
Responding Intelligently to Unparsable
Ralph M. W e i s c h e d e l

J o h n E. B lack 2

Inputs 1

D e p a r t m e n t of Computer and Informat ion Sciences
Universi ty of De laware

N e w a r k , De laware 19711

All natural language systems are likely to receive inputs for which they are unprepared.
The system must be able to respond to such inputs by explicitly indicating the reasons the
input could not be understood, so that the user will have precise information for trying to
rephrase the input. If natural language communication to data bases, to expert consultant
systems, or to any other practical system is to be accepted by other than computer person-
nel, this is an absolute necessity.

This paper presents several ideas for dealing with parts of this broad problem. One is
the use of presupposition to detect user assumptions. The second is relaxation of tests
while parsing. The third is a general technique for responding intelligently when no parse
can be found. All of these ideas have been implemented and tested in one of two natural
language systems. Some of the ideas are heuristics that might be employed by humans;
others are engineering solutions for the problem of practical natural language systems.

1. Introduction

A truly natural language process ing sys tem does
not have to have a perfect model of human language
use, but it should have knowledge of whatever limita-
tions its model has. Then, for a user who has exceed-
ed these limitations, the system can interactively aid
the user to rephrase the input in an acceptable way.
This is a prerequisi te to any pract ical applicat ion,
whether it be natural language communica t ion to a
data base, a medical consultat ion system, or an office
automat ion system. Users will not find such a system
practical unless it gives helpful f eedback when the
system fails to unders tand an input.

As an example of how a user 's input can exceed the
sys tem's model , we repea t an anecdote of Woods
(1973b) about his system for answering natural lan-
guage queries about lunar rock samples. One question
asked was, "What is the average weight of all your
samples?" This overs tepped the sys tem's model in at
least three ways.

1 This work was supported in part by the University of Dela-
ware Research Foundation, Inc.

2 Current address: W.L. Gore & Associates, Inc., Newark,
Delaware 19711.

I t surpassed the syntact ic model , which did not
provide for a p rede te rminer such as "al l" preceding
another determiner, such as "your" or " the" . There-
fore, the sentence could not be parsed, even though
"What is the average weight of all samples" or "What
is the average weight of your samples" could have
been.

The semantic capabilities were also surpassed, be-
cause semantic rules for translating "weight of" to a
funct ional represen ta t ion had not been incorpora ted .
Indeed, no data had been included for the weights of
the samples.

The third problem was that no semantic translat ion
rules for possession were present. The input violated
the sys tem's model of pragmat ics , for the designers
had not a t t r ibuted possess ion of the samples to the
machine.

This paper presents three ideas for giving useful
f eedback when a user exceeds the sys tem's model .
The ideas help to ident i fy and explain the sys tem's
problem in processing an input in many cases, but do
not per form the next step, which is suggesting how the
user might rephrase the input.

These ideas have been tested in one of two sys-
tems: (1) an intelligent tutor for instruction in a for-
eign language and (2) a system which computes the

Copyright 1980 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted
provided that the copies are not made for direct commercial advantage and the Journal reference and this copyright notice are included on
the first page. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 3 6 2 - 6 1 3 X / 8 0 / 0 2 0 0 9 7 - 1 3 5 0 1 . 0 0

American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980 97

Ralph M. Weischedel and John E. Black Responding Intelligently to Unparsable Inputs

presuppositions and entailments of a sentence. For
each idea presented in the paper, we will indicate
whether it pertains to systems in general or pertains
specifically to the foreign language tutor system with
its unique position of knowing more of the language
than the user.

In Section 2 of this paper we offer a way to recog-
nize that an input exceeds the semantic model. In
general, the presuppositions or given information
(defined later), of a user's input must be true in the
system's model of context, for they represent facts
that must be shared among the participants of a dia-
logue. For each presupposition not true in the
machine's model, the system should print the false
presupposition to identify an assumption that the user
cannot make.

Section 3 presents a technique for relaxing const-
raints to accept sentences that would not parse other-
wise. Frequently one wonders whether the syntactic
component is responsible for much of the inability of
previous systems to understand input partially, to iso-
late parts not understood, and to interpret ill-formed
input. A top-down, left-right parser essentially cannot
proceed to material to the right of a construction
which the grammar is not prepared for. Yet, such a
parser should have much predictive ability about what
was expected when the block occurred. Section 4
describes a collection of heuristics that capitalize on
the predictive abilities of a top-down, left-right parser
to produce helpful messages when input is not under-
stood.

Finally, Section 5 discusses related work, and Sec-
tion 6 presents our conclusions.

2. Using Presuppositions

Semantic information in a sentence is commonly
divided into two classes: given and new information.
Given information, or presupposition, is that part of the
meaning of a sentence which is presumed true in the
context of a discourse. New information is the assert-
ed part. For instance, "The defendant stopped beat-
ing his wife", has as given information that there is
some defendant presumed in the context and that that
person had been beating his wife. The new informa-
tion is that the individual ceased that activity.

Some presuppositions are associated with the use of
syntactic constructs. For instance, all noun phrases
making definite reference presume that there is a re-
ferent in context. All "wh" questions request new
information corresponding to the value of a variable
and presuppose the set of constraints on the value of
the variable. For instance, "Who is playing the tuba",
presumes that someone is playing the tuba.

The meaning of particular words is the source of
other examples. The use of certain verbs, such as

"describe", conveys presuppositions, or given informa-
tion. The question, "What books describe how Presi-
dent Truman died", has a presupposition that Presi-
dent Truman died. Certain quantifying phrases carry
given information, as in "Only project J1 receives
parts from New York companies", which presupposes
that project J1 receives parts from New York compa-
nies.

An analogy can be drawn between given informa-
tion and preconditions or "input assertions" on a pro-
cedure. Given information for definite noun phrases
corresponds to predicates on the value of a variable.
Given information from the meaning of predicates
such as "describe" corresponds to assertions about the
state on entry of a procedure. Therefore, given infor-
mation includes preconditions on the execution of a
user request. Furthermore, such preconditions are
directly traceable to particular phrases in that request.

The psychological validity of given and new infor-
mation has been demonstrated by Clark and Haviland
(1977) and Haviland and Clark (1974). The psycho-
logical process they suggest is that (1) given and new
information are first sorted in processing a sentence,
(2) memory is then searched to establish that the
given information holds in context, and (3) the new
information is then asserted in memory.

We have modelled this process in natural language
systems. Research reported in Joshi and Weischedel
(1977) and Weischedel (1979) demonstrated how to
organize an augmented transition network and lexicon
to compute the given and new information of a sen-
tence.

In another system, we implemented the second of
the three parts of the psychological process suggested
by Clark and Haviland. That system was an intelligent
tutor which pinpointed errors a student makes while
answering questions in German during a reading com-
prehension exercise (Weischedel, et.al., 1978). A text
presented to English-speaking students in German
provides a relatively closed world for the tutor system,
since questions refer to entities presented in the text
and facts about them. Therefore, these can be includ-
ed as a detachable module of world knowledge specific
to the particular text, along with any other world
knowledge that is applicable to the set of questions. It
is still possible for the student to refer to knowledge
not contained in the model, but it is unlikely. Though
the students have vast amounts of knowledge not in
the system model, they have insufficient vocabulary
and syntactic forms to be able to express this knowl-
edge initially.

Thus, in the environment of foreign language in-
struction, the system is in the unique position of hav-
ing more vocabulary and syntactic forms than the user
and, therefore, has more domain knowledge than the

98 Amer ican Journa l of Computational Linguistics, Vo lume 6, Number 2, Apr i l -June 1980

Ralph M. Weischedel and John E. Black Responding Intelligently to Unparsable Inputs

user can express. Obviously most systems do not have
this property.

