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Message from the General Chair

Welcome to New Orleans and to NAACL HLT 2018 — the biggest NAACL to date. Natural Language
Processing and Computational Linguistics is constantly growing and changing with a constant flow of
new methods and topics. Every year also sees an even more exciting and diverse research community,
with a steadily increasing number researchers, companies both large and small, and a vibrant community
of practitioners and students who are excited at the prospect of taking on the newest challenges of the
discipline. This year’s NAACL HLT conference reflects what an exciting time this is for our field, and
highlights the vibrancy and vitality of our community.

I feel extremely lucky to be able to work with a fantastic program committee, especially the two
extremely dedicated, creative and resourceful program chairs: Amanda Stent and Heng Ji. Their
innovations include a new review form, intended to elicit higher quality reviews, the opportunity for
authors to review the reviewers, the Test-of-Time awards, and a program where poster and demo sessions
run consistently in parallel to the oral sessions, in order to allow the conference to reflect the ever
increasing diversity of research topics and the corresponding volume of accepted papers. I am especially
excited about the new Test-of-Time papers award session, and hope to see this new innovation become a
regular part of ACL conferences.

We have named the Test-of-Time award in memory of Aravind Joshi, who left us this year, after having
a huge lifetime impact on our community. We will always remember him for his gentle conversational
style, sharp focus, interest in linguistic, computational and mathematical properties of language, and his
lifetime commitment to mentoring women in NLP. I feel extremely lucky to have been one of his Ph.D.
students.

This year we also introduced an industrial track, with the aim of featuring papers that focus on scalable,
interpretable, reliable and customer facing methods for industrial applications of Natural Language
Processing. The idea of having such a track was proposed by Yunyao Li who strongly advocated for
it: this proposal was then discussed and approved by the NAACL board. After that, it was all go, with an
incredible amount of work to promote and organize it by the industrial track chairs: Jennifer Chu-Carroll,
Yunyao Li and Srinivas Bangalore.

The overall program looks amazing and reflects the cooperative way that everyone on the committee
worked together. What a team! I am so grateful for getting to be a part of this community of people,
and I really appreciate the enthusiasm and attention to detail reflected in their hard work: Amanda Stent
and Heng Ji (program chairs); Jennifer Chu-Carroll, Yunyao Li and Srinivas Bangalore (industrial track
chairs); Ying Lin (website chair); Marie Meteer and Jason Williams (workshop co-chairs); Mohit Bansal
and Rebecca Passonneau (tutorial co-chairs); Yang Liu, Tim Paek, and Manasi Patwardhan (demo co-
chairs); Chris Callison-Burch and Beth Hockey (Family-Friendly Program Co-Chairs) Stephanie Lukin
and Meg Mitchell (publication co-chairs); Jonathan May (handbook chair); Silvio Ricardo Cordeiro,
Shereen Oraby, Umashanthi Pavalanathan, and Kyeongmin Rim (student cochairs) along with Swapna
Somasundaran and Sam Bowman (Faculty Advisors) for the student research workshop; Lena Reed
(student volunteer coordinator); Kristy Hollingshead, Kristen Johnson, and Parisa Kordjamshidi (local
sponsorships and exhibits cochairs); Yonatan Bisk and Wei Xu (publicity and social media chairs);
David Yarowsky and Joel Tetreault (treasurers) and Alexis Palmer and Jason Baldridge (the NAACL
international Sponsorship Team). Also thanks to Rich at SoftConf for his speedy response to questions
and his willingness to help us innovate with our new review form. And thanks to Julia Hockenmaier and
the whole NAACL Executive Board for always being willing to consult on any issue.

The program highlights three keynote speakers in the main track: Dilek Hakkani-Tiir, Kevin Knight,
and Charles Yang. We also have two keynote speakers in the industry track: Mari Ostendorf and Daniel
Marcu. These talks promising to be interesting acrd¥s a range of issues from language acquisition in



children to the commercial possibilities of conversational agents. The industry track will also feature
two panels, one on careers in industry (as compared to academia) and the other on ethics in NLP. The
program also includes six tutorials featuring topics of current interest and sources of innovation in the
field. We have sixteen workshops plus the student research workshop: some of these workshops have
become events in themselves with many of them repeated each year. We will also have plenary sessions
for the outstanding paper awards and the new Test-Of-Time papers award session.

Any event of this scale can only happen with the the hard work of a wonderful group of people. I
especially want to thank the NAACL board for being willing to consult on a range of different issues
and Priscilla Rasmussen for taking care of all the millions of details that need to be looked after every
single day to make sure the logistical aspects of the conference come together. I want to especially thank
Priscilla for her hard work and creativity organizing our social event: we first will go to Mardi Gras
World to see the world of wonders created each year for the Mardi Gras. From there we go to the river,
to the dockside River City Plaza and River City Ballroom for New Orleans’ famous cuisine and libations
and dancing to live Zydeco, funk, soul and R&B.

ACL has been working for several years to increase diversity at our conferences and in our community.
So, taking inspiration from ACL 2017, we aimed to make NAACL family friendly, by providing childcare
at the conference, and encouraging people to bring their families to the social events and breakfasts.
Diversity can also be a consequence of the support for students to attend the conference that we receive
from the NSF, CRA-CCC and CRA-W: this subsidizes student travel to the student research workshop
as well as their registration and ACL memberships. When combined with the support we are able to give
to our student volunteers, we aim to make it possible for students from all over the world to come to
the conference and be part of our community. We also decided, in consultation with the NAACL board,
to provide subsidies to the Widening NLP workshop, which is only being held for the second time at
this year’s NAACL (last year called the Women in NLP workshop). These subsidies enable participation
from students and young researchers from developing countries to attend the conference.

I am grateful to our sponsors for their generous contributions, which add so much to what we can do at
the conference. Our Diamond sponsors are Bloomberg, Google, and Toutiao Al Lab (ByteDance). The
Platinum sponsor is Amazon. The Gold Sponsors are Ebay, Grammarly, IBM Research, KPMG, Oracle,
Poly Al Tulane University, Capital One and Two Sigma. The Silver sponsors are Nuance and Facebook,
and the Bronze sponsors are iMerit and USC/ISI.

Finally, there are many more people who through their hard work and dedication have contributed
to make this conference a success: the area chairs, workshop organizers, tutorial presenters, student
mentors, and reviewers. And of course you all, the attendees without whom there would be no
conference: you are the life and spirit of the conference and the NAACL community. I hope you all
have a fun and exciting time at NAACL HLT 2018!

NAACL HLT 2018 General Chair
Marilyn Walker, University of California Santa Cruz



Message from the Program Co-Chairs

We welcome you to New Orleans for the 16th Annual Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL HLT 2018)! We
had three primary goals for NAACL HLT 2018: construct a great program; manage the integrity and
quality of the publication process; and ensure broad participation.

Construct a great program: NAACL HLT 2018 does have a great program, thanks to all of you!
We will have three exciting keynotes, from Charles Yang, Kevin Knight and Dilek Hakkani-Tiir. 331
research track papers (205 long, 125 short), accepted following peer review, will be presented!. Four of
these papers have been identified as outstanding papers, and one will be named best paper. We will also
feature a “Test of Time” session with retrospectives (from the authors) on three influential papers from
ACL venues. We thank the committees who nominated and voted on these paper awards.

The main program at NAACL HLT 2018 also includes 16 TACL paper presentations, 20 demos, a student
research workshop and an industry track. Keynotes from both the research and industry tracks are
plenary. In a change from previous years of NAACL HLT, and motivated by EMNLP 2017, poster and
oral presentation sessions will be held in parallel during the day. All posters are grouped thematically
(including posters from the industry track and student research workshop and demos) and assigned to
poster sessions so as to not be against oral presentation sessions with the same theme.

Manage the integrity and quality of the publication process: To manage load, we decided that
each area chair should be responsible for no more than 30 submissions and that reviewers should be
responsible for reviewing no more than 3 submissions. To help reviewers, we and the ACL program
co-chairs constructed a more structured review form, with questions related to the new ACL guidelines
on publication and reviewing, as well as to contribution types, experimental methods (thank you, Bonnie
Webber!), software and handling of data.

We recruited an excellent group of 72 area chairs; we thank them for their leadership, and for nominating
and voting on outstanding papers, outstanding reviewers and test of time papers. 1372 individuals
reviewed papers for the conference (as program committee members, ad hoc reviewers or secondary
reviewers); all but 49 reviewers had no more than 3 submissions to review overall, and the 49 reviewers
who took on a heavier load did so voluntarily. We thank all our reviewers, especially the ad-hoc reviewers
who provided last minute reviews and the outstanding reviewers identified by the area chairs.

Submissions were assigned to area chairs and reviewers using a combination of area chair expertise,
Toronto Paper Matching System (TPMS) scores and reviewer bids. Both long and short paper
submissions received 3 reviews each. Long paper authors had an opportunity to respond to reviews.
Accept/reject suggestions were made by area chairs working in small groups of 2-3 and discussing with
reviewers as necessary; final decisions were made by the program chairs. Where there was disagreement
or discussion, one area chair wrote a short meta review that was shared with the authors.

This year, if the authors of a NAACL HLT 2018 submission and the author of a review for that submission
both consented, then we will include the review in a review corpus to be released jointly with the program
chairs of ACL, Iryna Gureyvich and Yusuke Miyao. We also asked authors of accepted papers to upload
the source code for their papers. Both of these corpora will be released in the coming months.

The health of our field as a science is dependent on a scalable peer review process, which in turn depends
on (a) conscientious effort from a broad pool of expert reviewers, and (b) tools, processes and policies
that can structure and facilitate reviewing. As a field we are at a breaking point: we are growing rapidly,

'We received 1122 research track submissions (664 long, 458 short). 33 were rejected without review and 85 were
withdrawn by the authors either before, during or after review. V1



with corresponding heavy load on experienced reviewers; and we lack good tools to manage the process.
Peer review involves several tasks that we, as NLP researchers, ought to be uniquely qualified to address,
including expertise sourcing, network analysis and text mining. We have written a proposal with other
members of the ACL community about ways the ACL can improve our peer review infrastructure. We
have also written a collection of “how to” documents that we will pass on to future conference organizers.

Ensure broad participation: To ensure broad participation, we recruited program committee members
using a similar method to that used for NAACL HLT 2016: we invited anyone who had published
repeatedly in ACL sponsored venues, who had a PhD or significant experience in the field spanning
more than 5 years, and whose email address was up to date in START. We thank Dragomir Radev for
giving us a list of names from the ACL anthology.

We also kept a blog where we discussed and attempted to “demystify” each stage of the publication
process. This blog can be found at the conference website, http://naacl12018.org. We are very
grateful to the researchers who wrote guest blog posts, including Justine Cassell, Barbara Plank, Preslav
Nakov, Omer Levy, Gemma Boleda, Emily Bender, Nitin Madnani, David Chiang, Kevin Knight, Dan
Bikel and Joakim Nivre.

On our blog, we reported on the diversity of our area chair, reviewer and author pools in terms of years
of experience, affiliation type and geography, and gender. We will include these details in our report to
the NAACL Executive Committee. We hope that future years’ chairs will make similar reports.

The excellence of the overall NAACL HLT 2018 program is thanks to all the chairs and organizers. We
especially thank the following people: Margaret Mitchell and Stephanie Lukin, the publication chairs;
Jonathan May, the handbook chair; Yonatan Bisk and Wei Xu, the publicity and social media chairs;
Ying Lin, the tireless website chair; and Marilyn Walker, the NAACL HLT 2018 general chair. We thank
the chairs of NAACL HLT 2016 and ACL 2017 for their informative blogs, and the program chairs of
NAACL HLT 2016, Owen Rambow and Ani Nenkova, for their advice. We thank the program co-chairs
of ACL 2018, Iryna Gurevych and Yusuke Miyao, who have been very collaborative on matters related to
reviewing. We thank Shuly Winter, who helped fix a serious START bug. We thank Julia Hockenmaier
and the NAACL Executive Committee for their support. We are grateful for the professional work of
Rich Gerber and his colleagues at SoftConf (START), and of Priscilla Rasmussen from the ACL.

It has been an enormous privilege for us to see the scientific advances that will be presented at this
conference. We would like to close with some advice for you, the conference attendees.

e The presenters have made valuable contributions to our science; their oral, poster and demo
presentations are worth your time and attention.

o Talk to some people you haven’t previously met. They may be your future collaborators!

e You can follow the conference on social media; we have a conference app and website where we
will post any updates to the program, and our twitter handle is @naaclhlt.

e This event is run by a professional organization with a code of conduct?. If you observe or are the
recipient of unprofessional behavior, you may contact any current member of the ACL or NAACL
Executive Committees, the NAACL HLT general chair (Marilyn Walker), us (the program chairs),
or Priscilla Rasmussen (acl@aclweb.org). We will hold your communications in strict confidence
and consult you before taking any action.

We look forward to a wonderful conference!

NAACL HLT 2018 Program Co-Chairs
Heng Ji, RPI
Amanda Stent, Bloomberg

https://www.aclweb. org/adminwiki/ind‘éiig .php?title=Anti-Harassment_Policy
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Outstanding Papers

For NAACL HLT 2018 we recognize four outstanding research track papers (one of these will be named
best paper). These four papers were selected by a committee composed of Joyce Chai (Michigan State
University), Michael Collins (Columbia University), Jennifer Foster (Dublin City University), Smaranda
Muresan (Columbia University) and Joel Tetreault (Grammarly; chair), all NAACL HLT 2018 area chairs
with no conflicts with the candidate outstanding papers. The nine candidate papers were selected by the
program chairs from nineteen papers nominated by the area chairs. These papers will be presented in a
plenary session on the last day of the conference. Congratulations to the authors!

e Deep Contextualized Word Representations, by Matthew Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee and Luke Zettlemoyer

e Learning to Map Context-Dependent Sentences to Executable Formal Queries, by Alane Suhr,
Srinivasan Iyer and Yoav Artzi

o Neural Text Generation in Stories using Entity Representations as Context, by Elizabeth Clark,
Yangfeng Ji and Noah A. Smith

e Recurrent Neural Networks as Weighted Language Recognizers, by Yining Chen, Sorcha Gilroy,
Andreas Maletti, Jonathan May and Kevin Knight

Test of Time Papers

For NAACL HLT 2018 we recognize three influential and inspiring Computational Linguistics (CL) pa-
pers which were published between 2002-2012 at the Association for Computational Linguistics (ACL)
conferences (including ACL, NAACL, EACL, EMNLP and CONLL), workshops and journals (including
TACL and CL), to recognize research that has had long-lasting influence until today, including positive
impact on a subarea of CL, across subareas of CL, and outside of the CL research community. These pa-
pers may have proposed new research directions and new technologies, or released results and resources
that have greatly benefit the community. Nineteen candidate test of time papers were nominated by our
area chairs. Separate votes on these papers were held separately by two committees: an expert award
committee consisting of all ACL and NAACL general chairs and program chairs and NAACL board
members from 2013-2018 who did not have a conflict with the nominated papers, and a community
award committee consisting of the 1000 authors who have published the most papers at ACL venues and
who did not have a conflict with the nominated papers. These papers will be re-presented by the authors
in a plenary session on the second day of the conference. Congratulations to the authors!

e BLEU: a Method for Automatic Evaluation of Machine Translation, by Kishore Papineni, Salim
Roukos, Todd Ward and Wei-Jing Zhu

e Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Per-
ceptron Algorithms, by Michael Collins

o Thumbs up?: Sentiment Classification using Machine Learning Techniques, by Bo Pang, Lillian
Lee and Shivakumar Vaithyanathan
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Keynote Talk: Why 72?

Charles Yang
University of Pennsylvania

Biography

Charles is a Professor of Linguistics, Computer Science, and Psychology at the University of Pennsyl-
vania and directs the Program in Cognitive Science. He has spent a long time to work out the tricks
children use to learn languages and is now ready to try them out on machines. His most recent book, The
Price of Linguistic Productivity, is the winner of the 2017 LSA Leonard Bloomfield award.

Keynote Talk: The Moment When the Future Fell Asleep
Kevin Knight
University of Southern California / Information Sciences Institute

Biography

Kevin is a professor of computer science at the University of Southern California and fellow of the
Information Sciences Institute. He is a 2014 fellow of the ACL for foundational contributions to ma-
chine translation, to the application of automata for NLP, to decipherment of historical manuscripts, to
semantics and to generation.

Keynote Talk: Google Assistant or My Assistant? Towards Personalized
Situated Conversational Agents
Dilek Hakkani-Tiir
Google Research

Abstract

Interacting with machines in natural language has been a holy grail since the beginning of computers.
Given the difficulty of understanding natural language, only in the past couple of decades, we started
seeing real user applications for targeted/limited domains. More recently, advances in deep learning
based approaches enabled exciting new research frontiers for end-to-end goal-oriented conversational
systems. However, personalization (i.e., learning to take actions from users and learning about users
beyond memorizing simple attributes) remains a research challenge. In this talk, I’ll review end-to-end
situated dialogue systems research, with components for situated language understanding, dialogue state
tracking, policy, and language generation. The talk will highlight novel approaches where dialogue
is viewed as a collaborative game between a user and an agent in the presence of visual information.
The situated conversational agent can be bootstrapped using user simulation (crawl), improved through
interactions with crowd-workers (walk), and iteratively refined with real user interactions (run).

Biography

Dilek is a research scientist at Google Research Dialogue Group and has previously held positions at
Microsoft Research, ICSI, and AT&T Labs — Research. She is a fellow of the IEEE and of ISCA. Her
research interests include conversational Al, natural language and speech processing, spoken dialogue
systems, and machine learning for language processing.
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07:30-08:45

08:45-09:00

09:00-10:00

10:00-10:30

10:30-11:30

10:30-10:48

10:48-11:06

11:06-11:24

Conference Program

Breakfast

Welcome from the Chairs

Keynote (sponsored by Toutiao Al Lab)
Why 72?2
Charles Yang, University of Pennsylvania

Morning Coffee

Information Extraction 1

Label-Aware Double Transfer Learning for Cross-Specialty Medical Named Entity
Recognition

Zhenghui Wang, Yanru Qu, Liheng Chen, Jian Shen, Weinan Zhang, Shaodian
Zhang, Yimei Gao, Gen Gu, Ken Chen and Yong Yu

Neural Fine-Grained Entity Type Classification with Hierarchy-Aware Loss
Peng Xu and Denilson Barbosa

Joint Bootstrapping Machines for High Confidence Relation Extraction
Pankaj Gupta, Benjamin Roth and Hinrich Schiitze
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10:30-11:30

10:30-10:48

10:48-11:06

11:06-11:24

10:30-11:30

10:30-10:48

10:48-11:06

11:06-11:24

Phonology, Morphology and Word Segmentation 1

A Deep Generative Model of Vowel Formant Typology
Ryan Cotterell and Jason Eisner

Fortification of Neural Morphological Segmentation Models for Polysynthetic
Minimal-Resource Languages

Katharina Kann, Jesus Manuel Mager Hois, Ivan Vladimir Meza Ruiz and Hinrich
Schiitze

Improving Character-Based Decoding Using Target-Side Morphological Informa-
tion for Neural Machine Translation
Peyman Passban, Qun Liu and Andy Way

Speech 1

Parsing Speech: a Neural Approach to Integrating Lexical and Acoustic-Prosodic
Information

Trang Tran, Shubham Toshniwal, Mohit Bansal, Kevin Gimpel, Karen Livescu and

Mari Ostendorf

Tied Multitask Learning for Neural Speech Translation
Antonios Anastasopoulos and David Chiang

Please Clap: Modeling Applause in Campaign Speeches
Jon Gillick and David Bamman
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10:30-12:00 Discourse and Pragmatics 1

10:30-12:00

Attentive Interaction Model: Modeling Changes in View in Argumentation
Yohan Jo, Shivani Poddar, Byungsoo Jeon, Qinlan Shen, Carolyn Rose and Graham
Neubig

Automatic Focus Annotation: Bringing Formal Pragmatics Alive in Analyzing the
Information Structure of Authentic Data
Ramon Ziai and Detmar Meurers

Dear Sir or Madam, May I Introduce the GYAFC Dataset: Corpus, Benchmarks
and Metrics for Formality Style Transfer
Sudha Rao and Joel Tetreault

Improving Implicit Discourse Relation Classification by Modeling Inter-
dependencies of Discourse Units in a Paragraph
Zeyu Dai and Ruihong Huang

Generation 1

A Deep Ensemble Model with Slot Alignment for Sequence-to-Sequence Natural
Language Generation
Juraj Juraska, Panagiotis Karagiannis, Kevin Bowden and Marilyn Walker

A Melody-Conditioned Lyrics Language Model
Kento Watanabe, Yuichiroh Matsubayashi, Satoru Fukayama, Masataka Goto, Ken-
taro Inui and Tomoyasu Nakano

Discourse-Aware Neural Rewards for Coherent Text Generation
Antoine Bosselut, Asli Celikyilmaz, Xiaodong He, Jianfeng Gao, Po-Sen Huang
and Yejin Choi

Natural Answer Generation with Heterogeneous Memory
Yao Fu and Yansong Feng

Query and Output: Generating Words by Querying Distributed Word Representa-
tions for Paraphrase Generation

Shuming Ma, Xu Sun, Wei Li, Sujian Li, Wenjie Li and Xuancheng Ren

Simplification Using Paraphrases and Context-Based Lexical Substitution
Reno Kriz, Eleni Miltsakaki, Marianna Apidianaki and Chris Callison-Burch
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June 2 (continued)

10:30-12:00

Zero-Shot Question Generation from Knowledge Graphs for Unseen Predicates and
Entity Types
Hady Elsahar, Christophe Gravier and Frederique Laforest

NLP Applications 1

Automated Essay Scoring in the Presence of Biased Ratings
Evelin Amorim, Marcia Cancado and Adriano Veloso

Content-Based Citation Recommendation
Chandra Bhagavatula, Sergey Feldman, Russell Power and Waleed Ammar

Looking Beyond the Surface: A Challenge Set for Reading Comprehension over
Multiple Sentences

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay and Dan
Roth

Neural Automated Essay Scoring and Coherence Modeling for Adversarially
Crafted Input
Youmna Farag, Helen Yannakoudakis and Ted Briscoe

QuickEdit: Editing Text & Translations by Crossing Words Out
David Grangier and Michael Auli

Tempo-Lexical Context Driven Word Embedding for Cross-Session Search Task Ex-

traction
Procheta Sen, Debasis Ganguly and Gareth Jones
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11:30-11:48

11:48-12:06

11:30-12:30

11:30-11:48

11:48-12:06

11:30-12:30

11:30-11:48

11:48-12:06

12:06-12:24

Machine Learning 1

Zero-Shot Sequence Labeling: Transferring Knowledge from Sentences to Tokens
Marek Rei and Anders Sggaard

Variable Typing: Assigning Meaning to Variables in Mathematical Text

Yiannos Stathopoulos, Simon Baker, Marek Rei and Simone Teufel

Information Extraction 2

Learning beyond Datasets: Knowledge Graph Augmented Neural Networks for Nat-
ural Language Processing

Annervaz K M, Somnath Basu Roy Chowdhury and Ambedkar Dukkipati
Comparing Constraints for Taxonomic Organization

Anne Cocos, Marianna Apidianaki and Chris Callison-Burch

Machine Translation 1

Improving Lexical Choice in Neural Machine Translation
Toan Nguyen and David Chiang

Universal Neural Machine Translation for Extremely Low Resource Languages
Jiatao Gu, Hany Hassan, Jacob Devlin and Victor O.K. Li

Classical Structured Prediction Losses for Sequence to Sequence Learning
Sergey Edunov, Myle Ott, Michael Auli, David Grangier and Marc’ Aurelio Ranzato
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12:30-14:00

14:00-15:00

15:00-15:30

15:30-17:00

15:30-15:48

15:30-17:00

15:30-15:48

15:48-16:06

15:30-17:00

15:30-15:48

15:48-16:06

16:06-16:24

16:24-16:42

Lunch

Industry Track Keynote

Afternoon Coffee

Machine Learning 2

Deep Dirichlet Multinomial Regression
Adrian Benton and Mark Dredze

Social Media and Computational Social Science 1

Microblog Conversation Recommendation via Joint Modeling of Topics and Dis-
course

Xingshan Zeng, Jing Li, Lu Wang, Nicholas Beauchamp, Sarah Shugars and Kam-
Fai Wong

Before Name-Calling: Dynamics and Triggers of Ad Hominem Fallacies in Web
Argumentation
Ivan Habernal, Henning Wachsmuth, Iryna Gurevych and Benno Stein

Vision, Robotics and Other Grounding 1

Scene Graph Parsing as Dependency Parsing
Yu-Siang Wang, Chenxi Liu, Xiaohui Zeng and Alan Yuille

Learning Visually Grounded Sentence Representations
Douwe Kiela, Alexis Conneau, Allan Jabri and Maximilian Nickel

Comparatives, Quantifiers, Proportions: a Multi-Task Model for the Learning of
Quantities from Vision
Sandro Pezzelle, Ionut-Teodor Sorodoc and Raffaella Bernardi

Being Negative but Constructively: Lessons Learnt from Creating Better Visual

Question Answering Datasets
Wei-Lun Chao, Hexiang Hu and Fei Sha
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June 2 (continued)

15:30-17:00 Semantics 1

Abstract Meaning Representation for Paraphrase Detection
Fuad Issa, Marco Damonte, Shay B. Cohen, Xiaohui Yan and Yi Chang

attr2vec: Jointly Learning Word and Contextual Attribute Embeddings with Factor-
ization Machines
Fabio Petroni, Vassilis Plachouras, Timothy Nugent and Jochen L. Leidner

Can Network Embedding of Distributional Thesaurus Be Combined with Word Vec-
tors for Better Representation?
Abhik Jana and Pawan Goyal

Deep Neural Models of Semantic Shift
Alex Rosenfeld and Katrin Erk

Distributional Inclusion Vector Embedding for Unsupervised Hypernymy Detection
Haw-Shiuan Chang, Ziyun Wang, Luke Vilnis and Andrew McCallum

Mining Possessions: Existence, Type and Temporal Anchors
Dhivya Chinnappa and Eduardo Blanco

Neural Tensor Networks with Diagonal Slice Matrices
Takahiro Ishihara, Katsuhiko Hayashi, Hitoshi Manabe, Masashi Shimbo and
Masaaki Nagata

Post-Specialisation: Retrofitting Vectors of Words Unseen in Lexical Resources
Ivan Vuli¢, Goran Glavas, Nikola Mrksi¢ and Anna Korhonen

Unsupervised Learning of Sentence Embeddings Using Compositional n-Gram Fea-

tures
Matteo Pagliardini, Prakhar Gupta and Martin Jaggi
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June 2 (continued)

15:30-17:00

17:00-18:30

17:00-17:18

17:18-17:36

17:36-17:54

Sentiment Analysis 1

Learning Domain Representation for Multi-Domain Sentiment Classification
Qi Liu, Yue Zhang and Jiangming Liu

Learning Sentence Representations over Tree Structures for Target-Dependent Clas-
sification
Junwen Duan, Xiao Ding and Ting Liu

Relevant Emotion Ranking from Text Constrained with Emotion Relationships
Deyu Zhou, Yang Yang and Yulan He

Solving Data Sparsity for Aspect Based Sentiment Analysis Using Cross-Linguality
and Multi-Linguality

Md Shad Akhtar, Palaash Sawant, Sukanta Sen, Asif Ekbal and Pushpak Bhat-
tacharyya

SRLAORL: Improving Opinion Role Labeling Using Multi-Task Learning with Se-
mantic Role Labeling
Ana Marasovi¢ and Anette Frank

NLP Applications 2

Approaching Neural Grammatical Error Correction as a Low-Resource Machine
Translation Task

Marcin Junczys-Dowmunt, Roman Grundkiewicz, Shubha Guha and Kenneth
Heafield

Robust Cross-Lingual Hypernymy Detection Using Dependency Context
Shyam Upadhyay, Yogarshi Vyas, Marine Carpuat and Dan Roth

Noising and Denoising Natural Language: Diverse Backtranslation for Grammar

Correction
Ziang Xie, Guillaume Genthial, Stanley Xie, Andrew Ng and Dan Jurafsky
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17:00-18:30

17:00-17:18

17:18-17:36

17:36-17:54

17:00-18:30

June 3

07:45-08:45

08:45-09:00

09:00-10:00

Question Answering 1

Self-Training for Jointly Learning to Ask and Answer Questions
Mrinmaya Sachan and Eric Xing

The Web as a Knowledge-Base for Answering Complex Questions
Alon Talmor and Jonathan Berant

A Meaning-Based Statistical English Math Word Problem Solver
Chao-Chun Liang, Yu-Shiang Wong, Yi-Chung Lin and Keh-Yih Su

SRW Highlights

Breakfast

Announcements

Keynote 2 (sponsored by Google)

The Moment When the Future Fell Asleep
Kevin Knight, University of Southern California / Information Sciences Institute

xlv



June 3 (continued)

10:00-10:30

10:30-11:30

10:30-10:48

10:48-11:06

10:30-11:30

10:30-10:48

10:48-11:06

11:06-11:24

10:30-11:30

10:30-10:48

11:06-11:24

Morning Coffee

Cognitive Modeling and Psycholinguistics 1

Fine-Grained Temporal Orientation and its Relationship with Psycho-Demographic
Correlates

Sabyasachi Kamila, Mohammed Hasanuzzaman, Asif Ekbal, Pushpak Bhat-
tacharyya and Andy Way

Querying Word Embeddings for Similarity and Relatedness

Fatemeh Torabi Asr, Robert Zinkov and Michael Jones

Summarization 1

Semantic Structural Evaluation for Text Simplification
Elior Sulem, Omri Abend and Ari Rappoport

Entity Commonsense Representation for Neural Abstractive Summarization
Reinald Kim Amplayo, Seonjae Lim and Seung-won Hwang

Newsroom: A Dataset of 1.3 Million Summaries with Diverse Extractive Strategies
Max Grusky, Mor Naaman and Yoav Artzi
Semantics 2

Polyglot Semantic Parsing in APIs
Kyle Richardson, Jonathan Berant and Jonas Kuhn

Neural Models of Factuality
Rachel Rudinger, Aaron Steven White and Benjamin Van Durme
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June 3 (continued)

10:30-12:00 Information Extraction 3

Accurate Text-Enhanced Knowledge Graph Representation Learning
Bo An, Bo Chen, Xianpei Han and Le Sun

Acquisition of Phrase Correspondences Using Natural Deduction Proofs
Hitomi Yanaka, Koji Mineshima, Pascual Martinez-Gémez and Daisuke Bekki

Automatic Stance Detection Using End-to-End Memory Networks
Mitra Mohtarami, Ramy Baly, James Glass, Preslav Nakov, Llufs Marquez and
Alessandro Moschitti

Collective Entity Disambiguation with Structured Gradient Tree Boosting
Yi Yang, Ozan Irsoy and Kazi Shefaet Rahman

DeepAlignment: Unsupervised Ontology Matching with Refined Word Vectors
Prodromos Kolyvakis, Alexandros Kalousis and Dimitris Kiritsis

Efficient Sequence Learning with Group Recurrent Networks
Fei Gao, Lijun Wu, Li Zhao, Tao Qin, Xueqi Cheng and Tie-Yan Liu

FEVER: a Large-scale Dataset for Fact Extraction and VERification
James Thorne, Andreas Vlachos, Christos Christodoulopoulos and Arpit Mittal

Global Relation Embedding for Relation Extraction
Yu Su, Honglei Liu, Semih Yavuz, Izzeddin Gur, Huan Sun and Xifeng Yan

Implicit Argument Prediction with Event Knowledge
Pengxiang Cheng and Katrin Erk

Improving Temporal Relation Extraction with a Globally Acquired Statistical Re-
source

Qiang Ning, Hao Wu, Haoruo Peng and Dan Roth

Multimodal Named Entity Recognition for Short Social Media Posts
Seungwhan Moon, Leonardo Neves and Vitor Carvalho
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June 3 (continued)

10:30-12:00

Nested Named Entity Recognition Revisited
Arzoo Katiyar and Claire Cardie

Simultaneously Self-Attending to All Mentions for Full-Abstract Biological Relation
Extraction

Patrick Verga, Emma Strubell and Andrew McCallum

Supervised Open Information Extraction

Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer and Ido Dagan

Tagging, Chunking, Syntax and Parsing 1

Embedding Syntax and Semantics of Prepositions via Tensor Decomposition
Hongyu Gong, Suma Bhat and Pramod Viswanath

From Phonology to Syntax: Unsupervised Linguistic Typology at Different Levels
with Language Embeddings

Johannes Bjerva and Isabelle Augenstein

Monte Carlo Syntax Marginals for Exploring and Using Dependency Parses
Katherine Keith, Su Lin Blodgett and Brendan O’ Connor

Neural Particle Smoothing for Sampling from Conditional Sequence Models
Chu-Cheng Lin and Jason Eisner

Neural Syntactic Generative Models with Exact Marginalization
Jan Buys and Phil Blunsom

Noise-Robust Morphological Disambiguation for Dialectal Arabic
Nasser Zalmout, Alexander Erdmann and Nizar Habash

Parsing Tveets into Universal Dependencies
Yijia Liu, Yi Zhu, Wanxiang Che, Bing Qin, Nathan Schneider and Noah A. Smith

Robust Multilingual Part-of-Speech Tagging via Adversarial Training
Michihiro Yasunaga, Jungo Kasai and Dragomir Radev
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11:30-12:30

11:30-11:48

12:06-12:24

11:30-12:30

11:30-11:48

11:48-12:06

12:06-12:24

Universal Dependency Parsing for Hindi-English Code-Switching
Irshad Bhat, Riyaz A. Bhat, Manish Shrivastava and Dipti Sharma

What’s Going On in Neural Constituency Parsers? An Analysis
David Gaddy, Mitchell Stern and Dan Klein
Machine Learning 3

Deep Generative Model for Joint Alignment and Word Representation
Miguel Rios, Wilker Aziz and Khalil Simaan

Learning Word Embeddings for Low-Resource Languages by PU Learning
Chao Jiang, Hsiang-Fu Yu, Cho-Jui Hsieh and Kai-Wei Chang
Social Media and Computational Social Science 2

Exploring the Role of Prior Beliefs for Argument Persuasion
Esin Durmus and Claire Cardie

Inducing a Lexicon of Abusive Words — a Feature-Based Approach
Michael Wiegand, Josef Ruppenhofer, Anna Schmidt and Clayton Greenberg

Author Commitment and Social Power: Automatic Belief Tagging to Infer the Social

Context of Interactions
Vinodkumar Prabhakaran, Premkumar Ganeshkumar and Owen Rambow
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11:30-12:30

12:30-14:00

14:00-15:00

15:00-15:30

15:30-17:00

15:30-15:48

15:48-16:06

16:06-16:24

16:24-16:42

Vision, Robotics and Other Grounding 2

Lunch

Industry Track Keynote

Afternoon Coffee

Text Mining 1

Comparing Automatic and Human Evaluation of Local Explanations for Text Clas-
sification
Dong Nguyen

Deep Temporal-Recurrent-Replicated-Softmax for Topical Trends over Time
Pankaj Gupta, Subburam Rajaram, Hinrich Schiitze and Bernt Andrassy

Lessons from the Bible on Modern Topics: Low-Resource Multilingual Topic Model
Evaluation
Shudong Hao, Jordan Boyd-Graber and Michael J. Paul

Explainable Prediction of Medical Codes from Clinical Text
James Mullenbach, Sarah Wiegreffe, Jon Duke, Jimeng Sun and Jacob Eisenstein



June 3 (continued)

15:30-17:00

15:30-15:48

15:48-16:06

16:06-16:24

16:24-16:42

15:30-17:00

15:30-15:48

15:48-16:06

16:06-16:24

16:24-16:42

Semantics 3

A Broad-Coverage Challenge Corpus for Sentence Understanding through Infer-
ence
Adina Williams, Nikita Nangia and Samuel Bowman

Filling Missing Paths: Modeling Co-occurrences of Word Pairs and Dependency
Paths for Recognizing Lexical Semantic Relations

Koki Washio and Tsuneaki Kato

Specialising Word Vectors for Lexical Entailment
Ivan Vuli¢ and Nikola MrkSsié

Cross-Lingual Abstract Meaning Representation Parsing
Marco Damonte and Shay B. Cohen
Tagging, Chunking, Syntax and Parsing 2

Sentences with Gapping: Parsing and Reconstructing Elided Predicates
Sebastian Schuster, Joakim Nivre and Christopher D. Manning

A Structured Syntax-Semantics Interface for English-AMR Alignment
Ida Szubert, Adam Lopez and Nathan Schneider

End-to-End Graph-Based TAG Parsing with Neural Networks
Jungo Kasai, Robert Frank, Pauli Xu, William Merrill and Owen Rambow

Colorless Green Recurrent Networks Dream Hierarchically

Kristina Gulordava, Piotr Bojanowski, Edouard Grave, Tal Linzen and Marco Ba-
roni
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June 3 (continued)

15:30-17:00 Machine Learning 4

Diverse Few-Shot Text Classification with Multiple Metrics
Mo Yu, Xiaoxiao Guo, Jinfeng Yi, Shiyu Chang, Saloni Potdar, Yu Cheng, Gerald
Tesauro, Haoyu Wang and Bowen Zhou

Early Text Classification Using Multi-Resolution Concept Representations
Adrian Pastor Lopez Monroy, Fabio A. Gonzéilez, Manuel Montes, Hugo Jair Es-
calante and Thamar Solorio

Multinomial Adversarial Networks for Multi-Domain Text Classification
Xilun Chen and Claire Cardie

Pivot Based Language Modeling for Improved Neural Domain Adaptation
Yftah Ziser and Roi Reichart

Reinforced Co-Training
Jiawei Wu, Lei Li and William Yang Wang

Tensor Product Generation Networks for Deep NLP Modeling
Qiuyuan Huang, Paul Smolensky, Xiaodong He, Li Deng and Dapeng Wu

The Context-Dependent Additive Recurrent Neural Net

Quan Hung Tran, Tuan Lai, Gholamreza Haffari, Ingrid Zukerman, Trung Bui and
Hung Bui
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June 3 (continued)

15:30-17:00 Machine Translation 2

Combining Character and Word Information in Neural Machine Translation Using
a Multi-Level Attention
Huadong Chen, Shujian Huang, David Chiang, Xinyu Dai and Jiajun Chen

Dense Information Flow for Neural Machine Translation
Yanyao Shen, Xu Tan, Di He, Tao Qin and Tie-Yan Liu

Evaluating Discourse Phenomena in Neural Machine Translation
Rachel Bawden, Rico Sennrich, Alexandra Birch and Barry Haddow

Fast Lexically Constrained Decoding with Dynamic Beam Allocation for Neural
Machine Translation
Matt Post and David Vilar

Guiding Neural Machine Translation with Retrieved Translation Pieces
Jingyi Zhang, Masao Utiyama, Eiichro Sumita, Graham Neubig and Satoshi Naka-
mura

Handling Homographs in Neural Machine Translation
Frederick Liu, Han Lu and Graham Neubig

Improving Neural Machine Translation with Conditional Sequence Generative Ad-
versarial Nets
Zhen Yang, Wei Chen, Feng Wang and Bo Xu

Neural Machine Translation for Bilingually Scarce Scenarios: a Deep Multi-Task
Learning Approach
Poorya Zaremoodi and Gholamreza Haffari

Self-Attentive Residual Decoder for Neural Machine Translation
Lesly Miculicich Werlen, Nikolaos Pappas, Dhananjay Ram and Andrei Popescu-
Belis

Target Foresight Based Attention for Neural Machine Translation
Xintong Li, Lemao Liu, Zhaopeng Tu, Shuming Shi and Max Meng
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June 3 (continued)

15:30-17:00

17:00-18:30

17:00-17:15

17:15-17:40

17:40-18:05

18:05-18:30

Phonology, Morphology and Word Segmentation 2

Context Sensitive Neural Lemmatization with Lematus
Toms Bergmanis and Sharon Goldwater

Modeling Noisiness to Recognize Named Entities using Multitask Neural Networks
on Social Media

Gustavo Aguilar, Adrian Pastor Lépez Monroy, Fabio Gonzélez and Thamar Solorio

Reusing Weights in Subword-Aware Neural Language Models
Zhenisbek Assylbekov and Rustem Takhanov

Simple Models for Word Formation in Slang
Vivek Kulkarni and William Yang Wang

Using Morphological Knowledge in Open-Vocabulary Neural Language Models
Austin Matthews, Graham Neubig and Chris Dyer

Test of Time Session (in honor of Aravind Joshi)

Awards and Remembrances

BLEU: a Method for Automatic Evaluation of Machine Translation (Test of Time)
Kishore Papineni, Salim Roukos, Todd Ward and Wei-Jing Zhu, IBM Research

Discriminative Training Methods for Hidden Markov Models: Theory and Experi-
ments with Perceptron Algorithms (Test of Time)
Michael Collins, Columbia University

Thumbs up?: Sentiment Classification using Machine Learning Techniques (Test of

Time)
Bo Pang, Lillian Lee, Shivakumar Vaithyanathan, Cornell University, IBM Research
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June 4

07:45-08:45

08:45-09:00

09:00-10:00

10:00-10:30

10:30-11:30

10:30-10:48

10:48-11:06

11:06-11:24

Breakfast

Announcements

Keynote 3 (sponsored by Bloomberg)

Google Assistant or My Assistant? Towards Personalized Situated Conversational
Agents
Dilek Hakkani-Tiir

Morning Coffee

Information Extraction 4

A Neural Layered Model for Nested Named Entity Recognition
Meizhi Ju, Makoto Miwa and Sophia Ananiadou

DR-BiLSTM: Dependent Reading Bidirectional LSTM for Natural Language Infer-
ence

Reza Ghaeini, Sadid A. Hasan, Vivek Datla, Joey Liu, Kathy Lee, Ashequl Qadir,
Yuan Ling, Aaditya Prakash, Xiaoli Fern and Oladimeji Farri

KBGAN: Adversarial Learning for Knowledge Graph Embeddings
Liwei Cai and William Yang Wang
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June 4 (continued)

10:30-11:30

10:30-15:48

10:48-11:06

11:06-11:24

10:30-11:30

10:30-10:48

10:48-11:06

11:06-11:24

Semantics 4

Multimodal Frame Identification with Multilingual Evaluation
Teresa Botschen, Iryna Gurevych, Jan-Christoph Klie, Hatem Mousselly Sergieh
and Stefan Roth

Learning Joint Semantic Parsers from Disjoint Data
Hao Peng, Sam Thomson, Swabha Swayamdipta and Noah A. Smith

Identifying Semantic Divergences in Parallel Text without Annotations
Yogarshi Vyas, Xing Niu and Marine Carpuat
Generation 2

Bootstrapping Generators from Noisy Data
Laura Perez-Beltrachini and Mirella Lapata

SHAPED: Shared-Private Encoder-Decoder for Text Style Adaptation
Ye Zhang, Nan Ding and Radu Soricut

Generating Descriptions from Structured Data Using a Bifocal Attention Mecha-
nism and Gated Orthogonalization

Preksha Nema, Shreyas Shetty, Parag Jain, Anirban Laha, Karthik Sankara-
narayanan and Mitesh M. Khapra
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June 4 (continued)

10:30-12:00

10:30-12:00

Question Answering 2

CIliCR: a Dataset of Clinical Case Reports for Machine Reading Comprehension
Simon Suster and Walter Daelemans

Learning to Collaborate for Question Answering and Asking
Duyu Tang, Nan Duan, Zhao Yan, Zhirui Zhang, Yibo Sun, Shujie Liu, Yuanhua Lv
and Ming Zhou

Learning to Rank Question-Answer Pairs Using Hierarchical Recurrent Encoder
with Latent Topic Clustering
Seunghyun Yoon, Joongbo Shin and Kyomin Jung

Supervised and Unsupervised Transfer Learning for Question Answering
Yu-An Chung, Hung-yi Lee and James Glass

Tracking State Changes in Procedural Text: a Challenge Dataset and Models for
Process Paragraph Comprehension
Bhavana Dalvi, Lifu Huang, Niket Tandon, Wen-tau Yih and Peter Clark

Social Media and Computational Social Science 3
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Abstract

We study the problem of named entity recog-
nition (NER) from electronic medical records,
which is one of the most fundamental and
critical problems for medical text mining.
Medical records which are written by clini-
cians from different specialties usually con-
tain quite different terminologies and writ-
ing styles. The difference of specialties and
the cost of human annotation makes it par-
ticularly difficult to train a universal medical
NER system. In this paper, we propose a label-
aware double transfer learning framework (La-
DTL) for cross-specialty NER, so that a med-
ical NER system designed for one specialty
could be conveniently applied to another one
with minimal annotation efforts. The trans-
ferability is guaranteed by two components:
(i) we propose label-aware MMD for feature
representation transfer, and (ii) we perform
parameter transfer with a theoretical upper
bound which is also label aware. We conduct
extensive experiments on 12 cross-specialty
NER tasks. The experimental results demon-
strate that La-DTL provides consistent accu-
racy improvement over strong baselines. Be-
sides, the promising experimental results on
non-medical NER scenarios indicate that La-
DTL is potential to be seamlessly adapted to a
wide range of NER tasks.

1 Introduction

The development of hospital information system
and medical informatics drives the leverage of var-
ious medical data for a more efficient and intel-
ligent medical care service. Among many kinds
of medical data, electronic health records (EHRSs)
are one of the most valuable and informative data
as they contain detailed information about the pa-
tients and the clinical practices. EHRs are essen-
tial to many intelligent clinical applications, such

*Weinan Zhang is the corresponding author.

1

as hospital quality control and clinical decision
support systems (Wu et al., 2015). Most of EHRs
are recorded in an unstructured form, i.e., natural
language. Hence, extracting structured informa-
tion from EHRs using natural language processing
(NLP), e.g., named entity recognition (NER) and
entity linking, plays a fundamental role in medical
informatics (Zhang and Elhadad, 2013). In this pa-
per, we focus on medical NER from EHRs, which
is a fundamental task and is widely studied in the
research community (Nadeau and Sekine, 2007;
Uzuner et al., 2011).

In practice, the difficulty of building a univer-
sally robust and high-performance medical NER
system lies in the variety of medical terminologies
and expressions among different departments of
specialties and hospitals. However, building sepa-
rate NER systems for so many specialties comes
with a prohibitively high cost. The data privacy
issue further discourages the sharing of the data
across departments or hospitals, making it more
difficult to train a canonical NER system to be ap-
plied everywhere. This raises a natural question:
if we have sufficient annotated EHRs data in one
source specialty, can we distill the knowledge and
transfer it to help training models in a related far-
get specialty with few annotations? By transfer-
ring the knowledge we can achieve higher perfor-
mance in target specialties with lower annotation
cost and bypass the data sharing concerns. This
is commonly referred to as transfer learning (Pan
and Yang, 2010).

Current state-of-the-art transfer learning meth-
ods for NER are mainly based on deep neural net-
works, which perform an end-to-end training to
distill sequential dependency patterns in the nat-
ural language (Ma and Hovy, 2016; Lample et al.,
2016). These transfer learning methods include (i)
feature representation transfer (Peng and Dredze,
2017; Kulkarni et al., 2016), which normally lever-
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ages deep neural networks to learn a close feature
mapping between the source and target domains,
and (ii) parameter transfer (Murthy et al., 2016;
Yang et al., 2017), which performs parameter shar-
ing or joint training to get the target-domain model
parameters close to those of the source-domain
model. To the best of our knowledge, there is no
previous literature working on transfer learning for
NER in the medical domain, or even in a larger
scope, i.e., medical natural language processing.

In this paper, we propose a novel NER trans-
fer learning framework, namely label-aware dou-
ble transfer learning (La-DTL): (i) We leverage
bidirectional long-short term memory (Bi-LSTM)
network (Graves and Schmidhuber, 2005) to au-
tomatically learn the text representations, based
on which we perform a label-aware feature rep-
resentation transfer. We propose a variant of max-
imum mean discrepancy (MMD) (Gretton et al.,
2012), namely label-aware MMD (La-MMD), to
explicitly reduce the domain discrepancy of fea-
ture representations of tokens with the same label
between two domains. (ii) Based on the learned
feature representations from Bi-LSTM, two con-
ditional random field (CRF) models are performed
for sequence labeling for source and target do-
main separately, where parameter transfer learning
is performed. Specifically, an upper bound of KL
divergence between the source and target domain’s
CREF label distributions is added over the emis-
sion and transition matrices across the source and
target CRF models to explore the shareable parts
of the parameters. Both (i) and (ii) have a label-
aware characteristic, which will be discussed later.
We further argue that label-aware characteristic is
crucial for transfer learning in sequence labeling
problems, e.g., NER, because only when the cor-
responding labels are matched, can the “similar”
contexts (i.e. feature representation) and model pa-
rameters be efficiently borrowed to improve the la-
bel prediction.

Extensive experiments are conducted on 12
cross-specialty medical NER tasks with real-world
EHRs. The experimental results demonstrate that
La-DTL provides consistent accuracy improve-
ment over strong baselines, with overall 2.62%
to 6.70% absolute F1-score improvement over the
state-of-the-art methods. Besides, the promising
experimental results on other two non-medical
NER scenarios indicate that La-DTL has the po-
tential to be seamlessly adapted to a wide range of

NER tasks.

2 Related Works

Named Entity Recognition (NER) is fundamen-
tal in information extraction area which aims at
automatic detection of named entities (e.g., per-
son, organization, location and geo-political) in
free text (Marrero et al., 2013). Many high-level
applications such as entity linking (Moro et al.,
2014) and knowledge graph construction (Hachey
et al., 2011) could be built on top of an NER sys-
tem. Traditional high-performance approaches in-
clude conditional random fields models (CRFs)
(Lafferty et al., 2001), maximum entropy Markov
models (MEMMs) (McCallum et al., 2000) and
hidden Markov models (HMMs). Recently, many
neural network-based models have been proposed
(Collobert et al., 2011; Chiu and Nichols, 2016;
Ma and Hovy, 2016; Lample et al., 2016), in
which few feature engineering works are needed
to train a high-performance NER system. The ar-
chitecture of those neural network-based mod-
els are similar, where different neural networks
(LSTMs, CNNs) at different levels (char- and
word-level) are applied to learn feature representa-
tions, and on top of neural networks, a CRF model
is employed to make label predictions.

Transfer Learning distills knowledge from a
source domain to help create a high-performance
learner for a target domain. Transfer learning al-
gorithms are mainly categorized into three types,
namely instance transfer, feature representation
transfer and parameter transfer (Pan and Yang,
2010). Instance transfer normally samples or re-
weights source-domain samples to match the dis-
tribution of the target domain (Chen et al., 2011;
Chu et al., 2013). Feature representation transfer
typically learns a feature mapping which projects
source and target domain data simultaneously onto
a common feature space following similar distri-
butions (Zhuang et al., 2015; Long et al., 2015;
Shen et al., 2017). Parameter transfer normally in-
volves a joint or constrained training for the mod-
els on source and target domains, usually intro-
duce connections between source target param-
eters via sharing (Srivastava and Salakhutdinov,
2013), initialization (Perlich et al., 2014), or inter-
model parameter penalty schemes (Zhang et al.,
2016).

Transfer Learning for NER Training a high-
performance NER system requires expensive and



time-consuming manually annotated data. But suf-
ficient labeled data is critical for the generalization
of an NER system, especially for neural network-
based models. Thus, transfer learning for NER is
a practically important problem. The first group
of methods focuses on sharing model parameters
but they differ in the training schemes. He and
Sun (2017) proposed to train the parameter-shared
model with source and target data jointly, while
the learning rates for sentences from source do-
main are re-weighted by the similarity with target
domain corpus. Yang et al. (2017) proposed a fam-
ily of frameworks which share model parameters
in hierarchical recurrent networks to handle cross-
application, cross-lingual, and cross-domain trans-
fer in sequence labeling tasks. Differently, Lee
et al. (2017) first trained the model with source do-
main data and then fine-tuned the model with little
annotated target domain data.

Domain adaptation method has been well stud-
ied in NER scenarios such as using distributed
word representations (Kulkarni et al., 2016) and
leveraging rule-based annotators (Chiticariu et al.,
2010). Multi-task learning has also been stud-
ied to improve performance in multiple NER
tasks by transferring meaningful knowledge from
other tasks (Collobert et al., 2011; Peng and
Dredze, 2016). To take the advantages of both
domain adaptation and multi-task learning, Peng
and Dredze (2017) proposed a multi-task domain
adaptation model.

3 Preliminaries

This section briefly introduces bidirectional
LSTM, conditional random field and maximum
mean discrepancy, which are the building blocks
of our transfer learning framework.

Bidirectional LSTM Recurrent neural networks
(RNNs) are widely used in NLP tasks for their
great capability to capture contextual information
in sequence data. A widely used variant of RNNs
is long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997), which incorporates in-
put and forget gates to capture both long and short
term dependencies. Furthermore, it will be ben-
eficial if we process the sequence in not only a
forward but also a backward way. Thus, bidirec-
tional LSTM (Bi-LSTM) was employed in many
previous works (Chiu and Nichols, 2016; Ma and
Hovy, 2016; Lample et al., 2016) to capture bidi-
rectional information in a sequence. More specifi-

cally, for token x; (embedding vector) at timestep
t in sequence X = (x1,X2,...,Xp), the Op-
parameterized Bi-LSTM recurrently updates hid-
den vectors h;” = ng (X,h;7;) and hj~ =
ng (X, h;7 ;) produced by a forward LSTM and a
backward one, respectively. Then we concatenate
h;” and h; to h, as the final hidden vector pro-
duced by Bi-LSTM:

h, =h;” @ h{.

The representations learned from Bi-LSTM for se-
quence X is thus denoted as H = (hy, ho, ..., h;,).
Conditional Random Field The goal of NER is
to detect named entities in a sequence X by pre-
dicting a sequence of labels y = (y1, 42, ---, Yn)-
Conditional random field (CRF) is widely used to
make joint labeling of the tokens in a sequence
(Lafferty et al., 2001).

Recently, Lample et al. (2016) proposed to build
a CRF layer on top of a Bi-LSTM so that the au-
tomatically learned feature representation H =
(hi, ho, ..., h,,) of the sequence can be directly
fed into the CRF for sequence labeling. For a se-
quence of labels y, given the hidden vector se-
quence H, we define its f.-parametrized score
function sg_(H,y) as:

n n—1
S6, (H» Y) = z Eiy, + Z Ayivyi+1’
i=1 =1

where E is the emission score matrix of size n xm
(m is the number of unique labels), and is com-
puted by E = HW where W is the label emission
parameter matrix; A is the label transition parame-
ter matrix; thus 6. = {W, A}. We then define the
conditional probability of label sequence y given
H by a softmax over all possible label sequences
in set Y(H) as:

po. (y|H) =exp{so.(H,y)}/Z(H) ¢))
—exp{so.(H.y)}/ Y explso(HY)},
y'€Y(H)

where 6. is omitted for simplification in the
following part. The training objective in the
CRF layer is to maximize the log-likelihood
maxg, logp(y|/H). In the label prediction
phase, we give the output label sequence
y* with the highest conditional probability
y* = argmaxycym)p(y'|[H) by dynamic
programming (Sutton et al., 2012).

Maximum Mean Discrepancy Maximum Mean
Discrepancy (Gretton et al., 2012) is a non-
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Figure 1: La-DTL framework overview: embedding
and Bi-LSTM layers are shared across domains, predic-
tors in red (upper) boxes are task-specific CRFs, with
label-aware MMD and L2 constraints to perform fea-
ture representation transfer and parameter transfer.

parametric test statistic to measure the distribu-
tion discrepancy in terms of the distance between
the kernel mean embeddings of two distributions p
and ¢q. The MMD is defined in particular function
spaces that witness the difference in distributions

MMD(F, p,q) = sup (Exnp[f(2)] = Eyng[F(9)])-
By defining the function class F as the unit
ball in a universal Reproducing Kernel Hilbert
Space (RKHS), denoted by 7, it holds that
MMD|F,p,q] = 0 if and only if p = ¢. And
then given two sets of samples X = {z1,..., 2}
and Y = {yi,...,yn} independently and identi-
cally distributed (i.i.d.) from p and ¢ on the data
space X, the empirical estimate of MMD can be
written as the distance between the empirical mean
embeddings after mapping to RKHS

@

)
H

MMD(X,Y) = H% Z P(xi) — % Z b(y;)

where ¢(-) : X — H is the nonlinear feature map-
ping that induces H.

4 Methodology

In this section, we present a label-aware double
transfer learning (La-DTL) framework and discuss
its rationale.

4.1 Framework Overview

Figure 1 gives an overview of La-DTL for NER.
From bottom up, each input sentence is converted

into a sequence of embedding vectors, which are
then fed into a Bi-LSTM to sequentially encode
contextual information into fixed-length hidden
vectors. The embedding and Bi-LSTM layers are
shared among source/target domains. With label-
aware maximum mean discrepancy (La-MMD) to
reduce the feature representation discrepancy be-
tween two domains, the hidden vectors are directly
fed into source/target domain specific CRF layers
to predict the label sequence. We use domain con-
strained CRF layers to enhance the target domain
performance.

More formally, let D, = {(X, yf)}i]\f1 be
the training set of N° samples from the source
domain and D, = {(Xﬁ,yf)}f\:l be the train-
ing set of N samples from the target domain,
with N < N*. Bi-LSTM encodes a sentence
X = (x1,x2,...,X,) to hidden vectors H =
(hi, ho, ..., h,). We occasionally use H(X) to de-
note the corresponding hidden vectors when feed-
ing X into the Bi-LSTM. CRF decodes hidden
vectors H to a label sequence y = (91, 92, .-, Un)-
Our goal is to improve label prediction accuracy
on the target domain D; by utilizing the knowl-
edge from the source domain Dg:

p(y|X) =p(y|H(X)),

n n—1
logp(y\H) = Z Eivyi =+ Z Ayiayi+l - log Z(H) 3
i=1 i=1

Thus training a transferable model p(y|X) re-
quires both H(X) and p(y|H) to be transferable.

We use share word embedding and Bi-LSTM
by approaching the feature representation distribu-
tions p(h|D;) and p(h|D,), i.e., the distributions
of Bi-LSTM hidden vectors at each timestep of
the sentences from the source and target domains
respectively. The rationale behind it lies on the
insufficiency of labeled target data. Even though
LSTM has high capacity, its generalization abil-
ity highly relies on viewing “sufficient” data. Oth-
erwise, LSTM is very likely to overfit the data.
Training on both source and target data, the Bi-
LSTM is expected to learn feature representations
with high quality. Yosinski et al. (2014) provided
a justification of this solution that sharing bottom
layers is promising for transfer learning in prac-
tice.

With the sentences projected onto the same hid-
den space, the conditional distribution p(h®|D;)
and p(h'|D;), however, may be distant because



LSTM hidden vectors contain contextual informa-
tion which is different across domains. In order to
reduce source/target discrepancy, we refine MMD
(Gretton et al., 2012) with label constraints, i.e.,
label-aware MMD (La-MMD). Using La-MMD,
the source/target hidden states are pushed to simi-
lar distributions to make the feature representation
H(X) transfer feasible.

Based on the hidden vectors from Bi-LSTM,
we adopt independent CRF layers for each do-
main. The rationale lies in the hypotheses that (i)
the target domain predictor can better capture tar-
get data distribution which could be very unique;
(i1) a good predictor trained on the source do-
main directly could be leveraged to assist the tar-
get domain predictor without directly borrowing
the source domain training data to bypass the data
privacy issue. With respect to the emission and
transition score matrices > E;,, and Y A, ..,
we adopt an upper bound between source/target
domains, which helps the target domain predictor
to be guided by the source domain predictor. Thus
p(y|H) is also transferable.

There are also other transfer methods, including
fine-tuning, sharing parameter directly (without
constraints) (He and Sun, 2017; Lee et al., 2017;
Yang et al., 2017), etc. However, simply sharing
models may dismiss target specific instances.

4.2 Learning Objective

The learning objective is to minimize the fol-
lowing loss £ with respect to parameters @ =

{Qb, ‘90}:
L=Lc+ aLiavmvp + B Ly +7v Ly,

where L. is the CRF loss, Li..mvp is the La-
MMD loss, L), is the parameter similarity loss on
CRF layers, and £, is the regularization term, with
a, B, as hyperparameters to balance loss terms.
The CRF loss is our ultimate objective predict-
ing the label sequence given the input sentence,
i.e., we minimize the negative log-likelihood of
training samples from both source/target domains:

NS Nt
€ Sleas 1—¢
Lo= =2z Y logp(yi[HD) — = > log p(yi[HY),

i=1 i=1

where H are hidden vectors obtained from Bi-
LSTM, ¢ is the balance coefficient. The La-MMD
loss L1a-mmp and parameter similarity loss £, are
discussed in Section 4.3 and 4.4, respectively. The
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Figure 2: Illustration for La-MMD. MMD-y is com-
puted between two domains’ hidden representations
with the same ground truth label y. A linear combi-
nation is then applied to each label-wise MMD to form
La-MMD and the coefficient is set as ji,, = 1.

regularization term is to generally control overfit-
ting:

Lr = (16513 + [16c]13.

We will provide the model convergence and hy-
perparameter study in Section 5.1.

4.3 Bi-LSTM Feature Representation
Transfer

To learn transferable feature representations, the
maximum mean discrepancy (MMD) which mea-
sures the distance between two distributions, has
been widely used in domain adaptation scenar-
ios (Long et al., 2015; Rozantsev et al., 2016).
Almost all these works focus on reducing the
marginal distribution distance between different
domain features in an unsupervised manner to
make them indistinguishable. However, consider-
ing a word is not evenly distributed conditioning
on different labels, it may result in that the dis-
criminative property of features from different do-
mains may not be similar, which means that close
source and target samples may not have the same
label. Different from previous works, we propose
label-aware MMD (La-MMD) in Eq. (5) to explic-
itly reduce the discrepancy between hidden repre-
sentations with the same label, i.e., the linear com-
bination of the MMD for each label. For each label
classy € ), where ), is the set of matched labels
in two domains, we compute the squared popula-
tion MMD between the hidden representations of
source/target samples with the same label y:
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where R;, and RZ are sets of hidden represen-
tation h® and h' with corresponding number
N; and N;. Eq. (4) can be easily derived by
casting Eq. (2) into inner product form and
applying (¢(x), ¢(y))n = k(x,y) where k is the
reproducing kernel function (Gretton et al., 2012).
For each label class, we compute the MMD loss
in a normal manner. After that, we define the
La-MMD loss as:

ﬁLa-MMD = Z Hy - MMD2 (le’Rty)’ (5)
YEVy

where 1, 1s the corresponding coefficient. The il-
lustration of La-MMD is shown in Figure 2.

Once we have applied this La-MMD to our rep-
resentations learned from Bi-LSTM, the represen-
tation distribution of instances with the same la-
bel from different domains should be close. Then
the standard CRF layer which has a simple linear
structure takes these similar representations as in-
put and is likely to give a more transferable label
decision for instances with the same label.

4.4 CRF Parameter Transfer

Simply sharing the CRF layer is non-promising
when source/target data are diversely distributed.
According to probability decomposition in Eq. (3),
in order to transfer on source/target CRF layers,
more specifically, p(y|H), we reduce the KL di-
vergence from p'(y|H) to p*(y|H). But directly
reducing Dy (p*(y|H)||p!(y|H)) is intractable,
we tend to reduce its upper bound:

D (p* (y[H)|[p" (yH))

. p°
= > p’(yH)log(5
yeV(H) p

=-Hp'(yH) -

yEY(H)

W5+ A" —

p*(y/H)log p' (y|H)

<e(|W* - A3, ©)
where H (-) is the entropy of distribution (-) and ¢
is a constant. The detailed proof is provided in Ap-
pendix A.1. Since c(||[W* — W2+ | A5 — At|3)
is the upper bound of Dy (p*(y[H)||p'(y|H)),
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Figure 3: Illustration for CRF parameter transfer.

we conduct CRF parameter transfer by minimiz-
ing
s )2 s )2
Ly =[[W* = W[, + A" — A7[],.

It turns out that a similar regularization term is
applied in our CRF parameter transfer method
and the regularization framework (RF) for do-
main adaptation (Lu et al., 2016). However, RF
is proposed to generalize the feature augmenta-
tion method in (Daume III, 2007), and these two
methods are only discussed from a perspective
of the parameter. There is no guarantee that two
models having similar parameters yields similar
output distributions. In this work, we discuss the
model behavior in CRF conditions, and we suc-
cessfully prove that two CRF models having sim-
ilar parameters (in Euclidean space) yields similar
output distributions. In another word, our method
guarantees transferability in the model behavior
level, while previous works are limited in parame-
ter level.

The CRF parameter transfer is illustrated in Fig-
ure 3, which is also label-aware since the L2 con-
straint is added over parameters corresponding to
the same label in two domains, e.g., W, and Wto.

4.5 Training

We train La-DTL in an end-to-end manner with
mini-batch AdaGrad (Duchi et al., 2011). One
mini-batch contains training samples from both
domains, otherwise the computation of L1, mvD
can not be performed. During training, word (and
character) embeddings are fine-tuned to adjust real
data distribution. During both training and decod-
ing (testing) of CRF layers, we use dynamic pro-
gramming to compute the normalizer in Eq. (1)
and infer the label sequence.



Department \ #Train #Dev  # Test
Cardiology 3,004 601 601
Respiratory 3,025 605 606
Neurology 932 187 187
Gastroenterology | 1,517 303 304
Sum | 8478 1,696 1,698

Table 1: Sentence numbers for CM-NER corpus.

S Experiments

In this section, we evaluate La-DTL' and other
baseline methods on 12 cross-specialty NER prob-
lems based on real-world datasets. The experimen-
tal results show that La-DTL steadily outperforms
other baseline models in all tasks significantly. We
also conduct further ablation study and robustness
study. We evaluate La-DTL on two more non-
medical NER transfer tasks to validate its general
efficacy over a wide range of applications.

5.1 Cross-Specialty NER

Datasets We collected a Chinese medical NER
(CM-NER) corpus for our experiments. This cor-
pus contains 1600 de-identified EHRs of our affili-
ated hospital from four different specialties in four
departments: Cardiology (500), Respiratory (500),
Neurology (300) and Gastroenterology (300), and
the research had been reviewed and approved by
the ethics committee. Named entities are anno-
tated in the BIOES format (Begin, Inside, Outside,
End and Single), with 30 types in total. The statis-
tics of CM-NER is shown in Table 1.

Baselines The following methods are compared.
For a fair comparison, we implement La-DTL and
baselines with the same base model introduced in
(Lample et al., 2016) but with different transfer
techniques.

o Non-transfer uses the target domain labeled
data only.

e Domain mask and Linear projection be-
long to the same framework proposed by
Peng and Dredze (2017) but have differ-
ent implementations at the projection layer,
which aims to produce shared feature repre-
sentations among different domains through
a linear transformation.

e Re-training is proposed by Lee et al. (2017),
where an artificial neural networks (ANNs)

"https://github.com/felixwzh/La-DTL

is first trained on the source domain and then
re-trained on the target domain.

¢ Joint-training is a transfer learning method
proposed by Yang et al. (2017) where differ-
ent tasks are trained jointly.

e CD-learning is a cross-domain learning
method proposed by He and Sun (2017),
where each source domain training example’s
learning rate is re-weighted.

Experimental Settings We use 23,217 unla-
beled clinical records to train the word embed-
dings (word2vec) at 128 dimensions using skip-
gram model (Mikolov et al., 2013). The hidden
state size is set to be 200 for word-level Bi-LSTM.
We evaluate La-DTL for cross-specialty NER with
CM-NER in 12 transfer tasks, results shown in Ta-
ble 2. For each task, we take the whole source
domain training set D, and 10% sentences of the
target domain training set D; as training data. We
use the development set in target domain to search
hyper-parameters including training epochs. We
then take the models to make the prediction in tar-
get domain test set and use F1-score as the evalua-
tion metric. Statistical significance has been deter-
mined using a randomization version of the paired
sample t-test (Cohen, 1995).

Results and Discussion From the results of
12 cross-specialty NER tasks shown in Table 2,
we find that La-DTL outperforms all the strong
baselines in all the 12 cross-specialty transfer
learning tasks, with 2.62% to 6.70% F1-score
lift over state-of-the-art baseline methods. Mean-
while, Linear projection and Domain mask (Peng
and Dredze, 2017) do not perform as good as
other three baselines, which may be because
such linear transformation methods are likely to
weaken the representations. While other three
baseline methods all share the whole model be-
tween source/target domains but differ in the train-
ing schemes and performance.

To better understand the transferability of La-
DTL, we also evaluate three variants of La-
DTL: La-MMD, CRF-L2, and MMD-CRF-L2.
La-MMD and CRF-L2 have the same networks
and loss function as La-DTL but with different
building blocks: La-MMD has 3 = 0, while CRF-
L2 has @ = 0. In MMD-CRF-L2, we replace
La-MMD loss L1 ..mvp in La-DTL with a vanilla
MMD loss:

Lyvmp = MMD?(R*, RY),



Method C—+R C—»N C—»G R—»C R—=N R—-G N—=C N—»R N—=G G—C G—R G—=N AVG
Non-transfer 6720 5451 4901 6563 5451 4901 6563 6720 4901 6563 6720 5451 59.09
Linear projection (Peng and Dredze, 2017) | 69.01  67.02 5740 69.79 6587 5771 6770 6877 5133  68.00 69.65 61.12 64.45
Domain mask (Peng and Dredze, 2017) 7076 6397 5862 70.18 6427 5816 6793 69.89 5618 6887 69.89  63.49 65.18
CD-learning (He and Sun, 2017) 7138 6401 5672 7217 6491 5814 6899 7113 5627 70.17 7176  62.06 65.64
Re-training (Lee et al., 2017) 7245 7055 5958 7256 6859 60.94 69.60 7008 5658 70.14 7190  66.01 67.42
Joint-training (Yang et al., 2017) 69.82 7049 6352 7145 6703 6771 7096 7143 6054 69.68 7155 68.15 68.53
La-MMD 73.08 6948 59.86 7253 7028 60.16 7131 73.04 5794 69.80 7399 67.19 68.22
CRF-L2 7334 7152 60.17 7243 69.72 67.61 69.76 7154 5996 69.75 71.82  67.30 68.74
MMD-CRF-L2 7305 7235 6080 7265 69.87 6682 7025 7175 5898 7048 7398 67.43 69.03
La-DTL 73597 72917 64607 73.88T 73017 70077 73087 73T 62147 71617 74217 7149T | 7115

Table 2: Results (F1-score %) of 12 cross-specialty medical NER tasks.

C, R, N, G are short for the department

of Cardiology, Respiratory, Neurology, and Gastroenterology, respectively. { indicates La-DTL outperforms the 6

baselines significantly (p < 0.05).
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Figure 4: (a) Fl-score of La-DTL, Joint-training and
Non-transfer method in C—R task with different sam-
pling rate. (b) The learning curve of La-DTL and Joint-
training in C—R task.

where R® and R' are sets of hidden representa-
tion from source and target domain. Results in Ta-
ble 2 show that: (i) Using La-MMD alone does
achieve satisfactory performance since it outper-
forms the best baseline Joint-training (Yang et al.,
2017) in 7 of 12 tasks. And it has a significant
improvement over Domain mask and Linear pro-
jection methods (Peng and Dredze, 2017), which
indicates that using La-MMD to reduce the do-
main discrepancy of feature representations in se-
quence tagging tasks is promising. (ii) CRF-L2
is also a promising method when transferring be-
tween NER tasks, and it improves the La-MMD
method significantly when these two methods are
combined to form La-DTL. (iii) Label-aware char-
acteristic is important in sequence labeling prob-
lems because there is an obvious performance
drop when La-MMD is replaced with a vanilla
MMD in La-DTL. But MMD-CRF-L2 still has
very competitive performance compared to all the
baseline methods. This shows positive empirical
evidence that transferring knowledge at both Bi-
LSTM feature representation level and CRF pa-
rameter level for NER tasks is better than transfer-
ring knowledge at only one of these two levels, as
discussed in Section 4.1.
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Figure 5: Hyperparameter study for o, 3, and €.

Robustness to Target Domain Data Sparsity
We further study the sparsity problem (target do-
main) of La-DTL in C—R task comparing to
Joint-training (Yang et al., 2017) and Non-transfer
method. We evaluate La-DTL with different data
volume (sampling rate: 10%, 25%, 50%, 100%) on
the target domain training set. Results are shown
in Figure 4(a). We observe that La-DTL outper-
forms Joint-training and Non-transfer results un-
der all circumstances, and the improvement of La-
DTL is more significant when the sampling rate is
lower.

To show La-DTL’s convergence and significant
improvement over Joint-training, we repeat the
10% sampling rate experiment for 10 times with
10 random seeds. The F1-score on the target do-
main development set for two methods with a 95%
confidence interval is shown in Figure 4(b) where
La-DTL outperforms Joint-training method signif-
icantly.

Hyperparameter Study We study the influence
of three key hyperparameters in La-DTL: «, 3,
and ¢ in C—R task with 10% target domain sam-
pling rate. We first apply a rough grid search for
the three hyperparameters, and the result is (o =
0.02, 58 = 0.03,e = 0.3). We then fix two hyper-
parameters and test the third one in a finer gran-
ularity. The results in Figure 5 indicate that set-
ting o € [0.01,0.04] could better leverage La-
MMD and further setting 5 € [0.03,0.12] and
e € [0.3,0.4] yields the best empirical perfor-



Corpus | #Train #Dev # Test
SighanNER 23,182 - 4,636
WeiboNER 1,350 270 270
CoNLL 2003 | 14,987 3,466 3,684
TwitterNER 1,900 240 254

Table 3: Sentence numbers for non-medical corpora.

Method | Fl-score
Non-transfer 54.78
Linear projection (Peng and Dredze, 2017)* | 56.40
Linear projection (Peng and Dredze, 2017) 56.99
Domain mask (Peng and Dredze, 2017)* 56.80
Domain mask (Peng and Dredze, 2017) 56.32
CD-learning (He and Sun, 2017)* 52.05
CD-learning (He and Sun, 2017) 56.46
Re-training (Lee et al., 2017) 55.36
Joint-training (Yang et al., 2017) 56.80
La-DTL | 57.74

Table 4: Results (F1-score %) of WeiboNER transfer.
* indicates the result reported in the corresponding ref-
erence.

mance. This shows that we need to balance the
learning objective of the source and target domains
for better transferability.

5.2 NER Transfer Experiment on
Non-medical Corpus

To show La-DTL could be applied in a wide range
of NER transfer learning scenarios, we make ex-
periments on two non-medical NER tasks. Cor-
pora’s details are shown in Table 3.

WeiboNER Transfer Following He and Sun
(2017); Peng and Dredze (2017), we transfer
knowledge from SighanNER (MSR corpus of the
sixth SIGHAN Workshop on Chinese language
processing) to WeiboNER (a social media NER
corpus) (Peng and Dredze, 2015). Results in Table
4 show that La-DTL outperforms all the baseline
methods in Chinese social media domain.
TwitterNER Transfer Following Yang et al.
(2017) we transfer knowledge from CoNLL 2003
English NER (Tjong Kim Sang and De Meulder,
2003) to TwitterNER (Ritter et al., 2011). Since the
entity types in these two corpora cannot be exactly
matched, La-DTL and Joint-training (Yang et al.,
2017) can be applied directly in this case while
other baselines can not. Because the CRF parame-
ter transfer of La-DTL is label-aware, and Joint-
training simply leverages two independent CRF
layers. The results are shown in Table 5, where La-
DTL again outperforms Joint-training, indicating
that La-DTL could be applied seamlessly to trans-

Method | Fl-score
Non-transfer 34.65
Joint-training (Yang et al., 2017)* | 43.24
La-DTL \ 45.71

Table 5: Results (F1-score %) of TwitterNER transfer.
* indicates the result reported in the corresponding ref-
erence.

fer learning scenarios with mismatched label sets
and languages like English.

6 Conclusions

In this paper, we propose La-DTL, a label-aware
double transfer learning framework, to conduct
both Bi-LSTM feature representation transfer and
CRF parameter transfer with label-aware con-
straints for cross-specialty medical NER tasks. To
our best knowledge, this is the first work on trans-
fer learning for medical NER in cross-specialty
scenario. Experiments on 12 cross-specialty NER
tasks show that La-DTL provides consistent per-
formance improvement over strong baselines. We
further perform a set of experiments on differ-
ent target domain data size, hyperparameter study
and other non-medical NER tasks, where La-DTL
shows great robustness and wide efficacy. For fu-
ture work, we plan to jointly perform NER and en-
tity linking for better cross-specialty media struc-
tural information extraction.
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A Appendix

A.1 Detailed Proof
Recall the bound as in Eq. (6):

Lemma A.1. c;(||[W?* — W!|2 + ||A5 — AY||2) is the upper bound of (s*(H,y) — s'(H,y))%

Proof of Lemma A.1. @ refers to convolutional product, H"  H# are mask matrices corresponding to
the given hidden vectors H, and c; is a constant. We have:

(s"(H,y) - s'(H,y))*
n—1

n n—1
i S S 2
_(Z Ei,yi + Z Ayiﬂyz’+1 Z El i Z yz,y1+1)
i=1 i=1

=1

:(WS®HW+AS®HA—Wt®HW—At®HA)2
=(( Wt) ©HY + (A* - A") @ HY)?
<2((W* =W @ HY)? + 2((A* — A") @ H)?
:2(2( Wt) .3 HW) (Z(AS - At)p,q ’ Hﬁ,q)Q
,J p,q
<23 (W = W23 ) + 200 (A= A", - (H) L))

=2(||W* — W3- [H"Y|13) + 2(] A* — A"[[3 - |[HA|3)
<er(||W* = W'|I3 + [[A* — A'3).

Lemma A.2. c(||[W?* — W!|3 + ||A% — AtH%)% is the upper bound of D (p*(y|H)||p! (y|H)).

Proof of Lemma A.2. With Lemma. (A.1), we set ¢ = (c1(|[W* — W¥||2 + [|A® — At|2))2 > 0 and
1

¢ = 2¢2, and we have:

s*(H,y) —e < s'(H,y) < s*(H,y) +e, (7)

log{ Y exp[s*(H,y)]} —c<log{ > exp[s'(H,y)]} <log{ > exp[s*(H,y)]} +e.

y'eY(H) y'eY(H) y'eY(H)
3
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With Eq. (7) and Eq. (8), we can derive

- Y p(y|H)logp'(y|H)
yEY(H)

- Y p(y[H)log

expls'(H, y)]

yeY(H)

Zy’e)}(H) expls'(H, y')]
— Y pyE){s'(Hy) —log{ > expl[s'(H,y)]}}

S - Z pS(y|H){SS(H’ y) — & — log{ Z eXp[SS(H’ y/)]} o 5}
YeY(H) y'eY(H)
s exp[s”(H, y)]
- Z P (y|H){log p, —2¢}
yEV(H) >ycym) exps*(H, y')]

yeY(H)
=H(p*(y|H)) + 2.

Finally, we have

- > ply[H){logp’(y/H)—2¢}

Dxr(p®(y|H)||p' (y|H))
ps(Y!H))
p'(y[H)

yeY(H)
=— H(p*(y|H)) —

> p(y[H)log(

p°(y[H)log p' (y|H)

yeEY(H)
< — H(p*(y|H)) + H(p*(y|H)) + 2¢
1
=c(||[W* — W3+ ||A® — A"||3)=.

