
In Question Answering, Two Heads Are Better Than One

Jennifer Chu-Carroll Krzysztof Czuba John Prager Abraham Ittycheriah
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598, U.S.A.
jencc,kczuba,jprager,abei@us.ibm.com

Abstract

Motivated by the success of ensemble methods
in machine learning and other areas of natu-
ral language processing, we developed a multi-
strategy and multi-source approach to question
answering which is based on combining the re-
sults from different answering agents searching
for answers in multiple corpora. The answer-
ing agents adopt fundamentally different strate-
gies, one utilizing primarily knowledge-based
mechanisms and the other adopting statistical
techniques. We present our multi-level answer
resolution algorithm that combines results from
the answering agents at the question, passage,
and/or answer levels. Experiments evaluating
the effectiveness of our answer resolution algo-
rithm show a 35.0% relative improvement over
our baseline system in the number of questions
correctly answered, and a 32.8% improvement
according to the average precision metric.

1 Introduction

Traditional question answering (QA) systems typically
employ a pipeline approach, consisting roughly of ques-
tion analysis, document/passage retrieval, and answer se-
lection (see e.g., (Prager et al., 2000; Moldovan et al.,
2000; Hovy et al., 2001; Clarke et al., 2001)). Although a
typical QA system classifies questions based on expected
answer types, it adopts the same strategy for locating po-
tential answers from the same corpus regardless of the
question classification. In our own earlier work, we de-
veloped a specialized mechanism calledVirtual Annota-
tion for handling definition questions (e.g.,“Who was
Galileo?” and “What are antibiotics?”) that consults,
in addition to the standard reference corpus, a structured
knowledge source (WordNet) for answering such ques-
tions (Prager et al., 2001). We have shown that better
performance is achieved by applying Virtual Annotation
and our general purpose QA strategy in parallel. In this

paper, we investigate the impact of adopting such a multi-
strategy and multi-source approach to QA in a more gen-
eral fashion.

Our approach to question answering is additionally
motivated by the success of ensemble methods in ma-
chine learning, where multiple classifiers are employed
and their results are combined to produce the final output
of the ensemble (for an overview, see (Dietterich, 1997)).
Such ensemble methods have recently been adopted in
question answering (Chu-Carroll et al., 2003b; Burger
et al., 2003). In our question answering system, PI-
QUANT, we utilize in parallel multiple answering agents
that adopt different processing strategies and consult dif-
ferent knowledge sources in identifying answers to given
questions, and we employ resolution mechanisms to com-
bine the results produced by the individual answering
agents.

We call our approachmulti-strategy since we com-
bine the results from a number of independent agents im-
plementing different answer finding strategies. We also
call it multi-source since the different agents can search
for answers in multiple knowledge sources. In this pa-
per, we focus on two answering agents that adopt fun-
damentally different strategies: one agent uses predomi-
nantly knowledge-based mechanisms, whereas the other
agent is based on statistical methods. Our multi-level
resolution algorithm enables combination of results from
each answering agent at the question, passage, and/or an-
swer levels. Our experiments show that in most cases
our multi-level resolution algorithm outperforms its com-
ponents, supporting a tightly-coupled design for multi-
agent QA systems. Experimental results show signifi-
cant performance improvement over our single-strategy,
single-source baselines, with the best performing multi-
level resolution algorithm achieving a 35.0% relative im-
provement in the number of correct answers and a 32.8%
improvement in average precision, on a previously un-
seen test set.

                                                               Edmonton, May-June 2003
                                                               Main Papers , pp. 24-31
                                                         Proceedings of HLT-NAACL 2003



Answering Agents

KSP

Semantic
Search

Keyword
Search

Question

WordNet

Answer

Cyc

QFrame

Question
Analysis

QGoals

Knowledge-Based
Answering Agent

Statistical
Answering Agent

Aquaint
corpus

TREC
corpus

EB

Answer
Resolution

Definition Q
Answering Agent

KSP-Based
Answering Agent

Knowledge Sources

Figure 1: PIQUANT’s Architecture

2 A Multi-Agent QA Architecture

In order to enable a multi-source and multi-strategy ap-
proach to question answering, we developed a modu-
lar and extensible QA architecture as shown in Figure 1
(Chu-Carroll et al., 2003a; Chu-Carroll et al., 2003b).
With a consistent interface defined for each component,
this architecture allows for easy plug-and-play of individ-
ual components for experimental purposes.

