 1

(2)

We concatenate all Iic,o with the global concept
representation of c (i.e. the average of local repre-
sentations, E1

c ...E
n
c ) and feed the result to a soft-

max layer to obtain the probability of a stock o
being c’s concept stock, denoted as p(o|c). Given
a concept c, all stocks are ranked by the probabili-
ties.

Given a set of gold-standard concept stock data,
supervised learning is conducted to learn p(o|c).
The loss function is defined as:

E(c,o,y)[−log p(o|c)y−log (1−p(o|c))(1−y)] (3)

Here y is 1 when o is a concept stock of c, and
0 otherwise. Equation 3 maximizes p(o|c) (1 −
p(o|c)) when y = 1 (y = 0). AdaGrad (Duchi
et al., 2011) is applied to update parameters.

6 Recommendation via Query Expansion

The ranking baseline can require large amounts of
annotated data to deliver satisfying performance
(Shen et al., 2014a,b), which can be costly. In ad-
dition, the algorithm has to deal with highly im-
balanced datasets, since there are thousands of
stocks in a stock market, but only a few are related
to a concept c, which greatly harms the perfor-
mance of discriminatively trained algorithms (Wu
and Chang, 2003).

We take a different approach, utilizing the same
data sources and representations as the ranking
baseline. To better leverage a small amount of su-
pervision data, we apply reinforcement learning
to expand the query concept c, consulting sup-
porting evidences from the data sources {Si}mi=1.
We leverage embedding similarities as a basis for
concept-stock relatedness. The advantage is that
embeddings can be trained over large scale raw
texts unsupervisedly, without the need for manu-
ally labeled stock lists.

6.1 Direct Semantic Relatedness

Embeddings represent similarities between con-
cepts and stocks if they co-exist literally in a con-
text window during embedding training. As a re-
sult, irrelevant (relevant) stocks are less (more)
similar to the concept c, since they infrequently

(frequently) co-occur, which alleviates the prob-
lem brought by imbalanced datasets in that irrele-
vant stocks can be spotted at ease.

Global representations of c and o is utilized to
obtain a direct relevance score f̂(c, o):

f̂(c, o) = Ec · Eo, (4)

where · denotes the dot product operation. The
stocks are ranked by f̂(c, o) and concept stocks
are these with the maximum cosine similarities.

6.2 Indirect Semantic Relatedness by Query
Expansion

While f̂(c, o) measures direct relevance between
c and o in embedding contexts, we want to find
those o′ that are indirectly relevant to c by reason-
ing as shown in Figure 1. Query expansion (Kuzi
et al., 2016; Diaz et al., 2016) is used to this end.
One naive baseline is expanding the concept cwith
its k-nearest-neighbor concepts, denoted as [ce],
from global matrix E measured by cosine simi-
larity. Relevance between the expanded concepts
[c, [ce]] and o is calculated as:

f̂([c, [ce]], o) = E[c,[ce]] · Eo
= (Ec +

∑

ce∈[ce]
Ece) · Eo (5)

We define E[c,[ce]] as the addition of Ec and each
Ece . The baseline is relatively inflexible since a
fixed number of k expansion concepts are selected
for all c. In contrast, the reasoning procedures
shown in Figure 1 can take an arbitrary number
of steps. Besides, the naive baseline does not in-
corporate supervision, thus being unable to decide
whether the selected concepts are beneficial for
concept stock recommendation.

We use reinforcement learning to tackle this is-
sue, directly learning how to expand queries from
a few labeled cases. Given c, our method works
iteratively, expanding the concept until it expects
further expansions are not desired. For each can-
didate concept to expand c, a decision is made by
the model on whether it will improve, worsen or
have no effect on recommendation accuracies.

Based on these, we model query expansion with
a Markov Decision Process (MDP) to discrimina-
tively select expansion concepts for c to maximize
recommendation accuracies, while requiring much
less training data compared to the ranking base-
line.
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The overall framework is shown in Figure 2 (b).
Formally, a MDP is a list [Z,A, T,R], where Z =
{z} is a set of states, A = {a} is a set of actions,
T (z, a) is a transition function, which determines
the next state z′ = T (z, a) after performing action
a on z, and R is a reward function. We describe
each in detail below:

States: Each state z is a list of lists:

z = [[c, [ce]], [v
1, {F 1

context}]...[vn, {Fncontext}]],
(6)

where [c, [ce]] consists of the input concept c and
its expansion concept list [ce] so far. In the start
state, [ce] is empty, and thus [c, [ce]] = [c, [ ]].
[vi, {F icontext}] consists of a new candidate con-
cept vi and its supporting evidences {F icontext}.
Since globally trained embeddings underperform
locally trained embeddings (Diaz et al., 2016) for
query expansion, we use local embeddings Ei to
suggest candidate concepts vi, instead of using
global embedding E. vi is obtained by finding the
most similar concept of [c, [ce]] from local em-
beddings Ei. {F icontext} is the document repre-
sentations of the q most relevant documents to
([c, [ce]], v

i) as evidences. Formally, {F icontext} is
the document representations of the q documents
with the maximum scores, score′({Di

j}
|Si|
j=1) =

(F i)T (Ei[c,[ce]] + Ei
vi
). As a result, at each state,

we have n candidate concepts v1...vn. The neural
agent chooses at most one concept to be added to
[ce] based on the evidences.

Action: The agent can take four types of ac-
tions. (1) Add one of n candidate concepts to [ce]
(2) Reject all n candidate concepts. (3) Remove
the last added concept from [ce] (4) Stop the pro-
cess.

State Transition: After taking an action a on
a state z, a new state z′ is yielded by the tran-
sition function T (z, a). If one of the candidate
concepts vi is chosen, vi is added to [ce]. In ad-
dition, the new state z′ is obtained by updat-
ing [v1, {F 1

context}]...[vn, {Fncontext}] by finding
the most similar concepts of the new [c, [ce]

′]
and their supporting evidences among the local
embeddings. If action (2) is chosen, [c, [ce]] re-
mains, while the v1...vn is replaced with the sec-
ond most similar concepts of [c, [ce]] among the
local embeddings, and the process repeats until
action (1), (3) or (4) is chosen. If (3) is chosen,
the last added concept is removed from [ce], and
[v1, {F 1

context}]...[vn, {Fncontext}] are updated ac-
cording to the new [c, [ce]

′]. If (4) is chosen, the

query expansion process finishes. The final [c, [ce]]
is the result of query expansion.

Neural Agent: Given a state z, the neural
agent chooses one action to take among the four
types of actions. To this end, [c, [ce]] and each
[vi, {F icontext}] are fed into separate Bi-LSTM to
obtain a concept representation and candidate con-
cept representations, respectively. We further con-
catenate these representations and use a linear
layer to obtain Q-values Q(z, a; θ) for each ac-
tion a (Sutton and Barto, 1998). Note that we do
not use softmax to normalize the Q-values since
Q-value is the expectation of discounted sums of
rewards by definition instead of probabilities. The
action with the maximum Q-value is chosen.

Reward: A reward r is associated at each step
specified by the reward function R, which evalu-
ates the goodness of action a on state z. We use
the difference of mean average precision (MAP)
(Christopher et al., 2008) before and after an ac-
tion a as the reward function:

R(z, a, z′) =MAP (z′)−MAP (z), (7)

where MAP is defined as:

MAP (z) =
1

|ω(c)|
∑

o∈ω(c)

Precision@rank(o; z, E) (8)

and

Precision@K =

∑
o′∈ω(c) 1(rank(o

′; z, E) ≤ K)

K
(9)

ω(c) is the set of concept stocks of the concept
c in training data. rank(o; z, E) is the rank of the
stock o, which is calculated by utilizing [c, [ce]] of
z and global embedding E to rank all stocks using
Equation 5. 1 is the indicator function. Therefore,
MAP measures the goodness of the ranking, which
is large if the stocks in ω(c) are ranked higher
compared to the others. Reward r is positive if
[c, [ce]

′] of z′ can rank stocks better compared to
[c, [ce]] of z and negative otherwise.

We choose MAP based on two reasons: (1)
MAP provides a measure of quality, which has
been shown to have good discrimination and sta-
bility. Besides, MAP is roughly the average area
under the precision-recall curve for a set of queries
(Christopher et al., 2008). Thus, optimizing MAP
can indirectly improve both precision and recall.
(2) MAP provides smoother scores than other met-
rics such as Precision@K and Recall@K.

In summary, at each step, the MDP framework
chooses an action a based on a state z, obtaining a
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Algorithm 1 Training Phase of MDP for Query Expansion
1: Initialize experience memory M
2: Initialize action network with random weights θ
3: Initialize target network with weights θtarget ← θ
4: for episode from 1 to N do
5: for each concept c do
6: Obtain start state z ←get state([c, [ ]], E1...En)
7: while true do
8: if random() < ε then
9: Select a random action a

10: else
11: Send state z to neural agent
12: Obtain action a from action network
13: end if
14: Obtain new state z′ ← T (z, a)
15: Calculate reward, r ← R(z, a, z′)
16: Store sample (z, a, z′, r) to M
17: Update state z ← z′

18: Sample mini-batch (zt, at, z
′
t, rt) from M

19: Calculate sample estimate using Equation 11
20: Perform a batch gradient descent step on

the action network, updating parameters θ
using Equation 12

21: Update θtarget ← θ at every C steps.
22: if a == action (4) then
23: break
24: end if
25: end while
26: Send the final [c, [ce]] to E and rank the stocks
27: end for
28: end for

new state z′ and a reward r, which forms a sample,
(z, a, z′, r). The process repeats until action (4) is
chosen.

6.3 Learning

We adopt Q-learning (Sutton and Barto, 1998) to
optimize the neural agent, which uses a function
Q(z, a) to represent Q-values and the recursive
Bellman equation to perform Q-value iteration,
when observing a new sample (z, a, z′, r). Since
the state space Z can be extremely large in prac-
tice, we represent the Q-value function Q(z, a)
with a neural agent shown in Figure 2 (b) named
the action network parametrized by θ (Mnih et al.,
2015). The deep Q-learning method has the abil-
ity to capture nonlinear features and achieve bet-
ter performance compared with traditional meth-
ods (Narasimhan et al., 2015). Formally,

Q(z, a) = Q(z, a; θ) (10)

To improve learning stability, sample reward es-
timates are obtained from a separate target net-
work with the same architecture as the action
network (Mnih et al., 2015), parametrized by
θtarget. Formally, the sample reward estimate of

(z, a, z′, r) is:

y
′
=

{
r if a = action(4)

r + γmaxanew∈AQ(z′, anew; θtarget) otherwise

(11)

Note that if the action (4) is taken, y′ = r since the
process stops at state z and no further action will
be taken so that the sum of rewards is r.

To learn the model parameters θ, the action net-
work outputs Q(z, a; θ) should be close to sample
estimates obtained from target network. Thus, we
introduce an experience memory M to save his-
tory samples and select a mini-batch of samples
according to a uniform distribution. We use the
mean square error as the loss function:

E(z,a,z′,r)∼U(M)[(Q(z, a; θ)− y′)2] (12)

The training phase is shown in Algorithm 1. In
lines 8-12, we use ε-greedy exploration, which en-
courages the agent to explore unknown state space
(Sutton and Barto, 1998).

7 Experiments

7.1 Datasets

We construct two datasets from the Chinese web-
sites, Jinrongjie2 and Tonghuashun3, respectively,
which are two mass medias for China stock mar-
kets. These two websites periodically publish their
concept stock lists, which are manually collected
and analyzed by their financial professionals. We
observe high quote change correlations of the
stocks of each concept c and their lists are com-
monly used by investors to select stocks, which
confirms the credibility of these datasets. The
Jinrongjie dataset consists of 206 concepts and
each concept has an average of 25.4 manually
suggested concept stocks. For the Tonghuashun
dataset, there are 900 concepts and 15.6 manually
suggested concept stocks on average.

There are two main stock exchanges in China,
the Shanghai Stock Exchange4 and the Shenzhen
Stock Exchange5. We crawled stock lists from
their official websites, with 3326 stocks in total.

We utilize four public data sources, S1 to S4,
the statistics of which are shown in Table 1.

2金融界 http://stock.jrj.com.cn/concept/
3同 花 顺 http://stock.10jqka.com.cn/

gngyw_list/
4上海证券交易所 http://www.sse.com.cn/

assortment/stock/list/share/
5深圳证券交易所 http://www.szse.cn/
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Source # Docs Avg # Words
News 255,318 2753
Report 12, 431 19,145
Wikipedia 2,143 3745
Search Engine 6,130 1846

Table 1: Data Source statistics

S1: News is crawled from Sina Finance News6,
which originates from 2009 to 2017.

S2: Reports consists of annual and quarterly com-
pany reports crawled from Sina Finance7.

S3: Wikipedia includes relevant wikipedia pages
of the concepts and stocks, if any, which can
provide some background knowledge.

S4: Search Engine includes open-domain infor-
mation for the concepts and stocks obtained
using Bing API 8. We adopt search engine
results for representing heterogeneous web
texts. The top-ranked webpages are crawled.

Given the Jinrongjie and Tonghuashun datasets,
we randomly select 70%, 10% and 20% of the
concepts as training, development and testing sets,
respectively.

7.2 Baselines and Parameter Settings
We compare our method with four baselines:

Search is a naive information retrieval baseline,
which sends the concept c and each stock o to an
inverted index and obtains a list of top-k ranked
documents (k = 5 in experiments) by a fixed rank-
ing metric, Ocapi BM25 (Robertson et al., 2009).
The stocks are ranked by the average of top-k doc-
uments’ BM25 scores.

Rank is our ranking baseline. Five top-ranked
documents from each source are fed into the
model. All 3326 stocks are ranked for each con-
cept.

Semantics ranks the stocks using Equation 4,
which is the naive semantic relatedness f̂(c, o).

Semantics+ extends Semantics by including 8
most similar words to expand original concepts.

Semantics++ extends Semantics by including
the most similar words with similarities larger than
0.65 to expand original concepts. On average, 6.3
concepts are included.

6http://finance.sina.com.cn/
7http://finance.sina.com.cn/focus/

ssgsnb2016/
8https://azure.microsoft.com/

en-us/services/cognitive-services/
bing-web-search-api/

Jinrongjie
Method P@5 P@10 R@30 MAP
Search 0.402 0.315 0.338 0.296
Semantics 0.45 0.367 0.380 0.332
Semantics+ 0.471 0.370 0.391 0.352
Semantics++ 0.478 0.375 0.396 0.359
Rank 0.467 0.376 0.402 0.365
RL 0.524* 0.427* 0.428* 0.398*

Tonghuashun
Method P@5 P@10 R@30 MAP
Search 0.387 0.302 0.315 0.278
Semantics 0.437 0.347 0.360 0.327
Semantics+ 0.448 0.356 0.374 0.345
Semantics++ 0.453 0.362 0.380 0.351
Rank 0.458 0.373 0.381 0.356
RL 0.507* 0.402 0.422* 0.378*

Table 2: Concept stock recommendation results on Jin-
rongjie and Tonghuashun. ∗ denotes statistical signifi-
cance using Wilcoxon signed rank test (p < 0.05)

For our model, denoted as RL, we set the win-
dow size as 80, the embedding size as 300 and the
vocabulary size as 100, 000 in view of the large
variety of phrases after word segmentation to train
Doc2Vec. Also, the experience memory size is set
to 50, 000 and older training samples are aban-
doned. The ε value is set as 1 at the start and grad-
ually decreases to 0.1 after 3000 annealing steps.
We perform a training phase after every 3 decision
steps. The mini-batch size is set to 50. Dropout is
applied to avoid overfitting and the dropout rate is
0.5. We set the learning rate for AdaGrad as 0.01.
Gradient clipping (Pascanu et al., 2013) is adopted
to prevent gradient exploding and vanishing dur-
ing training process.

7.3 Recommendation Accuracies

We use four metrics, mean average precision
(MAP), precision at 5 and 10 (P@5, P@10) and
recall at 30 (R@30) to evaluate the algorithms.
The results are shown in Table 2.

From Table 2, the first observation is that RL
outperforms the baselines on both datasets, which
demonstrates the effectiveness of combining se-
mantic relatedness with query expansion based
on reinforcement learning. The baseline Rank
achieves the second best results. The large gap be-
tween RL and Rank indicates that RL is much
easier to train compared to Rank on small data.

Second, we observe that Semantics+ improves
over Semantics, which shows that query expan-
sion has the potentials to alleviate concept ambi-
guities and benefit concept stock recommendation.
Semantics++ can outperform Semantics+ by con-
sidering semantic similarities. Also, compared to
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Figure 4: Efficiency

RL, we conclude that query expansion based on
reinforcement learning could better utilize train-
ing data and significantly outperform naive query
expansion methods.

The last observation is that Search performs the
worst among the methods. This sheds light on the
limitations of traditional search models and con-
firms the effectiveness of semantic modeling by
word embedding and neural models.

7.4 Influence of Size of Training Data

We increase the amount of training concepts and
study whether RL is easier to train than Rank. The
results on Tonghuashun is shown in Figure 3 (sim-
ilar patterns are demonstrated using Jinrongjie).
With more training concepts, the MAPs of both
methods increase. However, RL consistently out-
performs Rank and the margin becomes larger.
Thusly, we conclude that RL requires less data
than Rank to achieve similar performance.

7.5 Efficiency Comparison

Figure 4 shows the efficiency of all algorithms
on testing data. The three unsupervised algorithm
Search, Semantics and Semantics+ are more effi-
cient compared to the supervised algorithm, Rank
and RL. RL is more efficient compared to Rank,
since Rank has to rank every stock to obtain con-
cept stocks.

中字头 (Sino)
Semantics+ Rank RL

中远海控ZYHK 中国国航ZGGH 中国交建ZGJJ
中国交建ZGJJ 中国中铁ZGZT 中国中冶ZZZY
石油济柴SYJC 中国石油ZGSY 中国建筑ZGJZ
中国一重ZGYZ 中储股份ZCGF 中国中铁ZGZT
招商轮船ZSLC 中国中冶ZGZY 中国铁建ZGTJ

特斯拉 (Tesla)
Semantics+ Rank RL

万向钱潮WXQC 协鑫集成XXJC 万向钱潮WXQC
协鑫集成XXJC 比亚迪BYD 国机汽车GJQC
天汽模TQM 亚太股份YTGF 天汽模TQM
亚太股份YTGF 天汽模TQM 亚太股份YTGF
爱康科技AKKJ 长城汽车CCQC 上海临港SHLG

智能物流 (Intelligent Logistics)
Semantics+ Rank RL
东杰智能DJZN 华胜天成HSTC 飞力达FLD
亿阳信通YYXT 飞力达FLD 中储股份ZZGF
飞力达FLD 美菱电器MLDQ 东杰智能DJZN
美克家居MKJJ 东杰智能DJZN 圆通速递YTSD
天成自控TCZK 圆通速递YTSD 华鹏飞HPF

Table 3: Example concept stocks, where stock indicates
a incorrectly recognized concept stock.

7.6 Case Study

Data Sources Effectiveness: To study the effec-
tiveness of data sources, we count how many con-
cepts are chosen from each data source during
query expansion. For the Tonghuashun test data
(similar tendencies are observed for Jinrongjie),
761, 689, 199, 344 concepts are selected for S1-
S4, respectively. Accumulated rewards of these
concepts for S1-S4 are 76.13, 61.32, 7.49 and
14.10, respectively. We conclude that News and
Reports are relatively more effective for improv-
ing recommendation accuracies.

Recommended Stocks: To obtain a better un-
derstanding of our method, we examine the sym-
bols of the top-5 selected stocks of concepts and
some examples are shown in Table 3.

We notice that RL can effectively extend con-
cepts with relevant concepts. For example, the
algorithm extends 中字头 (Sino) with 中国
(China) and国企 (State-owned enterprises),特斯
拉 (Tesla) with入华 (into China),电动车 (Elec-
tric cars) and 马斯克 (Musk) and 智能物流 (In-
telligent Logistics) with 物流 (Logistics), CSN
(China Smart Logistic Network), 仓储 (Ware-
housing) and 配送 (Delivery), which results in
more accurate concept stocks.

For 特斯拉 (Tesla), RL made two mistakes
due to rumor and ambiguity. For example, 上
海临港SHLG is chosen because of rumors that
Tesla will establish a new factory there. 万向钱
潮WXQC is mistakenly chosen because 万向钱
潮WXQC is called China’s Tesla in some news
due to its investments in electric cars. In contract,
Semantics+ and Rank are limited by lack of su-
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pervision and highly unbalanced datasets, respec-
tively. For example, Rank mistakenly chooses
美菱电器MLDQ in that it confuses 智能家电
(Smart Appliances) with 智能物流 (Intelligent
Logistics). We conclude that RL is capable of ex-
panding concepts with relevant concepts that helps
find more revelant stocks.

Conclusion

We have investigated a reinforcement learning
method to automatically mine evidences from
large-scale text data for measuring the correla-
tion between a concept and a list of stocks. Com-
pared to standard information retrieval methods,
our method leverages a small amount of training
data for obtaining a flexible strategy of query ex-
pansion, thus being able to disambiguate contexts
in exploration. Results on two Chinese datasets
show that our method is highly competitive for our
task, thus providing a tool for investors to gain un-
derstandings of emerging markets.
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Abstract

The long short-term memory (LSTM) lan-
guage model (LM) has been widely investi-
gated for automatic speech recognition (ASR)
and natural language processing (NLP). Al-
though excellent performance is obtained for
large vocabulary tasks, tremendous memory
consumption prohibits the use of LSTM LMs
in low-resource devices. The memory con-
sumption mainly comes from the word em-
bedding layer. In this paper, a novel binarized
LSTM LM is proposed to address the problem.
Words are encoded into binary vectors and
other LSTM parameters are further binarized
to achieve high memory compression. This
is the first effort to investigate binary LSTMs
for large vocabulary language modeling. Ex-
periments on both English and Chinese LM
and ASR tasks showed that binarization can
achieve a compression ratio of 11.3 without
any loss of LM and ASR performance and a
compression ratio of 31.6 with acceptable mi-
nor performance degradation.

1 Introduction

Language models (LMs) play an important role
in natural language processing (NLP) tasks. N-
gram language models used to be the most pop-
ular language models. Considering the previous
N-1 words, N-gram language models predict the
next word. However, this leads to the loss of long-
term dependencies. The sample space size in-
creases exponentially as N grows, which induces
data sparseness (Cao and Yu, 2017).

Neural network (NN) based models were first
introduced into language modeling in 2003 (Ben-
gio et al., 2003). Given contexts with a fixed
size, the model can calculate the probability dis-
tribution of the next word. However, the prob-
lem of long-term dependencies still remained, be-

∗Both authors contributed equally to this work.

cause the context window is fixed. Currently, re-
current neural network (RNN) based models are
widely used on natural language processing (NLP)
tasks for excellent performance (Mikolov et al.,
2010). Recurrent structures in neural networks can
solve the problem of long-term dependencies to
a great extent. Some gate based structures, such
as long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997) and gated recurrent unit
(GRU) (Chung et al., 2014) improve the recur-
rent structures and achieve state-of-the-art perfor-
mance on most NLP tasks.

However, neural network models occupy
tremendous memory space so that it is almost im-
possible to put the models into low-resource de-
vices. In practice, the vocabulary is usually very
large. So the memory consumption mainly comes
from the embedding layers. And, the word embed-
ding parameters are floating point values, which
adds to the memory consumption.

The first contribution in this paper is that a
novel language model, the binarized embedding
language model (BELM) is proposed to reduce the
memory consumption. Words are represented in
the form of binarized vectors. Thus, the consump-
tion of memory space is significantly reduced. An-
other contribution in the paper is that we binarize
the LSTM language model combined with the bi-
narized embeddings to further compress the pa-
rameter space. All the parameters in the LSTM
language model are binarized.

Experiments are conducted in language mod-
eling and automatic speech recognition (ASR)
rescoring tasks. Our model performs well with-
out any loss of performance at a compression ratio
of 11.3 and still has acceptable results with only
a minor loss of performance even at a compres-
sion ratio of 31.6. Investigations are also made
to evaluate whether the binarized embeddings lose
information. Experiments are conducted on word
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similarity tasks. The results show the binarized
embeddings generated by our models still perform
well on the two datasets.

The rest of the paper is organized as follows,
section 2 is the related work. Section 3 explains
the proposed language model and section 4 shows
the experimental setup and results. Finally, con-
clusions will be given in section 5 and we describe
future work in section 6.

2 Related Work

Nowadays, with the development of deep learn-
ing, neural networks have yielded good results in
many areas. However, neural networks may re-
quire tremendous memory space, making it diffi-
cult to run such models on low-resource devices.
Thus, it is necessary to compress neural networks.

In recent years, many methods of compress-
ing neural networks have been proposed. Pruning
(Han et al., 2015) reduces the number of parame-
ters of the neural network by removing all connec-
tions with the weights below a threshold. Quanti-
zation (Han et al., 2015) clusters weights to sev-
eral clusters. A few bits are used to represent the
neurons and to index a few float values.

Binarization is also a method to compress neu-
ral networks. BNNs(Courbariaux et al., 2016) are
binarized deep neural networks. The weights and
activations are constrained to 1 or −1. BNNs can
drastically reduce memory size and replace most
arithmetic operations with bit-wise operations.
Different from pruning and quantization, bina-
rization does not necessarily require pre-training
and can achieve a great compression ratio. Many
binarization methods have been proposed (Cour-
bariaux et al., 2015, 2016; Rastegari et al., 2016;
Xiang et al., 2017). However, only a few (Hou
et al., 2016; Edel and Köppe, 2016) are related to
recurrent neural network. (Hou et al., 2016) imple-
ments a character level binarized language model
with a vocabulary size of 87. However, they did
not do a comprehensive study on binarized large
vocabulary LSTM language models.

3 Binarized Language Model

3.1 LSTM Language Model
The RNN language model is proposed to deal with
sequential data. Due to the vanishing and explod-
ing gradients problem, it is difficult for a RNN
language model to learn long-term dependencies.
The LSTM, which strengthens the recurrent neural

model with a gating mechanism, tackles this prob-
lem and is widely used in natural language pro-
cessing tasks.

The goal of a language model is to compute the
probability of a sentence (x1, . . . , xN ). A typical
method is to decompose this probability word by
word.

P (x1, ..., xN ) =

N∏

t=1

P (xt|x1, ..., xt−1) (1)

(Hochreiter and Schmidhuber, 1997) proposed
a Long Short-Term Memory Network, which can
be used for sequence processing tasks. Con-
sider an one-layer LSTM network, where N is the
length of the sentence, and xt is the input at the
t-th moment. yt is the output at the t-th moment,
which is equal to xt+1 in a language model. De-
note ht and ct as the hidden vector and the cell
vector at the t-th moment, which is used for repre-
senting the history of (x1, ..., xt−1). h0 and c0 are
initialized with zero. Given xt, ht−1 and ct−1,
the model calculates the probability of outputting
yt.

The first step of an LSTM language model is to
extract the representation et of the input xt from
the embeddings We. Since xt is a one-hot vec-
tor, this operation can be implemented by indexing
rather than multiplication.

et = Wext (2)

After that, et, along with ht−1 and ct−1 are fed
into the LSTM cell. The hidden vector ht and the
cell vector ct can be computed according to:

ft =sigmoid (Wf {ht−1, et} + bf )

it =sigmoid (Wi {ht−1, et} + bi)

ot =sigmoid (Wo {ht−1, et} + bo)

ĉt =tanh (Wĉ {ht−1, et} + bĉ)

ct =ft · ct−1 + it · ĉt

ht =ot · tanh (ct)

(3)

The word probability distribution at the t-th mo-
ment can be calculated by:

P (yt|x1, ..., xt) = pt = softmax(Wyht) (4)

The probability of taking yt as the output at the
t-th moment is:

pyt = pt × yt (5)
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3.2 Binarized Embedding Language Model

The binarized embedding language model
(BELM) is a novel LSTM language model with
binarized input embeddings and output embed-
dings. For a one-layer LSTM language model
with a vocabulary size of V , embedding and
hidden layer size of H . The size in bytes of the
input embeddings, the output embeddings, and the
LSTM cells are 4V H , 4V H and 32H2 + 16H .
When V is much larger than H , which is often
the case for language models, the parameters of
the input embeddings and the output embeddings
occupy most of the space. If the embeddings of
the input layer and the output layer are binarized,
the input layer and the output layer will only take
1/32 of the original memory consumption, which
can greatly reduce the memory consumption of
running neural language model.

It is important to find good binary embeddings.
Directly binarizing well-trained word embeddings
cannot yield good binarized representations. In-
stead, we train good binary embeddings from
scratch. The training approach is similar to the
methods proposed in (Courbariaux et al., 2016;
Rastegari et al., 2016). At run-time, the input em-
bedding and the output embedding are binarized
matrices. However, at train-time, float versions of
the embeddings, which are used for calculating the
binarized version of embeddings, are still main-
tained. In the propagation step, a deterministic
function sign is used to binarize the float versions
of the embeddings. In the back-propagation step,
the float versions of the embeddings are updated
according to the gradient of the binarized embed-
ding.

wb = sign (w) =

{
+ 1 if w > 0,

− 1 otherwise.
(6)

The derivative of the sign function is zero al-
most everywhere, and it is impossible to back-
propagate through this function. As introduced in
(Hubara et al., 2016), a straight-through estimator
is used to get the gradient. Assume the gradient of
the binarized weight ∂C

∂Wb has been obtained, the
gradient of the float version of the weight is:

∂C

∂W
=

∂C

∂Wb
(7)

A typical weight initialization method initial-
izes each neuron’s weights randomly from the

Gaussian distribution N(0,
√

1/H). This initial-
ization approach can maximize the gradients and
mitigate the vanishing gradients problem. From
this perspective, 1 or −1 is too large. So, in
practice, we binarize the embeddings to a smaller
scale. Although the weight is binarized to a float-
ing point number, the matrix can also be saved one
bit per neuron, as long as the fixed float value is
memorized separately.

binarize (w) =

{
+

√
1/H if w > 0,

−
√

1/H otherwise.
(8)

Since directly binarizing the input embeddings
We and the output embeddings Wy will limit
the scale of the embeddings, additional linear lay-
ers (without activation) are added behind the input
embedding layer and in front of the output em-
bedding layer to enhance the model. Denote Wb

e

and Wb
y as the binarized weights corresponding

to We and Wy. Denote WTe and bTe , WTy and
bTy as the weights and the biases of the first and
the second linear layer. The input of the LSTM et

and the word probability pt of the binarized em-
bedding language model are calculated according
to:

et =WTe

(
Wb

ext

)
+ bTe

pt =softmax
(
Wb

y

(
WTyht + bTy

)) (9)

The additional linear layer before the output
embedding layer is very important for the bina-
rized embedding language model, especially for
low dimensional models. Removing this layer will
result in an obvious decrease in performance.

3.3 Binarized LSTM Language Model

Subsection 3.2 explains how to binarize the em-
bedding layer, but the LSTM network can also be
binarized. In a binarized LSTM language model,
all the matrices in the parameters are binarized,
which can save much more memory space. Im-
plementing the binarized linear layer is important
for designing a binarized LSTM language model
(BLLM). In a binarized linear layer, there are three
parameters, W, γ and b. W is a matrix, γ and b
are vectors. The matrix W, which takes up most
of the space in a linear layer, is binarized. γ and
b remain floating point values. b is the bias of the
linear layer, and γ is introduced to fix the scale
problem of the binary matrix.
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The forward- and back-propagation algorithms
are shown in Algorithm 1 and Algorithm 2. The
structure of this linear layer is very similar to
the structure of batch normalization (Ioffe and
Szegedy, 2015), except the output of each di-
mension over the mini-batches is not normalized.
Batch normalization is hard to apply to a recurrent
neural network, due to the dependency over en-
tire sequences. However, the structure of the batch
normalization is quite useful. Since binarizing W
would fix the scale of the weight, additional free-
dom is needed to overcome this issue. The shift
operation can rescale the output to a reasonable
range.

Algorithm 1 The propagation of linear layer
Input: input x, weights W, γ and b
Output: output y

1: Wb = binarize (W)
2: s = Wbx
3: y = s · exp (γ) + b

Algorithm 2 The back-propagation of linear layer
Input: input x, weights W, γ and b, binarized
weight Wb, temporary value s (calculated in the
propagation period), the gradient of the output ∂C

∂y ,
learning rate η, binary weight range α
Output: the gradient of the input ∂C

∂x , the gra-
dient of the weight ∂C

∂W , ∂C
∂γ , ∂C

∂b , update the
weights

1: ∂C
∂b = ∂C

∂y

2: ∂C
∂γ = ∂C

∂y · s · exp (γ)

3: ∂C
∂s = ∂C

∂y · exp (γ), ∂C
∂Wb = ∂C

∂s x, ∂C
∂W =

∂C
∂Wb

4: ∂C
∂x = ∂C

∂s Wb

5: update W, γ, b according to ∂C
∂W , ∂C

∂γ , ∂C
∂b

with learning rate η.
6: clamp(W, −α, α)
7: return ∂C

∂x

The structure of the input embeddings and the
output embeddings of the binarized LSTM lan-
guage model is similar to the binarized embedding
language model. The embeddings are binarized
and additional linear layers are added after the in-
put embedding layer and in front of the output
embedding layer. However, the additional linear
layers are also binarized according to Algorithm 1
and Algorithm 2.

3.4 Memory Reduction

Denote the size of the vocabulary as V , and the
size of the embedding and hidden layer as H . The
memory consumptions of a one-layer LSTM lan-
guage model, BELM and BLLM are listed in Ta-
ble 1.

Model Memory (bytes)
LSTM 8V H + 32H2 + 16H
BELM 0.25V H + 40H2 + 24H
BLLM 0.25V H + 1.25H2 + 48H

Table 1: Memory Requirements

For a language model, the vocabulary size is
usually much larger than the hidden layer size.
The main memory consumption comes from the
embedding layers, which require 8V H bytes for
an LSTM language model. Binarized embeddings
can reduce this term to 0.25V H bytes. Further
compression of the LSTM can drop the coefficient
of H2 from 32 to 1.25.

4 Experiments

4.1 Experimental Setup

Our model is evaluated on the English Penn
TreeBank (PTB) (Marcus et al., 1993), Chinese
short message (SMS) and SWB-Fisher (SWB).
The Penn TreeBank corpus is a famous English
dataset, with a vocabulary size of 10K and 4.8%
words out of vocabulary (OOV), which is widely
used to evaluate the performance of a language
model. The training set contains approximately
42K sentences with 887K words. The Chinese
SMS corpus is collected from short messages. The
corpus has a vocabulary size of about 40K. The
training set contains 380K sentences with 1931K
words. The SWB-Fisher corpus is an English
corpus containing approximately 2.5M sentences
with 24.9M words. The corpus has a vocabulary
size of about 30K. hub5e is the dataset for the
SWB ASR task.

We also evaluate the word embeddings pro-
duced by our models on two word similarity
datasets. The models are trained on the Text8
corpus to extract the word embeddings. The
Text8 corpus is published by Google and col-
lected from Wikipedia. Text8 contains about
17M words with a vocabulary size of about 47k.
The WordSimilarity-353(WS-353) Test Collection
contains two sets of English word pairs along with
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human-assigned similarity judgments. The col-
lection can be used to train and test computer al-
gorithms implementing semantic similarity mea-
sures. A combined set (combined) is provided
that contains a list of all 353 words, along with
their mean similarity scores. (Finkelstein et al.,
2001) The MEN dataset consists of 3,000 word
pairs, randomly selected from words that occur at
least 700 times in the freely available ukWaC and
Wackypedia corpora combined (size: 1.9B and
820M tokens, respectively) and at least 50 times
(as tags) in the open-sourced subset of the ESP
game dataset. In order to avoid picking unrelated
pairs only, the pairs are sampled so that they repre-
sent a balanced range of relatedness levels accord-
ing to a text-based semantic score (Bruni et al.,
2014).

First, we conduct experiments on the PTB,
SWB and Text8 corpora respectively to evaluate
language modeling performance. We use perplex-
ity (PPL) as the metric to evaluate models of dif-
ferent sizes. Then, the models are evaluated on
ASR rescoring tasks. Rescoring the 100-best sen-
tences generated by the weighted finite state trans-
ducer (WFST), the model is evaluated by word er-
ror rate (WER). Finally, we conduct experiments
on word similarity tasks to evaluate whether the
word embeddings produced by our models lose
any information.

4.2 Experiments in Language Modeling

For traditional RNN based language models, the
memory consumption mainly comes from the em-
bedding layers (both input and output layers).
However, when the hidden layer size grows, the
memory consumption of the RNN module also be-
comes larger. So the total memory usage relates to
both the vocabulary size and hidden layer size, as
mentioned in section 3.4.

Experiments are conducted in language mod-
eling to evaluate the model on the PTB, SWB,
and SMS corpora respectively. In language mod-
eling tasks, we regularize the networks using
dropout(Zaremba et al., 2014). We use stochas-
tic gradient descent (SGD) for optimization. The
batch size is set to 64. For the PTB corpus, the
dropout rate is tuned for different training settings.
For the SWB corpus, we do not use dropout tech-
nique. For the SMS corpus, the dropout rate is
set to 0.25. We train models of different sizes
on the three corpora and record the memory us-

age of the trained models. The initial learning rate
is set to 1.0 for all settings. Since PTB is a rel-
atively small dataset and the convergence rates of
the BELM and the BLLM are slower than LSTM
language model, we reduce the learning rate by
half every three epochs if the perplexity on the
validation set is not reduced. For the other experi-
ments, the learning rate is always reduced by half
every epoch if the perplexity on the validation set
is not reduced. As introduced in section 3, the bias
of the output embedding layer is omitted. Adding
bias term in the output embedding layer leads to
small performance degradation in the BELM and
the BLLM model, although it leads to a small im-
provement in the LSTM model. This phenomenon
may be related to optimization problems.

Hidden
size LSTM BELM BLLM

Memory
PPL 500

48.0M
91.8

11.3M
88.0

1.6M
95.2

Memory
PPL 1000

112.0M
89.4

42.5M
85.7

3.8M
94.9

Table 2: Performances on the English PTB corpus

Hidden
size LSTM BELM BLLM

Memory
PPL 500

129.1M
57.6

13.8M
58.4

4.1M
60.4

Memory
PPL 1000

274.2M
56.1

47.6M
55.6

8.9M
56.2

Table 3: Performance on the English SWB corpus

Hidden
size LSTM BELM BLLM

Memory
PPL 500

170.8M
90.0

15.1M
89.8

5.4M
96.8

Memory
PPL 1000

357.6M
89.5

50.2M
87.8

11.5M
94.3

Table 4: Performance on the Chinese SMS corpus

Because the total memory usage relates to both
the vocabulary size and hidden layer size, the
memory reduction on various corpora is quite dif-
ferent. For our BELM model, the floating point
embedding parameters are replaced by single bits,
which could significantly reduce the memory us-
age. On the PTB corpus, the BELM models even
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outperform the baseline LSTM LM. The small
model (500 LSTM units) has a relative PPL im-
provement of 4.1% and achieves a compression ra-
tio of 4.3 and the large model (1000 LSTM units)
also has a relative PPL improvement of 4.1% and
achieves a compression ratio of 2.6. On the SWB
corpus, the BELM models still perform well com-
pared with the baseline model and achieve com-
pression ratios of 9.4 and 5.8 respectively for the
small and large models. On the SMS corpus, the
BELMs model also gains relative PPL improve-
ments of 0.2% and 1.9%, and achieves compres-
sion ratios of 11.3 and 7.1 respectively. In sum-
mary, the BELM model performs as well as the
baseline model both on English and Chinese cor-
pora, and reduces the memory consumption to a
large extent.

The BLLM model, however, does not outper-
form the baseline model, but still has acceptable
results with a minor loss of performance. Since
both the LSTM model and the embeddings are bi-
narized, the total compression ratio is quite sig-
nificant. The average compression ratio is about
32.0, so the memory consumption of the language
model is significantly reduced.

We also study the performance of pruning the
LSTM language model. We prune each parame-
ter matrix and the embedding layers with various
pruning rates respectively, and fine-tune the model
with various dropout rates. In our experiments,
pruning 75% parameter nodes hardly affects the
performance. However, if we try pruning more
parameter nodes, the perplexity increases rapidly.
For example, for the English PTB dataset, when
we prune 95% parameter nodes of the embedding
layers of an LSTM language model (500 LSTM
units), the perpexity will increase from 91.8 to
112.3. When we prune 95% parameter nodes of
an LSTM language model (500 LSTM units), the
perplexity will increase from 91.8 to 132.3. There-
fore, the effect of pruning is not as good as bina-
rization for the language modeling task.

Binarization can be considered as a special case
of quantization, which quantizes the parameters to
pairs of opposite numbers. So, compared to nor-
mal quantization, binarization can achieve a better
compression ratio. In addition, for binarization,
we do not need to determine the position of each
unique values in advance. Therefore, binarization
is more flexible than quantization.

We then study the effect of extra binary linear

layers in the BLLM. The additional binary linear
layer after the input embedding layer and the ad-
ditional binary linear layer in front of the output
embedding layer are removed respectively in this
experiment. We use well-trained embeddings to
initialize the corresponding embedding layers and
do the binarization using the method proposed in
(Rastegari et al., 2016) when the additional binary
linear layer is removed. The perplexities are listed
in Table 5. No-i means no additional binary linear
layer after the input embedding layer. No-o means
no additional binary linear layer in front of the out-
put embedding layer. No-io means no additional
binary linear layers. The experiment is conducted
on the PTB corpus.

Hidden
size BLLMBLLM

no-i
BLLM

no-o
BLLM
no-io

PPL 500 95.2 95.2 101.7 100.3
PPL 1000 94.9 94.5 96.7 96.3

Table 5: Performances on the English PTB corpus

If the additional binary linear layer after the in-
put embedding layer is removed, the performance
does not drop, and even becomes better when the
hidden layer size is 1000. Although the additional
binary layer after the input embedding layer is re-
moved, the float version of the input embeddings
of BLLM no-i is initialized with well-trained em-
beddings, while the BLLM is not initialized with
the well-trained embeddings. We think initializa-
tion is the reason why the BLLM no-i performs
comparatively to the BLLM. We also observe a
PPL increase of 1-2 points for BLLM no-i if the
input embeddings are not pre-trained (not listed in
the table). This phenomenon prompts us to pre-
train embeddings, which we leave to future work.
Once the additional binary linear layer in front of
the output embedding layer is removed, the perfor-
mance degradation is serious. This shows that the
output embeddings of the language model should
not be directly binarized; the additional binary lin-
ear layer should be inserted to enhance the model’s
capacity, especially for low dimensional models.

4.3 Experiments on ASR Rescoring Tasks

Experiments are conducted on the ASR rescoring
task to evaluate the model on the hub5e and SMS
corpora. Hub5e is a test dataset of the SWB cor-
pus which we use for ASR rescoring tasks. For
the hub5e dateset, A VDCNN (Qian et al., 2016)
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(very deep CNN) model on the 300-hour task is
applied as the acoustic model. For the Chinese
SMS dataset, the acoustic model is a CD-DNN-
HMM model. The weighted finite state trans-
ducer (WFST) is produced with a 4-gram language
model. Then our language models are utilized to
rescore the 100-best candidates. The models are
evaluated by the metric of word error rate (WER).

Model Hidden
size hub5e SMS

LSTM 8.7 10.5
BELM 500 8.5 10.3
BLLM 8.7 10.8
LSTM 8.5 10.4
BELM 1000 8.5 10.2
BLLM 8.4 10.3

Table 6: Performances on ASR rescoring tasks

Table 6 shows the results on ASR rescoring
tasks. The BELM model and BLLM model
perform well both on the English and Chinese
datasets. The BELM model achieves an absolute
0.2% WER improvement compared with the base-
line model in three of the experiments. The BLLM
model also has good results, even though it per-
forms not so well in language modeling. The re-
sults show that our language models work well on
ASR rescoring tasks even with much less memory
consumption.

4.4 Investigation of Binarized Embeddings

The experiments above show the good perfor-
mances of our models. We also want to investigate
whether the binarized embeddings lose any infor-
mation. So, the embeddings are evaluated on two
word similarity tasks. Experiments are conducted
on the WS-353 and MEN tasks. We have trained
the baseline LSTM model, the BELM model and
BLLM model of a medium size on the Text8 cor-
pus. We binarize the embeddings of the trained
baseline LSTM model to investigate whether there
is any loss of information by the simple binariza-
tion method (labeled LSTM-bin in the table be-
low). For each dimension, we calculate the mean
and set the value to 1 if it is bigger than the mean,
otherwise, we set it to -1.

The embedding size and the hidden layer size
are set to 500. We use stochastic gradient descent
(SGD) to optimize our models. We use cosine dis-

tance to evaluate the similarity of the word pairs.
Spearman’s rank correlation coefficient is calcu-
lated to evaluate the correlation between the two
scores given by our models and domain experts.

Model PPL
LSTM 166.0
BELM 164.7
BLLM 172.3

Table 7: Language modeling performance on the
Text8 corpus

Model WS-353 MEN
LSTM 53.1 46.3

LSTM-bin 25.5 19.4
BELM 49.1 47.0
BLLM 56.0 52.2

Table 8: Performances on the word similarity tasks

Table 7 shows our models perform well in lan-
guage modeling on the Text8 corpus. Table 8
summarizes the performance of the word embed-
dings in the similarity tasks. The embeddings
generated by the simple binarization method per-
form obviously worse than the other embeddings,
which indicates that much information is lost. The
BELM model outperforms the baseline model on
the MEN task, although it doesnt perform as well
as the baseline model on the WS-353 task. How-
ever, the MEN dataset contains many more word
pairs, which makes the results on this dataset more
convincing. The BLLM model significantly out-
performs the baseline model on the two tasks. The
results indicate that the binarized embeddings of
the BLLM do not lose any semantic information
although the parameters are represented only by
-1 and 1.

We suspect that binarization plays a role in reg-
ularization and produces more robust vectors. We
also give an example visualization of some word
vectors. The dimension of the embeddings of the
BLLM is reduced by TSNE (Maaten and Hinton,
2008). The words which are the closest to father
(according to the cosine distance of word vectors)
are shown in Figure 1.

In this figure, mother and parents are the clos-
est words to father, which is quite understand-
able. The words husband, wife, grandfather
and grandmother also gather together and most
words in the figure are related to father, indicat-
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Figure 1: Visualization of the Binarized Embeddings

ing the embeddings indeed carry semantic infor-
mation.

5 Conclusion

In this paper, a novel language model, the bina-
rized embedding language model (BELM) is pro-
posed to solve the problem that NN based lan-
guage models occupy tremendous space. For tra-
ditional RNN based language models, the memory
consumption mainly comes from the embedding
layers (both input and output layers). However,
when the hidden layer size grows, the memory
consumption of the RNN module also becomes
larger. So, the total memory usage relates to both
the vocabulary size and hidden layer size. In the
BELM model, words are represented in the form
of binarized vectors, which only contain parame-
ters of -1 or 1. For further compression, we bina-
rize the long short-term memory language model
combined with the binarized embeddings. Thus,
the total memory usage can be significantly re-
duced. Experiments are conducted on language
modeling and ASR rescoring tasks on various cor-
pora. The results show that the BELM model per-
forms well without any loss of performances at
compression ratios of 2.6 to 11.3, depending on
the hidden and vocabulary size. The BLLM model
compresses the model parameters almost thirty-
two times with a slight loss of performance. We
also evaluate the embeddings on word similarity
tasks. The results show the binarized embeddings
even perform much better than the baseline em-
beddings.

6 Future Work

In the future, we will study how to improve the
performance of the BLLM model. And, we will
research methods to accelerate the training and re-
duce the memory consumption during training.
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Abstract
Emotion recognition in conversations is cru-
cial for the development of empathetic ma-
chines. Present methods mostly ignore the role
of inter-speaker dependency relations while
classifying emotions in conversations. In this
paper, we address recognizing utterance-level
emotions in dyadic conversational videos. We
propose a deep neural framework, termed con-
versational memory network, which leverages
contextual information from the conversation
history. The framework takes a multimodal
approach comprising audio, visual and textual
features with gated recurrent units to model
past utterances of each speaker into memo-
ries. Such memories are then merged using
attention-based hops to capture inter-speaker
dependencies. Experiments show an accuracy
improvement of 3−4% over the state of the art.

1 Introduction

Development of machines with emotional intelli-
gence has been a long-standing goal of AI. With
the increasing infusion of interactive systems in
our lives, the need for empathetic machines with
emotional understanding is paramount. Previous
research in affective computing has looked at di-
alogues as an essential basis to learn emotional
dynamics (Sidnell and Stivers, 2012; Poria et al.,
2017a; Zhou et al., 2017).

Since the advent of Web 2.0, dialogue videos
have proliferated across the internet through plat-
forms like movies, webinars, and video chats. Emo-
tion detection from such resources can benefit
numerous fields like counseling (De Choudhury
et al., 2013), public opinion mining (Cambria et al.,
2017), financial forecasting (Xing et al., 2018), and
intelligent systems such as smart homes and chat-
bots (Young et al., 2018).

In this paper, we analyze emotion detection in
videos of dyadic conversations. A dyadic conver-
sation is a form of a dialogue between two enti-
ties. We propose a conversational memory net-
work (CMN), which uses a multimodal approach
for emotion detection in utterances (a unit of speech
bound by breathes or pauses) of such conversa-
tional videos.

Emotional dynamics in a conversation is known
to be driven by two prime factors: self and inter-
speaker emotional influence (Morris and Keltner,
2000; Liu and Maitlis, 2014). Self-influence re-
lates to the concept of emotional inertia, i.e., the
degree to which a person’s feelings carry over from
one moment to another (Koval and Kuppens, 2012).
Inter-speaker emotional influence is another trait
where the other person acts as an influencer in
the speaker’s emotional state. Conversely, speak-
ers also tend to mirror emotions of their counter-
parts (Navarretta et al., 2016). Figure 1 provides
an example from the dataset showing the presence
of these two traits in a dialogue.

Existing works in the literature do not capitalize
on these two factors. Context-free systems infer
emotions based only on the current utterance in
the conversation (Bertero et al., 2016). Whereas,
state-of-the-art context-based networks like Poria
et al., 2017b, use long short-term memory (LSTM)
networks to model speaker-based context that suf-
fers from incapability of long-range summarization
and unweighted influence from context, leading to
model bias.

Our proposed CMN incorporates these factors
by using emotional context information present
in the conversation history. It improves speaker-
based emotion modeling by using memory net-
works which are efficient in capturing long-term
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dependencies and summarizing task-specific de-
tails using attention models (Weston et al., 2014;
Graves et al., 2014; Young et al., 2017).

Specifically, the memory cells of CMN are con-
tinuous vectors that store the context information
found in the utterance histories. CMN also mod-
els interplay of these memories to capture inter-
speaker dependencies.

CMN first extracts multimodal features (audio,
visual, and text) for all utterances in a video. In
order to detect the emotion of a particular utterance,
say ui, it gathers its histories by collecting previous
utterances within a context window. Separate histo-
ries are created for both speakers. These histories
are then modeled into memory cells using gated
recurrent units (GRUs).

After that, CMN reads both the speaker’s memo-
ries and employs attention mechanism on them, in
order to find the most useful historical utterances
to classify ui. The memories are then merged with
ui using an addition operation weighted by the at-
tention scores. This is done to model inter-speaker
influences and dynamics. The whole cycle is re-
peated for multiple hops and finally, this merged
representation of utterance ui is used to classify its
emotion category.
The contributions of this paper can be summarized
as follows:

1. We propose an architecture, termed CMN, for
emotion detection in a dyadic conversation that
considers utterance histories of both the speaker
to model emotional dynamics. The architecture
is extensible to multi-speaker conversations in
formats such as textual dialogues or conversa-
tional videos.

2. When applied to videos, we adopt a multimodal
approach to extract diverse features from utter-
ances. It also makes our model robust to missing
information.

3. CMN provides a significant increase in accu-
racy of 3 − 4% over previous state-of-the-art
networks. One variant called CMNself which
does not consider the inter-speaker relation in
emotion detection also outperforms the state of
the art by a significant margin.

The remainder of the paper is organized as fol-
lows: Section 2 provides a brief literature review;
Section 3 formalizes the problem statement; Sec-
tion 4 describes the proposed method in detail; ex-

So you're leaving tomorrow. [sad]
Yeah, they just called. [sad]

I don't know what to say. I don't want to go but I 
don't have a choice. [sad]

I am afraid when you leave you won't come back. [sad]

I have to do this. Do you think I want to miss seeing her (their 
daughter) grow? [sad]

You don’t have to do this. Its not gonna work out. We're 
not a complete family without you being here. [sad]

Well I ll come back, what are you not willing to wait for me? [ang]

Thanks that helps. I feel much better now. [ang]

We are not a complete family here, you don’t understand. [ang]

Person BPerson A

Ti
me

Figure 1: An abridged dialogue from the dataset. Per-
son A (wife) is leaving B (husband) for a work assign-
ment. Initially both A and B are emotionally driven by
their own emotional inertia. In the end, emotional in-
fluence can be seen when B, despite being sad, reacts
angrily to A’s angry statement.

perimental results are covered in Section 5; finally,
Section 6 provides concluding remarks.

2 Related Works

Over the years, emotion recognition as an area of
research has seen contributions from researchers
across varied fields like signal processing, machine
learning, cognitive and social psychology, natu-
ral language processing, etc. (Picard, 2010). Ek-
man, 1993, provided initial findings that related
facial expressions as universal indicators of emo-
tions. Datcu and Rothkrantz, 2008, 2011, showed
the importance of acoustic cues in affect modeling.

A large section of researchers approaches emo-
tion recognition from a multimodal learning per-
spective. Hence, many works used visual and audio
features together for detecting affect (Busso et al.,
2004; Castellano et al., 2008; Ranganathan et al.,
2016). An in-depth review of the literature in these
systems is provided by D’mello and Kory, 2015.
Our work, which performs context-sensitive recog-
nition (Wöllmer et al., 2010) uses three modalities:
audio, visual and text. Recently, this combination
of modalities has provided the best performance
in affect recognition systems (Poria et al., 2017b;
Wang et al., 2017; Tzirakis et al., 2017), thus moti-
vating the use of a multimodal approach.

Previous works have focused on conversations
as a resourceful event for emotion analysis. Ru-
usuvuori, 2013, provides an in-depth analysis on
how emotions affect social interactions and con-
versations. In fact, significant works have at-
tributed emotional dynamics as an interactive phe-
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nomenon, rather than being within-person and
one-directional (Richards et al., 2003; Hareli and
Rafaeli, 2008). Such emotional dynamics are mod-
eled by observing transition properties. Yang et al.,
2011, study patterns for emotion transitions and
show the evidence of emotional inertia. Xiaolan
et al., 2013, use finite state machines to model tran-
sitions using stimuli and personality characteristics.
Our work also tries to model emotional transitions
using multimodal features. Unlike these works,
however, we use memory networks to achieve the
same.

The use of memory networks have been instru-
mental in the progress of multiple research prob-
lems, e.g., question-answering (Weston et al., 2014;
Sukhbaatar et al., 2015; Kumar et al., 2016), ma-
chine translation (Bahdanau et al., 2014), speech
recognition (Graves et al., 2014), and common-
sense reasoning (Cambria et al., 2018). The re-
peated read and write to their memory cells is often
coupled with attention modules, thus allowing it to
filter only relevant memories.

Our model is loosely inspired from Sukhbaatar
et al., 2015. Unlike their model, which directly en-
codes sentences into memories, we perform tempo-
ral sequence processing on our utterance histories
using GRUs. We also extend their architecture to
handle two speakers while keeping the possibility
to add more. Finally, our model is different in the
fact that we use multimodal features for input and
processing.

3 Task Definition

Our goal is to infer the emotion of utterances
present in a dyadic conversation. Let us define
a dyadic conversation to be an asynchronous ex-
change of utterances between two persons Pa and
Pb. Both the speakers speak a sequence of ut-
terances Ua and Ub, respectively. Here, Uλ =(s1λ, s2λ, ..., slλλ ) is ordered temporally, where siλ
is the ith utterance by Pλ and lλ is the total num-
ber of utterances spoken by person Pλ, λ ∈ {a, b}.
Overall, the utterances by both speakers can be
linearly ordered based on temporal occurrence as(u1, u2, ...ula+lb) , where, uj ∈ Ua or Ub.

Our model takes as input an utterance ui whose
emotion category (Section 5.1) needs to be classi-
fied. To get its history, preceding K utterances of
each person are separately collected as hista and
histb. Here, K serves as the length of the context

window for history of ui. Thus, for λ ∈ {a, b}:

histλ = {uj ∣ uj ∈ Uλ, j < i} , ∣ histλ ∣≤K (1)

histλ is also ordered temporally. At the beginning
of the conversation, histories would have lesser
than K utterances, i.e., ∣ histλ ∣<K.

In the remaining sections, for brevity, we ex-
plain the processes using a subscript λ which can
instantiate to either a or b, i.e., λ ∈ {a, b}.

4 Approach

We start by detailing the multimodal feature ex-
traction scheme for all utterances followed by the
mechanism to model emotional context using mem-
ory networks.

4.1 Multimodal Feature Extraction

The first phase of CMN is to extract multimodal
features of all utterances in the conversations. The
dyadic conversations are present in the form of
videos. Each utterance of a particular conversation
is thus a small segment of the full video. For each
utterance, we extract features for the modes: audio,
visual and text. The process of feature extraction
for each mode is described below.

4.1.1 Textual Features Extraction
We extract features from the transcript of an ut-
terance video using convolutional neural networks
(CNNs). CNNs are effective in learning high level
abstract representations of sentences from constitut-
ing words or n-grams (Kalchbrenner et al., 2014).
To get our sentence representation, we use a sim-
ple CNN with one convolutional layer followed by
max-pooling (Kim, 2014; Poria et al., 2016).

Specifically, the convolution layer consists fil-
ters of sizes 3,4 and 5 with 50 feature maps each.
Max-pooling is employed on these feature maps
with a pooling window of size 2. Finally, a fully
connected layer is used with 100 neurons. The
activations of this layer form our sentence repre-
sentation tu.

4.1.2 Audio Feature Extraction
To extract audio features we use openSMILE (Ey-
ben et al., 2010). It is an open-source software
which provides high dimensional audio vectors.
These vectors comprise of features like loudness,
Mel-spectra, MFCC, pitch, etc. Audio features play
a significant role in providing information on the
emotional state of a speaker (Song et al., 2004).
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In fact, the literature shows that there exists
a high correlation between many statistical mea-
sures of speech with speakers’ emotion. For ex-
ample, high pitch and fast speaking rate often de-
note anger while sadness associates low standard
deviation of pitch and slow speech rate (Dellaert
et al., 1996; Amir, 1998). In this work, we use
the IS13 ComParE1 config file which extracts a
total of 6373 features for each utterance video. Z-
standardization is performed for voice normaliza-
tion and dimension of the audio vector is reduced
to 100 using a fully-connected neural layer. This
provides the final audio feature vector au.

4.1.3 Visual Feature Extraction
Facial expressions and visual surrounding provide
rich emotional indicators. We use a 3D-CNN
to capture these details from the utterance video.
Apart from the benefits of extracting relevant fea-
tures from each image frame, 3D-CNN also ex-
tracts spatiotemporal features across frames (Tran
et al., 2015). This leads to the identification of
emotional expressions like a smile or frown.

The working of a 3D-CNN is identical to its 2D
counterpart with an input being a video v of di-
mension: (3, f, h,w). Here, 3 represents the RGB
channels and f, h,w are the number of frames,
height, and width of each frame, respectively. For
the convolution operation, a 3D filter fl of dimen-
sion (fm,3, fd, fh, fw) is used where, f[m/d/h/f]
represents number of feature maps, depth, height
and width of the filter, respectively. Max-pooling
is applied to the output of this convolution across a
3D sliding window of dimension (mp,mp,mp).

In our model, we use 128 feature maps for 3D
filters of size 5. For pooling, we set mp to be
3 whose output is fed to a fully connected layer
with 100 neurons. All the values are decided using
hyperparameter tuning (see Section 5). For the
input utterance, the activations of this layer form
the video representation vu.

Fusion: We perform feature level fusion to map
the individual modalities to a joint space. This is
done through a simple feature concatenation. Thus,
the extracted features tu, au and vu are joined to
form the utterance representation u = [tu;au; vu]
of dimension din = 300. This multimodal represen-
tation is generated for all utterances in a conversa-
tion.

