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This paper presents a set of mathematical and computational tools for manipulating and rea- 
soning about regular languages and regular relations and argues that they provide a solid basis 
for computational phonology. It shows in detail how this framework applies to ordered sets of 
context-sensitive rewriting rules and also to grammars in Koskenniemi's two-level formalism. 
This analysis provides a common representation of phonological constraints that supports efficient 
generation and recognition by a single simple interpreter. 

1. Introduction 

Ordered sets of context-sensitive rewriting rules have traditionally been used to de- 
scribe the pronunciation changes that occur when sounds appear in different phono- 
logical and morphological contexts. Intuitively, these phenomena ought to be cog- 
nitively and computationally simpler than the variations and correspondences that 
appear in natural language syntax and semantics, yet the formal structure of such 
rules seems to require a complicated interpreter and an extraordinarily large number 
of processing steps. In this paper, we show that any such rule defines a regular relation 
on strings if its non-contextual part is not allowed to apply to its own output, and thus 
it can be modeled by a symmetric finite-state transducer. Furthermore, since regular 
relations are closed under serial composition, a finite set of rules applying to each 
other's output in an ordered sequence also defines a regular relation. A single finite- 
state transducer whose behavior simulates the whole set can therefore be constructed 
by composing the transducers corresponding to the individual rules. This transducer 
can be incorporated into efficient computational procedures that are far more eco- 
nomical in both recognition and production than any strategies using ordered rules 
directly. Since orthographic rules have similar formal properties to phonological rules, 
our results generalize to problems of word recognition in written text. 

The mathematical techniques we develop to analyze rewriting rule systems are 
not limited just to that particular collection of formal devices. They can also be ap- 
plied to other recently proposed phonological or morphological rule systems. For 
example, we can show that Koskenniemi's (1983) two-level parallel rule systems also 
denote regular relations. Section 2 below provides an intuitive grounding for the rest 
of our discussion by illustrating the correspondence between simple rewriting rules 
and transducers. Section 3 summarizes the mathematical tools that we use to analyze 
both rewriting and two-level systems. Section 4 describes the properties of the rewrit- 
ing rule formalisms we are concerned with, and their mathematical characterization 
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is presented in Sections 5 and 6. A similar characterization of two-level rule systems 
is provided in Section 7. 

By way of introduction, we consider some of the computational issues presented 
by simple morphophonemic rewriting rules such as these: 

Rule  1 
N -* m / _ _  [+labial] 

Rule  2 
N--~n  

According to these rules an underspecified, abstract nasal phoneme N appearing in 
the lexical forms iNpractical and iNtractable will be realized as the m in impractical 
and as the n in intractable. To ensure that these and only these results are obtained, 
the rules must be treated as obligatory and taken in the order given. As obligatory 
rules, they must be applied to every substring meeting their conditions. Otherwise, 
the abstract string iNpractical would be realized as inpractical and iNpractical as well 
as impractical, and the abstract N would not necessarily be removed from iNtractable. 
Ordering the rules means that the output of the first is taken as the input to the second. 
This prevents iNpractical from being converted to inpractical by Rule 2 without first 
considering Rule 1. 

These obligatory rules always produce exactly one result from a given input. This 
is not the case when they are made to operate in the reverse direction. For example, if 
Rule 2 is inverted on the string intractable, there will be two results, intractable and iN- 
tractable. This is because intractable is derivable by that rule from both of these strings. 
Of course, only the segments in iNtractable will eventually match against the lexicon, 
but in general both the N and n results of this inversion can figure in valid interpre- 
tations. Compare the words undecipherable and indecipherable. The n in the prefix un-, 
unlike the one in in-, does not derive from the abstract N, since it remains unchanged 
before labials (c.f. unperturbable). Thus the results of inverting this rule must include 
undecipherable for undecipherable but iNdecipherable for indecipherable so that each of them 
can match properly against the lexicon. 

While inverting a rule may sometimes produce alternative outputs, there are also 
situations in which no output is produced. This happens when an obligatory rule is 
inverted on a string that it could not have generated. For example, iNput cannot be 
generated by Rule 1 because the N precedes a labial and therefore would obligatorily 
be converted to m. There is therefore no output when Rule 1 is inverted on iNput. 
However, when Rule 2 is inverted on input, it does produce iNput as one of its results. 
The effect of then inverting Rule 1 is to remove the ambiguity produced by inverting 
Rule 2, leaving only the unchanged input to be matched against the lexicon. More 
generally, if recognition is carried out by taking the rules of a grammar in reverse 
order and inverting each of them in turn, later rules in the new sequence act as filters 
on ambiguities produced by earlier ones. 

The existence of a large class of ambiguities that are introduced at one point in the 
recognition process and eliminated at another has been a major source of difficulty in 
efficiently reversing the action of linguistically motivated phonological grammars. In a 
large grammar, the effect of these spurious ambiguities is multiplicative, since the in- 
formation needed to cut off unproductive paths often does not become available until 
after they have been pursued for some considerable distance. Indeed, speech under- 
standing systems that use phonological rules do not typically invert them on strings 
but rather apply them to the lexicon to generate a list of all possible word forms (e.g. 
Woods et al. 1976; Klatt 1980). Recognition is then accomplished by standard table- 
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lookup procedures, usually augmented with special devices to handle phonological 
changes that operate across word boundaries. Another approach to solving this com- 
putational problem would be to use the reversed cascade of rules during recognition, 
but to somehow make the filtering information of particular rules available earlier in 
the process. However, no general and effective techniques have been proposed for 
doing this. 

The more radical approach that we explore in this paper is to eliminate the cascade 
altogether, representing the information in the grammar as a whole in a single more 
unified device, namely, a finite-state transducer. This device is constructed in two 
phases. The first is to create for each rule in the grammar a transducer that exactly 
models its behavior. The second is to compose these individual rule transducers into 
a single machine that models the grammar as a whole. 

Johnson (1972) was the first to notice that the noncyclic components of standard 
phonological formalisms, and particularly the formalism of The Sound Pattern of English 
(Chomsky and Halle 1968), were equivalent in power to finite-state devices despite a 
superficial resemblance to general rewriting systems. Phonologists in the SPE tradition, 
as well as the structuralists that preceded them, had apparently honored an injunction 
against rules that rewrite their own output but still allowed the output of a rule to 
serve as context for a reapplication of that same rule. Johnson realized that this was the 
key to limiting the power of systems of phonological rules. He also realized that basic 

• . / . . . . . .  

rewriting rules were subject to many alternahve modes of apphcahon offering different 
expressive possibilities to the linguist. He showed that phonological grammars under 
most reasonable modes of application remain within the finite-state paradigm. 

We observed independently the basic connections between rewriting-rule gram- 
mars and finite-state transducers in the late 1970s and reported them at the 1981 
meeting of the Linguistic Society of America (Kaplan and Kay 1981). The mathematical 
analysis in terms of regular relations emerged somewhat later. Aspects of that analysis 
and its extension to two-level systems were presented at conferences by Kaplan (1984, 
1985, 1988), in courses at the 1987 and 1991 Linguistics Institutes, and at colloquia at 
Stanford University, Brown University, the University of Rochester, and the University 
of Helsinki. 

Our approach differs from Johnson's in two important ways. First, we abstract 
away from the many details of both notation and machine description that are crucial 
to Johnson's method of argumentation. Instead, we rely strongly on closure properties 
in the underlying algebra of regular relations to establish the major result that phono- 
logical rewriting systems denote such sets of string-pairs. We then use the correspon- 
dence between regular relations and finite-state transducers to develop a constructive 
relationship between rewriting rules and transducers. This is accomplished by means 
of a small set of simple operations, each of which implements a simple mathemat- 
ical fact about regular languages, regular relations, or both. Second, our more abstract 
perspective provides a general framework within which to treat other phonological 
formalisms, existing or yet to be devised. For example, two-level morphology (Kosken- 
niemi 1983), which evolved from our early considerations of rewriting rules, relies for 
its analysis and implementation on the same algebraic techniques. We are also encour- 
aged by initial successes in adapting these techniques to the autosegmental formalism 
described by Kay (1987). 

2. Rewriting Rules and Transducers 

Supposing for the moment that Rule 2 (N --* n) is optional, Figure 1 shows the tran- 
sition diagram of a finite-state transducer that models it. A finite-state transducer has 
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Figure 1 
Rule 2 as optional. 

N:n { { [ 0 ~ ~  a:a ... n:n, 
N:N ... z:z 

Figure 2 
Rule 2 as obligatory. 

N:n ~ other, n:n 

two tapes. A transition can be taken if the two symbols separated by the colon in its 
label are found at the current position on the corresponding tapes, and the current 
position advances across those tape symbols. A pair of tapes is accepted if a sequence 
of transitions can be taken starting at the start-state (conventionally labeled 0) and at 
the beginning of the tapes and leading to a final state (indicated by double circles) at 
the end of both tapes. In the machine in Figure 1, there is a transition from state 0 to 
state 0 that translates every phoneme into itself, reflecting the fact that any phoneme 
can remain unchanged by the optional rule. These are shown schematically in the 
diagram. This machine will accept a pair of tapes just in case they stand in a certain 
relation: they must be identical except for possible replacements of N on the first tape 
with n on the second. In other words, the second tape must be one that could have 
resulted from applying the optional rule to the string on the first tape. 

But the rule is in fact obligatory, and this means that there must be no occurrences 
of N on the second tape. This condition is imposed by the transducer in Figure 2. In 
this diagram, the transition label "other" abbreviates the set of labels a :a, b :b , . . ,  z:z,  
the identity pairs formed from all symbols that belong to the alphabet but are not 
mentioned explicitly in this particular rule. This diagram shows no transition over 
the pair N : N  and the transducer therefore blocks if it sees N on both tapes. This is 
another abbreviatory convention that is typically used in implementations to reduce 
transducer storage requirements, and we use it here to simplify the state diagrams we 
draw. In formal treatments such as the one we present below, the transition function 
is total and provides for transitions from every state over every pair of symbols. Any 
transition we do not show in these diagrams in fact terminates at a single nonfinal 
state, the "failure" state, which we also do not show. 

Figure 3 is the more complicated transducer that models the obligatory behavior 
of Rule 1 (N --* m~ . +[labial]). This machine blocks in state 1 if it sees the pair N : m  
not followed by one of the labials p, b, m. It blocks in state 2 if it encounters the pair 
N : N  followed by a labial on both tapes, thus providing for the situation in which the 
rule is not applied even though its conditions are satisfied. If it does not block and both 
tapes are eventually exhausted, it accepts them just in case it is then in one of the final 
states, 0 or 2, shown as double circles. It rejects the tapes if it ends up in the nonfinal 
state 1, indicating that the second tape is not a valid translation of the first one. 

We have described transducers as acceptors of pairs of tapes that stand in a cer- 
tain relation. But they can also be interpreted asymmetrically, as functions either from 
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other, b:b 
m:m p:p 

b:b m:m 
P:P 

N:m 

N:N 

Figure 3 
Rule 1 as obligatory. 

b:b m:m 
p:p 

other, n:n 
b:b m:m p:p N:m 

N:n 

Figure 4 
Composition of obligatory Rules 1 and 2. 

more abstract to less abstract strings or the other way around. Either of the tapes can 
contain an input string, in which case the output will be written on the other. In each 
transition the machine matches the symbol specified for the input tape and writes the 
one for the output. When the first tape contains the input, the machine models the 
generative application of the rule; when the second tape contains the input, it models 
the inversion of the rule. Thus, compared with the rewriting rules from which they 
are derived, finite-state transducers have the obvious advantage of formal and compu- 
tational simplicity. Whereas the exact procedure for inverting rules themselves is not 
obvious, it is clearly different from the procedure required for generating. The corre- 
sponding transducers, on the other hand, have the same straightforward interpretation 
in both directions. 

While finite-state transducers are attractive for their formal simplicity, they have 
a much more important advantage for our purposes. A pair of transducers connected 
through a common tape models the composition of the relations that those transducers 
represent. The pair can be regarded as performing a transduction between the outer 
tapes, and it turns out that a single finite-state transducer can be constructed that per- 
forms exactly this transduction without incorporating any analog of the intermediate 
tape. In short, the relations accepted by finite-state transducers are closed under serial 
composition. Figure 4 shows the composition of the m-machine in Figure 3 and the 
n-machine in Figure 2. This transducer models the cascade in which the output of 
Rule 1 is the input to Rule 2. 
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N 

m 

0 - -  0 
N 

Figure 5 
Generation of intractable. 

i t 
i 

Figure 6 
Generation of impractical. 

- -  1 BLOCK: No Labial 

t r 

,t o l 
t r 

N p r 

l i f o  
m p r 

N 

n 

2 BLOCK: Labial 

a 

a 

This machine is constructed so that it encodes all the possible ways in which the 
m-machine and n-machine could interact through a common  tape. The only interesting 
interactions involve N, and these are summar ized  in the following table: 

input  m-machine ou tpu t  I 
L input  n-machine ou tpu t  I 

N labial follows m m 
N nonlabial follows N n 

An N in the input  to the m-machine is conver ted to m before a labial and this m remains 
unchanged  by  the n-machine. The only instances of N that reach the n-machine must  
therefore be fol lowed by  nonlabials and these must  be conver ted to n. Accordingly, 
after convert ing N to m, the composed  machine is in state 1, which it can leave only 
by a transition over  labials. After convert ing N to n, it enters state 2, f rom which there 
is no labial transition. Otherwise,  state 2 is equivalent  to the initial state. 

Figure 5 illustrates the behavior  of this machine as a generator  applied to the 
abstract string iNtractable. Starting in state 0, the first transition over  the "o ther"  arc 
produces  i on the output  tape and returns to state 0. Two different transitions are then 
possible for the N on the input  tape. These carry the machine into states 1 and 2 and 
ou tpu t  the symbols m and n respectively. The next symbol on the input  tape is t. Since 
this is not  a labial, no transition is possible from state 1, and that branch of the process 
therefore blocks. On the other  branch, the t matches the "other"  transition back to 
state 0 and the machine stays in state 0 for the remainder  of the string. Since state 0 
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i t 0 

i 

F igure  7 
Recognition of intractable. 

n t r a 

 0 0 0-4 
n t r a 

N t r a 

T ToT04 
n t r a 

0 

i 

n p u t 

, 0q 04 
~ n p u t 

0 
N 

BLOCK: Labial 2 

n 

Figure  8 
Recognition of input. 

is a final state, this is a valid derivation of the string intractable. Figure 6 is a similar 
representation for the generation of impractical. 

Figures 7 and 8 illustrate this machine operating as a recognizer. As we pointed 
out earlier, there are two results when the cascade of rules that this machine represents 
is inverted on the string intractable. As Figure 7 shows, the n can be mapped into n by 
the n:n transition at state 0 or into N by the transition to state 2. The latter transition 
is acceptable because the following t is not a labial and thus matches against the 
"other" transition to state 0. When the following symbol is a labial, as in Figure 8, 
the process blocks. Notice that the string iNput that would have been written on the 
intermediate tape before the machines were composed is blocked after the second 
symbol by constraints coming from the m-machine. 

Repeated composition reduces the machines corresponding to the rules of a com- 
plete phonological grammar to a single transducer that works with only two tapes, 
one containing the abstract phonological string and the other containing its phonetic 
realization. General methods for constructing transducers such as these rely on fun- 
damental mathematical notions that we develop in the next section. 