In our architecture, a question is first processed by the
question analysis component. The analysis results are
represented as a QFrame, which minimally includes a set
of question features that help activate one or more an-
swering agents. Each answering agent takes the QFrame
and generates its own set of requests to a variety of
knowledge sources. This may include performing search
against a text corpus and extracting answers from the re-
sulting passages, or performing a query against a struc-
tured knowledge source, such as WordNet (Miller, 1995)
or Cyc (Lenat, 1995). The (intermediate) results from
the individual answering agents are then passed on to the
answer resolution component, which combines and re-
solves the set of results, and either produces the system’s
final answers or feeds the intermediate results back to the
answering agents for further processing.

We have developed multiple answering agents, some
general purpose and others tailored for specific ques-
tion types. Figure 1 shows the answering agents cur-
rently available in PIQUANT. The knowledge-based and
statistical answering agents are general-purpose agents
that adopt different processing strategies and consult a
number of different text resources. The definition-Q
agent targets definition questions (e.g.,“What is peni-
cillin?” and“Who is Picasso?”) with a technique called

Virtual Annotationusing the external knowledge source
WordNet (Prager et al., 2001). The KSP-based answer-
ing agent focuses on a subset of factoid questions with
specific logical forms, such ascapital(?COUNTRY)and
statetree(?STATE). The answering agent sends requests
to the KSP (Knowledge Sources Portal), which returns, if
possible, an answer from a structured knowledge source
(Chu-Carroll et al., 2003a).

In the rest of this paper, we briefly describe our two
general-purpose answering agents. We then focus on a
multi-level answer resolution algorithm, applicable at dif-
ferent points in the QA process of these two answering
agents. Finally, we discuss experiments conducted to dis-
cover effective methods for combining results from mul-
tiple answering agents.

3 Component Answering Agents

We focus on two end-to-end answering agents designed
to answer short, fact-seeking questions from a collection
of text documents, as motivated by the requirements of
the TREC QA track (Voorhees, 2003). Both answer-
ing agents adopt the classic pipeline architecture, con-
sisting roughly of question analysis, passage retrieval,
and answer selection components. Although the answer-
ing agents adopt fundamentally different strategies in
their individual components, they have performed quite
comparably in past TREC QA tracks (Voorhees, 2001;
Voorhees, 2002).

3.1 Knowledge-Based Answering Agent

Our first answering agent utilizes a primarily knowledge-
driven approach, based onPredictive Annotation(Prager
et al., 2000). A key characteristic of this approach is that



potential answers, such as person names, locations, and
dates, in the corpus are predictively annotated. In other
words, the corpus is indexed not only with keywords, as
is typical for most search engines, but also with the se-
mantic classes of these pre-identified potential answers.

During the question analysis phase, a rule-based mech-
anism is employed to select one or more expected an-
swer types, from a set of about 80 classes used in the
predictive annotation process, along with a set of ques-
tion keywords. A weighted search engine query is then
constructed from the keywords, their morphological vari-
ations, synonyms, and the answer type(s). The search en-
gine returns a hit list of typically 10 passages, each con-
sisting of 1-3 sentences. The candidate answers in these
passages are identified and ranked based on three criteria:
1) match in semantic type between candidate answer and
expected answer, 2) match in weighted grammatical rela-
tionships between question and answer passages, and 3)
frequency of answer in candidate passages (redundancy).
The answering agent returns the topn ranked candidate
answers along with a confidence score for each answer.