A.2 Case Analysis

In clinical practice, patients with specific diseases
would be assigned to different departments, and
specialist doctors in their department may pay
more attention to the specific disease. When writ-
ing a medical chart, these specific diseases and
related clinical findings would have a more de-
tailed description. Therefore, some medical terms
would have enriched meanings in different de-
partments accordingly. For example, patients with
rheumatic heart disease are often treated in the de-
partment of Cardiology. The term, “rheumatic”, a
modifier, describes and limits the type of “heart
disease”. In English, “rheumatic” is an adjective
modifying “heart disease”. However, in Chinese,
“rheumatic heart disease” can be regarded as two
diseases, “rheumatism’ and “heart disease”. In the
department of Cardiology, “rheumatic heart dis-
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ease” is usually mentioned as a single term. While
in other departments, “rheumatism” and ‘“heart
disease” are mostly two independent named enti-
ties in annotated datasets. As such, it is difficult to
train an NER model to capture the relationship be-
tween “rheumatism’ and “heart disease”, and band
them as a whole. In the training set of our study,
the diagnostic term “rheumatic heart disease” (in-
cluding synonym) is mentioned for 17 times in
Dept. Cardiology, 16 times in Dept. Respiratory,
none in Dept. Neurology and 3 times in Dept.
Gastroenterology. We use the data from the first
3 departments as source domain training set re-
spectively, and the data from Dept. Gastroenterol-
ogy as the target domain training set. We test our
models on the test set from Dept. Gastroenterol-
ogy, where “rheumatic heart disease” is mentioned
3 times, and compare the results across models



# disease term in | # disease term in | # disease term in # accurate # accurate
. Transfer . . . . .
Disease Task source domain target domain target domain labeling labeling
training set training set test set without transfer | with transfer

rheumatic C—G 17 3
heart disease N=G 0 0 3 0 0
R—G 16 3

C—G 4 2

pulmonary |, 0 0 2 0 0
heart disease RSG 24 2
coronary G—N 5 3
atherosclerotic C—N 136 0 15 10 15
heart disease R—N 23 11

Table 6: Case analysis for cross-specialty medical NER tasks. C, R, N, G are short for department of Cardiology,
Respiratory, Neurology, and Gastroenterology, respectively.

with/without transfer learning. As expected, mod-
els with source training data from Dept. Cardio-
vascular and Respiration correctly predict all these
entities, but the model using source data from
Dept. Neurology fails and so does a model with-
out transfer learning.

Patients with pulmonary heart disease were of-
ten referred to Dept. Respiratory and Dept. Car-
diology. In our training set, “pulmonary heart dis-
ease” (including synonym) is labeled for 24 times
in Dept. Respiratory and 4 times in Dept. Cardi-
ology. In English, “pulmonary” modified “heart
disease”. In Chinese, “pulmonary heart disease”
contains body structure “lung” and disease name
“heart disease”. The model trained with the source
set from both from department of respiratory and
cardiology could correctly recognize the relation
between lung and heart disease and predict the en-
tity in the test set from Dept. Gastroenterology.

Similarly, “coronary atherosclerotic heart dis-
ease” contains two disease names, “coronary
atherosclerosis” and ‘“heart disease”. Training
model using source set from a department where
the terms are enriched could improve the perfor-
mance of recognizing the whole entity.

A.3 Medical Experiments Details

The 30 entity types for medical domain are:
Symptom, Disease, Examination, Treatment, Lab-
oratory index, Products, Body structure, Fre-
quency, Negative word, Value, Trend, Modifica-
tion, Temporal word, Noun of locality, Degree
modifier, Probability, Object, Organism, Location,
Person, Pronoun, Privacy information, Accident,
Action, Header, Instrument and material, Non-
physiological structure, Dosage, Scale, and Prepo-
sition.
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Figure 6: La-DTL framework for language like En-
glish.

A.4 Non-medical Experiments Details
WeiboNER Transfer

Both SighanNER and WeiboNER are annotated in
the BIO format (Begin, Inside and Outside), but
there is one more entity type (geo-political) in Wei-
boNER. For a fair comparison, we follow Peng
and Dredze (2017); He and Sun (2017) to merge
geo-political entities and locations in WeiboNER,
to match different labeling schemes between Wei-
boNER and SighanNER. We use the inconsisten-
cies fixed second version of WeiboNER data and
word embeddings provided by WeiboNER’s devel-
opers (Peng and Dredze, 2015)? in this experi-
ment.

TwitterNER Transfer

To show that La-DTL could be applied in trans-
fer learning for NER scenario with mismatched

2https ://github.com/hltcoe/golden-horse



named entity types and languages like English,
we conduct this experiment transfer from CoNLL
2003 English NER to TwitterNER. The four en-
tity types in CoNLL 2003 English NER are LOC,
PER, ORG, and MISC. The ten entity types in
TwitterNER are company, facility, geo-loc, movie,
musicartist, other, person, product, sportsteam,
and tvshow.

The Joint-training method (Yang et al., 2017)
separates the CRF layers for each domain to
bypass the label mismatch problem. Since our
La-DTL is label-aware, we match four pairs of
named entities between two CoNLL 2003 English
NER and TwitterNER: LOC with geo-loc, PER
with person, ORG with company and MISC with
other to compute Ly,.mvp and £, and leave six
named entities unmatched. Following Yang et al.
(2017), We leverage char-level Bi-LSTM to gener-
ate better word representations, concatenate it with
pre-trained word embeddings and feed concate-
nated embeddings to the word-level Bi-LSTM.
The framework used for language like English is
illustrated in Figure 6.

We also convert all characters to lowercase and
use the same word embeddings provided by Yang
et al. (2017)°. Also, we concatenate the training
set and the development set for both domains and
sample the same 10% from TwitterNER as (Yang
et al., 2017) to be target domain training data.
Since Yang et al. (2017) merge training and de-
velopment set into training data, both Yang et al.
(2017) and we report the best performance in the
target domain test set.

3https ://github.com/kimiyoung/transfer
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Abstract

The task of Fine-grained Entity Type Clas-
sification (FETC) consists of assigning types
from a hierarchy to entity mentions in text. Ex-
isting methods rely on distant supervision and
are thus susceptible to noisy labels that can be
out-of-context or overly-specific for the train-
ing sentence. Previous methods that attempt
to address these issues do so with heuristics or
with the help of hand-crafted features. Instead,
we propose an end-to-end solution with a neu-
ral network model that uses a variant of cross-
entropy loss function to handle out-of-context
labels, and hierarchical loss normalization to
cope with overly-specific ones. Also, previous
work solve FETC a multi-label classification
followed by ad-hoc post-processing. In con-
trast, our solution is more elegant: we use pub-
lic word embeddings to train a single-label that
jointly learns representations for entity men-
tions and their context. We show experimen-
tally that our approach is robust against noise
and consistently outperforms the state-of-the-
art on established benchmarks for the task.

1 Introduction

Fine-grained Entity Type Classification (FETC)
aims at labeling entity mentions in context with
one or more specific types organized in a hier-
archy (e.g., actor as a subtype of artist, which
in turn is a subtype of person). Fine-grained
types help in many applications, including rela-
tion extraction (Mintz et al., 2009), question an-
swering (Li and Roth, 2002), entity linking (Lin
et al., 2012), knowledge base completion (Dong
et al., 2014) and entity recommendation (Yu et al.,
2014). Because of the high cost in labeling large
training corpora with fine-grained types, current
FETC systems resort to distant supervision (Mintz
et al., 2009) and annotate mentions in the train-
ing corpus with all types associated with the en-
tity in a knowledge graph. This is illustrated in
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Figure 1, with three training sentences about en-
tity Steve Kerr. Note that while the entity be-
longs to three fine-grained types (person, athlete,
and coach), some sentences provide evidence of
only some of the types: person and coach from
S1, person and athlete from S2, and just person
for S3. Clearly, direct distant supervision leads to
noisy training data which can hurt the accuracy of
the FETC model.

One kind of noise introduced by distant super-
vision is assigning labels that are out-of-context
(athlete in S1 and coach in S2) for the sentence.
Current FETC systems sidestep the issue by ei-
ther ignoring out-of-context labels or using simple
pruning heuristics like discarding training exam-
ples with entities assigned to multiple types in the
knowledge graph. However, both strategies are in-
elegant and hurt accuracy. Another source of noise
introduced by distant supervision is when the type
is overly-specific for the context. For instance, ex-
ample S3 does not support the inference that Mr.
Kerr is either an athlete or a coach. Since existing
knowledge graphs give more attention to notable
entities with more specific types, overly-specific
labels bias the model towards popular subtypes in-
stead of generic ones, i.e., preferring athlete over
person. Instead of correcting for this bias, most
existing FETC systems ignore the problem and
treat each type equally and independently, ignor-
ing that many types are semantically related.

Besides failing to handle noisy training data
there are two other limitations of previous FETC
approaches we seek to address. First, they rely on
hand-crafted features derived from various NLP
tools; therefore, the inevitable errors introduced
by these tools propagate to the FETC systems
via the training data. Second, previous systems
treat FETC as a multi-label classification problem:
during type inference they predict a plausibility
score for each type, and, then, either classify types

Proceedings of NAACL-HLT 2018, pages 16-25
New Orleans, Louisiana, June 1 - 6, 2018. (©2018 Association for Computational Linguistics



Entity: Steve Kerr Candidate Type Set

{person, athlete, coach}

i Croot ) a2,
location || person ) organization .
athlete coach artist politican

Target Type Hierarchy

S1: On May 14, 2014, Kerrreached an agreement
to become the head coach for the Golden State
Warriors, succeeding Mark Jackson

S2: Kerrwas selected by the Phoenix Suns in the
second round of the 1988 NBA draft

S3: Kerrgraduated from the University of
Arizona in 1988 with a Bachelor of General Studies,
» = = \with emphasis on history, sociclogy and English

Figure 1: With distant supervision, all the three mentions of Steve Kerr shown are labeled with the same types in
oval boxes in the target type hierarchy. While only part of the types are correct: person and coach for S1, person

and athlete for S2, and just person for S3.

with scores above a threshold (Mintz et al., 2009;
Gillick et al., 2014; Shimaoka et al., 2017) or per-
form a top-down search in the given type hierarchy
(Ren et al., 2016a; Abhishek et al., 2017).

Contributions: We propose a neural network
based model to overcome the drawbacks of exist-
ing FETC systems mentioned above. With pub-
licly available word embeddings as input, we learn
two different entity representations and use bidi-
rectional long-short term memory (LSTM) with
attention to learn the context representation. We
propose a variant of cross entropy loss function to
handle out-of-context labels automatically during
the training phase. Also, we introduce hierarchical
loss normalization to adjust the penalties for corre-
lated types, allowing our model to understand the
type hierarchy and alleviate the negative effect of
overly-specific labels.

Moreover, in order to simplify the problem and
take advantage of previous research on hierar-
chical classification, we transform the multi-label
classification problem to a single-label classifica-
tion problem. Based on the assumption that each
mention can only have one fype-path depending
on the context, we leverage the fact that type hier-
archies are forests, and represent each type-path
uniquely by the terminal type (which might not
be a leaf node). For Example, fype-path root-
person-coach can be represented as just coach,
while root-person can be unambiguously repre-
sented as the non-leaf person.

Finally, we report on an experimental validation
against the state-of-the-art on established bench-
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marks that shows that our model can adapt to noise
in training data and consistently outperform previ-
ous methods. In summary, we describe a single,
much simpler and more elegant neural network
model that attempts FETC “end-to-end” without
post-processing or ad-hoc features and improves
on the state-of-the-art for the task.

2 Related Work

Fine-Grained Entity Type Classification: The
first work to use distant supervision (Mintz et al.,
2009) to induce a large - but noisy - training set
and manually label a significantly smaller dataset
to evaluate their FETC system, was Ling and Weld
(2012) who introduced both a training and evalu-
ation dataset FIGER (GOLD). They used a linear
classifier perceptron for multi-label classification.
While initial work largely assumed that mention
assignments could be done independently of the
mention context, Gillick et al. (2014) introduced
the concept of context-dependent FETC where
the types of a mention are constrained to what
can be deduced from its context and introduced a
new OntoNotes-derived (Weischedel et al., 2011)
manually annotated evaluation dataset. In addi-
tion, they addressed the problem of label noise in-
duced by distant supervision and proposed three
label cleaning heuristics. Yogatama et al. (2015)
proposed an embedding-based model where user-
defined features and labels were embedded into a
low dimensional feature space to facilitate infor-
mation sharing among labels. Ma et al. (2016)
presented a label embedding method that incor-



[ Attentive | AFET | LNR | AAA || NFETC

no hand-crafted features — — — v v
uses attentive neural network v — — — v
adopts single label setting — — — — v
handles out-of-context noise — v’ v’ v v
handles overly-specifc noise — v v — v

Table 1: Summary comparison to related FETC work. FETC systems listed in the table: (1) Attentive (Shimaoka
etal., 2017); (2) AFET (Ren et al., 2016a); (3) LNR (Ren et al., 2016b); (4) AAA (Abhishek et al., 2017).

porates prototypical and hierarchical information
to learn pre-trained label embeddings and adpated
a zero-shot framework that can predict both seen
and previously unseen entity types.

Shimaoka et al. (2016) proposed an attentive
neural network model that used LSTMs to encode
the context of an entity mention and used an at-
tention mechanism to allow the model to focus on
relevant expressions in such context. Shimaoka
et al. (2017) summarizes many neural architec-
tures for FETC task. These models ignore the out-
of-context noise, that is, they assume that all labels
obtained via distant supervision are “correct” and
appropriate for every context in the training cor-
pus. In our paper, a simple yet effective variant of
cross entropy loss function is proposed to handle
the problem of out-of-context noise.

Ren et al. (2016a) have proposed AFET, an
FETC system, that separates the loss function for
clean and noisy entity mentions and uses label-
label correlation information obtained by given
data in its parametric loss function. Considering
the noise reduction aspects for FETC systems, Ren
et al. (2016b) introduced a method called LNR to
reduce label noise without data loss, leading to
significant performance gains on both the evalu-
ation dataset of FIGER(GOLD) and OntoNotes.
Although these works consider both out-of-context
noise and overly-specific noise, they rely on hand-
crafted features which become an impediment to
further improvement of the model performance.
For LNR, because the noise reduction step is sep-
arated from the FETC model, the inevitable errors
introduced by the noise reduction will be propa-
gated into the FETC model which is undesirable.
In our FETC system, we handle the problem in-
duced from irrelevant noise and overly-specific
noise seamlessly inside the model and avoid the
usage of hand-crafted features.

Most recently, following the idea from AFET,
Abhishek et al. (2017) proposed a simple neu-
ral network model which incorporates noisy la-
bel information using a variant of non-parametric
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hinge loss function and gain great performance
improvement on FIGER(GOLD). However, their
work overlooks the effect of overly-specific noise,
treating each type label equally and independently
when learning the classifiers and ignores possible
correlations among types.

Hierarchical Loss Function: Due to the intrin-
sic type hierarchy existing in the task of FETC,
it is natural to adopt the idea of hierarchical loss
function to adjust the penalties for FETC mistakes
depending on how far they are in the hierarchy.
The penalty for predicting person instead of ath-
lete should less than the penalty for predicting or-
ganization. To the best of our knowledge, the first
use of a hierarchical loss function was originally
introduced in the context of document categoriza-
tion with support vector machines (Cai and Hof-
mann, 2004). However, that work assumed that
weights to control the hierarchical loss would be
solicited from domain experts, which is inappli-
cable for FETC. Instead, we propose a method
called hierarchical loss normalization which can
overcome the above limitations and be incorpo-
rated with cross entropy loss used in our neural
architecture.

Table 1 provides a summary comparison of our
work against the previous state-of-the-art in fine
grained entity typing.

3 Background and Problem

Our task is to automatically reveal the type infor-
mation for entity mentions in context. The input
is a knowledge graph ¥ with schema )y, whose
types are organized into a type hierarchy )/, and an
automatically labeled training corpus D obtained
by distant supervision with ). The output is a
type-path in Y for each named entity mentioned
in a test sentence from a corpus D;.

More precisely, a labeled corpus for entity type
classification consists of a set of extracted entity
mentions {m;}~_ (i.e., token spans representing
entities in text), the context (e.g., sentence, para-
graph) of each mention {¢;}Y, and the candidate



type sets {; } Y| automatically generated for each
mention.

We represent the training corpus using a set of
mention-based triples D = {(m;, c;, Vi) }Y.,.

If ); is free of out-of-context noise, the type la-
bels for each m; should form a single type-path in
Y;. However, ); may contain type-paths that are
irrelevant to m; in ¢; if there exists out-of-context
noise.

We denote the type set including all terminal
types for each type-path as the target type set V.
In the example type hierarchy shown in Figure 1,
if ); contains types person, athlete, coach, )!
should contain athlete, coach, but not person.
In order to understand the trade-off between the
effect of out-of-context noise and the size of the
training set, we report on experiments with two
different training sets: D fjjzereq only with triples
whose ); form a single type-path in D, and D,y
with all triples.

We formulate fine-grained entity classification
problem as follows:

Definition 1 Given an entity mention m;
(wp, ..., we) (p,t € [1,T],p < t) and its context
¢i = (wi,...,wr) where T is the context length,
our task is to predict its most specific type 1; de-
pending on the context.

In practice, ¢; is generated by truncating the
original context with words beyond the context
window size C' both to the left and to the right of
m;. Specifically, we compute a probability distri-
bution over all the K = |)| types in the target type
hierarchy ). The type with the highest probability
is classified as the predicted type ¢; which is the
terminal type of the predicted type-path.

4 Methodology

This section details our Neural Fine-Grained En-
tity Type Classification (NFETC) model.

4.1 Input Representation

As stated in Section 3, the input is an entity men-
tion m; with its context ¢;. First, we transform
each word in the context ¢; into a real-valued vec-
tor to provide lexical-semantic features. Given a
word embedding matrix W*"? of size d,, x |V,
where V is the input vocabulary and d,, is the size
of word embedding, we map every w; to a column
vector wl‘-l € Rw,

To additionally capture information about the
relationship to the target entities, we incorporate
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word position embeddings (Zeng et al., 2014) to
reflect relative distances between the ¢-th word
to the entity mention. Every relative distance is
mapped to a randomly initialized position vector
in R%, where dp, is the size of position embedding.
For a given word, we obtain the position vector

P The overall embedding for the i-th word is

B = (W), (w!) 1],

Wy

A\%

4.2 Context Representation

For the context ¢;, we want to apply a non-linear
transformation to the vector representation of ¢; to
derive a context feature vector h; = f(c¢;;6) given
a set of parameters 6. In this paper, we adopt bidi-
rectional LSTM with d hidden units as f(c;;6).
The network contains two sub-networks for the
forward pass and the backward pass respectively.
Here, we use element-wise sum to combine the
forward and backward pass outputs. The output of
the i-th word in shown in the following equation:
hi = b & h] ()
Following Zhou et al. (2016), we employ
word-level attention mechanism, which makes our
model able to softly select the most informative
words during training. Let H be a matrix con-
sisting of output vectors [hq, ha, ..., hy] that the
LSTM produced. The context representation 7 is
formed by a weighted sum of these output vectors:

G = tanh(H) ()
a = softmaz(w' G) 3)
Te = Ha' 4)

where H € R%*T w is a trained parameter vec-
tor. The dimension of w, v, 7. are dg, T', ds respec-
tively.

4.3 Mention Representation

Averaging encoder: Given the entity mention
mi = (Wp,...,w;) and its length L =t — p + 1,
the averaging encoder computes the average word
embedding of the words in m;. Formally, the av-
eraging representation r, of the mention is com-
puted as follows:

t
1 d
ry = LZZ_;W" (5)
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Figure 2: The architecture of the NFETC model.

This relatively simple method for composing
the mention representation is motivated by it being
less prone to overfitting (Shimaoka et al., 2017).

LSTM encoder: In order to capture more se-
mantic information from the mentions, we add
one token before and another after the target en-
tity to the mention. The extended mention can be
represented as m; (Wp—1, Wp, - . ., Wi, Wit 1).
The standard LSTM is applied to the mention se-
quence from left to right and produces the outputs
hp—1,...,hir1. The last output hsyq then serves
as the LSTM representation 7; of the mention.

4.4 Optimization

We concatenate context representation and two
mention representations together to form the over-
all feature representation of the input R
[FeyTa, 7). Then we use a softmax classifier to
predict ¢; from a discrete set of classes for a en-
tity mention m and its context ¢ with R as input:

P(ylm

Y=

,¢) = softmax(W R + b)

ar gmgxzﬁ(ylm, c)

(6)
(7)

where W can be treated as the learned type em-
beddings and b is the bias.
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The traditional cross-entropy loss function is
represented as follows:

Zlog (P(yilmi, 1)) + A|O]* (8

where y; is the only element in )} and
(mi, ci, Vi) € Dyiltered- A is an L2 regulariza-
tion hyperparameter and © denotes all parameters
of the considered model.

In order to handle data with out-of-context noise
(in other words, with multiple labeled types) and
take full advantage of them, we introduce a simple
yet effective variant of the cross-entropy loss:

——Zlog yz ’mucz))"i_)‘H@‘P (9)

where yf = argmax,cy p(y|lmi,c;) and
(mj, ci, Vi) € Draw. With this loss function, we
assume that the type with the highest probability
among V! during training as the correct type. If
there is only one element in )}, this loss function
is equivalent to the cross-entropy loss function.
Wherever there are multiple elements, it can filter
the less probable types based on the local context

automatically.



4.5 Hierarchical Loss Normalization

Since the fine-grained types tend to form a for-
est of type hierarchies, it is unreasonable to treat
every type equally. Intuitively, it is better to pre-
dict an ancestor type of the true type than some
other unrelated type. For instance, if one exam-
ple is labeled as athlete, it is reasonable to predict
its type as person. However, predicting other high
level types like location or organization would be
inappropriate. In other words, we want the loss
function to penalize less the cases where types are
related. Based on the above idea, we adjust the
estimated probability as follows:

p*(@lm, ) = p(§lm,c) + B Y _ p(tim,c) (10)
tel

where I' is the set of ancestor types along the
type-path of g, 5 is a hyperparameter to tune the
penalty. Afterwards, we re-normalize it back to
a probability distribution, a process which we de-
note as hierarchical loss normalization.

As discussed in Section 1, there exists overly-
specific noise in the automatically labeled training
sets which hurt the model performance severely.
With hierarchical loss normalization, the model
will get less penalty when it predicts the ac-
tual type for one example with overly-specific
noise. Hence, it can alleviate the negative effect
of overly-specific noise effectively. Generally, hi-
erarchical loss normalization can make the model
somewhat understand the given type hierarchy and
learn to detect those overly-specific cases. Dur-
ing classification, it will make the models prefer
generic types unless there is a strong indicator for
a more specific type in the context.

4.6 Regularization

Dropout, proposed by Hinton et al. (2012), pre-
vents co-adaptation of hidden units by randomly
omitting feature detectors from the network dur-
ing forward propagation. We employ both input
and output dropout on LSTM layers. In addition,
we constrain L2-norms for the weight vectors as
shown in Equations 8, 9 and use early stopping to
decide when to stop training.

S Experiments

This section reports an experimental evaluation of
our NFETC approach using the previous state-of-
the-art as baselines.
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FIGER(GOLD) | OntoNotes
# types 113 89
# raw training mentions 2009898 253241
# raw testing mentions 563 8963
% filtered training mentions | 64.46 73.13
% filtered testing mentions 88.28 94.00
Max hierarchy depth 2 3

Table 2: Statistics of the datasets

5.1 Datasets

We evaluate the proposed model on two standard
and publicly available datasets, provided in a pre-
processed tokenized format by Shimaoka et al.
(2017). Table 2 shows statistics about the bench-
marks. The details are as follows:

¢ FIGER(GOLD): The training data consists
of Wikipedia sentences and was automati-
cally generated with distant supervision, by
mapping Wikipedia identifiers to Freebase
ones. The test data, mainly consisting of
sentences from news reports, was manually
annotated as described by Ling and Weld
(2012).

OntoNotes: The OntoNotes dataset con-
sists of sentences from newswire docu-
ments present in the OntoNotes text cor-
pus (Weischedel et al., 2013). DBpedia spot-
light (Daiber et al., 2013) was used to auto-
matically link entity mention in sentences to
Freebase. Manually annotated test data was
shared by Gillick et al. (2014).

Because the type hierarchy can be somewhat
understood by our proposed model, the quality
of the type hierarchy can also be a key factor to
the performance of our model. We find that the
type hierarchy for FIGER(GOLD) dataset follow-
ing Freebase has some flaws. For example, soft-
ware is not a subtype of product and government
is not a subtype of organization. Following the
proposed type hierarchy of Ling and Weld (2012),
we refine the Freebase-based type hierarchy. The
process is a one-to-one mapping for types in the
original dataset and we didn’t add or drop any type
or sentence in the original dataset. As a result, we
can directly compare the results of our proposed
model with or without this refinement.

Aside from the advantages brought by adopt-
ing the single label classification setting, we can
see one disadvantage of this setting based on Ta-
ble 2. That is, the performance upper bounds of



our proposed model are no longer 100%: for ex-
ample, the best strict accuracy we can get in this
setting is 88.28% for FIGER(GOLD). However,
as the strict accuracy of state-of-the-art methods
are still nowhere near 80% (Table 3), the evalua-
tion we perform is still informative.

5.2 Baselines

We compared the proposed model with state-of-
the-art FETC systems I: (1) Attentive (Shimaoka
et al., 2017); (2) AFET (Ren et al., 2016a); (3)
LNR+FIGER (Ren et al., 2016b); (4) AAA (Ab-
hishek et al., 2017).

We compare these baselines with variants of
our proposed model: (1) NFETC(f): basic neu-
ral model trained on D jj4ercq (recall Section 4.4);
(2) NFETC-hier(f): neural model with hierarich-
cal loss normalization trained on D yjtereq. (3)
NFETC(r): neural model with proposed vari-
ant of cross-entropy loss trained on D,qq; (4)
NFETC-hier(r): neural model with proposed
variant of cross-entropy loss and hierarchical loss
normalization trained on D4y, .

5.3 Experimental Setup

For evaluation metrics, we adopt the same crite-
ria as Ling and Weld (2012), that is, we evaluate
the model performance by strict accuracy, loose
macro, and loose micro F-scores. These measures
are widely used in existing FETC systems (Shi-
maoka et al., 2017; Ren et al., 2016b,a; Abhishek
etal., 2017).

We use pre-trained word embeddings that were
not updated during training to help the model gen-
eralize to words not appearing in the training set.
For this purpose, we used the freely available
300-dimensional cased word embedding trained
on 840 billion tokens from the Common Crawl
supplied by Pennington et al. (2014). For both
datasets, we randomly sampled 10% of the test set
as a development set, on which we do the hyper-
parameters tuning. The remaining 90% is used for
final evaluation. We run each model with the well-
tuned hyperparameter setting five times and report
their average strict accuracy, macro F1 and micro
F1 on the test set. The proposed model was imple-
mented using the TensorFlow framework. 2

I'The results of the baselines are all as reported in their
corresponding papers.

The code to replicate the work is available at: https:
//github.com/billy-inn/NFETC
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Parameter | FIGER(GOLD) | OntoNotes
Ir 0.0002 0.0002
d, 85 20
ds 180 440
i 0.7 0.5
Do 0.9 0.5
A 0.0 0.0001
15} 0.4 0.3

Table 4: Hyperparameter Settings

5.4 Hyperparameter Setting

In this paper, we search different hyperparameter
settings for FIGER(GOLD) and OntoNotes sepa-
rately, considering the differences between the two
datasets. The hyperparameters include the learn-
ing rate {r for Adam Optimizer, size of word po-
sition embeddings (WPE) d,,, state size for LSTM
layers ds, input dropout keep probability p; and
output dropout keep probability p, for LSTM lay-
ers 3, L2 regularization parameter \ and parame-
ter to tune hierarchical loss normalization 5. The
values of these hyperparameters, obtained by eval-
uating the model performance on the development
set, for each dataset can be found in Table 4.

5.5 Performance comparison and analysis

Table 3 compares our models with other state-
of-the-art FETC systems on FIGER(GOLD) and
OntoNotes. The proposed model performs better
than the existing FETC systems, consistently on
both datasets. This indicates benefits of the pro-
posed representation scheme, loss function and hi-
erarchical loss normalization.

Discussion about Out-of-context Noise: For
dataset FIGER(GOLD), the performance of our
model with the proposed variant of cross-entropy
loss trained on D,.,,, is significantly better than the
basic neural model trained on D fjjsereq, SUggESE-
ing that the proposed variant of the cross-entropy
loss function can make use of the data with out-
of-context noise effectively. On the other hand,
the improvement introduced by our proposed vari-
ant of cross-entropy loss is not as significant for
the OntoNotes benchmark. This may be caused
by the fact that OntoNotes is much smaller than
FIGER(GOLD) and proportion of examples with-
out out-of-context noise are also higher, as shown
in Table 2.

3Following TensorFlow terminology.



FIGER(GOLD) OntoNotes
Model Strict Acc.  Macro F1 ~ Micro F1 Strict Acc.  Macro F1 ~ Micro F1
Attentive 59.68 78.97 75.36 51.74 70.98 64.91
AFET 53.3 69.3 66.4 55.1 71.1 64.7
LNR+FIGER 59.9 76.3 74.9 57.2 71.5 66.1
AAA 65.8 81.2 77.4 52.2 68.5 63.3
NFETC(f) 57.9+1.3 784408 75.0+0.7 54.4 +0.3 71.54+04 64.94+0.3
NFETC-hier(f) 68.0£0.8 81.44+08 77.9+0.7 59.6 & 0.2 76.1+0.2 69.74+0.2
NFETC(r) 56.2 + 1.0 7.2+£09 743+1.1 54.8 +0.4 71.8+£0.4 65.0+04
NFETC-hier(r) 689+06 81.9+0.7 79.0+0.7 602+02 764+01 702402

Table 3: Strict Accuracy, Macro F1 and Micro F1 for the models tested on the FIGER(GOLD) and OntoNotes

datasets.

Test Sentence Ground Truth

S1: Hopkins said four fellow elections is curious , considering the ... Person

S2: ...for WiFi communications across all the SD cards. Product

S3: A handful of professors in the UW Department of Chemistry ... Educational Institution
S4: Work needs to be done and, in Washington state, . .. Province

S5: ASC Director Melvin Taing said that because the commission is ... | Organization

Table 5: Examples of test sentences in FIGER(GOLD) where the entity mentions are marked as bold italics.

Investigations on Overly-Specific Noise: With
hierarchical loss normalization, the performance
of our models are consistently better no matter
whether trained on D;qy, Or Dyjjgereq On both
datasets, demonstrating the effectiveness of this
hierarchical loss normalization and showing that
overly-specific noise has a potentially significant
influence on the performance of FETC systems.

5.6 T-SNE Visualization of Type Embeddings

By visualizing the learned type embeddings (Fig-
ure 3), we can observe that the parent types are
mixed with their subtypes and forms clear distinct
clusters without hierarchical loss normalization,
making it hard for the model to distinguish sub-
types like actor or athlete from their parent types
person. This also biases the model towards the
most popular subtype. While the parent types tend
to cluster together and the general pattern is more
complicated with hierarchical loss normalization.
Although it’s not as easy to interpret, it hints that
our model can learn rather subtle intricacies and
correlations among types latent in the data with the
help of hierarchical loss normalization, instead of
sticking to a pre-defined hierarchy.

5.7 Error Analysis on FIGER(GOLD)

Since there are only 563 sentences for testing in
FIGER(GOLD), we look into the predictions for
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all the test examples of all variants of our model.
Table 5 shows 5 examples of test sentence. With-
out hierarchical loss normalization, our model will
make too aggressive predictions for S1 with Politi-
cian and for S2 with Software. This kind of mis-
takes are very common and can be effectively re-
duced by introducing hierarchical loss normaliza-
tion leading to significant improvements on the
model performance. Using the changed loss func-
tion to handle multi-label (noisy) training data can
help the model distinguish ambiguous cases. For
example, our model trained on D yjjzereq Will mis-
classify S5 as Title, while the model trained on
D can make the correct prediction.

However, there are still some errors that can’t
be fixed with our model. For example, our model
cannot make correct predictions for S3 and S4 due
to the fact that our model doesn’t know that UW is
an abbreviation of University of Washington and
Washington state is the name of a province. In
addition, the influence of overly-specific noise can
only be alleviated but not eliminated. Sometimes,
our model will still make too aggressive or conser-
vative predictions. Also, mixing up very ambigu-
ous entity names is inevitable in this task.
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Figure 3: T-SNE visualization of the type embeddings
learned from FIGER(GOLD) dataset where subtypes
share the same color as their parent type. The seven
parent types are shown in the black boxes. The be-
low sub-figure uses the hierarchical loss normalization,
while the above not.

6 Conclusion and Further Work

In this paper, we studied two kinds of noise,
namely out-of-context noise and overly-specific
noise, for noisy type labels and investigate their
effects on FETC systems. We proposed a neural
network based model which jointly learns repre-
sentations for entity mentions and their context. A
variant of cross-entropy loss function was used to
handle out-of-context noise. Hierarchical loss nor-
malization was introduced into our model to alle-
viate the effect of overly-specific noise. Experi-
mental results on two publicly available datasets
demonstrate that the proposed model is robust to
these two kind of noise and outperforms previous
state-of-the-art methods significantly.

More work can be done to further develop hi-
erarchical loss normalization since currently it’s
very simple. Considering type information is valu-
able in various NLP tasks, we can incorporate re-
sults produced by our FETC system to other tasks,
such as relation extraction, to check our model’s
effectiveness and help improve other tasks’ per-
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formance. In addition, tasks like relation extrac-
tion are complementary to the task of FETC and
therefore may have potentials to be digged to help
improve the performance of our system in return.
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Abstract

Semi-supervised bootstrapping techniques for
relationship extraction from text iteratively ex-
pand a set of initial seed instances. Due to the
lack of labeled data, a key challenge in boot-
strapping is semantic drift: if a false positive
instance is added during an iteration, then all
following iterations are contaminated. We in-
troduce BREX, a new bootstrapping method
that protects against such contamination by
highly effective confidence assessment. This
is achieved by using entity and template seeds
jointly (as opposed to just one as in previous
work), by expanding entities and templates in
parallel and in a mutually constraining fash-
ion in each iteration and by introducing higher-
quality similarity measures for templates. Ex-
perimental results show that BREX achieves
an F that is 0.13 (0.87 vs. 0.74) better than
the state of the art for four relationships.

1 Introduction

Traditional semi-supervised bootstrapping rela-
tion extractors (REs) such as BREDS (Batista
et al., 2015), SnowBall (Agichtein and Gravano,
2000) and DIPRE (Brin, 1998) require an initial
set of seed entity pairs for the target binary rela-
tion. They find occurrences of positive seed en-
tity pairs in the corpus, which are converted into
extraction patterns, i.e., extractors, where we de-
fine an extractor as a cluster of instances generated
from the corpus. The initial seed entity pair set is
expanded with the relationship entity pairs newly
extracted by the extractors from the text iteratively.
The augmented set is then used to extract new re-
lationships until a stopping criterion is met.

Due to lack of sufficient labeled data, rule-
based systems dominate commercial use (Chiti-
cariu et al.,, 2013). Rules are typically defined
by creating patterns around the entities (entity ex-
traction) or entity pairs (relation extraction). Re-
cently, supervised machine learning, especially

deep learning techniques (Gupta et al., 2015;
Nguyen and Grishman, 2015; Vu et al., 2016a,b;
Gupta et al., 2016), have shown promising results
in entity and relation extraction; however, they
need sufficient hand-labeled data to train models,
which can be costly and time consuming for web-
scale extractions. Bootstrapping machine-learned
rules can make extractions easier on large corpora.
Thus, open information extraction systems (Carl-
son et al., 2010; Fader et al., 2011; Mausam et al.,
2012; Mesquita et al., 2013; Angeli et al., 2015)
have recently been popular for domain specific or
independent pattern learning.

Hearst (1992) used hand written rules to gen-
erate more rules to extract hypernym-hyponym
pairs, without distributional similarity. For en-
tity extraction, Riloff (1996) used seed entities to
generate extractors with heuristic rules and scored
them by counting positive extractions. Prior work
(Lin et al., 2003; Gupta et al., 2014) investigated
different extractor scoring measures. Gupta and
Manning (2014) improved scores by introducing
expected number of negative entities.

Brin (1998) developed the bootstrapping rela-
tion extraction system DIPRE that generates ex-
tractors by clustering contexts based on string
matching. SnowBall (Agichtein and Gravano,
2000) is inspired by DIPRE but computes a TF-
IDF representation of each context. BREDS
(Batista et al., 2015) uses word embeddings
(Mikolov et al., 2013) to bootstrap relationships.

Related work investigated adapting extractor
scoring measures in bootstrapping entity extrac-
tion with either entities or templates (Table 1) as
seeds (Table 2). The state-of-the-art relation ex-
tractors bootstrap with only seed entity pairs and
suffer due to a surplus of unknown extractions
and the lack of labeled data, leading to low con-
fidence extractors. This in turn leads to to low
confidence in the system output. Prior RE sys-
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BREE Bootstrapping Relation Extractor with Entity pair

BRET Bootstrapping Relation Extractor with Template
BRE] Bootstrapping Relation Extractor in Joint learning
type a named entity type, e.g., person

typed entity  a typed entity, e.g., <“Obama”,person>

entity pair  a pair of two typed entities

template a triple of vectors (v_1, Uy, ¥1) and an entity pair
instance entity pair and template (types must be the same)
v instance set extracted from corpus

7 a member of v, i.e., an instance

z(7) the entity pair of instance ¢

O] the template of instance ¢

Gy a set of positive seed entity pairs

Gn a set of negative seed entity pairs

6, a set of positive seed templates

&, a set of negative seed templates

g < Gp,Gp, Gy, &, >

ki number of iterations

Acat cluster of instances (extractor)

cat category of extractor \

ANNHC Non-Noisy-High-Confidence extractor (True Positive)
ANNLC Non-Noisy-Low-Confidence extractor (True Negative)
ANHC Noisy-High-Confidence extractor (False Positive)
ANLC Noisy-Low-Confidence extractor (False Negative)

Table 1: Notation and definition of key terms

tems do not focus on improving the extractors’
scores. In addition, SnowBall and BREDS used
a weighting scheme to incorporate the importance
of contexts around entities and compute a similar-
ity score that introduces additional parameters and
does not generalize well.

Contributions. (1) We propose a Joint Boot-
strapping Machine' (JBM), an alternative to the
entity-pair-centered bootstrapping for relation ex-
traction that can take advantage of both entity-pair
and template-centered methods to jointly learn
extractors consisting of instances due to the oc-
currences of both entity pair and template seeds.
It scales up the number of positive extractions
for non-noisy extractors and boosts their confi-
dence scores. We focus on improving the scores
for non-noisy-low-confidence extractors, resulting
in higher recall. The relation extractors boot-
strapped with entity pair, template and joint seeds
are named as BREE, BRET and BREJ (Table 1),
respectively.

(2) Prior work on embedding-based con-
text comparison has assumed that relations
have consistent syntactic expression and has
mainly addressed synonymy by using embeddings
(e.g.,”“acquired” — “bought”). In reality, there is
large variation in the syntax of how relations are
expressed, e.g., “MSFT to acquire NOK for $8B”

! github.com/pgcool/Joint-Bootstrapping-Machines

27

vs. “MSFT earnings hurt by NOK acquisition”.
We introduce cross-context similarities that com-
pare all parts of the context (e.g., “to acquire” and
“acquisition”) and show that these perform better
(in terms of recall) than measures assuming con-
sistent syntactic expression of relations.

(3) Experimental results demonstrate a 13%
gain in F'1 score on average for four relationships
and suggest eliminating four parameters, com-
pared to the state-of-the-art method.

The motivation and benefits of the proposed
JBM for relation extraction is discussed in depth
in section 2.3. The method is applicable for both
entity and relation extraction tasks. However, in
context of relation extraction, we call it BREJ.

2 Method

2.1 Notation and definitions

We first introduce the notation and terms (Table 1).

Given a relationship like “x acquires y”, the
task is to extract pairs of entities from a corpus for
which the relationship is true. We assume that the
arguments of the relationship are typed, e.g., x and
y are organizations. We run a named entity tagger
in preprocessing, so that the types of all candidate
entities are given. The objects the bootstrapping
algorithm generally handles are therefore fyped
entities (an entity associated with a type).

For a particular sentence in a corpus that states
that the relationship (e.g., “acquires”) holds be-
tween x and ¥, a template consists of three vectors
that represent the context of x and y. ©_; repre-
sents the context before x, ¥ the context between
x and y and ¥ the context after y. These vectors
are simply sums of the embeddings of the corre-
sponding words. A template is “typed”, i.e., in
addition to the three vectors it specifies the types
of the two entities. An instance joins an entity pair
and a template. The types of entity pair and tem-
plate must be the same.

The first step of bootstrapping is to extract a set
of instances from the input corpus. We refer to this
set as 7. We will use ¢ and j to refer to instances.
x(i) is the entity pair of instance 7 and g(i) is the
template of instance .

A required input to our algorithm are sets of
positive and negative seeds for either entity pairs
(Gp and G,,) or templates (&, and &) or both.
We define G to be a tuple of all four seed sets.

We run our bootstrapping algorithm for &;, iter-
ations where k; is a parameter.



A key notion is the similarity between two in-
stances. We will experiment with different sim-
ilarity measures. The baseline is (Batista et al.,
2015)’s measure given in Figure 4, first line: the
similarity of two instances is given as a weighted
sum of the dot products of their before contexts
(U_1), their between contexts (vp) and their after
contexts (U1) where the weights w,, are parame-
ters. We give this definition for instances, but it
also applies to templates since only the context
vectors of an instance are used, not the entities.

The similarity between an instance ¢ and a clus-
ter A of instances is defined as the maximum sim-
ilarity of ¢ with any member of the cluster; see
Figure 2, right, Eq. 5. Again, there is a straight-
forward extension to a cluster of templates: see
Figure 2, right, Eq. 6.

The extractors A can be categorized as follows:

Annac ={AeA| A= R Acnf(N,G) = Tens}

non—noisy (1)
ANNLCZ{)\EA|)\P—>%/\CHf(>\7g)<TC’ﬂf} (2)
Anrc = {A€ A A R A enf(X, G) = Tens}
Sk 3)
noisy
Anze = {Ae AA b R A onf(N,G) < Tens}  (4)

where fR is the relation to be bootstrapped. The
Acat 18 @ member of A.,;. For instance, a Ayn Lo
is called as a non-noisy-low-confidence extractor if
it represents the target relation (i.e., A — R), how-
ever with the confidence below a certain threshold
(Tenys)- Extractors of types Ay ypc and Ay o are
desirable, those of types Axypgc and Aynpc un-
desirable within bootstrapping.

2.2 The Bootstrapping Machines: BREX

To describe BREX (Figure 1) in its most general
form, we use the term item to refer to an entity
pair, a template or both.

The input to BREX (Figure 2, left, line 01) is
a set v of instances extracted from a corpus and
Geed» @ structure consisting of one set of positive
and one set of negative seed items. Gyeq (line 02)
collects the items that BREX extracts in several it-
erations. In each of k; iterations (line 03), BREX
first initializes the cache G, (line 04); this cache
collects the items that are extracted in this itera-
tion. The design of the algorithm balances ele-
ments that ensure high recall with elements that
ensure high precision.

High recall is achieved by starting with the
seeds and making three “hops” that consecutively
consider order-1, order-2 and order-3 neighbors
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Identify positives, negatives, unknowns ﬁ)Cozmpute Extractors’ Confidence
|_Hop-

Hop-3 Output
Instances

(1)
Find
Occurr
-ences

=

cluster |:

(2
" | Generate
|| Extractors

=

cluster

Candidate
Extractors A Instances

Augment Initial Seed sets with Output Instances in Geache

Seed Occurrences ©

Figure 1: Joint Bootstrapping Machine. The red and
blue filled circles/rings are the instances generated
due to seed entity pairs and templates, respectively.
Each dashed rectangular box represents a cluster of in-
stances. Numbers indicate the flow. Follow the nota-
tions from Table 1 and Figure 2.

of the seeds. On line 05, we make the first hop:
all instances that are similar to a seed are col-
lected where “similarity” is defined differently for
different BREX configurations (see below). The
collected instances are then clustered, similar to
work on bootstrapping by Agichtein and Gravano
(2000) and Batista et al. (2015). On line 06, we
make the second hop: all instances that are within
T«m Of @ hop-1 instance are added; each such in-
stance is only added to one cluster, the closest one;
see definition of u: Figure 2, Eq. 8. On line 07, we
make the third hop: we include all instances that
are within 7, of a hop-2 instance; see definition
of v: Figure 2, Eq. 7. In summary, every instance
that can be reached by three hops from a seed is
being considered at this point. A cluster of hop-2
instances is named as extractor.

High precision is achieved by imposing, on line
08, a stringent check on each instance before its
information is added to the cache. The core func-
tion of this check is given in Figure 2, Eq. 9. This
definition is a soft version of the following hard
max, which is easier to explain:

cnf(i, A, g) ~ max{)\eMiew()\)} cnf(i, )\, Q’)

We are looking for a cluster A in A that li-
censes the extraction of ¢ with high confidence.
enf(i, A\, G) (Figure 2, Eq. 10), the confidence of
a single cluster (i.e., extractor) A for an instance,
is defined as the product of the overall reliability of
A (which is independent of ) and the similarity of
i to A, the second factor in Eq. 10, i.e., sim(i, \).
This factor sim(, A) prevents an extraction by a
cluster whose members are all distant from the in-
stance — even if the cluster itself is highly reliable.



Algorithm: BREX sim(i,\) = maxyeysim(i,i) 35
sim(z, &) maxeesim(i, t) (6)

01 INPUT: 7, Geeea P(N) {i € y|sim(i, \) = Tgm} (7
02 Gyiea = gse‘ed w(0,0) = {ie~|sim(i,0) =d A
03 for k; iterations: d = maxsim(i, 0) = Tm} (8)
04 gcache = @ €0 ’ o
05 © := [J({i € y|match(i, Gyieua)) enf(i,A,G) = 1] [(1—cnf(i, \,G)) ©)
06 A= {u(0,0)|0 € B} {AeAliep(N)}
07 foreachie Jyep ¥(N): enf(i,\,G) = cnf(A, G)sim(i, A 10
08 i check(s, . Gun) (i, A\, G) (A G) (71) (10)
09 add(7, Geacne) cnf(A, G) = Ny NG ~Noogr (D
10 gyield U= gcache L+ n Ni (A.Gp) b N+(A.Gp)
11 OUTPUT: Gyiea, A No(A\,G) = [{ieMz(i) ¢ (GpuGn)}l (12

Figure 2: BREX algorithm (left) and definition of key concepts (right)

BREE BRET BREJ
Seed Type Entity pairs ‘ Templates ‘ Joint (Entity pairs + Templates)
(i) Ny (X G) [{ieNz(D)eG}] | |{iEX|sim(i, &) = Tum}| | [{iEX|2(D)EG | +|{iEN|sim(i, &) = Tim}|
(i1) (Wn, W) (1.0,0.0) (1.0,0.0) (1.0,0.0)
05 match(i, G) z(i) € Gp sim(%, Bp) = Tyim x(1) € Gp v sim(i, Bp) = Tym
08 check(i, A, G) || enf(i, A, G) =7ens | onf(i, A, G) = Tenr enf(i, A, G) = Tens A sim(i, Bp) = Toim
09 add(i, G) Gpu={z(i)} | &pu= {z(i)} Gpu= {x(i)}, &,u= {x(i)}

Figure 3: BREX configurations

The first factor in Eq. 10, i.e., cnf(), G), as-

sesses the reliability of a cluster A\: we compute
N+ ()"gn)
N+ ()‘7gp)
ber of instances in A that match a negative and pos-

itive gold seed, respectively; see Figure 3, line (i).
If this ratio is close to zero, then likely false pos-
itive extractions are few compared to likely true
positive extractions. For the simple version of the
algorithm (for which we set w, = 1, w, = 0),
this results in cnf(\, G) being close to 1 and the
reliability measure it not discounted. On the other
hand, if ]]\\E Eigz) is larger, meaning that the rela-
tive number of likely false positive extractions is
high, then cnf(\, G) shrinks towards 0, resulting
in progressive discounting of cnf(\, G) and lead-
ing to non-noisy-low-confidence extractor, partic-
ularly for a reliable A\. Due to lack of labeled
data, the scoring mechanism cannot distinguish
between noisy and non-noisy extractors. There-
fore, an extractor is judged by its ability to extract
more positive and less negative extractions. Note
that we carefully designed this precision compo-
nent to give good assessments while at the same

the ratio

, 1.e., the ratio between the num-
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time making maximum use of the available seeds.
The reliability statistics are computed on A, i.e.,
on hop-2 instances (not on hop-3 instances). The
ratio ]J\\[fi((igzg is computed on instances that di-
rectly match a gold seed — this is the most reliable

information we have available.

After all instances have been checked (line 08)
and (if they passed muster) added to the cache
(line 09), the inner loop ends and the cache is
merged into the yield (line 10). Then a new loop
(lines 03-10) of hop-1, hop-2 and hop-3 exten-
sions and cluster reliability tests starts.

Thus, the algorithm consists of k; iterations.
There is a tradeoff here between 7, and k;;. We
will give two extreme examples, assuming that
we want to extract a fixed number of m instances
where m is given. We can achieve this goal either
by setting k;=1 and choosing a small 7,, which
will result in very large hops. Or we can achieve
this goal by setting 7, to a large value and run-
ning the algorithm for a larger number of k;.. The
flexibility that the two hyperparameters k;, and 7 g,
afford is important for good performance.



simMpaien (4, §) = Zpe{—l,o,l} wpVp (1) Tp(J) simee?™ (4, ) = maxpe(—1,0,13 Up(4)Vo(j) 13)
simﬁg’“(z‘,j) = max (maXpE{—l,O,l} Tp(3) V0 (4), maXpe{— 1,0,1} Tp(4) 0 (Z)) (14)
simz™2(i, ) = max ((5-1(0) + 71 ()0 (5), (3-1() + 71(3) 7o ), (D)0 () ) (15)

Figure 4: Similarity measures. These definitions for instances equally apply to templates since the definitions only
depend on the “template part” of an instance, i.e., its vectors. (value is O if types are different)

Seed Entity Pair: G’p = {<Google, DoubleClick>} (7,, = {<Google, Microsoft>}
Seed Templates: 6;): {[X] 's acquisition of [Y]} 671: {[X] competitor of [Y]}

J_/L Match Seeds in Instances

Matched Instances:
11: <Google> 's purchase of <DoubleClick> is intriguing.
12: <Google> s acquisition of <DoubleClick> is approved.
13: <Dynegy> 's purchase of <Enron> triggered a clause.
14: <Google> ‘s acquisition of <YouTube> was in its final stages.

J_/L Generate Extractor \
X (BRET)

Figure 5: Illustration of Scaling-up Positive Instances.
7: an instance in extractor, A. Y: YES and N: NO

11: 's purchase of

11:’s purchase of

11:’s purchase of

i 12: 's acquisition of

i |12: ’s acquisition of| |

i [12: 's acquisition of| |

13: ’s purchase of

11: 's purchase of

14: ’s acquisition of]

12: ’s acquisition of

I13: ’s purchase of | |

i 14: s acquisition of

Ni(\Gn) -2 N4 (M\Gn) -0 Ny(\Gn) _ 240 |
N+(AGp) 2 Ne(AGp) 4 P Ny(NGp) ~ 2+4 |
2.3 BREE, BRET and BRE] enf(N,G) =05 enf(\,G)=1.0 enf(X, G)=0.75 |

Positive: {1, 12}
Negative: {13, 14}

o gcache {1}

Positive: {I1, 12, 13, 14} Positive: {11, 12, 11, 12, I3, 14}
Negative: {13, 14}

The main contribution of this paper is that we
propose, as an alternative to entity-pair-centered
BREE (Batista et al., 2015), template-centered
BRET as well as BREJ (Figure 1), an instantiation
of BREX that can take advantage of both entity
pairs and templates. The differences and advan-
tages of BREJ over BREE and BRET are:

(1) Disjunctive Matching of Instances: The
first difference is realized in how the three algo-
rithms match instances with seeds (line 05 in Fig-
ure 3). BREE checks whether the entity pair of
an instance is one of the entity pair seeds, BRET
checks whether the template of an instance is one
of the template seeds and BREJ checks whether
the disjunction of the two is true. The disjunc-
tion facilitates a higher hit rate in matching in-
stances with seeds. The introduction of a few
handcrafted templates along with seed entity pairs
allows BREJ to leverage discriminative patterns
and learn similar ones via distributional semantics.
In Figure 1, the joint approach results in hybrid
extractors A that contain instances due to seed oc-
currences O of both entity pairs and templates.

(2) Hybrid Augmentation of Seeds: On line
09 in Figure 3, we see that the bootstrapping step is
defined in a straightforward fashion: the entity pair
of an instance is added for BREE, the template for
BRET and both for BREJ. Figure 1 demonstrates

@ Output Instances
Geache: {11,12,13,14)  Geaehe : {11, 12,13, 14}

Figure 6: An illustration of scaling positive extractions
and computing confidence for a non-noisy extractor
generated for acquired relation. The dashed rectangu-
lar box represents an extractor A\, where A (BREJ) is
hybrid with 6 instances. Text segments matched with
seed template are shown in italics. Unknowns (bold in
black) are considered as negatives. Gcqche 1S a set of
output instances where 7.,y = 0.70.

the hybrid augmentation of seeds via red and blue
rings of output instances.

(3) Scaling Up Positives in Extractors: As dis-
cussed in section 2.2, a good measure of the qual-
ity of an extractor is crucial and /N, the number
of instances in an extractor A that match a seed,
is an important component of that. For BREE and
BRET, the definition follows directly from the fact
that these are entity-pair and template-centered in-
stantiations of BREX, respectively. However, the
disjunctive matching of instances for an extrac-
tor with entity pair and template seeds in BREJ
(Figure 3 line “(i)” ) boosts the likelihood of find-
ing positive instances. In Figure 5, we demon-
strate computing the count of positive instances
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Relationship Seed Entity Pairs

Seed Templates

acquired {Adidas;Reebok } ,{ Google;DoubleClick}, {[X] acquire [Y]},{[X] acquisition [Y]},{[X] buy [Y]},
{Widnes;Warrington },{ Hewlett-Packard;Compaq } {[X] takeover [Y]},{[X] merger with [Y]}
founder-of {CNN;Ted Turner},{Facebook;Mark Zuckerberg}, {[X] founded by [Y]},{[X] co-founder [Y]},{[X] started by [Y]},
{Microsoft;Paul Allen},{ Amazon;Jeff Bezos}, {[X] founder of [Y]},{[X] owner of [Y]}
headquartered {Nokia;Espoo}, {Pfizer:New York}, {IX1 based in [Y1}.{[X] headquarters in [Y1}.{[X] head office in [Y1},
{United Nations;New York},{NATO;Brussels}, {[X] main office building in [Y]},{[X] campus branch in [Y]}
affiliation {Google;Marissa Mayer},{Xerox;Ursula Burns}, {[X] CEO [Y1},{[X] resign from [Y]},{[X] founded by [Y]},
{ Microsoft;Steve Ballmer},{Microsoft;Bill Gates}, {[X] worked for [Y]},{[X] chairman director [Y]}

Table 2: Seed Entity Pairs and Templates for each relation. [X] and [Y] are slots for entity type tags.

N4 (A, G) for an extractor A within the three sys-
tems. Observe that an instance ¢ in A can scale its
N4 (X, G) by a factor of maximum 2 in BREJ if ¢
is matched in both entity pair and template seeds.
The reliability cnf(\, G) (Eq. 11) of an extractor A
is based on the ratio %, therefore suggest-
ing that the scaling boosts its confidence.

In Figure 6, we demonstrate with an example
how the joint bootstrapping scales up the positive
instances for a non-noisy extractor A, resulting in
Ann e for BREJ compared to Ay nrc in BREE.

Due to unlabeled data, the instances not match-
ing in seeds are considered either to be ig-
nored/unknown Ny or negatives in the confidence
measure (Eq. 11). The former leads to high con-
fidences for noisy extractors by assigning high
scores, the latter to low confidences for non-noisy
extractors by penalizing them. For a simple ver-
sion of the algorithm in the illustration, we con-
sider them as negatives and set w,, = 1. Figure 6
shows the three extractors (\) generated and their
confidence scores in BREE, BRET and BREJ. Ob-
serve that the scaling up of positives in BREJ
due to BRET extractions (without w,,) discounts
cnf(A, G) relatively lower than BREE. The dis-
counting results in Ay g in BREJ and Ay nro
in BREE. The discounting in BRE] is adapted for
non-noisy extractors facilitated by BRET in gener-
ating mostly non-noisy extractors due to stringent
checks (Figure 3, line “(i)” and 05). Intuitively,
the intermixing of non-noisy extractors (i.e., hy-
brid) promotes the scaling and boosts recall.

2.4 Similarity Measures

The before (v_1) and after (7;) contexts around
the entities are highly sparse due to large varia-
tion in the syntax of how relations are expressed.
SnowBall, DIPRE and BREE assumed that the
between (7jy) context mostly defines the syntac-
tic expression for a relation and used weighted
mechanism on the three contextual similarities in
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| ORG-ORG  ORG-PER  ORG-LOC
58,500 75,600 95,900

count ‘

Table 3: Count of entity-type pairs in corpus

Parameter Description/ Search Optimal
Jv_1] maximum number of tokens in before context 2
|vol maximum number of tokens in between context 6
|v1] maximum number of tokens in after context 2
Tsim similarity threshold [0.6, 0.7, 0.8] 0.7
Tenf instance confidence thresholds [0.6, 0.7, 0.8] 0.7
Wy, weights to negative extractions [0.0, 0.5, 1.0, 2.0] 0.5
Wy weights to unknown extractions [0.0001, 0.00001] | 0.0001
kit number of bootstrapping epochs 3
dimemp dimension of embedding vector, V' 300
PMI PMI threshold in evaluation 0.5
Entity Pairs Ordered Pairs (OP) or Bisets (B.S) OP

Table 4: Hyperparameters in BREE, BRET and BREJ

pairs, simy,q¢cp, (Figure 4). They assigned higher
weights to the similarity in between (p = 0) con-
texts, that resulted in lower recall. We introduce
attentive (max) similarity across all contexts (for
example, ¥_1(i)9)(j)) to automatically capture
the large variation in the syntax of how relations
are expressed, without using any weights. We in-
vestigate asymmetric (Eq 13) and symmetric (Eq
14 and 15) similarity measures, and name them as
cross-context attentive (sim..) similarity.

3 Evaluation

3.1 Dataset and Experimental Setup

We re-run BREE (Batista et al., 2015) for base-
line with a set of 5.5 million news articles from
AFP and APW (Parker et al., 2011). We use pro-
cessed dataset of 1.2 million sentences (released
by BREE) containing at least two entities linked to
FreebaseEasy (Bast et al., 2014). We extract four
relationships: acquired (ORG-ORG), founder-
of (ORG-PER), headquartered (ORG-LOC) and
affiliation (ORG-PER) for Organization (ORG),
Person (PER) and Location (LOC) entity types.
We bootstrap relations in BREE, BRET and BRE]J,
each with 4 similarity measures using seed entity



Relationships | #out P R F1 || #out P R F1 | #out P R F1 | #out P R F1
baseline: BREE+sim,,qsc;, | configy: BREE+sima¥™ configs: BREE+sims¥™ | configy: BREE+sim:y™?
acquired 2687 0.88 0.48 0.62 || 5771 0.88 0.66 0.76 | 3471 0.88 0.55 0.68 | 3279 0.88 0.53 0.66
5 founder-of 628 098 0.70 0.82| 9553 086 0.95 0.89| 1532 094 0.84 0.89 | 1182 095 0.81 0.87
§ headquartered | 16786 0.62 0.80 0.69 || 21299 0.66 0.85 0.74 | 17301 0.70 0.83 0.76 | 9842 0.72 0.74 0.73
affiliation 20948 0.99 0.73 0.84 || 27424 097 0.78 0.87 | 36797 095 0.82 0.88 | 28416 0.97 0.78 0.87
avg 10262 0.86 0.68 0.74 || 16011 0.84 0.81 0.82 | 14475 0.87 0.76 0.80 | 10680 0.88 0.72 0.78
configs: BRET+simy;,4¢cn configg: BRET+sim¥™ config;: BRET+sim$¥™! configg: BRET+sim?3Y™?
acquired 4206 099 0.62 0.76 || 15666 090 0.85 0.87 | 18273 0.87 0.86 0.87 | 14319 092 0.84 0.87
E founder-of 920 097 0.77 0.86 || 43554 0.81 0.98 0.89 | 41978 0.81 0.99 0.89 | 46453 0.81 0.99 0.89
§ headquartered | 3065 0.98 0.55 0.72 || 39267 0.68 0.92 0.78 | 36374 0.71 091 0.80 | 56815 0.69 0.94 0.80
affiliation 20726 099 0.73 0.85 | 28822 0.99 0.79 0.88 | 44946 096 0.85 0.90 | 33938 0.97 0.81 0.89
avg 7229 098 0.67 0.80 || 31827 0.85 0.89 0.86 | 35393 0.84 0.90 0.86 | 37881 0.85 0.90 0.86
configy: BREJ+sim,qzch configjg: BREJ+sim®¥™ | configy;: BREJ+sim$y™! | configjs: BREJ+sims/™2
acquired 20186 0.82 0.87 0.84 | 35553 0.80 0.92 0.86 | 22975 0.86 0.89 0.87 | 22808 0.85 0.90 0.88
o founder-of | 45005 0.81 0.99 0.89 | 57710 0.81 1.00 0.90 | 50237 0.81 0.99 0.89 | 45374 0.82 0.99 0.90
% headquartered | 47010 0.64 0.93 0.76 || 66563 0.68 0.96 0.80 | 60495 0.68 0.94 0.79 | 57853 0.68 0.94 0.79
affiliation 40959 096 0.84 0.89 | 57301 0.94 0.88 091 | 55811 094 0.87 091 | 51638 0.94 0.87 0.90
avg 38290 0.81 091 0.85 | 54282 0.81 0.94 0.87 | 47380 0.82 0.92 0.87 | 44418 0.82 0.93 0.87

Table 5: Precision (P), Recall (R) and F'1 compared to the

state-of-the-art (baseline). #out: count of output in-

stances with cnf(é, A, G) > 0.5. avg: average. Bold and underline: Maximum due to BREJ and sim,, respectively.

pairs and templates (Table 2). See Tables 3, 4 and
5 for the count of candidates, hyperparameters and
different configurations, respectively.

Our evaluation is based on Bronzi et al. (2012)’s
framework to estimate precision and recall of
large-scale RE systems using FreebaseEasy (Bast
et al., 2014). Also following Bronzi et al. (2012),
we use Pointwise Mutual Information (PMI) (Tur-
ney, 2001) to evaluate our system automatically,
in addition to relying on an external knowledge
base. We consider only extracted relationship in-
stances with confidence scores cnf(i, A, G) equal
or above 0.5. We follow the same approach as
BREE (Batista et al., 2015) to detect the correct or-
der of entities in a relational triple, where we try to
identify the presence of passive voice using part-
of-speech (POS) tags and considering any form of
the verb to be, followed by a verb in the past tense
or past participle, and ending in the word ‘by’. We
use GloVe (Pennington et al., 2014) embeddings.

3.2 Results and Comparison with baseline

Table 5 shows the experimental results in the
three systems for the different relationships with
ordered entity pairs and similarity measures
(simypqtch, SiMee). Observe that BRET (configs)
is precision-oriented while BREJ (configg) recall-
oriented when compared to BREE (baseline). We
see the number of output instances #out are also
higher in BREJ, therefore the higher recall. The
BREIJ system in the different similarity configura-
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T | kit | #Hout P R F1
0.6 1 691 0.99 021 035
2 11288 0.85 0.79 0.81

0.7 1 610 1.0 0.19 0.32
2 7948 093 0.75 0.83

038 1 522 1.0 017 0.29
2 2969 090 0.51 0.65

Table 6: Iterations (k;;) Vs Scores with thresholds (7)
for relation acquired in BREJ. 7 refers to T, and 7.y,

T | #out P R Fl| 7 | #fout P R F1
m 60| 1785 91 39 55[.70 | 1222 94 31 47
2 80| 88 95 25 39.90| 626 96 .19 .32
5 60| 2995 89 .51 .65 .70 | 1859 .90 .40 .55
B 80| 1312 91 32 47| 90| 752 94 22 35
Z 6018271 81 .85 .83 | .70 | 14900 .84 .83 .83
Z 80| 8896 88 75 81| 90| 5158 93 .65 .77

Table 7: Comparative analysis using different thresh-

olds 7 to evaluate the extracted instances for acquired

tions outperforms the baseline BREE and BRET in
terms of F'1 score. On an average for the four rela-
tions, BREJ in configurations configg and config;o
results in F'1 that is 0.11 (0.85 vs 0.74) and 0.13
(0.87 vs 0.74) better than the baseline BREE.

We discover that sim.. improves #out and re-
call over simp,, correspondingly in all three sys-
tems. Observe that sim.. performs better with
BRET than BREE due to non-noisy extractors in
BRET. The results suggest an alternative to the
weighting scheme in sim,, and therefore, the
state-of-the-art (sim..) performance with the 3 pa-
rameters (w_1, wg and wy) ignored in bootstrap-



acquired Sfounder-of headquartered affiliation
BREX | E T J E T J E T J E T J
#hit |71 682 743 | 135 956 1042 | 715 3447 4023 | 603 14888 15052

Table 8: Disjunctive matching of Instances. #hit: the
count of instances matched to positive seeds in k;; = 1

Attributes | |A|  AIE AES ANE ANNE ANNLC AP AN | ANP
- BREE | 167 127 051 0.84 0.16 0.14 377 93.1 2.46
'% BRET | 17 3052 100 0.11 0.89 0.00 671.8  0.12 | 0.00
° BREJ | 555 416 074 071 0.29 0.03 3132 448 | 0.14
BREE 8 133 046 075 0.25 0.12 449 6005 | 13.37
BRET 5 179.0 1.00  0.00 1.00 0.00 3722 0.0 0.00
BREJ | 492 109.1 0.90 094 0.06 0.00 451.8 795 | 0.18
BREE | 655 184 0.60 097 0.03 0.02 46.3 82.7 1.78
BRET 7 365.7 1.00  0.00 1.00 0.00 848.6 0.0 0.00

BREJ | 1311 455 0.80 098 0.02 0.00 3241 775 | 024

BREE
BRET
BREJ

198
19
470

99.7
846.9
130.2

0.55
1.00
0.72

0.25
0.00
0.21

0.75
1.00
0.79

0.34
0.00
0.06

240.5
2137.0
567.6

1522
0.0
122.7

0.63
0.00
0.22

affiliation headquartered founder-of

Table 9: Analyzing the attributes of extractors A
learned for each relationship. Attributes are: number of
extractors (JA|), avg number of instances in A (AIE),
avg A score (AES), avg number of noisy A (ANE),
avg number of non-noisy A (ANNE), avg number of
ANnNLc below confidence 0.5 (ANNLC), avg number
of positives (AP) and negatives (AN), ratio of AN to
AP (ANP). The bold indicates comparison of BREE
and BREJ with simqtch. avg: average

ping. Observe that sim&:Y"" gives higher recall

than the two symmetric similarity measures.
Table 6 shows the performance of BREJ in dif-
ferent iterations trained with different similarity
Tsim and confidence 7.,s thresholds. Table 7
shows a comparative analysis of the three systems,
where we consider and evaluate the extracted rela-
tionship instances at different confidence scores.

3.3 Disjunctive Seed Matching of Instances

As discussed in section 2.3, BRE] facilitates dis-
junctive matching of instances (line 05 Figure 3)
with seed entity pairs and templates. Table 8
shows #hat in the three systems, where the higher
values of #hit in BREJ conform to the desired
property. Observe that some instances in BREJ
are found to be matched in both the seed types.

3.4 Deep Dive into Attributes of Extractors

We analyze the extractors A generated in BREE,
BRET and BRE]J for the 4 relations to demon-
strate the impact of joint bootstrapping. Table 9
shows the attributes of A. We manually annotate
the extractors as noisy and non-noisy. We compute
AN N LC and the lower values in BREJ compared
to BREE suggest fewer non-noisy extractors with
lower confidence in BREJ due to the scaled confi-

33

Relationships | #out P R F1
acquired 387 099 0.13 0.23

B founder-of 28 096 009 0.17
g headquartered 672 095 021 034
affiliation 17516 099 0.68 0.80

avg 4651 097 028 0.39
acquired 4031 1.00 0.61 0.76

E founder-of 920 097 0.77 0.86
é headquartered | 3522 098 0.59 0.73
affiliation 22062 099 0.74 0.85

avg 7634 099 0.68 0.80
acquired 12278 087 0.81 0.84

}3 founder-of 23727 0.80 0.99 0.89
g headquartered | 38737 0.61 091 0.73
affiliation 33203 098 0.81 0.89

avg 26986 0.82 0.88 0.84

Table 10: BREX+simy,ch:Scores when w,, ignored

dence scores. ANNE (higher), ANNLC (lower), AP
(higher) and AN (lower) collectively indicate that
BRET mostly generates NNHC extractors. AP and
AN indicate an average of N (A, G;) (line “ (i)”
Figure 3) for positive and negative seeds, respec-
tively for A € A in the three systems. Observe
the impact of scaling positive extractions (AP) in
BREJ that shrink N+:92) j e ANP. Tt facili-
+(AGp)

tates Ay n 7 to boost its confidence, i.e., ANy g
in BREJ suggested by AES that results in higher
#out and recall (Table 5, BREJ).

3.5 Weighting Negatives Vs Scaling Positives

As discussed, Table 5 shows the performance
of BREE, BRET and BREJ with the parameter
W, 0.5 in computing extractors’ confidence
enf(\, G)(Eq. 11). In other words, configg (Ta-
ble 5) is combination of both weighted negative
and scaled positive extractions. However, we also
investigate ignoring w,, (= 1.0) in order to demon-
strate the capability of BREJ with only scaling
positives and without weighting negatives. In
Table 10, observe that BREJ outperformed both
BREE and BRET for all the relationships due to
higher #out and recall. In addition, BREJ scores
are comparable to configg (Table 5) suggesting
that the scaling in BREJ is capable enough to re-
move the parameter w,,. However, the combina-
tion of both weighting negatives and scaling posi-
tives results in the state-of-the-art performance.

3.6 Qualitative Inspection of Extractors

Table 11 lists some of the non-noisy extrac-
tors (simplified) learned in different configura-
tions to illustrate boosting extractor confidence
enf(\, G). Since, an extractor A is a cluster of
instances, therefore to simplify, we show one in-



config;: BREE + simp,,¢ch enf(\, G) configs: BRET + simpatch enf(X, G) configy: BREJ + simya¢ch enf(\, G) configig: BREJ + sim33Y™ enf(\, G)
acquired
[X] acquired [Y] 0.98 [X] acquired [Y] 1.00 [X] acquired [Y] 1.00 acquired by [X], [Y] t 0.93
[X] takeover of [Y] 0.89 [X] takeover of [Y] 1.00 [X] takeover of [Y] 0.98 takeover of [X] would boost [Y] s earnings ' 0.90
[X] s planned acquisition of [Y] 0.87 [X] ’s planned acquisition of[ Y] 1.00 [X] ’s planned acquisition of [Y] 0.98 acquisition of [X] by [Y] 1 0.95
[X] acquiring [Y] 0.75 [X] acquiring [Y] 1.00 [X] acquiring [Y] 0.95 [X] acquiring [Y] 0.95
[X] has owned part of [Y] 0.67 [X] has owned part of [Y] 1.00 [X] has owned part of [Y] 0.88 owned by [X] ’s parent [Y] 0.90
[X] took control of [Y] 0.49 [X] ’s ownership of [Y] 1.00 [X] took control of [Y] 0.91 [X] takes control of [Y] 1.00
[X] ’s acquisition of [Y] 0.35 [X] ’s acquisition of [Y] 1.00 [X] ’s acquisition of [Y] 0.95 acquisition of [X] would reduce [Y] ’s share t 0.90
[X] s merger with [Y] 0.35 [X] °s merger with[Y] 1.00 [X] s merger with [Y] 0.94 [X] - [Y] merger between T 0.84
[X] s bid for [Y] 0.35 [X] s bid for [Y] 1.00 [X] s bid for [Y] 0.97 part of [X] which [Y] acquired T 0.83
founder-of
[X] founder [Y] 0.68 [X] founder [Y] 1.00 [X] founder [Y] 0.99 founder of [X], [Y] " 0.97
[X] CEO and founder [Y] 0.15 [X] CEO and founder [Y] 1.00 [X] CEO and founder [Y] 0.99 co-founder of [X] 's millennial center , [Y] ¥ 0.94
[X] s co-founder [Y] 0.09 [X] owner [Y] 1.00 [X] owner [Y] 1.00 owned by [X] cofounder [Y] 0.95
[X] cofounder [Y] 1.00 [X] cofounder [Y] 1.00 Gates co-founded [X] with school friend [Y] 0.99
[X] started by [Y] 1.00 [X] started by [Y] 1.00 who co-founded [X] with [Y] T 0.95
[X] was founded by [Y] 1.00 [X] was founded by [Y] 0.99 to co-found [X] with partner [Y] t 0.68
[X] begun by [Y] 1.00 [X] begun by [Y] 1.00 [X] was started by [Y] , cofounder 0.98
[X] has established [Y] 1.00 [X] has established [Y] 0.99 set up [X] with childhood friend [Y] ¥ 0.96
[X] chief executive and founder [Y] 1.00 [X] co-founder and billionaire [Y] * 0.99 [X] co-founder and billionaire [Y] 0.97
headquartered
[X] headquarters in [Y] 0.95 [X] headquarters in [Y] 1.00 [X] headquarters in [Y] 0.98 [X] headquarters in [Y] 0.98
[X] relocated its headquarters from [Y] 0.94 [X] relocated its headquarters from [Y] 1.00 [X] relocated its headquarters from [Y] 0.98 based at [X] ’s suburban [Y] headquarters 0.98
[X] head office in [Y] 0.84 [X] head office in [Y] 1.00 [X] head office in [Y] 0.87 head of [X] ’s operations in [Y] t 0.65
[X] based in [Y] 0.75 [X] based in [Y] 1.00 [X] based in [Y] 0.98 branch of [X] company based in [Y] 0.98
[X] headquarters building in [Y] 0.67 [X] headquarters building in [Y] 1.00 [X] headquarters building in [Y] 0.94 [X] main campus in [Y] 0.99
[X] headquarters in downtown [Y] 0.64 [X] headquarters in downtown [Y] 1.00 [X] headquarters in downtown [Y] 0.94 [X] headquarters in downtown [Y] 0.96
[X] branch offices in [Y] 0.54 [X] branch offices in [Y] 1.00 [X] branch offices in [Y] 0.98 [X] s [Y] headquarters represented 0.98
[X] ’s corporate campus in [Y] 0.51 [X] ’s corporate campus in [Y] 1.00 [X] ’s corporate campus in [Y] 0.99 [X] main campus in [Y] 0.99
[X] s corporate office in [Y] 0.51 [X] ’s corporate office in [Y] 1.00 [X] s corporate office in [Y] 0.89 [X1,[Y] s corporate f 0.94
affiliation

[X] chief executive [Y] 0.92 [X] chief executive [Y] 1.00 [X] chief executive [Y] 0.97 [X] chief executive [Y] resigned monday 0.94
[X] secretary [Y] 0.88 [X] secretary [Y] 1.00 [X] secretary [Y] 0.94 worked with [X] manager [Y] 0.85
[X] president [Y] 0.87 [X] president [Y] 1.00 [X] president [Y] 0.96 [X] voted to retain [Y] as CEO ' 0.98
[X] leader [Y] 0.72 [X] leader [Y] 1.00 [X] leader [Y] 0.85 head of [X] , [Y] 0.99
[X] party leader [Y] 0.67 [X] party leader [Y] 1.00 [X] party leader [Y] 0.87 working with [X] , [Y] suggested t 1.00
[X] has appointed [Y] 0.63 [X] executive editor [Y] 1.00 [X] has appointed [Y] 0.81 [X] president [Y] was fired 0.90
[X] player [Y] 0.38 [X] player [Y] 1.00 [X] player [Y] 0.89 [X]s [Y] was fired 0.43
[X] ’s secretary-general [Y] 0.36 [X] ’s secretary-general [Y] 1.00 [X] ’s secretary-general [Y] 0.93 Chairman of [X], [Y] ' 0.88
[X] hired [Y] 0.21 [X] director [Y] 1.00 [X] hired [Y] 0.56 [X] hired [Y] as manager ' 0.85

Table 11: Subset of the non-noisy extractors (simplified) with their confidence scores cnf(\, G) learned in different
configurations for each relation. # denotes that the extractor was never learned in config; and configs. { indicates
that the extractor was never learned in config;, configs and configg. [X] and [Y] indicate placeholders for entities.

stance (mostly populated) from every A. Each cell
in Table 11 represents either a simplified represen-
tation of A or its confidence. We demonstrate how
the confidence score of a non-noisy extractor in
BREE (config;) is increased in BREJ (configg and
configyo). For instance, for the relation acquired,
an extractor {/X] acquiring [Y]} is generated by
BREE, BRET and BREJ; however, its confidence
is boosted from 0.75 in BREE (config;) to 0.95
in BREJ (configg). Observe that BRET generates
high confidence extractors. We also show extrac-
tors (marked by ) learned by BREJ with sim,,
(configjp) but not by config;, configs and configg.

3.7 Entity Pairs: Ordered Vs Bi-Set

In Table 5, we use ordered pairs of typed entities.
Additionally, we also investigate using entity sets
and observe improved recall due to higher #out
in both BREE and BREJ, comparing correspond-
ingly Table 12 and 5 (baseline and configo).

4 Conclusion

We have proposed a Joint Bootstrapping Machine
for relation extraction (BREJ) that takes advantage

X X BREE + simych BREJ + simyyen

Relationships

#out P R F1| #out P R F1

acquired | 2786 .90 .50 .64 | 21733 .80 .87 .83

founder-of | 543 1.0 .67 .80 | 31890 .80 .99 .89

headquartered | 16832 .62 .81 .70 | 52286 .64 .94 .76

affiliation | 21812 .99 .74 .85 | 42601 .96 .85 .90

avg | 10493 .88 .68 .75 | 37127 .80 91 .85

Table 12: BREX+simp,ecn:Scores with entity bisets

of both entity-pair-centered and template-centered
approaches. We have demonstrated that the joint
approach scales up positive instances that boosts
the confidence of NNLC extractors and improves
recall. The experiments showed that the cross-
context similarity measures improved recall and
suggest removing in total four parameters.
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Abstract

What makes some types of languages more
probable than others? For instance, we know
that almost all spoken languages contain the
vowel phoneme /i/; why should that be? The
field of linguistic typology seeks to answer
these questions and, thereby, divine the mech-
anisms that underlie human language. In our
work, we tackle the problem of vowel system
typology, i.e., we propose a generative proba-
bility model of which vowels a language con-
tains. In contrast to previous work, we work di-
rectly with the acoustic information—the first
two formant values—rather than modeling dis-
crete sets of phonemic symbols (IPA). We de-
velop a novel generative probability model and
report results based on a corpus of 233 lan-
guages.

1 Introduction

Human languages are far from arbitrary; cross-
linguistically, they exhibit surprising similarity in
many respects and many properties appear to be
universally true. The field of linguistic typology
seeks to investigate, describe and quantify the axes
along which languages vary. One facet of language
that has been the subject of heavy investigation is
the nature of vowel inventories, i.e., which vowels
a language contains. It is a cross-linguistic univer-
sal that all spoken languages have vowels (Gordon,
2016), and the underlying principles guiding vowel
selection are understood: vowels must be both
easily recognizable and well-dispersed (Schwartz
et al., 2005). In this work, we offer a more formal
treatment of the subject, deriving a generative prob-
ability model of vowel inventory typology. Our
work builds on (Cotterell and Eisner, 2017) by in-
vestigating not just discrete IPA inventories but the
cross-linguistic variation in acoustic formants.
The philosophy behind our approach is that lin-
guistic typology should be treated probabilistically
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and its goal should be the construction of a univer-
sal prior over potential languages. A probabilistic
approach does not rule out linguistic systems com-
pletely (as long as one’s theoretical formalism can
describe them at all), but it can position phenomena
on a scale from very common to very improbable.
Probabilistic modeling also provides a discipline
for drawing conclusions from sparse data. While
we know of over 7000 human languages, we have
some sort of linguistic analysis for only 2300 of
them (Comrie et al., 2013), and the dataset used in
this paper (Becker-Kristal, 2010) provides simple
vowel data for fewer than 250 languages.

Formants are the resonant frequencies of the hu-
man vocal tract during the production of speech
sounds. We propose a Bayesian generative model
of vowel inventories, where each language’s inven-
tory is a finite subset of acoustic vowels represented
as points (F1, Fy) € R2. We deploy tools from the
neural-network and point-process literatures and
experiment on a dataset with 233 distinct languages.
We show that our most complicated model outper-
forms simpler models.

2 Acoustic Phonetics and Formants

Much of human communication takes place
through speech: one conversant emits a sound wave
to be comprehended by a second. In this work, we
consider the nature of the portions of such sound
waves that correspond to vowels. We briefly review
the relevant bits of acoustic phonetics so as to give
an overview of the data we are actually modeling
and develop our notation.