3. M a t h e m a t i c a l  C o n c e p t s  a n d  T o o l s  

Formal languages are sets of strings, mathematical objects constructed from a finite 
alphabet E by the associative operation of concatenation. Formal language theory has 
classified string sets, the subsets of E*, in various ways and has developed corre- 
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spondences between languages, grammatical notations for describing their member  
strings, and automata for recognizing them. A similar conceptual framework can be 
established for s t r ing  relations.  These are the collections of ordered tuples of strings, 
the subsets of ~* x . . .  x ~*. 

We begin by defining an n-way concatenation operation in terms of the familiar 
concatenation of simple strings. If X = (x l ,  x2, . . . x , )  and Y = (Yl ,  Y2, . . . yn)  are n-tuples 
of strings, then the concatenation of X and Y, written X. Y or simply X Y ,  is defined by 

X .  Y = #  I X l Y l , X 2 Y 2 , . . . X n y n )  

That is, the n-way concatenation of two string-tuples is the tuple of strings formed by 
string concatenation of corresponding elements. The length of a string-tuple IX] can 
be defined in terms of the lengths of its component  strings: 

IXl =ai ~ Ixil 
i 

This has the expected property that IX. Y] = IX] + IY], even if the elements of X 
or of Y are of different lengths. Just as the empty string c is the identity for simple 
string concatenation, the n-tuple all of whose elements are e is the identity for n-way 
concatenation, and the length of such a tuple is zero. 

3.1 Regular Relations and Finite-State Transducers 
With these definitions in hand,  it is immediately possible to construct families of string 
relations that parallel the usual classes of formal languages. Recall, for example, the 
usual recursive definition of a regular language over an alphabet G (superscript i 
denotes concatenation repeated i times, according to the usual convention, and we let 
G~ denote G t3 {e}): 

. 

2. 

. 

The empty set and {a} for all a in E ~ are regular languages. 

If L1, L2, and L are regular languages, then so are 
L1 • L2 -- { x y  I x E Ll~y c L2} (concatenation) 
L1 U L2 (union) 

oo Li  L* = U (Kleene closure) 
i=0 

There are no other regular languages. 

We can use exactly the same scheme to define regular n-relations in terms of n-way 
concatenation: 

. 

2. 

. 

The empty set and {a} for all a in ~ x . . .  x G~ are regular n-relations. 

If R1, R2, and R are regular n-relations, then so are 
R1 • R2 = { x y  ] x E Rl,y  E R2} (n-way concatenation) 
R1 U R2 (union) 

O O  . 

R* = U R' (n-way Kleene closure) 
i=0 

There are no other regular n-relations. 
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Other families of relations can also be defined by analogy to the formal language 
case. For example, a system of context-free rewriting rules can be used to define a 
context-free n-relation simply by introducing n-tuples as the terminal symbols of the 
grammar. The standard context-free derivation procedure will produce tree structures 
with n-tuple leaves, and the relational yield of such a grammar is taken to be the set 
of n-way concatenations of these leaves. Our analysis of phonological rule systems 
does not depend on expressive power beyond the capacity of the regular relations, 
however, and we therefore confine our attention to the mathematical and computa- 
tional properties of these more limited systems. The relations we refer to as "regular," 
to emphasize the connection to formal language theory, are often known as "rational 
relations" in the algebraic literature, where they have been extensively studied (e.g. 
Eilenberg 1974). 

The descriptive notations and accepting automata for regular languages can also 
be generalized to the n-dimensional case. An n-way regular expression is simply a 
regular expression whose terms are n-tuples of alphabetic symbols or c. For ease of 
writing we separate the elements of an n-tuple by colons. Thus the expression a:b ~:c 
describes the two-relation containing the single pair (a, bc), and a:b:c" q:r:s describes 
the three-relation {(anq, bnr~cns) I n >_ 0}. The regular-expression notation provides 
for concatenation, union, and Kleene-closure of these terms. The accepting automata 
for regular n-relations are the n-way finite-state transducers. As illustrated by the 
two-dimensional examples given in Section 2, these are an obvious extension of the 
standard one-tape finite-state machines. 

The defining properties of the regular languages, regular expressions, and finite- 
state machines are the basis for proving the well-known Kleene correspondence 
theorems showing the equivalence of these three string-set characterizations. These 
essential properties carry over in the n-way generalizations, and therefore the cor- 
respondence theorems also generalize. In particular, simple analogs of the standard 
inductive proofs show that 

Every n-way regular expression describes a regular n-relation; 
Every regular n-relation is described by an n-way regular expression; 
Every n-tape finite-state transducer accepts a regular n-relation; and 
Every regular n-relation is accepted by an n-tape finite-state trans- 
ducer. 

The strength of our analysis method comes from the equivalence of these different 
characterizations. While we reason about the regular relations in algebraic and set- 
theoretic terms, we conveniently describe the sets under discussion by means of reg- 
ular expressions, and we prove essential properties by constructive operations on the 
corresponding finite-state transducers. In the end, of course, it is the transducers that 
satisfy our practical, computational goals. 

A nondeterministic (one-tape) finite-state machine is a quintuple (G, Q,q,F,  5), 
where G is a finite alphabet, Q is a finite set of states, q c Q is the initial state, and 
F c Q is the set of final states. The transition function 6 is a total function that maps 
Q x G* to 2 Q, the set of all subsets of Q, and every state s in Q is vacuously a member 
of 6(s, ~). We extend the function 6 to sets of states, so that for any P c_ Q and a E G~, 
6(P, a) = Upcp 6(p, a). We also define the usual extension of ~ to a transition function 
5" on G* as follows: for all r in Q, 6*(r,¢) = 6(r,c) and for all u E G* and a c G*, 
~*(r~ ua) = 6(~*(r, u), a). Thus, the machine accepts a string x just in case 6*(q, x) N F is 
nonempty; that is, if there is a sequence of transitions over x beginning at the initial 
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state and ending at a set of states at least one of which is final. We know, of course, that 
every regular language is also accepted by a deterministic, e-free finite-state machine, 
but assuming vacuous c transitions at every state reduces the number of special cases 
that have to be considered in some of the arguments below. 

A nondeterministic n-way finite-state transducer (fst) is defined by a quintuple 
similar to that of an fsm except for the transition function 6, a total function that maps 
Q x E ~ x . . .  x E ~ to 2 Q. Partly to simplify the mathematical presentation and partly 
because only the binary relations are needed in the analysis of rewriting rules and 
Koskenniemi's two-level systems, from here on we frame the discussion in terms of 
binary relations and two-tape transducers. However, the obvious extensions of these 
properties do hold for the general case, and they may be useful in developing a 
formal understanding of autosegmental phonological and morphological theories (for 
an illustration, see Kay 1987). 

The transition function 6 of a transducer also extends to a function 5" that carries a 
state and a pair of strings onto a set of states. Transitions in fsts are labeled with pairs 
of symbols and we continue to write them with a colon separator. Thus, u:v labels a 
transition over a u on the first tape and a v on the second. A finite-state transducer 
T defines the regular relation R(T), the set of pairs (x, y) such that 6*(q, x, y) contains 
a final state. The pair e:e plays the same role as a label of transducer transitions that 
the singleton c plays in one-tape machines, and the e-removal algorithm for one-tape 
machines can be generalized to show that every regular relation is accepted by an 
c:c-free transducer. However, it will also be convenient for some arguments below to 
assume the existence of vacuous ¢:e transitions. 

We write xRy if the pair (x, y) belongs to the relation R. The image of a string x 
under a relation R, which we write x/R, is the set of strings y such that (x, y) is in 
R. Similarly, R/y is the set of strings that R carries onto y. We extend this notation to 
sets of strings in the obvious way: X/R = Uxcx x/R. This relational notation gives us a 
succinct way of describing the use of a corresponding transducer as either a generator 
or a recognizer. For example, if R is the regular relation recognized by the transducer 
in Figure 4, then R/intractable is the set of strings that R maps to intractable, namely 
{intractable, iNtractable}, as illustrated in Figure 7. Similarly, iNtractable/R is the set of 
strings {intractable} that R maps from iNtractable (Figure 5). 

We rely on the equivalence between regular languages and relations and their 
corresponding finite-state automata, and we frequently do not distinguish between 
them. When the correspondence between a language L and its equivalent machine 
must be made explicit, we let M(L) denote a finite-state machine that accepts L. Simi- 
larly, we let T(R) denote a transducer that accepts the relation R, as provided by the 
correspondence theorem. We also rely on several of the closure properties of regular 
languages (Hopcroft and Ullman 1979): for regular languages L1 and L2, L1L2 is the 
regular language containing all strings XlX 2 such that x1 E L1 and x2 C L2. We use 
superscripts for repeated concatenation: L n contains the concatenation of n members 
of L, and L* contains strings with arbitrary repetitions of strings in L, including zero. 
The operator Opt is used for optionality, so that Opt(L) is L U {~}. We write E for the 
complement of L, the regular language containing all strings not in L, namely, ~* - L. 
Finally, Rev(L) denotes the regular language consisting of the reversal of all the strings 
in L. 

3.2 Properties of Regular Relations 
There are a number of basic connections between regular relations and regular lan- 
guages. The strings that can occur in the domain and range of a regular relation R 
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(Dora(R) = R/G* and Range(R) = G*/R) are the regular languages accepted by the 
finite-state machines derived from T(R) by changing all transition labels a:b to a and 
b respectively, for all a and b in G~. Given a regular language L, the identity relation 
Id(L) that carries every member of L into itself is regular; it is characterized by the fst 
obtained from an fsm M(L) by changing all transition labels a to a:a. Clearly, for all 
languages L, L = Dom(Id(L)) = Range(Id(L)). The inverse R -1 of a regular relation R is 
regular, since it is accepted by a transducer formed from T(R) by changing all labels 
a:b to b:a. The reversal Rev(R), consisting of pairs containing the reversal of strings in 
R's pairs, is also regular; its accepting transducer is derived from T(R) by generalizing 
the standard one-tape fsm construction for regular language reversal. 

Given a pair of regular languages L1 and L2 whose alphabets can, without loss 
of generality, be assumed equal, the relation L1 x L2 containing their Cartesian prod- 
uct is regular. To prove this proposition, we let M1 = (Y],,Q1~ql~F1,61) and M2 = 
(G, Q2~ q2~ F2~ 62) be fsms accepting L1 and L2 respectively and define the fst 

T = (G, Q1 x Q2, (ql, q2), F1 x F2, 6) 

where for any S 1 C Q1, $2 E Q2 and a, b c G~ 

6((S1, S2),a, b) = 6 l(Sl,a) x 62(s2, b) 

We can show by induction on the number of transitions that for any strings x and y, 

6 * ( ( q l , q 2 ) , x , y  ) --~ 6~(ql,X ) X 6~(q2,y ) 

This result holds trivially when x and y are both c by the general definition of 6*. If a 
and b are in G * and u and v are in G*, then, using the definition of 6* and the definition 
just given for 6 of the Cartesian product machine, we have 

6*((ql~q2),ua, vb) -- 6(6*((ql~q2),u,v)~a,b) 
= 6(6~ (ql, u) x 6~ (q2, v), a, b) by induction 
-- 61(6~(q1,u),a) x 62(6~(q2, v),b) 
---- 6~(ql, ua) x 6~(q2,vb) 

Thus, 6*((ql,q2),x,y) contains a final state if and only if both 6~(ql,x) and 6~(q2,y) 
contain final states, so T accepts exactly the strings in L1 x L2. [] 

Note that L x L is not the same as Id(L), because only the former can map one 
member of L onto a different one. If L contains the single-character strings a and b, 
then Id(L) only contains the pairs (a, a / and (b, b) while L x L also contains (a, b) and 
(b,a). 

A similar construction is used to prove that regular relations are closed under the 
composition operator discussed in Section 2. A pair of strings (x, y) belongs to the 
relation R1 o R2 if and only if for some intermediate string z, (x, z) c R1 and (z, y) c R2. 
If T(R1) = (~, Q1, ql, Fa, 61) and T(R2) = (G, Q2, q2, F2, 62), the composition R1 o Rz is 
accepted by the composite fst 

(~,  Q1 x Q2, (qa, q2), F1 X F2, 6) 

where 

6((Sl, $2),a, b) = {(tl, t2) ]for some  c E ~ ,  tl E 6(sl,a, c) and t 2 E 6(52, G b)} 
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In essence, the 6 for the composite machine is formed by canceling out the interme- 
diate tape symbols from corresponding transitions in the component machines. By an 
induction on the number of transitions patterned after the one above, it follows that 
for any strings x and y, 

6*((ql,q2),x,y) = {(h,t2) [for some z E ~,*, tl 6 8~(ql,x,z) and t2 6 (~(q2~z~y)} 

The composite transducer enters a final state just in case both component machines do 
for some intermediate z. This establishes that the composite transducer does represent 
the composition of the relations R1 and R2, and that the composition of two regular 
relations is therefore regular. Composition of regular relations, like composition of 
relations in general, is associative: (al o R2) o R3 = R1 o (R2 o R3) = R1 o R2 o R3. For 
relations in general we also know that Range(R1 o a2) = Range(R1)/R2. 

We can use this fact about the range of a composition to prove that the image of 
a regular language under a regular relation is a regular language. (It is well known 
that the images under a regular relation of languages in other classes, for example the 
context-free languages, also remain within those classes (e.g. Harrison 1978), but these 
other results do not concern us here.) That is, if L is a regular language and R is an 
arbitrary regular relation, then the languages L/R and R/L are both regular. If L is a 
regular language, we know there exists a regular relation Id(L) that takes all and only 
members of L into themselves. Since L = Range(Id(L)) it follows that 

L/R = (Range(Id(L)))/R 
= Range(Id(L) o R) 

Id(L) oR is regular and we have already observed that the range of any regular relation 
is a regular language. By symmetry of argument we know that R/L is also regular. 

Just like the class of regular languages, the class of regular relations is by def- 
inition closed under the operations of union, concatenation, and repeated concate- 
nation. Also, the Pumping Lemma for regular languages immediately generalizes to 
regular relations, given the definitions of string-tuple length and n-way concatenation 
and the correspondence to finite-state transducers. The regular relations differ from 
the regular languages, however, in that they are not closed under intersection and 
complementation. Suppose that R1 is the relation {(a',bnc *) [ n > 0} and R2 is the 
relation {(ant b*c n) I n >_ 0}. These relations are regular, since they are defined by the 
regular expressions a:b* ¢:c* and ¢:b* a:c respectively. The intersection R1 N R2 is 
{(ant bnc n) ] n >__ 0}. The range of this relation is the context-free language bnc ~, which 
we have seen is not possible if the intersection is regular. The class of regular relations 
is therefore not closed under intersection, and it immediately follows that it is also not 
closed under complementation: by De Morgan's law, closure under complementation 
and union would imply closure under intersection. Nonclosure under complementa- 
tion further implies that some regular relations are accepted by only nondeterministic 
transducers. If for every regular relation there is a deterministic acceptor, then the 
standard technique (Hopcroft and Ullman 1979) of interchanging its final and nonfi- 
nal states could be used to produce an fst accepting the complement relation, which 
would therefore be regular. 

3.3 Same-Length Regular Relations 
Closure under intersection and relative difference, however, are crucial for our treat- 
ment of two-level rule systems in Section 7. But these properties are required only for 
the same-length regular relations, and it turns out that this subclass is closed in the 
necessary ways. The same-length relations contain only string-pairs (x, y) such that 
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the length of x is the same as the length of y. It may seem obvious that the relevant 
closure properties do hold for this subclass, but for the sake of completeness we sketch 
the technical details of the constructions by which they can be established. 