3.2 Statistical Answering Agent

The second answering agent takes a statistical approach
to question answering (Ittycheriah, 2001; Ittycheriah et
al., 2001). It models the distributionp(c|q, a), which
measures the “correctness” (c) of an answer (a) to a ques-
tion (q), by introducing a hidden variable representing the
answer type (e) as follows:

p(c|q, a) =
∑

e p(c, e|q, a)
=

∑
e p(c|e, q, a)p(e|q, a)

p(e|q, a) is the answer type model which predicts, from
the question and a proposed answer, the answer type they
both satisfy. p(c|e, q, a) is the answer selection model.
Given a question, an answer, and the predicted answer
type, it seeks to model the correctness of this configura-
tion. These distributions are modeled using a maximum
entropy formulation (Berger et al., 1996), using training
data which consists of human judgments of question an-
swer pairs. For the answer type model, 13K questions
were annotated with 31 categories. For the answer selec-
tion model, 892 questions from the TREC 8 and TREC 9
QA tracks were used, along with 4K trivia questions.

During runtime, the question is first analyzed by the
answer type model, which selects one out of a set of 31
types for use by the answer selection model. Simultane-
ously, the question is expanded using local context anal-
ysis (Xu and Croft, 1996) with an encyclopedia, and the
top 1000 documents are retrieved by the search engine.
From these documents, the top 100 passages are chosen
that 1) maximize the question word match, 2) have the
desired answer type, 3) minimize the dispersion of ques-
tion words, and 4) have similar syntactic structures as the

question. From these passages, candidate answers are ex-
tracted and ranked using the answer selection model. The
top n candidate answers are then returned, each with an
associated confidence score.

4 Answer Resolution

Given two answering agents with the same pipeline archi-
tecture, there are multiple points in the process at which
(intermediate) results can be combined, as illustrated in
Figure 2. More specifically, it is possible for one answer-
ing agent to provide input to the other after the question
analysis, passage retrieval, and answer selection phases.
In PIQUANT, the knowledge based agent may accept in-
put from the statistical agent after each of these three
phases.1 The contributions from the statistical agent are
taken into consideration by the knowledge based answer-
ing agent in a phase-dependent fashion. The rest of this
section details our combination strategies for each phase.

4.1 Question-Level Combination

One of the key tasks of the question analysis component
is to determine the expected answer type, such asPERSON

for “Who discovered America?”and DATE for “When
did World War II end?”This information is taken into ac-
count by most existing QA systems when ranking candi-
date answers, and can also be used in the passage retrieval
process to increase the precision of candidate passages.

We seek to improve the knowledge-based agent’s
performance in passage retrieval and answer selection
through better answer type identification by consulting
the statistical agent’s expected answer type. This task,
however, is complicated by the fact that QA systems em-
ploy different sets of answer types, often with different
granularities and/or with overlapping types. For instance,
while one system may generateROYALTY for the ques-
tion “Who was the King of France in 1702?”, another
system may producePERSON as the most specific an-
swer type in its repertoire. This is quite a serious problem
for us as the knowledge based agent uses over 80 answer
types while the statistical agent adopts only 31 categories.

In order to distinguish actual answer type discrepan-
cies from those due to granularity differences, we first
manually created a mapping between the two sets of an-
swer types. This mapping specifies, for each answer type
used by the statistical agent, a set ofpossiblecorrespond-
ing types used by the knowledge-based agent. For exam-
ple, theGEOLOGICALOBJclass is mapped to a set of finer
grained classes:RIVER, MOUNTAIN , LAKE , andOCEAN.
At processing time, the statistical agent’s answer type
is mapped to the knowledge-based agent’s classes (SA-

1Although it is possible for the statistical agent to receive
input from the knowledge based agent as well, we have not pur-
sued that option because of implementation issues.
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Figure 2: Answer Resolution Strategies

types), which are then merged with the answer type(s) se-
lected by the knowledge-based agent itself (KBA-types)
as follows:

1. If the intersection of KBA-types and SA-types is
non-null, i.e., the two agents produced consistent an-
swer types, then the merged set is KBA-types.

