
Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 175–180,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Dialog for Language to Code

Shobhit Chaurasia and Raymond J. Mooney
Department of Computer Science
The University of Texas at Austin

shobhit@utexas.edu, mooney@cs.utexas.edu

Abstract

Generating computer code from natural
language descriptions has been a long-
standing problem. Prior work in this do-
main has restricted itself to generating
code in one shot from a single description.
To overcome this limitation, we propose a
system that can engage users in a dialog to
clarify their intent until it has all the infor-
mation to produce correct code. To eval-
uate the efficacy of dialog in code genera-
tion, we focus on synthesizing conditional
statements in the form of IFTTT recipes.

1 Introduction

Building a natural language interface for program-
matic tasks has long been a goal of computational
linguistics. This has been explored in a plethora
of domains such as generating database queries
(Zelle and Mooney, 1996; Berant et al., 2013; Yin
et al., 2016), building regular expressions (Man-
shadi et al., 2013), commanding a robot (She et al.,
2014), programming on spreadsheets (Gulwani
and Marron, 2014), and event-driven automation
(Quirk et al., 2015), each with its own domain-
specific target language. Synthesis of computer
programs in general-purpose programming lan-
guages has also been explored (Ling et al., 2016;
Yin and Neubig, 2017). The existing work as-
sumes that a working program can be generated in
one shot from a single natural language descrip-
tion. However, in many cases, users omit impor-
tant details that prevents the generation of fully ex-
ecutable code from their initial description.

Another line of research that has recently gar-
nered increasing attention is that of dialog sys-
tems (Singh et al., 2002; Young et al., 2013). Dia-
log systems have been employed for goal-directed
tasks such as providing technical support (Lowe

et al., 2015) and travel information and booking
(Williams et al., 2013), as well as in non-goal
oriented domains such as social-media chat-bots
(Ritter et al., 2011; Shang et al., 2015).

In this paper, we combine these two lines of re-
search and propose a system that engages the user
in a dialog, asking questions to elicit additional
information until the system is confident that it
fully understands the user’s intent and has all of
the details to produce correct, complete code. An
added advantage of the dialog setting is the possi-
bility of continuous improvement of the underly-
ing semantic parser through conversations (Artzi
and Zettlemoyer, 2013; Thomason et al., 2015;
Weston, 2016), which could further increase suc-
cess rates for code generation and result in shorter
dialogs. We focus on a restrictive, yet important
class of programs that deal with conditions, i.e.,
if-then statements. To this end, we use the
IFTTT dataset released by Quirk et al. (2015). To
the best of our knowledge, this is the first attempt
to use dialog for code generation from language.

2 Task Overview

2.1 IFTTT Domain

IFTTT (if-this-then-that) is a web-service that al-
lows users to automate simple tasks by creating
short scripts, called recipes, through a GUI that
enables them to connect web-services and smart
devices. A recipe consists of a trigger — an event
which fires the recipe — and an action — the task
to be performed when the recipe is fired. A trigger
is characterized by a trigger channel (the source
of the event) and a trigger function (the nature of
the event); an action is characterized by an ac-
tion channel (the destination of the task to be per-
formed) and an action function (the nature of that
task). Users can share their recipes publicly with
short descriptions of their functionalities.
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For example, a recipe with description “Text me
when I am tagged in a picture on Facebook” might
have trigger channel facebook, trigger function
you are tagged in a photo, action channel
sms, and action function send me an sms.

2.2 Problem Statement
Our goal is to synthesize IFTTT recipes from their
natural language descriptions. Unlike prior work
in this domain (Quirk et al., 2015; Dong and La-
pata, 2016; Beltagy and Quirk, 2016; Liu et al.,
2016), which restrict the system to synthesizing a
recipe from a single description, we seek to enable
the system to interact with users by engaging them
in a dialog to clarify their intent when the system’s
confidence in its inference is low. This is particu-
larly crucial when there are multiple channels or
functions achieving similar goals, or when the ini-
tial recipe descriptions are vague.

3 Approach

We propose a dialog system with which users can
converse using natural language to create recipes.
It consists of three components: Dialog Manager,
Natural Language Understanding (NLU), and Nat-
ural Language Generation (Jurafsky, 2000).

3.1 Dialog Manager
The aim of the dialog system is to determine val-
ues of channels and functions for the recipe that
the user wants to create. We cast this problem as
a slot-filling task, in which the system maintains
a belief state — its current estimates for the slots
— and follows a hand-coded policy to update its
belief state until it is confident that the belief state
is same as the user goal. The strategy is similar to
the one used by Thomason et al. (2015).

3.1.1 Belief State
The belief state consists of four slots:
trigger channel, trigger function,
action channel, and action function.
The slots naturally form a hierarchy: channels are
above functions. Although triggers and actions
are, in a loose sense, at the same level in the
hierarchy1, it is more natural to specify triggers
before actions, thereby inducing a complete
hierarchy over slots. This hierarchy is exploited
in specifying a policy for the dialog system.