We make use of some auxiliary definitions regarding the path-language of a trans- 
ducer. A path-string for any finite-state transducer T is a (possibly empty) sequence 
of symbol-pairs ul : Vl u2 : v2.. • un : vn that label the transitions of an accepting path in 
T. The path-language of T, notated as Paths(T), is simply the set of all path-strings 
for T. Paths(T) is obviously regular, since it is accepted by the finite-state machine 
constructed simply by interpreting the transition labels of T as elements of an alpha- 
bet of unanalyzable pair-symbols. Also, if P is a finite-state machine that accepts a 
pair-symbol language, we define the path-relation ReI(P) to be the relation accepted 
by the fst constructed from P by reinterpreting every one of its pair-symbol labels 
as the corresponding symbol pair of a transducer label. It is clear for all fsts T that 
Rel(M(Paths(T))) = R(T), the relation accepted by T. 

Now suppose that R1 and R2 are regular relations accepted by the transducers T1 
and T2, respectively, and note that Paths(T1) A Paths(T2) is in fact a regular language 
of pair-symbols accepted by some fsm P. Thus Rel(P) exists as a regular relation. 
Moreover, it is easy to see that Rel(P) C_ R1 n R2. This is because every string-pair 
belonging to the path-relation is accepted by a transducer with a path-string that 
belongs to the path-languages of both T1 and T2. Thus that pair also belongs to both 
R1 and R2. 

The opposite containment does not hold of arbitrary regular relations. Suppose a 
pair (x, y) belongs to both R1 and R2 but that none of its accepting paths in T1 has the 
same sequence of transition labels as an accepting path in T2. Then there is no path 
in Paths(T1) N Paths(T2) corresponding to this pair and it is therefore not contained in 
Rel(P). This situation can arise when the individual transducers have transitions with 
e-containing labels. One transducer may then accept a particular string pair through 
a sequence of transitions that does not literally match the transition sequence taken 
by the other on that same pair of strings. For example, the first fst might accept the 
pair (ab, c) by the transition sequence a:e b:c, while the other accepts that same pair 
with the sequence a: c b: e. This string-pair belongs to the intersection of the relations, 
but unless there is some other accepting path common to both machines, it will not 
belong to Rel(P). Indeed, when We apply this construction to fsts accepting the relations 
we used to derive the context-free language above, we find that Rel(P) is the empty 
relation (with no string-pairs at all) instead of the set-theoretic intersection R1 N R2. 

However, if R1 and R2 are accepted by transducers none of whose accepting paths 
have e-containing labels, then a string-pair belonging to both relations will be accepted 
by identically labeled paths in both transducers. The language Paths(T1) A Paths(T2) 
will contain a path-string corresponding to that pair, that pair will belong to Rel(P), 
and ReI(P) will be exactly R1 N R2. Thus, we complete the proof that the same-length 
relations are closed under intersection by establishing the following proposition: 

Lemma 
R is a same-length regular relation if and only if it is accepted by an e-free finite-state 
transducer. 

Proof 
The transitions of an e-free transducer T set the symbols of the string-pairs it accepts 
in one-to-one correspondence, so trivially, R(T) is same-length. The proof in the other 
direction is more tedious. Suppose R is a same-length regular relation accepted by 
some transducer T which has transitions of the form u:e or e:v (with u and v not e; 
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we know all e:e transitions can be eliminated by  the obvious generalization of the 
one-tape e-removal algorithm). We systematically remove all c-containing transitions 
in a finite sequence of steps each of which preserves the accepted relation. A path from 
the start-state to a given nonfinal state will contain some number  of u:~ transitions 
and some number  of c:v transitions, and those two numbers  will not  necessarily be 
identical. However ,  for all paths to that state the difference between those numbers  
will be the same, since the discrepancy must  be reversed by each path that leads from 
that state to a final state. Let us define the imbalance characterizing a state to be the 
difference in the number  of u: c and c: v transitions on paths leading to that state. Since 
an acyclic path cannot produce  an imbalance that differs from zero by  more  than the 
number  of states in the machine, the absolute value of the imbalance is b o u n d ed  by  
the machine size. On each iteration our  procedure  has the effect of removing all states 
with the max imum imbalance. First, we note that transitions of the form u :v always 
connect a pair of states with the same imbalance. Such transitions can be el iminated in 
favor of an equivalent  sequence of transitions c:v and u:c through a new state whose  
imbalance is one less than the imbalance of the original two states. N o w  suppose 
that k > 0 is the max imum imbalance for the machine and that all u:v transitions 
between states of imbalance k have been eliminated. If q is a k-imbalance state, it will 
be entered only by  u: c transitions from k - 1 states and left only by c: v transitions also 
to k - 1 states. For all transitions u:~ from a state p to q and all transitions ¢:v from 
q to r, we construct a new transition u:v f rom p to r. Then we remove state q from 
the machine along with all transitions entering or leaving it. These manipulat ions do 
not change the accepted relation but  do reduce by  one the number  of k-imbalance 
states. We repeat  this procedure  for all k states and then move  on to the k - 1 states, 
continuing until no states remain with a positive imbalance. A symmetric  procedure  
is then used to eliminate all the states whose imbalance is negative. In the end, T will 
have been t ransformed to an c-free t ransducer  that still accepts R. [] 

The same-length regular relations are obviously closed under  union, concatena- 
tion, composit ion,  inverse, and reverse, in addit ion to intersection, since all of these 
operations preserve both regulari ty and string length. An additional path-language 
argument  shows that they are also closed under  relative difference. Let T1 and T2 be 
e-free acceptors for R1 and R2 and construct an fsm P that accepts the regular pair- 
symbol language Paths(T1) -Paths(T2). A string-pair belongs to the regular relation 
Rel(P) if and only if it has an accepting path in T~ but  not in T2. Thus Rel(P) is R1 - a2. 
Being a subset of R1, it is also same-length. 

3.4 Summary of Mathematical Tools 
Let us summarize  the results to this point. If L1, L2, and L are regular languages and 
R1, R2, and R are regular relations, then we know that the following relations are 
regular: 

R1 U R2 R1 • R2 R* R -1 RIo R2 Id(L) L1 × L2 Rev(R) 

We know also that the following languages are regular (x is a string): 

Dom(R) Range(R) L/R R/L x/R R/x 

Furthermore,  if R1, R2, and R are in the same-length subclass, then the following also 
belong to that restricted subclass: 

R1 t3 R2 R1 • R2 R* R -1 R1 o R2 Rev(R) R1 N R2 R1 - R2 
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Id(L) is also same-length for all L. Intersections and relative differences of arbitrary 
regular relations are not necessarily regular, however. We emphasize that all these 
set-theoretic, algebraic operations are also constructive and computational in nature: 
fsms or fsts that accept the languages and relations that these operations specify can 
be constructed directly from machines that accept their operands. 

Our rule translation procedures makes use of regular relations and languages 
created with five special operators. The first operator produces a relation that freely 
introduces symbols from a designated set S. This relation, Intro(S), is defined by the 
expression [Id(~) U [{e} x S]]*. If the characters a and b are in ~ and S is {$}, for 
example, then Intro(S) contains an infinite set of string pairs including (a,a), (a, $a), 
(a, a$$$), (ab, $$a$b$$), and so on. Note that Intro(S) -~ removes all elements of S from 
a string if S is disjoint from G. 

The second is the Ignore operator. Given a regular language L and a set of symbols 
S, it produces a regular language notated as Ls and read as "L ignoring S." The 
strings of Ls differ from those of L in that occurrences of symbols in S may be freely 
interspersed. This language is defined by the expression Ls = Range(Id(L) o Intro(S)). 
It includes only strings that would be in L if some occurrences of symbols in S were 
ignored. 

The third and fourth operators enable us to express if-then and if-and-only-if con- 
ditions on regular languages. These are the operators If-P-then-S ("if prefix then suffix") 
and If-S-then-P ("if suffix then prefix"). Suppose L1 and L2 are regular languages and 
consider the set of strings 

If-P-then-S(L1, L2) = {x ] for every partition XlX2 of x, if X1 E L1, then X2 E L2} 

A string is in this set if each of its prefixes in L1 is followed by a suffix in L2. This 
set is also a regular language: it excludes exactly those strings that have a prefix in L1 
followed by a suffix not in L2 and can therefore be defined by 

If-P-then-S(L1, L2) = ElL2 

This operator, the regular-language analog of the logical equivalence between P --* Q 
and -~(P A -~Q), involves only concatenation and complementation, operations under 
which regular languages (though not relations) are closed. We can also express the 
symmetric requirement that a prefix be in L1 if its suffix is in L2 by the expression 

h 

If-S-then-P (L1, L2) = L1L2 

Finally, we can combine these two expressions to impose the requirement that a prefix 
be in L1 if and only if its suffix is in L2: 

P-iff-S(L1, L2) = If-P-then-S(L1, L2) N If-S-then-P(L1, L2) 

These five special operators, being constructive combinations of more primitive ones, 
can also serve as components of practical computation. 

The double complementation in the definitions of these conditional operators, and 
also in several other expressions to be introduced later, constitutes an idiom for ex- 
pressing universal quantification. While a regular expression ~f13` expresses the propo- 
sition that an instance of fl occurs between some instance of c~ and some instance of 3 ,̀ 
the expression c~fl3  ̀claims that an instance of fl intervenes between every instance of 
c~ and a following instance of 3'. 
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4. Rewriting Rule Formalisms 

Phonological rewriting rules have four parts. Their general form is 

- ~  ~/,,X p 

This says that the string ~ is to be replaced by (rewritten as) the string ~b whenever it 
is preceded by A and followed by p. If either A or p is empty, it is omitted and, if both 
are empty, the rule is reduced to 

The contexts, or environments, ,~ and p are usually allowed to be regular expressions 
over a basic alphabet of segments. This makes it easy to write, say, a vowel-harmony 
rule that replaces a vowel that is not specified for backness as a back or front vowel 
according as the vowel in the immediately preceding syllable is back or front. This is 
because the Kleene closure operator can be used to state that any number of consonants 
can separate the two vowels. The rule might be formulated as follows: 

Vi ---+ Bi/BjC * 

where Bi is the back counterpart of the vowel Vi, and Bj is another (possibly different) 
back vowel. There is less agreement on the restrictions that should apply to ~ and 
~b, the portions that we refer to as the center of the rule. They are usually simple 
strings and some theorists would restrict them to single segments. However, these 
restrictions are without interesting mathematical consequences and we shall be open 
to all versions of the theory if we continue to take it that these can also denote arbitrary 
regular languages. 

It will be important to provide for multiple applications of a given rule, and indeed, 
this will turn out to be the major source of difficulty in reexpressing rewriting rules in 
terms of regular relations and finite-state transducers. We have already remarked that 
our methods work only if the part of the string that is actually rewritten by a rule is 
excluded from further rewriting by that same rule. The following optional rule shows 
that this restriction is necessary to guarantee regularity: 

c --. ab/a _ _  b 

If this rule is allowed to rewrite material that it introduced on a previous application, 
it would map the regular language {ab} into the context-free language {anb n I 1 < n}, 
which we have already seen is beyond the power of regular relations. 

However, we do not forbid material produced in one application of a rule from 
serving as context for a subsequent application of that rule, as would routinely be 
the case for a vowel-harmony rule, for example. It is this restriction on interactions 
between different applications of a given rule that motivates the notation 

--. ~ / ;~  p 

rather than 

The context refers to a part of the string that the current application of the rule does not 
change but which, since it may have been changed in a previous application, allows 
for an interaction between successive applications. 
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The important outstanding question concerning interactions between applications 
of one and the same rule at different positions in a string has to do with the relative 
order in which they take place. Consider the obligatory rule 

a --* b /ab  __ ba 

as applied to the string 

abababababa 

At least three different outcomes are possible, namely: 

(1) abbbabbbaba 

(2) ababbbabbba 

(3) abbbbbbbbba 

Result (1) is obtained if the first application is at the leftmost eligible position in the 
string; each successive application applies to the output of any preceding one, and 
further to the right in the string. We call this the left-to-right strategy. The correspond- 
ing right-to-left strategy gives rise to (2). Result (3) comes from identifying all possible 
rule applications in the original string and carrying them out simultaneously. All three 
strategies have been advocated by phonologists. We shall assume that each rule is 
marked individually to show which strategy is to be employed for it. We shall con- 
centrate on these three strategies, but other less obvious ones can also be treated by 
simple rearrangements of our techniques. 

Optional rules and most obligatory rules will produce at least one output string, 
perhaps just a copy of the input if the conditions for application are nowhere satisfied. 
But certain obligatory rules are anomalous in that they may produce no output at all. 
The following left-to-right rule is a case in point: 

-. b/b 

If a string containing the symbol b is input to this rule, another b will be inserted 
immediately after it, and that one will serve to trigger the rule again. This process will 
never terminate, and no finite-length output is ever produced. Strange as they may 
seem, rules like this are useful as filters to eliminate undesired paths of derivation. 

In contrast to obligatory rules, optional rules typically produce many outputs. For 
example, if the rule above (a --* b/ab _ _  ba) is marked as optional and left-to-right and 
is also applied to the string abababababa, the following, in addition to (1), would be 
among its outputs: 

(4) abbbabababa 

(5) ababbbababa 

The string (4) is similar to (1) except that only the leftmost application of the rule has 
been carried out. For (5) the application in the middle would not have been possible 
for the obligatory rule and is possible here only because the necessary context was not 
destroyed by an application further to the left. 

Kenstowicz and Kisseberth (1979), who discuss a number of rule application strate- 
gies in great detail, cite a case in which one rule seems to be required in the grammars 
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of two languages. However, it must be applied left to right in one, but right to left 
in the other. In the Australian language Gidabal, the long vowel of certain suffixes 
becomes short if the vowel of the preceding syllable is long. We find, for example, 
yagd+ya 'should fix' where we would otherwise expect yag~+ya. (We use + to mark the 
point at which the suffix begins and a bar over a vowel to show that it is long.) The 
interesting question concerns what happens when several of these suffixes are added 
to the same stem. Some examples are: 

Underlying Surface 
barbar +y~+d~ng barbar +a+dang 

'straight above' 
djalum+bF~+d4ng+b~ djalum+b~+dang+b~ 

'is certainly right on the fish' 
gun~m+b~+daang+b~ gunF~m+ba+d~ng+be 

'is certainly right on the stump' 

The rule that Kenstowicz and Kisseberth propose is essentially the following: 

9 --* V / 9  C* _ _  

This produces the desired result only if applied left to right and only if obligatory. The 
alternation of long and short vowels results from the fact that each application shortens 
a long vowel that would otherwise serve as part of the context for a subsequent 
application. 

The same rule appears as the rhythmic law in Slovak--all suffix vowels are short- 
ened following a long vowel, as in the following examples: 

vol+~+me 'we call' chTt+a+me 'we read' 
vol+~v+a+me 'we call often' ch~t+av+a+me 'we read often' 

This time the rule must be applied either simultaneously or from right to left. 
It might seem that a transducer mimicking the operation of a right-to-left rule 

would have to examine its tapes in the opposite order from one that implemented a 
left-to-right rule, and it is difficult to see how two transducers operating in different 
directions could then be composed. However, we shall see that directionality in rewrit- 
ing rules is not mirrored by directionality in the transducers. Instead, directionality 
determines which of the two tapes the left and right contexts must appear on. In a 
left-to-right rule, the left context of the rule is to be verified against the portion of the 
string that results from previous applications of that rule, whereas the right context is 
to be verified against the portion of the string that has not yet been changed but may 
eventually be modified by applications further to the right. In a right-to-left rule, the 
situation is reversed. 

Consider again the left-to-right rule schema 

9 --, V / 9  C* _ _  

which applies to the string db~c~d6 to give ~bec~do. The portions of the tapes that support 
the two applications of the rule are boxed in the diagram on the left below. The diagram 
on the right shows how it comes about that there are three applications when the rule 
is taken as moving from right to left. 