2. Otherwise, the two sets of answer types are truly
in disagreement, and the merged set is the union of
KBA-types and SA-types.

The merged answer types are then used by the
knowledge-based agent in further processing.

4.2 Passage-Level Combination

The passage retrieval component selects, from a large text
corpus, a small number of short passages from which an-
swers are identified. Oftentimes, multiple passages that
answer a question are retrieved. Some of these passages
may be better suited than others for the answer selection
algorithm employed downstream. For example, consider
“When was Benjamin Disraeli prime minister?”, whose
answer can be found in both passages below:

1. Benjamin Disraeli, who had become prime minister
in 1868, was born into Judaism but was baptized a
Christian at the age of 12.

2. France had a Jewish prime minister in 1936, Eng-
land in 1868, and Spain, of all countries, in 1835,
but none of them, Leon Blum, Benjamin Disraeli or
Juan Alvarez Mendizabel, were devoutly observant,
as Lieberman is.

Although the correct answer, 1868, is present in both
passages, it is substantially easier to identify the answer
from the first passage, where it is directly stated, than

from the second passage, where recognition of parallel
constructs is needed to identify the correct answer.

Because of strategic differences in question analysis
and passage retrieval, our two answering agents often re-
trieve different passages for the same question. Thus, we
perform passage-level combination to make a wider va-
riety of passages available to the answer selection com-
ponent, as shown in Figure 2. The potential advantages
are threefold. First, passages from agent 2 may contain
answers absent in passages retrieved by agent 1. Sec-
ond, agent 2 may have retrieved passages better suited for
the downstream answer selection algorithm than those re-
trieved by agent 1. Third, passages from agent 2 may con-
tain additional occurrences of the correct answer, which
boosts the system’s confidence in the answer through the
redundancy measure.2

Our passage-level combination algorithm adds to the
passages extracted by the knowledge-based agent the top-
ranked passages from the statistical agent that contain
candidate answers of the right type. More specifically,
the statistical agent’s passages are semantically annotated
and the top 10 passages containing at least one candidate
of the expected answer type(s) are selected.3

4.3 Answer-Level Combination

The answer selection component identifies, from a set
of passages, the topn answers for the given question,
with their associated confidence scores. An answer-level
combination algorithm takes the top answer(s) from the
individual answering agents and determines the overall
best answer(s). Of our three combination algorithms, this
most closely resembles traditional ensemble methods, as
voting takes place among the end results of individual an-

2On the other hand, such redundancy may result in error
compounding, as discussed in Section 5.3.

3We selected the top 10 passages so that the same number
of passages are considered from both answering agents.



swering agents to determine the final output of the ensem-
ble.

We developed two answer-level combination algo-
rithms, both utilizing a simple confidence-based voting
mechanism, based on the premise that answers selected
by both agents with high confidence are more likely to
be correct than those identified by only one agent.4 In
both algorithms, named entity normalization is first per-
formed on all candidate answers considered. In the first
algorithm, only the top answer from each agent is taken
into account. If the two top answers are equivalent, the
answer is selected with the combined confidence from
both agents; otherwise, the more confident answer is se-
lected.5 In the second algorithm, the top 5 answers from
each agent are allowed to participate in the voting pro-
cess. Each instance of an answer votes with a weight
equal to its confidence value and the weights of equiv-
alent answers are again summed. The answer with the
highest weight, or confidence value, is selected as the
system’s final answer. Since in our evaluation, the second
algorithm uniformly outperforms the first, it is adopted as
our answer-level combination algorithm in the rest of the
paper.

5 Performance Evaluation

5.1 Experimental Setup

To assess the effectiveness of our multi-level answer res-
olution algorithm, we devised experiments to evaluate the
impact of the question, passage, and answer-level combi-
nation algorithms described in the previous section.