The anatomy of a sound wave. The sound wave
that carries spoken language is a function from
time to amplitude, describing sound pressure vari-
ation in the air. To distinguish vowels, it is help-
ful to transform this function into a spectrogram
(Fig. 1) by using a short-time Fourier transform
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Figure 1: Example spectrogram of the three English vowels:
/i/, lu/ and /a/. The x-axis is time and y-axis is frequency. The
first two formants F and F» are marked in with arrows for
each vowel. The figure was made with Praat (Boersma et al.,
2002).

(Deng and O’Shaughnessy, 2003, Chapter 1) to de-
compose each short interval of the wave function
into a weighted sum of sinusoidal waves of differ-
ent frequencies (measured in Hz). At each interval,
the variable darkness of the spectrogram indicates
the weights of the different frequencies. In pho-
netic analysis, a common quantity to consider is
a formant—a local maximum of the (smoothed)
frequency spectrum. The fundamental frequency
Fp determines the pitch of the sound. The formants
F1 and F5 determine the quality of the vowel.

Two is all you need (and what we left out). In
terms of vowel recognition, it is widely speculated
that humans rely almost exclusively on the first
two formants of the sound wave (Ladefoged, 2001,
Chapter 5). The two-formant assumption breaks
down in edge cases: e.g., the third formant Fj
helps to distinguish the roundness of the vowel
(Ladefoged, 2001, Chapter 5). Other non-formant
features may also play a role. For example, in
tonal languages, the same vowel may be realized
with different tones (which are signaled using Fp):
Mandarin Chinese makes a distinction between ma
(horse) and ma (hemp) without modifying the qual-
ity of the vowel /a/. Other features, such as creaky
voice, can play a role in distinguishing phonemes.
We do not explicitly model any of these aspects of
vowel space, limiting ourselves to (F}, F3) as in
previous work (Liljencrants and Lindblom, 1972).
However, it would be easy to extend all the models
we will propose here to incorporate such informa-
tion, given appropriate datasets.

3 The Phonology of Vowel Systems

The vowel inventories of the world’s languages
display clear structure and appear to obey several
underlying principles. The most prevalent of these
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principles are focalization and dispersion.

Focalization. The notion of focalization grew
out of quantal vowel theory (Stevens, 1989). Quan-
tal vowels are those that are phonetically “better”
than others. They tend to display certain proper-
ties, e.g., the formants tend to be closer together
(Stevens, 1987). Cross-linguistically, quantal vow-
els are the most frequently attested vowels, e.g., the
cross-linguistically common vowel /i/ is considered
quantal, but less common /y/ is not.

Dispersion. The second core principle of vowel
system organization is known as dispersion. As
the name would imply, the principle states that
the vowels in “good” vowel systems tend to be
spread out. The motivation for such a principle
is clear—a well-dispersed set of vowels reduces a
listener’s potential confusion over which vowel is
being pronounced. See Schwartz et al. (1997) for a
review of dispersion in vowel system typology and
its interaction with focalization, which has led to
the joint dispersion-focalization theory.

Notation. We will denote the universal set of
international phonetic alphabet (IPA) symbols
as V. The observed vowel inventory for lan-
guage / has size n’ and is denoted V¢ =
{(v{,v{),...,(vfﬂ,vﬁ[)} C V x R?, where for
each k € [1,7n%], vf, € Vis an IPA symbol assigned
by a linguist and vi € R% is a vector of d measur-
able phonetic quantities. In short, the IPA symbol
vi was assigned as a label for a phoneme with pro-
nunciation vﬁ, The ordering of the elements within
V* is arbitrary.

Goals. This framework recognizes that the same
IPA symbol v (such as /u/) may represent a slightly
different sound v in one language than in another,
although they are transcribed identically. We are
specifically interested in how the vowels in a lan-
guage influence one another’s fine-grained pro-
nunciation in R%. In general, there is no reason
to suspect that speakers of two languages, whose
phonological systems contain the same IPA symbol,
should produce that vowel with identical formants.

Data. For the remainder of the paper, we will
take d = 2 so that each v = (Fy, I,) € R2, the
vector consisting of the first two formant values,
as compiled from the field literature by Becker-
Kristal (2006). This dataset provides inventories
V¢ in the form above. Thus, we do not consider
further variation of the vowel pronunciation that



may occur within the language (between speakers,
between tokens of the vowel, or between earlier
and later intervals within a token).

4 Phonemes versus Phones

Previous work (Cotterell and Eisner, 2017) has
placed a distribution over discrete phonemes, ignor-
ing the variation across languages in the pronuncia-
tion of each phoneme. In this paper, we crack open
the phoneme abstraction, moving to a learned set
of finer-grained phones.

Cotterell and Eisner (2017) proposed (among
other options) using a determinantal point process
(DPP) over a universal inventory V of 53 sym-
bolic (IPA) vowels. A draw from such a DPP is
a language-specific inventory of vowel phonemes,
V' C V. In this paper, we say that a language in-
stead draws its inventory from a larger set ), again
using a DPP. In both cases, the reason to use a
DPP is that it prefers relatively diverse inventories
whose individual elements are relatively quantal.

While we could in principle identify V with R¢,
for convenience we still take it to be a (large) dis-
crete finite set V = {v1,...,0Un}, whose elements
we call phones. V is a learned cross-linguistic pa-
rameter of our model; thus, its elements—the “uni-
versal phones”—may or may not correspond to
phonetic categories traditionally used by linguists.

We presume that language ¢ draws from the DPP
a subset V¢ C V, whose size we call n‘. For each
universal phone ¥; that appears in this inventory V',
the language then draws an observable language-
specific pronunciation vf ~ N (Nw ol ) from a
distribution associated cross-linguistically with the
universal phone v;. We now have an inventory of
pronunciations.

As a final step in generating the vowel inventory,
we could model IPA labels. For each 3; € V¢, a
field linguist presumably draws the IPA label vf
conditioned on all the pronunciations {vf € R?:
7; € V') in the inventory (and perhaps also on
their underlying phones ©; € V*). This labeling
process may be complex. While each pronuncia-
tion in R (or each underlying phone in V) may
have a preference for certain IPA labels in V, the
n’ labels must be drawn jointly because the lin-
guist will take care not to use the same label for
two phones, and also because the linguist may like
to describe the inventory using a small number of
distinct IPA features, which will tend to favor fac-
torial grids of symbols. The linguist’s use of IPA
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features may also be informed by phonological and
phonetic processes in the language. We leave mod-
eling of this step to future work; so our current
likelihood term ignores the evidence contributed
by the IPA labels in the dataset, considering only
the pronunciations in R<.

The overall idea is that human languages ¢ draw
their inventories from some universal prior, which
we are attempting to reconstruct. A caveat is that
we will train our method by maximume-likelihood,
which does not quantify our uncertainty about the
reconstructed parameters. An additional caveat is
that some languages in our dataset are related to
one another, which belies the idea that they were
drawn independently. Ideally, one ought to capture
these relationships using hierarchical or evolution-
ary modeling techniques.

5 Determinantal Point Processes

Before delving into our generative model, we
briefly review technical background used by Cot-
terell and Eisner (2017). A DPP is a probability
distribution over the subsets of a fixed ground set of
size N—in our case, the set of phones V. The DPP
is usually given as an L-ensemble (Borodin and
Rains, 2005), meaning that it is parameterized by a
positive semi-definite matrix L € RY*N_ Given a
discrete base set V of phones, the probability of a
subset V' C Vis given by

p(V) ocdet(Ly), ey

where Ly; is the submatrix of L corresponding to
the rows and columns associated with the subset
V C V. The entry L;;, where i # j, has the effect
of describing the similarity between the elements
v; and ¥; (both in V)—an ingredient needed to
model dispersion. And, the entry L;; describes the
quality—focalization—of the vowel v, i.e., how
much the model wants to have v; in a sampled set
independent of the other members.

5.1 Probability Kernel

In this work, each phone ©; € V is associated with
a probability density over the space of possible pro-
nunciations R?. Our measure of phone similarity
will consider the “overlap” between the densities
associated with two phones. This works as follows:
Given two densities f(z,y) and f'(z,y) over R?,
we define the kernel (Jebara et al., 2004) as

k(s = |

xT
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Figure 2: Joint likelihood of M vowel systems under our deep generative probability model for continuous-space vowel
inventories. Here language £ has an observed inventory of pronunciations {v** : 1 < k < n‘}, and af, € [1, N] denotes a
phone that might be responsible for the pronunciation v¥*. Thus, a* denotes some way to jointly label all n* pronunciations
with distinct phones. We must sum over all ( f:ﬂ) such labelings a® € A(n‘Z , N) since the true labeling is not observed. In other

words, we sum over all ways a’ of completing the data for language £. Within each summand, the product of factors 3 and 4 is
the probability of the completed data, i.e., the joint probability of generating the inventory V(aé) of phones used in the labeling
and their associated pronunciations. Factor 3 considers the prior probability of V' (a®) under the DPP, and factor 4 is a likelihood
term that considers the probability of the associated pronunciations.

with inverse temperature parameter p.

In our setting, f, f' will both be Gaussian dis-
tributions with means g and p/ that share a fixed
spherical covariance matrix o2I. Then eq. (3) and
indeed its generalization to any R? has a closed-
form solution (Jebara et al., 2004, §3.1):

“4)

exp (A0

Notice that making p small (i.e., high temperature)
has an effect on (4) similar to scaling the variance
o2 by the temperature, but it also results in chang-
ing the scale of K, which affects the balance be-
tween dispersion and focalization in (6) below.

K(f.f s p) =

(2%02) e

2

5.2 Focalization Score

The probability kernel given in eq. (3) naturally
handles the linguistic notion of dispersion. What
about focalization? We say that a phone is focal to
the extent that it has a high score

F(p) = exp (Uztanh(Uyp + b1) + ba) >0
(&)

where p is the mean of its density. To learn the
parameters of this neural network from data is to
learn which phones are focal. We use a neural net-
work since the focal regions of R? are distributed
in a complex way.

5.3 The L Matrix

If f; = N'(p;, 021) is the density associated with
the phone v;, we may populate an N x N real
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Algorithm 1 Generative Process
1: N ~ Poisson (\) (€ N)
2: fori=1to N :
3 p; ~N(0,1) (€ R?)
. define L € RV via (6)
: for 0 =1to M :
VE~DPP(L) (C[1,N]);letnt = |V ®
foric V':
{’f ~N (“’i?021)
vt ‘

o e D;N R

@
= vp (V;) @

matrix L where

K(fi, fiip)
K(fi, fi;0) + F(;)

Since L is the sum of two positive definite ma-
trices (the first specializes a known kernel and the
second is diagonal and positive), it is also positive
definite. As a result, it can be used to parameterize
a DPP over V. Indeed, since L is positive definite
and not merely positive semidefinite, it will assign
positive probability to any subset of V.

As previously noted, this DPP does not define
a distribution over an infinite set, e.g., the pow-
erset of R?, as does recent work on continuous
DPPs (Affandi et al., 2013). Rather, it defines a
distribution over the powerset of a set of densities
with finite cardinality. Once we have sampled a
subset of densities, a real-valued quantity may be
additionally sampled from each sampled density.

ifi ]
ifi=j

ij =

(6)

6 A Deep Generative Model

We are now in a position to expound our generative
model of continuous-space vowel typology. We



generate a set of formant pairs for M languages
in a four step process. Note that throughout this
exposition, language-specific quantities with be
superscripted with an integral language marker
¢, whereas universal quantities are left unsuper-
scripted. The generative process is written in al-
gorithmic form in Alg. 1. Note that each step is
numbered and color-coded for ease of comparison
with the full joint likelihood in Fig. 2.

Step ©: p(N). We sample the size IV of the uni-
versal phone inventory V from a Poisson distribu-
tion with a rate parameter A, i.e.,

N ~ Poisson (). (7)
That is, we do not presuppose a certain number of
phones in the model.

Step @: p(py,...,py). Next, we sample the
means p; of the Gaussian phones. In the model
presented here, we assume that each phone is
generated independently, so p(gtq,..., y)
1Y, p(1;). Also, we assume a standard Gaussian
prior over the means, p; ~ N (0, I).

The sampled means define our N Gaussian
phones N (ui, ol ): we are assuming for simplic-
ity that all phones share a single spherical covari-
ance matrix, defined by the hyperparameter o2.
The dispersion and focalization of these phones
define the matrix L according to equations (4)—(6),
where p in (4) and the weights of the focalization
neural net (5) are also hyperparameters.

Step ®: p(V' | py,...,py). Next, for each lan-
guage ¢ € [1,..., M], we sample a diverse subset
of the NV phones, via a single draw from a DPP
parameterized by matrix L:

V¢ ~ DPP(L), (8)
where V¢ C [1,N]. Thus, i € V¢ means that
language ¢ contains phone v;. Note that even the
size of the inventory, n‘ = |V¢|, was chosen by the
DPP. In general, we have n! < N.

Step @: [[;cy¢p(v! | ;) The final step in our
generative process is that the phones v; in language
£ must generate the pronunciations vf € R? (for-
mant vectors) that are actually observed in lan-
guage /. Each vector takes two steps. For each
i € V¥, we generate an underlying v; € R? from
the corresponding Gaussian phone. Then, we run

41

this vector through a feed-forward neural network
vg with parameters 6. In short:

(€))

i NN(V’@'?OQI)
¢ — (10)

l

1

l _ ~£)
)

7 Vo (Vi

where the second step is deterministic. We can
fuse these two steps into a single step p(v; | u;),
whose closed-form density is given in eq. (12) be-
low. In effect, step 4 takes a Gaussian phone as
input and produces the observed formant vector
with an underlying formant vector in the middle.

This completes our generative process. We do
not observe all the steps, but only the final col-
lection of pronunciations vf for each language,
where the subscripts ¢ that indicate phone identity
have been lost. The probability of this incomplete
dataset involves summing over possible phones for
each pronunciation, and is presented in Fig. 2.

v
v

6.1 A Neural Transformation of a Gaussian

A crucial bit of our model is running a sample
from a Gaussian through a neural network. Under
certain restrictions, we can find a closed form for
the resulting density; we discuss these below. Let
vg be a depth-2 multi-layer perceptron
1/9(\71‘) = W5 tanh (Wlffz + bl) +bo. (11)
In order to find a closed-form solution, we require
that (5) be a diffeomorphism, i.e., an invertible
mapping from R?2 — R? where both vg and its
inverse v, ! are differentiable. This will be true as
long as Wy, Wy € R?*2 are square matrices of full-
rank and we choose a smooth, invertible activation
function, such as tanh. Under those conditions, we
may apply the standard theorem for transforming a
random variable (see Stark and Woods, 2011):

p(vi | ) = p(vg ' (Vi) | ;) det ]y,

= p(V; | ;) det JV9_1(V1_) (12)
where JV_1 () is the Jacobian of the inverse of the
[’

neural network at the point x. Recall that p(v; | p;)
is Gaussian-distributed.

7 Modeling Assumptions

Imbued in our generative story are a number of
assumptions about the linguistic processes behind
vowel inventories. We briefly draw connections
between our theory and the linguistics literature.



Why underlying phones? A technical assump-
tion of our model is the existence of a universal
set of underlying phones. Each phone is equipped
with a probability distribution over reported acous-
tic measurements (pronunciations), to allow for a
single phone to account for multiple slightly differ-
ent pronunciations in different languages (though
never in the same language). This distribution can
capture both actual interlingual variation and also
random noise in the measurement process.

While our universal phones may seem to re-
semble the universal IPA symbols used in phono-
logical transcription, they lack the rich featural
specifications of such phonemes. A phone in our
model has no features other than its mean position,
which wholly determines its behavior. Our univer-
sal phones are not a substantive linguistic hypothe-
sis, but are essentially just a way of partitioning R?
into finitely many small regions whose similarity
and focalization can be precomputed. This techni-
cal trick allows us to use a discrete rather than a
continuous DPP over the R? space.!

Why a neural network? Our phones are Gaus-
sians of spherical variance o2, presumed to be scat-
tered with variance 1 about a two-dimensional /a-
tent vowel space. Distances in this latent space
are used to compute the dissimilarity of phones
for modeling dispersion, and also to describe the
phone’s ability to vary across languages. That is,
two phones that are distant in the latent space can
appear in the same inventory—presumably they
are easy to discriminate in both perception and
articulation—and it is easy to choose which one
better explains an acoustic measurement, thereby
affecting the other measurements that may appear
in the inventory.

We relate this latent space to measurable acous-
tic space by a learned diffeomorphism vy (Cotterell
and Eisner, 2017). v4 ! can be regarded as warping
the acoustic distances into perceptual/articulatory
distances. In some “high-resolution” regions of
acoustic space, phones with fairly similar (F7y, F»)
values might yet be far apart in the latent space.
Conversely, in other regions, relatively large acous-

'Indeed, we could have simply taken our universal phone
set to be a huge set of tiny, regularly spaced overlapping Gaus-
sians that “covered” (say) the unit circle. As a computational
matter, we instead opted to use a smaller set of Gaussians,
giving the learner the freedom to infer their positions and tune
their variance o2. Because of this freedom, this set should not
be too large, or a MAP learner may overfit the training data
with zero-variance Gaussians and be unable to explain the test
languages—similar to overfitting a Gaussian mixture model.
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tic changes in some direction might not prevent
two phones from acting as similar or two pronunci-
ations from being attributed to the same phone. In
general, a unit circle of radius o in latent space may
be mapped by g to an oddly shaped connected re-
gion in acoustic space, and a Gaussian in latent
space may be mapped to a multimodal distribution.

8 Inference and Learning

We fit our model via MAP-EM (Dempster et al.,
1977). The E-step involves deciding which phones
each language has. To achieve this, we fashion a
Gibbs sampler (Geman and Geman, 1984), yielding
a Markov-Chain Monte Carlo E-step (Levine and
Casella, 2001).

8.1 Inference: MCMC E-Step

Inference in our model is intractable even when the
phones p, ...,y are fixed. Given a language
with n vowels, we have to determine which subset
of the NV phones best explains those vowels. As
discussed above, the alignment a between the n
vowels and n of the NV phones represents a latent
variable. Marginalizing it out is #P-hard, as we
can see that it is equivalent to summing over all
bipartite matchings in a weighted graph, which, in
turn, is as costly as computing the permanent of a
matrix (Valiant, 1979). Our sampler? is an approxi-
mation algorithm for the task. We are interested in
sampling a, the labeling of observed vowels with
universal phones. Note that this implicitly sam-
ples the language’s phone inventory V (a), which
is fully determined by a.

Specifically, we employ an MCMC method
closely related to Gibbs sampling. At each step
of the sampler, we update our vowel-phone align-
ment a’ as follows. Choose a language ¢ and a
vowel index k € [1,n], and let i = af, (that is,
pronunciation v®* is currently labeled with univer-
sal phone v;). We will consider changing ai to 7,
where j is drawn from the (N — n‘) phones that
do not appear in V' (a’), heuristically choosing j in
proportion to the likelihood p(v©F | ;). We then

stochastically decide whether to keep ai = ¢ or set
aﬁ = j in proportion to the resulting values of the
product @ - ® in eq. (2).

For a single E-step, the Gibbs sampler “warm-
starts” with the labeling from the end of the pre-

vious iteration’s E-step. It sweeps S = 5 times

2Taken from Volkovs and Zemel (2012, 3.1).



through all vowels for all languages, and returns S
sampled labelings, one from the end of each sweep.
We are also interested in automatically choosing
the number of phones N, for which we take the
Poisson’s rate parameter A = 100. To this end,
we employ reversible-jump MCMC (Green, 1995),
resampling IV at the start of every E-step.

8.2 Learning: M-Step

Given the set of sampled alignments provided by
the E-step, our M-step consists of optimizing the
log-likelihood of the now-complete training data
using the inferred latent variables. We achieved
this through SGD training of the diffeomorphism
parameters 8, the means p; of the Gaussian phones,
and the parameters of the focalization kernel F.

9 Experiments

9.1 Data

Our data is taken from the Becker-Kristal corpus
(Becker-Kristal, 2006), which is a compilation of
various phonetic studies and forms the largest multi-
lingual phonetic database. Each entry in the corpus
corresponds to a linguist’s phonetic description of
a language’s vowel system: an inventory consist-
ing of IPA symbols where each symbol is associ-
ated with two or more formant values. The corpus
contains data from 233 distinct languages. When
multiple inventories were available for the same
language (due to various studies in the literature),
we selected one at random and discarded the others.

9.2 Baselines

Baseline #1: Removing dispersion. The key
technical innovation in our work lies in the incor-
poration of a DPP into a generative model of vowel
formants—a continuous-valued quantity. The role
of the DPP was to model the linguistic principle
of dispersion—we may cripple this portion of our
model, e.g., by forcing K to be a diagonal kernel,
ie., K;j = 0fori # j. In this case the DPP
becomes a Bernoulli Point Process (BPP)—a spe-
cial case of the DPP. Since dispersion is widely
accepted to be an important principle governing
naturally occurring vowel systems, we expect a
system trained without such knowledge to perform
worse.

Baseline #2: Removing the neural network rg.
Another question we may ask of our formulation is
whether we actually need a fancy neural mapping
Vg to model our typological data well. The human
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perceptual system is known to perform a non-linear
transformation on acoustic signals, starting with
the non-linear cochlear transform that is physically
performed in the ear. While v, ! is intended as
loosely analogous, we determine its benefit by re-
moving eq. (10) from our generative story, i.e., we
take the observed formants vy, to arise directly from
the Gaussian phones.

Baseline #3: Supervised phones and alignments.
A final baseline we consider is supervised phones.
Linguists standardly employ a finite set of phones—
symbols from the international phonetic alphabet
(IPA). In phonetic annotation, it is common to map
each sound in a language back to this universal dis-
crete alphabet. Under such an annotation scheme, it
is easy to discern, cross-linguistically, which vow-
els originate from the same phoneme: an /1/ in
German may be roughly equated with an /1/ in En-
glish. However, it is not clear how consistent this
annotation truly is. There are several reasons to
expect high-variance in the cross-linguistic acous-
tic signal. First, IPA symbols are primarily useful
for interlinked phonological distinctions, i.e., one
applies the symbol /1/ to distinguish it from /i/ in
the given language, rather than to associate it with
the sound bearing the same symbol in a second
language. Second, field linguists often resort to the
closest common IPA symbol, rather than an exact
match: if a language makes no distinction between
/i/ and /1/, it is more common to denote the sound
with a /i/. Thus, IPA may not be as universal as
hoped. Our dataset contains 50 IPA symbols so this
baseline is only reported for N = 50.

9.3 Evaluation

Evaluation in our setting is tricky. The scientific
goal of our work is to place a bit of linguistic the-
ory on a firm probabilistic footing, rather than a
downstream engineering-task, whose performance
we could measure. We consider three metrics.

Cross-Entropy. Our first evaluation metric is
cross-entropy: the average negative log-probability
of the vowel systems in held-out test data, given
the universal inventory of /V phones that we trained
through EM. We find this to be the cleanest method
for scientific evaluation—it is the metric of opti-
mization and has a clear interpretation: how sur-
prised was the model to see the vowel systems of
held-out, but attested, languages?

The cross-entropy is the negative log of the
I [ . ] expression in eq. (2), with £ now rang-



N metric  DPP+19 BPP+vg DPP—vg Sup.
x-ent 540.02 540.05 600.34 X

15 clozel 5.76 5.76 6.53 X
clozel2 4.89 4.89 5.24 X
x-ent 280.47 275.36 335.36 X

25 clozel 5.04 5.25 6.23 X
clozel2 4.76 4.97 5.43 X
x-ent 222.85 231.70 320.05 1610.37

50 clozel  3.38 3.16 4.02 4.96
clozel2 2.73 2.93 3.04 6.95
x-ent 212.14 220.42 380.31 X

57  clozel 2.21 3.08 3.25 X
clozel2 2.01 3.05 3.41 X
x-ent 271.95 301.45 380.02 X

100 clozel  2.26 242 3.03 X
clozel2 1.96 2.01 2.51 X

Table 1: Cross-entropy in nats per language (lower is better)
and expected Euclidean-distance error of the cloze prediction
(lower is better). The overall best value for each task is bold-
faced. The case N = 50 is compared against our supervised
baseline. The N = 57 row is the case where we allowed N
to fluctuate during inference using reversible-jump MCMC;
this was the N value selected at the final EM iteration.

ing over held-out languages.> Wallach et al. (2009)
give several methods for estimating the intractable
sum in language ¢. We use the simple harmonic
mean estimator, based on 50 samples of a’ drawn
with our Gibbs sampler (warm-started from the
final E-step of training).

Cloze Evaluation. In addition, following Cot-
terell and Eisner (2017), we evaluate our trained
model’s ability to perform a cloze task (Taylor,
1953). Given n‘ — 1 or n’ — 2 of the vowels in held-
out language ¢, can we predict the pronunciations
vy, of the remaining 1 or 2? We predict v to be
ve(p;) where i = al, is the phone inferred by the
sampler. Note that the sampler’s inference here is
based only on the observed vowels (the likelihood)
and the focalization-dispersion preferences of the
DPP (the prior). We report the expected error of
such a prediction—where error is quantified by Eu-
clidean distance in (Fy, F») formant space—over
the same 50 samples of a’.

For instance, consider a previously unseen
vowel system with formant values {(499,2199),
(861,1420), (571,1079)}. A “clozel” evaluation
would aim to predict {(499,2199)} as the missing

3Since that expression is the product of both probability
distributions and probability densities, our “cross-entropy”
metric is actually the sum of both entropy terms and (poten-
tially negative) differential entropy terms. Thus, a value of 0
has no special significance.
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Figure 3: A graph of v = (Fi, F») in the union of all the
training languages’ inventories, color-coded by inferred phone
(N = 50).

vowel, given {(861,1420), (571,1079)}, and the
fact that n = 3. A “clozel2” evaluation would
aim to predict two missing vowels.

9.4 Experimental Details

Here, we report experimental details and the hy-
perparameters that we use to achieve the results
reported. We consider a neural network vg with
k € [1,4] layers and find £ = 1 the best per-
former on development data. Recall that our dif-
feomorphism constraint requires that each layer
have exactly two hidden units, the same as the
number of observed formants. We consider N €
{15,25,50,100} phones as well as letting N fluc-
tuate with reversible-jump MCMC (see footnote 1).
We train for 100 iterations of EM, taking S = 5
samples at each E-step. At each M-step, we run
50 iterations of SGD for the focalization NN and
also for the diffeomorphism NN. For each IV,
we selected (02, p) by minimizing cross-entropy
on a held-out development set. We considered

(02, p) € {10%}5_, x {p*}7_;.

9.5 Results and Error Analysis

We report results in Tab. 1. We find that our DPP
model improves over the baselines. The results
support two claims: (i) dispersion plays an impor-
tant role in the structure of vowel systems and (ii)
learning a non-linear transformation of a Gaussian
improves our ability to model sets of formant-pairs.
Also, we observe that as we increase the number of
phones, the role of the DPP becomes more impor-
tant. We visualize a sample of the trained alignment
in Fig. 3.



Frequency Encodes Dispersion. Why does dis-
persion not always help? The models with fewer
phones do not reap the benefits that the models
with more phones do. The reason lies in the fact
that the most common vowel formants are already
dispersed. This indicates that we still have not
quite modeled the mechanisms that select for good
vowel formants, despite our work at the phonetic
level; further research is needed. We would prefer
a model that explains the evolutionary motivation
of sound systems as communication systems.

Number of Induced Phones. What is most
salient in the number of induced phones is that
it is close to the number of IPA phonemes in the
data. However, the performance of the phoneme-
supervised system is much worse, indicating that,
perhaps, while the linguists have the right idea
about the number of universal symbols, they did
not specify the correct IPA symbol in all cases.
Our data analysis indicates that this is often due to
pragmatic concerns in linguistic field analysis. For
example, even if /1/ is the proper IPA symbol for
the sound, if there is no other sound in the vicinity
the annotator may prefer to use more common /i/.

10 Related Work

Most closely related to our work is the classic study
of Liljencrants and Lindblom (1972), who provide
a simulation-based account of vowel systems. They
argued that minima of a certain objective that en-
codes dispersion should correspond to canonical
vowel systems of a given size n. Our tack is dif-
ferent in that we construct a generative probability
model, whose parameters we learn from data. How-
ever, the essence of modeling is the same in that
we explain formant values, rather than discrete IPA
symbols. By extension, our work is also closely
related to extensions of this theory (Schwartz et al.,
1997; Roark, 2001) that focused on incorporating
the notion of focalization into the experiments.

Our present paper can also be regarded as a con-
tinuation of Cotterell and Eisner (2017), in which
we used DPPs to model vowel inventories as sets
of discrete IPA symbols. That paper pretended
that each IPA symbol had a single cross-linguistic
(F1, F») pair, an idealization that we remove in this
paper by discarding the IPA symbols and modeling
formant values directly.
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11 Conclusion

Our model combines existing techniques of proba-
bilistic modeling and inference to attempt to fit the
actual distribution of the world’s vowel systems.
We presented a generative probability model of
sets of measured (F}, F») pairs. We view this as
a necessary step in the development of generative
probability models that can explain the distribu-
tion of the world’s languages. Previous work on
generating vowel inventories has focused on how
those inventories were transcribed into IPA by field
linguists, whereas we focus on the field linguists’
acoustic measurements of how the vowels are actu-
ally pronounced.
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Abstract

Morphological segmentation for polysynthetic
languages is challenging, because a word may
consist of many individual morphemes and
training data can be extremely scarce. Since
neural sequence-to-sequence (seq2seq) mod-
els define the state of the art for morpho-
logical segmentation in high-resource settings
and for (mostly) European languages, we first
show that they also obtain competitive perfor-
mance for Mexican polysynthetic languages in
minimal-resource settings. We then propose
two novel multi-task training approaches—
one with, one without need for external un-
labeled resources—, and two corresponding
data augmentation methods, improving over
the neural baseline for all languages. Finally,
we explore cross-lingual transfer as a third
way to fortify our neural model and show that
we can train one single multi-lingual model for
related languages while maintaining compara-
ble or even improved performance, thus reduc-
ing the amount of parameters by close to 75%.
We provide our morphological segmentation
datasets for Mexicanero, Nahuatl, Wixarika
and Yorem Nokki for future research.

1 Introduction

Due to the advent of computing technologies
to indigenous communities all over the world,
natural language processing (NLP) applications

*The first two authors contributed equally.
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for languages with limited computer-readable
textual data are getting increasingly important.
This contrasts with current research, which fo-
cuses strongly on approaches which require large
amounts of training data, e.g., deep neural net-
works.  Those are not trivially applicable to
minimal-resource settings with less than 1,000
available training examples. We aim at closing this
gap for morphological surface segmentation, the
task of splitting a word into the surface forms of its
smallest meaning-bearing units, its morphemes.

Recovering morphemes provides information
about unknown words and is thus especially im-
portant for polysynthetic languages with a high
morpheme-to-word ratio and a consequently large
overall number of words. To illustrate how seg-
mentation helps understanding unknown multiple-
morpheme words, consider an example in this pa-
per’s language of writing: even if the word uncon-
ditionally did not appear in a given training corpus,
its meaning could still be derived from a combina-
tion of its morphs un, condition, al and ly.

Due to its importance for down-stream tasks
(Creutz et al., 2007; Dyer et al., 2008), segmenta-
tion has been tackled in many different ways, con-
sidering unsupervised (Creutz and Lagus, 2002),
supervised (Ruokolainen et al., 2013) and semi-
supervised settings (Ruokolainen et al., 2014).
Here, we add three new questions to this line of re-
search: (i) Are data-hungry neural network models
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applicable to segmentation of polysynthetic lan-
guages in minimal-resource settings? (ii) How can
the performance of neural networks for surface
segmentation be improved if we have only unla-
beled or no external data at hand? (iii) Is cross-
lingual transfer for this task possible between re-
lated languages? The last two questions are cru-
cial: While for many languages it is difficult to
obtain the number of annotated examples used in
earlier work on (semi-)supervised methods, a lim-
ited amount might still be obtainable.

We experiment on four polysynthetic Mexican
languages: Mexicanero, Nahuatl, Wixarika and
Yorem Nokki (details in §2). The datasets we use
are, as far as we know, the first computer-readable
datasets annotated for morphological segmenta-
tion in those languages.

Our experiments show that neural seq2seq mod-
els perform on par with or better than other strong
baselines for our polysynthetic languages in a
minimal-resource setting. However, we further
propose two novel multi-task approaches and two
new data augmentation methods. Combining them
with our neural model yields up to 5.05% abso-
lute accuracy or 3.40% F1 improvements over our
strongest baseline.

Finally, following earlier work on cross-lingual
knowledge transfer for seq2seq tasks (Johnson
et al.,, 2017; Kann et al., 2017), we investigate
training one single model for all languages, while
sharing parameters. The resulting model performs
comparably to or better than the individual mod-
els, but requires only roughly as many parameters
as one single model.

Contributions. To sum up, we make the follow-
ing contributions: (i) we confirm the applicability
of neural seq2seq models to morphological seg-
mentation of polysynthetic languages in minimal-
resource settings; (ii) we propose two novel
multi-task training approaches and two novel data
augmentation methods for neural segmentation
models; (iii) we investigate the effectiveness of
cross-lingual transfer between related languages;
and (iv) we provide morphological segmentation
datasets for Mexicanero, Nahuatl, Wixarika and
Yorem Nokki.

2 Polysynthetic Languages

Polysynthetic languages are morphologically rich
languages which are highly synthetic, i.e., sin-
gle words can be composed of many individual
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Mexicanero | Nahuatl | Wixarika| Yorem N.
frq. m. frqg m. |frq. m. [frq. m.
136 ni 155 o [327 p+|102 Kk
128 ki 99 ni |230 ne |88 m
114 ti 84 ti 173 p |87 ne
105 u 81 k 169 ti |83 ka
70 S 61 tl 167 ka |79 ta
44 mo |59 mo [98 u |54 po
42 ka 55 S 97 ta |50 ¢
39 a 52 ki |95 a |36 ye
31 nich |48 i 92 pe |36 su
31 $i 43 tla |91 e |36 =i
24 ta 39 ke |80 34 a
24 1 34 nech |74 wa |31 me
22 tahtanili |31 no [69 me |30 wa
21 no |27 ya |68 ni |30 re
17 ya |27 thh |68 ke |27 na
17 t 24 X 66 ecu (24 wi
17 ke |23 tlanilia|58 ye |24 a
17 ita |23 e 57 1 |23 te
16 piya |21 tika |52 tsi (20 @ si
15 an 21 n 52 te |16 ’wi

Table 1: The most frequent morphs (m.) together with
their frequencies (frq.) in our datasets.

morphemes. In extreme cases, entire sentences
consist of only one single token, whereupon “ev-
ery argument of a predicate must be expressed
by morphology on the word that contains that as-
signer” (Baker, 2006). This property makes sur-
face segmentation of polysynthetic languages at
the same time complex and particularly relevant
for further linguistic analysis.

In this paper, we experiment on four polysyn-
thetic languages of the Yuto-Aztecan family
(Baker, 1997), with the goal of improving the
performance of neural seq2seq models. The lan-
guages will be described in the rest of this section.

Mexicanero is a Western Peripheral Nahuatl
variant, spoken in the Mexican state of Durango
by approximately one thousand people. This di-
alect is isolated from the rest of the other branches
and has a strong process of Spanish stem incorpo-
ration, while also having borrowed some suffixes
from that language (Vanhove et al., 2012). It is
common to see Spanish words mixed with Nahu-
atl agglutinations. In the following example we
can see an intrasentencial mixing of Spanish (in
uppercases) and Mexicanero:

u|ni|ye MALO — I was sick



Nahuatl is a large subgroup of the Yuto-
Aztecan language family, and, including all of its
variants, the most spoken native language in Mex-
ico. Its almost two million native speakers live
mainly in Puebla, Guerrero, Hidalgo, Veracruz,
and San Luis Potosi, but also in Oaxaca, Durango,
Modelos, Mexico City, Tlaxcala, Michoacan, Na-
yarit and the State of Mexico. Three dialectical
groups are known: Central Nahuatl, Occidental
Nahuatl and Oriental Nahuatl. The data collected
for this work belongs to the Oriental branch spo-
ken by 70 thousand people in Northern Puebla.

Like all languages of the Yuto-Aztecan family,
Nahuatl is agglutinative and one word can consist
of a combination of many different morphemes.
Usually, the verb functions as the stem and gets
extended by morphemes specifying, e.g., subject,
patient, object or indirect object. The most com-
mon syntax sequence for Nahuatl is SOV. An ex-
ample word is:

o|ne|mo|kokowal|ya — I was sick

Wixarika is a language spoken in the states of
Jalisco, Nayarit, Durango and Zacatecas in Cen-
tral West Mexico by approximately fifty thousand
people. It belongs to the Coracholan group of lan-
guages within the Yuto-Aztecan family. Wixarika
has five vowels {a,e,i,+',u} with long and short
variants. An example for a word in the language
is:

ne|p+|ti|kuye|kai — I was sick

Like Nahuatl, it has an SOV syntax, with heavy
agglutination on the verb. Wixarika is morpholog-
ically more complex than other languages from the
same family, because it incorporates more infor-
mation into the verb (Leza and L6pez, 2006). This
leads to a higher number of morphemes per word
as can also be seen in Table 3.

Yorem Nokki is part of Taracachita subgroup of
the Yuto-Aztecan language family. Its Southern
dialect is spoken by close to forty thousand people
in the Mexican states of Sinaloa and Sonora, while
its Northern dialect has about twenty thousand
speakers. In this work, we consider the South-
ern dialect. The nominal morphology of Yorem

"While linguists often use a dashed i () to denote this
vowel, in practice almost all native speakers use a plus sym-
bol (+). In this work, we choose to use the latter.
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Mexicanero | Nahuatl | Wixarika | Yorem N.
train 427 540 665 511
dev 106 134 176 127
test 355 449 553 425
total 888 1123 1394 1063

Table 2: Number of examples in the final data splits for
all languages.

Nokki is rather simple, but, like in the other Yuto-
Aztecan languages, the verb is highly complex. Its
alphabet consists of 28 characters and contains 8
different vowels. An example verb is:

ko’kore|ye|ne — I was sick

3 Morphological Segmentation Datasets

To create our datasets, we make use of both seg-
mentable (i.e., consisting of multiple morphemes)
and non-segmentable (i.e., consisting of one single
morpheme) words described in books of the col-
lection Archive of Indigenous Languages in Mexi-
canero (Canger, 2001), Nahuatl (Lastra de Sudrez,
1980), Wixarika (Gémez and Ldépez, 1999), and
Yorem Nokki (Freeze, 1989). Statistics about the
data in the four languages are displayed in Ta-
bles 1, 2 and 3. We include segmentable as well
as non-segmentable words into our datasets in or-
der to ensure that our methods can correctly de-
cide against splitting up single morphemes. The
phrases in all languages are mostly parallel, such
that the corpora are roughly equivalent. There-
fore, we can compare the morphology of trans-
lated words (cf. Table 3), noticing that the lan-
guage with most agglutination is Wixarika, with
an average rate of 3.25 morphemes per word; the
other languages have an average of close to 2.2
morphemes per word. This higher morphological
complexity naturally produces data sparsity at the
token level. Also, we can notice that Wixarika has
more unique words than the rest of our studied lan-
guages. However, Nahuatl has with 810 the high-
est number of unique morphemes.

Final splits.  In order to make follow-up work
on minimal-resource settings for morphological
segmentation easily comparable, we provide pre-
defined splits of our datasets”>. 40% of the data
constitute the test sets. Of the remaining data, we

to-
at

2Our datasets can be found
gether with the code of our models
http://turing.iimas.unam.mx/wix/MexSeqg



Mex. |Nahuatl| Wixarika | Yorem N.
Words 888 | 1123 1385 1063
SegWords 539 | 746 1131 774
Morphs 1889 | 2467 | 4502 2266
UniMorphs || 602 | 810 653 662
Seg/W 0.606| 0.664 | 0.816 0.728
Morphs/W {|2.127| 2.196 | 3.250 2.131
MaxMorphs|| 7 6 10 10

Table 3: Number of words, segmentable words (Seg-
Words), total morphs (Morphs), and unique morphs
(UniMorphs) in our datasets. Seg/W: proportion
of words consisting or more than one morpheme;
Morphs/W: morphemes per word; MaxMorphs: maxi-
mum number of morphemes found in one word.

use 20% for development and the rest for training.
The final numbers of words per dataset and lan-
guage are shown in Table 2.

4 Neural Seq2seq Models for
Segmentation

In the beginning of this section, we will introduce
our neural architecture for segmentation. Subse-
quently, we will first describe our two proposed
multi-task training approaches and second our
data augmentation methods. Finally, we will elab-
orate on expected differences between the two.

4.1 Character-Based Encoder-Decoder RNN

Following work on segmentation by Kann et al.
(2016) for high-resource settings, our approach is
based on the neural seq2seq model introduced by
Bahdanau et al. (2015) for machine translation.

Encoder. The first part of our model is a bidi-
rectional recurrent neural network (RNN) which
encodes the input sequence, i.e., the sequence of
characters of a given word w = wy, wa, ..., wT,,
represented by the corresponding embedding vec-
tOrs Uy, -+, Vwy,, - In particular, our encoder con-
sists of one gated recurrent neural network (GRU)
which processes the input in forward direction and
a second GRU which processes the input from the
opposite side.

Encoding with this bidirectional GRU yields the

— —
forward hidden state h; = f <hi,17vi> and the

) — —
backward hidden state h; = f ( hit1, vi), for a
non-linear activation function f. Their concatena-
. - .
tion h; = [hi; E} is passed on to the decoder.
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Decoder. The second part of our network, the
decoder, is a single GRU, defining a probability
distribution over strings in (X U S)*, for an alpha-
bet X and a separation symbol S:

T
pep(c | w) = Hp(ct | ey em,w). (1)
t=1

where p(c¢; | ¢1,...,¢-1,w) is computed us-
ing an attention mechanism and an output softmax
layer over ¥ U S.

A more detailed description of the general
attention-based encoder-decoder architecture can
be found in the original paper by Bahdanau et al.
(2015).

5 TImproving Neural Models for
Segmentation

5.1 Multi-Task Training

In order to leverage unlabeled data or even random
strings during training, we define an autoencoding
auxiliary task, which consists of encoding the in-
put and decoding an output which is identical to
the original string.

Then, our multi-task training objective is to
maximize the joint log-likelihood of this auxiliary
task and our segmentation main task:

L(0)="> logpa (c | e(w)) 2)
(w,e)eT
+ Z logpg(a | e(a))
acA

T denotes the segmentation training data with
examples consisting of a word w and its segmen-
tation c. A denotes either a set of words in the lan-
guage of the system or a set of random strings. The
function e describes the encoder and depends on
the model parameters @, which are shared across
the two tasks. For training, we use data from both
sets at the same time and mark each example with
an additional, task-specific input symbol.

We treat the size of A as a hyperparameter
which we optimize on the development set sepa-
rately for each language. Values we experiment
with are m times the amount of instances in the
original training set, with m € {1,2,4,8}.3

3An exception is Yorem Nokki, for which we do not have

enough unlabeled data available, such that we experiment
only with m € {1, 2}.



There are multiple reasons why we expect
multi-task training to improve the performance of
the final model. First, multi-task training should
act as a regularizer. Second, for our models, the
segmentation task consists in large parts of learn-
ing to copy the input character sequence to the
output. This, however, can be learned from any
string and does not require annotated segmenta-
tion boundaries. Third, in the case of unlabeled
data (i.e., not for random strings), we expect the
character language model in the decoder to im-
prove, since it is trained on additional data.

We denote models trained with multi-task train-
ing using unlabeled corpus data as MTT-U and
models trained with multi-task training using ran-
dom strings as MTT-R.

5.2 Data Augmentation

A second option to make use of unlabeled data or
random strings is to extend the available training
data with new examples made from those. The
main question to answer here is how to include the
new data into the existing datasets. We do this by
building new training examples in a fashion sim-
ilar to the multi-task setup. All newly created in-
stances are of the form

3)

w — w

where either w € V with V' being the observed
vocabulary of the language, e.g., words in a given
unlabeled corpus, or w € R with R being a set of
sequences of random characters from the alphabet
> of the language.

Again, we treat the amount of additional train-
ing examples as a hyperparameter which we opti-
mize on the development set separately for each
language. We explore m times the amount of
instances in the original training set, with m &
{1,2,4,8}.

The reasons why we expect our data augmenta-
tion methods to lead to better segmentation models
are similar to those for multi-task training.

We call models trained on datasets augmented
with unlabeled corpus data or random strings DA-
U or DA-R, respectively.

5.3 Differences Between Multi-task Training
and Data Augmentation

The difference between MTT-U (resp. MTT-R)
and DA-U (resp. MTT-U) is a single element in
the input sequence (the one representing the task).
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However, this information enables the model to
handle each given instance correctly at inference
time. As a result, it gets more robust against noisy
data, which seems crucial for our way of using un-
labeled corpora. Consider, for example, the Nahu-
atl word onemokokowaya. Training on

onemokokowaya — onemokokowaya

will make the model learn notr to seg-
ment words which consist of the morphemes
o,ne, mo, kokowa, ya, which should ultimately
hurt performance. The multi-task approach, in
contrast, mitigates this problem.

As a conclusion, we expect the data augmen-
tation approach with unlabeled data to not obtain
outstanding performance, but rather consider it an
important and informative baseline for the cor-
responding multi-task approach. Using random
strings, the difference between the multi-task and
the data augmentation approaches is less obvious:
Real morphemes should appear rarely enough in
the created random character sequences to avoid
the negative effect which we expect for corpus
words. We thus assume that the performances of
MTT-R and DA-R should be similar.

6 Experiments

6.1 Data

We apply our models to the datasets described
in §3. For the multi-task training and data aug-
mentation using unlabeled data, we use (unseg-
mented) words from a parallel corpus collected by
Gutierrez-Vasques et al. (2016) for Nahuatl and
the closely related Mexicanero. For Wixarika we
use data from Mager et al. (2018) and for Yorem
Nokki we use text from Maldonado Martinez et al.
(2010).

6.2 Baselines

Now, we will describe the baselines we use to eval-
uate the overall performance of our approaches.

Supervised seq2seq RNN (S2S). As a first
baseline, we employ a fully supervised neural
model without data augmentation or multi-task
training, i.e., an attention-based encoder-decoder
RNN (Bahdanau et al., 2015) which has been
trained only on the available annotated data.

Semi-supervised MORFESSOR (MORF). We
further compare to the semi-supervised version



of MORFESSOR (Kohonen et al., 2010), a well-
known morphological segmentation system. Dur-
ing training, we tune the hyperparameters for each
language on the respective development set. The
best performing model is applied to the test set.

FlatCat (FC). Our next baseline is FlatCat
(Gronroos et al., 2014), a variant of MORFES-
SOR. It consists of a hidden Markov model for
segmentation. The states of the model correspond
either to a word boundary and one of the four
morph categories stem, prefix, suffix, and non-
morpheme. It can work in an unsupervised way,
but, similar to the previous baseline, can make ef-
fective use of small amounts of labeled data.

CRF. We further compare to a conditional ran-
dom fields (CRF) (Lafferty et al., 2001) model, in
particular a strong discriminative model for seg-
mentation by Ruokolainen et al. (2014). It re-
duces the task to a classification problem with
four classes: beginning of a morph, middle of
a morph, end of a morph and single character
morph. Training is again semi-supervised and the
model was previously reported to obtain good re-
sults for small amounts of unlabeled data (Ruoko-
lainen et al., 2014), which makes it very suitable
for our minimal-resource setting.

6.3 Hyperparameters

Neural network parameters. All GRUs in
both the encoder and the decoder have 100-
dimensional hidden states. All embeddings are
300-dimensional.

For training, we use ADADELTA (Zeiler, 2012)
with a minibatch size of 20. We initialize all
weights to the identity matrix and biases to zero
(Le etal., 2015). All models are trained for a max-
imum of 200 epochs, but we evaluate after every
5 epochs and apply the best performing model at
test time. Our final reported results are averaged
accuracies over 5 single training runs.

Optimizing the amount of auxiliary task data.
The performance of our neural segmentation
model in dependence of the amount of auxiliary
task training data can be seen in Figure 1. As
a general tendency across all languages, adding
more data seems better, particularly for the autoen-
coding task with random strings. The only excep-
tion is Wixarika.

The final configurations we choose for m (cf.
§5.1) in the case of multi-task training with the
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auxiliary task of autoencoding corpus data are
m = 4 for Mexicanero, Nahuatl and Wixarika and
m = 1 for Yorem Nokki. For multi-task train-
ing with autoencoding of random strings we select
m = 8 for Mexicanero, Nahuatl and Yorem Nokki
and m = 4 for Wixarika.

Optimizing the amount of artificial training
data for data augmentation. Figure 2 shows
the performance of the encoder-decoder depend-
ing on the amount of added artificial training data.
In the case of random strings, again, adding more
training data seems to help more. However, us-
ing corpus data seems to hurt performance and the
more such examples we use, the worse accuracy
we obtain. Thus, we conclude that (as expected)
data augmentation with corpus data is not a good
way to improve the model’s performance. We will
discuss this in more detail in §6.5.

Even though the final conclusion should be to
not add much corpus data, we apply what gives
best results on the development set. The final con-
figurations we thus choose for DA-U are m = 1
for Mexicanero, Wixarika and Yorem Nokki and
m = 2 for Nahuatl. For DA-R, we select m = 4
for Mexicanero, Wixarika and Yorem Nokki and
m = 8 for Nahuatl.

6.4 Evaluation Metrics

Accuracy. First, we evaluate using accuracy on
the token level. Thus, an example counts as correct
if and only if the output of the system matches the
reference solution exactly, i.e., if all output sym-
bols are predicted correctly.

F1. Our second evaluation metric is border F1,
which measures how many segment boundaries
are predicted correctly by the model. While we
use this metric because it is common for segmenta-
tion tasks, it is not ideal for our models since those
are not guaranteed to preserve the input character
sequence. We handle this problem as follows: In
order to compare borders, we identify them by the
position of their preceding letter, i.e., if in both the
model’s guess and the gold solution a segment bor-
der appears after the second character, it counts as
correct. Wrong characters are ignored. Note that
this comes with the disadvantage of erroneously
inserted characters leading to all subsequent seg-
ment borders being counted as incorrect.
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Figure 1: Accuracy on the development set in dependence of the amount of auxiliary task training data for multi-

task learning.
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Figure 2: Accuracy on the development set in dependence of the amount of additional training data.

6.5 Test Results and Discussion

Table 4 shows that accuracy and F1 seem to be
highly correlated for our task. The test results also
give an answer to our first research question: The
neural model S2S performs on par with CRF, the
strongest baseline, for all languages but Nahuatl.
Further, S2S and CRF both outperform MORF and
FC by a wide margin. We may thus conclude that
neural models are indeed applicable to segmenta-
tion of polysynthetic languages in a low-resource
setting.

Second, we can see that all our proposed
methods except for DA-U improve over S28S,
the neural baseline: The accuracy of MTT-U is
between 0.0141 (Wixarika) and 0.0547 (Mexi-
canero) higher than S2S’s. MTT-R improves
between 0.0380 (Wixarika) and 0.0532 (Yorem
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Nokki).  Finally, DA-R outperforms S2S by
0.0367 to 0.0479 accuracy for Yorem Nokki and
Mexicanero, respectively. The overall picture
when considering F1 looks similar. Comparing
our approaches to each other, there is no clear win-
ner. This might be due to differences in the unla-
beled data we use: the corpus we use for Mexi-
canero and Nahuatl is from dialects different from
both respective test sets. Assuming that the effect
of training a language model using unlabeled data
and erroneously learning to not segment words are
working against each other for MTT-U, this might
explain why MTT-U is best for Mexicanero and
the gap between MTT-U and MTT-R is smaller for
Nahuatl than for Yorem Nokki and Wixarika.

As mentioned before (cf. §5.3), a simple data
augmentation method using unlabeled data should



Accuracy
MTT-UMTT-R|DA-U|

DA-R| S2S |MORF| CRF| FC

Fl
HMTT-U\MTT-R\DA-U\DA-R\ S2S [MORF| CRE| FC

Mex. 8051 | .7955 |.7611|.7983|.7504| .3364 |.7837|.5420|| .8786
Nahuatl || .6004 | .6027 |.5541|.6018|.5585| .4044 |.6444|.4888|| .7388
Wixarika || .5895 | .6134 |.5425|.6188|.5754| .3989 |.5866|.4523|| .7949
Yorem N.|| .6856 | .7101 |.6212|.6936|.6569| .4812 |.6596|.5781

.8694 |.6715|.8683|.8618| .5121 |.8639|.5621
7367 |.6865.7328|.7266| .4154 |.7487|.5185
.8024 |.7109|.8161|.7961| .4426 |.7932|.5568

7887 | .8076 |.7133(.7923|.7730| .3528 |.7736|.6139

Table 4: Performances of our multi-task and data augmentation approaches compared to all baselines described in
the text. The reported results for neural models are averages over 5 training runs. Best results per language and

metric are in bold.

hurt performance. This is indeed the result of our
experiments: DA-U performs worse than S2S for
all languages except for Mexicanero, where the
unlabeled corpus is from another language: the
closely related Nahuatl. We thus conclude that
multi-task training (instead of simple data aug-
mentation) is crucial for the use of unlabeled data.

Finally, our methods compare favorably to all
baselines, with the exception of CRF for Nahu-
atl. While CRF is overall the strongest baseline
for our considered languages, our methods out-
perform it by up to 0.0214 accuracy or 0.0147 F1
for Mexicanero, 0.0322 accuracy or 0.0229 F1 for
Wixarika and 0.0505 accuracy or 0.0340 F1 for
Yorem Nokki. This shows the effectiveness of our
fortified neural models for minimal-resource mor-
phological segmentation.

7 Cross-Lingual Transfer Learning

We now want to investigate the performance of
one single model trained on all languages at once.
This is done in analogy to the multi-task training
described in §5.1. We treat segmentation in each
language as a separate task and train an attention-
based encoder-decoder model on maximizing the
joint log-likelihood:

LO)=)_ Y logpe(c|e(w))

LieL (w,c)eTy,
“4)

71, denotes the segmentation training data in lan-
guage L; and L is the set of our languages. As
before, each training example consists of a word
w and its segmentation c.

7.1 Experimental Setup

We keep all model parameters and the training
regime as described in §6.3. However, our training
data now consists of a combination of all available
training data for all 4 languages. In order to en-
able the model to differentiate between the tasks,
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H M-Lang ‘ S-Lang ‘ BestMTT |BestDA

Mex. .6858 | 7504 | .8051 7983
Nahuatl 5955 | 5585 | .6027 | .6018
Wixarika || .6021 | .5754 | .6134 | .6188
Yorem N.|| .6223 | .6569 | .7101 .6936

Table 5: Accuracies of our model trained on all lan-
guages (M-Lang) and the models trained on single lan-
guages (S-Lang). The highest multi-task and data aug-
mentation accuracies are repeated for an easy compar-
ison.

we prepend one language-specific input symbol to
each instance. This corresponds to having one em-
bedding in the input which marks the task. An ex-
ample training instance for Yorem Nokki is

L=YN ko'koreyene — ko'kore|ye|ne,

where L=YN indicates the language.

Due to the previous high correlation between
accuracy and F1 we only use accuracy on the word
level as the evaluation metric for this experiment.

7.2 Results and Discussion

In Table 5, we show the results of the multi-lingual
model, which was trained on all languages, com-
pared to all individual models, as well as each re-
spective best multi-task approach and data aug-
mentation method. The results differ among lan-
guages: Most remarkably, for both Wixarika and
Nahuatl, the accuracy of the multi-lingual model is
higher than the one of the single-language model.
This might be related to them being the languages
with most training data available (cf. Table 3).

Note, however, that even for the remaining
two languages—Mexicanero and Yorem Nokki—
we hardly lose accuracy when comparing the
multi-lingual to the individual models. Since we
only use one model (instead of four), without in-
creasing its size significantly, we thus reduce the
amount of parameters by nearly 75%.



8 Related Work

Work on morphological segmentation was started
more than 6 decades ago (Harris, 1951). Since
then, many approaches have been developed: In
the realm of unsupervised methods, two important
systems are LINGUISTICS (Goldsmith, 2001)
and MORFESSOR (Creutz and Lagus, 2002). The
latter was later extended to a semi-supervised ver-
sion (Kohonen et al., 2010) in order to make use of
the abundance of unlabeled data which is available
for many languages.

Ruokolainen et al. (2013) focused explicitly
on low-resource scenarios and applied CRFs to
morphological segmentation in several languages.
They reported better results than earlier work, in-
cluding semi-supervised approaches. In the fol-
lowing year, they extended their approach to be
able to use unlabeled data as well, further improv-
ing performance (Ruokolainen et al., 2014).

Cotterell et al. (2015) trained a semi-Markov
CRF (semi-CRF) (Sarawagi and Cohen, 2005)
jointly on morphological segmentation, stemming
and tagging. For the similar problem of Chi-
nese word segmentation, Zhang and Clark (2008)
trained a model jointly on part-of-speech tagging.
However, we are not aware of any prior work on
multi-task training or data augmentation for neural
segmentation models.

In fact, the two only neural seq2seq approaches
for morphological segmentation we know of fo-
cused on canonical segmentation (Cotterell et al.,
2016) which differs from the surface segmentation
task considered here in that it restores changes to
the surface form of morphemes which occurred
during word formation. Kann et al. (2016) also
used an encoder-decoder RNN and combined it
with a neural reranker. While our model archi-
tecture was inspired by them, their model was
purely supervised. Additionally, they did not in-
vestigate the applicability of their neural seq2seq
model in low-resource settings or for polysyn-
thetic languages. Ruzsics and Samardzic (2017)
extended the standard encoder-decoder architec-
ture for canonical segmentation to contain a lan-
guage model over segments and improved results.
However, a big difference to our work is that they
still used more than ten times as much training
data as we have available for the indigenous Mex-
ican languages we are working on here.

Another neural approach—this time for sur-
face segmentation—was presented by Wang et al.
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(2016). The authors, instead of using seq2seq
models, treat the task as a sequence labeling prob-
lem and use LSTMs to classify every character
either as the beginning, middle or end of a mor-
pheme, or as a single-character morpheme.

Cross-lingual knowledge transfer via language
tags was proposed for neural seq2seq models be-
fore, both for tasks that handle sequences of words
(Johnson et al., 2017) and tasks that work on se-
quences of characters (Kann et al., 2017). How-
ever, to the best of our knowledge, we are the
first to try such an approach for a morphological
segmentation task. In many other areas of NLP,
cross-lingual transfer has been applied success-
fully, e.g., in entity recognition (Wang and Man-
ning, 2014), language modeling (Tsvetkov et al.,
2016), or parsing (Cohen et al., 2011; Sggaard,
2011; Ammar et al., 2016).

9 Conclusion and Future Work

We first investigated the applicability of neural
seq2seq models to morphological surface segmen-
tation for polysynthetic languages in minimal-
resource settings, i.e., for considerably less than
1,000 training instances. Although they are gen-
erally thought to require large amounts of training
data, neural networks obtained an accuracy com-
parable to or higher than several strong baselines.

Subsequently, we proposed two novel multi-
task training approaches and two novel data aug-
mentation methods to further increase the perfor-
mance of our neural models. Adding those, we im-
proved over the neural baseline for all languages,
and for Mexicanero, Wixarika and Yorem Nokki
our final models outperformed all baselines by up
to 5.05% absolute accuracy or 3.40% F1. Further-
more, we explored cross-lingual transfer between
our languages and reduced the amount of neces-
sary model parameters by about 75%, while im-
proving performance for some of the languages.

We publically release our datasets for morpho-
logical surface segmentation of the polysynthetic
minimal-resource languages Mexicanero, Nahu-
atl, Wixarika and Norem Yokki.
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Abstract

Recently, neural machine translation
(NMT) has emerged as a powerful alterna-
tive to conventional statistical approaches.
However, its performance drops consider-
ably in the presence of morphologically
rich languages (MRLs). Neural engines
usually fail to tackle the large vocabulary
and high out-of-vocabulary (OOV) word
rate of MRLs. Therefore, it is not suitable
to exploit existing word-based models
to translate this set of languages. In this
paper, we propose an extension to the
state-of-the-art model of Chung et al.
(2016), which works at the character level
and boosts the decoder with target-side
morphological information. In our archi-
tecture, an additional morphology table
is plugged into the model. Each time the
decoder samples from a target vocabulary,
the table sends auxiliary signals from the
most relevant affixes in order to enrich the
decoder’s current state and constrain it to
provide better predictions. We evaluated
our model to translate English into Ger-
man, Russian, and Turkish as three MRLs
and observed significant improvements.

1 Introduction

Morphologically complex words (MCWs) are
multi-layer structures which consist of different
subunits, each of which carries semantic informa-
tion and has a specific syntactic role. Table 1 gives
a Turkish example to show this type of complexity.
This example is a clear indication that word-based
models are not suitable to process such complex
languages. Accordingly, when translating MRLs,
it might not be a good idea to treat words as atomic
units as it demands a large vocabulary that im-
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poses extra overhead. Since MCWs can appear
in various forms we require a very large vocabu-
lary to %) cover as many morphological forms and
words as we can, and 4i) reduce the number of
OOVs. Neural models by their nature are com-
plex, and we do not want to make them more com-
plicated by working with large vocabularies. Fur-
thermore, even if we have quite a large vocabulary
set, clearly some words would remain uncovered
by that. This means that a large vocabulary not
only complicates the entire process, but also does
not necessarily mitigate the OOV problem. For
these reasons we propose an NMT engine which
works at the character level.

Word Translation
terbiye good manners
terbiye.siz rude
terbiye.siz.lik rudeness

their rudeness
from their rudeness

terbiye.siz.lik.leri
terbiye.siz.lik.leri.nden

Table 1: Illustrating subword units in MCWs. The
boldfaced part indicates the stem.

In this paper, we focus on translating into MRLs
and issues associated with word formation on the
target side. To provide a better translation we
do not necessarily need a large target lexicon, as
an MCW can be gradually formed during decod-
ing by means of its subunits, similar to the solu-
tion proposed in character-based decoding models
(Chung et al., 2016). Generating a complex word
character-by-character is a better approach com-
pared to word-level sampling, but it has other dis-
advantages.

One character can co-occur with another with
almost no constraint, but a particular word or mor-
pheme can only collocate with a very limited num-
ber of other constituents. Unlike words, characters
are not meaning-bearing units and do not preserve
syntactic information, so (in the extreme case) the
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chance of sampling each character by the decoder
is almost equal to the others, but this situation is
less likely for words. The only constraint that pri-
oritize which character should be sampled is in-
formation stored in the decoder, which we believe
is insufficient to cope with all ambiguities. Fur-
thermore, when everything is segmented into char-
acters the target sentence with a limited number
of words is changed to a very long sequence of
characters, which clearly makes it harder for the
decoder to remember such a long history. Ac-
cordingly, character-based information flows in
the decoder may not be as informative as word-
or morpheme-based information.

In the character-based NMT model everything
is almost the same as its word-based counterpart
except the target vocabulary whose size is consid-
erably reduced from thousands of words to just
hundreds of characters. If we consider the de-
coder as a classifier, it should in principle be able
to perform much better over hundreds of classes
(characters) rather than thousands (words), but the
performance of character-based models is almost
the same as or slightly better than their word-
based versions. This underlines the fact that the
character-based decoder is perhaps not fed with
sufficient information to provide improved perfor-
mance compared to word-based models.

Character-level decoding limits the search space
by dramatically reducing the size of the target vo-
cabulary, but at the same time widens the search
space by working with characters whose sampling
seems to be harder than words. The freedom in
selection and sampling of characters can mislead
the decoder, which prevents us from taking the
maximum advantages of character-level decoding.
If we can control the selection process with other
constraints, we may obtain further benefit from re-
stricting the vocabulary set, which is the main goal
followed in this paper.

In order to address the aforementioned prob-
lems we redesign the neural decoder in three dif-
ferent scenarios. In the first scenario we equip the
decoder with an additional morphology table in-
cluding target-side affixes. We place an attention
module on top of the table which is controlled by
the decoder. At each step, as the decoder samples a
character, it searches the table to find the most rel-
evant information which can enrich its state. Sig-
nals sent from the table can be interpreted as addi-
tional constraints. In the second scenario we share
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the decoder between two output channels. The
first one samples the target character and the other
one predicts the morphological annotation of the
character. This multi-tasking approach forces the
decoder to send morphology-aware information to
the final layer which results in better predictions.
In the third scenario we combine these two mod-
els. Section 3 provides more details on our mod-
els.

Together with different findings that will be dis-
cussed in the next sections, there are two main
contributions in this paper. We redesigned and
tuned the NMT framework for translating into
MRLs. It is quite challenging to show the impact
of external knowledge such as morphological in-
formation in neural models especially in the pres-
ence of large parallel corpora. However, our mod-
els are able to incorporate morphological informa-
tion into decoding and boost its quality. We inject
the decoder with morphological properties of the
target language. Furthermore, the novel architec-
ture proposed here is not limited to morphological
information alone and is flexible enough to pro-
vide other types of information for the decoder.

2 NMT for MRLs

There are several models for NMT of MRLs which
are designed to deal with morphological complex-
ities. Garcia-Martinez et al. (2016) and Sennrich
and Haddow (2016) adapted the factored machine
translation approach to neural models. Morpho-
logical annotations can be treated as extra factors
in such models. Jean et al. (2015) proposed a
model to handle very large vocabularies. Luong
et al. (2015) addressed the problem of rare words
and OOVs with the help of a post-translation phase
to exchange unknown tokens with their poten-
tial translations. Sennrich et al. (2016) used sub-
word units for NMT. The model relies on frequent
subword units instead of words. Costa-jussa and
Fonollosa (2016) designed a model for translating
from MRLs. The model encodes source words
with a convolutional module proposed by Kim
et al. (2016). Each word is represented by a con-
volutional combination of its characters.

Luong and Manning (2016) used a hybrid
model for representing words. In their model,
unseen and complex words are encoded with a
character-based representation, with other words
encoded via the usual surface-form embed-
dings. Vylomova et al. (2016) compared differ-



ent representation models (word-, morpheme, and
character-level models) which try to capture com-
plexities on the source side, for the task of trans-
lating from MRLs.

Chung et al. (2016) proposed an architec-
ture which benefits from different segmentation
schemes. On the encoder side, words are seg-
mented into subunits with the byte-pair segmen-
tation model (bpe) (Sennrich et al., 2016), and
on the decoder side, one target character is pro-
duced at each time step. Accordingly, the tar-
get sequence is treated as a long chain of charac-
ters without explicit segmentation. Gronroos et al.
(2017) focused on translating from English into
Finnish and implicitly incorporated morphological
information into NMT through multi-task learn-
ing. Passban (2018) comprehensively studied the
problem of translating MRLs and addressed po-
tential challenges in the field.

Among all the models reviewed in this section,
the network proposed by Chung et al. (2016) could
be seen as the best alternative for translating into
MRLs as it works at the character level on the de-
coder side and it was evaluated in different settings
on different languages. Consequently, we consider
it as a baseline model in our experiments.

3 Proposed Architecture

We propose a compatible neural architecture for
translating into MRLs. The model benefits from
subword- and character-level information and im-
proves upon the state-of-the-art model of Chung
et al. (2016). We manipulated the model to incor-
porate morphological information and developed
three new extensions, which are discussed in Sec-
tions 3.1, 3.2, and 3.3.

3.1 The Embedded Morphology Table

In the first extension an additional table containing
the morphological information of the target lan-
guage is plugged into the decoder to assist with
word formation. Each time the decoder samples
from the target vocabulary, it searches the mor-
phology table to find the most relevant affixes
given its current state. Items selected from the ta-
ble act as guiding signals to help the decoder sam-
ple a better character.

Our base model is an encoder-decoder model
with attention (Bahdanau et al., 2014), imple-
mented using gated recurrent units (GRUs) (Cho
et al., 2014). We use a four-layer model in our
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experiments. Similar to Chung et al. (2016) and
Wu et al. (2016), we use bidirectional units to en-
code the source sequence. Bidirectional GRUs are
placed only at the input layer. The forward GRU
reads the input sequence in its original order and
the backward GRU reads the input in the reverse
order. Each hidden state of the encoder in one
time step is a concatenation of the forward and
backward states at the same time step. This type
of bidirectional processing provides a richer rep-
resentation of the input sequence.

On the decoder side, one target character is sam-
pled from a target vocabulary at each time step.
In the original encoder-decoder model, the proba-
bility of predicting the next token y; is estimated
based on 7) the current hidden state of the de-
coder, 7) the last predicted token, and ¢:¢) the
context vector. This process can be formulated as
p(Wilyr, -, yi-1,%) = g(hi,yi—1,¢;), where g(.)
is a softmax function, y; is the target token (to
be predicted), x is the representation of the input
sequence, h; is the decoder’s hidden state at the
t-th time step, and c; indicates the context vec-
tor which is a weighted summary of the input se-
quence generated by the attention module. c; is
generated via the procedure shown in (1):

n
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where «;; denotes the weight of the j-th hidden
state of the encoder (s;) when the decoder predicts
the i-th target token, and a() shows a combinato-
rial function which can be modeled through a sim-
ple feed-forward connection. n is the length of the
input sequence.

In our first extension, the prediction prob-
ability is conditioned on one more constraint
in addition to those three existing ones, as in
p(yily1, s yi-1,%) = g(hi,yi-1,c¢i,cf"), where
c;" is the morphological context vector and car-
ries information from those useful affixes which
can enrich the decoder’s information. ci”* is gener-
ated via an attention module over the morphology
table which works in a similar manner to word-
based attention model. The attention procedure for
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Figure 1: The target label that each output channel is supposed to predict when generating the Turkish sequence
‘bu; terbiyesizliks icing’ meaning ‘becauses ofs thisy rudenesss’.

generating c;" is formulated as in (2):
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where f, represents the embedding of the u-th af-
fix (u-th column) in the morphology/affix table A,
Biy 1s the weight assigned to f,, when predicting
the ¢-th target token, and a™ is a feed-forward con-
nection between the morphology table and the de-
coder.

The attention module in general can be consid-
ered as a search mechanism, e.g. in the origi-
nal encoder-decoder architecture the basic atten-
tion module finds the most relevant input words to
make the prediction. In multi-modal NMT (Huang
et al., 2016; Calixto et al., 2017) an extra attention
module is added to the basic one in order to search
the image input to find the most relevant image
segments. In our case we have a similar additional
attention module which searches the morphology
table.

In this scenario, the morphology table including
the target language’s affixes can be considered as
an external knowledge repository that sends auxil-
iary signals which accompany the main input se-
quence at all time steps. Such a table certainly
includes useful information for the decoder. As
we are not sure which affix preserves those pieces
of useful information, we use an attention module
to search for the best match. The attention mod-
ule over the table works as a filter which excludes
irrelevant affixes and amplifies the impact of rel-
evant ones by assigning different weights (3 val-
ues).

3.2 The Auxiliary Output Channel

In the first scenario, we embedded a morphology
table into the decoder in the hope that it can enrich
sampling information. Mathematically speaking,
such an architecture establishes an extra constraint
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for sampling and can control the decoder’s predic-
tions. However, this is not the only way of con-
straining the decoder. In the second scenario, we
define extra supervision to the network via another
predictor (output channel). The first channel is re-
sponsible for generating translations and predicts
one character at each time step, and the other one
tries to understand the morphological status of the
decoder by predicting the morphological annota-
tion (/;) of the target character.

The approach in the second scenario proposes
a multi-task learning architecture, by which in one
task we learn translations and in the other one mor-
phological annotations. Therefore, all network
modules —especially the last hidden layer just be-
fore the predictors— should provide information
which is useful enough to make correct predictions
in both channels, i.e. the decoder should preserve
translation as well as morphological knowledge.
Since we are translating into MRLs this type of
mixed information (morphology-+translation) can
be quite useful.

In our setting, the morphological annotation [;
predicted via the second channel shows to which
part of the word or morpheme the target character
belongs, i.e. the label for the character is the mor-
pheme that includes it. We clarify the prediction
procedure via an example from our training set
(see Section 4). When the Turkish word ‘terbiye-
sizlik’ is generated, the first channel is supposed to
predict ¢, e, r, up to k, one after another. For the
same word, the second channel is supposed to pre-
dict stem-C for the fist 7 steps as the first 7 charac-
ters ‘terbiye’ belong to the stem of the word. The
C sign indicates that stem-C is a class label. The
second channel should also predict siz-C when the
first channel predicts s (eighth character), i (ninth
character), and z (tenth character), and lik-C when
the first channel samples the last three characters.
Clearly, the second channel is a classifier which
works over the {stem-C, siz-C, lik-C, ...} classes.
Figure 1 illustrates a segment of a sentence includ-
ing this Turkish word and explains which class



tags should be predicted by each channel.

To implement the second scenario we re-
quire a single-source double-target training cor-
pus: [source sentence] — [sequence of target char-
acters & sequence of morphological annotations]
(see Section 4). The objective function should also
be manipulated accordingly. Given a training set
{x¢,yt, my}1_; the goal is to maximize the joint
loss function shown in (3):

T T
A Z log P(yt|x¢; 0)+(1-A) Z log P(my|x¢; 6)

t=1 t=1

3)
where Xx; is the ¢-th input sentence whose transla-
tion is a sequence of target characters shown by
y;. m is the sequence of morphological annota-
tions and 7' is the size of the training set. @ is the
set of network parameters and J is a scalar to bal-
ance the contribution of each cost function. A is
adjusted on the development set during training.

3.3 Combining the Extended Output Layer
and the Embedded Morphology Table

In the first scenario, we aim to provide the de-
coder with useful information about morphologi-
cal properties of the target language, but we are not
sure whether signals sent from the table are what
we really need. They might be helpful or even
harmful, so there should be a mechanism to con-
trol their quality. In the second scenario we also
have a similar problem as the last layer requires
some information to predict the correct morpho-
logical class through the second channel, but there
is no guarantee to ensure that information in the
decoder is sufficient for this sort of prediction. In
order to address these problems, in the third exten-
sion we combine both scenarios as they are com-
plementary and can potentially help each other.

The morphology table acts as an additional use-
ful source of knowledge as it already consists of
affixes, but its content should be adapted accord-
ing to the decoder and its actual needs. Accord-
ingly, we need a trainer to update the table prop-
erly. The extra prediction channel plays this role
for us as it forces the network to predict the tar-
get language’s affixes at the output layer. The
error computed in the second channel is back-
propagated to the network including the morphol-
ogy table and updates its affix information into
what the decoder actually needs for its predic-
tion. Therefore, the second output channel helps
us train better affix embeddings.
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The morphology table also helps the second
predictor. Without considering the table, the last
layer only includes information about the input se-
quence and previously predicted outputs, which
is not directly related to morphological informa-
tion. The second attention module retrieves useful
affixes from the morphology table and concate-
nates to the last layer, which means the decoder
is explicitly fed with morphological information.
Therefore, these two modules mutually help each
other. The external channel helps update the mor-
phology table with high-quality affixes (backward
pass) and the table sends its high-quality signals to
the prediction layer (forward pass). The relation
between these modules and the NMT architecture
is illustrated in Figure 2.

Figure 2: The architecture of the NMT model with an
auxiliary prediction channel and an extra morphology
table. This network includes only one decoder layer
and one encoder layer. & shows the attention modules.

4 Experimental Study

As previously reviewed, different models try to
capture complexities on the encoder side, but to
the best of our knowledge the only model which
proposes a technique to deal with complex con-
stituents on the decoder side is that of Chung et al.
(2016), which should be an appropriate baseline
for our comparisons. Moreover, it outperforms
other existing NMT models, so we prefer to com-
pare our network to the best existing model. This
model is referred to as CDNMT in our experi-
ments. In the next sections first we explain our
experimental setting, corpora, and how we build
the morphology table (Section 4.1), and then re-
port experimental results (Section 4.2).



4.1 Experimental Setting

In order to make our work comparable we try
to follow the same experimental setting used in
CDNMT, where the GRU size is 1024, the affix
and word embedding size is 512, and the beam
width is 20. Our models are trained using stochas-
tic gradient descent with Adam (Kingma and Ba,
2015). Chung et al. (2016) and Sennrich et al.
(2016) demonstrated that bpe boosts NMT, so sim-
ilar to CDNMT we also preprocess the source
side of our corpora using bpe. We use WMT—-15
corpora' to train the models, newstest-2013
for tuning and newstest-2015 as the test
sets. For English-Turkish (En-Tr) we use
the OpenSubtitle2016 collection (Lison and
Tiedemann, 2016). The training side of the
English-German (En—De), English-Russian (En—
Ru), and En-Tr corpora include 4.5, 2.1, and 4
million parallel sentences, respectively. We ran-
domly select 3K sentences for each of the develop-
ment and test sets for En—Tr. For all language pairs
we keep the 400 most frequent characters as the
target-side character set and replace the remainder
(infrequent characters) with a specific character.
One of the key modules in our architecture is the
morphology table. In order to implement it we use
a look-up table whose columns include embed-
dings for the target language’s affixes (each col-
umn represents one affix) which are updated dur-
ing training. As previously mentioned, the table
is intended to provide useful, morphological in-
formation so it should be initialized properly, for
which we use a morphology-aware embedding-
learning model. To this end, we use the neural
language model of Botha and Blunsom (2014) in
which each word is represented via a linear com-
bination of the embeddings of its surface form and

subunits, e.g. terbz'yesizlil% = terbiyesizlik +
terbiye + siz + lik. Given a sequence of words,
the neural language model tries to predict the next
word, so it learns sentence-level dependencies as
well as intra-word relations. The model trains sur-
face form and subword-level embeddings which
provides us with high-quality affix embeddings.
Our neural language model is a recurrent net-
work with a single 1000-dimensional GRU layer,
which is trained on the target sides of our paral-
lel corpora. The embedding size is 512 and we
use a batch size of 100 to train the model. Be-
fore training the neural language model, we need

"http://www.statmt .org/wmt15/
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to manipulate the training corpus to decompose
words into morphemes for which we use Morfes-
sor (Smit et al., 2014), an unsupervised morpho-
logical analyzer. Using Morfessor each word is
segmented into different subunits where we con-
sider the longest part as the stem of each word;
what appears before the stem is taken as a member
of the set of prefixes (there might be one or more
prefixes) and what follows the stem is considered
as a member of the set of suffixes.

Since Morfessor is an unsupervised analyzer, in
order to minimize segmentation errors and avoid
noisy results we filter its output and exclude sub-
units which occur fewer than 500 times.”? Af-
ter decomposing, filtering, and separating stems
from affixes, we extracted several affixes which
are reported in Table 2. We emphasize that there
might be wrong segmentations in Morfessor’s out-
put, e.g. Turkish is a suffix-based language, so
there are no prefixes in this language, but based
on what Morfessor generated we extracted 11 dif-
ferent types of prefixes. We do not post-process
Morfessor’s outputs.

Language Prefix Suffix
German 75 160
Russian 110 260
Turkish 11 293

Table 2: The number of affixes extracted for each lan-
guage.

Using the neural language model we train word,
stem, and affix embeddings, and initialize the
look-up table (but not other parts) of the decoder
using those affixes. The look-up table includes
high-quality affixes trained on the target side of
the parallel corpus by which we train the transla-
tion model. Clearly, such an affix table is an ad-
ditional knowledge source for the decoder. It pre-
serves information which is very close to what the
decoder actually needs. However, there might be
some missing pieces of information or some in-
compatibility between the decoder and the table,
so we do not freeze the morphology table during
training, but let the decoder update it with respect
to its needs in the forward and backward passes.

>The number may seem a little high, but for a corpus with
more than 115M words this is not a strict threshold in prac-
tice.



4.2 Experimental Results

Table 3 summarizes our experimental results. We
report results for the bpe—char setting, which
means the source token is a bpe unit and the de-
coder samples a character at each time step. CD-
NMT is the baseline model. Table 3 includes
scores reported from the original CDNMT model
(Chung et al., 2016) as well as the scores from our
reimplementation. To make our work comparable
and show the impact of the new architecture, we
tried to replicate CDNMT’s results in our exper-
imental setting, we kept everything (parameters,
iterations, epochs etc.) unchanged and evaluated
the extended model in the same setting. Table 3
reports BLEU scores (Papineni et al., 2002) of our
NMT models.

Model En—De En—Ru En—Tr
CDNMT 21.33 26.00 -
CDNMT* 21.01 26.23 18.01
CDNMT;, 21.27 26.78 18.44
CDNMT;, 21.39 26.39 18.59
CDNMT;,, 21.48 26.84 18.70

Table 3: CDNMT* is our implementation of CDNMT.
m and o indicates that the base model is extended with
the morphology table and the additional output chan-
nel, respectively. mo is the combination of both the ex-
tensions. The improvement provided by the boldfaced
number compared to CDNMT* is statistically signifi-
cant according to paired bootstrap re-sampling (Koehn,
2004) with p = 0.05.