1Technically, the presence of ingredients — properties as-
sociated with trigger functions that can be utilized by action
functions — puts triggers above actions in the hierarchy.

The system maintains a probability distribution
over all possible values for each slot. After each
user utterance, the probability distribution for one
or more slots is updated based on the parse re-
turned by the utterance parser (see Section 3.2).
The system follows a hand-coded policy over the
discrete state-space obtained from the belief state
by assigning the values with highest probability
(candidates with highest confidence) to each slot.

3.1.2 Static Dialog Policy
The dialog opens with an open-ended user utter-
ance (a user-initiative) in which the user is ex-
pected to describe the recipe. Its parse is used to
update all the slots in the belief state. The system
moves down the slot-hierarchy, one slot at a time,
and picks the next action based on the confidence
of the top candidate for each slot. If the confidence
is above α, the parse is accepted, and the candidate
is assigned to that slot. If the confidence is below
β, the parse is rejected, and the system requests in-
formation for that slot (a system-initiative). If the
confidence is between α and β, the system seeks
a confirmation of the candidate value for that slot;
if the user affirms, the candidate is assigned to the
slot, otherwise the system requests information for
that slot. Value of α and β present a trade-off be-
tween dialog success and dialog length. α = 0.85
and β = 0.25 were used in all the experiments,
chosen by analyzing the performance of the dia-
log system on the IFTTT validation set.

3.2 Natural Language Understanding

This component is responsible for parsing user ut-
terances. We use the model proposed by Liu et al.
(2016): an LSTM-based classifier enhanced with a
hierarchical, two-level attention mechanism (Bah-
danau et al., 2014). In our system, the semantic
parser is composed of a set of four such models,
one for each slot. User-initiatives are parsed by
all four models, while user responses to system-
initiatives are parsed by the model corresponding
to the slot under consideration.

3.3 Natural Language Generation

The dialog system uses templates and IFTTT API
documentation to translate its belief state into a
comprehensible utterance. For example, the con-
firmation request for the blink lights action
function of the hue action channel is: “Do you
want to briefly turn your hue lights off then back
on every time the applet is triggered?”
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3.4 Retraining NLU using Dialog

Another advantage of using a dialog approach to
recipe synthesis is that it unlocks the possibility
of continuous parser improvement through con-
versations (Artzi and Zettlemoyer, 2013; Thoma-
son et al., 2015; Weston, 2016). To this end, we
extract training data from the dialogs. Opening
user utterances and user utterances for each slot
after a system-initiative in successful dialogs are
paired with inferred slot values to retrain the mod-
els. Analysis of models’ predictions on the val-
idation set revealed that the attention mechanism
was rather good at attending to relevant parts of
an utterance; the models failed because they of-
ten couldn’t pick the correct channel or function
among the similar ones. Therefore, we tuned only
the non-attention parameters during retraining.

4 Experiments

We trained our parser on the training set of the
IFTTT corpus. Since the corpus was released,
many recipes have been taken down; we could
only obtain 66, 588 out of 77, 495 training recipes.
We evaluated our system on the “gold” subset of
the IFTTT test set created by Quirk et al. (2015)
which consists of 550 recipes on which at least
three humans presented with the recipe descrip-
tions agreed with the true labels. We restricted
ourselves to this subset because our experiments
involved humans interacting with the dialog sys-
tem to describe the recipe and answer its ques-
tions, and it was crucial that they themselves have
a clear understanding of the recipe.

4.1 Experimental Setup

We used Amazon Mechanical Turk to conduct our
experiments. Users were provided with recipe de-
scriptions from the IFTTT corpus. Since descrip-
tions could often be vague, we also explicitly pro-
vided them the details of channels and functions
associated with the recipes. As noted in (Thoma-
son et al., 2015), in which a similar interface was
used to let users chat with a robot for perform-
ing navigation- and delivery-related tasks, infor-
mation presented using words could linguistically
prime the users. They avoided priming completely
by presenting the information pictorially. Since it
is unclear how to succinctly describe a recipe with-
out using words, we, instead, used keywords for
channels and functions (such as event starts
and blink lights), which usually contain only

content words necessary to give an indication of
their functionality, but are somewhat distant from
natural language. Additionally, we encouraged
users to use their own words based on their under-
standing of the recipe and restricted direct usage
of these keywords. Fig. 1 shows a sample dialog.

Figure 1: Dialog for a recipe with trigger
event starts on google calendar, action
send notification on google glass.