The baseline systems are the knowledge-based and sta-
tistical agents performing individually against a single
reference corpus. In addition, our earlier experiments
showed that when employing a single answer finding
strategy, consulting multiple text corpora yielded better
performance than using a single corpus. We thus con-
figured a version of our knowledge-based agent to make
use of three available text corpora,6 the AQUAINT cor-
pus (news articles from 1998-2000), the TREC corpus
(news articles from 1988-1994),7 and a subset of the En-
cyclopedia Britannica. This multi-source version of the
knowledge-based agent will be used in all answer resolu-
tion experiments in conjunction with the statistical agent.

We configured multiple versions of PIQUANT to eval-
uate our question, passage, and answer-level combination

4In future work we will be investigating weighted voting
schemes based on question features.

5The confidence values from both answering agents are nor-
malized to be between 0 and 1.

6The statistical agent is currently unable to consult multiple
corpora.

7Both the AQUAINT and TREC corpora are available from
the Linguistics Data Consortium, http://www.ldc.org.

algorithms individually and cumulatively. For cumula-
tive effects, we 1) combined the algorithms pair-wise,
and 2) employed all three algorithms together. The two
test sets were selected from the TREC 10 and 11 QA
track questions (Voorhees, 2002; Voorhees, 2003). For
both test sets, we eliminated those questions that did not
have known answers in the reference corpus. Further-
more, from the TREC 10 test set, we discarded all defini-
tion questions,8 since the knowledge-based agent adopts
a specialized strategy for handling definition questions
which greatly reduces potential contributions from other
answering agents. This results in a TREC 10 test set of
313 questions and a TREC 11 test set of 453 questions.

5.2 Experimental Results

We ran each of the baseline and combined systems on the
two test sets. For each run, the system outputs its top
answer and its confidence score for each question. All
answers for a run are then sorted in descending order of
the confidence scores. Two established TREC QA eval-
uation metrics are adopted to assess the results for each
run as follows:

1. % Correct : Percentage of correct answers.

2. Average Precision: A confidence-weighted score
that rewards systems with high confidence in cor-
rect answers as follows, where N is the number of
questions:

1
N

N∑
i=1

# correct up to question i/i

Table 1 shows our experimental results. The top sec-
tion shows the comparable baseline results from the sta-
tistical agent (SA-SS) and the single-source knowledge-
based agent (KBA-SS). It also includes results for the
multi-source knowledge-based agent (KBA-MS), which
improve upon those for its single-source counterpart
(KBA-SS).

The middle section of the table shows the answer
resolution results, including applying the question, pas-
sage, and answer-level combination algorithms individu-
ally (Q, P, and A, respectively), applying them pair-wise
(Q+P, P+A, and Q+A), and employing all three algo-
rithms (Q+P+A). Finally, the last row of the table shows
the relative improvement by comparing the best perform-
ing system configuration (highlighted in boldface) with
the better performing single-source, single-strategy base-
line system (SA-SS or KBA-SS, in italics).

Overall, PIQUANT’s multi-strategy and multi-source
approach achieved a 35.0% relative improvement in the

8Definition questions were intentionally excluded by the
track coordinator in the TREC 11 test set.



TREC 10 (313) TREC 11 (453)
% Corr Avg Prec % Corr Avg Prec

SA-SS 36.7% 0.569 32.9% 0.534
KBA-SS 39.6% 0.595 32.5% 0.531
KBA-MS 43.8% 0.641 38.2% 0.622
Q 44.7% 0.647 38.9% 0.632
P 49.5% 0.661 40.0% 0.627
A 49.5% 0.712 43.5% 0.704
Q+P 48.9% 0.656 41.1% 0.640
P+A 51.1% 0.711 44.2% 0.686
Q+A 49.8% 0.716 43.9% 0.709
Q+P+A 50.8% 0.706 44.4% 0.690
rel. improv. 29.0% 20.3% 35.0% 32.8%