Table 3 can be interpreted from different per-
spectives but the main findings are summarized as
follows:

e The morphology table yields significant im-
provements for all languages and settings.

e The morphology table boosts the En—Tr en-
gine more than others and we think this is be-
cause of the nature of the language. Turkish
is an agglutinative language in which mor-
phemes are clearly separable from each other,
but in German and Russian morphological
transformations rely more on fusional oper-
ations rather than agglutination.

It seems that there is a direct relation between
the size of the morphology table and the gain
provided for the decoder, because Russian
and Turkish have bigger tables and benefit
from the table more than German which has
fewer affixes.
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e The auxiliary output channel is even more
useful than the morphology table for all set-
tings but En—Ru, and we think this is because
of the morpheme-per-word ratio in Russian.
The number of morphemes attached to a Rus-
sian word is usually more than those of Ger-
man and Turkish words in our corpora, and it
makes the prediction harder for the classifier
(the more the number of suffixes attached to
a word, the harder the classification task).

The combination of the morphology table
and the extra output channel provides the best
result for all languages.

Figure 3 depicts the impact of the morphology ta-
ble and the extra output channel for each language.

0.8 2
0.1
0.61 5
0.6 0.55 [] G
0.47 0.44
04l 0.3 |
0.2
0.2 1 .
0 T H T
En-De En-Ru En-Tr
Figure 3: The y axis shows the difference between

the BLEU score of CDNMT™ and the extended model.
The first, second, and third bars show the m, o, and mo
extensions, respectively.

To further study our models’ behaviour and
ensure that our extensions do not generate ran-
dom improvements we visualized some attention
weights when generating ‘terbiyesizlik’. In Figure
4, the upper figure shows attention weights for all
Turkish affixes, where the y axis shows different
time steps and the x axis includes attention weights
of all affixes (304 columns) for those time steps,
e.g. the first row and the first column represents
the attention weight assigned to the first Turkish
affix when sampling ¢ in ‘terbiyesizlik’. While at
the first glance the figure may appear to be some-
what confusing, but it provides some interesting
insights which we elaborate next.

In addition to the whole attention matrix we also
visualized a subset of weights to show how the
morphology table provides useful information. In
the second figure we study the behaviour of the
morphology table for the first (¢;), fifth (i5), ninth



All affixes

2

Figure 4: Visualizing the attention weights between the morphology table and the decoder when generating ‘ter-

biyesizlik.

(ig), and twelfth (i12) time steps when generating
the same Turkish word ‘tierbisyesigzliiok’. t is
the first character of the word. We also have three
i characters from different morphemes, where the
first one is part of the stem, the second one be-
longs to the suffix ‘siz’, and the third one to ‘/ik’.
It is interesting to see how the table reacts to the
same character from different parts. For each time
step we selected the top-10 affixes which have the
highest attention weights. The set of top-10 affixes
can be different for each step, so we made a union
of those sets which gives us 22 affixes. The bot-
tom part of Figure 4 shows the attention weights
for those 22 affixes at each time step.

After analyzing the weights we observed inter-
esting properties about the morphology table and
the auxiliary attention module.> The main findings
about the behaviour of the table are as follows:

e The model assigns high attention weights to
stem-C for almost all time steps. However,
the weights assigned to this class for ¢; and i5
are much higher than those of affix characters
(as they are part of the stem). The vertical
lines in both figures approve this feature (bad
behaviour).

For some unknown reasons there are some
affixes which have no direct relation to that
particulate time step but they receive a high
attention, such as maz in t15 (bad behaviour).

For almost all time steps the highest attention
weight belongs to the class which is expected
Our observations are not based on this example alone

as we studied other random examples, and the table shows
consistent behaviour for all examples.
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to be selected, e.g. weights for (i5,stem-C) or
(ig,siz-C) (good behaviour).

The morphology table may send bad or good
signals but it is consistent for similar or co-
occurring characters, e.g. for the last three
time steps I11, i12, and ki3, almost the same
set of affixes receives the highest attention
weights. This consistency is exactly what
we are looking for, as it can define a reliable
external constraint for the decoder to guide
it. Vertical lines on the figure also confirm
this fact. They show that for a set of con-
secutive characters which belong to the same
morpheme the attention module sends a sig-
nal from a particular affix (good behaviour).

There are some affixes which might not be
directly related to that time step but receive
high attention weights. This is because
those affixes either include the same charac-
ter which the decoder tries to predict (e.g. i-C
for iy or t-C and tin-C for t1), or frequently
appear with that part of the word which in-
cludes the target character (e.g. mi-C has a
high weight when predicting ¢; because ¢; be-
longs to ferbiye which frequently collocates
with mi-C: terbiye+mi) (good behaviour).

Finally, in order to complete our evaluation
study we feed the English-to-German NMT model
with the sentence ‘Terms and conditions for send-
ing contributions to the BBC’, to show how the
model behaves differently and generates a better
target sentence. Translations generated by our
models are illustrated in Table 4.



Reference:
CDNMT*
CDNMT;,,

Geschdiftsbedingungen fiir das Senden von Beitrédgen an die BBC
allgemeinen geschaftsbedingungen fur die versendung von Beitrdgen an die BBC
Geschdift s bedingungen fiir die versendung von Beitrdgen zum BBC

Table 4: Comparing translation results for the CDNMT™* (baseline) and CDNMT;,  (improved) models when the
input sentence is ‘Terms and conditions for sending contributions to the BBC’.

The table demonstrates that our architecture is
able to control the decoder and limit its selections,
e.g. the word ‘allgemeinen’ generated by the base-
line model is redundant. There is no constraint to
inform the baseline model that this word should
not be generated, whereas our proposed architec-
ture controls the decoder in such situations. Af-
ter analyzing our model, we realized that there are
strong attention weights assigned to the w-space
(indicating white space characters) and BOS (be-
ginning of the sequence) columns of the affix ta-
ble while sampling the first character of the word
‘Geschdft’, which shows that the decoder is in-
formed about the start point of the sequence. Sim-
ilar to the baseline model’s decoder, our decoder
can sample any character including ‘a’ of ‘allge-
meinen’ or ‘G’ of ‘Geschdift’. Translation informa-
tion stored in the baseline decoder is not sufficient
for selecting the right character ‘G’, so the de-
coder wrongly starts with ‘7’ and continues along
a wrong path up to generating the whole word.
However, our decoder’s information is accompa-
nied with signals from the affix table which force
it to start with a better initial character, whose sam-
pling leads to generating the correct target word.

Another interesting feature about the table is the
new structure ‘Geschdft s bedingungen’ generated
by the improved model. As the reference transla-
tion shows, in the correct form these two structures
should be glued together via ‘s’, which can be con-
sidered as an infix. As our model is supposed to
detect this sort of intra-word relation, it treats the
whole structure as two compounds which are con-
nected to one another via an infix. Although this is
not a correct translation and it would be trivial to
post-edit into the correct output form, it is interest-
ing to see how our mechanism forces the decoder
to pay attention to intra-word relations.

Apart from these two interesting findings, the
number of wrong character selections in the base-
line model is considerably reduced in the im-
proved model because of our enhanced architec-
ture.
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5 Conclusion and Future Work

In this paper we proposed a new architecture to
incorporate morphological information into the
NMT pipeline. We extended the state-of-the-art
NMT model (Chung et al., 2016) with a morphol-
ogy table. The table could be considered as an
external knowledge source which is helpful as it
increases the capacity of the model by increasing
the number of network parameters. We tried to
benefit from this advantage. Moreover, we man-
aged to fill the table with morphological informa-
tion to further boost the NMT model when trans-
lating into MRLs. Apart from the table we also de-
signed an additional output channel which forces
the decoder to predict morphological annotations.
The error signals coming from the second chan-
nel during training inform the decoder with mor-
phological properties of the target language. Ex-
perimental results show that our techniques were
useful for NMT of MRLs.

As our future work we follow three main ideas.
1) We try to find more efficient ways to supply
morphological information for both the encoder
and decoder. %) We plan to benefit from other
types of information such as syntactic and seman-
tic annotations to boost the decoder, as the table
is not limited to morphological information alone
and can preserve other sorts of information. %i%)
Finally, we target sequence generation for fusional
languages. Although our model showed signifi-
cant improvements for both German and Russian,
the proposed model is more suitable for generating
sequences in agglutinative languages.
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Abstract

In conversational speech, the acoustic signal
provides cues that help listeners disambiguate
difficult parses. For automatically parsing spo-
ken utterances, we introduce a model that in-
tegrates transcribed text and acoustic-prosodic
features using a convolutional neural network
over energy and pitch trajectories coupled with
an attention-based recurrent neural network
that accepts text and prosodic features. We
find that different types of acoustic-prosodic
features are individually helpful, and together
give statistically significant improvements in
parse and disfluency detection F1 scores over
a strong text-only baseline. For this study
with known sentence boundaries, error anal-
yses show that the main benefit of acoustic-
prosodic features is in sentences with disfluen-
cies, attachment decisions are most improved,
and transcription errors obscure gains from
prosody.

1 Introduction

While parsing has become a relatively mature tech-
nology for written text, parser performance on
conversational speech lags behind. Speech poses
challenges for parsing: transcripts may contain er-
rors and lack punctuation; even perfect transcripts
can be difficult to handle because of disfluencies
(restarts, repetitions, and self-corrections), filled
pauses (“um”, “uh’), interjections (“like”), paren-
theticals (“you know”, “I mean”), and sentence
fragments. Some of these phenomena can be han-
dled in standard grammars, but disfluencies typi-
cally require extensions of the model. Different ap-
proaches have been explored in both constituency
parsing (Charniak and Johnson, 2001; Johnson and
Charniak, 2004) and dependency parsing (Rasooli
and Tetreault, 2013; Honnibal and Johnson, 2014).

*Equal Contribution.
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Despite these challenges, speech carries helpful
extra information — beyond the words — associ-
ated with the prosodic structure of an utterance
and encoded via variation in timing and intonation.
Speakers pause in locations that are correlated with
syntactic structure (Grosjean et al., 1979), and lis-
teners use prosodic structure in resolving syntac-
tic ambiguities (Price et al., 1991). Prosodic cues
also signal disfluencies by marking the interruption
point (Shriberg, 1994). However, most speech pars-
ing systems in practice take little advantage of these
cues. Our study focuses on this last challenge, aim-
ing to incorporate prosodic cues in a neural parser,
handling disfluencies as constituents via a neural
attention mechanism.

A challenge of incorporating prosody in pars-
ing is that multiple acoustic cues interact to signal
prosodic structure, including pauses, lengthening,
fundamental frequency modulation, and spectral
shape. These cues also vary with the phonetic seg-
ment, emphasis, emotion and speaker, so feature ex-
traction typically involves multiple time windows
and normalization techniques. The most success-
ful constituent parsers have mapped these features
to prosodic boundary posteriors by using labeled
training data (Kahn et al., 2005; Hale et al., 2006;
Dreyer and Shafran, 2007). The approach proposed
here takes advantage of advances in neural net-
works to automatically learn a good feature repre-
sentation without the need to explicitly represent
prosodic constituents. To narrow the scope of this
work and facilitate error analysis, our experiments
use known transcripts and sentence segmentation.

Our work offers the following contributions.
We introduce a framework for directly integrat-
ing acoustic-prosodic features with text in a neural
encoder-decoder parser that does not require hand-
annotated prosodic structure. We demonstrate im-
provements in constituent parsing of conversational
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speech over a high-quality text-only parser and pro-
vide analyses showing where prosodic features help
and that assessment of their utility is affected by
human transcription errors.

2 Task and Model Description

Our model maps a sequence of word-level in-
put features to a linearized parse output sequence.
The word-level input feature vector consists of the
concatenation of (learnable) word embeddings e;
and several types of acoustic-prosodic features, de-
scribed in Section 2.3.

2.1 Task Setup

We assume the availability of a training treebank
of conversational speech (in our case, Switchboard-
NXT (Calhoun et al., 2010)) and corresponding
constituent parses. The transcriptions are prepro-
cessed by removing punctuation and lower-casing
all text to better mimic the speech recognition set-
ting. Following Vinyals et al. (2015), the parse
trees are linearized, and pre-terminals are normal-
ized as “XX” (see Appendix A.1).

2.2 Encoder-Decoder Parser

Our attention-based encoder-decoder model is sim-
ilar to the one used by Vinyals et al. (2015). The
encoder is a deep long short-term memory recur-
rent neural network (LSTM-RNN) (Hochreiter and
Schmidhuber, 1997) that reads in a word-level in-
puts,! represented as a sequence of vectors & =
(x1,--- ,x7,), and outputs high-level features h =
(hl, cee 7hT5) where hz' = LSTM(:JZZ‘, hi_l).z

The parse decoder is also a deep LSTM-RNN
that predicts the linearized parse sequence y =
(y1,--+ ,yr,) as follows:

To
P(ylz) = HP(yt‘h7y<t)

t=1

In attention-based models, the posterior distribu-
tion of the output y; at time step ¢ is given by:

P(yi|h, y<t) = softmax(W s[c; di] + bs),

where vector b, and matrix W are learnable pa-
rameters; c¢; is referred to as a context vector that
summarizes the encoder’s output h; and d; is the

!As in Vinyals et al. (2015) the input sequence is processed
in reverse order, as shown in Figure 1.

2For brevity we omit the LSTM equations. The details can
be found, e.g., in Zaremba et al. (2014).
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decoder hidden state at time step ¢, which captures
the previous output sequence context Y.

uy = v tanh(Wh; + Wad, + bg)
Ts

o = softmax (uy) c = Z ol
=1

where vectors v, b, and matrices W1, W, are
learnable parameters; u; and oy are the attention
score and attention weight vector, respectively, for
decoder time step t.

The above attention mechanism is only content-
based, i.e., it is only dependent on h;, d;. It is not
location-aware, i.e., it does not consider the “loca-
tion” of the previous attention vector. For parsing
conversational text, location awareness is benefi-
cial since disfluent structures can have duplicate
words/phrases that may “confuse” the attention
mechanism.

In order to make the model location-aware, the
attention mechanism takes into account the pre-
vious attention weight vector a;—;. In particu-
lar, we use the attention mechanism proposed by
Chorowski et al. (2015), in which o1 is repre-
sented via a feature vector f;, = F' * a1, where
F ¢ RF*" represents k learnable convolution fil-
ters of width r. The filters are used for performing
1-D convolution over o;_1 to extract k features
f+; for each time step ¢ of the input sequence. The
extracted features are then incorporated in the align-
ment score calculation as:

Ujp = v tanh(Wlhi + Wad: + Wffti + ba)

where W is another learnable parameter ma-
trix. Finally, the decoder state d; is computed as
d: = LSTM([y,_;¢t—1],di—1), where g,_; is
the embedding vector corresponding to the previ-
ous output symbol y;_1. As we will see in Sec. 4.1,
the location-aware attention mechanism is espe-
cially useful for handling disfluencies.

2.3 Acoustic-Prosodic Features

In previous work using encoder-decoder models for
parsing (Vinyals et al., 2015; Luong et al., 2016),
vector x; is simply the word embedding e; of the
word at position ¢ of the input sentence. For parsing
conversational speech, we can incorporate acoustic-
prosodic features. Here we explore four types of
features widely used in computational models of
prosody: pauses, duration lengthening, fundamen-
tal frequency, and energy. Since prosodic cues are
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Figure 1: Left — An attention-based encoder-decoder reading the input @1, -- , xr,, where ¢, = [e; @, s;] is

composed of word embeddings e;, prosodic features ¢;, and learned (CNN-based) features s;. The encoder reads

the input in reverse order and the decoder outputs the linearized parse y, - - -

,Yt, - - - . Right — Detailed illustration

of acoustic-prosodic feature learning module. CNN features are computed from input energy and pitch features;
here the CNN filter parameters are m = 3 and w = [3, 4, 5].

at sub- and multi-word time scales, they are in-
tegrated with the encoder-decoder using different
mechanisms.

All features are extracted from transcriptions that
are time-aligned at the word level.> We use time
alignments associated with the corpus to be consis-
tent with other studies. In a small number of cases,
the time alignment for a particular word boundary
is missing. Some cases are due to tokenization. For
example, contractions, such as don’t in the original
transcript, are treated as separated words for the
parser (do and n’t), and the internal word boundary
time is missing. In such cases, these internal times
are estimated. In other cases, there are transcription
mismatches that lead to missing time alignments,
where we cannot estimate times. For the roughly
1% of sentences where time alignments are missing,
we simply back off to the text-based parser.

Pause. The pause feature vector p, for word 7 is
the concatenation of pre-word pause feature p,,,.. ;
and post-word pause feature p,,,; ;, Where each
subvector is a learned embedding for 6 pause cat-
egories: no pause, missing, 0 < p < 0.05 s,
0.05s<p<02s,02<p<ls,andp >1s
(including turn boundaries). The bins are chosen
based on the observed distribution (see Appendix
A.1). We did not use (real-valued) pause duration
directly, for two main reasons: (1) to handle miss-
ing time alignments; and (2) duration of pause does

3The assumption of known word alignments is standard for
prosodic feature extraction in many spoken language process-
ing studies. Time alignments can be obtained as a by-product
of recognition or from forced alignment.
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not matter beyond a threshold (e.g. p > 1 s).

Word duration. Both word duration and word-
final duration lengthening are strong cues to
prosodic phrase boundaries (Wightman et al., 1992;
Pate and Goldwater, 2013). The word duration fea-
ture J; is computed as the actual word duration
divided by the mean duration of the word, clipped
to a maximum value of 5. The sample mean is used
for frequent words (count > 15). For infrequent
words we estimate the mean as the sum over the
sample means for the phonemes in the word’s dic-
tionary pronunciation. We refer to the manually
defined prosodic feature pair of p; and §; as ¢;.

Fundament frequency (f0) and Energy (E) con-
tours (fO/E). We use a CNN to automatically
learn the mapping from the time series of fO/E
features to a word-level vector. The contour fea-
tures are extracted from 25-ms frames with 10-ms
hops using Kaldi (Povey et al., 2011). Three fO
features are used: warped Normalized Cross Corre-
lation Function (NCCF), log-pitch with Probability
of Voicing (POV)-weighted mean subtraction over
a 1.5-second window, and the estimated derivative
(delta) of the raw log pitch. Three energy features
are extracted from the Kaldi 40-mel-frequency fil-
ter bank features: Fj.q;, the log of total energy
normalized by dividing by the speaker side’s max
total energy; Ej,y, the log of total energy in the
lower 20 mel-frequency bands, normalized by total
energy, and FEj;qp, the log of total energy in the
higher 20 mel-frequency bands, normalized by to-
tal energy. Multi-band energy features are used as a



simple mechanism to capture articulatory strength-
ening at prosodic constituent onsets (Fourgeron and
Keating, 1997).

Figure 1 summarizes the feature learning ap-
proach. The fO and E features are processed at
the word level: each sequence of frames corre-
sponding to a time-aligned word (and potentially
its surrounding context) is convolved with NV filters
of m sizes (a total of mN filters). The motiva-
tion for the multiple filter sizes is to enable the
computation of features that capture information
on different time scales. For each filter, we per-
form a 1-D convolution over the 6-dimensional
fO/E features with a stride of 1. Each filter out-
put is max-pooled, resulting in m N -dimensional
speech features s;. Our overall acoustic-prosodic
feature vector is the concatenation of p;, d;, and s;
in various combinations.

3 Experiments

3.1 Dataset

Our core corpus is Switchboard-NXT (Calhoun
et al., 2010), a subset of the Switchboard corpus
(Godfrey and Holliman, 1993): 2,400 telephone
conversations between strangers; 642 of these were
hand-annotated with syntactic parses and further
augmented with richer layers of annotation facil-
itated by the NITE XML toolkit (Calhoun et al.,
2010). Our sentence segmentations and syntactic
trees are based on the annotations from the Tree-
bank set, with a few manual corrections from the
NXT release. This core dataset consists of 100K
sentences, totaling 830K tokens forming a vocabu-
lary of 13.5K words. We use the time alignments
available from NXT, which is based on a corrected
word transcript that occasionally differs from the
Treebank, leading to some missing time alignments.
We follow the sentence boundaries defined by the
parsed data available,* and the data split (90% train;
5% dev; 5% test) defined by related work done on
Switchboard (Charniak and Johnson, 2001; Kahn
et al., 2005; Honnibal and Johnson, 2014).

3.2 Evaluation Metrics and Baselines

The standard evaluation metric for constituent pars-
ing is the parseval metric which uses bracketing
precision, recall, and F1, as in the canonical im-
plementation of EVALB.> For written text, punc-

“Note that these sentence units can be inconsistent with
other layers of Switchboard annotations, such as slash units.
‘http://nlp.cs.nyu.edu/evalb/
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tuation is sometimes represented as part of the se-
quence and impacts the final score, but for speech
the punctuation is not explicitly available so it does
not contribute to the score. Another challenge
of transcribed speech is the presence of disfluen-
cies. Speech repairs are indicated under “EDITED”
nodes in Switchboard parse trees, which include
structure under these nodes that is not of interest
for simple text clean-up. Therefore, some stud-
ies report flattened-edit parseval F1 scores (“flat-
F17), which is parseval computed on trees where
the structure under edit nodes has been eliminated
so that all leaves are immediate children. We re-
port both scores for the baseline text-only model
showing that the differences are small, then use the
standard parseval F1 score for most results.®

Disfluencies are particularly problematic for sta-
tistical parsers, as explained by Charniak and John-
son (2001), and some systems incorporate a sep-
arate disfluency detection stage. For this reason,
and because it is useful for understanding system
performance, most studies also report disfluency
detection performance, which is measured in terms
of the F1 score for detecting whether a word is in
an edit region. Our approach does not involve a
separate disfluency detection stage, but identifies
disfluencies implicitly via the parse structure. Con-
sequently, the disfluency detection results are not
competitive with work that directly optimize for
disfluency detection. We report disfluency detec-
tion scores primarily as a diagnostic.

Most previous work on integrating prosody and
parsing has used the Switchboard corpus, but it
is still difficult to compare results because of dif-
ferences in constraints, objectives and the use of
constituent vs. dependency structure, as discussed
further in Section 6. The most relevant prior studies
(on constituent parsing) that we compare to are a
bit old. The text-only result from our neural parser
represents a stronger baseline and is important for
decoupling the impact of prosody vs. the parsing
framework.

3.3 Model Training and Inference

Both the encoder and decoder are 3-layer deep
LSTM-RNNs with 256 hidden units in each layer.
For the location-aware attention, the convolution
operation uses 5 filters of width 40 each. We
use 512-dimensional embedding vectors to repre-

®A variant of the “flat-F1” score is used in (Charniak and
Johnson, 2001; Kahn et al., 2005), which uses a relaxed edited
node precision and recall but also ignores filled pauses.



sent words and linearized parsing symbols, such as
“(8”.7

A number of configurations are explored for the
acoustic-prosodic features, tuning based on dev
set parsing performance. Pause embeddings are
tuned over {4, 16, 32} dimensions. For the CNN,
we try different configurations of filter widths
w € {[10,25,50], [5,10,25,50]} and number of
filters N € {16, 32, 64, 128} for each filter width.®
These filter size combinations are chosen to cap-
ture fO and energy phenomena on various levels:
w = 5,10 for sub-word, w = 25 for word, and
w = 50 for word and extended context. Our best
model uses 32-dimensional pause embeddings and
N = 32 filters of widths w = [5, 10, 25, 50], which
corresponds to m = 4 and 128 filters.

For optimization we use Adam (Kingma and Ba,
2014) with a minibatch size of 64. The initial learn-
ing rate is 0.001 which is decayed by a factor of
0.9 whenever training loss, calculated after every
500 updates, degrades relative to the worst of its
previous 3 values. All models are trained for up
to 50 epochs with early stopping. For regulariza-
tion, dropout with 0.3 probability is applied on the
output of all LSTM layers (Pham et al., 2014).

For inference, we use a greedy decoder to gen-
erate the linearized parse. The output token with
maximum posterior probability is chosen at every
time step and fed as input in the next time step. The
decoder stops upon producing the end-of-sentence
symbol. We use TensorFlow (Abadi et al., 2015) to
implement all models.’

4 Results

4.1 Text-only Results

Model | F1 | flat-F1 [ fluent | disf
Berkeley | 85.41 [ 85.91 [ 90.52 [ 83.08
C-attn | 83.33 | 83.20 | 90.86 | 79.94
CL-attn | 87.85 | 87.68 | 92.07 | 85.95

Table 1: Scores of text-only models on the dev set:
2044 fluent and 3725 disfluent sentences. C-attn
denotes content-only attention; CL-attn denotes con-
tent+location attention.

"The number of layers, dimension of hidden units, dimen-
sion of embedding, and convolutional attention filter param-
eters of the text-only parser were explored in earlier experi-
ments on the development set and then fixed as described.

¥Note that a filter of width 10 has size 6 x 10, since the
features are of dimension 6.

Our code resources can be found in Appendix A.1.
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Model ‘ Parse ‘ Disf
Berkeley (text only) | 85.41 | 62.45
CL-attn (text only) 87.85 | 79.50
CL-attn text and

+p 88.37 | 80.24
+0 88.04 | 77.41
+p+0 88.21 | 80.84
+ fO/E-CNN 88.52 | 80.81
+ p + fO/E-CNN 88.45 | 81.19
+ ¢ + fO/E-CNN 88.44 | 80.09
+p+ 6 + fO/E-CNN | 88.59 | 80.84

Table 2: Parse and disfluency detection F1 scores on the
dev set. Flat-F1 scores were consistently 0.1%-0.3%
lower for our models, but 0.2% higher for the Berkeley
parser (85.64).

We first show our results on the model using
only text (i.e. x; = e;) to establish a strong
baseline, on top of which we can add acoustic-
prosodic features. We experiment with the content-
only attention model used by Vinyals et al. (2015)
and the content+location attention of Chorowski
et al. (2015). For comparison with previous non-
neural models, we use a high-quality latent-variable
parser, the Berkeley parser (Petrov et al., 2006), re-
trained on our Switchboard data. Table 1 compares
the three text-only models. In terms of F1, the con-
tent+location attention beats the Berkeley parser
by about 2.5% and content-only attention by about
4.5%. Flat-F1 scores for both encoder-decoder
models is lower than their corresponding F1 scores,
suggesting that the encoder-decoder models do
well on predicting the internal structure of EDIT
nodes while the reverse is true for the Berkeley
parser.

To explain the gains of content+location atten-
tion over content-only attention, we compare their
scores on fluent (without EDIT nodes) and disfluent
sentences, shown in Table 1. It is clear that most of
the gains for content+location attention are from
disfluent sentences. A possible explanation is the
presence of duplicate words or phrases in disfluent
sentences, which can be problematic for a content-
only attention model. Since our best model is the
content+location attention model, we will hence-
forth refer to it as the “CL-attn” text-only model.
All models using acoustic-prosodic features are ex-
tensions of this model, which provides a strong
text-only baseline.



Model ‘ Parse ‘ Disf
CL-attn 87.79 (0.11) | 78.65 (0.46)
best model | 88.15 (0.41) | 80.48 (0.70)

Table 3: Parse and disfluency detection F1 scores on
the dev set: mean (and standard deviation) over 10 runs
for the baseline text-only model (CL-attn) and the best
model with prosody.

Model \ Parse \ Disfl
Berkeley 85.87 | 63.44
CL-attn 87.99 | 76.69
best model | 88.50 | 77.47

Table 4: Parse and disfluency detection F1 scores on
the test set. The best model has statistically significant
gains over the text-only baseline with p-value < 0.02.

4.2 Adding Acoustic-Prosodic Features

We extend our CL-attn model with the three kinds
of acoustic-prosodic features: pause (p), word du-
ration (&), and CNN mappings of fundamental fre-
quency (f0) and energy (E) features (fO/E-CNN).

The results of several model configurations on
our dev set are presented in Table 2. First, we note
that adding any combination of acoustic-prosodic
features (individually or in sets) improves perfor-
mance over the text-only baseline. However, cer-
tain combinations of acoustic-prosodic features are
not always better than their subsets. The fext + p +
0 + fO/E-CNN model that uses all three types of fea-
tures has the best performance with a gain of 0.7%
over the already-strong text-only baseline. We will
henceforth refer to the text + p + § + fO/E-CNN
model as our “best model”.

As a robustness check, we report results of av-
eraging 10 runs on the CL-attn text-only and the
best model in Table 3. We performed a bootstrap
test (Efron and Tibshirani, 1993) that simulates 10°
random test draws on the models giving median
performance on the dev set. These median models
gave a statistically significant difference between
the text-only and best model (p-value < 0.02). Ad-
ditionally, a simple t-test over the two sets of 10
results also shows statistical significance p-value
< 0.03.

Table 4 presents the results on the test set. Again,
adding the acoustic-prosodic features improves
over the text-only baseline. The gains are statis-
tically significant for the best model with p-value
< 0.02, again using a bootstrap test with simulated
10° random test draws on the two models.
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Model ‘ Parse ‘ Disfl
Text Only
Kahn et al. (2005) | 86.4 | 78.2
Hale et al. (2006) | 71.16 | 41.7
CL-attn (text only) | 87.99 | 76.7
Text + Prosody
Kahn et al. (2005) | 86.6 | 78.2
Hale et al. (2006) | 71.05 | 36.2
best model 88.50 | 77.5

Table 5: Parse and disfluency detection F1 scores on
the test set comparing to other reported results.
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Figure 2: F1 scores of the text-only model and our best
model as a function of sentence length.

Table 5 includes results from prior studies that
compare systems using text alone with ones that
incorporate prosody, given hand transcripts and
sentence segmentation. It is difficult to compare
systems directly, because of the many differences
in the experimental set-up. For example, the origi-
nal Charniak and Johnson (2001) result (reporting
F=85.9 for parsing and F=78.2 for disfluencies)
leverages punctuation in the text stream, which is
not realistic for speech transcripts and not used in
most other work. Our work benefits from more
text training material than others, but others benefit
from gold part-of-speech tags. Kahn et al. (2005)
use a modified sentence segmentation. There are
probably minor differences in handling of word
fragments and scoring edit regions. Thus, this table
primarily shows that our framework leads to more
benefits from sentence-internal prosodic cues than
others have obtained.

5 Analysis

Effect of sentence length. Figure 2 shows per-
formance differences between our best model and
the text-only model for varying sentence lengths.



S

- -
NP VP NP NP VP
NP SBAR XX ADVP ADJP NP SBAR XX XX XX ADVP ADJP
PN PN
XX XX S are XX XX XX XX S the  minorities are XX XX
\ \ ] T \ \ \ ! \ \
the county EDITED NP VP mostly hispanic the county EDITED NP VP mostly  hispanic
\ I \ N
S XX XX PP S XX XX PP pause
2 N I 0 N e
NP VP i 'm XX NP NP VP i 'm XX
[ \ . [ \
XX XX in XX XX XX XX in

the  minorities

Figure 3: An example sentence from development data — the county i am i 'm in [pause] the minorities are mostly
hispanic. The text-only parser (on the left) makes a PP Attachment error. The prosody-enhanced parser (on the
right) uses the pause indicator to correctly predict a constituent change after the word in.

Model ‘ fluent ‘ disfluent
text-only 92.07 | 85.90
best model | 92.03 87.02

Table 6: Dev set Fl-score of text-only and best model
on fluent (2029) vs. disfluent (3689) sentences.'”

Both models do worse on longer sentences, as ex-
pected since the corresponding parse trees tend
to be more complex. The performance difference
between our best model and the text-only model
increases with sentence length. This is likely be-
cause longer sentences more often have multiple
prosodic phrases and disfluencies.

Effect of disfluencies. Table 6 presents parse
scores on the subsets of fluent and disfluent sen-
tences, showing that the performance gain is in the
disfluent set (65% of the dev set sentences). Be-
cause sentence boundaries are given, and so many
fluent sentences in spontaneous speech are short,
there is less potential for benefit from prosody in
the fluent set.

Types of errors. We use the Berkeley Parser An-
alyzer (Kummerfeld et al., 2012) to compare the
types of errors made by the different parsers.'? Ta-
ble 7 presents the relative error reductions over the
text-only baseline achieved by the text + p model
and our best model for disfluent sentences. The two
models differ in the types of error reductions they
provide. Including pause information gives largest
improvements on PP attachment and Modifier at-

!0This analysis omits the 1% of the sentences that did not
have timing information.
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Error Type Disfluent Sentences
text + p | best model
Clause Att. 5.7% 1.3%
Diff. Label 7.6% 4.2%
Modifier Att. 9.7% 19.1%
NP Att. -2.7% 14.5%
NP Internal 7.8% 7.4%
PP Att. 10.1% 7.8%
1-Word Phrase 6.3% 6.8%
Unary -1.1% 8.9%
VP Att. 0.0% 12.0%

Table 7: Relative error reduction over the text-only
baseline in the disfluent subset (3689 sentences) of the
development set. Shown here are the most frequent er-
ror types (with count > 100 for the text-only model).

tachment errors. Adding the remaining acoustic-
prosodic features helps to correct more types of
attachment errors, especially VP and NP attach-
ment. Figure 3 demonstrates one case where the
pause feature helps in correcting a PP attachment
error made by a text-only parser. Other interest-
ing examples (see Appendix A.2) suggest that the
learned fO/E features help reduce NP attachment
errors where the audio reveals a prominent word at
the constituent boundary, even though there is no
pause at that word.

Effect of transcription errors. The results and
analyses so far have assumed that we have reliable
transcripts. In fact, the original transcripts con-
tained errors, and the Treebank annotators used
these without reference to audio files. Mississippi
State University (MS-State) ran a clean-up project



that produced more accurate word transcripts and
time alignments (Deshmukh et al., 1998). The NXT
corpus provides reconciliation between Treebank
and MS-State transcripts in terms of annotating
missed/extra/substituted words, but parses were not
re-annotated. The transcript errors mean that the
acoustic signal is inconsistent with the “gold” parse
tree. Below are some examples of “fluent” sen-
tences (according to the Treebank transcripts) with
transcription errors, for which prosodic features

“hurt” parsing. Words that transcribers missed are

in brackets and those inserted are underlined.

S1: and because <uh> like if your spouse died <all of
a sudden you be> all alone it 'd be nice to go some-
place with people similar to you to have friends

S2: uh uh <ihave had> my wife 's picked up a couple
of things saying uh boy if we could refinish that 'd be a
beautiful piece of furniture

Multi-syllable errors are especially problematic,

leading to serious inconsistencies between the text

and the acoustic signal. Further, the missed words
lead to an incorrect attachment in the “gold” parse
in S1 and a missing restart edit in S2. Indeed, for
sentences with consecutive transcript errors, which
we expect to impact the prosodic features, there is

a statistically significant (p-value < 0.05) negative

effect on parsing with prosody. Not included in

this analysis are sentence boundary errors, which
also change the “gold” parse. Thus, prosody may
be more useful than results here indicate.

6 Related Work

Related work on parsing conversational speech has
mainly addressed four problems: speech recogni-
tion errors, unknown sentence segmentation, dis-
fluencies, and integrating prosodic cues. Our work
addresses the last two problems, which involve
studies based on hand-transcribed text and known
sentence boundaries, as in much speech parsing
work. The related studies are thus the focus of this
discussion. We describe studies using the Switch-
board corpus, since it has dominated work in this
area, being the largest source of treebanked English
spontaneous speech.

One major challenge of parsing conversational
speech is the presence of disfluencies, which are
grammatical and prosodic interruptions. Disfluen-
cies include repetitions (‘I am + I am’), repairs
(‘I am + we are’), and restarts (‘What I + Today is
the...”), where the ‘+’ corresponds to an interruption
point. Repairs often involve parallel grammatical
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constructions, but they can be more complex, in-
volving hedging, clarifications, etc. Charniak and
Johnson (Charniak and Johnson, 2001; Johnson and
Charniak, 2004) demonstrated that disfluencies are
different in character than other constituents and
that parsing performance improves from combining
a PCFG parser with a separate module for disflu-
ency detection via parse rescoring. Our approach
does not use a separate disfluency detection mod-
ule; we hypothesized that the location-sensitive at-
tention model helps handle these differences based
on analysis of the text-only results (Table 1). How-
ever, more explicit modeling of disfluency pattern
match characteristics in a dependency parser (Hon-
nibal and Johnson, 2014) leads to better disfluency
detection performance (F = 84.1 vs. 76.7 for our
text only model). Pattern match features also ben-
efit a neural model for disfluency detection alone
(F =87.0) (Zayats et al., 2016), and similar gains
are observed by formulating disfluency detection
in a transition-based framework (F = 87.5) (Wang
et al., 2017). Experiments with oracle disfluencies
as features improve the CL-attn text-only parsing
performance from 87.85 to 89.38 on the test set,
showing that more accurate disfluency modeling is
a potential area of improvement.

It is well known that prosodic features play a role
in human resolution of syntactic ambiguities, with
more than two decades of studies seeking to incor-
porate prosodic features in parsing. A series of stud-
ies looked at constituent parsing informed by the
presence (or likelihood) of prosodic breaks at word
boundaries (Kahn et al., 2004, 2005; Hale et al.,
2006; Dreyer and Shafran, 2007). Our approach
improves over performance of these systems using
raw acoustic features, without the need for hand-
labeling prosodic breaks. The gain is in part due to
the improved text-based parser, but the incremental
benefit of prosody here is similar to that in these
prior studies. (In prior work using acoustic feature
directly (Gregory et al., 2004), prosody actually de-
graded performance.) Our analyses of the impact
of prosody also extends prior work.

Prosody is also known to provide useful cues
to sentence boundaries (Liu et al., 2006), and au-
tomatic sentence segmentation performance has
been shown to have a significant impact on pars-
ing performance (Kahn and Ostendorf, 2012). In
our study, sentence boundaries are given so as to
focus on the role of prosody in resolving sentence-
internal parse ambiguity, for which prior work had



obtained smaller gains. Studies have also shown
that parsing lattices or confusion networks can
improve ASR performance (Kahn and Ostendorf,
2012; Yoshikawa et al., 2016). Our analysis of per-
formance degradation for the system with prosody
when the gold transcript and associated parse are in
error suggests that prosody may have benefits for
parsers operating on alternative ASR hypotheses.
The results we compare to in Section 4 are rel-
atively old. More recent parsing results on spon-
taneous speech involve dependency parsers using
only text (Rasooli and Tetreault, 2013; Honnibal
and Johnson, 2014; Yoshikawa et al., 2016), with
the exception of a study on unsupervised depen-
dency parsing (Pate and Goldwater, 2013). With
the recent success of transition-based neural ap-
proaches in dependency parsing, researchers have
adapted transition-based ideas to constituent pars-
ing (Zhu et al., 2013; Watanabe and Sumita, 2015;
Dyer et al., 2016). These approaches have not
yet been used with speech, to our knowledge, but
we expect it to be straightforward to extend our
prosody integration framework to these systems,
both for dependency and constituency parsing.

7 Conclusion

We have presented a framework for directly in-
tegrating acoustic-prosodic features with text in
a neural encoder-decoder parser that does not re-
quire hand-annotated prosodic structure. On con-
versational sentences, we obtained strong results
when including word-level acoustic-prosodic fea-
tures over using only transcriptions. The acoustic-
prosodic features provide the largest gains when
sentences are disfluent or long, and analysis of error
types shows that these features are especially help-
ful in repairing attachment errors. In cases where
prosodic features hurt performance, we observe a
statistically significant negative effect caused by im-
perfect human transcriptions that make the “ground
truth” parse tree and the acoustic signal inconsis-
tent, which suggests that there is more to be gained
from prosody than observed in prior studies. We
thus plan to investigate aligning the Treebank and
MS-State versions of Switchboard for future work.

Here, we assumed known sentence boundaries
and hand transcripts, leaving open the question of
whether increased benefits from prosody can be
gained by incorporating sentence segmentation in
parsing and/or in parsing ASR lattices. Most prior
work using prosody in parsing has been on con-
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stituent parsing, since prosodic cues tend to align
with constituent boundaries. However, it remains
an open question as to whether dependency, con-
stituency or other parsing frameworks are better
suited to leveraging prosody. Our study builds on a
parser that uses reverse order text processing, since
it provides a stronger text-only baseline. However,
the prosody modeling component relies only on a
1 second lookahead of the current word (for pause
binning), so it could be easily incorporated in an
incremental parser.
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A Appendix
A.1 Miscellany

Our main model code is available
https://github.com/shtoshni92/
speech_parsing. Most of the data prepro-
cessing code is available at https://github.
com/trangham283/seqg2seq_parser/
tree/master/src/data_preps. Part of
our data preprocessing pipeline also uses https:
//github.com/sylloglsm/swbd_tools.

Table 8 shows statistics of our Switchboard
dataset. As defined, for example, in (Charniak
and Johnson, 2001; Honnibal and Johnson, 2014),
the splits are: conversations sw2000 to sw3000 for
training, sw4500 to sw4936 for validation (dev),
and sw4000 to sw4153 for evaluation (test). In
addition, previous work has reserved sw4154 to
sw4500 for “future use” (dev2), but we added this
set to our training set. That is, all of our models
are trained on Switchboard conversations sw2000
to sw3000 as well as sw4154 to sw4500.

at

Section | # sentences | # words
Train 97,113 | 729,252
Dev 5,769 | 50,445
Test 5,901 | 48,625

Table 8: Data statistics.

Figure 4 illustrates the data preprocessing step.
On the decoder end, we also use a post-processing
step that merges the original sentence with the de-
coder output to obtain the standard constituent tree
representation. During inference, in rare cases (and
virtually none as our models converge), the de-
coder does not generate a valid parse sequence, due
to the mismatch in brackets and/or the mismatch
in the number of pre-terminals and terminals, i.e.,
num(XX) # num(tokens). In such cases, we sim-
ply add/remove brackets from either end of the
parse, or add/remove pre-terminal symbols XX in
the middle of the parse to match the number of
input tokens.

Figure 5 shows the distribution of pause dura-
tions in our training data. Our pause buckets of
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Original parse tree

INTJ — UH uh
S FRAG { IN —— about

PP

NP — PRP —yourself

Linearized parse tree
(S (FRAG (INTJ (UH uh)) (PP (IN about)
(NP (PRP yourself) ))))

Final POS-normalized linearized parse tree
(S (FRAG (INTJ XX) (PP XX (NP XX))))

Figure 4: Data preprocessing. Trees are linearized;
POS tags (pre-terminals) are normalized as “XX”. Also
note the annotation standard used for Switchboard data:
The root node of the tree is an “S” node although it is
not a complete sentence.

0<p<005s005s<p<02s02<p<1
s, and p > 1 s described in the main paper were
based on this distribution of pause lengths.

0.3
>
S02
Q0
°
[a W
0.1
00 02 04 1.0
095 i 3 3 A 3

Pause Duration (in sec.)

Figure 5: Histogram of inter-word pause durations in
our training set. As expected, most of the pauses are
less than 1 second. Further binning of pause durations
< 1 second reveals that the plot peaks around 0.2 sec-
onds and continuously decays from there on. In some
very rare cases, pauses of 5+ seconds occur within a
sentence.

Table 9 shows the comprehensive error counts
in all error categories defined in the Berkeley Parse
Analyzer (Kummerfeld et al., 2012) in both the
fluent and disfluent subsets.

A.2 Tree Examples

In figures 6, 7, and 8, we follow node correction
notations as in (Kummerfeld et al., 2012). In partic-
ular, missing nodes are marked in blue on the gold
tree, extra nodes are marked red in the predicted
tree, and yellow nodes denote crossing.



Fluent Subset Disfluent Subset
Error Type text-only | text +p | best model [| text-only | text + p | best model
Clause Attach. 126 132 123 631 595 600
Co-ordination 1 2 1 10 10 5
Different label 112 116 124 288 266 300
Modifier Attach. 119 127 112 320 289 325
NP Attach. 92 89 94 332 341 283
NP Internal 71 61 65 231 213 232
PP Attach. 171 152 149 524 471 470
1-Word Phrase 334 342 328 1054 988 1030
UNSET add 86 81 64 353 352 356
UNSET move 85 93 95 466 447 439
UNSET remove 73 70 56 334 324 318
Unary 246 239 236 1088 1100 1074
VP Attach. 36 41 25 167 167 172
XoverX Unary 36 35 34 54 57 54

Table 9: Parse error counts comparison on the fluent (2029 sentences) and disfluent (3689 sentences) subsets of
the development set across three parsers.

S S
\ |
S S
_— T T
XX NP VP XX NP VP
\ \ \ \ Il
but XX XX NP but XX VP XX NP
I — N\ T | |
i 've Iﬁ‘ XX NP i XX NP and XX
N \ \ PN \
XX XX and XX 've XX XX all
\ \ \ \ \
two  kids all two kids

T

Figure 6: An example sentence from development data — but i 've two kids and all. Even though there are no
pauses between all words, the word kids is lengthened in the audio sample, helping the prosody-enhanced parser
(right) to recognize a major syntactic boundary, avoiding the NP Attachment error made by the text-only parser
(left).
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S
| |
S
S /\
NP VP
NP | B
| XX VP XX NP
XX XX NP \ : \ \
| | ) she XX and XX
she had NP PP XX | \
PN PN ‘ had NP PP everything
XX XX XX NP and XX SN T
‘ ‘ ‘ /\ ‘ XX XX XX NP
two kids of XX XX everything | | | PR

| | two kids of XX XX

her own | |
her own

I

Figure 7: An example sentence from development data — she had two kids of her own and everything. There were
no pauses between all words in this sentence, the audio sample showed that the word own was both lengthened and
raised in intonation, giving the prosody-enhanced parser (right) a signal that own is on a syntactic boundary. On
the other hand, the text-only parser (left) had no such information and made an NP-attachment error. This sentence
also illustrates an interesting case where, in isolation, the text-only parse makes sense (i.e. everything being an
object of had). However, in the context of this conversation (the speaker was talking about another person in an
informal manner), and everything acts more like filler - e.g. “i play the violin and stuff”

S S
| |
S S
= T
\ \ | |
XX XX XX NP X‘X X‘X X‘X
\ \ | N .
television sure makes XX XX XX PP television  sure makes/NP\ }i
ch‘ild rear"ing ea‘sy XX/\NP xx xx xx =
L \ | | PN
XX child rearing easy XX NP
on
I
‘ on XX
ou
Y |
you

Figure 8: An example sentence from development data — television sure makes child rearing easy on you. This
is an example where our prosody-enhanced parser (left) did worse than the text-only parser (right), which made
no errors. The error type illustrated here is Different Label and Modifier Attachment. In the first iteration, the
analyzer identifies a Different Label error (ADVP node), and in the second pass identifies the Modifier Attachment
error.
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Abstract

We explore multitask models for neural trans-
lation of speech, augmenting them in order
to reflect two intuitive notions. First, we in-
troduce a model where the second task de-
coder receives information from the decoder
of the first task, since higher-level intermediate
representations should provide useful infor-
mation. Second, we apply regularization that
encourages transitivity and invertibility. We
show that the application of these notions on
jointly trained models improves performance
on the tasks of low-resource speech transcrip-
tion and translation. It also leads to better per-
formance when using attention information for
word discovery over unsegmented input.

1 Introduction

Recent efforts in endangered language documen-
tation focus on collecting spoken language re-
sources, accompanied by spoken translations in a
high resource language to make the resource in-
terpretable (Bird et al., 2014a). For example, the
BULB project (Adda et al., 2016) used the LIG-
Aikuma mobile app (Bird et al., 2014b; Blachon
et al., 2016) to collect parallel speech corpora be-
tween three Bantu languages and French. Since
it’s common for speakers of endangered languages
to speak one or more additional languages, collec-
tion of such a resource is a realistic goal.

Speech can be interpreted either by transcrip-
tion in the original language or translation to an-
other language. Since the size of the data is ex-
tremely small, multitask models that jointly train
a model for both tasks can take advantage of
both signals. Our contribution lies in improv-
ing the sequence-to-sequence multitask learning
paradigm, by drawing on two intuitive notions:
that higher-level representations are more useful
than lower-level representations, and that transla-
tion should be both transitive and invertible.
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Higher-level intermediate representations, such
as transcriptions, should in principle carry infor-
mation useful for an end task like speech transla-
tion. A typical multitask setup (Weiss et al., 2017)
shares information at the level of encoded frames,
but intuitively, a human translating speech must
work from a higher level of representation, at least
at the level of phonemes if not syntax or semantics.
Thus, we present a novel architecture for fied mul-
titask learning with sequence-to-sequence models,
in which the decoder of the second task receives
information not only from the encoder, but also
from the decoder of the first task.

In addition, transitivity and invertibility are two
properties that should hold when mapping be-
tween levels of representation or across languages.
We demonstrate how these two notions can be im-
plemented through regularization of the attention
matrices, and how they lead to further improved
performance.

We evaluate our models in three experiment
settings: low-resource speech transcription and
translation, word discovery on unsegmented in-
put, and high-resource text translation. Our high-
resource experiments are performed on English,
French, and German. Our low-resource speech ex-
periments cover a wider range of linguistic diver-
sity: Spanish-English, Mboshi-French, and Ainu-
English.

In the speech transcription and translation tasks,
our proposed model leads to improved perfor-
mance against all baselines as well as previous
multitask architectures. We observe improvements
of up to 5% character error rate in the transcrip-
tion task, and up to 2.8% character-level BLEU in
the translation task. However, we didn’t observe
similar improvements in the text translation exper-
iments. Finally, on the word discovery task, we im-
prove upon previous work by about 3% F-score on
both tokens and types.

Proceedings of NAACL-HLT 2018, pages 82-91
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2 Model

Our models are based on a sequence-to-sequence
model with attention (Bahdanau et al., 2015). In
general, this type of model is composed of three
parts: a recurrent encoder, the attention, and a re-
current decoder (see Figure 1a).!

The encoder transforms an input sequence of
words or feature frames xi, ..., Xy into a sequence
of input states hy, ... hy:

h, = enc(hn_l,x,,).

The attention transforms the input states into a se-
quence of context vectors via a matrix of attention

weights:
Cy = E by,
n

Finally, the decoder computes a sequence of out-
put states from which a probability distribution
over output words can be computed.

dec(Sim—1,Cm, Ym-1)
softmax(s,,).

Sm
P(Ym)

In a standard encoder-decoder multitask model
(Figure 1b) (Dong et al., 2015; Weiss et al., 2017),
we jointly model two output sequences using a
shared encoder, but separate attentions and de-

coders:
1 1
cm = Z amnhn
n
1 1,.1 1 1
Sm = dec (Sm_] ) cm’ ym—l)
P(y! ) = softmax(s) )
and
2 2
C, = Z amnhn
n
2 2,2 2 2
S;, = dec™(s;,_1, €, Yomo1)
P(y?) = softmax(s2,).

We can also arrange the decoders in a cascade
(Figure 1c), in which the second decoder attends
only to the output states of the first decoder:

2 _ 12 .1
&= alks,
m/

2
m

P(y2)

"For simplicity, we have assumed only a single layer for
both the encoder and decoder. It is possible to use multiple
stacked RNNSs; typically, the output of the encoder and de-
coder (c,, and P(y,,), respectively) would be computed from
the top layer only.

2,2 2 2
S dec(s;,_15€s Yimo1)

softmax(si).
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Tu et al. (2017) use exactly this architecture to
train on bitext by setting the second output se-
quence to be equal to the input sequence (y% =X;).

In our proposed triangle model (Figure 1d), the
first decoder is as above, but the second decoder
has two attentions, one for the input states of the
encoder and one for the output states of the first
decoder:

2 _ 12 2
Cn = [2111' Clmm/Sm, Zn amnhn]
2 2,2 2 2
S;, = dec™(s;,_1, €, Y1)
P(y,a) = softmax(si).

Note that the context vectors resulting from the
two attentions are concatenated, not added.

3 Learning and Inference

For compactness, we will write X for the matrix
whose rows are the x,, and similarly H, C, and
so on. We also write A for the matrix of attention
weights: [A];; = a;j.

Let 6 be the parameters of our model, which we
train on sentence triples (X, Y', Y?).

3.1 Maximum likelihood estimation

Define the score of a sentence triple to be a log-
linear interpolation of the two decoders’ probabil-
ities:

score(Y!,Y? | X;0) = Alog P(Y! | X;0) +
(1-Dlog P(Y?|X,S';0)

where A is a parameter that controls the impor-
tance of each sub-task. In all our experiments, we
set A to 0.5. We then train the model to maximize

L) = Z score(Y', Y2 | X; 6),

where the summation is over all sentence triples in
the training data.

3.2 Regularization

We can optionally add a regularization term to the
objective function, in order to encourage our atten-
tion mechanisms to conform to two intuitive prin-
ciples of machine translation: transitivity and in-
vertibility.

Transitivity attention regularizer To a first ap-
proximation, the translation relation should be
transitive (Wang et al., 2006; Levinboim and Chi-
ang, 2015): If source word x; aligns to target word



P(Y; Vo) Py} Y3p)
T softmax T softmax
TSy, $Toest,
Tdecoder Tdecoder
P(Y1 -+~ Yu) Py; - ¥)) PGYi - Yy) P(Y; - ¥y) CRECH POy Yy) SRR
T softmax T softmax T softmax T softma>/?1ttention T softma)/ attentions
it Su o ool BF eoothy o ooy g oy
T decoder Tdecoder T decoder Tdecoder T decoder
cp-Cy clc -, (O CIEEEC
T attention atlemimg\/gltlemion attentiot\ attentior\
hy - hy hi--hy hi - hy hy - hy
T encoder T encoder Tencoder Tencoder
Xp- XN Xy XN Xp XN Xp - XN
(a) single-task (b) multitask (c) cascade (d) triangle

Figure 1: Variations on the standard attentional model. In the standard single-task model, the decoder attends to the
encoder’s states. In a typical multitask setup, two decoders attend to the encoder’s states. In the cascade (Tu et al.,
2017), the second decoder attends to the first decoder’s states. In our proposed triangle model, the second decoder
attends to both the encoder’s states and the first decoder’s states. Note that for clarity’s sake there are dependencies

not shown.

y}. and y}. aligns to target word y,%, then x; should

also probably align to yi. To encourage the model
to preserve this relationship, we add the following
transitivity regularizer to the loss function of the
triangle models with a small weight Ayans = 0.2:

Lirans = Score(Yl,Yz) — Airans ||A12A1 _ A2||§,

Invertibility attention regularizer The transla-
tion relation also ought to be roughly invertible
(Levinboim et al., 2015): if, in the reconstruc-
tion version of the cascade model, source word
x; aligns to target word y}., then it stands to rea-
son that y; is likely to align to x;. So, whereas Tu
et al. (2017) let the attentions of the translator and
the reconstructor be unrelated, we try adding the
following invertibility regularizer to encourage the
attentions to each be the inverse of the other, again
with a weight A,y = 0.2:

Liny = score(Y', Y?) = i, [[A'A" — 1[5
3.3 Decoding

Since we have two decoders, we now need to em-
ploy a two-phase beam search, following Tu et al.
(2017):

1. The first decoder produces, through standard
beam search, a set of triples each consist-
ing of a candidate transcription Y!, a score
P(Y"), and a hidden state sequence S.

2. For each transcription candidate from the first
decoder, the second decoder now produces
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Corpus Speakers Segments Hours
Ainu-English 1 2,668 2.5
Mboshi-French 3 5,131 4.4
Spanish-English 240 17,394 20

Table 1: Statistics on our speech datasets.

through beam search a set of candidate trans-
lations Y2, each with a score P(Y?).

3. We then output the combination that yields
the highest total score(Y'!, Y?).

3.4 Implementation

All our models are implemented in DyNet (Neubig
et al., 2017).2 We use a dropout of 0.2, and train
using Adam with initial learning rate of 0.0002 for
a maximum of 500 epochs. For testing, we select
the model with the best performance on dev. At
inference time, we use a beam size of 4 for each
decoder (due to GPU memory constraints), and
the beam scores include length normalization (Wu
et al., 2016) with a weight of 0.8, which Nguyen
and Chiang (2017) found to work well for low-
resource NMT.

4 Speech Transcription and Translation

We focus on speech transcription and translation
of endangered languages, using three different cor-

20ur code is available at: https://bitbucket.org/
antonis/dynet-multitask-models.



Model Search Mboshi  French | Ainu English | Spanish English

ASR MT ASR MT CER BLEU | CER BLEU CER BLEU
(1) | auto text 1-best 1-best | 42.3 214 44.0 16.4 63.2 24.2
(2) | gold text — 1-best 0.0 31.2 0.0 19.3 0.0 51.3
3) single-task 1-best — 20.8 — 12.0 — 21.6
(@Y) multitask 4-best 1-best 36.9 21.0 | 40.1 18.3 57.4 26.0
(5) |  cascade | 4-best 1-best | 39.7 243 | 421 19.8 58.1 26.8
(6) triangle 4-best 1-best 32.3 24.1 39.9 19.2 58.9 28.6
(7) | triangle+Lyans | 4-best  1-best | 33.0 24.7 | 43.3 20.2 59.3 28.6
() triangle 1-best 1-best | 31.8 19.7 38.9 19.8 58.4 28.8
(9) | triangle+Lyans | 1-best  1-best 32.1 209 | 43.0 20.3 59.1 28.5

Table 2: The multitask models outperform the baseline single-task model and the pivot approach (auto/text) on all
language pairs tested. The friangle model also outperforms the simple multitask models on both tasks in almost all
cases. The best results for each dataset and task are highlighted.

pora on three different language directions: Span-
ish (es) to English (en), Ainu (ai) to English, and
Mboshi (mb) to French (fr).

4.1 Data

Spanish is, of course, not an endangered language,
but the availability of the CALLHOME Spanish
Speech dataset (LDC2014T23) with English trans-
lations (Post et al., 2013) makes it a convenient
language to work with, as has been done in almost
all previous work in this area. It consists of tele-
phone conversations between relatives (about 20
total hours of audio) with more than 240 speak-
ers. We use the original train-dev-test split, with
the training set comprised of 80 conversations and
dev and test of 20 conversations each.

Hokkaido Ainu is the sole surviving member of
the Ainu language family and is generally consid-
ered a language isolate. As of 2007, only ten native
speakers were alive. The Glossed Audio Corpus
of Ainu Folklore provides 10 narratives with au-
dio (about 2.5 hours of audio) and translations in
Japanese and English.? Since there does not exist
a standard train-dev-test split, we employ a cross
validation scheme for evaluation purposes. In each
fold, one of the 10 narratives becomes the test set,
with the previous one (mod 10) becoming the dev
set, and the remaining 8 narratives becoming the
training set. The models for each of the 10 folds
are trained and tested separately. On average, for
each fold, we train on about 2000 utterances; the
dev and test sets consist of about 270 utterances.

Shttp://ainucorpus.ninjal.ac. jp/corpus/en/
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We report results on the concatenation of all folds.
The Ainu text is split into characters, except for the
equals (=) and underscore (_) characters, which are
used as phonological or structural markers and are
thus merged with the following character.*
Mboshi (Bantu C25 in the Guthrie classifica-
tion) is a language spoken in Congo-Brazzaville,
without standard orthography. We use a corpus
(Godard et al., 2017) of 5517 parallel utterances
(about 4.4 hours of audio) collected from three na-
tive speakers. The corpus provides non-standard
grapheme transcriptions (close to the language
phonology) produced by linguists, as well as
French translations. We sampled 100 segments
from the training set to be our dev set, and used
the original dev set (514 sentences) as our test set.

4.2 Implementation

We employ a 3-layer speech encoding scheme
similar to that of Duong et al. (2016). The first
bidirectional layer receives the audio sequence in
the form of 39-dimensional Perceptual Linear Pre-
dictive (PLP) features (Hermansky, 1990) com-
puted over overlapping 25ms-wide windows ev-
ery 10ms. The second and third layers consist of
LSTMs with hidden state sizes of 128 and 512 re-
spectively. Each layer encodes every second out-
put of the previous layer. Thus, the sequence is
downsampled by a factor of 4, decreasing the com-
putation load for the attention mechanism and the
decoders. In the speech experiments, the decoders

“The data preprocessing scripts are released with the rest
of our code.



output the sequences at the grapheme level, so the
output embedding size is set to 64.

We found that this simpler speech encoder
works well for our extremely small datasets. Ap-
plying our models to larger datasets with many
more speakers would most likely require a more
sophisticated speech encoder, such as the one used
by Weiss et al. (2017).

4.3 Results

In Table 2, we present results on three small
datasets that demonstrate the efficacy of our mod-
els. We compare our proposed models against
three baselines and one “skyline.” The first base-
line is a traditional pivot approach (line 1), where
the ASR output, a sequence of characters, is the
input to a character-based NMT system (trained
on gold transcriptions). The “skyline” model (line
2) is the same NMT system, but tested on gold
transcriptions instead of ASR output. The second
baseline is translation directly from source speech
to target text (line 3). The last baseline is the stan-
dard multitask model (line 4), which is similar to
the model of Weiss et al. (2017).

The cascade model (line 5) outperforms the
baselines on the translation task, while only falling
behind the multitask model in the transcription
task. On all three datasets, the triangle model
(lines 6, 7) outperforms all baselines, including
the standard multitask model. On Ainu-English,
we even obtain translations that are comparable to
the “skyline” model, which is tested on gold Ainu
transcriptions.

Comparing the performance of all models
across the three datasets, there are two notable
trends that verify common intuitions regarding the
speech transcription and translation tasks. First, an
increase in the number of speakers hurts the per-
formance of the speech transcription tasks. The
character error rates for Ainu are smaller than the
CER in Mboshi, which in turn are smaller than the
CER in CALLHOME. Second, the character-level
BLEU scores increase as the amount of training
data increases, with our smallest dataset (Ainu)
having the lowest BLEU scores, and the largest
dataset (CALLHOME) having the highest BLEU
scores. This is expected, as more training data
means that the translation decoder learns a more
informed character-level language model for the
target language.

Note that Weiss et al. (2017) report much higher
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BLEU scores on CALLHOME: our model un-
derperforms theirs by almost 9 word-level BLEU
points. However, their model has significantly
more parameters and is trained on 10 times
more data than ours. Such an amount of data
would never be available in our endangered lan-
guages scenario. When calculated on the word-
level, all our models’ BLEU scores are between 3
and 7 points for the extremely low resource
datasets (Mboshi-French and Ainu-English), and
between 7 and 10 for CALLHOME. Clearly, the
size of the training data in our experiments is not
enough for producing high quality speech transla-
tions, but we plan to investigate the performance
of our proposed models on larger datasets as part
of our future work.

To evaluate the effect of using the combined
score from both decoders at decoding time, we
evaluated the triangle models using only the 1-best
output from the speech model (lines 8, 9). One
would expect that this would favor speech at
the expense of translation. In transcription accu-
racy, we indeed observed improvements across the
board. In translation accuracy, we observed a sur-
prisingly large drop on Mboshi-French, but sur-
prisingly little effect on the other language pairs
— in fact, BLEU scores tended to go up slightly,
but not significantly.

Finally, Figure 2 visualizes the attention ma-
trices for one utterance from the baseline multi-
task model and our proposed triangle model. It
is clear that our intuition was correct: the transla-
tion decoder receives most of its context from the
transcription decoder, as indicated by the higher
attention weights of A2, Ideally, the area under
the red squares (gold alignments) would account
for 100% of the attention mass of A'2. In our tri-
angle model, the total mass under the red squares
18 34%, whereas the multitask model’s correct at-
tentions amount to only 21% of the attention mass.

5 Word Discovery

Although the above results show that our model
gives large performance improvements, in abso-
lute terms, its performance on such low-resource
tasks leaves a lot of room for future improvement.
A possible more realistic application of our meth-
ods is word discovery, that is, finding word bound-
aries in unsegmented phonetic transcriptions.
After training an attentional encoder-decoder
model between Mboshi unsegmented phonetic se-
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Figure 2: Attentions in an Mboshi-French sentence, extracted from two of our models. The red squares denote gold
alignments. The second decoder of the friangle model receives most of its context from the first decoder through
A'? instead of the source. The A2 matrix of the triangle model is more informed (34% correct attention mass) than
the multitask one (21% correct), due to the transitivity regularizer.

quences and French word sequences, the atten-
tion weights can be thought of as soft alignments,
which allow us to project the French word bound-
aries onto Mboshi. Although we could in princi-
ple perform word discovery directly on speech, we
leave this for future work, and only explore single-
task and reconstruction models.

5.1 Data

We use the same Mboshi-French corpus as in Sec-
tion 4, but with the original training set of 4617
utterances and the dev set of 514 utterances. Our
parallel data consist of the unsegmented phonetic
Mboshi transcriptions, along with the word-level
French translations.

5.2 Implementation

We first replicate the model of Boito et al. (2017),
with a single-layer bidirectional encoder and sin-
gle layer decoder, using an embedding and hidden
size of 12 for the base model, and an embedding
and hidden state size of 64 for the reverse model.
In our own models, we set the embedding size to
32 for Mboshi characters, 64 for French words,
and the hidden state size to 64. We smooth the at-
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tention weights A using the method of Duong et al.
(2016) with a temperature 7' = 10 for the softmax
computation of the attention mechanism.
Following Boito et al. (2017), we train mod-
els both on the base Mboshi-to-French direction,
as well as the reverse (French-to-Mboshi) direc-
tion, with and without this smoothing operation.
We further smooth the computed soft alignments
of all models so that a,,;, = (@un—1+ Amn + Amn+1)/3
as a post-processing step. From the single-task
models we extract the A! attention matrices. We
also train reconstruction models on both direc-
tions, with and without the invertibility regularizer,
extracting both A! and A'? matrices. The two ma-
trices are then combined so that A = A! + (A%,

5.3 Results

Evaluation is done both at the token and the
type level, by computing precision, recall, and F-
score over the discovered segmentation, with the
best results shown in Table 3. We reimplemented
the base (Mboshi-French) and reverse (French-
Mboshi) models from Boito et al. (2017), and the
performance of the base model was comparable
to the one reported. However, we were unable to



. . Tokens Types

Model (with smoothing) Precision Recall F-score | Precision Recall F-score
Boito et al. 2017 base 5.85 6.82 6.30 6.76  15.00 9.32
(reported) reverse 21.44 16.49 18.64 27.23  15.02 19.36
Boito et al. 2017 base 6.87 6.33 6.59 6.17 13.02 8.37
(reimplementation) reverse 7.58 8.16 7.86 922 11.97 10.42
our sinele-task base 7.99 7.57 7.78 7.59 16.41 10.38

& reverse 11.31 11.82 11.56 9.29 14.75 11.40
reconstruction + 0.2 L,y 8.93 9.78 9.33 8.66 1548 11.02
reconstruction + 0.5 Liny 742  10.00 8.52 10.46 16.36 12.76

Table 3: The reconstruction model with the invertibility regularizer produces more informed attentions that result
in better word discovery for Mboshi with an Mboshi-French model. Scores reported by previous work are in italics

and best scores from our experiments are in bold.

reproduce the significant gains that were reported
when using the reverse model (italicized in Ta-
ble 3). Also, our version of both the base and re-
verse singletask models performed better than our
reimplementation of the baseline.

Furthermore, we found that we were able to
obtain even better performance at the type level
by combining the attention matrices of a recon-
struction model trained with the invertibility reg-
ularizer. Boito et al. (2017) reported that combin-
ing the attention matrices of a base and a reverse
model significantly reduced performance, but they
trained the two models separately. In contrast, we
obtain the base (A!) and the reverse attention ma-
trices (A'?) from a model that trains them jointly,
while also tying them together through the invert-
ibility regularizer. Using the regularizer is key to
the improvements; in fact, we did not observe any
improvements when we trained the reconstruction
models without the regularizer.

6 Negative Results: High-Resource Text
Translation

6.1 Data

For evaluating our models on text translation, we
use the Europarl corpus which provides parallel
sentences across several European languages. We
extracted 1,450,890 three-way parallel sentences
on English, French, and German. The concatena-
tion of the newstest 2011-2013 sets (8,017 sen-
tences) is our dev set, and our test set is the con-
catenation of the newstest 2014 and 2015 sets
(6,003 sentences). We test all architectures on the
six possible translation directions between English
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(en), French (fr) and German (de). All the se-
quences are represented by subword units with
byte-pair encoding (BPE) (Sennrich et al., 2016)
trained on each language with 32000 operations.

6.2 Experimental Setup

On all experiments, the encoder and the decoder(s)
have 2 layers of LSTM units with hidden state size
and attention size of 1024, and embedding size
of 1024. For this high resource scenario, we only
train for a maximum of 40 epochs.

6.3 Results

The accuracy of all the models on all six lan-
guage pair directions is shown in Table 4. In all
cases, the best models are the baseline single-task
or simple multitask models. There are some in-
stances, such as English-German, where the re-
construction or the triangle models are not statis-
tically significantly different from the best model.
The reason for this, we believe, is that in the case
of text translation between so linguistically close
languages, the lower level representations (the out-
put of the encoder) provide as much information
as the higher level ones, without the search errors
that are introduced during inference.

A notable outcome of this experiment is that we
do not observe the significant improvements with
the reconstruction models that Tu et al. (2017) ob-
served. A few possible differences between our
experiment and theirs are: our models are BPE-
based, theirs are word-based; we use Adam for
optimization, they use Adadelta; our model has
slightly fewer parameters than theirs; we test on
less typologically different language pairs than



Model s

ode en—fr en—de fr—en fr—ode de—en de—fr
singletask 2092 12,69 2096 11.24 16.10 15.29
multitask s — x, ¢ 20.54 1279 20.01 11.18 1631 15.07
cascade s > x > ¢ 15.93 11.31 16.58 7.60 13.46 13.24
cascade s =t — x 20.34 12.27 19.17 11.09 15.24 14.78
reconstruction 20.19 1244 20.63 10.88 15.66 13.44
reconstruction + L,y 20.72 12.64 20.11 1046 1543 12.64
triangle s 2 t 20.39 12.70 17.93 10.17 14.94 14.07
triangle s 2 t +Liyans | 2052  12.64 18.34 1042 15.22 14.37
triangle s 2_t\)> X 20.38 12.40 18.50 10.22 15.62 14.77
triangle s 2 X +Lgans | 20.64  12.42 19.20 10.21 15.87 14.89

Table 4: BLEU scores for each model and translation direction s — ¢. In the multitask, cascade, and triangle
models, x stands for the third language, other than s and ¢. In each column, the best results are highlighted. The
non-highlighted results are statistically significantly worse than the single-task baseline.

English-Chinese.

However, we also observe that in most cases
our proposed regularizers lead to increased perfor-
mance. The invertibility regularizer aids the recon-
struction models in achiev slightly higher BLEU
scores in 3 out of the 6 cases. The transitivity reg-
ularizer is even more effective: in 9 out the 12
source-target language combinations, the triangle
models achieve higher performance when trained
using the regularizer. Some of them are statistical
significant improvements, as in the case of French
to English where English is the intermediate target
language and German is the final target.

7 Related Work

The speech translation problem has been tradi-
tionally approached by using the output of an
ASR system as input to a MT system. For ex-
ample, Ney (1999) and Matusov et al. (2005)
use ASR output lattices as input to translation
models, integrating speech recognition uncertainty
into the translation model. Recent work has fo-
cused more on modelling speech translation with-
out explicit access to transcriptions. Duong et al.
(2016) introduced a sequence-to-sequence model
for speech translation without transcriptions but
only evaluated on alignment, while Anastasopou-
los et al. (2016) presented an unsupervised align-
ment method for speech-to-translation alignment.
Bansal et al. (2017) used an unsupervised term
discovery system (Jansen et al., 2010) to clus-
ter recurring audio segments into pseudowords

&9

and translate speech using a bag-of-words model.
Bérard et al. (2016) translated synthesized speech
data using a model similar to the Listen Attend
and Spell model (Chan et al., 2016). A larger-scale
study (Bérard et al., 2018) used an end-to-end neu-
ral system system for translating audio books be-
tween French and English. On a different line of
work, Boito et al. (2017) used the attentions of a
sequence-to-sequence model for word discovery.

Multitask learning (Caruana, 1998) has found
extensive use across several machine learning and
NLP fields. For example, Luong et al. (2016) and
Eriguchi et al. (2017) jointly learn to parse and
translate; Kim et al. (2017) combine CTC- and
attention-based models using multitask models for
speech transcription; Dong et al. (2015) use mul-
titask learning for multiple language translation.
Toshniwal et al. (2017) apply multitask learning
to neural speech recognition in a less traditional
fashion: the lower-level outputs of the speech en-
coder are used for fine-grained auxiliary tasks such
as predicting HMM states or phonemes, while the
final output of the encoder is passed to a character-
level decoder.

Our work is most similar to the work of Weiss
et al. (2017). They used sequence-to-sequence
models to transcribe Spanish speech and trans-
late it in English, by jointly training the two tasks
in a multitask scenario where the decoders share
the encoder. In contrast to our work, they use a
large corpus for training the model on roughly 163
hours of data, using the Spanish Fisher and CALL-



HOME conversational speech corpora. The pa-
rameter number of their model is significantly
larger than ours, as they use 8 encoder layers, and
4 layers for each decoder. This allows their model
to adequately learn from such a large amount of
data and deal well with speaker variation. How-
ever, training such a large model on endangered
language datasets would be infeasible.

Our model also bears similarities to the archi-
tecture of the model proposed by Tu et al. (2017).
They report significant gains in Chinese-English
translation by adding an additional reconstruction
decoder that attends on the last states of the trans-
lation decoder, mainly inspired by auto-encoders.

8 Conclusion

We presented a novel architecture for multitask
learning that provides the second task with higher-
level representations produced from the first task
decoder. Our model outperforms both the single-
task models as well as traditional multitask ar-
chitectures. Evaluating on extremely low-resource
settings, our model improves on both speech tran-
scription and translation. By augmenting our mod-
els with regularizers that implement transitivity
and invertibility, we obtain further improvements
on all low-resource tasks.

These results will hopefully lead to new tools
for endangered language documentation. Projects
like BULB aim to collect about 100 hours of audio
with translations, but it may be impractical to tran-
scribe this much audio for many languages. For
future work, we aim to extend these methods to
settings where we don’t necessarily have sentence
triples, but where some audio is only transcribed
and some audio is only translated.
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Please Clap: Modeling Applause in Campaign Speeches
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Abstract

This work examines the rhetorical techniques
that speakers employ during political cam-
paigns. We introduce a new corpus of
speeches from campaign events in the months
leading up to the 2016 U.S. presidential elec-
tion and develop new models for predicting
moments of audience applause. In contrast to
existing datasets, we tackle the challenge of
working with transcripts that derive from un-
corrected closed captioning, using associated
audio recordings to automatically extract and
align labels for instances of audience applause.
In prediction experiments, we find that lexical
features carry the most information, but that
a variety of features are predictive, including
prosody, long-term contextual dependencies,
and theoretically motivated features designed
to capture rhetorical techniques.

1 Introduction

Every public speech involving a large audience
can be seen as a game of coordination (Asch,
1951): at each moment, each individual mem-
ber of the audience must decide in a split second
whether to applaud at what has just been said. Ap-
plause is a potentially risky action: if an individual
spontaneously claps but no one joins in, they suf-
fer some negative social cost; the game is to judge
from their own private information and content of
the speech whether the rest of the audience will
applaud at the same time they do.

Because of this cost, audiences respond to sev-
eral interacting factors in a speaker’s behavior:
a.) the content of the message; b.) their deliv-
ery (so that changes in pitch, duration and gaze
signal salient moments for which applause may
be licensed); and c.) the verbal design of the
message—those rhetorical strategies that speakers
use to signal that applause is welcome (Atkinson,
1984; Heritage and Greatbatch, 1986).
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In this work, we attempt to model all three of
these dimensions in developing a computational
model for applause. While past work has focused
on these elements in isolation (Guerini et al., 2015;
Liu et al., 2017) or for related problems such as
laughter detection (Purandare and Litman, 2006;
Chen and Lee, 2017; Bertero and Fung, 2016), we
find that developing a holistic model encompass-
ing all three aspects yields the most robust predic-
tor of applause.

We focus on political speeches, and in particular
those at campaign rallies, which lend themselves
well to analysis of rhetorical strategies for several
reasons. First, the speakers at these events prior-
itize maintaining the crowd’s attention (Strangert,
2005). Motivated to drum up excitement and fer-
vor among their supporters that they hope will
carry beyond the event and into the voting booth,
speakers pull out their strongest rhetorical tactics.
Second, campaign speeches usually consist of a
series of self-contained messages that can be fully
expressed within a few utterances (Heritage and
Greatbatch, 1986), yielding a well-defined obser-
vation of a complete rhetorical strategy. Lastly,
these speeches are delivered by a single speaker
to a partisan crowd, and clapping, cheering, and
other responses are invited and expected.

We focus in particular in this work on opera-
tionalizating the verbal design of the speech; in so
doing, one contribution we make is operationaliz-
ing the concepts of tension and release. Writers
and performers often communicate with their au-
dience on a fundamental level by building up ten-
sion, and then, at the proper time, delivering a sat-
isfying release. These simple but pervasive con-
cepts structure our experience of different modes
of communication used throughout everyday life,
including music (Madsen and Fredrickson, 1993),
literature (Rabkin, 1973) and film (Carroll, 1996).

Tension in music can be built up by harmonic
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movement away from a tonal center; release then
comes with a return to that established tonic (Hin-
demith, 1937). One form of tension in litera-
ture is realized as suspense (Barthes and Duisit,
1975; Vorderer et al., 1996; Algee-Hewitt, 2016),
in which a reader’s knowledge of events is uncer-
tain (either because those events take place in the
narrative future or are withheld from narration),
and released when that knowledge is revealed. In
film, sudden changes in camera perspective cre-
ate graphic tension, which is then released as the
shot returns to a stable position (Bordwell, 2013).
Often, it is the confluence of multiple sources of
tension that mark the climax of a narrative (Hume,
2017). We draw on each of these strands of work
in operationalizing tension and release as a rhetor-
ical strategy.

In this work, we make the following contribu-
tions:

e We collect a new dataset of text and au-
dio from 310 speeches from campaign events
leading up to the 2016 U.S presidential elec-
tion with associated tags for over 19,000 in-
stances of audience applause.

We introduce new textual and acoustic
features inspired by tension and release,
combine and compare them with features
used in previous work, and deploy those
features in a logistic regression model
and in an LSTM to predict when ap-
plause is likely to occur.  Code, data,
and trained models are openly available
to the public at https://github.com/
jrgillick/Applause/.

2 Background and Previous Work

2.1 Rhetoric and Response

Heritage and Greatbatch (1986) conduct an exten-
sive analysis of nearly 500 speeches from British
political party conferences, manually associating
each of over 2000 instances of applause with
coded message types (e.g. External Attacks or
Statements of Approval), rhetorical devices (e.g.
Contrast/Antithesis or Headline-Punchline), and
performance factors (e.g. speech stress or body
language). They find most of these factors to be
positively correlated with applause; one especially
striking result is over two thirds of observed in-
stances of applause can be explained through a
set of seven rhetorical devices (including contrast,
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pursuit, position taking, and “the 3-part list”).
Though each device is different, a common fea-
ture of most of these techniques is that they are not
always carried out within a single sentence or ut-
terance; they often depend on the relationship be-
tween a series of utterances or phrases. We argue
in this work that some of these relationships can
be characterized and subsequently operationalized
within models as tension and release.

2.2 Predicting Applause

Recent work from Guerini et al. (2015) and Liu
et al. (2017) approaches the task of applause pre-
diction by looking at textual features of the indi-
vidual sentences that immediately precede audi-
ence applause. Both follow the methodology pro-
posed by Danescu-Niculescu-Mizil et al. (2012)
in constructing a data set for binary classification,
which is composed of sentences that generated ap-
plause, each paired with a single nearby sentence
from the same document that did not lead to ap-
plause.

Guerini et al. (2015) examine a set of fea-
tures designed to capture aspects of euphony,
or “the inherent pleasantness of the sounds of
words” that might make an utterance memorable
or persuasive—such as rhyme, alliteration, homo-
geneity, and plosives. On the CORPS dataset
(Guerini et al., 2013), which consists of the text
of several thousand political speeches dating from
1917 to 2011, they define persuasive sentences as
those that preceded annotations of either applause
or laughter.