Presuppositions were very effective in the German
tutor system, though they are a crucial semantic check
for natural language systems in general. Checking
presuppositions against the world model of the Ger-
man tu tor provides recognit ion for several types of
errors. First, given information of questions presented
by the system must be inferable from a student 's an-
swer; otherwise the answer is inappropriate for the
question. Consequently, the tutor diagnoses misunder-
standing of a question by checking that the given in-
formation of a question (which it knows independent-
ly) is among the inferences of a s tudent 's answer.
Only a very simple inference mechanism is used.

Second, given information in the student 's answer
is checked against the world model. If the given infor-
mation does not exist in the system's knowledge base,
the tutor finds one of two errors. If the presupposi-
tion is from a definite noun phrase, the tutor prints the
noun phrase and informs the student that it knows of
nothing that it could refer to. If the presupposit ion is
associated with the semantics of a particular word, it
assumes that this student, who is just learning German,
has used the word incorrectly. For instance, essen
presupposes that the one eating is human; fressen pres-
upposes that the one eating is an animal.

Given informat ion is impor tant for any quest ion-
answering system with natural language input. The
system must check the presuppositions of the input in
order to guarantee that the user's assumptions are true
in its world. If any are not, the system can list pre-
cisely the assumptions which are not true.

These ideas were discussed first in Weischedel
(1977) and in Weischedel, et.al. (1978). Kaplan
(1977,1979) develops the ideas much further, specifi-
cally for data base systems. He postulates a hierarchy
for the presuppositions of an English query and has
implemented strategies for guiding the user to new
queries when the data base would list the empty set in
response to a query.

Presupposit ion has received much at tent ion in lin-
guistics and philosophy; see for example Oh and Di-
neen (1979) , Kar t tunen (1973) , and Kar t tunen and
Peters (1975).

3. Two Mechan isms for Diagnosing Syntact ic Failures

We assume that the purpose of a syntactic compo-
nent is to translate from natural language input to an
internal semantic representa t ion of the input. This
need not be a completely syntactic process, but may
use semantic computations and contextual expectations
to guide the pars ing/ t rans la t ing process. Several
sources could prevent this process f rom finding a
translation of the input. (We will refer to the input

component as a "parser" , though we do not presume
that a parse tree is ever explicitly computed.)

An important way that an input may fail to parse is
when the user employs incorrect forms of the lan-
guage. If particular forms are anticipated, they may
be explicitly included in the syntactic model along with
the appropriate translation mechanism. In the German
tutor ment ioned in the previous section, there are se-
veral examples of this. For instance, English-speaking
students frequently forget to put past participles at the
end of a clause; e.g. using "Ich habe gegessen das
Fleisch" rather than the correct "Ich habe das Fleisch
gegessen," (I have eaten the meat). The path in the
augmented transition net (ATN) corresponding to the
incorrect form computes a message to tell students of
the mistake, as well as computing the semantic repre-
sentation of the answer for semantic analysis. This is
particularly effective in the tutor system to catch in-
stances of a s tudent using English syntax pat terns
rather than German ones.

In a similar way, any natural language processing
system may include all anticipated forms and transla-
tion rules for them whether or not they are strictly
proper for the language.

Another way for a system to accept incorrect forms
of language is suggested by observing a common style
of writing grammars. Syntactic input components are
of ten designed using a contex t - f ree grammar where
each grammar rule may be augmented by predicates
operat ing on the semantic representa t ions or on the
constituents linked by the grammar rule. The predi-
cates must be satisfied for the const i tuents to be
grouped as a larger constituent. (Of course, the gram-
mar is no longer context - f ree then.) Augmented
phrase structure grammars (Heidorn , 1975) encode
parsers and translators specifically in this way. The
augmented transition network formalism also directly
lends itself to writing parsers and translators in this
way by the predicates on arcs. The version of system-
ic grammar implemented by Winograd (1972) has this
flavor as well. Still another example of this style of
writing parsers is the linguistic string parser of Sager
(1973) and Grishman (1973).

A straightforward example of the use of such predi-
cates is for subject-verb agreement. It is easy for a
user to make mistakes in long English sentences, re-
suiting in parser failure. A solution would be simply
to remove the predicate f rom the rule. However ,
Grishman (1973) reports f rom their experience in
processing scientific texts that the predicates effective-
ly eliminate a large number of spurious parses.

We suggest that, instead of forcing all predicates to
be satisfied or ignoring the informat ion inherent in
them, that the designer should designate that certain
predicates can be relaxed, with a record being kept of
each predicate not satisfied during parsing. Only pars-

American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980 99

Ralph M. Weischedel and John E. Black Responding Intelligently to Unparsable Inputs

es yielding the fewest unsatisfied predicates are com-
pleted. Since the number of predicates that evaluate
to false in a partial parse is a non-decreasing number,
only those partial parses with the fewest unsatisfied
predicates have to be continued. Thus, the number of
spurious parses added should be small. (Instead of
assuming that all failed predicates have equal weight,
one could assign a partial order to them; but we have
not yet investigated this.)

This s trategy was very effect ive in the German
tu tor system. Not only were several predicates al-
lowed to fail, but also a procedural specialist was atta-
ched to the appropriate arc of the ATN to compute a
specific error message and probable cause for the
student 's error. Subject-verb agreement is one exam-
ple. Another is noun phrase declension, which is cru-
cial to distinguishing "Das M~idchen gab dem Mann
einen Hut" (the girl gave the man a hat) f rom "Dem
M~tdchen gab der Mann einen Hut" (the man gave the
girl a hat).

The not ion of allowing certain predicates to go
unsatisfied is much more general than the highly spe-
cial environment of the German tutor. In the system
described in the next section, several predicates were
made optional or "failable". By "failable" we mean
that the predicates ought to be true for the pat tern to
match, but could be false without preventing the pat-
tern from matching if there would be no parse with all
such predicates true. In addit ion to subject-verb
agreement , pronominal case was also made failable.
The two together allow a sentence such as "Me think
him win of ten" to be parsed, even though the parser
has a model of correct language.

4. Responses to Unparsab le S e n t e n c e s

Some sentences will not be parsable even using the
mechanisms described in the previous section. If one
uses an augmented transition network as a top-down,
left-right parser, the arcs leaving a state where a parse
is blocked offer a set of predictions or expectations
regarding what should occur next in the input string.
These predictions include more than just the symbols
or const i tuents that were expected to follow; they
include the partial interpretat ion that was being fol-
lowed. In fact, this partial interpretat ion is potentially
far more informative than the symbols or consti tuents
that were expected next. (In the realm of program-
ming languages, an Algol compiler that gives a syntax
error message of " S E M I - C O L O N E X P E C T E D " can
be quite frustrating since the cause of the problem can
be quite difficult to find.) Thus, one of our major
goals was to develop and test heuristics that would
enable a natural language system to describe what
in terpre ta t ion it was following as an explanat ion of
why it expected specific items which were not present.

Our approach is that the parser writer can assign
meaning to the states of a parser as it is being written,

somewhat analogous to assigning meaning to programs
(Floyd, 1967). Floyd suggested postulating computa-
t ional states be tween the actions of a program and
associating predicates with these states to capture the
intent of the computat ional state. States are explicitly
given in an ATN. The designer 's insight into the
meaning of a part icular state offers potent ial ly a
wealth of informat ion that can be presented to the
user about the interpretat ion being followed and why
it failed. This may be of significant help in selecting
an alternative way to express the input.