4.2 Dialog Experiments

We conducted two experiments to evaluate the ef-
ficacy of dialog in synthesizing recipes. In both
the experiments, two baselines are used. First
is the the best-performing model from Liu et al.
(2016), currently the state-of-the-art on this task,
provided only with initial recipe descriptions, as
should be the case for a single-shot model. The
second baseline, called “Concat,” uses the same
model as above, but is provided with all the user
utterances from the conversation concatenated. By
ensuring that both the single-shot and the dialog
approach get same information, the Concat base-
line provides a middle-ground between the two ap-
proaches, and is more fair to the single-shot sys-
tem, but disguises its obvious deficiency: the lack
of ability to ask for clarification.

4.2.1 Constrained User-Initiative
To evaluate our system directly on the test set, we
constrained the users to use the original recipe de-
scriptions as their first utterance (i.e. the user-
initiative) when they were asked by the system
to describe the recipe. This way, we can directly
compare our results with prior work which uses
this set for evaluation.

4.2.2 Free User-Initiative
To emulate a more realistic setting in which users
drive the entire conversation, including the user-
initiative, we allowed the users to provide the ini-
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Experiment Liu et al. (2016) Concat Baseline Ours
Accuracy Accuracy Accuracy Avg. dialog length

Constrained UI 85.282 91.27 95.28 2.55
Free UI 66.0 77.82 81.45 4.04
After retraining 66.0 77.48 82.55 4.08

Table 1: Accuracy of recipe synthesis. Average dialog length is measured in terms of number of user
utterances.

tial recipe descriptions themselves. For a fair com-
parison, we evaluated the Liu et al. (2016)’s base-
line model on the initial descriptions provided in
the conversations.

4.3 Results

The results are summarized in Table 1. The dia-
log approach boosts the accuracy of recipe synthe-
sis considerably over the single-shot approach in
both the experiments: 10 point increase with con-
strained user-initiative and over 15 point increase
with free user-initiative. Even when the two ap-
proaches receive the same information (i.e., when
the dialog approach is compared with the Concat
baseline), the dialog approach boosts the accuracy
by approximately 4 points.

Surprisingly, the accuracy of both the single-
shot approach and the dialog approach fell dramat-
ically in the experiment with free user-initiative.
We contend that the reason behind this reduction
is the difference between the two settings in which
the recipe descriptions were created: Constrained
UI experiment uses original descriptions written
by the authors of the recipes with the aim of sum-
marizing their recipes so that their functionality
can be easily understood by others without their
assistance. The descriptions used in Free UI ex-
periment were provided by humans with the aim of
describing the recipe to a system with the knowl-
edge that the system can ask clarification ques-
tions. The former are expected to be more descrip-
tive and self-contained than the latter. The larger
average dialog length in the Free UI experiment
further corroborates this point.

4.4 Parser Retraining

Parser retraining would be most helpful when
the data is extracted from conversations that in-

2The accuracy reported by Liu et al. (2016) is 87.5%.
Our implementation of their system was able to achieve only
85.28% accuracy. The discrepancy could be because of a
smaller training set (they had 68k recipes), a smaller gold
test set (they had 584 recipes), or variance while training.

volve channels and functions for which the exist-
ing parser’s confidences are low. Therefore, we
randomly sampled 100 recipes from an unused
portion of the test set on which the confidence of
existing parser is below β for at least two slots.
About 130 data-points were extracted from con-
versations with humans over these recipes, and the
four models were retrained.

4.4.1 Results
The accuracy of systems using retrained models
is summarized in Table 1. For direct compari-
son, the dialog system with retrained models was
evaluated using the user utterances from conver-
sations in the Free UI experiment, except when
its actions deviated from the original ones — due
to an improved NLU component — in which case
new user utterances were obtained. While retrain-
ing didn’t improve the single-shot accuracy, there
was a marginal improvement of 1.1 points in the
dialog setting. Analysis of the conversations re-
vealed that this was because the retrained models
had lower confidence for some channels and func-
tions for which it initially had high priors. On one
hand, this helped the dialog system avoid getting
stuck in an impasse when it assigns an incorrect
value to a slot with high confidence without con-
firmation. On the other hand, this pessimism led
to a slight increase in average dialog length.

5 Future Work

In this work, we focus only on conditionals. A
natural extension would be to consider other pro-
gramming constructs such as loops, procedure
invocations, and sequence of execution. Dia-
log policy learning can be added to account for
non-stationarity in the dialog environment due to
parser learning (Padmakumar et al., 2017).

6 Conclusion

In this work, we demonstrated the efficacy of using
dialog for mapping natural language to short, exe-

178



cutable computer code. We evaluated this idea in
the domain of IFTTT recipes. The proposed sys-
tem engaged the user in a dialog, asking questions
to elicit additional information until it was confi-
dent in its inference, thereby increasing the accu-
racy on this task over the state-of-the-art models
that are restricted to synthesizing recipes in one
shot by 10 − 15 points. Additionally, we demon-
strated how data extracted from the conversations
can be used for continuous parser learning.
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