Liu et al. (2017), working with a corpus of TED
talks, use logistic regression to predict applause
from sentences using a combination of features:
euphony (again from Guerini et al. (2015)), lin-
guistic style markers derived from membership
in LIWC categories, markers of emotional ex-
pression derived from membership in the NRC
Emotion Lexicon, mentions of names, rhetorical
questions (string matching for “?”), expressions
of gratitude (matching a handcrafted list of word
stems including “thank*” and ‘“‘grateful*”), and
expressions seeking applause (matching the pat-
tern “applau*”). Liu et al. (2017) also report that
adding the same features for earlier sentences be-
yond the final sentence that preceded the applause
caused the prediction accuracy to go down. Chen
and Lee (2017) and Bertero and Fung (2016) run
similar binary classification experiments but pre-



dict laughter as opposed to applause. Bertero and
Fung (2016) analyze punchlines from the TV sit-
com “The Big Bang Theory” and report 70% ac-
curacy using an LSTM. They touch briefly on the
notion of tension and release in humor, as punch-
lines typically depend on a previous line as a setup
in order to be funny.

3 Data

3.1 Corpus Acquisition

In this work, we focus on a new data set of cam-
paign speeches from the 2016 U.S. presidential
race, which we obtain from the public domain
broadcasts of C-SPAN. We downloaded about 500
speeches from presidential candidates, vice pres-
idential candidates, or former presidents, collect-
ing audio files and transcripts that were tagged
in the categories “Campaign 2016 and “Speech”
and which took place between 12/01/2015 and
12/01/2016. We then excluded events that took
place outside of a traditional campaign speech set-
ting (e.g. town hall events) or events that con-
tained multiple speakers without a speaker iden-
tification tied to the transcript, which yielded a
final set of 310 speeches from 16 speakers. Be-
cause different types of events have different so-
cial norms around when and whether applause is
appropriate (Atkinson, 1984; Heritage and Great-
batch, 1986), we control for these factors to some
degree by restricting our dataset to events in sim-
ilar settings and within a single year. As a
point of comparison, the C-SPAN dataset contains
62 instances of applause per speech on average,
whereas the CORPS data (Guerini et al., 2013)
contains 13.

3.2 Applause Detection in Audio

Since our C-SPAN data originates in video, we
have access to the audio information of a speech
event, which we employ both for feature extrac-
tion and for automatically identifying when ap-
plause occurs. Following Clement and McLaugh-
lin (2016), we train an acoustic model using a set
of poetry readings from the PennSound archive to
distinguish applause from speech. We used logis-
tic regression on the standard set of MFCC fea-
tures and found similar results on the PennSound
data to the reported classification accuracy of
99.4%. In a manual inspection of 100 applause
segments from 5 different speeches in the C-SPAN
corpus, our applause detector achieved 92% preci-
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sion, 90% recall, and 91% F1 score. Due to varia-
tion in the nature of applause in a crowd (some-
times we observe examples of isolated clapping
and cheering, mixed laughter and applause, or ap-
plause interrupting the speaker), some ambiguity
is inherent among the labels.

We also measure the applause by first running
the speeches through the audio source separation
algorithm from Chandna et al. (2017), which was
trained to separate voice from music, and then
measuring the RMSE loudness of the separated
non-vocal track. We found that the separation
worked well, qualitatively matching with the re-
sults from the applause detection classifier.

3.3 Forced Alignment

To match the identified segments of applause in
the audio files with the relevant text from the
transcriptions, we ran forced alignment using the
Kaldi Toolkit (Povey et al., 2011). Since the C-
SPAN transcripts are sourced from uncorrected
closed captioning, the text contains a number of
misspellings and paraphrases, which we handled
by discarding the 12% of words for which forced
alignment failed. Though these transcriptions are
not as accurate as what we would find in profes-
sionally transcribed datasets, previous work has
shown that it is possible to achieve good accuracy
in downstream tasks even with high error rates in
transcription (Peskin et al., 1993; Novotney and
Callison-Burch, 2010). Moreover, the caliber of
transcripts derived from closed captioning is rep-
resentative of the data that would be available in
real time for practical use at future speech events.

To estimate the accuracy of the closed cap-
tions, we manually transcribed selections from 5
speeches in the C-SPAN data totaling about 25
minutes and 2250 words, finding 30.9% WER rel-
ative to the reference transcriptions in our sample.
Many of the errors are due to omitted words and
phrases in the closed captions, which may occur
as a result of transcribers’ inability to keep up with
the pace of fast speeches; in this sample, the closed
caption texts contained 17% fewer words than our
gold standard transcriptions.

After finding the alignments, we segmented out
a list of utterances by defining a minimum period
of silence between words. Since many of the tran-
scripts do not have punctuation, we find that di-
viding the text into utterances yielded qualitatively
more coherent units than sentence boundary detec-



Speaker Number of Speeches | Number of Utterances | Number Applauded | Percentage
Donald Trump 86 27493 7357 0.27
Hilary Clinton 72 12825 3933 0.31
Bernie Sanders 40 10994 3529 0.32

Ted Cruz 23 5873 1041 0.18

Marco Rubio 20 4407 797 0.18
John Kasich 17 4023 319 0.08
Barack Obama 10 3888 920 0.24
Bill Clinton 8 2087 292 0.14
Joe Biden 7 1847 270 0.15
Mike Pence 6 1302 246 0.19
Carly Fiorina 5 1222 129 0.11
Jeb Bush 5 1482 191 0.13
Rand Paul 4 939 134 0.14
Gary Johnson 3 354 56 0.16
Chris Christie 3 1868 42 0.022
Rick Santorum 1 245 17 0.07
Total 310 80849 19273 0.24

Table 1: Speakers and applause in C-SPAN corpus

tion. Dividing into utterances is also conducive to
building a dataset for binary classification, since
every pause by the speaker yields an opportunity
for applause. We chose a pause length of 0.7
seconds, but in future work we might be able to
improve our models by adapting this threshold to
the rate of speech in order to maintain consistent
phrase sizes across different speakers. Given this
set of utterances, we paired each utterance with
a “positive” or “negative” label, determined by
whether applause occurred within 1.5 seconds of
the end of the utterance. All of these preprocessing
choices were made during the corpus preparation
phase, prior to any experimental evaluation.

Table 1 provides summary statistics for the
number of speakers, speeches, utterances, and acts
of applause in our data.

4 Models

In our models, we draw features from previous
work on applause or humor prediction and then
supplement them with a new set of features in-
spired by the ideas of tension and release and
by the rhetorical strategies of Heritage and Great-
batch (1986).

4.1 Features adapted from existing work

LIWC. Features for membership in 73 LIWC
categories proved to be the most effective for ap-
plause prediction in TED talks (Liu et al., 2017).

Euphony. We adopt the 4 features for “eu-
phony” defined by Guerini et al. (2015): Rhyme,
Alliteration, Homogeneity, and Plosives.
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Lexical. Guerini et al. (2015) find n-grams to
be highly predictive of both applause and laugh-
ter. We operationalize these features with bigrams,
including in our model all bigrams that appear at
least 5 times in the corpus.

Embeddings. Bertero and Fung (2016) use sen-
tence embeddings learned from a CNN encoder as
input to an LSTM. We adopt this feature for use
in our neural models, encoding phrases using the
Skip-Thought model of Kiros et al. (2015).

Acoustic. Purandare and Litman (2006) use a
set of features intended to capture elements of
prosody in a model for humor prediction in tele-
vision dialogue. These features include the mean,
max, min, range, and standard deviation values
in an utterance’s pitch (FO) and energy (RMS),
along with features for internal silence and for
tempo. We compute the FO statistics with Reaper
(Talkin, 2015) and the energy statistics with Li-
brosa (McFee et al., 2015).

4.2 New Features
4.2.1 Repetition

Repeated Words. Rhetorical strategies such as
“The 3-part List” and “Contrast” rely on repeti-
tion to drive home important points. We capture
this phenomenon by computing the proportion of
words in each utterance that also appear in the im-
mediately preceding phrase.

Longest Common Subsequence. Repeating an
entire phrase, especially one with a politically
charged topic, serves to build tension through the
notion of “theme and variation” as is often realized



in music (Cope, 2005); an example of this phe-
nomenon in our data can be found in the following
passage:

We will not allow the party of Lincoln
and Reagan to fall into the hands of a
con artist. We will not allow the next
president of the United States to be a
socialist like Bernie Sanders. And we
will not allow the next president of the
United States to be someone under FBI
investigation like Hillary Clinton.

[Marco Rubio, Mar. 1, 2016]

We calculate this theme and variation by mea-
suring the longest common subsequence between
adjacent phrases.

4.2.2 Deltas

Delta features (local approximations to deriva-
tives) are commonly used in speech recognition
and audio classification systems (Povey et al.,
2011). In a discourse, either highly similar or dras-
tically different neighboring pairs of utterances
may indicate dramatic moments. We operational-
ize these features by explicitly adding a delta mea-
surement for every feature in our model, which
captures the difference between every feature at
time ¢ and the same feature at time ¢ — 1. For
K-dimensional vector embeddings, we calculate
deltas as their cosine distance.

4.2.3 RST

Rhetorical Structure Theory (RST) provides a
foundation for describing the ways in which func-
tional components of a text combine to form a co-
herent whole (Thompson and Mann, 1987). At the
core of RST is a categorization system consisting
of relations between elementary discourse units
(EDUs). Relations between units are typically hi-
erarchical (a nucleus and a satellite), but can also
be defined between equally significant units (two
nuclei).

A typical RST tree can be seen below, where the
sentence “He won’t win, but I'll vote for him any-
way”, he said is decomposed into three elemen-
tary discourse units (EDUs); those discourse units
form the leaves of a tree with intermediate struc-
ture between subphrases and labeled edges along
each branch.
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ATTRIBUTION

he said.
CONTRAST
“He won’t but I’ll vote
win, for him any-
way?’

Some of the rhetorical strategies defined by
Heritage and Greatbatch (1986), such as “Con-
trast,” map directly to RST relations, while oth-
ers do not have a clear one-to-one mapping but are
qualitatively similar in their descriptions. While
RST has been used with success for classification
problems in the past (Ji and Smith, 2017; Bhatia
et al., 2015), it has not yet been employed in exist-
ing models for applause prediction. In our work,
we parse the rhetorical structure of the extracted
sequence of phrases using the RST parser of Ji and
Eisenstein (2014). From the structure of this RST
tree, we extract two classes of features.

RST label. First, we operationalize the rhetor-
ical category for an individual elementary dis-
course unit. While the span of text within a sin-
gle EDU is implicated in several rhetorical rela-
tions throughout the tree (as He won’t win bears a
CONTRAST relationship with but I'll vote for him
anyway and is part of the ATTRIBUTION relation-
ship with he said), each EDU bears exactly one
leaf relationship with the rest of the tree—here,
He won’t win is a nucleus of a CONTRAST rela-
tionship, but I'll vote for him anyway is also a nu-
cleus of a CONTRAST relationship, and he said is
the satellite of an ATTRIBUTION relationship.

We featurize a sentence as the set of all such
typed relationships that EDUs within it hold; each
typed relationship is the conjunction of the label
(e.g., CONTRAST, ATTRIBUTION) and direction-
ality (Nucleus, Satellite).

Rhetorical phrase closures. In order to fur-
ther operationalize the notion of predictability of
applause, we measure the number of rhetorical
phrases that a given discourse segment brings to
closure. 'We can illustrate this with figure 1,
which presents a sample RST tree with only the
spans annotated (i.e., without RST labels or nu-
cleus/satellite directed edges). This tree spans
10 elementary discourse units; each non-terminal
node is annotated with the span of the subtree



rooted at that node (so the root spans all ten EDUs,
while its left child spans only the first five). The
final discourse unit (EDU 10) is the final EDU
in three rhetorical phrases (those spanning EDUs
9-10, 6-10 and the entire discourse 1-10). We
might hypothesize that the greater number of dis-
course phrases that a given discourse unit closes,
the stronger the signal it provides that applause
is licensed (and hence the greater likelihood to
be followed by applause empirically). For a sen-
tence with multiple discourse units, we featurize
this value as the maximum number of rhetorical
phrases closed by any unit it contains.

[1-10]

[6-8]

[1-2] [3-4] [6-7]

ainiin

123456718 910

Figure 1: Unlabeled RST phrase tree; non-terminal
nodes list the ranges of the elementary discourse units
they span.

5 Experiments

We present two experiments to uncover the de-
gree to which we are able to predict applause from
different operationalizations of a politician’s cam-
paign speech: one in which have access to a politi-
cian’s previous speeches, and can learn their spe-
cific nuances and stock phrases used to solicit ap-
plause; and another in which we seek to uncover
the broader rhetorical strategies common to multi-
ple speakers.

We refer to the following sets of features when
we summarize results:

e Guerini. FEuphony features from Guerini
et al. (2015).

e Liu. LIWC features and additional matchers
for handcrafted regular expressions from Liu
et al. (2017)

e Audio. All acoustic features described in
§4.1 above.

e Combined. Combination of features from
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Guerini, Liu, and Audio.

e Tension. Combination of RST (§4.2.3), rep-
etition (§4.2.1), and delta features (§4.2.2).

e N-gram. Bigram features.

e Skip-Thought. 4800 dimensional Skip-
Thought embeddings.

5.1 Intra-speaker validation

Access to a politician’s previous speeches pro-
vides a great deal of evidence for understanding
their rhetorical strategies for soliciting applause;
speakers often give variations of the same speech
at different campaign events, and rely on a fixed
set of stock phrases (e.g., “Yes, We Can,” “Make
America Great Again”) and general strategies to
solicit reactions (Lu, 1999; Miller, 1939; Petrow
and Sullivan, 2007). To model this, we attempt
to predict a speaker’s likelihood of applause using
only information from their own speeches.

We use logistic regression with /5 regularization
for this experiment, with hyperparameters chosen
through cross-validation on the training data. We
run 10-fold cross validation for each speaker, and
leave-one-out cross validation for those speakers
with fewer than 10 speeches (we exclude Rick
Santorum from this experiment because we have
only one speech from him), with whole speeches
divided across folds so that no utterances from the
same speech ever appear in both training and test
sets. Reported results aggregate the predictions
across all speakers to calculate the final accura-
cies. We choose utterances (or sequences of ut-
terances) that directly precede applause as positive
examples, pairing each one with a negative exam-
ple randomly chosen from the same speech. Since
we use different amounts of data for each speaker,
we are not able to compare accuracies across all
speakers, but we can see that some speakers are
significantly easier to model: for example, our best
model reaches 0.719 accuracy on Bernie Sanders
but only 0.660 on Donald Trump.

Table 2 summarizes the results, comparing
across different combinations of features as well
as across a scope of a single phrase or multiple
phrases. All feature combinations are scoped over
a single utterance unless otherwise noted.

5.2 Inter-speaker validation

At the same time, many of the strategies identi-
fied by Heritage and Greatbatch (1986) are gener-



Model Mean Accuracy | Mean F1 Max F1 Min F1

Guerini 0.566 0.533 0.659 (Bernie Sanders) | 0.422 (Donald Trump)

Liu 0.601 0.594 0.649 (Bernie Sanders) 0.499 (Jeb Bush)
Audio 0.598 0.574 0.634 (Hilary Clinton) | 0.516 (Donald Trump)
Combined 0.646 0.640 0.685 (Bernie Sanders) 0.598 (Marco Rubio)
N-gram 0.637 0.578 0.672 (Bernie Sanders) | 0.478 (Barack Obama)

Combined+Tension 0.639 0.635 0.682 (Bernie Sanders) 0.585 (Jeb Bush)

Combined (3-Phrase) 0.645 0.640 0.671 (Bernie Sanders) 0.587 (Bill Clinton)

Combined+Tension (3-Phrase) 0.626 0.624 0.665 (Bernie Sanders) | 0.602 (Marco Rubio)
Combined+N-gram 0.673 0.661 0.711 (Bernie Sanders) 0.600 (Marco Rubio)
Combined+Tension+N-gram 0.671 0.658 0.711 (Bernie Sanders) 0.599 (Marco Rubio)

Table 2: Intra-speaker predictive accuracy (logistic regression). The 95% confidence interval for Mean Accuracy
and Mean F1 is within & 0.005, and the 95% confidence interval for Max F1 and Min F1 (1 speaker at a time) is

within 4 0.05.

alized rhetorical devices used to solicit applause;
we should expect then that a model trained on
a fixed set of speakers should be able to gen-
eralize to speakers not in the training data. To
test this more realistic scenario, we performed K-
fold cross-validation on all of the speakers in our
dataset, holding out one speaker in turn for each
fold (so that the same speaker did not appear in
the training and test partitions).

In this experiment, we use both logistic regres-
sion and neural models (sharing training data be-
tween speakers has the added benefit of allowing
us enough data to reasonably train a neural model).
All logistic regression models were trained in the
same way is in the intra-speaker case. Our feed-
forward and LSTM models use a hidden state size
of 100 for models including phrase embeddings
(4800 dimensions) and a hidden state of size 25
for models without phrase embeddings. All LSTM
models use a standard formulation of attention
(Bahdanau et al., 2014), and all neural models
are trained with dropout (Srivastava et al., 2014)
and the ADAM optimizer (Kingma and Ba, 2014).
We implemented the models using Keras (Chollet
et al., 2015) and Tensorflow (Abadi et al., 2016).

Table 3 summarizes these results, and table 4
shows the coefficients for the most significant fea-
tures.

6 Analysis

Each of the feature classes we operationalize of-
fers some ability to recognize what Heritage and
Greatbatch (1986) term the “projectability” of
applause—the ability of an audience to see an ap-
plaudable moment on the horizon.

Audio. Perhaps not surprising in retrospect is the
ability of acoustic features (only summary statis-
tics of the pitch and energy) to solicit applause:
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Logistic Regression Models Acc. F1

Guerini 0.557 | 0.534
Liu 0.577 | 0.541
Audio 0.573 | 0.548
Combined 0.615 | 0.601
N-gram 0.594 | 0.578
Combined+Tension 0.617 | 0.605
Combined (3-Phrase) 0.614 | 0.601
Combined+Tension (3-Phrase) 0.615 | 0.600
Combined+N-gram 0.633 | 0.598
Combined+Tension+N-gram 0.630 | 0.594
Neural Models Acc. F1

Feed-Forward:Skip-Thought 0.577 | 0.562
Feed-Forward:Combined+Tension 0.620 | 0.620
LSTM:Skip-Thought(3-Phrase) 0.585 | 0.583
LSTM:Combined+Tension(3-Phrase) | 0.626 | 0.616
LSTM:Combined+Tension(5-Phrase) | 0.628 | 0.625
LSTM:Combined+Tension(8-Phrase) | 0.629 | 0.621

Table 3: Inter-speaker predictive accuracy. The 95%
confidence interval for each measurement of accuracy
is within =+ 0.005.

higher pitch and energy, and a broader pitch range
are all predictive of applause; while past work has
focused on textual indicators of applause, these re-
sults suggest that how a message is delivered is
equally important.

Lexical. The use of explicit n-grams improves
performance significantly in the intra-speaker set-
ting, where they are able to capture stock phrases
employed by the same speaker at different events.
N-grams are also predictive across different speak-
ers, though the performance gains are not as high
in the inter-speaker setting.

The strongest bigrams predictive of applause
include moral declaratives like should not (e.g.,
“and billionaires should not be able to buy elec-
tions” [Bernie Sanders]), right to (“you have a
right to be angry” [Marco Rubio]), and should be
(“They should be ashamed of that kind of behav-
ior” [Hillary Clinton]); call-outs to the audience
such as this room (“Love the people in this room”



Significant Features Coefficient
Expression of Gratitude 0.472
LIWC FOCUSFUTURE 0.340
Homogeneity (Guerini) 0.301
Mean Energy (Audio) 0.293
LIWC Bobpy 0.203
Min Energy (Audio) 0.165
Max Pitch (Audio) 0.157
LIWC TENTATIVE -0.161
LIWC THEY -0.172
LIWC VERB -0.216
LIWC FUNCTION -0.228
Pitch Standard Deviation (Audio) -0.249
LIWC SHEHE -0.275
LIWC FOCUSPAST -0.342

Table 4: Most significant positive and negative fea-
tures for the Combined+Tension regression model in
the inter-speaker setting.

[Donald Trump]) and listening to (“our campaign
is listening to our Latino brothers and sisters”
[Bernie Sanders]); and politically charged topics
such as political revolution, equal pay, immigra-
tion reform, planned parenthood, campaign con-
tributors and police officers.

LIWC. Among broader lexical category fea-
tures, we see the LIWC FOCUSFUTURE category
strongly indicative of applause; this category in-
cludes auxilaries like will, going, gonna (including
conjunctions /’ll) and future-oriented verbs like
anticipate; also important are categories of BODY
(including heart, hands, brain) and REWARD (in-
cluding succeed, optimism, great).

Rhetorical. While RST features were not as pre-
dictive for applause as other (likely correlated)
features, we still see a strong alignment between
the RST features most associated with applause
and those rhetorical devices outlined by Heritage
and Greatbatch (1986): in particular, a clear rela-
tionship between applause and the RST category
of ANTITHESIS (a contrastive relation between
two discourse units with a clear nucleus and satel-
lite, rather than two equal nuclei) and PURPOSE
(arelation between a discourse unit that must take
place in order for another to be realized). As ex-
pected, phrases that close more discourse units
tend to be more predictive of applause.

Contextual. Though lexical features from the fi-
nal utterance significantly outweigh the effects of
previous context in the intra-speaker setting, in the
inter-speaker case we leveraged gains from long-
term context in the LSTM to reach a similar level
of performance attained from the lexical features,
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but without access to lexical cues provided by the
n-grams at all. This result suggests that the im-
proved performance in the intra-speaker setting
may be largely due to the presence of specific
words and catch-phrases; the other stylistic fea-
tures are more easily generalized to new speakers.

7 “Please clap”

As a further measure of out-of-sample validity, we
can analyze the predictions we make for the single
example where a speaker wears his communica-
tive intent on his sleeve. On February 2, 2016,
presidential candidate Jeb Bush spoke to a crowd
in New Hampshire a week before their state pri-
mary. His speech ended with the following:

So here’s my pledge to you. [I] will
be a commander-in-chief who will have
the back of the military, I won’t trash
talk, I won’t be a divider-in-chief or an
agitator-in-chief, I won’t be out there
blowharding talking a big game without
backing it up; I think the next President
needs to be a lot quieter but send a signal
that we’re prepared to act in the national
security interests of this country to get
back in the business of creating a more
peaceful world Please clap.

[Jeb Bush, Feb 2, 2016]'

Bush’s admonition to the audience (“please
clap”) earned criticism in news coverage at the
time (Benen, 2016), but also presents us with a
rare insight into a speaker’s true rhetorical inten-
tion; in this case, Bush was soliciting applause and
was vocal about not being able to do so.

Does our model recover this true intention? In-
deed it does; while the opening So here’s my
pledge to you is predicted to not solicit applause
(with applause probability of 24.8%), the segment
that ends with peaceful world is strongly predicted
to have been followed by applause (with an ap-
plause probability of 94.5%). The strongest fea-
tures are again lexical (this country, commander
in chief), a LIWC focus on the future (elicited by
will), and an RST PURPOSE relation (evoked by to
get back in the business of creating a more peace-

Sful world).

"Video of this speech can be found at: https://www.
youtube.com/watch?v=DdCYMvaUcrA



8 Conclusion

We present in this work a new dataset for the anal-
ysis of political rhetoric derived from the public
campaign speeches of politicians during the 2016
United States presidential election, along with em-
pirical results assessing the performance of dif-
ferent operationalizations of rhetoric derived from
the theoretical work of Heritage and Greatbatch
(1986) and others in order to measure and predict
the occurrence of applause. We introduce several
new features designed to capture elements of ten-
sion and release in public performance, including
rhetorical contrast, closure, repetition and move-
ment across speech segments; while each of these
features in isolation is able to predict applause to
varying degree and comport with our prior under-
standing of their utility, we find that lexicalized
features are among the strongest source of infor-
mation in determining applause; while audiences
react to many dimensions of a speaker’s style, the
words they use—as slogan, stock phrases, and in-
dicators of more complex rhetorical functions like
moral valuations and imperatives—matter most.
As detailed in previous work (Liu et al., 2017;
Haider et al., 2017; Clement and McLaughlin,
2016), understanding and identifying climactic
moments in speeches can be useful for a vari-
ety of reasons, including learning to give bet-
ter talks, automatically summarizing videos and
transcripts, and analyzing social dynamics within
crowds. One additional interesting application of
this work is to bring to the surface occasions where
a speaker uses typical applause-seeking devices
but does not receive applause (the “Please Clap”
moments); we leave to future work identifying
the reverse, when speakers receive applause with-
out invoking common techniques (for example, to
identify instances of claques paid to clap).
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Abstract

We present a neural architecture for mod-
eling argumentative dialogue that explic-
itly models the interplay between an
Opinion Holder’s (OH’s) reasoning and
a challenger’s argument, with the goal
of predicting if the argument successfully
changes the OH’s view. The model has
two components: (1) vulnerable region
detection, an attention model that identi-
fies parts of the OH’s reasoning that are
amenable to change, and (2) interaction
encoding, which identifies the relationship
between the content of the OH’s reason-
ing and that of the challenger’s argument.
Based on evaluation on discussions from
the Change My View forum on Reddit,
the two components work together to pre-
dict an OH’s change in view, outperform-
ing several baselines. A posthoc analysis
suggests that sentences picked out by the
attention model are addressed more fre-
quently by successful arguments than by
unsuccessful ones.!

1 Introduction

Through engagement in argumentative dialogue,
interlocutors present arguments with the goals of
winning the debate or contributing to the joint con-
struction of knowledge. Especially modeling the
knowledge co-construction process requires un-
derstanding of both the substance of viewpoints
and how the substance of an argument connects
with what it is arguing against. Prior work on
argumentation in the NLP community, however,
has focused mainly on the first goal and has often
reduced the concept of a viewpoint as a discrete

'0ur code is available at https://github.com/
yohanjo/aim.
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side (e.g., pro vs against, or liberal vs conserva-
tive), missing more nuanced and complex details
of viewpoints. In addition, while the strength of
the argument and the side it represents have been
addressed relatively often, the dialogical aspects
of argumentation have received less attention.

To bridge the gap, we present a model that
jointly considers an Opinion Holder’s (OH’s) ex-
pressed viewpoint with a challenger’s argument in
order to predict if the argument succeeded in alter-
ing the OH’s view. The first component of the ar-
chitecture, vulnerable region detection, aims to
identify important parts in the OH’s reasoning that
are key to impacting their viewpoint. The intu-
ition behind our model is that addressing certain
parts of the OH’s reasoning often has little impact
in changing the OH’s view, even if the OH realizes
the reasoning is flawed. On the other hand, some
parts of the OH’s reasoning are more open to de-
bate, and thus, it is reasonable for the model to
learn and attend to parts that have a better chance
to change an OH’s view when addressed.

The second component of the architecture,
interaction encoding, aims to identify the
connection between the OH’s sentences and
the challenger’s sentences. Meaningful in-
teraction in argumentation may include agree-
ment/disagreement, topic relevance, or logical im-
plication. Our model encodes the interaction be-
tween every pair of the OH’s and the challenger’s
sentences as interaction embeddings, which are
then aggregated and used for prediction. Intu-
itively, the interactions with the most vulnerable
regions of the OH’s reasoning are most critical.
Thus, in our complete model, the interaction em-
beddings are weighted by the vulnerability scores
computed in the first component.

We evaluate our model on discussions from the
Change My View forum on Reddit, where users
(OHs) post their views on various issues, partic-
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ipate in discussion with challengers who try to
change the OH’s view, and acknowledge when
their views have been impacted. Particularly, we
aim to answer the following questions:

e RQI1. Does the architecture of vulnerable re-
gion detection and interaction encoding help
to predict changes in view?

e RQ2. Can the model identify vulnerable sen-
tences, which are more likely to change the
OH’s view when addressed? If so, what prop-
erties constitute vulnerability?

e RQ3. What kinds of interactions between ar-
guments are captured by the model?

We use our model to predict whether a chal-
lenger’s argument has impacted the OH’s view and
compare the result with several baseline models.
We also present a posthoc analysis that illuminates
the model’s behavior in terms of vulnerable region
detection and meaningful interaction.

For the remainder of the paper, we position our
work in the literature (Section 2) and examine the
data (Section 3). Then we explain our model de-
sign (Section 4). Next, we describe the experiment
settings (Section 5), discuss the results (Section 6),
and conclude the paper (Section 7).

2 Background

Argumentation theories have identified important
dialogical aspects of (non-)persuasive argumenta-
tion, which motivate our attempt to model the in-
teraction of OH’s and challenger’s arguments. Per-
suasive arguments build on the hearer’s accepted
premises (Walton, 2008) and appeal to emotion
effectively (Aristotle and Kennedy, 2007). From
a challenger’s perspective, effective strategies for
these factors could be derived from the OH’s back-
ground and reasoning. On the other hand, non-
persuasive arguments may commit fallacies, such
as contradicting the OH’s accepted premises, di-
verting the discussion from the relevant and salient
points suggested by the OH, failing to address the
issues in question, misrepresenting the OH’s rea-
soning, and shifting the burden of proof to the OH
by asking a question (Walton, 2008). These falla-
cies can be identified only when we can effectively
model how the challenger argues in relation to the
OH’s reasoning.

While prior work in the NLP community has
studied argumentation, such as predicting debate

104

winners (Potash and Rumshisky, 2017; Zhang
et al., 2016; Wang et al., 2017; Prabhakaran et al.,
2013) and winning negotiation games (Keizer
et al., 2017), this paper addresses a different an-
gle: predicting whether an argument against an
OH’s reasoning will successfully impact the OH’s
view. Some prior work investigates factors that un-
derlie viewpoint changes (Tan et al., 2016; Lukin
et al., 2017; Hidey et al., 2017; Wei et al., 2016),
but none target our task of identifying the specific
arguments that impact an OH’s view.

Changing an OH’s view depends highly on ar-
gumentation quality, which has been the focus of
much prior work. Wachsmuth et al. (2017) re-
viewed theories of argumentation quality assess-
ment and suggested a unified framework. Prior
research has focused mainly on the presenta-
tion of an argument and some aspects in this
framework without considering the OH’s reason-
ing. Specific examples include politeness, senti-
ment (Tan et al., 2016; Wei et al., 2016), gram-
maticality, factuality, topic-relatedness (Habernal
and Gurevych, 2016b), argument structure (Nic-
ulae et al., 2017), topics (Wang et al., 2017),
and argumentative strategies (e.g., anecdote, tes-
timony, statistics) (Al Khatib et al., 2017). Some
of these aspects have been used as features to
predict debate winners (Wang et al., 2017) and
view changes (Tan et al., 2016). Habernal and
Gurevych (2016a) used crowdsourcing to develop
an ontology of reasons for strong/weak arguments.

The persuasiveness of an argument, however,
is highly related to the OH’s reasoning and how
the argument connects with it. Nonetheless, re-
search on this relationship is quite limited in the
NLP community. Existing work uses word over-
lap between the OH’s reasoning and an argument
as a feature in predicting the OH’s viewpoint (Tan
et al., 2016). Some studies examined the relation-
ship between the OH’s personality traits and re-
ceptivity to arguments with different topics (Ding
and Pan, 2016) or degrees of sentiment (Lukin
etal., 2017).

The most relevant to our work is the related task
by Tan et al. (2016). Their task used the same dis-
cussions from the Change My View forum as in
our work and examined various stylistic features
(sentiment, hedging, question marks, etc.) and
word overlap features to identify discussions that
impacted the OH’s view. However, our task is dif-
ferent from theirs in that they made predictions on
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Figure 1: Discussion characteristics by topic.

initial comments only, while we did so for all com-
ments replied to by the OH in each discussion. Our
task is more challenging because comments that
come later in a discussion have a less direct con-
nection to the original post. Another challenge is
the extreme skew in class distribution in our data,
whereas Tan et al. (2016) ensured a balance be-
tween the positive and negative classes.

The Change My View forum has received
attention from recent studies. For example,
ad hominem (attacking an arguer) arguments
have been studied, along with their types and
causes (Habernal et al., 2018). Another study
annotated semantic types of arguments and ana-
lyzed the relationship between semantic types and
a change in view (Hidey et al., 2017). Although
this work did not look at the interaction between
OHs and specific challengers, it provides valu-
able insight into persuasive arguments. Addition-
ally, the semantic types may potentially allow our
model to better model complex interaction in ar-
gumentation.

3 Data

Our study is based on discussions from the Change
My View (CMV) forum? on Reddit. In this forum,

https://www.reddit.com/r/changemyview
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Opinion Holder (OH)

CMV: DNA tests (especially for dogs) are
bullshit. For my line of work (which is not the
DNA testing), ... I have NEVER seen a DNA test
return that a dog is purebred, or even anywhere
close to purebred. ... these tests are consistently
way off on their results. ... My mother recently
had a DNA test done showing she is 1/4 black. I
believe this is also incorrect since she knows who
her parents and grandparents are, and none of them
are black. ...

9

Challenger 1
I'm not sure what exactly these particular DNA

tests are looking at, but they are probably analyzing
either SNPs or VNTRs. There's nothing stopping a
SNP from mutating at any given generation, or a
VNTR from shrinking or expanding due to errors
during DNA replication. The take-home
message is that DNA testing isn't complete
B bullshit, but it does have limitations.

Challenger 2
Knowing your grandparents "aren't black" doesn't

really rule out being 25% African American,

genetically, because genes combine during
fertilization almost completely randomly.
Basically, the biggest conclusion from this

information is that race is only barely genetic. It's .
mostly a social construct.

Figure 2: A discussion from Change My View.

users (opinion holders, OHs) post their views on a
wide range of issues and invite other users (chal-
lengers) to change their expressed viewpoint. If
an OH gains a new insight after reading a com-
ment, he/she replies to that comment with a A
symbol and specifies the reasons behind his/her
view change. DeltaBot monitors the forum and
marks comments that received a A, which we will
use as labels indicating whether the comment suc-
cessfully changed the OH’s view.

CMYV discussions provide interesting insights
into how people accept new information through
argumentation, as OHs participate in the discus-
sions with the explicit goal of exposing themselves
to new perspectives. In addition, the rules and
moderators of this forum assure high quality dis-
cussions by requiring that OHs provide enough
reasoning in the initial post and replies.

We use the CMV dataset compiled by Tan et al.
(2016)3. The dataset is composed of 18,363 dis-
cussions from January 1, 2013-May 7, 2015 for
training data and 2,263 discussions from May 8—
September 1, 2015 for test data.

*https://chenhaot.com/pages/
changemyview.html
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Figure 3: Architecture of Attentive Interaction Model.

Qualitative analysis We conducted qualitative
analysis to better understand the data. First, to see
if there are topical effects on changes in view, we
examined the frequency of view changes across
different topics. We ran Latent Dirichlet Alloca-
tion (Blei et al., 2003) with 20 topics, taking each
discussion as one document. We assigned each
discussion the topic that has the highest standard-
ized probability. The most discussed topics are
government, gender, and everyday life (Figure 1a).
As expected, the frequency of changes in view dif-
fers across topics (Figure 1b). The most malleable
topics are food, computers & games, clothing, art,
education, and everyday life. But even in the food
domain, OHs give out a A in less than 10% of their
replies in most discussions.

In order to inform the design of our model, we
sampled discussions not in the test set and com-
pared comments that did and did not receive a
A. A common but often unsuccessful argumen-
tation strategy is to correct detailed reasons and
minor points of the OH’s reasoning—addressing
those points often has little effect, regardless of
the validity of the points. On the contrary, suc-
cessful arguments usually catch incomplete parts
in the OH’s reasoning and offer another way of
looking at an issue without threatening the OH.
For instance, in the discussion in Figure 2, the OH
presents a negative view on DNA tests, along with
his/her reasoning and experiences that justify the
view. Challenger 1 addresses the OH’s general
statement and provides a new fact, which received
a A. On the other hand, Challenger 2 addresses
the OH’s issue about race but failed to change the
OH’s view.
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When a comment addresses the OH’s points,
its success relies on various interactions, includ-
ing the newness of information, topical related-
ness, and politeness. For example, Challenger 1
provides new information that is topically dissim-
ilar to the OH’s original reasoning. In contrast,
Challenger 2’s argument is relatively similar to the
OH’s reasoning, as it attempts to directly correct
the OH’s reasoning. These observations motivate
the design of our Attentive Interaction Model, de-
scribed in the next section.

4 Model Specification

Our Attentive Interaction Model predicts the
probability of a comment changing the OH’s orig-
inal view, P(A = 1), given the OH’s initial post
and the comment. The architecture of the model
(Figure 3) consists of detecting vulnerable regions
in the OH’s post (sentences important to address
to change the OH’s view), embedding the inter-
actions between every sentence in the OH’s post
and the comment, summarizing the interactions
weighted by the vulnerability of OH sentences,
and predicting P(A = 1).

The main idea of our model is the archi-
tecture for capturing interactions in vulnera-
ble regions, rather than methods for measur-
ing specific argumentation-related features (e.g.,
agreement/disagreement, contraction, vulnerabil-
ity, etc.). To better measure these features, we
need much richer information than the dataset pro-
vides (discussion text and As). Therefore, our pro-
posed architecture is not to replace prior work on
argumentation features, but rather to complement
it at a higher, architectural level that can poten-



tially integrate various features. Moreover, our ar-
chitecture serves as a lens for analyzing the vul-
nerability of OH posts and interactions with argu-
ments.

Formal definition of the model (Figure 3 (A)
and (B)) Denote the OH’s initial post by d° =
(9, ..., (1310) where z; is the ith sentence, and
MO is the number of sentences. The sentences
are encoded via an RNN y1eld1ng a hidden state
for the ith sentence s € RP®, where DS is the
dimensionality of the hldden states. Similarly, for
a comment d° = (x? . 3: ¢ ), hidden states of

the sentences s¢ 7 M €, are computed.

=1,
Vulnerable region detection (Figure 3 (A))
Given the OH’s sentences, the model computes the
vulnerability of the ith sentence g(s¢) € R! (e.g.,
using a feedforward neural network). From this
vulnerability, the attention weight of the sentence

is calculated as

exp g(s?)

x .
Sl exp g(s?)

Interaction encoding (Figure 3 (C)) The model
computes the interaction embedding of every pair
of the OH’s ¢th sentence and the comment’s jth
sentence,

i =

Vij = h(SZO, SJC) S RDI,

where D! is the dimensionality of interaction em-
beddings, and h is an interaction function between
two sentence embeddings. h can be a simple inner
product (in which case D! = 1), a feedforward
neural network, or a more complex network. Ide-
ally, each dimension of v; ; indicates a particular
type of interaction between the pair of sentences.

Interaction summary (Figure 3 (D)) Next, for
each of the OH’s sentences, the model summa-
rizes what types of meaningful interaction occur
with the comment’s sentences. That is, given all
interaction embeddings for the OH’s ith sentence,
Vi1, ,V; pc, the model conducts max pooling
for each dimension,

(

where v; ;) is the kth dimension of v;; and
I .. . .

u;" e RP". Intuitively, max pooling is to cap-

ture the existence of an interaction and its highest

m]aX(Vi,j,l)a e

’m?X(Vz‘,j,DI)> )
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intensity for each of the OH’s sentences—the in-
teraction does not have to occur in all sentences of
the comment. Since we have different degrees of
interest in the interactions in different parts of the
OH’s post, we take the attention-weighted sum of
u;"®* to obtain the final summary vector

MO
= E a; ufinax.
=1

Prediction (Figure 3 (E)) The prediction com-
ponent consists of at least one feedforward neural
network, which takes as input the summary vec-
tor u™®* and optionally the hidden state of the
last sentence in the comment s;;c. More net-
works may be used to integrate other features as
input, such as TFIDF-weighted n-grams of the
comment. The outputs of the networks are con-
catenated and fed to the final prediction layer to
compute P(A = 1). Using a single network that
takes different kinds of features as input does not
perform well, because the features are in differ-
ent spaces, and linear operations between them are
probably not meaningful.

Loss The loss function is composed of binary
cross-entropy loss and margin ranking loss. As-
sume there are total N initial posts written by
OHs, and the I/th post has N; comments. The
binary cross-entropy of the lth post and its tth
comment measures the similarity between the pre-
dicted P(A = 1) and the true A as:

BCEl,t = - Al,t log P@(Al,t = 1)
— (1= Agy)log(l — Po(Az = 1)),

where A;; is the true A € {0, 1} of the comment
and Pg is the probability predicted by our model
with parameters ©. Since our data is skewed to
negatives, the model may overpredict A = 0. To
adjust this bias, we use margin ranking loss to
drive the predicted probability of positives to be
greater than the predicted probability of negatives
to a certain margin. The margin ranking loss is
defined on a pair of comments C; and C5 with
Ac, > Ag, as:

MRL¢, c, =
max{0, Po(Ac, =1) — Po(A¢, = 1) + €},

where € is a margin. Combining the two losses,
our ﬁnal loss is

N
ND Z

Z BCEZ ¢+ EC1 Co [MRLChCz]



Train Val Test CD

# discussions 4,357 474 638 1,548
# pairs 42710 5,153 7,356 18,909

# positives 1,890 232 509 1,097

Table 1: Data statistics. (CD: cross-domain test)

For the expectation in the ranking loss, we con-
sider all pairs of comments in each minibatch and
take the mean of their ranking losses.

S Experiment

Our task is to predict whether a comment would
receive a A, given the OH’s initial post and the
comment. We formulate this task as binary pre-
diction of A € {0,1}. Since our data is highly
skewed, we use as our evaluation metric the AUC
score (Area Under the Receiver Operating Charac-
teristic Curve), which measures the probability of
a positive instance receiving a higher probability
of A = 1 than a negative instance.

5.1 Data Preprocessing

We exclude (1) DeltaBot’s comments with no con-
tent, (2) comments replaced with [deleted], (3)
system messages that are included in OH posts
and DeltaBot’s comments, (4) OH posts that are
shorter than 100 characters, and (5) discussions
where the OH post is excluded. We treat the title
of an OH post as its first sentence. After this, ev-
ery comment to which the OH replies is paired up
with the OH’s initial post. A comment is labeled
as A = 1if it received a A and A = 0 otherwise.
Details are described in Appendix B.

The original dataset comes with training and
test splits (Figure 1a). After tokenization and POS
tagging with Stanford CoreNLP (Manning et al.,
2014), our vocabulary is restricted to the most fre-
quent 40,000 words from the training data. For a
validation split, we randomly choose 10% of train-
ing discussions for each topic.

We train our model on the seven topics that have
the highest A ratios (Figure 1b). We test on the
same set of topics for in-domain evaluation and
on the other 13 topics for cross-domain evalua-
tion. The main reason for choosing the most mal-
leable topics is that these topics provide more in-
formation about people learning new perspectives,
which is the focus of our paper. Some statistics of
the resulting data are in Table 1.
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5.2 Inputs

We use two basic types of inputs: sentence em-
beddings and TFIDF vectors. These basic inputs
are by no means enough for our complex task, and
most prior work utilizes higher-level features (po-
liteness, sentiment, etc.) and task-specific infor-
mation. Nevertheless, our experiment is limited to
the basic inputs to minimize feature engineering
and increase replicability, but our model is general
enough to incorporate other features as well.

Sentence embeddings Our input sentences x
are sentence embeddings obtained by a pretrained
sentence encoder (Conneau et al., 2017) (this is
different from the sentence encoder in our model).
The pretrained sentence encoder is a BiLSTM
with max pooling trained on the Stanford Natural
Language Inference corpus (Bowman et al., 2015)
for textual entailment. Sentence embeddings from
this encoder, combined with logistic regression on
top, showed good performance in various trans-
fer tasks, such as entailment and caption-image re-
trieval (Conneau et al., 2017).

TFIDF A whole post or comment is represented
as a TFIDF-weighted bag-of-words, where IDF is
based on the training data. We consider the top
40,000 n-grams (n = 1, 2, 3) by term frequency.

Word Overlap Although integration of hand-
crafted features is behind the scope of this paper,
we test the word overlap features between a com-
ment and the OH’s post, introduced by Tan et al.
(2016), as simple proxy for the interaction. For
each comment, given the set of its words C' and
that of the OH’s post O, these features are defined

lcno| |cno| |cno|
as ||[CNOJ, G Jor > [cuol |-
5.3 Model Setting

Network configurations For sentence encod-
ing, Gated Recurrent Units (Cho et al., 2014) with
hidden state sizes 128 or 192 are explored. For at-
tention, a single-layer feedforward neural network
(FF) with one output node is used. For interaction
encoding, we explore two interaction functions:
(1) the inner product of the sentence embeddings
and (2) a two-layer FF with 60 hidden nodes and
three output nodes with a concatenation of the sen-
tence embeddings as input. For prediction, we ex-
plore (1) a single-layer FF with either one output
node if the summary vector u™#* is the only in-
put or 32 or 64 output nodes with ReLU activation



if the hidden state of the comment’s last sentence
is used as input, and optionally (2) a single-layer
FF with 1 or 3 output nodes with ReLLU activa-
tion for the TFIDF-weighted n-grams of the com-
ment. The final prediction layer is a single-layer
FF with one output node with sigmoid activation
that takes the outputs of the two networks above
and optionally the word overlap vector. The mar-
gin e for the ranking margin loss is 0.5. Optimiza-
tion is performed using AdaMax with the initial
learning rate 0.002, decayed by 5% every epoch.
Training stops after 10 epochs if the average vali-
dation AUC score of the last 5 epochs is lower than
that of the first 5 epochs; otherwise, training runs
5 more epochs. The minibatch size is 10.

Input configurations The prediction compo-
nent of the model takes combinations of the in-
puts: MAX (u™®*), HSENT (the last hidden state
of the sentence encoder S%o)’ TFIDF (TFIDF-
weighted n-grams of the comment), and WDO
(word overlap).

5.4 Baseline

The most similar prior work to ours (Tan et al.,
2016) predicted whether an OH would ever give
a A in a discussion. The work used logistic re-
gression with bag-of-words features. Hence, we
also use logistic regression as our baseline to pre-
dict P(A = 1). Simple logistic regression using
TFIDF is a relatively strong baseline, as it beat
more complex features in the aforementioned task.

Model configurations Different regulariza-
tion methods (L1, L2), regularization strengths
(2"{—1,0,1,2}), and class weights for positives
(1, 2, 5) are explored. Class weights penalize
false-negatives differently from false-positives,
which is appropriate for the skewed data.

Input configurations The model takes combi-
nations of the inputs: TFIDF (TFIDF-weighted
n-grams of the comment), TFIDF (+OH) (con-
catenation of the TFIDF-weighted n-grams of the
comment and the OH’s post), WDO (word over-
lap), and SENT (the sum of the input sentence em-
beddings of the comment).

6 Results

Table 2 shows the test AUC scores for the baseline
and our model in different input configurations.
For each configuration, we chose the optimal pa-
rameters based on validation AUC scores.
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Model Inputs ID CD
LR SENT 62.8 625
LR TFIDF (+OH) 69.5 69.1
LR TFIDF 709  69.6
LR SENT+TFIDF 64.0 63.1
LR TFIDF+WDO 71.1  69.5

AIM MAX 70.5 675
AIM MAX+TFIDF 72.0% 69.4
AIM MAX+TFIDF+WDO 709 684

(A)IM HSENT 69.6 67.6

(A)IM HSENT+TFIDF 69.0 676

(A)IM MAX+TFIDF 69.5 68.1

Table 2: AUC scores. (ID: in-domain AUC (%), CD:
cross-domain AUC (%), LR: logistic regression, AIM:
Attention Interaction Model, (A)IM: AIM without at-
tention.) *: p < 0.05 using the DeLong test compared
to LR with TFIDF.

RQ1. Does the architecture of vulnerable re-
gion detection and interaction encoding help
to predict changes in view? Both interaction
information learned by our model and surface-
level n-grams in TFIDF have strong predic-
tive power, and attending to vulnerable regions
helps. The highest score is achieved by our
model (AIM) with both MAX and TFIDF as in-
put (72.0%). The performance drops if the model
does not use interaction information—(A)IM with
HSENT (69.6%)—or vulnerability information—
(A)IM with MAX+TFIDF (69.5%).

TFIDF by itself is also a strong predictor,
as logistic regression with TFIDF performs well
(70.9%). There is a performance drop if TFIDF is
not used in most settings. This is unsurprising be-
cause TFIDF captures some topical or stylistic in-
formation that was shown to play important roles
in argumentation in prior work (Tan et al., 2016;
Wei et al., 2016). Simply concatenating both com-
ment’s and OH’s TFIDF features does not help
(69.5%), most likely due to the fact that a sim-
ple logistic regression does not capture interac-
tions between features.

When the hand-crafted word overlap features
are integrated to LR, the accuracy is increased
slightly, but the difference is not statistically sig-
nificant compared to LR without these features nor
to the best AIM configuration. These features do
not help AIM (70.9%), possibly because the infor-
mation is redundant, or AIM requires a more de-



the sat should not include trigonometry in their math section .

most colleges do not require trigonometry for admissions , and do not
require students to take a trigonometry course .

it seems unfair that the sat would include this in the math section .
some will argue that it makes sure students are ** well rounded , " but it
's incredibly unfair to use this to test a student 's aptitude for college .
when i was in high school , i had an 89 % overall gpa .

i got mid-range scores on the reading and writing sections of the sat ,
but did very poorly on the math section .

because of this , i was denied admission to many colleges which i
applied to .

i understand that my scores in reading and writing were average , but it
was the low math score which really hurt my chances of admission .
this might seem like a personal argument , but the fact remains that i 'm
sure many students would agree with me . A
i understand including algebra and geometry , but i do n't see why they
include trigonometry .

edit : of the five colleges i applied to , i was rejected by two of them ,
but was accepted by three of them .

4=1/P(4=1)=0.073

i get and understand that math is not your strong point , that 's great and fine
, however it is mine . i got my undergrad in math and i am working on my
masters in stats , but just because i do n't see myself as needing reading or
writing that does not mean that others feel the same way . my personal
opinion of the sat and act is less that is it to make a ** well rounded "
person and more to set a bar for entrance into selective schools . to your
opening point , the sat did not prevent you from going to college it just
prevented you for attending a more selective college , one that desires a
higher level of math knowledge than the ones that accepted you . it has
little to do with you and more to do with the statistics of placing people . if
someone has a better understanding of math they will be able to understand
more things in general -LRB- all else being held constant -RRB- .

A4=0/ P(4=1)=0.039

> i understand including algebra and geometry , but i do n't see why
they include trigonometry .

if you know geometry but not trigonometry , you do n't know much
geometry . high school geometry classes are supposed to include
trigonometry . a lot of applications of geometry in higher-level math and in
subjects such as physics will require trigonometry . i do n't know how
authoritative -LSB- this source -RSB- -LRB- <UNK> -RRB- is , but it
seems to be a pretty good list of geometry topics you should master before

moving on to <UNK> .

OH'’s initial post

Two comments

Figure 4: Example discussion with the OH’s initial post (left), a successful comment (top right), and an unsuc-
cessful comment (bottom right). The OH’s post is colored based on attention weights (the higher attention the
brighter). Sentences with college and SAT sections (reading, writing, math) get more attention than sentences
with other subjects (algebra, geometry). The successful comment addresses parts with high attention, whereas the
unsuccessful comment addresses parts with low attention.

liberate way of integrating hand-crafted features.

For cross-domain performance, logistic regres-
sion with TFIDF performs best (69.6%). Our inter-
action information does not transfer to unseen top-
ics as well as TFIDF. This weakness is alleviated
when our model uses TFIDF in addition to MAX,
increasing the cross-domain score (from 67.5% to
69.4%). We expect that information about vul-
nerability would have more impact within domain
than across domains because it may learn domain-
specific information about which kinds of reason-
ing are vulnerable.

The rest of the section reports our qualitative
analysis based on the best model configuration.

RQ2. Can the model identify vulnerable sen-
tences, which are more likely to change the
OH’s view when addressed? If so, what proper-
ties constitute vulnerability? Our rationale be-
hind vulnerable region detection is that the model
is able to learn to pay more attention to sentences
that are more likely to change the OH’s view when
addressed. If the model successfully does this,
then we expect more alignment between the atten-
tion mechanism and sentences that are actually ad-
dressed by successful comments that changed the
OH’s view.

To verify if our model works as designed, we
randomly sampled 30 OH posts from the test set,
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and for each post, the first successful and unsuc-
cessful comments. We asked a native English
speaker to annotate each comment with the two
most relevant sentences that it addresses in the OH
post, without knowledge of how the model com-
putes vulnerability and whether the comment is
successful or not.

After this annotation, we computed the average
attention weight of the two selected sentences for
each comment. We ran a paired sample ¢-test and
confirmed that the average attention weight of sen-
tences addressed by successful comments was sig-
nificantly greater than that of sentences addressed
by unsuccessful comments (p < 0.05). Thus, as
expected in the case where the attention works as
designed, the model more often picks out the sen-
tences that successful challengers address.

As to what the model learns as vulnerability, in
most cases, the model attends to sentences that are
not punctuation marks, bullet points, or irrelevant
to the topic (e.g., can you cmv?). A successful
example is illustrated in Figure 4. More success-
ful and unsuccessful examples are included in Ap-
pendix C.

RQ3. What Kkinds of interactions between ar-
guments are captured by the model? We first
use existing argumentation theories as a lens for
interpreting interaction embeddings (refer to Sec-



tion 2). For this, we sampled 100 OH posts with
all their comments and examined the 150 sentence
pairs that have the highest value for each dimen-
sion of the interaction embedding (the dimension-
ality of interaction embeddings is 3 for the best
performing configuration). 22% of the pairs in
a dimension capture the comment asking the OH
a question, which could be related to shifting the
burden of proof. In addition, 23% of the top pairs
in one dimension capture the comment pointing
out that the OH may have missed something (e.g.,
you don’t know the struggles ...). This might repre-
sent the challengers’ attempt to provide premises
that are missing in the OH’s reasoning.

As providing missing information plays an im-
portant role in our data, we further examine if this
attempt by challengers is captured in interaction
embeddings even when it is not overtly signaled
(e.g., You don’t know ...). We first approximate
the novelty of a challenger’s information with the
topic similarity between the challenger’s sentence
and the OH’s sentence, and then see if there is a
correlation between topic similarity and each di-
mension of interaction embeddings (details are in
Appendix D). As a result, we found only a small
but significant correlation (Pearson’s r = —0.04)
between topic similarity with one of the three di-
mensions.

Admittedly, it is not trival to interpret interac-
tion embeddings and find alignment between em-
bedding dimensions and argumentation theories.
The neural network apparently learns complex in-
teractions that are difficult to interpret in a human
sense. It is also worth noting that the top pairs con-
tain many duplicate sentences, possibly because
the interaction embeddings may capture sentence-
specific information, or because some types of in-
teraction are determined mainly by one side of a
pair (e.g., disagreement is manifested mostly on
the challenger’s side).

TFIDF We examine successful and unsuccess-
ful styles reflected in TFIDF-weighted n-grams,
based on their weights learned by logistic regres-
sion (top n-grams with the highest and lowest
weights are in Appendix E). First, challengers are
more likely to change the OH’s view when talking
about themselves than mentioning the OH in their
arguments. For instance, first-person pronouns
(e.g., i and me) get high weights, whereas second-
person pronouns (e.g., you_are and then_you) get
low weights. Second, different kinds of polite-
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ness seem to play roles. For example, markers of
negative politeness (can and can_be, as opposed
to should and no) and negative face-threatening
markers (thanks), are associated with receiving a
A. Third, asking a question to the OH (e.g., why,
do_you, and are_you) is negatively associated with
changing the OH’s view.

7 Conclusion

We presented the Attentive Interaction Model,
which predicts an opinion holder (OH)’s change
in view through argumentation by detecting vul-
nerable regions in the OH’s reasoning and mod-
eling the interaction between the reasoning and a
challenger’s argument. According to the evalua-
tion on discussions from the Change My View fo-
rum, sentences identified by our model to be vul-
nerable were addressed more by successful chal-
lengers than by unsuccessful ones. The model also
effectively captured interaction information so that
both vulnerability and interaction information in-
creased accuracy in predicting an OH’s change in
view.

One key limitation of our model is that making a
prediction based only on one comment is not ideal
because we miss context information that connects
successive comments. As a discussion between a
challenger and the OH proceeds, the topic may di-
gress from the initial post. In this case, detecting
vulnerable regions and encoding interactions for
the initial post may become irrelevant. We leave
the question of how to transfer contextual infor-
mation from the overall discussion as future work.

Our work is a step toward understanding how to
model argumentative interactions that are aimed to
enrich an interlocutor’s perspective. Understand-
ing the process of productive argumentation would
benefit both the field of computational argumenta-
tion and social applications, including cooperative
work and collaborative learning.
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A Implementation Details

A.1 Topics in the Data
Topics are extracted using LatentDirichletAlloca-
tion in scikit-learn v0.19.1, with the following
setting:

e n_components: 20

e max_iter: 200

e learning.method: online

e learning_offset: 50
A2 AIM
We implemented our model in PyTorch 0.3.0.

A.3 Baseline

We use LogisticRegression in scikit-learn
v0.19.1, with the default settings.
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A.4 TFIDF Features

TFIDF is extracted using TfidfVectorizer in
scikit-learn v0.19.1, with the default setting.

B Data Preprocessing

In the CMV forum, DeltaBot replies to an OH’s
comment with the confirmation of a A, along
with the user name to which the OH replied. For
most OH replies, the (non-)existence of a A indi-
cates whether a comment to which the OH replied
changed the OH’s view. However, an OH’s view is
continually influenced as they participate in argu-
mentation, and thus a A given to a comment may
not necessarily be attributed to the comment itself.
One example is when a comment does not receive
a A when the OH reads it for the first time, but the
OH comes back and gives it a A after they inter-
act with other comments. In such cases, we may
want to give a credit to the comment that actually
led the OH to reconsider a previous comment and
change the view.

Hence, we use the following labeling that con-
siders the order in which OHs read comments. We
treat the (non-)existence of a A in an OH com-
ment as a label for the last comment that the OH
read. We reconstruct the order in which the OH
reads comments as follows. We assume that when
the OH writes a comment, he/she has read all prior
comments in the path to that comment.

Based on this assumption, we linearize (i.e.,
flatten) the original tree structure of the initial
post and all subsequent comments into a linear se-
quence S. Starting with empty .S, for each of the
OH’s comments in chronological order, its ances-
tor comments that are yet to be in S and the com-
ment itself are appended to S. And for each of the
OH’s comments, its preceding comment in .S is la-
beled with A = 1 if the OH’s comment has a A
and 0 otherwise.

This ensures that the label of a comment to
which the OH replied is the (non-)existence of a
A in the OH’s first reply. If an OH reply is not
the first reply to a certain comment (as in the sce-
nario mentioned above), or a comment to which
the OH replied is missing, the (non-)existence of a
A in that reply is assigned to the comment that we
assume the OH read last, which is located right
before the OH’s comment in the restructured se-
quence.



ibelieve that ** buckle up , it 's the law " is a very bad slogan , because
it is an -LSB- appeal to authority -RSB- -LRB- <UNK> -RRB- which
can be rejected easily in people 's minds if they are n't aware of the
purpose of a law .

A

instead , an appeal to the motorist 's intelligence by pointing out the
consequences of not buckling up , and thus making motorists aware of
the possible consequences of not buckling up and making it obvious

4=1/ P(4=1)=0.057

this slogan is for people who do not seem to have the iq or common sense
to take basic precautions for their own safety . there are two ways to
convince these prospective candidates of the darwin award - authority or
emotion . appeal to emotion requires some introspection and determining
your own worth to your family etc. this is intellectually more involved than
common sense and thus clearly beyond the capabilities of these individuals .
therefore , an appeal to authority , like law , is your only chance .

why it is rather sensible to wear one 's seat belt would be a lot more
effective .

-LSB- this german ad posted along public roads throughout germany -
RSB- -LRB- <UNK> -RRB- is an excellent example of this .

the text translates to ** one is distracted , four die " .

A=0 / P(4=1)=0.021

but everyone knows there a penalties and fines for breaking the law . its not
an appeal to authority , its pointing out the consequences -LRB- the fines -
RRB- . and appeal to authority would be closer to ** buckle up , the
government says you should " .

a brief but concise outline of cause and effect , enough to raise
awareness .

OH’s initial post

Two comments

sometimes i use shampoo , maybe once in a month or two , if i did
something specially dirty or got chemicals in my hair etc. but your hair
is healthier without it , and if i cared enough to find an alternative i
would use something natural .

if you quit using shampoo , your hair might be greasy for the first
couple days , but with nothing but proper rinsing your hair will be able
to clean itself .

face wash is unnecessary as well .

special body washes are unnecessary . "

i am a clean and beautiful boy who has no problem attracting the
opposite sex , and have never been led to suspect that my habits are
somehow smelly or unclean .

A=1/P(A=1)=0.277

it 's hard to say without seeing the skin first hand , but -LRB- if my
assumptions were right on everything else other than hair color -RRB-
hypothetically ... i suggest using a <UNK> <UNK> - something very gentle
on the skin . no more than once every five days . wash it at night , as your
skin type -LRB- if my guesses are right -RRB- produces more oil when you
sleep . also , do not wash your face in the shower , do it afterwards . your
<UNK> are open in the shower -LRB- due to the heat -RRB- , and
whatever you clean is going to fill up with soap residue after you washed it
. that residue can clog your <UNK> and lead to a break out . pro tip : rinse
your face after washing twice - first with hot water , then with cold water .
this closes your <UNK> and limits <UNK> . hair ? i 'd have to see it up
close , but some simple recommendations -LRB- if my assumptions about
slightly oily scalp and hair are right -RRB- would be <UNK> -LRB- brand
-RRB- <UNK> oil shampoo and conditioner . let your conditioner sit and
soak for at least 4 minutes before rinsing it out . you do n't need to use
much , just enough to cover it . if you want or need further help - feel free to
pm me . without sounding all pedo -LRB- do n't look at my username -
RRB-, take a few <UNK> pics of your face and hair -LRB- so i can see the
skin and your hair structure -RRB- and link me to the pics in the pm . i can
give you a much better breakdown of what to do when i can see what i am
working with . or if you have the balls , you can post those pics here too .
up to you , and yes - wash your sheets more often - chicks love a freshly
washed set of sheets .

what is the point of using these products ?

| please , reddit , change my view : <UNK> products are a scam .

4=0/ P(4=1)=0.028

if your hair is actually dirty , you must clean it . for someone with short hair
and soft water , soap will be fine . however , in hard water the polar end of
the soap binds to calcium and forms a sticky scum that does not easily wash
out of long hair . a detergent like shampoo does not have this problem .

OH’s initial post

Two comments

Figure 5: Successful examples of vulnerable region detection.
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i've been to a prominent anime convention -LRB- ~ 8000 annual
attendees -RRB- , 6 or 7 years now and have never felt the need to ask
anyone 's permission before taking pictures .

i'll ask permission to take a picture if : * the cosplayer is dressed up as
something i really like and no one else is taking their picture - i want
them to do their pose or whatever if they do n't mind because it 's from

something i like * they 're dressed in something suggestive , showing a
lot of skin , or look uncomfortable being dressed that way in a public
setting - i do n't usually take these people 's pictures anyways because 9
times out of 10 me feeling creepy is n't worth the value i 'd get having
the picture * they might otherwise enjoy being asked to get their picture
taken - little girl , something obscure , whatever i typically wo n't ask to
take a picture if : * they 've already got a big crowd of people around
them taking pictures * they 've got a cool costume i want to remember ,

A4=1/P(A=1)=0.018

> 1 see that as a sort of amateur performance art as someone who has
<UNK>, i do n't agree . a street magician , <UNK> , or someone giving a
public speech are all asking for your attention . they 're doing what they 're
doing for the sake of their audience . some cosplayers fit this category , but
for some they just wan na dress up in a cool costume for the day and a con
is the best place to do that .

but i do n't care enough to have them do their pose or whatever .

* i want to capture some aspect of the convention and anime culture
itself - to me a convention is like going to a fair or a festival , it 's an

A4=0 / P(4=1)=0.004
would you walk up to someone on the street and take their picture without
asking ?

event i want pictures of i think the main reason people are so strongly
opposed to people taking unwarranted pictures is creepy people , and
that 's a valid concern .

however i think with the general discretion that i follow , asking every
single person for their picture is a bit unnecessary .

at the same time , i know a lot of people feel very strongly about
photographic consent and i may very well be overlooking something
important so change my view !

edit : wording

OH’s initial post

Two comments

it creates less stress on the the <UNK> muscle allowing for a smoother
uninterrupted experience .

it plays well with gravity so less pressure is needed and lowers the risk
of cancer and other ailments .

2.
toilet paper is messy , expensive and damages the environment .

A4=1/P(4=1)=0.131

1 . -RRB- i will concede that on a biological level , squatting is the ™
default " position so our biology and anatomy generally works better in that
position . 2 . -RRB- toilet paper is a shield that , hopefully , keeps your
hand and any small cuts , or splits cleaner and less prone to nasty infections
. it does , as other commentators have said , keep feces out from underneath
your fingernails . the associated costs of water usage , soap also affect the
environment . -LRB- though it must be noted that you still should wash
your hands after <UNK> it just takes less if your not scrubbing last nights
dinner off your hand . -RRB- 3 . -RRB- bulky , dirty , and in need of
maintenance 1 will give you . however , if we are talking about a toilet in a
home cleanliness should be part of the necessary routine that would be
needed if you had say , a bucket and a floor level toilet system . the
complexity in a toilet provides a way to shield sewer gasses from coming
back up into the restroom . it 's not a perfect system but it 's better than up
against a tree in the woods .

when washed properly the use of your hand is preferable to toilet paper

, it might sound disgusting but when you think about it using a thin
piece of frail paper to smear around fecal matter with no water or soap
is even worse . N

3.
modern <UNK> toilets are large , bulky and complex .

they take more space , require more maintenance and are ultimately 4/ |

dirtier as butts keep touching them .

4=0/ P(4=1)=0.105

1 -RRB- this may be true , but there is no evidence that i am aware of that
supports any of your claims . also , cancer ? really ? that sounds almost like
a joke : " i squat when i poop so i wo n't get cancer ! " 2 -RRB- soap and
other cleaning materials also have costs associated with them . the
cleanliness bonus is marginal for people who shower daily . you 'll need to
use more water too to wash up . are you sure that this is really a plus ? 3 -
RRB- they are also a great way to dispose of waste : it has to go somewhere
, it can be toxic to plants , and toilets take up a negligibly larger amount of
space than a bucket , which then requires * maintenance ' every time it
needs emptied . butts are also , with the exception of the asshole itself , -
LSB- probably the cleanest part of our bodies . -RSB- -LRB- <UNK> -
RRB- they 're always covered and we rarely directly touch anything with
them ; why would they be unclean ?

OH’s initial post

Two comments

Figure 6: Unsuccessful examples of vulnerable region detection.
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n-grams for A =1 n-grams for A =0

and, in, for, use, it,on, ?, >, sex, why,
thanks, often, delta, do_you, wear, re-

time, depression, - lationship, child,
RRB-, lot, -LRB-, or, are_you, op, mother,
1, can, &, with, more, should, wearing,
as, band, *, #, me, - teacher, then, it.s,
LRB-_-RRB-, can_.be, same, no, circum-
has, deltas, when cision, you_are,

then_you, baby, story

Table 3: Top n-grams with the most positive/negative
weights for logistic regression.

C Vulnerability Examples

Figure 5 and Figure 6 show successful and unsuc-
cessful examples of vulnerable region detection.
All examples are from the test set.

D Topic Similarity between Sentences

The topic similarity between a pair of sentences
is computed as the consine similarity between the
topic distributions of the sentences.

The first step is to extract topics. Using Latent-
DirichletAllocation in scikit-learn v0.19.1, we
ran LDA on the entire data with 100 topics, tak-
ing each post/comment as a document. We treat
the top 100 words for each topic as topic words.

The second step is to compute the topic distri-
bution of each sentence. We simply counted the
frequency of occurrences of topic words for each
topic, and normalized the frequencies across top-
ics.

Lastly, we computed the cosine similarity be-
tween the topic distributions of a pair of sentences.

E Top TFIDF n-grams

The n-grams that contribute most to A prediction
for logistic regression are shown in table 3.
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Automatic Focus Annotation: Bringing Formal Pragmatics Alive in
Analyzing the Information Structure of Authentic Data

Ramon Ziai

Abstract

Analyzing language in context, both from a
theoretical and from a computational perspec-
tive, is receiving increased interest. Com-
plementing the research in linguistics on dis-
course and information structure, in compu-
tational linguistics identifying discourse con-
cepts was also shown to improve the perfor-
mance of certain applications, for example,
Short Answer Assessment systems (Ziai and
Meurers, 2014).

Building on the research that established de-
tailed annotation guidelines for manual anno-
tation of information structural concepts for
written (Dipper et al., 2007; Ziai and Meur-
ers, 2014) and spoken language data (Calhoun
et al., 2010), this paper presents the first ap-
proach automating the analysis of focus in au-
thentic written data. Our classification ap-
proach combines a range of lexical, syntactic,
and semantic features to achieve an accuracy
of 78.1% for identifying focus.

1 Introduction

The interpretation of language is well known to
depend on context. Both in theoretical and com-
putational linguistics, discourse and information
structure of sentences are thus receiving increased
interest: attention has shifted from the analysis of
isolated sentences to the question how sentences
are structured in discourse and how information is
packaged in sentences analyzed in context.

As a consequence, a rich landscape of ap-
proaches to discourse and information struc-
ture has been developed (Kruijff-Korbayova and
Steedman, 2003). Among these perspectives, the
Focus-Background dichotomy provides a particu-
larly valuable structuring of the information in a
sentence in relation to the discourse. (1) is an ex-
ample question-answer pair from Krifka and Mu-
san (2012, p. 4) where the focus in the answer is
marked by brackets.

Detmar Meurers
Collaborative Research Center 833
University of Tiibingen
{rziai,dm}@sfs.uni-tuebingen.de
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(1) Q: What did John show Mary?
A: John showed Mary [the PICtures] p.

In the answer in (1), the NP the pictures is fo-
cussed and hence indicates that there are alterna-
tive things that John could show Mary. It is com-
monly assumed that focus here typically indicates
the presence of alternative denotations (denotation
focus, Krifka and Musan 2012, p.8), making it
a semantic notion. Depending on the language,
different devices are used to mark focus, such as
prosodic focus marking or different syntactic con-
structions (e.g. clefts). In this paper, we adopt a
notion of focus based on alternatives, as advanced
by Rooth (1992) and more recently, Krifka and
Musan (2012), who define focus as indicating “the
presence of alternatives that are relevant for the in-
terpretation of linguistic expressions” (Krifka and
Musan, 2012, p. 7). Formal semantics has tied the
notion of alternatives to an explicit relationship
between questions and answers called Question-
Answer Congruence (Stechow, 1991), where the
idea is that an answer is congruent to a question if
both evoke the same set of alternatives. Questions
can thus be seen as a way of making alternatives
explicit in the discourse, an idea also taken up by
the Question-Under-Discussion (QUD) approach
(Roberts, 2012) to discourse organization.

Complementing the theoretical linguistic ap-
proaches, in the last decade corpus-based ap-
proaches started exploring which information
structural notions can reliably be annotated in
what kind of language data. While the information
status (Given-New) dimension can be annotated
successfully (Riester et al., 2010; Nissim et al.,
2004) and even automated (Hempelmann et al.,
2005; Nissim, 2006; Cahill and Riester, 2012),
the inter-annotator agreement results for Focus-
Background (Ritz et al., 2008; Calhoun et al.,
2010) show that it is difficult to obtain high lev-
els of agreement, especially due to disagreement
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about the extent or size of the focused unit.

More recently, Ziai and Meurers (2014) showed
that for data collected in task contexts includ-
ing explicit questions, such as answers to read-
ing comprehension questions, reliable focus an-
notation is possible. In addition, an option for
externally validating focus annotation was estab-
lished by showing that such focus annotation im-
proves the performance of Short Answer Assess-
ment (SAA) systems. Focus enables the system
to zoom in on the part of the answer addressing
the question instead of considering all parts of the
answer as equal.

In this paper, we want to build on this strand
of research and develop an approach for automati-
cally identifying focus in authentic data including
explicit question contexts. In contrast to Calhoun
(2007) and Sridhar et al. (2008), who make use of
prosodic properties to tackle the identification of
focus for content words in spoken language data,
we target the analysis of written texts.

We start in section 2 by discussing relevant re-
lated work before introducing the gold standard
focus annotation we are using as foundation of
our work in section 3. Section 4 then presents
the different types of features used for predicting
which tokens form a part of the focus. In sec-
tion 5 we employ a supervised machine learning
setup to evaluate the perspective and specific fea-
tures in terms of the ability to predict the gold stan-
dard focus labeling. Building on these intermedi-
ate results and the analysis thereof in section 6,
in section 7 we then present two additional fea-
ture groups which lead to our final focus detection
model. Finally, section 8 explores options for ex-
trinsically showing the value of the automatic fo-
cus annotation for the automatic meaning assess-
ment of short answers. It confirms that focus anal-
ysis pays off when aiming to generalize assess-
ment to previously unseen data and contexts.

2 Previous Approaches

There is only a very small number of approaches
dealing with automatically labeling information
structural concepts.! Most approaches related to
detecting focus automatically almost exclusively
center on detecting the ‘kontrast’ notion in the En-
glish Switchboard corpus (Calhoun et al., 2010).
We therefore focus on the Switchboard-based ap-

"For a broader perspective of computational approaches
in connection with information structure, see Stede (2012).
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proaches here.

The availability of the annotated Switchboard
corpus (Calhoun et al., 2005, 2010) sparked in-
terest in information-structural categories and en-
abled several researchers to publish studies on
detecting focus. This is especially true for the
Speech Processing community, and indeed many
approaches described below are intended to im-
prove computational speech applications in some
way, by detecting prominence through a combina-
tion of various linguistic factors. Moreover, with
the exception of Badino and Clark (2008), all ap-
proaches use prosodic or acoustic features.

All approaches listed below tackle the task
of detecting ‘kontrast’ (as focus is called in the
Switchboard annotation) automatically on various
subsets of the corpus using different features and
classification approaches. For each approach, we
therefore report the features and classifier used,
the data set size as reported by the authors, the (of-
ten very high) majority baseline for a binary dis-
tinction between ‘kontrast’ and background, and
the best accuracy obtained. If available in the orig-
inal description of the approach, we also report the
accuracy obtained without acoustic and prosodic
features.

Calhoun (2007) investigated how focus can be
predicted through what she calls “prominence
structure”. The essential claim is that a “focus
is more likely if a word is more prominent than
expected given its syntactic, semantic and dis-
course properties”. The classification experiment
is based on 9,289 words with a 60% majority base-
line for the ‘background’ class. Calhoun (2007)
reports 77.7% for a combination of prosodic, syn-
tactic and semantic features in a logistic regres-
sion model. Without the prosodic and acoustic
features, the accuracy obtained is at 74.8%. There
is no information on a separation between training
and test set, likely due to the setup of the study
being geared towards determining relevant factors
in predicting focus, not building a focus predic-
tion model for a real application case. Relatedly,
the approach uses only gold-standard annotation
already available in the corpus as the basis for fea-
tures, not automatic annotation.

Sridhar et al. (2008) use lexical, acoustic and
part-of-speech features in trying to detect pitch ac-
cent, givenness and focus. Concerning focus, the
work attempts to extend Calhoun (2007)’s analy-
sis to “understand what prosodic and acoustic dif-



ferences exist between the focus classes and back-
ground items in conversational speech”. 14,555
words of the Switchboard corpus are used in to-
tal, but filtered for evaluation later to balance the
skewed distribution between ‘kontrast’ and ‘back-
ground’. With the thus obtained random baseline
of 50%, Sridhar et al. (2008) obtain 73% accu-
racy when using all features, which again drops
only slightly to 72.95% when using only parts of
speech. They use a decision tree classifier to com-
bine the features in 10-fold cross-validation for
training and testing.

Badino and Clark (2008) aim to model contrast
both for its role in analyzing discourse and infor-
mation structure, and for its potential in speech
applications. They use a combination of lexical,
syntactic and semantic features in an SVM clas-
sifier. No acoustic or prosodic features are em-
ployed in the model. In selecting the training and
testing data, they filter out many ‘kontrast’ in-
stances, such as those triggered across sentence
boundaries, those above the word level, and those
not sharing the same broad part of speech with the
trigger word. The resulting data set has 8,602 in-
stances, of which 96.8% are ‘background’. Badino
and Clark (2008) experiment with different kernel
settings for the SVM and obtain the best result of
97.19% using a second-order polynomial kernel,
and leave-one-out testing.

In contrast to all approaches above, we target
the analysis of written texts, for which prosodic
and acoustic information is not available, so we
must rely on lexis, syntax and semantics exclu-
sively. Also, the vast majority of the approaches
discussed make direct use of the manually anno-
tated information in the corpus they use in order
to derive their features. While this is a viable ap-
proach when the aim is to determine the relevant
factors for focus detection, it does not represent a
real-life case where annotated data often unavail-
able. In our focus detection model, we only use
automatically determined annotation as the basis
for our features for predicting focus.

Since our approach also makes use of question
properties, it is also worth mentioning that there
are a number of approaches on Answer Typing as
a step in Question Answering (QA) approaches in
order to constrain the search space of possible can-
didate answers and improve accuracy. While ear-
lier approaches such as Li and Roth (2002) used
a fixed set of answer types for classifying factoid
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questions, other approaches such as Pinchak and
Lin (2006) avoid assigning pre-determined classes
to questions and instead favor a more data-driven
label set. In more recent work, Lally et al. (2012)
use a sophisticated combination of deep parsing,
lexical clues and broader question labels to ana-
lyze questions.

3 Data

The present work is based on the German CREG
corpus (Ott et al., 2012). CREG contains re-
sponses by American learners of German to com-
prehension questions on reading texts. Each re-
sponse is rated by two teaching assistants with re-
gard to whether it answers the question or not.
While many responses contain ungrammatical lan-
guage, the explicit questions in CREG generally
make it possible to interpret responses. More im-
portantly for our work, they can be seen as Ques-
tions Under Discussion and thus form an ideal
foundation for focus annotation in authentic data.

As a reference point for the automatic detection
of focus, we used the CREG-ExpertFocus data set
(De Kuthy et al., 2016) containing 3,187 student
answers and 990 target answers (26,980 words in
total). It was created using the incremental annota-
tion scheme described in Ziai and Meurers (2014),
where annotators first look at the surface question
form, then determine the set of alternatives, and
finally mark instances of the alternative set in an-
swers. De Kuthy et al. (2016) report substantial
agreement in CREG-ExpertFocus (x > .7) and
provide an adjudicated gold standard, which thus
presents a high-quality basis for training our focus
detection classifier.

4 Focus Detection Model

As described in section 3 above, focus was marked
in a span-based way in the data set used: each in-
stance of focus starts at a specific word and ends at
another word. Since in principle any part of speech
can be focused, we cannot constrain ourselves to
a pre-defined set of markables for automatic clas-
sification. We therefore conceptualized the task
of automatic focus detection on a per-word level:
for each word in an answer, as identified by the
OpenNLP tokenizer and sentence segmenter?, the
classifier needs to decide whether it is an instance
of focus or background. Besides the choice of

http://opennlp.apache.org



classification algorithm, the crucial question nat-
urally is the choice of linguistic features, which
we turn to next.

4.1 Features

Various types of linguistic information on differ-
ent linguistic levels can in principle be relevant for
focus identification, from morphology to seman-
tics. We start by exploring five groups of features,
which are outlined below. In section 7, we dis-
cuss two more groups designed to address specific
problems observed with the initial model.

Syntactic answer properties (SynAns) A
word’s part-of-speech and syntactic function are
relevant general indicators with respect to focus:
since we are dealing with meaning alternatives,
the meaning of e.g. a noun is more likely to
denote an alternative than a grammatical function
word such as a complementizer or article.

Similarly, a word in an argument dependency
relation is potentially a stronger indicator for a fo-
cused alternative in a sentence than a word in an
adjunct relation. We therefore included two fea-
tures: the word’s part-of-speech tag in the STTS
tag set (Schiller et al., 1995) determined using
TreeTagger (Schmid, 1994), and the dependency
relation to the word’s head in the Hamburg de-
pendency scheme (Foth et al., 2014, p. 2327) de-
termined using MaltParser (Nivre et al., 2007) as
features in our model.

Question properties The question constitutes
the direct context for the answer and dictates its in-
formation structure and information requirements
to fulfill. In particular, the type of wh-phrase
(if present) of a question is a useful indicator of
the type of required information: a who-question,
such as “Who rang the doorbell?’, will typically be
answered with a noun phrase, such as ‘the milk-
man’. We identified surface question forms such
as who, what, how etc. using a regular expres-
sion approach developed by Rudzewitz (2015) and
included them as features. Related to question
forms, we also extracted the question word’s de-
pendency relation to its head, analogous to the
answer feature described above.