The meaning of an ATN state may be specified by
an ordered list of condit ion-act ion pairs, encoded as
arbitrary LISP functions. T h e s e conditions and ac-
tions may be functions of the current word in the in-
put, the previous word in the input, any ATN register
having a value as of that state, any ATN register f rom
higher levels in the graph, or the sequence of states
traversed.

These condit ion-act ion pairs furnish a natural way
to distinguish among several interpretat ions or paths
that are collapsed at a particular state. The conditions
are used to unravel the collapsed paths by referring to
the ATN registers and input string. The action for any
given condition provides a flexible way of computing
and printing messages the parser writer has chosen to
describe the interpretat ion being followed.

In general, the effectiveness of this idea for gener-
ating responses to unparsable sentences will depend on
heuristics for determining the state at which the prob-
lem in the input was encountered. These ideas should
be very effect ive for natural language f ront ends to
applications such as data base systems, expert consult-
ant systems, and computer-ass is ted instruct ion sys-
tems.

The ideas do no t presume that the parser operates
sequentially or prior to semantic or pragmatic compo-
nents. The ideas would fit in equally well in a multi-
processing environment where syntactic, semantic, and
pragmatic components communicate asynchronously,
such as GUS (Bobrow, et.al. 1977). In a multipro-
cessing system, one would have to write the condition-
action pairs to use information and decisions from the
other components . The only assumption we have
made is that the parser is top-down, left-right, and is
written in the formalism of the ATN.

4.1 Se lec t ing a S ta te f rom the Set of Possible S ta tes

In essence, when a parse is blocked, one wants the
partial parse nearest to being complete. We have cho-
sen to select partial parses that have moved furthest in
the input string, or, in other words, those that match
the longest initial string. However , there may be se-
veral paths and blocked states matching the longest
initial string. Fur thermore , the parse may have gone

100 American Journal of Computational Linguistics, Volume 6. Number 2, April-June 1980

Ralph M. Weischedel and John E. Black Responding Intel l igently to Unparsable Inputs

several words beyond the point where the real problem
occurred.

As a heuristic, states where a block has occurred are
selected only i f they are on a "longest pa th" matching
the most input words. The "length of a pa th" is de-
fined to be the number of arcs t raversed other than
PUSH or JUMP arcs with the universally (vacuously)
true test, since those arcs make no test on the input
string nor consume any part of it, (The pseudo-arcs
POP are counted.) If there are still several states, one
can be selected nondeterministically.

Given the state S selected by the heuristic above,
there is a tree of states which are reachable f rom S
using only a string of PUSH or JUMP arcs with the
universally true test. S is the root of such a tree. The
meaning of each of the states of the tree may of ten-
times be summarized by the parser designer into one
brief description characterizing all of them as one con-
ceptual unit (rather than a disjunction of descriptions
of each). For states where this seems inappropriate , a
special function (L O O K A H E A D) can be added as an
action in the meaning of S to call the message generat-
ing routine recursively for each state at distance one
f rom S in the tree described above. Using these two
ideas we found that selecting the root S for its mean-
ing, while ignoring its descendants, p roved sat isfactory
in our tests.

The heuristic for selecting one part ial parse and
one state along a pa th for it was implemented in a
particular parser, to be described in section 4.2. We
tested these ideas by const ruct ing for each state an
unparsable input such that the heuristic would select
that s t a t e . Some states either could not be a blocking
point or could be one only by a non-Engl ish input,
such as, " John forced Mary not ." After eliminating
such states, we tested the heuristic on one sentence for
each remaining state.

For an input that does not parse, there is some
maximal initial input string consumed by any of the
partial parse paths. Consider the set of states on the
part ial parse paths such that at each such s tate the
maximal input string has been parsed in reaching that
state. (The set can be more than a singleton even if
there is only one path, since PUSH, JUMP, and POP
arcs do not consume input symbols.) For the 39 ex-
ample sentences, the average number of states in that
set was four.

To measure the ef fec t iveness of employing the
heuristic of using only states at the end of a " longest"
path (where JUMP and PUSH arcs with a universally
true test are not counted in the length of the path) , we
counted the number of " longest" paths for each exam-
ple. In 34 of the 39 test cases, this heuristic yielded
only one state. In each of the five remaining cases,
two states were left as the last state of a longest path.

As ment ioned earlier, when more than one state is
left af ter selecting only states at the end of a longest
path, one can be selected nondeterminis t ical ly . In
three of the five test cases where nondeterminism was
used, the two states would have produced essentially
the same message, and there fore using bo th states
would have added no insight.

Thus, in our test the heuristic seemed very effec-
tive. Of course, the effect iveness of the heuristic de-
pends in large part on the style in which the parser is
written. We describe the parser next.

4.2 T h e P a r s e r on w h i c h t h e Ideas w e r e T e s t e d

We tested these ideas on a parser writ ten in 1975
as part of a Ph.D. thesis (Weischedel, 1975). The
purpose of the parser was to demonst ra te how to com-
pute two special classes of inferences, presupposi t ions
and enta i lments of English sentences , by using an
A T N and a lexicon. Because of its special purpose,
the sys tem included many const ruct ions and lexical
items of interest for their presupposi t ional or entail-
ment content. For the same reason, many frequently
occurr ing const ruct ions of English were not imple-
mented , e.g. conjunct ion reduct ion, reduced relative
clauses, several consecutive preposi t ional phrases, and
adverbials.

A subset of construct ions were selected f r o m the
linguistic analysis of Ander son (1970) , which was a
basis of defining the lexical classes of the Linguistic
String Parser, described in Sager (1973) and Gr ishman
(1973). Anderson ' s analysis defined lexical classes by
the left contexts (subject) in which a predicate (verb
or noun) could occur, the right contexts (object) in
which a predicate could occur, and the t ransformat ions
which could act upon these strings of subject, predi-
cate and object . (Note , in this sect ion the word
"predica te" refers to part of an English clause, not a
boolean test as in Section 3.) Such strings define the
parsable sentent ial forms; the t rans format ions acting
upon the strings give fur ther forms. Of course, our
A T N parser encoded all surface forms in the g r a p h s .
explicitly. The actions on the A T N arcs had the effect
of invert ing the t r ans format ions given by Ande r son
while moving along an A T N path matching the surface
form.

Condit ions on the arcs were very significant in the
style of our parser. For instance, a condition before
POPping f rom the sentential level checks whether the
left and r ight contexts matched for the word or predi-
cate X form a string in the linguistic model of Ander-
son (1970).

In the lexical entries each semantic representa t ion
for a word was associated with corresponding lexical
classes. Finding the semantic representa t ion of a sen-
tence, therefore , required determining lexical classes
for each of the words.

American Journal of Computat ional Linguistics, Volume 6, Number 2, Apri l -June 1980 101

Ralph M. Weischedel and John E. Black Responding Intelligently to Unparsable Inputs

The arc condition which checks whether a predicate
X occurred in appropr ia te right and left contexts was
no t one of the ones we declared to be "fa i lable" , be-
cause this condit ion was necessary and sufficient for
determining associated semant ic representa t ions .
When the condit ion was not satisfied, the parser did
not have in its lexicon a semantic representa t ion for
the word X. Consequent ly , the condit ion offered a
very tight constraint for ascertaining when the parser
had no semant ic represen ta t ion cor responding to an
interpreta t ion. Mainta ining such t ight control over
what the system could and could not translate is some-
what akin in phi losophy to using strongly typed pro-
gramming languages with much error checking. People
do not seem to have such a style in using natural lan-
guages; however , it might be a useful engineering prin-
ciple for natural language systems where accuracy of
understanding is crucial.