[ fi b c l l  d a' b l e l  c I l l a [ o ]  
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It is often convenient in phonological rules to introduce a special symbol to mark 
the beginning and end of the string. This allows edge-conditioned string transfor- 
mations to be encoded in rewriting rules. For example, Kenstowicz and Kisseberth 
give the following rule to describe the devoicing of final obstruents in German and 
Russian: 

[+obstruent] --+ [-voiced] / _ _  # 

We will consider the feature notation exemplified here shortly. For the moment, it can 
be taken as equivalent to a set of rules whose effect is to replace any segment that is 
classified as an obstruent by its unvoiced equivalent before the boundary symbol that 
marks the end of a word. It accounts for the phonological realization of the Russian 
form xleb 'bread' as xlep. The boundary symbol # is special in the rule formalism in 
that it can only appear in the context parts of a rule, never in the input or output 
patterns, and it never matches an element that appears explicitly in the string. Al- 
though boundary-context rules require distinctive mathematical treatment, we show 
below that they also denote only regular string relations. 

As we have said, we take it that each rule in a grammar will be annotated to show 
which strategy is to be used in applying it. We also assume that rules are annotated to 
show whether they are to be taken as obligatory or optional. We have considered only 
obligatory rules up to now, but optional rules are also commonly used to account for 
cases of free variation. The mathematical treatment of optional rules will turn out to 
be a simpler case of what must be done for obligatory rules and, therefore, a natural 
step in the general development. 

As well as providing for various strategies for reapplying a single rule, we also 
consider the possibility of what we call a batch rule. This is a set of rules that the ap- 
plication strategies treat as one entity, the individual rules being otherwise unordered 
relative to one another. This mode of rule application will turn out to be interesting 
even if it is not an explicit part of any particular phonological formalism because, as we 
shall see, it constitutes an essential step in the interpretation of rules that use features 
to refer to underspecified segments. A good example of this is the vowel-harmony 
rule referred to earlier, namely 

Vi --~ Bi / BjC* 

In feature notation, this could be written 

+syllabic ] [ +back 
-consonantal ~ [ +back ] /  +syllabic 

-consonantal 
[ +consonantal ]* _ _  

meaning that a segment that is specified as a vowel comes also to be specified as back 
when the most recent preceding vowel is back; all other features remain unchanged. 
The grammar will presumably contain another rule that will apply in circumstances 
when this one does not, namely 

Vi --+ Fi / FjC* 

o r  

+syllabic ] [ -back  
-consonantal --+ [ -back  ] /  +syllabic 

-consonantal 
[ +consonantal ]* _, 

349 



Computational Linguistics Volume 20, Number 3 

except, of course, that the context can be omitted from whichever of the two is placed 
second in an ordered list of rules. But this is precisely the question: What is the proper 
order of this pair of rules? 

Consider an actual case, namely, vowel harmony in Turkish. Let A represent an 
abstract vowel with e and a as its front and back realizations, and I another abstract 
vowel with i and dotless i as its front and back counterparts. The first of these occurs, 
for example, in the abstract plural suffix lAr, and the second occurs in the possessive 
suffix Im, meaning 'my.' Both suffixes can be used together, and the harmony is illus- 
trated by the different realizations of the abstract vowels in the forms apartmanlArlm 
and adreslArlm. These appear as apartmanlamm 'my apartments' and adreslerim 'my 
addresses.' Using only the simple non-feature notation we started out with, we can 
describe this variation with the following four rules: 

A ~ e / e C *  
A -~ a 
I --* i / e C *  
I --+ 1 

The proper surface forms for these words are produced if these rules are ordered as 
we have given them--inserting front vowels first--and if each of them is applied from 
left to right. However, applying the rules in this way gives the wrong result when we 
create the dative possessive form of adres instead of the possessive plural. The dative 
suffix is spelled simply as the abstract vowel A, and the abstract adreslmA should be 
realized as adresime if harmony is respected. But the rules as given will map adreslmA 
to adresima instead. This is because the earlier rules apply to the final A at a time before 
the context required for that vowel has been established. Reordering the rules to fix 
this problem will cause the previous correct analyses to fail. The proper results in all 
cases come only if we describe Turkish vowel harmony with rules that proceed left to 
right through the string as a group, applying at each position whichever one matclies. 
This is the mode of application for a set of rules collected together as a batch. 

The notion of a batch rule apparently has not arisen as a distinctive formal concept 
in phonological theories. The reason is doubtless that batch rules are unnecessarily 
prolix and, in particular, they fail to capture generalizations that can almost always 
be made about the individual rules that make up a batch. Phonologists prefer rules 
that are based on feature matrices. These rules allow segments to be referred to by 
specifying which members of a finite set of properties they do or do not have. A 
feature matrix can specify a segment completely, in which case it is equivalent to the 
unanalyzable segment names we have been using, or it can leave it underspecified. 
Feature matrices therefore constitute an abbreviatory convention with the advantage 
that what is easy to abbreviate will be motivated to just the extent that the features 
themselves are motivated. An underspecified segment corresponds to a set of fully 
specified segments, and a rule that contains underspecified segments corresponds to 
a set of rules that are to be applied in batch mode. 

Feature matrices based on a well-motivated set of features allow the phonologist 
to capture significant generalizations and thus effectively to reduce the components 
of our batch rules to a single rule in most cases. A significant addition that has been 
made to the basic machinery of feature-based rules consists of variables written with 
lowercase Greek letters a, t ,  7, etc. and ranging over the values + and - .  We can 
use them, for example, to collapse our vowel-harmony rules into a single one as 
follows: 
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+syllabic 1 [ c~back 
-consonantal --+ [ c~back ] /  +syllabic 

-consonantal 
[ +consonantal ]* _ _  

Both occurrences of the variable ~ must be instantiated to the same value, either + or 
- ,  at each application of the rule. What the rule now says is that a vowel takes its 
backness from the vowel in the preceding syllable; that is, the most recent preceding 
vowel that is separated from it by zero or more consonants. 

While the explicit use of variables is an important addition to the notation, it 
was in fact foreshadowed by a property of the initial feature system, namely that 
features not explicitly mentioned in the center of a rule were assumed to be carried 
over from the input to the output. Without this convention, an explicit variable would 
have been required for each of these. Explicit feature variables do indeed increase the 
abbreviatory power of the notation, but, as we show below, they can be translated 
systematically into batch rules over unanalyzable segments. 

We pay special attention to batch rules, feature matrices, and feature variables 
because they require some nonobvious extensions to the treatment we provide for 
ordinary rules with unanalyzable symbols. On the other hand, we have nothing to 
say about the many other notational devices that phonologists have proposed for 
collapsing rules. These abbreviatory conventions are either already subsumed by the 
general regular languages we allow as rule components or can be translated in obvious 
ways to simply ordered rules or batch rules. 

5. Rewriting Rules as Regular Relations 

We now come to the central problem of proving that an arbitrary rule in our formalism 
denotes a regular string relation and is thus accepted by an equivalent finite-state 
transducer. A rule has the general form 

-~ ~ / ~  P 

where G ~b, A, and p are arbitrary regular expressions. The mode of application of 
the rule is governed by additional parametric specifications, including for example 
whether the rule applies from left to right or right to left, and whether it is obligatory 
or optional. 

The replacement that such a rule performs is modeled by a relation Replace initially 
defined as follows: 

Replace = lid(G*) Opt(~ x ~b)]* 

The final asterisk allows for repetitions of the basic ~ x ~b mapping, and Id(~*) allows 
identical corresponding substrings to come between successive applications of the 
rule. The ~ x ~b replacement is optional to allow for the possibilities that the rule itself 
may be optional or that there may be no eligible instances of ~ in the input string. 
Replace is the set of pairs of strings that are identical except for possible replacements 
of substrings belonging to ~ by substrings belonging to ~b. This set clearly contains 
all the pairs that satisfy the rule, though perhaps other pairs as well. The problem 
now is to impose restrictions on this mapping so that it occurs in the proper contexts 
and in accordance with the parameters specified for the rule. We do this in a series of 
approximations. 
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5.1 Context Requirements 
As a first step, we might be tempted simply to add the context restrictions as necessary 
conditions of the ~b x ~p replacement: 

Replace = lid(P,*) Opt(Id( A ) ~ x ~ Id(p) )]* 

This relation includes strings where the q~ x ~p replacement occurs only when imme- 
diately preceded and followed by identical substrings satisfying A and p, respectively. 
But this formulation does not allow for the fact, noted above, that the context strings 
of one application may overlap either the contexts or the center strings of another. 
For example, consider the following optional rule, which allows an abstract B to be 
rewritten as b intervocalically: 

B - - * b / V  V 

With the definition of Replace just given, the string pair on the left below would be 
accepted but the pair on the right would not: 

V B V B V V B V B V 
V b V B V V b V b V 

But the second pair also represents a valid application of the rule, one in which the 
center vowel is serving as the right context of one application and the left context of 
the other. 

The problem is that a given string symbol can simultaneously serve several differ- 
ent roles in the application of a rule, and all possible interactions must be accounted 
for. As a next approximation, we avoid this confusion by carefully distinguishing and 
keeping track of these various roles. We first consider how to apply a rule to strings 
that have been preprocessed so that every instance of the left context A is followed by 
the auxiliary symbol < and every instance of the right context p is preceded by the 
symbol >, where < and > are not in P~. This means that the replacement operator can 
be defined solely in terms of these distinct context-marking brackets, without regard 
to what A and p actually specify and what they might have in common with each 
other or with q~ and ~b. In essence, we assume that the replacement relation for the 
above rule applies to the upper strings shown below, and that all three string pairs 
are acceptable because each of the corresponding B-b pairs is bracketed by < and >. 

> V < B > V < B > V <  
> V < b > V < b > V <  

> V < B > V < B > V <  
> V < b > V < B > V <  

> V < B > V < B > V <  
> V < B > V < b > V <  

To take a somewhat more realistic example, when the rule at the beginning of the 
paper 

N --* m / _ _  [+labial] 

is applied to the string iNprobable, the preprocessed input string would contain the 
sequence 

< i<N< >p<r  <o< >b<a < >b<l<e<  

The left context of the rule is empty, so there is a left-context marker < after every 
character from the original string. Every labial is an instance of the right context, and 
accordingly there is a > immediately preceding p's and b's. The rule properly applies to 
rewrite the N because it is bracketed by < and >. On the other hand, the > is missing 
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Figure 9 
The Replace transducer. 

~x~m 

and the rule does not apply to the N in the preprocessed version of iNtractable, namely 

< i < N < t < r < a < c < t < a <  >b<l<e< 

The definition of the Replace operator must be modified in two ways in order to operate 
on such preprocessed strings. First it must allow the ~ x ~ mapping only between the 
appropriate context markers. Second, some occurrences of the left and right context 
strings do not result in rule applications, either because the rule is optional or because 
the other conditions of the rule are not satisfied. Thus, the relation must disregard the 
markers corresponding to those occurrences inside the identity substrings between 
rule applications. Relations with this behavior can be obtained through the use of 
the ignoring operator defined in Section 3, which is notated by subscripting. Let m 
(for marker) be {<, >}, the set of both markers. Then our next approximation to the 
replacement relation is defined as follows: 

Replace = [Id(Gm ) Opt(Id(<) ~m x ~m Id(>))]* 

This allows arbitrary strings of matching symbols drawn from ~, U { <, > } between rule 
applications and requires < : <  and > :>  to key off a ~-~ replacement. The subscript 
m's also indicate that < and > can be ignored in the middle of the replacement, since 
the appearance of left- or right-context strings is irrelevant in the middle of a given 
rule application. Figure 9 shows the general form of the state-transition diagram for 
a transducer that accepts a replacement relation. As before, the start-state is labeled 0 
and only transitions are shown from which the final-state is reachable. 

We must now define relations that guarantee that context-markers do in fact ap- 
pear on the strings that Replace applies to, and only when sanctioned by instances of A 
and p. We do this in two stages. First, we use simple relations to construct a Prologue 
operator that freely introduces the context markers in m: 

Prologue = Intro(m ) 

An output string of Prologue is just like the corresponding input except that brackets 
appear in arbitrary positions. The relation Prologue -1 removes all brackets that appear 
on its input. 

Second, we define more complex identity relations that pair a string with itself 
if and only if those markers appear in the appropriate contexts. The P-iff-S operator 
is the key component of these context-identifying predicates. The condition we must 
impose for the left context is that the left-context bracket < appears if and only if it is 
immediately preceded by an instance of A. This basic requirement is satisfied by strings 
in the regular language P-iff-S(G*A, <G*). The situation is slightly more complicated, 
however, because of two special circumstances. 

An instance of A may have prefixes that are also A instances. If A is the expression 
ab*, then a<b< is an acceptable marking but ab< and a<b are not because the two 
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)~-instances are not both followed by <. The brackets that necessarily follow such 
prefixes must not prevent the longer instances from also being identified and marked, 
and right-context brackets also must not interfere with left-context identification. The 
ignore operators in the expression P-iff-S (~*<,~<, < ~*< )> allow for these possibilities. 
This disregards slightly too many brackets, however: since an instance of &< followed 
by an < is also an instance of ~<, it must be followed by another bracket, and so 
on. The only (finite) strings that belong to this language are those that contain no 
instances of A at all! To correctly identify and mark left-contexts, the bracket following 
a &< instance must not be ignored. Thus, the requisite set of strings is the regular 
language Leftcontext(&, <, >), where the Leflcontext operator is defined as follows: 

Leflcontext( &, l, r) = P-iff-S(C? At - ~? l, lYe, T) r 

We parameterize this operator for the left-context pattern and the actual brackets so 
that it can be used in other definitions below. 

The other complication arises in rules intended to insert or delete material in the 
string, so that either ~ or ~b includes the empty string e. Consider the left-to-right rule 

a--*e / b 

Iterated applications of this rule can delete an arbitrary sequence of a's, converting 
strings of the form baaaa.., a into simply b. The single b at the beginning serves as 
left-context for applications of the rule to each of the subsequent a's. This presents a 
problem for the constructions we have developed so far: The Replace relation requires 
a distinct < marker for each application of the rule. The < that sanctions the deletion 
of the leftmost a in the string is therefore not available to delete the next one. How- 
ever, the Leflcontext operator as defined disallows two left-context brackets in a row. 
Our solution is to insert an explicit character 0 to represent the deleted material. If 
Leflcontext ignores this character in &, 0 will always be followed by another left bracket 
and thus another rule application is possible. 

The auxiliary symbol 0 is not in ~. or in the set of context brackets. It will substitute 
for the empty strings that might appear in the center of rules (in ~ or ~b), but it is a 
genuine symbol in an expanded alphabet which, unlike the normal e, actually appears 
as a distinct element in character strings. The Prologue relation is extended to freely 
introduce 0 as well as the brackets in m: 

Prologue = Intro(m U {0}) 

We then construct alternative versions of q~ and ~b in which this special symbol replaces 
the true empty strings. We define 

~0 ~ q~ i f e ¢ ~  
= I. [ ~ - e ] U 0  otherwise 

which contains exactly the same strings as ~ except that the singleton string 0 is 
included instead of the empty string that otherwise might be in the language. ~b ° is 
defined similarly, and then the replacement operator is expressed in terms of these 
new regular languages: 

Replace = [Id(C m o) Opt(Id( <) ~o x~bO Id(>))]* 

Now we can complete our definition of the left-context identifier: 

Leftcontext( &, l, r) = P-iff-S(C~o .kl o - ~?o l, 1 ~,~o)r 
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0r ~, > 

Figure 10 
Left-context identifiers. 