Surface givenness As a rough and robust ap-
proximation to information status, we add a
boolean feature indicating the presence of the
current word in the question. We use the lem-
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matized form of the word as determined by Tree-
Tagger (Schmid, 1994).

Positional properties Where a word occurs in
the answer or the question can be relevant for its
information structural status. It has been observed
since Halliday (1967) that given material tends to
occur earlier in sentences (here: answers), while
new or focused content tends to occur later. We
encode this observation in three different features:
the position of the word in the answer (normal-
ized by sentence length), the distance from the fi-
nite verb (in words), and the position of the word
in the question (if it is given).

Conjunction features To explicitly tie answer
properties to question properties, we explored
different combinations of the features described
above. Specifically, we encoded the current
word’s POS depending on the question form,
and the current word’s POS depending on the
wh-word’s POS. To constrain the feature space
and get rid of unnecessary distinctions, we con-
verted the answer word’s POS to a coarse-grained
version before computing these features, which
collapses all variants of determiners, pronouns,
adjectives/adverbs, prepositions, nouns and verbs
into one label, respectively.?

5 Intrinsic Evaluation

5.1 Setup

To employ the features described above in an
actual classifier, we trained a logistic regression
model using the WEKA toolkit (Hall et al., 2009).
We also experimented with other classification al-
gorithms such as SVMs, but found that they did
not offer superior performance for this task. The
data set used consists of all expert focus annota-
tion available (3,187 student answers, see section
3), with the exception of the answers occurring in
the extrinsic evaluation test set we use in section
8, which leaves a total of 2,240 student answers
with corresponding target answers and questions.
We used 10-fold cross-validation on this data set to
experiment and select the optimal model for focus
detection.

3For list (in German) of the full tag set,
see http://www.ims.uni-stuttgart.de/
forschung/ressourcen/lexika/TagSets/
stts—-table.html
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5.2 Results

Table 1 lists the accuracies* obtained for our dif-
ferent feature groups, as well as three baselines:
a POS baseline, following Sridhar et al. (2008), a
baseline that only includes the simple givenness
feature, and the majority baseline. The majority
class is focus, occurring in 58.1% of the 26,980
cases (individual words).

Accuracy for
Feature set focus  backgr. both
Majority baseline 100% 0% 58.1%
Givenness baseline | 81.5% 42.5% 65.1%
POS baseline 89.2% 39.6% 68.4%
SynAns 82.8% 50.3% 69.2%
+ Question 83.8% 53.1% 70.9%
+ Given 84.8% 62.0% 74.8%
+ Position 84.9% 66.5% T77.2%
+ Conjunction 852% 66.7% 77.4%

Table 1: Initial focus detection model

We can see that each feature group incremen-
tally adds to the final model’s performance, with
particularly noticeable boosts coming from the
givenness and positional features. Another clear
observation is that the classifier is much better at
detecting focus than background, possibly also due
to the skewedness of the data set. Note that perfor-
mance on background increases also with the ad-
dition of the ‘Question’ feature set, indicating the
close relation between the set of alternatives intro-
duced by the question and the focus selecting from
that set, even though our approximation to compu-
tationally determining alternatives in questions is
basic. It is also clear that the information intrin-
sic in the answers, as encoded in the ‘SynAns’ and
‘Position’ feature sets, already provides significant
performance benefits, suggesting that a classifier
trained only on these features could be trained and
applied to settings where no explicit questions are
available.

6 Qualitative Analysis

In order to help explain the gap between automatic
and manual focus annotation, let us take a step
back from quantitative evaluation and examine a
few characteristic examples in more detail.

Figure 1 shows a case where a why-question
is answered with an embedded ‘weil’ (because)

“We show per-class and overall accuracies, the former is
also known as recall or true positive rate.
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clause. The classifier successfully marked ‘weil’
and the end of the clause as focus, but left out
the pronoun ‘es’ (it) in the middle, presumably be-
cause pronouns are given and often not focused in
other answers. We did experiment with using a
sequence classification approach in order to rem-
edy such problems, but it performed worse overall
than the logistic regression model we presented in
section 4. We therefore suggest that in such cases,
a global constraint stating that why-questions are
typically answered with a full clause would be a
more promising approach, combining knowledge
learned bottom-up from data with top-down lin-
guistic insight.

In Figure 2, we can see two different problems.
One is again a faulty gap, namely the omission of
the conjunction ‘und’ (and). The other is the focus
marking of the word ‘AG’ (corporation) in the be-
ginning of the sentence: since the question asks for
an enumeration of the institutions that form a cor-
poration, marking ‘AG’ as focused is erroneous.
This problem likely occurs often with nouns be-
cause the classifier has learned that content words
are often focused. Moreover, the surface given-
ness feature does not encode that ‘AG’ is in fact
an abbreviation of ‘Aktiengesellschaft’ and there-
fore given. It would thus be beneficial to extend
our analysis of givenness beyond surface identity,
a direction we explore in the next section.

Finally, Figure 3 presents a case where an enu-
meration is marked correctly, including the con-
junctive punctuation in between, showing that
cases of longer foci are indeed within reach for a
word-by-word focus classifier.

7 Extending the Model

Based on our analysis of problematic cases out-
lined in the previous section, we explored two dif-
ferent avenues for improving our focus detection
model, which we describe below.

7.1 Distributional Givenness

We have seen in section 5.2 that surface-based
givenness is helpful in predicting focus. How-
ever, it clearly has limitations, as for example syn-
onymy cannot be captured on the surface. We
also exemplified one such limitation in Figure 2.
In order to overcome these limitations, we im-
plemented an approach based on distributional se-
mantics. This avenue is motivated by the fact that
Ziai et al. (2016) have shown Givenness modeled



Warum sollte man Dresden besuchen?
‘Why should one visit Dresden?’

Man sollte Dresden besuchen weil es viel zu bieten hat
0 1 2 3 4 5 6 7 8 9 10
D
( Focus )
‘One should visit Dresden because it has much to offer.
Figure 1: Focus with a faulty gap in between
Aus welchen drei Organen besteht eine Aktiengesellschaft?
‘Which three institutions does a corporation consist of?’
Eine AG besteht aus Haputversammlung Aufsichtsrat  und  Vorstand
0 1 2 3 4 5 6 7 8 9
(@) Cw )
( Focus )

‘A corporation consists of the general assembly, the supervisory board and the steering committee.’

Figure 2: Focus with a faulty outlier (and a faulty gap)

Welche Sehenswiirdigkeiten gibt es in der Stadt?
‘Which places of interest are in the city?’

Der Stadt gibt der Dresdner Zwinger die Frauenkirche die  Semperoper das  Residenzschloss

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(@) Cw ) Cwo Cw ) cCw cC—w )
( Focus )

‘The city exists the Dresden Zwinger, the Frauenkirche, the Semperoper, the Royal Palace.

Figure 3: Enumeration with correct focus

as distributional similarity to be helpful for SAA
at least in some cases. We used the word vec-
tor model they derived from the DeWAC corpus
(Baroni et al., 2009) using word2vec’s continuous
bag-of-words training algorithm with hierarchical
softmax (Mikolov et al., 2013). The model has a
vocabulary of 1,825,306 words and uses 400 di-
mensions for each.

Having equipped ourselves with a word vector
model, the question arises how to use it in fo-
cus detection in such a way that it complements
the positive impact that surface-based givenness
already demonstrates. Rather than using an em-
pirically determined (and hence data-dependent)
empirical threshold for determining givenness as
done by Ziai et al. (2016), we here use raw cosine
similarities® as features and let the classifier assign
appropriate weights to them during training. Con-
cretely, we calculate maximum, minimum and
average cosine between the answer word and
the question words. As a fourth feature, we cal-
culate the cosine between the answer word and
the additive question word vector, which is the
sum of the individual question word vectors.

7.2 Constituency-based Features

Another source of evidence we wanted to exploit
is constituency-based syntactic annotation. So far,

SWe normalize cosine similarity as cosine distance to ob-
tain positive values between 0 and 2: dist = 1 — sim
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we have worked with part-of-speech tags and de-
pendency relations as far as syntactic representa-
tion is concerned. However, while discontinuous
focus is possible, focus as operationalized in the
scheme by Ziai and Meurers (2014) most often
marks an adjacent group of words, a tendency that
our word-based classifier did not always follow, as
exemplified by the cases in Figures 1 and 2. Such
groups very often correspond to a syntactic phrase,
so constituent membership is likely indicative in
predicting the focus status of an individual word.
Similarly, the topological field (Hohle, 1986) iden-
tifying the major section of a sentence in relation
to the clausal main verb is potentially relevant for
a word’s focus status.

Cheung and Penn (2009) present a parsing
model that demonstrates good performance in
determining both topological fields and phrase
structure for German. The model is trained on
the TiiBa-D/Z treebank (Telljohann et al., 2004),
whose rich syntactic model encodes topological
fields as nodes in the syntax tree itself. Following
Cheung and Penn (2009), we trained an updated
version of their model using the current version of
the Berkeley Parser (Petrov and Klein, 2007) and
release 10 of the TiiBa-D/Z.

Based on the new parsing model, we integrated
two new features into our focus detection model:

*http://www.sfs.uni-tuebingen.de/en/
ascl/resources/corpora/tueba-dz.html



the direct parent constituent node of a word and
the nearest topological field node of a word.
7.3 Final Results

Table 2 shows the impact of the new feature
groups discussed above.

Accuracy for
Feature set focus  backgr. both
Majority baseline 100% 0% 58.1%
Givenness baseline 81.5% 42.5% 65.1%
POS baseline 89.2% 39.6% 68.4%
Initial model (sec. 5.2) | 85.2% 66.7% 77.4%
+ dist. Givenness 84.7% 68.0% T7.7%
+ constituency 84.8% 68.7% 78.1%

Table 2: Final focus detection performance

While the improvements may seem modest
quantitatively, they show that the added features
are well-motivated and do make an impact. Over-
all, it is especially apparent that the key to better
performance is reducing the number of false posi-
tives in this data set: while the accuracy for focus
stays roughly the same, the one for background
improves steadily with each feature set addition.

8 Extrinsic Evaluation

Complementing the intrinsic evaluation above, in
this section we demonstrate how focus can be suc-
cessfully used to improve performance in an au-
thentic CL task, namely Short Answer Assessment
(SAA).

8.1 Setup

It has been pointed out that evaluating the anno-
tation of a theoretical linguistic notion only in-
trinsically is problematic because there is no non-
theoretical grounding involved (Riezler, 2014).
Therefore, besides a comparison to the gold stan-
dard, we also evaluated the resulting annotation in
a larger computational task, the automatic mean-
ing assessment of short answers to reading com-
prehension questions. Here the goal is to decide,
given a question (Q) and a correct target answer
(TA), whether the student answer (SA) actually
answers the question or not. An example from
Meurers et al. (2011) is shown in Figure 4.

We used the freely available CoMiC system
(Comparing Meaning in Context, Meurers et al.
2011) as a testbed for our experiment. CoMiC
is an alignment-based system operating in three
stages:

Q: Was sind die Kritikpunkte, die Leute iber Hamburg duBern?

‘What are the objections people have about Hamburg?’

TA: Der Gestank von Fisch und Schiffsdiesel an den Kais .

SA:Der Geruch zon
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The stink of fish and fuel at the quays.

adA) weg
buijeds
Buijedg
30|
U3Y0L
Aunyo

Fish und Schiffsdiesel beim Hafen .

The smell  oferr fisherr and fuel at the port

Figure 4: Short Answer Assessment example

. Annotating linguistic units (words, chunks
and dependencies) in student and target an-
swer on various levels of abstraction

. Finding alignments of linguistic units be-
tween student and target answer based on an-
notation (see Figure 4)

. Classifying the student answer based on
number and type of alignments (see Table 3),
using a supervised machine learning setup

Feature
1. Keyword Overlap

Description

Percent of dependency heads
aligned (relative to target)
Percent of aligned target/student
tokens

Percent of aligned target/student
chunks (as identified by
OpenNLP?)

Percent of aligned target/student
dependency triples

Percent of token alignments that
were token-identical

Percent of token alignments
resolved using PMI-IR (Turney,
2001)

Percent of token alignments
resolved using GermaNet
hierarchy (Hamp and Feldweg,
1997)

Percent of token alignments that
were lemma-resolved

Percent of token alignments
sharing same GermaNet synset

2./3. Token Overlap

4./5. Chunk Overlap

6./7. Triple Overlap

8. Token Match

9. Similarity Match

10. Type Match

11. Lemma Match

12. Synonym Match

13. Variety of Match | Number of kinds of
(0-5) token-level alignments (features
8-12)

Table 3: Standard features in the CoMiC system

In stage 2, CoMiC integrates a simplistic ap-
proach to givenness, excluding all words from
alignment that are mentioned in the question. We
transferred the underlying method to the notion of
focus and implemented a component that excludes
all non-focused words from alignment, resulting

Shttp://opennlp.apache.org/



in alignments between focused parts of answers
only. The hypothesis is that the alignment of fo-
cused elements in answers adds information about
the quality of the answer with respect to the ques-
tion, leading to a higher answer classification ac-
curacy.

We experimented with two different settings in-
volving the standard CoMiC system and a focus-
augmented variant: i) using standard CoMiC with
the givenness filter by itself as a baseline, and ii)
augmenting standard CoMiC by additionally pro-
ducing a focus version of each classification fea-
ture in Table 3. In each case, we used WEKA’s k-
nearest-neighbor implementation for CoMiC, fol-
lowing positive results by Rudzewitz (2016).

We use two test sets randomly selected from the
CREG-5K data set (Ziai et al., 2016), one based on
an ‘unseen answers‘ and one based on an ‘unseen
questions® test scenario, based on the methodol-
ogy of (Dzikovska et al., 2013): in ‘unseen an-
swers’, the test set can contain answers to the same
questions already part of the training set (but not
the answers themselves), whereas in ‘unseen ques-
tions’ both questions and answers are new in the
test set. In order to arrive at a fair and generaliz-
able testing setup, we removed all answers from
the CREG-5K training set that also occur in the
CREG-ExpertFocus set used to train our focus de-
tection classifier. This ensures that neither the fo-
cus classifier nor CoMiC have seen any of the test
set answers before.

The resulting smaller training set contains 1606
student answers, while the test sets contain 1002
(unseen answers) and 1121 (unseen questions), re-
spectively.

8.2 Results

Table 4 summarizes the results for the different
CoMiC variants and test sets in terms of accuracy
in classifying answers as correct vs. incorrect.
‘Standard CoMiC’ refers to the standard CoMiC
system and ‘+Focus’ refers to the augmented sys-
tem using both feature versions. For reference on
what is possible with Focus information, we pro-
vide the results of the oracle experiment by De
Kuthy et al. (2016), even though the test setup and
data setup are slightly different. In addition to our
two test sets introduced above, we tested the sys-
tems on the training set using 10-fold cross valida-
tion. We also provide the majority baseline of the
respective data set along with the majority class.
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One can see that in general, the focus classifier
seems to introduce too much noise to positively
impact classification results. The standard CoMiC
system outperforms the focus-augmented version
for the cross validation case and the ‘unseen an-
swers’ set. This is in contrast to the experiments
reported by De Kuthy et al. (2016) using manual
focus information, where the augmented system
clearly outperforms all other variants. This shows
that while focus information is clearly useful in
Short Answer Assessment, it needs to be reliable
enough to be of actual benefit. Recall also that the
way we use focus information in CoMiC implies
a strong commitment: only focused words are
aligned and included in feature extraction, which
does not produce the desired result if the focus in-
formation is not accurate. A possible way of rem-
edying this situation would be to use focus as an
extra feature or less strict modifier of existing fea-
tures. There is thus room for improvement both
in the automatic detection of focus and its use in
extrinsic tasks.

However, one result stands out encourag-
ingly: in the ‘unseen questions’ case, the focus-
augmented version beats standard CoMiC, if only
by a relatively small margin. This shows that
even automatically determined information struc-
tural properties provide benefits when more con-
crete information, in the form of previously seen
answers to the same questions, is not available.
Our classifier thus successfully transfers general
knowledge about focus to new question material.

9 Conclusion

We presented the first automatic focus detection
approach for written data, and the first such ap-
proach for German. The approach uses a rich fea-
ture set including abstractions to grammatical no-
tions (parts of speech, dependencies), word order
aspects captured by a topological field model of
German, an approximation of Givenness and the
relation between material in the answer and that
of the question word.

Using a word-by-word classification approach
that takes into account both syntactic and seman-
tic properties of answer and question words, we
achieve an accuracy of 78.1% on a data set of
26,980 words in 10-fold cross validation. The fo-
cus detection pipeline developed for the experi-
ment is freely available to other researchers.

Complementing the intrinsic evaluation, we



Test set

\ Instances \ Majority baseline H CoMiC +Focus

Oracle experiment reported by De Kuthy et al. (2016) on CREG-ExpertFocus

leave-one-out 3187 | 51.0% (correct) | 83.2%  85.6%
10-fold CV 1606 54.4% (correct) || 83.2%  82.3%
Unseen answers 1002 51.3% (correct) || 80.6%  80.5%
Unseen questions 1121 | 51.1% (incorrect) 774% 78.4%

Table 4: CoMiC results on different test sets using standard and focus-augmented features

provide an extrinsic evaluation of the approach as
part of a larger CL task, the automatic content
assessment of answers to reading comprehension
questions. We show that while automatic focus
detection does not yet improve content assessment
for answers similar to the ones previously seen, it
does provide a benefit in test cases where the ques-
tions and answers are completely new, i.e., where
the system needs to generalize beyond the specific
cases and contexts previously seen.

Contextualizing our work, one can see two dif-
ferent strands of research in the automatic anal-
ysis of focus. In comparison to Calhoun (2007)
and follow-up approaches, who mainly concen-
trate on linking prosodic prominence to focus in
dialogues, we do not limit our analysis to con-
tent words, but analyze every word of an utter-
ance. This is made feasible due to the explicit task
context we have in the form of answers to reading
comprehension questions. We believe this nicely
illustrates two avenues for obtaining relevant evi-
dence on information structure: On the one hand,
there is evidence obtained bottom-up through the
data such as the rich information on prominence in
spoken language data such as the corpus used by
Calhoun (2007). On the other hand, there is top-
down evidence from the task context, which sets
up expectations about what is to be addressed for
the current question under discussion. Following
the QUD research strand, the approach presented
in this paper could be scaled up beyond explicit
question-answer pairs: De Kuthy et al. (2018)
spell out an explicit analysis of text in terms of
QUDs and show that it is possible to annotate ex-
plicit QUDs with high inter-annotator agreement.
Combined with an automated approach to ques-
tion generation, it could thus be possible to recover
implicit QUDs from text and subsequently apply
our current approach to any text, based on an in-
dependently established, general formal pragmatic
analysis.

Finally, the qualitative analysis we exemplified
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is promising in terms of obtaining valuable in-
sights to be addressed in future work. For ex-
ample, the analysis identified faulty gaps in focus
marking. In future work, integrating insights from
theoretical linguistic approaches to focus and the
notion of focus projection established there (cf.,
e.g., De Kuthy and Meurers 2012) could provide
more guidance for ensuring contiguity of focus do-
mains.
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Abstract

Style transfer is the task of automatically trans-
forming a piece of text in one particular style
into another. A major barrier to progress in
this field has been a lack of training and eval-
uation datasets, as well as benchmarks and au-
tomatic metrics. In this work, we create the
largest corpus for a particular stylistic trans-
fer (formality) and show that techniques from
the machine translation community can serve
as strong baselines for future work. We also
discuss challenges of using automatic metrics.

1 Introduction

One key aspect of effective communication is the
accurate expression of the style or tone of some
content. For example, writing a more persuasive
email in a marketing position could lead to in-
creased sales; writing a more formal email when
applying for a job could lead to an offer; and writ-
ing a more polite note to your future spouse’s par-
ents, may put you in a good light. Hovy (1987)
argues that by varying the style of a text, people
convey more information than is present in the lit-
eral meaning of the words. One particularly im-
portant dimension of style is formality (Heylighen
and Dewaele, 1999). Automatically changing the
style of a given content to make it more formal can
be a useful addition to any writing assistance tool.

In the field of style transfer, to date, the only
available dataset has been for the transformation
of modern English to Shakespeare, and it led to
the application of phrase-based machine transla-
tion (PBMT) (Xu et al., 2012) and neural machine
translation (NMT) (Jhamtani et al., 2017) models
to the task. The lack of an equivalent or larger
dataset for any other form of style transfer has
blocked progress in this field. Moreover, prior

This research was performed when the first author was at
Grammarly.

Joel Tetreault
Grammarly

joel.tetreault@grammarly.com
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work has mainly borrowed metrics from machine
translation (MT) and paraphrase communities for
evaluating style transfer. However, it is not clear if
those metrics are the best ones to use for this task.
In this work, we address these issues through the
following three contributions:

e Corpus: We present Grammarly’s Yahoo

Answers Formality Corpus (GYAFC), the
largest dataset for any style containing a to-
tal of 110K informal / formal sentence pairs.
Table 1 shows sample sentence pairs.
Benchmarks: We introduce a set of learning
models for the task of formality style trans-
fer. Inspired by work in low resource MT, we
adapt existing PBMT and NMT approaches
for our task and show that they can serve as
strong benchmarks for future work.
Metrics: In addition to MT and paraphrase
metrics, we evaluate our models along three
axes: formality, fluency and meaning preser-
vation using existing automatic metrics. We
compare these metrics with their human
judgments and show there is much room for
further improvement.

Informal: I'd say it is punk though.

Formal: However; I do believe it to be punk.
Informal: Gotta see both sides of the story.

Formal: You have to consider both sides of the story.

Table 1: Informal sentences with formal rewrites.

In this paper, we primarily focus on the informal
to formal direction since we collect our dataset for
this direction. However, we evaluate our models
on the formal to informal direction as well." All
data, model outputs, and evaluation results have
been made public? in the hope that they will en-
courage more research into style transfer.

'Results are in the supplementary material.
https://github.com/raosudhag89/
GYAFC—-corpus
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In the following two sections we discuss related
work and the GYAFC dataset. In §4, we detail our
rule-based and MT-based approaches. In §5, we
describe our human and automatic metric based
evaluation. In §6, we describe the results of our
models using both human and automatic evalua-
tion and discuss how well the automatic metrics
correlate with human judgments.

2 Related Work

Style Transfer with Parallel Data: Sheikha and
Inkpen (2011) collect pairs of formal and informal
words and phrases from different sources and use
a natural language generation system to generate
informal and formal texts by replacing lexical
items based on user preferences. Xu et al. (2012)
(henceforth XU12) was one of the first works
to treat style transfer as a sequence to sequence
task. They generate a parallel corpus of 30K
sentence pairs by scraping the modern translations
of Shakespeare plays and train a PBMT system to
translate from modern English to Shakespearean
English.> More recently, Jhamtani et al. (2017)
show that a copy-mechanism enriched sequence-
to-sequence neural model outperforms XU12 on
the same set. In text simplification, the availability
of parallel data extracted from English Wikipedia
and Simple Wikipedia (Zhu et al., 2010) led to the
application of PBMT (Wubben et al., 2012a) and
more recently NMT (Wang et al., 2016) models.
We take inspiration from both the PBMT and
NMT models and apply several modifications to
these approaches for our task of transforming the
formality style of the text.

Style Transfer without Parallel Data: An-
other direction of research directly controls
certain attributes of the generated text without
using parallel data. Hu et al. (2017) control the
sentiment and the tense of the generated text by
learning a disentangled latent representation in
a neural generative model. Ficler and Goldberg
(2017) control several linguistic style aspects
simultaneously by conditioning a recurrent neural
network language model on specific style (pro-
fessional, personal, length) and content (theme,
sentiment) parameters. Under NMT models,
Sennrich et al. (2016a) control the politeness of
the translated text via side constraints, Niu et al.
(2017) control the level of formality of MT output

3https://github.com/cocoxu/Shakespeare
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by selecting phrases of a requisite formality level
from the k-best list during decoding. In the field
of text simplification, more recently, Xu et al.
(2016) learn large-scale paraphrase rules using
bilingual texts whereas Kajiwara and Komachi
(2016) build a monolingual parallel corpus using
sentence similarity based on alignment between
word embeddings. Our work differs from these
methods in that we mainly address the question of
how much leverage we can derive by collecting
a large amount of informal-formal sentence pairs
and build models that learn to transfer style
directly using this parallel corpus.

Identifying Formality: There has been pre-
vious work on detecting formality of a given text
at the lexical level (Brooke et al., 2010; Lahiri
et al., 2011; Brooke and Hirst, 2014; Pavlick and
Nenkova, 2015), at the sentence level (Pavlick
and Tetreault, 2016) and at the document level
(Sheikha and Inkpen, 2010; Peterson et al., 2011;
Mosquera and Moreda, 2012). In our work, we
reproduce the sentence-level formality classifier
introduced in Pavlick and Tetreault (2016) (PT16)
to extract informal sentences for GYAFC creation
and to automatically evaluate system outputs.

Evaluating Style Transfer: The problem of
style transfer falls under the category of natu-
ral language generation tasks such as machine
translation, paraphrasing, etc. Previous work on
style transfer (Xu et al., 2012; Jhamtani et al.,
2017; Niu et al., 2017; Sennrich et al., 2016a) has
re-purposed the MT metric BLEU (Papineni et al.,
2002) and the paraphrase metric PINC (Chen
and Dolan, 2011) for evaluation. Additionally,
XU12 introduce three new automatic style metrics
based on cosine similarity, language model and
logistic regression that measure the degree to
which the output matches the target style. Under
human based evaluation, on the other hand, there
has been work on a more fine grained evaluation
where human judgments were separately collected
for adequacy, fluency and style (Xu et al., 2012;
Niu et al., 2017). In our work, we conduct a more
thorough evaluation where we evaluate model
outputs on the three criteria of formality, fluency
and meaning using both automatic metrics and
human judgments.



Domain Total Informal Formal Informal to Formal | Formal to Informal
All Yahoo Answers 40M 24M 16M Train | Tune Test Tune Test
Entertainment & Music ~ 3.8M 2. M 700K E&M 52,595 | 2,877 1,416 2,356 1,082
Family & Relationships 7.8M 5.6M 1.8M F&R 51,967 | 2,788 1,332 2,247 1,019

Table 2: Yahoo Answers corpus statistics

3 GYAFC Dataset

3.1 Creation Process

Yahoo Answers,* a question answering forum,

contains a large number of informal sentences and
allows redistribution of data. Hence, we use the
Yahoo Answers L6 corpus? to create our GYAFC
dataset of informal and formal sentence pairs. In
order to ensure a uniform distribution of data,
we remove sentences that are questions, contain
URLSs, and are shorter than 5 words or longer
than 25. After these preprocessing steps, 40 mil-
lion sentences remain. The Yahoo Answers corpus
consists of several different domains like Business,
Entertainment & Music, Travel, Food, etc. PT16
show that the formality level varies significantly
across different genres. In order to control for
this variation, we work with two specific domains
that contain the most informal sentences and show
results on training and testing within those cate-
gories. We use the formality classifier from PT16
to identify informal sentences. We train this clas-
sifier on the Answers genre of the PT16 corpus
which consists of nearly 5,000 randomly selected
sentences from Yahoo Answers manually anno-
tated on a scale of -3 (very informal) to 3 (very for-
mal).® We find that the domains of Entertainment
& Music and Family & Relationships contain the
most informal sentences and create our GYAFC
dataset using these domains. Table 2 shows the
number of formal and informal sentences in all of
Yahoo Answers corpus and within the two selected
domains. Sentences with a score less than O are
considered as informal and sentences with a score
greater than O are considered as formal.

Next, we randomly sample a subset of 53,000
informal sentences each from the Entertainment &
Music (E&M) and Family & Relationships (F&R)
categories and collect one formal rewrite per sen-
tence using Amazon Mechanical Turk. The work-
ers are presented with detailed instructions, as well

4https ://answers.yahoo.com/answer

Shttps://webscope.sandbox.yahoo.com/
catalog.php?datatype=1

*http://www.seas.upenn.edu/-nlp/
resources/formality-corpus.tgz
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as examples. To ensure quality control, four ex-
perts, two of which are the authors of this paper,
reviewed the rewrites of the workers and rejected
those that they felt did not meet the required stan-
dards. They also provided the workers with rea-
sons for rejection so that they would not repeat the
same mistakes. Any worker who repeatedly per-
formed poorly was eventually blocked from doing
the task. We use this train set to train our models
for the style transfer tasks in both directions.

Since we want our tune and test sets to be of
higher quality compared to the train set, we re-
cruit a set of 85 expert workers for this anno-
tation who had a 100% acceptance rate for our
task and who had previously done more than 100
rewrites. Further, we collect multiple references
for the tune/test set to adapt PBMT tuning and
evaluation techniques to our task. We collect four
different rewrites per sentence using our expert
workers by randomly assigning sentences to the
experts until four rewrites for each sentence are
obtained.” To create our tune and test sets for the
informal to formal direction, we sample an addi-
tional 3,000 informal sentences for our tune set
and 1,500 sentences for our test set from each of
the two domains.

To create our tune and test sets for the formal
to informal direction, we start with the same tune
and test split as the first direction. For each formal
rewrited from the first direction, we collect three
different informal rewrites using our expert work-
ers as before. These three informal rewrites along
with the original informal sentence become our set
of four references for this direction of the task. Ta-
ble 3 shows the exact number of sentences in our
train, tune and test sets.

3.2 Analysis

The following quantitative and qualitative analy-
ses are aimed at characterizing the changes be-
tween the original informal sentence and its formal

"Thus, note that the four rewrites are not from the same
four workers for each sentence

80ut of four, we pick the one with the most edit distance
with the original informal. Rationale explained in Section 3.2



rewrite in the GYAFC train split.” We present our
analysis here on only the E&M domain data since
we observe similar patterns in F&R.
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Figure 1: Percentage of sentences binned according
to formality score in train set of E&M.
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Figure 2: Percentage of sentences binned according
to formality score in train set of E&M

Quantitative Analysis: While rewriting sen-
tences more formally, humans tend to make a wide
range of lexical/character-level edits. In Figure 1,
we plot the distribution of the character-level Lev-
enshtein edit distance between the original infor-
mal and the formal rewrites in the train set and
observe a standard deviation of o = 19.39 with a
mean p = 28.85. Next, we look at the difference
in the formality level of the original informal and
the formal rewrites in GYAFC. We find that the
classifier trained on the Answers genre of PT16
dataset correlates poorly (Spearman p = 0.38) with
human judgments when tested on our domain spe-
cific datasets. Hence, we collect formality judg-
ments on a scale of -3 to +1, similar to PT16, for
an additional 5000 sentences each from both do-
mains and obtain a formality classifier with higher
correlation (Spearman p = 0.56). We use this re-
trained classifier for our evaluation in §5 as well.
In Figure 2, we plot the distribution of the

“We observe similar patterns on the tune and test set.
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formality scores on the original informal sen-
tence and their formal rewrites in the train set
and observe an increase in the mean formality
score as we go from informal (—1.06) to formal
rewrites (0.12). As compared to edit distance and
formality, we observe a much lower variation in
sentence lengths with the mean slightly increasing
from informal (11.93) to their formal rewrites
(12.56) in the train set.

Qualitative Analysis: To understand what
stylistic choices differentiate formal from infor-
mal text, we perform an analysis similar to PT16
and look at 50 rewrites from both domains and
record the frequency of the types of edits that
workers made when creating a more formal sen-
tence.!” In contrast to PT16, we observe a higher
percentage of phrasal paraphrases (47%), edits to
punctuations (40%) and expansion of contractions
(12%). This is reflective of our sentences coming
from very informal domains of Yahoo Answers.
Similar to PT16, we also observe capitalization
(46%) and normalization (10%).

4 Models

We experiment with three main classes of ap-
proaches: a rule-based approach, PBMT and
NMT. Inspired by work in low resource machine
translation, we apply several modifications to the
standard PBMT and NMT models and create a set
of strong benchmarks for the style transfer com-
munity. We apply these models to both directions
of style transfer: informal to formal and formal
to informal. In our description, we refer to the
two styles as source and target. We summarize
the models below and direct the reader to supple-
mentary material for further detail.

4.1 Rule-based Approach

Corresponding to the category of edits described
in §3.2, we develop a set of rules to automatically
make an informal sentence more formal where we
capitalize first word and proper nouns, remove re-
peated punctuations, handcraft a list of expansion
for contractions etc. For the formal to informal
direction, we design a similar set of rules in the
opposite direction.

Examples of edits in supplementary material.



4.2 Phrase-based Machine Translation

Phrased-based machine translation models have
had success in the fields of machine transla-
tion, style transfer (XU12) and text simplification
(Wubben et al., 2012b; Xu et al., 2016). Inspired
by work in low resource machine translation, we
use a combination of training regimes to develop
our model. We train on the output of the rule-
based approach when applied to GYAFC. This is
meant to force the PBMT model to learn gener-
alizations outside the rules. To increase the data
size, we use self-training (Ueffing, 2006), where
we use the PBMT model to translate the large
number of in-domain sentences from GYAFC be-
longing to the the source style and use the resul-
tant output to retrain the PBMT model. Using sub-
selection, we only select rewrites that have an Lev-
enshtein edit distance of over 10 characters when
compared to the source to encourage the model
to be less conservative. Finally, we upweight the
rule-based GYAFC data via duplication (Sennrich
et al., 2016b). For our experiments, we use Moses
(Koehn et al., 2007). We train a 5-gram language
model using KenLM (Heafield et al., 2013), and
use target style sentences from GYAFC and the
sub-sampled target style sentences from out-of-
domain Yahoo Answers, as in Moore and Lewis
(2010), to create a large language model.

4.3 Neural Machine Translation

While encoder-decoder based neural network
models have become quite successful for
MT(Sutskever et al., 2014; Bahdanau et al., 2014;
Cho et al., 2014), the field of style transfer, has
not yet been able to fully take advantage of these
advances owing to the lack of availability of large
parallel data. With GYAFC we can now show
how well NMT techniques fare for style transfer.
We experiment with three NMT models:

NMT baseline: Our baseline model is a bi-
directional LSTM (Hochreiter and Schmidhuber,
1997) encoder-decoder model with attention
(Bahdanau et al., 2014).'' ~ We pretrain the
input word embeddings on Yahoo Answers using
GloVE (Pennington et al., 2014). As in our PBMT
based approach, we train our NMT baseline model
on the output of the rule-based approach when
applied to GYAFC.

"Details are in the supplementary material.

NMT Copy: Jhamtani et al., (2017) intro-
duce a copy-enriched NMT model for style
transfer to better handle stretches of text which
should not be changed. We incorporate this
mechanism into our NMT Baseline.

NMT Combined: The size of our parallel
data is smaller than the size typically used to train
NMT models. Motivated by this fact, we propose
several variants to the baseline models that we
find helps minimize this issue. We augment the
data used to train NMT Copy via two techniques:
1) we run the PBMT model on additional source
data, and 2) we use back-translation (Sennrich
et al., 2016¢) of the PBMT model to translate the
large number of in-domain target style sentences
from GYAFC. To balance the over one million
artificially generated pairs from the respective
techniques, we upweight the rule-based GYAFC
data via duplication.'?

5 Evaluation

As discussed earlier, there has been very little re-
search into best practices for style transfer evalu-
ation. Only a few works have included a human
evaluation (Xu et al., 2012; Jhamtani et al., 2017),
and automatic evaluations have employed BLEU
or PINC (Xu et al., 2012; Chen and Dolan, 2011),
which have been borrowed from other fields and
not vetted for this task. In our work, we con-
duct a more thorough and detailed evaluation us-
ing both humans and automatic metrics to assess
transformations. Inspired by work in the para-
phrase community (Callison-Burch, 2008), we so-
licit ratings on how formal, how fluent and how
meaning-preserving a rewrite is. Additionally, we
look at the correlation between the human judg-
ments and the automatic metrics.

5.1 Human-based Evaluation

We perform human-based evaluation to assess
model outputs on the four criteria: formality,
fluency, meaning and overall. For a subset of 500
sentences from the test sets of both Entertainment
& Music and Family & Relationship domains,
we collect five human judgments per sentence
per criteria using Amazon Mechanical Turk as
follows:

"2 Training data sizes for different methods are summarized
in the supplementary material.
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Formality: Following PT16, workers rate
the formality of the source style sentence, the
target style reference rewrite and the target style
model outputs on a discrete scale of -3 to +3
described as: -3: Very Informal, -2: Informal, -1:
Somewhat Informal, 0: Neutral, 1: Somewhat
Formal, 2: Formal and 3: Very Formal.

Fluency: Following Heilman et al. (2014),
workers rate the fluency of the source style
sentence, the target style reference rewrite and the
target style model outputs on a discrete scale of 1
to 5 described as: 5: Perfect, 4: Comprehensible,
3: Somewhat Comprehensible, 2: Incomprehen-
sible. 'We additionally provide an option of I:
Other for sentences that are incomplete or just a
fragment.

Meaning Preservation: Following the an-
notation scheme developed for the Semantic
Textual Similarity (STS) dataset (Agirre et al.,
2016), given two sentences i.e. the source style
sentence and the target style reference rewrite or
the target style model output, workers rate the
meaning similarity of the two sentences on a scale
of 1 to 6 described as: 6: Completely equivalent,
5: Mostly equivalent, 4: Roughly equivalent, 3:
Not equivalent but share some details, 2: Not
equivalent but on same topic, 1: Completely
dissimilar.

Overall Ranking: In addition to the fine-
grained human judgments, we collect judgments
to assess the overall ranking of the systems.
Given the original source style sentence, the target
style reference rewrite and the target style model
outputs, we ask workers to rank the rewrites in
the order of their overall formality, taking into
account both fluency and meaning preservation.
We then rank the model using the equation below:

rank(model) =

Z ZTCLTZ]C (Smodel, J)

SGS

(1)
where, model is the one of our models, .S is a sub-
set of 500 test set sentences, J is the set of five
judgments, S,,04¢; 1S the model rewrite for sen-
tence s, and rank(Smoder, 7) 1 the rank of $,,04el

in judgment j.
The two authors of the paper reviewed these hu-
man judgments and found that in majority of the

5]

134

cases the annotations looked correct. But as is
common in any such crowdsourced data collection
process, there were some errors, especially in the
overall ranking of the systems.

5.2 Automatic Metrics

We cover each of the human evaluations with a
corresponding automatic metric:

Formality: We use the formality -classifier
described in PT16. We find that the classifier
trained on the answers genre of PT16 dataset does
not perform well when tested on our datasets.
Hence, we collect formality judgments for an
additional 5000 sentences and use the formality
classifier re-trained on this in-domain data.

Fluency: We use the reimplementation!® of
Heilman et al. (2014) (H14 in Table 4) which is a
statistical model for predicting the grammaticality
of a sentence on a scale of 0 to 4 previously
shown to be effective for other generation tasks

like grammatical error correction (Napoles et al.,
2016).

Meaning Preservation: Modeling semantic
similarity at a sentence level is a fundamental
language processing task, and one that is a wide
open field of research. Recently, He et al., (2015)
(HE15 in Table 4) developed a convolutional
neural network based sentence similarity measure.
We use their off-the-shelf implementation'* to
train a model on the STS and use it to measure the
meaning similarity between the original source
style sentence and its target style rewrite (both
reference and model outputs).

Overall Ranking: We experiment with BLEU
(Papineni et al., 2002) and PINC (Chen and
Dolan, 2011) as both were used in prior style
evaluations, as well as TERp (Snover et al., 2009).

6 Results

In this section, we discuss how well the five mod-
els perform in the informal to formal style transfer
task using human judgments (§6.1) and automatic
metrics (§6.2), the correlation of the automatic
metrics and human judgments to determine the ef-

Bhttps://github.com/cnap/grammaticality-
metrics/tree/master/heilman-et-al
"*https://github.com/castorini/MP-CNN-Torch



Formality Fluency Meaning Combined Overall

Model Human PT16 | Human HI14 | Human HEIS5 | Human Auto | BLEU TERp PINC
Original Informal | -1.23  -1.00 | 3.90 2.89 - - - - 50.69  0.35 0.00

Formal Reference | 0.38 0.17 4.45 3.32 4.57 3.64 5.68 4.67 | 100.0 037  69.79
Rule-based -0.59 -034 | 4.00 3.09 4.85 441 5.24 4.69 | 6138 0.27  26.05
PBMT -0.19*%  0.00% | 3.96  3.28% | 4.64* 4.19*% | 527  4.82% | 67.26% 0.26 44.94*
NMT Baseline 0.05* 0.07* | 4.05  3.52*% | 3.55% 3.89* | 496* 4.84* | 56.61 0.38*% 56.92*
NMT Copy 0.02*  0.10*% | 4.07  3.45% | 3.48*% 3.87% | 493* 481* | 58.01 0.38% 56.39*%
NMT Combined | -0.16% 0.00% | 4.09% 3.27* | 4.46* 4.20% | 5.32* 4.82% | 67.67* 0.26 43.54*

Table 4: Results of models on 500 test sentences from E&M for informal to formal task evaluated using human
judgments and automatic metrics for three criteria of evaluation: formality, fluency and meaning preservation.
Scores marked with * are significantly different from the rule-based scores with p < 0.001.
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Figure 3: For varying sentence lengths of the original
informal sentence the formality and the meaning scores
from human judgments on different model outputs and
on the original informal and the formal reference sen-
tences.

ficacy of the metrics (§6.3) and present a manual
analysis (§6.4). We randomly select 500 sentences
from each test set and run all five models. We use
the entire train and tune split for training and tun-
ing. We discuss results only on the E&M domain
and list results on the F&R domain in the supple-
mentary material.

Table 4 shows the results for human §6.1 and
automatic §6.2 evaluation of model rewrites. For
all metrics except TERp, a higher score is better.
For each of the automatic metrics, we evaluate
against four human references. The row ‘Original
Informal’ contains the scores when the original in-

formal sentence is compared with the four formal
reference rewrites. Comparing the model scores
to this score helps us understand how closer are
the model outputs to the formal reference rewrites
compared to initial distance between the informal
and the formal reference rewrite.

6.1 Results using Human Judgments

The columns marked ‘Human’ in Table 4 show
the human judgments for the models on the three
separate criteria of formality, fluency and mean-
ing collected using the process described in Sec-
tion 5.1.1> The NMT Baseline and Copy models
beat others on the formality axis by a significant
margin. Only the NMT Combined model achieves
a statistically higher fluency score when compared
to the rule-based baseline model. As expected, the
rule-based model is the most meaning preserving
since it is the most conservative. Figure 3 shows
the trend in the four leading models along formal-
ity and meaning for varying lengths of the source
sentence. NMT Combined beats PBMT on for-
mality for shorter lengths whereas the trend re-
verses as the length increases. PBMT generally
preserves meaning more than the NMT Combined.
We find that the fluency scores for all models de-
creases as the sentence length increases which is
similar to the trend generally observed with ma-
chine translation based approaches.

Since a good style transfer model is the one that
attains a balanced score across all the three axes,
we evaluate the models on a combination of these
metrics'® shown under the column ‘Combined’ in
Table 4. NMT Combined is the only model having
a combined score statistically greater than the rule-
based approach.

50ut of the four reference rewrites, we pick one at random
to show to Turkers.

16We recalibrate the scores to normalize for different
ranges.
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Finally, Table 5 shows the overall rankings
of the models from best to worst in both do-
mains. PBMT and NMT Combined models beat
the rule-based model although not significantly in
the E&M domain but significantly in the F&R do-
main. Interestingly, the rule-based approach at-
tains third place with a score significantly higher
than NMT Copy and NMT Baseline models. It is
important to note here that while such a rule-based
approach is relatively easy to craft for the formal-
ity style transfer task, the same may not be true for
other styles like politeness or persuasiveness.

E&M [ F&R

(2.03*) Reference (2.13*) Reference
(2.47) PBMT (2.38*%) PBMT

(2.48) NMT Combined | (2.38%) NMT Combined
(2.54) Rule-based (2.56) Rule-based
(3.03*%) NMT Copy (2.72%) NMT Copy
(3.03*) NMT Baseline | (2.79*) NMT Baseline

Table 5: Ranking of different models on the informal
to formal style transfer task. Rankings marked with *
are significantly different from the rule-based ranking
with p < 0.001.

Automatic | Human | E&M | F&R
Formality Formality | 0.47 0.45
Fluency Fluency 0.48 0.46
Meaning Meaning 0.33 0.30
BLEU Overall -0.48 | -0.43
TERp Overall 0.31 0.30
PINC Overall 0.11 0.08

Table 6: Spearman rank correlation between automatic
metrics and human judgments. The first three metrics
are correlated with their respective human judgments
and the last three metrics are correlated with the overall
ranking human judgments. All correlations are statisti-
cally significant with p < 0.001.

6.2 Results with Automatic Metrics

Under automatic metrics, the formality and mean-
ing scores align with the human judgments with
the NMT Baseline and NMT Copy winning on for-
mality and rule-based winning on meaning. The
fluency score of the NMT Baseline is the highest
in contrast to human judgments where the NMT
Combined wins. This discrepancy could be due to
H14 being trained on essays which contains sen-
tences of a more formal genre compared to Ya-
hoo Answers. In fact, the fluency classifier scores
the formal reference quite low as well. Under
overall metrics, PBMT and NMT Combined mod-
els beat other models as per BLEU (significantly)
and TERp (not significantly). NMT Baseline and
NMT copy win over other models as per PINC

which can be explained by the fact that PINC
measures lexical dissimilarity with the source and
NMT models tend towards making more changes.
Although such an analysis is useful, for a more
thorough understanding of these metrics, we next
look at their correlation with human judgments.

6.3 Metric Correlation

We report the spearman rank correlation co-
efficient between automatic metrics and human
judgments in Table 6. For formality, fluency and
meaning, the correlation is with their respective
human judgments whereas for BLEU, TERp and
PINC, the correlation is with the overall ranking.

We see that the formality and the fluency met-
rics correlate moderately well while the mean-
ing metric correlates comparatively poorly. To
be fair, the HE15 classifier was trained on the
STS dataset which contains more formal writ-
ing than informal. BLEU correlates moderately
well (better than what XU12 observed for the
Shakespeare task) whereas the correlation drops
for TERp. PINC, on the other hand, correlates
very poorly with a positive correlation with rank
when it should have a negative correlation with
rank, just like BLEU. This sheds light on the fact
that PINC, on its own, is not a good metric for
style transfer since it prefers lexical edits at the
cost of meaning changes. In the Shakespeare task,
XU12 did observe a higher correlation with PINC
(0.41) although the correlation was not with over-
all system ranking but rather only on the style met-
ric. Moreover, in the Shakespeare task, changing
the text is more favorable than in formality.

6.4 Manual Analysis

The prior evaluations reveal the relative perfor-
mance differences between approaches. Here, we
identify trends per and between approaches. We
sample 50 informal sentences total from both do-
mains and then analyze the outputs from each
model. We present sample sentences in Table 7.
The NMT Baseline and NMT Copy tend to
have the most variance in their performance. This
is likely due to the fact that they are trained on
only 50K sentence pairs, whereas the other mod-
els are trained on much more data. For shorter sen-
tences, these models make some nice formal trans-
formations like from ‘very dumb’ to ‘very fool-
ish’. However, for longer sentences, these models
make drastic meaning changes and drop some con-
tent altogether (see examples in Table 7). On the
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Entertainment & Music

Original Informal
Reference Formal

Wow , I am very dumb in my observation skills
I do not have good observation skills .

Rule-based
PBMT

NMT Baseline
NMT Copy
NMT Combined

Wow , I am very dumb in my observation skills .
Wow , I am very dumb in my observation skills .
I am very foolish in my observation skills .

Wow , I am very foolish in my observation skills .
I am very unintelligent in my observation skills .

Family & Relationship

Original Informal
Reference Formal

1 hardly everrr see him in school either usually i see hima t my brothers basketball games .
I hardly ever see him in school . I usually see him with my brothers playing basketball .

Rule-based

I hardly everrr see him in school either usually I see hima t my brothers basketball games .

PBMT

NMT

NMT Copy
NMT Combined

I hardly see him in school as well, but my brothers basketball games .

I rarely see him in school , either I see him at my brother ’s basketball games .

I hardly see him in school either , usually I see him at my brother ’s basketball games .
I rarely see him in school either usually I see him at my brothers basketball games .

Table 7: Sample model outputs with references from both E&M and F&R domains on the informal to formal task

other hand, the PBMT and NMT Combined mod-
els have lower variance in their performance. They
make changes more conservatively but when they
do, they are usually correct. Thus, most of the out-
puts from these two models are usually meaning
preserving but at the expense of a lower formality
score improvement.

In most examples, all models are good at re-
moving very informal words like ‘stupid’, ‘idiot’
and ‘hell’, with PBMT and NMT Combined mod-
els doing slightly better. All models struggle when
the original sentence is very informal or disfluent.
They all also struggle with sentence completions
that humans seem to be very good at. This might
be because humans assume a context when absent,
whereas the models do not. Unknown tokens, ei-
ther real words or misspelled words, tend to wreak
havoc on all approaches. In most cases, the models
simply did not transform that section of the sen-
tence, or remove the unknown tokens. Most mod-
els are effective at low-level changes such as writ-
ing out numbers, inserting commas, and removing
common informal phrases.

7 Conclusions and Future Work

The goal of this paper was to move the field of
style transfer forward by creating a large training
and evaluation corpus to be made public, showing
that adapting MT techniques to this task can serve
as strong baselines for future work, and analyzing
the usefulness of existing metrics for overall style
transfer as well as three specific criteria of auto-
matic style transfer evaluation. We view this work
as rigorously expanding on the foundation set by
XU12 five years earlier. It is our hope that with a
common test set, the field can finally benchmark
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approaches which do not require parallel data.

We found that while the NMT systems perform
well given automatic metrics, humans had a slight
preference for the PBMT approach. That being
said, two of the neural approaches (NMT Base-
line and Copy) often made successful changes
and larger rewrites that the other models could
not. However, this often came at the expense of
a meaning change.

We also introduced new metrics and vetted all
metrics using comparison with human judgments.
We found that previously-used metrics did not cor-
relate well with human judgments, and thus should
be avoided in system development or final eval-
uation. The formality and fluency metrics corre-
lated best and we believe that some combination
of these metrics with others would be the best next
step in the development of style transfer metrics.
Such a metric could then in turn be used to opti-
mize MT models. Finally, in this work we focused
on one particular style, formality. The long term
goal is to generalize the methods and metrics to
any style.
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Abstract

We argue that semantic meanings of a sentence
or clause can not be interpreted independently
from the rest of a paragraph, or independently
from all discourse relations and the overall
paragraph-level discourse structure. With the
goal of improving implicit discourse relation
classification, we introduce a paragraph-level
neural networks that model inter-dependencies
between discourse units as well as discourse
relation continuity and patterns, and predict a
sequence of discourse relations in a paragraph.
Experimental results show that our model out-
performs the previous state-of-the-art systems
on the benchmark corpus of PDTB.

1 Introduction

PDTB-style discourse relations, mostly defined
between two adjacent text spans (i.e., discourse
units, either clauses or sentences), specify how
two discourse units are logically connected (e.g.,
causal, contrast). Recognizing discourse relations
is one crucial step in discourse analysis and can be
beneficial for many downstream NLP applications
such as information extraction, machine transla-
tion and natural language generation.

Commonly, explicit discourse relations were
distinguished from implicit ones, depending on
whether a discourse connective (e.g., “because”
and “after”) appears between two discourse
units (Prasad et al., 2008a). While explicit dis-
course relation detection can be framed as a dis-
course connective disambiguation problem (Pitler
and Nenkova, 2009; Lin et al., 2014) and has
achieved reasonable performance (F1 score >
90%), implicit discourse relations have no dis-
course connective and are especially difficult to
identify (Lin et al., 2009, 2014; Xue et al., 2015).
To fill the gap, implicit discourse relation pre-
diction has drawn significant research interest re-
cently and progress has been made (Chen et al.,
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2016; Liu and Li, 2016) by modeling composi-
tional meanings of two discourse units and ex-
ploiting word interactions between discourse units
using neural tensor networks or attention mecha-
nisms in neural nets. However, most of existing
approaches ignore wider paragraph-level contexts
beyond the two discourse units that are examined
for predicting a discourse relation in between.

To further improve implicit discourse relation

prediction, we aim to improve discourse unit rep-
resentations by positioning a discourse unit (DU)
in its wider context of a paragraph. The key obser-
vation is that semantic meaning of a DU can not
be interpreted independently from the rest of the
paragraph that contains it, or independently from
the overall paragraph-level discourse structure that
involve the DU. Considering the following para-
graph with four discourse relations, one relation
between each two adjacent DUs:
(1): [The Butler, Wis., manufacturer went pub-
lic at $15.75 a share in August 1987, ]py1
and (Explicit-Expansion) [Mr. Sim’s goal
then was a $29 per-share price by 1992.]pyo
(Implicit-Expansion) [Strong earnings growth
helped achieve that price far ahead of sched-
ule, in August 1988.]pys (Implicit-Comparison)
[The stock has since softened, trading around
$25 a share last week and closing yesterday at
$23 in national over-the-counter trading. | py 4 But
(Explicit-Comparison) [Mr. Sim has set a fresh
target of $50 a share by the end of reaching that
goal.]pus

Clearly, each DU is an integral part of the para-
graph and not independent from other units. First,
predicting a discourse relation may require under-
standing wider paragraph-level contexts beyond
two relevant DUs and the overall discourse struc-
ture of a paragraph. For example, the implicit
“Comparison” discourse relation between DU3
and DU4 is difficult to identify without the back-
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ground information (the history of per-share price)
introduced in DU1 and DU2. Second, a DU may
be involved in multiple discourse relations (e.g.,
DU4 is connected with both DU3 and DUS with
a “Comparison” relation), therefore the pragmatic
meaning representation of a DU should reflect
all the discourse relations the unit was involved
in. Third, implicit discourse relation prediction
should benefit from modeling discourse relation
continuity and patterns in a paragraph that in-
volve easy-to-identify explicit discourse relations
(e.g., “Implicit-Comparison” relation is followed
by “Explicit-Comparison” in the above example).

Following these observations, we construct a
neural net model to process a paragraph each time
and jointly build meaning representations for all
DUs in the paragraph. The learned DU represen-
tations are used to predict a sequence of discourse
relations in the paragraph, including both implicit
and explicit relations. Although explicit relations
are not our focus, predicting an explicit relation
will help to reveal the pragmatic roles of its two
DUs and reconstruct their representations, which
will facilitate predicting neighboring implicit dis-
course relations that involve one of the DUs.

In addition, we introduce two novel designs
to further improve discourse relation classifica-
tion performance of our paragraph-level neural net
model. First, previous work has indicated that
recognizing explicit and implicit discourse rela-
tions requires different strategies, we therefore un-
tie parameters in the discourse relation prediction
layer of the neural networks and train two separate
classifiers for predicting explicit and implicit dis-
course relations respectively. This unique design
has improved both implicit and explicit discourse
relation identification performance. Second, we
add a CREF layer on top of the discourse relation
prediction layer to fine-tune a sequence of pre-
dicted discourse relations by modeling discourse
relation continuity and patterns in a paragraph.

Experimental results show that the intu-
itive paragraph-level discourse relation prediction
model achieves improved performance on PDTB
for both implicit discourse relation classification
and explicit discourse relation classification.

2 Related Work

2.1 Implicit Discourse Relation Recognition

Since the PDTB (Prasad et al., 2008b) corpus was
created, a surge of studies (Pitler et al., 2009; Lin

et al., 2009; Liu et al., 2016; Rutherford and Xue,
2016) have been conducted for predicting dis-
course relations, primarily focusing on the chal-
lenging task of implicit discourse relation clas-
sification when no explicit discourse connective
phrase was presented. Early studies (Pitler et al.,
2008; Lin et al., 2009, 2014; Rutherford and Xue,
2015) focused on extracting linguistic and seman-
tic features from two discourse units. Recent re-
search (Zhang et al., 2015; Rutherford et al., 2016;
Ji and Eisenstein, 2015; Ji et al., 2016) tried to
model compositional meanings of two discourse
units by exploiting interactions between words in
two units with more and more complicated neu-
ral network models, including the ones using neu-
ral tensor (Chen et al., 2016; Qin et al., 2016; Lei
et al., 2017) and attention mechanisms (Liu and
Li, 2016; Lan et al., 2017; Zhou et al., 2016). An-
other trend is to alleviate the shortage of annotated
data by leveraging related external data, such as
explicit discourse relations in PDTB (Liu et al.,
2016; Lan et al., 2017; Qin et al., 2017) and un-
labeled data obtained elsewhere (Rutherford and
Xue, 2015; Lan et al., 2017), often in a multi-task
joint learning framework.

However, nearly all the previous works assume
that a pair of discourse units is independent from
its wider paragraph-level contexts and build their
discourse relation prediction models based on only
two relevant discourse units. In contrast, we model
inter-dependencies of discourse units in a para-
graph when building discourse unit representa-
tions; in addition, we model global continuity and
patterns in a sequence of discourse relations, in-
cluding both implicit and explicit relations.

Hierarchical neural network models (Liu and
Lapata, 2017; Li et al., 2016) have been applied to
RST-style discourse parsing (Carlson et al., 2003)
mainly for the purpose of generating text-level hi-
erarchical discourse structures. In contrast, we
use hierarchical neural network models to build
context-aware sentence representations in order to
improve implicit discourse relation prediction.

2.2 Paragraph Encoding

Abstracting latent representations from a long se-
quence of words, such as a paragraph, is a chal-
lenging task. While several novel neural net-
work models (Zhang et al., 2017b,a) have been
introduced in recent years for encoding a para-
graph, Recurrent Neural Network (RNN)-based
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methods remain the most effective approaches.
RNNs, especially the long-short term memory
(LSTM) (Hochreiter and Schmidhuber, 1997)
models, have been widely used to encode a para-
graph for machine translation (Sutskever et al.,
2014), dialogue systems (Serban et al., 2016) and
text summarization (Nallapati et al., 2016) be-
cause of its ability in modeling long-distance de-
pendencies between words. In addition, among
four typical pooling methods (sum, mean, last
and max) for calculating sentence representations
from RNN-encoded hidden states for individ-
ual words, max-pooling along with bidirectional
LSTM (Bi-LSTM) (Schuster and Paliwal, 1997)
yields the current best universal sentence repre-
sentation method (Conneau et al.,, 2017). We
adopted a similar neural network architecture for
paragraph encoding.

3 The Neural Network Model for
Paragraph-level Discourse Relation
Recognition

3.1 The Basic Model Architecture

Figure 1 illustrates the overall architecture of the
discourse-level neural network model that consists
of two Bi-LSTM layers, one max-pooling layer in
between and one softmax prediction layer. The
input of the neural network model is a paragraph
containing a sequence of discourse units, while the
output is a sequence of discourse relations with
one relation between each pair of adjacent dis-
course units!.

Given the words sequence of one paragraph
as input, the lower Bi-LSTM layer will read the
whole paragraph and calculate hidden states as
word representations, and a max-pooling layer
will be applied to abstract the representation of
each discourse unit based on individual word rep-
resentations. Then another Bi-LSTM layer will
run over the sequence of discourse unit repre-
sentations and compute new representations by
further modeling semantic dependencies between
discourse units within paragraph. The final soft-
max prediction layer will concatenate representa-
tions of two adjacent discourse units and predict
the discourse relation between them.

Word Vectors as Input:
paragraph-level discourse

The input of the
relation prediction
'In PDTB, most of discourse relations were annotated be-

tween two adjacent sentences or two adjacent clauses. For
exceptional cases, we applied heuristics to convert them.
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model is a sequence of word vectors, one vector
per word in the paragraph. In this work, we used
the pre-trained 300-dimension Google English
word2vec embeddings®>.  For each word that
is not in the vocabulary of Google word2vec,
we will randomly initialize a vector with each
dimension sampled from the range [—0.25,0.25].
In addition, recognizing key entities and discourse
connective phrases is important for discourse
relation recognition, therefore, we concatenate
the raw word embeddings with extra linguistic
features, specifically one-hot Part-Of-Speech
tag embeddings and one-hot named entity tag
embeddings?.

Building Discourse Unit Representations: We
aim to build discourse unit (DU) representations
that sufficiently leverage cues for discourse re-
lation prediction from paragraph-wide contexts,
including the preceding and following discourse
units in a paragraph. To process long paragraph-
wide contexts, we take a bottom-up two-level ab-
straction approach and progressively generate a
compositional representation of each word first
(low level) and then generate a compositional rep-
resentation of each discourse unit (high level),
with a max-pooling operation in between. At both
word-level and DU-level, we choose Bi-LSTM
as our basic component for generating composi-
tional representations, mainly considering its ca-
pability to capture long-distance dependencies be-
tween words (discourse units) and to incorporate
influences of context words (discourse units) in
each side.

Given a variable-length words sequence X =
(z1,x2,...,x) in a paragraph, the word-level Bi-
LSTM will process the input sequence by using
two separate LSTMs, one process the word se-
quence from the left to right while the other fol-
lows the reversed direction. Therefore, at each
word position ¢, we obtain two hidden states
Ez, +. We concatenate them to get the word rep-
resentation hy = [E), E] Then we apply max-
pooling over the sequence of word representations
for words in a discourse unit in order to get the
discourse unit embedding:

“Downloaded from https://docs.google.com/
uc?1id=0B7XkCwpISKDYNINUTT1SS21pQmM

3Our feature-rich word embeddings are of dimension 343,
including 300 dimensions for word2vec embeddings + 36 di-
mensions for Part-Of-Speech (POS) tags + 7 dimensions for
named entity tags. We used the Stanford CoreNLP to gener-
ate POS tags and named entity tags.
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Figure 1: The Basic Model Architecture for Paragraph-level Discourse Relations Sequence Prediction.
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MPDU[]] o i:lI)I(l]EBiart hl [j] (1)
where,1 < 7 < hidden_node_size  (2)

Next, the DU-level Bi-LSTM will process the
sequence of discourse unit embeddings in a para-
raph and generate two hidden states m and
%Ut at each discourse unit position. We concate-
nate them to get the discourse unit representation

hDU, = [hDU,, hDUY].

The Softmax Prediction Layer: Finally, we con-
catenate two adjacent discourse unit representa-
tions hDU;_1 and h DUy and predict the discourse
relation between them using a softmax function:

yi—1 = softmax(Wy x [hDU;_1, hDUy] + by)
3)
3.2 Untie Parameters in the Softmax
Prediction Layer (Implicit vs. Explicit)

Previous work (Pitler and Nenkova, 2009; Lin
et al., 2014; Rutherford and Xue, 2016) has re-
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Figure 2: Untie Parameters in the Prediction Layer

vealed that recognizing explicit vs. implicit dis-
course relations requires different strategies. Note
that in the PDTB dataset, explicit discourse rela-
tions were distinguished from implicit ones, de-
pending on whether a discourse connective exists
between two discourse units. Therefore, explicit
discourse relation detection can be simplified as a
discourse connective phrase disambiguation prob-
lem (Pitler and Nenkova, 2009; Lin et al., 2014).
On the contrary, predicting an implicit discourse
relation should rely on understanding the overall



contents of its two discourse units (Lin et al., 2014;
Rutherford and Xue, 2016).

Considering the different natures of explicit vs.
implicit discourse relation prediction, we decide
to untie parameters at the final discourse relation
prediction layer and train two softmax classifiers,
as illustrated in Figure 2. The two classifiers have
different sets of parameters, with one classifier for
only implicit discourse relations and the other for
only explicit discourse relations.

_ Jsoftmar(Weap[hDU;—1, hDU] 4 bewp),  exp
=17 softmaz(Wimp[hDUy—1, hDU] + bimp), imp
C))]

The loss function used for the neural network
training considers loss induced by both implicit re-
lation prediction and explicit relation prediction:

Loss = L0SSjmp + o % L0SSeqp 5

The «, in the full system, is set to be 1, which
means that minimizing the loss in predicting either
type of discourse relations is equally important.
In the evaluation, we will also evaluate a system
variant, where we will set « = 0, which means
that the neural network will not attempt to predict
explicit discourse relations and implicit discourse
relation prediction will not be influenced by pre-
dicting neighboring explicit discourse relations.

3.3 Fine-tune Discourse Relation Predictions
Using a CRF Layer

Data analysis and many linguistic studies (Pitler
et al., 2008; Asr and Demberg, 2012; Lascarides
and Asher, 1993; Hobbs, 1985) have repeatedly
shown that discourse relations feature continuity
and patterns (e.g., a temporal relation is likely to
be followed by another temporal relation). Es-
pecially, Pitler et al. (2008) firstly reported that
patterns exist between implicit discourse relations
and their neighboring explicit discourse relations.

Motivated by these observations, we aim to
improve implicit discourse relation detection by
making use of easily identifiable explicit discourse
relations and taking into account global patterns of
discourse relation distributions. Specifically, we
add an extra CRF layer at the top of the softmax
prediction layer (shown in figure 3) to fine-tune
predicted discourse relations by considering their
inter-dependencies.

The Conditional Random Fields (Lafferty et al.,
2001) (CRF) layer updates a state transition ma-
trix, which can effectively adjust the current la-
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Figure 3: Fine-tune Discourse Relations with a CRF
layer.

bel depending on proceeding and following la-
bels. Both training and decoding of the CRF layer
can be solved efficiently by using the Viterbi al-
gorithm. With the CRF layer, the model jointly
assigns a sequence of discourse relations between
each two adjacent discourse units in a paragraph,
including both implicit and explicit relations, by
considering relevant discourse unit representations
as well as global discourse relation patterns.

4 Evaluation

4.1 Dataset and Preprocessing

The Penn Discourse Treebank (PDTB): We ex-
perimented with PDTB v2.0 (Prasad et al., 2008b)
which is the largest annotated corpus contain-
ing 36k discourse relations in 2,159 Wall Street
Journal (WSJ) articles. In this work, we fo-
cus on the top-level* discourse relation senses
which are consist of four major semantic classes:
Comparison (Comp), Contingency (Cont), Expan-
sion (Exp) and Temporal (Temp). We followed
the same PDTB section partition (Rutherford and
Xue, 2015) as previous work and used sections 2-
20 as training set, sections 21-22 as test set, and
sections 0-1 as development set. Table 1 presents
the data distributions we collected from PDTB.
Preprocessing: The PDTB dataset documents
its annotations as a list of discourse relations, with
each relation associated with its two discourse
units. To recover the paragraph context for a dis-
course relation, we match contents of its two an-
notated discourse units with all paragraphs in cor-
responding raw WSJ article. When all the match-
ing was completed, each paragraph was split into
a sequence of discourse units, with one discourse
relation (implicit or explicit) between each two ad-

“In PDTB, the sense label of discourse relation was anno-
tated hierarchically with three levels.



Type | Class | Train Dev Test Total
Comp | 1942 197 152 2291
Implicit Cont | 3339 292 279 3910
Exp 7003 671 574 8248

Temp | 760 64 85 909
Comp | 4184 422 364 4970
Explicit Cont | 2837 286 213 3336
Exp 4612 481 424 5517
Temp | 2742 254 297 3293

Table 1: Distributions of Four Top-level Discourse Re-
lations in PDTB.

# of DUs
ratio

2
44%

3
25%

4
15%

5
7.3%

>5
8. 7%

Table 2: Distributions of Paragraphs.

jacent discourse units>. Following this method, we
obtained 14,309 paragraphs in total, each contains
3.2 discourse units on average. Table 2 shows the
distribution of paragraphs based on the number of
discourse units in a paragraph.

4.2 Parameter Settings and Model Training

We tuned the parameters based on the best per-
formance on the development set. We fixed the
weights of word embeddings during training. All
the LSTMs in our neural network use the hidden
state size of 300. To avoid overfitting, we applied
dropout (Hinton et al., 2012) with dropout ratio of
0.5 to both input and output of LSTM layers. To
prevent the exploding gradient problem in training
LSTMs, we adopt gradient clipping with gradient
L2-norm threshold of 5.0. These parameters re-
main the same for all our proposed models as well
as our own baseline models.

We chose the standard cross-entropy loss func-
tion for training our neural network model and
adopted Adam (Kingma and Ba, 2014) optimizer
with the initial learning rate of 5e-4 and a mini-
batch size of 128°. If one instance is annotated
with two labels (4% of all instances), we use both
of them in loss calculation and regard the predic-
tion as correct if model predicts one of the anno-
tated labels. All the proposed models were imple-

3In several hundred discourse relations, one discourse unit
is complex and can be further separated into two elementary
discourse units, which can be illustrated as [DU1-DU2]-DU3.
We simplify such cases to be a relation between DU2 and
DU3.

®Counted as the number of discourse relations rather than
paragraph instances.
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mented with Pytorch’ and converged to the best
performance within 20-40 epochs.

To alleviate the influence of randomness in neu-
ral network model training and obtain stable ex-
perimental results, we ran each of the proposed
models and our own baseline models ten times and
report the average performance of each model in-
stead of the best performance as reported in many
previous works.

4.3 Baseline Models and Systems

We compare the performance of our neural net-
work model with several recent discourse relation
recognition systems that only consider two rele-
vant discourse units.

e (Rutherford and Xue, 2015): improves im-
plicit discourse relation prediction by creat-
ing more training instances from the Giga-
word corpus utilizing explicitly mentioned
discourse connective phrases.

(Chen et al., 2016): a gated relevance net-
work (GRN) model with tensors to capture
semantic interactions between words from
two discourse units.

(Liu et al., 2016): a convolutional neural net-
work model that leverages relations between
different styles of discourse relations annota-
tions (PDTB and RST (Carlson et al., 2003))
in a multi-task joint learning framework.

(Liu and Li, 2016): a multi-level attention-
over-attention model to dynamically exploit
features from two discourse units for recog-
nizing an implicit discourse relation.

(Qin et al., 2017): a novel pipelined adver-
sarial framework to enable an adaptive imi-
tation competition between the implicit net-
work and a rival feature discriminator with
access to connectives.

(Lei et al., 2017): a Simple Word Interac-
tion Model (SWIM) with tensors that cap-
tures both linear and quadratic relations be-
tween words from two discourse units.

(Lan et al., 2017): an attention-based LSTM
neural network that leverages explicit dis-
course relations in PDTB and unannotated
external data in a multi-task joint learning
framework.

"http://pytorch.org/



Implicit Explicit
Model Macro Acc | Comp Cont Exp Temp | Macro Acc
(Rutherford and Xue, 2015) 40.50 57.10 - - - - - -
(Liu et al., 2016) 4498 57.27 - - - - - -
(Liu and Li, 2016) 46.29 57.57 - - - - - -
(Lei et al., 2017) 46.46 - - - - - - -
(Lan et al., 2017) 47.80 57.39 - - - - - -
DU-pair level Discourse Relation Recognition (Our Own Baselines)
Bi-LSTM 40.01 53.50 | 30.52 42.06 65.52 21.96 - -
+ tensors 4536 57.18 | 36.88 44.85 68.70 30.74 - -
Paragraph level Discourse Relation Recognition
Basic System Variant (a« = 0) | 47.56 56.88 | 37.12 4647 67.72 38.92 - -
Basic System (o = 1) 48.10 57.52 | 37.33 47.89 68.39 38.80 | 9193 92.89
+ Untie Parameters 48.69 58.20 | 37.68 49.19 68.86 39.04 | 93.70 94.46
+ the CRF Layer 48.82 5744 | 37.72 4939 6745 40.70 | 93.21 93.98

Table 3: Multi-class Classification Results on PDTB. We report accuracy (Acc) and macro-average F1-scores for
both explicit and implicit discourse relation predictions. We also report class-wise F1 scores.

4.4 Evaluation Settings

On the PDTB corpus, both binary classification
and multi-way classification settings are com-
monly used to evaluate the implicit discourse rela-
tion recognition performance. We noticed that all
the recent works report class-wise implicit relation
prediction performance in the binary classification
setting, while none of them report detailed per-
formance in the multi-way classification setting.
In the binary classification setting, separate “one-
versus-all” binary classifiers were trained, and
each classifier is to identify one class of discourse
relations. Although separate classifiers are gener-
ally more flexible in combating with imbalanced
distributions of discourse relation classes and ob-
tain higher class-wise prediction performance, one
pair of discourse units may be tagged with all four
discourse relations without proper conflict resolu-
tion. Therefore, the multi-way classification set-
ting is more appropriate and natural in evaluat-
ing a practical end-to-end discourse parser, and
we mainly evaluate our proposed models using the
four-way multi-class classification setting.

Since none of the recent previous work reported
class-wise implicit relation classification perfor-
mance in the multi-way classification setting, for
better comparisons, we re-implemented the neu-
ral tensor network architecture (so-called SWIM
in (Lei et al., 2017)) which is essentially a Bi-
LSTM model with tensors and report its detailed
evaluation result in the multi-way classification
setting. As another baseline, we report the per-

formance of a Bi-LSTM model without tensors as
well. Both baseline models take two relevant dis-
course units as the only input.

For additional comparisons, We also report the
performance of our proposed models in the binary
classification setting.

4.5 Experimental Results

Multi-way Classification: The first section of ta-
ble 3 shows macro average Fl-scores and accu-
racies of previous works. The second section of
table 3 shows the multi-class classification results
of our implemented baseline systems. Consis-
tent with results of previous works, neural tensors,
when applied to Bi-LSTMs, improved implicit
discourse relation prediction performance. How-
ever, the performance on the three small classes
(Comp, Cont and Temp) remains low.

The third section of table 3 shows the
multi-class classification results of our proposed
paragraph-level neural network models that cap-
ture inter-dependencies among discourse units.
The first row shows the performance of a variant of
our basic model, where we only identify implicit
relations and ignore identifying explicit relations
by setting the « in equation (5) to be 0. Compared
with the baseline Bi-LSTM model, the only differ-
ence is that this model considers paragraph-wide
contexts and model inter-dependencies among dis-
course units when building representation for indi-
vidual DU. We can see that this model has greatly
improved implicit relation classification perfor-
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Model Comp Cont Exp Temp
(Chen et al., 2016) 40.17 54.76 - 31.32
(Liu et al., 2016) 3791 5588 6997 37.17
(Liu and Li, 2016) 36.70 5448 70.43 38.84
(Qin et al., 2017) 40.87 54.56 7238 36.20
(Lei et al., 2017) 40.47 5536 69.50 35.34
(Lan et al., 2017) 40.73 58.96 72.47 38.50
Paragraph level Discourse Relation Recognition
Basic System (o« = 1) | 42.68 55.17 68.94 41.03
+ Untie Parameters 46.79 57.09 7041 45.61

Table 4: Binary Classification Results on PDTB. We report F1-scores for implicit discourse relations.

Implicit Explicit
Model Macro Acc | Macro  Acc
Basic System (¢ = 1) | 49.92 59.08 | 93.05 93.83
+ Untie Parameters 5047 59.85 | 9395 94.74
+ the CRF Layer 51.84 59.75 | 94.17 94.82

Table 5: Multi-class Classification Results of Ensemble Models on PDTB.

mance across all the four relations and improved
the macro-average Fl-score by over 7 percents.
In addition, compared with the baseline Bi-LSTM
model with tensor, this model improved implicit
relation classification performance across the three
small classes, with clear performance gains of
around 2 and 8 percents on contingency and tem-
poral relations respectively, and overall improved
the macro-average F1-score by 2.2 percents.

The second row shows the performance of our
basic paragraph-level model which predicts both
implicit and explicit discourse relations in a para-
graph. Compared to the variant system (the first
row), the basic model further improved the classi-
fication performance on the first three implicit re-
lations. Especially on the contingency relation, the
classification performance was improved by an-
other 1.42 percents. Moreover, the basic model
yields good performance for recognizing explicit
discourse relations as well, which is comparable
with previous best result (92.05% macro F1-score
and 93.09% accuracy as reported in (Pitler et al.,
2008)).

After untying parameters in the softmax pre-
diction layer, implicit discourse relation classifi-
cation performance was improved across all four
relations, meanwhile, the explicit discourse re-
lation classification performance was also im-
proved. The CRF layer further improved im-
plicit discourse relation recognition performance
on the three small classes. In summary, our full
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paragraph-level neural network model achieves
the best macro-average F1-score of 48.82% in pre-
dicting implicit discourse relations, which out-
performs previous neural tensor network models
(e.g., (Lei et al., 2017)) by more than 2 percents
and outperforms the best previous system (Lan
et al., 2017) by 1 percent.

Binary Classification: From table 4, we can see
that compared against the best previous systems,
our paragraph-level model with untied parameters
in the prediction layer achieves F1-score improve-
ments of 6 points on Comparison and 7 points
on Temporal, which demonstrates that paragraph-
wide contexts are important in detecting minority
discourse relations. Note that the CRF layer of the
model is not suitable for binary classification.

4.6 Ensemble Model

As we explained in section 4.2, we ran our mod-
els for 10 times to obtain stable average perfor-
mance. Then we also created ensemble models by
applying majority voting to combine results of ten
runs. From table 5, each ensemble model obtains
performance improvements compared with sin-
gle model. The full model achieves performance
boosting of (51.84 - 48.82 = 3.02) and (94.17 -
93.21 = 0.96) in macro Fl-scores for predicting
implicit and explicit discourse relations respec-
tively. Furthermore, the ensemble model achieves
the best performance for predicting both implicit
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Figure 4: Impact of Paragraph Length. We plot the macro-average F1-score of implicit discourse relation classifi-

cation on instances with different paragraph length.

and explicit discourse relations simultaneously.

4.7 Impact of Paragraph Length

To understand the influence of paragraph lengths
to our paragraph-level models, we divide para-
graphs in the PDTB test set into several sub-
sets based on the number of DUs in a para-
graph, and then evaluate our proposed models
on each subset separately. From Figure 4, we
can see that our paragraph-level models (the lat-
ter three) overall outperform DU-pair baselines
across all the subsets. As expected, the paragraph-
level models achieve clear performance gains on
long paragraphs (with more than 5 DUs) by ex-
tensively modeling mutual influences of DUs in
a paragraph. But somewhat surprisingly, the
paragraph-level models achieve noticeable perfor-
mance gains on short paragraphs (with 2 or 3 DUs)
as well. We hypothesize that by learning more ap-
propriate discourse-aware DU representations in
long paragraphs, our paragraph-level models re-
duce bias of using DU representations in predict-
ing discourse relations, which benefits discourse
relation prediction in short paragraphs as well.

4.8 Example Analysis

For the example (1), the baseline neural tensor
model predicted both implicit relations wrongly
(“Implicit-Contingency” between DU2 and DU3;
“Implicit-Expansion” between DU3 and DU4),
while our paragraph-level model predicted all the
four discourse relations correctly, which indicates
that paragraph-wide contexts play a key role in im-
plicit discourse relation prediction.

For another example:
(2): [Marshall came clanking in like Marley’s
ghost dragging those chains of brigades and
air wings and links with Arab despots.]py1
(Implicit-Temporal) [He wouldn’t leave | pyro until
(Explicit-Temporal) [Mr. Cheney promised to
do whatever the Pentagon systems analysts told
him. ] pys

Our basic paragraph-level model wrongly pre-
dicted the implicit discourse relation between
DUI and DU2 to be “Implicit-Comparison”, with-
out being able to effectively use the succeeding
“Explicit-Temporal” relation. On the contrary, the
full model corrected this mistake by modeling dis-
course relation patterns with the CRF layer.

5 Conclusion

We have presented a paragraph-level neural net-
work model that takes a sequence of discourse
units as input, models inter-dependencies between
discourse units as well as discourse relation con-
tinuity and patterns, and predicts a sequence of
discourse relations in a paragraph. By building
wider-context informed discourse unit representa-
tions and capturing the overall discourse structure,
the paragraph-level neural network model outper-
forms the best previous models for implicit dis-
course relation recognition on the PDTB dataset.
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Abstract

Natural language generation lies at the core
of generative dialogue systems and conversa-
tional agents. We describe an ensemble neural
language generator, and present several novel
methods for data representation and augmen-
tation that yield improved results in our model.
We test the model on three datasets in the
restaurant, TV and laptop domains, and re-
port both objective and subjective evaluations
of our best model. Using a range of automatic
metrics, as well as human evaluators, we show
that our approach achieves better results than
state-of-the-art models on the same datasets.

1 Introduction

There has recently been a substantial amount of
research in natural language processing (NLP) in
the context of personal assistants, such as Cortana
or Alexa. The capabilities of these conversational
agents are still fairly limited and lacking in vari-
ous aspects, one of the most challenging of which
is the ability to produce utterances with human-
like coherence and naturalness for many different
kinds of content. This is the responsibility of the
natural language generation (NLG) component.