1http://audeering.com/technology/
opensmile

Literature consists of numerous fusion tech-
niques for multimodal data (Atrey et al., 2010;
Zadeh et al., 2017; Poria et al., 2017c). Explor-
ing these on CMN, however, is beyond the scope
of this paper and left as a future work.

4.2 Conversational Memory Network
For classifying the emotion of an utterance ui, its
corresponding histories (hista and histb) are taken.
Each history histλ contains the preceding K utter-
ances by person Pλ (see Section 3). Here, both ui
and utterances in the histories are represented using
their multimodal feature vectors of dimensionRdin
(Figure 2).

The histories are first modeled into memory cells
using GRUs. This provides the memories with
context information summarized by the GRU. We
call this step as memory representation. Follow-
ing cognitive evidence of self-emotional dynam-
ics, we model separate memory cells for each per-
son. Thus, identical but separate computations are
performed on both histories. From these memo-
ries, content relevant to utterance ui is then filtered
out using attention mechanism over multiple in-
put/output hops. At each hop, both memories are
accumulated and merged with ui to model inter-
speaker emotional dynamics. First, we describe
our model as a single layer memory network which
runs one hop operation on the memories.
4.2.1 Single Layer
Here, we explain the representation scheme of the
memories for both histories and the input/output
operations on them along with attention mecha-
nism. The memory representation for each history
is generated using a GRU for modeling emotion
transitions. First, we define the GRU cell.
Gated Recurrent Unit: GRUs are a gating
mechanism in recurrent neural networks introduced
by (Cho et al., 2014). Similar to an LSTM (Hochre-
iter and Schmidhuber, 1997), GRU provides a sim-
pler computation with similar performance. At any
timestep t, it utilizes two gates rt (reset gate) and
zt (update gate) to control the combination criteria
with current input utterance ut and previous hidden
state st−1.

The new state st is computed as:

zt = σ(V z.ut +W z.st−1 + bz) (2)

rt = σ(V r.ut +W r.st−1 + br) (3)

ht = tanh(V h.ut +W h.(st−1 ⊗ rt) + bh) (4)

st = (1 − zt) ⊗ ht + zt ⊗ st−1 (5)
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Figure 2: Overall architecture of proposed model: CMN. First, multimodal representations are extracted for each
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each person, R + 1 different GRUs are used to represent M (r)

λ for all R hops. Then, attention based filtering using
multiple memory hops is performed. Finally, Person A’s utterance ui is classified to predict its emotion category.

Here, V,W and b are parameter matrices and
vector and ⊗ represents element-wise multiplica-
tion. The above equations can be summarized as:
st = GRUλ(st−1, ut).

Memory Representation: For each λ ∈ {a, b},
a memory representation Mλ = [m1

λ, ...,m
K
λ ] for

histλ is generated using a GRU. To grasp the tem-
poral context, the K utterances in histλ are framed
as a sequence (starting from the oldest one) and
fed to the GRUλ. At each timestep t ∈ [1,K], the
GRUλ’s internal state st (equation 5) forms the tth

memory cell mt
λ of memory representation Mλ.

Memory Input: This step takes the memory rep-
resentation Mλ and performs an attention mecha-
nism on it, resulting in an attention vector pλ ∈ RK .
First, the current utterance ui is embedded into a
vector qi of dimension Rd using a projection ma-
trix B ∈ Rd×din . To find the relevance of each
memory mt

λ’s context with qi, a match between
both is computed.
We do this by taking an inner product as follows:

qi = B.ui (6)

ptλ = softmax(qTi .mt
λ) (7)

Here, softmax(xi) = exi/∑j exj and attention
vector pλ = {ptλ} is a probability distribution over
the input memories Mλ = {mt

λ} for t ∈ [1,K].

Memory Output: First a new set of memories
are created using another GRU

′
λ to get new memory

representationM
′
λ = {(mt

λ)′}. An output represen-
tation oλ ∈ Rd is then generated using the weighted
sum of attention vector pλ and new memory M

′
λ as

follows:

oλ = ∑
t

ptλ.(mt
λ)′ =M ′

λ.pλ (8)

Thus, the output representation oλ contains
weighted contextual summary accumulated from
the memory.

Final Prediction: To generate the predictions for
the current utterance ui, we combine the output rep-
resentations of both persons: oa and ob with ui’s
representation qi and perform an affine transforma-
tion using matrix Wo. Softmax is applied to this
final vector to get the emotion predictions,

ŷ = softmax(Wo.(qi + oa + ob)) (9)

Categorical cross-entropy is used as the loss:

Loss = −1
N

N∑
i=1

C∑
j=1yi,j log2(ŷi,j) (10)

Here, N denotes total utterances across all videos
andC is the number of emotion categories. yi is the
one-hot vector ground truth of ith utterance from
the training set and ŷi,j is its predicted probability
of belonging to class j.
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4.2.2 Multiple Layers
Many recent works on memory networks adopt
a multiple hop scheme in their network. This re-
peated input and output cycle on the memories
along with a soft attention module, leads to a re-
fined representation of the memories (Sukhbaatar
et al., 2015; Kumar et al., 2016). Motivated by
these works, we extend our model to perform R
hops on the memories. This is done by stacking the
single hop layers (Section 4.2.1) as follows:

• At a particular hop r, the output memory of the

previous hop M
′
λ

(r−1)
is used as the input mem-

ory of the current hop M (r)
λ . Output memory of

current rth hop is generated using a newGRU
(r)
λ .

This constraint of sharing parameters adjacently
between layers is added for reduction in total
parameters and ease of training.

• At every hop, the query utterance ui’s represen-
tation qi is updated as:

q
(r+1)
i = q(r)i + o(r)a + o(r)b (11)

o
(r)
λ is calculated as per equation 8 using M

′
λ

(r)
.

• After R hops, the final prediction is done using
equation 9 as: ŷ = softmax(Wo.(q(R+1)i )). Al-
gorithm 1 summarizes the overall CMN network.

Algorithm 1 Conversational Memory Network
1: procedure CMN(ui, hista, histb,K,R) ▷ predict the

emotion of ui
2: q

(1)
i ← B.ui

3: M
′
λ

(0) ← GRU
(0)
λ (histλ)

4: for r in [1,R] do ▷ Multi-hop memory I/O

5: M
(r)
λ ←M

′
λ

(r−1)
6: M

′
λ

(r) ← GRU
(r)
λ (histλ)

7: pλ ← softmax( (qri )T .M (r)
λ ) ▷ Memory in

8: o
(r)
λ ←M

′
λ

(r)
.pλ ▷ Memory out

9: q
(r+1)
i ← q

(r)
i + o(r)a + o(r)b ▷ Query update

10: return ŷ ← softmax(Wo.(q(R+1)i )) ▷ Prediction

5 Experiments

5.1 Dataset

We perform experiments on the IEMOCAP
dataset2 (Busso et al., 2008). It is a multimodal
database of 10 speakers (5 male and 5 female) in-
volved in two-way dyadic conversations. A pair

2http://sail.usc.edu/iemocap/

Figure 3: Each block represents an utterance and the
blocks are ordered as per temporal occurrence. Color
scheme identifies their corresponding emotions. The
arrows denote emotional influence directions.

of speakers is given multiple conversation scenar-
ios which are grouped in a single session. All the
conversations are segmented into utterances. Each
utterance is annotated using the following emo-
tion categories: anger, happiness, sadness, neu-
tral, excitement, frustration, fear, surprise, and
other. However, in our experiments, we consider
the first four categories. This is done to compare
our method with state-of-the-art frameworks (Po-
ria et al., 2017b; Rozgic et al., 2012). The dataset
provides rich video and audio samples for all the
utterances along with transcriptions.

Apart from these emotional states, we also in-
vestigate the valence and arousal degrees of each
utterance. IEMOCAP provides labels for both
these attributes on a 5-point Likert scale. Follow-
ing Aldeneh et al., 2017, we convert the attributes
into 3 categories, namely, low (≤ 2), medium
(> 2 and < 4) and high (≥ 4). The dataset configu-
ration for the experiments is obtained from Poria
et al. (2017b). The first 8 speakers (Session 1 - 4)
compose the training fold while the last session is
used as the testing fold. Overall, the training and
testing set comprises of 4290 utterances (120 con-
versational videos) and 1208 utterances (31 conver-
sational videos), respectively. There is no speaker
overlap in the training and testing set to make the
model person-independent.

5.2 Emotional Influence Patterns

In this section, we perform dataset exploration to
check the existence of emotional influences. Figure
3a) presents the emotion sequence of two videos
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sampled from the dataset. Both videos show the
presence of self and inter-speaker emotional influ-
ences. Visual exploration of videos from the dataset
reveal significant existence of such instances in the
conversations. To provide quantitative evidence of
the emotional influence patterns, we curate a non
exhaustive list of possible cases of influence. For
all utterances in the dataset, we sample their histo-
ries by setting K = 5, i.e., five previous utterances
(as per availability) from both speakers.

Cases 1 and 2 (Figure 3) represent scenarios
when the emotion of current utterance is influenced
by self or the other person respectively. In case 3,
the utterance has relevant content in the histories
that do not precede immediately. An effective atten-
tion mechanism provides the capability to capture
this pattern. Finally case 4 presents the situation
when the utterance is independent of the history.
Such situations are indicative from the content of
the utterance which often deviates from the previ-
ous topic of discussion or introduces a new infor-
mation. Table 1 presents a statistical summary of
these cases present in the dataset. From the table
it can be seen that a large section of the dataset
demonstrate these influence patterns. This pro-
vides motivation to explicitly model these patterns.
We thus hypothesize that models that are able to
capture these cases would have superior emotion
inference capabilities.

This passive exploration is a label-based analysis
which is performed as a sanity check. Needless to
say, existence of some false positive patterns at the
label level is imminent. On the other hand, our
model CMN is content-based which enables it to
mine intricate patterns from the utterance histories.

5.2.1 Training Details
We use 10% of the training set as a held-out valida-
tion set for hyperparameter tuning. To optimize the
parameters, we use Stochastic Gradient Descent
(SGD) optimizer, starting with an initial learning

Case 1 Case 2 Case 3 Case 4
Percentage 63.77 40.44 30.97 16.24

Table 1: Percentage of occurrence of different cases in the
dataset as mentioned in Section 5.2. All cases are analyzed
with K = 5. Utterances whose history has atleast 3 similar
emotion labels in either own history or the history of the other
person, is counted in case 1 or 2, respectively. Case 3 is
considered when the utterance’s emotion is found in atleast
3 utterances which occur before the second past-utterance of
each history. Case 4 is considered when no history has the
emotion label of the current utterance.

rate (lr) of 0.01. An annealing approach halves
the lr every 20 epochs and termination is decided
using an early-stop measure with a patience of 12
by monitoring the validation loss. Gradient clip-
ping is used for regularization with a norm set to
40. Hyperparameters are decided using a Random
Search (Bergstra and Bengio, 2012). Based on val-
idation performance, context window length K is
set to be 40 and the number of hops R is fixed at
3 hops. If K previous utterances are unavailable,
then null utterances are added at the beginning of
the history sequence. The dimension size of the
memory cells d is set as 50.

5.2.2 Baselines
We compare CMN with the following baselines:

SVM-ensemble: A strong context-free bench-
mark model which uses similar multimodal
approach on an ensemble of trees. Each
node represents binary support vector machines
(SVM) (Rozgic et al., 2012).

bc-LSTM: A bi-directional LSTM equipped
with hierarchical fusion, proposed by Poria et al.,
2017b. It is the present state-of-the-art method.
The model uses context features from unimodal
LSTMs and its concatenation is fed to a final LSTM
for classification. For fair comparison in an end-to-
end learning paradigm, we remove the penultimate
SVM of this model. The model doesn’t accommo-
date inter-speaker dependencies.

Memn2n: The original memory network as pro-
posed by Sukhbaatar et al., 2015. Contrasting to
CMN, the model generates the memory represen-
tations for each historical utterance using an em-
bedding matrix B as used in equation 7, without
sequential modeling. Thus for utterance ui, both
memories are created as Mλ using {mt

λ = B.ut ∣
ut ∈ histλ and t ∈ [1,K]} for λ ∈ {a, b}.

CMNSelf : In this baseline, we use only self his-
tory for classifying emotion of utterance ui. Thus,
if ui is spoken by person Pa, then only hista is
considered. Clearly, this variant is also incapable
of modeling inter-speaker dependencies.

CMNNA: Single layer variant of the CMN with
no attention module. Thus, its output oλ (equa-
tion 8) is generated using a uniform probability
distribution pλ, i.e., {ptλ = 1

K }Kt=1.

5.3 Results
Table 2 presents the performances of CMN and
its variants along with the state-of-the-art mod-
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Models Emotion Categories Valence Arousal
hops history Happiness Sadness Neutral Anger WAA WAA UAR WAA UAR

SVM-ensemble1 - single 72.40 61.90 58.10 73.10 69.50 - - - -
bc-LSTM2 - single 74.21 76.50 66.31 75.68 74.31 64.3 62.3 70.1 45.0

Memn2n 1 dual 72.36 76.16 66.93 80.23 74.17 - - - -
3 dual 75.03 76.36 66.45 81.59 75.08 65.3 64.0 71.5 45.6

CMNSelf 3 single 77.14† 76.99 66.99 87.26† 76.54† 65.5 64.0 72.1 47.1
CMNNA 1 dual 74.33 76.93 66.49 86.29† 75.77 65.6 64.2 71.6 46.3
CMN 3 dual 81.75† 77.73 67.32 89.88† 77.62† 66.1 64.3 72.2 47.6
1(Rozgic et al., 2012), 2(Poria et al., 2017b). †: significantly better than bc-LSTM1

Table 2: Comparison of CMN and its variants with state-of-the-art models (Section 5.2.2). All results use multi-
modal features. We report scores using weighted accuracy (WAA) and unweighted recall (UAR). UAR is a popular
metric that is used when dealing with imbalanced classes (Rosenberg, 2012). Results are an average of 10 runs
with varied weight initializations. We assert significance when p < 0.05 under McNemar’s test.

els. CMN succeeds over both neural (Poria et al.,
2017b) and SVM-based (Rozgic et al., 2012) meth-
ods by 3.3% and 8.12%, respectively. Improvement
in performance is seen for all emotions over the
ensemble-SVM based method. A similar trend is
seen with bc-LSTM (Poria et al., 2017b), where
our model does explicitly well for the active emo-
tions happiness and anger. This trend suggests
that CMN is capable of capturing inter-speaker
emotional influences which are often seen in the
presence of such active emotions.

The importance of sequential processing of
the histories using a recurrent neural network (in
our case, a GRU) is evidenced by the poorer
performance of Memn2n with respect to CMN.
This suggests that gathering contexts temporally
through sequential processing is indeed a superior
method over non-temporal memory representations.
CMNself which uses only single history channel
also provides lesser performance when compared
to CMN. This signifies the role of inter-speaker
influences that often moderate the emotions of the
current utterance. Overall, predictions on valence
and arousal levels also show similar results which
reinforce our hypothesis of CMN’s ability to model
emotional dynamics.

Models unimodal unimodal unimodal trimodalaudio visual text
SVM-ensemble 60.8 51.5 48.5 69.5‡

bc-LSTM 62.2 56.1 72.5 74.3‡

Memn2n 63.0 61.8 72.6 75.0‡

CMNself 63.1 62.5 73.0 76.5‡

CMNNA 62.4 60.9 74.1 75.7
CMN 65.3 64.2 74.2 77.6‡

‡: significantly better than unimodals (p < 0.05)

Table 3: Comparison of CMN to all the baselines in
different modalities. Weighted accuracy is used as the
metric.

Hyperparameters: Figure 4 provides a sum-
mary of the performance trend of our model for
different values of the hyperparameters K (context
window length) and Q (number of hops). In the
first graph, as K increases, more past-utterances
are provided to the model as memories. The per-
formance maintains a positive correlation with K.
This trend supplements our intuition that the histor-
ical context acts as an essential resource to model
emotional dynamics. Given enough history, the
performance saturates. The second graph shows
that multiple hops on the histories indeed lead to an
improvement in performance. The attention-based
filtering in each hop provides a refined context rep-
resentation of the histories. Models with hops in
the range of 3−10 outperform the single layer vari-
ant. However, each added hop contributes a new set
of parameters for memory representation, leading
to an increase in total parameters of the model and
making it susceptible to overfitting. This effect is
evidenced in the figure where higher hops lead to a
dip in performance.

Multimodality: Table 3 summarizes the perfor-
mance of unimodal and multimodal variants of the
baselines along with CMN. As seen in the table,
text modality performes best out of the three. This
is in contrast to Rozgic et al. 2012 where audio pro-
vides the best performance. A possible reason for

tes
t a

cc
ur

ac
y %

K: history window length Q: number of hops

Figure 4: Performance trends of our model with differ-
ent values of K (history length) and Q (number of hops).
While K is varied, Q is set to be 3. Similarly, K = 20
when Q varies.
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       You mustn't be serious my dear 
one, that's just what they want.  [hap]

Pe
rs

on
 A

Pe
rs

on
 B

Whose they? [hap]

With the most perfect poise .  [hap]

H
is

to
rie

s

Person A: All the futile mortals 
who try to make life 

unbearable. [?]

To classify:

     Hello? What? ... 
Wrong Number  [hap]

Oh , it sent shivers up 
my spine. [hap]

2.

7.

1.

6.

Behave exquisitely [hap]
4.

    Oh, what shall we 
do if they suddenly 

walk in on us?  [hap]

3.

5.

(a) Correct label: happiness

Pe
rs

on
 A

Pe
rs

on
 B

Well I’ll come back, what, are you not 
willing to wait for me? [ang]

You don’t have to do this. Its not 
gonna work out. We're not a 

complete family without you being 
here. [sad]I am afraid when you leave you 

won't come back. [sad] 

H
is

to
rie

s

Person A:  We are not a 
complete family here, you 

don’t understand. [?]

To classify:

So you're leaving tomorrow. [sad]

I have to do this. Do you 
think I want to miss seeing 

her grow? [sad]

    I don't know what to say. I 
don't want to go but I don't 

have a choice. [sad] 

2. 4. 6.

1.

3.

5.Past

In
cr

ea
si

ng
 a

tte
nt

io
n

Thanks that helps. I feel much better now. [ang]
7.

(b) Correct label: anger

Figure 5: Average attention vectors across 3 hops for both memories for a given test utterance.

this shift is the improved representational scheme
of the textual modality. Text tends to have lesser
noisy signals as opposed to audio-visual sources,
thus providing better features in the joint represen-
tation. Overall, multimodal systems outperform the
unimodal variants justifying the design of CMN as
a multimodal system.

Table 3 also showcases the superiority of CMN
and its variants over bc-LSTM. The proposed
model achieves better performance over the state
of the art in all the unimodal and multimodal seg-
ments. This asserts the importance of the memory-
network framework and its ability to effectively
store context information.

Role of Attention: Attention module plays a vi-
tal role in memory refinement. This is also ob-
served in Table 2, where CMNNA provides inferior
performance over CMN. With the uniform weight,
all the memory cells in both memories Ma and
Mb equally contribute to the output representation.
This incorporates irrelevant information from the
perspective of emotional context.

Case Study: We perform qualitative visualiza-
tion of the attention module by applying it on
the testing set. Figure 5a represents a conversa-
tion where both the speakers are in an excited and
jolly mood. Person A, in particular, drives the dia-
logue with less influence from Person B. To clas-
sify the test utterance of A, the attention module of
CMN successfully focuses on the utterances 1,3,5
which had triggered the speaker’s positive mood in
the video. This shows CMN’s capacity to model
speaker-based emotions. Also, at the textual level,
utterances 3 and 6 do not seem to depict a happy
mood. However, audio and visual sources provide
contrasting evidence which helps CMN to correctly
model them as utterances spoken with happiness.
This shows the advantage of a multimodal system.

In Figure 5b we reiterate through the dialogue

presented in Figure 1. As shown, Person A con-
verses in a sad mood (utterances 1,3,5 in Fig 5b),
bounded by the grief of his wife’s departure. But
when he expresses his inhibitions, his wife B re-
acts in an angry and sarcastic manner (utterance
7). This ignites an emotional shift for A who then
replies angrily. In this example, CMN is able to fo-
cus on utterance 7 spoken by B to anticipate A’s test
utterance to be an angry statement, thus showing
its ability to model inter-speaker influences. How-
ever, there are cases where our model fails, e.g., in
the absence of historical utterances as this forces
attention to focus on null memories.

6 Conclusion

In this paper, we presented a deep neural frame-
work that identifies emotions for utterances in
dyadic conversational videos. Our results suggest
that leveraging context information from utterance
histories and representing them as memories indeed
helps to better recognize emotions. Performing
speaker-specific modeling and considering inter-
speaker influences also helps in capturing emo-
tional dynamics.

This work also showed the importance of at-
tention mechanism in filtering relevant contextual
information from utterance histories and, hence,
paved the path to the development of more efficient
and human-like dialogue systems.
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Abstract

Spoken language understanding (SLU) is an
essential component in conversational sys-
tems. Most SLU components treat each ut-
terance independently, and then the following
components aggregate the multi-turn informa-
tion in the separate phases. In order to avoid
error propagation and effectively utilize con-
texts, prior work leveraged history for con-
textual SLU. However, most previous models
only paid attention to the related content in his-
tory utterances, ignoring their temporal infor-
mation. In the dialogues, it is intuitive that
the most recent utterances are more important
than the least recent ones, in other words, time-
aware attention should be in a decaying man-
ner. Therefore, this paper designs and investi-
gates various types of time-decay attention on
the sentence-level and speaker-level, and fur-
ther proposes a flexible universal time-decay
attention mechanism. The experiments on
the benchmark Dialogue State Tracking Chal-
lenge (DSTC4) dataset show that the proposed
time-decay attention mechanisms significantly
improve the state-of-the-art model for contex-
tual understanding performance1.

1 Introduction

Spoken dialogue systems that can help users to
solve complex tasks such as booking a movie
ticket have become an emerging research topic
in artificial intelligence and natural language pro-
cessing areas. With a well-designed dialogue sys-
tem as an intelligent personal assistant, people can
accomplish certain tasks more easily via natural
language interactions. Today, there are several
virtual intelligent assistants, such as Apple’s Siri,
Google’s Home, Microsoft’s Cortana, and Ama-
zon’s Echo. Recent advance of deep learning has

1The source code is at: https://github.com/
MiuLab/Time-Decay-SLU.

inspired many applications of neural models to di-
alogue systems (Wen et al., 2017; Bordes et al.,
2017; Dhingra et al., 2017; Li et al., 2017).

A key component of a dialogue system is a
spoken language understanding (SLU) module—
it parses user utterances into semantic frames
that capture the core meaning (Tur and De Mori,
2011). A typical pipeline of SLU is to first de-
cide the domain given the input utterance, and
based on the domain, to predict the intent and to
fill associated slots corresponding to a domain-
specific semantic template, where each utterance
is treated independently (Hakkani-Tür et al., 2016;
Chen et al., 2016b,a; Wang et al., 2016). To over-
come the error propagation and further improve
understanding performance, the contextual infor-
mation has been shown useful (Bhargava et al.,
2013; Xu and Sarikaya, 2014; Chen et al., 2015;
Sun et al., 2016). Prior work incorporated the di-
alogue history into the recurrent neural networks
(RNN) for improving domain classification, intent
prediction, and slot filling (Xu and Sarikaya, 2014;
Shi et al., 2015; Weston et al., 2015; Chen et al.,
2016c). Recently, Chi et al. (2017) and Zhang
et al. (2018) demonstrated that modeling speaker
role information can learn the notable variance in
speaking habits during conversations in order to
benefit understanding.

In addition, neural models incorporating atten-
tion mechanisms have had great successes in ma-
chine translation (Bahdanau et al., 2014), image
captioning (Xu et al., 2015), and various tasks.
Attentional models have been successful because
they separate two different concerns: 1) decid-
ing which input contexts are most relevant to the
output and 2) actually predicting an output given
the most relevant inputs. For example, the high-
lighted current utterance from the tourist, “uh on
august”, in the conversation of Figure 1 is to re-
spond the question about WHEN, and the content-
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Guide: and you were saying that you wanted to come to singapore

Guide: uh maybe can i have a little bit more details like uh when will you be coming

Guide: and like who will you be coming with

Tourist: uh yes

Tourist: um i'm actually planning to visit

Tourist: uh on august

FOL-CONFIRM; FOL-INFO 

QST-INFO; QST-WHEN

QST-WHO

FOL-CONFIRM

RES-WHEN

RES-WHEN

Figure 1: The human-human conversational utterances and their associated semantic labels from DSTC4.

aware contexts that can help current understanding
are the first two utterances from the guide “and
you were saying that you wanted to come to singa-
pore” and “un maybe can i have a little bit more
details like uh when will you be coming”. Previous
work proposed an end-to-end time-aware attention
network to leverage both contextual and tempo-
ral information for spoken language understanding
and achieved the significant improvement, show-
ing that the temporal attention can guide the at-
tention effectively (Chen et al., 2017). However,
the time-aware attention function is an inflexible
hand-crafted setting, which is a fixed function of
time for assessing the attention.

This paper focuses on investigating various flex-
ible time-aware attention mechanism in neural
models with contextual information and speaker
role modeling for language understanding. The
contributions are three-fold:
• This paper investigates different time-aware

attention mechanisms and provides guidance
for the future research about designing the
time-aware attention function.
• This paper proposes an end-to-end learnable

universal time-decay mechanism with great
flexibility of modeling temporal information
for diverse dialogue contexts.
• The proposed model achieves the state-of-

the-art understanding performance in the dia-
logue benchmark DSTC dataset.

2 The Proposed Framework

The model architecture is illustrated in Figure 2.
First, the previous utterances are fed into the con-
textual model to encode into the history summary,
and then the summary vector and the current utter-
ance are integrated for helping understanding. The
contextual model leverages the attention mecha-
nisms highlighted in red, which implements dif-
ferent attention functions for sentence and speaker
role levels. The whole model is trained in an
end-to-end fashion, where the history summary

vector and the attention weights are automatically
learned based on the downstream SLU task. The
objective of the proposed model is to optimize the
conditional probability of the intents given the cur-
rent utterance, p(ŷ | x), by minimizing the cross-
entropy loss.

2.1 Speaker Role Contextual Language
Understanding

Given the current utterance x = {wt}T1 , the goal
is to predict the user intents of x, which includes
the speech acts and associated attributes. We apply
a bidirectional long short-term memory (BLSTM)
model (Schuster and Paliwal, 1997) to history en-
coding in order to learn the probability distribution
of the user intents.

vcur = BLSTM(x,Whis · vhis), (1)

o = sigmoid(WSLU · vcur), (2)

where Whis is a weight matrix and vhis is the his-
tory summary vector, vcur is the context-aware
vector of the current utterance encoded by the
BLSTM, and o is the intent distribution. Note that
this is a multi-label and multi-class classification,
so the sigmoid function is employed for modeling
the distribution after a dense layer. The user intent
labels are decided based on whether the value is
higher than a threshold tuned by the development
set.

Considering that speaker role information is
shown to be useful for better understanding in
complex dialogues (Chi et al., 2017), we follow
the prior work for utilizing the contexts from two
roles to learn history summary representations,
vhis in (1), in order to leverage the role-specific
contextual information. Each role-dependent re-
current unit BLSTMrolei receives corresponding
inputs, xt,rolei , which includes multiple utterances
ui (i = [1, ..., t − 1]) preceding the current utter-
ance ut from the specific role, rolei, and have been
processed by an encoder model.
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Figure 2: Illustration of the proposed time-aware attention contextual model with three types of time-decay atten-
tion functions.

vhis =
∑

role

vhis,role (3)

=
∑

role

BLSTMrole(xt,role),

where xt,role are vectors after one-hot encoding
that represent the annotated intent and the attribute
features. Note that this model requires the ground
truth annotations for history utterances for training
and testing. Therefore, each role-based contextual
module focuses on modeling role-dependent goals
and speaking style, and vcur from (1) would con-
tain role-based contextual information.

2.2 Neural Attention Mechanism

One of the earliest work with a memory compo-
nent applied to language processing is memory
networks (Weston et al., 2015; Sukhbaatar et al.,
2015), which encodes mentioned facts into vec-
tors and stores them in the memory for ques-
tion answering. The idea is to encode important
knowledge and store it into memory for future us-
age with attention mechanisms. Attention mecha-
nisms allow neural network models to selectively
pay attention to specific parts. There are also
various tasks showing the effectiveness of atten-
tion mechanisms (Xiong et al., 2016; Chen et al.,
2016c). Recent work showed that two attention
types (content-aware and time-aware) and two at-
tention levels (sentence-level and role-level) sig-
nificantly improve the understanding performance
for complex dialogues. This paper focuses on ex-
panding the time-aware attention based on the in-
vestigation of different time-decay functions, and

further learning an universal time-decay function
automatically. For time-aware attention mecha-
nisms, we apply it using two levels, sentence-level
and role-level structures, and Section 3 details the
design and analysis of time-aware attention.

For the sentence-level attention, before feeding
into the contextual module, each history vector is
weighted by its time-aware attention αuj for re-
placing (3):

vUhis =
∑

role

BLSTMrole(xt,role, {αuj | uj ∈ role}).

For the role-level attention, a dialogue is disas-
sembled from a different perspective on which
speaker’s information is more important (Chi
et al., 2017). The role-level attention is to de-
cide how much to address on different speaker
roles’ contexts (vhis,role) in order to better under-
stand the current utterance. The importance of a
speaker given the contexts can be approximated to
the maximum attention value among the speaker’s
utterances, αrole = maxαuj , where uj includes
all contextual utterances from the speaker. With
the role-level attention, the sentence-level history
from (3) can be rewritten into

vRhis =
∑

role

αrole · vhis,role (4)

for combining role-dependent history vectors with
their attention weights.

2.3 End-to-End Training

The objective is to optimize SLU performance,
predicting multiple speech acts and attributes de-
scribed in Section 2.1. In the proposed model,
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all encoders, prediction models, and attention
weights can be automatically learned in an end-
to-end manner.

3 Time-Decay Attention Learning

The decaying function curves can be easily sep-
arated into three types: convex, linear, and con-
cave, illustrated in the top-right part of Figure 2,
and each type of time-decay functions expresses
a time-aware perspective given dialogue contexts.
Note that all attention weights will be normalized
such that their summation is equal to 1.

3.1 Convex Time-Decay Attention
A convex curve also known as “concave upward”,
in a simple 2D Cartesian coordinate system (x, y),
a convex curve f(x) means when x goes greater,
the slope f ′(x) is increasing. Intuitively, recent
utterances contain more salient information, and
the salience decreases very quickly when the dis-
tance increases; therefore we introduce the time-
aware attention mechanism that computes atten-
tion weights according to the time of utterance oc-
currence explicitly. We first define the time differ-
ence between the current utterance and the preced-
ing sentence ui as d(ui), and then simply use its
reciprocal to formulate a convex time-decay func-
tion:

αconv
ui =

1

a · d(ui)b
, (5)

where a and b are scalar parameters.
The increasing slopes of the decay-curve assert

that importance of utterances should be attenuated
rapidly, and the importance of a earlier history sen-
tence would be considerably compressed. Note
that Chen et al. used a fixed convex time-decay
function (a = 1, b = 1) (Chen et al., 2017).

3.2 Linear Time-Decay Attention
A linearly decaying time-aware attention func-
tion should also be taken into consideration. In
a simple 2D Cartesian coordinate system (x, y),
the slopes of a linear function remain consistent
when x changes. That is, the importance of pre-
ceding utterances linearly declines as the distance
between the previous utterance and the target ut-
terance becomes larger.

αlin
ui = max(e · d(ui) + f, 0), (6)

where e and f are the slope and the α-intercept of
the linear function. Note that when the distance

d(ui) is larger than −f
e , we assign the attention

value as 0.

3.3 Concave Time-Decay Attention

A concave curve also called “concave downward”,
in contrast to convex curves, in a simple 2D Carte-
sian coordinate system (x, y), a concave curve
f(x) means that the slope f ′(x) is decreasing
when x goes greater. Intuitively, the attention
weight decreases relatively slow when the distance
increases. To implement this idea, we design a
Butterworth filter-like low-distance pass filter
(Butterworth, 1930) that is similar to the concave
time-decay function in the beginning of the curve.

αconc
ui =

1

1 + (d(ui)D0
)n
, (7)

where D0 is the cut-off distance and n is the order
of filter. The decreasing slopes of the decay-curve
assert that the importance of utterances should
weaken gradually, and the importance of a earlier
history sentence would still be considerably com-
pressed. Moreover, it is more likely to preserve
the information in the multiple recent utterances
instead of focusing only on the most recent one.

3.4 Universal Time-Decay Attention

As mentioned previously, there are three types of
decaying curves: convex, linear, concave, each
type represents a different perspective on dialogue
contexts and models different contextual patterns.
However, because the contextual patterns may be
diverse, a single type of function could not fit the
complex behavior well. Hence, we propose a flex-
ible and universal time-decay attention function by
composing three types of attentional curves:

αuniv
ui = w1 · αconv

ui + w2 · αlin
ui + w3 · αconc

ui (8)

=
w1

a · d(ui)b
+ w2(e · d(ui) + f)

+
w3

1 + (d(ui)D0
)n
,

where wi are the weights of time-decay attention
functions. Because the framework can be trained
in an end-to-end manner, all parameters (wi, a,
b, e, f , D0, n) can be automatically learned to
construct a flexible time-decay function. With the
combination of different curves and the adjustable
weights, the proposed universal time-decay atten-
tion function expresses the flexibility of not being
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LU Model Sentence-Level Attention Role-Level Attention
Conv. Lin. Conc. Univ. Conv. Lin. Conc. Univ.

(a) DSTC4-Best 61.60
(b) Naı̈ve LU 70.18
(c) No Attention Cxt. 74.52
(d) Content-Aware Cxt. 73.69 74.28
(e) Time-Aware Hand 75.95† 74.12 74.26 76.41† 76.73† 76.11† 76.01† 76.68†

(f) E2E 76.04† 74.25 74.32 76.67† 76.69† 76.26† 76.08† 76.75†

(g) Content+Time Hand 74.71† 73.40 73.28 75.48† 76.70† 76.24† 76.03† 76.61†

(h) E2E 74.94† 73.79 73.47 75.83† 76.51† 75.76† 76.22† 76.74†

Table 1: The understanding performance reported on F-measure in DSTC4, where the context length is 7 for each
speaker (%). † indicates the significant improvement compared to all baseline methods. Hand: hand-crafted; E2E:
end-to-end trainable.

strictly decaying; that is, the model can automati-
cally learn a properly oscillating curve in order to
model the diverse and complex contextual patterns
using the attention mechanism.

4 Experiments

To evaluate the proposed model, we conduct the
language understanding experiments on human-
human conversational data.

4.1 Setup

The experiments are conducted using the DSTC4
dataset, which consist of 35 dialogue sessions on
touristic information for Singapore collected from
Skype calls between 3 tour guides and 35 tourists,
these 35 dialogs sum up to 31,034 utterances and
273,580 words (Kim et al., 2016). All recorded di-
alogues with the total length of 21 hours have been
manually transcribed and annotated with speech
acts and semantic labels at each turn level. The
speaker information (guide and tourist) is also pro-
vided. Unlike previous DSTC series collected
human-computer dialogues, human-human dia-
logues contain rich and complex human behaviors
and bring much difficulty to all the tasks. Given
the complex dialogue patterns and longer contexts,
DSTC4 is a suitable benchmark dataset for evalu-
ation. We randomly selected 28 dialogues as the
training set, 5 dialogues as the testing set, and 2
dialogues as the validation set.

We choose the mini-batch Adam as the op-
timizer with the batch size of 256 examples.
The size of each hidden recurrent layer is 128.
We use pre-trained 200-dimensional word embed-
dings GloV e (Pennington et al., 2014). We only
apply 30 training epochs without any early stop

approach. We focus on predicting multiple la-
bels including intents and attributes, so the eval-
uation metric is an average F1 score for balanc-
ing recall and precision in each utterance. The ex-
periments are shown in Table 1, where we report
the average results over five runs. We include the
best understanding performance (row (a)) from the
participants of DSTC4 in IWSDS 2016 for refer-
ence (Kim et al., 2016). The one-tailed t-test is
performed to validate the significance of improve-
ment, and the numbers with markers indicate the
significant improvement with p < 0.05.

4.2 Effectiveness of Time-Decay Attention
To evaluate the proposed time-decay attention,
we compare the performance with the naı̈ve LU
model without any contextual information (row
(b)), the contextual model without any atten-
tion mechanism (row (c)), and the one using
the content-aware attention mechanism (row (d)),
where the attention can be learned at sentence and
role levels. The row (a) is the performance re-
ported in the DSTC challenge2. It is intuitive that
the model without considering contexts (row (b))
performs much worse than the contextual ones for
dialogue modeling. The proposed time-aware re-
sults are shown in the rows (e)-(h), where the rows
(e)-(f) use only the time-aware attention while the
rows (g)-(h) model both content-aware and time-
aware attention mechanisms together. It is obvious
that almost all time-aware results are better than
three baselines.

In order to investigate the performance of vari-
ous time-decay attention functions, for each curve
we apply two settings: 1) Hand: hand-crafted

2This experiment is not performed on the same setup as
this paper, and the shown number is estimated for reference.
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hyper-parameters (rows (e) and (g)) and 2) E2E:
end-to-end training for parameters (rows (f) and
(h)). In the hand-crafted setting, the hyper-
parameters a = 1, b = 1, e = −0.125, f =
1, D0 = 5, n = 3 are adopted3. Table 1 shows
that among three types of the sentence-level time-
decay attention, only the convex time-decay at-
tention significantly outperforms the baselines, in-
dicating that an unsuitable time-decay attention
function is barely useful. For both settings, the
convex functions perform best among the three
types of time-decay functions. Also, the end-to-
end trainable setting results in better performance
for most cases.

For our proposed universal time-decay atten-
tion mechanism, the same settings are conducted:
1) composing fixed versions for three types of
time-decay functions weighted by learned param-
eters wi and 2) fully trainable parameters for all
time-decay functions. These two settings provide
different levels of flexibility in fitting dialogue
contextual attention, and the experimental results
show that two settings both outperform all other
time-decay attention functions.

For sentence-level attention, the end-to-end
trainable universal time-decay attention achieves
best performance (rows (f) and (h)), where the
flexible time-aware attention (rows (f) and (h)) ob-
tains 2.9% relative improvement compared to the
model without the attention mechanism (row (c))
and the model using content-aware attention only
(row (d)). For role-level attention, all types of
time-decay functions significantly improve the re-
sults. The probably reason may be that modeling
temporal importance for each sentence is more dif-
ficult and less accurate, and speaker roles in the
dialogues provide informative cues for the model
to connect the temporal importance from the same
speakers together; therefore, the conversational
patterns can be considered to additionally improve
the understanding results. The further analysis is
discussed in Section 4.3. Similarly, the best re-
sults are also from the end-to-end trainable uni-
versal time-decay function.

The significant improvement achieved by the
universal functions indicates that our model can
effectively learn a suitable attention function
through this flexible setting and derive a proper
curve to fit the temporal tendency to help the

3The chosen parameters are based on the domain knowl-
edge about dialogue properties.

model preserve the essence and drop unimpor-
tant parts in the dialogue contexts. To further in-
vestigate what the universal time-decay attention
learns, we inspect the learned weights wi and find
that the convex attention function almost domi-
nates the whole function. In other words, our
model automatically learns that the convex time-
decay attention is more suitable for modeling con-
texts from the dialogue data than the other two
types. Therefore, we can conclude that in complex
dialogues, the recent utterances contain majority
of salient information for spoken language under-
standing, where the attention decay trend follows
a convex curve.

We analyze the content-aware attention im-
pact by comparing the results between time-aware
only (rows (e)-(f)) and content and time-aware
jointly (rows (g)-(h)). The content-aware atten-
tion (row (d)) fails to focus on the important con-
texts for improving understanding performance in
the complex dialogues and even performs slightly
worse than the contextual model without attention
(row (c)). Without a delicately-designed attention
mechanism, it is not guaranteed that incorporating
an additional content-aware attention would bring
better performance and the experimental results
show that a simple and coarse content-aware atten-
tion barely provides any usable information given
the complex dialogues. Therefore, we focus on
whether our time-aware attention mechanisms can
compensate the poor attention learned from the
content-aware model. In other words, we are not
going to verify whether our time-aware attention
mechanisms could collaborate with the content-
aware attention mechanism, instead, we focus on
examining how much our proposed time-aware at-
tention could mitigate the detriment of the content-
aware attention. By comparing the results be-
tween time-aware only (rows (e)-(f)) and content
and time-aware jointly (rows (g)-(h)), we find that
our universal time-decay attention keeps the im-
provement without too much performance drop by
involving the learned temporal attention. Namely,
our proposed attention mechanism can capture
temporal information precisely, and it therefore
can counteract the harmful impact of inaccurate
content-aware attention.

4.3 Effectiveness of Role-Level Attention

For role-level attention, Table 1 shows that all
results with various time-decay attention mecha-
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LU Model Context Length
3 5 7

No Attention Contextual 74.75 74.69 (-) 74.52 (-)
Content-Aware Contextual 74.04 73.90 (-) 73.69 (-)
Time-Aware (Hand) 76.05 76.34 (+) 76.41 (+)
Time-Aware (E2E) 76.26 76.43 (+) 76.67 (+)
Content+Time (Hand) 75.16 75.27 (+) 75.48 (+)
Content+Time (E2E) 75.82 75.92 (+) 75.83 (-)

Table 2: The sentence-level performance reported on
F1 of the proposed universal time-decay attention un-
der different context length settings (%). The symbols
‘+’ and ‘-’ indicate the performance trends.

nisms are better than the one with only content-
aware attention (row (d)). However, linear and
concave time-decay functions do not provide addi-
tional improvement when we model the attention
at the sentence level. The probable reason may
be that it is difficult to model attention for indi-
vidual sentences given the unsuitable time-decay
functions. That is, if designs of attention func-
tions are unsuitable for dialogue contexts, the en-
coded sentence embeddings would be weighted
by improper attention values. On the other hand,
for role-level attention, each speaker role is as-
signed an attention value to represent their im-
portance in the conversational interactions. Pre-
vious work (Chi et al., 2017; Chen et al., 2017)
also demonstrated the effectiveness of consider-
ing speaker interactions for better understanding
performance. By introducing role-level atten-
tion, the sentence-level attentional weights can be
smoothed to avoid inappropriate values. Surpris-
ingly, even though learning sentence-level tempo-
ral attention is difficult, our proposed universal
time-decay attention can achieve similar perfor-
mance for sentence-level and role-level attention
(76.67% and 76.75% from the row (f)), further
demonstrating the strong adaptability of fitting di-
verse dialogue contexts and the capability of cap-
turing salient information.

4.4 Robustness to Context Lengths

It is intuitive that longer context brings richer in-
formation; however, it may obstruct the atten-
tion learning and result in poor performance be-
cause more information should be modeled and
accurate estimation is not trivial. Because when
modeling dialogues, we have no idea about how
many contexts are enough for better understand-
ing, the robustness to varying context lengths is
important for the contextual model design. Here,
we compare the results using different context

Parameter Time-Aware (E2E Trainable)
Sentence Role

w1 0.758 1.078
w2 0.544 -0.378
w3 -0.302 0.300
a 0.888 0.841
b 0.969 1.084
e -0.320 -0.129
f 0.640 0.993
D0 4.873 4.980
n 2.977 2.755

Table 3: The converged values of end-to-end trainable
parameters from the proposed universal time-decay at-
tention models. The values are averaged over five runs.

lengths (3, 5, 7) for detailed analysis in Table 2,
where the number is for each speaker. The mod-
els without attention and the content-aware mod-
els become slightly worse with increasing context
lengths. However, our proposed universal time-
decay attention model mostly achieves better per-
formance when including longer contexts, demon-
strating not only the flexibility of adapting diverse
contextual patterns but also the robustness to vary-
ing context lengths.

4.5 Universal Time-Decay Attention Analysis

This paper proposes a flexible time-decay atten-
tion mechanism by composing three types of time-
aware attention functions in different decaying
tendencies, where each decaying curves reflect a
specific perspectives on distribution over salient
information in dialogue contexts. The proposed
universal time-decay attention shows great capa-
bility of modeling diverse dialogue patterns in the
experiments and therefore proves that our pro-
posed method is a general design of time-decay
attention. In our design, we endow the attention
function with flexibility by employing many train-
able parameters and hence it can automatically
learn a properly decaying curve for fitting the dia-
logue contexts better.

To further analyze the combination of differ-
ent time-decay attention functions, we inspect the
converged values of the trainable parameters from
the proposed universal time-decay attention mod-
els in Table 3. Under the end-to-end trainable set-
ting, the initialization of the trainable parameters
are the same as the hand-crafted ones (wi = 1, a =
1, b = 1, e = −0.125, f = 1, D0 = 5, n = 3).
In the experiments, the models automatically fig-
ure out that convex time-decay attention function
should have a higher weight than others for both
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anything else (FOL-CONFIRM)

Okay (FOL-ACK)

so we can eat there (FOL-EXPLAIN)

Okay (FOL-ACK)

okay thank you (FOL-THANK)

and how about anything else that where 
we can go for visit (QST-RECOMMEND)

so maybe (FOL-INFO)

yes so maybe at the same time if you are going to climb bukit timah (FOL-RECOMMEND)

you can also bring along some snacks with you (FOL-RECOMMEND)

just also be careful do not put your food items in plastic bag (FOL-INFO)

put them inside your bag because there will be some monkeys on the hill (FOL-INFO)

and they may disturb you (FOL-INFO)

Tourist Guideis there any restaurant 
when we (FOL-CONFIRM)

okay i mentioned earlier on i would like to recommend the zoo

Target Sentence

Content-Aware:
FOL-INFO

Content + Universal Time-Decay:
RES-RECOMMEND

Content + Universal Time-Decay Attention
Content-Aware Attention

and they will think that you know your plastic bag would have contained food (FOL-INFO)

Figure 3: The visualization of the attention weights enhanced by the proposed time-decay function compared with
the weights learned by the content-aware attention model.

sentence-level or role-level models (w1 > w2 and
w1 > w3). Namely, in dialogue contexts, the re-
cent utterances contain most information related
to the current utterance, which is aligned with our
intuition.

4.6 Qualitative Analysis

From the above experiments, the proposed time-
decay attention mechanisms significantly improve
the performance on both sentence and role lev-
els. To further understand how the time-decay
attention changes the content-aware attention, we
dig deeper into the learned attentional values for
sentences and illustrate the visualization in Fig-
ure 3. The figure shows a partial dialogue be-
tween the tourist (left) and the guide (right), where
the color shades indicate the learned attention in-
tensities of sentences. It can be found that the
learned content-aware attention (red; row (c)) fo-
cuses on the incorrect sentence (“so we can eat
there” (FOL-EXPLAIN)) and hence predicts the
wrong label, FOL-INFO. The reason may be
that with a coarse and simple design of content-
aware attention mechanism, the attention function
may not provide additional benefit for improve-
ment. By additionally leveraging our proposed
universal time-decay attention methods, the re-
sult (blue; row (g)) shows that the adjusted at-
tention pays the highest attention on the most re-
cent utterance and thereby predicts the correct in-
tent, RES-RECOMMEND. It can be found that our
proposed time-decay attention can effectively turn

the attention to the correct contexts in order to
correctly predict the dialogue act and attribute.
Therefore, the proposed attention mechanisms are
demonstrated to be effective for improving un-
derstanding performance in such complex human-
human conversations.

5 Conclusion

This paper designs and investigates various time-
decay attention functions based on an end-to-end
contextual language understanding model, where
different perspectives on dialogue contexts are an-
alyzed and a flexible and universal time-decay at-
tention mechanism is proposed. The experiments
on a benchmark human-human dialogue dataset
show that the understanding performance can be
boosted by simply introducing the proposed time-
decay attention mechanisms for guiding the model
to focus on the salient contexts following a con-
vex curve. Moreover, the proposed universal time-
decay mechanisms are easily extensible to multi-
party conversations and showing the potential of
leveraging temporal information in NLP tasks of
dialogues.
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Abstract

Using a case study, we show that variation
in oral reading rate across passages for pro-
fessional narrators is consistent across readers
and much of it can be explained using features
of the texts being read. While text complexity
is a poor predictor of the reading rate, a sub-
stantial share of variability can be explained
by timing and story-based factors with perfor-
mance reaching r=0.75 for unseen passages
and narrator.

1 Introduction

Listening to and performing oral reading are activ-
ities that permeate daily life, from parents reading
aloud to young children, through reading instruc-
tion in elementary school, to audiobook narrations
increasingly chosen by adults as the form of book-
reading that fits in a busy schedule. Oral reading
is also used in assessment of language skills for
children and language learners, and in professions
such as teaching and news broadcasting.

Reading rate is a common metric used to con-
trol or evaluate oral reading. It is usually com-
puted as a number of words read per minute, and
is used in many applications. For example, re-
search in second language acquisition has consid-
ered both optimal reading rates for listening mate-
rials aimed at English language learners and read-
ing rates that ensure the highest comprehensibility
of accented speech (Munro and Derwing, 1998).
Speech rate is a standard feature in systems for
automated scoring of second language proficiency
(Higgins et al., 2011) including read aloud tasks
(Zechner et al., 2012; Evanini et al., 2015). Read-
ing rate is also one of the main measures used to
assess the fluency of oral reading (Hasbrouck and
Tindal, 2006).

The assumption underlying these uses is that
reading rate is a property of the reader (or con-

trolled by the reader). However, variation in read-
ing rate across different passages for the same
readers has also been reported (Foulke, 1968; Tau-
roza and Allison, 1990; Ardoin et al., 2005; Comp-
ton et al., 2004; Beigman Klebanov et al., 2017).

Improving the understanding of the properties
of oral reading, such as reading rate, is thus an
important theoretical goal. We also have a spe-
cific practical reason to study text-based variation
in reading rate. We are developing an interven-
tion for improving literacy that would encourage
sustained reading by having the student read aloud
multiple passages from an engaging novel-length
book, taking turns with others. While it is techni-
cally easy to compute reading rate by timing the
readers, if a reader’s rate across different texts is
not stable given his current reading skill, it is not
clear that tracking the rate over time would yield a
valid measurement of improvement in skill. How-
ever, if such variation is systematically dependent
on the text being read, rather than a random or id-
iosyncratic fluctuation, we might be able to adjust
the measurement to account for text effect.

In order to inform both the theoretical and the
applied goals, we address the following research
questions in this paper:

1. Is reading rate constant for a given reader
across various texts?

2. If not, do different readers show similar pat-
terns of variation across texts, or is variation
idiosyncratic?

3. If variation exists and is systematic across
readers, can we identify the properties of
texts that impact reading rate?

In this paper, we study reading rates in two pro-
fessional narrations of the same book-length text.
By using professional narrations we are able to
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eliminate other factors that might cause variation
in reading rate, such as reader fatigue or disfluen-
cies. While these would play a role in a practical
application, we seek first to answer the research
questions in a setup that allows focusing on the
relationship between reading rate and the passage
being read, controlling for other factors.

2 Related work

2.1 Passage effects in reading

Passage effects in reading have been addressed
most directly in the context of assessment of read-
ing. Since the intention is to measure the stu-
dent’s reading ability, any difference in perfor-
mance that is not due to reading ability confounds
the measurement. In particular, since compre-
hension complexity of a passage is known to im-
pact reading comprehension, it seems reasonable
to assume that it would also impact other aspects
of reading skill, including oral reading fluency.
In fact, this assumption underlies text selection
for tests of oral reading fluency such as DIBELS
(Good and Kaminski, 2002) that rely on readabil-
ity to select comparable passages (Francis et al.,
2008).

Yet research also suggests that controlling for
readability does not entirely solve the problem
of text-based variation in reading fluency. Ar-
doin et al. (2005) examined readability formulas
for their ability to predict fluency and generally
found only low-to-moderate correlations (r<0.5).
Researchers also observed that fluency measure-
ments for the same students varied across texts
even for passages of comparable readability (Ar-
doin et al., 2005; Compton et al., 2004; Petscher
and Kim, 2011; Francis et al., 2008).

Moreover, Francis et al. (2008) found that
while actual fluency scores vary across different
readability-controlled passages, the relative rank-
ing of students is only minimally different when
estimated using different passages, suggesting that
variation in fluency has some consistency across
readers; results to a similar effect were reported
by Beigman Klebanov et al. (2017).

Oral reading fluency is commonly measured us-
ing words correct per minute – a combination of
reading accuracy and reading rate. It is thus not
clear whether the observations above pertain more
to the accuracy aspect of oral reading (not consid-
ered in the current paper) or to reading rate, al-
though Beigman Klebanov et al. (2017) noted that

consistent variation across students was observed
both for reading rate and for reading fluency.

To summarize, it appears that while readability
could explain some of the variation in oral reading
performance, there are also indicators that it is not
sufficient on its own to effectively control for vari-
ation in oral reading performance caused by the
properties of the passage being read.

2.2 Factors that affect duration of segments
and pauses

2.2.1 Sentence-level timing

Since oral reading involves saying the text aloud,
the durations of individual segments, words and
phrases as well as location and duration of silent
pauses are subject to constraints that have been ex-
tensively studied in literature on phonetic timing;
see White (2014); Hirschberg (2002) for a review.

Thus it has been long known that different seg-
ments have different intrinsic durations which ac-
count for a lot of variation in segmental dura-
tions (Peterson and Lehiste, 1960; Klatt, 1976;
van Santen, 1992): for example, high vowels tend
to be shorter than low vowels. At the sylla-
ble level, in many languages vowels tend to be
shorter when followed by a voiceless consonant
than when followed by a voiced consonant (House
and Fairbanks, 1953; Crystal and House, 1988)
while consonants within a consonant cluster tend
to be shorter than single consonants (Klatt, 1976).

Further constraints are at play at word, phrase
and sentence level. White (2014) summa-
rizes these as “domain-head” and “domain-edge”
lengthening effects. “Domain-head” lengthening
refers to lengthening of salient elements such as
syllables bearing lexical stress, words in promi-
nent positions (Peterson and Lehiste, 1960; Crys-
tal and House, 1988; van Santen, 1992). “Domain-
edge” effects include lengthening of segments in
word-initial position or sentence-final lengthening
(Turk and Shattuck-Hufnagel, 2000, 2007).

Finally, these domain-head and domain-edge
lengthening effects do not apply uniformly: some
segments and some positions are more resistant
to lengthening than others (Peterson and Lehiste,
1960; Klatt, 1976; van Santen, 1992; White,
2014). The magnitude of lengthening also de-
pends on the number of elements within each do-
main: in monosyllabic words, the stressed sylla-
ble receives all of the prosodic lengthening, but
in disyllabic and trisyllabic words, some of the
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lengthening spreads to the unstressed syllables and
lengthening of the stressed syllable is attenuated
(Turk and Shattuck-Hufnagel, 2000; White and
Turk, 2010).

In addition to segmental lengthening, phrase
and sentence boundaries are often associated with
some amount of pause. The location and dura-
tion of sentence-internal pauses depends both on
syntactic structure and the number of syllables
in each adjacent unit: sentence-internal pauses
associated with punctuation or major syntactic
boundaries tend to be longer than other sentence-
internal pauses, with sentence-final pauses being
the longest (Pfitzinger and Reichel, 2006; Burrows
et al., 2005; Bailly and Gouvernayre, 2012).

2.2.2 Content and duration
Beyond domain-head and domain-edge effects,
duration of segments and pauses is also affected
by other aspects of text content. Frequent words
tend to have shorter duration than phonologically
similar less frequent words. Words that are more
predictable in a given context tend to be shorter
than words with higher information load and re-
peated words are pronounced shorter than the first
mention (see Zhao and Jurafsky (2009); Bell et al.
(2009) for reviews). Note that these effects persist
after one controls for “domain-head” effects de-
scribed in the previous section (Bell et al., 2009).

Further factors come into play in the context of
story-telling where the speaker is either reading
or narrating a well-rehearsed story. Montaño and
Alı́as (2017) review approaches used to character-
ize story-telling speech.

Several studies observed that the duration of
pauses between sentences and paragraphs in a
longer story is not uniform. In their analysis of
pausing in book reading, Bailly and Gouvernayre
(2012) reported that pauses between paragraphs
were longer than pauses between sentences. They
also found that the thematic relationships between
sentences affect breathing patterns although these
were not immediately related to pause duration.

Reading rate has also been shown to depend on
the emotional state of the speaker, whether gen-
uine or performed as part of a dramatic reading:
for example, actors tend to speak slower when
expressing anger, fear or sorrow (Williams and
Stevens (1972), see Scherer (2003) for a compre-
hensive review). Doukhan et al. (2011) analyzed
pause distribution in a corpus of tales and reported
“speakers’ expressive reinterpretation of sentence

syntactic structure” which they attributed to ex-
pressiveness of the reader.

There is also evidence that prosody may be af-
fected by the narrative structure. Theune et al.
(2006) observed in an informal analysis that Dutch
actors narrating fairy-tales reduced their speech
tempo when approaching the story climax. They
also noticed an increase in duration in some
words that indicated extreme value of a prop-
erty. Doukhan et al. (2011) analyzed prosody
in a corpus of French tales using Propp’s mor-
phology of Folktale (Propp, 1968). They found
that narrative structures had a significant effect
on various prosodic properties. For duration, epi-
logues were associated with lower articulation rate
(syllables/min without pauses) while refrains had
the lowest pausing time percentage. Finally, sev-
eral studies found that impersonation by narrator
of different characters leads to clear differences
in pitch, intensity and spectral quality (Doukhan
et al., 2011; Wang et al., 2006).

In short, previous research suggests that multi-
ple factors may affect phone and pause duration
in a reading of a story: from the phonetic proper-
ties of individual segments to where the passages
falls within the narrative structure. However, most
of these studies considered durations of individ-
ual segments, words, or pauses. It is not clear
which of these effects will still persist when du-
rations are averaged over a longer text as is the
case for reading rate computation. In fact, stud-
ies in phonetics talk about “emergent speech rate”
that can be relatively consistent over long stretches
of speech (White, 2014). Furthermore, pause du-
ration is likely to have a substantial effect on the
reading rate (Kendall, 2013) yet previous research
on pausing in story-telling suggests that this can
be highly idiosyncratic.

3 Data

3.1 Text

We use the ”Harry Potter and the Sorcerer’s Stone”
by J.K. Rowling (Rowling, 2015) as the case study
for this paper. The book consists of 79,508 words
spread across 17 chapters. We divided the text
into 313 non-overlapping passages of about 250
words each (mean = 249 words; range: 190-309).1

Boundaries of passages were set to be the starts

1This is roughly the intended length of a reading turn in
the turn-taking reading intervention described in the Intro-
duction.
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and ends of paragraphs, where the end of a passage
consists of a paragraph whose addition brings the
passage closer to 250 words than without adding
the paragraph. When generating passages, we
took into account chapter boundaries so that no
passage spanned two chapters: the word-count for
passage generation was always re-set from the be-
ginning of the chapter and any short fragments left
at the end of a chapter were not included in the
analysis. We randomly assigned 156 passages to
the training set and 157 passages to the test set.

3.2 Audio

We used data from two narrators. The first dataset,
hereafter referred to as JD, comes from a narration
by the actor Jim Dale published as an audio-book
(Rowling and Dale, 2016). The book is released
as 17 .mp3 files with one file per chapter.

The second dataset comes from the audio-book
with a female narrator, provided to us by Learning
Ally.2 We will refer to it as LA. These recordings
are created by volunteers and are made available
on subscription-basis to students diagnosed with
disabilities that impact their ability to read print-
based materials. Learning Ally recordings are sub-
ject to quality control similar to that of commercial
audio-books.3

3.3 Calculating reading rate

We used forced alignment to automatically align
the audio for JD narration for each chapter with
the book text and establish the passage boundaries.
We used the Kaldi toolkit (Povey et al., 2011) and
publicly available acoustic models trained on the
LibriSpeech corpus (Panayotov et al., 2015). The
forced alignment was spot-checked manually for
accuracy and found to be very accurate. The LA
audio was already aligned with the book text.