As desired, the regular language denoted by this operator includes strings if and 
only if every substring belonging to & (ignoring 1, r, and 0) is immediately followed 
by a bracket 1. This effect is illustrated by the state-transition diagrams in Figure 10. 
The machine on the left is a minimal-state acceptor for the empty-context language 
Leflcontext(c, <, >). It accepts strings that have at least one <, and every 0 or ~ symbol 
must be followed by a <. The >-labeled transitions represent the fact that > is being 
ignored. The machine on the right accepts the language Leflcontext(a, <, >); it requires 
< to appear after every a or after any 0 that follows an a. This particular machine is 
nondeterministic so that its organization is easier to understand. 

An operator for identifying and marking right-context strings can be defined sym- 
metrically: 

aightcontext(p~l~r) = P-iff-S(~rO r, Pro ~rO -- r ~rO)l 

Thus Rightcontext(p~ <~ >) includes strings if and only if every substring belonging to 
p (with appropriate ignoring) is immediately preceded by a right-context bracket >. 
Alternatively, taking advantage of the fact that the reversal of a regular language is 
also a regular language, we can define Rightcontext in terms of Leftcontext: 

Rightcontext(p, I, r) = Rev( Leftcontext( Rev(p), r~ l)) 

These context identifiers denote appropriate string-sets even for rules with unspecified 
contexts, if the vacuous contexts are interpreted as if the empty string had been spec- 
ified. The empty string indicates that adjacent symbols have no influence on the rule 
application. If an omitted & is interpreted as c, for example, every Leficontext string 
will have one and only one left-context bracket at its beginning, its end, and between 
any two G symbols, thus permitting a rule application at every position. 

5.2 Directional and Simultaneous Application 
We now have components for freely introducing and removing context brackets, for 
rejecting strings with mislocated brackets, and for representing the rewrite action of 
a rule between appropriate context markers. The regular relation that models the 
optional application of a rule is formed by composition of these pieces. The order of 
composition depends on whether the rule is specified as applying iteratively from left 
to right or from right to left. 

As noted in Section 4, the difference is that for left-to-right rules, the left-context 
expression & can match against the output of a previous (that is, leftward) application 
of the same rule, but the right-context expression p must match against the as yet 
unchanged input string. These observations are directly modeled by the order in which 
the various rule components are combined. For a left-to-right rule, the right context 
is checked on the input (4) side of the replacement, while the left context is checked 
on the output (~;) side. The regular relation and corresponding transducer for a left- 
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to-right optional rule is therefore defined by the following sequence of compositions: 

Prologue o 
Id(Rightcontext(p, <, >)) o 

Replace o 
Id(Leflcontext(A, <, >)) o 

Prologue -1 

Both left- and right-context brackets are freely introduced on input strings, strings in 
which the right-context bracket is mislocated are rejected, and the replacement takes 
place only between the now-constrained right-context brackets and the still free left- 
context markers. This imposes the restriction on left-context markers that they at least 
appear before replacements, although they may or may not freely appear elsewhere. 
The left-context checker ensures that left-context markers do in fact appear only in the 
proper locations on the output. Finally, all brackets are eliminated, yielding strings in 
the output language. 

The context-checking situation is exactly reversed for right-to-left rules: the left- 
context matches against the unchanged input string while the right-context matches 
against the output. Right-to-left optional application can therefore be modeled simply 
by interchanging the context-checking relations in the cascade above, to yield 

Prologue o 
Id(Leftcontext(A, <, >)) o 

Replace o 
Id(Rightcontext(p, <, >)) o 

Prologue -1 

The transducer corresponding to this regular relation, somewhat paradoxically, models 
a right-to-left rule application while moving from left to right across its tapes. 

Simultaneous optional rule application, in which the sites of all potential string 
modifications are located before any rewriting takes place, is modeled by a cascade 
that identifies both left and right contexts on the input side of the replacement: 

Prologue o 
Id(Leftcontext(A, <, >) A Rightcontext(p, <, >)) o 

Replace o 
Prologue -1 

5.3 Obligatory Application 
These compositions model the optional application of a rule. Although all potential 
application sites are located and marked by the context checkers, these compositions 
do not force a q~-~ replacement to take place for every instance of ~ appearing in 
the proper contexts. To model obligatory rules, we require an additional constraint 
that rejects string pairs containing sites where the conditions of application are met 
but the replacement is not carried out. That is, we must restrict the relation so that, 
disregarding for the moment the effect of overlapping applications, every substring of 
the form A~p in the first element of a pair corresponds to a A~pp in the second element 
of that pair. We can refine this restriction by framing it in terms of our context-marking 
brackets: the Replace relation must not contain a pair with the substring <~> in one 
element corresponding to something distinct from <~b> in the other. 

We might try to formulate this requirement by taking the complement of a relation 
that includes the undesired correspondences, as suggested by the expression 

Xd( ;n 0) Ia(<) Id(>) Id(r 4 0) 
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This expression might be taken as the starting point for various augmentations that 
would correctly account for overlapping applications. However, pursuing this line of 
attack will not permit us to establish the fact that obligatory rules also define regular 
mappings. First, it involves the complement of a regular relation, and we observed 
above that the complement of a regular relation (as opposed to the complement of a 
regular language) is not necessarily regular. Second, even if the resulting relation itself 
turned out to be regular, the obvious way of entering it into our rule composition is 
to intersect it with the replacement relation, and we also know that intersection of 
relations leads to possibly nonregular results. 

Proving that obligatory rules do indeed define regular mappings requires an even 
more careful analysis of the roles that context-brackets can play on the various interme- 
diate strings involved in the rule composition. A given left-context bracket can serve 
in the Replace relation in one of three ways. First, it can be the start of a rule application, 
provided it appears in front of an appropriate configuration of G ~, and right-context 
brackets. Second, it can be ignored during the identity portions of the strings, the 
regions between the changes sanctioned by the replacement relation. Third, it can 
be ignored because it comes in the middle or center of another rule application that 
started to the left of the bracket in question and extends further to the right. Suppose 
we encode these three different roles in three distinct left-bracket symbols <, <, and 

a i 
< and also provide for a similar set of distinct right-context brackets >, >, and >. 
c a i c 

Wherever a rule is properly applied, the input side of the replacement relation will 
contain a substring of the form 

c c 

The crucial difference in the case where an obligatory left-to-right rule incorrectly 
fails to apply is that the left-context preceding the ~0 is marked with < instead of 

i 
<, since it is part of an identity sequence. This situation is undesirable no matter 
a 

what types of brackets are ignored in the ~0 pattern or mark the right-context of this 
potential application. Whether those brackets are in the center or at the boundary of 
replacements that are carried out further to the right of the offending situation, the 
leftward application marked by the < should have taken precedence. 

i 

The symbols < and > were previously used as auxiliary characters appearing in 
intermediate strings. With a slight abuse of notation, we now let them act as cover 
symbols standing for the sets of left and right brackets {<~ a<~ c <} and {>, a>~ c>} re- 

spectively, and we let m be the combined set < u >. A substring on the input side 
of the replacement is then a missed left-to-right application if it matches the simple 
pattern c o o > .  Thus, we can force obligatory application of a left-to-right rule by re- 

quiring that the strings on the input side of its replacement contain no such substrings, 
or, to put it in formal terms, that the input strings belong to the regular language 
Obligatory( O, < >), where Obligatory is defined by the following operator: 

1 

Obligatory(G l~ r) = Y'm 0 1 ~0 r Gm 0 

By symmetry, a missed application of a right-to-left rule matches the pattern <~o>., 

and Obligatory(~ <~ >) is the appropriate input filter to disallow all such substrings. 
1 

Note that the obligatory operator involves only regular languages and not relations 
so that the result is still regular despite the complementation operation. 

We must now arrange for the different types of brackets to appear on the input to 
Replace only in the appropriate circumstances. As before, the context identifiers must 
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ensure that none of the brackets can appear unless preceded (or followed) by the ap- 
propriate context, and that every occurrence of a context is marked by a bracket freely 
chosen from the appropriate set of three. The Leflcontext and Rightcontext operators 
given above will have exactly this effect when they are applied with the new mean- 
ings given to <, >, and m. The Replace operator must again be modified, however, 
because it alone distinguishes the different roles of the context brackets. The following 
final definition chooses the correct brackets for all parameters of rule application: 

= 4 < > × ¢ < >  Replace [Id(E~> 0) Opt(Id(<) o o 
i i  c c  c c  

The behavior of obligatory rules is modeled by inserting the appropriate filter in the 
sequence of compositions. Left-to-right obligatory rules are modeled by the cascade 

Prologue o 
Id(Obligatory(~, <., >)) o 

l 

Id(Rightcontext(p, <, >)) o 
Replace o 

Id(Leftcontext(A, <, >)) o 
Prologue - 1 

and right-to-left obligatory rules are modeled by: 

Prologue o 
Id(Obligatory(G <, >.)) o 

1 

Id(Leftcontext(A, <, >)) o 
Replace o 

Id(Rightcontext(p, <, >)) o 
Prologue -1 

We remark that even obligatory rules do not necessarily provide a singleton output 
string. If the language ~b contains more than one string, then outputs will be produced 
for each of these at each application site. Moreover, if ~ contains strings that are 
suffixes or prefixes (depending on the direction of application) of other strings in 0, 
then alternatives will be produced for each length of match. A particular formalism 
may specify how such ambiguities are to be resolved, and these stipulations would be 
modeled by additional restrictions in our formulation. For example, the requirement 
that only shortest ~ matches are rewritten could be imposed by ignoring only one of 
< or > in the mapping part of Replace, depending on the direction of application. 
c Tl~ere are different formulations for the obligatory application of simultaneous 
rules, also depending on how competition between overlapping application sites is to 
be resolved. Intersecting the two obligatory filters, as in the following cascade, models 
the case where the longest substring matching ~ is preferred over shorter overlapping 
matches: 

Prologue o 
Id(Obligatory(G <, >) N Obligatory(c~, <, > ) ) o 

l 1 

Id(Rightcontext(p, <, >) n Leflcontext(A, <, >)) o 
Replace o 

Prologue -1 

The operators can be redefined and combined in different ways to model other regimes 
for overlap resolution. 
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5.4 Boundary Contexts 
A rule contains the special boundary marker # when the rewriting it describes is 
conditioned by the beginning or end of the string. The boundary marker only makes 
sense when it appears in the context parts of the rule; specifically, when it occurs 
at the left end of a left-context string or the right end of a right-context string. No 
special treatment for the boundary marker would be required if # appeared as the 
first and last character of every input and output string and nowhere else. If this 
were the case, the compositional cascades above would model exactly the intended 
interpretation wherein the application of the rule is edge-sensitive. Ordinary input and 
output strings do not have this characteristic, but a simple modification of the Prologue 
relation can simulate this situation. We defined Prologue above as Intro(m U {0}). We 
now augment that definition: 

Prologue = Intro(m U {0}) o [¢:# Id(G m o # ~'m o) c:#] 

We have composed an additional relation that introduces the boundary marker at the 
beginning and end of the already freely bracketed string, and also rejects strings con- 
taining the boundary marker somewhere in the middle. The net effect is that strings 
in the cascade below the Prologue are boundary-marked; bracketed images of the orig- 
inal input strings and the context identifiers can thus properly detect the edges of 
those strings. The inverse Prologue at the bottom of the cascade removes the boundary 
marker along with the other auxiliary symbols. 

5.5 Batch Rules 
It remains to model the application of a set of rules collected together in a single 
batch. Recall that for each position in the input string each rule in a batch set is 
considered for application independently. As we have seen several times before, there 
is a straightforward approach that approximates this behavior. Let {R1,..., Rn} be the 
set of regular relations for rules that are to be applied as a batch and construct the 
relation [UkRk]*. Because of closure under union, this relation is regular and includes 
all pairs of strings that are identical except for substrings that differ according to 
the rewriting specified by at least one of the rules. But also as we have seen several 
times before, this relation does not completely simulate the batch application of the 
rules. In particular, it does not allow for overlap between the material that satisfies 
the application requirements of one rule in the set with the elements that sanction 
a previous application of another rule. As usual, we account for this new array of 
overlapping dependencies by introducing a larger set of special marking symbols and 
carefully managing their occurrences and interactions. 

A batch rule is a set of subrules {01 --+ ~ 1 / A 1  pl, . . . ,  on ~ ~ ; n / / ~ n  ion} 
together with a specification of the standard parameters of application (left-to-right, 
obligatory, etc.). We use superscripts to distinguish the components of the different 
subrules to avoid (as much as possible) confusion with our other notational conven- 
tions. A crucial part of our treatment of an ordinary rule is to introduce special bracket 
symbols to mark the appearance of its left and right contexts so that its replacements 
are carried out only in the proper (possibly overlapping) environments. We do the 
same thing for each of the subrules of a batch, but we use a different set of brack- 
ets for each of them. These brackets permit us to code in a single string the context 
occurrences for all the different subrules with each subrule's contexts distinctively 
marked. 

<k <k <k~ of left-context brackets for the k th subrule O k --* Let (k be the set ( i  ' a  ' c j 

~k//~k tO k of the batch, let >k be the corresponding set of right-context brackets, 
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and let m k be the set <k U >k. We also redefine the generic cover symbols <, >, and m 
to stand for the respective collections of all brackets: K = Uk K k, > = LJk > k, m = K LJ >. 
Note that with this redefinition of m, the Prologue relation as defined above will now 
freely introduce all the brackets for all of the subrules. It will also be helpful to notate 
the set of brackets not containing those for the k th subrule: m -k  = m - m k. 

Now consider the regular language Leftcontext(A k, <k, >k)m_k" This contains strings 
in which all instances of the k th subrule's left-context expression are followed by one 
of the k th left-context brackets, and those brackets appear only after instances of Ak. 
The k th right-context brackets are freely distributed, as are all brackets for all the 
other subrules. Occurrences of all other left-context brackets are restricted in similarly 
defined regular languages. Putting all these bracket-restrictions together, the language 

NLeftcontext(  Ak, <k, >k)m_k 
k 

has each subrule's left-context duly marked by one of that subrule's left-context brack- 
ets. This leaves all right-context brackets unconstrained; they are restricted to their 
proper positions by the corresponding right-context language 

NRightcontext(pk,  <k, > k)m_k 
k 

These intersection languages, which are both regular, will take the place of the simple 
context identifiers when we form the composition cascades to model batch-rule appli- 
cation. These generalized context identifiers are also appropriate for ordinary rules if 
we regard each of them as a batch containing only one subrule. 

A replacement operator for batch rules must also be constructed. This must map 
between input and output strings with context-brackets properly located, ensuring 
that any of the subrule rewrites are possible at each properly marked position but 
that the rewrite of the k th subrule occurs only between <k and >k. The complete set 

a a 

of possible rewrites is encoded in the relation 

 [id(a<k ) ok xW > Id( k)] 
c c £ C  

where the generic symbol <c now stands for {<1 ...  c<k}, the set of all left-center brack- 
ets, and the generic > is assigned a corresponding meaning. We incorporate this rela- 

C 

tion as the rewrite part of a new definition of the Replace operator, with the generic < 
i 

and > now representing the sets of all left and right identity brackets: 
i 

Rep lace=  [Id(E~>0) Opt(Uk [Id(<k ) ~Ok X @Okc ~ Id(>k)])]* 

This relation allows for any of the appropriate replacements separated by identity sub- 
strings. It is regular because of the union-closure property; this would not be the case, 
of course, if intersection or complementation had been required for its construction. 