Our work focuses on language generators
whose inputs are structured meaning representa-
tions (MRs). An MR describes a single dialogue
act with a list of key concepts which need to be
conveyed to the human user during the dialogue.
Each piece of information is represented by a slot-
value pair, where the slot identifies the type of in-
formation and the value is the corresponding con-
tent. Dialogue act (DA) types vary depending on
the dialogue manager, ranging from simple ones,
such as a goodbye DA with no slots at all, to com-
plex ones, such as an inform DA containing multi-
ple slots with various types of values (see example
in Table 1).
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inform (name [The Golden Curry], food
MR [Japanese], priceRange [moderate], fami-

lyFriendly [yes], near [The Bakers])

Located near The Bakers, kid-friendly restau-
Utt. rant, The Golden Curry, offers Japanese cui-

sine with a moderate price range.

Table 1: An example of an MR and a corresponding
reference utterance.

A natural language generator must produce a
syntactically and semantically correct utterance
from a given MR. The utterance should express
all the information contained in the MR, in a natu-
ral and conversational way. In traditional language
generator architectures, the assembling of an utter-
ance from an MR is performed in two stages: sen-
tence planning, which enforces semantic correct-
ness and determines the structure of the utterance,
and surface realization, which enforces syntactic
correctness and produces the final utterance form.

Earlier work on statistical NLG approaches
were typically hybrids of a handcrafted compo-
nent and a statistical training method (Langkilde
and Knight, 1998; Stent et al., 2004; Rieser and
Lemon, 2010). The handcrafted aspects, how-
ever, lead to decreased portability and potentially
limit the variability of the outputs. New corpus-
based approaches emerged that used semantically
aligned data to train language models that out-
put utterances directly from their MRs (Mairesse
et al.,, 2010; Mairesse and Young, 2014). The
alignment provides valuable information during
training, but the semantic annotation is costly.

The most recent methods do not require aligned
data and use an end-to-end approach to training,
performing sentence planning and surface realiza-
tion simultaneously (Konstas and Lapata, 2013).
The most successful systems trained on unaligned
data use recurrent neural networks (RNNs) paired
with an encoder-decoder system design (Mei et al.,
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2016; Dusek and Jurcicek, 2016), but also other
concepts, such as imitation learning (Lampouras
and Vlachos, 2016). These NLG models, however,
typically require greater amount of data for train-
ing due to the lack of semantic alignment, and they
still have problems producing syntactically and se-
mantically correct output, as well as being limited
in naturalness (Nayak et al., 2017).

Here we present a neural ensemble natural lan-
guage generator, which we train and test on three
large unaligned datasets in the restaurant, televi-
sion, and laptop domains. We explore novel ways
to represent the MR inputs, including novel meth-
ods for delexicalizing slots and their values, auto-
matic slot alignment, as well as the use of a seman-
tic reranker. We use automatic evaluation metrics
to show that these methods appreciably improve
the performance of our model. On the largest
of the datasets, the E2E dataset (Novikova et al.,
2017b) with nearly SOK samples, we also demon-
strate that our model significantly outperforms the
baseline E2E NLG Challenge' system in human
evaluation. Finally, after augmenting our model
with stylistic data selection, subjective evaluations
reveal that it can still produce overall better results
despite a significantly reduced training set.

2 Related Work

NLG is closely related to machine translation and
has similarly benefited from recent rapid develop-
ment of deep learning methods. State-of-the-art
NLG systems build thus on deep neural sequence-
to-sequence models (Sutskever et al., 2014) with
an encoder-decoder architecture (Cho et al., 2014)
equipped with an attention mechanism (Bahdanau
et al.,, 2015). They typically also rely on slot
delexicalization (Mairesse et al., 2010; Hender-
son et al., 2014), which allows the model to bet-
ter generalize to unseen inputs, as exemplified
by TGen (Dusek and Jurcicek, 2016). However,
Nayak et al. (2017) point out that there are fre-
quent scenarios where delexicalization behaves
inadequately (see Section 5.1 for more details),
and Agarwal and Dymetman (2017) show that a
character-level approach to NLG may avoid the
need for delexicalization, at the potential cost of
making more semantic omission errors.

The end-to-end approach to NLG typically re-
quires a mechanism for aligning slots on the out-
put utterances: this allows the model to generate

"http://www.macs.hw.ac.uk/InteractionLab/E2E/
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E2E TV  Laptop

training set| 42061 4221 7944
|validation set| 4672 1407 2649
|test set| 630 1407 2649
total 47363 7035 13242

DA types 1 14 14
slot types 8 16 20

Table 2: Overview of the number of samples, as well
as different DA and slot types, in each dataset .

utterances with fewer missing or redundant slots.
Cuayédhuitl et al. (2014) perform automatic slot la-
beling using a Bayesian network trained on a la-
beled dataset, and show that a method using spec-
tral clustering can be extended to unlabeled data
with high accuracy. In one of the first success-
ful neural approaches to language generation, Wen
et al. (2015a) augment the generator’s inputs with
a control vector indicating which slots still need to
be realized at each step. Wen et al. (2015b) take
the idea further by embedding a new sigmoid gate
into their LSTM cells, which directly conditions
the generator on the DA. More recently, DuSek and
Jur¢icek (2016) supplement their encoder-decoder
model with a trainable classifier which they use to
rerank the beam search candidates based on miss-
ing and redundant slot mentions.

Our work builds upon the successful atten-
tional encoder-decoder framework for sequence-
to-sequence learning and expands it through en-
sembling. We explore the feasibility of a domain-
independent slot aligner that could be applied to
any dataset, regardless of its size, and beyond the
reranking task. We also tackle some challenges
caused by delexicalization in order to improve the
quality of surface realizations, while retaining the
ability of the neural model to generalize.

3 Datasets

We evaluated the models on three datasets from
different domains. The primary one is the recently
released E2E restaurant dataset (Novikova et al.,
2017b) with 48K samples. For benchmarking we
use the TV dataset and the Laptop dataset (Wen
et al., 2016) with 7K and 13K samples, respec-
tively. Table 2 summarizes the proportions of the
training, validation, and test sets for each dataset.

3.1 E2E Dataset

The E2E dataset is by far the largest one avail-
able for task-oriented language generation in the
restaurant domain. The human references were
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Figure 1: Proportion of unique MRs in the datasets.
Note that the number of MRs in the E2E dataset was
cut off at 10K for the sake of visibility of the small
differences between other column pairs.

collected using pictures as the source of informa-
tion, which was shown to inspire more informa-
tive and natural utterances (Novikova et al., 2016).
With nearly 50K samples, it offers almost 10
times more data than the San Francisco restaurant
dataset introduced in Wen et al. (2015b), which
has frequently been used for benchmarks. The
reference utterances in the E2E dataset exhibit su-
perior lexical richness and syntactic variation, in-
cluding more complex discourse phenomena. It
aims to provide higher-quality training data for
end-to-end NLG systems to learn to produce more
naturally sounding utterances. The dataset was re-
leased as a part of the E2E NLG Challenge.

Although the E2E dataset contains a large num-
ber of samples, each MR is associated on aver-
age with 8.65 different reference utterances, ef-
fectively offering less than 5K unique MRs in
the training set (Fig. 1). Explicitly providing the
model with multiple ground truths, it offers multi-
ple alternative utterance structures the model can
learn to apply for the same type of MR. The delex-
icalization, as detailed later in Section 5.1, im-
proves the ability of the model to share the con-
cepts across different MRs.

The dataset contains only 8 different slot types,
which are fairly equally distributed. The number
of slots in each MR ranges between 3 and 8, but
the majority of MRs consist of 5 or 6 slots. Even
though most of the MRs contain many slots, the
majority of the corresponding human utterances,
however, consist of one or two sentences only (Ta-
ble 3), suggesting a reasonably high level of sen-
tence complexity in the references.

3.2 TV and Laptop Datasets

The reference utterances in the TV and the Laptop
datasets were collected using Amazon Mechani-
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slots 3 4 5 6 7 8
sent. 1.09 123 141 1.65 184 192
prop. 5% 18% 32% 28% 14% 3%

Table 3: Average number of sentences in the reference
utterance for a given number of slots in the correspond-
ing MR, along with the proportion of MRs with specific
slot counts.

minform B recommend minform_ count
?compare minform_no_match ®inform_only_match

m ?confirm minform_no_info minform_all

M 7select W suggest W frequest

H goodbye H freqgmere

Figure 2: Proportion of DAs in the Laptop dataset.

cal Turk (AMT), one utterance per MR. These two
datasets are similar in structure, both using the
same 14 DA types.> The Laptop dataset, however,
is almost twice as large and contains 25% more
slot types.

Although both of these datasets contain more
than a dozen different DA types, the vast majority
(68% and 80% respectively) of the MRs describe
a DA of either type inform or recommend
(Fig. 2), which in most cases have very simi-
larly structured realizations, comparable to those
in the E2E dataset. DAs such as suggest,
?request, or goodbye are represented by less
than a dozen samples, but are significantly easier
to learn to generate an utterance from because the
corresponding MRs contain three slots at the most.

4 Ensemble Neural Language Generator

4.1 Encoder-Decoder with Attention

Our model uses the standard encoder-decoder ar-
chitecture with attention, as defined in Bahdanau
et al. (2015). Encoding the input into a sequence
of context vectors instead of a single vector en-
ables the decoder to learn what specific parts of the

>We noticed the MRs with the ?request DA type in the
TV dataset have no slots provided, as opposed to the Laptop
dataset, so we imputed these in order to obtain valid MRs.
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Figure 3: Standard architecture of a single-layer
encoder-decoder LSTM model with attention. For each
time step ¢ in the output sequence, the attention scores
Qy.1,...,04 1 are calculated. This diagram shows the
attention scores only for ¢ = 2.

input sequence to pay attention to, given the out-
put generated so far. In this attentional encoder-
decoder architecture, the probability of the output
at each time step ¢ of the decoder depends on a
distinct context vector g; in the following way:

P(utluy, ... up—1, W) = g(ut—1, ¢, qt)

where in the place of function g we use the soft-
max function over the size of the vocabulary, and
s; 18 a hidden state of the decoder RNN at time
step t, calculated as:

St = f(Stfla Ut—1, Qt) .

The context vector ¢; is obtained as a weighted
sum of all the hidden states hq, ..., hr, of the en-

coder:
L
qr = E ayih;
i=1

where oy ; corresponds to the attention score the
t-th word in the target sentence assigns to the i-th
item in the input MR.

We compute the attention score oy ; using a
multi-layer perceptron (MLP) jointly trained with
the entire system (Bahdanau et al., 2015). The en-
coder’s and decoder’s hidden states at time ¢ and ¢,
respectively, are concatenated and used as the in-
put to the MLP, namely:

at; = softmax (Wthmh (W hy; St])) 5

where W and w are the weight matrix and the vec-
tor of the first and the second layer of the MLP, re-
spectively. The learned weights indicate the level
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of influence of the individual words in the input se-
quence on the prediction of the word at time step ¢
of the decoder. The model thus learns a soft align-
ment between the source and the target sequence.

4.2 Ensembling

In order to enhance the quality of the predicted ut-
terances, we create three neural models with dif-
ferent encoders. Two of the models use a bidirec-
tional LSTM (Hochreiter and Schmidhuber, 1997)
encoder, whereas the third model has a CNN (Le-
Cun et al., 1998) encoder. We train these models
individually for a different number of epochs and
then combine their predictions.

Initially, we attempted to combine the pre-
dictions of the models by averaging the log-
probability at each time step and then selecting the
word with the maximum log-probability. We no-
ticed that the quality, as well as the BLEU score
of our utterances, decreased significantly. We be-
lieve that this is due to the fact that different mod-
els learn different sentence structures and, hence,
combining predictions at the probability level re-
sults in incoherent utterances.

Therefore, instead of combining the models at
the log-probability level, we accumulate the top 10
predicted utterances from each model type us-
ing beam search and allow the reranker (see Sec-
tion 4.4) to rank all candidate utterances taking the
proportion of slots they successfully realized into
consideration. Finally, our system predicts the ut-
terance that received the highest score.

4.3 Slot Alignment

Our training data is inherently unaligned, meaning
our model is not certain which sentence in a multi-
sentence utterance contains a given slot, which
limits the model’s robustness. To accommodate
this, we create a heuristic-based slot aligner which
automatically preprocesses the data. Its primary
goal is to align chunks of text from the reference
utterances with an expected value from the MR.
Applications of our slot aligner are described in
subsequent sections and in Table 4.

In our task, we have a finite set of slot mentions
which must be detected in the corresponding utter-
ance. Moreover, from our training data we can see
that most slots are realized by inserting a specific
set of phrases into an utterance. Using this insight,
we construct a gazetteer, which primarily searches
for overlapping content between the MR and each



sentence in an utterance, by associating all pos-
sible slot realizations with their appropriate slot
type. We additionally augment the gazetteer us-
ing a small set of handcrafted rules which capture
cases not easily encapsulated by the above pro-
cess, for example, associating the priceRange
slot with a chunk of text using currency symbols
or relevant lexemes, such as ‘“cheap” or “high-
end”. While handcrafted, these rules are transfer-
able across domains, as they target the slots, not
the domains, and mostly serve to counteract the
noise in the E2E dataset. Finally, we use Word-
Net (Fellbaum, 1998) to further augment the size
of our gazetteer by accounting for synonyms and
other semantic relationships, such as associating
“pasta” with the food[Italian] slot.

4.4 Reranker

As discussed in Section 4.2, our model uses beam
search to produce a pool of the most likely utter-
ances for a given MR. While these results have a
probability score provided by the model, we found
that relying entirely on this score often results in
the system picking a candidate which is objec-
tively worse than a lower scoring utterance (i.e.
one missing more slots and/or realizing slots in-
correctly). We therefore augment that score by
multiplying it by the following score which takes
the slot alignment into consideration:

N
(Ny+1) - (No+1)’

Salign =

where N is the number of all slots in the given
MR, and N, and N, represent the number of
unaligned slots (those not observed by our slot
aligner) and over-generated slots (those which
have been realized but were not present in the orig-
inal MR), respectively.

S Data Preprocessing

5.1 Delexicalization

We enhance the ability of our model to general-
ize the learned concepts to unseen MRs by delex-
icalizing the training data. Moreover, it reduces
the amount of data required to train the model.
We identify the categorical slots whose values al-
ways propagate verbatim to the utterance, and re-
place the corresponding values in the utterance
with placeholder tokens. The placeholders are
eventually replaced in the output utterance in post-
processing by copying the values from the input
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MR. Examples of such slots would be name or
near in the E2E dataset, and screensize or
processor in the TV and the Laptop dataset.

Previous work identifies categorical slots as
good delexicalization candidates that improve the
performance of the model (Wen et al., 2015b;
Nayak et al., 2017). However, we chose not to
delexicalize those categorical slots whose values
can be expressed in alternative ways, such as “less
than $20” and “cheap”, or “on the riverside” and
“by the river”. Excluding these from delexical-
ization may lead to an increased number of incor-
rect realizations, but it encourages diversity of the
model’s outputs by giving it a freedom to choose
among alternative ways of expressing a slot-value
in different contexts. This, however, assumes that
the training set contains a sufficient number of
samples displaying this type of alternation so that
the model can learn that certain phrases are syn-
onymous. With its multiple human references for
each MR, the E2E dataset has this property.

As Nayak et al. (2017) point out, delex-
icalization affects the sentence planning and
the lexical choice around the delexicalized slot
value.  For example, the realization of the
slot food[Italian] in the phrase “serves
Italian food” is valid, while the realization of
food[fast food] in “serves fast food food”
is clearly undesired. Similarly, a naive delexical-
ization can result in “a Italian restaurant”, whereas
the article should be “an”. Another problem with
articles is singular versus plural nouns in the slot
value. For example, the slot accessories in
the TV dataset, can take on values such as “remote
control”, as well as “3D glasses”, where only the
former requires an article before the value.

We tackle this issue by defining different
placeholder tokens for values requiring differ-
ent treatment in the realization. For instance,
the value “Italian” of the food slot is re-
placed by slot_vow_cuisine_food, indicat-
ing that the value starts with a vowel and rep-
resents a cuisine, while “fast food” is replaced
by slot_con_food, indicating that the value
starts with a consonant and cannot be used as a
term for cuisine. The model thus learns to gen-
erate “a” before slot_con_food and “an” be-
fore slot_vow_cuisine_food when appropri-
ate, as well as to avoid generating the word “food”
after food-slot placeholders that do not contain
the word “cuisine”. All these rules are general and



can automatically be applied across different slots
and domains.

5.2 Data Expansion

Slot Permutation

In our initial experiments, we tried expanding the
training set by permuting the slot ordering in the
MRs as suggested in Nayak et al. (2017). From
different slot orderings of every MR we sampled
five random permutations (in addition to the orig-
inal MR), and created new pseudo-samples with
the same reference utterance. The training set thus
increased six times in size.

Using such an augmented training set might add
to the model’s robustness, nevertheless it did not
prove to be helpful with the E2E dataset. In this
dataset, we observed the slot order to be fixed
across all the MRs, both in the training and the
test set. As a result, for the majority of the time,
the model was training on MRs with slot orders it
would never encounter in the test set, which ulti-
mately led to a decreased performance in predic-
tion on the test set.

Utterance/MR Splitting

Taking a more utterance-oriented approach, we
augment the training set with single-sentence ut-
terances paired with their corresponding MRs.
These new pseudo-samples are generated by split-
ting the existing reference utterances into single
sentences and using the slot aligner introduced in
Section 4.3 to identify the slots that correspond to
each sentence. The MRs of the new samples are
created as the corresponding subsets of slots and,
whenever the sentence contains the name (of the
restaurant/TV/etc.) or a pronoun referring to it
(such as “it” or “its”), the name slot is included
too. Finally, a new position slot is appended
to every new MR, indicating whether it represents
the first sentence or a subsequent sentence in the
original utterance. An example of this splitting
technique can be seen in Table 4. The training set
almost doubled in size through this process.

Since the slot aligner works heuristically, not
all utterances are successfully aligned with the
MR. The vast majority of such cases, however,
is caused by reference utterances in the datasets
having incorrect or entirely missing slot mentions.
There is a noticeable proportion of those, so we
leave them in the training set with the unaligned
slots removed from the MR so as to avoid confus-
ing the model when learning from such samples.
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name [The Waterman], food [English],
MR priceRange [cheap], customer rating [average],
area [city centre], familyFriendly [yes]
There is a family-friendly, cheap restaurant in
Utt the city centre, called The Waterman. It serves
: English food and has an average rating by cus-
tomers.
name [The Waterman], priceRange [cheap],
New - I, :
area [city centre], familyFriendly [yes], posi-
MR#1 .
tion [outer]
New name [The Waterman], food [English], cus-
MR #2  tomer rating [average], position [inner]

Table 4: An example of the utterance/MR splitting.

name [Wildwood], eatType [coffee shop],

MR food [English], priceRange [moderate], cus-
tomer rating [1 out of 5], near [Ranch]
. Wildwood provides English food for a mod-
Simple . .
utt erate price. It has a low customer rating and
) is located near Ranch. It is a coffee shop.
Elegant A low-rated English style coffee shop around
u%t Ranch, called Wildwood, has moderately

priced food.

Table 5: Contrastive example of a simple and a more
elegant reference utterance style for the same MR in
the E2E dataset.

5.3 Sentence Planning via Data Selection

The quality of the training data inherently im-
poses an upper bound on the quality of the predic-
tions of our model. Therefore, in order to bring
our model to produce more sophisticated utter-
ances, we experimented with filtering the train-
ing data to contain only the most natural sounding
and structurally complex utterances for each MR.
For instance, we prefer having an elegant, single-
sentence utterance with an apposition as the refer-
ence for an MR, rather than an utterance composed
of three simple sentences, two of which begin with
“it” (see the examples in Table 5).

We assess the complexity and naturalness of
each utterance by the use of discourse phenomena,
such as contrastive cues, subordinate clauses, or
aggregation. We identify these in the utterance’s
parse-tree produced by the Stanford CoreNLP
toolkit (Manning et al., 2014) by defining a set
of rules for extracting the discourse phenomena.
Furthermore, we consider the number of sentences
used to convey all the information in the corre-
sponding MR, as longer sentences tend to exhibit
more advanced discourse phenomena. Penalizing
utterances for too many sentences contributes to
reducing the proportion of generic reference utter-



ances, such as the “simple” example in the above
table, in the filtered training set.

6 Evaluation

Researchers in NLG have generally used both au-
tomatic and human evaluation. Our results report
the standard automatic evaluation metrics: BLEU
(Papineni et al., 2002), NIST (Przybocki et al.,
2009), METEOR (Lavie and Agarwal, 2007), and
ROUGE-L (Lin, 2004). For the E2E dataset ex-
periments, we additionally report the results of the
human evaluation carried out on the CrowdFlower
platform as a part of the E2E NLG Challenge.

6.1 Experimental Setup

We built our ensemble model using the seq2seq
framework (Britz et al., 2017) for TensorFlow.
Our individual LSTM models use a bidirectional
LSTM encoder with 512 cells per layer, and the
CNN models use a pooling encoder as in Gehring
et al. (2017). The decoder in all models was a
4-layer RNN decoder with 512 LSTM cells per
layer and with attention. The hyperparameters
were determined empirically. After experiment-
ing with different beam search parameters, we set-
tled on the beam width of 10. Moreover, we em-
ployed the length normalization of the beams as
defined in Wu et al. (2016), in order to encour-
age the decoder to favor longer sequences. The
length penalty providing the best results on the
E2E dataset was 0.6, whereas for the TV and Lap-
top datasets it was 0.9 and 1.0, respectively.

6.2 Experiments on the E2E Dataset

We start by evaluating our system on the E2E
dataset. Since the reference utterances in the test
set were kept secret for the E2E NLG Challenge,
we carried out the metric evaluation using the vali-
dation set. This was necessary to narrow down the
models that perform well compared to the base-
line. The final model selection was done based on
a human evaluation of the models’ outputs on the
test set.

6.2.1 Automatic Metric Evaluation

In the first experiment, we assess what effect the
augmenting of the training set via utterance split-
ting has on the performance of different models.
The results in Table 6 show that both the LSTM
and the CNN models clearly benefit from addi-
tional pseudo-samples in the training set. This can
likely be attributed to the model having access to
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BLEU NIST METEOR ROUGE

s 0.6664 8.0150 0.4420 0.7062
LST™M s 0.6930% 8.4198 0.4379 0.7099
CNN s 0.6599 7.8520 0.4333 0.7018

0.6760" 8.0440 0.4448 0.7055
Table 6: Automatic metric scores of different mod-

els tested on the E2E dataset, both unmodified (s) and
augmented (s) through the utterance splitting. The
symbols T and ¥ indicate statistically significant im-
provement over the S counterpart with p < 0.05 and
p < 0.01, respectively, based on the paired t-test.

more granular information about which parts of
the utterance correspond to which slots in the MR.
This may assist the model in sentence planning
and building a stronger association between parts
of the utterance and certain slots, such as that “it”
is a substitute for the name.

Testing our ensembling approach reveals that
reranking predictions pooled from different mod-
els produces an ensemble model that is overall
more robust than the individual submodels. The
submodels fail to perform well in all four met-
rics at once, whereas the ensembling creates a new
model that is more consistent across the differ-
ent metric types (Table 7).> While the ensemble
model decreases the proportion of incorrectly re-
alized slots compared to its individual submodels
on the validation set, on the test set it only out-
performs two of the submodels in this aspect (Ta-
ble 8). Analyzing the outputs, we also observed
that the CNN model surpassed the two LSTM
models in the ability to realize the “fast food” and
“pub” values reliably, both of which were hardly
present in the validation set but very frequent in
the test set. On the official E2E test set, our en-
semble model performs comparably to the base-
line model, TGen (Dusek and Jurcicek, 2016), in
terms of automatic metrics (Table 9).

6.2.2 Human Evaluation

It is known that automatic metrics function only as
a general and vague indication of the quality of an
utterance in a dialogue (Liu et al., 2016; Novikova
et al., 2017a). Systems which score similarly ac-
cording to these metrics could produce utterances
that are significantly different because automatic

3The scores here correspond to the model submitted to
the E2E NLG Challenge. Subsequently, we found better per-
forming models according to some metrics: see Table 6.



BLEU NIST METEOR ROUGE

BLEU NIST METEOR ROUGE
LSTM1 0.6661 8.1626 0.4644 0.7018
LSTM2 0.6493 7.9996 0.4649 0.6995
CNN  0.6636 7.9617 0.4700 0.7107
Ensem. 0.6576 8.0761 0.4675 0.7029

Table 7: Automatic metric scores of three different
models and their ensemble, tested on the validation set
of the E2E dataset. LSTM2 differs from LSTMI in that
it was trained longer.

Validation set Test set
LSTM1 0.116% 0.988%
LSTM2 0.145% 1.241%
CNN 0.232% 0.253%
Ensem. 0.087% 0.965%

Table 8: Error rate of the ensemble model compared to
its individual submodels.

metrics fail to capture many of the characteris-
tics of natural sounding utterances. Therefore, to
better assess the structural complexity of the pre-
dictions of our model, we present the results of a
human evaluation of the models’ outputs in terms
of both naturalness and quality, carried out by the
E2E NLG Challenge organizers.

Quality examines the grammatical correctness
and adequacy of an utterance given an MR,
whereas naturalness assesses whether a predicted
utterance could have been produced by a native
speaker, irrespective of the MR. To obtain these
scores, crowd workers ranked the outputs of 5 ran-
domly selected systems from worst to best. The
final scores were produced using the TrueSkill
algorithm (Sakaguchi et al., 2014) through pair-
wise comparisons of the human evaluation scores
among the 20 competing systems.

Our system, trained on the E2E dataset without
stylistic selection (Section 5.3), achieved the high-
est quality score in the E2E NLG Challenge, and
was ranked second in naturalness.* The system’s
performance in quality (the primary metric) was
significantly better than the competition according
to the TrueSkill evaluation, which used bootstrap
resampling with a p-level of p < 0.05. Comparing
these results with the scores achieved by the base-
line model in quality and naturalness (5th and 6th

“The system that surpassed ours in naturalness was ranked
the last according to the quality metric.
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TGen 0.6593 8.6094 0.4483 0.6850
Ensem. 0.6619 8.6130 0.4454 0.6772

Table 9: Automatic metric scores of our ensemble
model compared against TGen (the baseline model),
tested on the fest set of the E2E dataset.

The Cricketers is a cheap Chinese restaurant near
All Bar One in the riverside area, but it has an av-
erage customer rating and is not family friendly.

Ex.
#1

Ex.
#2

If you are looking for a coffee shop near The Rice
Boat, try Giraffe.

Table 10: Examples of generated utterances that con-
tain more advanced discourse phenomena.

place, respectively) reinforces our belief that mod-
els that perform similarly on the automatic metrics
(Table 9) can exhibit vast differences in the struc-
tural complexity of their generated utterances.

6.2.3 Experiments with Data Selection

After filtering the E2E training set as described in
Section 5.3, the new training set consisted of ap-
proximately 20K pairs of MRs and utterances. In-
terestingly, despite this drastic reduction in train-
ing samples, the model was able to learn more
complex utterances that contained the natural vari-
ations of the human language. The generated ut-
terances exhibited discourse phenomena such as
contrastive cues (see Example #1 in Table 10), as
well as a more conversational style (Example #2).
Nevertheless, the model also failed to realize slots
more frequently.

In order to observe the effect of stylistic data se-
lection, we conducted a human evaluation where
we assessed the utterances based on error rate and
naturalness. The error rate is calculated as the per-
centage of slots the model failed to realize divided
by the total number of slots present among all sam-
ples. The annotators ranked samples of utterance
triples — corresponding to three different ensemble
models — by naturalness from 1 to 3 (3 being the
most natural, with possible ties). The conservative
model combines three submodels all trained on the
full training set, the progressive one combines sub-
models solely trained on the filtered dataset, and
finally, the hybrid is an ensemble of three models
only one of which is trained on the full training
set, so as to serve as a fallback.

The impact of the reduction of the number of



Ensemble model Error rate Naturalness
Conservative 0.40% 2.196
Progressive 1.60% 2.118
Hybrid 0.40% 2.435

Table 11: Average error rate and naturalness metrics
obtained from six annotators for different ensemble
models.

training samples becomes evident by looking at
the score of the progressive model (Table 11),
where this model trained solely on the reduced
dataset had the highest error rate. We observe,
however, that a hybrid ensemble model manages
to perform the best in terms of the error rate, as
well as the naturalness.

These results suggest that filtering the dataset
through careful data selection can help to achieve
better and more natural sounding utterances. It
significantly improves the model’s ability to pro-
duce more elegant utterances beyond the “[name]
is... Itis/has...” format, which is only too common
in neural language generators in this domain.

6.3 Experiments on TV and Laptop Datasets

In order to provide a better frame of reference for
the performance of our proposed model, we uti-
lize the RNNLG benchmark toolkit® to evaluate
our system on two additional, widely used datasets
in NLG, and compare our results with those of
a state-of-the-art model, SCLSTM (Wen et al.,
2015b). As Table 12 shows, our ensemble model
performs competitively with the baseline on the
TV dataset, and it outperforms it on the Laptop
dataset by a wide margin. We believe the higher
error rate of our model can be explained by the sig-
nificantly less aggressive slot delexicalization than
the one used in SCLSTM. That, however, gives
our model a greater lexical freedom and, with it,
the ability to produce more natural utterances.

The model trained on the Laptop dataset is also
a prime example of how an ensemble model is ca-
pable of extracting the best learned concepts from
each individual submodel. By combining their
knowledge and compensating thus for each other’s
weaknesses, the ensemble model can achieve a
lower error rate, as well as a better overall qual-
ity, than any of the submodels individually.

>https://github.com/shawnwun/RNNLG
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TV Laptop
BLEU ERR BLEU ERR
SCLSTM 0.5265 2.31% 0.5116 0.79%
LSTM 0.5012 3.86% 0.5083 4.43%
CNN 0.5287 1.87% 0.5231 2.25%
Ensem. 0.5226 1.67% 0.5238 1.55%

Table 12: Automatic metric scores of our ensemble
model evaluated on the test sets of the TV and Lap-
top datasets, and compared against SCLSTM. The ERR
column indicates the slot error rate, as computed by
the RNNLG toolkit (for our models calculated in post-
processing).

7 Conclusion and Future Work

In this paper we presented our ensemble atten-
tional encoder-decoder model for generating natu-
ral utterances from MRs. Moreover, we presented
novel methods of representing the MRs to improve
performance. Our results indicate that the pro-
posed utterance splitting applied to the training
set greatly improves the neural model’s accuracy
and ability to generalize. The ensembling method
paired with the reranking based on slot alignment
also contributed to the increase in quality of the
generated utterances, while minimizing the num-
ber of slots that are not realized during the genera-
tion. This also enables the use of a less aggressive
delexicalization, which in turn stimulates diversity
in the produced utterances.

We showed that automatic slot alignment can be
utilized for expanding the training data, as well as
for utterance reranking. Our alignment currently
relies in part on empirically observed heuristics,
and a more robust aligner would allow for more
flexible expansion into new domains. Since the
stylistic data selection noticeably improved the di-
versity of our system’s outputs, we believe this is
a method with future potential, which we intend to
further explore. Finally, it is clear that current au-
tomatic evaluation metrics in NLG are only suffi-
cient for providing a vague idea as to the system’s
performance; we postulate that leveraging the ref-
erence data to train a classifier will result in a more
conclusive automatic evaluation metric.
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Abstract

This paper presents a novel, data-driven lan-
guage model that produces entire lyrics for a
given input melody. Previously proposed mod-
els for lyrics generation suffer from the in-
ability of capturing the relationship between
lyrics and melody partly due to the unavail-
ability of lyrics-melody aligned data. In
this study, we first propose a new practi-
cal method for creating a large collection of
lyrics-melody aligned data and then create a
collection of 1,000 lyrics-melody pairs aug-
mented with precise syllable-note alignments
and word/sentence/paragraph boundaries. We
then provide a quantitative analysis of the
correlation between word/sentence/paragraph
boundaries in lyrics and melodies. We then
propose an RNN-based lyrics language model
conditioned on a featurized melody. Experi-
mental results show that the proposed model
generates fluent lyrics while maintaining the
compatibility between boundaries of lyrics
and melody structures.

1 Introduction

Writing lyrics for a given melody is a challenging
task. Unlike prose text, writing lyrics requires both
knowledge and consideration of music-specific
properties such as the structure of melody, rhythms,
etc. (Austin et al., 2010; Ueda, 2010). A simple ex-
ample is the correlation between word boundaries
in lyrics and the rests in a melody. As shown in
Figure 1, a single word spanning beyond a long
melody rest can sound unnatural. When writing
lyrics, a lyricist must consider such constraints in
content and lexical selection, which can impose
extra cognitive loads.

This consideration when writing lyrics has mo-
tivated a wide-range of studies for the task of
computer-assisted lyrics writing (Barbieri et al.,
2012; Abe and Ito, 2012; Potash et al., 2015; Watan-
abe et al., 2017). Such studies aim to model the
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Example of awkward lyrics. Rest
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(yet) || (know) (not) (tomorrow)  ||(to)| (go)

(Proceed to an unknown tomorrow)

Example of ngtu:a! I.ch.s-' o Rest L
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hi-to-ri | | de a- ru- i-ta ko-no|[{mi-chi

- < LAY %) &

(alone)| [(FUNC) (walked) (this)|[| (road)

(I walked alone... This road)

Figure 1: Examples of awkward and natural lyrics.
FUNC indicates a function word. The song is
from the RWC Music Database (RWC-MDB-P-2001
No.20) (Goto et al., 2002).

language in lyrics and to design a computer sys-
tem for assisting lyricists in writing. They propose
to constrain their models to generate only lyrics
that satisfy given conditions on syllable counts,
rhyme positions, etc. However, such constraints
are assumed to be manually provided by a human
user, which requires the user to interpret a source
melody and transform their interpretation to a set
of constraints. To assist users with transforming a
melody to constraints, a language model that auto-
matically captures the relationship between lyrics
and melody is required.

Some studies (Oliveira et al., 2007; Oliveira,
2015; Nichols et al., 2009) have quantitatively ana-
lyzed the correlations between melody and phono-
logical aspects of lyrics (e.g., the relationship be-
tween a beat and a syllable stress). However, these
studies do not address the relationship between
melody and the discourse structure of lyrics. Lyrics
are not just a sequence of syllables but a meaningful
sequence of words. Therefore, it is desirable that
the sentence/paragraph boundaries are determined
based on both melody rests and context words.

Considering such line/paragraph structure of
lyrics, we present a novel language model that gen-
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erates lyrics whose word, sentence, and paragraph
boundaries are appropriate for a given melody,
without manually transforming the melody to syl-
lable constraints. This direction of research has
received less attention because it requires a large
dataset consisting of aligned pairs of melody and
segment boundaries of lyrics which has yet to exist.

To address this issue, we leverage a publicly-
available collection of digital music scores and cre-
ate a dataset of digital music scores each of which
specifics a melody score augmented with syllable
information for each melody note. We collected
1,000 Japanese songs from an online forum where
many amateur music composers upload their music
scores. We then automatically aligned each music
score with the raw text data of the corresponding
lyrics in order to augment it with the word, sen-
tence, and paragraph boundaries.

The availability of such aligned, parallel data
opens a new area of research where one can con-
duct a broad range of data-oriented research for
investigating and modeling correlations between
melodies and discourse structure of lyrics. In this
paper, with our melody-lyrics aligned songs, we in-
vestigate the phenomena that (i) words, sentences,
and paragraphs rarely span beyond a long melody
rest and (ii) the boundaries of larger components
(i.e., paragraphs) tend to coincide more with longer
rests. To the best of our knowledge, there is no
previous work that provides any quantitative analy-
sis of this phenomenon with this size of data (see
Section 7).

Following this analysis, we build a novel, data-
driven language model that generates fluent lyrics
whose sentence and paragraph boundaries fit an
input melody. We extend a Recurrent Neural Net-
work Language Model (RNNLM) (Mikolov et al.,
2010) so that its output can be conditioned on a
featurized melody. Both our quantitative and qual-
itative evaluations show that our model captures
the consistency between melody and boundaries of
lyrics while maintaining word fluency.

2 Melody-lyric alignment data

Our goal is to create a melody-conditioned lan-
guage model that captures the correlations between
melody patterns and discourse segments of lyrics.
The data we need for this purpose is a collec-
tion of melody-lyrics pairs where the melody and
lyrics are aligned at the level of not only note-
syllable alignment but also discourse components

Digital musical score data with syllables

& e e
Melody Er S = T TH
Syllable * ;’ nli ke tz{ rli n } l(‘) 572 omo o ta
Ly.ric text data NJLL l \ \ I ’ \ NULL/ /NULL
with syllable and NULL [ Needleman-Wunsch alignment algorithm
boundary T VN [ 1 /7 7
Syllable /  [na-ni] [Ka] [ta-ri] [na-i] [to] [6-mo] [ta]
Word (BOL) fil 70 &Y 72\ & FHo 7o
Melody-Lyric alignment data
o H PP - . ' ' '
Melody o SS=se=dr=casssaanis
%’ H P il . /) T ) I\V )
Syllable Hi/__]\} na-ni | ka ita- rii na-ii{to  _ {o-mo ita
Word GO il § i gy 2wy [ r 1§ iEs i
Mimi(s&me-) (FUNC)(enough)i  (not) i(FUNC)! ~ (think) i(FUNC)
1" thing) ! : : : : : '
(I thought that something was missing)

Figure 2: Melody-lyrics alignment using the Needle-
man Wunsch algorithm. BOL denotes a line boundary.

(i.e., word/sentence/paragraph boundaries) of a
lyric, as illustrated in the bottom of Figure 2. We
create such a dataset by automatically combining
two types of data available from online forum sites:
digital music score data (the top of Figure 2) and
raw lyrics data (the middle).

A digital music score specifies a melody score
augmented with syllable information for each
melody note (see the top of Figure 2). Score data
augmented in this way is sufficient for analyzing
the relationship between the phonological aspects
of lyrics and melody, but it is insufficient for our
goal since the structural information of the lyrics
is not included. We thus augment score data fur-
ther with boundaries of sentences, and paragraphs,
where we assume that sentences and paragraphs
of lyrics are approximately captured by /ines and
blocks,' respectively, of the lyrics in the raw text.

The integration of music scores and raw lyrics
is achieved by (1) applying a morphological an-
alyzer? to raw lyrics for word segmentation and
Chinese character pronunciation prediction and (2)
aligning music score with raw lyrics at the sylla-
ble level as illustrated in Figure 2. For this align-
ment, we employ the Needleman-Wunsch algo-
rithm (Needleman and Wunsch, 1970). This align-
ment process is reasonably accurate because it fails
in principle only when the morphological analysis
fails in Chinese character pronunciation prediction,
which occurs for only less than 1% of the words in
the data set.

With this procedure, we obtained 54,181
Japanese raw lyrics and 1,000 digital musical

"Blocks are assumed to be segmented by empty lines.
2To extract word boundaries and syllable information for
Japanese lyrics, we apply MeCab parser (Kudo et al., 2004).
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(The first time I noticed your lovely smile)

Figure 3: Example boundaries appearing immediately
after a rest. BOB indicates a block boundary.
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Figure 4: Distribution of the number of boundaries in
the melody-lyrics alignment data.

scores from online forum sites?; we thus created
1,000 melody-lyrics pairs. We refer to these 1,000
melody-lyrics pairs as a melody-lyrics alignment
data* and refer to the remaining 53,181 lyrics with-
out melody as a raw lyrics data.

We randomly split the 1,000 melody-lyrics align-
ments into two sets: 90% for analyzing/training
and the remaining 10% for testing. From those,
we use 20,000 of the most frequent words whose
syllable counts are equal to or less than 10, and
converted others to a special symbol (unknown).
All of the digital music score data we collected
were distributed in the UST format, a common file
format designed specifically for recently emerging
computer vocal synthesizers. While we focus on
Japanese music in this study, our method for data
creation is general enough to be applied to other
language formats such as MusicXML and ABC,
because transferring such data formats to UST is
straightforward.

3For selecting the 1,000 songs, we chose only frequently
downloaded or highly popular songs to ensure the quality of
the resulting dataset.

“We publicly release all source URLs of the 1,000 songs
(https://github.com/KentoW/melody—-1lyrics).
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3 Correlations between melody and lyric

In this section, we examine two phenomena re-
lated to boundaries of lyrics: (1) the positions of
lyrics segment boundaries are biased to melody
rest positions, and (2) the probability of boundary
occurrence depends on the duration of a rest, i.e.,
a shorter rest tends to be a word boundary and a
longer rest tends to be a block boundary, as shown
in Figure 3. All analyses were performed on the
training split of the melody-lyrics alignment data,
which is described in Section 2.

For the first phenomenon, we first calculated
the distribution of boundary appearances at the po-
sitions of melody notes and rests. Here, by the
boundary of a line (or block), we refer to the po-
sition of the beginning of the line (or block).> In
Figure 3, we say, for example, that the boundary
of the first block beginning “fe-ra-shi te” coincides
with Rest#1. The result, shown at the top of Fig-
ure 4, indicates that line and block boundaries are
strongly biased to rest positions and are far less
likely to appear at note positions. Words, lines, and
blocks rarely span beyond a long melody rest.

The bottom of Figure 4 shows the detailed dis-
tributions of boundary occurrences for different
durations of melody rests, where durations of 480
and 1920 correspond to a quarter rest and a whole
rest, respectively. The results exhibit a clear, strong
tendency that the boundaries of larger segments
tend to coincide more with longer rests. To the
best of our knowledge, this is the first study that
has ever provided such strong empirical evidence
for the phenomena related to the correlations be-
tween lyrics segments and melody rests. It is also
important to note that the choice of segment bound-
aries looks like a probabilistic process (i.e., there
is a long rest without a block boundary). This ob-
servation suggests the difficulty of describing the
correlations of lyrics and melody in a rule-based
fashion and motivates our probabilistic approach
as we present in the next section.

4 Melody-conditioned language model

Our goal is to build a language model that generates
fluent lyrics whose discourse segment fit a given
melody in the sense that generated segment bound-
aries follow the distribution observed in Section 3.
We propose to pursue this goal by conditioning a

3The beginning of a line/block and the end of a line/block

are equivalent since there is no melody between the end and
beginning of a line/block.
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Figure 5: Melody-conditioned RNNLM.

standard RNNLM with a featurized input melody.
We call this model a Melody-conditioned RNNLM.

The network structure of the model is illustrated
in Figure 5. Formally, we are given a melody
m = my,...,m;,...,my that is a sequence of notes
and rests, where m includes a pitch and a dura-
tion information. Our model generates lyrics w =
wWy,...,We,..., w7 that is a sequence of words and
segment boundary symbols: (BOL) and (BOB),
special symbols denoting a line and a block bound-
ary, respectively. For each time step ¢, the model
outputs a single word or boundary symbol taking a
pair of the previously generated word w;_; and the
musical feature vector ny for the current word posi-
tion which includes context window-based features
that we describe in the following section. In this
model, we assume that the syllables of the gener-
ated words and the notes in the input melody have
a one-to-one correspondence. Therefore, the posi-
tion of the incoming note/rest for a word position
t (referred to as a target note for ¢) is uniquely de-
termined by the syllable counts of the previously
generated words.® The target note for ¢ is denoted
as m;(;) by defining a function i(-) which maps
time step ¢ to the index of the next note in ¢.

Here, the challenging issue with this model is
training. Generally, language models require a
large amount of text data to learn well. Moreover,
this is also the case for learning correlation between
rest positions and syllable counts. As shown in Fig-
ure 4, most words are supposed to not overlap a

SNote that our melody-lyrics alignment data used in train-
ing does not make this assumption, but we can still uniquely
identify the positions of target notes based on the obtained
melody-word alignment.

long rest. This means, for example, that when the
incoming melody sequence for a next word posi-
tion is note, note, (long) rest, note, note, as the
sequence following to m;; 1) in Figure 5, it is de-
sirable to select a word whose syllable count is two
or less so that the generated word does not overlap
the long rest. If there is sufficient data available,
this tendency may be learned directly from the cor-
relation between rests and words without explicitly
considering the syllable count of a word. However,
our melody-lyrics alignments for 1,000 songs are
insufficient for this purpose.

We take two approaches to address this data spar-
sity problem. First, we propose two training strate-
gies that increase the number of training examples
using raw lyrics that can be obtained in greater
quantities. Second, we construct a model that pre-
dicts the number of syllables in each word, as well
as words themselves, to explicitly supervise the
correspondence between rest positions and syllable
counts.

In the following sections, we first describe the
details of the proposed model and then present the
training strategies used to obtain better models with
our melody-lyrics alignment data.

4.1 Model construction

The proposed model is based on a standard
RNNLM (Mikolov et al., 2010):

P(w) = [T, P(wiwo, .o wi—r), (1)

where context words are encoded using
LSTM (Hochreiter and Schmidhuber, 1997)
and the probabilities over words are calculated
by a softmax function. wp = (B) is a symbol
denoting the beginning of lyrics. We extend this
model such that each output is conditioned by
the context melody vectors ny, ..., ns, as well as
previous words:

P(wim) = [T, P(wi|wo, ..., wi_1,01, ...;mg). (2)

The model simultaneously predicts the sylla-
ble counts of words by sharing the parameters
of LSTM with the above word prediction model
in order to learn the correspondence between the
melody segments and syllable counts:

P(s|m) = HZ:1P<8t|’lU(),...,’wtfl,nl,...,nt), (3)

where s = s1,...,s7 is a sequence of syllable
counts, which corresponds to w.
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For each time step ¢, the model outputs a word
distribution y!, € R and a distribution of syllable
count y*, € RS using a softmax function:

yl, = softmax(BN(W,z;)), S
y% = softmax(BN(W,z;)), )

where z; is the output of the LSTM for each time
step. V is the vocabulary size and S is the syllable
count threshold.” W,, and W, are weight matri-
ces. BN denotes batch normalization (Ioffe and
Szegedy, 2015).

The input to the LSTM in each time step ¢ is a
concatenation of the embedding vector of the pre-
vious word v(w;_1) and the context melody repre-
sentation x’,, which is a nonlinear transformation
of the context melody vector ny:

Xt = [V(wtfl)ﬂ(;]’ (6)

xt = ReLU(W,n; +b,), (7)

where W, is a weight matrix and b, is a bias.

To generate lyrics, the model searches for the
word sequence with the greatest probability (Eq.
2) using beam search. The model stops generating
lyrics when the syllable count of the lyrics reaches
the number of notes in the input melody.

Note that our model is not specific to the lan-
guage of lyrics. The model only requires the se-
quences of melody, words, and syllable counts and
does not use any language-specific features.

4.2 Context melody vector

In Section 3, we indicated that the positions of
rests and their durations are important factors for
modeling boundaries of lyrics. Thus, we collect
a sequence of notes and rests around the current
word position (i.e., time step ¢) and encode their
information into context melody vector n; (see the
bottom of Figure 5).

The context melody vector n; is a binary fea-
ture vector that includes a musical notation type
(i.e., note or rest), a duration®, and a pitch for each
note/rest in the context window. We collect notes
and rests around the target note m; ;) for the cur-
rent word position ¢ with a window size of 10 (i.e.,
TGi(1) =105 -5 TVi(t) > -+ TTi(t)+10)-

For pitch information, we use a gap (pitch inter-
val) between a target note m;(;) and its previous

"The syllable counts of the (BOL) and (BOB) are zero.

8We rounded each duration to one of the values 60, 120,
240, 360, 480, 720, 960, 1200, 1440, 1680, 1920, and 3840
and use one-hot encoding for each rounded duration.
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Algorithm 1 Pseudo melody generation

1: for each syllable in the input-lyrics do
2: b < get boundary type next to the syllable
3 sample note pitch p ~ P(p;|pi—2, pi—1)
4 sample note duration dnoe ~ P (dnote|b
5: assign note with (p, dnote) to the syllable
6: sample binary variable r ~ P(r|b)
7: if » = 1 then
8 insert rest with duration drest ~ P (drest|b)
9 end if
10: end for

ll:l <BOB> 0 <BOL> [ Word boundary

Note H ‘ ‘ l
Rest [ [ [ [
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[ No boundary
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Figure 6: Distribution of the number of boundaries in
pseudo-data.

note m;;_1). Here, the pitch is represented by a
MIDI note number in the range O to 127. For ex-
ample, the target and its previous notes are 68 and
65, respectively, and the gap is +3.

4.3 Training strategies

Pretraining The size of our melody-lyrics align-
ment data is limited. However, we can obtain a
large amount of raw lyrics. We, therefore, pretrain
the model with 53,181 raw lyrics and then fine-
tune it with the melody-lyrics alignment data. In
pretraining, all context melody vectors n; are zero
vectors. We refer to these pretrained and fine-tuned
models as Lyrics-only and Fine-tuned models, re-
spectively.

Learning with pseudo-melody We propose a
method to increase the melody-lyrics alignment
data by attaching pseudo melodies to the obtained
53,181 raw lyrics. We refer to the model that uses
this data as the Pseudo-melody model.

Algorithm 1 shows the details of pseudo-melody
generation. For each syllable in the lyrics, we first
assign a note to the syllable by sampling the proba-
bility distributions. The pitch of each note is gener-
ated based on the trigram probability. Then, we de-
termine whether to generate a rest next to it. Since
we established the correlations between rests and
boundaries of lyrics in Section 3, the probability for
arest and its duration is conditioned by a boundary



type next to the target syllable. All probabilities are
calculated using the training split of the melody-
lyrics alignment data.

Figure 6 shows the distributions of the number
of boundaries in the pseudo data. The distributions
closely resemble those of gold data in Figure 4.

5 Quantitative evaluation

We evaluate the proposed Melody-conditioned
RNNLMs quantitatively based on two evaluation
metrics: (1) a test set perplexity for measuring the
fluency; (2) a line/block boundary replication task
for measuring the consistency between the melody
and boundaries in the generated lyrics.

5.1 Experimental setup

In our model, we chose the dimensions of the word
embedding vectors and context melody representa-
tion vectors to 512 and 256, respectively, and the
dimension of the LSTM hidden state was 768. We
used a categorical cross-entropy loss for outputs
y., and y., Adam (Kingma and Ba, 2014) with an
initial learning rate of 0.001 for parameter opti-
mization, and a mini-batch size of 32. We applied
an early-stopping strategy with a maximum epoch
number of 100, and training was terminated after
five epochs of unimproved loss on the validation
set. For lyrics generation, we used a beam search
with a width of 10. An example of the generated
lyrics is shown in the supplemental material.

5.2 Evaluation metrics

Perplexity Test-set perplexity (PPL) is a stan-
dard evaluation measure for language models. PPL
measures the predictability of wording in orig-
inal lyrics, where a lower PPL value indicates
that the model can generate fluent lyrics. We
used PPL and its variant PPL-W, which excludes
line/block boundaries, to investigate the predictabil-
ity of words.

Accuracy of boundary replication Under the
assumption that the line and block boundaries of
the original lyrics are placed at appropriate po-
sitions in the melody, we evaluated consistency
between the melody and boundaries in the gener-
ated lyrics by measuring the reproducibility of the
boundaries in the original lyrics. Here the metric
we used was F7-measure of the boundary positions.
We also asked a person to place line and block
boundaries at plausible positions for randomly se-
lected 10 input melodies that the evaluator has

168

Perplexity F'i-measure
Model PPL PPL-W | BOB BOL UB
Lyrics-only 138.0 225.0 | 0.121  0.061  0.106
Full-data 135.9 222.1 | 0.122  0.063  0.108
Alignment-only | 173.3 314.8 | 0.298 0.287 0.477
Heuristic 175.8 284.7 | 0.373 0.239 0.402
Fine-tuned 152.2 2755 | 0.260 0.302 0.479
Pseudo-melody | 115.7 197.5 | 0.318 0.241 0.406
(wloy,)
Fine-tuned 155.1 278.1 | 0.318 0.241 0.366
Pseudo-melody | 118.0 201.5 | 0312  0.250 0.406
Human - -1 0717 0.671  0.751

Table 1: Results of the quantitative evaluation. “UB”
denotes the score for unlabeled matching of line/block
boundaries. “w/o y.” denotes the exclusion of the
syllable-count output layer.

never heard. This person is not a professional mu-
sician but an experienced performer educated on
musicology. The bottom part of Table 1 represents
the human performance.

5.3 Effect of Melody-conditioned RNNLM

To investigate the effect of our language models,
we compared the following six models. The first
one is (1) a Lyrics-only model, a standard RNNLM
trained with 54,081 song lyrics without melody in-
formation. The second and third ones are baseline
Melody-conditioned RNNLMs where the proposed
training strategies are not applied: (2) a Full-data
model trained with mixed data (54,081 song lyrics
and 900 melody-lyrics alignments of those), and
(3) an Alignment-only model trained with only 900
melody-lyrics alignment data. The fourth one is a
strong baseline to evaluate the performance of the
proposed approaches: (4) a Heuristic model that
(i) assigns a line/block boundary to a rest based on
its duration with the same probability, as reported
in Figure 4, and (ii) fills the space between any
two boundaries with lyrics of the appropriate syl-
lable counts. This Heuristic model computes the
following word probability:

®)

P(wt\wo, ceey Wt—1,
Q(BOB)|m;(141)) if w; = (BOB))
Q((BOL)|m;11)) (if wy = (BOL))
(1- Q(<BOB>‘mi(t+l)) - Q((BOL>|mi(t+1)))X

Prstm(we|wo,...,wp—1)
1—-PLstm ((BOL)|wo,...,wt—1)—PLsT™m ((BOB)|wo,...,wt—1)

(otherwise)

m)
(

where () is the same probability as reported in Fig-
ure 4. PpsT is the word probability calculated by
a standard LSTM language model. The remaining
two are Melody-conditioned RNNLMs with the
proposed learning strategies: (5) Fine-tuned and
(6) Pseudo-melody models.
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melody models.

The top part of Table 1 summarizes the perfor-
mance of these models. Regarding the boundary
replication, the Heuristic, Alignment-only, Fine-
tuned, and Pseudo-melody models achieved higher
performance than the Lyrics-only model for unla-
beled matching of line/block boundaries (i.e., UB).
This result indicates that our Melody-conditioned
RNNLMs successfully capture the consistency be-
tween melody and boundaries of lyrics. The re-
sults of the Full-data model is low (as expected)
because the size of the melody-lyrics alignment
data is far smaller than that of the raw lyrics data
and this harms the learning process of the depen-
dency between melody and lyrics. For the block
boundary, the Heuristic model achieved the best
performances. For the line boundary, the Fine-
tuned model achieved the best performances.

Regarding PPL and PPL-W, the Lyrics-only,
Full-data, and Pseudo-melody models show bet-
ter results than the other models. The Fine-tuned
model shows reduced performance compared with
the Lyrics-only model because fine-tuning with
a small amount of data causes overfitting in the
language model. Also, the training size of the
Alignment-only model is insufficient for learning a
language model of lyrics. Interestingly, the Pseudo-
melody model achieved better performance than the
Full-data model and overall achieved the best score.
This result indicates that the Pseudo-melody model
uses the information of a given melody to make a
better prediction of its lyrics word sequence. On
the other hand, the Heuristic model had the worst
performance, despite training with a large amount
of raw lyrics. We analyze the reason for such per-
formance and describe our results in Section 5.5.
It is not necessarily clear which to choose, either
the Fine-tuned or Pseudo-melody model, which
may depend also on the size and diversity of the
training and test data. However, one can conclude
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at least that combining a limited-scale collection
of melody-lyrics alignment data with a far larger
collection of lyrics-alone data boosts the model’s
capability of generating a fluent lyrics which struc-
turally fits well the input melody.

5.4 Effect of predicting syllable-counts

To investigate the effect of predicting syllable-
counts, we compared the performance of the pro-
posed models to models that exclude the syllable-
count output layer y,. The middle part of Table 1
summarizes the results. For the pretraining strat-
egy, the use of y, successfully alleviates data spar-
sity when learning the correlation between syllable
counts and melodies from only words themselves.
As can be seen, the model without y, shows re-
duced performance relative to both PPLs and the
boundary replication. On the other hand, for the
pseudo-melody strategy, the two models are com-
petitive in both measures. This means that the
Pseudo-melody model obtained a sufficient amount
of word-melody input pairs to learn the correlation.

5.5 Analysis of melody and generated lyrics

To examine whether the models can capture corre-
lations between rests and boundaries of lyrics, we
calculate the proportion of the word, line, and block
boundaries in the original lyrics and in the lyrics
generated by the Heuristic and Pseudo-melody
model for the test set (Figure 7). The proportion
of (BOL) and (BOB) generated by the Heuristic
model are almost equivalent to those of the original
lyrics. On the other hand, for the Pseudo-melody
model, the proportion of line/block boundary types
for the longer rests are smaller than that of the
original lyrics.

Although the Heuristic model reproduces the
proportion of the original line/block boundaries,
the model had a low performance in terms of PPL,
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Heuristic Lyrics-only Fine-tuned Pseudo-melody Human (Upper-bound)
Measure | Means = SD  Median | Means + SD Median | Means + SD Median | Means + SD Median | Means + SD Median
L 2.06+£1.08 2 2.334+1.23 2 2.85+1.20 3 2.93+1.14 3 3.56+1.33 4
G 2.28+1.07 2 2.81+1.16 3 2.79+1.06 3 2.974+1.08 3 3.50+1.25 4
LM 2.344+1.07 2 291+1.15 3 2.70+1.13 3 2.96+1.09 3 3.49+1.35 4
DM 2.33£1.10 2 2.80+1.06 3 2.59+1.11 3 2.894+1.07 3 3.49+1.30 4
0Q 2.01£1.01 2 2.59+1.15 3 2.42+1.08 2 2.65+1.01 3 3.3241.19 4

Table 2: Results of the qualitative evaluation.

as shown in Section 5.3. By investigating the lyrics
generated by the Heuristic model, we found that the
model tends to generate line/block boundaries after
the melody rest, even if the two rests are quite close.
Figure 8 shows the distributions of the syllable
per line / block frequency and the distributions of
the Jensen-Shannon divergence. While the Heuris-
tic model tends to generate short lines/blocks, our
model generates the lyrics so that lines/blocks do
not become too short. This result supports that (i)
our model is trained using melody and lyric con-
texts and (ii) the heuristic approach, which simply
generates line/block boundaries based on the dis-
tribution in Figure 4, cannot generate fluent lyrics
with well-formed line/block lengths.

6 Qualitative evaluation

To asses the quality of the generated lyrics, inspired
by (Oliveira, 2015), we asked 50 Yahoo crowd-
sourcing workers to answer the following five ques-
tions using a five-point Likert scale:

Listenability (I.) When listening to melody and
lyrics, are the positions of words, lines, and seg-
ments natural? (1=Poor to S=Perfect)
Grammaticality (G) Are the lyrics grammatically
correct? (1=Poor to 5=Perfect)

Line-level meaning (LM) Is each line in the lyrics
meaningful? (1=Unclear to 5=Clear)
Document-level meaning (DM) Are the entire
lyrics meaningful? (1=Unclear to 5=Clear)
Overall quality (OQ) What is the overall quality
of the lyrics? (1=Terrible to 5=Great)

For the evaluation sets, we randomly se-
lected four melodies from the RWC Music
Database (Goto et al., 2002). For each melody,
we prepared four lyrics generated by the Heuristic,
Lyrics-only, Fine-tuned, and Pseudo-melody mod-
els. Moreover, to obtain an upper bound for this
evaluation, we used the lyrics created by amateur
writers: we asked four native Japanese speakers to
write lyrics on the evaluation melody. One writer
was a junior high school teacher of music who had
experience in music composition and writing lyrics.
Three writers were graduate students with different
levels of musical expertise. Two of the three writers
had experience with music composition, but none
of them had experience with writing lyrics.® As a
result, we obtained 50 (workers) x 4 (melodies) X
5 (lyrics) samples in total. We note that workers did
not know whether lyrics were created by a human
or generated by a computer.

Table 2 shows the average scores, standard devia-
tions, and medians for each measure. Regarding the
“Listenability” evaluation, workers gave high scores
to the Fine-tuned and Pseudo-melody models that
are trained using both the melody and lyrics. This
result is consistent with the perplexity evaluation
result. On the other hand, regarding the “Grammat-
icality” and “Meaning” evaluation, workers gave
high scores to the Lyrics-only and Pseudo-melody
models that are well-trained on a large amount of
text data. This result is consistent with the result of

"We release lyrics and audio files used in the quali-

tative evaluation on the Web (https://github.com/
KentoW/deep—lyrics—examples).
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the boundary replication task. Regarding the “Over-
all quality” evaluation, the Pseudo-melody model
outperformed all other models. These results indi-
cate our pseudo data learning strategy contributes
to generating high-quality lyrics. However, the
quality of lyrics automatically generated is still
worse than the quality of lyrics that humans pro-
duce, and it still remains an open challenge for
future research to develop computational models
that generate high-quality lyrics.

7 Related work

In the literature, a broad range of research efforts
has been reported for computationally modeling
lyrics-specific properties such as meter, rhythm,
rhyme, stress, and accent Greene et al. (2010);
Reddy and Knight (2011); Watanabe et al. (2014,
2016). While these studies provide insightful find-
ings on the properties of lyrics, none of those takes
the approach of using melody-lyrics parallel data
for modeling correlations of lyrics and melody
structures. One exception is the work of Nichols
et al. (2009), who used melody-lyrics parallel data
to investigate, for example, the correlation between
syllable stress and pitch; however, their exploration
covers only correlations at the prosody level but
not structural correlations.

The same trend can be seen also in the literature
of automatic lyrics generation, where most stud-
ies utilize only lyrics data. Barbieri et al. (2012)
and Abe and Ito (2012) propose a model for gen-
erating lyrics under a range of constraints pro-
vided in terms of rhyme, rhythm, part-of-speech,
etc. Potash et al. (2015) proposes an RNNLM
that generates rhymed lyrics under the assump-
tion that rhymes tend to coincide with the end of
lines. In those studies, the melody is considered
only indirectly; namely, input prosodic/linguistic
constraints/preferences on lyrics are assumed to
be manually provided by a human user because
the proposed models are not capable of inter-
preting and transforming a given melody to con-
straints/preferences.

For generating lyrics for a given melody, we
have so far found in the literature two studies
which propose a method. Oliveira et al. (2007)
and Oliveira (2015) manually analyze correlations
among melodies, beats, and syllables using 42 Por-
tuguese songs and propose a set of heuristic rules
for lyrics generation. Ramakrishnan A et al. (2009)
attempt to induce a statistical model for generating
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melodic Tamil lyrics from melody-lyrics parallel
data using only ten songs. However, the former cap-
tures only phonological aspects of melody-lyrics
correlations and can generate a small fragment of
lyrics (not an entire lyrics) for a given piece of
melody. The latter suffers from the severe shortage
of data and fails to conduct empirical experiments.

8 Conclusion and future work

This paper has presented a novel data-driven ap-
proach for building a melody-conditioned lyrics
language model. We created a 1,000-song melody-
lyrics alignment dataset and conducted a quanti-
tative investigation into the correlations between
melodies and segment boundaries of lyrics. No
prior work has ever conducted such a quantitative
analysis of melody-lyrics correlations with this size
of data. We have also proposed a RNN-based,
melody-conditioned language model that gener-
ates fluent lyrics whose word/line/block boundaries
fit a given input melody. Our experimental re-
sults have shown that: (1) our Melody-conditioned
RNNLMs capture the consistency between melody
and boundaries of lyrics while maintaining word
fluency; (2) combining a limited-scale collection of
melody-lyrics alignment data with a far larger col-
lection of lyrics-alone data for training the model
boosts the model’s competence; (3) we have also
produced positive empirical evidence for the effect
of applying a multi-task learning schema where
the model is trained for syllable count prediction as
well as for word prediction; and (4) the human judg-
ments collected via crowdsourcing showed that our
model improves the quality of generated lyrics.

For future directions, we plan to further extend
the proposed model for capturing other aspects of
lyrics/melody discourse structure such as repeti-
tions, verse-bridge-chorus structure, and topical
coherence of discourse segment. The proposed
method for creating melody-lyrics alignment data
enables us to explore such a broad range of aspects
of melody-lyrics correlations.
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Abstract

In this paper, we investigate the use of
discourse-aware rewards with reinforce-
ment learning to guide a model to gen-
erate long, coherent text. In particular,
we propose to learn neural rewards to
model cross-sentence ordering as a means
to approximate desired discourse struc-
ture. Empirical results demonstrate that a
generator trained with the learned reward
produces more coherent and less repeti-
tive text than models trained with cross-
entropy or with reinforcement learning
with commonly used scores as rewards.

1 Introduction

Defining an ideal loss for training text genera-
tion models remains an open research question.
Many existing approaches based on variants of re-
current neural networks (Hochreiter and Schmid-
huber, 1997; Cho et al., 2014) are trained using
cross-entropy loss (Bahdanau et al., 2015; Vinyals
etal., 2015; Xu et al., 2015; Rush et al., 2015), of-
ten augmented with additional terms for topic cov-
erage or task-specific supervision (Kiddon et al.,
2016; Yang et al., 2017).

Training with cross-entropy, however, does not
always correlate well with achieving high scores
on commonly used evaluation measures such as
ROUGE (Lin, 2004), BLEU (Papineni et al.,
2002), or CIDEr (Vedantam et al., 2015). Another
current line of research therefore explores train-
ing generation models that directly optimize the
target evaluation measure (Wu et al., 2016; Ran-
zato et al., 2015; Paulus et al., 2018; Rennie et al.,
2017) using reinforcement learning methods such
as the REINFORCE algorithm (Williams, 1992).

* Work done while author was at Microsoft Research

Generated Recipe:

Wash the tomatoes and
cut them length-wise.
Set on plate. Slice the
mozzarella and put on
tomatoes. Add dressing
and serve cold.

Gold Recipe

Teacher

Figure 1: The generator is rewarded for imitating the
discourse structure of the gold sequence.

Importantly, most automatic measures are based
on local n-gram patterns, providing only a lim-
ited and myopic perspective of overall text qual-
ity. As a result, while models trained to directly
optimize these measures can yield improvements
on the same measures, they may not lead to bet-
ter quality in terms of overall coherence or dis-
course structure. Indeed, recent studies have re-
ported cases where commonly used measures do
not align well with desired aspects of generation
quality (Rennie et al., 2017; Li et al., 2016).

The challenge, however, is to define a global
score that can measure the complex aspects of text
quality beyond local n-gram patterns. In this pa-
per, we investigate learning neural rewards and
their use in a reinforcement learning regime with
a specific focus on learning more discourse-aware
and coherent text generation. Our approach shares
the spirit of the work of Lowe et al. (2017), where
neural scores were learned to approximate human
judgments of dialogue quality. The key difference
is that our rewards can be fully automatically con-
structed without requiring human judgments and
can be trained in an unsupervised manner.

More specifically, we propose a neural reward
learning scheme that is trained to capture cross-
sentence ordering structure as a means to approxi-
mate the desired discourse structure in documents.
The learned teacher computes rewards for the
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underlying text generator (see Figure 1), which
is trained using self-critical reinforcement learn-
ing (Rennie et al., 2017). We also present a new
method for distributing sentence-level rewards for
more accurate credit assignment.

We test our approach on the task of generat-
ing cooking recipes, and evaluate using automatic
overlap metrics that measure discourse structure.
We also provide human judgments that yield com-
prehensive insights into the model behavior in-
duced by the learned neural rewards. Empirical
results demonstrate that a generator trained with
the discourse-aware rewards produces text that
is more coherent and less repetitive than models
trained with cross-entropy or reinforcement learn-
ing with other commonly used scores.

2 Neural Teachers

Recent work in image captioning (Rennie et al.,
2017), machine translation (Wu et al., 2016), and
summarization (Paulus et al., 2018) has investi-
gated using policy gradient methods to fine-tune
neural generation models using automatic mea-
sures such as CIDEr as the reward. However, be-
cause most existing automatic measures focus on
local n-gram patterns, fine-tuning on those mea-
sures may yield deteriorated text despite increased
automatic scores, especially for tasks that require
long coherent generation (§6.1).

Since writing out a scoring term that quantifies
the quality of discourse coherence is an open re-
search question, we take inspiration from previ-
ous research that learns the overall ordering struc-
ture of a document as an approximation of the dis-
course structure (Barzilay and Lapata, 2005, 2008;
Barzilay and Lee, 2004; Li and Hovy, 2014), and
propose two neural teachers that can learn to score
an ordered sequence of sentences. The scores from
these neural teachers are then used to formulate
rewards (§4.2) that guide coherent long text gen-
eration systems in a policy gradient reinforcement
learning setup. Notably, the neural teachers are
trained offline on gold sequences in an unsuper-
vised manner prior to training the generator. They
are not trained jointly with the generator and their
parameters are fixed during policy learning.

2.1 Notation

We define a document of n sentences as S
{50, ..., sn } Where each sentence s; has L; words.
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Figure 2: The teacher encodes the sentences of the doc-
ument in the forward and reverse order.

2.2 Absolute Order Teacher

The first teacher explored is motivated by work
on deep semantic similarity models (Huang et al.,
2013), which approximated the similarity between
queries and documents in information retrieval
tasks. We extend this approach to modeling tem-
poral patterns by training a sentence encoder to
minimize the similarity between a sequence en-
coded in its forward order, and the same sequence
encoded in the reverse order (see Figure 2).

To focus the teacher on discourse structure, we
design the encoder to capture sentence order, in-
stead of word order. Words in each sentence s;
are encoded using a bag of words:

L;
sj = Z Tij ()
i=1
where x;; is a word embedding and s; is a sen-
tence embedding. Each s; is passed to a gated re-
current unit (GRU) and the final output of the hid-
den unit is used as the representation for the full
document:

hj = GRU(s;, hj1)

2
3)

where f(.5) is the representation of the sentences
of the document and h,, is the final output vector
of the GRU. To capture properties of temporal co-
herence among document sentences, the teacher is
trained to minimize L5, the cosine similarity be-
tween the sentence embedding from reading the
sentences in the forward order, S and <_flrom read-
ing the sentences in the reverse order, S':

Q>
S

_ S5
1 CHINFC

abs “4)



Intuitively, by parametrizing only relations be-
tween sentences (with the GRU layer) and not
those between words, the teacher only captures
sentence ordering properties. When training the
neural generator (§4), we use this learned teacher
to generate a reward that judges the generated se-
quence’s ordering similarity to the gold sequence.

2.3 Relative Order Teacher

While the absolute ordering teacher evaluates the
temporal coherence of the entire generation, we
may want our teacher to be able to judge finer-
grained patterns between sentences. In recipes, for
example, where sentences correspond to process
steps, the teacher should capture implicit script
knowledge (Schank and Abelson, 1975) among
groups of sentences. Consequently, the teacher
should reward sentences individually for how they
fit with surrounding sentences.

In many current approaches for using policy
gradient methods to optimize a model with respect
to a global score, each sentence receives the same
reward. This framework assumes each sentence
is equally responsible for the reward gathered by
the full sequence, allowing potentially appropriate
subsequences to be incorrectly penalized. We de-
sign the relative order teacher to address this issue.

The relative order teacher is trained in the same
way as the absolute order model. A bag of words
embedding is computed for each sentence in the
gold sequence. Subsequences of the gold doc-
ument that have ¢ sentences are selected where
¢ € (Umin, lmaz). For a subsequence beginning
at sentence j, the model computes:

f(Sjj+e) = GRU(Sj1¢, hjye—1) %)

where f(S}.j4¢) is the encoded representation of
sentences {s;,...sj+¢} and h;_; would be initial-
ized as a vector of zeros. The relative ordering
teacher is trained to minimize £,;, the cosine sim-
ilarity between gold orders of subsequences:

. <f<?j:j+g>,f@j+e>>
1S s IS (S 0]
where the arrow above S signifies the order in
which the sentences are processed. The relative
ordering teacher learns to identify local sentence
patterns among ordered sentences, thereby learn-
ing how to reward sequences that are temporally
coherent.
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3 Generator Architecture

In the task of recipe generation, the model is given
a title of a recipe such as “Cheese Sandwich” and
a list of ingredients (e.g., cheese, bread, etc.) and
must generate the full multi-sentence recipe text.
Similar to data to document generation tasks, the
model must generate a full long-form text from
sparse input signal, filling in missing information
on its own (Wiseman et al., 2017).

3.1 Notation

Using the same notation as Kiddon et al. (2016),
we are given a set of recipe title words {g1, ..., gn }
(e.g., { “cheese”, “sandwich” }) and a list of in-
gredients F' = {ij, ..., iz} where each i can be
a single- or multi-word ingredient phrase (e.g.,
“onions” or “onions, chopped”). In the following
paragraphs, all W variables are projections matri-

ces and all b variables are bias vectors.

3.2 Encoder

We use a modification of the baseline encoder of
Kiddon et al. (2016). First, the title words are en-
coded as a bag of embeddings, g. Second, each
ingredient phrase i is encoded as a bag of em-
beddings vector, e;. The ingredient embeddings
are inputs to a bidirectional gated recurrent unit,
which yields an output vector e. The final encoder
output is the concatenation of these two represen-
tations, h® = [g, e].

3.3 Decoder

The decoder is a separate gated recurrent unit that
receives h® from the encoder to initialize its hid-
den state h¢ and must generate a full recipe word
by word. At each time step, the model receives an
input token embedding, x;, as well as the output
from the encoder h®:

ar = o(Wih{_, + Waz; + by) (7
7y — athe (8)
.fEt = [.fCt, Zt] (9)

where Z; is the input to the recurrent unit at every
time step. The recipe generator is pretrained to
minimize the negative loglikelihood of predicting
the next token in the recipe:

T
— ZlogP(mt]xo, .y i—1, ) (10)
t=1

Lmle



Fried Chicken a ~ ,\
 Chicken r(84), r(S2), ..., r(5n)
* Flour

- Spices

Mix spices Bread chicken i Fry in

1) Sample a sequence y according to model’s distribution

2) Greedily decode a sequence y*

Combine bag . Dredge wings in  spice mix

\\\<iiiiﬁiﬁiﬁilll—*’““’“§*""“§”

3) Compute rewards

Figure 3: The model generates a recipe by sampling
from its output vocabulary distribution and greedily de-
codes a baseline recipe. The generated sentences are
passed to the teacher, which yields a reward for each
sentence in each recipe.

where h® is the encoded representation of the ti-
tle and ingredients from Section 3.2 and 7T’ is the
number of words in the gold recipe.

4 Policy Learning

Training a recipe generation model using maxi-
mum likelihood estimation produces generations
that are locally coherent, but lack understanding
of domain knowledge. By using a teacher that re-
wards the model for capturing cooking recipe dis-
course semantics, the model learns a policy that
produces generations that better model the under-
lying recipe process. We learn a policy using the
self-critical approach of Rennie et al. (2017).

4.1 Self-critical sequence training

In self-critical sequence training, outlined in
Figure 3, the model learns by being rewarded
for sampling sequences that receive more re-
ward than a greedily decoded sequence. For
each training example, a sequence g is gener-
ated by sampling from the model’s distribution
P(4¢|9o, .-, t—1,h¢) at each time step ¢. Once
the sequence is generated, the teacher produces a
reward r(g;) for each token in the sequence. A
second sequence y* is generated by argmax decod-
ing from P (y; |yg, ..., y;_1, h®) at each time step .
The model is trained to minimize:

T

Lo = =S (1)~ () 1og P[0, oo -1, )

t=1
(1)
where 7(y; ) is the reward produced by the teacher
for tokens of the greedily decoded sequence. Be-

cause r(y*) can be viewed as a baseline reward
that sampled sequences should receive more than,
the model learns to generate sequences that re-
ceive more reward from the teacher than the best
sequence that can be greedily decoded from the
current policy. This approach allows the model
to explore sequences that yield higher reward than
the current best policy.

4.2 Rewards

As we decode a sequence y = {yo..., Y }, we track
a sentence index that is the number of sentence de-
limiter tokens (e.g., “.”) generated by the model.
The model then implicitly decodes a set of gener-
ated sentences, S” = {so, ..., s, }. These sentences
are provided to the teachers defined in Section 2,
which compute a score for the generated sequence.
We explain the procedure for producing a token re-

ward r(y;) from these scores below.

Absolute Order Once a sequence has been gen-
erated, the absolute order teacher computes a re-
ward for y in the following way:

<_

) = S, £ (8, £(9))
Tabs y)

CESIECIT IESIIECS)
(12)

where ? is the forward-ordered corresponding

gold sequence and <§ is the reverse-ordered gold
sequence. Both terms in the reward computation
are variations of the loss function on which the
absolute order teacher was trained (Equation (4)).
This reward compares the generated sequence to
both sentence orders of the gold sequence, and re-
wards generations that are more similar to the for-
ward order of the gold sequence. Because the co-
sine similarity terms in Equation (12) are bounded
in [—1,1], the model receives additional reward
for generating sequences that are different from
the reverse-ordered gold sequence.

Relative Order Similarly, the relative order re-
ward is generated by the relative order teacher
(§2.3), which evaluates subsequences of sen-
tences, rather than the whole sequence. For a sen-
tence s;, the reward is computed as:

1 () 1S )
L, <||f( (S )
(S0 £S5 )

S IS )]
(13)

7“7«61(8]') =




where £, and £,,,,. define the window of sen-
tences to include in the computation of the reward.
Similar to the absolute order teacher, the relative
order teacher produces scores bounded in [—1, 1],
giving the model additional reward for generat-
ing sequences that are different from the reverse-
ordered gold subsequences.

Credit Assignment When rewarding tokens
with the absolute ordering teacher, each gener-
ated token receives the same sequence-level re-
ward from the absolute order teacher:
r(yt) = ravs(y) (14)
The relative order teacher, meanwhile, computes
rewards for sentences based on their imitation of
nearby sentences in the gold recipe. Rather than
combining all rewards from the teacher to com-
pute a full sequence reward, sentences should only
be rewarded for their own quality. Each token in
a sentence corresponds to a position in the full
sequence. When relative order rewards are com-
puted by the teacher, the correct sentence reward
is indexed for each token. Consequently, when
training with a relative order teacher, words only
receive rewards for the sentences they belong to:

S|

r(y) = Ly € 3j)rrai(35)

j=1

15)

where | S| is the number of sentences in the gener-
ated recipe, and 1 is an indicator variable identify-
ing word y; belonging to sentence s;.

4.3 Mixed Training

As the model learns parameters to optimize the
amount of reward it receives from the teacher, it is
not explicity encouraged to produce fluent gener-
ations. The model quickly learns to generate sim-
ple sequences that exploit the teacher for high re-
wards despite being incoherent recipes (e.g., Fig-
ure 4). Consequently, it is possible that generated
sequences are no longer readable (Pasunuru and
Bansal, 2017; Paulus et al., 2018).

Title: Chili Grits
Ingredients: boiling water, butter, shredded cheddar cheese,
jalapenos, eggs, chicken cream of soup, salt

Generated Recipe: Here .

Figure 4: Recipe generated from a self-critical model
with no mixed training

To remedy this effect, the model optimizes
a mixed objective that balances learning the
discourse-focused policy while maintaining the
generator’s language model:

Lomiz = 'Yﬁrl + (1 - ’Y)Emle (16)

where L, is the objective from Equation (10),
L, is the objective from either Equation (11), and
7 is a hyperparameter in [0, 1].

5 Experimental Setup

5.1 Datasets

We use the Now You're Cooking dataset with the
same training/test/development splits from Kid-
don et al. (2016). For training, we use 109567
recipes with 1000 recipes set aside for both devel-
opment and test.

5.2 Training

Teacher Models The teachers are trained before
the recipe generator and their parameters are fixed
during generation. We tune hyperparameters on
the development set. To train the relative order
teacher, we sample 20 subsequences from each
recipe of £in = 3 t0 £y = 6 sentences. Ad-
ditional details are provided in Appendix A.2.

Recipe Generator We pretrain a recipe genera-
tor using a variant of the encoder-decoder baseline
from Kiddon et al. (2016). Comprehensive hyper-
parameter details can be found in Appendix A.3.