The LA recordings were split across multiple
audio files. To avoid any artifacts of the record-
ing process, we only used the passages where the
whole audio was in the same file. Out of the orig-
inal 314 passages, 270 passages (86%) satisfied
this condition, of these 134 in the training set and
136 in the test set. We used these matching train-
ing and testing passages for both narrators, in or-
der to facilitate comparisons.

2https://www.learningally.org/
3We cannot use another well-known commercially avail-

able narration, by Stephen Fry, since he narrates the British
version of the book.

For both narrators we used the time stamps for
the beginning of the first word in the passage and
the end of the last word in the passage to compute
the total duration of the passage, which was then
divided by the number of words in the passage to
yield the reading rate (words per minute, WPM).

4 RQ1: Is reading rate constant?

To answer our first question, we looked at the dis-
tribution of the reading rate across the passages in
the training set.

The distribution of WPM for both narrators was
close to normal. JD: mean = 164.01; SD = 12.66;
min = 129.2; max = 197.7. LA: mean = 125.12;
SD = 11.4; min = 86.8; max = 156.9. Based on
discussions in the literature regarding syllables per
second being a more stable measure of reading
rate than WPM (Tauroza and Allison, 1990; Grif-
fiths, 1991; Munro and Derwing, 1998), we cal-
culated rate in syllables per second, and observed
a similar pattern of variation (JD: mean = 3.52,
SD = 0.30, LA: mean = 2.72, SD = 0.27). We
also found that WPM and syllables per second were
highly correlated, for each of the narrators (r ≥
0.9). We therefore continue with WPM, as this is
the commonly used measure in the reading assess-
ment context. The distribution of WPM for each of
the narrators is shown in Figure ??.

Figure 1: Distribution of WPM for LA (blue) and JD
(red).

The answer to RQ1 is that while there is clearly
a sense in which one narrator generally reads
slower than the other, it is not the case that a narra-

2146



tor keeps the same rate of reading across different
passages.

5 RQ2: Is variation in reading rate
correlated across the two narrators?

We next compared the reading rates of the two
narrators on the 134 training set passages. We
found them to be highly correlated: Pearson’s r
= .81. This suggests that a substantial share of the
variation across passages is systematic rather than
idiosyncratic. We therefore proceed to the next
question – what factors can explain this variation?

6 RQ3: What textual factors explain
variation in reading rate?

6.1 Method
We use a standard model building approach to an-
swer RQ3. We used the train partition with JD’s
WPM (hereafter JD-train) to identify possible tex-
tual features as well as the best learner to combine
these features. We then trained separate models
on the training data for the two narrators. We eval-
uated the two models on: (a) different passages
from the test partition as read by the same narra-
tor; (b) same passages as used for model training
but read by a different narrator; (c) different pas-
sages (test partition) read by a different narrator.

6.2 Baseline: text complexity
We used text complexity as our baseline, follow-
ing the practice in the reading assessment commu-
nity. While we do not expect either of the narrators
to experience any reading comprehension difficul-
ties, one might reasonably assume that a skilled
narrator would slow down on fragments which are
harder for the listener to comprehend.

We used TextEvaluator,4 a state-of-the-art mea-
sure of comprehension complexity of a text
(Napolitano et al., 2015; Sheehan et al., 2014,
2013; Nelson et al., 2012).5 TextEvaluator extracts
a range of linguistic features and uses them to
compute a complexity score on the scale of 100–
2000. TextEvaluator computes three complexity
scores based on the models optimized for literary,
informational and mixed texts. We used the liter-
ary metric. The average complexity score for pas-
sages in the training set was 613.1, with a large
variation across passages: min=240, max=1,019,

4https://textevaluator.ets.org/
5TextEvaluator appears in the Nelson et al. (2012) bench-

mark as SourceRater.

SD=154.75. In other words, the selected book of-
fers its readers much variety in the configurations
of textual features across its different passages.

6.3 Features

We used the passage text to extract 107 features
that capture different factors that might affect du-
rations in oral reading. These could be grouped
into four categories.

6.3.1 Sentence-level timing factors
We hypothesized that the timing effects described
in section 2.2.1 are likely to be the source of at
least some variation in reading rates across the
text. Due to the complexity of these effects, build-
ing an accurate model that would predict segmen-
tal durations based on the text is not a trivial task.

This problem has been extensively discussed in
literature on modeling prosody for text-to-speech
synthesis systems (TTS) which generally com-
bined the insights from the phonetic studies with
statistical learning in order to establish the opti-
mal duration for each segment and pause in syn-
thesized audio. Therefore rather than attempting
to build our own model, we synthesized the au-
dio for each passage using Apple’s built-in TTS
engine (OS X 10.11.6). We used the male Alex
voice which in terms of overall quality and default
speaking rate appeared closest to JD. According
to Capes et al. (2017), linguistic features used for
training this system include segment identity and
segmental context, stress, part-of-speech context,
prominence6, sentence type and initial/final posi-
tional features for syllable, word, phrase and sen-
tence;7 in other words, features directly related to
timing factors discussed in 2.2.1.

We used the generated audio to compute the
WPM for each passage. The mean reading rate
of TTS was close to that of JD: 157.1 vs.
164.0. There was variation across passages with
WPM varying from 129.2 to 197.7 (SD = 9.13).

6.3.2 Lexical, syntactic, and discourse
features

Next, we considered lexico-syntactic properties
of the passages. Some of these (lexical fre-

6See for example (Hirschberg, 1993) for features used to
establish prominence

7Note that Capes et al. (2017) describe a different engine
from the one used in this study, however as noted in the paper
it shares the front-end for linguistic feature extraction with
other Mac OS TTS systems. The same features are also de-
scribed in (Zen et al., 2009).
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quency, emotion, arousal) may be associated with
local changes in segment and pause durations (see
2.2.2). Many of the features are used as low-level
features in readability estimation (Graesser et al.,
2004; Sheehan et al., 2014), and are thus likely to
capture facets of a reader’s experience when read-
ing the text.

These included: (1) Vocabulary features cap-
turing presence as well as average score along
some meaning dimension, such as concreteness,
imageability, emotion, arousal, motion, academic
register (Coltheart, 1981; Warriner et al., 2013;
Coxhead, 2000); (2) Morphological features (e.g.,
count of nominalizations, count of syllables); (3)
Distributional features such as average word fre-
quency; (4) Syntactic features such as counts of
different part-of-speech, as well as features based
on specific constructions (relative clauses, pre-
posed clauses etc.); (5) Discourse features that
deal with paragraphing (e.g., word count of the
longest paragraph, average paragraph length in
sentences) and overall cohesion (e.g., average lex-
ical overlap across adjacent sentences).

6.3.3 Story-related features

Considering previous work on prosody in story-
telling, we also built features that relate to the
overall story development. These included: (1)
The number of occurrences of names of the main
characters and other proper nouns important to the
plot (Harry, Hermione, Weasley, Dumbledore, Ol-
livander, Quidditch), under the assumption that
there might be systematic ways in which the nar-
rators act out certain kinds of people (older vs
younger, for example), as well as events that could
indicate a fast-paced event, such as a commentated
game of Quidditch; (2) The order in which the pas-
sage appears in the book (as a numeric continuous
variable); (3) Plot arc as estimated by syuzhet
package (Jockers, 2015). This package uses senti-
ment analysis to attempt to reveal the latent struc-
ture of the narrative. We used the default senti-
ment lexicon developed by the Nebraska Literary
Lab supplied with the package.

6.3.4 Performance-related features

Finally we considered typographic features that
provide clues to how the text should be performed
when read aloud. These included exclamation
marks (!), ellipses (. . . ), words printed in all cap-
itals and indications that a character stutters.

6.4 Learner

We used 3-fold cross-validation on JD-train to
compare performance of 9 regressors available via
SKLL8 package including Random Forest, SVR
and various regularized linear models. We used
grid-search with 3-fold cross-validation within
each fold to fine-tune the parameters for all learn-
ers. We found that Lasso regression achieved the
highest average performance and therefore used it
as the learner for subsequent evaluations.

6.5 Results

Table 1 shows the performance of all models on
the four datasets in our study. Since we are in-
terested in explaining variation across passages
rather than predicting the actual reading rate of a
given narrator for a given passage, we use Pear-
son’s r as our evaluation metric, as it would cap-
ture the extent to which the predicted and the ob-
served values deviate similarly from their respec-
tive means, and thus would not be affected by dif-
ferences in absolute values between the two narra-
tors.

Dataset Baseline MJD MLA

JD-train 0.38 - 0.71
LA-train 0.40 0.80 -
JD-test 0.37 0.74 0.74
LA-test 0.45 0.75 0.80

Table 1: Performance (Pearson’s r) of models trained
using Lasso regression on JD-train (MJD) or LA-train
(MLA). The models are evaluated on unseen data: dif-
ferent passages read by the same narrator, same pas-
sages read by a different narrator and different passages
read by different narrator. The table also shows the cor-
relations with baseline (text complexity score).

The correlations between the baseline (esti-
mates of comprehension complexity) and WPM of
the two narrators were r=0.37–0.45. We also note
that the direction of the correlation was opposite
to our expectation: more complex passages were
in fact read faster.

Our models substantially outperformed the
baseline with r increasing from 0.4 to 0.7–0.8.
In other words, the final models explain much of
the variability in reading rates. Furthermore, this
level of performance holds for predicting varia-
tion in reading rate for a set of unseen passages

8We used v1.3 from https://github.com/
EducationalTestingService/skll.
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read by a different narrator (MLA on JD-test and
MJD on LA-test), suggesting fairly strong gener-
alization. Results also suggest that the prediction
is somewhat easier for LA than for JD, in that eval-
uations on the former are in the 0.75–0.80 range,
and for the latter – in the 0.71–0.74 range, no mat-
ter which narrator supplied the training data. This
could be due to Jim Dale’s narration being more
theatrical/artistic, hence somewhat more idiosyn-
cratic.

We used 3-fold cross-validation on JD-train and
LA-train to further consider how much of the vari-
ation can be explained by different groups of fea-
tures discussed in Section 6.3. The results are
shown in Table 2. For both narrators, models
based on all groups of features outperformed mod-
els based on individual groups of features, but all
groups of features were effective in explaining at
least some variance in reading rate across pas-
sages. Timing as modeled by TTS was the highest
performing feature followed by lexico-syntactic
features and story-based features.

Dataset JD-train LA-train
Baseline 0.37 0.39
All features 0.69 0.77
Sentence-level timing 0.63 0.75
Lexical/syntactic/discourse 0.55 0.65
Story-related 0.47 0.47
Performance-related 0.35 0.35

Table 2: Performance of the four groups of features de-
scribed in Section 6.3 on the training passages for each
of the narrators. The table shows average Pearson’s r
for 3-fold cross-validation on JD-train and LA-train. All
models use Lasso regression.

To summarize, we found text complexity to be
a poor predictor of passage-to-passage variability
in reading rates of adult narrators. These findings
are consistent with recent work in the oral reading
fluency community which found variation in chil-
dren’s reading fluency across passages after con-
trolling for grade level (see Section 2.1).

We found that textual factors that explain a sub-
stantial share of passage-to-passage variability in
reading rates include sentence-level timing factors
such as distribution of segments, stressed sylla-
bles, sentences, and pauses as well as features re-
lated to passage vocabulary and syntax, story and
performance. Given the good generalization of our
results to both a new narrator and to new passages,

we believe they hold promise for explaining some
of the unaccounted-for variation in reading rates
observed in the oral reading fluency studies; more
research is necessary to explore this direction.

7 Discussion

Out of 107 original features, 17 features had non-
zero coefficients in MJD and 14 in MLA, with 6
features in the overlap: timing, ellipsis, number
of verbs in past tense, preposition count, Weasley,
and Dumbledore. Additional features selected in
only one of the two models included various vo-
cabulary features (such as age of acquisition, im-
ageability for MJD), syntax (average word count
before main verb, contractions for MJD), dis-
course (average lexical overlap in adjacent sen-
tences), as well as story features (syuzhet and
Dudley for MLA, Ollivander, quidditch for MJD).

Some of these features lend themselves to an
easy explanation. Thus in our study, a strong pre-
dictor of narrator slowdown was occurrence of el-
lipsis (...), a mark of hesitation or thoughtfulness;
these were not modeled as such by TTS.

Similarly, the positive weight alloted to the av-
erage lexical overlap in adjacent sentences is con-
sistent with the expectation that repeat instances
would be read faster.

Effective character features included Ollivander
and Dumbledore; mentions of both of these indi-
cate a slowdown in narration. One possible expla-
nation is that passages with multiple mentions of
these characters are likely to be those where they
speak. Both of these characters are elderly; acting
them out could yield a slower rate of speech.9

In other cases the interpretation of the feature
was less straightforward. Thus the feature with
the second highest coefficient after timing for both
narrators was that which counted occurrences of
members of the Weasley family. Why?

Figure 1 plots standardized reading rates of JD
(blue), LA (orange), and TTS (black) as a func-
tion of the location in the book. It is clear from the
plot that in addition to passage-by-passage varia-
tion there is a global pattern in narrator WPM: the
narrators slow down over the first few chapters,

9Barbara Roseblatt, an audiobook narration coach,
explicitly advises to slow down when reading the contri-
bution of the old character in a coversation with a young
one: https://www.youtube.com/watch?v=MVmywsM9-
h4, 5:17. Jim Dale himself describes his im-
age of Dumbledore as hesitant, wheezy old man:
https://www.youtube.com/watch?v=whzhEIB9Qkg: 2:45.
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then speed up, and slow down again in the last
third. It is also apparent that the TTS curve is flat-
ter, suggesting that some of the slowdown and es-
pecially the speedup are not due to sentence-level
timing factors.

Figure 2: Standardized reading rates of JD (blue), LA
(orange), TTS (black) as a function of the location of
the passage in the novel. Trend lines are 4th degree
polynomial approximations. The y-axis shows stan-
dardized readings rates (JD, LA, TTS). The large red
dot and the green dotted line will be explained later in
the text.

This book-level trend can help explain the
strong performance of Weasley. This feature cov-
ers a number of characters that are prominent in
the magic world as experienced by Harry (Ron,
his brothers, sister, mother); they play no role at
all in the first part of the story that is based in the
Muggle world. The large red dot in Figure 1 indi-
cates the first passage with a non-zero count for
Weasley. This is very close to the onset of the
speedup that is not captured by TTS. Apparently,
the speedup coincides with an important plot tran-
sition (see Behr (2005) on plot transitions in Harry
Potter), which is, in turn, indicated by a character
mention pattern.

Next, we looked closely at one of the vocabu-
lary features, specifically, imageability, calculated
as the number of word tokens in a passage that
belong to the MRC Imageability list (Coltheart,
1981). This feature has a partial correlation of -
0.186 with JD controlling for TTS. In an attempt
to identify the subset of the 1,194 words on the list
that drive the correlation, we removed stopwords,
all words that appeared in only one training pas-
sage, as well as short words (2-3 letters) and long
words (7 letters or more). The partial correlation
remained virtually the same (-0.178, p < 0.05).

These manipulations left us with 573 non-stop
reasonably frequent 4-6 letter words. These words
tend to name common everyday objects and prop-
erties (henceforth, everyday list), such as body
parts (knee, skin, neck, hair, nose, face, teeth),
colors (blue, gray, green, white, black, orange,
yellow), family (aunt, uncle, mother, father, sis-
ter, wife), elements (fire, water, wind, rain) and
materials (silver, gold, stone, metal, glass, paper,
silk), eating (cake, wine, dinner, hungry, eating),
common properties of objects (warm, cold, broad,
narrow, soft, hard, tall, short, long, clean, dirty)
and humans (kind, evil, rude, polite, eager, proud,
stupid, famous), standard house interior (chair, ta-
ble, mirror, door, wall, room, clock), feelings and
emotions (fear, hurt, hate, pain, anger, gloom,
tired, panic, safe, boring, afraid, relief), as well
as numbers (first, nine, half, dozen), directional
(inside, back, front, behind, bottom) and time ex-
pressions (soon, hour, late, week, month, early,
minute, moment). These words “carry” the story,
so to speak, in that on average about one third of
all nonstop words in each passage belong to this
list, albeit with substantial variation (min = 0.20;
max = 0.49).

If the effect of the feature was simply due to
higher incidence of the short high frequency ev-
eryday words, we would expect a positive correla-
tion with the reading rate; in fact, the correlation
is negative, suggesting that perhaps the feature is
useful as an indirect indicator of something else,
rather than for the phonological properties of the
words on the list.

Variation across passages in the use of everyday
words appears non-random. In particular, the first
third of the book averages 41.4 matches per pas-
sages; the rest of the book averages 37.3. Given
the above observations with Weasley, this is easy
to explain in reference to the story line – the first
part of the book mainly happens in Muggle (“nor-
mal”) world, while the rest of the book happens
in an alternative world of Hogwarts that is fa-
miliar enough (and so references to human feel-
ings, bodies, and character still draw on the cultur-
ally familiar stock) yet different enough to drive a
10% average decline in the use of stock vocabu-
lary, where special foods, special money units, the
special game of quidditch, special subjects on the
school’s curriculum remain off the common list.

Since overlap with the everyday list has a nega-
tive correlation with reading rate, we flip the sign
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of the standardized everyday token counts, and
overlay the plot with that of reading rates; see the
green dotted line in Figure 1. It is apparent that the
global pattern of JD WPM is closely traced by the
feature, especially in the middle area where JD is
speeding up and then slowing down again.

The observed global slowdown, speedup, and
slowdown appear to align with the traditional
three-part narrative structure (exposition, compli-
cation, and resolution) (Chandler and Munday,
2016). One of our features (syuzhet) was based
on the plot arc. While this feature was selected in
one of the models, its partial correlation with JD
after controlling for TTS was not significant. Our
results suggest that important plot transitions can
sometimes be captured indirectly by tracing pat-
terns of word usage for other specific classes of
words such as characters or everyday words and
that for skilled readers these transitions can be as-
sociated with systematic changes in reading rate.

8 Conclusions

The main contributions of this paper are as fol-
lows. First, we demonstrate using a case study
that variation in reading rate across passages for
professional narrators is consistent across readers
and much of it can be explained using features of
the texts being read. These findings suggest that
it is possible to estimate the expected variation in
durations of oral reading across texts. In the as-
sessment context, this has a potential of providing
a powerful control mechanism for selecting com-
parable passages for parallel forms of a test of oral
reading; in a context when one cannot adjust the
materials (such as a reading intervention using a
particular book), it might be possible to adjust the
measurement of reading rate to compensate for the
effects of the text on the observed performance.

Secondly, we found that timing is a very pow-
erful feature, yet not a perfect predictor of reading
rate (the two narrators are still highly correlated
controlling for timing, partial r=0.64). This opens
up a possibility for a sophisticated assessment of
oral reading using both TTS and human bench-
mark to separate reading that adheres to basic tim-
ing constraints of English speech (which consti-
tutes a demonstrably big part of fluent reading)
from a more nuanced expressive reading that TTS
is not currently doing, but good human readers are.
Thus beyond assessment context, our findings can
also inform work on text-to-speech synthesis for

book-length texts.
Extending and validating the results reported

here using additional types of text and separating
the effect of text factors on the two components
of reading rate, articulation rate and pausing, is an
important next step to get a more comprehensive
picture of the impact of text on oral reading.
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Raúl Montaño and Francesc Alı́as. 2017. The role
of prosody and voice quality in indirect story-
telling speech: A cross-narrator perspective in
four European languages. Speech Communica-
tion 88:1–16. https://doi.org/10.1016/
j.specom.2017.01.007.

Murray J. Munro and Tracey M. Derwing. 1998. The
effects of speaking rate on listener evaluations of na-
tive and foreign-accented speech. Language Learn-
ing 48(2):159–182. https://doi.org/10.
1111/1467-9922.00038.

Diane Napolitano, Kathleen M. Sheehan, and Robert
Mundkowsky. 2015. Online Readability and Text
Complexity Analysis with TextEvaluator. In Pro-
ceedings of NAACL-HLT 2015, Denver, Colorado,
May 31 - June 5, 2015. pages 96–100. http://
www.aclweb.org/anthology/N15-3020.

Jessica Nelson, Charles Perfetti, David Liben,
and Meredith Liben. 2012. Measures of
text difficulty: Testing their predictive value
for grade levels and student performance.
In Technical Report to the Gates Founda-
tion. http://achievethecore.org/
content/upload/\nelson_perfetti_
liben_measures_of_text_difficulty_
\research_ela.pdf.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: An ASR
corpus based on public domain audio books. In
2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE,
pages 5206–5210. https://doi.org/10.
1109/ICASSP.2015.7178964.

Gordon E. Peterson and Ilse Lehiste. 1960. Dura-
tion of Syllable Nuclei in English. The Journal of
the Acoustical Society of America 32(6):693–703.
https://doi.org/10.1121/1.1908183.

Yaacov Petscher and Young-Suk Kim. 2011. The util-
ity and accuracy of oral reading fluency score types
in predicting reading comprehension. Journal of
school psychology 49(1):107–29. https://doi.
org/10.1016/j.jsp.2010.09.004.

Hartmut R. Pfitzinger and Uwe D. Reichel. 2006.
Text-based and Signal-based Prediction of Break
Indices and Pause Durations. In Proceedings of
Speech Prosody 2006. Dresden, Germany, page
269. https://www.isca-speech.org/
archive/sp2006/sp06_269.html.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, Jan Silovsky, Georg Stemmer, and Karel
Vesely. 2011. The Kaldi speech recognition toolkit.
In IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding. IEEE Signal Pro-
cessing Society.

Vladimir Propp. 1968. Morphology of the Folktale.
University of Texas Press.

J.K. Rowling. 2015. Harry Potter and the Sorcerer’s
Stone. Published as EPUB file by Pottermore Ltd.

J.K. Rowling and Jim Dale. 2016. Harry Potter and the
sorcerer’s stone. Listening Library/Penguin Ran-
dom House.

Klaus R. Scherer. 2003. Vocal communication of emo-
tion: A review of research paradigms. Speech Com-
munication 40(1-2):227–256. https://doi.
org/10.1016/S0167-6393(02)00084-5.

Kathleen M Sheehan, Michael Flor, and Diane Napoli-
tano. 2013. A Two-Stage Approach for Gen-
erating Unbiased Estimates of Text Complexity.
In Proceedings of the Workshop on Natural Lan-
guage Processing for Improving Textual Accessibil-
ity. June, pages 49–58. http://www.aclweb.
org/anthology/W13-1506.

Kathleen M. Sheehan, Irene Kostin, Diane Napoli-
tano, and Michael Flor. 2014. The TextEvaluator
Tool: Helping teachers and test developers select
texts for use in instruction and assessment. Ele-
mentary School Journal 115(2):184–209. https:
//doi.org/10.1086/678294.

Steve Tauroza and Desmond Allison. 1990. Speech
rates in British English. Applied Linguistics
11(1):90–105. https://doi.org/10.1093/
applin/11.1.90.

Mariët Theune, Koen Meijs, Dirk Heylen, and Roeland
Ordelman. 2006. Generating expressive speech for
storytelling applications. IEEE Transactions on Au-
dio, Speech and Language Processing 14(4):1137–
1144. https://doi.org/10.1109/TASL.
2006.876129.

Alice E. Turk and Stefanie Shattuck-Hufnagel.
2000. Word-boundary-related duration patterns
in English. Journal of Phonetics 28(4):397
– 440. https://doi.org/https://doi.
org/10.1006/jpho.2000.0123.

Alice E. Turk and Stefanie Shattuck-Hufnagel. 2007.
Multiple targets of phrase-final lengthening in
American English words. Journal of Phonetics
35(4):445 – 472. https://doi.org/https:
//doi.org/10.1016/j.wocn.2006.12.
001.

2153



Jan P.H. van Santen. 1992. Contextual ef-
fects on vowel duration. Speech Communica-
tion 11(6):513–546. https://doi.org/10.
1016/0167-6393(92)90027-5.

Lijuan Wang, Yong Zhao, Min Chu, Yining
Chen, Frank K. Soong, and Zhigang Cao.
2006. Exploring expressive speech space in
an audio-book. In In Proceedings of Speech
Prosody 2006. Dresden, Germany, page
182. https://www.isca-speech.org/
archive/sp2006/sp06{_}182.html.

Amy Beth Warriner, Victor Kuperman, and Marc
Brysbaert. 2013. Norms of valence, arousal, and
dominance for 13,915 English lemmas. Behavior
Research Methods 45(4):1191–1207. https://
doi.org/10.3758/s13428-012-0314-x.

Laurence White. 2014. Communicative function and
prosodic form in speech timing. Speech Commu-
nication 63-64:38–54. https://doi.org/10.
1016/j.specom.2014.04.003.

Laurence White and Alice E. Turk. 2010. English
words on the procrustean bed: Polysyllabic short-
ening reconsidered. Journal of Phonetics 38(3):459
– 471. https://doi.org/https://doi.
org/10.1016/j.wocn.2010.05.002.

Carl E. Williams and Kenneth N. Stevens. 1972. Emo-
tions and Speech: Some Acoustical Correlates.
The Journal of the Acoustical Society of America
52(4B):1238–1250. https://doi.org/10.
1121/1.1913238.

Klaus Zechner, Keelan Evanini, and Cara Laitusis.
2012. Using Automatic Speech Recognition
to Assess the Reading Proficiency of a Di-
verse Sample of Middle School Students. In
Proceedings of the Third Workshop on Child,
Computer Interaction (WOCCI 2012), Portland,
OR, USA. International Speech Communica-
tions Association., Portland, OR, pages 45–
52. http://www.isca-speech.org/
archive/wocci_2012/wc12_045.html.

Heiga Zen, Keiichi Tokuda, and Alan W. Black.
2009. Statistical parametric speech synthe-
sis. Speech Communication 51(11):1039–1064.
https://doi.org/10.1016/j.specom.
2009.04.004.

Yuan Zhao and Dan Jurafsky. 2009. The effect of
lexical frequency and Lombard reflex on tone hy-
perarticulation. Journal of Phonetics 37(2):231–
247. https://doi.org/10.1016/j.wocn.
2009.03.002.

2154



Proceedings of NAACL-HLT 2018, pages 2155–2165
New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Generating Bilingual Pragmatic Color References

Will Monroe
Computer Science Department

Stanford University
wmonroe4@cs.stanford.edu

Jennifer Hu
Department of Mathematics

Harvard University
jenniferhu@college.harvard.edu

Andrew Jong
Department of Computer Science

San Jose State University
andrewjong.cs@gmail.com

Christopher Potts
Department of Linguistics

Stanford University
cgpotts@stanford.edu

Abstract

Contextual influences on language often ex-
hibit substantial cross-lingual regularities; for
example, we are more verbose in situations
that require finer distinctions. However, these
regularities are sometimes obscured by seman-
tic and syntactic differences. Using a newly-
collected dataset of color reference games in
Mandarin Chinese (which we release to the
public), we confirm that a variety of construc-
tions display the same sensitivity to contextual
difficulty in Chinese and English. We then
show that a neural speaker agent trained on
bilingual data with a simple multitask learning
approach displays more human-like patterns
of context dependence and is more pragmat-
ically informative than its monolingual Chi-
nese counterpart. Moreover, this is not at the
expense of language-specific semantic under-
standing: the resulting speaker model learns
the different basic color term systems of En-
glish and Chinese (with noteworthy cross-
lingual influences), and it can identify syn-
onyms between the two languages using vector
analogy operations on its output layer, despite
having no exposure to parallel data.

1 Introduction

In grounded communication tasks, speakers face
pressures in choosing referential expressions that
distinguish their targets from others in the con-
text, leading to many kinds of pragmatic mean-
ing enrichment. For example, the harder a target
is to identify, the more the speaker will feel the
need to refer implicitly and explicitly to alterna-
tives to draw subtle contrasts (Zipf, 1949; Horn,
1984; Levinson, 2000). However, the ways in
which these contrasts are expressed depend heav-
ily on language-specific syntax and semantics.

x x x 鲜绿 xiān l`̈u
‘bright green’

x x x 不亮的橙色 bu-liàng de chéngsè
‘not-bright orange’

x x x 紫红色 zı̌ hóngsè
‘purple-red’

Figure 1: Reference game contexts and utterances
from our Chinese corpus. The boxed color is the
target. Some color terms show differences be-
tween Chinese and English, such as绿 l`̈u ‘green’
in the first example for a color that might be re-
ferred to with ‘blue’ or ‘aqua’ in English.

In this paper, we seek to develop a model
of contextual language production that captures
language-specific syntax and semantics while also
exhibiting responsiveness to contextual differ-
ences. We focus on a color reference game
(Rosenberg and Cohen, 1964; Dale and Reiter,
1995; Krahmer and van Deemter, 2012) played in
both English and Mandarin Chinese. A reference
game (Figure 1) involves two agents, one desig-
nated the “speaker” and the other the “listener”.
The speaker and listener are shown the same set
of k colors C = {c1, . . . , ck} (in our experiments,
k = 3), and one of these colors ct is indicated
secretly to the speaker as the “target”. Both play-
ers share the same goal: that the listener correctly
guesses the target color. The speaker may com-
municate with the listener in free-form natural-
language dialogue to achieve this goal. Thus, a
model of the speaker must process representations
of the colors in the context and produce an utter-
ance to distinguish the target color from the oth-
ers. We evaluate a sequence-to-sequence speaker

2155



agent based on that of Monroe et al. (2017), who
also collected the English data we use; our Chi-
nese data are new and were collected according to
the same protocols.

While English and Chinese both use fairly sim-
ilar syntax for color descriptions, our reference
game is designed to elicit constructions that make
reference to the context, and these constructions—
particularly comparatives and negation—differ
morpho-syntactically and pragmatically between
the two languages. Additionally, Chinese is con-
sidered to have a smaller number of basic color
terms (Berlin and Kay, 1969), which predicts
markedness of more specific descriptions.

Our primary goal is to examine the effects of
bilingual training: building one speaker trained on
both English and Chinese data with a shared vo-
cabulary, so that it can produce utterances in either
language. The reference game setting offers an
objective measure of success on the grounded lan-
guage task, namely, the speaker’s ability to guide
the listener to the target. We use this to address
the tricky problem of speaker evaluation. Specifi-
cally, we use the speaker model and an application
of Bayes’ rule to infer the most likely target color
given a human utterance, and we report the accu-
racy of that process at identifying the target color.
We refer to this metric as pragmatic informative-
ness because it requires not only accuracy but also
effectiveness at meeting the players’ shared goal
(Grice, 1975). A more formal definition and a dis-
cussion of alternatives are given in Section 4.1.

We show that a bilingually-trained model pro-
duces distributions over Chinese utterances that
have higher pragmatic informativeness than a
monolingual model. An analysis of the learned
word embeddings reveals that the bilingual model
learns color synonyms between the two languages
without being directly exposed to labeled pairs.
However, using a context-independent color term
elicitation task from Berlin and Kay (1969) on our
models, we show that the learned lexical meanings
are largely faithful to each language’s basic color
system, with only minor cross-lingual influences.
This suggests that the improvements due to adding
English data are not primarily due to better repre-
sentations of the input colors or lexical semantics
alone. The bilingual model does better resemble
human patterns of utterance length as a function
of contextual difficulty, suggesting the pragmatic
level as one possible area of cross-lingual general-

ization.

2 Data collection

We adapted the open-source reference game
framework of Hawkins (2015) to Chinese and fol-
lowed the data collection protocols of Monroe
et al. (2017) as closely as possible, in the hope that
this can be the first step in a broader multilingual
color reference project. We recruit pairs of play-
ers on Amazon Mechanical Turk in real time, ran-
domly assigning one the role of the speaker and
the other the listener. Players are self-reported
Chinese speakers, but they must pass a series
of Chinese comprehension questions in order to
proceed, with instructions in a format preventing
copy-and-paste translation. The speaker and lis-
tener are placed in a game environment in which
they both see the three colors of the context and
a chatbox. The speaker sends messages through
the chatbox to describe the target to the listener,
who then attempts to click on the target. This ends
the round, and three new colors are generated for
the next. Both players can send messages through
the chatbox at any time. After filtering out ex-
tremely long messages (number of tokens greater
than 4σ above the mean), spam games,1 and play-
ers who self-reported confusion about the game,
we have a new corpus of 5,774 Chinese messages
in color reference games, which we will release
publicly. Data management information is given
in Appendix B.

As in Monroe et al. (2017), the contexts are di-
vided into three groups of roughly equal size: in
the far condition (1,421 contexts), all the colors
are at least a threshold distance θ from each other;
in the split condition (1,412 contexts), the target
and one distractor are less than θ from each other,
with the other distractor at least θ away from both;
and in the close condition (1,425 contexts), all col-
ors are within θ from each other. We set θ = 20 by
the CIEDE2000 color-difference formula (Sharma
et al., 2005), with all colors different by at least 5.

3 Human data analysis

As we mentioned earlier, our main goal with this
work is to investigate the effects of bilingual train-
ing on pragmatic language use. We first examine
the similarities and differences in pragmatic be-

1Some players found they could advance through rounds
by sending duplicate messages. Games were considered
spam if the game contained 25 or more duplicates.
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Figure 2: Comparison of mean length of messages
in English and Chinese. The split and close condi-
tions have more similar context colors (Section 2).

haviors between the English and Chinese corpora
we use. The picture that emerges accords well
with our expectations about pragmatics: the broad
patterns are aligned across the two languages, with
the observed differences mostly tracing to the de-
tails of their lexicons and constructions.

3.1 Message length

We expect message length to correlate with the
difficulty of the context: as the target becomes
harder to distinguish from the distractors, the
speaker will produce more complex messages, and
length is a rough indicator of such complexity. To
test this hypothesis, we used the Natural Language
Toolkit (NLTK; Bird et al. 2009) and Jieba (Junyi,
2015) to tokenize English and Chinese messages,
respectively, and counted the number of tokens in
both languages as a measure of message length.
The results (Figure 2) confirm that in both lan-
guages, players become more verbose in more dif-
ficult conditions.2

3.2 Specificity

In the split and far conditions, the speaker must
make fine-grained distinctions. A broad color term
like red will not suffice if there are two reds, but
more specific terms like maroon might identify the
target. Thus, we expect specificity to increase as
the difficulty of the context does. To assess this,
we use WordNet (Fellbaum, 1998) to transform
adjectives into derivationally-related noun forms,
filter for nouns with color in their hypernym paths,
and mark a message as “specific” if it contains at

2We do not believe that the overall drop in message length
from English to Chinese reflects a fundamental difference be-
tween the languages; this has a few possible explanations,
from Chinese messages taking the form of “sentence seg-
ments” (Wang and Qin, 2010) to differences in tokenization.
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Figure 3: Comparison of WordNet specificity in
Chinese and English.

least one word with a hypernym depth greater than
7.

For Chinese, we translate to English via Google
Translate, then measure the translated word using
WordNet. It should be noted that this method has
the drawback of obscuring differences between the
two languages’ color systems, as well as the po-
tential for introducing noise due to errors in auto-
matic translation. Though Mandarin variations of
WordNet exist, we chose this translation method
to standardize hypernym paths for both languages.
Differences in ontology decisions between lexi-
cal resources prevent straightforward cross-lingual
comparisons of hypernym depths, while automatic
translation to a common language ensures the re-
sulting hypernym paths are directly comparable.

Figure 3 summarizes the results of this mea-
surement. In general, the usage of high-specificity
color words increases in more difficult conditions,
as expected. However, we see that Chinese speak-
ers use them significantly less than English speak-
ers. Instead, Chinese speakers use nominal mod-
ifiers, such as 草 cǎo ‘grass’ and 海 hǎi ‘ocean’,
which do not contain “color” in their hypernym
paths and are thus not marked as high-specificity.
To quantify this observation, we annotated ran-
dom samples of 200 messages from each language
for whether they contained nominal color descrip-
tions, and found that 3.5% of the English messages
contain such nominals versus 13.5% of the Chi-
nese messages.

The use of nominal modifiers as opposed to
adjectives (‘dark orange’, ‘dull brown’) is ar-
guably expected given the claims of Berlin and
Kay (1969) and others that Chinese has fewer ba-
sic color terms than English, thus requiring more
visually evocative modifiers to clarify distinctions
between similar hues. (This isn’t a complete ex-
planation, since Chinese is rich in narrow but rare
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(b) Usage of superlative adjectives in Chinese and English.
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(c) Usage of negation in Chinese and English.

Figure 4: Comparison of usage of comparatives,
superlatives, and negation in English and Chinese.

non-basic color terms. For the cases where Chi-
nese has an appropriate narrow color term, it is
possible that speakers make a pragmatic decision
to avoid obscure vocabulary in favor of more fa-
miliar nouns.)

3.3 Comparatives, superlatives, and negation

To detect comparative and superlative adjectives in
English, we use NLTK POS-tagging, which out-
puts JJR and RBR for comparatives, and JJS and
RBS for superlatives. In Chinese, we look for the
tokens 更 gèng ‘more’ and 比 bı̌ ‘comparatively’
to detect comparatives and 最 zuı̀ ‘most’ to de-
tect superlatives. We detect negation by tokenizing
messages with NLTK and Jieba and then looking
for the tokens not and n’t in English and corre-
sponding不 bù and没 méi in Chinese.

These statistics are shown in Figure 4. Both lan-

guages exhibit similar trends for superlative adjec-
tives. In English, comparatives are used most fre-
quently in the split condition and second most fre-
quently in the close condition, while in Chinese,
they occur at around the same rate in the split and
close conditions. The literature is not conclusive
about the source of these differences. Xia (2014)
argues that complex attributives are rarely used
and sound “syntactically deviant or Europeanized”
(Zhu, 1982; Xie, 2001) in Chinese, citing the left-
branching nature of the language as restricting at-
tributives in length and complexity. There are also
conflicting theories on the markedness of gradable
adjectives in Chinese (Grano, 2012; Ito, 2008);
such markedness may contribute to the frequency
at which comparative forms are used.

We also see that both languages follow the same
general trend of using negation more frequently as
the condition becomes more difficult.

4 Models

We build and evaluate three artificial agents on this
reference game task, two trained on monolingual
descriptions (one for each language) and one on
bilingual descriptions. We base these models on
the basic speaker architecture from Monroe et al.
(2017). The monolingual speakers represent the
context by passing all the context colors as input to
a long short-term memory (LSTM) sequence en-
coder, then concatenating this representation with
a word vector for each previous output token as the
input to an LSTM decoder that produces a color
description token-by-token. This defines a distri-
bution over descriptions u conditioned on the tar-
get and context, S(u | ct, C).

To accommodate bilingual training with this ar-
chitecture, we expand the vocabulary to include
English and Chinese words, and we add a flag `
to the input specifying whether the model’s output
should be in English (` = 0) or Chinese (` = 1):

S(u | `, ct, C) =
|u|∏

i=1

s(ui | u1..i−1, `, ct, C)

The flag ` is embedded as a single additional di-
mension that is concatenated alongside the context
and input (previous token) vectors for the encoder.
See Appendix A for additional training details.

4.1 Pragmatic informativeness
As mentioned in Section 1, we evaluate the two
models on a measure of pragmatic informative-
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ness: how well does the model represent a human
speaker, such that a generative model of a listener
can be built from it to interpret utterances? For-
mally, for a speaker S(u | `, ct, C) and an exam-
ple consisting of an utterance, language identifier,
and color context (u, `, C), we identify the t∗ that
maximizes the probability of u according to S:

t∗ = argmax
t

S(u | ct, C)

That is, L uses a noisy-channel model with a uni-
form prior over target colors and S as a generation
model to infer the most likely target color given
the input utterance. The pragmatic informative-
ness of a speaker is the proportion of target colors
in a test set correctly identified by t∗.

One drawback of this metric is it does not eval-
uate how faithful the model is to the overall distri-
bution of human utterances, only the relative con-
ditional likelihoods of human utterances for differ-
ent target colors. In practice, since the agents are
trained to minimize log likelihood, we do not ob-
serve our agents frequently producing wildly un-
humanlike utterances; however, this is a caveat to
keep in mind for evaluating agents that do not nat-
urally approximate a language model.

The understanding model implied in this metric
is equivalent to a version of the Rational Speech
Acts model of pragmatic language understanding
(Frank and Goodman, 2012; Goodman and Frank,
2016), or the pragmatic posterior of the Rational
Observer model (McMahan and Stone, 2015). An
important difference between our speaker model
and those in the work cited above is that our
speaker model is a neural network that makes a
combined judgment of applicability (semantic ap-
propriateness) and availability (utterance prior),
instead of modeling the two components sepa-
rately. However, we stop short of directly predict-
ing the referent of an expression discriminatively,
as is done by e.g. Kennington and Schlangen
(2015), so as to require a model that is usable as a
speaker.

A related metric is communicative success as
defined by Golland et al. (2010), which judges the
speaker by the accuracy of a human listener when
given model-produced utterances. Our pragmatic
informativeness metric instead gives a model-
derived listener human utterances and assesses its
accuracy at identifying colors. Pragmatic infor-
mativeness has the advantage of not requiring ad-
ditional expensive human labeling in response to

model outputs; it can be assessed on an existing
collection of human utterances, and can therefore
be considered an automatic metric.

4.2 A note on perplexity

Perplexity is a common intrinsic evaluation met-
ric for generation models.3 However, for compar-
ing monolingual and bilingual models, we found
perplexity to be unhelpful, owing largely to its
vocabulary-dependent definition. Specifically, if
we fix the vocabulary in advance to include tokens
from both languages, then the monolingual model
performs unreasonably poorly, and bilingual train-
ing helps immensely. However, this is an unfair
comparison: the monolingual model’s high per-
plexity is dominated by low probabilities assigned
to rare tokens in the opposite-language data that it
did not see. Thus, perplexity ceases to be a mea-
sure of language modeling ability and assumes the
role of a proxy for the out-of-vocabulary rate.

On the other hand, if we define the output vo-
cabulary to be the set of tokens seen at least n
times in training (n = 1 and 2 are common), then
monolingual training yields better perplexity than
bilingual training, but mainly because including
opposite-language training data forces the bilin-
gual model to predict more rare words that would
otherwise be replaced with 〈unk〉.4 This produces
the counterintuitive result that perplexity initially
goes up (gets worse) when increasing the amount
of training data. (As a pathological case, with no
training data, a model can get a perfect perplexity
of 1 by predicting 〈unk〉 for every token.)

5 Experimental results and analysis

Pragmatic informativeness of the models on En-
glish and Chinese data is shown in Table 1. The
main result is that training a bilingual model helps
compared to a Chinese monolingual one; however,
the benefit is asymmetrical, as training on mono-
lingual English data is superior for English data to
training on a mix of Chinese and English. All dif-
ferences in Table 1 are significant at p < 0.001

3Two other intrinsic metrics, word error rate (WER) and
BLEU (Papineni et al., 2002), were at or worse than chance
despite qualitatively adequate speaker outputs, due to high
diversity in valid outputs for similar contexts. This problem
is common in dialogue tasks, for which BLEU is known to be
an ineffective speaker evaluation metric (Liu et al., 2016).

4The rare words that make this difference are primarily
the small number of English words that were used by the
Chinese-language participants; no Chinese words were ob-
served in the English data from Monroe et al. (2017)
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test train dev acc test acc

en en 80.51 83.06
en+zh 79.73 81.43

zh zh 67.16 67.75
en+zh 71.81 72.89

Table 1: Pragmatic informativeness scores (%) for
monolingual and bilingual speakers.

(approximate permutation test, 10,000 samples;
Padó, 2006), except for the decrease on the En-
glish dev set, which is significant at p < 0.05.

An important difference between our corpora
is that the English dataset is an order of magni-
tude larger than the Chinese. Intuitively, we ex-
pect adding more training data on the same task
will improve the model, regardless of language.
However, we find that the effect of dataset size
is not so straightforward. In fact, the differences
in training set size convey a non-linear benefit.
Figure 5 shows the pragmatic informativeness of
the monolingual and bilingual speakers on the de-
velopment set as a function of dataset size (num-
ber of English and Chinese utterances). The blue
curves (circles) in the plots on the left, Figure 5a
and Figure 5c, are standard learning curves for
the monolingual models, and their parallel red
curves (triangles) show the pragmatic informative-
ness of the bilingual model with the same amount
of in-language data plus all available data in the
opposite language. The plots on the right, Fig-
ure 5b and Figure 5d, show the effect of gradu-
ally adding opposite-language data to the bilingual
model starting with all of the in-language data.

Overall, we see that adding all English data con-
sistently helps the Chinese monolingual model,
whereas adding all Chinese data consistently hurts
the English monolingual model (though with di-
minishing effects as the amount of English data in-
creases). Adding small amounts of English data—
especially amounts comparable to the size of the
Chinese dataset—decreases accuracy of the Chi-
nese model dramatically. This suggests an inter-
action between the total amount of data and the
effect of bilingual training: a model trained on
a moderately small number of in-language exam-
ples can benefit from a much larger training set
in another language, but combining data in two
languages is detrimental when both datasets are
very small and has very little effect when the in-
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Figure 5: Pragmatic informativeness (dev set) for
different amounts and languages of training data.

language training set is large. This implies a bene-
fit primarily in low-resource settings, which agrees
with the findings of Johnson et al. (2016) using a
similar architecture for machine translation.

5.1 Bilingual lexicon induction

To get a better understanding of the influence of
the bilingual training on the model’s lexical repre-
sentations in the two languages, we extracted the
weights of the final softmax layer of the bilingual
speaker model and used them to induce a bilin-
gual lexicon with a word vector analogy task. For
two pairs of lexical translations, 蓝色 lánsè →
“blue” and “red” → 红 hóng, we took the dif-
ference between the source language word vector
and the target language word vector. To “trans-
late” a word, we added this “translation vector” to
the word vector for the source word, and found the
word in the opposite language with the largest in-
ner product to the resulting vector. The results are
presented in Table 2. We identified the 10 most
frequent color-related words in each language to
translate. (In other words, we did not use this
process to find translations of function words like
“the” or the Chinese nominalization/genitive par-
ticle的 de, but we show proposed translations that
were not color-related, such as灰 huı̄ being trans-
lated as the English comparative ending “-er”.)
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zh en en zh

绿色 ‘green’ green green 绿绿绿 ‘green’
紫色 ‘purple’ purple blue 蓝蓝蓝 ‘blue’
蓝色 ‘blue’ purple purple 蓝 ‘blue’
灰色 ‘grey’ grey bright 鲜鲜鲜艳艳艳 ‘bright’
亮 ‘bright’ bright pink 粉粉粉色色色 ‘pink’
灰 ‘grey’ -er grey 灰灰灰 ‘grey’
蓝 ‘blue’ teal dark 暗暗暗 ‘dark’
绿 ‘green’ green gray 灰灰灰 ‘grey’
紫 ‘purple’ purple yellow 黄黄黄色色色 ‘yellow’
草 ‘grass’ green light 最 ‘most’

Table 2: Bilingual lexicon induction from Chinese
to English (first two columns) and vice versa (last
two). Correct translations in bold, semantically
close words in italic.

The majority of common color words are trans-
lated correctly by this simple method, showing
that the vectors in the softmax layer do express a
linear correspondence between the representation
of synonyms in the two languages.

5.2 Color term semantics

The above experiment suggests that the bilingual
model has learned word semantics in ways that
discover translation pairs. However, we wish to
know whether bilingual training has resulted in
changes to the model’s output distribution reflect-
ing differences in the two languages’ color sys-
tems. To evaluate this, we performed an experi-
ment similar to the basic color term elicitations in
the World Color Survey (WCS; Berlin and Kay,
1969) on our models. For each of the 330 colors
in the original WCS, we presented that color to our
monolingual and bilingual models and recorded
the most likely color description according to the
conditional language model. Our models require
a three-color context to produce a description; as
an approximation to eliciting context-insensitive
color terms, we gave the model ten contexts with
randomly generated (uniform in H, S, and V) dis-
tractor colors and averaged the language model
probabilities. We also identified, for each color
term produced as the most likely description of
one or more colors, the color that resulted in the
highest probability of producing that term.

The results are in Figure 6. The charts use the
layout of the WCS stimulus, in which the two axes
represent dimensions of color variation similar to
hue and lightness. Each region represents a set of
colors that the model labeled with the same color
term, and a star marks the color that resulted in the
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zōng

hóng
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Figure 6: Color term lexica: colors in the
World Color Survey palette grouped by highest-
probability description, averaged over 10
randomly-generated pairs of distractor colors.
The color that results in the highest probability of
each description is marked with a star. English
influences on the bilingual model include the ap-
pearance of橙色 chéngsè ‘orange’ and narrowing
of黄色 huángsè ‘yellow’ and绿色 l`̈usè ‘green’.

highest probability of producing that term. The
Chinese terms, except for红 hóng, are abbreviated
by deleting the final morpheme色 sè ‘color’.

The charts agree with Berlin and Kay (1969)
on most of the differences between the two lan-
guages: orange and pink have clear regions of
dominance in English, whereas in the Mandarin
monolingual model pink is subsumed by红 hóng
‘red’, and orange is subsumed by 黄色 huángsè
‘yellow’. Our models produce three colors not in
the six-color system5 identified by Berlin and Kay
for Mandarin: 灰色 huı̄sè ‘grey’, 紫色 zı̌sè ‘pur-
ple’, and棕色 zōngsè ‘brown’. We do not specifi-
cally claim these should be considered basic color
terms, since Berlin and Kay give a theoretical def-
inition of “basic color term” that is not rigorously
captured by our model. In particular, they explic-
itly exclude灰色 huı̄sè from the set of basic color
terms, despite its frequency, because it has a mean-

5Notably absent are ‘black’ and ‘white’. The collection
methodology of Monroe et al. (2017) restricted colors to a
single lightness, so black and white are not in the data. For
these charts, we replaced the World Color Survey swatches
with the closest color used in our data collection.
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ing that refers to an object (‘ashes’). The other two
may have been excluded for the same reason, or
they may represent a change in the language or the
influence of English on the participants’ usage.6

A few differences between the monolingual and
bilingual models can be characterized as an influ-
ence of one language’s color system on the other.
First, teal appears as a common description of a
few color swatches from the English monolingual
model, but the bilingual model, like the Chinese
model, does not feature a common word for teal.
Second, the Chinese monolingual model does not
include a common word for orange, but the bilin-
gual model identifies 橙色 chéngsè ‘orange’. Fi-
nally, the English green is semantically narrower
than the Chinese绿色 l`̈usè, and the Chinese bilin-
gual model exhibits a corresponding narrowing of
the range of绿色 l`̈usè.

Overall, however, the monolingual models cap-
ture largely accurate maps of each language’s ba-
sic color system, and the bilingual model retains
the major contrasts between them, rather than “av-
eraging” between the two. This suggests that the
bilingual model learns a representation of the in-
put colors that encodes their categorization in both
languages, and that for the most part these lexi-
cal semantic representations do not influence each
other.

5.3 Comparing model and human utterances

One observation indicates that the improvements
in the bilingually-trained model are primarily at
the pragmatic (context-dependent) level of lan-
guage production. Figure 7 reveals that the
bilingually-trained model better captures the main
pragmatic pattern we observe in the human data,
that of increasing message length in harder condi-
tions. In both languages, the monolingual model
uses longer utterances in the easy far condition
than human speakers do, whereas the bilingual
model is significantly closer on that condition to
the human statistics. We see similar results in the
use of negations and comparatives; the use of su-
perlatives is not substantially different between the
monolingual and bilingual models.

We note that this result does not rule out several
competing hypotheses. In particular, we do not
exclude improvements in compositional semantics
or syntax, nor do we distinguish improvements in

6MTurk’s restriction to US workers makes English influ-
ence more likely than would otherwise be expected.

(a) Human and model utterance lengths in English.

(b) Human and model utterance lengths in Chinese.

Figure 7: Comparison of mean length of messages
between human and model utterances.

specific linguistic areas from broader regulariza-
tion effects of having additional data in general.
Preliminary experiments involving augmentation
of the data by duplicating and deleting constituents
show no gains, suggesting that the improvement
depends on certain kinds of regularities in the En-
glish data that are not provided by artificial manip-
ulations. However, more investigation is needed to
thoroughly assess the role of general-purpose reg-
ularization in our observations.

6 Related work

The method we use to build a bilingual model in-
volves adding a single dimension to the previous-
token vectors in the encoder representing the lan-
guage (Section 4). In essence, the two languages
have separate vocabulary representation at the in-
put and output but shared hidden representations.
Adding a hard constraint on the output vocabulary
would make this equivalent to a simple form of
multitask learning (Caruana, 1997; Collobert and
Weston, 2008). However, allowing the model to
use tokens from either language at any time is
simpler and results in better modeling of mixed-
language data, which is more common in non-
English environments. In fact, our model occa-
sionally ignores the flag and “code-switches” be-
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tween the two languages within a single output,
which is not possible in typical multitask architec-
tures.

Using shared parameters for cross-lingual rep-
resentation transfer has a large literature. Kle-
mentiev et al. (2012) and Hermann and Blun-
som (2014) use multitask learning with multilin-
gual document classification to build cross-lingual
word vectors, and observe accurate lexical transla-
tions from linear vector analogy operations. They
include predicting translations for words in par-
allel data as one of their tasks. Our translations
from vector relationships (Section 5.1) derive their
cross-lingual relationships from the non-linguistic
input of our grounded task, without parallel data.

Huang et al. (2013) note gains in speech recog-
nition from cross-lingual learning with shared pa-
rameters. In machine translation, Johnson et al.
(2016) add the approach of setting the output lan-
guage using a symbol in the input. Kaiser et al.
(2017) extend this to image captioning, speech
recognition, and parsing in one multitask system.
Our work complements these efforts with an in-
depth analysis of bilingual training on a grounded
generation task and an exploration of the relation-
ship between cross-lingual semantic differences
and pragmatics. In general, we see grounding in
non-linguistic input, including images and sensory
input from real and simulated worlds, as an in-
triguing substitute for direct linguistic supervision
in low-resource settings. We encourage evaluation
of multitask and multilingual models on tasks that
require reference to the context for effective lan-
guage production and understanding.

7 Conclusion

In this paper, we studied the effects of training on
bilingual data in a grounded language task. We
show evidence that bilingual training can be help-
ful, but with a non-obvious effect of dataset size:
accuracy as a function of opposite-language data
follows a U-shaped curve. The resulting model
is more human-like in measures of sensitivity to
contextual difficulty (pragmatics), while exhibit-
ing language-specific lexical learning in the form
of vector relationships between lexical pairs and
differences between the two languages in common
color-term extensions (semantics).

It should be noted that color descriptions in En-
glish and Chinese are similar both in their syn-
tax and in the way they divide up the semantic

space. We might expect that for languages like
Arabic and Spanish (with their different place-
ment of modifiers), or Waorani and Pirahã (with
their much smaller color term inventories), the in-
troduction of English data could have detrimental
effects that outweigh the language-general gains.
An investigation across a broader range of lan-
guages is desirable.

Our contribution includes a new dataset of hu-
man utterances in a color reference game in Man-
darin Chinese, which we release to the public7

with our code and trained model parameters.8
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A Model details

Hyperparameters for the two main models are
given in Table 3. Both Chinese monolingual and
bilingual model were tuned for perplexity on a
held-out subset of the training set, by random
search followed by a local search from the best
candidate until no single parameter change pro-
duced a better result. However, the tuned settings
for the Chinese monolingual model did not outper-
form the settings from Monroe et al. (2017) for the
English model on the development set, so in our fi-
nal experiments the monolingual models used the
same parameters.

The vocabulary for each model consisted of
all tokens that were seen at least twice in train-
ing; the bilingual model’s vocabulary is larger
than the union of the words in each monolingual
model because some tokens occurred once in each
language (largely meta-commentary—e.g., dunno,
HIT, xD—and some English color word typos).

B Data management

This work was done under Stanford IRB Protocol
17827, which has the title “Pragmatic enrichment
and contextual inference”. Data was only col-
lected from workers who indicated their informed
consent. Workers on Amazon Mechanical Turk

hyperparameter mono. biling.

optimizer ADAM RMSProp
learning rate 0.004 0.004
dropout 0.1 0.1
gradient clip norm – 1
LSTM cell size 100 50
embedding size 100 100
initial forget bias 0 5
nonlinearity tanh sigmoid

vocabulary size 895 (en) 1,326
260 (zh)

Table 3: Values of hyperparameters optimized in
tuning for the monolingual and bilingual models,
plus vocabulary sizes.

were paid $2.00 to complete each game consist-
ing of 50 dialogue contexts, plus a bonus of $0.01
for each target the listener correctly identified. All
worker identifiers have been removed from data
that is released; the only other information col-
lected about the workers was their Chinese lan-
guage proficiency.
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Abstract

The named concepts and compositional opera-
tors present in natural language provide a rich
source of information about the abstractions
humans use to navigate the world. Can this
linguistic background knowledge improve the
generality and efficiency of learned classifiers
and control policies? This paper aims to
show that using the space of natural language
strings as a parameter space is an effective
way to capture natural task structure. In
a pretraining phase, we learn a language
interpretation model that transforms inputs
(e.g. images) into outputs (e.g. labels) given
natural language descriptions. To learn a new
concept (e.g. a classifier), we search directly
in the space of descriptions to minimize
the interpreter’s loss on training examples.
Crucially, our models do not require language
data to learn these concepts: language is
used only in pretraining to impose structure
on subsequent learning. Results on image
classification, text editing, and reinforcement
learning show that, in all settings, models with
a linguistic parameterization outperform those
without.1

1 Introduction

The structure of natural language reflects the struc-
ture of the world. For example, the fact that it is
easy for humans to communicate the concept left
of the circle but comparatively difficult to com-
municate mean saturation of the first five pixels
in the third column reveals something about the
abstractions we find useful for interpreting and
navigating our environment (Gopnik and Meltzoff,
1987). In machine learning, efficient automatic
discovery of reusable abstract structure remains a
major challenge. This paper investigates whether

1Code and data are available at https://github.com/
jacobandreas/l3.
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Figure 1: Example of our approach on a binary image
classification task. We assume access to a pretrained
language interpretation model that outputs the proba-
bility that an image matches a given description. To
learn a new visual concept, we search in the space of
natural language descriptions to maximize the interpre-
tation model’s score (top). The chosen description can
be used with the interpretation model to classify new
images (bottom). Figures best viewed in color.

background knowledge from language can pro-
vide a useful scaffold for acquiring it. We specif-
ically propose to use language as a latent param-
eter space for few-shot learning problems of all
kinds, including classification, transduction and
policy search. We aim to show that this linguis-
tic parameterization produces models that are both
more accurate and more interpretable than direct
approaches to few-shot learning.

Like many recent frameworks for multitask-
and meta-learning, our approach consists of three
phases: a pretraining phase, a concept-learning
phase, and an evaluation phase. Here, the product
of pretraining is a language interpretation model
that maps from descriptions to predictors (e.g. im-
age classifiers or reinforcement learners). Our the-
sis is that language learning is a powerful, general-
purpose kind of pretraining, even for tasks that do
not directly involve language.

New concepts are learned by searching directly
in the space of natural language strings to mini-
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Figure 2: Formulation of the learning problem. Ul-
timately, we care about our model’s ability to learn a
concept from a small number of training examples (b)
and successfully generalize it to held-out data (c). In
this paper, concept learning is supported by a language
learning phase (a) that makes use of natural language
annotations on other learning problems. These annota-
tions are not provided for the real target task in (b–c).

mize the loss incurred by the language interpre-
tation model (Figure 1). Especially on tasks that
require the learner to model high-level composi-
tional structure shared by training examples, natu-
ral language hypotheses serve a threefold purpose:
they make it easier to discover these compositional
concepts, harder to overfit to few examples, and
easier for humans to understand inferred patterns.

Our approach can be implemented using a stan-
dard kit of neural components, and is simple
and general. In a variety of settings, we find
that the structure imposed by a natural-language
parameterization is helpful for efficient learning
and exploration. The approach outperforms both
multitask- and meta-learning approaches that map
directly from training examples to outputs by way
of a real-valued parameterization, as well as ap-
proaches that make use of natural language anno-
tations as an additional supervisory signal rather
than an explicit latent parameter. The natural lan-
guage concept descriptions inferred by our ap-
proach often agree with human annotations when
they are correct, and provide an interpretable de-
bugging signal when incorrect. In short, by equip-
ping models with the ability to “think out loud”
when learning, they become both more compre-
hensible and more accurate.

2 Background

Suppose we wish to solve an image classifica-
tion problem like the one shown in Figure 2b–c,
mapping from images x to binary labels y. One
straightforward way to do this is to solve a learn-

ing problem of the following form:

argmin
η ∈H

∑

(x, y)

L(f(x; η), y) , (1)

where L is a loss function and f is a richly-
parameterized class of models (e.g. convolutional
networks) indexed by η (e.g. weight matrices) that
map from images to labels. Given a new image x′,
f(x′; η) can be used to predict its label.