A model of the left-to-right application optional application of a batch rule is 
obtained by substituting the new, more complex definitions in the composition cascade 
for ordinary rules with these application parameters: 

Prologue o 
k k Id(nkRightcontext(p , < , >k)m_ Q o 

Replace o 
id ( nk Leftcontext ( A k ' <k, > k )m_k ) 0 

Prologue -1 
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Optional right-to-left and simultaneous batch rules are modeled by similar substitu- 
tions in the corresponding ordinary-rule cascades. Obligatory applications are handled 
by combining instances of the Obligatory operator constructed independently for each 
subrule. Obligatory(~ k, ( k  >k) excludes all strings in which the k th subrule failed to 

i 
apply, moving from left to right, when its conditions of application were satisfied. 
The intersection of the obligatory filters for all subrules in the batch ensures that at 
least one subrule is applied at each position where application is allowed• Thus the 
behavior of a left-to-right obligatory batch rule is represented by the composition 

Prologue o 
id(NkObligatory(~bk ' <ki >k)) o 

id(nkRightcontext(pk ' <k >k)m_k ) 0 

Replace o 
id(nkLeflcontext(,~k ' <k >k)m_k ) 0 

Prologue -1 

Again, similar substitutions in the cascades for ordinary obligatory rules will model 
the behavior of right-to-left and simultaneous application• 

5.6 Feature Matrices and Finite Feature Variables 
Using only operations that preserve the regularity of string sets and relations, we have 
modeled the properties of rewriting rules whose components are regular languages 
over an alphabet of unanalyzable symbols. We have thus established that every such 
rule denotes a regular relation. We now extend our analysis to rules involving regular 
expressions with feature matrices and finite feature variables, as in the Turkish vowel 
harmony rule discussed in Section 4: 

+syllabic ] I c~back 
-consonantal ---, [ c~back ] /  +syllabic 

-consonantal 
[ +consonantal]* _ _  

We first translate this compact feature notation, well suited for expressing linguistic 
generalizations, into an equivalent but verbose notation that is mathematically more 
tractable. The first step is to represent explicitly the convention that features not men- 
tioned in the input or output matrices are left unchanged in the segment that the 
rule applies to. We expand the input and output matrices with as many variables and 
features as necessary so that the value of every output feature is completely specified 
in the rule. The center-expanded version of this example is 

+syllabic 
-consonantal 
flback 
fllround 
&high 

flnfn 

+syllabic 
-consonantal 
c~back 

--* fllround 
&high 

flnfn 

[ a b a c k  ] 
/ +syllabic [ +consonantal ]* _ _  

-consonantal 

The input and output feature matrices are now fully specified, and in the contexts the 
value of any unmentioned feature can be freely chosen. 

A feature matrix in a regular expression is quite simple to interpret when it does 
not contain any feature variables. Such a matrix merely abbreviates the union of all 
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segment symbols that share the specified features, and the matrix can be replaced by 
that set of unanalyzable symbols without changing the meaning of the rule. Thus, 
the matrix [+consonantal] can be translated to the regular language {p, t, k, b, d . . .  } 
and treated with standard techniques. Of course, if the features are incompatible, the 
feature matrix will be replaced by the empty set of segments. 

A simple translation is also available for feature variables all of whose occurrences 
are located in just one part of the rule, as in the following fictitious left context: 

[ ~high ] [  +consonantal ]* [  - a r o u n d  ] 

If ~ takes on the value +, then the first matrix is instantiated to [+high] and denotes 
the set of unanalyzable symbols, say {e, i . . . .  }, that satisfy that description. The 
last matrix reduces to [-round] and denotes another set of unanalyzable symbols 
(e.g. {a, e, i . . . .  }). The whole expression is then equivalent to 

{ e , i , . . . }  { p , t , k , b , d . . . } * { a , e , i , . . . }  

On the other hand, if ~ takes on the value - ,  then the first matrix is instantiated to 
[-high] and denotes a different set of symbols, say {a, o. . .  }, and the last one reduces 
to [+ round]. The whole expression on this instantiation of ~ is equivalent to 

{ a , o  . . . .  } { p , t , k , b , d . . . } * { o , u , . . . }  

On the conventional interpretation, the original expression matches strings that belong 
to either of these instantiated regular languages. In effect, the variable is used to encode 
a correlation between choices from different sets of unanalyzable symbols. 

We can formalize this interpretation in the following way. Suppose 0 is a regular 
expression over feature matrices containing a single variable ~ for a feature whose 
values are drawn from a finite set V, commonly the set {+~-}. Let 0[o~ -~ v] be the 
result of substituting v E V for ~ wherever it occurs in 0, and then replacing each 
variable-free feature matrix in that result by the set of unanalyzable symbols that 
satisfy its feature description. Then the interpretation of ~ is given by the formula 

vEV 

This translation produces a regular expression that properly models the choice-correla- 
tion defined by ~ in the original expression. Rule expressions containing several locally 
occurring variables can be handled by an obvious generalization of this substitution 
scheme. If Oz I . . .  O~ n are the local variables in 0 whose values come from the finite sets 
V1... Vn, the set of n-tuples 

I = {<OZ 1 ---> V l ~ . . .  ~Oz n --+ V n >  Iv1 E Wl. . .Vn  E V n }  

represents the collection of all possible value instantiations of those variables. If we let 
O[i] be the result of carrying out the substitutions indicated for all variables by some i 
in/ ,  the interpretation of the entire expression is given by the formula 

uO[i] 
iEl 

When all local variables are translated, the resulting expression may still contain fea- 
ture matrices with nonlocal variables, those that also occur in other parts of the rule. 
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Indeed, the input and output expressions will almost always have variables in com- 
mon, because of the feature variables introduced in the initial center-expansion step. 

Variables that appear in more than one rule part clearly cannot be eliminated from 
each part independently, because the correlation between feature instantiations would 
be lost. A feature-matrix rule is to be interpreted as scanning in the appropriate di- 
rection along the input string until a configuration of symbols is encountered that 
satisfies the application conditions of the rule instantiated to one selection of values 
for all of its variables. The segments matching the input are then replaced by the out- 
put segments determined by that same selection, and scanning resumes until another 
configuration is located that matches under possibly a different selection of variables 
values. This behavior is modeled as the batch-mode application of a set of rules each 
of which corresponds to one variable instantiation of the original rule. 

Consider a center-expanded rule of the general form ~ --* ~b/~ _ _  p, and let I be 
the set of possible value instantiations for the feature-variables it contains. Then the 
collection of instantiated rules is simply 

(q~[i] ~ ~b[i]/),[i] p[i] ] i c I} 

The components of the rules in this set are regular languages over unanalyzable seg- 
ment symbols, all feature matrices and variables having been resolved. Since each 
instantiated rule is formed by applying the same substitution to each of the origi- 
nal rule components, the cross-component correlation of symbol choices is properly 
represented. The behavior of the original rule is thus modeled by the relation that 
corresponds to the batch application of rules in this set, and we have already shown 
that such a relation is regular. 

5.7 Summary 
This completes our examination of individual context-sensitive rewriting rules. We 
have modeled the input-output behavior of these rules according to a variety of dif- 
ferent application parameters. We have expressed the conditions and actions specified 
by a rule in terms of carefully constructed formal languages and string relations. Our 
constructions make judicious use of distinguished auxiliary symbols so that crucial 
informational dependencies can be string-encoded in unambiguous ways. We have 
also shown how these languages and relations can be combined by set-theoretic oper- 
ations to produce a single string relation that simulates the rule's overall effect. Since 
our constructions and operations are all regularity-preserving, we have established the 
following theorem: 

Theorem 
For all the application parameters we have considered, every rewriting rule whose 
components describe regular languages denotes a regular string relation. 

This theorem has an immediate corollary: 

Corollary 
The input-output string pairs of every such rewriting rule are accepted by some finite- 
state transducer. 

This theoretical result has important practical consequences. The mathematical analysis 
that establishes the theorem and its corollary is constructive in nature. Not only do 
we know that an appropriate relation and its corresponding transducer exist, we also 
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know all the operations to perform to construct such a transducer from a particular 
rule. Thus, given a careful implementation of the calculus of regular languages and 
regular relations, our analysis provides a general method for compiling complicated 
rule conditions and actions into very simple computational devices. 

6. Grammars of Rewriting Rules 

The individual rules of a grammar are meant to capture independent phonological 
generalizations. The grammar formalism also specifies how the effects of the different 
rules are to be combined together to account for any interactions between the gen- 
eralizations. The simplest method of combination for rewriting rule grammars is for 
the rules to be arranged in an ordered sequence with the interpretation that the first 
rule applies to the input lexical string, the second rule applies to the output of the 
first rule, and so on. As we observed earlier, the typical practice is to place specialized 
rules with more elaborate context requirements earlier in the sequence so that they 
will override more general rules appearing later. 

The combined effect of having one rule operate on the output of another can be 
modeled by composing the string relations corresponding to each rule. If the string 
relations for two rules are regular, we know that their composition is also regular. 
The following result is then established by induction on the number of rules in the 
grammar: 

Theorem 
If G = (R1,... ,  Rn) is a grammar defined as a finite ordered sequence of rewriting rules 
each of which denotes a regular relation, then the set of input-output string-pairs for 
the grammar as a whole is the regular relation given by R1 o . . .  o Rn. 

This theorem also has an immediate corollary: 

Corollary 
The input-output string pairs of every such rewriting grammar are accepted by a 
single finite-state transducer. 

Again, given an implementation of the regular calculus, a grammar transducer can be 
constructed algorithmically from its rules. 

We can also show that certain more complex methods of combination also denote 
regular relations. Suppose a grammar is specified as a finite sequence of rules but with 
a further specification that rules in some subsequences are to be treated as a block 
of mutually exclusive alternatives. That is, only one rule in each such subsequence 
can be applied in any derivation, but the choice of which one varies freely between 
derivations. The alternative choices among the rules in a block can be modeled as the 
union of the regular relations they denote individually, and regular relations are closed 
under this operation. Thus this kind of grammar also reduces to a finite composition 
of regular relations. 

In a more intricate arrangement, the grammar might specify a block of alterna- 
tives made up of rules that are not adjacent in the ordering sequence. For example, 
suppose the grammar consists of the sequence (R1,R2,R3,R4,R5), where R2 and R4 
constitute a block of exclusive alternatives. This cannot be handled by simple union of 
the block rules, because that would not incorporate the effect of the intervening rule 
R3. However, this grammar can be interpreted as abbreviating a choice between two 
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different sequences, (R1, R2, R3, Rs) and (R1, R3, R4, Rs), and thus denotes the regular 
relation 

a I o [(a 2 oa3 )  U (a  3 oR4) ] o R  5 

The union and composition operators can be interleaved in different ways to show 
that a wide variety of rule combination regimes are encompassed by the regular rela- 
tions. There may be grammars specifying even more complex rule interactions, and, 
depending on the formal details, it may be possible to establish their regularity by 
other techniques; for example, by carefully managing a set of distinguished auxiliary 
symbols that code inter-rule constraints. 

We know, of course, that certain methods for combining regular rules give rise to 
nonregular mappings. This is true, for example, of unrestricted cyclic application of 
the rules in a finite ordered sequence. According to a cyclic grammar specification, 
a given input string is mapped through all the rules in the sequence to produce an 
output string, and that output string then becomes a new input for a reapplication 
of all the rules, and the process can be repeated without bound. We can demonstrate 
that such a grammar is nonregular by considering again the simple optional rule 

~ - - * a b / a b  

We showed before that this rule does not denote a regular relation if it is allowed 
to rewrite material that was introduced on a previous application. Under those cir- 
cumstances it would map the regular language {ab} into the context-free language 
{ anbn I 1 _< n}. But we would get exactly the same result from an unrestricted cyclic 
grammar whose ordered sequence consists only of this single rule. In effect, cyclic 
reapplication of the rule also permits it to operate arbitrarily, often on its own output. 
In the worst case, in fact, we know that the computations of an arbitrary Turing ma- 
chine can be simulated by a rewriting grammar with unrestricted rule reapplication. 

These results seem to create a dilemma for our regularity analysis. Many phono- 
logical formalisms based on ordered sets of rewriting rules provide for cyclic rule 
applications. The underlying notion is that words have a bracketed structure re- 
flecting their morphological composition. For example, unenforceable has the structure 
[un[[en[force]]able]]. The idea of the cycle is that the ordered sequence of rules is ap- 
plied to the innermost bracketed portion of a word first. Then the innermost set of 
brackets is removed and the procedure is repeated. The cycle continues in this way 
until no brackets remain. 

The cycle has been a major source of controversy ever since it was first proposed by 
Chomsky and Halle (1968), and many of the phenomena that motivated it can also be 
given noncyclic descriptions. Even for cases where a nonrecursive, iterative account 
has not yet emerged, there may be restrictions on the mode of reapplication that 
limit the formal power of the grammar without reducing its empirical or explanatory 
coverage. For example, the bracket erasure convention means that new string material 
becomes accessible to the rules on each cycle. If, either implicitly or explicitly, there 
is also a finite bound on the amount of old material to which rules in the new cycle 
can be sensitive, it may be possible to transform the recursive specification to an 
equivalent iterative one. This is analogous to the contrast between center-embedding 
context-free grammars and grammars with only right- or left-linear rules; the latter are 
known to generate only regular languages. Unfortunately, phonological theories are 
usually not presented in enough formal detail for us to carry out such a mathematical 
analysis. The regularity of cyclic phonological formalisms will have to be examined 
on a case-by-case basis, taking their more precise specifications into account. 
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We have shown that every noncyclical rewriting grammar does denote a regular 
relation. We now consider the opposite question: Is every regular relation denoted by 
some noncyclic rewriting grammar? We can answer this question in the affirmative: 

Theorem 
Every regular relation is the set of input /output  strings of some noncyclic rewriting 
grammar with boundary-context rules. 