Ano the r consciously applied s t ra tegy in designing
the parser was to separa te into distinct paths m a n y
strings which conce ivably could have been merged.
The criterion for making a distinct pa th was whether a
string which was syntactically differentiable also had a
distinct semantic representat ion. For instance, cleft

s e n t e n c e s , such as " I t was Mary who w o n " , could
have been incorpora ted by simply listing left and right
contexts for "be" in the lexicon. However , the syn-
tactic fo rm has distinct meaning, namely in the exam-
pie, the presupposi t ion that "Someone won." There-
fore, the parser has a special pa th for cleft sentences.

This aspect of style yielded several relatively long
paths with little branching. For such paths, the mes-
sages for a blocked parse can pinpoint the interpreta-
t ion that was being followed and what was expected
next. Examples of this are provided in section 4.3.

One of the major advantages of testing our ideas
on this parser was the fact that there were many ways
in which a sentence could fail to parse. The parser
was already available, but more impor tant for the as-
signing of meaning to its states, its designer was readi-
ly available. A fur ther reason for selecting this parser
was that it did cover a wide range of construct ions and
was not a toy grammar.

In general , we specifically avoided enhancing the
g r ammar to r emove l imitations. We wan ted a full
range of tests and example problems to exercise our
ideas as thoroughly as possible. However , simple bugs
such as erroneous omissions in lexical entries or typo-
graphical errors were corrected as they were detected.
Also, we did add one action to most arcs to save sur-
face phrases as they were found, for more helpful
responses to the user.

The major d rawback in selecting this parser for
exper imenta t ion is its original purpose. Although its
purpose is very precise, it did not have a natural task
domain. Without a task, it seems impossible to make

some significant tests, such as giving naive users a
specific goal in the domain, then measuring how many
trials they require to achieve the goal in the restricted
natural language.

4.3 Examples and Analyses

In this section, we have organized example states,
messages, and analyses around several themes; each of
the following subsections comprises one theme. All
graphs here are much simplified recursive t ransi t ion
net approximat ions of the actual graphs in Weischedel
(1979). A double circle indicates a pop arc. Lower
case indicates terminals; upper case indicates nonter -
minals.

4.3.1 Appropr ia te Phrasing for Naive Users

Though the parser writer may know precisely what
in terpreta t ion was being fol lowed and what caused it
to b lock at a given state, it is very chal lenging to
phrase that knowledge in a way helpful to the user.
This is a p rob lem common to all natural language sys-
tems, but the degree of the prob lem varies with the
appl icat ion of the sys tem and with the style of the
grammar. For instance, in the envi ronment of an in-
telligent tu tor for computer -ass is ted language instruc-
tion, the user is learning or has learned many informal
grammat ica l concep ts of the language (though these
may not directly cor respond to the formal ones imple-
mented in the parser) . Consequent ly , the parser writ-
er in creat ing response messages as par t of the
condi t ion-act ion pairs can use these concepts to pin-
point for the user the reason the parser blocked. In
other applicat ions, the user might have few, if any,
concepts of grammar.

Since our tests were conducted on the English par-
ser for generat ing presupposi t ions and entai lments , the
response messages were aimed at general users having
only a few informal concepts of language, such as
sentence, subject, verb, and object . In addition, the
responses of ten include examples with a similar struc-
ture, ra ther than using technical terms. For instance,
suppose that the phrase " I t was the ' c lass ..." was be-
ing in te rpre ted as a cleft sen tence when it was
blocked. The sys tem prints that the input was being
interpreted in the same way as a sentence such as " I t
is John who left ," ra ther than calling it a cleft sen-
tence.

The style of the part icular parser also has a signifi-
cant effect on the ability to phrase the reason for a
parsing failure. For instance, if one uses a "semant ic
g r a m m a r " (Burton, 1976 and Brown and Bur ton,
1975) the parser writer can use the concepts of the
domain encoded in the g rammar as a powerful descrip-
tion of the in terpre ta t ion being fol lowed and of the
cause of a b locked parse. In I N L A N D (Hendr ix ,
et.al., 1978), one can see how effect ive the domain
concepts encoded in the .semantic g rammar can be in

102 American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980

Ralph M. Weischedel and John E. Black Responding Intelligently to Unpsrsable Inputs

!
I t /

/ t /

1,

%

or S

Figure 1. Paths involving state 02.

responding to the user. One class of response mes-
sages in INLAND is a list of the elements that could
have occurred next when the parse blocked. Even
though this list does not indicate the in terpre ta t ion
being followed, the semantic concepts of the domain
which could occur next (e.g. ship) are more meaning-
ful to the user than such a list for a general-purpose
grammar would be (e.g. noun phrase).

In effect , then, we tested the idea of using the
meanings of states to generate responses on the hard-
est case, where the parser is general and the users are
completely naive about even informal grammatical
concepts. The remainder of this subsection describes
the problems we encountered, by examples.

State 02 of Figure 1 exemplifies a very frustrating
aspect of devising appropriate descriptions. 02 is part
of the subgraph that recognizes right contexts
(objects) of predicates. The meaning of the nontermi-
nals is as follows." NP, a noun phrase; NPS, a posses-
sive form of a noun phrase; S, a declarative sentence;
WH-S, a wh-quest ion; P, a preposi t ion; V+ing , a
verb 's present participle; and V + e n , a verb 's past
participle. Though there are four different possible
reasons for a parse to block at 02, each of which is
rather reliably recognized by a simple condition, the
messages describing the problem are not precise.

Four condit ion-action pairs represent the meaning
assigned to 02. The first checks for the input string
being empty. If it is, the lexical entry for the predi-
cate does not include the appropriate right context
being matched, and therefore has no translation for it.
Though the problem is pinpointed, describing it to the
user is not easy; examples of uses that the system can
understand seem to be the most helpful for this. Ex-

ample 1 demonstrates the message. Each lexical i tem
corresponding to a predicate has a list of sentences,
one for each implemented left-right context pair; the
examples are stored on disk files and read only if re-
quested.

Examp~ 1:

THE PROFESSOR PREVENTED A DULL LECTURE /.

NO PARSES

THE PROFESSOR PREVENTED A DULL LECTURE

STUCK AT THE END OF THE SENTENCE

SUBJECT UNDERSTOOD TO BE: 'THE PROFESSOR'

VERB UNDERSTOOD TO BE: 'PREVENTED'

THE WORD 'PREVENTED' IS BEING USED IN A

WAY UNKNOWN TO THIS SYSTEM.

WOULD YOU LIKE EXAMPLES ? *YES

EXAMPLES FOR THE USAGE OF 'PREVENTED'

'THAT THE STUDENTS DID NOT ATTEND THE

LECTURE PREVENTED THE PROFESSOR

FROM ASSIGNING THE TEXT /.'

'JOHN PREVENTED MARY FROM ATTENDING THE

LECTURE /.'

'JOHN WAS PREVENTED FROM LEAVING BY

MARY/.'

'JOHN WAS PREVENTED FROM TRANSLATING THE

ASSIGNMENT BY ME /.'

A second condit ion-act ion pair associated with 02
is apparently never used, because the parse can always
continue beyond state 02. This pair checks two condi-
tions: whether the current input symbol is " tha t" and
whether two noun phrases form an appropriate right

American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980 . 103

Ralph M. Weischedel and John E. Black Responding Intelligently to Unparsable Inputs

context for the predicate found. In this case the par-
ser should have interpreted " tha t " as being used refer-
entially. However , we had not included its referential
sense in the lexicon. The message associated with the
pair would pinpoint the p rob lem were this the final
state of a longest parse. In one instance, the parser
can go one arc far ther by pushing for a noun phrase
and ver i fying that the predica te allows such a right
context. Example 2 is such an instance.