In the present work, we are particularly in-
terested in few-shot learning problems where the
number of (x, y) pairs is small—on the order of
five or ten examples. Under these conditions, di-
rectly solving Equation 1 is a risky proposition—
any model class powerful enough to capture the
true relation between inputs and outputs is also
likely to overfit. For few-shot learning to be suc-
cessful, extra structure must be supplied to the
learner. Existing approaches obtain this struc-
ture by either carefully structuring the hypothe-
sis space or providing the learner with alternative
training data. The approach we present in this pa-
per combines elements of both, so we begin with
a review of existing work.

(Inductive) program synthesis approaches
(e.g. Gulwani, 2011) reduce the effective size of
the hypothesis class H by moving the optimiza-
tion problem out of the continuous space of weight
vectors and into a discrete space of formal pro-
gram descriptors (e.g. regular expressions or Pro-
log queries). Domain-specific structure like ver-
sion space algebras (Lau et al., 2003) or type
systems (Kitzelmann and Schmid, 2006) can be
brought to bear on the search problem, and the
bias inherent in the syntax of the formal language
provides a strong prior. But while program syn-
thesis techniques are powerful, they are also lim-
ited in their application: a human designer must
hand-engineer the computational primitives nec-
essary to compactly describe every learnable hy-
pothesis. While reasonable for some applications
(like string editing), this is challenging or impos-
sible for others (like computer vision).

An alternative class of multitask learning ap-
proaches (Caruana, 1998) import the relevant
structure from other learning problems rather than
defining it manually (Figure 2a, top). Since we
may not know a priori what set of learning prob-
lems we ultimately wish to evaluate on, it is use-
ful to think of learning as taking places in three
phases:
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1. a pretraining (or “meta-training”) phase that
makes use of various different datasets i with
examples {(x(`i)

1 , y
(`i)
1 ), . . . , (x

(`i)
n , y

(`i)
n )}

(Figure 2a)

2. a concept-learning phase in which the
pretrained model is adapted to fit data
{(x(c)

1 , y
(c)
1 ), . . . , (x

(c)
n , y

(c)
n )} for a specific

new task (Figure 2b)

3. an evaluation phase in which the learned
concept is applied to a new input x(e) to pre-
dict y(e) (Figure 2c)

In these approaches, learning operates over two
collections of parameters: shared parameters η
and task-specific parameters θ. In pretraining,
multitask approaches find:

argmin
η ∈Ra, θ(`i) ∈Rb

∑

i, j

L
(
f(x

(`i)
j ; η, θ(`i)), y

(`i)
j

)
. (2)

At concept learning time, they solve for:

argmin
θ(c) ∈Rb

∑

j

L
(
f(x

(c)
j ; η, θ(c)), y

(c)
j

)
(3)

on the new dataset, then make predictions for new
inputs using f(x(e); η, θ(c)).

Closely related meta-learning approaches (e.g.
Schmidhuber, 1987; Santoro et al., 2016; Vinyals
et al., 2016) make use of the same data, but col-
lapse the inner optimization over θ(c) and predic-
tion of y(e) into a single learned model.

3 Learning with Language

In this work, we are interested in developing a
learning method that enjoys the benefits of both
approaches. In particular, we seek an intermediate
language of task representations that, like in pro-
gram synthesis, is both expressive and compact,
but like in multitask approaches is learnable di-
rectly from training data without domain engineer-
ing. We propose to use natural language as this
intermediate representation. We call our approach
learning with latent language (L3).

Natural language shares many structural advan-
tages with the formal languages used in synthesis
approaches: it is discrete, has a rich set of com-
positional operators, and comes equipped with a
natural description length prior. But it also has a
considerably more flexible semantics. And cru-
cially, plentiful annotated data exists for learning
this semantics: we cannot hand-write a computer

program to recognize a small dog, but we can learn
how to do it from image captions. More basically,
the set of primitive operators available in language
provides a strong prior about the kinds of abstrac-
tions that are useful for natural learning problems.

Concretely, we replace the pretraining phase
above with a language-learning phase. We as-
sume that at language-learning time we have ac-
cess to natural-language descriptions w(`i) (Fig-
ure 2a, bottom). We use these w as parameters, in
place of the task-specific parameters θ—that is, we
learn a language interpretation model f(x; η, w)
that uses shared parameters η to turn a description
w into a function from inputs to outputs. For the
example in Figure 2, f might be an image rating
model (Socher et al., 2014) that outputs a scalar
judgment y of how well an image xmatches a cap-
tion w.

Because these natural language parameters are
observed at language-learning time, we need only
learn the real-valued shared parameters η used for
their interpretation (e.g. the weights of a neural
network that implements the image rating model):

argmin
η ∈Ra

∑

i, j

L
(
f(x

(`i)
j ; η, w(`i)), y

(`i)
j

)
. (4)

At concept-learning time, conversely, we solve
only the part of the optimization problem over nat-
ural language strings:

argmin
w(c) ∈Σ∗

∑

j

L
(
f(x

(c)
j ; η, w(c)), y

(c)
j

)
. (5)

This last step presents something of a chal-
lenge. When solving the corresponding optimiza-
tion problem, synthesis techniques can exploit the
algebraic structure of the formal language, while
end-to-end learning approaches take advantage of
differentiability. Here we can’t do either—the lan-
guage of strings is discrete, and any structure in
the interpretation function is wrapped up inside
the black box of f . Inspired by related techniques
aimed at making synthesis more efficient (Devlin
et al., 2017), we use learning to help us develop an
effective optimization procedure for natural lan-
guage parameters.

In particular, we simply use the language-
learning datasets, consisting of pairs (x

(`i)
j , y

(`i)
j )

and descriptions wi, to fit a reverse proposal
model, estimating:

argmaxλ
∑

i log q(wi|x
(`i)
1 , y

(`i)
1 , . . . , x

(`i)
n , y

(`i)
n ;λ)
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true true

Figure 3: The few-shot image classification task.
Learners are shown four positive examples of a visual
concept (left) and must determine whether a fifth image
matches the pattern (right). Natural language annota-
tions are provided during language learning but must
be inferred for concept learning.

where q provides a (suitably normalized) approx-
imation to the distribution of descriptions given
task data. In the running example, this pro-
posal distribution is essentially an image caption-
ing model (Donahue et al., 2015). By sampling
from q, we expect to obtain candidate descriptions
that are likely to obtain small loss. But our ulti-
mate inference criterion is still the true model f :
at evaluation time we perform the minimization in
Equation 5 by drawing a fixed number of samples,
selecting the hypothesis w(c) that obtains the low-
est loss, and using f(x(e); η, w(c)) to make pre-
dictions.

What we have described so far is a generic pro-
cedure for equipping collections of related learn-
ing problems with a natural language hypothesis
space. In Sections 4 and 5, we describe how this
procedure can be turned into a concrete algorithm
for supervised classification and sequence predic-
tion. In Section 6, we describe how to extend these
techniques to reinforcement learning.

4 Few-shot Classification

We begin by investigating whether natural lan-
guage can be used to support high-dimensional
few-shot classification. Our focus is on visual
reasoning tasks like the one shown in Figure 3.
In these problems, the learner is presented with
four images, all positive examples of some visual
concept like a blue shape near a yellow triangle,
and must decide whether a fifth, held-out image
matches the same concept. These kinds of rea-
soning problems have been well-studied in visual
question answering settings (Johnson et al., 2017;
Suhr et al., 2017). Our version of the problem,
where the input and output feature no text data,
but an explanation must be inferred, is similar to

the visual reasoning problems proposed by Raven
(1936) and Bongard (1968).

To apply the recipe in Section 2, we need to
specify an implementation of the interpretation
model f and the proposal model q. We begin
by computing representations of input images x.
We start with a pre-trained 16-layer VGGNet (Si-
monyan and Zisserman, 2014). Because spatial in-
formation is important for these tasks, we extract a
feature representation from the final convolutional
layer of the network. This initial featurization is
passed through two fully-connected layers to form
a final image representation, as follows:

x VGG-16 FC ReLU FC rep( )x

We define interpretation and proposal models:2

f(x;w) = σ
(
rnn-encode(w)>rep(x)

)

q(w | {xj}) = rnn-decode
(
w | 1

n

∑
j
rep(xj)

)

The interpretation model f outputs the probabil-
ity that x is assigned a positive class label, and is
trained to maximize log-likelihood. Because only
positive examples are provided in each language
learning set, the proposal model q can be defined
in terms of inputs alone. Details regarding training
hyperparameters, RNN implementations, etc. may
be found in Appendix A.

Our evaluation aims to answer two questions.
First, does the addition of language to the learning
process provide any benefit over ordinary multi-
task or meta-learning? Second, is it specifically
better to use language as a hypothesis space for
concept learning rather than just an additional sig-
nal for pretraining? We use several baselines to
answer these questions:

1. Multitask: a multitask baseline in which
the definition of f above is replaced by
σ(θ>i rep(x)) for task-specific parameters θi
that are optimized during both pretraining
and concept-learning.

2. Meta: a meta-learning baseline in which f is
defined by σ([ 1

n

∑
j rep(xj)]

>rep(x)).3

2Suppressing shared parameters η and λ for clarity.
3Many state-of-the-art approaches to meta-learning for

classification (e.g. Snell et al., 2017) are not well-defined
for possibly-overlapping evaluation classes with only positive
examples provideded. Here we have attempted to provide a
robust implementation that is as close as possible to the other
systems under evaluation.
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3. Meta+Joint: as in Meta, but the pretraining
objective includes an additional term for pre-
dicting q (discarded for concept learning).

We report results on a dataset derived from
the ShapeWorld corpus of Kuhnle and Copestake
(2017). In this dataset the held-out image matches
the target concept 50% of the time. In the val-
idation and test folds, half of learning problems
feature a concept that also appears in the language
learning set (but with different exemplar images),
while the other half feature both new images and
a new concept. Images contain two or three dis-
tractor shapes unrelated to the objects that define
the target concept. Captions in this dataset were
generated from DMRS representations using an
HPS grammar (Copestake et al., 2016). (Our re-
maining experiments use human annotators.) The
dataset contains a total of 9000 pretraining tasks
and 1000 of each validation and test tasks. More
dataset statistics are provided in Appendix B.

Results are shown in Table 1. It can be seen
that L3 provides consistent improvements over
the baselines, and that these improvements are
present both when identifying new instances of
previously-learned concepts and when discover-
ing new ones. Some example model predictions
are shown in Figure 4. The model often succeeds
in making correct predictions, even though its in-
ferred descriptions rarely match the ground truth.
Sometimes this is because of inherent ambiguity
in the description language (Figure 4a), and some-
times because the model is able to rule out candi-
dates on the basis of partial captions alone (Fig-
ure 4b, where it is sufficient to recognize that the

Model Val (old) Val (new) Val Test

Random 50 50 50 50
Multitask 64 49 57 59
Meta 63 62 62 64
Meta+Joint 63 69 66 64
L3 (ours) 70 72 71 70

L3 (oracle) 77 80 79 78

Table 1: Evaluation on image classification. Val
(old) and Val (new) denote subsets of the validation set
that contain respectively previously-used and novel vi-
sual concepts. L3 consistently outperforms alternative
learning methods based on multitask learning, meta-
learning, and meta-learning jointly trained to predict
descriptions (Meta+Joint). The last row shows results
when the model is given a ground-truth concept de-
scription rather than having to infer it from examples.

target concept involves a circle). More examples
are provided in Appendix C.

5 Programming by Demonstration

Next we explore whether the same technique can
be applied to tasks that involve more than binary
similarity judgments. We focus on structured pre-
diction: specifically a family of string processing
tasks. In these tasks, the model is presented with
examples of five strings transformed according to
some rule; it must then apply an appropriate trans-
formation to a sixth (Figure 5). Learning proceeds
as in the previous section, with:

rep(x, y) = rnn-encode([x, y])

f(y | x;w) =
rnn-decode

(
y | [rnn-encode(x), rnn-encode(w)]

)

q(w | {(xj , yj)}) =
rnn-decode

(
w | 1

n

∑
j
rep(xj , yj)

)

Baselines are analogous to those for classification.
While string editing tasks of the kind shown

in Figure 5 are popular in both the programming
by demonstration literature (Singh and Gulwani,
2012) and the semantic parsing literature (Kush-
man and Barzilay, 2013), we are unaware of any
datasets that support both learning paradigms at
the same time. We have thus created a new dataset
of string editing tasks by (1) sampling random reg-
ular transducers, (2) applying these transducers to
collections of dictionary words, and (3) showing
the collected examples to Mechanical Turk users

a blue cross is above 
a pentagon

a cyan pentagon is to 
the right of a 
magenta shape

false

true

(a)

(b)

(c)

examples true description true label

pred. description pred. label

a square is above a 
red cross

a red cross is below 
a square

true

true

a circle is above a 
yellow circle

a cyan circle is to 
the left of a 

rectangle

false

false

Figure 4: Example predictions for image classifica-
tion. The model achieves high accuracy even though
predicted descriptions rarely match the ground truth.
High-level structure like the presence of certain shapes
or spatial relations is consistently recovered.
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Model Val Test

Identity 18 18
Multitask 54 50
Meta 66 62
Meta+Joint 63 59
L3 80 76

Table 2: Results for string editing. The reported num-
ber is the percentage of cases in which the predicted
string exactly matches the reference. L3 is the best per-
forming model; using language data for joint training
rather than as a hypothesis space provides little benefit.

and asking them to provide a natural language ex-
planation with their best guess about the under-
lying rule. The dataset thus features both multi-
example learning problems, as well as structured
and unstructured annotations for each target con-
cept. There are 3000 tasks for language learning
and 500 tasks for each of validation and testing
(Appendix B). Annotations are included in the
code release for this paper.

Results are shown in Table 2. In these experi-
ments, all models that use descriptions have been
trained on the natural language supplied by human
annotators. While we did find that the Meta+Joint
model converges considerably faster than all the
others, its final performance is somewhat lower
than the baseline Meta model. As before, L3 out-
performs alternative approaches for learning di-
rectly from examples with or without descriptions.

Because all of the transduction rules in this
dataset were generated from known formal de-
scriptors, these tasks provide an opportunity to
perform additional analysis comparing natural lan-
guage to more structured forms of annotation
(since we have access to ground-truth regular ex-
pressions) and more conventional synthesis-based
methods (since we have access to a ground-truth
regular expression execution engine). We addi-
tionally investigate the effect of the number of

warding 
curved 
uranium 
pedaled 
drum

warying 
curved 
uranium 
peyaled 
drum

replace d before a 
vowel with y

s/d([aeiou])/y\1/g

chided

chiyed

Figure 5: Example string editing task. Learners are
presented with five examples of strings transformed ac-
cording to some rule (left), and must apply an appropri-
ate transformation to a sixth string (right). Language-
learning annotations (center) may take the form of ei-
ther natural language or regular expressions.

change any n  
to a c

replace all n s 
with c

loocies

loocies

replace consonant - 
vowel pairings with n

replace pairs of 
letters consisting of a 
consonant followed by a 

vowel with an n

ntnynd

ntnnd

(a)

(b)

(c)

examples true description true output

pred. description pred. output

emboldens 
kisses 
loneliness 
vein 
dogtrot

emboldecs 
kisses 
locelicess 
veic 
dogtrot

loonies

mapper 
concluding 
excuse 
effete 
contracting

npnr 
nncnnng 
exnn 
efnn 
nntncnng

betrayed

plummest 
bereaving 
eddied 
struggles 
evils

plummesti 
bereavinti 
eddieti 
struggleti 
evilti

change the last 
letter of the word 

into t i

replace the last letter 
of the word with t i

mistrialti

mistrialti

mistrials
Figure 6: Example predictions for string editing.

samples drawn from the proposal model. These
results are shown in Table 3.

A few interesting facts stand out. Under the
ordinary evaluation condition (with no ground-
truth annotations provided), language-learning
with natural language data is actually better than
language-learning with regular expressions. This
might be because the extra diversity helps the
model determine the relevant axes of variation and
avoid overfitting to individual strings. Allowing
the model to do its own inference is also better
than providing ground-truth natural language de-
scriptions, suggesting that it is actually better at
generalizing from the relevant concepts than our
human annotators (who occasionally write things
like I have no idea for the inferred rule). Unsur-
prisingly, with ground truth REs (which unlike the
human data are always correct) we can do bet-
ter than any of the models that require inference.
Coupling our inference procedure with an oracle
RE evaluator, we essentially recover the synthesis-
based approach of Devlin et al. (2017). Our find-
ings are consistent with theirs: when an exact exe-
cution engine is available, there is no reason not to
use it. But we can get almost 90% of the way there

Annotations Samples Oracle
1 100 Ann. Eval.

None (Meta) 66 – – –
Natural language 66 80 75 –
Regular expressions 60 76 88 90

Table 3: Inference and representation experiments for
string editing. Italicized numbers correspond to entries
in Table 2. Allowing the model to use multiple samples
rather than the 1-best decoder output substantially im-
proves performance. The full model does better with
inferred natural language descriptions than either regu-
lar expressions or ground-truth natural language.
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with an execution model learned from scratch. Ex-
amples of model behavior are shown in Figure 6;
more may be found in Appendix D.

6 Policy Search

The previous two sections examined supervised
settings where the learning signal comes from few
examples but is readily accessible. In this section,
we move to a set of reinforcement learning prob-
lems, where the learning signal is instead sparse
and time-consuming to obtain. We evaluate on a
collection of 2-D treasure hunting tasks. These
tasks require the agent to discover a rule that de-
termines the location of buried treasure in a large
collection of environments of the kind shown in
Figure 7. To recover the treasure, the agent must
navigate (while avoiding water) to its goal loca-
tion, then perform a DIG action. At this point
the episode ends; if the treasure is located in the
agent’s current position, it receives a reward, oth-
erwise it does not. In every task, the treasure has
consistently been buried at a fixed position relative
to some landmark (in Figure 7 a heart). Both the
offset and the identity of the target landmark are
unknown to the agent, and the location of the land-
mark varies across maps. Indeed, there is noth-
ing about the agent’s observations or action space
to suggest that landmarks and offsets are even the
relevant axes of variation across tasks: only the
language reveals this structure.

The interaction between language and learning
in these tasks is rather different from the super-
vised settings. In the supervised case, language
serves mostly as a guard against overfitting, and

Figure 7: Example treasure hunting task: the agent
is placed in a random environment and must collect a
reward that has been hidden at a consistent offset with
respect to some landmark. At language-learning time
only, natural language instructions and expert policies
are provided. The agent must both learn primitive nav-
igation skills, like avoiding water, as well as the high-
level structure of the reward functions for this domain.

can be generated conditioned on a set of pre-
provided concept-learning observations. Here,
agents are free to interact with the environment as
much as they need, but receive observations only
during interaction. Thus our goal here will be to
build agents that can adapt quickly to new environ-
ments, rather than requiring them to immediately
perform well on held-out data.

Why should we expect L3 to help in this setting?
In reinforcement learning, we typically encourage
our models to explore by injecting randomness
into either the agent’s action space or its under-
lying parameterization. But most random policies
exhibit nonsensical behaviors; as a result, it is in-
efficient both to sample in the space of network
weights and to perform policy optimization from
a random starting point. Our hope is that when pa-
rameters are chosen from within a structured fam-
ily, a stochastic search in this structured space will
only ever consider behaviors corresponding to a
reasonable final policy, and in this way discover
good behavior faster than ordinary RL.

Here the interpretation model f describes a pol-
icy that chooses actions conditioned on the cur-
rent environment state and a linguistic parameter-
ization. As the agent initially has no observations
at all, we simply design the proposal model to gen-
erate unconditional samples from a prior over de-
scriptions. Taking x to be an agent’s current obser-
vation of the environment state, we define a state
representation network and models:

x FC tanh FC rep( )xtanh

f(a | x; w) ∝ rnn-encode(w)> Wa rep(x)

q(w) = rnn-decode(w)

This parameterization assumes a discrete action
space, and assigns to each action a probability pro-
portional to a bilinear function of the encoded de-
scription and world state. f is an instruction fol-
lowing model of a kind well-studied in natural lan-
guage processing (Branavan et al., 2009); the pro-
posal model allows it to generate its own instruc-
tions without external direction. To learn, we sam-
ple a fixed number of descriptions w from q. For
each description, we sample multiple rollouts of
the policy it induces to obtain an estimate of its av-
erage reward. Finally, we take the highest-scoring
description and fine-tune its induced policy.

At language-learning time, we assume access
to both natural language descriptions of these tar-
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Figure 8: Treasure hunting reward obtained by each
learning algorithm across multiple evaluation environ-
ments, after language learning has already taken place
(bands show 95% confidence intervals for mean per-
formance). Multitask learns an embedding for each
task, while Scratch trains on every task individually.
L3 rapidly discovers high-scoring policies in most envi-
ronments. Dashed line indicates the end of the concept-
learning phase; subsequent performance comes from
fine-tuning. The max reward for this task is 3.

get locations provided by human annotators, as
well as expert policies for navigating to the lo-
cation of the treasure. The multitask model we
compare to replaces these descriptions with train-
able task embeddings.4 The learner is trained
from task-specific expert policies using DAgger
(Ross et al., 2011) during the language-learning
phase, and adapts to individual environments us-
ing “vanilla” policy gradient (Williams, 1992) dur-
ing the concept learning phase.

The environment implementation and linguistic
annotations are in this case adapted from a natural
language navigation dataset originally introduced
by Janner et al. (2017). In our version of the prob-
lem (Figure 7), the agent begins each episode in a
random position on a randomly-chosen map and
must attempt to obtain the treasure. Relational
concepts describing target locations are reused
between language learning and concept-learning
phases, but the environments themselves are dis-
tinct. For language learning the agent has access
to 250 tasks, and is evaluated on an additional 50.

Averaged learning curves for held-out tasks are
shown in Figure 8. As expected, reward for the L3

model remains low during the initial exploration
period, but once a description is chosen the score

4In RL, the contribution of L3 is orthogonal to that of
meta-learning—one could use a technique like RL2 (Duan
et al., 2016) to generate candidate descriptions more effi-
ciently, or MAML (Finn et al., 2017) rather than zero-shot
reward as the training criterion for the interpretation model.

improves rapidly. Immediately L3 achieves bet-
ter reward than the multitask baseline, though it
is not perfect; this suggests that the interpretation
model is somewhat overfit to the pretraining envi-
ronments. After fine-tuning even better results are
rapidly obtained. Example rollouts are visualized
in Appendix E. These results show that the model
has used the structure provided by language to
learn a better representation space for policies—
one that facilitates sampling from a distribution
over interesting and meaningful behaviors.

7 Other Related Work

This is the first approach we are aware of to frame
a general learning problem as optimization over
a space of natural language strings. However,
many closely related ideas have been explored in
the literature. String-valued latent variables are
widely used in language processing tasks rang-
ing from morphological analysis (Dreyer and Eis-
ner, 2009) to sentence compression (Miao and
Blunsom, 2016). Natural language annotations
have been used in conjunction with training ex-
amples to guide the discovery of logical descrip-
tions of concepts (Ling et al., 2017; Srivastava
et al., 2017), and used as an auxiliary loss for
training (Frome et al., 2013), analogously to the
Meta+Joint baseline in this paper. Structured
language-like annotations have been used to im-
prove learning of generalizable structured poli-
cies (Oh et al., 2017; Andreas et al., 2017; Denil
et al., 2017). Finally, natural language instruc-
tions available at concept-learning time (rather
than language-learning time) have been used to
provide side information to reinforcement learners
about high-level strategy (Branavan et al., 2011),
environments (Narasimhan et al., 2017) and explo-
ration (Harrison et al., 2017).

8 Conclusion

We have presented an approach for learning in a
space parameterized by natural language. Using
simple models for representation and search in this
space, we demonstrated that our approach outper-
forms standard baselines on classification, struc-
tured prediction and reinforcement learning tasks.
We believe that these results suggest the following
general conclusions:

Language encourages compositional general-
ization. Standard deep learning architectures are
good at recognizing new instances of familiar
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concepts, but not always at generalizing to new
ones. By forcing decisions to pass through a lin-
guistic bottleneck in which the underlying com-
positional structure of concepts is explicitly ex-
pressed, stronger generalization becomes possible.

Language simplifies structured exploration.
Natural language scaffolding provides dramatic
advantages in problems like reinforcement learn-
ing that require exploration: models with latent
linguistic parameterizations can limit exploration
to a class of behaviors that are likely a priori to be
goal-directed and interpretable.

And generally, language can help learning. In
multitask settings, it can even improve learning on
tasks for which no language data is available at
training or test time. While some of these advan-
tages are also provided by techniques built on top
of formal languages, natural language is at once
more expressive and easier to obtain than formal
supervision. We believe this work hints at broader
opportunities for using naturally-occurring lan-
guage data to improve machine learning for tasks
of all kinds.
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A Model and Training Details

In all models, RNN encoders and decoders use
gated recurrent units (Cho et al., 2014).

Few-shot classification Models are trained with
the ADAM optimizer (Kingma and Ba, 2015) with
a step size of 0.0001 and batch size of 100. The
number of pretraining iterations is tuned based on
subsequent concept-learning performance on the
development set. Neural network hidden states,
task parameters, and word vectors are all of size
512. 10 hypotheses are sampled during for each
evaluation task in the concept-learning phase.

Programming by demonstration Training as
in the classification task, but with a step size of
0.001. Hidden states are of size 512, task param-
eters of size 128 and word vectors of size 32. 100
hypotheses are sampled for concept learning.

Policy search DAgger (Ross et al., 2011) is
used for pre-training and vanilla policy gradient
(Williams, 1992) for concept learning. Both learn-
ing algorithms use ADAM with a step size of 0.001
and a batch size of 5000 samples. For imitation
learning, rollouts are obtained from the expert pol-
icy on a schedule with probability 0.95t (for t the
current epoch). For reinforcement learning, a dis-
count of 0.9 is used. Because this dataset con-
tains no development data, pretraining is run un-
til performance on the pretraining tasks reaches a
plateau. Hidden states and task embeddings are
of size 64. 100 hypotheses are sampled for con-
cept learning, and 1000 episodes (divided evenly
among samples) are used to estimate hypothesis
quality before fine-tuning.

B Dataset Information

ShapeWorld This is the only fully-synthetic
dataset used in our experiments. Each scene fea-
tures 4 or 5 non-overlapping entities. Descriptions
refer to spatial relationships between pairs of enti-
ties identified by shape, color, or both. There are
8 colors and 8 shapes. The total vocabulary size is
only 30 words, but the dataset contains 2643 dis-
tinct captions. Descriptions are on average 12.0
words long.

Regular expressions Annotations were col-
lected from Mechanical Turk users. Each user
was presented with the same task as the learner in
this paper: they observed five strings being trans-
formed, and had to predict how to transform a

sixth. Only after they correctly generated the held-
out word were they asked for a description of the
rule. Workers were additionally presented with
hints like “look at the beginning of the word” or
“look at the vowels”. Descriptions are automati-
cally preprocessed to strip punctuation and ensure
that every character literal appears as a single to-
ken.

The regular expression data has a vocabulary of
1015 rules and a total of 1986 distinct descriptions.
Descriptions are on average 12.3 words in length
but as long as 46 words in some cases.

Navigation The data used was obtained from
Janner et al. (2017). We created our own variant of
the dataset containing collections of related tasks.
Beginning with the “local” tasks in the dataset, we
generated alternative goal positions at fixed offsets
from landmarks as described in the main section
of this paper. Natural-language descriptions were
selected for each task collection from the human
annotations provided with the dataset. The vocab-
ulary size is 74 and the number of distinct hints
446. The original action space for the environment
is also modified slightly: rather than simply reach-
ing the goal cell (achieved with reasonably high
frequency by a policy that takes random moves),
we require the agent to commit to an individual
goal cell and end the episode with a special DIG
action.

Data augmentation Due to their comparatively
small size, a data augmentation scheme (Jia and
Liang, 2016) is employed for the regular expres-
sion and navigation datasets. In particular, wher-
ever a description contains a recognizable entity
name (i.e. a character literal or a landmark name),
a description template is extracted. These tem-
plates are then randomly swapped in at training
time on other examples with the same high-level
semantics. For example, the description replace
first b with e is abstracted to replace first CHAR1
with CHAR2, and can subsequently be specialized
to, e.g., replace first c with d. This templating
is easy to implement because we have access to
ground-truth structured concept representations at
training time. If these were not available it would
be straightforward to employ an automatic tem-
plate induction system (Kwiatkowski et al., 2011)
instead.
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C Examples: ShapeWorld

(Examples in this and the following appendices were not cherry-picked.)

Positive examples:

True description:
a red ellipse is to the right of an ellipse

Inferred description:
a red shape is to the right of a red semicircle

Input: True label:
true

Pred. label:
true

a shape is below a white ellipse

a white shape is to the left of a yellow ellipse

false

true

a magenta triangle is to the left of a magenta pentagon

a magenta triangle is to the left of a pentagon

true

true

a green pentagon is to the right of a yellow shape

a green shape is to the right of a red semicircle

false

false

a red circle is above a magenta semicircle

a green triangle is above a red circle

false

true

a white ellipse is to the left of a green cross

a green cross is to the right of a white ellipse

true

true
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D Examples: Regular Expressions

Example in:
mediaeval
paneling
wafer
conventions
handsprings

Example out:
ilediaeval
ilaneling
ilafer
ilonventions
ilandsprings

Human description:
leading consonant si replaced with i l

Inferred description:
first consonant of a word is replaced with i l

Input:
chaser

True out:
ilhaser

Pred. out:
ilhaser

uptakes
pouching
embroidery
rebelliousness
stoplight

uptakes
punuching
embrunidery
rebelliunusness
stunplight

replace every o with u n

change all o to u n

regulation

regulatiunn

regulatinun

fluffiest
kidnappers
matting
griping
disagreements

fluffiest
kidnappers
eeatting
griping
disagreeeeents

the leter m is replaced by ee

change every m to ee

chartering

chartering

chartering

clandestine
limning
homes
lifeblood
inflates

clandqtine
limning
homq
lifqlood
inflatq

e

where e appears , replace it
and the following letter with q

gratuity

gratuity

gratuity

fruitlessly
sandier
washers
revelries
dewlaps

fruitlessly
sandier
washemu
revelrimu
dewlamu

if the word ends with an s , replace
the last two letters with m u

change last to m u if consonant

prompters

promptemu

promptemu

ladylike
flintlocks
student
surtaxes
bedecks

ladylike
flintlocknl
studennl
surtaxenl
bedecknl

ending consonant is replaced with n l

drop last two and add n l

initials

initialnl

initialnl

porringer
puddling
synagog
curtseying
monsieur

porringeer
puddlinge
synageoge
curtseyinge
monsieur

add e next to letter g

when a letter is preceded by a g ,
e is added after that letter

rag

rage

rage

trivializes
tried
tearfully
hospitalize
patronizing

trivializes
tried
gxarfully
gxspitalize
gxtronizing

replace the 1st 2 letters of the word with a g x
if the word begins with a consonant then a vowel

if the second letter is a vowel , replace the
first two letters with g x

landlords

gxndlords

gxndlords

microseconds
antiviral
flintlock
appreciable
stricter

microsecnyr
antiviral
flintloyr
appreciabyr
stricter

replace consonants with y r

the last two letters are replaced by y r

exertion

exertion

exertiyr

2178



E Examples: Navigation

White breadcrumbs show the path taken by the agent.

Human description:
move to the star

Inferred description:
reach the star cell

reach square one right of triangle

reach cell to the right of the triangle

reach cell on left of triangle

reach square left of triangle

reach spade

go to the spade

left of the circle

go to the cell to the left of the circle

reach cell below the circle

reach cell below circle
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Abstract

The use of explicit object detectors as an in-
termediate step to image captioning – which
used to constitute an essential stage in early
work – is often bypassed in the currently dom-
inant end-to-end approaches, where the lan-
guage model is conditioned directly on a mid-
level image embedding. We argue that explicit
detections provide rich semantic information,
and can thus be used as an interpretable repre-
sentation to better understand why end-to-end
image captioning systems work well. We pro-
vide an in-depth analysis of end-to-end image
captioning by exploring a variety of cues that
can be derived from such object detections.
Our study reveals that end-to-end image cap-
tioning systems rely on matching image rep-
resentations to generate captions, and that en-
coding the frequency, size and position of ob-
jects are complementary and all play a role in
forming a good image representation. It also
reveals that different object categories con-
tribute in different ways towards image cap-
tioning.

1 Introduction

Image captioning (IC), or image description gen-
eration, is the task of automatically generating
a sentential textual description for a given im-
age. Early work on IC tackled the task by
first running object detectors on the image and
then using the resulting explicit detections as in-
put to generate a novel textual description, e.g.
(Kulkarni et al., 2011; Yang et al., 2011). With
the advent of sequence-to-sequence approaches
to IC, e.g. (Karpathy and Fei-Fei, 2015; Vinyals
et al., 2015), coupled with the availability of
large image description datasets, the performance
of IC systems showed marked improvement, at
least according to automatic evaluation metrics
like Meteor (Denkowski and Lavie, 2014) and
CIDEr (Vedantam et al., 2015).

The currently dominant neural-based IC sys-
tems are often trained end-to-end, using parallel
(image, caption) datasets. Such systems are es-
sentially sequential language models conditioned
directly on some mid-level image features, such as
an image embedding extracted from a pre-trained
Convolutional Neural Network (CNN). Thus, they
bypass the explicit detection phase of previous
methods and instead generate captions directly
from image features. Despite significant progress,
it remains unclear why such systems work. A
major problem with these IC systems is that they
are less interpretable than conventional pipelined
methods which use explicit detections.

We believe that it is timely to again start explor-
ing the use of explicit object detections for image
captioning. Explicit detections offer rich semantic
information, which can be used to model the enti-
ties in the image as well as their interactions, and
can be used to better understand image captioning.

Recent work (Yin and Ordonez, 2017) showed
that conditioning an end-to-end IC model on vi-
sual representations that implicitly encode object
details yields reasonably good captions. Never-
theless, it is still unclear why this works, and what
aspects of the representation allow for such a good
performance. In this paper, we study end-to-end
IC in the context of explicit detections (Figure 1)
by exploring a variety of cues that can be derived
from such detections to determine what informa-
tion from such representations helps image cap-
tioning, and why. To our best knowledge, our work
is the first experimental analysis of end-to-end IC
frameworks that uses object-level information that
is highly interpretable as a tool for understanding
such systems. Our main contributions are as fol-
lows:

1. We provide an in-depth analysis of the perfor-
mance of end-to-end IC using a simple, yet
effective ‘bag of objects’ representation that
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Figure 1: Using explicit detections as an intermediate step towards end-to-end image captioning. The question we
investigate is what information can we extract from explicit detections that can be useful for image captioning.

is interpretable, and generates good captions
despite being low-dimensional and highly
sparse (Section 3).

2. We investigate whether other spatial cues can
be used to provide information complemen-
tary to frequency counts (Section 3).

3. We study the effect of incorporating different
spatial information of individual object in-
stances from explicit detections (Section 4).

4. We analyze the contribution of the categories
in representations for IC by ablating individ-
ual categories from them (Section 5).

Our hypothesis is that there are important com-
ponents derived from explicit detections that can
be used to effectively inform IC. Our study con-
firms our hypothesis, and that features such as the
frequency, size and position of objects all play a
role in forming a good image representation to
match their corresponding representations in the
training set. Our findings also show that differ-
ent categories contribute differently to IC, and this
partly depends on how likely they are to be men-
tioned in the caption given that they are depicted
in the image. The results of our investigation will
help further work towards more interpretable im-
age captioning.

2 Related work

Early work on IC apply object detectors explic-
itly on an image as a first step to identify enti-
ties present in the image, and then use these de-
tected objects as input to an image caption gen-
erator. The caption generator typically first per-
forms content selection (selecting a subset of ob-
jects to be described) and generates an intermedi-
ate representation (e.g. semantic tuples or abstract
trees), and then performs surface realization using

rules, templates, n-grams or a maximum entropy
language model. The main body of work uses ob-
ject detectors for 20 pre-specified PASCAL VOC
(Visual Object Classes) (Everingham et al., 2015)
(Yang et al., 2011; Kulkarni et al., 2011; Li et al.,
2011; Mitchell et al., 2012), builds a detector in-
ferred from captions (Fang et al., 2015), or as-
sumes gold standard annotations are available (El-
liott and Keller, 2013; Yatskar et al., 2014).

Currently, deep learning end-to-end approaches
dominate IC work (Donahue et al., 2015; Karpa-
thy and Fei-Fei, 2015; Vinyals et al., 2015). Such
approaches do not use an explicit detection step,
but instead use a ‘global’ image embedding as
input (generally a CNN) and learn a language
model (generally an LSTM) conditioned on this
input. Thus, they are trained to learn image cap-
tion generation directly from a parallel image–
caption dataset. The advantage is that no firm de-
cisions need to be made about object categories.
However, such approaches are hard to interpret
and are dataset dependent (Vinyals et al., 2017).

Some recent work use object-level semantics
for end-to-end IC (Gan et al., 2017; Wu et al.,
2016; You et al., 2016). Such systems represent
images as predictions of semantic concepts occur-
ring in the image. These predictions, however,
are at a global, image level (“does this image con-
tain a chair?”), rather than at object instance level
(“there is a big chair at position x”). In addition,
most previous work regard surface-level terms ex-
tracted directly from captions as ‘objects’, while
we use off-the-shelf predefined object categories
which have a looser connection between the im-
age and the caption (e.g. objects can be described
in captions using different terms, depicted objects
might not be mentioned in captions, and captions
might mention objects that are not depicted).
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Yin and Ordonez (2017) propose conditioning
an end-to-end IC model on information derived
from explicit detections. They implicitly encode
the category label, position and size of object in-
stances as an ‘object-layout’ LSTM and condition
the language model on the final hidden state of
this LSTM, and produce reasonably good image
captions based only on those cues, without the di-
rect use of images. Our work is different in that
we feed information from explicit object detec-
tions directly to the language model in contrast to
an object-layout LSTM which abstracts away such
information, thereby retaining the interpretability
of the input image representation. This gives us
more control over the image representation which
is simply encoded as a bag of categorical variables.

There is also recent work applying attention-
based models (Xu et al., 2015) on explicit ob-
ject proposals (Anderson et al., 2018; Li et al.,
2017), which may capture object-level informa-
tion from the attention mechanism. However,
attention-based models require object information
in the form of vectors, whereas our models use in-
formation of objects as categorical variables which
allow for easy manipulation but are not compati-
ble with the standard attention-based models. The
model that we use, under similar conditions (i.e.
under similar parametric settings), is comparable
to the state-of-the-art models.

3 Bag of objects

We base our experiments on the MS COCO
dataset (Lin et al., 2014). From our preliminary
experiments, we found that a simple bag of ob-
ject categories used as an image representation for
end-to-end IC led to good scores according to au-
tomatic metrics, comparable to and perhaps even
higher than those using CNN embeddings. This is
surprising given that this bag of objects vector is
low-dimensional (each element represents the fre-
quency of one of 80 COCO categories) and sparse
(mainly zeros, as only a few object categories tend
to occur in a given image). In simple terms, it ap-
pears that the IC model can generate a reasonable
caption by merely knowing what is in the image,
e.g. that there are three persons, three benches and
a bicycle in Figure 1.

This observation raises the following questions.
What is it in this simple bag of objects repre-
sentation that contributes to the surprisingly high
performance on IC? Does it lie in the frequency

counts? Or the choice of categories themselves?
It is also worth noting that the image captions
in COCO were crowd-sourced independent of the
COCO object annotations, i.e. image captions
were written based only on the image, without
object-level annotations. The words used in the
captions thus do not correspond directly to the 80
COCO categories (e.g. a cup may not be men-
tioned in a description even though it is present
in the image, and vice versa, i.e. objects described
in the caption may not correspond to any of the
categories).

In order to shed some light into what makes bag
of object categories representations work so well
for IC, we first investigate whether the frequency
counts is the main contributor. We then proceed to
studying what else can be exploited from explicit
object detections to improve on the bag of objects
model, for example the size of object instances.
We also perform an analysis on these representa-
tions to gain more insights into why the bag of ob-
jects model performs well.

3.1 Image captioning model
Our implementation is based on the end-to-end ap-
proach of Karpathy and Fei-Fei (2015). We use
an LSTM (Hochreiter and Schmidhuber, 1997)
language model as described in Zaremba et al.
(2014). To condition the image information, we
first perform a linear projection of the image rep-
resentation followed by a non-linearity:

x = σ(W ·Im) (1)

where Im ∈ Rd is the d-dimensional initial image
representation, W ∈ Rn×d is the linear transfor-
mation matrix, σ is the non-linearity. We use Ex-
ponential Linear Units (Clevert et al., 2016) as the
non-linear activation in all our experiments. We
initialize the LSTM-based caption generator with
the projected image representation, x.

Training and inference. The caption generator
is trained to generate sentences conditioned on
x. We train the model by minimizing the cross-
entropy, i.e. the sentence-level loss corresponds to
the sum of the negative log likelihood of the cor-
rect word at each time step:

Pr(S|x; θ) =
∑

t

log(Pr(wt|wt−1..w0;x)) (2)

where Pr (S|x; θ) is the sentence-level loss con-
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ditioned on the image feature x and Pr(wt) is the
probability of the word at time step t. This is
trained with standard teacher forcing as described
in Sutskever et al. (2014), where the correct word
information is fed to the next state in the LSTM.

Inference is usually performed using approxi-
mate techniques like beam search and sampling
methods. As we are mainly interested in study-
ing different image representations, we focus on
the language output that the models can most con-
fidently produce. In order to isolate any other vari-
ables from the experiments, we generate captions
using a greedy argmax approach. We use a 2-
layer LSTM with 128-dimensional word embed-
dings and 256-dimensional hidden dimensions.
As training vocabulary we retain only words that
appear at least twice. We provide details about hy-
perparameters and tuning in Appendix A.

3.2 Visual representations

The first part of our experiments studies the role
of frequency counts of the 80-dimensional bag
of objects representation. We explore the effects
of using the following variants of the bag of ob-
jects representation: (i) Frequency: The number
of instances per category; (ii) Normalized: The
frequency counts normalized such that the vector
sums to 1. This represents the proportion of ob-
ject occurrences in the image; (iii) Binarized: An
object category’s entry is set to 1 if at least one
instance of the category occurs, and 0 otherwise.

Berg et al. (2012) explore various factors that
dictate what objects are mentioned in image de-
scriptions, and found that object size and its po-
sition relative to the image centre are important.
Inspired by these findings, we explore alternative
representations based on these cues: (i) Object
size: The area of the region provided by COCO,
normalized by image size; we encode the largest
object if multiple objects occur for the same cat-
egory (max pooling). (ii) Object distance: The
Euclidean distance from the object bounding box
centre to the image centre, normalized by image
size; we encode the object closest to the centre
if multiple instances occur (min pooling). We
also explore concatenating these features to study
their complementarity.

Finally, we study the effects of removing in-
formation from the bag of objects representation.
More specifically, we compare the results of re-
taining only a certain number of object instances

Representation GT Detect

CNN (ResNet-152 POOL5) - 0.749

Frequency 0.807 0.752
Normalized 0.762 0.703
Binarized 0.751 0.703

Object min distance 0.759 0.691
Object max size 0.793 0.725

Obj max size + Obj min distance 0.799 0.743
Frequency + Obj min distance 0.830 0.769
Frequency + Obj max size 0.836 0.769
All three features 0.849 0.743

Table 1: CIDEr scores for image captioning using bag
of objects variants as visual representations. We com-
pare the results of using ground truth annotations (GT)
and the output of a detector (Detect). As comparison
we also provide, in the first row, the results of using a
ResNet-152 POOL5 CNN image embedding with our
implementation of an end-to-end IC system.

in the frequency-based bag of objects representa-
tion, rather than representing an image with all ob-
jects present. We experiment with retaining only
the frequency counts for one object category and
25%, 50%, and 75% of object categories; the re-
maining entries in the vector are set to zero. The
object categories to be retained are selected, per
image: (i) randomly; (ii) by theN% most frequent
categories of the image; (iii) by the N% largest
categories of the image; (iv) by theN% categories
closest to the centre of the image.

We performed these evaluations based on (i)
ground truth COCO annotations and (ii) the output
of an off-the-shelf object detector (Redmon and
Farhadi, 2017) trained on 80 COCO categories.
With ground truth annotations we can isolate is-
sues stemming from incorrect detections.

3.3 Experiments
We train our models on the full COCO training
set, and use the standard, publicly available splits1

of the validation set as in previous work (Karpa-
thy and Fei-Fei, 2015) for validation and testing
(5,000 images each). We use CIDEr (Vedantam
et al., 2015) – the official metric for COCO – as
our evaluation metrics for all experiments. For
completeness, we present scores for other com-
mon IC metrics in Appendix B.

Table 1 shows the CIDEr scores of IC sys-
tems using variants of the bag of objects repre-
sentation, for both ground truth annotations and

1http://cs.stanford.edu/people/
karpathy/deepimagesent
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Feature vs. Pooling Min Max Mean

Obj. Size 0.748 0.793 0.789
Obj. Distance 0.759 0.768 0.740

Table 2: CIDEr scores for captioning comparing the
use of min, max or average pooling of either object size
or distance features, using ground truth annotations.

the output of an object detector. Compared to
a pure CNN embedding (ResNet-152 POOL5),
our object-based representations show higher (for
ground truth annotations) or comparable CIDEr
scores (for detectors). Our first observation is that
frequency counts are essential to IC. Using nor-
malized counts as a representation gives poorer re-
sults, which intuitively makes sense: An image
with 20 cars and 10 people is significantly dif-
ferent from an image with two cars and one per-
son. Using binarized counts (presence or absence)
brings the score further down. This is to be ex-
pected: An image with one person is very different
from one with 10 people.

Using spatial information (size or distance) also
proved useful. Encoding the object size in place
of frequency gave reasonably better results over
using object distance from the image centre. We
can conclude that the size and centrality of objects
are important factors for captioning, with object
size being more informative than position.

We also experimented with different methods
for aggregating multiple instances of the same
category, in addition to choosing the biggest in-
stance and the instance closest to the image cen-
tre. For example, choosing the smallest instance
(min pooling) or the instance furthest away from
the image centre (max pooling), or just averag-
ing them (mean pooling). Table 2 shows the re-
sults. For object size, the findings are as expected:
Smaller object instances are less important for IC,
although averaging them works comparably well.
Surprisingly, in the case of distance, using the ob-
ject furthest from the image centre actually gave
slightly better results than the one closest. Fur-
ther inspection revealed that aggregating instances
is not effective in some cases. We found that the
positional information (and interaction with other
objects) captured by the object further away may
sometimes represent the semantics of the image
better than the object in the centre of the image.
For example, in Figure 2, encoding only the posi-
tion of the person in the middle will result in the

Obj. min distance:
• a man in a kitchen preparing food in a kitchen .
Obj. max distance:
• a group of people standing around a kitchen counter .

Figure 2: Example where encoding the distance of the
object furthest away (solid green) is better than that of
the one closest to the image centre (dashed red). The
IC model assumes that only one person is in the middle
in the former case, and infers that many people may be
gathered around a table in the latter.

representation being similar to other images with
only one person in the centre of the image (and
also on a kitchen counter). Representing the per-
son as the one furthest from the image will result
in some inference (from training data) that there
could be more than one person in the image sit-
ting around the kitchen counter rather than a sin-
gle person standing at the kitchen counter.

The combination of results (bottom row of Ta-
ble 1) shows that the three features (frequency,
object max size and min distance) are comple-
mentary, and that combining any pair gives bet-
ter CIDEr scores than each alone. The combina-
tion of all three features produces the best results.
These results are interesting, as adding spatial in-
formation of even just one object per category can
produce a better score. This has, to our knowl-
edge, not been previously demonstrated. The per-
formance of using an explicit detector rather than
ground truth annotations is poorer, as expected
from noisy detections. However, the overall trend
generally remains similar, except for the combina-
tion of all three features which gave poorer scores.

Finally, Figure 3 shows the results of partially
removing or masking the information captured
by the bag of object representation (frequency).
As expected, IC performance degrades when less
than 75% of information is retained. The perfor-
mance of the system where the representation is
reduced using frequency information suffers the
most (even worst than removing categories ran-
domly), suggesting that frequency does not corre-
spond to an object category’s importance, i.e. just
because there is only one person in the image does
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Figure 3: Change in CIDEr scores for image caption-
ing by reducing the number of (ground truth) object in-
stances in the image representation, based on different
heuristics.

not mean that it is less important than the ten cars
depicted. On the other hand, object size correlates
with object importance in IC, i.e. larger objects are
more important than smaller objects for IC: The
performance does not degrade as much as remov-
ing categories by their frequency in the image.

3.4 Analysis

We hypothesize that the bag of objects represen-
tation performs well because it serves as a good
representation for the dataset and allows for bet-
ter image matching. One observation is that the
category distribution between the training and test
sets are very similar (Figure 4), thus increasing the
chance of the bag of objects representation pro-
ducing a close match to one in the training set.
From this observation, we posit that end-to-end
IC models leverage COCO being repetitive to find
similar matches for a test image to a combination
of images in the training set. Further investigation
on the category distribution (e.g. by splitting the
dataset such that the test set contains unseen cate-
gories) is left for future work.

k-Nearest neighbour analysis. We further in-
vestigate our claim that end-to-end IC systems es-
sentially perform complex image matching against
the training set with the following experiment.
The idea is that if the IC model performs some
form of image matching and text retrieval from
the training set, then the nearest neighbour (from
training) of a test image should have a caption
similar to the one generated by the model. How-
ever, the model does not always perform text re-
trieval as the LSTM is known to sometimes gen-
erate novel captions, possibly by aggregating or
‘averaging’ the captions of similar images and per-
forming some factorization. We first generate cap-
tions for every training image using the bag of ob-
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Figure 4: Object category distributions for COCO
train, validation and test splits: normalized document
frequency of each category. The distribution between
the training and test sets are almost identical. A higher
resolution version can be found in Appendix B.

Type BLEU Meteor CIDEr SPICE

Freq. 0.868 0.591 6.956 0.737
Proj. 0.912 0.634 7.651 0.799

Exact (2301) 1.000 1.000 10.000 1.000

Freq. (¬ Exact) 0.757 0.498 4.337 0.512
Proj. (¬ Exact) 0.837 0.560 5.638 0.628

Table 3: k-Nearest Neighbour (k=5) trial on the ground
truth bag of objects (Freq.) and the projected bag of
objects (Proj.) representations. The references are cap-
tions of 5-nearest images in each space. Exact repre-
sents a subset of 2301 samples where all the 5 neigh-
bours have 0 distance (replicas) and ¬ represents near-
est neighbours that are not replicas of the test image.

jects model (with ground truth frequency counts).
We then compute the k-nearest training images for
each given test image using both the bag of ob-
jects representation and its projection (Eq. 1). Fi-
nally, we compute the similarity score between the
generated caption of the test image against all k-
nearest captions. The similarity score measures
how well a generated caption matches its nearest
neighbour’s captions. We expect the score to be
high if the IC system generates an image similar
to something ‘summarized’ from the training set.

As reported in Table 3, overall the captions
seem to closely match the captions of 5 near-
est training images. Further analysis showed that
2301 out of 5000 captions had nearest images at
a zero distance, i.e., the same exact representa-
tion was seen at least 5 times in training (note that
CIDEr gives a score of 10 only if the test caption
and all references are the same). We found that
among the non-exact image matches, the projected
image representation better captures candidates in
the training set than bag of objects. Figure 5 shows
the five nearest neighbours of an example non-
exact match and their generated captions in the
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te
st

person (5), cup (8), spoon (1), bowl (8), carrot (10),
chair (6), dining table (3)

⇒ a group of people sitting around a table with food .

1

person (4), cup (4), spoon (1), bowl (5), chair (6), dining
table (4)

⇒ a woman sitting at a table with a plate of food .

2

person (9), bottle (1), cup (6), bowl (4), broccoli (2),
chair (5), dining table (3)

⇒ group of people sitting at a table eating food .

3

person (11), cup (2), bowl (4), carrot (6), cake (1), chair (4),
dining table (1)

⇒ a group of people sitting around a table with a cake .

4

cup (1), spoon (1), bowl (9), carrot (10), chair (3), potted
plant (1), dining table (1), vase (1)

⇒ a table with a variety of food on it .

5

cup (4), bowl (7), carrot (6), dining table (1)

⇒ a table with bowls of food and vegetables .

Figure 5: Five nearest neighbours from the training set
in the projected space, for an example test image’s (top
row) original bag of objects representation that does not
have an exact match in the training. For each image, we
show the ground truth categories (and frequencies in
parenthesis) and the generated caption. More examples
can be found in Appendix D.

projection space. Note that the nearest neighbours
are an approximation since we do not know the
exact distance metric derived from the LSTM. We
observe that the captions for unseen representa-
tions seem to be interpolated from multiple neigh-
bouring points in the projection space, but further
work is needed to analyze the hidden represen-
tations of the LSTM to understand the language
model and to give firmer conclusions.

4 Spatial information on instances

Here we further explore the effect of incorporat-
ing spatial information of object detections for IC.
More specifically, we enrich the representations by
encoding positional and size information for more
object instances, rather than restricting the encod-
ing to only one instance per category which makes
the representation less informative.

4.1 Spatial representation
We explore encoding object instances and their
spatial properties as a fixed-size vector. In con-
trast to Section 3, we propose handling multiple
instances of the same category by encoding spatial
properties of individual instances rather than ag-
gregating them as a single value. Each instance is
represented as a tuple (x, y, w, h, a), where x and
y are the coordinates of the centre of the bound-
ing box and are normalized to the image width

Feature set Fixed Tuned

Bag of objects 0.807 0.834

(x, y, w, h, a) 0.870 0.915
(x, y, w, h) 0.859 0.898
(x, y, a) 0.850 0.900
(w, h) 0.870 0.920
(a) 0.869 0.857
(x, y) 0.810 0.863

LSTM Yin and Ordonez (2017)† 0.922

Table 4: CIDEr scores for image captioning using rep-
resentations encoding spatial information of instances
derived from ground truth annotations, with either fixed
hyperparameters (Section 3.1) or with hyperparameter
tuning. † Results taken from (Yin and Ordonez, 2017).

and height respectively, w and h are the width and
height of the bounding box respectively, and a is
the area covered by the object segment and nor-
malized to the image size. Note that w × h ≥
a (box encloses the segment). We assume that
there are maximum 10 instances per vector, and
instances of the same category are ordered by a
(largest instance first). We encode each of the 80
categories as separate sets. Non-existent objects
are represented with zeros. The dimension of the
final vector is 4000 (80 × 10 × 5). We also per-
form a feature ablation experiment to isolate the
contribution of different spatial components.

4.2 Experiments

All experiments in this subsection use ground truth
annotations – we expect the results of using an ob-
ject detector to be slightly worse but in most cases
follow a similar trend, as shown in the previous
section. Table 4 shows the CIDEr scores using
the same setup as Section 3, but using represen-
tations with spatial information about individual
object instances. Encoding spatial information led
to substantially better performance over bag of ob-
jects alone. Consistent with our previous obser-
vation, w and h (bounding box width and height)
seems to be the most informative feature combi-
nation – it performs well even without positional
information. Area (a) is less informative than the
combination of w and h, possibly because it com-
presses width-height ratio information despite dis-
carding noise from background regions. Positional
information (x, y) does not seem to be as infor-
mative, consistent with observations from previ-
ous work (Wang and Gaizauskas, 2016).

The last column in Table 4 shows the CIDEr
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Image ID: 378657

Objects in the image person, clock

Representation Caption

Frequency a large clock tower with a large clock on it .
Object min distance a clock tower with a large clock on it ’s face .
Object max size a man standing in front of a clock tower .
All three features a clock tower with people standing in the middle of the water .
(x, y) a large clock tower with a clock on the front .
(w, h) a clock on a pole in front of a building
(a) a large clock tower with people walking around it
(x, y, w, h, a) a group of people standing around a clock tower .

CNN (ResNet-152) a large building with a clock tower in the middle of it .
person removed a clock tower with a weather vane on top of it .

Figure 6: Example captions with different models. The models with explicit object detection and additional spatial
information ((x, y, w, h, a)) are more precise in most cases. The output of a standard ResNet-152 POOL5 is also
shown, as well as that of the model where the most salient category – person – is removed from the feature vector.
More example outputs are available in Appendix C.

scores when training the models by performing
hyperparameter tuning during training. We note
that the results with our simpler image representa-
tion are comparable to the ones reported in Yin and
Ordonez (2017), which use more complex mod-
els to encode similar image information. Interest-
ingly, we observe that positional information (x,
y) work better than before tuning in this case.

Example outputs from the models in Sections 3
and 4 can be found in Figure 6.

5 Importance of different categories

In the previous sections, we explore IC based on
explicit detections for 80 object categories. How-
ever, not all categories are made equal. Some cat-
egories could impact IC more than others (Berg
et al., 2012). In this section we investigate which
categories are more important for IC on the
COCO dataset. Our category ablation experi-
ment involves removing one category from the
80-dimensional bag of objects (ground truth fre-
quency) representation at a time, resulting in 80
sets of 79D vectors without each ablated category.

We postulate that salient categories should lead
to larger performance degradation than others.
However, what makes a category ‘salient’ in gen-
eral (dog vs. cup)? We hypothesize that it could
be due to (i) how frequently it is depicted across
images; (ii) how frequently it is mentioned in the
captions when depicted in the image. To quantify
these hypotheses, we compute the rank correla-
tion between changes in CIDEr from removing the
category and each of the statistic below:

• f(vc) =
∑N
i 1(c ∈ Ci): frequency of the

ablated category c being annotated among N
images in the training set, where Ci is the

set of all categories annotated in image i, and
1(x) is the indicator function.
• p(tc|vc) ≈ f(tc,vc)

f(vc)
: proportion of ablated cat-

egory being mentioned in any of the refer-
ence captions given that it is annotated in the
image in the training set.

For determining whether a depicted category is
mentioned in the caption, the matching method de-
scribed in Ramisa et al. (2015) is used to increase
recall by matching category labels with (i) the term
themselves; (ii) the head noun for multiword ex-
pressions; (iii) WordNet synonyms and hyponyms.
We treat these statistics as an approximation be-
cause of the potential noise from the matching pro-
cess, although it is clean enough for our purposes.

We have also tried computing the correlation
with f(tc) (frequency of the category being men-
tioned regardless of whether or not it is depicted).
However, we found the word matching process too
noisy as it is not constrained or grounded on the
image (e.g. “hot dog” is matched to the dog cate-
gory). Thus, we do not report the results for this.

5.1 Experiments
Figure 7 shows the result of the category ablation
experiment. Categories like train, sandwich, per-
son and spoon led to the largest drop in CIDEr
scores. On the other end, categories like surf-
board, carrot and book can be removed without
negatively affecting the overall score.

By comparing the CIDEr score changes against
the frequency counts of object annotations in the
training set (top row), there does not seem to be a
clear correlation between depiction frequency and
CIDEr. Categories like bear are infrequent but led
to a large drop in score; likewise, chair and din-
ing table are frequent but do not affect the results
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Figure 7: Difference in CIDEr scores when removing each category from the bag of objects representation (79
dimensions), compared to using the full 80D vector (bottom plot). See main text for details.

Coefficient value (p-value)

f(vc) p(tc|vc)
Spearman’s ρ 0.137 (0.226) 0.227 (0.043)
Kendall’s τ 0.093 (0.223) 0.153 (0.047)

Table 5: Correlation between changes in CIDEr score
from category ablation and the frequency of depiction
of the category (f(vc)) against the probably of it being
mentioned in the caption given depiction ((p(tc|vc)).

as negatively. In contrast, the frequency of a cate-
gory being mentioned given that it is depicted is a
better predictor for the changes in CIDEr scores in
general (middle row). Animate objects seem to be
important to IC and are often mentioned in cap-
tions (Berg et al., 2012). Interestingly, removing
spoon greatly affects the results even though it is
not frequent in captions.