Proof 
Let R be an arbitrary regular relation and let T = (G, Q, q0, F, 6) be a finite-state trans- 
ducer that accepts it. Without loss of generality we assume that G and Q are disjoint. 
We construct a rewriting grammar that simulates the operation of T, deriving a string 
y from a string x if and only if the pair Ix, Y/is accepted by T. There will be four rules 
in the grammar that together implement the provisions that T starts in state q0, makes 
transitions from state to state only as allowed by 6, and accepts a string only if the 
state it reaches at the end of the string is in F. Let ~, U Q u {#,$} be the alphabet of 
the grammar, where # is a boundary symbol not in either G or Q and $ is another 
distinct symbol that will be used in representing the finality of a state. Our rules will 
introduce states into the string between ordinary tape symbols and remove them to 
simulate the state-to-state advance of the transducer. The first rule in the grammar 
sequence is the simple start rule: 

--* qo /#  - -  (obligatory, left-to-right) 

The effect of this rule is to introduce the start-state as a symbol only at the beginning 
of the input string, as specified in the rule by the boundary symbol #. The string abc is 
thus rewritten by this rule to qoabc. The following sets of rules are defined to represent 
the state-to-state transitions and the final states of the transducer: 

Transit ions = {u ~ vqj /q i  _ _  I qi~qj E Q ; u ~ v  E G*; and qj E 6 (q i~u , v ) }  

Final = {~ --* $ /q i  # I qi C F} 

The second rule of the grammar is an obligatory, left-to-right batch rule consisting 
of all the rules in Transit ions U Final. If the transition function carries the transducer 
from qi to qj over the pair /u, v/, there will be a rule in Transit ions that applies to the 
string .. .  q i u . . ,  at the position just after the substring beginning with qi and produces 
• . .  q i v q j . . ,  as its output. Because 6 is a total function on Q x G* x G~, some subrule will 
apply at every string position in the left-to-right batch scan. The state-context for the 
left-most application of this rule is the start-state q0, and subrules corresponding to 
start-state transitions are selected. This introduces a state-symbol that makes available 
at the next position only subrules corresponding to transitions at one of the start-state's 
successors. The batch rule eventually writes a state at the very end of the string. If that 
state is in F, the corresponding Final subrule will apply to insert $ at the end of the 
string. If the last state is not in F, $ will not be inserted and the state will remain as the 
last symbol in the string. Thus, after the batch rule has completed its application, an 
input string x will have been translated to an output string consisting of intermixed 
symbols from Q and ~. We can prove by a simple induction that the string of states 
obtained by ignoring symbols in G U {#, $} corresponds to a sequence of state-to-state 
moves that the transducer can make on the pair Ix, Y/, where y comes from ignoring 
$ and all state-symbols in the output string. 
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Two tasks remain: we must filter the output to eliminate any strings whose deriva- 
tion does not include a Final subrule application, and we must remove all state-symbols 
and $ to obtain the ultimate output string. If a Final rule did not apply, then the last 
element in the batch output string is a state, not the special character $. We must for- 
mulate a rule that will "bleed" the derivation, producing no output at all if its input 
ends in a state-symbol instead of $. We can achieve this with an anomalous obligatory 
rule whose output would be infinitely long if its input ever satisfies the conditions for 
its application. The following rule behaves in this way: 

e --* $ / Q  # (obligatory, left-to-right) 

It has the effect of filtering strings that do not represent transitions to a final state by 
forcing indefinitely many insertions of $ when no single $ is present. The output of 
this rule will be all and only the strings that came from a previous application of a 
Final rule. The last rule of the grammar is a trivial clean-up rule that produces the 
grammar's final output strings: 

Q u $ ~ c (obligatory, left-to-right) 

This completes the proof of the theorem. We have constructed for any regular relation 
an ordered sequence of four rules (including a batch rule with finitely many subrules) 
that rewrites a string x to y just in case the pair (x, y) belongs to the relation. [] 

We remark that there are alternative but perhaps less intuitive proofs of this the- 
orem framed only in terms of simple nonbatch rules. But this result cannot be estab- 
lished without making use of boundary-context rules. Without such rules we can only 
simulate a proper subclass of the regular relations, those that permit identity prefixes 
and suffixes of unbounded length to surround any nonidentity correspondences. It is 
interesting to note that for much the same reason, Ritchie (1992) also made crucial use 
of two-level boundary-context rules to prove that the relations denoted by Kosken- 
niemi's (1985) two-level grammars are also coextensive with the regular relations. 
Moreover, putting Ritchie's result together with ours gives the following: 

Theorem 
Ordered rewriting grammars with boundaries and two-level constraint grammars with 
boundaries are equivalent in their expressive power. 

Although there may be aesthetic or explanatory differences between the two formal 
systems, empirical coverage by itself cannot be used to choose between them. 

7. Two-Level Rule Systems 

Inspired in part by our early report of the material presented in this paper (Kaplan 
and Kay 1981), Koskenniemi (1983) proposed an alternative system for recognizing and 
producing morphological and phonological word-form variants. Under his proposal, 
individual generalizations are expressed directly in the state-transition diagrams of 
finite-state transducers, and their mutual interactions emerge from the fact that every 
input-output string pair must be accepted simultaneously by all these transducers. 
Thus, he replaced the serial feeding arrangement of the independent generalizations 
in a rewriting grammar with a parallel method of combination. In eliminating the 
intermediate strings that pass from one rewriting rule to another, he also reduced to 
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just two the number of linguistically meaningful levels of representation. In two-level 
parlance, these are usually referred to as the lexical and surface strings. 

7.1 The Analysis of Parallel Automata 
The lexical-surface string sets of the individual generalizations in Koskenniemi's sys- 
tem are clearly regular, since they are defined outright as finite-state transducers. But 
it is not immediately obvious that the string relation defined by a whole two-level 
grammar is regular. Koskenniemi gave an operational specification, not an algebraic 
one, of how the separate transducers are to interact. A pair of strings is generated by 
a two-level grammar if the pair is accepted separately by each of the transducers, and 
furthermore, the label on the transition taken by one fst at a particular string position 
is identical to the label of the transition that every other fst takes at that string posi- 
tion. In essence, he prescribed a transition function 6 for a whole-grammar transducer 
that allows transitions between states in cross-product state sets just in case they are 
permitted by literal-matching transitions in the individual machines. 

This transition function generalizes to a two-tape transducer the construction of a 
one-tape finite-state machine for the intersection of two regular languages. We might 
therefore suspect that the lexical-surface relation for a two-level grammar consisting 
of transducers TI~... Tn is the relation niR(Ti). However, what is actually computed 
under this interpretation is the relation Rel(Paths(T1) n Paths(T2)... Paths(Tn)) of the 
form discussed in Section 3. As we observed, this may be only a proper subset of the 
relation niR(Ti) when the component relations contain string pairs of unequal length. 
In this case, the literal-matching transducer may not accept the intersection, a relation 
that in fact may not even be regular. 

The individual transducers allowed in two-level specifications do permit the ex- 
pansion and contraction of strings by virtue of a null symbol 0. If this were treated just 
like c, we would be able to say very little about the combined relation. However, the 
effect of Koskenniemi's literal-matching transition function is achieved by treating 0 as 
an ordinary tape symbol, so that the individual transducers are C-free. The intersection 
of their same-length relations is therefore regular. The length-changing effect of the 
whole-grammar transducer is then provided by mapping 0 onto ~. Thus we embed 
the same-length intersection niR(Ti) as a regular inner component of a larger regular 
relation that characterizes the complete lexical-to-surface mapping: 

Intro(O) o [OR(Ti)] o Intro(O) -1 
1 

This relation expands its lexical string by freely introducing 0 symbols. These are con- 
strained along with all other symbols by the inner intersection, and then the surface 
side of the inner relation is contracted by the removal of all 0's. The entire outer re- 
lation gives an algebraic model of Koskenniemi's operational method for combining 
individual transducers and for interpreting the null symbol. With this analysis of the 
two-level system in terms of regularly-closed operations and same-length relations, 
we have shown that the string relations accepted by parallel two-level automata are 
in fact regular. We have also shown, by the way, that the two-level system is techni- 
cally a four-level one, since the inner relation defines two intermediate, 0-containing 
levels of representation. Still, only the two outer levels are linguistically significant. 
In typical two-level implementations the Intro relations are implicitly encoded in the 
interpretation algorithms and do not appear as separate transducers. 
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7.2 Two-Level Rule Notation 
Koskenniemi (1983) offered an informal grammatical notation to help explicate the 
intended effect of the individual transducers and make the generalizations encoded 
in their state-transition diagrams easier to understand and reason about. However, 
he proposed no method of interpreting or compiling that notation. In later work (e.g. 
Karttunen, Koskennienni, and Kaplan 1987; Karttunen and Beesley 1992) the math- 
ematical techniques we presented above for the analysis of rewriting systems were 
used to translate this notation into the equivalent regular relations and correspond- 
ing transducers, and thus to create a compiler for a more intuitive and more tractable 
two-level rule notation. Ritchie (1992) summarizes aspects of this analysis as presented 
by Kaplan (1988). Ritchie et al. (1992) describe a program that interprets this notation 
by introducing and manipulating labels assigned to the states of component finite- 
state machines. Since these labels have no simple set-theoretic significance, such an 
approach does not illuminate the formal properties of the system and does not make 
it easy to combine two-level systems with other formal devices. 

Ignoring some notational details, a grammar of two-level rules (as opposed to fsts) 
includes a specification of a set of "feasible pairs" of symbols that we denote by 7r. The 
pairs in 7r contain all the alphabet symbols and 0, but do not contain e except possibly 
when it is paired with itself in e: ~. The relations corresponding to all the individual 
rules are all subsets of ~r*, and thus are all of the restricted same-length class (since 
~r does not contain e paired with an alphabetic symbol). For this class of relations, 
it makes sense to talk about a correspondence between a symbol in one string in a 
string-pair and a symbol in the other: in the pair (abc, lmn) for example, we can say 
that a corresponds to l, b to m, and c to n, by virtue of the positions they occupy relative 
to the start of their respective same-length strings. Symbol pairs that correspond in 
this way must be members of 7r. It also makes sense to talk about corresponding 
substrings, sequences of string pairs whose symbols correspond to each other in some 
larger string pair. Corresponding substrings belong to 7r*. 

The grammar contains a set of rules whose parts are also same-length regular- 
relation subsets of 7r*. There are two basic kinds of rules, context restriction rules and 
surface coercion rules. A simple context restriction rule is an expression of the form 

~-~A__p 

where ~-, ~, and p denote subsets of 7r*. Usually ~- is just a single feasible pair, a 
singleton element of 7r, but this limitation has no mathematical significance. Either 
of the contexts )~ or p can be omitted, in which case it is taken to be e: e. Such a 
rule is interpreted as denoting a string relation whose members satisfy the following 
conditions: Every corresponding substring of a string pair that belongs to the relation 
~- must be immediately preceded by a corresponding substring belonging to the left- 
context ~ and followed by one belonging to the right-context p. In other words, any 
appearance of T outside the specified contexts is illegal. Under this interpretation, the 
relation denoted by the rule 

a:b =~ c:d e:f 

would include the string pairs Icae, dbf) and (cae, cge), assuming that a :g is in 7r along 
with the symbol pairs mentioned in the rule. The first string pair is included because 
the pair a:b is properly surrounded by c:d and e:f. The second belongs because it 
contains an instance of a:g instead of a:b and thus imposes no requirements on the 
surrounding context. The string pair (cae, cbe) is not included, however, because a:b 
appears in a context not sanctioned by the rule. 

369 



Computational Linguistics Volume 20, Number 3 

A simple surface coercion rule is writ ten with the arrow going in the other direc- 
tion: 

T ~ , k p  

For strings to satisfy a constraint of this form, they must  meet  a more  complicated set 
of conditions. Suppose that a corresponding substring belonging to ,k comes before a 
corresponding substring belonging to p, and that the lexical side of the paired substring 
that comes between them belongs to the domain  of T. Then that intervening paired 
substring must  itself belong to T. To illustrate, consider the surface coercion version 
of the context restriction example above: 

a:b 4= c : d _ _ e : f  

The string pair (caG dbf} satisfies this constraint because a:b comes between the con- 
text substrings c:d and e:f. The pair (cbe, dbf} is also acceptable, because the string 
intervening between c:d and e :f does not have a on its lexical side. However ,  the pair 
Icae, dgf} does not meet  the conditions because a :g comes between c:d and e:f. The 
lexical side of this is the same as the lexical side of the 7 relation a:b, but  the pair a :g 
itself is not in T. Informally, this rule forces the a to be realized as a surface b when  it 
appears  be tween the specified contexts. 

Kart tunen et al. (1987) in t roduced a variant of a surface coercion rule called a 
surface prohibition. This is a rule of the form 

and indicates that a paired substring that comes between instances of )~ and p and 
whose  lexical side is in the domain  of T must  not itself belong to ~-. We shall see that 
the mathematical  propert ies  of surface prohibitions follow as immediate  corollaries of 
our  surface coercion analysis. 

The notat ion also permits  compound  rules of each type. These are rules in which 
multiple context pairs are specified. A compound  context restriction rule is of the form 

T ~ /~1 _ _  pl; ~2 _ _  p2;.../~n _ _  fin 

and is satisfied if each instance of ~- is su r rounded  by an instance of some Ak_pk pair. 
A compound  surface coercion rule requires the 7 surface realization in each of the 
specified contexts. 

For convenience,  surface coercions and context restrictions can be specified in a 
single rule, by  using 4=~ as the main connective instead of ~ or o .  A bidirectional 
rule is merely an abbreviation that can be included in a g rammar  in place of the two 
subrules formed by  replacing the 4~ first by ~ and then o .  Such rules need no further  
discussion. 

7.3 Context  Restr ict ion Rules  ( 3 )  
To model  the conditions imposed  by context restriction rules, we recall the If-P-then-S 
and If-S-then-P operators  we defined for regular languages L1 and L2: 

If-P-then-S(L1, L2) = L1L2 = ~* - L1L2 

If-S-then-P(L1, C2) = ElL2 = ~* - LIL2 
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These operators can be extended to apply to string relations as well, and the results 
will be regular if the operands are in a regular subclass that is closed under comple- 
mentation. For notational convenience, we let the overbar in these extensions and in 
the other expressions below stand for the complement relative to 7r* as opposed to the 
more usual ~* x ~*: 

_ _  m 

If-P-then-S(R1,R2) = ~* - R1R2 = RIR2 

m 

If-S-then-P(R1, R2) = 7r* - R1R2 = RIR2 

The conditions for a simple context restriction rule are then modeled by the following 
relation: 

Restrict(% A, p) = If- S-then-P ( Tr* A, T ~r* ) n If-P-then- S ( Tr*T , p~r* ) 

The first component ensures that ~- is always preceded by A, and the second guarantees 
that it is always followed by p. 

A compound context restriction rule of the form 

3- :=>  /~1 _ _  p l ;  /~2  _ _  p 2 ;  . . . ; .,~n _ _  p n  

is satisfied if all instances of ~- are surrounded by substrings meeting the conditions of 
at least one of the context pairs independently. A candidate model for this disjunctive 
interpretation is the relation 

URestrict ( % )~ k, pk) 
k 

This is incorrect, however, because the scope of the union is too wide. It specifies that 
there must be some k such that every occurrence of T will be surrounded by Ak-p k, 
whereas the desired interpretation is that each 7- must be surrounded by )~k_pk, but a 
different k might be chosen for each occurrence. A better approximation is the relation 

[UkRestrict(T, )~k pk)], 

Because of the outer Kleene * iteration, different instances of the rule can apply at 
different string-pair positions. But this also has a problem, one that should be familiar 
from our study of rewriting rules: the iteration causes the different rule instances to 
match on separate, successive substrings. It does not allow for the possibility that 
the context substring of one application might overlap with the center and context 
portions of a preceding one. 

This problem can be solved with the auxiliary-symbol techniques we developed 
for rewriting rule overlaps. We introduce left and right context brackets <k and >k 
for each context pair Ak-p k, These are distinct from all other symbols, and since their 
identity pairs are now feasible pairs, they are added to ~r. These pairs take the place 
of the actual context relations in the iterative union 

[UkRestrict(T, Id( <k), Id(> k) )]* 

This eliminates the overlap problem. We then must ensure that these bracket pairs 
appear only if appropriately followed or preceded by the proper context relation. 
With m being the set of all bracket pairs and subscripting now indicating that identity 
pairs of the specified symbols are ignored, we define a two-level left-context operator 

Leftcontext( A, 1) = If-S-then-P( Tr* Am, Id ( l)Tc* ) 
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so that Leflcontext(& k, <k) enforces the requirement that every <k pair be preceded by 
an instance of I k. This is simpler than the rewriting left-context operator because not 
every instance of A must be marked---only the ones that precede ~-, and those are 
picked out independently by the iterative union. That is why this uses a one-way 
implication instead of a biconditional. As in the rewriting case, the ignoring provides 
for overlapping instances of ,~. The right-context operator can be defined symmetrically 
using If-P-then-S or by reversing the left-context operator: 

Rightcontext(p, r) = Rev(Leftcontext( Rev(p), r) ) 

Putting the pieces together, the following relation correctly models the interpretation 
of a compound context restriction rule: 

Intro(m) o 
[URestrict(r, ld( Kk), Id( >k) )] * N [Ak [Leftcontext( Ak, <k) A Rightcontext(p k, >k)]] 

k 
o Intro(m) -1 

Auxiliary marks are freely introduced on the lexical string. Those marks are appropri- 
ately constrained so that matching brackets enclose every occurrence of T, and each 
bracket marks an occurrence of the associated context relation. The marks are removed 
at the end. Note that there are only same-length relations in the intermediate expres- 
sion, and that all brackets introduced at the top are removed at the bottom. Thus the 
composite relation is regular and also belongs to the same-length subclass, so that the 
result of intersecting it with the same-length regular relations for other rules will be 
regular. 