Policy Learning We train a different model for
three different teacher-provided rewards: abso-
lute ordering (AQO), relative ordering (RO) and a
joint reward of relative ordering and BLEU-4 (RO
+ B4), where the full-sequence BLEU-4 reward
and the sentence-level relative ordering reward are
summed at each time step. The best model for
the absolute and relative ordering rewards are the
ones that receive the highest average reward on the
development set. The best model for the mixed
reward was chosen as the one that achieved the
highest average geometric mean of BLEU-4 re-
ward and average relative ordering reward for each
generated sequence y in the development set:

A7)

4 (y)
r= b4TytzerO(yt)

where 734 is the BLEU-4 score of the whole gener-
ated sequence, and rro is computed using Equa-
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Model || BLEU-1 | BLEU-4 | R-L | ABI | AB4 | AR-L || SCBI | SCB4 | SCR-L

Cross-entropy (MLE) | 26.86 4741 28.86 || 31.23 | 4.83 [ 2851 [[ 51.92 [ 2635 | 5021
BLEU-4 (Rennie et al., 2017) 775 138 [ 1393 || 5.69[ 0.84 [ 1037 [[ 10.76 | 5.05 | 20.87
CIDEr (Rennie et al., 2017) 12.67 1.90 | 21.20 || 14.61 | 1.79 | 21.70 || 26.07 | 12.30 | 41.65
ROUGE-L (Paulus et al., 2018) | 29.00 4.86 | 29.10 || 3349 | 473 | 28.11 || 56.86 | 27.83 | 51.26
BLEU-1(y=0.97) | 3116 5.60 [ 2953 || 3228 [ 5.09 [ 29.34 || 52.63 | 2543 | 51.58

BLEU-4 (y =0.99) | 3056 542 (29.16 || 3253 | 4.99 | 2899 || 53.48 | 2635 | 51.02

CIDEr (v =0.97) | 29.60 510 | 2879 || 33.93 | 481 | 2841 || 57.00 | 27.55 | 50.57
ROUGE-L (y =0.97) || 26.88 4.66 | 29.49 || 31.85 | 5.01 | 29.25 || 53.84 | 26.77 | 51.88
Absolute Ordering (AO) || 23.70 4252843 (/2822 | 444 [ 2788 || 47.93 [ 2447 | 50.15
Relative Ordering (RO) || 27.75 4.88 | 29.60 || 34.37 | 5.60 | 29.36 | 5831 | 29.14 | 53.08
Relative Ordering + BLEU-4 || 29.58 526[29.78 || 35.13 | 555 | 2933 || 59.13 | 29.19 | 52.46

Table 1: Evaluation results for generated sequences by models and baselines. We bold the top performing result.
The second to fourth columns list word-level scores. Columns AB1, AB4, and AR-L list action-level scores (§6.1).
Columns SCB1, SCB4, and SCR-L list state change level scores (§6.1).

tion (15). Our best models use v = 0.97 when
training with the mixed objective from Equa-
tion (16).

5.3 Baselines

As baselines, we report results for a model trained
only with cross-entropy loss (MLE) and for re-
implemented versions of models from Rennie
et al. (2017) and Paulus et al. (2018). These base-
lines achieved state of the art results in image cap-
tioning and document summarization tasks. We
found, however, that their high ~y (1 and 0.9984, re-
spectively) led to low fluency, resulting in reduced
performance on word-level scores. To control for
this effect, we trained additional versions of each
baseline with different values for v and report the
best performing configurations (see Table 1).

6 Results

6.1 Overlap Metrics

Scores We compute the example-level BLEU-
1, BLEU-4, and ROUGE-L (R-L) scores for all
recipes in the test set. A generated recipe, how-
ever, must be coherent at both the word-level, link-
ing words and phrases sensibly, and the world-
level, describing events that are grounded in real-
world actions. Because n-gram scores do not eval-
uate if a generated recipe models this latent pro-
cess, we also report these scores on the action
and state change sequence described in the recipe.
These words depict a simulated world where ac-
tions are taken and state changes are induced. A
generated recipe should follow the sequence of ac-
tions taken in the gold recipe, and induce the same
state changes as those in the gold recipe.
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We use the state change lexicon from Bosselut
et al. (2018) to map recipe words to ordered se-
quences of actions and state changes. Each entry
in the lexicon contains an action in the cooking do-
main as well as the state changes that result from
that action in the set of {LOCATION, COMPO-
SITION, COOKEDNESS, TEMPERATURE, SHAPE,
CLEANLINESS}.

Action sequences are formed by mapping lem-
mas of words in generated sequences to entries in
the lexicon. We compare these event sequences
to the gold event sequences using the same scores
as for words — BLEU-1, BLEU-4, and ROUGE-
L. Intuitively, these scores can be seen as evalu-
ating the following: whether the generated recipe
depicts the same actions (AB1), subsequences of
consecutive actions (AB4), and full action se-
quence (AR-L) as the gold recipe.

State change sequences are more coarse-grained
than action sequences, and are formed by map-
ping actions to their state changes in the lexicon
from Bosselut et al. (2018). These scores evalu-
ate whether the generated recipe implies the same
induced state changes (SCB1), subsequences of
consecutive state changes (SCB4), and global state
change order (SCR-L) as the gold recipe.

Results Our results in Table 1 show that mod-
els optimized on word overlap metrics achieve the
greatest improvements for those scores. Optimiz-
ing scores such as BLEU-1 encourages the model
to output words and phrases that overlap often
with reference sequences, but that may not de-
scribe main events in the recipe process.

When examining models trained using a neu-
ral teacher, we see that the model optimized with



MLE RO +B4 Tie MLE RO + B4 Tie

Fluency 0.330 0.447 0.223 Fluency 0.317 0.425 0.258
Ingredient Use 0.350 0.440 0.210 Ingredient Use 0.342 0.458 0.200
Title Completion 0.347 0.430 0.223 Title Completion 0.358 0.450 0.192
Action Order 0.377 0.453 0.170 Action Order 0.367 0.483 0.150
BLEU-1 RO +B4 Tie BLEU-1 RO +B4 Tie

Fluency 0.387 0.373 0.240 Fluency 0.391 0.383 0.225
Ingredient Use 0.327 0.363 0.310 Ingredient Use 0.267 0.392 0.342
Title Completion 0.353 0.377 0.270 Title Completion 0.325 0.418 0.258
Action Order 0.410 0.403 0.187 Action Order 0.433 0.442 0.125

Table 2: Human evaluation measuring proportion of
winners. Upper table compares MLE baseline with RO
+ B4 model. Lower table compares BLEU-1 baseline
with RO + B4 model.

the absolute ordering reward performs worse than
most baselines for every word-level score. The rel-
ative ordering model, however, raises every word-
level score above the cross-entropy baseline, in-
dicating the importance of fine-grained credit as-
signment at the sentence-level. The model trained
with mixed rewards from the teacher and BLEU-4
achieves even higher scores, showing the benefits
of training with diverse rewards.

When evaluating these metrics for the action
and state change sequence, the models trained
with feedback from the relative ordering teacher
show large improvement over the baselines, indi-
cating that the models exhibit more understanding
of the latent process underlying the task. While
optimizing word-level scores teaches the generator
to output common sequences of words, the rela-
tive ordering reward teaches the model to focus on
learning co-occurrences between recipe events.

6.2 Human Evaluation

We perform a human evaluation on 100 recipes
sampled from the test set to evaluate our model
on four aspects of recipe quality: fluency, ingre-
dient use, title completion, and action ordering.
For each example, three judges from Amazon Me-
chanical Turk are shown a pair of recipes, each
generated by a different model and asked to select
the recipe that is better according to the criteria
above. For ingredient use, judges select the recipe
that uses more of the ingredients correctly. For ti-
tle completion, we ask judges to select the recipe
that best completes the dish described in the recipe
title. Finally, for action ordering, judges choose
the recipe that better links subtasks in the recipes.

Table 3: Proportion of winners for long generated
recipes. Upper table compares MLE baseline with RO
+ B4 model. Lower table compares BLEU-1 baseline
with mixed RO + B4 model.

Models We use the Relative Ordering + BLEU-
4 model (RO + B4) and compared to two base-
lines, the cross-entropy model (MLE), and the
BLEU-1 model, which achieved the best scores on
several word-level metrics (§6.1).

Results We report results in Table 2. Our model
outperforms the cross-entropy baseline, consis-
tently being preferred on aggregate for every ques-
tion. Workers preferred the BLEU-1 baseline for
the fluency and action order questions, while pre-
ferring recipes generated by the teacher-trained
model for the ingredient use and title ordering
questions. Upon further analysis, we see that
the strength of the BLEU-1 model depends on
the length of the original reference sequence. In
Table 3, we show evaluation scores for recipes
where the gold recipe was longer than 100 words.
Our model’s performance rises compared to the
BLEU-1 model for every question, showing that
modeling discourse structure as learned reward
improves global coherence in long text.

6.3 Insights

Qualitative Analysis In Table 4, we see the ef-
fect that the neural teacher has on the recipe gen-
erator. The teacher rewards behavior that more
closely imitates the actions in the gold recipe. In
the first example, the generator learns to com-
plete the actions of placing the mixture into the
a greased casserole and then baking it, which the
MLE model misses. The teacher also discour-
ages repetitive phrases, as they provide no increase
in reward during training. One weakness of our
teacher models, however, is that they encourage
common temporal patterns, such as in the third
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Title
Ings

Royale Casserole
Broccoli, chopped; butter; flour; salt; black pepper; nutmeg; milk; cheese shredded swiss; lemon juice;
cooked cubed turkey; mushrooms; grated parmesan cheese; biscuits, refrigerated

MLE

Cook broccoli according to package directions. Drain. Melt butter in skillet. Add flour, stirring constantly.
Cook, stirring constantly, until thickened. Add milk, salt, pepper, and nutmeg. Cook over low heat, stirring
constantly, until thickened. Add cheese, salt, pepper and pimento. Cook and stir till thickened. Add cheese,

stirring until melted. Add | broccoli and mushrooms ‘ Cook over low heat for 5 minutes. Add cheese. Cook

and stir until cheese melts. Add cheese. Cook and stir until cheese melts. Add cheese. Cook and stir until
cheese melts. Add cheese and stir until melted. Serve over hot noodles.

RO

Melt butter in saucepan. Add flour and cook, stirring constantly, until thickened. Add milk, salt, pepper,
and nutmeg. Cook, stirring constantly, until thickened. Add cheese, salt and pepper. Cook over low heat,
stirring constantly, until mixture is thickened and smooth. Remove from heat. Stir in cheese. Spoon into

greased casserole | Top with cheese. | Bake in 350 f oven for 30 minutes. | Serves 6.

Gold

Preheat oven to 375. Melt butter in saucepan. Blend in flour, salt, pepper, and nutmeg; cook 1-2 minutes.
Gradually add milk; cook, stirring, until slightly thickened. Stir in frozen vegetables. Remove from heat; stir
in cheese until melted. Add lemon juice, turkey, mushrooms and broccoli. Pour mixture into a lightly greased
baking dish; sprinkle with parmesan and top with biscuits. Bake 20 minutes, or until biscuits are golden brown.

Title
Ings

Wine Sauerkraut
butter; dry white wine; 16 oz drained sauerkraut

MLE

In a saucepan, combine soup , wine, and butter. Heat, uncovered, in microwave oven 2 minutes or until
mixture is heated through.

RO

Melt butter in skillet. | Add sauerkraut | and wine; heat to boiling. Reduce heat; cover and simmer 15 minutes.
Add wine and heat to boiling; reduce heat. Cover and cook 10 minutes or until mixture is tender. Serve on rice.

Gold

Melt butter in 10-inch skillet over low heat; add sauerkraut. Cover and cook, stirring occasionally, 30
minutes; add wine. Heat to boiling; reduce heat. Cover and simmer until liquid is absorbed, about 45
minutes. Follow directions except simmer until liquid is absorbed, about 1 hour.

Title
Ings

Strawberry Glazed Pie
fresh strawberries; granulated sugar; salt; cornstarch; lemon juice; baked, cooled pie shell

MLE

Combine sugar, cornstarch and salt in top of a double boiler. Cook and stir over medium heat until mixture
thickens and boils. Boil and stir 1 minute. Remove from heat and stir in lemon juice. Cool. Add strawberries

and lemon juice . Pour into baked pie shell. Top with whipped cream. Serve immediately.

RO

Combine sugar, cornstarch, and salt in a saucepan; cook over medium heat, stirring constantly, until
mixture boils and thickens. Remove from heat; stir in lemon juice. Cool. Add strawberries; mix well. Pour

into baked pie shell. Bake in preheated 325-degree oven for 10 minutes . Cool. Garnish with whipped cream.

Gold

Wash, drain thoroughly, and hull strawberries. Arrange about 3 cups of whole berries over bottom of baked
pastry shell. Crush remaining berries in a saucepan. In a bowl, mix sugar, salt and cornstarch; stir into crushed
berries. Heat slowly, stirring constantly, until mixture comes to a boil and thickens. Remove from heat and stir
in lemon juice. Cool, then spoon over berries in pie shell chill until glaze is set. Garnish with whipped cream.

Table 4: Example recipe generations from our model and comparative baselines. spans indicate recipe

events missed by another model’s generation.

Red spans indicate superfluous events. The Ings row lists the

ingredients (separated by semicolons) provided to make the dish in the title.

example in Table 4, where the generator mentions
baking the pie. The model recognizes pies are gen-
erally supposed to be baked, even if it is not appro-
priate for that particular recipe.

Teacher Feedback Frequency We design the
reward functions in Eq. 12 and Eq. 13 to require
two passes through the teacher, one comparing
the generated sequence to the forward gold se-
quence, and one comparing it to the reverse gold
sequence. With no teacher comparison to the
reverse-ordered sequence, the generator learns to
exploit the teacher for reward with very simple se-
quences such as “Serve.” and “Here’s direction.”
When comparing with both orders, however, this
effect is dampened, hinting at the importance of
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ensembling feedback from multiple sources for ro-
bust reward production. Another solution to this
effect was mixing policy learning and maximum
likelihood learning (Eq. 16) as the underlying lan-
guage model of the generator did not deteriorate.

Impact of /., and v Two hyperparameters to
tune when training with teacher models are the
mixed loss coefficient v, which balances MLE
learning with policy learning, and [{,in, maz],
the number of sentences to consider when com-
puting the relative order reward. We fix £,,,;, = 3,
and vary {,,4, € [3,6] and v € {0.95,0.97,0.98}.
Figure 5 shows the importance of tuning v. A
low ~ will not allow the teacher to guide the
model’s learning, while a high ~ causes the lan-
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Figure 5: Action and State Change BLEU Metrics for
different initializations of ¢,,,4, and

guage model to deteriorate. Interestingly, a higher
Cmaz leads to better performance on global coher-
ence scores, implying that relative order rewards
conditioned on more sentences allow the model to
learn longer-range context co-occurrences.

7 Related Work

The field of neural text generation has received
considerable attention in tasks such as image cap-
tioning (Vinyals et al., 2015; Xu et al., 2015), sum-
marization (Rush et al., 2015; See et al., 2017),
machine translation (Bahdanau et al., 2015), and
recipe generation (Kiddon et al., 2016). While
these works have focused on developing new neu-
ral architectures that introduce structural biases for
easier learning, our work uses a simple architec-
ture and focuses on improving the optimization of
the learner (i.e., better teaching).

The importance of better teaching for RNN gen-
erators was outlined in Bengio et al. (2015), which
showed that exposure bias from a misaligned train
and test setup limited the capabilities of sequence-
to-sequence models. This limitation had been ad-
dressed in previous work by augmenting train-
ing data with examples generated by pretrained
models to make models robust to their own errors
(Daumé III et al., 2009; Ross et al., 2011).

More recent work on training RNNs for gener-
ation has used sequence scores such as ROUGE
(Paulus et al., 2018), CIDEr (Rennie et al., 2017;
Pasunuru and Bansal, 2017), BLEU (Ranzato
etal., 2015) and mixtures of them (Liu et al., 2017)
as a global reward to train a policy with the REIN-
FORCE algorithm (Williams, 1992). In contrast,
our work uses a neural teacher to reward a model
for capturing discourse semantics.
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Most similar to our work is work on using neu-
ral and embedding rewards to improve dialogue
(Li et al., 2016), image captioning (Ren et al.,
2017), simplification (Zhang and Lapata, 2017),
and paraphrase generation (Li et al., 2017). While
these works use single-sentence similarity rewards
for short generation tasks, our work designs teach-
ers to reward long-range ordering patterns.

Finally, our teachers can be seen as reward-
ing generators that approximate script patterns in
recipes. Previous work in learning script knowl-
edge (Schank and Abelson, 1975) has focused on
extracting scripts from long texts (Chambers and
Jurafsky, 2009; Pichotta and Mooney, 2016), with
some of that work focusing on recipes (Kiddon
et al., 2015; Mori et al., 2014, 2012). Our teachers
implicitly learn this script knowledge and reward
recipe generators for exhibiting it.

8 Conclusion

We introduce the absolute ordering and relative
ordering teachers, two neural networks that score
a sequence’s adherence to discourse structure in
long text. The teachers are used to compute re-
wards for a self-critical reinforcement learning
framework, allowing a recipe generator to be re-
warded for capturing temporal semantics of the
cooking domain. Empirical results demonstrate
that our teacher-trained generator better models
the latent event sequences of cooking recipes, and
a human evaluation shows that this improvement
is mainly due to maintaining semantic coherence
in longer recipes.
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A Hyperparameters
A.l Data

Each recipe is batched based on the number of to-
kens and number of ingredients it has. We use a
minibatch size of 32.

A.2 Teachers

The hidden size of the reward generator is 100, the
word embeddings have dimensionality 100. We
use dropout with a rate of 0.3 between the bag of
words layers and the recurrent layers.

A.3 Pretrained Recipe Generator

We use a hidden size of 256 for the encoder and
256 for the decoder. We initialize three different
sets of embeddings for the recipe titles, ingredient
lists, and text, each of size 256. All models are
trained with a dropout rate of 0.3 and are single-
layer. We use a temperature coefficient of 3 = 2
to make the output word distribution more peaky
(Kiddon et al., 2016), allowing for more controlled
exploration during self-critical learning. We use
scheduled sampling with a linear decay schedule
of 5% every 5 epochs up to a max of 50%. We use
a learning rate of n = 0.0003 and train with the
Adam optimizer.

A.4 Policy Learning

We use the same model hyperparameters as during
pretraining, but re-initialize the Adam optimizer,
use 7 = 3 x 107° as the learning rate, and do not
train with scheduled sampling.

B Baseline Selection

For each baseline we trained, we report the score
of the v setting that achieved the highest score for
the metric on which it was trained. For exam-
ple, for baselines trained with ROUGE-L reward,
we report the results for the model trained with
the value of v that scored the highest ROUGE-
L score on the development set. For the mod-
els trained with the CIDEr reward, we select the
model with value of ~ that achieved the highest
CIDEr score on the development set. We do the
same for models trained with BLEU-1 and BLEU-
4 rewards. The values of v yielding the best per-
formance on the development set were 0.97 for
the BLEU-1, ROUGE-L, and CIDEr-trained mod-
els, and 0.99 for the BLEU-4 trained baseline. For
each baseline, the best model is chosen by select-
ing the checkpoint that achieves the highest reward
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(or lowest loss for the MLE model) for the metric
it was trained on.
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Abstract

Memory augmented encoder-decoder frame-
work has achieved promising progress for nat-
ural language generation tasks. Such frame-
works enable a decoder to retrieve from a
memory during generation. However, less re-
search has been done to take care of the mem-
ory contents from different sources, which are
often of heterogeneous formats. In this work,
we propose a novel attention mechanism to en-
courage the decoder to actively interact with
the memory by taking its heterogeneity into
account. Our solution attends across the gen-
erated history and memory to explicitly avoid
repetition, and introduce related knowledge to
enrich our generated sentences. Experiments
on the answer sentence generation task show
that our method can effectively explore het-
erogeneous memory to produce readable and
meaningful answer sentences while maintain-
ing high coverage for given answer informa-
tion.

1 Introduction

Most previous question answering systems fo-
cus on finding candidate words, phrases or sen-
tence snippets from many resources, and ranking
them for their users (Chu-Carroll et al., 2004; Xu
etal., 2016). Typically, candidate answers are col-
lected from different resources, such as knowledge
base (KB) or textual documents, which are often
with heterogeneous formats, e.g., KB triples or
semi-structured results from Information Extrac-
tion (IE). For factoid questions, a single answer
word or phrase is chosen as the response for users,
as shown in Table 1 (Al).

However, in many real-world scenarios, users
may prefer more natural responses rather than a
single word. For example, as A2 in Table 1, James
Cameron directed the Titanic. is more favorable
than the single name James Cameron. A straight-
forward solution to compose an answer sentence is
to build a template based model, where the answer
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Q \ Who is the director of the Titanic?

Al James Cameron

A2 James Cameron directed the Titanic.
A3 James Cameron directed it.

A4 James Cameron directed it in 1999.

Table 1: Answer sentences generated by different QA
systems

word James Cameron and topic word in the ques-
tion the Titanic are filled into a pre-defined tem-
plate (Chu-Carroll et al., 2004). But such systems
intrinsically lack variety, hence hard to generalize
to new domains.

To produce more natural answer sentences,
Yin et al. (2015) proposed GenQA, an encoder-
decoder based model to select candidate answers
from a KB styled memory during decoding to gen-
erate an answer sentence. CoreQA (He et al.,
2017b) further extended GenQA with a copy
mechanism to learn to copy words from the ques-
tion. The application of attention mechanism en-
ables those attempts to successfully learn sentence
varieties from the memory and training data, such
as usage of pronouns (A3 in Table 1). However,
since they are within the encoder-decoder frame-
work, they also encounter the well noticed rep-
etition issue: due to loss of temporary decoder
state, an RNN based decoder may repeat what
has already been said during generation (Tu et al.,
2016a,b).

Both GenQA and CoreQA are designed to work
with a structured KB as the memory, while in
most real-world scenarios, we require knowledge
from different resources, hence of different for-
mats. This knowledge may come from structured
KBs, documents, or even tables. It is admittedly
challenging to leverage a heterogeneous memory
in a neural generation framework, and it is not well
studied in previous works (Miller et al., 2016).
Here in our case, the memory should contain two
main formats: KB triples and semi-structured en-
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tities from IE, forming a heterogeneous memory
(HM). The former is usually organized in is a
subject-predicate-object form, while, the latter is
usually extracted from textual documents, in the
form of keywords, sometimes associated with cer-
tain categories or tags oriented to specific tasks
(Bordes and Weston, 2016).

Miller et al. (2016) discuss different knowledge
representations for a simple factoid QA task and
show that classic structured KBs organized in a
Key-Value Memory style work the best. However,
dealing with heterogeneous memory is not trivial.
Figure 1 shows an example of generating answer
sentences from HM in a Key-Value style, which is
indeed more challenging than only using a classic
KB memory. Keys and values play different roles
during decoding. A director key indicates this slot
contains the answer. Same James Cameron val-
ues with different keys indicate duplication. The
decoder needs this information to proactively per-
form memory addressing. Because keys from doc-
uments are not canonicalized, e.g., doc directed
and doc director, they may lead to redundancy
with the structured KB, e.g., kb directed_by and
doc director. A decoder could repetitively output
a director twice simply because there are two dif-
ferent memory slots hit by the query, both indi-
cating the same director. This will make the the
repetition issue even worse.

Although many neural generation systems can
produce coherent answer sentences, they often fo-
cus on how to guarantee the chosen answer words
to appear in the output, while ignoring many re-
lated or meaningful background information in the
memory that can further improve user experiences.
In real-world applications like chatbots or personal
assistants, users may want to know not only the
exact answer word, but also information related
to the answers or the questions. This informa-
tion is potentially helpful to attract users’ atten-
tion, and make the output sentences more natural.
For example in Table 1 (A4), the extra /999 not
only enriches the answer with the movie’s release
year, but also can act as a clue to help distinguish
ambiguous candidate answers, e.g., Titanic (1999)
and Titanic (HD, 2016).

In this paper, we propose a sequence to se-
quence model tailing for heterogeneous memory.
In order to bridge the gap between decoder states
and memory heterogeneity, we split decoder states
into separate vectors, which can be used to address
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Q: the film The First Nudie Musical

kb Mark was directed by who?
directed_by | Haggard y
kb Bruce A: The First Nudie Musical is a 1976
written_by Kimmel
doc American motion
vear 1976
o B picture directed by Mark Haggard
directed Kimmel
- and Bruce Kimmel.
kb The First
movie_name|Nudie Musical
doc Mark
director Haggard memory from memory from memory from
topic word knowledge base documents
Figure 1: An example qa-pair with heterogeneous
memory

different memory components explicitly. To avoid
redundancy, we propose the Cumulative Atten-
tion mechanism, which uses the context of the de-
coder history to address the memory, thus reduces
repetition at memory addressing time. We conduct
experiments on two WikiMovies datasets, and
experimental results show that our model is able
to generate natural answer sentences composed of
extra related facts about the question.

2 Related Work

Natural Answer Generation with Sequence to
Sequence Learning: Sequence to sequence mod-
els (with attention) have achieved successful re-
sults in many NLP tasks (Cho et al., 2014; Bah-
danau et al., 2014; Vinyals et al., 2015; See et al.,
2017). Memory is an effective way to equip
seq2seq systems with external information (We-
ston et al., 2014; Sukhbaatar et al., 2015; Miller
et al., 2016; Kumar et al., 2015). GenQA (Yin
et al., 2015) applies a seq2seq model to gener-
ate natural answer sentences from a knowledge
base, and CoreQA (He et al., 2017b) extends it
with copying mechanism (Gu et al., 2016). But
they do not consider the heterogeneity of the mem-
ory, only tackle questions with one single answer
word, and do not study information enrichment.

Memory and Attention: There are also increas-
ing works focusing on different memory repre-
sentations and the interaction between the de-
coder and memory, i.e., attention. Miller et al.
(2016) propose the Key-Value style memory to ex-
plore textual knowledge (both structured and un-
structured) from different sources, but they still
utilize them separately, without a uniform ad-
dressing and attention mechanism. Daniluk et al.
(2017) split the decoder states into key and value
representation, and increase language modeling



performance. Multiple variants of attention mech-
anism have also been studied. Sukhbaatar et al.
(2015) introduce multi-hop attention, and extend
it to convolutional sequence to sequence learn-
ing (Gehring et al., 2017). Kumar et al. (2015)
further extend it by using a Gated Recurrent Unit
(Chung et al., 2014) between hops. These models
show that multiple hops may increase the model’s
ability to reason. These multi-hop attention is
performed within a single homogeneous memory.
Our Cumulative Attention is inspired by them, but
we utilize it cross different memory, hence can ex-
plicitly reason over different memory components.

Conditional Sentence Generation: Controllable
sentence generation with external information is
wildly studied from different views. From the task
perspective, Fan et al. (2017) utilize label informa-
tion for generation, and tackle information cover-
age in a summarization task. He et al. (2017a) use
recursive Network to represent knowledge base,
and Bordes and Weston (2016) track generation
states and provide information enrichment, both
are in a dialog setting. In terms of network ar-
chitecture, Wen et al. (2015) equip LSTM with a
semantic control cell to improve informativeness
of generated sentence. Kiddon et al. (2016) pro-
pose the neural checklist model to explicitly track
what has been mentioned and what left to say by
splitting these two into different lists. Our model is
related to these models with respect to information
representation and challenges from coverage and
redundancy. The most closely related one is the
checklist model. But it does not explicitly study
information redundancy. Also, the information we
track is heterogeneous, and we track it in a differ-
ent way, i.e. using Cumulative attention.

Due to loss of states across time steps, the de-
coder may generate duplicate outputs. Attempts
have been made to address this problem. Some ar-
chitectures try to utilize History attention records.
See et al. (2017) introduce a coverage mecha-
nism, and Paulus et al. (2017) use history atten-
tion weights to normalize new attention. Others
are featured in network modules. Suzuki and Na-
gata (2017) estimate the frequency of target words
and record the occurrence. Our model shows that
simply attending to history decoder states can re-
duce redundancy. Then we use the context vector
of attention to history decoder states to perform
attention to the memory. Doing this enables the
decoder to correctly decide what to say at mem-
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ory addressing time, rather than decoding time,
thus increasing answer coverage and information
enrichment.

3 Task Definition

Given a question ¢ and a memory M storing re-
lated information, our task is to retrieve all the an-
swer words from the memory, generate an answer
sentence x, and use the rest information as enrich-
ment.

Answer Coverage is the primary objective of
our task. Since many answers contain multiple
words, the system needs to cover all the target
words.

Information Redundancy is one challenge for
this task. It is well noticed that the decoder lan-
guage model may lose track of its state, thus re-
peating itself. Also, the decoder needs to rea-
son over the semantic gap between heterogeneous
memory slots, figuring out different keys may re-
fer to the same value. These two kinds of redun-
dancy should both be addressed.

Information Enrichment is another challenge.
It requires the decoder to interact with the mem-
ory effectively and use the right word to enrich the
answer.

The tradeoff between redundancy and cov-
erage/enrichment is one of our main considera-
tions. This is because when the decoder generates
a word, it either generates a new word or a men-
tioned word. The more answer words and infor-
mation enrichment are considered, the more likely
the model repeats what it has already generated.

4 Our Model

Our model consists of the question encoder, the
heterogeneous memory, and the decoder. The en-
coder embeds the question into a vector represen-
tation. The decoder reads questions, retrieves the
memory, and generates answer sentences.

We use a Long Short Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) for question
encoding and encode the question into an embed-
ding. It takes every word embedding (g1, ¢2...qy)
of question words as inputs, and generates hidden
states s = LST Menc(qt, St—1). These s are later
used for decoder’s attention. The last hidden state
sp, s used as the vector representation of the ques-
tion, and is later put into the initial hidden state of
the decoder.
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Figure 2: The Decoder with Heterogeneous States

We use a key-value memory M to represent
the information heterogeneity. In our experiments,
we study information from KB, topic words, and
words extracted from documents. The memory

is formatted as ((mém,méw), (m§K>,m§V>)

(mffq, mﬁlw)), where m§K> and m§v are respec-
tively the key embedding and word embedding for
the i-th memory slot. The vocabulary for keys
V*eY consists of all predicates in the KB, and all
tags we use to classify the value words (e.g: di-
rector, actor; or release_year). The vocabulary for
values V¥ consists all related words from web
documents, subjects and objects from the KB. This
memory is later used in two ways: 1. the decoder
uses its previous hidden state to perform atten-
tion and generate context vectors. 2. the decoder
uses the updated hidden states as pointers (Vinyals
et al., 2015) to retrieve the memory and copy the
memory contents into the decoder’s output.

4.1 Decoder with Heterogeneous States

As in the standard encoder-decoder architecture
with attention, the word embedding of the de-
coder’s previous time step z; and context vector
¢t is fed as the input of the next time step, and the
hidden state h; is updated then. The initial hidden
state is the question embedding concatenated with
average memory key and value:

ho = [0, avg(m')), avg(m¥))]

where [+, | denotes concatenation.

As shown in figure 2, to match the key-value
memory representation, we use three linear trans-
formations to convert the decoder’s current h; into

hém, hém, and h§V>:

N = Wiy
hE = Wik,
WY = Wy,

where the Ws are initialized as identity matrix

I = diag(1,1...1). him will be projected to nor-

mal word vocabulary V" to form a distribu-

tion p§N>. h§K> and héw will be used as point-
ers to perform attention to memory keys m‘%) and

values m(V), respectively, and forms two distribu-
tions: pt<MK> and piMW. We use the average of

the two as distribution over the memory: p§M> =

(p,gMK> + p,ﬁMV>)/2. By doing this, we bridge the
decoder’s semantic space with the memory’s se-
mantic space, and explicitly maintains heterogene-
ity.

The decoder then uses a gating mechanism g =
sigmoid(Wyhi +bg) to decide whether the output
x¢ comes from the normal vocabulary or the mem-
ory. By mixing p§N> and p§M> with g, we get the
distribution for the next decoder output:

P(xt’(LerO)xl?“'xt—l) = (1)
g x P(Xy = wilqg, M, 0, 21...04-1) +
(1—yg) x P(Xy =mglqg, M, z0,21...24-1)

where

N
P(Xy = wglq, M, xo, 21...04—1) = pé )

M
P(Xt - mk|Qa M7 SUQ,CCl...IL’t_l) = pi >
The three hs are then recorded as history states
for later decoding time steps to perform the self-
attention. We will explain this in the next section.

4.2 Cumulative Attention

As shown in Figure 3, our Cumulative Attention
mechanism is exploited similarly to a multi-hop
attention (Sukhbaatar et al., 2015). The difference
is that the multi-hop attention uses context vector
over one single memory at different hops, while
our Cumulative Attention utilizes the context vec-
tor to query different memories. As shown in the
left part of Figure 3, the decoder first performs
self-attention to its history h§N>, h§K>, and hiw,
and generates corresponding context vectors c as:

(HN) (N)

c; = attn(hy—1, hist(hy "))
B attn(hey, hist(BS))

CEHV) = attn(hy_1, hist(hiw))



(—> context vector
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Cumulative Attention to Memory Keys l—) context vector —

|
kb kb doc doc kb
directed_by | written_by year director movie_name
James James 1999 James The Titanic
Cameron Cameron Cameron
|
Cumulative Attention to Memory Values l—) context vector—]

Decoder

Figure 3: The Cumulative Attention Mechanism

where ¢ = attn(query, memory) denotes the at-
tention function (Bahdanau et al., 2014), and the
decoder’s history states are defined as:

hist(h™) = (B BV i)Y
hist(h{"") = (n§™, n{%) | n{5)
. 1% 14 14
hist(hi") = (h§" 03", . nY])
The overall context vector is obtained through
concatenation : ¢\ = [c<HN> () c<Hv>]
* t t y “t ) “t )

which is then used together with A% and AV to

perform attention to m&) and m{"?, respectively:
MK K) (H

P = attn ("], ), m )

"' = attn((y], ), m")
where m{%) = (méK>,m§K>...m,<1K>) and m{") =
(mév> , mim & ), as shown in the right part of

Figure 3.

The decoder also performs attention to the ques-

tion to get context vector C§Q>

seq2seq attention model.

At time step ¢, all context vectors are concate-
nated: ¢; = [C§Q>, c§H>, cﬁMm, cﬁMw] to form the
current input to the decoder. The decoder takes the
context vector, the previous output, and the previ-
ous state to update its state, then generates a distri-
bution for the next token, as shown in Section 4.1.
We use the greedy decoding approach and choose
the word with the highest probability as the current
output.

For optimization, we jointly optimize the nega-
tive log-probability of the output sentence and the
cross entropy H for gate g. Since g is the proba-
bility about whether the current output comes from
the memory or the vocabulary, we can extract the
label for g by matching sentence words with the

, as in the standard
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memory. The overall loss function £ can be writ-
ten as:

Z log(P

We optimize £ with gradient descent based opti-
mizers.

xt|QaM$0 -Lt— 1))+H(gag)

5 Experiments

Our experiments are designed to answer the fol-
lowing questions: (1) whether our model can prop-
erly utilize heterogeneous memories to generate
readable answer sentences, (2) whether our model
can cover all target answers during generation, (3)
whether our model can introduce related knowl-
edge in the output while avoiding repetition.

5.1 Datasets

Our task requires a question, and a memory stor-
ing all the answer words and related knowledge as
input, and produces a natural, readable sentence
as the output. Unfortunately, there is no existing
dataset that naturally fits to our task. We thus tailor
the WikiMovies! dataset according to our re-
quirements. This Wik iMovies dataset was orig-
inally constructed for answering simple factoid
questions, using memory networks with differ-
ent knowledge representations, i.e., structured KB
(KB entries in Table 2), raw textual documents
(Doc), or processed documents obtained through
information extraction (IE), respectively. The first
is in the classic subject-predicate-object format.
The second contains sentences from Wikipedia
and also sentences automatically generated from
predefined templates. The third is in the subject-
verb-object format, collected by applying off-the-
shell information extractor to all sentences.

"http://fb.ai/babi



The original data format
Who directed the film Blade Runner?
Blade Runner directed_by Ridley Scott

Question
KB
entries

Blade Runner release_year 1982

Blade Runner written_by Philip K. Dick
year 1982

starred Harrison Ford

Blade Runner is a 1982 American film di-
rected by Ridley Scott and starring Harri-
son Ford.

It is directed by Ridley Scott and written by
Philip K. Dick.

It comes out in 1982.

Ridley Scott

Our modified data format
Who directed the film Blade Runner?
Key Value
directed_by Ridley Scott
release_year 1982
written_by Philip K. Dick
movie Blade Runner
year 1982
starred Harrison Ford
Blade Runner is a 1982 American film di-
rected by Ridley Scott and starring Har-
rison Ford.

1E

Doc

Answer

Question
Memory

Answer

Table 2: The data format of WikiMovies used in our
experiment.

As shown in Table 2, we treat each ques-
tion in WikiMovies with its original answer
(usually one or more words) as a QA pair, and
one of the question’s supportive sentences (ei-
ther from Wikipedia or templates) as its gold-
standard answer sentence. For each question, the
memory will contain all knowledge triples about
the question’s topic movie from the KB entries,
and also include entities and keywords extracted
from its IE portion. For each entry in KB en-
tries, we use the predicate as the key and the
object as value to construct a new entry in our
memory. For those from IE, we keep the ex-
tracted tags as the key and entities or other ex-
pressions as the value. Given a question, if an en-
tity/expression in the memory is not the answer,
it will be treated as information enrichment. Ac-
cording to whether the supportive sentences are
generated by predefined templates or not, we split
the dataset into WikiMovies—Synthetic and
WikiMovies-Wikipedia.

The resulting WikiMovies—Synthetic in-
cludes 115 question patterns and 194 answer pat-
terns, covering 10 topics, e.g., director, genre, ac-
tor, release year, etc. We follow its original data
split, i.e., 47,226 QA-pairs for training, 8,895 for
validation and 8,910 for testing.
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In WikiMovies-Wikipedia, answer sen-
tences are extracted from Wikipedia, admittedly
noisy in nature. Note that there are more than
10K Wikipedia sentences that cannot be paired
with any questions. We thus left their questions
as blank and treat it as a pure generation task from
a given memory, which can be viewed as a form
of data augmentation to improve sentence variety.
We splitWikiMovies-Wikipedia the dataset
randomly into 47,309 cases for training, 4,093 for
testing and 3,954 for validation. We treat normal
words occurring less than 10 times as UNK, and,
eventually, have 24,850 normal words and 37,898
entity words. We cut the maximum length of an-
swer sentences to 20, and the maximum memory
size to 10, which covers most cases in both syn-
thetic and Wikipedia datasets.

5.2 Maetrics

We evaluate our answer sentences in terms of an-
swer coverage, information enrichment, and re-
dundancy. For cases with only one answer word,
we design Cgjpg1e to indicate the percentage of
cases being correctly answered. Cases with more
than one answer word are evaluated by Cpqr¢, 1.€.,
the percentage of answer words covered correctly,
and Cp; rect 1s the percentage of cases whose an-
swers are perfectly covered. Here, the definition of
coverage is similar in spirit with the conventional
recall as both measure how many gold words are
included in the output. Specifically, Cp¢ is es-
sentially the same as recall with respect to its own
cases. Note that perfect coverage is the most diffi-
cult, while single coverage is the easiest one. For
Enrich, we measure the number of none-answer
memory items included in the output. Regarding
Redundancy, we calculate the times of repetition
for memory values in the answer sentence. We
also compute BLEU scores (Papineni et al., 2002)
on the WikiMovies-Wikipedia, as an indi-
cator of naturalness, to some extent.

5.3 Comparison Models

We compare our full model (HS-CumuAttn) with
state-of-the-art answer generation models and
constrained sentence generation models. Our first
baseline is GenQA (Yin et al., 2015), a standard
encoder-decoder model with attention mechanism.
We equip it with our Key-Value style heteroge-
neous memory. We also compare with its two
variants. HS-GenQA: we split its decoder state
into heterogeneous representations. The other one,



Model Redundancy  Csingie Cpart Cperfect  Enrich
GenQA 0.1109 91.25% 69.19%  38.92% 0.1535
HS-GenQA 0.1218 94.10% 76.47%  50.10% 0.1951
GenQA-AttnHist | 0.1280 95.99%  73.44%  44.94% 0.1903
CheckList 0.1176 93.80% 76.32%  50.04% 0.1963
HS-AttnHist 0.1295 97.17% 77.90% 51.55%  0.1996
HS-CumuAttn 0.0983 98.15% 77.28% 50.79% 0.1665

Table 3: Results on the WikiMovies—Synthetic dataset

Model | BLEU Redundancy Cpar: Cperfect  Enrich
GenQA 42.50  0.2603 62.80% 18.24%  0.5903
CheckList 43.69  0.2744 63.42%  18.23% 0.6094
HS-CumuAttn | 44.97  0.2385 64.06% 19.09%  0.6218

Table 4: Results on the WikiMovies-Wikipedia dataset

GenQA-AttnHist, is enhanced with a history at-
tention during decoding.

CheckList (Kiddon et al., 2016) is the state-of-
the-art model for generating long sentences with
large agenda to mention. It keeps words that have
been mentioned and words to mention using two
separate records, and updates the records dynam-
ically during decoding. To adapt to our task, we
modify CheckList with a question encoder and a
KV memory.

We also compare with one variant of our own
model, HS-AttnHist, which does not benefit from
the Cumulative Attention.

5.4 Implementation

Our model is implemented with the Tensorflow
framework?, version 1.2. We use the Adam opti-
mizer (Kingma and Ba, 2014) with its default set-
ting. The embedding dimension is set to be 256,
as is the LSTM state size. We set the batch size to
128 and train the model up to 80 epochs.

As mentioned, there is a tradeoff between Cov-
erage/Enrichment and Redundancy. To set up a
more fair comparison for different models, we
ask the control group to reach a comparable level
of Redundancy, i.e., approximately 0.11-0.12 on
WikiMovies—-Synthetic and 0.26-0.27 on
WikiMovies-Wikipedia. Keeping the Re-
dundancy in around the same bucket, we compare
their Coverage and Enrichment.

5.5 Results and Discussion

Let us first look at the performance on the
Synthetic set in Table 3. GenQA is origi-
nally proposed to read only one single fact dur-
ing decoding, so it is not surprising that it has
the lowest answer coverage (38.92% Cperfect)

2www.tensorflow.org
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the movie Torn Curtain starred who?

0 actor Julie Andrews

1 starred_actors Julie Andrews

2 starred_actors Paul Newman

3 movie Torn Curtain

4 year 1966

5 director Alfred Hitchcock
6 actor Paul Newman

It stared Julie Andrewsg and
Julie Andrews, and and.

Torn Curtains i1s a 1966, Ameri-
can film starring Paul Newman, and
Julie Andrews, and Julie Andrews;.
Torn Curtain; is a 1966, Amer-
ican political thriller film directed
by Alfred Hitchcocks, starring
Paul Newman, and Julie Andrews.

Question
Memory

GenQA

CheckList

HS-
CumuAttn

Table 5: Example sentences generated by different
models, where an underlined bold phrase is the value
of a memory slot selected from the memory by its cor-
responding generation model, and its subscript number
is the index of this slot in the memory.

and information enrichment (0.1535). After split-
ting the decoder state, HS-GenQA obtains sig-
nificant improvement in both coverage (50.10%
Cperfect) and enrichment (0.1952). When con-
sidering history for attention, GenQA-AttnHist
achieves even better coverage ( +3.% in Cpq,¢ and
+5% in Cpep fect). By combining these two mecha-
nisms, HS-AttnHist achieves the best perfect cov-
erage, 51.55%. Although CheckList is not origi-
nally designed for our task, it still gives a strong
performance (50.04% Cpe; fect and 0.1963 enrich-
ment), at a slightly lower redundancy (0.1176). Fi-
nally, our full model, HS-CumuAttn, achieves the
best single coverage 98.15%, and comparable par-
tial/perfect coverage, with the lowest redundancy
(0.0983). Due to the lower level of redundancy,
HS-CumuAttn does not include as much enrich-
ment as other strong models, but still outperforms
GenQA.



Question 1 | who starred in Cemetery Man ?
Memory 0 ans_actor Rupert Everett 1 ans_actor Anna Falchi
2 starred_actors Rupert Everett 3 starred_actors Anna Falchi
4 movie Cemetery Man
Answer The film stars Rupert Everetty , _UNK , and Anna Falchi; .
Question 2 | who was Dying Breed written by ?
Memory 0 ans_release_year | 2008 1 ans_writer Jody Dwyer
2 ans_actor Nathan Phillips 3 ans_writer Leigh Whannell
4 written_by Jody Dwyer 5 movie Dying Breed
Answer Dying Breeds is a 2008¢ Australian horror film that was directed by Jody Dwyer; and stars
Leigh Whannells and Nathan Phillips,.
Question 3 | who is the director that directed Livid ?
Memory 0 ans_director Julien Maury 1 directed_by Alexandre Bustillo
2 ans_release_year | 2011 3 ans_director Alexandre Bustillo
4 movie Livid 5 directed_by Julien Maury
6 ans_language French
Answer Livids () is a 20112 Frenche supernatural horror film directed and written by Julien Mauryo and
Alexandre Bustillos.
Question 4 | Drag Me to Hell , when was it released?
Memory 0 ans_director Sam Raimi 1 ans_wiki Scream
2 release_year 2009 3 ans_genre Horror
4 ans_release_year | 2009 5 movie Drag Me to Hell
Answer Scream; is a 20094 film
Question 5 | the movie Lights in the Dusk starred who ?
Memory 0 starred_actors Janne Hyytidinen 1 ans_language Finnish
2 starred_actors Maria Jiarvenhelmi 3 ans_actor Janne Hyytidinen
4 starred_actors Ilkka Koivula 5 movie Lights in the Dusk
6 ans_actor Ilkka Koivula 7 ans_release_year | 2006
8 ans_actor Maria Jarvenhelmi
Answer Lights in the Dusks (, ) is a 20067 Finnish; drama film starring Janne Hyytidinens , Ilkka Koivulag and
Maria Jirvenhelmis .

Table 6: Example answers generated by our model. In an answer sentence, an underlined phrase is the value of
a memory slot selected from the memory by our model, and the subscript number is the index of this slot in the

memory.
repetition
A avoidance
| hist | dec | |
HS-AttnHist HS-CumuAttn

Figure 4: Two methods of using context of history to
address the memory

We further break down the contributions from
different mechanisms. = Compared to vanilla
GenQA, HS-GenQA splits the decoder states, thus
improves the decoder’s memory addressing pro-
cess by performing attention separately, leading to
improvements in both coverage and enrichment.
Improvements of GenQA-AttnHist are of a differ-
ent rationale. Looking at the history enables the
decoder to avoid what are already said. Compared
with HS-GenQA, GenQA-AttnHist improves En-
richment by avoiding repetition when introducing
related information, while, HS-GenQA improves
Enrichment by better memory addressing to select
proper slots. Combining the two mechanisms to-
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gether gives HS-AttnHist the best performance in
Enrichment. However, HS-AttnHist still suffers
from the repetition issue, to certain extent. Be-
cause when choosing memory content, there is no
explicit mechanism to help the decoder to avoid
repetitions according to the history (left of Figure
4). Therefore, a generated word may still be cho-
sen again at the memory addressing step, leaving
all the burden of avoiding repetition to the genera-
tion step. Our Cumulative Attention mechanism is
designed to utilize the context vector of the history
to address the memory, thus helps avoid choosing
those already mentioned slots at memory address-
ing time (right of Figure 4), leading to almost the
best coverage with the lowest redundancy.

Now we compare the three main models,
GenQA, CheckList and our HS-CumuAttn
on WikiMovies-Wikipedia (Table 4),
which is admittedly more challenging than
WikiMovies—-Synthetic. We skip the
Csingle metrics here since most questions in
WikiMovies-Wikipedia contain  more
than one answer word. It is not surprising that



CheckList, with a lower redundancy, still out-
performs GenQA in almost all metrics, except
Cperfect» since CheckList is originally designed
to perform well with larger agenda/memory and
longer sentences. On the other hand, our model,
HS-CumuAttn, achieves the best performance
in all metrics. Although the BLEU score is not
designed to fully reflect the naturalness, it still
indicates that our model can output sentences
that share more n-gram snippets with reference
sentences and are more similar to those composed
by humans.

Case Study and Error Analysis Table 5 pro-
vides the system outputs from different models for
an example question. We can see that GenQA may
lose track of the decoder history, and repeat itself
(and and), because there is no explicit mechanism
to help avoid repetition. Also, it lacks informative-
ness and may not utilize other information stored
in the memory. CheckList keeps records of what
have been said and what are left to mention, thus
reaches a good answer coverage. But its decoder is
unable to explicitly address separate components
within one memory slot, so it may not realize that
the two Julie Andrewss are essentially the same
person. HS-CumuAttn is able to find all the an-
swer words correctly and also include the director
into the sentence. After generating Paul Newman,
the Cumulative Attention mechanism enables the
model to realize that Paul Newman in slot 2 has
been said, and Paul Newman in slot 6 is the same
as slot 2, so it should not choose the 6th slot again.
Rather it should move to Julie Andrews. Although
the decoder may figure out the two Paul Newman
are the same during decoding, the Cumulative At-
tention can explicitly help make the clarification
during memory addressing. Intuitively, the atten-
tion across memory and history induces a stronger
signal for the decoder to gather the right informa-
tion.

Table 6 lists more typical imperfect output from
our model. In question 1, there is considerable re-
dundancy in the memory, but our decoder is still
able to avoid repeatedly choosing the same enti-
ties from difference sources, though it produces a
"_UNK" showing a slight incoherence. We think it
comes from the gate g as it fails to decide that the
current word should come from the memory. In
question 2, the model correctly chooses the mem-
ory slot, but outputs the word "directed" while
the correct word should be "written". This also
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shows an word choice inconsistency between the
language model and the memory retrieval. Ques-
tion 3 makes the same mistake, where it indeed
chooses the right answer, but adds an incorrect
word "written". We also observe a pair of addi-
tional parentheses, which are often used to acco-
modate movie tags, but we do not see any tags in
this memory, so it has to be left blank. Question
4 shows an incorrect memory retrieval, where the
decoder should have chosen slot 5 as the movie
name. Question 5 is generally good enough, ex-
cept the same parenthesis error as in question 4.

It is also interesting to see additional de-
scriptions like "Australian", "supernatural" and
"drama" in question 2, 3, and 5, introduced by
the language model, rather than the memory. Al-
though our model prevents repetition and obtains
general naturalness, it cannot guarantee that the
decoder can precisely use the right language to de-
scribe the memory information. We see the gen-
eral readability of these sentences, yet they are
still not as good as human composed ones. It is
fairly subtle for the decoder to collaborate with the
memory in different levels of semantics. The se-
mantic coherency and word choice consistency is
still a challenge in natural language generation.

6 Conclusion and Future Work

In this paper, we propose a novel mechanism
within an encoder-decoder framework to enable
the decoder to actively interact with a memory by
taking its heterogeneity into account. Our solu-
tion can read multiple memory slots from different
sources, attend across the generated history and
the memory to explicitly avoid repetition, and en-
rich the answer sentences with related information
from the memory. In the future, we plan to extend
our work through 1) investigating more sophisti-
cated structures in the memory such as knowledge
graph, 2) solving more complex questions, such
as those involving deep reasoning over multiple
facts.
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Abstract

Most recent approaches use the sequence-
to-sequence model for paraphrase genera-
tion. The existing sequence-to-sequence
model tends to memorize the words and the
patterns in the training dataset instead of learn-
ing the meaning of the words. Therefore,
the generated sentences are often grammati-
cally correct but semantically improper. In this
work, we introduce a novel model based on
the encoder-decoder framework, called Word
Embedding Attention Network (WEAN). Our
proposed model generates the words by query-
ing distributed word representations (i.e. neu-
ral word embeddings), hoping to capturing the
meaning of the according words. Following
previous work, we evaluate our model on two
paraphrase-oriented tasks, namely text sim-
plification and short text abstractive summa-
rization. Experimental results show that our
model outperforms the sequence-to-sequence
baseline by the BLEU score of 6.3 and 5.5
on two English text simplification datasets,
and the ROUGE-2 F1 score of 5.7 on a Chi-
nese summarization dataset. Moreover, our
model achieves state-of-the-art performances
on these three benchmark datasets.'

1 Introduction

Paraphrase is a restatement of the meaning of a
text using other words. Many natural language
generation tasks are paraphrase-orientated, such
as text simplification and short text summariza-
tion. Text simplification is to make the text easier
to read and understand, especially for poor read-
ers, while short text summarization is to generate a
brief sentence to describe the short texts (e.g. posts
on the social media). Most recent approaches use
sequence-to-sequence model for paraphrase gen-
eration (Prakash et al., 2016; Cao et al., 2017). It

'The code is available at https://github.com/
lancopku/WEAN
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compresses the source text information into dense
vectors with the neural encoder, and the neural
decoder generates the target text using the com-
pressed vectors.

Although neural network models achieve suc-
cess in paraphrase generation, there are still two
major problems. One of the problem is that the ex-
isting sequence-to-sequence model tends to mem-
orize the words and the patterns in the training
dataset instead of the meaning of the words. The
main reason is that the word generator (i.e. the
output layer of the decoder) does not model the
semantic information. The word generator, which
consists of a linear transformation and a softmax
operation, converts the Recurrent Neural Network
(RNN) output from a small dimension (e.g. 500)
to a much larger dimension (e.g. 50,000 words
in the vocabulary), where each dimension repre-
sents the score of each word. The latent assump-
tion of the word generator is that each word is in-
dependent and the score is irrelevant to each other.
Therefore, the scores of a word and its synonyms
may be of great difference, which means the word
generator learns the word itself rather than the re-
lationship between words.

The other problem is that the word generator
has a huge number of parameters. Suppose we
have a sequence-to-sequence model with a hid-
den size of 500 and a vocabulary size of 50,000.
The word generator has up to 25 million parame-
ters, which is even larger than other parts of the
encoder-decoder model in total. The huge size
of parameters will result in slow convergence, be-
cause there are a lot of parameters to be learned.
Moreover, under the distributed framework, the
more parameters a model has, the more bandwidth
and memory it consumes.

To tackle both of the problems, we propose a
novel model called Word Embedding Attention
Network (WEAN). The word generator of WEAN

Proceedings of NAACL-HLT 2018, pages 196-206
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is attention based, instead of the simple linear soft-
max operation. In our attention based word gen-
erator, the RNN output is a query, the candidate
words are the values, and the corresponding word
representations are the keys. In order to predict
the word, the attention mechanism is used to se-
lect the value matching the query most, by means
of querying the keys. In this way, our model gen-
erates the words according to the distributed word
representations (i.e. neural word embeddings) in
a retrieval style rather than the traditional gener-
ative style. Our model is able to capture the se-
mantic meaning of a word by referring to its em-
bedding. Besides, the attention mechanism has
a much smaller number of parameters compared
with the linear transformation directly from the
RNN output space to the vocabulary space. The
reduction of the parameters can increase the con-
vergence rate and speed up the training process.
Moreover, the word embedding is updated from
three sources: the input of the encoder, the input
of the decoder, and the query of the output layer.

Following previous work (Cao et al., 2017), we
evaluate our model on two paraphrase-oriented
tasks, namely text simplification and short text
abstractive summarization. Experimental results
show that our model outperforms the sequence-to-
sequence baseline by the BLEU score of 6.3 and
5.5 on two English text simplification datasets, and
the ROUGE-2 F1 score of 5.7 on a Chinese sum-
marization dataset. Moreover, our model achieves
state-of-the-art performances on all of the bench-
mark datasets.

2 Proposed Model

We propose a novel model based on the encoder-
decoder framework, which generates the words
by querying distributed word representations with
the attention mechanism. In this section, we first
present the overview of the model architecture.
Then, we explain the details of the word gener-
ation, especially the way to query word embed-
dings.

2.1 Overview

Word Embedding Attention Network is based on
the encoder-decoder framework, which consists of
two components: a source text encoder, and a tar-
get text decoder. Figure 1 is an illustration of our
model. Given the source texts, the encoder com-
presses the source texts into dense representation
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vectors, and the decoder generates the paraphrased
texts. To predict a word, the decoder uses the hid-
den output to query the word embeddings. The
word embeddings assess all the candidate words,
and return the word whose embedding matches the
query most. The selected word is emitted as the
predicted token, and its embedding is then used as
the input of the LSTM at the next time step. After
the back propagation, the word embedding is up-
dated from three sources: the input of the encoder,
the input of the decoder, and the query of the out-
put layer. We show the details of our WEAN in
the following subsection.

2.2 Encoder and Decoder

The goal of the source text encoder is to pro-
vide a series of dense representation of complex
source texts for the decoder. In our model, the
source text encoder is a Long Short-term Memory
Network (LSTM), which produces the dense rep-
resentation {h1, ho, ..., Ax} from the source text
{:El, Ly vuey l’N}:

The goal of the target text decoder is to generate
a series of paraphrased words from the dense rep-
resentation of source texts. Fisrt, the LSTM of the
decoder compute the dense representation of gen-
erated words s;. Then, the dense representations
are fed into an attention layer (Bahdanau et al.,
2014) to generate the context vector ¢, which cap-
tures context information of source texts. Atten-
tion vector ¢; is calculated by the weighted sum of
encoder hidden states:

N

o= oghi (1)
=1

ed(st:hi) )

Qatp = Zjvzl eg(st,h]‘) ( )

where g(s;, h;) is an attentive score between the
decoder hidden state s; and the encoder hidden
state h;.

In this way, ¢; and s; respectively represent the
context information of source texts and the target
texts at the ¢ time step.

2.3 Word Generation by Querying Word
Embedding

For the current sequence-to-sequence model, the
word generator computes the distribution of output
words y; in a generative style:

p(y) = softmax(W sy) 3)
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Figure 1: An overview of Word Embedding Attention Network.

where W € RF*V is a trainable parameter matrix,
k is hidden size, and V' is the number of words in
the vocabulary. When the vocabulary is large, the
number of parameters will be huge.

Our model generates the words in a retrieval
style rather than the traditional generative style,
by querying the word embeddings. We denote the
combination of the source context vector ¢; and
the target context vector s; as the query ¢;:

qr = tanh(We[ss; ¢f]) 4)

The candidate words w; and their corresponding
embeddings e; are paired as the key-value pairs
{w;,e;}(i =1,2,...,n), where n is the number of
candidate words. We give the details of how to de-
termine the set of candidate words in Section 2.4.
Our model uses ¢; to query the key-value pairs
{wj,e;}(i = 1,2,...,n) by evaluating the rele-
vance between the query ¢; and each word vec-
tor e; with a score function f(q;,e;). The query
process can be regarded as the attentive selection
of the word embeddings. We borrow the attention
energy functions (Luong et al., 2015) as the rele-
vance score function f(q;, €;):

qle; dot
th Waei

ol tanh(W,q; + Wee;) concat

f(Qtaei) =

where W, and W, are two trainable parameter
matrices, and v is a trainable parameter vector.

general (5)
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In implementation, we select the general attention
function as the relevance score function, based on
the performance on the validation sets. The key-
value pair with the highest score {wy,e;} is se-
lected. At the test stage, the decoder generates the
key w; as the ¢ predicted word, and inputs the
value e; to the LSTM unit at the ¢ + 1*" time step.
At the training stage, the scores are normalized as
the word probability distribution:

p(y:) = softmax(f (g, e:)) (6)

2.4 Selection of Candidate Key-value Pairs

As described in Section 2.3, the model generates
the words in a retrieval style, which selects a word
according to its embedding from a set of candidate
key-value pairs. We now give the details of how to
obtain the set of candidate key-value pairs. We
extract the vocabulary from the source text in the
training set, and select the » most frequent words
as the candidate words. We reuse the embeddings
of the decoder inputs as the values of the candi-
date words, which means that the decoder input
and the predicted output share the same vocabu-
lary and word embeddings. Besides, we do not use
any pretrained word embeddings in our model, so
that all of the parameters are learned from scratch.

2.5 Training

Although our generator is a retrieval style, WEAN
is as differentiable as the sequence-to-sequence
model. The objective of training is to minimize the



cross entropy between the predicted word proba-
bility distribution and the golden one-hot distribu-
tion:

L=- Z Yilog p(yi) (7

7

We use Adam optimization method to train the
model, with the default hyper-parameters: the
learning rate « = 0.001, and B; = 0.9, 5o =
0.999, e = le — 8.

3 Experiments

Following the previous work (Cao et al., 2017),
we test our model on the following two paraphrase
orientated tasks: text simplification and short text
abstractive summarization.

3.1 Text Simplification
3.1.1 Datasets

The datasets are both from the alignments be-
tween English Wikipedia website? and Simple En-
glish Wikipedia website.> The Simple English
Wikipedia is built for “the children and adults who
are learning the English language”, and the arti-
cles are composed with “easy words and short sen-
tences”. Therefore, Simple English Wikipedia is a
natural public simplified text corpus.

o Parallel Wikipedia Simplification Corpus
(PWKP). PWKP (Zhu et al., 2010) is a
widely used benchmark for evaluating text
simplification systems. It consists of aligned
complex text from English WikiPedia (as of
Aug. 22nd, 2009) and simple text from Sim-
ple Wikipedia (as of Aug. 17th, 2009). The
dataset contains 108,016 sentence pairs, with
25.01 words on average per complex sen-
tence and 20.87 words per simple sentence.
Following the previous work (Zhang and La-
pata, 2017), we remove the duplicate sen-
tence pairs, and split the corpus with 89,042
pairs for training, 205 pairs for validation and
100 pairs for test.

English Wikipedia and Simple English
Wikipedia (EW-SEW). EW-SEW is a pub-
licly available dataset provided by Hwang et
al. (2015). To build the corpus, they first align
the complex-simple sentence pairs, score the
semantic similarity between the complex sen-
tence and the simple sentence, and classify

>http://en.wikipedia.org
*http://simple.wikipedia.org
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each sentence pair as a good, good partial,
partial, or bad match. Following the previous
work (Nisioi et al., 2017), we discard the un-
classified matches, and use the good matches
and partial matches with a scaled threshold
greater than 0.45. The corpus contains about
150K good matches and 130K good partial
matches. We use this corpus as the train-
ing set, and the dataset provided by Xu et
al. (Xu et al., 2016) as the validation set and
the test set. The validation set consists of
2,000 sentence pairs, and the test set contains
359 sentence pairs. Besides, each complex
sentence is paired with 8 reference simplified
sentences provided by Amazon Mechanical
Turk workers.

3.1.2 Evaluation Metrics

Following the previous work (Nisioi et al., 2017;
Hu et al., 2015), we evaluate our model with dif-
ferent metrics on two tasks.

e Automatic evaluation. We use the BLEU
score (Papineni et al., 2002) as the automatic
evaluation metric. BLEU is a widely used
metric for machine translation and text sim-
plification, which measures the agreement
between the model outputs and the gold ref-
erences. The references can be either single
or multiple. In our experiments, the refer-
ences are single on PWKP, and multiple on
EW-SEW.

Human evaluation. Human evaluation is es-
sential to evaluate the quality of the model
outputs. Following Nisioi et al. (2017) and
Zhang et al. (2017), we ask the human raters
to rate the simplified text in three dimensions:
Fluency, Adequacy and Simplicity. Fluency
assesses whether the outputs are grammati-
cally right and well formed. Adequacy rep-
resents the meaning preservation of the sim-
plified text. Both the scores of fluency and
adequacy range from 1 to 5 (1 is very bad
and 5 is very good). Simplicity shows how
simpler the model outputs are than the source
text, which ranges from 1 to 5.

3.1.3 Settings

Our proposed model is based on the encoder-
decoder framework. The encoder is implemented
on LSTM, and the decoder is based on LSTM with
Luong style attention (Luong et al., 2015). We



PWKP BLEU PWKP Fluency Adequacy Simplicity All

PBMT (Wubben et al., 2012) 46.31 NTS-w2v 3.54 3.47 338 3.46

Hybrid (Narayan and Gardent, 2014)  53.94 DRESS-LS 3.68 3.55 350 3.58

EncDecA (Zhang and Lapata, 2017) 47.93 WEAN 3.77 3.66 3.58 3.67

DRESS (Zhang and Lapata, 2017) 34.53 Reference 3.76 3.60 344  3.60

DRESS-LS (Zhang and Lapata, 2017)  36.32

Seq2seq (our implementation) 48.26 EW-SEW  Fluency Adequacy Simplicity All

WEAN (our proposal) 54.54 PBMT-R 3.36 2.92 337 322
Table 1: Automatic evaluation of our model and other SBMI-SARL - 3.41 3.63 325 343
related systems on PWKP datasets. The results are re- NTS-w2v 3.56 3.52 342 3.50
ported on the test sets. DRESS-LS 3.59 343 3.65 3.56

WEAN 3.61 3.56 3.65 3.61

EW-SEW BLEU Reference 3.71 3.64 345  3.60

PBMT-R (Wubben et al., 2012) 67.79 Table 3: Human evaluation of our model and other re-

Hybrid (Narayan and Gardent, 2014) 48.97 lated systems on PWKP and EW-SEW datasets. The

SBMT-SARI (Xu et al., 2016) 73.62 results are reported on the test sets.

NTS (Nisioi et al., 2017) 84.70

NTS-w2v (Nisioi et al., 2017) 87.50

EncDecA (Zhang and Lapata, 2017)  88.85 sentence simplification models.

DRESS (Zhang and Lapata, 2017) 77.18

DRESS-LS (Zhang and Lapata, 2017) 80.12 e EncDecA is a model based on the encoder-

Seq2seq (our implementation) 38.97 decoder with attention, implemented by

WEAN (our proposal) 94.45 Zhang and Lapata (2017).

Table 2: Automatic evaluation of our model and other
related systems on EW-SEW datasets. The results are
reported on the test sets.

tune our hyper-parameter on the development set.
The model has two LSTM layers. The hidden size
of LSTM is 256, and the embedding size is 256.
We use Adam optimizer (Kingma and Ba, 2014)
to learn the parameters, and the batch size is set to
be 64. We set the dropout rate (Srivastava et al.,
2014) to be 0.4. All of the gradients are clipped
when the norm exceeds 5.

3.1.4 Baselines

We compare our model with several neural text
simplification systems.

e Seq2seq is our implementation of the
sequence-to-sequence model with attention
mechanism, which is the most popular neu-
ral model for text generation.

NTS and NTS-w2v (Nisioi et al., 2017) are
two sequence-to-sequence model with ex-
tra mechanism like prediction ranking, and
NTS-w2v uses a pretrain word2vec.

DRESS and DRESS-LS (Zhang and Lapata,
2017) are two deep reinforcement learning
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PBMT-R (Wubben et al., 2012) is a phrase
based machine translation model which
reranks the outputs.

e Hybrid (Narayan and Gardent, 2014) is a hy-
brid approach which combines deep seman-

tics and mono-lingual machine translation.

SBMT-SARI (Xu et al., 2016) is a syntax-
based machine translation model which is
trained on PPDB dataset (Ganitkevitch et al.,
2013) and tuned with SARI.

3.1.5 Results

We compare WEAN with state-of-the-art mod-
els for text simplification. Table 1 and Table 2
summarize the results of the automatic evalua-
tion. On PWKP dataset, we compare WEAN with
PBMT, Hybrid, EncDecA, DRESS and DRESS-
LS. WEAN achieves a BLEU score of 54.54, out-
performing all of the previous systems. On EW-
SEW dataset, we compare WEAN with PBMT-R,
Hybrid, SBMT-SARI, and the neural models de-
scribed above. We do not find any public release
code of PBMT-R and SBMT-SARI. Fortunately,
Xu et al. (2016) provides the predictions of PBMT-
R and SBMT-SARI on EW-SEW test set, so that
we can compare our model with these systems.



LCSTS R-1 R-2 R-L
RNN-W(Hu et al., 2015) 17.7 85 158
RNN(Hu et al., 2015) 21.5 89 18.6
RNN-cont-W(Hu et al., 2015) 26.8 16.1 24.1
RNN-cont(Hu et al., 2015) 299 174 272
SRB(Ma et al., 2017) 33.3 20.0 30.1
CopyNet-W(Gu et al., 2016) 35.0 22.3 32.0
CopyNet(Gu et al., 2016) 344 21.6 31.3
RNN-dist(Chen et al., 2016) 352 22.6 325
DRGD(Li et al., 2017) 37.0 242 342
Seq2seq 32.1 199 29.2
WEAN 37.8 25.6 35.2

Table 4: ROUGE F1 score on the LCSTS test set. R-
1, R-2, and R-L denote ROUGE-1, ROUGE-2, and
ROUGE-L, respectively. The models with a suffix of
‘W’ in the table are word-based, while the rest of mod-
els are character-based.

It shows that the neural models have better per-
formance in BLEU, and WEAN achieves the best
BLEU score with 94.45.

We perform the human evaluation of WEAN
and other related systems, and the results are
shown in Table 3. DRESS-LS is based on the rein-
forcement learning, and it encourages the fluency,
simplicity and relevance of the outputs. There-
fore, it achieves a high score in our human eval-
uation. WEAN gains a even better score than
DRESS-LS. Besides, WEAN generates more ad-
equate and simpler outputs than the reference on
PWKEP. The predictions of SBMT-SARI are the
most adequate among the compared systems on
EW-SEW. In general, WEAN outperforms all of
the other systems, considering the balance of flu-
ency, adequate and simplicity. We conduct sig-
nificance tests based on t-test. The significance
tests suggest that WEAN has a very significant
improvement over baseline, with p < 0.001 over
DRESS-LS in all of the dimension on PWKP,
p < 0.05 over DRESS-LS in the dimension of flu-
ency, p < 0.005 over NTS-w2v in the dimension
of simplicity and p < 0.005 over DRESS-LS in
the dimension of all.

3.2 Large Scale Text Summarization

3.2.1 Dataset

Large Scale Chinese Social Media Short Text
Summarization Dataset (LCSTS): LCSTS is
constructed by Hu et al. (2015). The dataset con-
sists of more than 2,400,000 text-summary pairs,
constructed from a famous Chinese social media
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website called Sina Weibo.* It is split into three
parts, with 2,400,591 pairs in PART I, 10,666 pairs
in PART II and 1,106 pairs in PART III. All the
text-summary pairs in PART II and PART III are
manually annotated with relevant scores ranged
from 1 to 5. We only reserve pairs with scores
no less than 3, leaving 8,685 pairs in PART II
and 725 pairs in PART III. Following the previous
work (Hu et al., 2015), we use PART I as training
set, PART II as validation set, and PART III as test
set.

3.2.2 Evaluation Metrics

Our evaluation metric is ROUGE score (Lin and
Hovy, 2003), which is popular for summariza-
tion evaluation. The metrics compare an auto-
matically produced summary against the refer-
ence summaries, by computing overlapping lex-
ical units, including unigram, bigram, trigram,
and longest common subsequence (LCS). Follow-
ing previous work (Rush et al., 2015; Hu et al.,
2015), we use ROUGE-1 (unigram), ROUGE-2
(bi-gram) and ROUGE-L (LCS) as the evaluation
metrics in the reported experimental results.

3.2.3 Settings

The vocabularies are extracted from the training
sets, and the source contents and the summaries
share the same vocabularies. We tune the hyper-
parameters based on the ROUGE scores on the
validation sets. In order to alleviate the risk of
word segmentation mistakes, we split the Chi-
nese sentences into characters. We prune the vo-
cabulary size to 4,000, which covers most of the
common characters. We set the word embedding
size and the hidden size to 512, the number of
LSTM layers of the encoder is 2, and the num-
ber of LSTM layers of the decoder is 1. The batch
size is 64, and we do not use dropout (Srivastava
et al., 2014) on this dataset. Following the previ-
ous work (Li et al., 2017), we implement a beam
search optimization, and set the beam size to 5.

3.2.4 Baselines

We compare our model with the state-of-the-art
baselines.

e RNN and RNN-cont are two sequence-to-
sequence baseline with GRU encoder and de-
coder, provided by Hu et al. (2015).

*nttp://weibo.com



PWKP EWSEW LCSTS
12.80M  12.80M  2.05M
0.13M 0.13M 0.52M

#Param
Seq2seq
WEAN

Table 5: The number of the parameters in the out-
put layer. The numbers of rest parameters between
Seq2seq and WEAN are the same.

e RNN-dist (Chen et al., 2016) is a distraction-
based neural model, which the attention
mechanism focuses on the different parts of
the source content.

e CopyNet (Gu et al., 2016) incorporates a
copy mechanism to allow part of the gener-
ated summary is copied from the source con-
tent.

e SRB (Ma et al., 2017) is a sequence-to-
sequence based neural model with improving
the semantic relevance between the input text
and the output summary.

e DRGD (Li et al., 2017) is a deep recurrent
generative decoder model, combining the de-
coder with a variational autoencoder.

e Seq2seq is our implementation of the
sequence-to-sequence model with the atten-
tion mechanism.

3.2.5 Results

We report the ROUGE F1 score of our model
and the baseline models on the test sets. Ta-
ble 4 summarizes the comparison between our
model and the baselines. Our model achieves
the score of 37.8 ROUGE-1, 25.6 ROUGE-2, and
35.2 ROUGE-L, outperforming all of the previ-
ous models. First, we compare our model with
the sequence-to-sequence model. It shows that
our model significant outperforms the sequence-
to-sequence baseline with a large margin of 5.7
ROUGE-1, 5.7 ROUGE-2, and 6.0 ROUGE-L.
Then, we compare our model with other related
models. The state-of-the-art model is DRGD (Li
et al., 2017), which obtains the score of 37.0
ROUGE-1, 24.2 ROUGE-2, and 34.2 ROUGE-L.
Our model has a relative gain of 0.8 ROUGE-1,
1.4 ROUGE-2 and 1.0 ROUGE-L over the state-
of-the-art models.
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Training Curve
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Figure 2: The training curve of WEAN and Seq2seq on
the PWKP validation set.

4 Analysis and Discussion

4.1 Reducing Parameters

Our WEAN reduces a large number of the param-
eters in the output layer. To analyze the parame-
ter reduction, we compare our WEAN model with
the sequence-to-sequence model. Table 5 lists the
number of the parameters in the output layers of
two models. Both PWKP and EWSEWhave the
vocabulary size of 50000 words and the hidden
size of 256, resulting 50000 x 256 = 12, 800, 000
parameters. LCSTS has a vocabulary size of 4000
and the hidden size of 512, so the seq2seq has
4000 x 512 = 2,048,000 parameters in the out-
put layers. WEAN only has two parameter ma-
trices and one parameter vector at most in Equa-
tion 5, without regard to the vocabulary size. It
has 256 x 256 x 2 + 256 = 131, 328 parameters
on PWKP and EWSEW, and 512x512x24-512 =
524,800 parameters on LCSTS. Besides, WEAN
does not have any extra parameters in the other
part of the model.

4.2 Speeding up Convergence

Figure 2 shows the training curve of WEAN and
Seq2seq on the PWKP validation set. WEAN
achieve near the optimal score in only 2-3 epochs,
while Seq2seq takes more than 15 epochs to
achieve the optimal score. Therefore, WEAN
has much faster convergence rate, compared with
Seq2seq. With the much faster training speed,
WEAN does not suffer loss in BLEU, and even
improve the BLEU score.



Source Yoghurt or yogurt is a dairy product produced by bacterial fermentation of milk .

Reference Yoghurt or yogurt is a dairy product made by bacterial fermentation of milk .

NTS . or yoghurt is a dairy product produced by bacterial fermentation of milk .

NTS-w2v It is made by bacterial fermentation of milk .

PBMT-R Yoghurt or yogurt is a dairy product produced by bacterial fermentation of .

SBMT-SARI  Yogurt or yogurt is a dairy product drawn up by bacterial fermentation of milk .

WEAN Yoghurt or yogurt is a dairy product made by bacterial fermentation of milk .

Source Depending on the context, another closely-related meaning of constituent is that of a
citizen residing in the area governed, represented, or otherwise served by a politician;
sometimes this is restricted to citizens who elected the politician.

Reference The word constituent can also be used to refer to a citizen who lives in the area that
is governed, represented, or otherwise served by a politician; sometimes the word is
restricted to citizens who elected the politician.

NTS Depending on the context, another closely-related meaning of constituent is that of a
citizen living in the area governed, represented, or otherwise served by a politician;
sometimes this is restricted to citizens who elected the politician.

NTS-w2v This is restricted to citizens who elected the politician.

PBMT-R Depending on the context and meaning of closely-related siemens-martin -rrb- is a
citizen living in the area, or otherwise, was governed by a 1924-1930 shurba; this is
restricted to people who elected it.

SBMT-SARI In terms of the context, another closely-related sense of the component is that of a
citizen living in the area covered, make up, or if not, served by a policy; sometimes
this is limited to the people who elected the policy.

WEAN Depending on the context, another closely-related meaning of constituent is that of a

citizen who lives in the area governed, represented, or otherwise served by a politician;
sometimes the word is restricted to citizens who elected the politician.

Table 6: Two examples of different text simplification system outputs in EW-SEW dataset. Differences from the

source texts are shown in bold.

4.3 Case Study

Table 6 shows two examples of different text sim-
plification system outputs on EW-SEW. For the
first example, NTS, NTS-w2v and PBMT-R miss
some essential constituents, so that the sentences
are incomplete and not fluent. SBMT-SARI gen-
erates a fluent sentence, but the output does not
preserve the original meaning. The predicted sen-
tence of WEAN is fluent, simple, and the same
as the reference. For the second example, NTS-
w2v omits so many words that it lacks a lot
of information. PBMT-R generates some irrele-
vant words, like ’siemens-martin’, ’-rrb-’, and ’-
shurba’, which hurts the fluency and adequacy of
the generated sentence. SBMT-SARI is able to
generate a fluent sentence, but the meaning is dif-
ferent from the source text, and even more diffi-
cult to understand. Compared with the statistic
model, WEAN generates a more fluent sentence.
Besides, WEAN can capture the semantic mean-
ing of the word by querying the word embeddings,
so the generated sentence is semantically correct,
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and very close to the original meaning.

5 Related Work

Our work is related to the encoder-decoder
framework (Cho et al.,, 2014) and the attention
mechanism (Bahdanau et al.,, 2014). Encoder-
decoder framework, like sequence-to-sequence
model, has achieved success in machine transla-
tion (Sutskever et al., 2014; Jean et al., 2015; Lu-
ong et al., 2015; Lin et al., 2018), text summa-
rization (Rush et al., 2015; Chopra et al., 2016;
Nallapati et al., 2016; Wang et al., 2017; Ma and
Sun, 2017), and other natural language process-
ing tasks (Liu et al., 2017). There are many other
methods to improve neural attention model (Jean
et al., 2015; Luong et al., 2015).

Zhu et al. (2010) constructs a wikipedia dataset,
and proposes a tree-based simplification model.
Woodsend and Lapata (2011) introduces a data-
driven model based on quasi-synchronous gram-
mar, which captures structural mismatches and
complex rewrite operations. Wubben et al. (2012)



presents a method for text simplification using
phrase based machine translation with re-ranking
the outputs. Kauchak (2013) proposes a text sim-
plification corpus, and evaluates language model-
ing for text simplification on the proposed corpus.
Narayan and Gardent (2014) propose a hybrid ap-
proach to sentence simplification which combines
deep semantics and monolingual machine trans-
lation. Hwang et al. (2015) introduces a paral-
lel simplification corpus by evaluating the simi-
larity between the source text and the simplified
text based on WordNet. Glavas and étajner (2015)
propose an unsupervised approach to lexical sim-
plification that makes use of word vectors and re-
quire only regular corpora. Xu et al. (2016) de-
sign automatic metrics for text simplification. Re-
cently, most works focus on the neural sequence-
to-sequence model. Nisioi et al. (2017) present
a sequence-to-sequence model, and re-ranks the
predictions with BLEU and SARI. Zhang and La-
pata (2017) propose a deep reinforcement learning
model to improve the simplicity, fluency and ade-
quacy of the simplified texts. Cao et al. (2017)
introduce a novel sequence-to-sequence model to
join copying and restricted generation for text sim-
plification.

Rush et al. (2015) first used an attention-based
encoder to compress texts and a neural network
language decoder to generate summaries. Follow-
ing this work, recurrent encoder was introduced
to text summarization, and gained better perfor-
mance (Lopyrev, 2015; Chopra et al., 2016). To-
wards Chinese texts, Hu et al. (2015) built a large
corpus of Chinese short text summarization. To
deal with unknown word problem, Nallapati et al.
(2016) proposed a generator-pointer model so that
the decoder is able to generate words in source
texts. Gu et al. (2016) also solved this issue by
incorporating copying mechanism.

6 Conclusion

We propose a novel model based on the encoder-
decoder framework, which generates the words by
querying distributed word representations. Exper-
imental results show that our model outperforms
the sequence-to-sequence baseline by the BLEU
score of 6.3 and 5.5 on two English text simplifi-
cation datasets, and the ROUGE-2 F1 score of 5.7
on a Chinese summarization dataset. Moreover,
our model achieves state-of-the-art performances
on these three benchmark datasets.
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