Table 5 presents the rank correlation (Spear-
man’s ρ and Kendall’s τ , two-tailed test) between
changes in CIDEr and the two heuristics. While
both heuristics are positively correlated with the
changes in CIDEr, we can conclude that the fre-
quency of being mentioned (given that it is de-
picted) is better correlated with the score changes
than the frequency of depiction. Of course, the
categories are not mutually exclusive and object
co-occurrence may also play a role. However, we
leave this analysis for future work.

Figure 6 shows an example when the category
person is removed from the feature vector. Here,
the model does not generate any text related to per-

son, as the training set contains images of clocks
without people in it.

6 Conclusions

In this paper we investigated end-to-end image
captioning by using highly interpretable represen-
tations derived from explicit object detections. We
provided an in-depth analysis on the efficacy of a
variety of cues derived from object detections for
IC. We found that frequency counts, object size
and position are informative and complementary.
We also found that some categories have a bigger
impact on IC than others. Our analysis showed
that end-to-end IC systems are image matching
systems that project image representations into a
learned space and allow the LSTM to generate
captions for images in that projected space.

Future work includes (i) investigating how ob-
ject category information can be better used or ex-
panded to improve IC; (ii) analyzing end-to-end
IC systems by using interpretable representations
that rely on other explicit detectors (e.g. actions,
scenes, attributes). The use of such explicit infor-
mation about object instances could help improve
our understanding of image captioning.

Acknowledgments

This work is supported by the MultiMT project
(H2020 ERC Starting Grant No. 678017). The au-
thors also thank the anonymous reviewers for their
valuable feedback on an earlier draft of the paper.

2188



References
Peter Anderson, Xiaodong He, Chris Buehler, Damien

Teney, Mark Johnson, Stephen Gould, and Lei
Zhang. 2018. Bottom-up and top-down attention
for image captioning and VQA. In Proceedings of
the IEEE Conference on Computer Vision & Pattern
Recognition (CVPR). IEEE.

Alexander C. Berg, Tamara L. Berg, Hal Daumé III,
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A Hyperparmeter Settings

The hyperparameter settings for our model are as
follows:
• LSTM layers: 2-Layer LSTM
• Word Embedding Dimensionality: 128
• Hidden Layer Dimensionality: 256
• Maximum Epochs: 50
• Batch Size: [50, 100]
• LSTM dropout settings: [0.2, 0.7]
• Vocabulary threshold: 2
• Learning Rate: [1e-4, 4e-4]
• Optimiser: Adam
For items in a range of values, we used grid

search to tune the hyperparmeters.

B Full Experimental Results

Tables 6 and 7 show the results of several of our
experiments with the most common metrics used
in image captioning: BLEU, Meteor, ROUGEL,
CIDEr and SPICE.

Figure 8 gives a high resolution version of Fig-
ure 4, showing the similarity between train and test
distributions in terms of object categories.

C Example captions for different models

Figure 9 shows example images from COCO and
the output captions from different models. We
compare the outputs of selected models from Sec-
tions 3 and 4, and a model where the person cate-
gory is removed from the input vector (Section 5).

D Example nearest neighbours for test
images

Figure 10 shows the five nearest neighbours in the
training set of each non-replica example from the
test set (where the exact ground truth frequency
representation does not occur in training). See
Section 3.4 for a more detailed description of the
experiment.
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Representation B1 B2 B3 B4 M R C S

ResNet-152 POOL5 0.664 0.480 0.335 0.233 0.220 0.486 0.749 0.150

Frequency 0.668 0.481 0.334 0.231 0.223 0.486 0.807 0.155
Normalized 0.656 0.468 0.324 0.226 0.218 0.477 0.762 0.148
Binarized 0.652 0.465 0.317 0.217 0.218 0.473 0.751 0.146

Object min distance 0.650 0.460 0.316 0.219 0.218 0.474 0.759 0.147
Object max size 0.661 0.476 0.332 0.232 0.224 0.483 0.793 0.151

Obj max size + Obj min distance 0.670 0.482 0.333 0.231 0.225 0.485 0.799 0.153
Frequency + Obj min distance 0.675 0.491 0.345 0.239 0.229 0.495 0.836 0.160
Frequency + Obj max size 0.684 0.496 0.349 0.244 0.228 0.495 0.830 0.159
All three features 0.683 0.501 0.355 0.250 0.229 0.498 0.849 0.162

Table 6: Full results for image captioning using ground truth bag of objects variants as visual representations, for
metrics BLEU, Meteor, ROUGEL, CIDEr and SPICE.

Representation B1 B2 B3 B4 M R C S

Bag of objects 0.668 0.481 0.334 0.231 0.223 0.486 0.807 0.155

(x, y, w, h, a) 0.683 0.503 0.359 0.255 0.233 0.503 0.870 0.163
(x, y, w, h) 0.687 0.503 0.355 0.251 0.233 0.501 0.859 0.166
(x, y, a) 0.683 0.502 0.356 0.250 0.232 0.501 0.850 0.164
(w, h) 0.693 0.511 0.364 0.256 0.233 0.505 0.870 0.165
(a) 0.684 0.503 0.358 0.254 0.232 0.501 0.869 0.162
(x, y) 0.675 0.488 0.341 0.237 0.224 0.491 0.810 0.155

Table 7: Full results for image captioning, using representations encoding spatial information of instances derived
from ground truth annotations with fixed hyperparameters, for metrics BLEU, Meteor, ROUGEL, CIDEr and
SPICE.
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of each category. The distribution between the training and test sets are almost identical.
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Image ID: 165225

Objects in the image person, tie, tv, laptop, chair

Representation Caption

Frequency a group of people sitting around a table with a laptop .
Object min distance a man sitting at a desk with a laptop computer .
Object max size a man standing in front of a tv in a living room .
All three features a group of people sitting at a table with a laptop .
(x, y) a group of people standing around a table with a microphone .
(w, h) a group of people sitting around a table with a laptop .
(a) a group of people standing in a living room .
(x, y, w, h, a) a group of people sitting at a table with laptops .

CNN (ResNet-152) a group of people sitting around the table .
person removed a man standing in front of a laptop computer .

Image ID: 196715

Objects in the image person, car, truck, surfboard

Representation Caption

Frequency a man riding a surfboard on top of a wave .
Object min distance a man riding a surfboard on top of a wave .
Object max size a red and white truck driving down a street .
All three features a red and white truck driving down a street .
(x, y) a large white car parked in a parking lot .
(w, h) a large white truck with a surfboard on the back of it .
(a) a man riding a horse on a beach next to a dog .
(x, y, w, h, a) a car is parked on the side of a street with a car in the background .

CNN (ResNet-152) a boat is parked on the side of the road .
person removed a man is standing on a surfboard in the water .

Image ID: 491793

Objects in the image person, car, motorcycle, bus, handbag

Representation Caption

Frequency a group of people riding motorcycles down a street .
Object min distance a city bus driving down a street next to a traffic light .
Object max size a bus is driving down the street in the city .
All three features a group of people standing around a parking lot .
(x, y) a group of people standing around motorcycles in a parking lot .
(w, h) a group of people standing around a bus stop .
(a) a group of people riding bikes down a street .
(x, y, w, h, a) a group of motorcycles parked next to each other on a street .

CNN (ResNet-152) a bus is driving down a street with a lot of people .
person removed a group of people riding motorcycles on a city street .

Image ID: 378657

Objects in the image person, clock

Representation Caption

Frequency a large clock tower with a large clock on it .
Object min distance a clock tower with a large clock on it ’s face .
Object max size a man standing in front of a clock tower .
All three features a clock tower with people standing in the middle of the water .
(x, y) a large clock tower with a clock on the front .
(w, h) a clock on a pole in front of a building
(a) a large clock tower with people walking around it
(x, y, w, h, a) a group of people standing around a clock tower .

CNN (ResNet-152) a large building with a clock tower in the middle of it .
person removed a clock tower with a weather vane on top of it .

Figure 9: Examples of descriptions where models differ. The models with explicit object detection and additional
spatial information ((x, y, w, h, a)) is more precise in most cases (even though still incorrect in the second exam-
ple). In the first example, aggregating multiple instances for size and distance cues clearly removes the information
about the group of people in the image. The output of a standard CNN (ResNet-152 POOL5) is also shown, as
well as that of the model where the most salient category – person – is removed.
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Test Image ID: 242946

te
st person (5), cup (8), spoon (1), bowl (8), carrot (10), chair (6), dining table (3)

⇒ a group of people sitting around a table with food .

1 person (4), cup (4), spoon (1), bowl (5), chair (6), dining table (4)
⇒ a woman sitting at a table with a plate of food .

2 person (9), bottle (1), cup (6), bowl (4), broccoli (2), chair (5), dining table (3)
⇒ a group of people sitting at a table eating food .

3 person (11), cup (2), bowl (4), carrot (6), cake (1), chair (4), dining table (1)
⇒ a group of people sitting around a table with a cake .

4 cup (1), spoon (1), bowl (9), carrot (10), chair (3), potted plant (1), dining table (1), vase (1)
⇒ a table with a variety of food on it .

5 cup (4), bowl (7), carrot (6), dining table (1)
⇒ a table with bowls of food and vegetables .

Test Image ID: 378962

te
st person (14), backpack (3), umbrella (4), handbag (1), banana (4), apple (6), orange (10), chair (7), dining table (2)

⇒ a group of people standing around a fruit stand .

1 person (14), backpack (1), banana (5), apple (5), orange (13)
⇒ a group of people standing around a fruit stand .

2 person (13), truck (1), backpack (1), apple (2), orange (10)
⇒ a group of people standing around a fruit stand .

3 person (12), bicycle (1), handbag (3), banana (2), apple (2), orange (7)
⇒ a group of people standing around a fruit stand .

4 person (11), banana (4), apple (1), orange (14)
⇒ a man standing next to a fruit stand with bananas .

5 person (14), backpack (1), handbag (3), apple (7), orange (14)
⇒ a group of people standing around a fruit stand .

Test Image ID: 223648

te
st fork (3), spoon (14), chair (6), dining table (1), book (14)

⇒ a dining room with a table and chairs .

1 fork (1), knife (1), spoon (13), scissors (1)
⇒ a drawer of a variety of different types of food .

2 person (1), cup (3), knife (1), spoon (14), bowl (1), potted plant (1), dining table (1), vase (1)
⇒ a woman is sitting at a table with a glass of wine .

3 person (1), cup (1), fork (3), spoon (6), chair (9), dining table (5), vase (1)
⇒ a woman sitting at a table with a plate of food .

4 person (3), bottle (3), wine glass (5), cup (4), fork (3), knife (2), spoon (11), bowl (5), chair (4), dining table (2), book ( 2)
⇒ a group of people sitting around a table with food .

5 fork (4), knife (4), spoon (7), chair (1), couch (2), dining table (1)
⇒ a table with a table and chairs and a table .

Figure 10: Five nearest neighbours from the training set in the projected space, for several example test images’
(top row of each table) original bag of objects representation that does not have an exact match in the training. For
each image, we show the ground truth categories (and frequencies in parenthesis) and the generated caption.
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Abstract

Multimodal machine learning algorithms
aim to learn visual-textual correspondences.
Previous work suggests that concepts with
concrete visual manifestations may be eas-
ier to learn than concepts with abstract ones.
We give an algorithm for automatically
computing the visual concreteness of words
and topics within multimodal datasets. We
apply the approach in four settings, ranging
from image captions to images/text scraped
from historical books. In addition to en-
abling explorations of concepts in multi-
modal datasets, our concreteness scores
predict the capacity of machine learning
algorithms to learn textual/visual relation-
ships. We find that 1) concrete concepts
are indeed easier to learn; 2) the large num-
ber of algorithms we consider have similar
failure cases; 3) the precise positive rela-
tionship between concreteness and perfor-
mance varies between datasets. We con-
clude with recommendations for using con-
creteness scores to facilitate future multi-
modal research.

1 Introduction

Text and images are often used together to serve
as a richer form of content. For example, news
articles may be accompanied by photographs or
infographics; images shared on social media are
often coupled with descriptions or tags; and text-
books include illustrations, photos, and other vi-
sual elements. The ubiquity and diversity of such
“text+image” material (henceforth referred to as
multimodal content) suggest that, from the stand-
point of sharing information, images and text are
often natural complements.

Ideally, machine learning algorithms that in-
corporate information from both text and images
should have a fuller perspective than those that con-
sider either text or images in isolation. But Hill and
Korhonen (2014b) observe that for their particular
multimodal architecture, the level of concreteness
of a concept being represented — intuitively, the
idea of a dog is more concrete than that of beauty
— affects whether multimodal or single-channel
representations are more effective. In their case,
concreteness was derived for 766 nouns and verbs
from a fixed psycholinguistic database of human
ratings.

In contrast, we introduce an adaptive algorithm
for characterizing the visual concreteness of all the
concepts indexed textually (e.g., “dog”) in a given
multimodal dataset. Our approach is to leverage
the geometry of image/text space. Intuitively, a
visually concrete concept is one associated with
more locally similar sets of images; for example,
images associated with “dog” will likely contain
dogs, whereas images associated with “beautiful”
may contain flowers, sunsets, weddings, or an abun-
dance of other possibilities — see Fig. 1.

Allowing concreteness to be dataset-specific is
an important innovation because concreteness is
contextual. For example, in one dataset we work
with, our method scores “London” as highly con-
crete because of a preponderance of iconic London
images in it, such as Big Ben and double-decker
buses; whereas for a separate dataset, “London” is
used as a geotag for diverse images, so the same
word scores as highly non-concrete.

In addition to being dataset-specific, our method
readily scales, does not depend on an external
search engine, and is compatible with both dis-
crete and continuous textual concepts (e.g., topic
distributions).

Dataset-specific visual concreteness scores en-
able a variety of purposes. In this paper, we
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Image 
Feature 

Extraction

Image Feature Space

dogs versus beautiful

Text 
Concept 

Extraction
{dogs, man, woman,
two, walking, in, a, 

beautiful, rain, the, and}

A man and a woman 
walking two beautiful 

dogs in the rain.

Figure 1: Demonstration of visual concreteness estimation on an example from the COCO dataset. The
degree of visual clustering of textual concepts is measured using a nearest neighbor technique. The
concreteness of “dogs” is greater than the concreteness of “beautiful” because images associated with
“dogs” are packed tightly into two clusters, while images associated with “beautiful” are spread evenly.1

focus on using them to: 1) explore multimodal
datasets; and 2) predict how easily concepts will
be learned in a machine learning setting. We ap-
ply our method to four large multimodal datasets,
ranging from image captions to image/text data
scraped from Wikipedia,2 to examine the relation-
ship between concreteness scores and the perfor-
mance of machine learning algorithms. Specifi-
cally, we consider the cross-modal retrieval prob-
lem, and examine a number of NLP, vision, and
retrieval algorithms. Across all 320 significantly
different experimental settings (= 4 datasets ×
2 image-representation algorithms × 5 textual-
representation algorithms× 4 text/image alignment
algorithms × 2 feature pre-processing schemes),
we find that more concrete instances are easier to
retrieve, and that different algorithms have sim-
ilar failure cases. Interestingly, the relationship
between concreteness and retrievability varies sig-
nificantly based on dataset: some datasets appear to
have a linear relationship between the two, whereas
others exhibit a concreteness threshold beyond
which retrieval becomes much easier.

We believe that our work can have a positive im-
pact on future multimodal research. §8 gives more
detail, but in brief, we see implications in (1) eval-
uation — more credit should perhaps be assigned
to performance on non-concrete concepts; (2) cre-
ating or augmenting multimodal datasets, where
one might a priori consider the desired relative
proportion of concrete vs. non-concrete concepts;
and (3) curriculum learning (Bengio et al., 2009),

1Image copyright information is provided in the supple-
mentary material.

2 We release our Wikipedia and British Library
data at http://www.cs.cornell.edu/˜jhessel/
concreteness/concreteness.html

where ordering of training examples could take
concreteness levels into account.

2 Related Work

Applying machine learning to understand visual-
textual relationships has enabled a number of new
applications, e.g., better accessibility via auto-
matic generation of alt text (Garcia et al., 2016),
cheaper training-data acquisition for computer vi-
sion (Joulin et al., 2016; Veit et al., 2017), and
cross-modal retrieval systems, e.g., Rasiwasia et al.
(2010); Costa Pereira et al. (2014).

Multimodal datasets often have substantially dif-
fering characteristics, and are used for different
tasks (Baltrušaitis et al., 2017). Some commonly
used datasets couple images with a handful of un-
ordered tags (Barnard et al., 2003; Cusano et al.,
2004; Grangier and Bengio, 2008; Chen et al.,
2013, inter alia) or short, literal natural language
captions (Farhadi et al., 2010; Ordóñez et al., 2011;
Kulkarni et al., 2013; Fang et al., 2015, inter alia).
In other cross-modal retrieval settings, images are
paired with long, only loosely thematically-related
documents. (Khan et al., 2009; Socher and Fei-Fei,
2010; Jia et al., 2011; Zhuang et al., 2013, inter
alia). We provide experimental results on both
types of data.

Concreteness in datasets has been previously
studied in either text-only cases (Turney et al.,
2011; Hill et al., 2013) or by incorporating human
judgments of perception into models (Silberer and
Lapata, 2012; Hill and Korhonen, 2014a). Other
work has quantified characteristics of concrete-
ness in multimodal datasets (Young et al., 2014;
Hill et al., 2014; Hill and Korhonen, 2014b; Kiela
and Bottou, 2014; Jas and Parikh, 2015; Lazari-
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dou et al., 2015; Silberer et al., 2016; Lu et al.,
2017; Bhaskar et al., 2017). Most related to our
work is that of Kiela et al. (2014); the authors use
Google image search to collect 50 images each for
a variety of words and compute the average co-
sine similarity between vector representations of
returned images. In contrast, our method can be
tuned to specific datasets without reliance on an ex-
ternal search engine. Other algorithmic advantages
of our method include that: it more readily scales
than previous solutions, it makes relatively few as-
sumptions regarding the distribution of images/text,
it normalizes for word frequency in a principled
fashion, and it can produce confidence intervals.
Finally, the method we propose can be applied to
both discrete and continuous concepts like topic
distributions.

3 Quantifying Visual Concreteness

To compute visual concreteness scores, we adopt
the same general approach as Kiela et al. (2014):
for a fixed text concept (i.e., a word or topic), we
measure the variance in the corresponding visual
features. The method is summarized in Figure 1.

3.1 Concreteness of discrete words

We assume as input a multimodal dataset of n im-
ages represented in a space where nearest neigh-
bors may be computed. Additionally, each image
is associated with a set of discrete words/tags. We
write wv for the set of words/tags associated with
image v, and Vw for the set of all images asso-
ciated with a word w. For example, if the vth

image is of a dog playing frisbee, wv might be
{frisbee, dog, in, park}, and v ∈ Vpark.

Our goal is to measure how “clustered” a word
is in image feature space. Specifically, we ask:
for each image v ∈ Vw, how often are v’s nearest
neighbors also associated with w? We thus com-
pute the expected value of MNIkw, the number of
mutually neighboring images of word w:

EPdata
[MNIkw] =

1

|Vw|
∑

v∈Vw
|NNk(v)∩Vw| , (1)

where NNk(v) denotes the set of v’s k nearest
neighbors in image space.

While Equation 1 measures clusteredness, it
does not properly normalize for frequency. Con-
sider a word like “and”; we expect it to have low
concreteness, but its associated images will share

neighbors simply because “and” is a frequent un-
igram. To correct for this, we compute the con-
creteness of a word as the ratio of E[MNIkw] under
the true distribution of the image data to a random
distribution of the image data:

concreteness(w) =
EPdata

[MNIkw]

EPrandom
[MNIkw]

(2)

While the denominator of this expression
can be computed in closed form, we use
EPrandom

[MNIkw] ≈ k|Vw|
n ; this approximation is

faster to compute and is negligibly different from
the true expectation in practice.

3.2 Extension to continuous topics
We extend the definition of concreteness to con-
tinuous concepts, so that our work applies also
to topic model outputs; this extension is needed
because the intersection in Equation 1 cannot be di-
rectly applied to real values. Assume we are given
a set of topics T and an image-by-topic matrix
Y ∈ Rn×|T |, where the vth row3 is a topic distri-
bution for the text associated with image v, i.e.,
Yij = P (topic j|image i). For each topic t, we
compute the average topic weight for each image
v’s neighbors, and take a weighted average as:

concreteness(t) =
k

n
·
∑n

v=1[Yvt
∑

j∈NNk(v) Yjt]∑n
v=1 Yvt

(3)
Note that Equations 1 and 3 are computations

of means. Therefore, confidence intervals can be
computed in both cases either using a normality
assumption or bootstrapping.

4 Datasets

We consider four datasets that span a vari-
ety of multimodal settings. Two are publicly
available and widely used (COCO/Flickr);
we collected and preprocessed the other two
(Wiki/BL). The Wikipedia and British Library
sets are available for download at http:
//www.cs.cornell.edu/˜jhessel/
concreteness/concreteness.html.
Dataset statistics are given in Table 1, and
summarized as follows:
Wikipedia (Wiki). We collected a dataset consist-
ing of 192K articles from the English Wikipedia,
along with the 549K images contained in those

3 The construction is necessarily different for different
types of datasets, as described in §4.

2196



Edward Geary 
Lansdale (February 6, 
1908 – February 23, 
1987)[1] was a United 
States Air Force 
officer who served in 
the Office of Strategic 
Services and the 
Central Intelligence 
Agency (CIA). He 
rose to the rank of 
Major General and 
was awarded the 
Distinguished Service 
Medal in 1963. He 
was an early 
proponent of more 
aggressive U.S. 
actions in the Cold 
War. Lansdale was 
born in Detroit, 
Michigan and died in 
McLean, Virginia.

Micronesia (from 
Greek: μικρός, 
mikrós, "small" + 
Greek: νῆσος, nêsos, 
"island") is a 
subregion of Oceania, 
comprising thousands 
of small islands in the 
western Pacific 
Ocean. It has a shared 
cultural history with 
two other island 
regions, Polynesia to 
the east and Melanesia 
to the south.

The region has a 
tropical marine 
climate, and is part of 
the Oceania ecozone. 
There are four main 
archipelagos along 
with numerous 
outlying islands.

A small pizza 
covered in 
tomatoes, fresh 
basil and shredded 
cheese.

A skier participates 
in a competitive 
event at night.

...while still farther 
away, where the 
schuylkill and 
delaware meet on 
their way to the sea, 
low and dark on the 
horizon lies league 
island the 
navy-yard of the 
future. if, now, he 
turn his back on the 
river,...

keep still your 
sword, keep cool 
your head. i have 
no wish to see you 
dead, nor 
oockscombe either 
i shall try your skill 
in something 
different (pauses. 
eglantine looks at 
her inquiringly). i'll 
try you both. 
(archly) the king 
shall say which is 
the cleverest, his 
protege or mine.

stencil streetart 
banksy pasted 
unusualimage 
eastend london 
graffiti

(courtesy 
unusualimage)

1020mm columbus downtown hdr 
bridge nikon skyline d40x ohio river 
sigma (courtesy Julian Rosario)

WIKI BL

1

2

1

2

Wiki 1: ... Lansdale 
was a United States 
Air Force officer...
Wiki 2: ... Micronesia 
is a subregion of 
Oceania...
BL 1: ... cool your 
head. i have no wish 
to see you dead... 
BL 2: ... the schuylkill 
and delaware meet 
on their way to the 
sea...

Figure 2: Examples of text and images from our
new Wiki/BL datasets.

# Images Mean Len Train/Test

Wiki 549K 1397.8 177K/10K
BL 405K 2269.6 69K/ 5K
COCO 123K 10.5 568K/10K
Flickr 754K 9.0 744K/10K

Table 1: Dataset statistics: total number of im-
ages, average text length in words, and size of the
train/test splits we use in §6.

articles. Following Wilson’s popularity filtering
technique,4 we selected this subset of Wikipedia
by identifying articles that received at least 50
views on March 5th, 2016.5 To our knowledge,
the previous largest publicly available multimodal
Wikipedia dataset comes from ImageCLEF’s 2011
retrieval task (Popescu et al., 2010), which consists
of 137K images associated with English articles.

Images often appear on multiple pages: an image
of the Eiffel tower might appear on pages for Paris,
for Gustave Eiffel, and for the tower itself.

Historical Books from British Library (BL).
The British Library has released a set of digitized
books (British Library Labs, 2016) consisting of
25M pages of OCRed text, alongside 500K+ im-
ages scraped from those pages of text. The re-
lease splits images into four categories; we ignore
“bound covers” and “embellishments” and use im-
ages identified as “plates” and “medium sized.” We
associated images with all text within a 3-page win-
dow.

This raw data collection is noisy. Many books
are not in English, some books contain far more
images than others, and the images themselves are
of varying size and rotation. To combat these issues

4https://goo.gl/B11yyO
5The articles were extracted from an early March, 2016

data dump.

we only keep books that have identifiably English
text; for each cross-validation split in our machine-
learning experiments (§6) we sample at most 10
images from each book; and we use book-level
holdout so that no images/text in the test set are
from books in the training set.

Captions and Tags. We also examine two popular
existing datasets: Microsoft COCO (captions) (Lin
et al., 2014) (COCO) and MIRFLICKR-1M (tags)
(Huiskes et al., 2010) (Flickr). For COCO, we con-
struct our own training/validation splits from the
123K images, each of which has 5 captions. For
Flickr, as an initial preprocessing step we only con-
sider the 7.3K tags that appear at least 200 times,
and the 754K images that are associated with at
least 3 of the 7.3K valid tags.

5 Validation of Concreteness Scoring

We apply our concreteness measure to the four
datasets. For COCO and Flickr, we use unigrams
as concepts, while for Wiki and BL, we extract
256-dimensional topic distributions using Latent
Dirichlet Allocation (LDA) (Blei et al., 2003). For
BL, topic distributions are derived from text in the
aforementioned 3 page window; for Wiki, for each
image, we compute the mean topic distribution of
all articles that image appears in; for Flickr, we
associate images with all of their tags; for COCO,
we concatenate all captions for a given image. For
computing concreteness scores for COCO/Flickr,
we only consider unigrams associated with at least
100 images, so as to ensure the stability of MNI as
defined in Equation 1.

We extract image features from the pre-softmax
layer of a deep convolutional neural network,
ResNet50 (He et al., 2016), pretrained for the
ImageNet classification task (Deng et al., 2009);
this method is known to be a strong baseline
(Sharif Razavian et al., 2014).6 For nearest neigh-
bor search, we use the Annoy library,7 which
computes approximate kNN efficiently. We use
k = 50 nearest neighbors, though the results pre-
sented are stable for reasonable choices of k, e.g.,
k = 25, 100.

5.1 Concreteness and human judgments

Following Kiela et al. (2014), we borrow a dataset
of human judgments to validate our concreteness

6We explore different image/text representations in later
sections.

7github.com/spotify/annoy
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Figure 3: Examples of the most and least concrete words/topics from Wiki, COCO, and Flickr, along with
example images associated with each highlighted word/topic.

computation method.8 The concreteness of words
is a topic of interest in psychology because con-
creteness relates to a variety of aspects of human
behavior, e.g., language acquisition, memory, etc.
Schwanenflugel and Shoben (1983); Paivio (1991);
Walker and Hulme (1999); De Groot and Keijzer
(2000).

We compare against the human-gathered uni-
gram concreteness judgments provided in the USF
Norms dataset (USF) (Nelson et al., 2004); for each
unigram, raters provided judgments of its concrete-
ness on a 1-7 scale. For Flickr/COCO, we com-
pute Spearman correlation using these per-unigram
scores (the vocabulary overlap between USF and
Flickr/COCO is 1.3K/1.6K), and for Wiki/BL, we
compute topic-level human judgment scores via a
simple average amongst the top 100 most probable
words in the topic.

As a null hypothesis, we consider the possibility
that our concreteness measure is simply mirroring
frequency information.9 We measure frequency for
each dataset by measuring how often a particular
word/topic appears in it. A useful concreteness
measure should correlate with USF more than a
simple frequency baseline does.

For COCO/Flickr/Wiki, concreteness scores out-
put by our method positively correlate with hu-
man judgments of concreteness more than fre-
quency does (see Figure 4). For COCO, this pat-
tern holds even when controlling for part-of-speech

8 Note that because concreteness of words/topics varies
from dataset to dataset, we don’t expect one set of human
judgments to correlate perfectly with our concreteness scores.
However, partial correlation with human judgment offers a
common-sense “reality check.”

9We return to this hypothesis in §6.1 as well; there, too,
we find that concreteness and frequency capture different in-
formation.

(not shown), whereas Flickr adjectives are not cor-
related with USF. For BL, neither frequency nor
our concreteness scores are significantly correlated
with USF. Thus, in three of our four datasets, our
measure tends to predict human concreteness judg-
ments better than frequency.
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Figure 4: Spearman correlations between hu-
man judgment (USF) and our algorithm’s out-
puts, and dataset frequency. In the case of
Flickr/COCO/WIKI our concreteness scores corre-
late with human judgement to a greater extent than
frequency. For BL, neither frequency nor our con-
creteness measure is correlated with human judge-
ment. ***/**/* := p < .001/.01/.05

Concreteness and frequency. While concrete-
ness measures correlate with human judgment
better than frequency, we do expect some cor-
relation between a word’s frequency and its
concreteness (Gorman, 1961). In all cases,
we observe a moderate-to-strong positive cor-
relation between infrequency and concreteness
(ρwiki, ρcoco, ρflickr, ρbl = .06, .35, .40, .71) indi-
cating that rarer words/topics are more concrete,
in general. However, the correlation is not perfect,
and concreteness and frequency measure different
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properties of words.

5.2 Concreteness within datasets

Figure 3 gives examples from Wiki, COCO, and
Flickr illustrating the concepts associated with the
smallest and largest concreteness scores according
to our method.10 The scores often align with intu-
ition, e.g., for Wiki, sports topics are often concrete,
whereas country-based or abstract-idea-based top-
ics are not.11 For COCO, polar (because of polar
bears) and ben (because of Big Ben) are concrete;
whereas somewhere and possibly are associated
with a wide variety of images.

Concreteness scores form a continuum, making
explicit not only the extrema (as in Figure 3) but
also the middle ground, e.g., in COCO, “wilder-
ness” (rank 479) is more visually concrete than
“outside” (rank 2012). Also, dataset-specific intri-
cacies that are not obvious a priori are highlighted,
e.g., in COCO, 150/151 references to “magnets”
(rank 6) are in the visual context of a refrigerator
(making “magnets” visually concrete) though the
converse is not true, as both “refrigerator” (rank
329) and “fridge” (rank 272) often appear without
magnets; 61 captions in COCO are exactly “There
is no image here to provide a caption for,” and this
dataset error is made explicit through concreteness
score computations.

5.3 Concreteness varies across datasets

To what extent are the concreteness scores dataset-
specific? To investigate this question, we com-
pute the correlation between Flickr and COCO un-
igram concreteness scores for 1129 overlapping
terms. While the two are positively correlated
(ρ = .48, p < .01) there are many exceptions
that highlight the utility of computing dataset-
independent scores. For instance, “London” is ex-
tremely concrete in COCO (rank 9) as compared
to in Flickr (rank 1110). In COCO, images of Lon-
don tend to be iconic (i.e., Big Ben, double decker
buses); in contrast, “London” often serves as a
geotag for a wider variety of images in Flickr. Con-
versely, “watch” in Flickr is concrete (rank 196) as
it tends to refer to the timepiece, whereas “watch”
is not concrete in COCO (rank 958) as it tends
to refer to the verb; while these relationships are

10The BL results are less interpretable and are omitted for
space reasons.

11Perhaps fittingly, the “linguistics” topic (top words: term,
word, common, list, names, called, form, refer, meaning) is
the least visually concrete of all 256 topics.

not obvious a priori, our concreteness method has
helped to highlight these usage differences between
the image tagging and captioning datasets.

6 Learning Image/Text Correspondences

Previous work suggests that incorporating visual
features for less concrete concepts can be harm-
ful in word similarity tasks (Hill and Korhonen,
2014b; Kiela et al., 2014; Kiela and Bottou, 2014;
Hill et al., 2014). However, it is less clear if this
intuition applies to more practical tasks (e.g., re-
trieval), or if this problem can be overcome simply
by applying the “right” machine learning algorithm.
We aim to tackle these questions in this section.

The learning task. The task we consider is the
construction of a joint embedding of images and
text into a shared vector space. Truly correspond-
ing image/text pairs (e.g., if the text is a caption
of that image) should be placed close together in
the new space relative to image/text pairs that do
not match. This task is a good representative of
multimodal learning because computing a joint em-
bedding of text and images is often a “first step”
for downstream tasks, e.g., cross-modal retrieval
(Rasiwasia et al., 2010), image tagging (Chen et al.,
2013), and caption generation (Kiros et al., 2015).

Evaluations. Following previous work in cross-
modal retrieval, we measure performance using
the top-k% hit rate (also called recall-at-k-percent,
R@k%; higher is better). Cross-modal retrieval
can be applied in either direction, i.e., searching
for an image given a body of text, or vice-versa.
We examine both the image-search-text and text-
search-image cases. For simplicity, we average
retrieval performance from both directions, produc-
ing a single metric;12 higher is better.

Visual Representations. Echoing Wei et al.
(2016), we find that features extracted from con-
volutional neural networks (CNNs) outperform
classical computer vision descriptors (e.g., color
histograms) for multimodal retrieval. We con-
sider two different CNNs pretrained on different
datasets: ResNet50 features trained on the Ima-
geNet classification task (RN-Imagenet), and In-
ceptionV3 (Szegedy et al., 2015) trained on the
OpenImages (Krasin et al., 2017) image tagging
task (I3-OpenImages).

12Averaging is done for ease of presentation; the perfor-
mance in both directions is similar. Among the parametric ap-
proaches (LS/DCCA/NS) across all datasets/NLP algorithms,
the mean difference in performance between the directions is
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Figure 5: Concreteness scores versus retrievability (plotted) for each dataset, along with Recall at 1%
(in tables, higher is better) for each algorithm combination. Tables give average retrieval performance
over 10-fold cross-validation for each combination of NLP/alignment algorithm; the best, second best,
and third best performing combinations are bolded and colored. The concreteness versus retrievability
curves are plotted for the top-3 performing algorithms, though similar results hold for all algorithms.
Our concreteness scores and performance are positively correlated, though the shape of the relationship
between the two differs from dataset to dataset (note the differing scales of the y-axes). All results are for
RN-ImageNet; the similar I3-OpenImages results are omitted for space reasons.

Text Representations. We consider sparse uni-
gram and tfidf indicator vectors. In both cases,
we limit the vocabulary size to 7.5K. We next con-
sider latent-variable bag-of-words models, includ-
ing LDA (Blei et al., 2003) (256 topics, trained with
Mallet (McCallum, 2002)) a specialized biterm
topic model (BTM) (Yan et al., 2013) for short
texts (30 topics), and paragraph vectors (PV) (Le
and Mikolov, 2014) (PV-DBOW version, 256 di-
mensions, trained with Gensim (Řehůřek and So-
jka, 2010)).13

Alignment of Text and Images. We explore four
algorithms for learning correspondences between
image and text vectors. We first compare against
Hodosh et al. (2013)’s nonparametric baseline
(NP), which is akin to a nearest-neighbor search.
This algorithm is related to the concreteness score
algorithm we previously introduced in that it ex-
ploits the geometry of the image/text spaces using
nearest-neighbor techniques. In general, perfor-
mance metrics for this algorithm provide an esti-
mate of how “easy” a particular task is in terms of
the initial image/text representations.

1.7% (std. dev=2%).
13We also ran experiments encoding text using order-aware

recurrent neural networks, but we did not observe significant
performance differences. Those results are omitted for space
reasons.

We next map image features to text features via
a simple linear transformation. Let (ti, vi) be a
text/image pair in the dataset. We learn a linear
transformation W that minimizes
∑

i

‖Wfimage(vi)− ftext(ti)‖22 + λ‖W‖F (4)

for feature extraction functions fimage and ftext, e.g.,
RN-ImageNet/LDA. It is possible to map images
onto text as in Equation 4, or map text onto images
in an analogous fashion. We find that the direc-
tionality of the mapping is important. We train
models in both directions, and combine their best-
performing results into a single least-squares (LS)
model.

Next we consider Negative Sampling (NS),
which balances two objectives: true image/text
pairs should be close in the shared latent space,
while randomly combined image/text pairs should
be far apart. For a text/image pair (ti, vi), let
s(ti, vi) be the cosine similarity of the pair in the
shared space. The loss for a single positive example
(ti, vi) given a negative sample (t′i, v

′
i) is

h
(
s(ti, vi), s(ti, v

′
i)
)
+ h
(
s(ti, vi), s(t

′
i, vi)

)
(5)

for the hinge function h(p, n) = max{0, α−p+n}.
Following Kiros et al. (2015) we set α = .2.
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Finally, we consider Canonical Correlation Anal-
ysis (CCA), which projects image and text repre-
sentations down to independent dimensions of high
multimodal correlation. CCA-based methods are
popular within the IR community for learning mul-
timodal embeddings (Costa Pereira et al., 2014;
Gong et al., 2014). We use Wang et al. (2015b)’s
stochastic method for training deep CCA (Andrew
et al., 2013) (DCCA), a method that is competitive
with traditional kernel CCA (Wang et al., 2015a)
but less memory-intensive to train.
Training details. LS, NS, and DCCA were imple-
mented using Keras (Chollet et al., 2015).14 In to-
tal, we examine all combinations of: four datasets,
five NLP algorithms, two vision algorithms, four
cross-modal alignment algorithms, and two feature
preprocessing settings; each combination was run
using 10-fold cross-validation.
Absolute retrieval quality. The tables in Figure 5
contain the retrieval results for RN-ImageNet im-
age features across each dataset, alignment algo-
rithm, and text representation scheme. We show
results for R@1%, but R@5% and R@10% are
similar. I3-OpenImages image features underper-
form relative to RN-ImageNet and are omitted for
space reasons, though the results are similar.

The BL corpus is the most difficult of the
datasets we consider, yielding the lowest retrieval
scores. The highly-curated COCO dataset appears
to be the easiest, followed by Flickr and then
Wikipedia. No single algorithm combination is
“best” in all cases.

6.1 Concreteness scores and performance
We now examine the relationship between retrieval
performance and concreteness scores. Because con-
creteness scores are on the word/topic level, we
define a retrievability metric that summarizes an
algorithm’s performance on a given concept; for
example, we might expect that retrievability(dog)
is greater than retrievability(beautiful).

Borrowing the R@1% metric from the previous
section, we let I[ri < 1%] be an indicator vari-
able indicating that test instance i was retrieved
correctly, i.e., I[ri < 1%] is 1 if the the average

14We used Adam (Kingma and Ba, 2015), batch normaliza-
tion (Ioffe and Szegedy, 2015), and ReLU activations. Regular-
ization and architectures (e.g., number of layers in DCCA/NS,
regularization parameter in LS) were chosen over a valida-
tion set separately for each cross-validation split. Training is
stopped when retrieval metrics decline over the validation set.
All models were trained twice, using both raw features and
zero-mean/unit-variance features.

rank ri of the image-search-text/text-search-image
directions is better than 1%, and 0 otherwise. Let
sic be the affinity of test instance i to concept c. In
the case of topic distributions, sic is the proportion
of topic c in instance i; in the case of unigrams, sic
is the length-normalized count of unigram c on in-
stance i. Retrievability is defined using a weighted
average over test instances i as:

retrievability(c) =
∑

i sic · I[ri < 1%]∑
i sic

(6)

The retrievability of c will be higher if instances
more associated with c are more easily retrieved by
the algorithm.

Retrievability vs. Concreteness. The graphs in
Figure 5 plot our concreteness scores versus re-
trievability of the top 3 performing NLP/alignment
algorithm combinations for all 4 datasets. In all
cases, there is a strong positive correlation between
concreteness and retrievability, which provides ev-
idence that more concrete concepts are easier to
retrieve.

The shape of the concreteness-retrievability
curve appears to vary between datasets more than
between algorithms. In COCO, the relationship be-
tween the two appears to smoothly increase. In
Wiki, on the other hand, there appears to be a
concreteness threshold, beyond which retrieval be-
comes much easier.

There is little relationship between retrievabil-
ity and frequency, further suggesting that our con-
creteness measure is not simply mirroring fre-
quency. We re-made the plots in Figure 5, ex-
cept we swapped the x-axis from concreteness to
frequency; the resulting plots, given in Figure 6,
are much flatter, indicating that retrievability and
frequency are mostly uncorrelated. Additional re-
gression analyses reveal that for the top-3 perform-
ing algorithms on Flickr/Wiki/BL/COCO, concrete-
ness explains 33%/64%/11%/15% of the variance
in retrievability, respectively. In contrast, for all
datasets, frequency explained less than 1% of the
variance in retrievability.

7 Beyond Cross-Modal Retrieval

Concreteness scores do more than just predict re-
trieval performance; they also predict the diffi-
culty of image classification. Two popular shared
tasks from the ImageNet 2015 competition pub-
lished class-level errors of all entered systems.
We used the unigram concreteness scores from
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Figure 6: Correlation between word/topic fre-
quency and retrievability for each of the four
datasets. Compared to our concreteness measure
(see Figure 5; note that the while x-axes are differ-
ent, the y-axes are the same) frequency explains
relatively little variance in retrievability.

Flickr/COCO computed in §3 to derive concrete-
ness scores for the ImageNet classes.15 We find that
for both classification and localization, for all 10
top performing entries, and for both Flickr/COCO,
there exists a moderate-to-strong Spearman correla-
tion between concreteness and performance among
the classes for which concreteness scores were
available (nflickr, ncoco = 171, 288; .18 < ρ < .44;
p < .003 in all cases). This result suggests that
concrete concepts may tend to be easier on tasks
other than retrieval, as well.

8 Future Directions

At present, it remains unclear if abstract concepts
should be viewed as noise to be discarded (as in
Kiela et al. (2014)), or more difficult, but learn-
able, signal. Because large datasets (e.g., social
media) increasingly mix modalities using ambigu-
ous, abstract language, researchers will need to
tackle this question going forward. We hope that
visual concreteness scores can guide investigations
of the trickiest aspects of multimodal tasks. Our
work suggests the following future directions:
Evaluating algorithms: Because concreteness
scores are able to predict performance prior to train-

15There are 1K classes in both ImageNet tasks, but we were
only able to compute concreteness scores for a subset, due to
vocabulary differences.

ing, evaluations could be reported over concrete
and abstract instances separately, as opposed to
aggregating into a single performance metric. A
new algorithm that consistently performs well on
non-concrete concepts, even at the expense of per-
formance on concrete concepts, would represent a
significant advance in multimodal learning.
Designing datasets: When constructing a new
multimodal dataset, or augmenting an existing one,
concreteness scores can offer insights regarding
how resources should be allocated. Most directly,
these scores enable focusing on “concrete visual
concepts” (Huiskes et al., 2010; Chen et al., 2015),
by issuing image-search queries could be issued
exclusively for concrete concepts during dataset
construction. The opposite approach could also be
employed, by prioritizing less concrete concepts.
Curriculum learning: During training, instances
could be up/down-weighted in the training process
in accordance with concreteness scores. It is not
clear if placing more weight on the trickier cases
(down-weighting concreteness), or giving up on
the harder instances (up-weighting concreteness)
would lead to better performance, or differing algo-
rithm behavior.
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Abstract

We propose a new model for speaker naming
in movies that leverages visual, textual, and
acoustic modalities in an unified optimization
framework. To evaluate the performance of
our model, we introduce a new dataset con-
sisting of six episodes of the Big Bang The-
ory TV show and eighteen full movies cover-
ing different genres. Our experiments show
that our multimodal model significantly out-
performs several competitive baselines on the
average weighted F-score metric. To demon-
strate the effectiveness of our framework, we
design an end-to-end memory network model
that leverages our speaker naming model and
achieves state-of-the-art results on the subtitles
task of the MovieQA 2017 Challenge.

1 Introduction

Identifying speakers and their names in movies,
and videos in general, is a primary task for many
video analysis problems, including automatic sub-
title labeling (Hu et al., 2015), content-based video
indexing and retrieval (Zhang et al., 2009), video
summarization (Tapaswi et al., 2014), and video
storyline understanding (Tapaswi et al., 2014). It
is a very challenging task, as the visual appearance
of the characters changes over the course of the
movie due to several factors such as scale, cloth-
ing, illumination, and so forth (Arandjelovic and
Zisserman, 2005; Everingham et al., 2006). The
annotation of movie data with speakers’ names
can be helpful in a number of applications, such as
movie question answering (Tapaswi et al., 2016),
automatic identification of character relationships
(Zhang et al., 2009), or automatic movie caption-
ing (Hu et al., 2015).

Most previous studies relied primarily on vi-
sual information (Arandjelovic and Zisserman,
2005; Everingham et al., 2006), and aimed for
the slightly different task of face track labeling;

01:02:00	-->	01:02:01
Jack,	must you go?

01:02:01	-->	01:02:04
Time	for	me	to	go	row
with other slaves.

01:02:07	-->	01:02:08
Good	night,	Rose.

Names:
Jack
Rose
……

Jack,	must	
you	go?
……

Good	night

Jack:	Hold	On! Rose:	I	trust	you.

Jack:	All	right!	
Open	your	eyes.

In
pu

t
In
fe
re
nc
e

Rose:I'm flying.	Jack.

O
ut
pu

t

Joint	Optimization

Figure 1: Overview of our approach for speaker
naming.

speakers who did not appear in the video frame
were not assigned any names, which is common in
movies and TV shows. Other available sources of
information such as scripts were only used to ex-
tract cues about the speakers’ names to associate
the faces in the videos with their corresponding
character name (Everingham et al., 2006; Tapaswi
et al., 2015; Bäuml et al., 2013; Sivic et al., 2009);
however since scripts are not always available, the
applicability of these methods is somehow limited.

Other studies focused on the problem of speaker
recognition without naming, using the speech
modality as a single source of information. While
some of these studies attempted to incorporate
the visual modality, their goal was to cluster the
speech segments rather than name the speakers
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(Erzin et al., 2005; Bost and Linares, 2014; Kap-
souras et al., 2015; Bredin and Gelly, 2016; Hu
et al., 2015; Ren et al., 2016). None of these
studies used textual information (e.g., dialogue),
which prevented them from identifying speaker
names.

In our work, we address the task of speaker
naming, and propose a new multimodal model that
leverages in an unified framework of the visual,
speech, and textual modalities that are naturally
available while watching a movie. We do not as-
sume the availability of a movie script or a cast
list, which makes our model fully unsupervised
and easily applicable to unseen movies.

The paper makes two main contributions. First,
we introduce a new unsupervised system for
speaker naming for movies and TV shows that
exclusively depends on videos and subtitles, and
relies on a novel unified optimization framework
that fuses visual, textual, and acoustic modalities
for speaker naming. Second, we construct and
make available a dataset consisting of 24 movies
with 31,019 turns manually annotated with charac-
ter names. Additionally, we also evaluate the role
of speaker naming when embedded in an end-to-
end memory network model, achieving state-of-
the-art performance results on the subtitles task of
the MovieQA 2017 Challenge.

2 Related Work

The problem of speaker naming in movies has
been explored by the computer vision and the
speech communities. In the computer vision com-
munity, the speaker naming problem is usually
considered as a face/person naming problem, in
which names are assigned to their corresponding
faces on the screen (Everingham et al., 2006; Cour
et al., 2010; Bäuml et al., 2013; Haurilet et al.,
2016; Tapaswi et al., 2015). On the other hand,
the speech community considered the problem as
a speaker identification problem, which focuses
on recognizing and clustering speakers rather than
naming them (Reynolds, 2002; Campbell, 1997).
In this work, we aim to solve the problem of
speaker naming in movies, in which we label each
segment of the subtitles with its corresponding
speaker name whether the speaker’s face appeared
on in the video or not.

Previous work can be furthered categorized ac-
cording to the type of supervision used to build
the character recognition and speaker recognition
models: supervised vs. weakly supervised mod-

els. In the movie and television domains, utiliz-
ing scripts in addition to subtitles to obtain times-
tamped speaker information was also studied in
(Everingham et al., 2006; Tapaswi et al., 2015;
Bäuml et al., 2013; Sivic et al., 2009). Moreover,
they utilized this information to resolve the ambi-
guity introduced by co-occurring faces in the same
frame. Features were extracted through the pe-
riod of speaking (detected via lip motion on each
face). Then they assigned the face based on can-
didate names from the time-stamped script. Thus,
these studies used speaker recognition as an essen-
tial step to construct cast-specific face classifiers.
(Tapaswi et al., 2012) extended the face identifi-
cation problem to include person tracking. They
utilized available face recognition results to learn
clothing models for characters to identify person
tracks without faces.

In (Cour et al., 2010; Haurilet et al., 2016), the
authors proposed a weakly supervised model de-
pending on subtitles and a character list. They
extracted textual cues from the dialog: first, sec-
ond, and third person references, such as “I’m
Jack”, “Hey, Jack!”, and “Jack left”. Using a char-
acter list from IMDB, they mapped these refer-
ences onto true names using minimum edit dis-
tance, and then they ascribed the references to
face tracks. Other work removed the dependency
on a true character list by determining all names
through coreference resolution. However, this
work also depended on the availability of scripts
(Ramanathan et al., 2014). In our model, we re-
moved the dependency on both the true cast list
and the script, which makes it easier to apply our
model to other movies and TV shows.

Recent work proposed a convolutional neural
network (CNN) and Long Short-Term Memory
(LSTM) based learning framework to automati-
cally learn a function that combines both facial
and acoustic features (Hu et al., 2015; Ren et al.,
2016). Using these cues, they tried to learn match-
ing face-audio pairs and non-matching face-audio
pairs. They then trained a SVM classifier on
the audio-video pairings to discriminate between
the non-overlapping speakers. In order to train
their models, they manually identified the lead-
ing characters in two TV shows, Friends and The
Big Bang Theory (BBT), and collected their face
tracks and corresponding audio segments using
pre-annotated subtitles. Despite the very high per-
formance reported in these studies, it is very hard
to generalize their approach since it requires a lot
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of training data.
On the other hand, talking faces have been used

to improve speaker recognition and diarization
in TV shows (Bredin and Gelly, 2016; Bost and
Linares, 2014; Li et al., 2004). In the case of (Liu
et al., 2008), they modeled the problem of speaker
naming as facial recognition to identify speakers
in news broadcasts. This work leveraged opti-
cal character recognition to read the broadcasters’
names that were displayed on screen, requiring the
faces to already be annotated.

3 Datasets

Our dataset consists of a mix of TV show episodes
and full movies. For the TV show, we use six full
episodes of season one of the BBT. The number of
named characters in the BBT episodes varies be-
tween 5 to 8 characters per episode, and the back-
ground noise level is low. Additionally, we also
acquired a set of eighteen full movies from differ-
ent genres, to evaluate how our model works under
different conditions. In this latter dataset, the num-
ber of named characters ranges between 6 and 37,
and it has varied levels of background noise.

We manually annotated this dataset with the
character name of each subtitle segment. To fa-
cilitate the annotation process, we built an inter-
face that parses the movies subtitles files, collects
the cast list from IMDB for each movie, and then
shows one subtitle segment at a time along with
the cast list so that the annotator can choose the
correct character. Using this tool, human anno-
tators watched the movies and assigned a speaker
name to each subtitle segment. If a character name
was not mentioned in the dialogue, the annotators
labeled it as “unknown.” To evaluate the qual-
ity of the annotations, five movies in our dataset
were double annotated. The Cohen’s Kappa inter-
annotator agreement score for these five movies is
0.91, which shows a strong level of agreement.

To clean the data, we removed empty segments,
as well as subtitle description parts written be-
tween brackets such as “[groaning]” and “[sniff-
ing]”. We also removed segments with two speak-
ers at the same time. We intentionally avoided us-
ing any automatic means to split these segments,
to preserve the high-quality of our gold standard.

Table 1 shows the statistics of the collected data.
Overall, the dataset consists of 24 videos with a to-
tal duration of 40.28 hours, a net dialogue duration
of 21.99 hours, and a total of 31,019 turns spo-
ken by 463 different speakers. Four of the movies

in this dataset are used as a development set to
develop supplementary systems and to fine tune
our model’s parameters; the remaining movies are
used for evaluation.

Min Max Mean σ

# characters/video 5 37 17.8 9.55
# Subtitle turns/video 488 2212 1302.4 563.06
# words/turn 1 28 8.02 4.157
subtitles duration (sec) 0.342 9.59 2.54 1.02

Table 1: Statistics on the annotated movie dataset.

4 Data Processing and Representations

We process the movies by extracting several tex-
tual, acoustic, and visual features.

4.1 Textual Features
We use the following representations for the tex-
tual content of the subtitles:
SkipThoughts uses a Recurrent Neural Network
to capture the underlying semantic and syntactic
properties, and map them to a vector representa-
tion (Kiros et al., 2015). We use their pretrained
model to compute a 4,800 dimensional sentence
representation for each line in the subtitles.1

TF-IDF is a traditional weighting scheme in in-
formation retrieval. We represent each subtitle as
a vector of tf-idf weights, where the length of the
vector (i.e., vocabulary size) and the idf scores are
obtained from the movie including the subtitle.

4.2 Acoustic Features
For each movie in the dataset, we extract the au-
dio from the center channel. The center chan-
nel is usually dedicated to the dialogue in movies,
while the other audio channels carry the surround-
ing sounds from the environment and the musi-
cal background. Although doing this does not
fully eliminate the noise in the audio signal, it
still improves the speech-to-noise ratio of the sig-
nal. When a movie has stereo sound (left and right
channels only), we down-mix both channels of the
stereo stream into a mono channel.

In this work, we use the subtitles timestamps as
an estimate of the boundaries that correspond to
the uttered speech segments. Usually, each subti-
tle corresponds to a segment being said by a single
speaker. We use the subtitle timestamps for seg-
mentation so that we can avoid automatic speaker
diarization errors and focus on the speaker naming
problem.

1https://github.com/ryankiros/skip-thoughts
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To represent the relevant acoustic information
from each spoken segment, we use iVectors, which
is the state-of-the-art unsupervised approach in
speaker verification (Dehak et al., 2011). While
other deep learning-based speaker embeddings
models also exist, we do not have access to enough
supervised data to build such models. We train un-
supervised iVectors for each movie in the dataset,
using the iVector extractor used in (Khorram et al.,
2016). We extract iVectors of size 40 using a
Gaussian Mixture Model-Universal Background
Model (GMM-UBM) with 512 components. Each
iVector corresponds to a speech segment uttered
by a single speaker. We fine tune the size of the
iVectors and the number of GMM-UBM compo-
nents using the development dataset.

4.3 Visual Features
We detect faces in the movies every five frames us-
ing the recently proposed MTCNN (Zhang et al.,
2016) model, which is pretrained for face detec-
tion and facial landmark alignment. Based on the
results of face detection, we apply the forward and
backward tracker with an implementation of the
Dlib library (King, 2009; Danelljan et al., 2014) to
extract face tracks from each video clip. We rep-
resent a face track using its best face in terms of
detection score, and use the activations of the fc7
layer of pretrained VGG-Face (Parkhi et al., 2015)
network as visual features.

We calculate the distance between the upper lip
center and the lower lip center based on the 68-
point facial landmark detection implemented in
the Dlib library (King, 2009; Kazemi and Sullivan,
2014). This distance is normalized by the height
of face bounding boxes and concatenated across
frames to represent the amount of mouth opening.
A human usually speaks with lips moving with a
certain frequency (3.75 Hz to 7.5 Hz used in this
work) (Tapaswi et al., 2015). We apply a band-
pass filter to amplify the signal of true lip motion
in these segments. The overall sum of lip motion
is used as the score for the talking face.

5 Unified Optimization Framework

We tackle the problem of speaker naming as a
transductive learning problem with constraints. In
this approach, we want to use the sparse positive
labels extracted from the dialogue and the under-
lying topological structure of the rest of the un-
labeled data. We also incorporate multiple cues
extracted from both textual and multimedia infor-

mation. A unified learning framework is proposed
to enable the joint optimization over the automat-
ically labeled and unlabeled data, along with mul-
tiple semantic cues.

5.1 Character Identification and Extraction

In this work, we do not consider the set of char-
acter names as given because we want to build a
model that can be generalized to unseen movies.
This strict setting adds to the problem’s complex-
ity. To extract the list of characters from the subti-
tles, we use the Named Entity Recognizer (NER)
in the Stanford CoreNLP toolkit (Manning et al.,
2014). The output is a long list of person names
that are mentioned in the dialogue. This list is
prone to errors including, but not limited to, nouns
that are misclassified by the NER as person’s name
such as “Dad” and “Aye”, names that are irrele-
vant to the movie such as “Superman” or named
animals, or uncaptured character names.

To clean the extracted names list of each movie,
we cluster these names based on string minimum
edit distance and their gender. From each cluster,
we then pick a name to represent it based on its
frequency in the dialogue. The result of this step
consists of name clusters along with their distri-
bution in the dialogue. The distribution of each
cluster is the sum of all the counts of its mem-
bers. To filter out irrelevant characters, we run
a name reference classifier, which classifies each
name into first, second or third person references.
If a name was only mentioned as a third person
throughout the whole movie, we discard it from
the list of characters. We remove any name cluster
that has a total count less than three, which takes
care of the misclassified names’ reference types.

5.2 Grammatical Cues

We use the subtitles to extract the name mentions
in the dialogue. These mentions allow us to ob-
tain cues about the speaker name and the absence
or the presence of the mentioned character in the
surrounding subtitles. Thus, they affect the prob-
ability that the mentioned character is the speaker
or not. We follow the same name reference cat-
egories used in (Cour et al., 2010; Haurilet et al.,
2016). We classify a name mention into: first (e.g.,
“I’m Sheldon”), second (e.g., “Oh, hi, Penny”) or
third person reference (e.g., “So how did it go with
Leslie?”). The first person reference represents a
positive constraint that allows us to label the cor-
responding iVector of the speaker and his face if
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it exists during the segment duration. The second
person reference represents a multi-instance con-
straint that suggests that the mentioned name is
one of the characters that are present in the scene,
which increases the probability of this character
to be one of the speakers of the surrounding seg-
ments. On the other hand, the third person ref-
erence represents a negative constraint, as it sug-
gests that the speaker does not exist in the scene,
which lowers the character probability of the char-
acter being one of the speakers of the next or the
previous subtitle segments.

To identify first, second and third person refer-
ences, we train a linear support vector classifier.
The first person, the second and third person clas-
sifier’s training data are extracted and labeled from
our development dataset, and fine tuned using 10-
fold cross-validation. Table 2 shows the results of
the classifier on the test data. The average number
of first, second and third-person references in each
movie are 14.63, 117.21, and 95.71, respectively.

Precision Recall F1-Score
First Person 0.625 0.448 0.522
Second Person 0.844 0.863 0.853
Third Person 0.806 0.806 0.806
Average / Total 0.819 0.822 0.820

Table 2: Performance metrics of the reference clas-
sifier on the test data.

5.3 Unified Optimization Framework

Given a set of data points that consist of l la-
beled2 and u unlabeled instances, we apply an op-
timization framework to infer the best prediction
of speaker names. Suppose we have l+u instances
X = {x1, x2, ..., xl, xl+1, ..., xl+u} and K pos-
sible character names. We also get the dialogue-
based positive labels yi for instances xi, where yi
is a k-dimension one-hot vector and yji = 1 if xi
belongs to the class j, for every 1 ≤ i ≤ l and
1 ≤ j ≤ K. To name each instance xi, we want
to predict another one-hot vector of naming scores
f(xi) for each xi, such that argmaxjf

j(xi) = zi
where zi is the ground truth number of class for
instance xi.

To combine the positive labels and unlabeled
data, we define the objective function for predic-

2Note that in our setup, all the labeled instances are ob-
tained automatically, as described above.

tions f as follows:

Linitial(f) =
1

l

l∑

i=1

||f(xi)− yi||2

+
1

l + u

l+u∑

i=1

l+u∑

j=1

wij ||f(xi)− f(xj)||2

(1)
Here wij is the similarity between xi and xj ,

which is calculated as the weighted sum of textual,
acoustic and visual similarities. The inverse Eu-
clidean distance is used as similarity function for
each modality. The weights for different modali-
ties are selected as hyperparameters and tuned on
the development set. This objective leads to a con-
vex loss function which is easier to optimize over
feasible predictions.