7.4 Surface Coerc ion  Rules  (~)  
A surface coercion rule of the form 

~ - ~ l _ _ p  

imposes a requirement on the paired substrings that come between all members of the 
A and p relations. If the lexical side of such a paired substring belongs to the domain 
of -r, then the surface side must be such that the intervening pair belongs to T. 

To formalize this interpretation, we first describe the set of string pairs that fail 
to meet the conditions. The complement of this set is then the appropriate relation. 
The relation Y = ~r* - 7- is the set of string pairs in Tr* that are not in T, because either 
their lexical string is not in the domain of ~- or 7- associates that lexical string with 
different surface strings, ld(Dom(7)) o ~ is the subset of these whose lexical strings 
are in the domain of ~- and whose surface strings must therefore be different than ~- 
provides for. The unacceptable string pairs thus belong to the same-length relation 
zc*A[Id(Dom(T)) o ~]p~r*, and its regular complement in the Coerce operator 

Coerce(T, A, p) = 7r*l[Id(Dom(,-)) o Y]pTr* 

contains all the string pairs that satisfy the rule. 
For most surface coercions it is also the case that this contains only the pairs that 

satisfy the rule. But for one special class of coercions, the epenthesis rules, this relation 
includes more string pairs than we desire. These are rules in which the domain of ~- 
includes strings consisting entirely of O's, and the difficulty arises because of the dual 
nature of two-level O's. They behave formally as actual string symbols in same-length 
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relations, but they are also intended to act as the empty string. In this way they are 
similar to the 4% in the centers of rewriting rules, and they must also be modeled by 
special techniques. The epenthesis rule 

O:b4=c:c d:d 

can be used to illustrate the important issues. 
If this is the only rule in a grammar, then clearly that grammar should allow the 

string pair (cd, cbd) but disallow the pair (cd, ced), in which e appears instead of b 
between the surface c and d. It should also disallow the pair (cd, cd), in which c and d 
are adjacent on both sides and no epenthesis has occurred. This is consistent with the 
intuition that the 0 in the rule stands for the absence of explicit lexical string material, 
and that therefore the rule must force a surface b when lexical c and d are adjacent. 
In our analysis this interpretation of 0 is expressed by having the Intro relation freely 
introduce 0's between any other symbols, mimicking the fact that e can be regarded as 
freely appearing everywhere. The pair (cd, cbd) is allowed as the composition of pairs 
(cd, cOd) and (cOd, cbd); the first pair belongs to the Intro relation and the second is 
sanctioned by the rule. But because O's are introduced freely, the Intro relation includes 
the identity pair (cd, cd) as well. The Coerce relation as defined above also contains the 
pair (cd, cd} (= (ccd, c4d)), since 4:4 is not in [0:0 o 0:b]. The grammar as a whole thus 
allows (cd, cd} as an undesired composition. 

We can eliminate pairs of this type by formulating a slightly different relation for 
epenthesis rules such as these. We must still disallow pairs when O's in the domain of 
7 are paired with strings not in the range. But we also want to disallow pairs whose 
lexical strings do not have the appropriate O's to trigger the grammar's epenthesis 
coercions. This can be accomplished by a modified version of the Coerce relation that 
also excludes realizations of the empty string by something not in 7. We replace the 
Dom(T) expression in the definition above with the relation Dom(T U {4: 4}). The two- 
level literature is silent about whether or not an epenthesis rule should also reject 
strings with certain other insertion patterns. On one view, the rule only restricts the 
insertion of singleton strings and thus pairs such as (cd, cbbd) and (cd, ceed) would be 
included in the relation. This view is modeled by using the Dom(T t3 {4:4}) expression. 
On another view, the rule requires that lexically adjacent c and d must be separated 
by exactly one b on the surface, so that (cd, cbbd) and (cd, ceed) would be excluded 
in addition to (cd, ced) and (cd, cd). We can model this second interpretation by using 
0* instead of Dom(7 U {c:4}). The relation then restricts the surface realization of any 
number of introduced 0%. It is not clear which of these interpretations leads to a more 
convenient formalism, but each of them can be modeled with regular devices. 

Karttunen and Beesley (1992, p. 22) discuss a somewhat different peculiarity that 
shows up in the analysis of epenthesis rules where one context is omitted (or equiva- 
lently, one context includes the pair 4:~). The rule 

0 : b 4= c:c d:d 

requires that a b corresponding to nothing in the lexical string must appear in the 
surface string after every c:c pair. If we use either the Dom (r U {c : ~}) or 0* expressions 
in defining the coercion relation for this rule, the effect is not what we intend. The 
resulting relation does not allow strings in which a ¢: ¢ follows c: c, because ¢ is included 
in the restrictive domain expression. But 4:e follows and precedes every symbol pair, 
of course, so the result is a relation that simply prohibits all occurrences of c:c. If, 
however, we revert to using the domain expression without the {~:~} union, we fall 
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back into the difficulty we saw with two-context  epenthesis rules: the resulting relation 
proper ly  ensures that nothing other than b can be inserted after c:c, but  it leaves open  
the possibility of c:c followed by no insertion at all. 

A third formulat ion is necessary to model  the in tended interpretation of one- 
context epenthesis rules. This is given by the relation 7r*)xyTc* if only the left-context 
is specified, or 7c*yp~r* if only p appears. These exclude all strings where  an instance 
of the relevant context is followed by  paired substrings not in 7, either because the 
appropriate  number  of lexical O's were not (freely) in t roduced or because those 0's 
correspond to unacceptable surface material. These two prescriptions can be brought  
together into the single formula ~r*)~pTc* for all one-context rules, since whichever  
context is missing is treated as the identi ty pair c:¢. We can bring out  the similarity 
between this formula and the original Coerce relation by observing that this one is 
equivalent  to 7c*,~[Id(Dom(Tc*))o ~]p~r* because Id(DomOr*)) o-¢ and ~ are the same 
relation. 

We now give a general s tatement  of the Coerce relation that models  surface coer- 
cions whether  they are epenthetic or non-epenthetic:  

Coerce(T, ~, p) = 7r*A[Id(Dom(X) ) o Y]pTr*, where  
X = T if r has no epenthetic pairs; 
X = ~-U {c:e} (or perhaps  [0:0]*) if T has only epenthetic pairs 

and neither )~ nor  p contains e:e; 
X = ~-* if T has only epenthetic pairs and one of ~ or p does 

contain e: c. 

This definition assumes that T is homogeneous  in that either all its string-pairs are 
epenthetic or none of them are, but  we must  do further  analysis to guarantee that this 
is the case. In the formalism we are considering, ~- is permit ted to be an arbitrary same- 
length relation, not just the single unit-length pair that two-level systems typically 
provide for. If ~- contains more  than one string-pair, the single rule is interpreted as 
imposing the constraints that would  be imposed by a conjunction of rules formed by 
substituting for T each of its member  string-pairs in turn. Without further  specification 
and even if ~- contains infinitely many  pairs, this is the interpretation modeled  by 
the Coerce relation, p rovided  that T is homogeneous.  To deal with heterogeneous T 
relations, we separate the epenthetic and nonepenthet ic  pairs into two distinct and 

homogeneous  subrelations. We parti t ion an arbitrary 7- into the subrelations T ° and ~-° 
defined as 

~-0 = I a ( 0 * )  o ~- 

T ~ ~ T - -  T O 

We then recast a rule of the form r ~ )x _ _  p as the conjunction of the two rules 

T o ~ A _ _  p 
~-o ~ ~ _ _  p 

These rules taken together represent the desired interpretation of the original, and 
each of them is proper ly  modeled  by exactly one variant of the Coerce relation. 

We have now dealt with the major complexities that surface coercion rules present. 
The compound  forms of these rules are quite easy to model.  A rule of the form 

T ¢= ,,~1 _ _  p l ;  ,~2 _ _  p 2 ; . . .  ; /~n _ _  pn 
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is interpreted as coercing to the surface side of ~- if any of the context conditions are 
met. Auxiliary symbols are not needed to model this interpretation, since there is no 
iteration to introduce overlap difficulties. The relation for this rule is given simply by 
the intersection of the individual relations: 

NCoerce( T, A k, pk) 
k 

We conclude our discussion of two-level rules with a brief mention of surface prohi- 
bitions. Recall that a prohibition rule 

indicates that a paired substring must not belong to "r if it comes between instances 
of ,~ and p and its lexical side is in the domain of T. We can construct a standard 
surface coercion rule that has exactly this interpretation by using the complement of 
7- restricted to ~-'s domain: 

[Id(Dom@)) o ~] ~ A _ _  p 

As desired, the left side is the relation that maps each string in the domain of ~- to all 
strings other than those to which T maps it. Surface prohibitions are thus reduced to 
ordinary surface coercions. 

7.5 Grammars  of  Two-Leve l  Rules  
The relation for a grammar of rules is formed just as for a grammar of parallel au- 
tomata. The intersection of the relations for all the individual rules is constructed 
as a same-length inner relation. This is then composed with the 0 introduction and 
removal relations to form the outer lexical-to-surface map. Rule-based two-level gram- 
mars thus denote regular relations, just as the original transducer-based grammars do. 
Some grammars may make use of boundary-context rules, in which case a special sym- 
bol # can appear in contexts to mark the beginning and end of the strings. These can 
be modeled with exactly the same technique we outlined for rewriting rules: we com- 
pose the additional relation [~:#Id (Era0 # E~0 ) ~:#] at the beginning of the four-level 
cascade and compose its inverse at the end. As we mentioned before, the two-level 
grammars with boundary-context rules are the ones that Ritchie (1992) showed were 
complete for the regular relations. 

In reasoning about these systems, it is important to keep clearly in mind the 
distinction between the outer and inner relations. Ritchie (1992), for example, also 
proved that the "languages" generated by two-level grammars with regular contexts 
are closed under intersection, but this result does not hold if a grammar's language 
is taken to be its outer relation. Suppose that G1 has the set {a:b ,O:c}  as its feasible 
pairs and the vacuous a:b ~ _ _  as its only rule, and that G2 has the pairs {a:c, 0:b} 
and rule a:c =~ _ _ .  The domain of both outer (0-free) relations is a*. A string a n is 
mapped by G1 into strings containing n b's with c's freely intermixed and by G2 into 
strings containing n c's with b's freely intermixed. The range of the intersection of the 
outer relations for G1 and G2 thus contains strings with the same number of b's and 
c's but occurring in any order. This set is not regular, since intersecting it with the 
regular language b'c* produces the context-free language bnc n. The intersection of the 
two outer relations is therefore also not regular and so cannot be the outer relation of 
any regular two-level grammar. 
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We have shown how our regular analysis techniques can be applied to two-level 
systems as well as rewriting grammars, and that grammars in both frameworks de- 
note only regular relations. These results open up many new ways of partitioning the 
account of linguistic phenomena in order to achieve descriptions that are intuitively 
more satisfying but without introducing new formal power or computational machin- 
ery. Karttunen, Kaplan, and Zaenen (1992), for example, argued that certain French 
morphological patterns can be better described as the composition of two separate 
two-level grammars rather than as a single one. As another option, an entire two-level 
grammar can be embedded in place of a single rule in an ordered rewriting system. As 
long as care is taken to avoid inappropriate complementations and intersections, all 
such arrangements will denote regular relations and can be implemented by a uniform 
finite-state transducer mechanism. 

8. Conclus ion  

Our aim in this paper has been to provide the core of a mathematical framework 
for phonology. We used systems of rewriting rules, particularly as formulated in SPE, 
to give concreteness to our work and to the paper. However, we continually sought 
solutions in terms of algebraic abstractions of sufficiently high level to free them from 
any necessary attachment to that or any other specific theory. If our approach proves 
useful, it will only be because it is broad enough to encompass new theories and 
new variations on old ones. If we have chosen our abstractions well, our techniques 
will extend smoothly and incrementally to new formal systems. Our discussion of 
two-level rule systems illustrates how we expect such extensions to unfold. These 
techniques may even extend to phonological systems that make use of matched pairs 
of brackets. Clearly, context-free mechanisms are sufficient to enforce dependencies 
between corresponding brackets, but further research may show that accurate phono- 
logical description does not exploit the power needed to maintain the balance between 
particular pairs, and thus that only regular devices are required for the analysis and 
interpretation of such systems. 

An important goal for us was to establish a solid basis for computation in the 
domain of phonological and orthographic systems. With that in mind, we developed 
a well-engineered computer implementation of the calculus of regular languages and 
relations, and this has made possible the construction of practical language processing 
systems. The common data structures that our programs manipulate are clearly states, 
transitions, labels, and label pairs--the building blocks of finite automata and trans- 
ducers. But many of our initial mistakes and failures arose from attempting also to 
think in terms of these objects. The automata required to implement even the simplest 
examples are large and involve considerable subtlety for their construction. To view 
them from the perspective of states and transitions is much like predicting weather pat- 
terns by studying the movements of atoms and molecules or inverting a matrix with a 
Turing machine. The only hope of success in this domain lies in developing an appro- 
priate set of high-level algebraic operators for reasoning about languages and relations 
and for justifying a corresponding set of operators and automata for computation. 

From a practical point of view, the result of the work reported here has been a set 
of powerful and sometimes quite complex tools for compiling phonological grammars 
in a variety of formalisms into a single representation, namely a finite-state transducer. 
This representation has a number of remarkable advantages: (1) The program required 
to interpret this representation is simple almost to the point of triviality, no matter 
how intricate the original grammars might have been. (2) That same program can be 
used to generate surface or textual forms from underlying lexical representations or 
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to analyze text into a lexical string; the only difference is in which of the two symbols 
on a transition is regarded as the input and which the output. (3) The interpreter is 
constant even under radical changes in the theory and the formalism that informed 
the compiler. (4) The compiler consists almost entirely of an implementation of the 
basic calculus. Given the operators and data types that this makes available, only a 
very few lines of code make up the compiler for a particular theory. 

Reflecting on the way the relation for a rewriting rule is constructed from simpler 
relations, and on how these are composed to create a single relation for a complete 
grammar, we come naturally to a consideration of how that relation should comport 
with the other parts of a larger language-processing system. We can show, for example, 
that the result of combining together a list of items that have exceptional phonological 
behavior with a grammar-derived relation for general patterns is still a regular re- 
lation with an associated transducer. If E is a relation for a finite list of exceptional 
input-output pairs and P is the general phonological relation, then the combination is 
given by 

E m [Id(Dom(E)) o P] 

This relation is regular because E is regular (as is any finite list of pairs); it suppresses 
the general mapping provided by P for the exceptional items, allowing outputs for 
them to come from E only. As another example, the finite list of formatives in a lex- 
icon L can be combined with a regular phonology (perhaps with exceptions already 
folded in) by means of the composition Id(L) o P. This relation enshrines not only the 
phonological regularities of the language but its lexical inventory as well, and its cor- 
responding transducer would perform phonological recognition and lexical lookup in 
a single sequence of transitions. This is the sort of arrangement that Karttunen et al. 
(1992) discuss. Finally, we know that many language classes are closed under finite- 
state transductions or composition with regular relations--the images of context-free 
languages, for example, are context-free. It might therefore prove advantageous to seek 
ways of composing phonology and syntax to produce a new system with the same 
formal properties as syntax alone. 
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