Examp& 2:

I WILL GIVE DR SMITH THAT /.

NO PARSES

I WILL GIVE DR SMITH

STUCK AT THE WORD 'THAT'

LOOKING FOR A NOUN PHRASE, BUT THE WORD

'THAT' CANNOT BE USED AS A PRONOUN

IN THIS SYSTEM TO REFER TO SOMETHING

Far more likely circumstances are that the parser
can continue by interpret ing " tha t " as the beginning
of a relat ive clause modify ing the noun phrase
matched in reaching state 02. The meaning of the last
state in that case does not pinpoint the problem, but at
least it does explain the interpretat ion being followed,
as demonst ra ted in Example 3.

Examp~ 3:

I ASSIGNED THE STUDENT THAT /.

NO PARSES

I ASSIGNED THE STUDENT THAT

STUCK AT THE END OF THE SENTENCE

INTERPRETING 'THAT' AS THE BEGINNING OF A

RELATIVE CLAUSE, SUCH AS THE FOLLOWING

RELATIVE CLAUSES MODIFYING 'THE

STUDENT': 'THE STUDENT THAT WON,' 'THE

STUDENT WHICH WON,' OR 'THE STUDENT WHO

WON / .
AT PRESENT, THE SYSTEM DOES NOT UNDERSTAND

'THAT' USED ALONE AS IN 'I KNOW THAT'

THIS ERROR OCCURRED WHILE THE SYSTEM WAS

WORKING ON WHAT IT INTERPRETED TO BE A

SENTENCE EMBEDDED WITHIN THE MAIN

SENTENCE. THE SYSTEM'S INTERPRETATION

OF THE WAY IT EXPECTED THAT EMBEDDED

SENTENCE TO FIT INTO THE COMPLETE

SENTENCE WAS:

SUBJECT UNDERSTOOD TO BE: 'I'

VERB UNDERSTOOD TO BE: 'ASSIGNED'

LOOKING FOR AN APPROPRIATE OBJECT FOR

'ASSIGNED'

In Example 3, the parser has gone one word be-
yond the real difficulty in the input. The problem of
going beyond where the real block occurred is more

apparent than real for state 02, however. If we had
not decided a priori that for the purposes of testing
our ideas we would not add to the parser or lexicon,
we would have simply added the referential sense of
" tha t " to the lexicon.

A third condi t ion-ac t ion pair associa ted with 02
deals with an error in a design decision made when
first building the parser . In Ande r son (1970) , the
lexical analysis cites many predicates whose right con-
texts include preposi t ions specific to a part icular predi-
cate. For instance, "tel l" has right contexts specifical-
ly allowing "o f" or " abou t " . Paths leaving 02 upon
finding a prepos i t ion require that it specifically be
listed in the lexical entry of the predicate. However ,
in 1975 we made the er roneous assumpt ion that only
one preposi t ion would be listed per predicate. The
condi t ion-act ion pair checks whether this could be the
p rob lem; unfor tuna te ly , describing the p rob lem to a
naive user is itself a problem. As Example 4 indicates,
the best desc r ip t ion 'we could think of is the same as
for the first condi t ion-act ion pair of 02 (Example 1).

Examp~ 4:

A PROFESSOR PRESSURED THE STUDENT ABOUT

LEAVING /.

NO PARSES

A PROFESSOR PRESSURED THE STUDENT

STUCK AT THE WORD 'ABOUT'

SUBJECT UNDERSTOOD TO BE: 'A PROFESSOR'

VERB UNDERSTOOD TO BE: 'PRESSURED'

THE WORD 'PRESSURED' IS BEING USED IN A

WAY UNKNOWN TO THIS SYSTEM.

WOULD YOU LIKE EXAMPLES ? *YES

'JOHN WAS PRESSURED INTO LEAVING /.'

'THE PROFESSOR PRESSURED THE STUDENTS

INTO STUDYING THE TEXT /.'

02 has one more condi t ion-ac t ion pair which is
used if no other pair applies. There are two possible
causes in this case: the predicate ' s lexical entry might
not include the right context present in the sentence or
the NP that was just matched could have preposi t ional
phrases modifying it. The message is essentially the
same as that in Example 1. The cause, like the mes-
sage, is not precise in this case.

State 02 illustrates that even though the designer
may assign condi t ion-ac t ion pairs that p inpoint the
cause for a sentence not being parsed, descriptions of
the cause may not be as precise or helpful to a naive
user. Thus, the messages can be less helpful than one
would have hoped.

104 American Journal of Computational Linguistics, Volume 6, Number 2, Apr i l -June 1980

not

~% %, •
"% • " ' ~ W

Ralph M. Weischedel and John E. Black Responding Intelligently to Unparsable Inputs

Figure 2. The path containing $9.

4.3.2 The Precision Possible

In spite of the problem illustrated in the last sec-
tion, much precision is possible in messages to the
user. For example, state S17, which appears in the
full diagrams of Weischedel (1979), is on the path for
recognizing a subset of the cleft sentences. The path
that it is on is an example of many paths that are very
long, with little branching, and that correspond to a
particular interpretat ion. (This is a characterist ic of
the style of the parser.) At S17, the word "i t" , a
string of tense and modal elements ending in a form of
"be" , and a noun phrase have been matched. The
only arc leaving S17 matches a relative clause.. If a
block occurs here, either the input was not a complete
cleft sentence, or the relative clause began in an un-
parsable way. The message printed appears as Exam-
ple 5. The port ion of the message describing relative
clause restrictions was g e n e r a t e d f rom the condition-
action pairs of a different state; that s ta te 's pairs were
involved because S17's pair explicitly called the L O O -
K A H E A D function after printing the first part of the
message.

Examp& 5:

WAS IT JOHN ?

NO PARSES

WAS IT JOHN

STUCK AT THE END OF THE SENTENCE

INTERPRETING 'WAS IT JOHN' AS IN

SENTENCES OF THE FORM: 'WAS IT

JOHN THAT WAS DULL.'

EXPECTED A RELATIVE CLAUSE. EXAMPLES

OF RELATIVE CLAUSES ARE: 'WHICH

THE STUDENT SELECTED' OR 'THAT THE

PROFESSOR TOOK'. THIS SYSTEM

EXPECTS RELATIVE CLAUSES TO BEGIN

WITH 'WHO', 'WHOM', 'WHICH', OR

'THAT'

Another example of the kind of precision possible
comes f rom one of the messages of $9, shown in Fig-
ure 2. LSUBJ matches left contexts of a predicate; in

this case the left context is the surface subject of the
verb. T E N S E (b e) will ma tch any tensed e lements
ending in a form of "be" . V + e n represents a past
participle of a verb. POBJ looks for the right context
of the verb, thus matching right contexts f rom which
the surface subject was syntactically moved. By the
t ime $9 has been reached, the system is interpreting
the input as a passive sentence.

The first condi t ion-act ion pair associated with $9
checks whether the past participle found is in a partic-
ular lexical subcategory, because passives of that sub-
category are t reated in a special manner . The arcs for
the special case were not implemented. The printed
message appears in Example 6 and corresponds exactly
to the omission in the grammar.

Examp~ 6:

I WAS DISAPPOINTED THAT THE LECTURE IS

CROWDED /.

NO PARSES

I WAS DISAPPOINTED

STUCK AT THE WORD 'THAT'

CURRENT SYSTEM CANNOT HANDLE PASSIVE

SENTENCES INVOLVING 'DISAPPOINTED'.