Besides the positive labels obtained from first
person name references, we also introduce other
semantic constraints and cues to enhance the
power of our proposed approach. We implement
the following four types of constraints:

Multiple Instance Constraint. Although the sec-
ond person references cannot directly provide pos-
itive constraints, they imply that the mentioned
characters have high probabilities to be in this con-
versation. Following previous work (Cour et al.,
2010), we incorporate the second person refer-
ences as multiple instances constraints into our op-
timization: if xi has a second person reference
j, we encourage j to be assigned to its neigh-
bors, i.e., its adjacent subtitles with similar times-
tamps. For the implementation, we simply in-
clude multiple instances constraints as a variant of
positive labels with decreasing weights s, where
s = 1/(l − i) for each neighbor xl.

Negative Constraint. For the third person refer-
ences, the mentioned characters may not occur in
the conversation and movies. So we treat them as
negative constraints, which means they imply that
the mentioned characters should not be assigned
to corresponding instances. This constraint is for-
mulated as follows:

Lneg(f) =
∑

(i,j)∈N
[f j(xi)]

2 (2)

where N is the set of negative constraints xi
doesn’t belong class j.

Gender Constraint. We train a voice-based gen-
der classifier by using the subtitles segments from
the four movies in our development dataset (5,543

2210



segments of subtitles). We use the segments in
which we know the speaker’s name and manually
obtain the ground truth gender label from IMDB.
We extract the signal energy, 20 Mel-frequency
cepstral coefficients (MFCCs) along with their
first and second derivatives, in addition to time-
and frequency-based absolute fundamental fre-
quency (f0) statistics as features to represent each
segment in the subtitles. The f0 statistics has been
found to improve the automatic gender detection
performance for short speech segments (Levitan
et al., 2016), which fits our case since the median
duration of the dialogue turns in our dataset is 2.6
seconds.

The MFCC features are extracted using a step
size of 16 msec over a 64 msec window using the
method from (Mathieu et al., 2010), while the f0
statistics are extracted using a step size of 25 msec
over a 50 msec window as the default configura-
tion in (Eyben et al., 2013). We then use these fea-
tures to train a logistic regression classifier using
the Scikit-learn library (Pedregosa et al., 2011).
The average accuracy of the gender classifier on
a 10-fold cross-validation is 0.8867.

Given the results for the gender classification
of audio segments and character names, we define
the gender loss to penalize inconsistency between
the predicted gender and character names:

Lgender(f) =
∑

(i,j)∈Q1

Pga(xi)(1− Pgn(j))f j(xi)

+
∑

(i,j)∈Q2

(1− Pga(xi))Pgn(j)f j(xi)

(3)
where Pga(xi) is the probability for instance xi to
be a male, and Pgn(j) is the probability for name
j to be a male, and Q1 = {(i, j)|Pga(xi) <
0.5, Pgn(j) > 0.5}, Q2 = {(i, j)|Pga(xi) >
0.5, Pgn(j) < 0.5}.
Distribution Constraint. We automatically ana-
lyze the dialogue and extract the number of men-
tions of each character in the subtitles using Stan-
ford CoreNLP and string matching to capture
names that are missed by the named entity recog-
nizer. We then filter the resulting counts by remov-
ing third person mention references of each name
as we assume that this character does not appear
in the surrounding frames. We use the results to
estimate the distribution of the speaking charac-
ters and their importance in the movies. The main
goal of this step is to construct a prior probability
distribution for the speakers in each movie.

To encourage our predictions to be consistent
with the dialogue-based priors, we penalize the
square error between the distributions of predic-
tions and name mentions priors in the following
equation:

Ldis(f) =

K∑

j=1

(
∑

(f j(xi))− dj)2 (4)

where dj is the ratio of name j mentions in all sub-
titles.

Final Framework. Combining the loss in Eqn. 1
and multiple losses with different constraints, we
obtain our unified optimization problem:

f∗ = argmin
f
λ1Linitial(f) + λ2LMI(f)

+ λ3Lneg(f) + λ4Lgender(f) + λ5Ldis(f)
(5)

All of the λs are hyper-parameters to be tuned
on development set. We also include the constraint
that predictions for different character names must
sum to 1. We solve this constrained optimization
problem with projected gradient descent (PGD).
Our optimization problem in Eqn. 5 is guaranteed
to be a convex optimization problem and therefore
projected gradient descent is guaranteed to stop
with global optima. PGD usually converges after
800 iterations.

6 Evaluation

We model our task as a classification problem, and
use the unified optimization framework described
earlier to assign a character name to each subtitle.

Since our dataset is highly unbalanced, with a
few main characters usually dominating the entire
dataset, we adopt the weighted F-score as our eval-
uation metric, instead of using an accuracy met-
ric or a micro-average F-score. This allows us to
take into account that most of the characters have
only a few spoken subtitle segments, while at the
same time placing emphasis on the main charac-
ters. This leads sometimes to an average weighted
F-score that is not between the average precision
and recall.

One aspect that is important to note is that char-
acters are often referred to using different names.
For example, in the movie “The Devil’s Advo-
cate,” the character Kevin Lomax is also referred
to as Kevin or Kev. In more complicated situ-
ations, characters may even have multiple iden-
tities, such as the character Saul Bloom in the
movie “Ocean’s Eleven,” who pretends to be an-
other character named Lyman Zerga. Since our
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Precision Recall F-score
B1: MFMC 0.0910 0.2749 0.1351
B2: DRA 0.2256 0.1819 0.1861
B3: Gender-based DRA 0.2876 0.2349 0.2317
Our Model (Skip-thoughts)* 0.3468 0.2869 0.2680
Our Model (TF-IDF)* 0.3579 0.2933 0.2805
Our Model (iVectors) 0.2151 0.2347 0.1786
Our Model (Visual)* 0.3348 0.2659 0.2555
Our Model (Visual+iVectors)* 0.3371 0.2720 0.2617
Our Model (TF-IDF+iVectors)* 0.3549 0.2835 0.2643
Our Model (TF-IDF+Visual)* 0.3385 0.2975 0.2821
Our Model (all)* 0.3720 0.3108 0.2920

Table 3: Comparison between the average of
macro-weighted average of precision, recall and f-
score of the baselines and our model. * means sta-
tistically significant (t-test p-value < 0.05) when
compared to baseline B3.

goal is to assign names to speakers, and not nec-
essarily solve this coreference problem, we con-
sider the assignment of the subtitle segments to
any of the speaker’s aliases to be correct. Thus,
during the evaluation, we map all the characters’
aliases from our model’s output to the names in
the ground truth annotations. Our mapping does
not include other referent nouns such as “Dad,”
“Buddy,” etc.; if a segment gets assigned to any
such terms, it is considered a misprediction.

We compare our model against three baselines:
B1: Most-frequently mentioned character con-
sists of selecting the most frequently mentioned
character in the dialogue as the speaker for all the
subtitles. Even though it is a simple baseline, it
achieves an accuracy of 27.1%, since the leading
characters tend to speak the most in the movies.
B2: Distribution-driven random assignment
consists of randomly assigning character names
according to a distribution that reflects their frac-
tion of mentions in all the subtitles.
B3: Gender-based distribution-driven random
assignment consists of selecting the speaker
names based on the voice-based gender detec-
tion classifier. This baseline randomly selects the
character name that matches the speaker’s gender
according to the distribution of mentions of the
names in the matching gender category.

The results obtained with our proposed unified
optimization framework and the three baselines
are shown in Table 3. We also report the perfor-
mance of the optimization framework using dif-
ferent combinations of the three modalities. The
model that uses all three modalities achieves the
best results, and outperforms the strongest base-
line (B3) by more than 6% absolute in average

(a) The Big Bang Theory

(b) Titanic

Figure 2: For each speech segment, we applied t-
SNE (Van Der Maaten, 2014) on their correspond-
ing iVectors. The points with the same color rep-
resent instances with the same character name.

weighted F-score. It also significantly outper-
forms the usage of the visual and acoustic fea-
tures combined, which have been frequently used
together in previous work, suggesting the impor-
tance of textual features in this setting.

The ineffectiveness of the iVectors might be a
result of the background noise and music, which
are difficult to remove from the speech signal. Fig-
ure 2 shows the t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) (Van Der Maaten, 2014),
which is a nonlinear dimensionality reduction
technique that models points in such a way that
similar vectors are modeled by nearby points and
dissimilar objects are modeled by distant points,
visualization of the iVectors over the whole BBT
show and the movie “Titanic.” In the BBT there
is almost no musical background or background
noise, while, Titanic has musical background in
addition to the background noise such as the
screams of the drowning people. From the graph,
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the difference between the quality of the iVectors
clusters on different noise-levels is clear.

Table 4 shows the effect of adding components
of our loss function to the initial loss Linit func-
tion. The performance of the model using only
Linit without the other parts is very low due to the
sparsity of first person references and errors that
the person reference classifier introduces.

Precision Recall F-score
Linitial 0.0631 0.1576 0.0775
Linitial + Lgender 0.1160 0.1845 0.1210
Linitial + Lnegative 0.0825 0.0746 0.0361
Linitial + Ldistribution 0.1050 0.1570 0.0608
Linitial + LMultipleInstance 0.3058 0.2941 0.2189

Table 4: Analysis of the effect of adding each com-
ponent of the loss function to the initial loss.

In order to analyze the effect of the errors that
several of the modules (e.g., gender and name ref-
erence classifiers) propagate into the system, we
also test our framework by replacing each one of
the components with its ground truth information.
As seen in Table 5, the results obtained in this
setting show significant improvement with the re-
placement of each component in our framework,
which suggests that additional work on these com-
ponents will have positive implications on the
overall system.

Precision Recall F-score
Our Model 0.3720 0.3108 0.2920
Voice Gender (VG) 0.4218 0.3449 0.3259
VG + Name Gender (NG) 0.4412 0.3790 0.3645
VG + NG + Name Ref 0.4403 0.3938 0.3748

Table 5: Comparison between our model while
replacing different components with their ground
truth information.

7 Speaker Naming for Movie
Understanding

Identifying speakers is a critical task for under-
standing the dialogue and storyline in movies.
MovieQA is a challenging dataset for movie un-
derstanding. The dataset consists of 14,944 mul-
tiple choice questions about 408 movies. Each
question has five answers and only one of them
is correct. The dataset is divided into three splits:
train, validation, and test according to the movie ti-
tles. Importantly, there are no overlapping movies
between the splits. Table 6 shows examples of the
question and answers in the MovieQA dataset.

Subtitles	+	
speaker	names

A1:	Jones
A2:	Gordon
A3:	Alfred
A4:	Fox
A5:	Blake

Q:	Who	sees	Bruce and	
Selina together	in	Florence?"

Related	
characters

Softm
ax

Subtitles	
Embedding

Weights

FC

W2V

Conv

Speaker	+	
Mention	Mask

W
2V

W
eighted	Sum

O
utput

FC

W2V

Softmax

Prediction

∑

⨷

⨷

Figure 3: The diagram describing our Speaker-
based Convolutional Memory Network (SC-
MemN2N) model.

The MovieQA 2017 Challenge3 consists of six
different tasks according to the source of infor-
mation used to answer the questions. Given that
for many of the movies in the dataset the videos
are not completely available, we develop our ini-
tial system so that it only relies on the subtitles;
we thus participate in the challenge subtitles task,
which includes the dialogue (without the speaker
information) as the only source of information to
answer questions.

To demonstrate the effectiveness of our speaker
naming approach, we design a model based
on an end-to-end memory network (Sukhbaatar
et al., 2015), namely Speaker-based Convolu-
tional Memory Network (SC-MemN2N), which
relies on the MovieQA dataset, and integrates the
speaker naming approach as a component in the
network. Specifically, we use our speaker nam-
ing framework to infer the name of the speaker
for each segment of the subtitles, and prepend the
predicted speaker name to each turn in the subti-
tles.4 To represent the movie subtitles, we repre-
sent each turn in the subtitles as the mean-pooling
of a 300-dimension pretrained word2vec (Mikolov
et al., 2013) representation of each word in the
sentence. We similarly represent the input ques-
tions and their corresponding answers. Given a
question, we use the SC-MemN2N memory to find
an answer. For questions asking about specific
characters, we keep the memory slots that have the
characters in question as speakers or mentioned in,
and mask out the rest of the memory slots. Figure

3http://movieqa.cs.toronto.edu/workshops/iccv2017/
4We strictly follow the challenge rules, and only use text

to infer the speaker names.
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Movie Question Answers

Fargo
What did Mike’s wife, as he
says, die from?

A1: She was killed A2: Breast cancer
A3: Leukemia A4: Heart disease
A5: Complications due to child birth

Titanic
What does Rose ask Jack to do
in her room?

A1: Sketch her in her best dress A2: Sketch her nude
A3: Take a picture of her nude A4: Paint her nude
A5: Take a picture of her in her best dress

Table 6: Example of questions and answers from the MQA benchmark. The answers in bold are the
correct answers to their corresponding question.

3 shows the architecture of our model.
Table 7 includes the results of our system on

the validation and test sets, along with the best
systems introduced in previous work, showing
that our SC-MemN2N achieves the best perfor-
mance. Furthermore, to measure the effectiveness
of adding the speaker names and masking, we test
our model after removing the names from the net-
work (C-MemN2N). As seen from the results, the
gain of SC-MemN2N is statistically significant5

compared to a version of the system that does not
include the speaker names (C-MemN2N). Figure
4 shows the performance of both C-MemN2N and
SC-MemN2N models by question type. The re-
sults suggest that our speaker naming helps the
model better distinguish between characters, and
that prepending the speaker names to the subti-
tle segments improves the ability of the memory
network to correctly identify the supporting facts
from the story that answers a given question.

Method
Subtitles

val test
SSCB-W2V (Tapaswi et al., 2016) 24.8 23.7
SSCB-TF-IDF (Tapaswi et al., 2016) 27.6 26.5
SSCB Fusion (Tapaswi et al., 2016) 27.7 -
MemN2N (Tapaswi et al., 2016) 38.0 36.9
Understanding visual regions - 37.4
RWMN (Na et al., 2017) 40.4 38.5
C-MemN2N (w/o SN) 40.6 -
SC-MemN2N (Ours) 42.7 39.4

Table 7: Performance comparison for the subti-
tles task on the MovieQA 2017 Challenge on both
validation and test sets. We compare our models
with the best existing models (from the challenge
leaderboard).

8 Conclusion

In this paper, we proposed a unified optimiza-
tion framework for the task of speaker naming

5Using a t-test p-value<0.05 with 1,000 folds each con-
taining 20 samples.

Figure 4: Accuracy comparison according to ques-
tion type.

in movies. We addressed this task under a dif-
ficult setup, without a cast-list, without supervi-
sion from a script, and dealing with the com-
plicated conditions of real movies. Our model
includes textual, visual, and acoustic modalities,
and incorporates several grammatical and acous-
tic constraints. Empirical experiments on a movie
dataset demonstrated the effectiveness of our pro-
posed method with respect to several competitive
baselines. We also showed that an SC-MemN2N
model that leverages our speaker naming model
can achieve state-of-the-art results on the subtitles
task of the MovieQA 2017 Challenge.

The dataset annotated with character names
introduced in this paper is publicly avail-
able from http://lit.eecs.umich.edu/
downloads.html.
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Abstract

Visual Question Answering (VQA) is a well-
known and challenging task that requires sys-
tems to jointly reason about natural language
and vision. Deep learning models in vari-
ous forms have been the standard for solving
VQA. However, some of these VQA models
are better at certain types of image-question
pairs than other models. Ensembling VQA
models intelligently to leverage their diverse
expertise is, therefore, advantageous.

Stacking With Auxiliary Features (SWAF)
is an intelligent ensembling technique which
learns to combine the results of multiple mod-
els using features of the current problem as
context. We propose four categories of aux-
iliary features for ensembling for VQA. Three
out of the four categories of features can be
inferred from an image-question pair and do
not require querying the component models.
The fourth category of auxiliary features uses
model-specific explanations. In this paper, we
describe how we use these various categories
of auxiliary features to improve performance
for VQA. Using SWAF to effectively ensem-
ble three recent systems, we obtain a new
state-of-the-art. Our work also highlights the
advantages of explainable AI models.

1 Introduction

Visual Question Answering (VQA), the task of ad-
dressing open-ended questions about images (Ma-
linowski and Fritz, 2014; Antol et al., 2015), has
attracted significant attention in recent years (An-
dreas et al., 2016a; Goyal et al., 2016; Agrawal
et al., 2016; Teney et al., 2017). Given an im-
age and a natural language question about the im-
age, the task is to provide an accurate natural lan-
guage answer. VQA requires visual and linguis-
tic comprehension, language grounding as well as
common-sense knowledge. A variety of methods
to address these challenges have been developed

in recent years (Fukui et al., 2016; Xu and Saenko,
2016; Lu et al., 2016; Chen et al., 2015). The vi-
sion component of a typical VQA system extracts
visual features using a deep convolutional neural
network (CNN), and the linguistic component en-
codes the question into a semantic vector using
a recurrent neural network (RNN). An answer is
then generated conditioned on the visual features
and the question vector.

Most VQA systems have a single underlying
method that optimizes a specific loss function and
do not leverage the advantage of using multiple di-
verse models. One recent ensembling approach to
VQA (Fukui et al., 2016) combined multiple mod-
els that use multimodal compact bilinear pool-
ing with attention and achieved state-of-the-art ac-
curacy on the VQA 2016 challenge. However,
their ensemble uses simple softmax averaging to
combine outputs from multiple systems. Also,
their model is pre-trained on the Visual Genome
dataset (Krishna et al., 2017) and they concate-
nate learned word embeddings with pre-trained
GloVe vectors (Pennington et al., 2014). Several
other deep and non-deep learning approaches for
solving VQA have also been proposed (Lu et al.,
2016; Zhou et al., 2015; Noh et al., 2016). Al-
though these models perform fairly well on certain
image-question (IQ) pairs, they fail spectacularly
on certain other IQ pairs. This led us to conclude
that the various VQA models have learned to per-
form well on specific types of questions and im-
ages. Therefore, there is an opportunity to com-
bine these models intelligently so as to leverage
their diverse strengths.

Ensembling multiple systems is a well known
standard approach to improving accuracy in ma-
chine learning (Dietterich, 2000). Stacking with
Auxiliary Features (SWAF) (Rajani and Mooney,
2017) is a recent ensembling algorithm that learns
to combine outputs of multiple systems using fea-
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Figure 1: Random sample of images with questions and
ground truth answers taken from the VQA dataset.

tures of the current problem as context. In this
paper, we use SWAF to more effectively com-
bine several VQA models. Traditional stacking
(Wolpert, 1992) trains a supervised meta-classifier
to appropriately combine multiple system outputs.
SWAF further enables the stacker to exploit addi-
tional relevant knowledge of both the component
systems and the problem by providing auxiliary
features to the meta-classifier. Our approach ex-
tracts features from the IQ pair under considera-
tion, as well as the component models and pro-
vides this information to the classifier. The meta-
classifier then learns to predict whether a specific
generated answer is correct or not.

Explanations attempt to justify a system’s pre-
dicted output and provide context for their de-
cision that may also help SWAF. We extract vi-
sual explanations from various deep learning mod-
els and use those as auxiliary features for SWAF.
Our contributions can be summarized as follows:
(a) developing novel auxiliary features that can
be inferred from VQA questions and images; (b)
extracting visual explanations from several com-
ponent models for each IQ pair and using those
to also generate auxiliary features; and (c) us-
ing SWAF to ensemble various VQA models and
evaluating ablations of features while comparing
our approach extensively to several individual as
well as ensemble systems. By effectively ensem-
bling three leading VQA systems with SWAF, we
demonstrate state-of-the-art performance.

2 Background and Related Work

VQA is the task of answering a natural language
question about the content of an image by re-
turning an appropriate word or phrase. Figure 1
shows a sample of images and questions from the

VQA 2016 challenge. The dataset consists of im-
ages taken from the MS COCO dataset (Lin et al.,
2014) with three questions and answers per image
obtained through Mechanical Turk (Antol et al.,
2015). Table 1 summarizes the splits in the VQA
dataset. Several deep learning models have been
developed that combine a computer vision compo-
nent with a linguistic component in order to solve
the VQA challenge. Some of these models also
use data-augmentation for pre-training. We dis-
cuss the VQA models we use in Section 5.

Images Questions

Training 82,783 248,349
Validation 40,504 121,512

Test 81,434 244,302

Table 1: VQA dataset splits.

Stacking With Auxiliary Features (SWAF) is an
ensembling technique that combines outputs from
multiple systems using their confidence scores
and task-relevant features. It has previously
been applied effectively to information extraction
(Viswanathan et al., 2015), entity linking (Rajani
and Mooney, 2016) and ImageNet object detection
(Rajani and Mooney, 2017). To the best of our
knowledge, there has been no prior work on stack-
ing for VQA, and we are the first to show how
model-specific explanations can serve as an aux-
iliary feature. The auxiliary features that we use
are motivated by an analysis of the VQA dataset
and also inspired by related work, such as using a
Bayesian framework to predict the form of the an-
swer from the question (Kafle and Kanan, 2016).

Deep learning models have been used widely on
several vision and language problems. However,
they frequently lack transparency and are unable
to explain their decisions (Selvaraju et al., 2017).
On the other hand, humans can justify their deci-
sions with natural language as well as point to the
visual evidence that supports their decision. There
are several advantages of having AI systems that
can generate explanations that support their pre-
dictions (Johns et al., 2015; Agrawal et al., 2016).
These advantages have motivated recent work on
explainable AI systems, particularly in computer
vision (Antol et al., 2015; Goyal et al., 2016; Hen-
dricks et al., 2016; Park et al., 2016). However,
there has been no prior work on using explana-
tions for ensembling multiple models or improv-
ing performance on a challenging task. In this
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Figure 2: Ensemble Architecture using Stacking with
Auxiliary Features. Given an input, the ensemble
judges every possible question-answer pair produced
by the component systems and determines the final out-
put answer.

paper, we generate visual explanations for three
different VQA models and use these explanations
to develop auxiliary features that aid in effectively
ensembling VQA systems.

3 Stacking With Auxiliary Features
(SWAF) for VQA

In stacking, a meta-classifier is learned to com-
bine the outputs of multiple underlying systems
(Wolpert, 1992). The stacker learns a classifica-
tion boundary based on the confidence scores pro-
vided by individual systems for each possible out-
put. However, many times the scores produced
by systems are not probabilities or not well cali-
brated and cannot be meaningfully compared. In
such circumstances, it is beneficial to also have
other reliable auxiliary features, as in the SWAF
approach. SWAF provides the meta-classifier ad-
ditional information, such as features of the cur-
rent problem and provenance or explanation infor-
mation about the output from individual systems.
This allows SWAF to learn which systems do well
on which types of problems and when to trust
agreements between specific systems. The learned
meta-classifier makes a binary decision whether or
not to accept a particular output. Figure 2 gives an
overview of the SWAF approach.

For stacking VQA systems, we first form
unique question-answer pairs across all of the sys-
tems’ outputs before passing them through the
stacker. If a system generates a given output, then
we use its probability estimate for that output, oth-

erwise, the confidence is considered zero. If a
question-answer pair is classified as correct by the
stacker, and if there are other answers that are also
classified as correct for the same question, the out-
put with the highest meta-classifier confidence is
chosen. For questions that do not have any answer
classified as correct by the stacker, we choose the
answer with lowest classifier confidence, which
means it is least likely to be incorrect. The reason
we do this is that the online VQA scorer expects
an answer for each question in the test set and pe-
nalizes the model for every unanswered question.

The confidence scores along with other aux-
iliary features form the complete set of features
used by the stacker. The auxiliary features are
the backbone of the SWAF approach, enabling the
stacker to intelligently learn to rely on systems’
outputs conditioned on the supporting evidence.
We use a total of four different categories of auxil-
iary features for VQA. Three of these types can be
inferred directly from the image-question (IQ) pair
and do not require querying the individual mod-
els. For the fourth category of auxiliary features,
we generate visual explanations for the compo-
nent models and use these to create the explana-
tion auxiliary features. The first three categories
of features are discussed below and the fourth cat-
egory is discussed in the next section.

3.1 Question and Answer Types

Antol et al. (2015) analyzed the VQA data and
found that most questions fall into several types
based on the first few words (e.g. questions begin-
ning with “What is...”, “Is there...”, “How many...”,
or “Does the...”). Using the validation data, we
discover such lexical patterns to define a set of
question types. The questions were tokenized and
a question type was formed by adding one token
at a time, up to a maximum of five, to the current
substring. The question “What is the color of the
vase?” has the following types: “What”, “What
is”, “What is the”, “What is the color”, “What is
the color of”. The prefixes that contain at least 500
questions were then retained as types. We added
a final type “other” for questions that do not fall
into any of the predefined types, resulting in a to-
tal of 70 question types. A 70-bit vector is used
to encode the question type as a set of auxiliary
features.

The original analysis of VQA answers found
that they are 38% “yes/no” type and 12% numbers.
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There is clearly a pattern in the VQA answers
as well and we use the questions to infer some
of these patterns. We considered three answer
types – “yes/no”, “number”, and “other”. The
answer-type auxiliary features are encoded using
a one-hot vector. We classify all questions be-
ginning with “Does”,“Is”,“Was”,“Are”, and “Has”
as “yes/no”. Ones beginning with “How many”,
“What time”, “What number” are assigned “num-
ber” type. These inferred answer types are not ex-
haustive but have good coverage. The intuition be-
hind using the question and answer types as aux-
iliary features is that some VQA models are better
than others at handling certain types of questions
and/or answers. Making this information available
at the time of classification aids the stacker in mak-
ing a better decision.

3.2 Question Features

We also use a bag-of-words (BOW) representa-
tion of the question as auxiliary features. Words
that occur at least five times in the validation set
were included. The final sparse vector represent-
ing a question was normalized by the number of
unique words in the question. In this way, we are
able to embed the question into a single vector.
Goyal et al. (2016) showed that attending to spe-
cific words in the question is important in VQA.
Including a BOW for the question as auxiliary fea-
tures equip the stacker to efficiently learn which
words are important and can aid in classifying an-
swers.

3.3 Image Features

We also used “deep visual features” of the image
as additional auxiliary features. Specifically, we
use the 4, 096 features from VGGNet’s (Simonyan
and Zisserman, 2015) fc7 layer . This creates an
embedding of the image in a single vector which
is then used by the stacker. Using such image fea-
tures enables the stacker to learn to rely on systems
that are good at identifying answers for particular
types of images. Recall that the individual VQA
models fuse an embedding of the image along with
an embedding of the question. By using the ques-
tion and image embeddings at the meta-classifier
level, the stacker learns to discriminate between
the component models based on a deeper repre-
sentation of the IQ pair.

4 Using Explanations

Recently, there has been work on analyzing re-
gions of an image that deep-learning models fo-
cus on when making decisions (Goyal et al., 2016;
Hendricks et al., 2016; Park et al., 2016). This
work shows that deep-learning models attend to
relevant parts of the image when making a deci-
sion. For VQA, the parts of images that the mod-
els focus on can be thought of as visual explana-
tions for answering the question. We use these
visual explanations to construct auxiliary features
for SWAF. The idea behind using explanation fea-
tures is that they enable the stacker to learn to trust
the agreement between systems when they also
agree on the heat-map explanation by “looking”
at the right region of the image when generating
an answer.

4.1 Generating Explanations
We use the GradCAM algorithm (Selvaraju et al.,
2017) to generate model-specific explanatory
heat-maps for each IQ pair. This approach gen-
erates a class-discriminative localization-map for
a given model based on its respective predicted
output class in the following way. First, the gra-
dient of the score yc for the predicted class c
is computed before the softmax layer with re-
spect to the feature maps Ak of a convolutional
layer. Then, the gradients flowing back are global
average pooled to obtain the neuron importance
weights.

wck =

global average pooling︷ ︸︸ ︷
1

Z

∑

i

∑

j

∂yc

∂Akij︸ ︷︷ ︸
backprop gradients

The above weights capture the importance of a
convolutional feature map k for the output class
c, where Z is the total number of pixels in the
feature map. A ReLU over the weighted combi-
nation of the feature maps results in the required
localization-map for the output class as follows:

Hc = ReLU(
∑

k

wckA
k)

For each of the component VQA models, we gen-
erate the localization-map to be used as auxiliary
features for ensembling. Figure 3 shows a sample
of IQ pairs from the VQA dataset and their respec-
tive heat-maps generated for three VQA models.
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Figure 3: Each row from left to right shows an image-question pair from the VQA dataset along with localization-
maps overlaid on the image generated by the LSTM, HieCoAtt and MCB models respectively. The answers shown
are those predicted by our ensemble.

4.2 Explanation as Auxiliary Features

The localization-map generated by each VQA
model serves as a visual explanation for the pre-
dicted output of that model. We compare agree-
ment between the localization-maps of the indi-
vidual models to generate auxiliary features for
SWAF. We take the absolute gray-scale value
of the localization-maps in of each model and
compute their mean rank-correlation with the
localization-map of every other model. We rank
the pixels according to their spatial attention
and then compute the correlation between the
two ranked lists. The rank correlation protocol
has been used in the past to compare machine-
generated and human attention-maps as described
by Das et al. (2016). We also experimented with
using the Earth Mover’s Distance (EMD) in place

of the rank-order correlation metric, as discussed
in Section 6. We compare the localization-maps
of each pair of VQA models, generating

(
n
2

)
“ex-

planation agreement” auxiliary features for SWAF,
where n is the total number of models.

5 Component VQA Systems

We use SWAF to combine three diverse VQA sys-
tems such that the final ensemble performs bet-
ter than any individual component model even on
questions with a low agreement. The three compo-
nent models are trained on the VQA training set.
Each of the three models is described below.

5.1 Long Short-Term Memory (LSTM)

The LSTM model (Antol et al., 2015) is one of
the original baseline models used to establish a
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benchmark for the VQA dataset. A VGGNet
(Simonyan and Zisserman, 2015) is used to ob-
tain embeddings for the image which is com-
bined with an LSTM (Hochreiter and Schmidhu-
ber, 1997) embedding of each question. An LSTM
with two hidden layers is used to obtain a 2, 048-
dimensional embedding of the question, followed
by a fully-connected layer with tanh non-linearity
to transform the embedding to 1, 024 dimensions.
The l2 normalized activations from the last hid-
den layer of VGGNet are used as a 4, 096 dimen-
sional image embedding. The image embedding is
first transformed to 1, 024 dimensions by a fully-
connected layer with tanh nonlinearity to match
the dimensionality of the LSTM embedding of the
question. The transformed image and LSTM em-
beddings are then fused via element-wise multipli-
cation.

5.2 Hierarchical Question-Image
Co-Attention (HieCoAtt)

The idea behind the HieCoAtt model is that in
addition to using visual attention to focus on
where to look, it is equally important to model
what words to attend to in the question (question-
attention) (Lu et al., 2016). This model jointly
reasons about the visual and language compo-
nents using “co-attention”. Question attention is
modeled using a hierarchical architecture at word,
phrase, and question levels.

HieCoAtt uses two types of co-attention – par-
allel and alternating. Parallel co-attention attends
to the image and question simultaneously by cal-
culating the similarity between image and ques-
tion features at all pairs of image-locations and
question-locations. Alternating co-attention se-
quentially alternates between generating image
and question attention by attending to the image
based on the question summary vector and then
attending to the question based on the attended im-
age features.

5.3 Multimodal Compact Bilinear pooling
(MCB)

The MCB model combines the vision and lan-
guage vector representations using an outer prod-
uct instead of the traditional approach of using
concatenation or element-wise product or sum of
the two vectors (Fukui et al., 2016). Bilinear pool-
ing computes the outer product between two vec-
tors which, in contrast to the element-wise prod-
uct, allows a multiplicative interaction between

all elements of both vectors. To overcome the
challenge of high dimensionality due to the outer
product, the authors adopt the idea of using Mul-
timodal Compact Bilinear pooling (MCB) (Gao
et al., 2016) to efficiently and expressively com-
bine multimodal features.

The MCB model extracts representations for
the image using the 152-layer Residual Network
(He et al., 2016) and an LSTM (Hochreiter and
Schmidhuber, 1997) embedding of the question.
The two vector are pooled using MCB and the
answer is obtained by treating the problem as a
multi-class classification problem with 3, 000 pos-
sible classes. The best MCB model is an en-
semble of seven attention models and uses data-
augmentation for pre-training along with pre-
trained GloVe word embeddings. The best MCB
model won the VQA 2016 challenge by obtaining
the best performance on the test set.

6 Experimental Results and Discussion

We present experimental results on the VQA chal-
lenge using the SWAF approach and compare it to
various baselines, individual and ensemble VQA
models, as well as ablations of our SWAF algo-
rithm on the standard VQA test set. In addition
to the three data splits given in Table 1, the VQA
challenge divides the test set into test-dev and
test-standard. Evaluation on either split requires
submitting the output to the competition’s online
server.1 However, there are fewer restrictions on
the number of submissions that can be made to
the test-dev compared to the test-standard. The
test-dev is a subset of the standard test set con-
sisting of randomly selected 60, 864 (25%) ques-
tions. We use the test-dev set to tune the parame-
ters of the meta-classifier. All the individual VQA
models that we ensemble are trained only on the
VQA training set and the SWAF meta-classifier is
trained on the VQA validation set.

For the meta-classifier, we use a L1-regularized
SVM classifier for generic stacking and stacking
with only question/answer types as auxiliary fea-
tures. For the question, image, and explanation
features, we found that a neural network with two
hidden layers works best. The first hidden layer is
fully connected and the second has approximately
half the number of neurons as the first layer. The
question and image features are high-dimensional
and therefore a neural network classifier worked

1www.visualqa.org/challenge.html
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Method All Yes/No Number Other

DPPNet (Noh et al., 2016) 57.36 80.28 36.92 42.24

iBOWIMG (Zhou et al., 2015) 55.72 76.55 35.03 42.62
NMNs (Andreas et al., 2016b) 58.70 81.20 37.70 44.00
LSTM (Antol et al., 2015) 58.20 80.60 36.50 43.70
HieCoAtt (Lu et al., 2016) 61.80 79.70 38.70 51.70
MCB (Single system) (Fukui et al., 2016) 62.56 80.68 35.59 52.93

MCB (Ensemble) (Fukui et al., 2016) 66.50 83.20 39.50 58.00

Voting (MCB + HieCoAtt + LSTM) 60.31 80.22 34.92 48.83
Stacking 63.12 81.61 36.07 53.77

+ Q/A type features 65.25 82.01 36.50 57.15
+ Question features 65.50 82.26 38.21 57.35

+ Image features 65.54 82.28 38.63 57.32
+ Explanation features 67.26 82.62 39.50 58.34

Table 2: Accuracy results on the VQA test-standard set. The first block shows performance of a VQA model that
use external data for pre-training, the second block shows single system VQA models, the third block shows an
ensemble VQA model that also uses external data for pre-training, and the fourth block shows ensemble VQA
models.

well. We found that using late fusion (Karpa-
thy et al., 2014) to combine the auxiliary features
for the neural network classifier worked slightly
better. We used Keras with Tensorflow back-end
(Chollet, 2015) for implementing the network. We
compare our approach to a voting baseline that re-
turns the answer with maximum agreement, with
ties broken in the favor of systems with higher
confidence scores. We also compare against other
state-of-the-art VQA systems not used in our en-
semble: iBowIMG (Zhou et al., 2015), DPPNet
(Noh et al., 2016) and the Neural Module Net-
works (NMNs) (Andreas et al., 2016b).

The iBowIMG concatenates the image features
with the bag-of-word question embedding and
feeds them into a softmax classifier to predict the
answer, resulting in performance comparable to
other models that use deep or recursive neural
networks. The iBowIMG beats most VQA mod-
els considered in their paper. The DPPNet, on
the other hand, learns a CNN with some param-
eters predicted from a separate parameter predic-
tion network. Their parameter prediction network
uses a Gated Recurrent Unit (GRU) to generate
a question representation and maps the predicted
weights to a CNN via hashing. The DPPNet uses
external data (data-augmentation) in addition to
the VQA dataset to pre-train the GRU. Another
well-known VQA model is the Neural Module
Network (NMN) that generates a neural network

on the fly for each individual image and ques-
tion. This is done through choosing from various
sub-modules based on the question and compos-
ing these to generate the neural network, e.g., the
find[x] module outputs an attention map for
detecting x. To arrange the modules, the question
is first parsed into a symbolic expression and us-
ing these expressions, modules are composed into
a sequence to answer the query. The whole system
is trained end-to-end through backpropagation.

The VQA evaluation server, along with report-
ing accuracies on the full question set, also re-
ports a break-down of accuracy across three an-
swer categories. The image-question (IQ) pairs
that have answer type as “yes/no”, those that have
“number” as their answer type and finally those
that do not belong to either of the first two cat-
egories are classified as “other”. Table 2 shows
the full and category-wise accuracies. All scores
for the stacking models were obtained using the
VQA test-standard server. The table shows results
for both single system and ensemble MCB mod-
els. We used the single system MCB model as a
component in our ensemble. The ensemble MCB
system, however, was the top-ranked system in the
VQA 2016 challenge and it is pre-trained on the
Visual Genome dataset (Krishna et al., 2017) as
well as uses pre-trained GloVe vectors (Penning-
ton et al., 2014). On the other hand, our ensemble
system does not use any external data and consists
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Figure 4: Results for auxiliary feature ablations on the
VQA test-dev set. The x-axis indicates the feature
set that was ablated from the final ensemble.

of only three component models.
The SWAF approach obtains a new state-of-the-

art result on the VQA task. The vanilla stack-
ing approach itself beats the best individual model
and adding the auxiliary features further boosts
the performance. Our SWAF model that uses all
three sets of auxiliary features related to IQ pairs
does particularly well on the more difficult “other”
answer category, indicating that the auxiliary fea-
tures provide crucial information at classification
time. To further analyze the SWAF results, we
performed experiments with ablations of the aux-
iliary features. Figure 4 shows the results on the
test-dev set obtained when ablating each of the
auxiliary feature sets. We observe that deleting
the Q/A type decreased performance the most and
deleting the explanation features decreased perfor-
mance the least. This indicates that the Q/A type
features are the most informative and the explana-
tion features are the least informative for deciding
the correct answer.

The voting baseline does not perform very well
even though it is able to beat one of the component
models. The SWAF ablation results clearly indi-
cate that there is an advantage to using each type of
auxiliary feature. Each of the auxiliary feature sets
contributes to the final ensemble’s performance,
which is clear from Table 2. The voting and the
“vanilla stacking” ensembles do not perform as
well as SWAF. This leads us to conclude that the
performance gain is actually obtained from using
the auxiliary features.

In particular, using explanations generated by
various deep learning models as auxiliary fea-
tures improved performance. We observed that
the localization-maps generated were fairly noisy,
as is evident from Figure 3. Although the indi-

vidual component systems agreed on an answer
for many of the IQ pairs, the regions of the im-
age they attend to varied significantly. However,
the rank correlation metric in the auxiliary fea-
tures made the localization-maps useful for en-
sembling. This is because, when training on the
validation set, the stacker learns how to weight
the auxiliary features, including those obtained us-
ing localization-maps. In this way, it learns to
trust only the localization-maps that are actually
useful. We also observed that there was a high
positive correlation between the localization-maps
generated by the HieCoAtt and MCB models, fol-
lowed by the LSTM and MCB models, and then
the LSTM and HieCoAtt models with several of
the maps even negatively correlated between the
last two models.

We also experimented with using Earth Mover’s
Distance (EMD) to compare heat-maps and found
that it worked even better than rank-order corre-
lation; however, it came at a cost of high com-
putational complexity (O(n3) vs. O(n)). Fig-
ure 4 shows the difference in performance ob-
tained when explanation features calculated using
either EMD or rank-order correlation are ablated
from the final ensemble. Clearly, using EMD to
compare explanation maps has more impact on the
system’s accuracy. Consistent with previous find-
ings (Bylinskii et al., 2018), our results confirm
that EMD provides a finer-grained comparison be-
tween localization maps. Overall, our work shows
that the utility of explanations is not limited to just
developing human trust and making models more
transparent. Explanations can also be used to im-
prove performance on a challenging task.

7 Conclusions and Future Work

We have presented results for using stacking with
auxiliary features (SWAF) to ensemble VQA sys-
tems. We proposed four different categories of
auxiliary features, three of which can be inferred
from an image-question pair. We showed that our
model trained on these auxiliary features outper-
forms the individual component systems as well
as other baselines to obtain a new state-of-the-art
for VQA. For the fourth category of features, we
have proposed and evaluated the novel idea of us-
ing explanations to improve ensembling of mul-
tiple systems. We demonstrated how visual ex-
planations for VQA (represented as localization-
maps) can be used to aid stacking with auxiliary

2224



features. This approach effectively utilizes infor-
mation on the degree to which systems agree on
the explanation of their answers. We showed that
the combination of all of these categories of auxil-
iary features, including explanation, gives the best
results.

We believe that integrating explanation with en-
sembling has a two-fold advantage. First, as dis-
cussed in this paper, explanations can be used to
improve the accuracy of an ensemble. Second, ex-
planations from the component systems could be
used to build an explanation for the overall en-
semble. That is, by combining multiple compo-
nent explanations, SWAF could also produce more
comprehensible results. Therefore, in the future,
we would like to focus on explaining the results of
an ensemble. Another issue we plan to explore is
using textual explanations (Park et al., 2016) for
VQA. We believe that the words in the question
to which a system attends can also be used to im-
prove ensembling. Finally, we hope to apply our
approach to additional problems beyond VQA.
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Abstract

We introduce a new type of deep contextual-
ized word representation that models both (1)
complex characteristics of word use (e.g., syn-
tax and semantics), and (2) how these uses
vary across linguistic contexts (i.e., to model
polysemy). Our word vectors are learned func-
tions of the internal states of a deep bidirec-
tional language model (biLM), which is pre-
trained on a large text corpus. We show that
these representations can be easily added to
existing models and significantly improve the
state of the art across six challenging NLP
problems, including question answering, tex-
tual entailment and sentiment analysis. We
also present an analysis showing that exposing
the deep internals of the pre-trained network is
crucial, allowing downstream models to mix
different types of semi-supervision signals.

1 Introduction

Pre-trained word representations (Mikolov et al.,
2013; Pennington et al., 2014) are a key compo-
nent in many neural language understanding mod-
els. However, learning high quality representa-
tions can be challenging. They should ideally
model both (1) complex characteristics of word
use (e.g., syntax and semantics), and (2) how these
uses vary across linguistic contexts (i.e., to model
polysemy). In this paper, we introduce a new type
of deep contextualized word representation that
directly addresses both challenges, can be easily
integrated into existing models, and significantly
improves the state of the art in every considered
case across a range of challenging language un-
derstanding problems.

Our representations differ from traditional word
type embeddings in that each token is assigned a
representation that is a function of the entire input
sentence. We use vectors derived from a bidirec-
tional LSTM that is trained with a coupled lan-

guage model (LM) objective on a large text cor-
pus. For this reason, we call them ELMo (Em-
beddings from Language Models) representations.
Unlike previous approaches for learning contextu-
alized word vectors (Peters et al., 2017; McCann
et al., 2017), ELMo representations are deep, in
the sense that they are a function of all of the in-
ternal layers of the biLM. More specifically, we
learn a linear combination of the vectors stacked
above each input word for each end task, which
markedly improves performance over just using
the top LSTM layer.

Combining the internal states in this manner al-
lows for very rich word representations. Using in-
trinsic evaluations, we show that the higher-level
LSTM states capture context-dependent aspects
of word meaning (e.g., they can be used with-
out modification to perform well on supervised
word sense disambiguation tasks) while lower-
level states model aspects of syntax (e.g., they can
be used to do part-of-speech tagging). Simultane-
ously exposing all of these signals is highly bene-
ficial, allowing the learned models select the types
of semi-supervision that are most useful for each
end task.

Extensive experiments demonstrate that ELMo
representations work extremely well in practice.
We first show that they can be easily added to
existing models for six diverse and challenging
language understanding problems, including tex-
tual entailment, question answering and sentiment
analysis. The addition of ELMo representations
alone significantly improves the state of the art
in every case, including up to 20% relative error
reductions. For tasks where direct comparisons
are possible, ELMo outperforms CoVe (McCann
et al., 2017), which computes contextualized rep-
resentations using a neural machine translation en-
coder. Finally, an analysis of both ELMo and
CoVe reveals that deep representations outperform
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those derived from just the top layer of an LSTM.
Our trained models and code are publicly avail-
able, and we expect that ELMo will provide simi-
lar gains for many other NLP problems.1

2 Related work

Due to their ability to capture syntactic and se-
mantic information of words from large scale un-
labeled text, pretrained word vectors (Turian et al.,
2010; Mikolov et al., 2013; Pennington et al.,
2014) are a standard component of most state-of-
the-art NLP architectures, including for question
answering (Liu et al., 2017), textual entailment
(Chen et al., 2017) and semantic role labeling
(He et al., 2017). However, these approaches for
learning word vectors only allow a single context-
independent representation for each word.

Previously proposed methods overcome some
of the shortcomings of traditional word vectors
by either enriching them with subword informa-
tion (e.g., Wieting et al., 2016; Bojanowski et al.,
2017) or learning separate vectors for each word
sense (e.g., Neelakantan et al., 2014). Our ap-
proach also benefits from subword units through
the use of character convolutions, and we seam-
lessly incorporate multi-sense information into
downstream tasks without explicitly training to
predict predefined sense classes.

Other recent work has also focused on
learning context-dependent representations.
context2vec (Melamud et al., 2016) uses a
bidirectional Long Short Term Memory (LSTM;
Hochreiter and Schmidhuber, 1997) to encode the
context around a pivot word. Other approaches
for learning contextual embeddings include the
pivot word itself in the representation and are
computed with the encoder of either a supervised
neural machine translation (MT) system (CoVe;
McCann et al., 2017) or an unsupervised lan-
guage model (Peters et al., 2017). Both of these
approaches benefit from large datasets, although
the MT approach is limited by the size of parallel
corpora. In this paper, we take full advantage of
access to plentiful monolingual data, and train
our biLM on a corpus with approximately 30
million sentences (Chelba et al., 2014). We also
generalize these approaches to deep contextual
representations, which we show work well across
a broad range of diverse NLP tasks.

1http://allennlp.org/elmo

Previous work has also shown that different lay-
ers of deep biRNNs encode different types of in-
formation. For example, introducing multi-task
syntactic supervision (e.g., part-of-speech tags) at
the lower levels of a deep LSTM can improve
overall performance of higher level tasks such as
dependency parsing (Hashimoto et al., 2017) or
CCG super tagging (Søgaard and Goldberg, 2016).
In an RNN-based encoder-decoder machine trans-
lation system, Belinkov et al. (2017) showed that
the representations learned at the first layer in a 2-
layer LSTM encoder are better at predicting POS
tags then second layer. Finally, the top layer of an
LSTM for encoding word context (Melamud et al.,
2016) has been shown to learn representations of
word sense. We show that similar signals are also
induced by the modified language model objective
of our ELMo representations, and it can be very
beneficial to learn models for downstream tasks
that mix these different types of semi-supervision.

Dai and Le (2015) and Ramachandran et al.
(2017) pretrain encoder-decoder pairs using lan-
guage models and sequence autoencoders and then
fine tune with task specific supervision. In con-
trast, after pretraining the biLM with unlabeled
data, we fix the weights and add additional task-
specific model capacity, allowing us to leverage
large, rich and universal biLM representations for
cases where downstream training data size dictates
a smaller supervised model.

3 ELMo: Embeddings from Language
Models

Unlike most widely used word embeddings (Pen-
nington et al., 2014), ELMo word representations
are functions of the entire input sentence, as de-
scribed in this section. They are computed on top
of two-layer biLMs with character convolutions
(Sec. 3.1), as a linear function of the internal net-
work states (Sec. 3.2). This setup allows us to do
semi-supervised learning, where the biLM is pre-
trained at a large scale (Sec. 3.4) and easily incor-
porated into a wide range of existing neural NLP
architectures (Sec. 3.3).

3.1 Bidirectional language models

Given a sequence of N tokens, (t1, t2, ..., tN ), a
forward language model computes the probability
of the sequence by modeling the probability of to-
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ken tk given the history (t1, ..., tk�1):

p(t1, t2, . . . , tN ) =
NY

k=1

p(tk | t1, t2, . . . , tk�1).

Recent state-of-the-art neural language models
(Józefowicz et al., 2016; Melis et al., 2017; Mer-
ity et al., 2017) compute a context-independent to-
ken representation xLM

k (via token embeddings or
a CNN over characters) then pass it through L lay-
ers of forward LSTMs. At each position k, each
LSTM layer outputs a context-dependent repre-
sentation

�!
h LM

k,j where j = 1, . . . , L. The top layer

LSTM output,
�!
h LM

k,L , is used to predict the next
token tk+1 with a Softmax layer.

A backward LM is similar to a forward LM, ex-
cept it runs over the sequence in reverse, predict-
ing the previous token given the future context:

p(t1, t2, . . . , tN ) =
NY

k=1

p(tk | tk+1, tk+2, . . . , tN ).

It can be implemented in an analogous way to a
forward LM, with each backward LSTM layer j
in a L layer deep model producing representations �
h LM

k,j of tk given (tk+1, . . . , tN ).
A biLM combines both a forward and backward

LM. Our formulation jointly maximizes the log
likelihood of the forward and backward directions:

NX

k=1

( log p(tk | t1, . . . , tk�1; ⇥x,
�!
⇥LSTM ,⇥s)

+ log p(tk | tk+1, . . . , tN ; ⇥x,
 �
⇥LSTM ,⇥s) ) .

We tie the parameters for both the token represen-
tation (⇥x) and Softmax layer (⇥s) in the forward
and backward direction while maintaining sepa-
rate parameters for the LSTMs in each direction.
Overall, this formulation is similar to the approach
of Peters et al. (2017), with the exception that we
share some weights between directions instead of
using completely independent parameters. In the
next section, we depart from previous work by in-
troducing a new approach for learning word rep-
resentations that are a linear combination of the
biLM layers.

3.2 ELMo

ELMo is a task specific combination of the in-
termediate layer representations in the biLM. For

each token tk, a L-layer biLM computes a set of
2L + 1 representations

Rk = {xLM
k ,
�!
h LM

k,j ,
 �
h LM

k,j | j = 1, . . . , L}
= {hLM

k,j | j = 0, . . . , L},

where hLM
k,0 is the token layer and hLM

k,j =

[
�!
h LM

k,j ;
 �
h LM

k,j ], for each biLSTM layer.
For inclusion in a downstream model, ELMo

collapses all layers in R into a single vector,
ELMok = E(Rk;⇥e). In the simplest case,
ELMo just selects the top layer, E(Rk) = hLM

k,L ,
as in TagLM (Peters et al., 2017) and CoVe (Mc-
Cann et al., 2017). More generally, we compute a
task specific weighting of all biLM layers:

ELMotask
k = E(Rk; ⇥

task) = �task
LX

j=0

stask
j hLM

k,j .

(1)
In (1), stask are softmax-normalized weights and
the scalar parameter �task allows the task model to
scale the entire ELMo vector. � is of practical im-
portance to aid the optimization process (see sup-
plemental material for details). Considering that
the activations of each biLM layer have a different
distribution, in some cases it also helped to apply
layer normalization (Ba et al., 2016) to each biLM
layer before weighting.

3.3 Using biLMs for supervised NLP tasks
Given a pre-trained biLM and a supervised archi-
tecture for a target NLP task, it is a simple process
to use the biLM to improve the task model. We
simply run the biLM and record all of the layer
representations for each word. Then, we let the
end task model learn a linear combination of these
representations, as described below.

First consider the lowest layers of the super-
vised model without the biLM. Most supervised
NLP models share a common architecture at the
lowest layers, allowing us to add ELMo in a
consistent, unified manner. Given a sequence
of tokens (t1, . . . , tN ), it is standard to form a
context-independent token representation xk for
each token position using pre-trained word em-
beddings and optionally character-based represen-
tations. Then, the model forms a context-sensitive
representation hk, typically using either bidirec-
tional RNNs, CNNs, or feed forward networks.

To add ELMo to the supervised model, we
first freeze the weights of the biLM and then
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concatenate the ELMo vector ELMotask
k with

xk and pass the ELMo enhanced representation
[xk;ELMotask

k ] into the task RNN. For some
tasks (e.g., SNLI, SQuAD), we observe further
improvements by also including ELMo at the out-
put of the task RNN by introducing another set
of output specific linear weights and replacing hk

with [hk;ELMotask
k ]. As the remainder of the

supervised model remains unchanged, these addi-
tions can happen within the context of more com-
plex neural models. For example, see the SNLI
experiments in Sec. 4 where a bi-attention layer
follows the biLSTMs, or the coreference resolu-
tion experiments where a clustering model is lay-
ered on top of the biLSTMs.

Finally, we found it beneficial to add a moder-
ate amount of dropout to ELMo (Srivastava et al.,
2014) and in some cases to regularize the ELMo
weights by adding �kwk22 to the loss. This im-
poses an inductive bias on the ELMo weights to
stay close to an average of all biLM layers.

3.4 Pre-trained bidirectional language model
architecture

The pre-trained biLMs in this paper are similar to
the architectures in Józefowicz et al. (2016) and
Kim et al. (2015), but modified to support joint
training of both directions and add a residual con-
nection between LSTM layers. We focus on large
scale biLMs in this work, as Peters et al. (2017)
highlighted the importance of using biLMs over
forward-only LMs and large scale training.

To balance overall language model perplexity
with model size and computational requirements
for downstream tasks while maintaining a purely
character-based input representation, we halved all
embedding and hidden dimensions from the single
best model CNN-BIG-LSTM in Józefowicz et al.
(2016). The final model uses L = 2 biLSTM lay-
ers with 4096 units and 512 dimension projections
and a residual connection from the first to second
layer. The context insensitive type representation
uses 2048 character n-gram convolutional filters
followed by two highway layers (Srivastava et al.,
2015) and a linear projection down to a 512 repre-
sentation. As a result, the biLM provides three lay-
ers of representations for each input token, includ-
ing those outside the training set due to the purely
character input. In contrast, traditional word em-
bedding methods only provide one layer of repre-
sentation for tokens in a fixed vocabulary.

After training for 10 epochs on the 1B Word
Benchmark (Chelba et al., 2014), the average for-
ward and backward perplexities is 39.7, compared
to 30.0 for the forward CNN-BIG-LSTM. Gener-
ally, we found the forward and backward perplex-
ities to be approximately equal, with the backward
value slightly lower.

Once pretrained, the biLM can compute repre-
sentations for any task. In some cases, fine tuning
the biLM on domain specific data leads to signifi-
cant drops in perplexity and an increase in down-
stream task performance. This can be seen as a
type of domain transfer for the biLM. As a result,
in most cases we used a fine-tuned biLM in the
downstream task. See supplemental material for
details.

4 Evaluation

Table 1 shows the performance of ELMo across a
diverse set of six benchmark NLP tasks. In every
task considered, simply adding ELMo establishes
a new state-of-the-art result, with relative error re-
ductions ranging from 6 - 20% over strong base
models. This is a very general result across a di-
verse set model architectures and language under-
standing tasks. In the remainder of this section we
provide high-level sketches of the individual task
results; see the supplemental material for full ex-
perimental details.

Question answering The Stanford Question
Answering Dataset (SQuAD) (Rajpurkar et al.,
2016) contains 100K+ crowd sourced question-
answer pairs where the answer is a span in a given
Wikipedia paragraph. Our baseline model (Clark
and Gardner, 2017) is an improved version of the
Bidirectional Attention Flow model in Seo et al.
(BiDAF; 2017). It adds a self-attention layer af-
ter the bidirectional attention component, simpli-
fies some of the pooling operations and substitutes
the LSTMs for gated recurrent units (GRUs; Cho
et al., 2014). After adding ELMo to the baseline
model, test set F1 improved by 4.7% from 81.1%
to 85.8%, a 24.9% relative error reduction over the
baseline, and improving the overall single model
state-of-the-art by 1.4%. A 11 member ensem-
ble pushes F1 to 87.4, the overall state-of-the-art
at time of submission to the leaderboard.2 The
increase of 4.7% with ELMo is also significantly
larger then the 1.8% improvement from adding
CoVe to a baseline model (McCann et al., 2017).

2As of November 17, 2017.
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TASK PREVIOUS SOTA OUR
BASELINE

ELMO +
BASELINE

INCREASE
(ABSOLUTE/
RELATIVE)

SQuAD Liu et al. (2017) 84.4 81.1 85.8 4.7 / 24.9%
SNLI Chen et al. (2017) 88.6 88.0 88.7 ± 0.17 0.7 / 5.8%
SRL He et al. (2017) 81.7 81.4 84.6 3.2 / 17.2%
Coref Lee et al. (2017) 67.2 67.2 70.4 3.2 / 9.8%
NER Peters et al. (2017) 91.93 ± 0.19 90.15 92.22 ± 0.10 2.06 / 21%
SST-5 McCann et al. (2017) 53.7 51.4 54.7 ± 0.5 3.3 / 6.8%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across
six benchmark NLP tasks. The performance metric varies across tasks – accuracy for SNLI and SST-5; F1 for
SQuAD, SRL and NER; average F1 for Coref. Due to the small test sizes for NER and SST-5, we report the mean
and standard deviation across five runs with different random seeds. The “increase” column lists both the absolute
and relative improvements over our baseline.

Textual entailment Textual entailment is the
task of determining whether a “hypothesis” is
true, given a “premise”. The Stanford Natu-
ral Language Inference (SNLI) corpus (Bowman
et al., 2015) provides approximately 550K hypoth-
esis/premise pairs. Our baseline, the ESIM se-
quence model from Chen et al. (2017), uses a biL-
STM to encode the premise and hypothesis, fol-
lowed by a matrix attention layer, a local infer-
ence layer, another biLSTM inference composi-
tion layer, and finally a pooling operation before
the output layer. Overall, adding ELMo to the
ESIM model improves accuracy by an average of
0.7% across five random seeds. A five member
ensemble pushes the overall accuracy to 89.3%,
exceeding the previous ensemble best of 88.9%
(Gong et al., 2018).

Semantic role labeling A semantic role label-
ing (SRL) system models the predicate-argument
structure of a sentence, and is often described as
answering “Who did what to whom”. He et al.
(2017) modeled SRL as a BIO tagging problem
and used an 8-layer deep biLSTM with forward
and backward directions interleaved, following
Zhou and Xu (2015). As shown in Table 1, when
adding ELMo to a re-implementation of He et al.
(2017) the single model test set F1 jumped 3.2%
from 81.4% to 84.6% – a new state-of-the-art on
the OntoNotes benchmark (Pradhan et al., 2013),
even improving over the previous best ensemble
result by 1.2%.

Coreference resolution Coreference resolution
is the task of clustering mentions in text that re-
fer to the same underlying real world entities. Our
baseline model is the end-to-end span-based neu-
ral model of Lee et al. (2017). It uses a biLSTM

and attention mechanism to first compute span
representations and then applies a softmax men-
tion ranking model to find coreference chains. In
our experiments with the OntoNotes coreference
annotations from the CoNLL 2012 shared task
(Pradhan et al., 2012), adding ELMo improved the
average F1 by 3.2% from 67.2 to 70.4, establish-
ing a new state of the art, again improving over the
previous best ensemble result by 1.6% F1.

Named entity extraction The CoNLL 2003
NER task (Sang and Meulder, 2003) consists of
newswire from the Reuters RCV1 corpus tagged
with four different entity types (PER, LOC, ORG,
MISC). Following recent state-of-the-art systems
(Lample et al., 2016; Peters et al., 2017), the base-
line model uses pre-trained word embeddings, a
character-based CNN representation, two biLSTM
layers and a conditional random field (CRF) loss
(Lafferty et al., 2001), similar to Collobert et al.
(2011). As shown in Table 1, our ELMo enhanced
biLSTM-CRF achieves 92.22% F1 averaged over
five runs. The key difference between our system
and the previous state of the art from Peters et al.
(2017) is that we allowed the task model to learn a
weighted average of all biLM layers, whereas Pe-
ters et al. (2017) only use the top biLM layer. As
shown in Sec. 5.1, using all layers instead of just
the last layer improves performance across multi-
ple tasks.