Table 1: Experimental Results

number of correct answers and a 32.8% improvement in
average precision on the TREC 11 data set. Of the com-
bined improvement, approximately half was achieved by
the multi-source aspect of PIQUANT, while the other half
was obtained by PIQUANT’s multi-strategy feature. Al-
though the absolute average precision values are com-
parable on both test sets and the absolute percentage of
correct answers is lower on the TREC 11 data, the im-
provement is greater on TREC 11 in both cases. This
is because the TREC 10 questions were taken into ac-
count for manual rule refinement in the knowledge-based
agent, resulting in higher baselines on the TREC 10 test
set. We believe that the larger improvement on the previ-
ously unseen TREC 11 data is a more reliable estimate of
PIQUANT’s performance on future test sets.

We applied an earlier version of our combination algo-
rithms, which performed between our current P and P+A
algorithms, in our submission to the TREC 11 QA track.
Using the average precision metric, that version of PI-
QUANT was among the top 5 best performing systems
out of 67 runs submitted by 34 groups.

5.3 Discussion and Analysis

A cursory examination of the results in Table 1 allows
us to draw two general conclusions about PIQUANT’s
performance. First, all three combination algorithms ap-
plied individually improved upon the baseline using both
evaluation metrics on both test sets. In addition, overall
performance is generally better the later in the process
the combination occurs, i.e., the answer-level combina-
tion algorithm outperformed the passage-level combina-
tion algorithm, which in turn outperformed the question-
level combination algorithm. Second, the cumulative im-
provement from multiple combination algorithms is in
general greater than that from the components. For in-
stance, the Q+A algorithm uniformly outperformed the Q
and A algorithms alone. Note, however, that the Q+P+A
algorithm achieved the highest performance only on the
TREC 11 test set using the % correct metric. We believe

KBA
TREC 10 (313) TREC 11 (453)
+ - + -

SA + 185 43 254 58
- 24 61 41 100

Table 2: Passage Retrieval Analysis

that this is because of compounding errors that occurred
during the multiple combination process.

In ensemble methods, the individual components must
makedifferent mistakes in order for the combined sys-
tem to potentially perform better than the component sys-
tems (Dietterich, 1997). We examined the differences
in results between the two answering agents from their
question analysis, passage retrieval, and answer selection
components. We focused our analysis on the potential
gain/loss from incorporating contributions from the sta-
tistical agent, and how the potential was realized as actual
performance gain/loss in our end-to-end system.

At the question level, we examined those questions
for which the two agents proposed incompatible answer
types. On the TREC 10 test set, the statistical agent in-
troduced correct answer types in 6 cases and incorrect
answer types in 9 cases. As a result, in some cases the
question-level combination algorithm improved system
performance (comparing A and Q+A) and in others it
degraded performance (comparing P and Q+P). On the
other hand, on the TREC 11 test set, the statistical agent
introduced correct and incorrect answer types in 15 and
6 cases, respectively. As a result, in most cases perfor-
mance improved when the question-level combination al-
gorithm was invoked. The difference in question analysis
performance again reflects the fact that TREC 10 ques-
tions were used in question analysis rule refinement in
the knowledge-based agent.

At the passage level, we examined, for each ques-
tion, whether the candidate passages contained the cor-
rect answer. Table 2 shows the distribution of ques-
tions for which correct answers were (+) and were not
(-) present in the passages for both agents. The bold-
faced cells represent questions for which the statistical
agent retrieved passages with correct answers while the
knowledge-based agent did not. There were 43 and 58
such questions in the TREC 10 and TREC 11 test sets, re-
spectively, and employing the passage-level combination
algorithm resulted only in an additional 18 and 8 correct
answers on each test set. This is because the statistical
agent’s proposes in its 10 passages, on average, 29 candi-
date answers, most of which are incorrect, of the proper
semantic type per question. As the downstream answer
selection component takes redundancy into account in an-
swer ranking, incorrect answers may reinforce one an-
other and become top ranked answers. This suggests that



KBA
TREC 10 (313) TREC 11 (453)

1st 2-5th none 1st 2-5th none
SA 1st 66 22 26 93 21 35

2-5th 26 9 13 29 19 22
none 45 14 92 51 21 162

Table 3: Answer Voting Analysis

the relative contributions of our answer selection features
may not be optimally tuned for our multi-agent approach
to QA. We plan to investigate this issue in future work.