A second condi t ion-act ion pair for $9 always prints
a message if the first one did not apply. This clause
cor responds to a general reason for blocking at $9:
none of the expected right contexts for the verb could
be found. This could arise if the lexical entry did not
list t h e necessary right context and therefore had no
translat ion for this case. It could also arise in a sen-
tence such as "Tha t I won was told immediately to
Mary ." (Recall that we simply did not include adverbi-
al adjuncts in the parser .) Just as the cause is not very
precise for this instance, the message given in Example
7 cannot be either. The example sentences given as
output do parse. The input does not parse because the
lexical entry simply did not include a noun phrase as
one of its right contexts.

American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980 105

Ralph M. Weischedel and John E. Black Responding Intelligently to Unparsable Inputs

Examp~ 7:

ABE WAS BELIEVED BY MARY /.

NO PARSES

ABE WAS BELIEVED

STUCK AT THE WORD 'BY'

SUBJECT UNDERSTOOD TO BE: 'ABE'

VERB UNDERSTOOD TO BE: 'WAS BELIEVED'

IN GENERAL, PHRASES INDICATING TIME,

PLACE, OR MANNER ARE NOT ALLOWED.

ALTERNATELY, YOU MAY HAVE USED THE

VERB 'BELIEVED' IN AN UNKNOWN WAY.

WOULD YOU LIKE EXAMPLES ? *YES

EXAMPLES FOR THE USAGE OF 'BELIEVED'

'JOHN BELIEVED THAT I LEFT /.'

'I BELIEVED JOHN ATTENDED THE

LECTURE /.'

'JOHN BELIEVED IN THE PROFESSOR'S

TEACHING THE COURSE /.'

'I BELIEVED IN JOHN'S HAVING TAKEN

THE TEXT /.'

'MARY BELIEVED IN JOHN'S TRANSLATING

OF THE ASSIGNMENT /.'

'THAT MARY LEFT WAS BELIEVED BY THE

STUDENTS /.'

Using states S17 and $9 along with the correspond-
ing Examples 5 and 6, we have demonstrated that the
messages can sometimes pinpoint the cause of a pars-
ing failure. There are many other states whose
condit ion-act ion pairs yield a precise diagnosis for the
cause of a parsing failure.

4.3.3 Embedded Sentences

For sentences with embeddings, merely to give
information based on the last state of the longest path
seems intuitively insufficient, for explanation of the
higher levels of the sentence may be ignored if the
message is based solely on the last state at an embed-
ded level. Consequently , the system prints messages
for each incomplete sentential level represented in the
partial parse. First, the message from the last state is
printed. Then, starting at the highest level, an expla-
natory message is printed for each incomplete senten-
tial level.

These messages are printed using the same ideas as
described for the last state on the longest path. The
criterion for selecting states is simple. The parser's
stack contains all the states with an exiting PUSH arc
that has been started but remains unfinished. Of the
states in that stack, only the ones corresponding to a
sentential level are relevant; these begin with an "S"
or an "I" in our graph. The set of condit ion-act ion
pairs for these states was written assuming this was
the last state on the longest path. Consequently , we
wrote a second, smaller set of condit ion-act ion pairs
especially assuming that partially parsed embedded
sentences fol low this state.

Example 8 illustrates messages for embedded sen-
tences. The output beginning with "This error occur-
red while ..." is the start of messages from higher lev-
el, partially parsed sentences. The useful hint at the
true problem in parsing Example 8 comes from one of
the states in the system's stack; the right context nec-
essary to parse Example 8 has not been defined.

Examp~ 8:

DID MARY ASK DR SMITH IF I ATTENDED

THE LECTURE ?

NO PARSES

DID MARY ASK DR SMITH IF I ATTENDED

THE LECTURE

STUCK AT THE END OF THE SENTENCE

EXPECTED '/,' TO SEPARATE 'IF I

ATTENDED THE LECTURE' FROM

A QUESTION WHICH IS EXPECTED

TO FOLLOW THE '/,' YOUR

INPUT BEGAN WITH AN 'IF' CLAUSE.

IF THAT CLAUSE WAS NOT FULLY

PROCESSED, THERE ARE SEVERAL

POSSIBLE REASONS:

I) ADVERBIAL MATERIAL TELLING HOW,

WHEN, OR WHERE CANNOT BE

PROCESSED

2) NO PREPOSITIONAL PHRASES CAN

MODIFY A NOUN (IN THIS SYSTEM).

THIS ERROR OCCURRED WHILE THE SYSTEM WAS

WORKING ON WHAT IT INTERPRETED TO

BE A SENTENCE EMBEDDED WITHIN THE

MAIN SENTENCE. THE SYSTEM'S

INTERPRETATION OF THE WAY IT

EXPECTED THAT EMBEDDED SENTENCE TO

FIT INTO THE COMPLETE SENTENCE WAS:

SUBJECT UNDERSTOOD TO BE: 'MARY'

VERB UNDERSTOOD TO BE: 'DID ASK'

LOOKING FOR AN APPROPRIATE OBJECT FOR

'ASK'.

4.3.4 Test ing the Longest Path Heurist ic

A serious difficulty in using the longest path as a
heuristic for generating responses is that the parser
may be able to cont inue further in the input than
where the real parsing problem occurred. To examine
how well the longest path heuristic performs in locat-
ing the true cause of the problem, we analyzed the 39
sentences described in section 4.1. In only three of
the 39 cases did the parser continue beyond the point
where the true problem occurred. Contrasted with
this success rate, Woods (personal communicat ion,
1977) reported that in L U N A R , the parser very often
was able to continue beyond the point of the problem
in the input before becoming blocked.

106 American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980

Ralph M. Weischedel and John E. Black Responding Intelligently to Unparsable Inputs

There are several factors that affect the success of
the longest path heuristic. One is the extent of the
grammar; the fact that adverbial adjuncts, reduced
relative clauses, and multiple, consecutive prepositional
phrases are not present in the grammar we tested un-
doubtedly contr ibuted to the high success rate. There-
fore, the heuristic should be very effective in applied
natural language interfaces that are constrained.

Second, the style of grammar can affect the success
of the heuristic. For instance, our grammar immedi-
ately upon finding the main predicate (e.g. verb) of a
clause requires that its syntactic expectations for right
contexts of that particular main predicate be satisfied
at each step through the remainder of the string con-
taining a right context. Also, as near as possible, se-
mantically different senses were usually separated into
distinct paths, even though they might have been col-
lapsed into one.

Third, applying semantic constraints and expecta-
tions while parsing should also contr ibute to the effec-
tiveness of the longest path heuristics, just as the syn-
tactic constraints and expectations do. The additional
constraints will inhibit the parser from continuing be-
yond a problem in the input by prevent ing it f rom
processing a phrase with the expected syntactic form
but which is unacceptable semantically. For instance,
suppose the actual right context of a predicate (e.g.
verb) starts with a noun phrase, but the lexicon lists
no right contexts for the predicate that begin with a
noun phrase. A parser might be able to continue by
interpreting the noun phrase as an adverbial adjunct
specifying a time, such as "last night." If the parser
interacts with a semantic component requiring that the
noun phrase be interpretable as a time specification,
the parser could not go on by interpreting the noun
phrase erroneously. Since our grammar does not inter-
act with a semantic component , we are interested in
testing the longest path heuristic in RUS (Bobrow,
1978), a grammar which does interact closely with
semantics.

4.3.5 Further Observat ions

A natural criterion for evaluating this strategy for
unparsable sentences is the cost, bo th in processing
and programming development . In processing, very
little is added. Clearly, a small fraction of the parsing
time and memory usage is added to record the longest
path and to generate messages for the last state on it
(and possibly one state per incomplete sentential lev-
el). However , it is easy to see that this is a minute
fraction compared to the time and memory in search-
ing for a parse.