Sentiment analysis The fine-grained sentiment
classification task in the Stanford Sentiment Tree-
bank (SST-5; Socher et al., 2013) involves select-
ing one of five labels (from very negative to very
positive) to describe a sentence from a movie re-
view. The sentences contain diverse linguistic
phenomena such as idioms and complex syntac-
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Task Baseline Last Only
All layers

�=1 �=0.001
SQuAD 80.8 84.7 85.0 85.2
SNLI 88.1 89.1 89.3 89.5
SRL 81.6 84.1 84.6 84.8

Table 2: Development set performance for SQuAD,
SNLI and SRL comparing using all layers of the biLM
(with different choices of regularization strength �) to
just the top layer.

Task
Input
Only

Input &
Output

Output
Only

SQuAD 85.1 85.6 84.8
SNLI 88.9 89.5 88.7
SRL 84.7 84.3 80.9

Table 3: Development set performance for SQuAD,
SNLI and SRL when including ELMo at different lo-
cations in the supervised model.

tic constructions such as negations that are diffi-
cult for models to learn. Our baseline model is
the biattentive classification network (BCN) from
McCann et al. (2017), which also held the prior
state-of-the-art result when augmented with CoVe
embeddings. Replacing CoVe with ELMo in the
BCN model results in a 1.0% absolute accuracy
improvement over the state of the art.

5 Analysis

This section provides an ablation analysis to vali-
date our chief claims and to elucidate some inter-
esting aspects of ELMo representations. Sec. 5.1
shows that using deep contextual representations
in downstream tasks improves performance over
previous work that uses just the top layer, regard-
less of whether they are produced from a biLM or
MT encoder, and that ELMo representations pro-
vide the best overall performance. Sec. 5.3 ex-
plores the different types of contextual informa-
tion captured in biLMs and uses two intrinsic eval-
uations to show that syntactic information is better
represented at lower layers while semantic infor-
mation is captured a higher layers, consistent with
MT encoders. It also shows that our biLM consis-
tently provides richer representations then CoVe.
Additionally, we analyze the sensitivity to where
ELMo is included in the task model (Sec. 5.2),
training set size (Sec. 5.4), and visualize the ELMo
learned weights across the tasks (Sec. 5.5).

5.1 Alternate layer weighting schemes

There are many alternatives to Equation 1 for com-
bining the biLM layers. Previous work on con-
textual representations used only the last layer,
whether it be from a biLM (Peters et al., 2017) or
an MT encoder (CoVe; McCann et al., 2017). The
choice of the regularization parameter � is also
important, as large values such as � = 1 effec-
tively reduce the weighting function to a simple
average over the layers, while smaller values (e.g.,
� = 0.001) allow the layer weights to vary.

Table 2 compares these alternatives for SQuAD,
SNLI and SRL. Including representations from all
layers improves overall performance over just us-
ing the last layer, and including contextual rep-
resentations from the last layer improves perfor-
mance over the baseline. For example, in the
case of SQuAD, using just the last biLM layer im-
proves development F1 by 3.9% over the baseline.
Averaging all biLM layers instead of using just the
last layer improves F1 another 0.3% (comparing
“Last Only” to �=1 columns), and allowing the
task model to learn individual layer weights im-
proves F1 another 0.2% (�=1 vs. �=0.001). A
small � is preferred in most cases with ELMo, al-
though for NER, a task with a smaller training set,
the results are insensitive to � (not shown).

The overall trend is similar with CoVe but with
smaller increases over the baseline. For SNLI, av-
eraging all layers with �=1 improves development
accuracy from 88.2 to 88.7% over using just the
last layer. SRL F1 increased a marginal 0.1% to
82.2 for the �=1 case compared to using the last
layer only.

5.2 Where to include ELMo?

All of the task architectures in this paper include
word embeddings only as input to the lowest layer
biRNN. However, we find that including ELMo at
the output of the biRNN in task-specific architec-
tures improves overall results for some tasks. As
shown in Table 3, including ELMo at both the in-
put and output layers for SNLI and SQuAD im-
proves over just the input layer, but for SRL (and
coreference resolution, not shown) performance is
highest when it is included at just the input layer.
One possible explanation for this result is that both
the SNLI and SQuAD architectures use attention
layers after the biRNN, so introducing ELMo at
this layer allows the model to attend directly to the
biLM’s internal representations. In the SRL case,
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Source Nearest Neighbors

GloVe play
playing, game, games, played, players, plays, player,
Play, football, multiplayer

biLM

Chico Ruiz made a spec-
tacular play on Alusik ’s
grounder {. . . }

Kieffer , the only junior in the group , was commended
for his ability to hit in the clutch , as well as his all-round
excellent play .

Olivia De Havilland
signed to do a Broadway
play for Garson {. . . }

{. . . } they were actors who had been handed fat roles in
a successful play , and had talent enough to fill the roles
competently , with nice understatement .

Table 4: Nearest neighbors to “play” using GloVe and the context embeddings from a biLM.

Model F1

WordNet 1st Sense Baseline 65.9
Raganato et al. (2017a) 69.9
Iacobacci et al. (2016) 70.1
CoVe, First Layer 59.4
CoVe, Second Layer 64.7
biLM, First layer 67.4
biLM, Second layer 69.0

Table 5: All-words fine grained WSD F1. For CoVe
and the biLM, we report scores for both the first and
second layer biLSTMs.

the task-specific context representations are likely
more important than those from the biLM.

5.3 What information is captured by the
biLM’s representations?

Since adding ELMo improves task performance
over word vectors alone, the biLM’s contextual
representations must encode information gener-
ally useful for NLP tasks that is not captured
in word vectors. Intuitively, the biLM must
be disambiguating the meaning of words using
their context. Consider “play”, a highly poly-
semous word. The top of Table 4 lists near-
est neighbors to “play” using GloVe vectors.
They are spread across several parts of speech
(e.g., “played”, “playing” as verbs, and “player”,
“game” as nouns) but concentrated in the sports-
related senses of “play”. In contrast, the bottom
two rows show nearest neighbor sentences from
the SemCor dataset (see below) using the biLM’s
context representation of “play” in the source sen-
tence. In these cases, the biLM is able to disam-
biguate both the part of speech and word sense in
the source sentence.

These observations can be quantified using an

Model Acc.
Collobert et al. (2011) 97.3
Ma and Hovy (2016) 97.6
Ling et al. (2015) 97.8
CoVe, First Layer 93.3
CoVe, Second Layer 92.8
biLM, First Layer 97.3
biLM, Second Layer 96.8

Table 6: Test set POS tagging accuracies for PTB. For
CoVe and the biLM, we report scores for both the first
and second layer biLSTMs.

intrinsic evaluation of the contextual representa-
tions similar to Belinkov et al. (2017). To isolate
the information encoded by the biLM, the repre-
sentations are used to directly make predictions for
a fine grained word sense disambiguation (WSD)
task and a POS tagging task. Using this approach,
it is also possible to compare to CoVe, and across
each of the individual layers.

Word sense disambiguation Given a sentence,
we can use the biLM representations to predict
the sense of a target word using a simple 1-
nearest neighbor approach, similar to Melamud
et al. (2016). To do so, we first use the biLM
to compute representations for all words in Sem-
Cor 3.0, our training corpus (Miller et al., 1994),
and then take the average representation for each
sense. At test time, we again use the biLM to com-
pute representations for a given target word and
take the nearest neighbor sense from the training
set, falling back to the first sense from WordNet
for lemmas not observed during training.

Table 5 compares WSD results using the eval-
uation framework from Raganato et al. (2017b)
across the same suite of four test sets in Raganato
et al. (2017a). Overall, the biLM top layer rep-
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resentations have F1 of 69.0 and are better at
WSD then the first layer. This is competitive with
a state-of-the-art WSD-specific supervised model
using hand crafted features (Iacobacci et al., 2016)
and a task specific biLSTM that is also trained
with auxiliary coarse-grained semantic labels and
POS tags (Raganato et al., 2017a). The CoVe
biLSTM layers follow a similar pattern to those
from the biLM (higher overall performance at the
second layer compared to the first); however, our
biLM outperforms the CoVe biLSTM, which trails
the WordNet first sense baseline.

POS tagging To examine whether the biLM
captures basic syntax, we used the context repre-
sentations as input to a linear classifier that pre-
dicts POS tags with the Wall Street Journal portion
of the Penn Treebank (PTB) (Marcus et al., 1993).
As the linear classifier adds only a small amount
of model capacity, this is direct test of the biLM’s
representations. Similar to WSD, the biLM rep-
resentations are competitive with carefully tuned,
task specific biLSTMs (Ling et al., 2015; Ma and
Hovy, 2016). However, unlike WSD, accuracies
using the first biLM layer are higher than the
top layer, consistent with results from deep biL-
STMs in multi-task training (Søgaard and Gold-
berg, 2016; Hashimoto et al., 2017) and MT (Be-
linkov et al., 2017). CoVe POS tagging accuracies
follow the same pattern as those from the biLM,
and just like for WSD, the biLM achieves higher
accuracies than the CoVe encoder.

Implications for supervised tasks Taken to-
gether, these experiments confirm different layers
in the biLM represent different types of informa-
tion and explain why including all biLM layers is
important for the highest performance in down-
stream tasks. In addition, the biLM’s representa-
tions are more transferable to WSD and POS tag-
ging than those in CoVe, helping to illustrate why
ELMo outperforms CoVe in downstream tasks.

5.4 Sample efficiency

Adding ELMo to a model increases the sample ef-
ficiency considerably, both in terms of number of
parameter updates to reach state-of-the-art perfor-
mance and the overall training set size. For ex-
ample, the SRL model reaches a maximum devel-
opment F1 after 486 epochs of training without
ELMo. After adding ELMo, the model exceeds
the baseline maximum at epoch 10, a 98% relative
decrease in the number of updates needed to reach

Figure 1: Comparison of baseline vs. ELMo perfor-
mance for SNLI and SRL as the training set size is var-
ied from 0.1% to 100%.

Figure 2: Visualization of softmax normalized biLM
layer weights across tasks and ELMo locations. Nor-
malized weights less then 1/3 are hatched with hori-
zontal lines and those greater then 2/3 are speckled.

the same level of performance.

In addition, ELMo-enhanced models use
smaller training sets more efficiently than mod-
els without ELMo. Figure 1 compares the per-
formance of baselines models with and without
ELMo as the percentage of the full training set is
varied from 0.1% to 100%. Improvements with
ELMo are largest for smaller training sets and
significantly reduce the amount of training data
needed to reach a given level of performance. In
the SRL case, the ELMo model with 1% of the
training set has about the same F1 as the baseline
model with 10% of the training set.

5.5 Visualization of learned weights

Figure 2 visualizes the softmax-normalized
learned layer weights. At the input layer, the
task model favors the first biLSTM layer. For
coreference and SQuAD, the this is strongly
favored, but the distribution is less peaked for
the other tasks. The output layer weights are
relatively balanced, with a slight preference for
the lower layers.
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Task GloVe
ELMo

ELMo
ELMo +

type GloVe
SQuAD 80.8 81.4 85.3 85.6
SNLI 88.1 88.5 89.1 89.5
SRL 81.6 81.7 84.5 84.7

Table 7: Development set ablation analysis for
SQuAD, SNLI and SRL comparing different choices
for the context-independent type representation and
contextual representation. From left to right, the table
compares systems with only GloVe vectors; only the
ELMo context-independent type representation with-
out the ELMo biLSTM layers; full ELMo representa-
tions without GloVe; both GloVe and ELMo.

5.6 Contextual vs. sub-word information
In addition to the contextual information cap-
tured in the biLM’s biLSTM layers, ELMo rep-
resentations also contain sub-word information in
the fully character based context insensitive type
layer, xLM

k . To analyze the relative contribu-
tion of the contextual information compared to the
sub-word information, we ran an additional ab-
lation that replaced the GloVe vectors with just
the biLM character based xLM

k layer without the
biLM biLSTM layers. Table 7 summarizes the re-
sults for SQuAD, SNLI and SNLI. Replacing the
GloVe vectors with the biLM character layer gives
a slight improvement for all tasks (e.g. from 80.8
to 81.4 F1 for SQuAD), but overall the improve-
ments are small compared to the full ELMo model.
From this, we conclude that most of the gains in
the downstream tasks are due to the contextual in-
formation and not the sub-word information.

5.7 Are pre-trained vectors necessary with
ELMo?

All of the results presented in Sec.4 include pre-
trained word vectors in addition to ELMo repre-
sentations. However, it is natural to ask whether
pre-trained vectors are still necessary with high
quality contextualized representations. As shown
in the two right hand columns of Table 7, adding
GloVe to models with ELMo generally provides
a marginal improvement over ELMo only models
(e.g. 0.2% F1 improvement for SRL from 84.5 to
84.7).

6 Conclusion

We have introduced a general approach for learn-
ing high-quality deep context-dependent represen-
tations from biLMs, and shown large improve-

ments when applying ELMo to a broad range of
NLP tasks. Through ablations and other controlled
experiments, we have also confirmed that the
biLM layers efficiently encode different types of
syntactic and semantic information about words-
in-context, and that using all layers improves over-
all task performance.
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Abstract

We propose a context-dependent model to map
utterances within an interaction to executable
formal queries. To incorporate interaction his-
tory, the model maintains an interaction-level
encoder that updates after each turn, and can
copy sub-sequences of previously predicted
queries during generation. Our approach com-
bines implicit and explicit modeling of refer-
ences between utterances. We evaluate our
model on the ATIS flight planning interac-
tions, and demonstrate the benefits of model-
ing context and explicit references.

1 Introduction

The meaning of conversational utterances depends
strongly on the history of the interaction. Con-
sider a user querying a flight database using nat-
ural language (Figure 1). Given a user utterance,
the system must generate a query, execute it, and
display results to the user, who then provides the
next request. Key to correctly mapping utterances
to executable queries is resolving references. For
example, the second utterance implicitly depends
on the first, and the reference ones in the third
utterance explicitly refers to the response to the
second utterance. Within an interactive system,
this information needs to be composed with men-
tions of database entries (e.g., Seattle, next Mon-
day) to generate a formal executable representa-
tion. In this paper, we propose encoder-decoder
models that directly map user utterances to exe-
cutable queries, while considering the history of
the interaction, including both previous utterances
and their generated queries.

Reasoning about how the meaning of an utter-
ance depends on the history of the interaction is
critical to correctly respond to user requests. As
interactions progress, users may omit previously-
mentioned constraints and entities, and an increas-

show me flights from seattle to boston next monday
[Table with 31 flights]
on american airlines
[Table with 5 flights]
which ones arrive at 7pm
[No flights returned]
show me delta flights
[Table with 5 flights]
. . .

Figure 1: An excerpt of an interaction from the ATIS
flight planning system (Hemphill et al., 1990; Dahl
et al., 1994). Each request is followed by a description
of the system response.
ing portion of the utterance meaning must be de-
rived from the interaction history. Figure 2 shows
SQL queries for the utterances in Figure 1. As the
interaction progresses, the majority of the gener-
ated query is derived from the interaction history
(underlined), rather than from the current utter-
ance. A key challenge is resolving what past infor-
mation is incorporated and how. For example, in
the figure, the second utterance depends on the set
of flights defined by the first, while adding a new
constraint. The third utterance further refines this
set by adding a constraint to the constraints from
both previous utterances. In contrast, the fourth
utterance refers only to the first one, and skips the
two utterances in between.1 Correctly generating
the fourth query requires understanding that the
time constraint (at 7pm) can be ignored as it fol-
lows an airline constraint that has been replaced.

We study complementary methods to enable
this type of reasoning. The first set of methods im-
plicitly reason about references by modifying the
encoder-decoder architecture to encode informa-
tion from previous utterances for generation de-
cisions. We experiment with attending over pre-
vious utterances and using an interaction-level re-
current encoder. We also study explicitly main-
taining a set of referents using segments from pre-

1An alternative explanation is that utterance four refers to
utterance three, and deletes the time and airline constraints.
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x̄1: show me flights from seattle to boston next monday
ȳ1: (SELECT DISTINCT flight.flight id FROM flight WHERE (flight.from airport IN (SELECT

airport service.airport code FROM airport service WHERE airport service.city code IN (SELECT
city.city code FROM city WHERE city.city name = ’SEATTLE’))) AND (flight.to airport IN (SELECT
airport service.airport code FROM airport service WHERE airport service.city code IN (SELECT
city.city code FROM city WHERE city.city name = ’BOSTON’))) AND (flight.flight days IN (SELECT
days.days code FROM days WHERE days.day name IN (SELECT date day.day name FROM date day WHERE
date day.year = 1993 AND date day.month number = 2 AND date day.day number = 8))));

x̄2: on american airlines
ȳ2: (SELECT DISTINCT flight.flight id FROM flight WHERE (flight.airline code = ’AA’) AND (flight.from airport

IN (SELECT airport service.airport code FROM airport service WHERE airport service.city code IN (SELECT
city.city code FROM city WHERE city.city name = ’SEATTLE’))) AND (flight.to airport IN (SELECT air
port service.airport code FROM airport service WHERE airport service.city code IN (SELECT city.city code
FROM city WHERE city.city name = ’BOSTON’))) AND (flight.flight days IN (SELECT days.days code FROM
days WHERE days.day name IN (SELECT date day.day name FROM date day WHERE date day.year = 1993 AND
date day.month number = 2 AND date day.day number = 8))));

x̄3: which ones arrive at 7pm
ȳ3: (SELECT DISTINCT flight.flight id FROM flight WHERE (flight.airline code = ’AA’) AND (flight.from airport

IN (SELECT airport service.airport code FROM airport service WHERE airport service.city code IN (SELECT
city.city code FROM city WHERE city.city name = ’SEATTLE’))) AND (flight.to airport IN (SELECT air
port service.airport code FROM airport service WHERE airport service.city code IN (SELECT city.city code
FROM city WHERE city.city name = ’BOSTON’))) AND (flight.flight days IN (SELECT days.days code FROM
days WHERE days.day name IN (SELECT date day.day name FROM date day WHERE date day.year = 1993 AND
date day.month number = 2 AND date day.day number = 8))) AND (flight.arrival time = 1900));

x̄4: show me delta flights
ȳ4: (SELECT DISTINCT flight.flight id FROM flight WHERE (flight.airline code = ’DL’) AND (flight.from airport

IN (SELECT airport service.airport code FROM airport service WHERE airport service.city code IN (SELECT
city.city code FROM city WHERE city.city name = ’SEATTLE’))) AND (flight.to airport IN (SELECT air
port service.airport code FROM airport service WHERE airport service.city code IN (SELECT city.city code
FROM city WHERE city.city name = ’BOSTON’))) AND (flight.flight days IN (SELECT days.days code FROM
days WHERE days.day name IN (SELECT date day.day name FROM date day WHERE date day.year = 1993 AND
date day.month number = 2 AND date day.day number = 8))));

Figure 2: Annotated SQL queries (ȳ1,. . . ,ȳ4) in the ATIS (Hemphill et al., 1990) domain for utterances (x̄1,. . . ,x̄4)
from Figure 1. Underlining (not part of the annotation) indicates segments originating from the interaction context.

vious queries. At each step, the decoder chooses
whether to output a token or select a segment from
the set, which is appended to the output in a sin-
gle decoding step. In addition to enabling refer-
ences to previously mentioned entities, sets, and
constraints, this method also reduces the number
of generation steps required, illustrated by the un-
derlined segments in Figure 2. For example, the
query ȳ2 will require 17 steps instead of 94.

We evaluate our approach using the
ATIS (Hemphill et al., 1990; Dahl et al., 1994)
task, where a user interacts with a SQL flight
database using natural language requests, and
almost all queries require joins across multiple
tables. In addition to reasoning about contextual
phenomena, we design our system to effectively
resolve database values, including resolution of
time expressions (e.g., next monday in Figure 1)
using an existing semantic parser. Our evaluation
shows that reasoning about the history of the
interaction is necessary, relatively increasing
performance by 28.6% over a baseline with no
access to this information, and that combining
the implicit and explicit methods provides the
best performance. Furthermore, our analysis
shows that our full approach maintains its per-
formance as interaction length increases, while
the performance of systems without explicit
modeling deteriorates. Our code is available at
https://github.com/clic-lab/atis.

2 Technical Overview

Our goal is to map utterances in interactions to for-
mal executable queries. We evaluate our approach
with the ATIS corpus (Hemphill et al., 1990; Dahl
et al., 1994), where users query a realistic flight
planning system using natural language. The sys-
tem responds by displaying tables and database
entries. User utterances are mapped to SQL to
query a complex database with 27 tables and 162K
entries. 96.6% of the queries require joins of dif-
ferent tables. Section 7 describes ATIS.

Task Notation Let I be the set of all interac-
tions, X the set of all utterances, and Y the set
of all formal queries. A user utterance x̄ ∈ X of
length |x̄| is a sequence 〈x1, . . . , x|x̄|〉, where each
xi is a natural language token. A formal query
ȳ ∈ Y of length |ȳ| is a sequence 〈y1, . . . , y|ȳ|〉,
where each yi is a formal query token. An inter-
action Ī ∈ I is a sequence of n utterance-query
pairs 〈(x̄1, ȳ1), . . . , (x̄n, ȳn)〉 representing an in-
teraction with n turns. To refer to indexed inter-
actions and their content, we mark Ī(l) as an in-
teraction with index l, the i-th utterance and query
in Ī(l) as x̄(l)

i and ȳ(l)
i , and the j-th tokens in x̄(l)

i

and ȳ(l)
i as x(l)

i,j and y(l)
i,j . At turn i, we denote the

interaction history of length i − 1 as Ī[: i − 1] =
〈(x̄1, ȳ1), . . . , (x̄i−1, ȳi−1)〉. Given Ī[: i− 1] and
utterance x̄i our goal is to generate ȳi, while con-
sidering both x̄i and Ī[: i − 1]. Following the ex-
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ecution of ȳi, the interaction history at turn i + 1
becomes Ī[: i] = 〈(x̄1, ȳ1), . . . , (x̄i, ȳi)〉.
Model Our model is based on the recurrent
neural network (RNN; Elman, 1990) encoder-
decoder framework with attention (Cho et al.,
2014; Sutskever et al., 2014; Bahdanau et al.,
2015; Luong et al., 2015). We modify the model
in three ways to reason about context from the in-
teraction history by attending over previous utter-
ances (Section 4.2), adding a turn-level recurrent
encoder that updates after each turn (Section 4.3),
and adding a mechanism to copy segments of
queries from previous utterances (Section 4.4).
We also design a scoring function to score values
that are abstracted during pre-processing, includ-
ing entities and times (Section 6). The full model
selects between generating query tokens and copy-
ing complete segments from previous queries.
Learning We assume access to a training set
that contains N interactions {Ī(l)}Nl=1. We train
using a token-level cross-entropy objective (Sec-
tion 5). For models that use the turn-level en-
coder, we construct computational graphs for the
entire interaction and back-propagate the loss for
all queries together. Without the turn-level en-
coder, each utterance is processed separately.
Evaluation We evaluate using a test set
{Ī(l)}Ml=1 of M interactions. We measure the
accuracy of each utterance for each test interac-
tion against the annotated query and its execution
result. For models that copy segments from
previous queries, we evaluate using both predicted
and gold previous queries.

3 Related Work

Mapping sentences to formal representations,
commonly known as semantic parsing, has been
studied extensively with linguistically-motivated
compositional representations, including variable-
free logic (e.g., Zelle and Mooney, 1996; Clarke
et al., 2010), lambda calculus (e.g., Zettlemoyer
and Collins, 2005; Artzi and Zettlemoyer, 2011;
Kushman and Barzilay, 2013), and dependency-
based compositional semantics (e.g., Liang et al.,
2011; Berant et al., 2013). Recovering lambda-
calculus representations was also studied with
ATIS with focus on context-independent meaning
using grammar-based approaches (Zettlemoyer
and Collins, 2007; Kwiatkowski et al., 2011;
Wang et al., 2014) and neural networks (Dong and
Lapata, 2016; Jia and Liang, 2016).

Recovering context-independent executable
representations has been receiving increasing
attention. Mapping sentence in isolation to
SQL queries has been studied with ATIS using
statistical parsing (Popescu et al., 2004; Poon,
2013) and sequence-to-sequence models (Iyer
et al., 2017). Generating executable programs
was studied with other domains and formal
languages (Giordani and Moschitti, 2012; Ling
et al., 2016; Zhong et al., 2017; Xu et al., 2017).
Recently, various approaches were proposed to
use the formal language syntax to constrain the
search space (Yin and Neubig, 2017; Rabinovich
et al., 2017; Krishnamurthy et al., 2017; Cheng
et al., 2017) making all outputs valid programs.
These contributions are orthogonal to ours, and
can be directly integrated into our decoder.

Generating context-dependent formal represen-
tations has received less attention. Miller et al.
(1996) used ATIS and mapped utterances to se-
mantic frames, which were then mapped to SQL
queries. For learning, they required full super-
vision, including annotated parse trees and con-
textual dependencies.2 Zettlemoyer and Collins
(2009) addressed the problem with lambda calcu-
lus, using a semantic parser trained separately with
context-independent data. In contrast, we generate
executable formal queries and require only inter-
action query annotations for training.

Recovering context-dependent meaning was
also studied with the SCONE (Long et al., 2016)
and SequentialQA (Iyyer et al., 2017) corpora. We
compare ATIS to these corpora in Section 7. Re-
solving explicit references, a part of our problem,
has been studied as co-reference resolution (Ng,
2010). Context-dependent language understand-
ing was also studied for dialogue systems, in-
cluding with ATIS, as surveyed by Tür et al.
(2010). More recently, encoder-decoder meth-
ods were applied to dialogue systems (Peng et al.,
2017; Li et al., 2017), including using hierarchi-
cal RNNs (Serban et al., 2016, 2017), an architec-
ture related to our turn-level encoder. These ap-
proaches use slot-filling frames with limited ex-
pressivity, while we focus on the original repre-
sentation of unconstrained SQL queries.

2Miller et al. (1996) provide limited details about their
evaluation. Later work notes that they evaluate SQL query
correctness (Zettlemoyer and Collins, 2009) with an accuracy
of 78.4%, higher than our results. However, the lack of de-
tails (e.g., if the metric is strict or relaxed) makes comparison
difficult. In addition, we use significantly less supervision,
and re-split the data to avoid scenario bias (Section 7).
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4 Context-dependent Model

We base our model on an encoder-decoder archi-
tecture with attention (Cho et al., 2014; Sutskever
et al., 2014; Bahdanau et al., 2015; Luong et al.,
2015). At each interaction turn i, given the current
utterance x̄i and the interaction history Ī[: i − 1],
the model generates the formal query ȳi. Figure 3
illustrates our architecture. We describe the base
architecture, and gradually add components.

4.1 Base Encoder-Decoder Architecture

Our base architecture uses an encoder to process
the user utterance x̄i = 〈xi,1, . . . , xi,|x̄i|〉 and a
decoder to generate the output query ȳi token-by-
token. This architecture does not observe the in-
teraction history Ī[: i− 1].

The encoder computes a hidden state hEj =

[h
−→
E
j ;h

←−
E
j ] for each token xi,j using a bi-directional

RNN. The forward RNN is defined by: 3

h
−→
E
j = LSTM

−→
E
(
φx(xi,j);h

−→
E
j−1

)
, (1)

where LSTM
−→
E is a long short-term memory re-

currence (LSTM; Hochreiter and Schmidhuber,
1997) and φx is a learned embedding function for
input tokens. The backward RNN recurs in the op-
posite direction with separate parameters.

We generate the query with an RNN decoder.
The decoder state at step k is:

hD
k = LSTMD

(
[φy(yi,k−1); ck−1] ;hD

k−1

)
,

where LSTMD is a two-layer LSTM recurrence,
φy is a learned embedding function for query to-
kens, and ck is an attention vector computed from
the encoder states. yi,0 is a special start token, and
c0 is a zero-vector. The initial hidden state and
cell memory of each layer are initialized as hE|x̄i|
and cE|x̄i|. The attention vector ck is a weighted
sum of the encoder hidden states:

sk(j) = hE
j W

AhD
k (2)

αk = softmax(sk) (3)

ck =

|x̄i|∑

j=1

hE
j αk(j) , (4)

where WA is a learned matrix. The probabilities
of output query tokens are computed as:

mk = tanh
(

[hD
k ; ck]Wm

)
(5)

P (yi,k = w | x̄i, ȳi,1:k−1) ∝ exp(mkW
o
w + bo

w) (6)

where Wm, Wo, and bo are learned.

3We omit the memory cell (often denoted as cj) from all
LSTM descriptions. We use only the LSTM hidden state hj

in other parts of the architecture unless explicitly noted.

4.2 Incorporating Recent History

We provide the model with the most recent in-
teraction history by concatenating the previous h
utterances 〈x̄i−h, ..., x̄i−1〉 with the current utter-
ance in order, adding a special delimiter token be-
tween each utterance. The concatenated input pro-
vides the model access to previous utterances, but
not to previously generated queries, or utterances
that are more than h turns in the past. The archi-
tecture remains the same, except that the encoder
and attention are computed over the concatenated
sequence of tokens. The probability of an output
query token is computed the same, but is now con-
ditioned on the interaction history:

P (yi,k = w | x̄i, ȳi,1:k−1, Ī[: i− 1]) ∝ (7)
exp(mkW

o
w + bo

w) .

4.3 Turn-level Encoder

Concatenating recent utterances to provide access
to recent history has computational drawbacks.
The encoding of the utterance depends on its loca-
tion in the concatenated string. This requires en-
coding all recent history for each new utterance,
and does not allow re-use of computation between
utterances during encoding. It also introduces a
tradeoff between computation cost and expressiv-
ity: attending over the h previous utterances al-
lows the decoder access to the information in these
utterances when generating a query, but is compu-
tationally more expensive as h increases. We ad-
dress this by encoding each utterance once. To ac-
count for the influence of the interaction history
on utterance encoding, we maintain a discourse
state encoding hIi computed with a turn-level re-
currence, and use it during utterance encoding.
The state is maintained and updated over the entire
interaction. At turn i, this model has access to the
complete prefix of the interaction Ī[: i−1] and the
current request x̄i. In contrast, the concatenation-
based encoder (Section 4.2) has access only to in-
formation from the previous h utterances. We also
use positional encoding in the attention computa-
tion to account for the position of each utterance
relative to the current utterance.

Formally, we modify Equation 1 to encode x̄i:
h
−→
E
i,j = LSTM

−→
E
([
φx(xi,j);h

I
i−1

]
;h
−→
E
i,j−1

)
,

where hIi−1 is the discourse state following utter-

ance x̄i−1. LSTM
←−
E is modified analogously. In

contrast to the concatenation-based model, the re-
currence processes a single utterance. The dis-
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show me flights from seattle to boston

which ones arrive at 7pm

(SELECT DISTINCT flight.flight_id ... );

SELECT(

DISTINCT flight.flight_id FROM flight

flight.airline_code = 'AA'

flight.from_airport IN (SELECT 
airport_service.airport_code ... city.city_code 
FROM city WHERE city.city_name = 'SEATTLE'))

x̄1 :

x̄2 :

ȳ1 :

Discourse 
State 

on american airlines
(SELECT DISTINCT flight.flight_id ... );y2 :

x3 :

Word  
Embeddings

Turn-Level 
Encoder

Encoder State

Segments from Previous Queries

Segment  
Encoder

SegmentsSQL Tokens
Attention 
Scores 

Attention  
State

Output  
Distribution

}

(SELECT DISTINCT flight.flight_id FROM flight ...
SoftMax + 

Weighted Sum

I

I

I

Q

Q

Q

D D D

s̄1 :

s3

hE
3

s̄2 :

s̄3 :�x(x3,j)

hD
3

E E E E E

c3

hI
2

...

Figure 3: Illustration of the model architecture during the third decoding step while processing the instruction
which ones arrive at 7pm from the interaction in Figure 2. The current discourse state hI2 is used to encode the
current utterance x̄3 (Section 4.3). Query segments from previous queries are encoded into vector representa-
tions (Section 4.4). In each generation step, the decoder attends over the previous and current utterances, and a
probability distribution is computed over SQL tokens and query segments. Here, segment s̄1 is selected.

course state hIi is computed as
hI
i = LSTMI

(
hE
i,|x̄i|;h

I
i−1

)
.

Similar to the concatenation-based model, we at-
tend over the current utterance and the h previ-
ous utterances. We add relative position embed-
dings φI to each hidden state. These embeddings
are learned for each possible distance 0, . . . , h− 1
from the current utterance. We modify Equation 2
to index over both utterances and tokens:

sk(t, j) =
[
hE
t,j ;φ

I(i− t)
]
WAhD

k . (8)

In contrast to the concatenation model, without
position embeddings, the attention computation
has no indication of the utterance position, as our
ablation shows in Section 8. The attention distri-
bution is computed as in Equation 3, and normal-
ized across all utterances. The position embedding
is also used to compute the context vector ck:

ck =

i∑

t=i−h

|x̄t|∑

j=1

[
hE
t,j ;φ

I(i− t)
]
αk(t, j) .

4.4 Copying Query Segments

The discourse state and attention over previous ut-
terances allow the model to consider the interac-
tion history when generating queries. However,
we observe that context-dependent reasoning of-
ten requires generating sequences that were gen-
erated in previous turns. Figure 2 shows how seg-
ments (underlined) extracted from previous utter-
ances are predominant in later queries. To take
advantage of what was previously generated, we
add copying of complete segments from previous
queries by expanding the set of outputs at each
generation step. This mechanism explicitly mod-
els references, reduces the number of steps re-

quired to generate queries, and provides an inter-
pretable view of what parts of a query originate in
context. Figure 3 illustrates this architecture.
Extracting Segments Given the interaction his-
tory Ī[: i − 1], we construct the set of seg-
ments Si−1 by deterministically extracting sub-
trees from previously generated queries.4 In our
data, we extract 13 ± 5.9 (µ ± σ) segments for
each annotated query. Each segment s̄ ∈ Si−1 is
a tuple 〈a, b, l, r〉, where a and b are the indices of
the first and most recent queries, ȳa and ȳb, in the
interaction that contain the segment. l and r are
the start and end indices of the segment in ȳb.
Encoding Segments We represent a segment
s̄ = 〈a, b, l, r〉 using the hidden states of an
RNN encoding of the query ȳb. The hidden
states 〈hQ1, ...,h

Q|ȳb|〉 are computed using a
bi-directional LSTM RNN similar to the utter-
ance encoder (Equation 1), except using separate
LSTM parameters and φy to embed the query to-
kens. The embedded representation of a segment
is a concatenation of the hidden states at the seg-
ment endpoints and an embedding of the relative
position of the utterance where it appears first:

hS =
[
hQ
l ;hQ

r ;φg(min(g, i− a))
]
,

where φg is a learned embedding function of the
position of the initial query ȳa relative to the cur-
rent turn index i. We learn an embedding for each
relative position that is smaller than g, and use the
same embedding for all other positions.
Generation with Segments At each generation
step, the decoder selects between a single query
token or a segment. When a segment is selected, it

4The process of extracting sub-trees is described in the
supplementary material.
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is appended to the generated query, an embedded
segment representation for the next step is com-
puted, and generation continues. The probability
of a segment s̄ = 〈a, b, l, r〉 at decoding step k is:

P (yi,k = s̄ | x̄i, ȳi,1:k−1, Ī[: i− 1]) ∝ (9)

exp
(
mkW

S

hS
)

,

where mk is computed in Equation 5 and W
S

is a
learned matrix. To simplify the notation, we as-
sign the segment to a single output token. The
output probabilities (Equations 7 and 9) are nor-
malized together to a single probability distribu-
tion. When a segment is selected, the embedding
used as input for the next generation step is a bag-
of-words encoding of the segment. We extend the
output token function φy to take segments:

φy(s̄ = 〈a, b, l, r〉) =
1

r − l
r∑

k=l

φy (yb,k) .

The recursion in φy is limited to depth one because
segments do not contain other segments.

4.5 Inference with Full Model
Given an utterance x̄i and the history of interaction
Ī[: i − 1], we generate the query ȳi. An interac-
tion starts with the user providing the first utter-
ance x̄1. The utterance is encoded using the initial
discourse state hI0, the discourse state hI1 is com-
puted, the query ȳ1 is generated, and the set of seg-
ments S1 is created. The initial discourse state hI0
is learned, and the set of segments S0 used when
generating ȳ1 is the empty set. The attention is
computed only over the first utterance because no
previous utterances exist. The user then provides
the next utterance or concludes the interaction. At
turn i, the utterance x̄i is encoded using the dis-
course state hIi−1, the discourse state hIi is com-
puted, and the query ȳi is generated using the set
of segments Si−1. The model has no access to fu-
ture utterances. We use greedy inference for gen-
eration. Figure 3 illustrates a single decoding step.

5 Learning

We assume access to a training set of N interac-
tions {Ī(l)}Nl=1. Given an interaction Ī(l), each ut-
terance x̄(l)

i where 1 ≤ i ≤ |Ī(l)|, is paired with
an annotated query ȳ(l)

i . The set of segments from
previous utterances is deterministically extracted
from the annotated queries during learning. How-
ever, the data does not indicate what parts of each
query originate in segments copied from previ-
ous utterances. We adopt a simple approach and
heuristically identify context-dependent segments

based on entities that appear in the utterance and
the query.5 Once we identify a segment in the an-
notated query, we replace it with a unique place-
holder token, and it appears to the learning algo-
rithm as a single generation decision. Treating this
decision as latent is an important direction for fu-
ture work. Given the segment copy decisions, we
minimize the token cross-entropy loss:
L(y

(l)
i,k) = − logP

(
y

(l)
i,k | x̄

(l)
i , ȳ

(l)
i,1:k−1, Ī

(l)[: i− 1]
)

,

where k is the index of the output token. The base
and recent-history encoders (Sections 4.1 and 4.2)
can be trained by processing each utterance sep-
arately. For these models, given a mini-batch B
of utterances, each identified by an interaction-
utterance index pair, the loss is the mean token loss

L =
1

∑
(i,j)∈B |ȳ

(j)
i |

∑

(i,j)∈B

|ȳ(j)
i |∑

k=1

L(y
(j)
i,k ) .

The turn-level encoder (Section 4.3) requires
building a computation graph for the entire inter-
action. We update the model parameters for each
interaction. The interaction loss is

L =
n

B

1
∑n

i=1 |ȳ
(j)
i |

n∑

i=1

|ȳ(j)
i |∑

k=1

L(y
(j)
i,k ) ,

whereB is the batch size, and n
B re-normalizes the

loss so the gradient magnitude is not dependent on
the number of utterances in the interaction. Our
ablations (−batch re-weight in Table 2) shows the
importance of this term. For both cases, we use
teacher forcing (Williams and Zipser, 1989).

6 Reasoning with Anonymized Tokens

An important practical consideration for genera-
tion in ATIS and other database domains is reason-
ing about database values, such as entities, times,
and dates. For example, the first utterance in Fig-
ure 2 includes two entities and a date reference.
With limited data, learning to both reason about a
large number of entities and to resolve dates are
challenging for neural network models. Follow-
ing previous work (Dong and Lapata, 2016; Iyer
et al., 2017), we address this with anonymization,
where the data is pre- and post-processed to ab-
stract over tokens that can be heuristically resolved
to tokens in the query language. In contrast to pre-
vious work, we design a special scoring function
to anonymized tokens to reflect how they are used
in the input utterances. Figure 4 illustrates pre-
processing in ATIS. For example, we use a tem-
poral semantic parser to resolve dates (e.g., next

5The alignment is detailed in the supplementary material.
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Original utterance and query:
x̄1: show me flights from seattle to boston next monday
ȳ1: ( SELECT DISTINCT flight.flight id ...

city.city name = ’SEATTLE’ ... city.city name
= ’BOSTON’ ... date day.year = 1993 AND
date day.month number = 2 AND date day.day number
= 8 ...

Anonymized utterance and query:
x̄′
1: show me flights from CITY#1 to CITY#2 DAY#1 MONTH#1 YEAR#1
ȳ′1: ( SELECT DISTINCT flight.flight id ...

city.city name = CITY#1 ... city.city name
= CITY#2 ... date day.year = YEAR#1
AND date day.month number = MONTH#1 AND
date day.day number = DAY#1 ...

Anonymization mapping:
CITY#1 ’SEATTLE’ MONTH#1 2
CITY#2 ’BOSTON’ YEAR#1 1993
DAY#1 8

Figure 4: An example of date and entity anonymization
pre-processing for x̄1 and ȳ1 in Figure 2.

Monday) and replace them with day, month, and
year placeholders. To anonymize database entries,
we use a dictionary compiled from the database
(e.g., to map Seattle to SEATTLE). The full de-
tails of the anonymization procedure are provided
in the supplementary material. Following pre-
processing, the model reasons about encoding and
generation of anonymized tokens (e.g., CITY#1)
in addition to regular output tokens and query seg-
ments from the interaction history. Anonymized
tokens are typed (e.g., CITY), map to a token in
the query language (e.g., ’BOSTON’), and appear
both in input utterances and generated queries.

We modify our encoder and decoder embedding
functions (φx and φy) to map anonymized tokens
to the embeddings of their types (e.g., CITY). The
type embeddings in φx and φy are separate. Using
the types only, while ignoring the indices, avoids
learning biases that arise from the arbitrary order-
ing of the tokens in the training data. However,
it does not allow distinguishing between entries
with the same type for generation decisions; for
example, the common case where multiple cities
are mentioned in an interaction. We address this
by scoring anonymized token based on the mag-
nitude of attention assigned to them at generation
step k. The attention magnitude is computed from
the encoder hidden states. This computation con-
siders both the decoder state and the location of
the anonymized tokens in the input utterances to
account for how they are used in the interaction.
The probability of an anonymized token w at gen-
eration step k is
P (yi,k = w | x̄i, ȳi,1:k−1, Ī[: i− 1]) ∝

i∑

t=i−h

|x̄t|∑

j=1

(exp (sk (t, j)))

where sk (t, j) is the attention score computed in
Equation 8. This probability is normalized to-

Mean/max utterances per interaction 7.0 / 64
Mean/max tokens per utterance 10.2 / 47
Mean/max token per SQL query 102.9 / 1286
Input vocabulary size 1582
Output vocabulary size 982

Table 1: ATIS data statistics.

gether with the probabilities in Equations 7 and 9
to form the complete output probability.

7 Experimental Setup

Hyperparameters, architecture details, and other
experimental choices are detailed in the supple-
mentary material.

Data We use ATIS (Hemphill et al., 1990; Dahl
et al., 1994) to evaluate our approach. The data
was originally collected using wizard-of-oz exper-
iments, and annotated with SQL queries. Each in-
teraction was based on a scenario given to a user.
We observed that the original data split shares sce-
narios between the train, development, and test
splits. This introduces biases, where travel pat-
terns that appeared during training repeat in test-
ing. For example, a model trained on the orig-
inal data split often correctly resolves the exact
referenced by on Saturday with no pre-processing
or access to the document date. We evaluate this
overfitting empirically in the supplementary mate-
rial. We re-split the data to avoid this bias. We
evenly distribute scenarios across splits so that
each split contains both scenarios with many and
few representative interactions. The new split fol-
lows the original split sizes with 1148/380/130
train/dev/test interactions. Table 1 shows data
statistics. The system uses a SQL database of 27
tables and 162K entries. 96.6% of the queries re-
quire at least one join, and 93% at least two joins.
The most related work on ATIS to ours is Miller
et al. (1996), which we discuss in Section 3.

The most related corpora to ATIS are
SCONE (Long et al., 2016) and Sequen-
tialQA (Iyyer et al., 2017). SCONE (Long
et al., 2016) contains micro-domains consist-
ing of stack- or list-like elements. The formal
representation is linguistically-motivated and
the majority of queries include a single binary
predicate. All interactions include five turns.
SequentialQA (Iyyer et al., 2017) contains se-
quences of questions on a single Wikipedia table.
Interactions are on average 2.9 turns long, and
were created by re-phrasing a question from a
context-independent corpus (Pasupat and Liang,
2015). In contrast, ATIS uses a significantly larger
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database, requires generating complex queries
with multiple joins, includes longer interactions,
and was collected through interaction with users.
The supplementary material contains analysis of
the contextual phenomena observed in ATIS.
Pre-processing We pre-process the data to iden-
tify and anonymize entities (e.g., cities), numbers,
times, and dates. We use string matching heuris-
tics to identify entities and numbers, and identify
and resolve times and dates using UWTime (Lee
et al., 2014). When resolving dates we use the
original interaction date as the document time.
The supplementary material details this process.
Metrics We evaluate using query accuracy, strict
denotation accuracy, and relaxed denotation accu-
racy. Query accuracy is the percentage of pre-
dicted queries that match the reference query.
Strict denotation accuracy is the percentage of pre-
dicted queries that execute to exactly the same ta-
ble as the reference query. In contrast to strict,
relaxed gives credit to a prediction query that fails
to execute if the reference table is empty. In cases
when the utterance is ambiguous and there are
multiple gold queries, we consider the query or ta-
ble correct if they match any of the gold labels.
Systems We evaluate four systems: (a)
SEQ2SEQ-0: the baseline encoder-decoder
model (Section 4.1); (b) SEQ2SEQ-H: encoder-
decoder with attention on current and previous
utterances (Section 4.2); (c) S2S+ANON: encoder-
decoder with attention on previous utterances
and anonymization scoring (Section 6); and (d)
FULL: the complete approach including segment
copying (Section 4.4). For FULL, we evaluate
with predicted and gold (FULL-GOLD) previous
queries, and without attention on previous utter-
ances (FULL-0). All models except SEQ2SEQ-0
and FULL-0 use h = 3 previous utterances. We
limit segment copying to segments that appear in
the most recent query only.6 Unless specifically
ablated, all experiments use pre-processing.

8 Results

Table 2 shows development and test results. We
run each experiment five times and report mean
and standard deviation. The main metric we fo-
cus on is strict denotation accuracy. The rel-
atively low performance of SEQ2SEQ-0 demon-

6While we only use segments from the most recent query,
they often appear for the first time much earlier in the inter-
action, which influences their absolute position value a.

Model Query Denotation
Relaxed Strict

Development Results
SEQ2SEQ-0 28.7±1.7 48.8±1.4 43.2±1.8

SEQ2SEQ-H 35.1±2.2 59.4±2.4 56.7±3.2

S2S+ANON 37.6±0.7 61.6±0.7 60.6±0.7

FULL-0 36.3±0.5 61.5±0.8 61.0±0.9

FULL 37.5±0.9 63.0±0.7 62.5±0.9

– turn-level enc. 37.4±1.5 62.1±2.5 61.4±2.7

– batch re-weight 36.4±0.6 61.8±0.3 61.5±0.4

– input pos. embs. 33.3±0.2 57.9±0.8 57.4±0.8

– query segments 36.0±0.9 59.5±1.3 58.3±1.4

– anon. scoring 35.7±0.5 60.8±1.1 60.0±1.0

– pre-processing 26.4±6.1 53.3±8.6 53.0±8.5

FULL-GOLD 42.1±0.8 66.6±0.7 66.1±0.7

Test Results
SEQ2SEQ-0 35.7±1.5 56.4±1.1 53.8±1.0

SEQ2SEQ-H 42.2±2.0 66.6±3.2 65.8±3.4

S2S+ANON 44.0±1.2 69.3±1.0 68.6±1.1

FULL-0 43.1±1.3 67.8±1.6 67.2±1.6

FULL 43.6±1.0 69.3±0.8 69.2±0.8

FULL-GOLD 47.4±1.3 72.3±0.5 72.0±0.5

Table 2: Mean and standard deviation development and
test results, including ablations on the FULL model.

strates the need for context in this task. Attend-
ing on recent history significantly increases perfor-
mance. Both SEQ2SEQ models score anonymized
tokens as regular vocabulary tokens. Adding
anonymized token scoring further increases per-
formance (S2S+ANON). FULL-0 and FULL add
segment copying and the turn-level encoder. The
relatively high performance of FULL-0 shows that
substituting segment copying with attention main-
tains and even improves the system effectiveness.
However, the best performance is provided with
FULL, which combines both. This shows the ben-
efit of redundancy in accessing contextual infor-
mation. Unlike the other systems, both FULL and
FULL-0 suffer from cascading errors due to select-
ing query segments from previously incorrect pre-
dictions. The higher FULL-GOLD performance il-
lustrates the influence of error propagation. While
part of this error can be mitigated by having both
attention and segment copying, this behavior is
unlikely to be learned from supervised learning,
where errors are never observed.

Ablations show that all components contribute
to the system performance. Performance drops
when using a concatenation-based encoder in-
stead of the turn-level encoder (−turn-level enc.;
Section 4.3). Using batch-reweighting (−batch-
reweight; Section 5) and input position embed-
dings (−input pos. embs.; Section 4.3) are
critical to the performance of the turn-level en-
coder. Removing copying of query segments
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Figure 5: Mean development strict denotation accuracy
as function of turns and h.

Model Query Denotation
Relaxed Strict

Development Results
S2S+ANON 44.4±1.2 69.9±0.3 68.9±0.3

FULL 42.8±0.2 68.8±0.2 68.4±0.2

FULL-GOLD 47.5±0.2 71.5±0.4 70.7±0.6

Test Results
S2S+ANON 43.9±0.3 67.4±1.0 67.2±1.0

FULL 44.3±0.2 66.3±0.3 66.3±0.4

FULL-GOLD 47.2±0.3 68.2±0.5 67.9±0.4

Table 3: Results on the original split of the data.

from the interaction history lowers performance
(−query segments; Section 4.4). Treating indexed
anonymized tokens as regular tokens, rather than
using attention-based scoring and type embed-
dings, lowers performance (−anon. scoring; Sec-
tion 6). Finally, pre-processing, which includes
anonymization, is critical (−pre-processing).

Figure 5(a) shows the performance as interac-
tions progress. All systems show a drop in per-
formance after the first utterance, which is always
context-independent. As expected, SEQ2SEQ-0
shows the biggest drop. The FULL approach is the
most stable as the interaction progresses.

Figure 5(b) shows the performance as we de-
crease the number of previous utterances used for
attention h. Without the turn-level encoder and
segment copying (SEQ2SEQ-H and S2S+ANON),
performance decreases significantly as h de-
creases. In contrast, the FULL model shows a
smaller decrease (1.5%). The supplementary ma-
terial includes attention analysis demonstrating the
importance of previous-utterance attention. How-
ever, attending on fewer utterances improves in-
ference speed: FULL-0 is 30% faster than FULL.

Finally, while we re-split the data due to sce-
nario sharing between train and test early in devel-
opment and used this split only for development,
we also evaluate on the original split (Table 3).
We report mean and standard deviation over three
trials. The high performance of S2S+ANON po-
tentially indicates it benefits more from the differ-
ences between the splitting procedures.

9 Analysis

We analyze errors made by the full model on thirty
development interactions. When analyzing the
output of FULL, we focus on error propagation
and analyze predictions that resulted in an incor-
rect table when using FULL, but a correct table
when using FULL-GOLD. 56.7% are due to selec-
tion of a segment that contained an incorrect con-
straint. 43.4% of the errors are caused by a neces-
sary segment missing during generation. 93.0%
of all predictions are valid SQL and follow the
database schema. We also analyze the errors of
FULL-GOLD. We observe that 30.0% of errors are
due to generating constraints that were not men-
tioned by the user. Other common errors include
generating relevant constraints with incorrect val-
ues (23.3%) and missing constraints (23.3%).

We also evaluate our model’s ability to re-
cover long-distance references while constraints
are added, changed, or removed, and when target
attributes change. The supplementary material in-
cludes the analysis details. In general, the model
resolves references well. However, it fails to re-
cover constraints mentioned in the past following a
user focus state change (Grosz and Sidner, 1986).

10 Discussion

We study models that recover context-dependent
executable representations from user utterances by
reasoning about interaction history. We observe
that our segment-copying models suffer from er-
ror propagation when extracting segments from
previously-generated queries. This could be mit-
igated by training a model to ignore erroneous
segments, and recover by relying on attention for
generation. However, because supervised learning
does not expose the model to erroneous states, a
different learning approach is required. Our analy-
sis demonstrates that our model is relatively insen-
sitive to interaction length, and is able to recover
both explicit and implicit references to previously-
mentioned entities and constraints. Further study
of user focus change is required, an important phe-
nomenon that is relatively rare in ATIS.
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Abstract
We introduce an approach to neural text gen-
eration that explicitly represents entities men-
tioned in the text. Entity representations are
vectors that are updated as the text proceeds;
they are designed specifically for narrative text
like fiction or news stories. Our experiments
demonstrate that modeling entities offers a
benefit in two automatic evaluations: mention
generation (in which a model chooses which
entity to mention next and which words to use
in the mention) and selection between a correct
next sentence and a distractor from later in the
same story. We also conduct a human evalu-
ation on automatically generated text in story
contexts; this study supports our emphasis on
entities and suggests directions for further re-
search.

1 Introduction

We consider the problem of automatically gen-
erating narrative text, a challenging problem at
the junction of computational creativity and lan-
guage technologies (Gervás, 2009). We are moti-
vated in particular by potential applications in per-
sonalized education and assistive tools for human
authors, though we believe narrative might also
play a role in social conversational agents (Sor-
doni et al., 2015). In this work, the term “narra-
tive text” refers primarily to fiction but might also
include news and other kinds of stories.

A notable difference between longstanding
work in natural language generation and recent
“neural” models is in the treatment of entities and
the words used to refer to them. Particularly in
the generation of narrative text, character-centered
generation has been shown important in character
dialogue generation (Walker et al., 2011; Cavazza
and Charles, 2005) and story planning (Cavazza
et al., 2002). Neural models, on the other hand,
treat mentions as just more words, relying on rep-
resentation learning to relate the people in a story
through the words alone.

Context All of a sudden, [Emily]1
walked towards [the dragon]2.

Current
Sentence

[Seth]3 yelled at [her]1 to get
back but

Figure 1: An example of entity-labeled story data. The
brackets indicate which words are part of entity men-
tions. Mentions marked with the same number refer to
the same entity. The goal is to continue the story in a
coherent way. The actual story reads, “Seth yelled at
her to get back but she ignored him.”

Entities are an important element of narrative
text. Centering Theory places entities at the cen-
ter of explaining what makes text coherent (Grosz
et al., 1995). In this work, we incorporate entities
into neural text generation models; each entity in a
story is given its own vector representation, which
is updated as the story unfolds. These represen-
tations are learned specifically to predict words—
both mentions of the entity itself and also the fol-
lowing context. At a given moment in the story,
the current representations of the entities help to
predict what happens next.

Consider the example in Figure 1. Given the
context, the reader expects the subsequent words
and sentences of the passage to track the results of
Emily approaching the dragon. Future text should
include references to Emily’s character and the
dragon and the result of their interaction. The
choice of entity generated next in the sentence will
change what language should follow that mention
and will shape and drive the direction of the story.
For this reason, we propose using entity represen-
tations as context for generation.

Of course, entities are not the only context
needed for coherent language generation; pre-
viously generated content remains an impor-
tant source of information. We use a simple,
parameter-free method for combining preceding
context with entity context within an end-to-end–
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trainable neural language generator.
We evaluate our model’s performance through

two automatic evaluation tasks. The first is a new
mention generation task inspired by earlier work
in referring expression generation (Dale and Re-
iter, 1995). The second is a sentence selection task
inspired by coherence tests from Barzilay and La-
pata (2008). Our model outperforms strong base-
lines on both tasks.

We further conduct a human evaluation in
which our model’s generated sentences are com-
pared to a strong baseline model. This evaluation
elucidates strengths and weaknesses of our model
and offers guidance for future work on narrative
text generation.

2 Model Description

We propose an entity-based generation model
(ENGEN)1 that combines three different sources
of contextual information for text generation:

1. The content that has already been generated
within the current sentence

2. The content that was generated in the previ-
ous sentence

3. The current state of the entities mentioned in
the document so far

Each of these types of information is encoded
in vector form, following extensive past work on
recurrent neural network (RNN) language mod-
els. The first source of context is the familiar
hidden state vector of the RNN; more precisely,
our starting point is a sequence-to-sequence model
(Sutskever et al., 2014). Representations of the
second and third forms of context are discussed in
§2.1 and §2.2, respectively. The combination of all
three context representations is described in §2.3.

2.1 Context from Previous Sentence
As noted, our starting point is a sequence-to-
sequence model (Sutskever et al., 2014); the last
hidden state from the previous sentence offers a
representation of the preceding context. We add
an attention mechanism (Bahdanau et al., 2015).
Let ht,i and ht−1,j be the LSTM hidden states of
sentence t at timestep i and the previous sentence
t−1 at timestep j, where j ranges over the number
of words in the previous sentence. To summarize

1Code available at github.com/eaclark07/
engen.

the contextual information from the previous sen-
tence for predicting the next word at timestep i+1
in sentence t, we have

pt−1,i =
∑

j

αi,jht−1,j ,where (1)

αi,j =
exp(ht−1,jWaht,i)∑
j′ exp(ht−1,j′Waht,i)

(2)

is the attention weight for ht−1,j . Unlike the defi-
nition of attention in Bahdanau et al. (2015), here
we use the bilinear product in Equation 2 to en-
courage correlation between ht,i and ht−1,j for
coherence in text generation. In §2.3, we will com-
bine this with ht,i for predicting the next word; we
refer to that model as S2SA, and it serves as an
entity-unaware baseline in our experiments.

2.2 Context from Entities
In S2SA, the context of a sentence is (at best)
represented by compressing information about the
words that have appeared in the previous sentence.
Past research has suggested several approaches to
capturing other contextual information. For ex-
ample, Lau et al. (2017) and Ghosh et al. (2016)
have sought to capture longer contexts by model-
ing topics. Recently, Ji et al. (2017) introduced a
language model, ENTITYNLM, that adds explicit
tracking of entities, which have their own repre-
sentations that are updated as the document pro-
gresses.2 That model was introduced for analy-
sis tasks, such as language modeling and corefer-
ence resolution, where the texts (and their corefer-
ence information) are given, and the model is used
to score the texts to help resolve coreference re-
lationships.3 ENTITYNLM’s strong performance
on language modeling suggests the potential of
distributed entity representations as another source
of contextual information for text generation. In-
spired by that work, we maintain the dynamic rep-
resentation of entities and use them as contextual
information when generating text.

In general, every entity in a document (e.g.,
EMILY in Figure 1) is assigned a vector represen-
tation; this vector is updated every time the entity
is mentioned. This is entirely appropriate for gen-
erating narrative stories in which characters de-
velop and change over long contexts. When we

2Because space does not permit a full exposition of all the
details of ENTITYNLM, we refer the interested reader to Ji
et al. (2017).

3The entity prediction task used in their work is relevant
to our mention generation task, which will be discussed in §5.
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generate text, the model will have access to the
current representation of every participant (i.e., ev-
ery entity) in the story at that time (denoted by ei,t
for entity i at timestep t).

When choosing which entity is referred to at
timestep t, there are m + 1 options, where m is
the number of entities tracked in the document so
far—the (m+1)th is for a new, previously unmen-
tioned entity. Given that a word is part of an entity
mention and given the previous hidden state, the
probability that the word is referring to a given en-
tity i ∈ {1, . . . ,m+ 1} is proportional to:

exp(h>t−1Wentityei,t−1 +w>distf(i)), (3)

where Wentity is a weight matrix for predicting
the entities and w>distf(i) is a term that takes into
account distance features between the current and
past entity mentions.

Once an entity is selected, its vector is assigned
to ecurrent, which is used to generate the word wt.
If the model decided the current word should not
refer to an entity, then ecurrent is still used and will
be the representation of the most recently men-
tioned entity. If the choice is a new, previously
unmentioned entity, then ecurrent is initialized with
a new embedding randomly generated from a nor-
mal distribution:

u ∼ N (r, σ2I), (4)

where σ = 0.01 and r is a parameter vector that
is used to determine whether the next word should
refer to an entity.

Once the word wt has been generated, the entity
representation is updated based on the new hidden
state information, ht.

2.3 Combining Contexts
Our new model merges S2SA and ENTITYNLM.
Both provide a representation of context: re-
spectively, the previous sentence’s representation
(pt) and the most salient entity’s representation
(ecurrent). The hidden state ht−1 is, of course,
also available, and is intended to capture local con-
textual effects. The challenge is how to combine
these representations effectively for text genera-
tion.

In this work, for simplicity, we choose a combi-
nation function without any extra parameters, and
leave the detailed investigation of paramaterized
composition functions as future work. We use
a max-pooling function to form a context vector

ct with the same dimensionality as ht−1 (and, of
course, pt and ecurrent). Specifically, at time step
t, each element of the combined context vector ct
is calculated as follows. For k ∈ {1, ..., |ct|},

ct[k] = max(ht−1[k],pt[k], ecurrent[k]). (5)

The max pooling technique originates from the
design of convolutional neural networks and has
been found useful elsewhere in NLP (Kalchbren-
ner et al., 2014). Other alternatives, including
average pooling, min pooling, and element-wise
multiplication on all three vectors, were consid-
ered in informal preliminary experiments on de-
velopment data and found less effective than max
pooling.