At the answer level, we analyzed each agent’s top 5
answers, used in the combination algorithm’s voting pro-
cess. Table 3 shows the distribution of questions for
which an answer was found in 1st place, in 2nd-5th place,
and not found in top 5. Since we employ a linear vot-
ing strategy based on confidence scores, we classify the
cells in Table 3 as follows based on the perceived likeli-
hood that the correct answers for questions in each cell
wins in the voting process. The boldfaced and underlined
cells containhighly likelycandidates, since a correct an-
swer was found in 1st place by both agents.9 The bold-
faced cells consist oflikely candidates, since a 1st place
correct answer was supported by a 2nd-5th place answer.
The italicized and underlined cells containpossiblecan-
didates, while the rest of the cells cannot produce correct
1st place answers using our current voting algorithm. On
TREC 10 data, 194 questions fall into thehighly likely,
likely, andpossiblecategories, out of which the voting al-
gorithm successfully selected 155 correct answers in 1st
place. On TREC 11 data, 197 correct answers were se-
lected out of 248 questions that fall into these categories.
These results represent success rates of 79.9% and 79.4%
for our answer-level combination algorithm on the two
test sets.

6 Related Work

There has been much work in employing ensemble meth-
ods to increase system performance in machine learning.
In NLP, such methods have been applied to tasks such
as POS tagging (Brill and Wu, 1998), word sense dis-
ambiguation (Pedersen, 2000), parsing (Henderson and
Brill, 1999), and machine translation (Frederking and
Nirenburg, 1994).

In question answering, a number of researchers have
investigated federated systems for identifying answers to
questions. For example, (Clarke et al., 2003) and (Lin et
al., 2003) employ techniques for utilizing both unstruc-

9These cells are not marked asdefinitebecause in a small
number of cases, the two answers are not equivalent. For exam-
ple, for the TREC 9 question,“Who is the emperor of Japan?”,
Hirohito, Akihito, and Taisho are all considered correct answers
based on the reference corpus.

tured text and structured databases for question answer-
ing. However, the approaches taken by both these sys-
tems differ from ours in that they enforce an order be-
tween the two strategies by attempting to locate answers
in structured databases first for select question types and
falling back to unstructured text when the former fails,
while we explore both options in parallel andcombine
the results from multiple answering agents.

The multi-agent approach to question answering most
similar to ours is that by Burgeret al. (2003). They
applied ensemble methods to combine the 67 runs sub-
mitted to the TREC 11 QA track, using an unweighted
centroid method for selecting among the 67 proposed an-
swers for each question. However, their combined sys-
tem did not outperform the top scoring system(s). Fur-
thermore, their approach differs from ours in that they fo-
cused on combining the end results of a large number of
systems, while we investigated a tightly-coupled design
for combining two answering agents.

7 Conclusions

In this paper, we introduced a multi-strategy and multi-
source approach to question answering that enables com-
bination of answering agents adopting different strategies
and consulting multiple knowledge sources. In partic-
ular, we focused on two answering agents, one adopt-
ing a knowledge-based approach and one using statistical
methods. We discussed our answer resolution component
which employs a multi-level combination algorithm that
allows for resolution at the question, passage, and answer
levels. Best performance using the % correct metric was
achieved by the three-level algorithm that combines af-
ter each stage, while highest average precision was ob-
tained by a two-level algorithm merging at the question
and answer levels, supporting a tightly-coupled design
for multi-agent question answering. Our experiments
showed that our best performing algorithms achieved a
35.0% relative improvement in the number of correct an-
swers and a 32.8% improvement in average precision on
a previously unseen test set.
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