On the other hand, significant additional ef for t is
required of the programmer to devise condit ion-action
pairs for each state. However , spending that time has
benefits in addition to the response ability added to
the system. Analyzing the parser to develop the
meaning of each state clarifies the programmer 's un-

derstanding of the system. Fur thermore , it serves as
significant documentat ion, since it describes the intent
of the programmer at each point.

For our graph having approximately 110 states, the
average number of condit ion-act ion pairs per state was
1.4. The code for these pairs amounted to approxi-
mately one page of a listing for the condit ions and
approximately nine pages for the constant character
strings used in generat ing the (rather long) printed
messages. Therefore , it is clear that the condition-
action pairs do not require a lot of programming, but
do require a bet ter understanding and description of
the parser.

5. Related W o r k

Several other projects have concentra ted on giving
meaningful responses to partially understood input and
of correcting erroneous assumptions.

Kaplan (1977 ,1978 ,1979) reports on research
which extends the notion of presupposition. Further-
more, he has developed algorithms for computing the
extended notion called presumption, particularly taking
advantage of the simplifying aspects of natural lan-
guage queries of a data base. The algorithms give
helpful responses to data base users when the query as
stated would have the empty set as a response. Mays
(1980) deals with presumptions related to users' per-
ceptions of the logical structure of a data base.

Codd, et.al. (1978) describes the first version of a
system called RENDEZVOUS, specifically addressing
the same problems as our paper, but proposing very
different approaches. Unlike the ideas presented here,
REN D EZV O U S is aimed only at interfaces to relation-
al data bases. It provides many interesting human
engineering features for clarification dialogue, even to
a menu-dr iven specification of a formal query when
natural language queries prove unsatisfactory.

Some very promising work which is complementary
to ours is reported in Hendrix, et.al. (1978) and Hen-
drix (1977). They report on a new software tool LI-
FER, which enables rapid development of semantic
grammars (Burton, 1976 and Brown and Burton,
1975). L IFER provides some error messages for un-
parsable forms by printing the possible items that
could appear at the point where the parser could not
proceed. Their heuristic for selecting one place where
the block occurred is similar to ours. Combining the
following additional features of L IFER with our work
could offer a powerful natural language interface. LI-
FER allows naive users the ability to add synonyms
for previously known words and to define new syntac-
tic forms for sentences by the user presenting a sen-
tence in the new form and an equivalent sentence
which is already parsable. It also provides an auto-
matic facility for handling ellipsis.

Kwasny and Sondheimer (1979) have extended our
notion of selectively relaxing predicates to deal with

American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980 107

Ralph M. Weischedel and John E. Black Responding Intelligently to Unparsabla Inputs

co-occurrence violations and relaxation of expected
word categories. Their paper also reports a uniform
way of treating ellipsis and conjunct ion, including
gapping.

Allen (1979) argues that good clarification dialogue
requires that the system have a model of the plan the
user is following and of how the sequence of speech
acts by the user fits into that plan. We agree, and one
of our long-term goals is use of a model of user goals,
plans, and speech acts for this purpose. Other compu-
tational models of speech acts appear in Cohen and
Perrault (1979), Levin and Moore (1978), and Mann
(1979).

Pat tern-matching as an alternative to a top-down,
lef t - to-r ight parser, has of ten been suggested as a
means of processing il l-formed input, as discussed in
Kwasny and Sondheimer (1979), for example. Hayes
and Reddy (1979) also advocate pat tern-matching as a
part of an approach that they are implementing to
cover the broad spectrum of problems in graceful in-
teract ion, including anaphora resolution, explanat ion
facilities, flexible parsing, generat ing descriptions of
entities in context, monitoring focus, and robust com-
munication.

6. Conc lus ions

We have drawn eight conclusions from our experi-
ence with the two systems on which our heuristics
were tested. First, computing the presuppositions, or
given information, of user input provides a means for
detecting some of the user's assumptions inherent in
the input. These may be checked against world
knowledge in the system to recognize discrepancies
be tween the user's model and the system's world mod-
el and to point out an incorrect assumption to the
user.

Second, an effect ive s t ra tegy for increasing the
robustness of a parser is to allow relaxation of predi-
cates (on ATN arcs) that the parser designer desig-
nates as relaxable, or "failable." The system will pref-
er parses where no such predicates are false. If no
parse can be found with all predicates true, the system
will relax the predicates designated as failable, and will
search for a parse with the fewest failable predicates
false.

The remaining conclusions regard our technique of
assigning meanings to states as a means of generating
responses when no parse can be found. The third
conclusion is that the meanings of states, used with the
longest path heuristic, can often pinpoint the cause of
an input not parsing.

Fourth, though the cause of the input not parsing
can of ten be pinpointed with the technique, describing
the cause to the user may be quite difficult because of
the technical nature of the problem in the input.

Fifth, the effectiveness of the longest path heuristic
in correct ly selecting the state corresponding to the

actual problem in processing the input depends on the
style of the grammar and the extent of the subset of
language covered. The more constrained the language
used in the application domain, the less possibility for
the parser continuing beyond the point of the problem.
Alternatively, the more syntactic and semantic const-
raints used as expectations by the parser, the greater
the likelihood that the problem in the input will cor-
rectly correspond to a violated expectat ion, since vio-
lated expectat ions will help prevent the parser f rom
going beyond the point of the problem. This does not
conflict with the notion of relaxing predicates, since
the longest path heuristic is used only after no parse
can be found even after relaxing predicates. In our
grammar, the longest path heuristic selected the cor-
rect state in over 9 0 % of the test cases.

Sixth, based on the two previous conclusions, the
heuristic of responding using the meaning of states will
be most effective in semantic grammars or in parsers
that interact closely with semantic processes.

Seventh, the longest path heuristic adds only a small
f ract ion to the computing time and memory usage
during parsing. Fur thermore , adding the condi t ion-
action pairs to represent the meaning of states does
not require a lot of programming, but does require a
bet ter understanding of the parser.

Eighth and last, the technique of assigning meaning
to states is applicable to explaining compile-t ime errors
in programming languages as well.

We also suggest four areas for further work. First,
the heuristics should be tested in a parser that inter-
acts closely with semantics while parsing. The purpose
for that is twofold: (1) to more effectively respond
to the user by paraphrasing the partial interpretat ion
and semantic expectat ions when the input is unparsa-
ble and (2) to test fur ther the effectiveness of the
longest path heuristic. Second, the user 's goals and
intent are critical constraints which we have not incor-
porated in any of our heuristics. The aforement ioned
work on computat ional models of speech acts and
dialogue games provide a starting point for this. A
third area is to combine the ideas presented here with
the heuristics in L I F E R (Hendrix , et.al., 1978); the
combination could provide a very user-oriented, flexi-
ble interface. Fourth, the effectiveness of our techni-
que for responding to unparsable sentences should be
examined in the domain of programming language
compilers, because the user of a compiler knows many
technical terms which the parser writer can employ in
messages to convey effectively the cause of a blocked
parse.

A c k n o w l e d g e m e n t s

The authors gratefully acknowledge the many valu-
able contributions of the referees and George Heidorn
to improving the exposition. Norm Sondheimer also
contr ibuted much in many discussions of our ideas.

108 American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980

Ralph M. Weischedel and John E. Black Responding Intelligently to Unparsable Inputs

References
Allen, James F., "A Plan-Based Approach to Speech Act Recogni-

tion," Ph.D. Thesis, Dept. of Computer Science, University of
Toronto, Toronto, Canada, 1979.