This combined context vector ct is used to gen-
erate word wt by calculating the probability of
each word type in the vocabulary. We use a class-
factored softmax function (Goodman, 2001; Bal-
tescu and Blunsom, 2015). This choice greatly re-
duces the runtime of word prediction. In practice,
we often find it gives better performance than stan-
dard softmax.

2.4 Learning
The training objective is to maximize the log-
probability ofX:

`(θ) = logP (X;θ) =
∑

t

logP (Xt;θ) (6)

θ denotes all of the model’s parameters. Xt rep-
resents all decisions at timestep t about the word
(whether it is part of a entity mention, and if so,
the entity the mention refers to, the length of the
mention, and the word itself).

These decisions are made by calculating proba-
bilities for each available option using the current
state of the neural network (a vector) and the cur-
rent vector representations of the entities. Given
the probabilities, the next word is assumed to have
been randomly generated by sampling.

While we might consider training the model to
maximize the probability of the generated words
directly, treating the entity-related variables as la-
tent, this would create a mismatch between how
we train and use the model. For generation, the
model explicitly predicts not just the word, but
also the entity information associated with that
word. Training with latent variables is also expen-
sive. For these reasons, we use the same training
method used for ENTITYNLM, which requires
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training data annotated with mention and corefer-
ence information (entity clusters).

2.5 Variants

In our experiments, we consider the combined
model (ENGEN) and two ablations: S2SA and a
model similar to ENTITYNLM. Note that, unlike
past work with previous-sentence context, S2SA
uses max pooling for ht−1 and pt and class-
factored softmax; our version of ENTITYNLM
also uses max pooling and class-factored softmax.
All of these models are trained in a similar way.

3 Implementation Details

The models are implemented using DyNet (Neu-
big et al., 2017) with GPU support. We optimize
with SGD, with a learning rate of λ = 0.1. The
dimensions of input layer, hidden layer, and en-
tity representation are fixed at 512 (hyperparam-
eter optimization might lead to better solutions).
The input word embeddings are randomly initial-
ized with the default method in DyNet and updated
during training jointly with other parameters. For
class-factored softmax, we use 160 Brown clus-
ters (Brown et al., 1992; Liang, 2005) estimated
from the training data.

4 Data

We trained all models on 312 adventure books
from the Toronto Book Corpus (Zhu et al., 2015),
with development and test sets of an additional 39
books each. We divided the books into smaller
segments, where each segment includes up to 50
sentences. There are 33,279 segments in the train-
ing set, 4,577 in the dev. set, and 4,037 in the test
set. This helps with memory efficiency, allowing
us to train the model without building a recurrent
neural network on the entire book.

All the tokens in the data were downcased, and
numbers were replaced with a special NUM token.
The vocabulary was selected by replacing the low-
est frequency (less than 10) word types with a spe-
cial UNK token. There are 43 million tokens, and
the vocabulary size is 35,443.

To obtain entity annotations, we used the
Stanford CoreNLP system (Clark and Manning,
2016a,b), version 3.8.0. From the coreference res-
olution results, we noticed that some entity men-
tions include more than 70 tokens, which is likely
in error. To simplify the problem, we only kept
the mentions consisting of three words or fewer,

which covers more than 95% of the mentions in
the training data. For mentions of more than three
words, we replaced them with their head word,
as determined by the Stanford CoreNLP system.
While truncating these mentions sacrifices some
information, we believe this preprocessing step is
justifed as it retains most character names and pro-
nouns, an especially important entity type for sto-
ries.

Of course, the use of automatic annotations
from a coreference system will introduce noise
and risks “confusing” the entity-aware models.
The benefit is that we were able to train on a much
larger corpus than any existing coreference dataset
(e.g., the CoNLL 2012 English shared task train-
ing set has only 1.3 million tokens; Pradhan et al.,
2012). Further, a corpus of books offers language
that is much closer to our intended narrative text
generation applications. Our experiments aim to
measure some aspects of our models’ intrinsic cor-
rectness, though we emphasize that even if entity
information is incorrect at training time, it may
still be helpful.

For all experiments, the same preprocessed
dataset and trained models were used. The best
models were selected based on development set
log likelihood (Equation 6).

5 Experiment: Mention Generation

The goal of our first experiment is to investigate
each model’s capacity to mention an entity in con-
text. For example, in Figure 1, Emily and her
are both possible mentions of EMILY’s character,
but the two cannot be used interchangeably. In-
spired by early work on referring expression gen-
eration (Dale and Reiter, 1995) and recent work on
entity prediction (Modi et al., 2017), we propose
a new task we call mention generation. Given a
text and a slot to be filled with an entity mention,
a model must choose among all preceding entity
mentions and the correct mention. So if the model
was choosing the next entity mention to be gen-
erated in Figure 1, it would select between all the
previous entity mentions (Emily, the dragon, Seth,
and her) and the correct mention (she).

In our model, each candidate mention is aug-
mented with the index of its entity. Therefore, per-
forming well on this task requires choosing both
the entity and the words used to refer to it; this
notion of quality is our most stringent evaluation
measure. It requires the greatest precision, as it is
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model cluster and mention cluster only mention only

1. Reverse order 0.12 0.38 0.15
2. S2SA — — 0.44
3. ENTITYNLM 0.52 0.46 0.54
4. ENGEN 0.53 0.46 0.55

Table 1: MAP on the mention generation task. Note that these results can only be compared between models, not
between tasks, as there are a different number of candidates for each of the tasks.

cluster and
mention

cluster only mention only

[Emily]1
[the dragon]2

[Seth]3
[her]1

*[she]1

*EMILY

THE DRAGON

SETH

Emily
the dragon

Seth
her

*she

Figure 2: Candidate lists for each of the mention gen-
eration tasks for completing the blank in Figure 1. The
asterisk (*) indicates the correct choice.

possible to select the correct mention but not the
correct cluster and vice versa. Since S2SA does
not model entities, we also compare systems on
quality of mentions alone (without entity clusters).
For completeness, we include cluster quality for
the entity-aware models. Candidate lists for each
task to generate the next mention in the example
in Figure 1 are shown in Figure 2.

The experiment setup does not require manual
creation of candidate lists. However, it makes the
mention generation task even more challenging,
because the size of a candidate list can exceed 100
mention candidates.

We note that the difficulty of this task increases
as we consider mention slots later and later in the
document. The first mention generation choice is
a trivial one, with a single candidate that is by def-
inition correct. As more entity mentions are ob-
served, the number of options will increase.4 To
enable aggregation across contexts of all lengths,
we report the mean average precision (MAP) of
the correct candidates, where the language model
scores are used to rank candidates.

Baselines Along with the two ablated models
(S2SA and ENTITYNLM), we include a “reverse
order” baseline, which ranks mentions by recency

4Note that the list of candidates may include duplicate en-
tries with the same mention words and cluster. These are col-
lapsed since they will have the same score under a language
model.

(the first element in the ranking is the most recent
mention, then the second-most-recent, and so on).

Results The ranking results of ENGEN and
other systems are reported in Table 1. A higher
MAP score implies a better system. We mea-
sure the overall performance of all the systems,
along with their performance on selecting the men-
tion only and entity cluster only. Across all the
evaluation measures, ENGEN gives the highest
MAP numbers. Recall that S2SA does not have
a component for entity prediction, therefore we
only compare it with ENGEN in the mention only
case. The difference between line 4 and line 2
on the mention only column shows the benefit of
adding entity representations for text generation.
The difference between lines 3 and 4 shows that
local context also gives a small boost. Although
the distance between the current slot and previ-
ous entity mention has been shown as a useful fea-
ture in coreference resolution (Clark and Manning,
2016b), line 1 shows distance alone is not an effec-
tive heuristic for mention generation.

6 Experiment: Pairwise Sentence
Selection

The sentence selection task is inspired by tests
of coherence used to assess text generation com-
ponents automatically, without human evaluation
(Barzilay and Lapata, 2008). It serves as a san-
ity check, as it was conducted prior to full gener-
ation and human evaluations (§7). Since the mod-
els under consideration are generative, they can be
used to assign scores to candidate sentences, given
a context.

In our version of this task, we provide a model
with n − 1 = 49 sentences of preceding context,
and offer two choices for the nth (50th) sentence:
the actual 50th sentence or a distractor sentence
randomly chosen from the next 50 sentences. A
random baseline would achieve 50% accuracy.

Because the distractor comes from the same
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Context All of a sudden, [Emily]1 walked to-
wards [the dragon]2.

1. [Seth]3 yelled at [her]1 to get back but
[she]1 ignored [him]3.

2. [She]1 patted [its head]4 and [it]2 curled
up outside [the cave]5.

3. “[Emily]1, how did [you]1 keep [that
dragon]2 from attacking [us]6?”

Figure 3: A passage’s last sentence of context, and 3
sentences from various points in the next passage.

story (with similar language, characters, and top-
ics) and relatively nearby (in 2% cases, the very
next sentence), this is not a trivial task. Consider
the example in Figure 3. All of the sentences share
lexical and entity information with the last line
of the context. However, the first sentence im-
mediately follows the context, while the second
and third sentences are 10 lines and 48 lines away
from the context, respectively. These entity and
lexical similarities make distinguishing the actual
sentence from the random sentence a challenging
problem for the model.

To select the sentence, the model scores each of
the two candidate sentences based on its probabil-
ity on words and all entity-related information as
defined in Equation 6. (Both candidate sentences
come from the preprocessed data and have the en-
tity annotations described in §4.)

The sentence that receives the higher probabil-
ity is chosen. For each of the 4,037 segments of
context in the test set, we calculated the accuracy
of each model at distinguishing the gold sentence
from a distractor sentence. We ran this pairwise
decision 5 times, each time with a different set of
randomly selected distractor sentences and aver-
aged their performance across all 5 rounds.

Results The accuracy of each of the models is
reported in Table 2. The best performance is ob-
tained by ENGEN, which is significantly better
than the other two models (p < 0.05, binomial
test). Unlike the mention generation task, S2SA
beats ENTITYNLM at this task; this difference in
performance shows the importance of local con-
text. Although we performed five different rounds
of random sampling to choose a sentence from the
following segment as the distractor sentence, the
standard deviations in Table 2 show the results are
generally consistent across rounds, regardless of

model mean accuracy s.d.

1. S2SA 0.546 0.01
2. ENTITYNLM 0.534 0.006
3. ENGEN ∗0.566 0.008
∗ signficantly better than lines 1 and 2 with p < 0.05.

Table 2: Accuracy in choosing the actual next sentence,
given 49 sentences of context, with a distractor from
slightly later in the story. The mean accuracies and
standard deviation are calculated across the five rounds
of pairwise sentence selection.

the distractor’s distance from the gold sentence.

7 Human Evaluation: Sentence
Generation

The task motivating the work in this paper is narra-
tive text generation. As such, evaluation by human
judges of the quality of generated text is the best
measure of our methods’ quality. This study sim-
plifies that evaluation by distilling the judgment
down to a forced choice between contextually gen-
erated sentences generated by two different mod-
els. We use this task to investigate the strengths
and weaknesses of our model in a downstream
application. By asking humans to decide which
sentences they prefer (in a given context) and to
explain why, we can analyze where our model is
helping and where text generation for stories still
needs to improve, both with respect to entities and
to other aspects of language. Here we control for
training data and assess the benefit of including
entity information for generating sentences to con-
tinue a story.

We presented Amazon Mechanical Turkers5

with a short excerpt from a story and two gener-
ated sentences, one generated by ENGEN and one
generated by the entity-unaware S2SA. We asked
them to “choose a sentence to continue the story”
and to briefly explain why they made the choice
they did, an approach similar to that in other story-
based work such as Lukin et al. (2015).

Note that we did not prime Turkers to focus on
entities. Rather, the purpose of this experiment
was to examine the performance of the model in
a story generation setting and to get feedback on
what people generally notice in generated text, not
only with regard to entities. By keeping the task

5We selected workers who had completed over 1,000
tasks, had over a 95% task acceptance rate, and were from
the United States.
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open-ended, we can better analyze what people
value in generated text for stories, and where our
model supports that and where it doesn’t.

We used a subset of 50 randomly selected text
segments from the test set described in §4. How-
ever, for the human evaluation, we only used the
final 60 words6 of the story segments to keep the
amount of reading and context manageable for
Turkers. The models had access to the same sub-
set of the context that the evaluator saw, not all 50
sentences from the original segment as in earlier
experiments. For each context, we randomly sam-
pled a sentence to continue the document, using
each of two models: ENGEN and S2SA. These
two models allowed us to see if adding the entity
information noticeably improved the quality of the
generation to evaluators.

Initial experiments showed that fluency remains
a problem for neural text generation. To reduce the
effect of fluency on Turkers’ judgments, we gen-
erated 100 samples for each context/model pair
and then reranked them with a 5-gram language
model (Heafield, 2011) that was trained on the
same training data. The two top ranked sentences
(one for ENGEN and one for S2SA) were pre-
sented in random order and without reference to
the models that generated them.

For each of the 50 contexts, we had 11 Turk-
ers pick a candidate sentence to continue the story
passage. Turkers were paid $0.10 for each eval-
uation they completed. In total, 93 Turkers com-
pleted the task. The number of passages Turkers
completed ranged from 1 to all 50 story segments
(with an average of 6.1). While the quantitative
portion of this task would be easy to scale, the
qualitative portion is not; we kept the human eval-
uation small, running it until reaching saturation.

Results Each pair of sentences was evaluated by
11 Turkers, so each of the passages could receive
up to 11 votes for ENGEN. For 27 of the passages,
the majority of Turkers (6 or more) chose the sen-
tence from ENGEN, versus 23 passages that went
to the baseline model, S2SA. The scores were
close in many cases, and for several passages,
Turkers noted in their explanations that while they
were required to choose one sentence, both would
have worked. Examples of the context and sen-
tence pairs that were strongly in favor of EN-
GEN, strongly in favor of S2SA, and that received

6We included the whole sentence that contained the 60th
word, so most documents were slightly over 60 words.

mixed reviews are shown in Table 3.

When asked to explain why they selected the
sentence they did, a few Turkers attributed their
choices to connections between pronouns in EN-
GEN’s suggestions to characters mentioned in the
story excerpt. However, a more frequent occur-
rence was Turkers citing a mismatch in entities as
their reason for rejecting an option. For example,
one Turker said they chose ENGEN’s sentence be-
cause the S2SA sentence began with “she,” and
there were no female characters in the context.

Interestingly, while pronouns not mentioned in
the context were cited as a reason for reject-
ing candidate sentences, new proper noun entity
mentions were seen as an asset by some. One
Turker chose a S2SA sentence that referenced
“Richard,” a character not present in the context,
saying, “I believe including Richard as a name
gives some context of the characters of the story.”
This demonstrates the importance of the ability to
generate new entities, in addition to referring back
to exisiting entities.

However, due to the open-ended nature of the
task, the reasons Turkers cited for selecting sen-
tences extended far beyond characters and entity
mentions. In fact, most of the responses cred-
ited other aspects of stories and language for their
choice. Some chose sentences based on their po-
tential to move the plot forward or because they
fit better with “the theme” or “the tone” of the
context. Others made decisions based on whether
they thought a sentence of dialogue or a descrip-
tive sentence was more appropriate, or a statement
versus a question. Many made their decisions us-
ing deeper knowledge about the story’s context.
For example, in the second story listed in Table
3, one Turker used social knowledge to choose the
S2SA sentence because “the introduction makes
the man sound like he is a stranger, so ‘I’m proud
of you’ seems out of place.” In this case, even
though the sentence from ENGEN correctly gener-
ated pronouns that refer to entities in the context,
the mismatch in the social aspects of the context
and ENGEN’s sentence contributed to 7 out of 11
Turkers choosing the vaguer S2SA sentence.

While neither S2SA nor ENGEN explicitly en-
codes these types of information, these qualities
are important to human evaluators of generated
text and should influence future work on narrative
text generation.
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Context ENGEN S2SA #

he says that it was supposed to look random , but he
feels it was planned . i was the target . he ’s not sure
, but he feels that you might have something to do
with this , ” cassey said sadly . “ he ca n’t do that
! ” manny yelled . “ he ca n’t accuse me with no
justification .

it ’s not me . ” he has nothing
to do with my
life

10

he was wearing brown slacks and a tan button-down
shirt , with wool slippers . he looked about sixty , a
little paunchy , with balding brown hair and a bushy
mustache . ice blue eyes observed alejo keenly , then
drifted over to wara .“ welcome to my home . ” the
man ’s voice was deep and calm .

“ i ’m proud of
you , ” he said .

“ what ’s going
on ? ’

4

bearl looked on the scene , and gasped . this was the
white rock of legend , the rock that had lured him
to this land . then he stopped . “ look , geron . the
white rock we saw from the sea . ” the struggle was
taking place on the white rock . the monster had his
back to bearl .

“ oh my god ! ” he could not
believe his eyes

1

Table 3: Example generated sentences, for three different contexts. The last column indicates the number of
Turkers who voted for ENGEN’s sentence (out of 11). While entity mentions appear in most of the generated texts,
correct entity mentions are not sufficient to guarantee a win, as seen in the second example.

8 Related Work

Beyond past work already discussed, we note a
few additional important areas of research relevant
to our work.

Neural models for text generation Natural lan-
guage generation is a classic problem in artificial
intelligence. Recent use of RNNs (Sutskever et al.,
2011) has reignited interest in this area. Our work
provides an additional way to address the well-
known drawback of RNNs: they use only limited
context. This has been noted as a serious problem
in conversational modeling (Sordoni et al., 2015)
and text generation with multiple sentences (Lau
et al., 2017). Recent work on context-aware text
generation (or the related task, language model-
ing) has studied the possibilities of using different
granularity of context. For example, in the sce-
nario of response generation, Sordoni et al. (2015)
showed a consistent gain by including one more
utterance from context. Similar effects are also ob-
served by adding topical information for language
modeling and generation (Lau et al., 2017).

Entity-related generation Choosing an appro-
priate entity and its mention has a big influence
on the coherence of a text, as studied in Centering

Theory (Grosz et al., 1995). Recently, the ENTI-
TYNLM proposed by Ji et al. (2017) shows that
adding entity related information can improve the
performance of language modeling, which poten-
tially provides a method for entity related text gen-
eration. We build on ENTITYNLM, combining
entity context with previous-sentence context, and
demonstrate the importance of the latter in a co-
herence test (§6). The max pooling combination
we propose is simple but effective.

Another line of related work on recipe genera-
tion included special treatment of entities as can-
didates in generating sentences, but not as context
(Kiddon et al., 2016). Bosselut et al. (2018) also
generated recipes, using neural process networks
to track and update entity representations with the
goal of modeling actions and their causal effects
on entities. However, the entity representations are
frozen during generation, rather than dynamically
updated.

Mention generation Our novel mention gener-
ation task is inspired by both referring expression
generation (Dale and Reiter, 1995) and entity pre-
diction (Modi et al., 2017). The major difference
is that, unlike referring expression generation, our
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task includes all the mentions used for entities, in-
cluding pronouns; we believe it is a more realistic
test of a model’s handling of entities. Krahmer and
Van Deemter (2012) give a comprehensive survey
on early work of referring expression generation.

The mention only version of the mention gen-
eration task is related to cloze tests like the Chil-
dren’s Book Test (Hill et al., 2016), the “Who-did-
What” Test (Onishi et al., 2016), and the CNN
and Daily Mail test described by Hermann et al.
(2015). However, unlike these tests, we predict all
entity mentions in the text and from a dynamically
expanding candidate list, typically much larger
than those in other cloze tests.

Story generation Work in story generation has
incorporated structure and context through event
representations (Martin et al., 2017) or semantic
representations, like story graphs (Rishes et al.,
2013; Elson and McKeown, 2009). In this work,
we provide evidence for the value of entity repre-
sentations as an additional form of structure, fol-
lowing work by Walker et al. (2011), Cavazza and
Charles (2005), and Cavazza et al. (2002).

9 Conclusion

Inspired by Centering Theory and the importance
of characters in stories, we propose a neural
model for text generation that incorporates con-
text via entities. We found that combining entity
representations with representations of the previ-
ous sentence and the hidden state (from a neural
language model) improves performance on three
tasks: mention generation, sentence selection, and
sentence generation. By collecting human evalu-
ations of sentences generated with entity informa-
tion, we find that while coherently referring back
to entities in the context was cited by several Turk-
ers as a factor in their decision, the introduction
of new entities and moving the narrative forward
were also valued.

Therefore, while entities are a useful structure
to incorporate in story generation, other structures
may also prove useful, including other aspects of
discourse (e.g., discourse relations or planning) or
story-related structures (e.g., narrative structure).
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Abstract

We investigate the computational complexity
of various problems for simple recurrent neu-
ral networks (RNNs) as formal models for
recognizing weighted languages. We focus
on the single-layer, ReLU-activation, rational-
weight RNNs with softmax, which are com-
monly used in natural language processing ap-
plications. We show that most problems for
such RNNs are undecidable, including con-
sistency, equivalence, minimization, and the
determination of the highest-weighted string.
However, for consistent RNNs the last prob-
lem becomes decidable, although the solution
length can surpass all computable bounds. If
additionally the string is limited to polynomial
length, the problem becomes NP-complete. In
summary, this shows that approximations and
heuristic algorithms are necessary in practical
applications of those RNNs.

1 Introduction

Recurrent neural networks (RNNs) are an attrac-
tive apparatus for probabilistic language model-
ing (Mikolov and Zweig, 2012). Recent exper-
iments show that RNNs significantly outperform
other methods in assigning high probability to
held-out English text (Jozefowicz et al., 2016).

Roughly speaking, an RNN works as follows.
At each time step, it consumes one input token,
updates its hidden state vector, and predicts the
next token by generating a probability distribution
over all permissible tokens. The probability of an
input string is simply obtained as the product of
the predictions of the tokens constituting the string
followed by a terminating token. In this man-
ner, each RNN defines a weighted language; i.e.
a total function from strings to weights. Siegel-
mann and Sontag (1995) showed that single-layer
rational-weight RNNs with saturated linear acti-
vation can compute any computable function. To

this end, a specific architecture with 886 hidden
units can simulate any Turing machine in real-time
(i.e., each Turing machine step is simulated in a
single time step). However, their RNN encodes
the whole input in its internal state, performs the
actual computation of the Turing machine when
reading the terminating token, and then encodes
the output (provided an output is produced) in a
particular hidden unit. In this way, their RNN al-
lows “thinking” time (equivalent to the computa-
tion time of the Turing machine) after the input has
been encoded.

We consider a different variant of RNNs that is
commonly used in natural language processing ap-
plications. It uses ReLU activations, consumes an
input token at each time step, and produces soft-
max predictions for the next token. It thus imme-
diately halts after reading the last input token and
the weight assigned to the input is simply the prod-
uct of the input token predictions in each step.

Other formal models that are currently used to
implement probabilistic language models such as
finite-state automata and context-free grammars
are by now well-understood. A fair share of
their utility directly derives from their nice algo-
rithmic properties. For example, the weighted
languages computed by weighted finite-state au-
tomata are closed under intersection (pointwise
product) and union (pointwise sum), and the cor-
responding unweighted languages are closed un-
der intersection, union, difference, and comple-
mentation (Droste et al., 2013). Moreover, toolkits
like OpenFST (Allauzen et al., 2007) and Carmel1

implement efficient algorithms on automata like
minimization, intersection, finding the highest-
weighted path and the highest-weighted string.

RNN practitioners naturally face many of
these same problems. For example, an RNN-

1https://www.isi.edu/licensed-sw/carmel/
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based machine translation system should ex-
tract the highest-weighted output string (i.e., the
most likely translation) generated by an RNN,
(Sutskever et al., 2014; Bahdanau et al., 2014).
Currently this task is solved by approxima-
tion techniques like heuristic greedy and beam
searches. To facilitate the deployment of large
RNNs onto limited memory devices (like mobile
phones) minimization techniques would be bene-
ficial. Again currently only heuristic approaches
like knowledge distillation (Kim and Rush, 2016)
are available. Meanwhile, it is unclear whether we
can determine if the computed weighted language
is consistent; i.e., if it is a probability distribution
on the set of all strings. Without a determination
of the overall probability mass assigned to all fi-
nite strings, a fair comparison of language models
with regard to perplexity is simply impossible.

The goal of this paper is to study the above
problems for the mentioned ReLU-variant of
RNNs. More specifically, we ask and answer the
following questions:
• Consistency: Do RNNs compute consistent

weighted languages? Is the consistency of the
computed weighted language decidable?
• Highest-weighted string: Can we (efficiently)

determine the highest-weighted string in a
computed weighted language?
• Equivalence: Can we decide whether two

given RNNs compute the same weighted lan-
guage?
• Minimization: Can we minimize the number

of neurons for a given RNN?

2 Definitions and notations

Before we introduce our RNN model formally, we
recall some basic notions and notation. An alpha-
bet Σ is a finite set of symbols, and we write |Σ|
for the number of symbols in Σ. A string s over
the alphabet Σ is a finite sequence of zero or more
symbols drawn from Σ, and we write Σ∗ for the set
of all strings over Σ, of which ε is the empty string.
The length of the string s ∈ Σ∗ is denoted |s|
and coincides with the number of symbols con-
stituting the string. As usual, we write AB for the
set of functions {f | f : B → A}. A weighted
language L is a total function L : Σ∗ → R
from strings to real-valued weights. For example,
L(an) = e−n for all n ≥ 0 is such a weighted
language.

We restrict the weights in our RNNs to the ratio-

nal numbers Q. In addition, we reserve the use of
a special symbol $ to mark the start and end of an
input string. To this end, we assume that $ /∈ Σ for
all considered alphabets, and we let Σ$ = Σ∪{$}.
Definition 1. A single-layer RNN R is a 7-tuple
〈Σ, N, h−1,W,W

′, E,E′〉, in which
• Σ is an input alphabet,
• N is a finite set of neurons,
• h−1 ∈ QN is an initial activation vector,
• W ∈ QN×N is a transition matrix,
• W ′ = (W ′a)a∈Σ$

is a Σ$-indexed family of
bias vectors W ′a ∈ QN ,
• E ∈ QΣ$×N is a prediction matrix, and
• E′ ∈ QΣ$ is a prediction bias vector.

Next, let us define how such an RNN works.
We first prepare our input encoding and the ef-
fect of our activation function. For an input
string s = s1s2 · · · sn ∈ Σ∗ with s1, . . . , sn ∈ Σ,
we encode this input as $s$ and thus assume that
s0 = $ and sn+1 = $. Our RNNs use ReLUs
(Rectified Linear Units), so for every v ∈ QN

we let σ〈v〉 (the ReLU activation) be the vector
σ〈v〉 ∈ QN such that

σ〈v〉(n) = max
(
0, v(n)

)
for every n ∈ N .

In other words, the ReLUs act like identities on
nonnegative inputs, but clip negative inputs to 0.
We use softmax-predictions, so for every vec-
tor p ∈ QΣ$ and a ∈ Σ$ we let

softmax〈p〉(a) =
ep(a)

∑
a′∈Σ$

ep(a′)
.

RNNs act in discrete time steps reading a single
letter at each step. We now define the semantics of
our RNNs.

Definition 2. Let R = 〈Σ, N, h−1,W,W
′, E,E′〉

be an RNN, s an input string of length n and
0 ≤ t ≤ n a time step. We define
• the hidden state vector hs,t ∈ QN given by

hs,t = σ〈W · hs,t−1 +W ′st〉 ,

where hs,−1 = h−1 and we use standard ma-
trix product and point-wise vector addition,
• the next-token prediction vector Es,t ∈ QΣ$

Es,t = E · hs,t + E′

• the next-token distribution E′s,t ∈ RΣ$

E′s,t = softmax〈Es,t〉 .
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Finally, the RNN R computes the weighted lan-
guage R : Σ∗ → R, which is given for every in-
put s = s1 · · · sn as above by

R(s) =
n∏

t=0

E′s,t(st+1) .

In other words, each component hs,t(n) of the
hidden state vector is the ReLU activation applied
to a linear combination of all the components of
the previous hidden state vector hs,t−1 together
with a summand W ′st that depends on the t-th in-
put letter st. Thus, we often specify hs,t(n) as
linear combination instead of specifying the ma-
trix W and the vectors W ′a. The semantics is then
obtained by predicting the letters s1, . . . , sn of the
input s and the final terminator $ and multiplying
the probabilities of the individual predictions.

Let us illustrate these notions on an example.
We consider the RNN 〈Σ, N, h−1,W,W

′, E,E′〉
with γ ∈ Q and
• Σ = {a} and N = {1, 2},
• h−1 = (−1, 0)T and

W =

(
1 0
1 0

)
and W ′$ = W ′a =

(
1
0

)

• E($, ·) = (M + 1, −(M + 1)) and
E(a, ·) = (1, −1) and
• E′($) = −M and E′(a) = 0.

In this case, we obtain the linear combinations

hs,t = σ

〈
hs,t−1(1) + 1
hs,t−1(1)

〉

computing the next hidden state components.
Given the initial activation, we thus obtain
hs,t = σ〈t, t − 1〉. Using this information, we
obtain

Es,t($) = (M + 1) · (t− σ〈t− 1〉)−M
Es,t(a) = t− σ〈t− 1〉 .

Consequently, we assign weight e−M

1+e−M to input ε,

weight 1
1+e−M · e1

e1+e1
to a, and, more generally,

weight 1
1+e−M · 1

2n to an.
Clearly the weight assigned by an RNN is al-

ways in the interval (0, 1), which enables a prob-
abilistic view. Similar to weighted finite-state au-
tomata or weighted context-free grammars, each
RNN is a compact, finite representation of a

weighted language. The softmax-operation en-
forces that the probability 0 is impossible as as-
signed weight, so each input string is principally
possible. In practical language modeling, smooth-
ing methods are used to change distributions such
that impossibility (probability 0) is removed. Our
RNNs avoid impossibility outright, so this can be
considered a feature instead of a disadvantage.

The hidden state hs,t of an RNN can be used as
scratch space for computation. For example, with
a single neuron n we can count symbols in s via:

hs,t(n) = σ〈hs,t−1(n) + 1〉 .

Here the letter-dependent summand W ′a is
universally 1. Similarly, for an alphabet
Σ = {a1, . . . , am} we can use the method of
Siegelmann and Sontag (1995) to encode the com-
plete input string s in base m+ 1 using:

hs,t(n) = σ〈(m+ 1)hs,t−1(n) + c(st)〉 ,

where c : Σ$ → {0, . . . ,m} is a bijection.
In principle, we can thus store the entire in-
put string (of unbounded length) in the hidden
state value hs,t(n), but our RNN model out-
puts weights at each step and terminates im-
mediately once the final delimiter $ is read.
It must assign a probability to a string in-
crementally using the chain rule decomposition
p(s1 · · · sn) = p(s1) · . . . · p(sn | s1 · · · sn−1).

Let us illustrate our notion of RNNs on some
additional examples. They all use the alpha-
bet Σ = {a} and are illustrated and formally
specified in Figure 1. The first column shows an
RNN R1 that assigns R1(an) = 2−(n+1). The
next-token prediction matrix ensures equal values
for a and $ at every time step. The second column
shows the RNN R2, which we already discussed.
In the beginning, it heavily biases the next sym-
bol prediction towards a, but counters it starting
at t = 1. The third RNN R3 uses another count-
ing mechanism with hs,t = σ〈t− 100, t− 101, t〉.
The first two components are ReLU-thresholded
to zero until t > 101, at which point they over-
whelm the bias towards a turning all future pre-
dictions to $.

3 Consistency

We first investigate the consistency problem for
an RNN R, which asks whether the recognized
weighted language R is indeed a probability dis-
tribution. Consequently, an RNN R is consistent
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R1(an) = 2−(n+1) R2(ε) ≈ 0 R3(a100) ≈ 1
R2(an) ≈ 2−n (n ≥ 1) R3(an) ≈ 0 (n 6= 100)

N {1} {1, 2} {1, 2, 3}

h−1

(
0
) (

−1
0

) 


0
0
0




W
(
0
) (

1 0
1 0

) 


0 0 1
0 0 1
0 0 1




W ′$ W ′a
(
0
) (

0
) (

1
0

) (
1
0

) 

−99
−100

1






−99
−100

1




E$ Ea
(
0
) (

0
) (

M + 1
−(M + 1)

) (
1
−1

) 

M
−M

0






−M
M
0




E′$ E′a 0 0 −M 0 −M 0

Figure 1: Sample RNNs over single-letter alphabets, and the weighted languages they recognize. M is some
positive rational number which depends on the desired error margin. If we want to express the second and
the third languages with error margin δ, M is chosen so that M > − ln δ

1−δ in column 2, and chosen so that
(1 + e−M )100 < 1

1−δ in column 3.

if
∑

s∈Σ∗ R(s) = 1. We first show that there is an
inconsistent RNN, which together with our exam-
ples shows that consistency is a nontrivial property
of RNNs.2

We immediately use a slightly more complex
example, which we will later reuse.

Example 3. Let us consider an arbitrary RNN

R = 〈Σ, N, h−1,W,W
′, E,E′〉

with the single-letter alphabet Σ = {a}, the
neurons {1, 2, 3, n, n′} ⊆ N , initial activation
h−1(i) = 0 for all i ∈ {1, 2, 3, n, n′}, and the
following linear combinations:

hs,t(1) = σ〈hs,t−1(1) + hs,t−1(n)− hs,t−1(n′)〉
2 For comparison, all probabilistic finite-state automata

are consistent, provided no transitions exit final states. Not all
probabilistic context-free grammars are consistent; necessary
and sufficient conditions for consistency are given by Booth
and Thompson (1973). However, probabilistic context-free
grammars obtained by training on a finite corpus using pop-
ular methods (such as expectation-maximization) are guaran-
teed to be consistent (Nederhof and Satta, 2006).

hs,t(2) = σ〈hs,t−1(2) + 1〉
hs,t(3) = σ〈hs,t−1(3) + 3hs,t−1(1)〉

Es,t($) = hs,t(3)− hs,t(2)

Es,t(a) = hs,t(2)

Now we distinguish two cases:
Case 1: If hs,t(n) − hs,t(n′) = 0 for all t ∈ N,
then hs,t(1) = 0 and hs,t(2) = t + 1 and
hs,t(3) = 0. Hence we have Es,t($) = −(t + 1)
and Es,t(a) = t + 1. In this case the termination
probability

E′s,t($) =
e−(t+1)

e−(t+1) + et+1
=

1

1 + e2(t+1)

(i.e., the likelihood of predicting $) shrinks rapidly
towards 0, so the RNN assigns less than 15% of
the probability mass to the terminating sequences
(i.e., the finite strings), so the RNN is inconsistent
(see Lemma 15 in the appendix).

Case 2: Suppose that there exists a time
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point T ∈ N such that for all t ∈ N

hs,t(n)− hs,t(n′) =

{
1 if t = T

0 otherwise.

Then hs,t(1) = 0 for all t ≤ T and hs,t(1) = 1
otherwise. In addition, we have hs,t(2) = t + 1
and hs,t(3) = σ〈3(t− T − 1)〉. Hence we have

Es,t($) = σ〈3(t− T − 1)〉 − (t+ 1)

=

{
−(t+ 1) if t ≤ T
2t− 3T − 4 otherwise

Es,t(a) = t+ 1 ,

which shows that the probability

E′s,t($) =





1
1+e2(t+1) if t ≤ T
et−3T−5

1+et−3T−5 otherwise

of predicting $ increases over time and eventually
(for t� 3T ) far outweighs the probability of pre-
dicting a. Consequently, in this case the RNN is
consistent (see Lemma 16 in the appendix).

We have seen in the previous example that con-
sistency is not trivial for RNNs, which takes us to
the consistency problem for RNNs:

Consistency: Given an RNN R, return “yes” if
R is consistent and “no” otherwise.

We recall the following theorem, which, com-
bined with our example, will prove that consis-
tency is unfortunately undecidable for RNNs.

Theorem 4 (Theorem 2 of Siegelmann and Son-
tag (1995)). Let M be an arbitrary deterministic
Turing machine. There exists an RNN

R = 〈Σ, N, h−1,W,W
′, E,E′〉

with saturated linear activation, input alpha-
bet Σ = {a}, and 1 designated neuron n ∈ N
such that for all s ∈ Σ∗ and 0 ≤ t ≤ |s|
• hs,t(n) = 0 if M does not halt on ε, and
• if M does halt on empty input after T steps,

then

hs,t(n) =

{
1 if t = T

0 otherwise.

In other words, such RNNs with saturated lin-
ear activation can semi-decide halting of an arbi-
trary Turing machine in the sense that a particu-
lar neuron achieves value 1 at some point during

the evolution if and only if the Turing machine
halts on empty input. An RNN with saturated
linear activation is an RNN following our defini-
tion with the only difference that instead of our
ReLU-activation σ the following saturated linear
activation σ′ : QN → QN is used. For every vec-
tor v ∈ QN and n ∈ N , let

σ′〈v〉(n) =





0 if v(n) < 0

v(n) if 0 ≤ v(n) ≤ 1

1 if v(n) > 1 .

Since σ′〈v〉 = σ〈v〉 − σ〈v−~1〉 for all v ∈ QN ,
and the right-hand side is a linear transformation,
we can easily simulate saturated linear activation
in our RNNs. To this end, each neuron n ∈ N of
the original RNN R = 〈Σ, N, h−1, U, U

′, E,E′〉
is replaced by two neurons n1 and n2 in the new
RNN R′ = 〈Σ, N ′, h′−1, V, V

′, F, F ′〉 such that
hs,t(n) = h′s,t(n1) − h′s,t(n2) for all s ∈ Σ∗ and
0 ≤ t ≤ |s|, where the evaluation of h′s,t is per-
formed in the RNNR′. More precisely, we use the
transition matrix V and bias function V ′, which is
given by

V (n1, n
′
1) = V (n2, n

′
1) = U(n, n′)

V (n1, n
′
2) = V (n2, n

′
2) = −U(n, n′)

V ′a(n1) = U ′a(n)

V ′a(n2) = U ′a(n)− 1

h′−1(n1) = h−1(n)

h′−1(n2) = 0

for all n, n′ ∈ N and a ∈ Σ ∪ {$}, where
n1 and n2 are the two neurons corresponding to n
and n′1 and n′2 are the two neurons corresponding
to n′ (see Lemma 17 in the appendix).

Corollary 5. Let M be an arbitrary deterministic
Turing machine. There exists an RNN

R = 〈Σ, N, h−1,W,W
′, E,E′〉

with input alphabet Σ = {a} and 2 designated
neurons n1, n2 ∈ N such that for all s ∈ Σ∗ and
0 ≤ t ≤ |s|
• hs,t(n1) − hs,t(n2) = 0 if M does not halt

on ε, and
• if M does halt on empty input after T steps,

then

hs,t(n1)− hs,t(n2) =

{
1 if t = T

0 otherwise.
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We can now use this corollary together with the
RNNR of Example 3 to show that the consistency
problem is undecidable. To this end, we simulate
a given Turing machine M and identify the two
designated neurons of Corollary 5 as n and n′ in
Example 3. It follows that M halts if and only if
R is consistent. Hence we reduced the undecid-
able halting problem to the consistency problem,
which shows the undecidability of the consistency
problem.

Theorem 6. The consistency problem for RNNs is
undecidable.

As mentioned in Footnote 2, probabilistic
context-free grammars obtained after training on
a finite corpus using the most popular methods are
guaranteed to be consistent. At least for 2-layer
RNNs this does not hold.

Theorem 7. A two-layer RNN trained to a
local optimum using Back-propagation-through-
time (BPTT) on a finite corpus is not necessarily
consistent.

Proof. The first layer of the RNN R with a single
alphabet symbol a uses one neuron n′ and has the
following behavior:

h−1(n′) = 0

hs,t(n
′) = σ〈hs,t−1(n′) + 1〉

The second layer uses neuron n and takes hs,t(n′)
as input at time t:

hs,t(n) = σ〈hs,t(n′)− 2〉
Es,t(a) = hs,t(n) Es,t($) = 0

E′s,t(a) =

{
1
2 if t ≤ 1
e(t−1)

1+e(t−1) otherwise.

Let the training data be {a}. Then the objective
we wish to maximize is simply R(a). The deriva-
tive of this objective with respect to each parame-
ter is 0, so applying gradient descent updates does
not change any of the parameters and we have con-
verged to an inconsistent RNN.

It remains an open question whether there is a
single-layer RNN that also exhibits this behavior.

4 Highest-weighted string

Given a function f : Σ∗ → R we are often inter-
ested in the highest-weighted string. This corre-
sponds to the most likely sentence in a language

Best-path Best-string
General RNN Undecidable

Consistent RNN NP-c 3

Det. PFSA/PCFG P 4

Nondet. PFSA/PCFG NP-c 5

Table 1: Comparison of the difficulty of identifying the
most probable derivation (Best-path) and the highest-
weighted string (Best-string) for various models.

model or the most likely translation for a decoder
RNN in machine translation.

For deterministic probabilistic finite-state au-
tomata or context-free grammars only one path or
derivation exists for any given string, so the identi-
fication of the highest-weighted string is the same
task as the identification of the most probable path
or derivation. However, for nondeterministic de-
vices, the highest-weighted string is often harder
to identify, since the weight of a string is the sum
of the probabilities of all possible paths or deriva-
tions for that string. A comparison of the difficulty
of identifying the most probable derivation and the
highest-weighted string for various models is sum-
marized in Table 1, in which we marked our results
in bold face.

We present various results concerning the diffi-
culty of identifying the highest-weighted string in
a weighted language computed by an RNN. We
also summarize some available algorithms. We
start with the formal presentation of the three stud-
ied problems.

1. Best string: Given an RNNR and c ∈ (0, 1),
does there exist s ∈ Σ∗ with R(s) > c?

2. Consistent best string: Given a consistent
RNN R and c ∈ (0, 1), does there exist
s ∈ Σ∗ with R(s) > c?

3. Consistent best string of polynomial
length: Given a consistent RNN R, poly-
nomial P with P(x) ≥ x for x ∈ N+, and
c ∈ (0, 1), does there exist s ∈ Σ∗ with
|s| ≤ P(|R|) and R(s) > c?

As usual the corresponding optimization problems
are not significantly simpler than these decision
problems. Unfortunately, the general problem is
also undecidable, which can easily be shown us-
ing our example.

3Restricted to solutions of polynomial length
4Dijkstra shortest path / (Knuth, 1977)
5(Casacuberta and de la Higuera, 2000) / (Simaan, 1996)
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Theorem 8. The best string problem for RNNs is
undecidable.

Proof. Let M be an arbitrary Turing machine and
again consider the RNN R of Example 3 with
the neurons n and n′ identified with the des-
ignated neurons of Corollary 5. We note that
R(ε) = 1

1+e2
< 0.12 in both cases. If M does

not halt, then R(an) ≤ 1
1+e2(n+1) ≤ 1

1+e2
< 0.12

for all n ∈ N. On the other hand, if M halts after
T steps, then

R(a3T−5)

=
( T∏

t=0

e2(t+1)

1 + e2(t+1)

)
·
( 3T−6∏

t=T+1

1

1 + et−3T−5

)
· 1

2

≥ 2

(−1, e−2)∞
·
( 3T−6∏

t=T+1

e3T+5−t

e3T+5−t+1

)
· 1

2

≥ 2

(−1, e−2)∞ · (−1, e−1)∞
≥ 0.25

using Lemma 14 in the appendix. Consequently, a
string with weight above 0.12 exists if and only if
M halts, so the best string problem is also unde-
cidable.

If we restrict the RNNs to be consistent, then
we can easily decide the best string problem by
simple enumeration.

Theorem 9. The consistent best string problem
for RNNs is decidable.

Proof. Let R be the RNN over alphabet Σ and
c ∈ (0, 1) be the bound. Since Σ∗ is count-
able, we can enumerate it via f : N → Σ∗. In
the algorithm we compute Sn =

∑n
i=0R(f(i))

for increasing values of n. If we encounter a
weight R(f(n)) > c, then we stop with answer
“yes.” Otherwise we continue until Sn > 1− c, at
which point we stop with answer “no.”

Since R is consistent, limi→∞ Si = 1, so this
algorithm is guaranteed to terminate and it obvi-
ously decides the problem.

Next, we investigate the length |wmax
R | of the

shortest string wmax
R of maximal weight in the

weighted language R generated by a consistent
RNN R in terms of its (binary storage) size |R|.
As already mentioned by Siegelmann and Sontag
(1995) and evidenced here, only small precision
rational numbers are needed in our constructions,
so we assume that |R| ≤ c · |N |2 for a (reasonably
small) constant c, where N is the set of neurons

of R. We show that no computable bound on the
length of the best string can exist, so its length can
surpass all reasonable bounds.

Theorem 10. Let f : N+ → N be the function with

f(n) = max
consistent RNN R

|R|≤n
|wmax
R |

for all n ∈ N+. There exists no computable func-
tion g : N→ N with g(n) ≥ f(n) for all n ∈ N.

Proof. In the previous section (before Theorem 6)
we presented an RNN RM that simulates an
arbitrary (single-track) Turing machine M with
n states. By Siegelmann and Sontag (1995) we
have |RM | ≤ c · (4n + 16). Moreover, we ob-
served that this RNN RM is consistent if and only
if the Turing machine M halts on empty input. In
the proof of Theorem 8 we have additionally seen
that the length |wmax

R | of its best string exceeds the
number TM of steps required to halt.

For every n ∈ N, let BB(n) be the n-th “Busy
Beaver” number (Radó, 1962), which is

BB(n) = max
normalized n-state Turing machine M with

2 tape symbols that halts on empty input

TM

It is well-known that BB : N+ → N cannot be
bounded by any computable function. However,

BB(n) ≤ max
normalized n-state Turing machine M with
and 2 tape symbols that halts on empty input

|wmax
RM
|

≤ max
consistent RNN R
|R|≤c·(4n+16)

|wmax
R |

= f(4nc+ 16c) ,

so f clearly cannot be computable and no com-
putable function g can provide bounds for f .

Finally, we investigate the difficulty of the best
string problem for consistent RNN restricted to so-
lutions of polynomial length.

Theorem 11. Identifying the best string of polyno-
mial length in a consistent RNN is NP-complete.

Proof. To show NP-hardness, we reduce from the
3-SAT problem. Let x1, . . . , xm be m Boolean
variables and

F =
k∧

i=1

(
`i1 ∨ `i2 ∨ `i3

)
,

be a formula in conjunctive normal form, where
`ij ∈ {x1, . . . , xm,¬x1, . . . ,¬xm}. 3-SAT asks
whether there is a setting of xis that makes F true.
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We initialize h−1(n) = 0, ∀ n ∈ N =
{x1, . . . , xm, c1, . . . , ck, c

′
1, . . . , c

′
k, F, n1, n2, n3, ?}.

Let s ∈ {0, 1}∗ be the input string. Denote the
value of F when xj = sj for all j ∈ [m] as F (s).
Let t ∈ N with t ≤ |s|. Set hs,t(xm) = σ〈I(st)〉,
where I(0) = I($) = 0 and I(1) = 1. This
stores the current input symbol in neuron xm,
so hs,t(xm) = I(st). In addition, we let
hs,t(xj) = σ〈hs,t−1(xj+1)〉 for all j ∈ [m − 1].
Consequently, for all j ∈ [m]

hs,t(xj) =

{
I(st−(m−j)) if m− j ≤ t
0 otherwise.

Next, we evaluate the clauses. For each i ∈ [k],
we use two neurons ci and c′i such that

hs,t(ci) = σ〈fs,t(`i1) + fs,t(`i2) + fs,t(`i3)〉
hs,t(c

′
i) = σ〈fs,t(`i1) + fs,t(`i2) + fs,t(`i3)− 1〉,

where fs,t(xm) = I(st), fs,t(¬xm) = 1 − I(st),
and ∀j ∈ [m − 1], fs,t(xj) = hs,t−1(xj+1),
fs,t(¬xj) = 1 − hs,t−1(xj+1). Note that
hs,t(ci) − hs,t(c

′
i) contains the evaluation of the

clause `i1 ∨ `i2 ∨ `i3. Let

hs,t(F ) = σ
〈 k∑

i=1

(
hs,t−1(ci)−hs,t−1(c′i)

)
−k+1

〉
,

so hs,t(F ) = F (s) contains the evaluation of the
formula F using the values in neurons x1, . . . , xm.

We use three counters n1, n2, n3 to ensure that
the only relevant inputs are of length m+ 2:

hs,t(n1) = σ〈hs,t−1(n3)− (m+ 2)〉
hs,t(n2) = σ〈hs,t−1(n3)− (m+ 1)〉
hs,t(n3) = σ〈hs,t−1(n3) + 1〉 ,

which yields hs,t(n3) = t + 1,
hs,t(n2) = σ〈t − (m + 1)〉, and
hs,t(n1) = σ〈t− (m+ 2)〉.

Our goal neuron is ?, which we set to

hs,t(?) = σ〈hs,t−1(F )−hs,t−1(n1)+hs,t−1(n2)−1〉

so that

hs,t(?) =

{
hs,t−1(F ) if t = m+ 2

0 otherwise,

so hs,t(?) = 1 if and only if t = m + 2 and
F (s) = 1.

Let m′ = m+ 4. The output is set as follows:

Es,t(0) = Es,t(1) = m′
(
1− 2hs,t(?)

)

Es,t($) = −m′
(
1− 2hs,t(?)

)
,

This yieldsEs,t(0) = Es,t(1) = −Es,t($) = −m′
if t = m+2 and F (s) = 1, andm′ otherwise. For
a ∈ {0, 1},

E′s,t(a)=





e−m′

2e−m′+em′
if t=m+2 and F (s)=1

em
′

2em′+e−m′ otherwise

E′s,t($)=





em
′

2e−m′+em′
if t=m+2 and F (s)=1

e−m′

2em′+e−m′ otherwise.

Finally, we set the threshold ξ = 3−m
′
. When

|s| 6= m + 2, sm+3 6= $, so the weight of s con-

tains the factor e−m′

2e−m′+em′
= 1

2+e2m′
and thus is

upper-bounded by 1
2+e2m′

< ξ. Hence no input of
length different from m+ 2 achieves a weight that
exceeds ξ. A string s of length m+ 2 achieves the
weight ws given by

ws=





em
′

2e−m′+em′
·∏m+2

i=1
em
′

2em′+e−m′ if F (s)=1

e−m′

2em′+e−m′ ·
∏m+2
i=1

em
′

2em′+e−m′ otherwise.

When F (s) = 0, ws < e−m′

2em′+e−m′ < ξ, so
if F is unsatisfiable, no input string achieves a
weight above the threshold ξ. When F (s) = 1,

ws = em
′

2e−m′+em′
·
(

em
′

2em′+e−m′

)m+2
> ξ. An in-

put string with weight above ξ exists if and only
if F is satisfiable. Obviously, the reduction can be
computed in polynomial time since all constants
can be computed in logarithmic space. The con-
structed RNN is consistent, since the output pre-
diction is constant after m+ 3 steps.

5 Equivalence

We prove that equivalence of two RNNs is
undecidable. For comparison, equivalence of
two deterministic WFSAs can be tested in time
O(|Σ|(|QA| + |QB|)3), where |QA|, |QB| are the
number of states of the two WFSAs and |Σ| is the
size of the alphabet (Cortes et al., 2007); equiva-
lence of nondeterministic WFSAs are undecidable
(Griffiths, 1968). The decidability of language
equivalence for deterministic probabilistic push-
downtown automata (PPDA) is still open (Forejt
et al., 2014), although equivalence for determin-
istic unweighted push-downtown automata (PDA)
is decidable (Sénizergues, 1997).
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The equivalence problem is formulated as fol-
lows:

Equivalence: Given two RNNsR andR′, return
“yes” if R(s) = R′(s) for all s ∈ Σ∗, and “no”
otherwise.

Theorem 12. The equivalence problem for RNNs
is undecidable.

Proof. We prove by contradiction. Suppose Tur-
ing machine M decides the equivalence problem.
Given any deterministic Turing Machine M ′, con-
struct the RNN R that simulates M ′ on input ε as
described in Corollary 5. Let Es,t(a) = 0 and
Es,t($) = hs,t(n1)−hs,t(n2). If M ′ does not halt
on ε, for all t ∈ N, E′s,t(a) = E′s,t($) = 1/2;
if M ′ halts after T steps, E′s,T (a) = 1/(e + 1),
Es,T ($) = e/(e + 1). Let R′ be the trivial RNN
that computes {an : P (an) = 2−(n+1), n ≥ 0}.
We run M on input 〈R,R′〉. If M returns “no”,
M ′ halts on x, else it does not halt. Therefore
the Halting Problem would be decidable if equiv-
alence is decidable. Therefore equivalence is un-
decidable.

6 Minimization

We look next at minimization of RNNs. For
comparison, state-minimization of a deterministic
PFSA is O(|E| log |Q|) where |E| is the number
of transitions and |Q| is the number of states (Aho
et al., 1974). Minimization of a non-deterministic
PFSA is PSPACE-complete (Jiang and Raviku-
mar, 1993).

We focus on minimizing the number of hidden
neurons (|N |) in RNNs:

Minimization: Given RNN R and non-negative
integer n, return “yes” if ∃ RNN R′ with number
of hidden units |N ′| ≤ n such that R(s) = R′(s)
for all s ∈ Σ∗, and “no” otherwise.

Theorem 13. RNN minimization is undecidable.

Proof. We reduce from the Halting Problem. Sup-
pose Turing Machine M decides the minimization
problem. For any Turing Machine M ′, construct
the same RNN R as in Theorem 12. We run M
on input 〈R, 0〉. Note that an RNN with no hid-
den unit can only output constant E′s,t for all t.
Therefore the number of hidden units in R can
be minimized to 0 if and only if it always outputs
E′s,t(a) = E′s,t($) = 1/2. If M returns “yes”, M ′

does not halt on ε, else it halts.

7 Conclusion

We proved the following hardness results regard-
ing RNN as a recognizer of weighted languages:

1. Consistency:
(a) Inconsistent RNNs exist.
(b) Consistency of RNNs is undecidable.

2. Highest-weighted string:
(a) Finding the highest-weighted string for

an arbitrary RNN is undecidable.
(b) Finding the highest-weighted string for

a consistent RNN is decidable, but the
solution length can surpass all com-
putable bounds.

(c) Restricting to solutions of polynomial
length, finding the highest-weighted
string is NP-complete.

3. Testing equivalence of RNNs and minimizing
the number of neurons in an RNN are both
undecidable.

Although our undecidability results are upshots
of the Turing-completeness of RNN (Siegelmann
and Sontag, 1995), our NP-completeness result is
original, and surprising, since the analogous hard-
ness results in PFSA relies on the fact that there are
multiple derivations for a single string (Casacu-
berta and de la Higuera, 2000). The fact that these
results hold for the relatively simple RNNs we
used in this paper suggests that the case would
be the same for more complicated models used in
NLP, such as long short term memory networks
(LSTMs; Hochreiter and Schmidhuber 1997).

Our results show the non-existence of (effi-
cient) algorithms for interesting problems that re-
searchers using RNN in natural language process-
ing tasks may have hoped to find. On the other
hand, the non-existence of such efficient or ex-
act algorithms gives evidence for the necessity of
approximation, greedy or heuristic algorithms to
solve those problems in practice. In particular,
since finding the highest-weighted string in RNN
is the same as finding the most-likely translation
in a sequence-to-sequence RNN decoder, our NP-
completeness result provides some justification for
employing greedy and beam search algorithms in
practice.
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Appendix

Lemma 14. For every k ∈ N+

∏

t∈N

ek(t+1)

ek(t+1) + 1
=

2

(−1; e−k)∞
,

where (−1; e−k)∞ is the infinite e−k-Pochhammer
symbol.

Proof.

∏

t∈N

ek(t+1)

ek(t+1) + 1
=
∏

t∈N+

( ekt

ekt + 1
· e
−kt

e−kt

)

=
∏

t∈N+

1

1 + e−kt
=

(( ∏

t∈N+

1

1 + e−kt

)−1
)−1
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=
( ∏

t∈N+

(1 + e−kt)
)−1

=
(1

2

∏

t∈N
(1 + e−kt)

)−1

=
2

(−1; e−k)∞

Lemma 15. Reconsider the RNN of Example 3
and suppose that hs,t(n) − hs,t(n

′) = 0 for all
t ∈ N. Then

∑

s∈Σ∗
R(s) = 1− 2

(−1; e−2)∞
≈ 0.14

Proof.
∑

s∈Σ∗
R(s) =

∑

n∈N
R(an)

=
∑

n∈N

( e−(n+1)

en+1 + e−(n+1)
·
n−1∏

t=0

et+1

et+1 + e−(t+1)

)

= 1−
∏

t∈N

e2(t+1)

e2(t+1) + 1
= 1− 2

(−1; e−2)∞

≈ 0.14 ,

where the final equality utilizes Lemma 14.

Lemma 16. Reconsider the RNN of Example 3
and suppose that there exists a time point T ∈ N
such that for all t ∈ N

hs,t(n)− hs,t(n′) =

{
1 if t = T

0 otherwise.

Then ∑

s∈Σ∗
R(s) = 1

Proof.
∑

s∈Σ∗
R(s) =

∑

n∈N
R(an)

=
( T∑

n=0

R(an)
)

+
( ∞∑

n=T+1

R(an)
)

=

T∑

n=0

( e−(n+1)

en+1 + e−(n+1)
·
n−1∏

t=0

et+1

et+1 + e−(t+1)

)

+

∞∑

n=T+1

e2n−3T−4

en+1 + e2n−3T−4

·
( T∏

t=0

et+1

et+1 + e−(t+1)

)
·
( n−1∏

t=T+1

et+1

et+1 + e2t−3T−4

)

=

T∑

n=0

( 1

e2(n+1) + 1
·
n−1∏

t=0

e2(t+1)

e2(t+1) + 1

)

+
∞∑

n=T+1

en−3T−5

1 + en−3T−5
·
( T∏

t=0

e2(t+1)

e2(t+1) + 1

)

·
( n−1∏

t=T+1

1

1 + et−3T−5

)

= 1−
( T∏

t=0

e2(t+1)

e2(t+1) + 1

)
+
( T∏

t=0

e2(t+1)

e2(t+1) + 1

)

·
∞∑

n=T+1

en−3T−5

1 + en−3T−5
·
( n−1∏

t=T+1

1

1 + et−3T−5

)

= 1−
( T∏

t=0

e2(t+1)

e2(t+1) + 1

)

·
(

1− 1 +

∞∏

t=T+1

1

1 + et−3T−5

)

= 1−
( T∏

t=0

e2(t+1)

e2(t+1) + 1

)
·
( ∞∏

t=T+1

1

1 + et−3T−5

)

≥ 1−
( T∏

t=0

e2(t+1)

e2(t+1) + 1

)
·
(∏

t∈N

1

1 + et

)

= 1

Lemma 17.

Proof. We set hs,−1(n) = h−1(n) for
all n ∈ N and h′s,−1(n′) = h′−1(n′)
for all n′ ∈ N ′. Then trivially
h′s,−1(n1)−h′s,−1(n2) = h−1(n)−0 = hs,−1(n).
Moreover, h′s,t(n1) = σ〈V · h′s,t−1 + V ′s[t]〉(n1)

= σ〈
∑

n′∈N ′
V (n1, n

′) · h′s,t−1(n′)

+ V ′s[t](n1)〉
= σ〈

∑

n′∈N

(
V (n1, n

′
1) · h′s,t−1(n′1)

+ V (n1, n
′
2) · h′s,t−1(n′2)

)
+ V ′s[t](n1)〉

= σ〈
∑

n′∈N
U(n, n′) ·

(
h′s,t−1(n′1)− h′s,t−1(n′2)

)

+ U ′s[t](n)〉
= σ〈

∑

n′∈N
U(n, n′) · hs,t−1(n′) + U ′s[t](n)〉

Similarly, we can show that h′s,t(n2) =

σ〈
∑

n′∈N
U(n, n′) · hs,t−1(n′) + U ′s[t](n)− 1〉

Hence h′s,t(n1) − h′s,t(n2) = hs,t(n) as required.
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