Anderson, Barbara B., "TransformationaUy Based English Strings
and their Word Subclasses," String Program Reports No. 7,
Linguistic String Program, New York University, New York,
NY 1970.

Bobrow, D. G., R. M. Kaplan, M. Kay, D. A. Norman, H. Thomp-
son, and T. Winograd, "GUS, A Frame Driven Dialog System,"
Artificial Intelligence 8, 2, 1977.

Bobrow, Robert J., "The RUS System," in B. L. Webber and R.
Bobrow, Research in Natural Language Understanding, BBN
Report 3878, Bolt Beranek and Newman Inc., Cambridge, MA,
1978.

Brown, J. S. and R. R. Burton, "Multiple Representations of
Knowledge for Tutorial Reasoning." In D. G. Bobrow and A.
Collins, Eds., Representation and Understanding, New York:
Academic Press, 1975.

Burton, R. R., "Semantic Grammar: An Engineering Technique for
Construction of Natural Language Understanding Systems."
BBN Report 3453, Bolt, Beranek, and Newman, Cambridge,
Mass. Also, Ph.D. Dissertation, University of California,
Irvine, CA, 1976.

Clark, Herbert H. and Susan E. Haviland, "Comprehension and the
Given-New Contract. ~ In R. Freedle, Ed., Discourse Processes:
Advances in Research and Theory, Vol. 1. Discourse Production
and Comprehension. Norwood, N J: Ablex Publishing Corpora-
tion, 1977.

Codd, E. F., R. S. Arnold, J. M. Cadiou, C. L. Chang, N. Rousso-
poulos, "RENDEZVOUS Version 1: An Experimental English-
Language Query Formulation System for Casual Users of Rela-
tional Data Bases," Research Report RJ2144 (29407), IBM
Research Laboratory, San Jose, CA, 1978.

Cohen, Philip R. and C. Raymond Perrault, "Elements of a Plan-
Based Theory of Speech Acts," Cognitive Science 3, 3, 1979.

Floyd, R. W., "Assigning Meanings to Programs," Proc. of a Sympo-
sium in Applied Mathematics, Vol. 19. American Mathematical
Society, 1967.

Grishman, Ralph, "Implementation of the String Parser of English."
In R. Rustin, Ed., Natural Language Processing. New York:
Algorithmies Press, 1973.

Haviland, Susan E. and Herbert H. Clark, "What's New? Acquir-
ing new information as a process in comprehension." Journal of
Verbal Learning and Verbal Behavior, 13, 1974.

Hayes, P. and R. Reddy, "An Anatomy of Graceful Interaction in
Spoken and Written Man-Machine Communication," Teehnieal
Report, Dept. of Computer Science, Carnegie-Mellon Universi-
ty, Pittsburgh, PA, 1979.

Heidorn, George E., "Augmented Phrase Structure Grammars,"
Theoretical Issues in Natural Language Processing, 1975.

Hendrix, Gary G., Earl D. Sacerdoti, Daniel Sagalowiez, and Jona-
than Slocum, "Developing a Natural Language Interface to
Complex Data," ACM Transactions on Data Base Systems 3, 2,
1978.

Hendrix, G. G., "Human Engineering for Applied Natural Language
Processing," Proc. 5th International Joint Conference on Artificial
Intelligence, Cambridge, MA, August, 1977.

Joshi, Aravind K. and Ralph M. Weischedel, "Computation of a
Subclass of Inferences: Presupposition and Entailment." Ameri-
can Journal of Computational Linguistics, 1977, 1, Microfiche 63,
1977.

Kaplan, S. Jerrold, "Cooperative Responses from a Natural Lan-
guage Data Base Query System: Preliminary Report," Techni-
cal Report, Department of Computer and Information Science,
Moore School, University of Pennsylvania, Philadelphia, PA,
1977.

Kaplan, S. Jerrold, "Indirect Responses to Loaded Questions,"
Theoretical Issues in Natural Language Processing-2, University of
Illinois at Urbana-Champaign, July, 1978.

Kaplan, S. Jerrold, "Cooperative Responses from a Natural Lan-
guage Data Base Query System, ') Ph.D. Dissertation, Dept. of
Computer & Information Science, University of Pennsylvania,
Philadelphia, PA, 1979.

Karttunen, L., "Presuppositions of Compound Sentences," Linguis-
tic Inquiry, 4, 1973.

Karttunen, L. and S. Peters, "Conventional Implieature in Mo-
ntague Grammar," Proc. of the First Annual Meeting of the
Berkeley Linguistics Society, Berkeley, CA, 1975

Kwasny, Stan and Norman K. Sondheimer, "Ungrammatieality and
Extra-Grammaticality in Natural Language Understanding
Systems," Proceedings of the 17th Annual Meeting of the Associa-
tion for Computational Linguistics, 1979.

Levin, J. A. and J. A. Moore, "'Dialogue Games: Meta-
communication Structures for Natural Language Interaction,"
Cognitive Science 1, 4, 1978.

Mann, W. C., "Dialogue Games," in K. Hintikka, et.al., Eds.,
Models of Dialogue, Amsterdam: North-Holland Publishing
Company, 1979.

Mays, Eric, "Correcting Misconceptions About Data Base Struc-
ture," Proceedings of the Conference of the Canadian Society for
Computational Studies of Intelligence, 1980.

Oh, Choon-Kyu and David A. Dineen, (Eds.), Presupposition, Vol.
11, Syntax and Semantics, New York: Academic Press, 1979.

Sager, Naomi, "The String Parser for Scientific Literature." In R.
Rustin, Ed., Natural Language Processing. New York: Algor-
ithmies Press, 1973.

Weischedel, Ralph M., "Computation of a Unique Subclass of
Inferences: Presupposition and Entailment," Ph.D. Thesis,
Department of Computer and Information Science, University
of Pennsylvania, Philadelphia, PA, 1975.

Weischedel, Ralph M., "A New Semantic Computation While Pars-
ing: Presupposition and Entailment." In C. Oh and D. Dineen,
Eds., Presupposition, Vol. 11, Syntax and Semantics, New York:
Academic Press, 1979.

Weischedel, Ralph M., "Please Re-phrase," Technical Report
#77/1, Department of Computer and Information Sciences,
University of Delaware, Newark, DE 1977.

Weischedel, Ralph M., Wilfried Voge, and Mark James, "An Artifi-
cial Intelligence Approach to Language Instruction," Artificial
Intelligence 10, 3, 1978.

Winograd, T., Understanding Natural Language, New York: Aca-
demic Press, Inc., 1972.

Woods, W. A., "Transition Network Grammars for Natural Lan-
guage Analysis," Comm. ACM, 13, 10, 1970.

Woods, W. A., "An Experimental Parsing System for Transition
Network Grammars." In R. Rustin, Ed., Natural Language
Processing. New York: Algorithmics Press, 1973a.

Woods, W. A., "Progress in natural language understanding -- An
application to lunar geology,," AFIPS Conference Proceedings,
NCC. Montvale, NJ: AFIPS Press, 1973b.

Woods, W. A., Personal Communication, 1977.

Ralph M. Weischedel is an assistant professor in the
D e par tm e n t o f Computer and I n f o r m a t i o n Sc iences at
the University o f Delaware. H e received the Ph .D. de-
gree in computer and in format ion science f r o m the Uni-
versity o f Pennsylvania in 1975.

John E. B l a c k is Director o f Computer Sys t ems at
W. L. Gore & Associates, Inc. , in Newark , Delaware.
H e received the M . S . degree in computer and in forma-
tion sciences f r o m the University o f Delaware in 1979.

American Journal of Computational Linguistics, Volume 6, Number 2, April-June 1980 109

